
HAL Id: tel-01371978
https://theses.hal.science/tel-01371978v1

Submitted on 26 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Convex Optimization-based Static Analysis for Control
Systems

Pierre-Loïc Garoche

To cite this version:
Pierre-Loïc Garoche. Convex Optimization-based Static Analysis for Control Systems. Computation
and Language [cs.CL]. INPT; Université de toulouse, 2016. �tel-01371978�

https://theses.hal.science/tel-01371978v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Habilitation à diriger des recherches
de l’INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE

Pierre-Loïc Garoche
September 19th 2016

Convex Optimization-based Static Analysis for Control Systems

Rapporteurs : Éric Goubault

Professeur au LIX à l’École Polytechnique

Ilya Kolmanovsky

Professor of Aerospace Engineering at Michigan University, USA

David Monniaux

Directeur de recherches au CNRS, Laboratoire Vérimag

Examinateurs : Behçet Açikmeşe

Associate Professor of Aeronautics & Astronautics at University of Washington, USA

Éric Féron

Professor of Aerospace Engineering at Georgia Tech, USA

John Hauser

Associate Professor, Dept. of Electrical and Computer Engineering at University of Colorado Boulder, USA

Didier Henrion

Directeur de recherches au LAAS-CNRS, Université de Toulouse

Matthieu Martel

Professeur à l’Université de Perpignan Via Domitia, Laboratoire de Mathématiques et de Physique (LAMPS)

Philippe Queinnec

Professeur à l’INPT/IRIT, Université de Toulouse

correspondant INPT

P U B L I C AT I O N S & P R O T O T Y P E S

Some ideas and figures have appeared previously in the following publications:

[RDG10] Pierre Roux, Rémi Delmas, and Pierre-Loïc Garoche. “SMT-AI: an Abstract Interpreter for a Syn-
chronous Extension of SMT-lib.” In: 1st International Workshop on Tools for Automatic Program AnalysiS
(TAPAS 2010), SAS’10 satellite event, Perpignan, France. Ed. by David Delmas and Xavier Rival. Vol. 267. 2.
Elsevier Electr. Notes Theor. Comput. Sci., Sept. 2010, pp. 55–68. doi: 10.1016/j.entcs.2010.09.018.

[Cha+11] Adrien Champion, Rémi Delmas, Pierre-Loïc Garoche, and Pierre Roux. “Towards Cooperation of
Formal Methods for the Analysis of Critical Control Systems.” In: SAE International Journal of Aerospace
4.2 (Nov. 2011). Arch T. Colwell Merit Award, pp. 850–858. doi: 10.4271/2011-01-2558.

[Her+12] Heber Herencia-Zapana, Romain Jobredeaux, Sam Owre, Pierre-Loïc Garoche, Éric Féron, Gilberto
Perez, and Pablo Ascariz. “PVS Linear Algebra Libraries for Verification of Control Software Algo-
rithms in C/ACSL.” In: NASA Formal Methods - Forth International Symposium, NFM 2012, Norfolk, VA
USA, April 3-5, 2012. Proceedings. Ed. by Alwyn Goodloe and Suzette Person. Vol. 7226. Lecture Notes
in Computer Science. Springer, 2012, pp. 147–161. doi: 10.1007/978-3-642-28891-3_15.

[Kah+12] Temesghen Kahsai, Pierre-Loïc Garoche, Cesare Tinelli, and Mike Whalen. “Incremental verification
with mode variable invariants in state machines.” In: NASA Formal Methods - Forth International Sym-
posium, NFM 2012, Norfolk, VA USA, April 3-5, 2012. Proceedings. Ed. by Alwyn Goodloe and Suzette
Person. Vol. 7226. Lecture Notes in Computer Science. Springer, 2012, pp. 388–402. doi: 10.1007/978-
3-642-28891-3_35.

[Rou+12] Pierre Roux, Romain Jobredeaux, Pierre-Loïc Garoche, and Éric Féron. “A Generic Ellipsoid Abstract
Domain for Linear Time Invariant Systems.” In: Proceedings of the 15th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2012, Beijing, China, April 17-19, 2012, ed. by Thao Dang
and Ian Mitchell. ACM, 2012, pp. 105–114. isbn: 978-1-4503-1220-2. doi: 10.1145/2185632.2185651.
url: doi.acm.org/10.1145/2185632.2185651.

[Wie+12] Virginie Wiels, Rémi Delmas, David Doose, Pierre-Loïc Garoche, Jacques Cazin, and Guy Durrieu.
“Formal Verification of Critical Aerospace Software.” In: Aerospace Lab Journal 4 (May 2012). url: www.
aerospacelab-journal.org/al4/.

[Cha+13a] Adrien Champion, Rémi Delmas, Michael Dierkes, Pierre-Loïc Garoche, Romain Jobredeaux, and
Pierre Roux. “Formal Methods for the Analysis of Critical Control Systems Models: Combining Non-
Linear and Linear Analyses.” In: Formal Methods for Industrial Critical Systems (FMICS’13). Ed. by
Charles Pecheur and Michael Dierkes. Vol. 8187. Lecture Notes in Computer Science. Best paper award.
Springer, 2013, pp. 1–16. isbn: 978-3-642-41009-3. doi: 10.1007/978-3-642-41010-9_1.

[Cha+13b] Adrien Champion, Rémi Delmas, Michael Dierkes, Pierre-Loïc Garoche, Romain Jobredeaux, and
Pierre Roux. “Formal Methods for the Analysis of Critical Control Systems Models: Combining Non-
Linear and Linear Analyses.” In: SAE International Journal of Aerospace 6.1 (2013), pp. 150–160. doi:
10.4271/2013-01-2109.

[GKT13] Pierre-Loïc Garoche, Temesghen Kahsai, and Cesare Tinelli. “Incremental Invariant Generation Using
Logic-Based Automatic Abstract Transformers.” In: NASA Formal Methods - Fifth International Sympo-
sium, NFM 2013, Moffett Field, CA USA, May 14-16, 2013. Proceedings. Ed. by Guillaume Brat, Neha
Rungta, and Arnaud Venet. Vol. 7871. Lecture Notes in Computer Science. Springer, 2013, pp. 139–154.
isbn: 978-3-642-38087-7. doi: 10.1007/978-3-642-38088-4_10.

[RG13a] Pierre Roux and Pierre-Loïc Garoche. “A Polynomial Template Abstract Domain based on Bernstein
Polynomials.” In: Numerical Software Verification. 2013.

iii

http://dx.doi.org/10.1016/j.entcs.2010.09.018
http://dx.doi.org/10.4271/2011-01-2558
http://dx.doi.org/10.1007/978-3-642-28891-3_15
http://dx.doi.org/10.1007/978-3-642-28891-3_35
http://dx.doi.org/10.1007/978-3-642-28891-3_35
http://dx.doi.org/10.1145/2185632.2185651
doi.acm.org/10.1145/2185632.2185651
www.aerospacelab-journal.org/al4/
www.aerospacelab-journal.org/al4/
http://dx.doi.org/10.1007/978-3-642-41010-9_1
http://dx.doi.org/10.4271/2013-01-2109
http://dx.doi.org/10.1007/978-3-642-38088-4_10

[RG13b] Pierre Roux and Pierre-Loïc Garoche. “Integrating Policy Iterations in Abstract Interpreters.” In: Auto-
mated Technology for Verification and Analysis - 11th International Symposium, ATVA 2013, Hanoi, Vietnam,
October 15-18, 2013. Proceedings. Ed. by Dang Van Hung and Mizuhito Ogawa. Vol. 8172. Lecture Notes
in Computer Science. Springer, 2013, pp. 240–254. isbn: 978-3-319-02443-1. doi: 10.1007/978-3-319-
02444-8_18.

[AGW14] Assalé Adjé, Pierre-Loïc Garoche, and Alexis Werey. Quadratic Zonotopes: An extension of Zonotopes to
Quadratic Arithmetics. 2014. url: arxiv.org/abs/1411.5847.

[GGK14] Pierre-Loïc Garoche, Arie Gurfinkel, and Temesghen Kahsai. “Synthesizing Modular Invariants for
Synchronous Code.” In: Proceedings of the First Workshop on Horn Clauses for Verification and Synthesis,
HCVS 2014, Vienna, Austria, 17 July 2014. Ed. by Nikolaj Bjørner, Fabio Fioravanti, Andrey Rybalchenko,
and Valerio Senni. Vol. 169. EPTCS. 2014, pp. 19–30. doi: 10.4204/EPTCS.169.4.

[Gar+14] Pierre-Loïc Garoche, Falk Howar, Temesghen Kahsai, and Xavier Thirioux. “Testing-Based Compiler
Validation for Synchronous Languages.” In: NASA Formal Methods - 6th International Symposium, NFM
2014, Houston, TX, USA, April 29 - May 1, 2014. Proceedings. Ed. by Julia M. Badger and Kristin Yvonne
Rozier. Vol. 8430. Lecture Notes in Computer Science. Short paper. Springer, 2014, pp. 246–251. isbn:
978-3-319-06199-3. doi: 10.1007/978-3-319-06200-6_19.

[RG14] Pierre Roux and Pierre-Loïc Garoche. “Computing Quadratic Invariants with Min- and Max-Policy Iter-
ations: A Practical Comparison.” In: FM 2014: Formal Methods - 19th International Symposium, Singapore,
May 12-16, 2014. Proceedings. Ed. by Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun. Vol. 8442. Lecture
Notes in Computer Science. Springer, 2014, pp. 563–578. isbn: 978-3-319-06409-3. doi: 10.1007/978-3-
319-06410-9_38.

[AG15a] Assalé Adjé and Pierre-Loïc Garoche. “Automatic synthesis of k-inductive piecewise quadratic invari-
ants for switched affine control programs.” In: Computer Languages, Systems & Structures (COMLAN)
(2015). issn: 1477-8424. doi: 10.1016/j.cl.2015.12.002. url: www.sciencedirect.com/science/
article/pii/S1477842415000937.

[AG15b] Assalé Adjé and Pierre-Loïc Garoche. “Automatic Synthesis of Piecewise Linear Quadratic Invariants
for Programs.” In: Verification, Model Checking, and Abstract Interpretation - 16th International Conference,
VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings. 2015, pp. 99–116. doi: 10.1007/978-3-
662-46081-8_6.

[AGM15a] Assalé Adjé, Pierre-Loïc Garoche, and Victor Magron. A Sums-of-Squares Extension of Policy Iterations.
2015. url: arxiv.org/abs/1503.08090.

[AGM15b] Assalé Adjé, Pierre-Loïc Garoche, and Victor Magron. “Property-based Polynomial Invariant Genera-
tion using Sums-of-Squares Optimization.” In: Static Analysis - 22nd International Symposium, SAS 2015,
St Malo, France, 2015. Proceedings. Ed. by Sandrine Blazy and Thomas Jensen. Vol. 9291. Lecture Notes
in Computer Science. Springer, 2015, pp. 235–251. isbn: 978-3-662-48287-2. doi: 10.1007/978-3-662-
48288-9_14.

[AGW15] Assalé Adjé, Pierre-Loïc Garoche, and Alexis Werey. “Quadratic Zonotopes - An Extension of Zono-
topes to Quadratic Arithmetics.” In: Programming Languages and Systems - 13th Asian Symposium, APLAS
2015, Pohang, South Korea, November 30 - December 2, 2015, Proceedings. 2015, pp. 127–145. doi: 10.1007/
978-3-319-26529-2_8.

[Die+15] Arnaud Dieumegard, Pierre-Loïc Garoche, Temesghen Kahsai, Alice Tailliar, and Xavier Thirioux.
“Compilation Of Synchronous Observers As Code Contracts.” In: 30th ACM/SIGAPP Symposium on
Applied Computing, SAC 2015, Salamanca, Spain - April 13 - 17, 2015. Ed. by Roger L. Wainwright, Juan
Manuel Corchado, Alessio Bechini, and Jiman Hong. Short paper. ACM, 2015, pp. 1933–1939. isbn:
978-1-4503-3196-8. doi: 10.1145/2695664.2695819. url: doi.acm.org/10.1145/2695664.2695819.

[RG15] Pierre Roux and Pierre-Loïc Garoche. “Practical Policy Iterations A practical use of policy iterations for
static analysis - The quadratic case.” In: Formal Methods in System Design 46.2 (2015), pp. 163–196. doi:
10.1007/s10703-015-0230-7.

iv

http://dx.doi.org/10.1007/978-3-319-02444-8_18
http://dx.doi.org/10.1007/978-3-319-02444-8_18
arxiv.org/abs/1411.5847
http://dx.doi.org/10.4204/EPTCS.169.4
http://dx.doi.org/10.1007/978-3-319-06200-6_19
http://dx.doi.org/10.1007/978-3-319-06410-9_38
http://dx.doi.org/10.1007/978-3-319-06410-9_38
http://dx.doi.org/10.1016/j.cl.2015.12.002
www.sciencedirect.com/science/article/pii/S1477842415000937
www.sciencedirect.com/science/article/pii/S1477842415000937
http://dx.doi.org/10.1007/978-3-662-46081-8_6
http://dx.doi.org/10.1007/978-3-662-46081-8_6
arxiv.org/abs/1503.08090
http://dx.doi.org/10.1007/978-3-662-48288-9_14
http://dx.doi.org/10.1007/978-3-662-48288-9_14
http://dx.doi.org/10.1007/978-3-319-26529-2_8
http://dx.doi.org/10.1007/978-3-319-26529-2_8
http://dx.doi.org/10.1145/2695664.2695819
doi.acm.org/10.1145/2695664.2695819
http://dx.doi.org/10.1007/s10703-015-0230-7

[RJG15] Pierre Roux, Romain Jobredeaux, and Pierre-Loïc Garoche. “Closed Loop Analysis of Control Com-
mand Software.” In: 18th International Conference on Hybrid Systems: Computation and Control (part of
CPS Week), HSCC’15, Seattle, Washington, USA, April 14-16, 2015, ed. by Antoine Girard and Sriram
Sankaranarayanan. 2015, pp. 108–117. isbn: 978-1-4503-3433-4. doi: 10.1145/2728606.2728623. url:
doi.acm.org/10.1145/2728606.2728623.

[KTG16] Temesghen Kahsai, Xavier Thirioux, and Pierre-Loïc Garoche. “Hierarchical state machines as modular
Horn clauses.” In: Proceedings of the Second Workshop on Horn Clauses for Verification and Synthesis, HCVS
2016, Eindhoven, The Netherlands, April 3rd 2016. 2016.

[Wan+16a] Timothy Wang, Pierre-Loïc Garoche, Pierre Roux, Romain Jobredeaux, and Éric Féron. “Formal Analy-
sis of Robustness at Model and Code Level.” In: 19th International Conference on Hybrid Systems: Compu-
tation and Control (part of CPS Week), HSCC’16, Vienna, Austria, April 12-14, 2015, to appear. 2016.

[Wan+16b] Timothy Wang, Romain Jobredeaux, Heber Herencia-Zapana, Pierre-Loïc Garoche, Arnaud Dieumegard,
Éric Féron, and Marc Pantel. “From Design to Implementation: An Automated, Credible Autocoding
Chain for Control Systems.” In: Advances in Control System Technology for Aerospace Applications. Ed. by
Éric Féron. Vol. 460. Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg,
2016, pp. 137–180. isbn: 978-3-662-47693-2. doi: 10.1007/978-3-662-47694-9_5.

[Wan+16c] Timothy Wang, Romain Jobredeaux, Marc Pantel, Pierre-Loïc Garoche, Éric Féron, and Didier Henrion.
“Credible Autocoding of Convex Optimization Algorithms.” In: Optimization and Engineering (2016).
Ed. by Springer. to appear. url: arxiv.org/abs/1403.1861.

In the following prototypes:

[GT11] Pierre-Loïc Garoche and Xavier Thirioux. YASA: Yet Another Static Analyzer. 2006–2011.

[GR11] Pierre-Loïc Garoche and Pierre Roux. SMT-AI, abstract interpreter for a temporal extension of SMT-lib.
2011–. url: https://cavale.enseeiht.fr/smt-ai/.

[GKT12a] Pierre-Loïc Garoche, Temesghen Kasai, and Cesare Tinelli. Kind-AI, automatic abstract interpreter module
for Lustre model-checker Kind. 2012. url: clc.cs.uiowa.edu/Kind/NFM13/.

[GKT12b] Pierre-Loïc Garoche, Temesghen Kasai, and Cesare Tinelli. Kind, a k-induction based model-checker. 2012–.
url: clc.cs.uiowa.edu/Kind/.

[GTK12] Pierre-Loïc Garoche, Xavier Thirioux, and Temesghen Kahsai. LustreC: a modular Lustre compiler. 2012–.
url: https://github.com/coco-team/lustrec.

[RGW12] Pierre Roux, Pierre-Loïc Garoche, and Alexis Werey. TINY: Simple Static Analyzer for Imperative Code and
Numerical precision analysis. 2012–. url: https://cavale.enseeiht.fr/QuadZonotopes/.

[RG14] Pierre Roux and Pierre-Loïc Garoche. Osdp, an Ocaml library for Semi-Definite Programming (SDP, SOS).
2014–. url: https://cavale.enseeiht.fr/osdp/.

And the following presentations:

[Gar12] Pierre-Loïc Garoche. “Verification of aircraft controller: from process-based certification to product-
based certification.” In: Air Force Safe & Secure Systems & Software Symposium, S5 Conference, Dayton,
OH, USA. (abstract only). June 2012.

[AGM15] Assalé Adjé, Pierre-Loïc Garoche, and Victor Magron. “Property-based polynomial invariant gener-
ation using sums-of-squares optimization.” In: 17th British-French-German Conference on Optimization
15-17 June 2015 London, United Kingdom. (abstract only). 2015.

[Gar15] Pierre-Loïc Garoche. “Certificate-carrying modular compilation.” In: 10èmes Journées compilation du
GDR GPL. (abstract only). 2015.

[Wan+15] Timothy Wang, Éric Féron, Romain Jobredeaux, Marc Pantel, Pierre-Loïc Garoche, and Didier Henrion.
“Credible autocoding of convex optimization algorithms.” In: 17th British-French-German Conference on
Optimization 15-17 June 2015 London, United Kingdom. (abstract only). 2015.

[Gar+16] Pierre-Loïc Garoche, Didier Henrion, Victor Magron, and Xavier Thirioux. “Semidefinite Approxima-
tions of Reachability Sets for Discrete-time Polynomial Systems.” In: Journées MODE Mathématiques de
l’Optimisation et de la DEcision de la SMAI Société de Mathématiques Appliquées et Industrielles. 2016.

v

http://dx.doi.org/10.1145/2728606.2728623
doi.acm.org/10.1145/2728606.2728623
http://dx.doi.org/10.1007/978-3-662-47694-9_5
arxiv.org/abs/1403.1861
https://cavale.enseeiht.fr/smt-ai/
clc.cs.uiowa.edu/Kind/NFM13/
clc.cs.uiowa.edu/Kind/
https://github.com/coco-team/lustrec
https://cavale.enseeiht.fr/QuadZonotopes/
https://cavale.enseeiht.fr/osdp/

C O N T E N T S

Publications – Prototypes iii

i motivation 1

1 critical embedded software 3

2 formal methods 7

2.1 Semantics and properties 7

2.2 A formal methods overview 9

2.3 Deductive methods 12

2.4 SMT-based model checking 13

2.5 Abstract Interpretation 14

2.6 Need for inductive invariants 17

3 control systems 19

3.1 Controllers Development process 19

3.2 Spring-Mass Damper example 21

ii invariant synthesis 25

4 definitions – background 27

4.1 Discrete Dynamical Systems 27

4.2 (applied) convex optimization 32

5 invariants as semialgebraic sets 37

5.1 Invariants, Lyapunov functions and con-
vex optimization 37

5.2 Quadratic invariants 39

5.3 Piecewise Quadratic invariants 43

5.4 k-inductive Quadratic Invariants 49

5.5 Polynomial invariants 52

5.6 Related works 56

6 template based analyses 57

6.1 Template based abstract domains 57

6.2 Fixpoint as an optimization prob-
lem 57

6.3 SOS-relaxed semantics 58

6.4 Example. 62

6.5 Related works 63

iii system-level analysis at model and

code level 65

7 system properties as invariants 67

7.1 Open- and Closed-loop stability 67

7.2 Robustness with Vector Margin 72

7.3 Related work 75

8 validation at code level 77

8.1 Axiomatic semantics for system-level
properties 77

8.2 Generating code annotations 81

8.3 Discharging proof objectives 83

iv numerical issues 87

9 floating-point in analyzed pro-
grams 89

9.1 Floating-point semantics 89

9.2 Inductiveness constraints 90

9.3 Bound floating-point errors 92

9.4 Related works 101

10 convex optimization 103

10.1 Convex optimization algorithms 103

10.2 Guaranteed feasible solutions with
floats 105

10.3 Implementation as an Ocaml library:
OSDP 107

v perspectives 111

11 integration in software development

process 113

11.1 CocoSim and LustreC toolchain 113

11.2 OSDP: Ocaml Semi-Definite Program-
ming 116

11.3 SEAL: SystEm Analysis Library 116

12 extensions 117

12.1 More systems 117

12.2 More properties 119

13 invariants of dynamical systems 121

13.1 Primal: maximizing measure sup-
port 121

13.2 Dual: minimizing positive func-
tions 122

13.3 Hierarchy of abstractions 122

13.4 Experiments 123

13.5 Issues/Future Directions 123

14 proving the implementation of con-
vex optimization algorithms 127

14.1 Formal properties 127

14.2 Implementation 129

bibliography 131

vii

Part I

M O T I VAT I O N

1
C R I T I C A L E M B E D D E D S O F T WA R E : C O N T R O L S O F T WA R E D E V E L O P M E N T A N D V & V

Cyber physical systems (CPS) is a kind of buzz word
capturing the set of physical devices controlled by an on-
board computer, an embedded system. Critical embed-
ded systems are a subset of these for which failure is not
acceptable. Typically this covers transportation systems
such as cars, aircraft, railway systems, space systems, or
even medical devices; all of them either for the expected
harmnessless for people, or for the huge cost associated
to their failure.

A large part of these systems are controllers. They are
built as a large running loop which reads sensor values,
computes a feedback and applies it to the controlled sys-
tem through actuators. For most systems, at least in the
aerospace industry, the time schedule for controllers is so
tight that these systems have to be “real time”. The way
these systems have been designed requires the execution
of the loop body to be performed within some time to
maintain the system in a reasonable state. In the civil air-
craft industry, the controller itself is rather complex, but
is built as a composition of simpler controllers. Further-
more, the global system accounts for potential failures of
components: sensors, network, computers, actuators, etc,
and adapts the control to these discrepancies.

The increase of computer use in those systems has
lead to huge benefits but also an exponential growth
in complexity. Computer based systems compared to
analog circuits enable more efficient behaviors, size and
weight reductions. For example, aircraft manufacturers
are building control laws for their aircraft that maintain
them at the limit of instability, allowing more fuel ef-
ficient behavior1; Rockwell Collins implemented a con-
troller for a fighter aircraft able to recover controllabil-
ity when the aircraft looses, in flight, from 60 to 80% of
one of its wings2; United Technology has been able to
replace huge and heavy power electric systems by their
electronic counterpart, with a huge reduction in size and
weight3.

The drawback of this massive introduction of comput-
ers to control systems is the lack of predictability for com-
puter and software. While the industry has been used for
ages to have access to the precise characteristic of its com-
ponents, eg. a failure rate for a physical device running
in some specific conditions, these figures are hardly com-
putable for software, because of the intrinsic complexity
of computer programs.

Still, all of us are nowadays used to accept software
licenses where the software vendor assumes nothing re-
lated to the use of the software and its possible impact.
These kinds of licenses would be however unacceptable
for any other industry.

To conclude with this brief motivation, the aerospace
industry, and more generally critical embedded systems
industries, are now facing a huge increase in the software
size in their systems. This is motivated first by system
complexity increases because of safety or performance
objectives, but also the need to integrate even more ad-
vanced algorithms to sustain autonomy and energy effi-
ciency.

Guarantying the good behavior of those systems is
essential to enable their use.

Until now, classical means to guaranty good behavior
were mainly relying on tests. In the aerospace industry
the development process is strictly constrained by norms
such as the DO-178C [RTC11] specifying how to design
a software and perform its verification and validation
(V&V). This document shapes the V&V activities and
requires the verification to be specification-driven. For
each requirement expressed in the design phases, a set
of tests has to be produced to argue that the requirement
is satisfied. However, because of the increase in complex-
ity of the current and future systems, these test-based
verifications are reaching their limit. As a result the cost
of V&V for systems has exploded and the later a bug is
found the more expensive it is to be solved4.

1 In an A380, fuel is transferred between tanks to move the center of gravity to the aft (backward). This degrades natural stability but reduces the
need for lift surfaces and therefore improves fuel efficiency by minimizing total weight and drag. See the book “Airbus A380: Superjumbo of
the 21st Century” by Noris and Wagner [NW05].

2 Search for Damage Tolerance Flight Test video, e.g. at https://www.youtube.com/watch?v=PTMpq_8SSCI
3 Eg. Active EMI filtering for inverters used at Pratt and Witney, Patent US20140043871

4 USA NIST released in 2002 an interesting survey “The Economic Impacts of Inadequate Infrastructure for Software Testing” detailing the various
costs of verification and bugs. Chapter 6 is focused on transportation industry.

3

https://www.youtube.com/watch?v=PTMpq_8SSCI

4 critical embedded software

Last, these certification documents such as DO178C
have been recently updated accounting for the recent ap-
plicability of formal methods to argue about the verifi-
cation of a requirement. Despite their possible lack of
results in a general setting, these techniques, in case of
success, provide an exhaustive result, ie. they guarantee
that the property considered is valid for all uses, includ-
ing systems admitting infinite behaviors.

All the works presented here are motivated by this con-
text. We aim at developing formal methods sustaining
the verification of controller properties at multiple stages
of their development. Our goal is to provide new means
of verification, specific to controller analysis.

current limits & objectives The objectives of
the presented works are restricted to the definition of for-
mal methods based analyzes to support the verification
of controller programs.

More specifically we can identify the following limits
in the current state of the art:

Need to compute invariants of dynamical systems
New advances in formal methods are often not special-
ized for a particular kind of programs. They rather
try to handle a large set of programming language con-
structs and deal with scalability issues. In specific cases,
such as the application of static analysis to Airbus pro-
grams [Cou+05], dedicated analyses, like the second-
order filter abstraction [Fer04], have been defined. But
these domains definition is tailored to the program for
which they are defined.

Lack of means to compute non linear invariants As
we will see in this document, the simplest properties of
controllers are often based on at least quadratic proper-
ties. Again, because of efficiency and scalability, most
analyzes are bound to linear properties. We claim that
more expressive yet more costly analyzes are required in
specific settings such as the analysis of control software.
The scalability issues have to be addressed by carefully
identifying the local part of the program on which to
apply these more costly analyses.

Expressivity of static analysis properties Formal meth-
ods applied at model or code level are hardly used to
express or analyze system-level properties. In practice,
static analysis is mainly bound to numerical invariants
while deductive methods or model-checking can manip-
ulate more expressive first order logic formulas. How-
ever, computer scientists are most of the time not aware
of the system-level properties satisfied or to be satisfied
by the control program they are analyzing. An important
research topic is therefore the use of these formalisms

(first order logic and numerical invariants) to express
and analyze system-level properties.

Scope of current analyses In the current state of the
practice, concerns are split and analyzed locally. For ex-
ample the control-level properties such as stability are
usually analyzed by linearizing the plant and the con-
troller description. At the code level this can be com-
pared to the analysis of a simplified program without if-
then-else or non linear computations. Similarly, the com-
plete fault-tolerant architecture, which is part of the im-
plemented embedded program, is abstracted away when
analyzing system-level properties. A last example of
such – potentially unsound – simplifications, is the as-
sumption of a real semantics when performing analyses,
while the actual implementation will be executed with
a floating-point semantics and the associated errors. We
think that more integrated analyzes should address the
study of the global system.

Our proposal is mainly developed in two complemen-
tary directions:

• non linear invariant synthesis mainly based on the
use of convex optimization techniques;

• consider system-level properties on discrete repre-
sentation, at code level, with a floating-point se-
mantics.

This document is structured in five parts:

Part I introduces formal methods and controller design.
It intends to be readable both by a control scientist
unaware of formal methods, and by a computer sci-
entist unaware of controller design. References are
provided for more scholastic presentations.

Part II focuses on invariant synthesis for discrete dynam-
ical systems, assuming a real semantics. All tech-
niques are based on the computation of an induc-
tive invariant as the resolution of a convex opti-
mization problem.

Part III revisits basic control-level properties as numer-
ical invariants. These properties are typically ex-
pressed on the so-called closed-loop representation. In
these chapters we assume that the system descrip-
tion is provided as a discrete dynamical system,
without considering its continuous representation
with ordinary differential equations (ODEs).

Part IV extends the previous contributions considering
floating-point computations. A first part con-
sider that the program analyzed is executed with
floating-point semantics and search for an induc-
tive invariant considering the numerical errors pro-
duced. A second part ensures that the use of con-

critical embedded software 5

vex optimization, a numerical technique, does not
suffer from similar floating point errors.

Part V outlines possible research directions. They range
from the definition of new analyses, the integra-
tion of the analyses in a realistic development pro-

cess, to the extension of the presented approaches
to more systems and more properties. A last per-
spective is the study of optimization algorithm per
se in order to enable their use in critical applica-
tions.

2
F O R M A L M E T H O D S : D I F F E R E N T A P P R O A C H E S F O R V E R I F I C AT I O N

While testing is a common practice for a lot of engi-
neers as a way to evaluate whether the program they de-
veloped fulfill its needs, formal methods are less known
and may require a little introduction to the non-expert.
This chapter can be easily skipped by the formal verifi-
cation reader but should be a reasonable introduction to
the control expert engineer.

In this chapter we will try to give a brief overview of
some of these formal methods, and their use in the con-
text of critical embedded systems development. We will
first define the semantics of programs: their basic prop-
erties and their meaning. Then, we will outline different
formal verifications and explain how they reason on the
program artifact. A last part will address the soundness
of the analyses with respect to the actual semantics.

2.1 semantics and properties

Let us first consider a simple imperative program as we
could write in C code and use it to introduce basic no-
tions:

1 int f (x) {
2 int y = 42;
3 while (x > 0) {
4 x = x - 2;
5 y = y + 4;
6 }
7 return y;
8 }

C

For a given input x, this program is deterministic: it
admits a single execution. Let us assume it is called with
x = 3. In that case the execution is finite and will stop
once x becomes non positive, here x = −1. This hap-
pens after two executions of the loop body. Therefore,
y = 42+ (2 ∗ 4) = 50 when the program stops.

The semantics, ie. the meaning of this program can be
characterized in different ways. One approach is to see
it as a function that takes inputs – here x – and returns
the output value y. We speak of a denotational semantics:

JfKden(3) = 50. We could characterize the output of the
program f as a mathematical function f : Z→ Z of x:

f(x) = 42+ 4 ∗
⌈x
2

⌉
Another approach details the steps of the computation

and does not only focus on the result. This is the opera-
tional semantics. In operational semantics, one describes
the behavior of the program as a sequence of transitions
between states. A state denotes a current view of the pro-
gram. In this simple case, a state can be characterized by
a triple program point (pp), x, and y. In the following,
we denote by Σ such set of states. Let us look at the
simple execution of f with input 5:

state 0 1 2 3 4 5 6 7 8

pp 2 3 4 5 3 4 5 3 7

x 5 5 3 3 3 1 1 1 -1

y 42 42 42 46 46 46 50 50 50

The run of the program is here described by a se-
quence of states, a trace: s0 → s1 → . . . → s8. In this
case of a deterministic function, each trace is only char-
acterized by its initial element s0. Initial elements are
a subset of states: let Init ⊆ Σ be such set. The set
of rules describing possible transitions from one state to
the other characterizes the operational semantics of the
program. Let us denote it by JfKop ∈ Σ× Σ, the set of
transitions from state to state. One can also represent it
as a kind of automaton: the control flow graph.

Figure 2.1 Control flow graph

1 2 3

45

7
x = input y = 42

x > 0

x = x − 2

y = y + 4

x 6 0

By interpreting a program as a set of states Σ, an ini-
tial set of states Init ⊆ Σ and a transition relation J·Kop ⊆
Σ× Σ, we defined a transition system

(
Σ, Init, J·Kop

)
.

7

8 formal methods

In practice, one is not necessarily interested directly in
the program semantics in a denotational or operational
form but rather by the properties of the program when
executed.

The most precise definition of a program behavior is
to characterize exactly its set of traces, its trace semantics:

JfKtrace ={
s0 → . . .→ sn

∣∣∣∣∣ ∀i ∈ [0,n− 1], (si, si+1) ∈ JfKop

s0 ∈ Init

}

In case of non terminating programs, traces could be
infinite. While non terminating programs are usually
seen as bad programs in computer science, controllers
are supposed to be executed without time limit, in a
while true loop. We can extend the definition of trace
semantics for infinite traces:

JfKtrace ={
s0 → . . .→ si → . . .

∣∣∣∣∣ ∀i > 0, (si, si+1) ∈ JfKop

s0 ∈ Init

}

To summarize, the trace semantics captures the pos-
sibly infinite set of possibly infinite traces. If provided
with such set, one can observe any properties related
to intermediate computed values, occurrence of states
within traces, infinite behavior, finite behavior such as
deadlocks,. . . These properties are usually defined as
temporal properties.

Another semantics of interest, with respect to the pro-
gram semantics, is the collecting semantics. This semantics
focuses only on reachable states in traces but not on their
specific sequences.

One can define it as follows:

JfKcoll =

sn
∣∣∣∣∣∣∣∣∣∣
∃ s0 → . . .→ sn ∈ JfKtrace i.e. such that

∃s0, . . . , sn, . . . ∈ Σ
∀i ∈ [0,n− 1], (si, si+1) ∈ JfKop

s0 ∈ Init

As such, collecting semantics is an abstraction of trace

semantics: it characterizes a set of reachable states but
loses information on their relationship. This semantics
is however extremely useful: it can capture all reachable
states and therefore guarantee that all such states verify
a given invariant, or avoid a given bad region.

A last way to express the behavior of a program is
the axiomatic semantics. First ideas were proposed by
Turing [Tur49], then this notion of axiomatic semantics
was introduced by Hoare in 1969 [Hoa69]. In 1967

Floyd [Flo67] proposed to annotate a flowchart by its

local invariants. The following figure is extracted from
that paper.

Figure 2.2 Assigning meanings to programs by Floyd

In [Hoa69], “An Axiomatic Basis for Computer Pro-
gramming”, Hoare defines a deductive reasoning to val-
idate code level annotations. This paper introduces the
concept of Hoare triple {Pre}code{Post} as a way to ex-
press the semantics of a piece of code by specifying the
postconditions (Post) that are guaranteed after the exe-
cution of the code, assuming that a set of preconditions
(Pre) was satisfied. Hoare supports a vision in which
this axiomatic semantics is used as the “ultimately defini-
tive specification of the meaning of the language [. . .],
leaving certain aspects undefined. [...] Axioms enable
the language designer to express its general intentions
quite simply and directly, without the mass of detail
which usually accompanies algorithmic descriptions.”

Assuming the Euclidian division algorithm presented
in Fig. 2.2 is implemented in a C function div(x,y,*q,*
r), one can specify the contract as follows:

void div(x,y,*q,*r) {
// { x60 ∧ y>0 }
*q = 0;
*r = x;
while (*r < y) { ... };
// { 0 6*r<y ∧ x>0 ∧ x=*r+*q×y }

}

C

As envisioned by Hoare, this approach has been
largely developed and is used to specify formally the
intended behavior of a program as a set of Hoare

triples. Theoretically speaking, axiomatic semantics is a

2.2 a formal methods overview 9

further abstraction of operational or denotational seman-
tics since it only constrains valid implementations.

2.2 a formal verification methods overview

We will now illustrate the basic principles behind main
verification methods: deductive methods (DM), SMT-
based model-checking (MC) and abstract interpretation
(AI). First, we sketch here how these techniques work
on simple loopless examples. Then, we elaborate more
on some details of their implementation or their use on
more realistic examples. The exhaustive presentation of
these techniques, developed since thirty to forty years,
cannot be done in a few pages. The presentation re-
flects the author’s view and understanding of these ap-
proaches.

First let us make a disappointing statement:

Theorem 2.1 (Rice’s theorem) It is undecidable to deter-
mine whether the language recognized by an arbitrary Turing

machine T lies in a non trivial set of languages S.

L(T) ⊆ S is undecidable

where L(T) denotes the language recognized by the Turing ma-
chine T .

Here the non trivial set of languages S denotes a valid
output of the program, ie. a property of its trace seman-
tics. This theorem, which may not be easily readable for
the theoretical computer science agnostic, states that any
property of interest is hardly analyzable on a program.
In other words: “it is undecidable to determine whether
an arbitrary program satisfies a non trivial property”.

Because of undecidability it is worthless to design
sound, complete and terminating techniques for arbi-
trary programs and properties. Let us denote by Prog |=

P the validity of property P for program Prog and by
Prog `A P the fact that the analysis A stated that P was
valid for program Prog. We can define, for all program
Prog and property P:

Prog `A P ⇒ Prog |= P (soundness)

Prog |= P ⇒ Prog `A P (completeness)

Prog `A P terminates

Formal verification techniques usually address this is-
sue by focusing on sound and terminating methods, that
is without the completeness property. This amount to
compute an intermediate stronger property P ′ such that

(
(Prog `A P ′)∧ (P ′ ⇒ P)

)
⇒ Prog |= P

Prog `A P ′ terminates

This is often referred to as over-approximation tech-
niques, or conservative techniques: showing the valid-
ity of P amounts to compute a less precise property P ′

which may imply P. Even if the property P was actually
valid on the program, the lack of precision of P ′ may not
permit to prove P ′ =⇒ P leading to a lack of conclusion:
P has a unknown status for program Prog, the analysis
has been unable to conclude with respect to P.

Remark 1 (Termination of analysis vs program) Note
that termination of analysis is unrelated to the existence of
infinite traces in the analyzed program. A non terminating
formal verification technique may fail to return a result on a
finite transition system admitting only finite traces, while a
terminating analysis will conclude even for systems admitting
infinite behaviors.

2.2.1 Basic principles illustrated on a loopless example

Let us first focus on a simple loopless example, for exam-
ple the infinity norm in R2:

1 real norminf(real x, y) {
2 real xm, ym, r;
3 if (x >= 0) // compute abs(x)
4 {xm = x;}
5 else
6 {xm = -x;};
7 if (y >= 0) // compute abs(y)
8 {ym = y;}
9 else

10 {ym = -y;};
11 if (xm >= ym) // compute max(xm, ym)
12 {r = xm;}
13 else
14 {r = ym;};
15 return r;
16 }

C

We are interested in the following properties:

• null on zero: norminf(0, 0) = 0;

• positivity: ∀(x,y),norminf(x,y) > 0.

Note that, in that case, the formalization of the spec-
ification, that is the properties of interest, as formal ar-
tifacts was rather straightforward. It may be more diffi-
cult when considering natural language description with
ambiguous statements. This is another added value of
formal methods: disambiguation of specification by im-
posing the need of strict formalization.

Of course, a first classical approach could rely on tests
to evaluate the validity of these properties. We will see
how various formal method reason on that program, try-
ing to prove the desired properties:

• DM: use of predicate transformation, either for-
ward or backward reasoning;

10 formal methods

• MC: propositional encoding and SMT-based rea-
soning;

• AI: interpretation of each computation in an ab-
stract domain.

Deductive methods: predicate transformers

Deductive methods are the evolution of the ideas pro-
posed by Hoare [Hoa69]. Predicate transformation al-
lows to apply the semantics of the considered program
on the formal representation of the property. These ma-
nipulations can be either performed in a forward manner,
transforming the precondition through the code – we
speak about strongest postcondition –, or, in the opposite
direction, propagating back the postcondition through
the code – we speak about weakest precondition. While
both techniques should be equally sound, most imple-
mentations used in C code analysis [App11; Bau+02;
Cuo+12; FM07] rely on the weakest precondition algo-
rithm.

This method computes wp(code,Post), the weakest
precondition such that, when executing the code, Post
is guaranteed. The rules are defined on the structure
on the imperative code, per statement kind and applied
iteratively. On naive imperative languages statements
can be either assignements or control structures such as
sequencing of statements, conditionals (if-then-else) or
loops:

The assignment rule amounts to substitute in the post-
condition B any occurrence of x by its definition e:

wp(x := e,B) , [e/x]B

Example 1 Let us illustrate this mechanism on the simplest
example. Assuming the postcondition requires y 60. The
weakest precondition of the instruction y = x+1; imposes x
6-1.

// { x+1 6 0 ≡ x 6 -1 }
y = x + 1;
// { y 6 0 }

C

Weakest precondition composes well: once the compu-
tation of the impact of c2 to B has been computed, it can
be used to propagate the impact of statement c1:

wp(c1; c2,B) , wp(c1,wp(c2,B))

Conditional statements (if-then-else) are encoded as a
disjunction: one obtains B after executing the statement,
either because b holds and c1 gives B, or because ¬b

holds and c2 gives B:

wp(if b then c1 else c2,B) , ∧
b⇒ wp(c1,B)

¬b⇒ wp(c2,B)

In our example, we have two properties expressed as
the following Hoare triples:

{(x,y) = (0, 0)} norminf {\result = 0} (1)

{True} norminf {\result > 0} (2)

The first Hoare triple states that when (x,y) = (0, 0) the
result is 0, while the second one makes no assumption
on the input: it should be valid in any context.

Let us look, manually, at this computation on the first
property:

\result = 0

is transformed through the last statement, a conditional
statement (ite) on line 11. We obtain the weakest precon-
dition of the statement line 11 guaranteeing \result = 0.
Each then and else block is analyzed with the wp al-
gorithm, producing the required predicate xm = 0 or
ym = 0. Then the weakest precondition of the condi-
tional statement is produced:

(xm > ym⇒ xm = 0)∧ (xm < ym⇒ ym = 0)

This predicate is further transformed in the leaves of
the previous statement, at line 7. Then, block at line 8 is
associated to the weakest precondition:

(xm > y⇒ xm = 0)∧ (xm < y⇒ y = 0)

while the else-block at line 10 gives

(xm > −y⇒ xm = 0)∧ (xm < −y⇒ −y = 0)

Combined with the conditional rule, this gives:(
y > 0⇒

(
(xm > y⇒ xm = 0)

∧(xm < y⇒ y = 0)

))

∧

(
y < 0⇒

(
(xm > −y⇒ xm = 0)

∧(xm < −y⇒ −y = 0)

))

Let us, again propagate this weakest precondition to the
previous statement at line 3. We obtain, for its then-block
the predicate(

y > 0⇒

(
(x > y⇒ x = 0)

∧(x < y⇒ y = 0)

))

∧

(
y < 0⇒

(
(x > −y⇒ x = 0)

∧(x < −y⇒ −y = 0)

))

and for its else-block:(
y > 0⇒

(
(−x > y⇒ −x = 0)

∧(−x < y⇒ y = 0)

))

∧

(
y < 0⇒

(
(−x > −y⇒ −x = 0)

∧(−x < −y⇒ −y = 0)

))

2.2 a formal methods overview 11

Last the conditional rule is applied:

x > 0⇒
(
y > 0⇒

(
(x > y⇒ x = 0)

∧(x < y⇒ y = 0)

))

∧

(
y < 0⇒

(
(x > −y⇒ x = 0)

∧(x < −y⇒ −y = 0)

))

∧

x < 0⇒

(
y > 0⇒

(
(−x > y⇒ −x = 0)

∧(−x < y⇒ y = 0)

))
∧(

y < 0⇒

(
(−x > −y⇒ −x = 0)

∧(−x < −y⇒ −y = 0)

))

(3)

This large predicate represents the weakest precondi-
tion, that, when satisfied, guarantee to obtain \result =

0 after executing the code. In this first property, the pre-
condition was (x,y) = (0, 0). Therefore, we have to prove

(x,y) = (0, 0)⇒ (3)

This proof is sent to a satisfiabiliy modulo theory
solver (SMT) such as Alt-Ergo [Con+08], Z3 [MB08],
CVC4 [BT07; Det+14] or Yices [Dut14; DM06]. These
solvers extend a SAT1 core to predicates whose atoms
are expressed in other (numerical) theories.

In this specific case, the formula is easily analyzed – it
can even be done by hand – and reduces to the predicate

True

The second property can be similarly analyzed and
will generate the following proof objective

True⇒ {(3) in which v = 0 becomes v > 0}

SMT-based model-checking: propositional encoding and satis-
fiability

SMT-based model checking will perform similarly on
this specific example. The idea is to map all con-
structs as predicates. One can, for example, rename
variables to avoid multiple assignments to the same vari-
able. This amounts to embed the imperative program as
functional dependencies between input and output. Let
JnorminfKMC(x,y, r) be such function.

The proof objectives become:

(x = 0∧ y = 0)∧ JnorminfKMC(x,y, r)∧ (r = 0)

(4)

JnorminfKMC(x,y, r)∧ (r > 0)
(5)

The difference with deductive methods is not really
visible in this oversimple example. The main one is that
no order is specified on the model-checking approach,
while weakest precondition rules do transform the pred-
icate statement after statement. One can also notice
that the expression of the functional representation of
JnorminfKMC(x,y, r) is identical in both properties (4)
and (5). In deductive methods, the form of the predi-
cate representation of the code widely depends on the
property analyzed.

In both cases, the final validity of the propositional en-
coding of the property is delegated to external solvers
such as SMT-solvers.

Abstract interpretation (of collecting semantics): over-
approximating reachable states

Abstract interpretation relies on different algorithms. We
will develop it in its general setting in the next section.
In contrast to previous methods which are able to rep-
resent complex properties through logical predicates but
rely on external solvers to determine the satisfiability of
these formulas, the abstract interpretation paradigm in-
tends to restrict a priori the form of the properties manip-
ulated, providing constructive means to analyze them.

These constrained properties are called abstract do-
mains and, since we are focused on the abstraction of
the collecting semantics, they represent set of states. One
can see an abstract domain D as a subset of set of states:
D ⊆ ℘(Σ). A classical example – and a widely used
one – is the abstract domain of intervals M to represent
subsets of R and the use of interval arithmetic to manip-
ulate these abstract values. An abstract environment is
used to represent a set of states. Let us informally show
the computation of the abstract environment in our ex-
ample before providing more theoretical background.

The computations are performed on the control flow
graph. The following picture characterizes it for our ex-
ample:

Figure 2.3 Control flow graph for infinity norm.

2 3

4

6

7

8

10

11

12

14

15{
x,y=input

xm,ym, r declared

x > 0

x < 0

xm = x

xm = −x

y > 0

y < 0

ym = y

ym = −y

xm > ym

xm < ym

r = xm

r = ym

One can associate to each program point, its abstract
collecting semantics equations. These equations define
the local abstract environment, depending on the prede-
cessor values:

1 A SAT(isfiability) solver aims at proving that a propositional formula (a formula composed of boolean variables, and logical operators ∧, ∨, ¬)
either admits a satisfiable assignment of the free variables that makes the formula true, or show that no such assignement exists.

12 formal methods

S2 = {any value}

S3 = S2

x 7→] −∞,+∞[

y 7→] −∞,+∞[

xm 7→] −∞,+∞[

ym 7→] −∞,+∞[

r 7→] −∞,+∞[

S4 = S3[x > 0]

S6 = S3[x < 0]

S7 = S4 t S6
S8 = S7[y > 0]

S10 = S7[y < 0]

S11 = S8 t S10
S12 = S11[xm > ym]

S14 = S11[xm < ym]

S15 = S12 t S14

where S[e > 0] denotes the environment S in which
the abstract evaluation of e is constrained to be positive;
S[x 7→ e] denotes the environment S in which variable x
is updated to the abstract value e; and S1 t S2 denotes
the lift of interval join to maps: [x 7→ S1(x)∪M S2(x)].

When entering in the function body, nothing is as-
sumed on x and y. The abstract environment is then
the map

x 7→] −∞,+∞[y 7→] −∞,+∞[

Depending on the language semantics, the declaration
of local variables at line 2 can either assign them to a
default value, or, like in C, give an value. We have the
following updated abstract environment at line 3:

x 7→] −∞,+∞[y 7→] −∞,+∞[

xm 7→] −∞,+∞[ym 7→] −∞,+∞[

r 7→] −∞,+∞[

The evaluation of the first statement constrains the val-
ues of x depending on the active branch:

At line 4, we have

x 7→ [0,+∞[y 7→] −∞,+∞[

xm 7→] −∞,+∞[ym 7→] −∞,+∞[

r 7→] −∞,+∞[

while at line 6 we have:

x 7→] −∞, 0[y 7→] −∞,+∞[

xm 7→] −∞,+∞[ym 7→] −∞,+∞[

r 7→] −∞,+∞[

After the assignment of line 4, we obtain for vari-
able xm the interval [0,+∞[. Similarly, after the assign-
ment of line 6, we obtain for variable xm the interval

−] −∞, 0[=]0,+∞[. The computation of the join in the
definition of the abstract collecting semantics at program
point 7 returns the interval]0,+∞[∪M[0,+∞[= [0,+∞[

for xm. However, the join of] −∞, 0[and [0,+∞[returns
the interval] −∞,+∞[for variable x.

The abstract evaluation of program points 8 to 15

follows comparable patterns. Note that the conditions
xm > ym does not provide any meaningful information
for this interval-based analysis. We eventually obtain the
following abstract environment:

x 7→] −∞,+∞[y 7→] −∞,+∞[

xm 7→ [0,+∞[ym 7→ [0,+∞[

r 7→ [0,+∞[

This analysis has been able to obtain the positivity of r
without any assumption on the input values. The same
analysis can be done by assuming that the initial abstract
environment is:

x 7→ [0, 0] y 7→ [0, 0]

In that case the final abstract environment obtained is:

x 7→ [0, 0] y 7→ [0, 0]

xm 7→ [0, 0] ym 7→ [0, 0]

r 7→ [0, 0]

Note that abstract environments associated to pro-
gram points 6, 10 and 14 are associated to the empty
environment denoting unreachable program points.

2.3 deductive methods

Weakest precondition methods are typically designed for
imperative languages. A realistic application will reason
on the program as outlined in Section 2.2.1 but shall also
address the following items:

2.3.1 Loops and recursion in programs

While predicate transformation may seem natural in the
previous example, it is less obvious in presence of loops
in the control flow graph. A sufficient rule to validate
annotations, as defined by Floyd or Hoare could be:

` {A∧ b}c{A}

` {A} while b do c{A∧¬b}

But it is not compatible with the automatic transforma-
tion of predicates as performed in weakest precondition
computation. Another way to address this issue is to
unroll the loop:

while b do c ≡ if b then c; while b do c else skip

2.4 smt-based model checking 13

Then

wp(while b do c,B)

, wp(if b then c; while b do c else skip,B)

, b⇒ wp(c,wp(while b do c,B))∧¬b⇒ B

Let us denote by W = wp(while b do c,B). We can
use the loop unfolding to characterize recursively W:

W = (b⇒ wp(c,W)∧¬b⇒ B)

Thanks to Tarski’s fixpoint theorem, considering the
partial order induced by logical implication ⇒, ie. x v
y , y ⇒ x, and the monotonic definition of W, this fix-
point exists. But this formula is difficult to compute and
may not be representable with a finite set of atoms. If
characterizable it captures precisely the loop semantics:
the most precise loop invariant, the relationship between
input and output, preserved by the loop body.

The solution proposed by Dijkstra [Dij76] is to pro-
vide, manually, a weaker loop invariant I, ie. such that
I ⇒ W. The predicate transformation rule is then de-
fined as

wp(while b do c,B)

, I∧ ((I∧ b)⇒ wp(c, I))∧ ((I∧¬b)⇒ B)
(6)

As a result, any occurrence of loop in programs re-
quires the definition of a loop invariant capturing the
loop semantics.

Similarly, in order to prove termination, one needs to
exhibit a loop variant, a decreasing sequence in a Noethe-
rian relation, also called a well-founded relation. Typical
implementations rely on a positive integer-valued func-
tion decreasing at each loop iteration.

2.3.2 Memory model and low-level representation

Until now all computations have been performed on a
naive imperative language with real datatypes, without
complex datastructure, memory allocation, or function
calls.

Serious tools such, as Frama-C, handle all those con-
structs. Memory issues are a large part of them. Multiple
choices could be made to represent the memory: from
the simplest being the Hoare model without pointers or
aliases, to a bit level representation. The more complex
the memory model, the bigger the generated predicate.

Dedicated analyses such as separation logic [ORY01]
can be used to detect aliases or guarantee that pointers x
and y are separated, easing the later analyses. Tools such
as the Verified Software Toolchain (VST) [App11] rely on
such analysis.

2.3.3 Underlying logic and automatic proof

A last difficulty in realistic implementations is the expres-
sivity and tools associated to the underlying logic. In
Frama-C, the annotation language ACSL [Bau+08] (ANSI
C Specification Language), is extremely rich and enables
the definition of predicates or internal data structures
in both functional or axiomatic ways. However, for the
same concept, e.g. a linked list or a tree like structure,
an integer valued function computing the size of a data
structure,. . . , the generated predicate will widely differ
and so do the results of the automatic solver to prove the
final proof objective.

Efficient use of these techniques requires the under-
standing of solver capabilities and their efficiency on dif-
ferent kinds of modelings.

2.4 smt-based model checking

While SMT-based model checking can be applied at code
level, eg. the SPACER tool [KGC14; Kom+13], most ap-
plications are performed on earlier representations of the
system, at model level.

In all cases, a logical representation of the denotational
semantics is extracted from the model/code f. It can be
as a single predicate associating outputs to inputs, or a
more axiomatic definition, for example relying on a set
of Horn clauses. In all cases, it characterizes a transition
system with inputs In and outputs Out: (Σ, Init ⊆ Σ, T)
where T(x,y) ≡ JfKden(x) = y.

When considering functions with side effects, ie. de-
pending on memory and modifying it through execution,
the typical predicate is

T(in,out,mem_pre,mem_post)

We can also define the initial state of the memory with a
predicate:

Init(mem)

These predicates are valid only for values that satisfy
the program semantics. In the memoryless example of
Fig. 2.1, we have T(0, 42), T(1, 46), T(2, 46) since these val-
ues are valid pairs of input/output, but T(1, 2) is false.

For models without complex datastructures this en-
coding can be rather straightforward. In case of a variety
of datatypes, casts between values, complex control flow
structures, the encoding can be less easy to define.

Once the encoding is available, one can reason about it.
When relying on model-based development such as Mat-
lab Simulink, ANSYS Scade, or Lustre, it is possible to
extract such encoding. Since all those models denote syn-
chronous dataflow languages, the semantics of a model
is the infinite execution of the block semantics.

14 formal methods

Let us consider a (possibly infinite) trace s0 → . . . →
si → . . . of such a system. It corresponds to the sequence
of inputs i0 → . . .→ ii → . . . and satisfies the following
constraints:

Init(s0) (7)

∀i > 0,∃oi, s.t. T(ii,oi, si, si+1) (8)

generating the sequence of outputs o0 → . . .→ oi → . . .

Most SMT-based model checking techniques are based
on the induction principle: a way to prove a property in-
variant over reachable states is to show it inductive over
such states. Let P(s) be the predicate encoding of this
property.

We recall that the induction principle requires:

∀s ∈ Σ,

Init(s)⇒ P(s)
(base case) (9)

∀s1, s2 ∈ Σ,

P(s1)∧ T(s1, s2)⇒ P(s2)
(inductive case) (10)

However, while the property is inductive over reach-
able states JfKcoll:

∀s ∈ Σ,

Init(s)⇒ P(s)
(base case) (11)

∀s1, s2 ∈ Σ∩ JfKcoll,

P(s1)∧ T(s1, s2)⇒ P(s2)
(inductive case) (12)

The same property may not be inductive over some
states s ∈ Σ \ JfKcoll. Such a state would correspond to
a spurious counter-example: a state s1 unreachable but
satisfying P such that its successor s2 by the transition
system semantics violates P:

(P(s1)∧ T(s1, s2)) ; P(s2)

Different approaches exist to attempt to address this
issue, without guarantees of success since JfKcoll is not
computable:

1. replace JfKcoll by some other invariant I of reach-
able states. The inductive case becomes2:

∀s1, s2 ∈ Σ,

(P(s1)∧ T(s1, s2)∧ I(s1)∧ I(s2))⇒ P(s2)

(13)

2. Improve the quality of the initial s1 as part of reach-
able states: impose it to be part of a path of length
k of the transition system. In that case, it is also
required to update the base case in order to guar-
antee property P for the first k reachable states:

∀l 6 k,∀s0, . . . , sl ∈ Σ,

Init(s0)∧
∧

06i6l−1

T(si, si+1)⇒
∧

06i6l

P(si)

(14)

∀s0, . . . sk+1 ∈ Σ,∧
06i6k

(P(si)∧ T(si, si+1))⇒ P(sk+1)

(15)

The second approach is known as k-induction and was
first proposed for pure propositional properties and sys-
tems [SSS00] and then extended to more general systems
using SMT [KT11]. This is typically the algorithm used
in formal verifiers in ANSYS Scade or Matlab Simulink.

The first approach is quite natural: instead of look-
ing for a general inductive property we focus on a
restricted set of states. Multiple methods were pro-
posed to synthesize the invariant I: simple patterns
instantiation [KGT11], the use of abstract interpreta-
tion [GKT12], the use of quantifier elimination [CDD15],
or the dynamic synthesis of property specific invariants
in property-directed reachability (PDR/IC3) [Bra12].

As in deductive methods, the efficiency of the analysis
depends on the encoding of the properties and the SMT
solver abilities to prove the base and inductive cases.

2.5 abstract interpretation (of collecting

semantics)

The abstract interpretation framework proposed by
Cousot and Cousot [CC77] provides a methodology in
which analyses of semantics can be easily defined and
proved correct. An essential step of that methodology is
to characterize the semantics of interest as a fixpoint of
a monotonic operator over a complete lattice. We refer
the reader to Miné’s PhD manuscript for a very good
introduction to the theory [Min04].

For the moment, let us give the following definition.

Definition 2.2 (Abstract Interpretation) Abstract Inter-
pretation is a constructive and sound theory for the approxima-
tion of semantics expressed as fixpoint of monotonic operators
in a complete lattice.

While this formulation may seem unnatural to the
newcomer, it is actually a simple step when it comes to
collecting semantics. Collecting semantics is the seman-
tics characterizing reachable states of a program or of a
dynamical system. We recall that Σ is the set of all states.
We are interested in characterizing all reachable states
s ∈ Σ. All reachable states form a set of states S ⊆ Σ

and belongs to its powerset S ∈ ℘(Σ). We would like to

2 Note that I may not be inductive with respect to T .

2.5 abstract interpretation 15

compute the most precise element of ℘(Σ) denoting all
reachable states.

Any powerset is a complete lattice. It is fitted with
a partial order, the set inclusion ⊆; any subset of ele-
ments admits a least upper bound, the set union ∪, and
a greatest lower bound, the set intersection ∩. It is fitted
with a lowest element ∅ and a greatest one Σ. Therefore,
our element of interest denoting all reachable states, let’s
call it C, is one specific element of the complete lattice
〈℘(Σ),⊆,∪,∩, ∅,Σ〉.

When one considers the underlying update function of
the analyzed system - the transition relation of a dynam-
ical system, or a function describing how each program
point value is computed from its predecessors - it can be
defined as an endomorphism of Σ. It maps a state to a
new state. Let f : Σ → Σ be such a function. Note that
this function does not need to be monotonic in any sense.
In order to ease the later notations, we will indifferently
denote by f the isomorphism of Σ or its lift f↑ to sets of
states ℘(Σ): f↑(S) = {f(s) | s ∈ S}.

Using f, we can derive the monotonic transfer function
F of the collecting semantics. A classical definition of F
is the endomorphism of ℘(Σ) which accumulates states
starting from an initial set of states Init ∈ ℘(Σ):

℘(Σ) → ℘(Σ)

S 7→ Init∪ f(S)
(16)

When one applies recursively this function to the
empty set, the infimum ⊥ of the lattice 〈℘(Σ),⊆
,∪,∩, ∅,Σ〉, we characterize the following sequence of
sets of states:

S0 = F(⊥) = Init

S1 = F(Init) = Init∪ F(Init)

S2 = F(Init∪ f(Init)) = Init∪ F(Init)∪ F2(Init)
. . .

Theorem 2.3 (Tarski’s fixpoint theorem) Let D be a com-
plete lattice 〈D,v,t,u,⊥,>〉 and f : D → D be an mono-
tonic function. Then the set of fixed points of f in D is also
a complete lattice, it admits a least (lfp) and a greatest (gfp)
fixpoints.

lfpf = u{X | F(X) v X}
gfpf = t{X | X v F(X)}

Since F is a monotonic operator of 〈℘(Σ),⊆,∪,∩, ∅,Σ〉, by
Tarski’s fixpoint theorem, a least fixpoint exists. It is de-
fined as the smallest postfixpoint. A postfixpoint is an
element X ∈ ℘(Σ) such that F(X) ⊆ X.

Then our set of reachable states, the collecting seman-
tics, is exactly characterized by

C = lfp∅F = inf
X∈℘(Σ)

{F(X) ⊆ X} (17)

Furthermore, the set of fixpoints is fitted with a com-
plete lattice structure: it is closed by join and meet; its
infimum is the least fixpoint; and its supremum the great-
est one.

2.5.1 Abstracting the fixpoint: fixpoint computation in ab-
stract domains

Soundness, incompleteness and alarms

Despite its proven existence, this exact set of reachable
states is very hard to compute in general. The framework
of abstract interpretation provides means to abstract it,
that is, to compute another value C# of ℘(Σ) bigger than
C for the set inclusion, ie. containing more states. Some
of those states are spurious, they are not reachable in
practice, but will be considered as such by the abstrac-
tion computed. The validity of a property P is checked
with respect to C#. P is characterized by the set of states
satisfying it: P = {s | P(s)}. In case of success, we have all
states in C# satisfy the property, and therefore the subset
C.

C# ⊆ P

⇒ C ⊆ P by inclusion C ⊆ C#

The figure 2.4 illustrates such inclusions.

Figure 2.4 Collecting semantics, abstraction and proper-
ties.

C C#

P

¬P

In case of failure, one cannot conclude since an erro-
neous state s ∈ C# \ P could either be in C or in spuri-
ous states introduced by the abstraction. We speak of
an alarm. This characterizes the incompleteness of the
approach.

3 In some cases, such as the one presented in Section 9.3.2, a complete lattice structure is not available. Proofs of convergence are then more
complex to achieve.

16 formal methods

Abstract domains

An abstraction is meant to approximate sets of states
℘(Σ) and is defined by an abstract domain. An abstract
domain represents a set of abstract states D#, fitted with
a complete lattice structure3: 〈D#,v,t,u,⊥,>〉 where ⊥
and > denotes infimum and supremum values, respec-
tively.

It also provides means to abstract sets of states ℘(Σ)
to D# and to compute a sound representation as set of
states of its elements: those functions are called α and γ,
the abstraction and the concretization functions:

α : ℘(Σ)→ D# γ : D# → ℘(Σ)

In order to fulfill the abstract interpretation framework
methodology, in its most general setting, those abstrac-
tion and concretization functions should define a Galois
connection:

monotonic α :

∀s1, s2 ∈ ℘(Σ), s1 ⊆ s2 ⇒ α(s1) v α(s2)
monotonic γ :

∀s#
1, s#
2 ∈ D

#, s1 v s2 ⇒ γ(s1) ⊆ γ(s2)
reductivity of α ◦ γ :

∀s# ∈ D#,α ◦ γ(s#) v s#

extensivity of γ ◦α :

∀s ∈ ℘(Σ), s ⊆ γ ◦α(s)

(18)

An abstract domain is also fitted with means to com-
pute, in the abstract, the operations that were performed
in the concrete set of states Σ. This ranges from as-
signments of variables by a linear or polynomial expres-
sion, to comparison operations over values,. . . . We de-
note by f# : D# → D# the sound abstract counterpart of
f : ℘(Σ)→ ℘(Σ).

Soundness in abstract domains

Soundness is guaranteed with respect to the abstraction
and concretization functions. We present here the classi-
cal definition on a unary operator fun.

∀S ∈ ℘(Σ),S# ∈ D#,

S ⊆ γ(S#) =⇒ fun(S) ⊆ γ(fun#(S#))
(19)

Soundness could also be expressed relying on α. In-
tuitively this soundness requirement guarantees that all
computations performed in the abstract will, at least,
contain the real reachable states and values.

When the abstract domain is defined by a computable
Galois connection (α,γ), one can derive automatically
these abstract operators such that they compute a sound,
yet most precise, solution:

op#(x) = α ◦ op(γ(x)) (20)

In case of programs analyzed on their control flow
graph representation, such as the ones of Figs. 2.1 and
2.3, (abstract) states of a node with multiple incoming
edge, such as a loop head, or an instruction following a
conditional statement, are the (abstract) join of the states
available in each predecessors.

Using Tarski’s theorem, one can associate to the con-
crete set of reachable states C the fixpoint of an abstract
function F#:

C# = lfp⊥F
(21)

= inf
X∈D#

{
F#(X) v X

}
(22)

where F#(S) = α(Init)t f#(S).

Fixpoint transfer

Thanks to the appropriate choice of α and γ functions,
for example with a Galois connection, and with the ad-
ditional constraint that the abstraction α commutes with
F:

α ◦ F = F# ◦α (23)

We have:
Init ⊆ γ(α(Init)) (ext. of γ ◦α)

⇒ F(Init) ⊆ F(γ(α(Init))) (mon. F)

⇒ F(Init) ⊆ F(γ(α(Init))) (mon. F)

⇒ α ◦ F(Init) ⊆ α ◦ F(γ(α(Init))) (mon. α)

⇒ α ◦ F(Init) ⊆ F# ◦α ◦ γ(α(Init)) (using 23)

⇒ α ◦ F(Init) ⊆ F#(α(Init)) (red. of α ◦ γ
and mon. of
F#)

⇒ γ ◦α ◦ F(Init) ⊆ γ ◦ F#(α(Init)) (mon. γ)

⇒ F(Init) ⊆ γ ◦ F#(α(Init)) (ext. of γ ◦α)

Iterating over F, we obtain

∀n, Fn(Init) ⊆ γ ◦ F#n(α(Init)) (24)

lfp∅F ⊆ γ(lfp⊥F#) (25)

and therefore

C ⊆ γ(C#)

2.5.2 Effective computation: Kleene iterations and widen-
ing

When the abstract domain is fitted with a complete lat-
tice structure4, this fixpoint could be accurately com-
puted by Kleene iterations:

C = lfp∅F = lim
n→∞ Fn(⊥) (26)

4 In theory, it is only required to admit least upper bound for ascending chains. In addition, F# should be join complete on these chains, ie. upper
continuous, ie. for all chain w0,wi, . . . ,F#(∪iwi))∪i F#(wi).

2.6 need for inductive invariants 17

In case of infinite ascending chains of iterates, one re-
lies on so-called widening operator to ensure convergence
in a finite number of iterations. This operator acts as a
rough join operator but has better convergence proper-
ties. It is however pessimistic since it introduces numer-
ous spurious states in the abstract representation.

Remark 2 (Relative performance) In general, SMT-based
methods such as MC and DM perform better on disjunctive or
integer based properties. SMT solvers are based on a SAT core
and a set of solvers for axiomatized theories. These solvers per-
form generally well on at most linear properties and systems.

AI typically performs better on the synthesis of numerical
invariants because disjunctions are computed within the ab-
stract representation, using the abstract join t, instead of be-
ing kept explicitly. Abstractions exist that postpone the in-
terpretation of these disjunctions such as partitioned analy-
ses [Fer05a; Gar08], disjunctive completion of domains [CC92;
CC79], or delayed join [Min04] to regain precision but cost too
much to be used in a systematic manner .

To summarize, for the most common setting, the effec-
tive use of abstract interpretation is the following:

1. Express the (collecting) semantics as a fixpoint of
a monotonic function F over a lattice of properties.
In our case, properties are sets of states.

2. Exhibit an abstract domain for set of states, defin-
ing abstraction and concretization functions, lattice
operations such as join, and a sound abstract coun-
terpart F# of F.

3. Abstract initial states and compute with Kleene it-
erations the least fixpoint in the abstract.

4. In case of convergence issue, rely on widening to
converge to a bigger fixpoint in the abstract.

5. The concretization of this abstract fixpoint is a
sound over-approximation of the concrete one.

In practice over-approximation is caused:

• by the set of properties represented or expressible
in the abstract domain (linear relationships, inter-
vals, . . .); an abstract domain may be unable to
represent or capture some specific property while
another one will.

• by the abstraction function and the set of abstract
counterparts of concrete functions. For example
in case of difficult precise definitions of a func-
tion such as exp, one can approximate it soundly
by a function returning the > = R value. While
sound, this definition is largely imprecise and will
lead to more abstraction when this exp function
is used. Another issue appears in presence of

non linear expression analyzed with an abstract do-
main restricted to linear properties. In that case
the non linear expression has to be soundly over-
approximated, leading to additional imprecision.
This imprecision is caused by the abstract trans-
formers.

• by the use of widening introducing additional ab-
straction to the computed element.

2.6 need for inductive invariants

Basically all formal methods rely on the expression of
the property of interest as an inductive invariant over the
system semantics. In practice all these techniques bene-
fit from additionally provided invariants. We summarize
the use of invariant in the different techniques.

2.6.1 Loop invariants for deductive methods

As mentioned in Section 2.3.1 the analysis of loop with
deductive methods requires invariants to be provided to
capture the loop semantics. While simple invariants may
be easily provided, they may be too weak to capture
precisely the loop semantics. For example the loop in-
variant expressed in Floyd euclidean division flowchart
in Fig. 2.2 is extremely precise: R,X,Q > 0, Y > 0,X =

R+QY.

If one considers Dijkstra’s predicate transformer rule
for loops in Eq. 6, one can see that the remaining prop-
erty is essentially I, the invariant provided. Invariants
for loops act as the cut-rule in proofs. A sound yet weak
invariant will generate a weaker precondition that guar-
antees the post-condition, but not the weakest. The proof
that the provided pre-condition imply the weaker pre-
condition may be unfeasible.

These loop invariants are either manually pro-
vided [Wan+16a] or computed by other means such as
abstract interpretation [Moy08].

2.6.2 Inductive invariants to reinforce transition relation in
SMT-based model-checking

Similarly, SMT-based model-checking is essentially
based on induction. As mentioned in Section 2.4 dif-
ferent approaches are used to address the lack of avail-
ability of the collecting semantics JfKcoll. While look-
ing different, k-induction, PDR or invariant injection all
amount to the characterization of invariants of JfKcoll.

18 formal methods

2.6.3 Inductive invariants to strengthen abstract interpreta-
tion fixpoint computation

Abstract interpretation aims at computing inductive in-
variants. The definition of abstraction through sound ab-
stract domains enables their composition to improve the
analysis results. Since the Cartesian product of two com-
plete lattices is also a complete lattice and since Galois
connections can be similarly composed, one can easily
define as a sound analysis an analysis that rely on mul-
tiple abstractions at the same time. Another interesting
construct is the domain reduction: it enables multiple
domains to communicate and refine their own (sound)
properties. Let us illustrate that notion on a simple ex-
ample.

Example 2 Consider a set of integer values Σ = N and the
three following abstractions: sign, interval, and parity.

αsign(S) =

⊥sign when S = ∅
0 when S = {0}

+ when ∀s ∈ S, s > 0

− when ∀s ∈ S, s 6 0

>sign otherwise

αinterval(S) =(minS, maxS)

αparity(S) =

⊥parity when S = ∅
Odd when ∀s ∈ S, s mod 2 = 1

Even when ∀s ∈ S, s mod 2 = 0

>parity otherwise

Abstracting a set by the sign of its elements is always less
precise than representing more finely the set of values by its
lower and upper elements. But those two abstract representa-
tions are not comparable with the abstraction that determines
whether all values are even or odd.

Abstractions could be however combined. If both intervals
and parity are of interest to us, one can analyze the semantics
of the program with both abstractions in the same computation
and represent more precisely the interval and parity associated
to the abstract set of values. This could lead to further im-
provements. For example, an interval abstraction may have
identified a set [1, 1000] of reachable values while the parity
abstraction guarantees that all values are odd. In that case the
interval representation can be refined into [1, 9999].

One of the major application of abstract interpretation
is the tool Astrée that was designed specifically for the
analysis of the Airbus A3xx family control command
systems. It combines numerous abstract domains with
complex reductions [Cou+07]. One of these domains is
specifically focused on second-order linear filters in or-
der to bound their reachable states [Fer04].

3
C O N T R O L S Y S T E M S

All our analyses are focused on control systems.
We sketch here their typical development and refer
the reader to classical books such as Åström/Murray

book [AM08] or Levine’s control handbook [Lev96] for
more details on control system design.

Historically control design started in the continuous
world: a system had to be controlled, its dynamics was
captured by the equations of physics, for example using
ordinary differential equations (ODE). Then, control the-
ory provides means to build a controller: another system
that, was used in combination with the system to be con-
trolled, is able to move the system in the requested state.

The Figure 3.1 presents a typical process leading to the
development of a controller in the aerospace domain. We
now give an idea of each steps.

Figure 3.1 Current development process

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists
Computer scientists

3.1 controllers development process

Let us give a naive yet representative process leading to
the definition of a control system.

system dynamics At first an identification phase is
required to obtain the plant dynamics. This identifica-
tion phase can be complex and rely on various means
to describe the system dynamics: a finite element struc-
tural model relying on a precise modeling of the aircraft
shape, or a rough point mass system with a given num-

ber of degrees of liberty. For example, for a system like
an aircraft able to move in a volume, one can character-
ize roughly its dynamics by 12 equations defining its po-
sition and velocity in a an orthogonal basis as well as its
angle and angular velocity along the three Euler angles
(Yaw, Pitch, Roll).

Typically, one characterizes the sum of forces applied
to the system (gravity, thrust, lift and drag in the case of
an aircraft) as we learn in high school. This set of con-
straints defines the differential equations capturing the
dynamics of the system.

linearization – transfer functions Control-
ling non linear dynamics is still an active area of research.
In practice, in the conservative aerospace industry, most
basic controllers are still defined with old-school linear
methods. For these methods the dynamics has to be
linear. Since linearized system are not fully representa-
tive far away from the linearization point, multiple such
points are defined, leading to multiple linearized ver-
sions of the dynamics. This can be done using Taylor

expansion for example. The general ODE can then be
expressed, locally, as linear differential equation (LDE)
expressed over a single input and a single output sig-
nals. The dynamics described by this LDE can be inter-
preted as a function mapping this input signal x(t) in the
output one y(t). In this continuous setting, one defines
this function as the linear mapping relating the Laplace

transforms of x(t) and y(t). The transfer function is ex-
pressed to map those two Laplace transforms.

Control design then provides tools to build a feedback
controller: another transfer function which, when asso-
ciated to the initial transfer function, provides the ex-
pected behavior. Various techniques exist to synthesize
such a controller: proportional, lead-lag, proportional-
integral-derivative (PID), . . .

analysis The produced controller can be evaluated
with respect to control-level properties. A controller
drives the plant in the desired state by minimizing the
error between the controller command and the current
plant state. This feedback system, the closed-loop sys-
tem, is analyzed with respect to stability, robustness and

19

20 control systems

performance. Stability and robustness capture the damp-
ing of the system, its ability to converge to goal even
in presence of noise in the feedback loop. Performance
evaluates the speed of convergence and the shape of
the feedback response (overshoot, number of oscillations,
settling time, . . .).

discretization This controller is meant to be em-
bedded in an onboard computer and to interact with the
system sensors and actuators. Depending on the speed
of each of these devices, and the available computing re-
sources, an appropriate rate of discretization is chosen.
For example a typical control law for an aircraft runs at
100Hz. But a trajectory planning controller may run at a
much lower speed.

complete controllers Once a discrete controller
has been obtained for a linearized version of the plant,
a more global one is obtained by combining local con-
trollers. One of the approaches is to synthesize a con-
troller for each linearization point while keeping the
same controller synthesis method. Since the previous
steps characterized single input single output (SISO) sub-
controllers, it is easy to switch the controller depending
on the input value. When considering an intermediate
value between two linearization, one can characterize the
linear interpolation of controller gains, the coefficients
synthesized for each local controller.

Moreover, additional constructs are introduced to ac-
count for divergence of integrators in case of a break in
the closed-loop system. Saturations or Anti-windups (cf.
§ 12) act as such and enable the output to remain within
given bounds.

integration : safety architecture In critical
applications the controller will not be directly embed-
ded on the target platform but rather used in conjunction
with a safety architecture used to obtain a fault tolerant
system.

This safety architecture is usually identified before the
design of the controller itself since it identifies early in
the process development the potential causes of failure
and their impact on the various systems. These failures
can range from faulty parts such as sensors generating
false data, a transient error such as a single event upset
(SEU) or a multiple bits upset (MBU), or a bug in soft-
ware.

This leads to local impacts at the control level with the
fusion of input data in case of redundancy in the sensors:
validators, alarm detection, voters, The alarm detec-
tion mechanisms typically check that the read value lies
in an expected range and emit different kinds of alarm
signals when a value outside the legal scope is detected.

Figure 3.2 presents an example of such architecture
with triplicated input sensors.

Figure 3.2 Example of a controller with two triplicated
inputs

u
Controller

in0_d in1_d
Triplex
in0

Triplex
in1

System

in0_v

in1_v

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

At the system level, more complex safety patterns al-
low the execution of the controller in a distributed fash-
ion, on multiple computers. These different computers
may also run different implementations, to account for
hardware (CPU or RAM) and software errors. For exam-
ple, a first pattern can sequence redundant implemen-
tations with only a single one in control as shown on
Figure 3.3. Another one, called COM/MON for Com-
mand/Monitor is based on the notion of computer-local
observers that detect whether the current output is valid
or not. In case of local failure the primary computer
leaves the command to the secondary one.

Figure 3.3 Triplication of the controller

Controller 1

Controller 2

Controller 3

safety logic

out1

out2

out3

ok1

ok2

ok3

code generation and v&v Last, once the com-
plete design has been done, the final code is created.
As developed later in Chapter. 11 the code can be auto-
matically generated from model description, or directly
coded in C code, for example.

3.2 spring-mass damper example 21

This code is very specific to control system. It consists
mainly of an endless loop, acquiring input data, perform-
ing one step of computation, propagating orders to actu-
ators and waiting the next clock tick.

while (true) {
in = read_sensors (); // read input data
state = ctl(state, in);
actuators (* state); // send orders
wait_next_tick ();
}

C

At the verification level, in addition to functional re-
quirements such as the validity of the safety architec-
ture or the alarm mechanism, one needs to prove that
the generated code will satisfy the timing constraints
imposed by the discretization, as well as prove the ab-
sence of runtime errors, such as overflows, that will im-
pact drastically the global behavior of the controlled sys-
tem, as it happened in the failure of the first Ariane 5

flight [SIAM96].

3.2 a simple linear system : spring-mass

damper

Figure 3.4 Motivating example: a spring-mass damper

m

1kg

1N/m

y

Controller

u

yd

When considering linear systems: plant and controller,
we reuse the running example of [Fér10; FWP90]. This
dynamical system is composed of a single mass and a
single spring.

3.2.1 Continuous dynamics: plant and lead-lag controller

First the plant dynamics is characterized by the follow-
ing ODE:

d

dt
xp =

[
0 1

−1 0

]
xp +

[
0

1

]
u (27)

where xp denotes
[
z ż

]
the position and velocity of the

mass with respect to the origin. The sensor of the plant
provides the position z.

The control is performed by a lead-lag controller ob-
tained through classical control recipes where the input
yc is defined as the saturation in the interval [−1, 1] of
y − yd with y the measure of the mass position and
|yd| 6 0.5 a bounded command.

The transfer function of the synthesized controller is:

u(s) = −128 · s+ 1
s+ 0.1

· s/5+ 1
s/50+ 1

yc(s) (28)

The transfer can be expressed a continuous linear con-
troller using a realization1 of the above transfer function:

d

dt
xc =

[
−50.1 5.0

1.0 0.0

]
xc +

[
100

0

]
SAT(yk − ydk)

u =
[
564.48 0

]
xc − 1280

(29)

where SAT(x) denotes the saturation of signal x to 1:

SAT(x) =

−1 when x < −1

1 when x > 1

x otherwise

3.2.2 Discrete plant dynamics

When producing the embedded controller, the continu-
ous model is discretized at a given rate of execution. This
leads to embedded runtime systems which are executed
on a platform at the given rate. The rate is chosen ac-
cording to both the requirements in terms of hardware
– one cannot run heavy computation at 1GHz – and in
terms of performance – a controller feedback every sec-
ond may be too slow to control an unstable system such
as an inverted pendulum. Typical rate to maintain an
aircraft stability is 100Hz.

In order to enable the later analyses, we also provide
a discretized version of the plant dynamics. Both con-
troller and plant have been discretized at an execution
rate of 100Hz.

1 This is explained with more details in Chapter. 7

22 control systems

The plant is described by a linear system over the state
variables p =

[
xp1 xp2

]ᵀ ∈ R2, characterized by the ma-
trices AP ∈ R2×2, BP ∈ R1×2 and CP ∈ R2×1 where
u denotes the actuator command of the plant and y the
projection of the plant state p over the y sensor:

pk+1 = APpk +BPuk

yk+1 = CPpk+1
(30)

with

AP :=

[
1 0.01

−0.01 1

]
BP :=

[
0.00005

0.01

]
CP :=

[
1 0

]

3.2.3 Discrete controller dynamics

The controller without saturation is similarly described
by a linear system over the state variables c =

[xc1 xc2]
ᵀ ∈ R2, controlled by both the feedback from

the plant sensors y ∈ Rdy and the user command
yd ∈ R, and parametrized by the four real matrices
AC ∈ R2×2, BC ∈ R1×2, CC ∈ R2×1 and DC ∈ R:

ck+1 = ACck +BC(yk − yd,k)

uk+1 = CCck+1 +DC(yk+1 − yd,k+1)
(31)

with

AC :=

[
0.4990 −0.05

0.01 1

]
BC :=

[
1

0

]

CC :=
[
564.48 0

]
DC := −1280

These numerical values have been obtained by a first-
order Euler discretization of the continuous controller.

3.2.4 Closed-loop system

The closed-loop system can be characterized and evalu-
ated. Fig. 3.5 presents the impulse and step response of
the closed-loop system.

Figure 3.5 Impulse and Step response for the controlled
spring mass damper.

Let us first consider a version of the closed-loop sys-
tem, without saturation:

Figure 3.6 Closed-loop system.

ink
xck+1 = Acxck +B

cek

uk = Ccxck +D
cek

x
p
k+1 = Apxpk +B

puk

yk = Cpxpk

xck

uk

x
p
k

+

ek

yk

−

System without saturation

The resulting closed-loop system is defined by consider-
ing Equations (30) and (31) at once. It can be expressed
over the state space x := [c p]ᵀ as

xk+1 = Axk +Byd,k (32)

with

A :=

[
AC BcCP

BPCC AP +BPDCCP

]

=

0.499 −0.05 1 0

0.01 1 0 0

0.028224 0 0.936 0.01

5.6448 0 −12.81 1

B :=

[
−BC

−BPDC

]
=

−1

0

0.064

12.8

From that formalization, it is possible to characterize

a virtual implementation of the closed system as a pro-
gram. Figure 3.7 displays such code. A control flow
graph analysis such as our Kleene based graph recon-
struction abstract domains [RG13] can extract the associ-
ated system representation of Figure 3.8.

Figure 3.7 Analyzed code for the closed-loop system.
xc1 = xc2 = xp1 = xp2 = 0;
while (1) {

yd = acquire_input();
assert(yd >= -0.5 && yd <= 0.5);
oxc1 = xc1; oxc2 = xc2; oxp1 = xp1; oxp2 = xp2;
xc1 = 0.499 * oxc1 - 0.05 * oxc2 + (oxp1 - yd);
xc2 = 0.01 * oxc1 + oxc2;
xp1 = 0.028224 * oxc1 + oxp1 + 0.01 * oxp2

- 0.064 * (oxp1 - yd);
xp2 = 5.6448 * oxc1 - 0.01 * oxp1 + oxp2

- 12.8 * (oxp1 - yd);
wait_next_clock_tick();

}

Remark 3 This corresponds to the system presented in Equa-
tion (32) with the input yd bounded by 0.5 (

∣∣yd,k
∣∣ 6 0.5 for

all k).

3.2 spring-mass damper example 23

Figure 3.8 Control flow graph for code of Figure 3.7.

s. t. 1

true ,

xc1 := 0

xc2 := 0

xp1 := 0

xp2 := 0

−0.5 6 yd 6 0.5 ,

xc1 := 0.499xc1 − 0.05xc2 +xp1 −yd

xc2 := 0.01xc1 +xc2

xp1 := 0.028224xc1 +xp1 + 0.01xp2 − 0.064 (xp1 −yd)

xp2 := 5.6448xc1 − 0.01xp1 +xp2 − 12.8 (xp1 −yd)

Figure 3.9 Control flow graph for the system with a saturation.

s. t. 1

true ,

xc1 := 0

xc2 := 0

xp1 := 0

xp2 := 0

−0.5 6 yd 6 0.5

xp1 −yd > 1
,

xc1 := 0.499xc1 − 0.05xc2 + 1

xc2 := 0.01xc1 +xc2

xp1 := 0.028224xc1 +xp1 + 0.01xp2 − 0.064× 1
xp2 := 5.6448xc1 − 0.01xp1 +xp2 − 12.8× 1

−0.5 6 yd 6 0.5

−1 6 xp1 −yd 6 1
,

xc1 := 0.499xc1 − 0.05xc2 +xp1 −yd

xc2 := 0.01xc1 +xc2

xp1 := 0.028224xc1 +xp1 + 0.01xp2 − 0.064 (xp1 −yd)

xp2 := 5.6448xc1 − 0.01xp1 +xp2 − 12.8 (xp1 −yd)

−0.5 6 yd 6 0.5

xp1 −yd < −1
,

xc1 := 0.499xc1 − 0.05xc2 − 1

xc2 := 0.01xc1 +xc2

xp1 := 0.028224xc1 +xp1 + 0.01xp2 − 0.064× (−1)

xp2 := 5.6448xc1 − 0.01xp1 +xp2 − 12.8× (−1)

System with saturation

Similarly, the more realistic setting integrating the satu-
ration over (y− yd) will be defined by the system:

xk+1 = Axk +B SAT(Cxk − yd,k) (33)

where

A :=

[
AC 0

BPCC AP

]
=

0.499 −0.05 0 0

0.01 1 0 0

0.028224 0 1 0.01

5.6448 0 −0.01 1

B :=

[
BC

BPDC

]
=

1

0

−0.064

−12.8

 C :=

[
0

CP

]ᵀ
=

0

0

1

0

ᵀ

and SAT is defined as

SAT(x) =

−1 if x < −1

x if − 1 6 x 6 1

1 if x > 1

The control flow graph extracted by our analysis is pre-
sented in Figure 3.9.

Part II

I N VA R I A N T S Y N T H E S I S : C O N V E X - O P T I M I Z AT I O N B A S E D A B S T R A C T
I N T E R P R E TAT I O N

4
D E F I N I T I O N S – B A C K G R O U N D

This part focuses on the computation of non linear nu-
merical invariants for discrete controllers. As mentioned
in the motivation part, controllers are usually designed
in a continuous setting and then discretized; in both
cases a semantics in the real field is assumed. The se-
mantics of interest, in this context, is then a discrete dy-
namical system with a real semantics. Then, those sim-
ple controllers are combined with simple mechanisms
such as switches, interpolation of gains, saturations, anti-
windups, etc. In order to be able to analyze systems as
complex as the ones embedded in aircraft, we extend the
considered semantics to account for piecewise behaviors.

Regarding the analysis of those semantics, we were
initially motivated by applying abstract interpretation
on controller programs. We then experimented a long
known result for control people: “stable linear con-
trollers admit quadratic Lyapunov functions”. However,
most state-of-the-art abstract domains were abstracting
states through linear properties. Furthermore, the cur-
rent trend was to compute even weaker abstractions,
such as octagons [Min06], to control the complexity of
the analyses and obtain non trivial results in reasonable
time. When manipulating non linear abstractions, the
classical Kleene based approach to fixpoint computation
does not seem to be very efficient or appropriate: non lin-
ear subspaces were not easily fitted with a lattice struc-
ture – in other words a least upper bound operator was
not as obvious as it is for finite sets of convex polyhe-
dra or intervals. Following the path of control scientists
we chose to rely on numerical tools, in our case convex
optimization, to solve the so-called Lyapunov equations.

The current chapter presents our formalisms to de-
scribe discrete dynamical systems and gives an overview
on the convex optimization tools and methods we used
to compute our analyses. The following chapters de-
velop our contributions.

4.1 discrete dynamical systems

A dynamical system is a typical object used in control
systems or in signal processing. In some cases, it is even-
tually implemented in a program to perform the desired
feedback control to a cyber physical system.

Definition 4.1 (State space) Let Σ be the state space, a set
of states. A dynamical system computes an infinite sequence
of states Σ starting from an initial state init ∈ XInit ⊆ Σ.
The dynamics of the system is defined by a function f : Σ→ Σ.
In some cases, the dynamics is also perturbed – or controlled,
depending on the point of view – by an external signal, ie. se-
quences of values. Let us call them inputs u ∈ XIn. The
system map is then defined as f : Σ× XIn → Σ. Let Σ̄ be the
state-input space defined as Σ×XIn.

Definition 4.2 (Trajectory) A trajectory of the system is de-
fined by an initial state init ∈ XInit and an infinite sequence
of inputs (uk)k>1 ∈ XIn:

x0 = init xn+1 = f(xn,un)

Language-wise, model based languages such as Lus-
tre [Hal+91], Ansys Scade, or Matlab Simulink pro-
vide primitives to build these dynamical systems or con-
trollers relying on simpler constructs. In terms of pro-
grams, such dynamical systems can easily be imple-
mented as a while true loop initialized by the initial state
and performing the update f. The simplest systems are
usually directly coded in the target language, eg. C
code, while more advanced systems are compiled through
autocoders: Lustre compilers, Scade KCG or Matlab

Real Time Workshop (RTW).
Let us sketch a typical implementation: the variable u

is being read from an external source, eg. as a mutable
variable or an IO call.

x = i;
while true {

u = read();
x = f(x, in);

}

C

Most systems perform an action at each computation
step. In case of controllers, the action typically moves
some actuators in order to impact the controlled system.
This generates an output signal , a sequence of produced
values y ∈ XOut. This output is computed by a function
g : Σ×XIn → XOut.

27

28 definitions – background

x = i;
while true {

in = read();
x = f(x, u);
y = g(x, u);

}

C

A discrete dynamical system is then defined by the
following sets Σ,XInit,XIn,XOut and functions f,g.

In the following, we specialize this description depend-
ing on the considered sets and functions: linear systems,
piecewise linear systems, and polynomial ones.

Again, these descriptions are provided at the model
level or could be extracted from the implementation as
we did for linear systems [RG13]. In order to simplify
this extraction phase, or to understand it more easily,
we assume without loss of generality that the analyzed
programs are written in Static Single Assignment (SSA)
form, that is each variable is initialized at most once.

As a last remark, since we are first interested only in
the internal state x of the system, the output part is often
neglected.

4.1.1 Linear systems

This simplest systems are composed of a single loop and
a linear update. While they could seem over simple to
the non expert, most controllers are linear, from rocket
stabilization controllers, to aircraft controllers or satellite
attitude and orbital control systems (AOCS).

The basic control literature mentions proportional con-
trollers (P), proportional derivative (PD), or proportional-
integral-derivative (PID) ones. In all cases, these are lin-
ear controllers. In order to obtain more precision, the
order of the linear controller, ie. the size of its state space
Σ could be extended, considering a more complex sys-
tem.

A linear controller is typically implemented by the
following code, for a system with Σ = R2 and XIn =

XOut = R:

x0 = i0;
x1 = i1;
while true {

in = read();
nx0 = a00 * x0 + a01 * x1 + b00 * in;
nx1 = a10 * x0 + a11 * x1 + b10 * in;
y = c00 * x0 + c10 * x1 + d00 * in;
x0 = nx0;
x1 = nx1;

}

C

In all systems, assignments of variables are performed
using only parallel assignments. At the implementation

level, this imposes to keep a copy of the variable values
before the final updates xi = nxi.

Definition

In this first setting, a linear system is defined over a sys-
tem state in Σ, represented as a vector of Rd, with inputs
in XIn, represented as a vector of Rm, and by a pair of
matrices A ∈ Rd×d B ∈ Rd×m. Its output in XOut, rep-
resented by a vector of Ro, is computed similarly by a
pair of matrices C ∈ Ro×d D ∈ Ro×m.

Such system is defined by the two functions:
f : Rd ×Rm → Rd

(x,u) 7→ Ax+Bu

g : Rd ×Rm → Ro

(x,u) 7→ Cx+Du

Linear Controller Example

Let us consider the following Linear Quadratic Gaussian
(LQG) Regulator:

double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input ();
nx[0] = 0.9379*x[0] - 0.0381*x[1] -

0.0414*x[2] + 0.0237* in;
nx[1] = -0 .0404*x[0] + 0.968*x[1] -

0.0179*x[2] + 0.0143* in;
nx[2] = 0.0142*x[0] - 0.0197*x[1] +

0.9823*x[2] + 0.0077* in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx

[2];
wait_next_clock_tick (); // a tick every

10 ms for instance
}

C

This characterizes the following dynamical system.

Example 3 (Linear system example) Let Σ = R3,
XInit = {(0, 0, 0)}, and XIn = R, with the following ma-
trices A and B:

A :=

 0.9379 −0.0381 −0.0414

−0.0404 0.968 −0.0179

0.0142 −0.0197 0.9823

 B :=

0.02370.0143

0.0077

4.1.2 Switched linear systems: constrained piecewise affine

discrete-time systems

Most systems are not purely linear. The programs or
systems we consider here are composed of a single loop
with possibly a complicated switch-case type loop body.

4.1 discrete dynamical systems 29

Our switch-case loop body is supposed to be written as
a nested sequence of ite statements, or as a switch:

x = i;
while true {

in = read();
switch
c1 → x = f1(x, in);
c2 → x = f2(x, in);
c3 → x = f3(x, in);
_ → x = f4(x, in);

}

C

Moreover, we suppose that the analyzed programs are
written in affine arithmetic, both the switch conditions
ci and the associated update functions fi. Consequently,
the programs analyzed here can be interpreted as con-
strained piecewise affine discrete-time systems.

Polyhedral Partitioning of Σ̄

The term piecewise affine means that there exists a poly-
hedral partition {Xi, i ∈ I} of the state-input space Σ̄ ⊆
Rd+m such that for all i ∈ I, the dynamic of the system
is affine and represented by the following relation for all
k ∈N:

if (xk,uk) ∈ Xi, xk+1 = Aixk+B
iuk+b

i,k ∈N (34)

where Ai ∈ Rd×d, Bi ∈ Rd×m and bi ∈ Rd. As in
the linear case, the variable x ∈ Rd refers to the state
variable and u ∈ Rm refers to some input variable.

We define a partition of the state-input space as a fam-
ily of nonempty sets Xi such that:⋃

i∈I

Xi = Σ̄, ∀ i, j ∈ I, i 6= j,Xi ∩Xj = ∅ . (35)

In the current setting, since Xi are convex polyhedra,
we characterize polyhedral partitions of the state-input
space. From now on, we call Xi cells.

Affine conditions: strict and weak affine convex constraints

Cells {Xi}i∈I are convex polyhedra which can contain
both strict and weak inequalities.

Definition 4.3 (Cells as convex polyhedra) Cells can be
represented by a ni × (d+m) matrix T i and a vector ci ∈
Rni . We denote by Iis the set of indices which represent strict
inequalities for the cell Xi, denote by T is and cis the parts of T i

and ci corresponding to strict inequalities and by T iw and ciw
the one corresponding to weak inequalities. Finally, we have
the matrix representation given by Formula (36).

Xi =

{(
x

u

)
∈ Rd+m

∣∣∣∣∣T is
(
x

u

)
� cis, T iw

(
x

u

)
6 ciw

}
(36)

We use the following notations: y 6 z is a partial order
built as the piecewise lift of the total order over reals to
vectors, meaning that for all coordinates l, yl 6 zl. The
other relation y � z is the strict version, meaning that
for all coordinates l, yl < zl.

While the approach we propose can consider arbitrary
partitioning of the system dynamics into convex cells, we
infer automatically the cell’s definition using the guards
of the switch case constructs.

Homogenization: encoding affine system as a linear one

In order to simplify the following analyses, it is easier to
consider a linear system rather than an affine one. There-
fore, we define a homogeneous flavor of the system dy-
namics: instead of considering a system state in Rd with
inputs in Rm, we manipulate system states in R1+d+m.
We will need homogeneous versions of update functions
and thus introduce the (1+d+m)× (1+d+m) matrices
Fi defined as follows:

Fi =

 1 01×d 01×m

bi Ai Bi

0 0m×d Idm×m

 (37)

where Idm×m denotes the identity matrix of dimension
m×m.

The system defined in Equation (34) can be rewritten
as (1, xk+1,uk+1)ᵀ = Fi(1, xk+1,uk)ᵀ. Note that, in or-
der to obtain a square matrix, we introduce a "virtual"
dynamic law uk+1 = uk on the input variable in Equa-
tion (37). It will not be used in the following analyses.

Let p = card(I), the global system can be defined as:

(1, xk+1,uk+1)ᵀ = F1(1, xk,uk)ᵀ w. (xk,uk) ∈ X1

(1, xk+1,uk+1)ᵀ = F2(1, xk,uk)ᵀ w. (xk,uk) ∈ X2

. . .

(1, xk+1,uk+1)ᵀ = Fp(1, xk,uk)ᵀ w. (xk,uk) ∈ Xp

(38)

Piecewise Linear Discrete Dynamical System Example

Let us consider the following program. It is consti-
tuted by a single while loop with two nested condi-
tional branches in the loop body, characterizing four
cells.

30 definitions – background

(x,y)∈ [−9,9]× [−9,9];
while(true)
ox=x;
oy=y;
read(u); \\u ∈ [−3,3]
if (-9*ox+7*y+6*u<5){

if(-4*ox+8* oy-8*u<4){
x=0 .4217* ox +0.1077* oy +0.5661*u;
y=0 .1162* ox +0.2785* oy +0.2235* u-1;

}
else { \\4* ox-8*oy+8* u<-4

x=0 .4763* ox +0.0145* oy +0.9033*u;
y=0 .1315* ox +0.3291* oy +0.1459*u+9;

}
}
else { \\9* ox-7*y-6*u<-5

if(-4*ox+8* oy-8*u<4){
x=0 .2618* ox +0.1107* oy +0.0868* u-4;
y=0 .4014* ox +0.4161* oy +0.6320*u+4;

}
else { \\4* ox-8*oy+8* u<-4

x=0 .3874* ox +0.00771* oy +0.5153*u+10;
y=0 .2430* ox +0.4028* oy +0.4790*u+7;

}
}

C

The initial condition of the piecewise affine system is
(x,y) ∈ [−9, 9]× [−9, 9] and the polytope where the input
variable u lives is U = [−3, 3].

We can rewrite this program as a piecewise affine
discrete-time dynamical systems using our notations.
We give details on the matrices T is and T iw and vectors cis
and ciw (see Equation (36)) which characterize the cells
and on the matrices Fi representing the homogeneous
version (see Equation (37)) of affine laws in the cell Xi.

Example 4 (Piecewise linear system example) Let Σ =

R2, XInit = [−9, 9]× [−9, 9], XIn = [−3, 3], card(I) = 4
with the following matrices and vectors:

F1 =

1 0 0 0

0 0.4217 0.1077 0.5661

−1 0.1162 0.2785 0.2235

0 0 0 1

 ,

T1s =

(
−9 7 6

−4 8 −8

)

c1s = (5 4)ᵀ

,

T1w =

(
0 0 1

0 0 −1

)

c1w = (3 3)ᵀ

F2 =

1 0 0 0

0 0.4763 0.0145 0.9033

9 0.1315 0.3291 0.1459

0 0 0 1

 ,

T2s =

(
−9 7 6

)
c2s = 5

,

T2w =

4 −8 8

0 0 1

0 0 −1

c2w = (−4 3 3)ᵀ

F3 =

1 0 0 0

−4 0.2618 0.1177 0.0868

4 0.4014 0.4161 0.6320

0 0 0 1

 ,

T3s =

(
−4 8 −8

)
c3s = 4

,

T3w =

9 −7 −6

0 0 1

0 0 −1

c2w = (−5 3 3)ᵀ

F4 =

1 0 0 0

10 0.3874 0.0771 0.5153

7 0.2430 0.4028 0.4790

0 0 0 1

 ,

T4w =

9 −7 −6

4 −8 8

0 0 1

0 0 −1

c4w = (−5 − 4 3 3)ᵀ

4.1.3 Piecewise Polynomial Systems

A last flavor of considered systems is the further exten-
sion to polynomial constraints and update: piecewise
polynomial discrete-time dynamical systems. Let us first
recall some definitions of polynomial functions in Rd.

Definition 4.4 (Polynomial functions of Rd) A function
f from Rd to R is a polynomial if and only if there exists
k ∈ N, a family {cα | α = (α1, . . . ,αd) ∈ Nd, |α| =

α1 + . . . + αd 6 k} such that for all x ∈ Rd, f(x) =∑
|α|6k cαx

α1
1 . . . x

αd
d . By extension a function f : Rd 7→

Rd is polynomial if and only if all its coordinate functions are
polynomials. Let R[x] stands for the set of d-variate polynomi-
als.

We focus now on programs composed of a single loop
with a possibly complicated switch-case type loop body.

4.1 discrete dynamical systems 31

x ∈ XInit;
while true {

case (r11(x)<
#0 and ... and r1n1 (x)<

#0):
x = T1(x);

case ...
case (r1i (x)<

#0 and ... and r1ni (x)<
#0):

x = T i(x);
}

C

Basic semialgebraic set

In this setting, conditions are expressed as a conjunction
of weak polynomial inequalities r(x) 6 0 or strict poly-
nomial inequalities r(x) < 0. These functions, describing
guards, are real-valued polynomials of the state-input
space: Σ̄ → R. Such conditions characterize a basic semi-
algebraic set. Recall that a set C ⊆ Rd is said to be a basic
semialgebraic set if there exist g1, . . . ,gm ∈ R[x] such that
C = {x ∈ Rd | gj(x) <

0,∀ j = 1, . . . ,m}, where <# is
used to encode either a strict < or a weak 6 inequality.

Semialgebraic Partitioning of Σ̄

These basic semialgebraic sets of Σ̄ = Rd+m act as the
cells we used in piecewise affine systems. They charac-
terize a partition of the state-input space Σ̄. Let I be the
set of cells Xi, ie. basic semialgebraic sets.

Xi =

x ∈ Rd+m

∣∣∣∣∣∣
∧

16j6nsi

risj < 0
∧

16j6nwi

riwj 6 0

(39)

where nsi and nwi denote, respectively, the number of
strong and weak polynomial constraints in the semialge-
braic set Xi.

Cells Xi satisfy Eq. 35: they form a semialgebraic parti-
tion of Σ̄. As a result, any element of Σ̄ belong to exactly
one cell Xi.

Polynomial updates

Assignments associated to each cell Xi with i ∈ I are
defined by polynomial functions T i.

if xk ∈ Xi, xk+1 = T i(xk) . (40)

For systems without input, we have T i a d-variate
polynomial: T i ∈ R[x]; in case of systems with input
in Rm, T i is a polynomial function T i ∈ Rd+m →
Rd, where each coordinate function is a polynomial
Rd+m → Rd.

Definition of a Piecewise Polynomial System (PPS)

We assume that I is finite and that the initial condition x0
belongs to some compact basic semialgebraic set XInit

satisfying Eq. (39). For the program, XInit is the set
where the variables are supposed to be initialized in.

Definition 4.5 (Piecewise Polynomial System) A con-
strained polynomial piecewise discrete-time dynamical system
(PPS) is the quadruple (XInit,XIn, Σ̄,L) with:

• XInit ⊆ Σ ⊆ Rd is the compact basic semialgebraic set
of the possible initial conditions;

• XIn ⊆ Rm is the basic semialgebraic set where the in-
put variable lives;

• Σ̄ := {Xi, i ∈ I} is a partition as defined in Equa-
tion (35);

• L := {T i, i ∈ I} is the family of the polynomials from
Rd+m to Rd, w.r.t. the partition Σ̄ satisfying Equa-
tion (40).

Piecewise Polynomial System Example

From now on, we associate a PPS representation to each
program of the form described earlier.

Let us consider a concrete example. The program be-
low involves four variables and contains an infinite loop
with a conditional branch in the loop body. Each branch
update is defined by a polynomial function. The parame-
ters cij (resp. dij) are given parameters. During the anal-
ysis, we only keep the variables x1 and x2 since oldx1
and oldx2 are just memories.

x1,x2 ∈ [a1,a2]× [b1,b2];
oldx1 = x1;
oldx2 = x2;
while (-1 <= 0){
oldx1 = x1;
oldx2 = x2;
case : oldx1^2 + oldx2^2 <= 1 :
x1 = c11 * oldx1^2 + c11 * oldx2^3;
x2 = c21 * oldx1^3 + c22 * oldx2^2;

case : -oldx1^2 - oldx2^2 < -1
x1 = d11 * oldx1^3 + d12 * oldx2^2;
x2 = d21 * oldx1^2 + d22 * oldx2^2;

}

C

Example 5 (Piecewise polynomial system example)
The associated PPS corresponds to the input-empty quadru-
ple (XInit, ∅, {X1,X2}, {T1, T2}). In this case Σ̄ = Σ. We have
the set of initial conditions:

XInit = [a1,a2]× [b1,b2] ,

32 definitions – background

the partition verifying Equation (35) is:

X1 = {x ∈ R2 | x21 + x
2
2 6 1},

X2 = {x ∈ R2 | −x21 − x
2
2 < −1} ,

and the polynomials relative to the partition {X1,X2} are:

T1(x) =

(
c11x

2
1 + c12x

3
2

c21x
3
1 + c22x

2
2

)

and

T2(x) =

(
d11x

3
1 + d12x

2
2

d21x
2
1 + d22x

2
2

)
.

4.2 elements of (applied) convex optimiza-
tion

This section intends to provide elements to the computer
scientist to understand basic principles of convex opti-
mization and the typical approaches to manipulate such
optimization problems. We refer the interested reader to
the excellent book "Convex Optimization" by Boyd and
Vandenberghe [BV04] for a more thorough introduction.
Other valuable references include Numerical Optimiza-
tion by Nocedal and Wright [NW06] and "Éléments
d’optimisation différentiable" by Gilbert [Gil13].

In the following we focus on optimization problems of
the form

min f0(x)

s.t. fi(x) 6 bi for i ∈ [1,m]
(41)

Here x ∈ Rn is the optimization variable. f0 ∈
Rn → R denotes the objective function and the functions
fi ∈ Rn → R, with associated bound bi, the constraints.

A solution x of (41) is feasible if it satisfies all con-
straints. It is optimal if it is smallest of all feasible ones.

An optimization algorithm is a numerical tool that
computes or approximate such feasible optimal solution.

4.2.1 Convex Conic optimization

In the case where the only part of the problem is the
objective function, i.e. no constraint is provided, then
classical methods such as gradient, conjugate gradient or
Newton methods will iteratively approximate the solu-
tion. These algorithms compute a sequence of points of
Rn by updating the previous point with a local descent
direction dk obtained by considering the derivative of
the objective function (aka. the gradient).

xk+1 = xk +αkdk

Here αk denotes the step size. Both αk and dk de-
pend on the current point xk and typically rely on f ′0(xk)
(aka. ∇f(xk)). Kantorovich’s theorem characterizes
conditions imposed on f0 to guarantee the existence of a
unique solution and the convergence to it for Newton’s
method. These constraints amount to provide a bound
on the variation of the function, its Lipschitz constant.

Solving a general case of optimization problems with
constraints is still an open question. However, a solution
to guarantee the existence of such bound is to constrain
the functions f0, and fi,∀i ∈ [1,m] to be convex. We re-
call that a function f is convex when ∀α,β > 0,α+ β =

1, f(αx + βy) 6 αf(x) + βf(y). In that case any local
optimal point is also a global optimal one. An even
stronger condition would be to require it to be linear,
i.e. f(αx+βy) = αf(x) +βf(y).

Convex optimization is then a restriction of general op-
timization to the following problem:

min f0(x)

s.t. fi(x) 6 0 for i ∈ [1,m]

a
ᵀ
j x = bj for j ∈ [1,p]

(42)

where f, 0, fi are convex functions. Note that equality
constraints have to be affine: they correspond to a con-
junction of two convex inequalities: f(x) 6 0∧ f(x) > 0;
the only solution is to require f to be affine or linear.

A well known case of this convex optimization prob-
lem is linear optimization or linear programming, in
which a linear objective function f0 is optimized while
satisfying the linear constraints fi.

This notion of convex optimization can be further
extended to more general convex sets: convex cones.
A cone K is a subset of Rn closed by positive scal-
ing: ∀x ∈ K, θ > 0, θx ∈ K. A convex cone satis-
fies: ∀x,y ∈ K, θ1, θ2 > 0, θ1x + θ2y ∈ K. Such con-
vex cone can be fitted with partial order � such that
∀x,y ∈ K, (x � y) ≡ (y− x ∈ K). By extension a function
convex in the cone is K-convex.

In that setting a convex conic optimization problem is
defined as

min f0(x)

s.t. fi(x) �K 0 for i ∈ [1,m]

Ax = b

(43)

where f0 ∈ Rn → R is convex, fi ∈ Rn → K are K-
convex functions, and A ∈ Rp×n.

As a first specialization, we speak about linear prob-
lems when f0, fi are linear. Each function f can then
be described as a scalar product 〈·, ·〉 when real valued,
or as a product by a matrix when ∃m,K ⊆ Rm. In the
following we denote the function f0 by a constant vector

4.2 (applied) convex optimization 33

c: f0(x) = 〈c, x〉, and the functions fi by the pair Ai,bi
such that fi(x) = Aix− bi.

min 〈c, x〉
s.t. Aix− bi �K 0 for i ∈ [1,m]

Ax = b

(44)

Let us now focus on special cases depending on the
cone K considered.

Polytopes

When K = R+, a famous case is the optimization over
closed polyhedra. Each constraint characterizes a sub-
space of Rn. The feasible set being the intersection of
these subspaces, a convex set. The goal is to optimize a
linear function over this bounded convex set. In case of
bounded feasible set, a finite number of vertices charac-
terize the polytope. Since the optimal solution is neces-
sarily on a vertex, the simplex method enumerates these
vertices and compute the optimal one.

Positive semidefinite cone

Let us consider the set Sn of symmetric matrices of
Rn×n:

Sn =
{
X ∈ Rx×n |X = Xᵀ}

The set Sn+ of positive semi-definite matrices is the sub-
set of matrices of Sn admitting only positive eigenvalues.

Sn+ = {X ∈ Sn |X � 0}

Equivalently, we have:

Sn+ = {X ∈ Sn |∀x ∈ Rn, xᵀXx > 0}

This set is a convex cone: it is closed by addition and
external multiplication by a positive scalar. Optimizing
over this cone leads to problem of the form:

min 〈c, x〉

s.t.
∑
i∈[1,n]

xiFi +G � 0

Ax = b

(45)

Here x is a vector and matrices G, F1, . . . , Fn ∈ Sn+. The
inequality is known as a Linear Matrix Inequality (LMI).

Indeed, we can easily have unknown matrices
since a matrix A ∈ Rn×n can be expressed as∑n−1,n−1
i=0,j=0 Ai,jE

i,j, where Ei,j is the matrix with zeros

everywhere except a one at line i and column j. Like-
wise, multiple LMIs can be grouped into one since A �

0∧B � 0 is equivalent to

[
A 0

0 B

]
� 0.

Efficient solvers for semidefinite programming (SDP),
based on interior point method algorithms are available
such as Mosek [AA00], SDPA [Yam+10] or CSDP [Bor99].
For more details about SDP, we refer the interested
reader to [VB96].

Sum-of-square polynomials

Let R[x] be the set of multivariate polynomials of Rn

and R[x]2m its restriction to polynomials of degree at
most 2m. We denote by Σ[x] ⊂ R[x] the cone of sums-of-
squares (SOS) polynomials, that is

Σ[x] :=

{∑
i

q2i , with qi ∈ R[x]

}
(46)

The existence of an SOS representation for a given
polynomial is an approach to Positivestellensatz witness,
a sufficient condition to prove its global nonnegativity, ie.
∀p(x) ∈ Σ[x],p(x) > 0. The SOS condition (46) is equiva-
lent to the existence of a positive semi-definite matrix Q
such that

p(x) = Zᵀ(x)QZ(x) (47)

where Z(x) is a vector of monomials of degree less than
or equal to deg(p)/2.

Searching for a positive polynomial of a given degree
d = 2m amounts to solve a semi-definite optimization
problem and synthesizing the matrix Q � 0 satisfying
the Eq. 47.

Example 6 Consider the bi-variate polynomial q(x) := 1+

x21 − 2x1x2 + x
2
2. With Z(x) = (1, x1, x2), one looks for a

semi-definite positive matrixQ such that the polynomial equal-
ity q(x) = Z(x)ᵀQZ(x) holds for all x ∈ R2.

The matrix

Q =

1 0 0

0 1 −1

0 −1 1

satisfies this equality and has three nonnegative eigenvalues,

which are 0, 1, and 2, respectively associated to the three eigen-
vectors e0 := (0, 1, 1)ᵀ, e1 := (1, 0, 0)ᵀ and e2 := (0,−1, 1)ᵀ.

Defining the matrices L := (e1 e2 e0) =
(
1 0 0
0 1 1
0 −1 1

)
and

D =
(
1 0 0
0 2 0
0 0 0

)
, one obtains the decomposition Q = LDL−1

and the equality q(x) = (LZ(x))D (L−1 Z(x)) = σ(x) =

1+ (x2 − x1)
2, for all x ∈ R2. The polynomial σ is called a

SOS certificate and guarantees that q is nonnegative.

34 definitions – background

A SOS optimization problem can be defined as

min 〈c, x〉
s.t. pi(x) ∈ Σ[x] for i ∈ [1,m]

Ax = b

(48)

SOS programming solvers provide a front-end easing
the translation of a SOS-based optimization problem into
SDP. Each sum-of-square polynomial constraint pi is as-
sociated to a symmetric positive semi-definite matrix Qi.
By identification, coefficients of the matrices Qi are asso-
ciated to equality constraints depending on the expres-
sion characterizing the polynomial pi. Once the SDP
problem is solved, its solution is used to rebuild the poly-
nomial problem and provides the positive certificate of
the SOS problem (48).

The Matlab toolbox Yalmip [Löf04] provides such a
frontend.

More references regarding SOS based polynomial
optimization can be found in Parrilo [Par03] and
Lasserre [Las09] works.

4.2.2 Convex optimization tools

When manipulating optimization problems, there are
few standard operations that enable to relax a problem
into a solvable one. We present here of few of those tech-
niques.

Convexifying constraints: S-procedure, Lagrangian relaxation

When facing non convex constraints such as implication
between positive definite matrices

P1 � 0 =⇒ P2 � 0

we can express a sufficient condition in a convex way.
The S-Procedure provides such as relaxation.

Theorem 4.6 (S-Procedure) For any P,P1, . . . ,Pk ∈
Rn×n and b,b1, . . . ,bk ∈ R and b,b ′ ∈ R, the following

∃τ1, . . . , τk ∈ R,(∧k
i=1 τi > 0

)
∧

[
−P 0

0 b

]
−
∑k
i=1 τi

[
−Pi 0

0 bi

]
� 0

(49)

is a sufficient condition for

∀x ∈ Rn,

(
k∧
i=1

xᵀPi x 6 bi

)
⇒ xᵀP x 6 b. (50)

More generally Lagrangian relaxation uses a similar
approach to express a constraint in the objective func-
tion. It consists in adding to the objective function the

inner product of the vector of constraints with a posi-
tive vector of the euclidean space whose dimension is
the number of constraints. Let us consider the following
simple linear problem

min
x∈R

〈c, x〉

s.t. ax 6 b
(51)

It is possible to express a second problem without con-
straints by introducing a nonnegative Lagrange multi-
plier λ ∈ R+:

max
λ∈R+

min
x∈R
〈c, x〉+ λ(ax− b) (52)

Since λ is nonnegative, any x satisfying the constraint
ax 6 b renders the term λ(ax− b) negative. Trying to
maximize the goal over variable λ, the optimum is ob-
tained when λ = 0. Fixing x, any λ ′ > λ will generate a
solution 〈c, x〉+ λ ′(ax−b) < 〈c, x〉+ λ(ax−b). However,
any x outside of the constraint will generate a positive
term λ(ax− b) that will be made arbitrarily large when
trying to maximize it over λ > 0.

Example 7 Figure 4.1 represents a simple Lagrangian relax-
ation in the linear case. The objective function is −x when
y > 0 and y 6 1− x. The optimal solution is (x,y) = (1, 0).
When maximizing over λ in term λ(y+ x− 1), one obtain 0
when satisfying the constraint, and +∞ otherwise.

Figure 4.1 Example of a Lagrangian relaxation

x

y

opt min−x

Unreachable

Reachable

y
6
1
−
x

λ(y+x−1)>0

λ(y+x−1)<0

Similarly, a maximization problem can be reformu-
lated as a inf sup when using Lagrangian relaxation to
integrate a constraint in the objective.

4.2 (applied) convex optimization 35

inf
ax 6 b

x ∈ R

f(x) 6 sup
λ∈R+

inf
x∈R

f(x) − λ(ax− b) (53)

sup

ax 6 b

x ∈ R

f(x) > inf
λ∈R+

sup
x∈R

f(x) − λ(ax− b) (54)

In case of equality constraint, any sign before the
λ(ax− b) term is valid.

These notions are easily extended to LMI as long as the
constraint to integrate into the objective is conic convex
and can be expressed as Aix− bi � 0.

SOS extensions: SOS reinforcement and relaxation

The SOS reinforcement of polynomial optimization prob-
lems consists of restricting polynomial nonnegativity to
being an element of Σ[x]. In case of polynomial max-
imization problems, the SOS reinforcement boils down
to computing an upper bound of the real optimal value.
For example let p ∈ R[x] and consider the unconstrained
polynomial maximization problem sup {p(x) | x ∈ Rd}.
Applying SOS reinforcement, we obtain:

sup{p(x) | x ∈ Rd} = inf{η | ∀x,η− p(x) > 0}

6 inf{η | η− p ∈ Σ[x]} .
(55)

Now, let p,q ∈ R[x] and consider the constrained poly-
nomial maximization problem:

sup{p(x) | ∀x ∈ Rd,q(x) 6 0}

We can perform a Lagrangian relaxation but require λ
to be a positive (SOS) polynomial instead of a positive
scalar. Let λ ∈ Σ[x], then:

sup
q(x)60, x∈Rd

p(x) 6 sup
x∈Rd

p(x) − λ(x) · q(x) .

Indeed, suppose q(x) 6 0, then −λ(x)q(x) > 0 and
p(x) 6 p(x) − λ(x)q(x). Finally, taking the supremum
over {x ∈ Rd | q(x) 6 0} provides the above inequal-
ity. Since sup{p(x) − λ(x) · q(x) | x ∈ Rd} is an uncon-
strained polynomial maximization problem then we ap-
ply an SOS reinforcement (as in Eq. (55)) and we obtain:

sup
q(x)60, x∈Rd

p(x) 6 sup
x∈Rd

p(x) − λ(x) · q(x)

6 inf{η | η− p− λq ∈ Σ[x]} .

Finally, note that this latter inequality is valid whatever
λ ∈ Σ[x] and so we can take the infimum over λ ∈ Σ[x]
which leads to:

sup
q(x)60, x∈Rd

p(x) 6 inf
λ∈Σ[x]

sup
x∈Rd

p(x) − λ(x) · q(x)

6 inf
η−p−λq∈Σ[x]

λ∈Σ[x]

η .

(56)

4.2.3 Duality

A last useful manipulation of optimization problems
relies on topological duality in Banach spaces (vector
spaces with good topological structures). We give here
an incomplete and informal overview of duality theory,
since it enables the characterization of the dual problem.
The interested reader could find more details in [BV04,
§5.2].

Any vector space E over the field R can be associated
with its dual vector space E† defined as the set of real-
valued linear functionals on E. That is the set of func-
tions φ : E → R. For any element of E we can associate
an element of its dual space. This is characterized by the
duality bracket 〈φx, x〉E†,E.

Thanks to the Riesz representation theorem, this ele-
ment is unique in Hilbert space and can be represented
in the same space. Let consider for example the finite
dimensional Hilbert space Rn, and an element c ∈ Rn.
The dual space is the set of linear functionals over Rn,
that is the set of linear functions φ : Rn → R. Any
such linear function can be defined by a scalar product.
One can then build the linear functional associated to c:
φc(x ∈ Rn) = 〈x, c〉 where 〈·, ·〉 denotes the inner prod-
uct of the Hilbert space E, in that case the scalar product
of Rn. Hilbert spaces are then auto-dual since a linear
functional can be characterized by an element of the ini-
tial space.

Let us consider the general case of two Banach spaces
E and F, E† and F† their topological dual, respectively,
K ⊆ E a convex cone (and K† its dual), and the following
optimizing problem:

max 〈c, x〉E†,E
s.t. Ax = b with A : E→ F

x ∈ K
(57)

36 definitions – background

In the following, let us denote this problem as the pri-
mal problem. This form is equivalent to the earlier version
of Eq. (44) (cf. [BV04] for more explanation):

max 〈c, x〉
s.t. Aix− bi �K 0 for i ∈ [1,m]

Ax = b

(58)

The constraint Ax = b is equivalent to Ax − b = 0F.
Then one can introduce a Lagrangian multiplier y ∈ F†
to express the constraint. We have the duality bracket
〈y,Ax − b〉F†,F. Using linearity of the linear form, one
has 〈y,Ax− b〉F†,F = 〈y,Ax〉F†,F − 〈y,b〉F†,F.

We can introduce the adjoint A ′ : F† → E† of A as
the unique linear application such that 〈y,Ax〉F†,F =

〈A ′y, x〉E†,E.
The constraint can then be expressed as 〈A ′y, x〉E†,E −

〈y,b〉F†,F.
Going back to the initial problem, we have

∀y ∈ F†,

max
x
〈c, x〉E†,E

s.t

{
Ax = b

x ∈ K

6 max
x
〈c, x〉E†,E
+〈A ′y, x〉E†,E
−〈y,b〉F†,F

Since y is free in the left hand part, one can build the
following inequality:

max
x
〈c, x〉E†,E

s.t

{
Ax = b

x ∈ K

6 min
y

max
x
〈c+A ′y, x〉Eˆ†,E

−〈y,b〉Fˆ†,F

The maximum with respect to x depends only on
〈c+A ′y, x〉. Let us first define the dual cone of K as the
restriction of the topological dual of E to positive linear
forms on K:

K† = {f ∈ E†|∀x ∈ K, 〈f, x〉 > 0}

Since x ∈ K, we have to make sure that 〈c+A ′y, x〉E†,E
will not diverge and corrupt the maximum of x when
minimizing y. If we choose c+A ′y ∈ K†, then the du-
ality bracket is positive and will impact badly the maxi-
mum over x. Therefore, we have to choose −c−A ′y ∈
K†.

We obtain the dual optimization problem:

miny − 〈y,b〉F†,F
s.t. − c−A ′y ∈ K†

(59)

While this description is general and will be used later
in Chap. 13, a simpler version on Hilbert spaces will be
used in Chap. 6.

feasibility of primal and dual problems A
last remark concerns the feasibility of the two primal
and dual problems. Thanks to the construction of the
dual problem and the use of Lagrangian relaxation, we
have the following inequality:

max
x

〈c, x〉E†,E 6 miny −〈y,b〉F†,F

s.t. A : E→ F s.t. −c−A ′y ∈ K†

Ax = b

x ∈ K

(60)

In the case where both optimization problems admit
strict feasible solutions – we speak about primal and dual
feasibility and in case of convex constraints, the inequal-
ity of Eq. (60) becomes an equality, without any duality
gap. In other words solving any of the two problems
gives the optimum solution. The conditions required are
usually referred as the Slater’s conditions.

In practice one can easily obtain cases where one of the
problems has an empty interior and is not strictly feasi-
ble. In that case the numerical solutions of both prob-
lems are not the same; we speak about a duality gap
between these two solutions. We will come back to that
notion in Chapter 10.

5
I N VA R I A N T S Y N T H E S I S V I A C O N V E X O P T I M I Z AT I O N : P O S T F I X P O I N T
C O M P U TAT I O N A S S E M I A L G E B R A I C C O N S T R A I N T S

5.1 invariants , lyapunov functions and con-
vex optimization

This chapter focuses on the computation of invariant for
a discrete dynamical system collecting semantics.

Invariants or collecting semantics properties are prop-
erties preserved along all executions of a system and ver-
ified in all reachable states. A subset of these invariants
are defined as inductive. Inductive invariants are prop-
erties, or relationships between variables, that are induc-
tively preserved by one transition of considered systems.
As used in induction proofs, it is not required to con-
sider a reachable state and all (or part of) its past while
arguing about the validity of the invariant, but only a
single state. Applying the induction principle we obtain
that any state satisfying the property is mapped to a next
state preserving that same property.

For example when one analyzes a geometric progres-
sion with a ratio r such that |r| < 1 then any invariant
expressed as an interval can be easily proved: if [a,b]
contains both the initial state and the value 0, any ele-
ment of the progression will belong to [a,b]. Note that,
here, we are only focused in the invariant but not inter-
ested in characterizing the decay or growth rate of the
progression.

Discrete dynamical systems admit an infinite behavior,
it is therefore of utmost importance to be able to char-
acterize their reachable states, for example proving the
boundedness of such set. In the control community lin-
gua a system is said stable if, without any input, it con-
vergences to zero. This idea is captured by Lyapunov

functions.

The current chapter proposes methods to compute dy-
namical systems invariants based on Lyapunov function
synthesis using convex optimization. In this section we
introduce these notions. The following sections develop
different encodings to compute these invariants for a
wide variety of settings and solve different kinds of opti-
mization problems.

5.1.1 Fixpoint characterization, Invariant and Inductive In-
variants

The motivation is to determine automatically if a given
property holds for the analyzed program, or to compute
precise bounds on reachable states. We are interested
in numerical properties and more precisely in properties
on the values taken by the d-uplet of the variables of the
program.

According to the abstract interpretation framework
outlined in Sec. 2.5, a semantics can be characterized by a
set of elements; for collecting semantics that is the set of
reachable states. Hence, in our point-of-view, as for the
semantics characterization, a property is characterized
by some set P ⊆ Rd of values satisfying the property.

Let us first recall the fixpoint characterization and in-
stantiate it on our discrete dynamical system formaliza-
tion.

Collecting Semantics as postfixpoint characterization

In Sec. 2.5 we introduced the collecting semantics map in
Eq. 16 and the fixpoint characterization of the collecting
semantics in Eq. 17.

℘(Σ) → ℘(Σ)

S 7→ I∪ f(S)
(61)

C = lfp⊥F = minX∈℘(Σ) {F(X) ⊆ X} (62)

where f denotes the transition relation.
As a consequence any subset C of ℘(Σ) verifying the

condition {F(X) ⊆ X} is a sound over-approximation of C
since all reachable states verify C: C ⊆ C.

Collecting Semantics of discrete dynamical systems

Let us consider now focus on a program of the forms
presented in Sec. 4.1.1, 4.1.2 or 4.1.3. In the most general
case, it is characterized by an initial set XInit, and by a
list of update functions fi and associated conditions ci.

37

38 invariants as semialgebraic sets

In the following we assume that we are given with a set
representation Xi of each condition ci. We recall that Xi

are assumed to form a partition of Σ, ie. for each element
a unique update function is applicable.

Let C be set satisfying the previous equation, over-
approximating reachable states C. With F a piecewise
discrete dynamical system, we have the following con-
straints on P:

{F(C) ⊆ C}

=
{
XInit ∪ f(C) ⊆ C

}
=

{
C

∣∣∣∣∣ XInit ⊆ Cfor i ∈ I, fi(C∩Xi) ⊆ C

} (63)

This equation can be further simplified in case of a sin-
gle update function, ie. not disjunction and conditions
ci,Xi.

{
C

∣∣∣∣∣ XInit ⊆ Cf(C) ⊆ C

}
(64)

5.1.2 Lyapunov functions

In 1890, Alexander Lyapunov published his well know
result stating that the differential equation d

dtx = Ax(t)

is stable if and only if there exists a positive-definite ma-
trix P such that AᵀP + PA � 0. Here both A and P are
square matrices of Rn×n and P is positive definite P � 0,
ie. ∀x ∈ Rn, xᵀPx > 0. Later this was formulated in a
discrete-time setting over discrete linear systems:

xk+1 = Axk with A ∈ Rn×n

as

∃P ∈∈ Rn×n, s.t.

{
∃P � 0
AᵀPA− P � 0

(65)

In both cases, P is the measure of energy of the system:
the Lyapunov function x 7→ xᵀPx. When measuring the
energy of the image state Ax, we obtain (Ax)ᵀP(Ax) =

xᵀAᵀPAx.
Since P is positive definite, ∀x ∈ Rn, xᵀPx > 0, and

P denotes a norm over states. While, thanks to the
second constraint, its sublevel sets are inductive over
states: ∀x ∈ Rn, xᵀPx > xᵀAᵀPAx. The inequality
AᵀPA−P � 0 encodes a kind of energy dissipation along
trajectories. When the energy reaches 0, the state of the
system is near 0. In this original setting, the considered
system is closed, ie. it does not admit input. In case of
linear systems with bounded inputs, one can rely on the

same argument not to motivate asymptotic stability but
to argue that the system will not diverge and remains
within some bounds.

Simpler arguments do exist for the specific case of lin-
ear systems, eg. one can compute the eigenvalues of the
matrix and check that the linear map A is contracting.
However, this notion of Lyapunov function seems more
extensible and was widely developed in the control com-
munity.

Let us consider numerical systems with Σ = Rd. More
formally, a Lyapunov function V : Rd → R+ for a
discrete-time system is a positive real valued function
over system states that should satisfy:

• Null at origin, positive elsewhere

{
V(0) = 0

∀x ∈ Rd\{0},V(x) > 0∧ lim‖x‖→∞ V(x) =∞
(66)

• Decreasing along trajectories

∀x ∈ Rd,V ◦ f(x) − V(x) 6 0. (67)

Depending on the strictness of the 6 operator, the Lya-
punov function guaranties asymptotic stability and ex-
ponential convergence, or just boundedness of states.

It is shown for example in [HC08] that exhibiting such
a function proves the Lyapunov stability of the system,
meaning that its state variables will remain bounded
through time. Equation (67) expresses the fact that
the function k 7→ V(xk) decreases, which, combined
with (66), shows that the state variables remain in the
bounded sublevel set {x ∈ Rn|V(x) 6 V(x0)} at all in-
stants k ∈N.

5.1.3 Lyapunov functions as problem specific abstractions:
semialgebraic template abstractions

We saw that Lyapunov functions characterizes induc-
tive sublevel sets for the considered discrete dynamical
system semantics. Therefore, instead of approximating
reachable states in the abstract interpretation framework
using predefined numerical abstractions, such as inter-
vals, octagons or convex polyhedra, we rather propose
to rely on the Lyapunov function as the main mean of
abstraction. This is a template abstraction [CS11; SG09].

A template is a real-valued function t : Σ→ R.

Example 8 A template is then a function over those state vari-
ables. For example, it can characterize the norm 2 of a state:

t1(s) = ||s||2 =
√(
Σv∈Vv2

)

5.2 quadratic invariants 39

or just focus on the value of a single variable x ∈ V

t2(s) = s(x) when s is a map or

t2(s) = xi when s is a vector

Templates allow to express intervals t1 = x, t2 = −x, fixed
shape polyhedra such as octagons ±xi ± xj.

For a given template t, a sublevel-set abstraction can
be defined by a given levelset λ:

{s | t(s) 6 λ}

In case of multiple templates t1, t2, . . . , tn and associ-
ated bounds λ1, λ2, . . . , λn, the interpretation of this ab-
stract representation is the intersection of sub-level sets.
In case of polynomial template functions ti, this is a ba-
sic semi algebraic set.

⋂
i

{s | ti(s) 6 λi}

5.1.4 Synthesis of templates using convex optimization

In the early definition of Lyapunov functions, with
quadratic properties and linear systems, the conditions
defining the Lyapunov function P where characterized
as a Linear Matrix Inequality (LMI):

{
∃P � 0
AᵀPA− P � 0

(68)

With the development of interior point algo-
rithms [NN94] and convex optimization [BV04], the nu-
merical resolution of these optimization problems be-
comes feasible in reasonable time.

Our approach is to guide the search for inductive in-
variants as Lyapunov-like constraints expressed as con-
vex optimization problems.

Once a Lyapunov function is synthesized, as a kind of
norm of a state, it can be used as a template abstraction
and denote a relevant abstraction of reachable states. De-
pending on the encoding of the constraints, the results of
the optimization step could either be a bound template,
eg. t(x) 6 1, or just a relevant unbounded template t.

In that second case, the template t has to be bounded
by other means; for example using classical Kleene iter-
ations, or even using randomly large values. Thanks to
the inductiveness property of the template with respect
to the system semantics, any bound λ such that

t(f(x)) 6 λ

characterizes a sound postfixpoint (invariant):

{x |t(x) 6 λ}

5.2 quadratic invariants

5.2.1 Linear systems

As mentioned above, in the simplest case of linear sys-
tem the conditions over a quadratic Lyapunov function
P are given by the LMI of Equation (65).

∃P ∈∈ Rn×n, s.t.

{
∃P � 0
AᵀPA− P � 0

(69)

One can directly solve this LMI and obtain a valid
quadratic template, relevant for the considered system.
However, while inductive over system semantics, a sub-
level set property characterized by such Lyapunov func-
tion P may not be the most precise with respect to the
collecting semantics C (c.f. §2.5):

C�
{
x ∈ Rd

∣∣∣xᵀPx 6 λ}
In order to synthesize a more precise invariant, one

can further constrain the LMI.

Minimizing Condition Number

Graphically, the condition number of a positive definite
matrix expresses a notion similar to that addressed by
eccentricity for ellipses in dimension 2. It measures how
’close’ to a circle (or its higher dimension equivalent) the
resulting ellipsoid will be. Multiples of the identity ma-
trix, which all represent a circle, have a condition number
of 1. Thus one idea of constraint we can impose on P is
to have its condition number as close to 1 as possible. A
rationale for this is that ’flat’ ellipsoids, i.e. having a large
condition number, can yield a very bad bound on one of
the variables, as illustrated on Figure 5.1.

Figure 5.1 ’flat’ ellipsoids can yield very large bounds on
some variables.

x0
x1

This is done [Boy+94] by minimizing a new variable, r,
in the following matrix inequality

I � P � rI

Indeed, if a point x is in the ellipsoid P, then xᵀPx 6 1
which implies xᵀIx 6 1, i.e. x is in the sphere of radius 1.
Thus, the ellipsoid P is included in the sphere of radius 1.

40 invariants as semialgebraic sets

Similarly, P contains the sphere of radius r−
1
2 . This way,

P is sandwiched between these two spheres and making
their radius as close as possible will make P as ’round’
as possible, as depicted on Figure 5.2.

Figure 5.2 Making the ellipsoid P as ’round’ as possible
by sandwiching it between spheres of radius r−

1
2 and 1:

I � P � rI and minimizing r.

{x | xᵀPx 6 1}

{x | xᵀIx 6 1}

{x | xᵀrIx 6 1}

x0

x1

This constraint, along with the others (Lyapunov equa-
tion, symmetry and positive definiteness of P), can be ex-
pressed as a LMI, which is solved using the semi-definite
programming techniques mentioned in Section 4.2.1:

Figure 5.3 Quadratic invariant for linear system minimiz-
ing the condition number of P.

minimize r

subject to AᵀPA− P ≺ 0
I � P � rI
Pᵀ = P.

(70)

Example 9 With the following matrix A of the running ex-
ample

A :=

 0.9379 −0.0381 −0.0414

−0.0404 0.968 −0.0179

0.0142 −0.0197 0.9823

a semi-definite solver simply returns r = 1 and the identity
matrix

P =

1 0 0

0 1 0

0 0 1

 .

Preserving the Shape

Another approach [Yan92] is to minimize r ∈ (0, 1) in the
following inequality

Figure 5.4 Quadratic invariant preserving shape of the
ellipsoid P.

AᵀPA− rP � 0. (71)

Intuitively, this corresponds to finding the shape of el-
lipsoid that gets ’preserved’ the best when the update
xk+1 = Axk is applied, as depicted on Figure 5.5. r can
be seen as the minimum contraction achieved by this up-
date in the norm defined by P, hence the name decay rate
given to this value by control theorists. This is the choice
implicitly made in [Fer04] for a particular case of matri-
ces A of order 2.

Figure 5.5 Choice of the ellipsoid whose shape is the best
preserved.

x0

x1

P
rP

With this technique however, the presence of a
quadratic term rP in the equation prevents the use of
usual LMI solving tools ’as is’. To overcome this, the fol-
lowing property enables the choice of an approach where
the value for r is refined by dichotomy. Only a few steps
are then required to obtain a good approximation of the
optimal value.

Property 5.1 If Equation 71 admits as solution a positive def-
inite matrix P for a given r, then it is also the case for any
r ′ > r.

5.2 quadratic invariants 41

Example 10 With the following matrix A of the running ex-
ample:

A :=

 0.9379 −0.0381 −0.0414

−0.0404 0.968 −0.0179

0.0142 −0.0197 0.9823

 ,

looking for a small r ∈ (0, 1), the first value tested is r = 0.5,
i.e. a solution to the following semi-definite program is looked
for

minimize 0

subject to AᵀPA− 0.5P � 0
P � 0
Pᵀ = P.

Since there is no solution, r is now looked for in interval
(0.5, 1). r = 0.75 is tested, without more success, then
r = 0.875, r = 0.9375, r = 0.98675 and r = 0.984375 are
still unsuccessful. Finally, r = 0.9921875 yields the following
solution (all figures being rounded to four digits):

P =

239.1338 37.5557 77.9203

37.5557 226.3640 65.8287

77.9203 65.8287 325.1628

 .

Stopping here leaves r ∈ (0.984375, 0.9921875) and the above
matrix P as solution for r = 0.9921875.

5.2.2 Consider linear systems with inputs

Most system trajectories are not purely characterized by
their initial state: they have inputs.

xk+1 = Axk +Buk, ‖uk‖∞ 6 1. (72)

In case of unbounded input the system is guaran-
teed to diverge. We are therefore interested in showing
that, when the input values at bounded ‖uk‖∞ 6 1 (ie.
maxk uk 6 1), then the system still has a bounded behav-
ior. This constraint over uk is reasonable: most inputs
come from sensor which themselves have physical limits.
We can also choose the bound 1 without loss of general-
ity since one can always alter the matrix B to account for
different bounds.

Considering the inputs requires a slight reinforcement
of Equation (65) into

AᵀPA− P ≺ 0 (73)

We can still guarantee that the state variables of (72)
will remain in a sublevel set {x ∈ Rn | xᵀPx 6 λ} (for
some λ > 0), which is an ellipsoid in this case.

Quadratic invariant for bounded-input linear systems

The two previous methods were based only on A, com-
pletely abstracting B away, which could lead to rather
coarse abstractions. We try here to take both A and B

into account by finding the ellipsoid P included in the
smallest possible sphere which is stable, i.e. such that

∀x,∀u, ‖u‖∞ 6 1∧ xᵀP x 6 1,
(Ax+Bu)ᵀ P (Ax+Bu) 6 1.

This is illustrated in Figure 5.6.

Figure 5.6 Looking for an invariant ellipsoid included in
the smallest possible sphere by maximizing r.

{x | xᵀrIx 6 1}
{x | xᵀPx 6 1}

{Ax | xᵀPx 6 1}

{Axk +Bu | ‖u‖∞ 6 1}

xk

Axk

The previous condition can be rewritten as

∀x,∀u,
(∧p−1

i=0

(
e
ᵀ
iu
)2
6 1
)
∧ xᵀP x 6 1

⇒ (Ax+Bu)ᵀ P (Ax+Bu) 6 1

where ei is the i-th vector of the canonical basis (i.e. with
all coefficients equal to 0 except the i-th one which is 1).
This amounts to

∀x,∀u,

p−1∧
i=0

[
x

u

]ᵀ [
0 0

0 Ei,i

][
x

u

]
6 1

∧

[
x

u

]ᵀ [
P 0

0 0

][
x

u

]
6 1

⇒

[
x

u

]ᵀ [
AᵀPA AᵀPB

BᵀPA BᵀPB

][
x

u

]
6 1

42 invariants as semialgebraic sets

where Ei,j is the matrix with 0 everywhere except the
coefficient at line i, column j which is 1. Using the S-
procedure (Theorem 4.6, page 34), this holds when there
are τ and λ0, . . . , λp−1 all nonnegatives such that−A

ᵀPA −AᵀPB 0

−BᵀPA −BᵀPB 0

0 0 1

− τ

−P 0 0

0 0 0

0 0 1

−
∑p−1
i=0 λi

0 0 0

0 −Ei,i 0

0 0 1

 � 0
(74)

As in Section 5.2.1, this is not an LMI since τ and P are
both variables. And again, there is a τmin ∈ (0, 1) such
that this inequality admits as solution a positive definite
matrix P if and only if τ ∈ (τmin, 1). This value τmin
can by the way be approximated thanks to the exact same
procedure. Similarly to what was done in Section 5.2.1, P
is forced to be contained in the smallest possible sphere
by maximizing r in the additional constraint

P � rI. (75)

The function f is then defined as the function mapping
τ ∈ (τmin, 1) to the optimal value of the following semi-
definite program.

Figure 5.7 Quadratic template for bounded-input linear
systems

maximize r

subject to (74)

(75)

Pᵀ = P
p−1∧
i=0

λi > 0

(76)

This function f can then be evaluated for a given in-
put τ simply by solving the above semi-definite program.
f seems concave which could enable a smart optimiza-
tion procedure. However, in practice, it is enough to
just sample f for some equally spaced values in the in-
terval (τmin, 1) and just keep the matrix P obtained for
the value enabling the greatest r.

Example 11 With the following matrices A and B of the run-
ning example:

A :=

 0.9379 −0.0381 −0.0414

−0.0404 0.968 −0.0179

0.0142 −0.0197 0.9823

B :=

0.02370.0143

0.0077

 ,

according to Example 10, τmin = 0.9921875.
Then, f is evaluated on a few points between τmin and 1

(rounded figures):

τ f(τ) τ f(τ)

0.9928 1.6064 0.9967 0.7440

0.9935 1.4653 0.9974 0.5970

0.9941 1.3231 0.9980 0.4490

0.9948 1.1798 0.9987 0.3002

0.9954 1.0355 0.9993 0.1505

0.9961 0.8902

and the one giving the best value (τ = 0.9928) is kept with the
corresponding

P =

 12.6465 −14.1109 −10.5402

−14.1109 25.6819 3.06577

−10.5402 3.06577 29.5981

 .

Optimize template for a given variable

If a tighter bound is required on one of the variables, the
identity matrix I in inequality (75) can be replaced by a
diagonal matrix with larger coefficients for variables of
interest. For instance, to get a smaller bound on the first

variable x0, the matrix I can be replace by

[
10 0

0 I

]
.

This intuitively corresponds to minimize the radius
of an ellipsoid containing P flatter on the dimension of
interest instead of a sphere. This is illustrated on Fig-
ures 5.8 and 5.9.

Figure 5.8 Constraining ellipsoid P to lie in a sphere.

x0

x1

P

I =

[
1 0

0 1

]

5.3 piecewise quadratic invariants 43

Figure 5.9 Constraining ellipsoid P to lie in an ellipsoid
flatter in a given direction.

x0

x1

P

[
10 0

0 1

]

Example 12 With the following matrices A and B of the run-
ning example:

A :=

 0.9379 −0.0381 −0.0414

−0.0404 0.968 −0.0179

0.0142 −0.0197 0.9823

B :=

0.02370.0143

0.0077

 ,

expressing a higher interest in the first variable as exposed
above gives

P =

 12.6465 −14.1109 −10.5402

−14.1109 25.6819 3.06577

−10.5402 3.06577 29.5981

 .

5.3 piecewise quadratic invariants

5.3.1 Piecewise affine systems

While strong results do exist for pure linear systems,
most of them vanish in presence of non linearity such
as switches between linear dynamics. As we saw in
previous section, stable linear systems were guaranteed
to admit a quadratic Lyapunov function and therefore
a quadratic invariant. In switched linear systems, this
property is undecidable [Blo+01, Theorem. 2]. The pro-
posed methods are therefore meant to be understood as
heuristics; trying to synthesize a meaningfully invariant
for such systems.

As presented in Sec. 4.1.2 describing switched linear
systems, these systems are composed by a set of linear

updates Ai associated to conditions ci. A common prac-
tice in control is to look for a common Lyapunov func-
tion: a quadratic Lyapunov function characterized by a
positive definite matrix P such that

A1
ᵀ
PA1 −A1 � 0

A2
ᵀ
PA2 −A2 � 0

. . .

AnᵀPAn −An � 0

This common Lyapunov function decreases along tra-
jectories regardless of the active cell (see Sec. 4.1.2). Note
that, in this encoding, all information about the condi-
tion satisfied in each cells are ignored.

The main difficulty in the switched case is related to
the change of dynamics: we must decrease whenever a
transition from one cell to another is fired. Moreover,
we only require the norm induced by the quadratic Lya-
punov function P to be local i.e. positive only where the
law is used.

Therefore, our main goal is to synthesize a Lyapunov

function V(x,u) and an associated bound α characteriz-
ing the invariant of reachable states as a sublevel-set Sα,
such that

∀i ∈ I,∀(x,u) ∈ Xi,V(x,u) 6 α (77)

∀i, j ∈ I,∀(x,u) ∈ Xi,∀(x ′,u ′) ∈ Xj, s.t.

x ′ = Aix+Biu+ bi,V(x,u) > V(x ′,u ′)
(78)

5.3.2 Encode conditions and switches as quadratic con-
straints

In equations (77) and (78), the inequalities on V are local
on cells. In (77), the function has to decrease only on
feasible transitions from cell Xi to cell Xj.

In order to encode the problem as a set of linear matrix
inequalities, we need to express conditions associated to
each cell in suitable form. For SDP, encoding constraints
requires to be able to express cell membership or feasible
transitions as quadratic constraints.

Quadratization of cells

We recall that for us local means that true on a cell and
thus true on a polyhedron. Using the homogeneous ver-
sion of a cell, we can define local positiveness on a poly-
hedral cone. Let Q be a d× d symmetric matrix and M
be a n×dmatrix. Local positivity in our case means that
My > 0 =⇒ yᵀQy > 0. The problem will be to write
the local positivity as a constraint without implication.
The problem is not new (e.g. the survey paper [IS00]).
[MJ81] proves that local positivity is equivalent, when M
has a full row rank, to Q −MᵀCM � 0 where C is a

44 invariants as semialgebraic sets

copositive matrix i.e. xᵀCx > 0 if x > 0. First in general
(when the rank of M is not necessarily equal to its num-
ber of rows), note that if Q−MᵀCM � 0 for some copos-
itive matrix C then Q satisfies My > 0 =⇒ yᵀQy > 0.
Secondly every matrix C with nonnegative entries is
copositive. Since copositivity seems to be as difficult
as local positivity to handle, we will restrict copositive
matrices to be matrices which nonnegative entries. The
idea is instead of using cells as polyhedral cones, we use
a quadratization of cells by introducing nonnegative en-
tries and we will define the quadratization of a cell Xi

by:

Xi =

(
x

u

)
∈ Rd+m

∣∣∣∣∣∣∣∣
1x
u

ᵀ

Ei
ᵀ
WiEi

1x
u

 > 0
 (79)

where Wi is a (1 + ni) × (1 + ni) symmetric matrix

with nonnegative entries and Ei =

(
Eis

Eiw

)
with Eis =(

1 01×(d+m)

cis −T is

)
and Eiw =

(
ciw −T iw

)
. Recall

that ni is the number of rows of T i. The matrix Ei is
thus of the size ni + 1× (1+ d+m). The goal of adding
the row (1, 01×(d+m)) is to avoid adding the opposite of
a vector of Xi in Xi. Indeed without this latter vector
Xi would be symmetric. We illustrate this fact at Exam-
ple 13. Note that during optimization process, matrices
Wi will be decision variables.

Example 13 (Homogenization) Let us take the polyhedron
X = {x ∈ R | x 6 1}. Using our notations, we have
X = {x | M(1 x)ᵀ > 0} with M = (1 − 1). Let us con-
sider two cases, the first one without adding the row and the
second one using it.

Without any modification, the quadratization of X relative to
a nonnegative real W is X ′ = {x | (1 x)MᵀWM(1 x)ᵀ > 0}.
But (1 x)MᵀWM(1 x)ᵀ =W(1 x)(1 − 1)ᵀ(1 − 1)(1 x)ᵀ =

2W(1− x)2. Hence, X ′ = R for all nonnegative real W.

Now let us take E =

(
1 0

1 −1

)
defined as M with the addi-

tional row 1. The quadratization as defined by Equation (79)
relative to a 2× 2 symmetric matrix W with nonnegative co-
efficients is X = {x | (1 x)EᵀWE(1 x)ᵀ > 0}. We have:

(1 x)

(
1 1

0 −1

)(
w1 w3

w3 w2

)(
1 0

1 −1

)
(1 x)ᵀ

= w1 + 2w3(1− x) +w2(1− x)
2

To take a matrix W such that w2 = w1 = 0 and w3 > 0

implies that X = X.

Now we introduce an example of the quadratization
of the cell X1 for our running example, cf. §4.

Example 14 Let us consider the running example and the cell
X1. We recall that X1 is characterized by the matrices and vec-
tors:

T1s =

(
−9 7 6

−4 8 −8

)

c1s = (5 4)ᵀ

,

T1w =

(
0 0 1

0 0 −1

)

c1w = (3 3)ᵀ

and E1 =

1 0 0 0

5 9 −7 −6

4 4 −8 8

3 0 0 −1

3 0 0 1

As suggested we have added the row (1, 01×3). Take for

example the matrix:

W1 =

63.0218 0.0163 0.0217 12.1557 8.8835

0.0163 0.0000 0.0000 0.0267 0.0031

0.0217 0.0000 0.0000 0.0094 0.0061

12.1557 0.0267 0.0094 4.2011 59.5733

8.8835 0.0031 0.0061 59.5733 3.0416

We have

X1 =
{
(x,y,u) | (1, x,y,u)E1W1E1(1, x,y,u)ᵀ > 0

}
⊇ X1

.

Local positivity of quadratic forms will also be used
when a transition from a cell to an other is fired . For the
moment, we are interested in the set of (x,u) such that
(x,u) ∈ Xi and whose the image is in Xj and we denote
by Xij the set:

(
x

u

)
∈ Rd+m

∣∣∣∣∣∣∣∣
(
x

u

)
∈ Xi and

(Aix+Biu+ bi,u) ∈ Xj

for all pairs i, j ∈ I. Note that in [MFM00], the authors
take into account all pairs (i, j) such that there exists a
state xk at moment k in Xi and the image of xk that is
xk+1 is in Xj. We will discuss in Subsection 5.3.2 the
computation or a reduction to possible switches using
linear programming as suggested in [Bis+05]. To con-
struct a quadratization of Xij, we use the same approach

5.3 piecewise quadratic invariants 45

than before by introducing a (1+ni+nj)× (1+ni+nj)

symmetric matrix Uij with nonnegative entries to get a
set Xij defined as:

Xij =

(
x

u

)
∈ Rd+m

∣∣∣∣∣∣∣∣
1x
u

ᵀ

Eij
ᵀ
UijEij

1x
u

 > 0

(80)

where Eij =

(
E
ij
s

E
ij
w

)
with

E
ij
s =

1 01×(d+m)

cis −T is

c
j
s − T

j
s

(
bi

0

)
−T js

(
Ai Bi

0d×m Idm×m

)

and

E
ij
w =

 ciw −T iw

c
j
w − T jw

(
bi

0

)
−T jw

(
Ai Bi

0d×m Idm×m

)
(81)

Switching cells

We have to manage another constraint which comes from
the cell switches. After applying the available law in cell
Xi, we have to specify the reachable cells i.e. the cells Xj

such that there exists (x,u) satisfying:

(x,u) ∈ Xi and (Aix+Biu+ bi,u) ∈ Xj

We say that a switch from i to j is fireable iff:

(x,u) ∈ Rd+m

∣∣∣∣∣∣∣∣∣∣
T is(x,u)ᵀ � cis

T
j
s(A

ix+Biu+ bi,u)ᵀ � c
j
s

T iw(x,u)ᵀ 6 ciw
T
j
w(A

ix+Biu+ bi,u)ᵀ 6 cjw

6= ∅
(82)

We will denote by i → j if the switch from i to j is
fireable. Recall that the symbol < means that we can
deal with both strict inequalities and inequalities. Prob-
lem (82) is a linear programming feasibility problem
with both strict and weak inequalities. However, we
only check whether the system is solvable and we can
detect infeasibility by using Motzkin transposition theo-
rem [Mot51]. Motzkin’s theorem is an alternative type
theorem, that is we oppose two linear systems such that

exactly one of the two is feasible. To describe the alterna-
tive system, we have to separate strict and weak inequal-
ities and use the matrices Eijs and Eijw defined at Equa-
tion (81). Problem (82) is equivalent to check whether
the set {y = (z, x,u) ∈ R1+d+m | E

ij
wy > 0, E

ij
s y � 0} is

empty or not. To detect feasibility we test the infeasibility
of the alternative system defined as:

(Eijs)
ᵀps + (Eijw)

ᵀp = 0

∑
k∈I p

s
k = 1

psk > 0, ∀ k ∈ I

pi > 0, ∀ i /∈ I

(83)

From Motzkin’s transposition theorem [Mot51], we get
the following proposition.

Proposition 1 Problem (82) is feasible iff Problem (83) is not.

However, reasoning directly on the matrices can allow
unfireable switches. For certain initial conditions, for all
k ∈ N, the condition (xk,uk) ∈ Xi and (Aixk + Biu +

bi,u) ∈ Xj does not hold whereas Problem (82) is fea-
sible. To avoid it, we must know all the possible trajec-
tories of the system (which we want to compute) and
remove all inactivated switches. A sound way to under-
approximate unfireable transitions is to identify unsatis-
fiable sets of linear constraints.

Example 15 We continue to detail our running example.
More precisely, we consider the possible switches. We take
for example the cell X2. To switch from cell X2 to cell X1

is possible if the following system of linear inequalities has a
solution:

−9x+ 7y+ 6u < 5

−0.8532x+ 2.5748y− 10.4460 < −68

−3.3662x+ 2.1732y− 1.1084u < −58

4x− 8y+ 8u 6 −4

u 6 3

−u 6 3

(84)

The two first consists in constraining the image of (x,y,u) to
belong to X1 and the four last constraints correspond to the
definition of X2. The representation of these two sets (X2 and
the preimage of X1 by the law defined in X2) is given at Fig-
ure 5.10.

46 invariants as semialgebraic sets

Figure 5.10 The truncated representation of X2 in red
and the preimage of X1 by the law inside X2 in blue

We see at Figure 5.10 that the system of inequalities defined
at Equation (84) seems to not have solutions. We check that
using Equation (83) and Proposition 1. The matrices Eijs and
E
ij
w of Equation (83) are in this example:

E21s =

 5 9 −7 −6

−68 0.8532 −2.5748 10.446

−58 3.3662 −2.1732 1.1084

and E21w =

−4 −4 8 −8

3 0 0 −1

3 0 0 1

We thus solve the linear program defined in Equa-
tion (83) (with Matlab and Linprog) and we found
p = (0.8735, 0.0983, 0.0282)ᵀ and q = (0.3325, 14.2500,
7.8461)ᵀ. This means that the alternative system is feasible
and consequently the initial is not from Proposition 1. Finally,
the transition from X2 to X1 is not possible.

5.3.3 Local invariants with coupling conditions

As in the linear case, we are relying here in SDP solver
and LMI encoding, the unknowns of the optimization
problems have to be at most quadratic.

Piecewise quadratic Lyapunov function

The Lyapunov function V is piecewise defined, relying
on the partition of cells provided by the analyzed piece-
wise affine system. This V is defined as:

V(x,u) = Vi(x,u), if

(
x

u

)
∈ Xi

=

(
x

u

)ᵀ

Pi

(
x

u

)
+ 2qi

ᵀ

(
x

u

)
, if

(
x

u

)
∈ Xi

The function Vi is thus a local function only defined on
Xi.

A sublevel set Sα of V of level α ∈ R is represented as:

Sα =
⋃
i∈I Si,α

=
⋃
i∈I

{(
x

u

)
∈ Xi |

(
x

u

)ᵀ

Pi

(
x

u

)
+ 2qi

ᵀ
x 6 α

}

=
⋃
i∈I

(
x

u

)
∈ Xi |

1x
u

ᵀ(

−α qi
ᵀ

qi Pi

)1x
u

 6 0

The set Si,α is thus the local sublevel set of Vi associated
to the level α.

So we are looking a family of pairs of a matrix and
a vector {(Pi,qi)}i∈I and a real α ∈ R such that Sα is
invariant by the piecewise affine system. To obtain in-
variance property, we have to constraint Sα to contain
the initial conditions of the system. Finally, to prove that
the reachable set is bounded, we have to constraint Sα to
be bounded.

Before deriving the semi-definite constraints, let us
first state a useful result in Proposition 2. This result,
which is a special case of the S-Procedure 4.6, allows
to encode implications into semi-definite constraints in
a safe way. The implication must involve quadratic in-
equalities on both sides.

Proposition 2 Let A,B,C be d × d matrices. Then, C +

A + B � 0 holds implies that the implication (yᵀAy 6
0∧ yᵀBy 6 0) =⇒ yᵀCy > 0 holds.

Writing invariance as semi-definite constraints

We assume that (x,u) ∈ Xi ∩ Si,α (this index i is unique).
Invariance means that if we apply the available law to
(x,u) and suppose that the image of (x,u) belongs to
some cell Xj (notation i → j), then the image of (x,u)
belongs to Sj,α. Note that (x,u) ∈ Xi and its image is
supposed to be in Xj then (x,u) ∈ Xij. Let (i, j) ∈ I2

such that i→ j, invariance translated in inequalities and
implication gives :

(
x

u

)
∈ Xij ∧

(
x

u

)
∈ Si,α

=⇒

(
Aix+Biu+ bi

u

)
∈ Sj,α

(85)

We can use the relaxation of Subsection 5.3.2 as repre-
sentation of cells and use matrix variables Wi and Uij to

5.3 piecewise quadratic invariants 47

encode their quadratization. We get, for (i, j) ∈ I2 such
that i→ j:

1x
u

ᵀ

Eij
ᵀ
UijEij

1x
u

 > 0

∧

1x
u

ᵀ(

−α qi
ᵀ

qi Pi

)1x
u

 6 0

=⇒

1x
u

ᵀ(
Fi

ᵀ

(
−α qj

ᵀ

qj Pj

)
Fi

)1x
u

 6 0

(86)

where Eij is the matrix defined at Equation (80) and Fi

is defined at Equation (37).

Finally, we obtain a stronger condition by considering
semi-definite constraints such as Equation (87). Propo-
sition 2 proves that if (Pi,Pj,qi,qj,Uij) is a solution
of Equation (87) then (Pi,Pj,qi,qj,Uij) satisfies Equa-
tion (86). For (i, j) ∈ I2 such that i→ j:

−Fi
ᵀ
(
0 qj

ᵀ

qj Pj

)
Fi +

(
0 qi

ᵀ

qi Pi

)
−Eij

ᵀ
UijEij � 0 .

(87)

Note that the symbol −α is canceled during the compu-
tation.

5.3.4 Initialization and boundedness

Integrating initial conditions

To complete the invariance property, the invariant set
must contain initial conditions. Suppose that initial con-
dition is a polyhedron X0 = {(x,u) ∈ Rd+m | T0w(x,u) 6
c0w, T0s (x,u) � c0s}. We must have X0 ⊆ Sα. But X0

is contained in the union of Xi. Hence, X0 is the union
over i ∈ I of the sets X0 ∩ Xi. If, for all i ∈ I, the set
X0 ∩ Xi is contained in Si,α then X0 ⊆ Sα. We can use
the same method as before to express that all sets Si,α
such that X0 ∩ Xi 6= ∅ must contain X0 ∩ Xi. In term of
implications, it can be rewritten as for all i ∈ I such that
X0 ∩Xi 6= ∅:

(x,u) ∈ X0∩Xi =⇒ (x,u)Pi(x,u)ᵀ+2(x,u)qi 6 α (88)

Since X0 ∩ Xi is a polyhedron, it admits some quadra-
tization that is: X0 ∩Xi = {(x,u) ∈ Rd+m |

(1, x,u)E0iᵀZiE0i(1, x,u)ᵀ > 0} where E0i =

(
E0is

E0iw

)
with:

E0iw =

(
c0w −T0w

ciw −T iw

)
and E0is =

 1 01×(d+m)

c0s −T0s

cis −T is

and Zi is some symmetric matrix whose coefficients are
nonnegative.

For all i ∈ I such that X0 ∩Xi 6= ∅, we obtain a stronger
notion by introducing semi-definite constraints:

−

(
−α qi

ᵀ

qi Pi

)
− E0i

ᵀ
ZiE0i � 0 (89)

Proposition 2 proves that if (Pi,qi,Zi) is a solution of
Equation (89) then (Pi,qi,Zi) satisfies Equation (88).

Note since X0 ∩ Xi is a polyhedron then its emptiness
can be decided by checking the feasibility of the linear
problem (90) and by using of same argument than Propo-
sition 1.

(E0is)ᵀps + (E0iw)ᵀp = 0

∑
k∈I p

s
k = 1

psk > 0, ∀ k ∈ I

pi > 0, ∀ i /∈ I

(90)

Linear program (90) is feasible iff X0 ∩Xi = ∅.

Writing boundedness as semi-definite constraints

The sublevel Sα is bounded if and only if for all i ∈ I, the
sublevel Si,α is bounded. The boundedness constraint in
term of implications is, for all i ∈ I, there exists β > 0:

(x,u) ∈ Xi ∧

(
x

u

)
∈ Si,α =⇒ ‖(x,u)‖22 6 β (91)

where ‖ · ‖2 denotes the Euclidean norm of Rd+m.

48 invariants as semialgebraic sets

As invariance, we use the quadratization of Xi and
the definition of Si,α. We use the fact that ‖(x,u)‖22 =(
x

u

)ᵀ

Id(d+m)×(d+m)

(
x

u

)
and we get for all i ∈ I:

1x
u

ᵀ

Ei
ᵀ
WiEi

1x
u

 > 0 ∧1x
u

ᵀ(

−α qi
ᵀ

qi Pi

)1x
u

 6 0 =⇒

1x
u

ᵀ(

−β 01×(d+m)

0(d+m)×1 Id(d+m)×(d+m)

)1x
u

 6 0

(92)

where Ei is defined in Equation (79).
Finally, as invariance we obtain a stronger condition

by considering semi-definite constraints such as Equa-
tion (93). Proposition 2 proves that (Pi,qi,Wi) is a so-
lution of Equation (93) the (Pi,qi,Wi) satisfies Equa-
tion (92). For all i ∈ I:

−Ei
ᵀ
WiEi +

(
−α qi

ᵀ

qi Pi

)

+

(
β 01×(d+m)

0(d+m)×1 − Id(d+m)×(d+m)

)
� 0

(93)

5.3.5 Overall method

The following algorithm summarizes the method.

Figure 5.11 Algorithm to compute piecewise quadratic
invariant for piecewise affine dynamical systems.

input : Piecewice affine system defined by
T is,w, cis,w,Ai,Bi,bi,∀i ∈ I

local :Ei,Eij,E0i,∀i, j ∈ I

output :α,β,Pi,qi,Zi,Wi,Uij,∀i, j ∈ I

1 Compute quadratization of cells Ei using Equation (79),
∀i ∈ I;

2 Over-approximate feasible switches: compute possible
switches L ∈ I2 using Equation (82);

3 Compute quadratization of switches Eij using
Equation (80), ∀i, j ∈ L;

4 Compute quadratization of initialization E0i using
Equation (89), ∀i ∈ I;

5 Solve the SDP problem of Equation(94)
6 Invariants:

7
⋃
i∈I

{
(x,u)Piopt(x,u)ᵀ + 2(x,u)qiopt 6 αopt

∣∣∣(x,u) ∈ Xi
}

8 ‖(x,u)‖ 6 βopt

Figure 5.12 Summary of generated SDP problem for
piecewise affine discrete systems

minimize α+β

st.∀i ∈ I, (i, j) ∈ L,

−Fi
ᵀ

(
0 qj

ᵀ

qj Pj

)
Fi +

(
0 qi

ᵀ

qi Pi

)
− Eij

ᵀ
UijEij � 0 .

−

(
−α qi

ᵀ

qi Pi

)
− E0i

ᵀ
ZiE0i � 0

−Ei
ᵀ
WiEi +

(
−α qi

ᵀ

qi Pi

)

+

(
β 01×(d+m)

0(d+m)×1 − Id(d+m)×(d+m)

)
� 0

(94)

5.3.6 Example

The method applied to our piecewise affine system de-
fined in Sec. 4.1.2 computes the following values:

αopt = 242.0155

βopt = 2173.8501

This means that ‖(x,y,u)‖22 = x2 + y2 + u2 6 βopt. We
can conclude, for example, that the values taken by the
variables x are between [−46.6154, 46.6154].

Note that this specific example does not admit a com-
mon Lyapunov function.

The value αopt gives the level of the invariant sublevel
of our piecewise quadratic Lyapunov function where the
local quadratic functions are characterized by the follow-
ing matrices and vectors:

P1 =

 1.0181 −0.0040 −1.1332

−0.0040 1.0268 −0.5340

−1.1332 −0.5340 −13.7623

q1 = (0.1252, 1.3836,−29.6791)ᵀ

P2 =

 9.1540 −7.0159 −2.6659

−7.0159 9.5054 −2.4016

−2.6659 −2.4016 −8.9741

q2 = (−21.3830,−44.6291, 114.2984)ᵀ

P3 =

 1.1555 −0.3599 −2.6224

−0.3599 2.4558 −2.8236

−2.6224 −2.8236 −2.3852

q3 = (−5.3138, 6.7894,−40.5537)ᵀ

5.4 k-inductive quadratic invariants 49

P4 =

 3.7314 −3.4179 −3.1427

−3.4179 6.1955 0.9499

−3.1427 0.9499 −10.6767

q4 = (28.5011,−73.5421, 48.2153)ᵀ

Finally, for conciseness reason, we do not provide here
the matrix certificates Wi for each cell Xi, nor the matri-
ces Uij encoding quadratization matrices of polyhedron
Xij. These matrices are computed by the analysis but do
not provide useful information with respect to bounds.

5.4 k-inductive quadratic invariants

5.4.1 K-induction principle

The principle behind all compute invariants up to now
was the inductiveness of computed Lyapunov function
V(x) with respect to the system transition function f.

However, as mentioned in Sect. 5.1.1 a property could
be valid, ie. an invariant, without being directly in-
ductive. In SMT-based model-checking, a trade-off to
prove the validity of a property for a given transition
system (Σ, I ⊆ Σ, T ∈ Σ2) is to search for a k-induction
proof [KT11; SSS00] instead of a 1-induction one.

In k-induction, the base step addresses the property
verification on all traces of length up to k, rooted in an
initial state, while the inductive step intends to show that
any trace suffix of length k validating the property, pre-
serves it in the k+ 1-th step.

Definition 5.2 (k-induction) Let (Σ, I, T) be a transition
system over states Σ with initial states I ⊆ Σ and transition
relation T ⊆ Σ × Σ. A safety property Prop ⊆ Σ is said
k-inductive with respect to the transition system iff

• for all system traces of length less than k, all reachable
states verify Prop

∀j 6 k ∈N,∀x0, . . . , xj ∈ Σ,

x0 ∈ I ∧
∧

i∈[0,j−1]

(xi, xi+1) ∈ T

=⇒ xj ∈ Prop

(95)

• for all system subtraces of length k satisfying Prop then
the next state satisfies Prop as well

∀x0, . . . , xk ∈ Σ,∧
i∈[0,k−1]

xi ∈ Prop∧ (xi, xi+1) ∈ T

=⇒ xk ∈ Prop

(96)

In our fixpoint characterization, this amounts to sub-
stitute

{F(C) ⊆ C} =
{
XInit ∪ f(C) ⊆ C

}
by {

Fk(C) ⊆ C
}

=
{
XInit ∪

⋃
16i6k f

i(Init)∪ fk(C) ⊆ C
}

=

C

∣∣∣∣∣∣∣∣∣∣∣∣∣

XInit ⊆ C
f(XInit) ⊆ C
f2(XInit) ⊆ C
. . . fk(XInit) ⊆ C
f(C) ⊆ C

5.4.2 k-inductive Lyapunov function

We recall that we consider a piecewise system composed
of cells Xi indexed by a set ind of partition labels, such
that Σ =

⋃
i∈I X

i, and which transition relation is piece-
wise defined with transitions T i. The k-inductive prop-
erty Prop denotes here a boundedness property repre-
sented by a sublevel set Siα of a Lyapunov function V .
Then, a k-induction proof amounts to find this function
V such that:

∀j < k ∈N,∀i0, . . . ij ∈ I,∀x0, . . . , xj ∈ Σ,

x0 ∈ (I∩X0)∧
∧

i∈[0,j−1]

xi ∈ Xi ∧ (xi, xi+1) ∈ T i

=⇒ xj ∈ Sα
(97)

∀i0, . . . ik ∈ I,∀x0, . . . , xk ∈ Σ,∧
i∈[0,k−1]

xi ∈ (Xi ∩ Sα)∧ (xi, xi+1) ∈ T i

=⇒ xk ∈ Sα

(98)

Let I∗ be the set of finite words of the letters in I, and
I∗k its restriction to words of length exactly k. In the fol-
lowing, we denote by |w| the length of word w, by a · b
the concatenation of the words a and b into ab and by
tl(w) the tail of a non empty word w, i.e. w without its
first letter. For example tl(i ·w) = w.

Following Lee and Dullerud approach [LD11; LD07;
LDK07], we reinforce the equations (97)-(98) and search
for a quadratic Lyapunov function Vw for each non
empty sequence of switches w = i0 · . . . · ik−1 ∈ I∗k:

Vw

(
x

u

)
=

(
x

u

)t
Pw

(
x

u

)

Let Sw·i,α be the local quadratic sublevel set associated
to the non empty path w · i and the level α:

50 invariants as semialgebraic sets

Sw·i,α =

(
x

u

)
∈ Xi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Vw·i(x,u) 6 α ∧ ∃

(
x ′

u ′

)
s.t.((

x ′

u ′

)
,

(
x

u

))
∈ T j∧(

x ′

u ′

)
∈ Sw,α

when w = w ′ · j

Let us consider a non empty finite path w, the sublevel

Sw,α denotes that the |w| predecessors of

(
x

u

)
belong to

the sublevel associated to the path prefixes.
E.g.

S123,α =
(
x

u

)
∈ X3

∣∣∣∣∣∣∣∣∣∣
V123(x,u) 6 α ∧ ∃

(
x ′

u ′

)

T

(
x ′

u ′

)
=

(
x

u

)
∧

(
x ′

u ′

)
∈ S12,α

S12,α =

(
x

u

)
∈ X2

∣∣∣∣∣∣∣∣∣∣
V12(x,u) 6 α ∧ ∃

(
x ′

u ′

)

T

(
x ′

u ′

)
=

(
x

u

)
∧

(
x ′

u ′

)
∈ S1,α

S1,α =

{(
x

u

)
∈ X1

∣∣∣ V1(x,u) 6 α
}

The equations can be rephrased as:

∀ w ∈ I∗1,∀x ∈ Σ, x ∈ I∩Xi =⇒ x ∈ Sw,α (99)

∀ 1 6 j < k,∀w · i ∈ I∗j ,∀x,y ∈ Σ,

(x,y) ∈ T i ∧ x ∈ Sw·i,α =⇒ y ∈ Sw·i·j,α
(100)

∀ w · i ∈ I∗k,∀x,y ∈ Σ,

(x,y) ∈ T i ∧ x ∈ Sw·i,α =⇒ y ∈ Stl(w·i)·j,α
(101)

Proposition 3 Any solution {Pw|∀1 6 j 6 k,w ∈ I∗j } of
equations (99-101) satisfies (97-98) with Siα defined as

Siα =

{(
x

u

)∣∣∣∣∣ max
w·i∈I∗

Vw·i

(
x

u

)
6 α

}
.

We now adapt the semi-definite constraints of previ-
ous section to satisfy the k-inductive based constraints.
While it is possible to target directly the synthesis of a k-
inductive piecewise quadratic sublevel set, the approach
typically starts from k = 1 and increase to k+ 1 in case of
failure to find a minimal k-inductive piecewise quadratic
invariant.

5.4.3 Associate quadratic invariants to path suffixes

We adapt the previous method to express properties over
bounded sequence of past transitions.

Characterizing the graph of possible switches – enumerating
the paths.

As a first step, we compute the set of possible paths of
given length up to k. First a graph G = (I, Init,Switches)
denoting possible switches between cells i ∈ I is com-
puted using the approach presented in Sect. 5.3.2.
Init = {i ∈ I|X0 ∩ Xi 6= ∅} denotes the subset of cells

i ∈ I that verify the initial conditions. This character-
izes a set of polyhedral constraints which vacuity is com-
puted using the method presented in Sect. 5.3.2.

We then enumerate the possible paths in the graph us-
ing classical graph algorithms. Let Pathsk be such set of
paths of length up to k.

Figure 5.13 Switch graph of the running example

1

2

3

4

Example 16 The figure 5.13 presents the possible transitions
as over-approximated by our method presented in Sec. 5.3.2.
Depending on the target length the following paths are gener-
ated:

length

1 1,2,3,4

2 11, 12, 13, 14, 22, 24, 31, 33, 34, 41, 42, 43, 44

3 111, 112, 113, 114, 122, 124, 131, 133, 134, 141, 142,
143, 144, 222, 224, 241, 242, 243, 244, 311, 312, 313,
314, 331, 333, 334, 341, 342, 343, 344, 411, 412, 413,
414, 422, 424, 431, 433, 434, 441, 442, 443, 444

4 . . .

Integrating initial conditions.

The initial condition only applies for the quadratic sub-
level associated to initial cells. Let Init be the set of cells
admitting initial elements, as defined in the graph con-
struction.

By construction of the set of paths Pathsk, it con-
tains the single letter words denoting initial cells {i | i ∈

5.4 k-inductive quadratic invariants 51

Init} ⊆ Pathsk. The set of initial constraints only apply
for these one letter word satisfying the initial condition:

(x,u) ∈ X0 ∩Xi =⇒ (x,u)Pi(x,u)ᵀ + 2(x,u)qi 6 α

(102)

We can rely on the same stronger encoding as a semi-
definite constraints, using the quadratization of the con-
dition X0 ∩Xi as the matrix E0i:

−

(
−α qi

ᵀ

qi Pi

)
− E0i

ᵀ
ZiE0i � 0 (103)

Note that, independently of the value of k, a system
with n cells is parameterized by at most n Zi variables.

Expressing transitions in initial and inductive cases as semi-
definite constraints.

The equations (100) and (101) denoting a transition Xij

from cell Xi to cell Xj can be defined as:(
x

u

)
∈ Xij ∧

(
x

u

)
∈ Sw·i,α

=⇒

(
Aix+Biu+ bi

u

)
∈ Sw·i·j,α

(104)

(
x

u

)
∈ Xij ∧

(
x

u

)
∈ Sw·i,α ∧ |w · i| = k

=⇒

(
Aix+Biu+ bi

u

)
∈ Stl(w·i)·j,α

(105)

As before, these constraints are first relaxed with the
use of quadratization of cell transitions Eij, and then ex-
pressed as semi-definite constraints using Prop. 2.

when |i ·w| = k:

−Fi
ᵀ
(

0 qtl(w·i)·j
ᵀ

qtl(w·i)·j Ptl(w·i)·j

)
Fi

+

(
0 qw·i

ᵀ

qw·i Pw·i

)
− Eij

ᵀ
Uw·i,jEij � 0 .

(106)

when |i ·w| < k:

−Fi
ᵀ
(

0 qw·i·j
ᵀ

qw·i·j Pw·i·j

)
Fi

+

(
0 qw·i

ᵀ

qw·i Pw·i

)
− Eij

ᵀ
Uw·i,jEij � 0 .

(107)

Note that we have |Pathsk| variables qw, Pw and
|Pathsk|× |I| variables Uw,j.

Expressing boundedness.

The boundedness constraint expressed as a semi-definite
constraint is straightforward. We require that all path-
associated quadratic sublevel is bounded by the same
scalar β.

For all w · i ∈ Pathsk, there exists β > 0:

(x,u) ∈ Xi∧

(
x

u

)
∈ Sw·i,α =⇒ ‖(x,u)‖22 6 β (108)

The associated semi-definite constraints is:

−Ei
ᵀ
Ww·iEi +

(
−α qw·i

ᵀ

qw·i Pw·i

)

+

(
β 01×(d+m)

0(d+m)×1 − Id(d+m)×(d+m)

)
� 0

(109)

We have here |Pathsk| variables Ww.

Remark: special case of length 1.

When one consider the equations (103), (106), (107), (109)
with the set of paths Paths1 of length up to 1, we ob-
tain exactly the equations (89), (87), (93). In that case, the
equation (107) does not hold since no non empty word
of length strictly less than 1 exists.

Overall method

The following algorithm summarizes the method.

Figure 5.14 Algorithm to compute piecewise k-inductive
quadratic invariant for piecewise affine dynamical sys-
tems.

input : Piecewise affine system defined by
T is,w, cis,w,Ai,Bi,bi,∀i ∈ I

local :Ei,Eij,E0i,∀i, j ∈ I

output :α,β,Pw·i,qw·i,Zi,Ww·i,Uw·i,j,∀i, j ∈ I,w ∈
Pathsk

1 Compute quadratization of cells Ei using Equation (79),
∀i ∈ I;

2 Over-approximate feasible switches: compute possible
switches L ∈ I2 using Equation (82);

3 Compute Pathsk list of paths of length 6 k;
4 Compute quadratization of switches Eij using

Equation (80), ∀i, j ∈ L;
5 Compute quadratization of initialization E0i using

Equation (89), ∀i ∈ I;
6 Solve the SDP problem of Equation (110)
7 Invariants:

8
⋃

w·i∈Pathsk

{
(x,u)Pw

cdoti
opt (x,u)ᵀ + 2(x,u)qw·iopt 6 αopt

when (x,u) ∈ Xi

}
9 ‖(x,u)‖ 6 βopt

52 invariants as semialgebraic sets

Figure 5.15 Summary of generated SDP problem for
k-inductive piecewise quadratic invariant for piecewise
affine discrete systems

minimize α+β

st.∀i ∈ I, (i, j) ∈ L,

∀w ∈ Pathsk, s.t. |i ·w| = k

−Fi
ᵀ

(
0 qtl(w·i)·j

ᵀ

qtl(w·i)·j Ptl(w·i)·j

)
Fi

+

(
0 qw·i

ᵀ

qw·i Pw·i

)
− Eij

ᵀ
Uw·i,jEij � 0 .

∀w ∈ Pathsk, s.t. |i ·w| < k

−Fi
ᵀ

(
0 qw·i·j

ᵀ

qw·i·j Pw·i·j

)
Fi

+

(
0 qw·i

ᵀ

qw·i Pw·i

)
− Eij

ᵀ
Uw·i,jEij � 0 .

−Ei
ᵀ
Ww·iEi +

(
−α qw·i

ᵀ

qw·i Pw·i

)

+

(
β 01×(d+m)

0(d+m)×1 − Id(d+m)×(d+m)

)
� 0

(110)

5.4.4 Example

The analysis of the running example with increased
length generates the following results:

length β(
√
β) α |Pathsk|

1 2173 (46.6154) 242.0155 4

2 2133 (46.1844) 233.0847 17

3 1652 (40.6448) 220.8596 73

4 1574 (39.6737) 228.5051 314

Note that the bound α on the piecewise quadratic sub-
level applies on different sets of such local Lyapunov

function. Their comparison is meaningless.

5.5 polynomial invariants

5.5.1 Fixpoints expression using polynomial Lyapunov

functions

We focus here on a more general family of problems:
piecewise polynomial systems. We also rely on more gen-
eral optimization problems: the cone of of positive poly-
nomials and its relaxation/reinforcement as the cone of
sum-of-squares polynomials (SOS).

Instead of expressing constraints as linear matrix in-
equalities (LMI), we can here express constraints as pos-

itive polynomial constraints. These constraints will be
further reinforced by requiring them to be SOS polyno-
mials.

Let us consider again the Equation 63 defining induc-
tiveness of computed property with respect to the system
semantics.

 XInit ⊆ P ,

∀ i ∈ I, T i
(
P ∩Xi

)
⊆ P .

(111)

Encoding property P as the sublevel set of a polyno-
mial p, we obtain the following problem:{

p(x) 6 0 , ∀x ∈ XInit ,

∀ i ∈ I , p (T i(x)) 6 0 , ∀x ∈ P ∩Xi .
(112)

5.5.2 Property-driven analysis

As for the linear case, the previous equation only cap-
tures the inductiveness of the sublevel set induced by the
polynomial Lyapunov function synthesized. However,
no constraint encodes the need to obtain a precise (hence
small) invariant. The expressivity of sum-of-square op-
timization enables us to encode a target property repre-
sented as a sublevel set of a polynomial and require the
polynomial Lyapunov function to implies this property.

Considered properties: sublevel properties Pκ,α

We restrict our encoding to sublevel properties: those de-
fined as sublevel sets of a given polynomial function.

Definition 5.3 (Sublevel property) Given a polynomial
function κ ∈ R[x] and α ∈ R ∪ {+∞}, we define the sublevel
property Pκ,α as follows:

Pκ,α := {x ∈ Rd | κ(x)� α} .

where � denotes 6 when α ∈ R and denotes < for +∞.
The expression κ(x) < +∞ expresses the boundedness of κ(x)
without providing a specific bound α.

Example 17 (Sublevel property examples)
Boundedness. When one wants to bound the reachable val-
ues of a system, we can try to bound the l2-norm of the system:
P‖·‖22,∞ with κ(x) = ‖x‖22. The use of α =∞ does not impose
any bound on κ(x).
Safe set. Similarly, it is possible to check whether a specific
bound is matched. Either globally using the l2-norm and a
specific α: P‖·‖22,α, or bounding the reachable values of each
variable: Pκi,αi with κi : x 7→ xi and αi ∈ R.
Avoiding bad regions. If the bad region can be encoded as a
sublevel property k(x) 6 0 then its negation −k(x) 6 0 char-
acterize the avoidance of that bad zone. Eg. if one wants to

5.5 polynomial invariants 53

prove that the square norm of the program variables is always
greater than 1, then we can consider the property Pκ,α with
κ(x) = 1− ‖x‖22 and α = 0.

A sublevel property is called sublevel invariant when
this property is an inductive invariant of the discrete dy-
namical system collecting semantics C. In that case, the
sublevel property itself would be an appropriate abstrac-
tion of the system. However, this is not the case in gen-
eral. We rather propose to constrain the search for an
inductive polynomial invariant guided by this sublevel
property.

Pκ,α-driven inductive polynomial invariant

In this subsection, we explain how with adapt the con-
straints of Equation (112) to compute a d-variate polyno-
mial p ∈ R[x] and a bound w ∈ R, such that the poly-
nomial sublevel sets P := {x ∈ Rd | p(x) 6 0} and Pκ,w
satisfy:

C ⊆ P ⊆ Pκ,w ⊆ Pκ,α . (113)

The first (from the left) inclusion forces P to be valid for
the whole reachable values set. The second inclusion
constraints all elements of P to satisfy the given sublevel
property for a certain bound w. The last inclusion re-
quires that the bound w is smaller than the desired level
α. When α = ∞, any bound w ensures the sublevel
property.

We derive sufficient conditions on p and w to satisfy
Equation (113). Thanks Equation (112), the first inclusion
holds: C ⊆ P.

Now, we are interested in the second and third inclu-
sions at Equation (113) that is the sublevel property sat-
isfaction. The condition P ⊆ Pκ,w ⊆ Pκ,α can be formu-
lated as follows:

κ(x) 6 w 6 α , ∀x ∈ P . (114)

We recall that we have supposed that P is written as
{x ∈ Rd | p(x) 6 0} where p ∈ R[x]. Finally, we pro-
vide sufficient conditions to satisfy both (112) and (114).
Consider the following optimization problem:

infp∈R[x],w∈R w, s.t.

p(x) 6 0 , ∀x ∈ XInit ,

∀ i ∈ I ,p (T i(x)) 6 p(x) , ∀x ∈ Xi ,

κ(x) 6 w+ p(x) , ∀x ∈ Rd .

(115)

We remark that α is not present in Problem (115). In-
deed, since we minimize w, either there exists a feasible
w such that w 6 α and we can exploit this solution or

such w is not available and we cannot conclude. How-
ever, from Problem (115), we can extract (p,w) and in
the case where the optimal bound w is greater than α,
we could use this solution in conjunction with other ab-
stractions as presented in the following chapter.

Lemma 5.4 Let (p,w) be any feasible solution of Prob-
lem (115) with w 6 α or w < ∞ in the case of α = ∞.
Then, (p,w) satisfies both (112) and (114) with P := {x ∈
Rd | p(x) 6 0}. Finally, P and Pκ,w satisfy Equation (113).

In practice, we rely on sum-of-squares programming
to solve a relaxed version of Problem (115).

5.5.3 SOS relaxed semantics

One way to strengthen the three nonnegativity con-
straints of Problem (115) is to take λi = 1, for all i ∈ I,
ν = 1,α = w, then to consider the a hierarchy of SOS
programs, parameterized by the integer m representing
the half of the degree of p. All positivity constraints are
expressed using sum-of-square polynomials of fixed de-
grees. As for the k-induction proof, one can increase
the degree of such polynomial to consider more general
problems. Equation (116) details the SOS problem sub-
mitted to the solver.

Figure 5.16 Property-driven polynomial invariants using
SOS programming.

infp∈R[x]2m,w∈R w, s.t.

−p = σ0 −
∑nin
j=1 σjr

in
j ,

∀ i ∈ I, p− p ◦ T i = σi −
ni∑
j=1

µijr
i
j ,

w+ p− κ = ψ ,

∀ j = 1, . . . ,nin , σj ∈ Σ[x] , deg(σjrin
j) 6 2m ,

σ0 ∈ Σ[x] , deg(σ0) 6 2m ,

∀ i ∈ I , σi ∈ Σ[x] , deg(σi) 6 2mdeg T i ,

∀ i ∈ I , ∀ j = 1, . . . ,ni , µij ∈ Σ[x] ,

deg(µijr
i
j) 6 2mdeg T i ,

ψ ∈ Σ[x] , deg(ψ) 6 2m .
(116)

where ∀j ∈ [1,nin], rin
j 6 0 denotes the initial semi-

algebraic set, and for all partition i, ∀j ∈ [1,ni], rij 6 0

denotes the constraints describing the partition.

Proposition 4 For a given m ∈ N, let (pm,wm) be any
feasible solution of Problem (116). Then, (pm,wm) is also
a feasible solution of Problem (115). Moreover, if wm 6 α

54 invariants as semialgebraic sets

then both Pm := {x ∈ Rd | pm(x) 6 0} and Pκ,wm satisfy
Equation (113).

5.5.4 Examples

Here, we perform some numerical experiments while
solving Problem (116) (given in Section 4.2.1) on sev-
eral examples. In Section 5.5.4, we verify that the pro-
gram of Example 5 satisfies some boundedness property.
We also provide examples involving higher dimensional
cases. Then, Section 5.5.4 focuses on other properties,
such as checking that the set of variable values avoids an
unsafe region.

We rely on the SDP solver Mosek to perform the com-
putation.

Checking boundedness of the set of variables values

Example 18 Following Example 5, we consider the con-
strained piecewise discrete-time dynamical system S =

(XInit, {X1,X2}, {T1, T2}) with XInit = [0.9, 1.1]× [0, 0.2],
X1 = {x ∈ R2 | r1(x) 6 0} with r1 : x 7→ ‖x‖2 − 1,
X2 = {x ∈ R2 | r2(x) < 0} with r2 = −r1 and
T1 : (x1, x2) 7→ (c11x

2
1 + c12x

3
2, c21x31 + c22x

2
2), T

2 :

(x1, x2) 7→ (d11x
3
1 + d12x

2
2,d21x21 + d22x

2
2). We are inter-

ested in showing that the boundedness property P‖·‖22,α holds
for some positive α.

Figure 5.17 A hierarchy of sublevel sets Pm for Exam-
ple 18

(a) m = 3 (b) m = 4

(c) m = 5

Here we illustrate the method by instantiating the pro-
gram of Example 5 with the following input: a1 = 0.9,
a2 = 1.1, b1 = 0, b2 = 0.2, c11 = c12 = c21 =

c22 = 1, d11 = 0.5, d12 = 0.4, d21 = −0.6 and
d22 = 0.3. We represent the possible initial values

taken by the program variables (x1, x2) by picking uni-
formly N points (x

(i)
1 , x(i)2) (i = 1, . . . ,N) inside the box

XInit = [0.9, 1.1]× [0, 0.2] (see the corresponding square
of dots on Figure 5.17). The other dots are obtained after
successive updates of each point (x

(i)
1 , x(i)2) by the pro-

gram of Example 5. The sets of dots in Figure 5.17 are
obtained with N = 100 and six successive iterations.

At step m = 3, Program (116) yields a solution
(p3,w3) ∈ R6[x] × R together with SOS certificates,
which guarantee the boundedness property, that is
x ∈ C =⇒ x ∈ P3 := {p3(x) 6 0} ⊆ P‖·‖22,w3

=⇒
‖x‖22 6 w3. One has p3(x) := −2.510902467− 0.0050x1 −
0.0148x2 + 3.0998x21 − 0.8037x

3
2 − 3.0297x

3
1 + 2.5924x

2
2 +

1.5266x1x2 − 1.9133x21x2 − 1.8122x1x22 + 1.6042x41 +

0.0512x31x2 − 4.4430x21x
2
2 − 1.8926x1x32 + 0.5464x42 −

0.2084x51 + 0.5866x41x2 + 2.2410x31x
2
2 + 1.5714x21x

3
2 −

0.0890x1x42 − 0.9656x52 + 0.0098x61 − 0.0320x51x2 −

0.0232x41x
2
2 + 0.2660x31x

3
2 + 0.7746x21x

4
2 + 0.9200x1x52 +

0.6411x62 (for the sake of conciseness, we do not display
p4 and p5).

Figure 5.17 displays in light gray outer approximations
of the set of possible values X1 taken by the program of
Example 18 as follows: (a) the degree six sublevel set P3,
(b) the degree eight sublevel set P4 and (c) the degree ten
sublevel set P5. The outer approximation P3 is coarse as
it contains the box [−1.5, 1.5]2. However, solving Prob-
lem (116) at higher steps yields tighter outer approxima-
tions of C together with more precise bounds w4 and w5
(see the corresponding row in Table 5.4).

We also succeeded to certify that the same property
holds for higher dimensional programs, described in Ex-
ample 19 (d = 3) and Example 20 (d = 4).

Example 19 Here we consider XInit = [0.9, 1.1]× [0, 0.2]2,
r0 : x 7→ −1, r1 : x 7→ ‖x‖22 − 1, r2 = −r1,
T1 : (x1, x2, x3) 7→ 1/4(0.8x21 + 1.4x2 − 0.5x23, 1.3x1 +

0.5x23, 1.4x2 + 0.8x23), T
2 : (x1, x2, x3) 7→ 1/4(0.5x1 +

0.4x22,−0.6x22 + 0.3x
2
3, 0.5x3 + 0.4x21) and κ : x 7→ ‖x‖22.

Example 20 Here we consider XInit = [0.9, 1.1]× [0, 0.2]3,
r0 : x 7→ −1, r1 : x 7→ ‖x‖22 − 1, r2 =

−r1, T1 : (x1, x2, x3, x4) 7→ 0.25(0.8x21 + 1.4x2 −

0.5x23, 1.3x1 + 0.5, x22 − 0.8x
2
4, 0.8x23 + 1.4x4, 1.3x3 + 0.5x24),

T2 : (x1, x2, x3, x4) 7→ 0.25(0.5x1 + 0.4x22,−0.6x21 +

0.3x22, 0.5x3 + 0.4x24,−0.6x3 + 0.3x24) and κ : x 7→ ‖x‖22.

Tables 5.1,5.2,5.3 report several data obtained while solv-
ing Problem (116) at step m, (2 6 m 6 5), either for Ex-
ample 18, Example 19 or Example 20. Each instance of
Problem (116) is recast as an SDP program, involving a
total number of “Nb. vars” SDP variables, with an SDP
matrix of size “Mat. size”. We indicate the CPU time
required to compute the optimal solution of each SDP
program with Mosek.

5.5 polynomial invariants 55

The symbol “−” means that the corresponding SOS
program could not be solved within one day of computa-
tion. These benchmarks illustrate the computational con-
siderations mentioned in Section 4.2.1 as it takes more
CPU time to analyze higher dimensional programs. Note
that it is not possible to solve Problem (116) at step 5 for
Example 20. A possible workaround to limit this compu-
tational blow-up would be to exploit the sparsity of the
system.

Table 5.1: Comparison of timing results for Example 18

deg 2m Ex. 18

vars SDP size time

4 1513 368 0.82 s

6 5740 802 1.35 s

8 15705 1404 4 s

10 35212 2174 9.86 s

Table 5.2: Comparison of timing results for Example 19

deg 2m Ex. 19

vars SDP size time

4 2115 628 0.84 s

6 11950 1860 2.98 s

8 46461 4132 21.4 s

10 141612 7764 109 s

Table 5.3: Comparison of timing results for Example 20

deg 2m Ex. 20

vars SDP size time

4 7202 1670 2.85 s

6 65306 6622 57.3 s

8 18480 373057 1534 s

10 − − −

Other properties

Here we consider the program given in Example 21. One
is interested in showing that the set X1 of possible values
taken by the variables of this program does not meet the
ball B of center (−0.5,−0.5) and radius 0.5.

Example 21 Let consider the piecewise polynomial system
S = (XInit, {X1,X2}, {T1, T2}) with XInit = [0.5, 0.7] ×
[0.5, 0.7], X1 = {x ∈ R2 | r1(x) 6 0} with r1 : x 7→

‖x‖22 − 1, X
2 = {x ∈ R2 | r2(x) 6 0} with r2 = −r1

and T1 : (x1, x2) 7→ (x21 + x
3
2, x31 + x

2
2), T

2 : (x,y) 7→
(0.5x31+ 0.4x

2
2,−0.6x21+ 0.3x

2
2). With κ : (x1, x2) 7→ 0.25−

(x1 + 0.5)2 − (x2 + 0.5)2, one has B := {x ∈ R2 | 0 6 κ(x)}.
Here, one shall prove x ∈ C =⇒ κ(x) < 0 while computing
some negative α such that C ⊆ Pκ,α. Note that κ is not a
norm, by contrast with the previous examples.

At step m = 3 (resp.m = 4), Program (116) yields a non-
negative solution w3 (resp. w4). Hence, it does not al-
low to certify that C ∩ B is empty. This is illustrated in
both Figure 5.18 (a) and Figure 5.18 (b), where the light
gray region does not avoid the ball B. However, solving
Program (116) at step m = 5 yields a negative bound
w5 together with a certificate that C avoids the ball B
(see Figure 5.18 (c)). The corresponding values of wm
(m = 3, 4, 5) are given in Table 5.4.

Figure 5.18 A hierarchy of sublevel sets Pm for Exam-
ple 21

(a) m = 3 (b) m = 4

(c) m = 5

Finally, one analyzes the program given in Example 22.

Example 22 (adapted from Example 3 in [AJ13])
Let S be the piecewise polynomial system

(XInit, {X1,X2}, {T1, T2}) with XInit = [−1, 1] × [−1, 1],
X1 = {x ∈ R2 | r1(x) 6 0} with r1 : x 7→ x2 − x1, X2 =

{x ∈ R2 | r2(x) 6 0} with r2 = −r1 and T1 : (x1, x2) 7→
(0.687x1 + 0.558x2 − 0.0001 ∗ x1x2,−0.292x1 + 0.773x2),
T2 : (x,y) 7→ (0.369x1 + 0.532x2 − 0.0001x21,−1.27x1 +
0.12x2 − 0.0001x1x2). We consider the boundedness prop-
erty κ1 := ‖ · ‖22 as well as κ2(x) := ‖T1(x) − T2(x)‖22.
The function κ2 can be viewed as the absolute error made by
updating the variable x after a possibly “wrong” branching.
Such behaviors could occur while computing wrong values
for the conditionals (e.g. r1) using floating-point arithmetics.
Table 5.4 indicates the hierarchy of bounds obtained after solv-
ing Problem (116) with m = 3, 4, 5, for both properties. The

56 invariants as semialgebraic sets

bound w5 = 2.84 (for κ1) implies that the set of reachable
values may not be included in the initial set XInit. A valid
upper bound of the error function κ2 is given by w5 = 2.78.

Ex. 18 Ex. 21 Ex. 22

κ ‖ · ‖22 κ ‖ · ‖22 κ2

w2 639 0.25 10.2 5.66

w3 17.4 0.249 2.84 2.81

w4 2.44 0.0993 2.84 2.78

w5 2.02 -0.0777 2.84 2.78

with Ex.21 κ = x 7→ 0.25 − ‖x + 0.5‖22 and Ex. 22

κ2 = x 7→ ‖T1(x) − T2(x)‖22.

Table 5.4: Hierarchies of bounds obtained for various proper-
ties

5.6 related works

Automated non linear analyses are not very common
in formal verification. A line of works[MS02; SSM04]
rely on iterative computations using Gröbner bases to
synthesize polynomial equality invariants. Similarly to
Karr’s domain representing affine relationships among
variables [Kar76], these domains extract polynomial rela-
tionship between variables. More recent work [Cac+14]
rely on a kind of weakest precondition computation to
synthesize these polynomial equalities. All these works
cannot, in the current state, express semi-algebraic sets
nor capture the stability of a linear controller.

Regarding quadratic invariants, ie. ellipsoids, they are
not fitted with a lattice structure since there is no unique
smallest ellipsoids containing a set of ellipsoids. Un-
rolling techniques such as [Fer05b; Fer04; Mon07; SB13]
enable the precise analysis of linear systems by solving
mathematically these dynamical systems. While more
precise than the approach we proposed, these techniques
can hardly handle disjunction or saturations. Their use
could however be used locally to improve the precision
of the analyses. The use of convex optimization such as
SDP or SOS to synthesize sublevel set properties was pro-
posed by Cousot in [Cou05] providing simple inductive
templates and without addressing methods to check the
soundness of the result. Other recent approaches such
as [OV15] proposed a classical Kleene iterations-based
abstract domain for ellipsoids in which the join operator
is implemented as the call to an SDP solvers synthesiz-
ing the minimal volume ellipsoid. The interesting ap-
proach of [All+15] proposed an algebraic method to ma-
nipulate a specific class of ellipsoids (zero-centered ellip-
soids), without the need to call a numerical tool such as
an SDP solver to compute such minimal volume ellip-
soids.

A last related category of analyses is the computa-
tion of non convex properties. Non convex proper-
ties were also used to express disjunctions as holes in
a given more classical convex abstraction: difference-
bound matrices (DBM), the underlying domain of oc-
tagons, with disequality constraints [PH07], or the Donut
domain [Gho+12].

6
T E M P L AT E B A S E D A N A LY S E S A N D M I N - P O L I C Y I T E R AT I O N

While the previous chapter addressed the direct syn-
thesis of invariants as bound templates, there are other
configurations in which with are interested in bounding
provided templates.

A first case arises when the previous method, as in
Equations (70), and (71), only synthesize the template
but not the bound. A second appear when one want
to analyze a system with multiple templates. Typically,
we are interested by bounds on each variable and want
to consider the templates p(x) = x2i for each variable
xi in state characterization x ∈ Σ. The current chapter
proposes a policy iteration algorithm, based on SOS op-
timization, to refine such template bounds. In practice,
we use it by combining a Lyapunov based template ob-
tained using one of the previous method with additional
template encoding bounds on some variables or property
specific templates.

6.1 template based abstract domains

Let us now assume that the abstraction is based on a
template abstraction. We recall that a template is a real-
valued function p : Σ → R. For the rest of the chapter,
we assume that these templates are given.

For each template p, one can characterize an abstract
domain D#

t as presented in Sec. 2.5. We also denote by
R̄ = R ∪ {−∞,+∞} the extension of R with infinite val-
ues and by 6̇ the extension of 6 to those values.

As for the characterization of the fixpoint presented
earlier, this abstraction also defines a complete lattice.
The order relation 6̇ is total and relies on the real num-
ber order applied to the level sets. The join and meet
of two abstract values, ie. the two scalars representing
sublevel sets, are computed with max and min.

D#
p = 〈R̄, 6̇, max, min,−∞,+∞〉

The abstraction and concretization functions are de-
fined as:

αp : S 7→ max{p(s)|s ∈ S}
γp : λ 7→ {s ∈ S|p(s) 6 λ}

Multiple templates could be considered at once. Let P

be a finite family of templates (pi)06i<n. And F
(
P, R

)
be the set of functions from P to R = R ∪ {−∞,+∞}.
We fit F

(
P, R

)
with the functional partial order 6F i.e.

v 6F w iff v(p) 6 w(p) for all p ∈ P. This defines our
abstract domain, the lattice

D#
P = 〈F

(
P, R

)
,6F, max

F
, min

F
, (−∞)F, (+∞)F〉

where the functions maxF, minF are lift of max and min
to functions. (±∞)F denote the functions p ∈ P 7→ ±∞.

We characterize the abstraction ? and concretization †
functions. Let w ∈ F

(
P, R

)
and X ∈ Rn. The concretiza-

tion of w to sets gives the set w?:

w? = {x ∈ Rd | p(x) 6 w(p),∀p ∈ P} . (117)

While the abstraction of X to F
(
P, R

)
is defined by the

abstract element X†:

X†(p) := sup
x∈X

p(x) (118)

6.2 template abstraction fixpoint as an opti-
mization problem

Let us summarize the current definitions:

• The collecting semantics of a system is defined us-
ing Equation (17) as the least fixpoint of an endo-
morphism over set of states; and is characterized
by the minimum set S ∈ ℘(Σ) of the postfixpoints
F(S) ⊆ S.

• A possible set of abstractions is defined by the tem-
plates abstract domains. An abstract domain is
specified by a finite family of templates, real val-
ued function over system states. An abstract value
is a vector of real values characterizing of sublevel
sets of templates.

Then computing an inductive invariant in the tem-
plates domain boils down to providing, for each tem-
plate p, a bound w(p) such that the intersection over the
templates p of sublevel sets {x ∈ Rd | p(x) 6 w(p)} is an
inductive invariant. We recall, that, in our context, a tem-
plate is simply an a-priori fixed multivariate polynomial.

57

58 template based analyses

We need to express the inductiveness of the sets w?

into inequalities on w. By definition the set w? is an
inductive invariant iff F(w?) ⊆ w?, that is:⋃

i∈I
T i(w? ∩Xi)∪XInit ⊆ w? .

By definition, w? is an inductive invariant iff:

∀p ∈ P, ∀x ∈
⋃
i∈I

T i(w? ∩Xi)∪XInit, p(x) 6 w(p) .

Using the definition of the supremum, w? is an inductive
invariant iff:

∀p ∈ P, sup
x ∈

⋃
i∈I

T i(w? ∩Xi)∪XInit
p(x) 6 w(p) .

Now, let consider p ∈ P. Using the fact that for all A,B ⊆
Rd and for all functions f, sup

A∪B
f = sup{sup

A

f, sup
B

f}:

sup
x∈
⋃
i∈I T

i(w?∩Xi)∪XInit
p(x) =

sup

{
sup
i∈I

sup
x∈T i(w?∩Xi)

p(x), sup
x∈XInit

p(x)

}
.

By definition of the image:

sup
x∈
⋃
i∈I T

i(w?∩Xi)∪XInit
p(x) =

sup

{
sup
i∈I

sup
y∈w?∩Xi

p(T i(y)), sup
x∈XInit

p(x)

}
.

Let us introduce the following notation to denote the im-
age of a set w? by an guarded update function T i, for all
p ∈ P:

F
]
i(w)(p) := sup

x∈w?∩Xi
p(T i(x))

We also recall the definition of abstraction applied on ini-
tial state:

XInit
†
(p) := sup

x∈XInit
p(x) .

Finally, we define the function from F
(
P, R

)
to itself,

for all w ∈ F
(
P, R

)
:

F](w) := sup

{
sup
i∈I

F
]
i(w),X

Init†
}

By construction, we obtain the following proposition:

Proposition 5 Let w ∈ F
(
P, R

)
. Then w? is an inductive

invariant (i.e. F(w?) ⊆ w?) iff F](w) 6F w.

From Prop. 5, inf{w ∈ F
(
P, R

)n
| F](w) 6F w} identi-

fies the smallest inductive invariant w? of the form (117).

Example 23 Let us consider the system defined at Exam-
ple 22. Let us consider the same templates basis P =

{q1,q2,p} where q1(x) = x21, q2(x) = x22 and p is a well-
chosen polynomial of degree 6. Let w ∈ F

(
P, R

)
. For i = 1

and the templates q1, we have:

F
]
1(w)(q1) =

sup
−x21+160
x216w(q1),
x226w(q2),
p(x)6w(p)

(0.687x1 + 0.558x2 − 0.0001x1x2)2

Indeed, X1 = {x ∈ R2 | −x21 + 1} and the dynamics asso-
ciated with X1 is the polynomial function T1 defined for all
x ∈ R2 by: T1(x) =

(
0.687x1+0.558x2−0.0001x1x2

−0.292x1+0.773x2

)
and

thus since q1 computes the square of the first coordinates
q1(T

1(x)) = (0.687x1 + 0.558x2 − 0.0001x1x2)2.

With w ∈ F
(
P, R

)
, computing F](w) boils down

to solving a finite number of nonconvex polynomial
optimization problems. General methods do not ex-
ist to solve such problems. In Section 6.3, we pro-
pose a method based on Sums-of-Squares (SOS) to over-
approximate F](w).

6.3 sos-relaxed semantics

In this section, we introduce the relaxed functional on
which we will compute a fixpoint, yielding a further over-
approximation of the set R of reachable values. This re-
laxed functional is constructed from a Lagrange relax-
ation of maximization problems involved in the evalua-
tion of F] and Sums-of-Squares strengthening of polyno-
mial nonnegativity constraints.

6.3.1 Relaxed semantics

The computation of F] as a polynomial maximization
problem cannot be directly performed using numerical
solvers. We use the SOS reinforcement mechanisms de-
scribed above to relax the computation and characterize
an abstraction of F].

We still assume the knowledge of the template basis
P, involving polynomials of degree at most 2m. Let us
define F (P, R+) the set of nonnegative functions over P

i.e. g ∈ F (P, R+) iff for all p ∈ P, g(p) ∈ R+. Let p ∈ P

6.3 sos-relaxed semantics 59

and w ∈ F
(
P, R

)
. Starting from the definition of F]i, one

obtains the following:(
F
]
i(w)

)
(p)

= sup
q(x)6w(q), ∀q∈P

rij(x)60, ∀ j∈Ini

p(T i(x))

6 inf
λ∈F(P,R+)

σ∈Σ[x],µl∈Σ[x]
deg(σ)62mdegT i

deg(µlril)62mdegT i

sup
x∈Rd

p(T i(x))

+
∑
q∈P

λ(q)(w(q) − q(x))

−

ni∑
l=1

µl(x)r
i
l(x)

6 inf
λ,σ,µl,η

η

s. t.

η− p ◦ T i −
∑
q∈P

λ(q)(w(q) − q)

+

ni∑
l=1

µlr
i
l = σ,

λ ∈ F (P, R+) , σ ∈ Σ[x],
µl ∈ Σ[x], η ∈ R ,

deg(σ) 6 2mdeg T i ,

deg(µlril) 6 2mdeg T i

(using an SOS reinforcement to remove the sup)

We denote by Σ[x]n the set of n-tuples of SOS polynomi-
als. For clarity purpose, the dependency on i is omit-
ted within the notations of the multipliers µl. More-

over, let us write
∑ni
l=1 µlr

i
l as 〈µ, ri〉. Finally, we write(

FRi (w)
)
(p) the over-approximation of

(
F
]
i(w)

)
(p), de-

fined as follows:(
FRi (w)

)
(p) = inf

λ,σ,µ,η
η

s. t.

η− p ◦ T i −
∑
q∈P

λ(q)(w(q) − q)

+〈µ, ri〉 = σ
λ ∈ F (P, R+) , σ ∈ Σ[x], µ ∈ Σ[x]ni ,
η ∈ R ,

deg(σ) 6 2mdeg T i,

deg(〈µ, ri〉) 6 2mdeg T i .

(119)

We conclude that, for all i ∈ I, the evaluation of FRi can
be done using SOS programming, since it is reduced
to solve a minimization problem with a linear objec-
tive function and linear combination of polynomials con-
strained to be sum-of-squares.

Example 24 We still consider the running example defined
at Example 22 and take the following templates basis: q1 :

x 7→ x21, q2 : x 7→ x22, and a well-chosen polynomial p
of degree 6. For the index of the partition i = 1. Recall

that T1(x) =
(
0.687x1+0.558x2−0.0001x1x2

−0.292x1+0.773x2

)
and X1 =

{x ∈ R2 | −x21 + 1 6 0} and thus r11(x) = −x21 + 1. Let
w ∈ F

(
P, R

)
, then:(

FR1 (w)
)
(q1) =

inf
λ,σ,µ,η

η

s. t.

η− (0.687x1 + 0.558x2 − 0.0001x1x2)2

−λ(q1)(w(q1) − x
2
1) − λ(q2)(w(q2) − x

2
2)

−λ(p)(w(p) − p(x)) + µ(x)(1− x21) = σ(x)

λ ∈ F (P, R+) , σ ∈ Σ[x], µ ∈ Σ[x], η ∈ R ,

deg(σ) 6 6, deg(µ) 6 6 .

In practice, one cannot find any feasible solution of degree less
than 6, thus we replace the degree constraint by the more re-
strictive one: deg(σ) 6 6, deg(µ) 6 6.

The computation of F] requires the approximation of
XInit

†
:= sup{p(x), x ∈ XInit}. Since XInit is a basic

semi-algebraic set and each template p is a polynomial,
then the evaluation of XInit† boils down to solving a
polynomial maximization problem. Next, we use SOS re-
inforcement described above to over-approximate XInit†

with the set XInitR, defined as follows:

XInit
R
(p) :=

inf

η
∣∣∣∣∣∣∣∣

η− p+ 〈νnin , rnin〉 = σ0,

η ∈ R, σ0 ∈ Σ[x],νin ∈ Σ[x]nin ,

deg(σ0) 6 2m, deg(〈νnin , rnin〉) 6 2m

 .

Thus, the value of XInitR(p) is obtained by solving an
SOS optimization problem. Since XInit is a nonempty
compact basic semi-algebraic set, this problem has a fea-
sible solution (see the proof of [Las01, Th. 4.2]), ensuring
that XInitR(p) is finite valued.

Example 25 The initialization set XInit of Example 22 is
[−1, 1] × [−1, 1]. It can be written as: {(x1, x2) ∈ R2 |

x21 − 1 6 0, x22 − 1 6 0}. Then, considering the same tem-
plate basis of Example 24 and the template q1:

XInit
R
(q1) :=

inf

η

∣∣∣∣∣∣∣∣∣∣∣∣∣

η− x21 + ν
nin
1 (x)(x21 − 1)

+ν
nin
2 (x)(x22 − 1) = σ0(x),

η ∈ R, σ0 ∈ Σ[x],νin
1 ,νin

2 ∈ Σ[x],
deg(σ0) 6 6, deg(〈νnin

1) 6 6,

deg(〈νnin
2) 6 6

.

It is easy to see that taking for all x ∈ R2, νnin
1 (x) = 1 and

for all x ∈ R2, νnin
2 (x) = 0 leads to η− x21 + ν

nin
1 (x)(x21 −

1) + ν
nin
2 (x)(x22 − 1) = η− 1 = σ0(x). Thus for η = 1 and

for all x ∈ R2, σ0(x) = 0, we obtain XInitR(q1) = 1.

60 template based analyses

Finally, we define the relaxed functional FR for all
w ∈ F

(
P, R

)
and for all p ∈ P as follows:

(
FR(w)

)
(p) = sup

{
sup
i∈I

(
FRi (w)

)
(p),XInit

R
(p)

}
. (120)

By construction, the relaxed functional FR provides a
safe over-approximation of the abstract semantics F].

Proposition 6 (Safety) The following statements hold:

1. XInit† 6F X
InitR;

2. For all i ∈ I, for all w ∈ F
(
P, R

)
, F]i(w) 6F F

R
i (w);

3. For all w ∈ F
(
P, R

)
, F](w) 6F F

R(w).

An important property that we will use to prove some
results on policy iteration algorithm is the monotonicity
of the relaxed functional.

Proposition 7 (Monotonicity)

1. For all i ∈ I, w 7→ FRi (w) is monotone on F
(
P, R

)
;

2. The function w 7→ FR(w) is monotone on F
(
P, R

)
.

From the third assertion of Prop. 6, if w satisfies
FR(w) 6F w then F](w) 6F w and from Prop. 5, w?

is an inductive invariant and thus R ⊆ w?. This result is
formulated as the following corollary.

Corollary 1 (Over-approximation) For all w ∈ F
(
P, R

)
such that FR(w) 6F w then R ⊆ w?.

6.3.2 Policy Iteration in Polynomial Templates Abstract Do-
mains

We are interested in computing the least fixpoint RR of
FR, RR being an over-approximation of R (least fixpoint
of F). As for the definition of R, it can be reformulated
using Tarski’s theorem as the minimal post-fixpoint:

RR = min{w ∈ F
(
P, R

)
|FR(w) 6F w} .

The idea behind policy iteration is to over-approximate
RR using successive iterations which are composed of

• the computation of polynomial template bounds
using linear programming,

• the determination of new policies using SOS pro-
gramming,

until a fixpoint is reached. Policy iteration navigates in
the set of post-fixpoints of FR and needs to start from a
post-fixpoint w0 know a-priori. It acts like a narrowing
operator and can be interrupted at any time. For further
information on policy iteration, the interested reader can
consult [Cos+05; Gau+07].

6.3.3 Policies

Policy iteration can be used to compute a fixpoint of a
monotone self-map defined as an infimum of a family of
affine monotone self-maps. We propose to design a pol-
icy iteration algorithm to compute a fixpoint of FR. In
this subsection, we give the formal definition of policies
in the context of polynomial templates and define the
family of affine monotone self-maps. We do not apply
the concept of policies on FR but on the functions FRi ex-
ploiting the fact that for all i ∈ I, FRi is the optimal value
of a minimization problem.

Policy iteration needs a selection property, that is, when
an element w ∈ F

(
P, R

)
is given, there exists a policy

which achieves the infimum. In our context, since we
apply the concept of policies to FRi , it means that the
minimization problem involved in the computation of
FRi has an optimal solution. In our case, for w ∈ F

(
P, R

)
and p ∈ P, an optimal solution is a vector (λ,σ,µ) ∈
F (P, R+)× Σ[x]× Σ[x]ni such that, using (119), we ob-
tain: (

FRi (w)
)
(p) =

p ◦ T i +
∑
q∈P

λ(q)(w(q) − q) − 〈µ, ri〉+ σ

and deg(σ) 6 2mdeg T i,

deg(〈µ, ri〉) 6 2mdeg T i

. (121)

Observe that in Eq. (121),
(
FRi (w)

)
(p) is a scalar whereas

the right-hand-side is a polynomial. The equality in this
equation means that this polynomial is a constant poly-
nomial. Then we introduce the set of feasible solutions
for the SOS problem

(
FRi (w)

)
(p):

Sol(w, i,p) ={
(λ,σ,µ) ∈ F (P, R+)× Σ[x]× Σ[x]ni

s.t. Eq. (121) holds

}
(122)

Since policy iteration algorithm can be stopped at any
step and still provides a sound over-approximation, we
stop the iteration when Sol(w, i,p) = ∅. Now, we
are interested in the elements w ∈ F (P, R) such that
Sol(w, i,p) is non-empty:

FS
(
P, R

)
=

{
w ∈ F

(
P, R

) ∣∣∣∣∣ ∀ i ∈ I, ∀p ∈ P,

Sol(w, i,p) 6= ∅

}
.

(123)

The notation FS
(
P, R

)
was introduced in [AGG10] to de-

fine the elements w ∈ F
(
P, R

)
satisfying Sol(w, i,p) 6=

∅. In [AGG10, Section 4.3], we could ensure that
Sol(w, i,p) 6= ∅ using Slater’s constraint qualification
condition. In the current nonlinear setting, we cannot

6.3 sos-relaxed semantics 61

use the same condition, which yields a more complicated
definition for FS

(
P, R

)
.

Finally, we can define a policy as a map which selects,
for all w ∈ FS

(
P, R

)
, for all i ∈ I and for all p ∈ P a vec-

tor of Sol(w, i,p). More formally, we have the following
definition:

Definition 6.1 (Policies in the SOS policy iteration) A
policy is a map π : FS

(
P, R

)
7→ ((I×P) 7→ F (P, R+)×

Σ[x]× Σ[x]ni × Σ[x]n0) such that: ∀w ∈ FS
(
P, R

)
, ∀ i ∈ I,

∀p ∈ P, π(w)(i,p) ∈ Sol(w, i,p).

We denote by Π the set of policies. For π ∈ Π, let us de-
fine πλ as the map from FS

(
P, R

)
to (I×P) 7→ F (P, R+)

which associates with w ∈ FS
(
P, R

)
and (i,p) ∈ I×P

the first tuple element of π(w)(i,p) i.e. if π(w)(i,p) =

(λ,σ,µ) then πλ(w)(i,p) = λ.
As said before, policy iteration exploits the linearity of

maps when a policy is fixed. We have to define the affine
maps we will use in a policy iteration step. With π ∈ Π,
w ∈ FS

(
P, R

)
, i ∈ I and p ∈ P and λ = πλ(w)(i,p), let

us define the map φλw,i,p : F
(
P, R

)
7→ R as follows:

v 7→ φλw,i,p(v) =∑
q∈P λ(q)v(q) +

(
FRi (w)

)
(p) −

∑
q∈P λ(q)w(q)

(124)

Then, for π ∈ Π, we define for all w ∈ FS
(
P, R

)
, the map

Φ
π(w)
w from F

(
P, R

)
7→ F

(
P, R

)
. Let v ∈ F

(
P, R

)
and

p ∈ P:

Φ
π(w)
w (v)(p) = sup

{
sup
i∈I

φλw,i,p(v),X
InitR(p)

}
(125)

Example 26 Let us consider Example 24 and the function
w0(q1) = w0(q2) = 2.1391 and w0(p) = 0. Then there
exists two SOS polynomials µ and σ such that, for all x ∈ Rd:(
FR1 (w)

)
(q1) = (0.687x1 + 0.558x2 − 0.0001x1x2)2 +

λ(q1)(2.1391 − x21) + λ(q2)(2.1391 − x22) − λ(p)p(x) −

µ(x)(1− x21) + σ(x) = 1.5503 with λ(q1) = λ(q2) = 0 and
λ(p) = 2.0331. It means that λ, µ and σ are computed such
that (0.687x1 + 0.558x2 − 0.0001x1x2)2 + λ(q1)(2.1391 −
x21) + λ(q2)(2.1391− x

2
2) − λ(p)p(x) −µ(x)(1− x

2
1) +σ(x)

is actually a constant polynomial.
Then (λ,µ,σ) ∈ Sol(w0, 1,q1) and we can define a pol-

icy π(w0) such that π(w0)(1,q1) = (λ,µ,σ) and thus
πλ(w

0)(1,q1) = (0, 0, 2.0331). We can thus define for v ∈
F (P, R), the affine mapping: φλ

w0,1,q1
(v) = λ(q1)v(q1) +

λ(q2)v(q2) + λ(p)v(p) +
(
FR1 (w)

)
(q1) − λ(q1)w(q1) −

λ(q2)w(q2) − λ(p)w(p) = 2.1391v(p) + 1.5503.

Let us denote by F (P, R) the set of finite valued func-
tion on P i.e g ∈ F (P, R) iff g(p) ∈ R for all p ∈ P.

Proposition 8 (Properties of φλi,w,p) Let π ∈ Π, w ∈
FS
(
P, R

)
and (i,p) ∈ I×P. Let us write λ = πλ(w)(i,p).

The following properties are true:

1. φλw,i,p is affine on F (P, R) ;

2. φλw,i,p is monotone on F
(
P, R

)
;

3. ∀ v ∈ F
(
P, R

)
, FRi (v)(p) 6 φ

λ
w,i,p(v) ;

4. φλw,i,p(w) = F
R
i (w)(p) .

The properties presented in Prop. 8 imply some useful
properties for the maps Φπ(w)

w .

Proposition 9 (Properties of Φπ(w)
w) Let π ∈ Π and w ∈

FS
(
P, R

)
. The following properties are true:

1. Φπ(w)
w is monotone on F

(
P, R

)
;

2. FR 6F Φ
π(w)
w ;

3. Φπ(w)
w (w) = FR(w) ;

4. Suppose that the least fixpoint of Φπ(w)
w is L ∈

F (P, R). Then L can be computed as the unique op-
timal solution of the linear program:

inf

∑
p ′∈P

v(p ′)

∣∣∣∣∣∣∣∣∣∣
∀ (i,p) ∈ I×P,

φ
πλ(w)(i,p)
i,w,p (v) 6 v(p),

∀q ∈ P,

XInit
R
(q) 6 v(q)

 . (126)

Recall that a function g : Rd 7→ R is upper-
semicontinuous at x iff for all (xn)n∈N converging to
x, then lim supn→+∞ g(xn) 6 g(x).

Proposition 10 Let p ∈ P. Then w 7→ FR(w)(p) is upper-
semicontinuous on FS

(
P, R

)
∩F (P, R).

6.3.4 Policy Iteration

Now, we describe the policy iteration algorithm. We sup-
pose that we have a post-fixpoint w0 of FR in F (P, R).

62 template based analyses

Figure 6.1 SOS-based policy iteration algorithm for PPS
programs.

input :w0 ∈ F (P, R), a post-fixpoint of FR

output : a fixpoint w = FR(w) if ∀ k ∈N, wk ∈ FS
(
P, R

)
or a post-fixpoint otherwise

1 k=0;
2 while fixpoint not reached do
3 begin compute the next policy π for the current iterate

wk

4 Compute FR(wk) using Eq. (120) and Eq. (119);
5 if wk ∈ FS

(
P, R

)
then

6 Define π(wk) ;
7 else
8 return wk;
9 end

10 end
11 begin compute the next iterate wk+1

12 Define Φπ(w
k)

wk
and compute the least fixpoint

wk+1 of Φπ(w
k)

wk
from Problem (126);

13 k=k+1;
14 end
15 end

Now we detail step by step Algorithm 6.1. At Line 1,
Algorithm 6.1 is initialized and thus k = 0. At Line 4, we
compute FR(wk) using Eq. (120) and solve the SOS prob-
lem involved in Eq. (119). At Line 6, if for all i ∈ I and
for p ∈ P, the SOS problem involved in Eq. (119) has an
optimal solution, then a policy π is available and we can
choose any optimal solution of SOS problem involved in
Eq. (119) as policy. If an optimal solution does not ex-
ist then Algorithm 6.1 stops and return wk. Now, if a
policy π has been defined, Algorithm 6.1 goes to Line 12

and we can define Φπ(w
k)

wk
following Eq. (125). Then, we

solve LP problem (126) and define the new bound on

templates wk+1 as the smallest fixpoint of Φπ(w
k)

wk
. Fi-

nally, at Line 13, k is incremented.
If for some k ∈ N, wk /∈ FS

(
P, R

)
and wk−1 ∈

FS
(
P, R

)
then Algorithm 6.1 stops and returns wk.

Hence, we set for all l > k, wl = wk.

Theorem 6.2 (Convergence result of Algorithm 6.1)
The following statements hold:

1. For all k ∈N, wk ∈ F (P, R) and FR(wk) 6 wk

2. The sequence (wk)k>0 generated by Algorithm 6.1 is
decreasing and converges;

3. Let w∞ = limk→+∞wk, then FR(w∞) 6 w∞. Fur-
thermore, if for all k ∈ N, wk ∈ FS

(
P, R

)
and if

w∞ ∈ FS
(
P, R

)
then FR(w∞) = w∞.

6.4 example .

Recall that our running example is given by the fol-
lowing piecewise polynomial system: (XInit, {X1,X2},
{T1, T2}), where:

XInit = [−1, 1]× [−1, 1]{
X1 = {x ∈ R2 | −x21 + 1 6 0}

X2 = {x ∈ R2 | x21 − 1 < 0}

and the functions relative to the partition {X1,X2} are:

T1(x1, x2) =

(
0.687x1 + 0.558x2 − 0.0001x1x2

−0.292x1 + 0.773x2

)
and

T2(x1, x2) =

(
0.369x1 + 0.532x2 − 0.0001x21
−1.27x1 + 0.12x2 − 0.0001x1x2

)

The first step consists in constructing the template basis
and compute the template p and bound w on the reach-
able values as a solution of Problem (116). We fix the
degree of p to 6. The template p generated from Matlab
is of degree 6 and is defined as follows:

−1.931348006+ 3.5771x21 + 2.0669x
2
2 + 0.7702x1x2 −

(2.6284e–4)x31 − (5.5572e–4)x21x2 + (3.1872e–4)x1x22 +
0.0010x32 − 2.4650x

4
1 − 0.5073x

3
1x2 − 2.8032x

2
1x
2
2 −

0.5894x1x32 − 1.4968x
4
2 + (2.7178e–4)x51 +

(1.2726e–4)x41x2 − (3.8372e–4)x31x
2
2 + (6.5349e–5)x21x

3
2 +

(5.7948e–6)x1x42 − (6.2558e–4)x52 + 0.5987x
6
1 −

0.0168x51x2 + 1.1066x
4
1x
2
2 + 0.3172x

3
1x
3
2 + 0.8380x

2
1x
4
2 +

0.0635x1x52 + 0.4719x
6
2.

The upper bound w is equal to 2.1343. In order to
compute bounds per variable, we can take the template
basis P = {p, x 7→ x21, x 7→ x22}. We write q1 for x 7→ x21
and q2 for x 7→ x22. The basic semi-algebraic {x ∈ R2 |

p(x) 6 0, q1(x) 6 2.1343, q2(x) 6 2.1343} is an induc-
tive invariant and the corresponding bounds function is
w0 = (w0(q1),w0(q2),w0(p)) = (2.1343, 2.1343, 0).

As in Line 4 of Algorithm 6.1, we compute the image
of w0 by FR using SOS (Eq. (119)). We found that

FR(w0)(q1) = 1.5503,

FR(w0)(q2) = 1.9501

FR(w0)(p) = 0 .

Since w0 ∈ FS
(
P, R

)
, Algorithm 6.1 goes to Line 6 and

the computation of FR(w0) permits to determine a new
policy π(w0). The important data is the vector λ. For
example, for i = 1 and the template q1, the vector λ is
(0, 0, 2.0331). It means that we associate for each tem-
plate q a weight λ(q). In the case of λ = (0, 0, 2.0331),

6.5 related works 63

λ(q1) = 0, λ(q2) = 0 and λ(p) = 2.0332. For i = 1,
the template q1 and the bound vector w0, the function
φλ
w0,1,q1

(v) = 2.0331v(p) + 1.5503.
To get the new invariant, Algorithm 6.1 goes to Line 12

and we compute a bound vector w1 solution of Linear
Program (126). In this case, it corresponds to the follow-
ing LP problem:

min v(q1) + v(q2) + v(p)

s.t.

1 6 v(q1), 1 6 v(q2), 0 6 v(p) (init)
0.4578v(p) + 0.8843 6 v(q1),

0.2048v(p) + 1.9501 6 v(q2),

0.9985v(p) − 3.4691e–7 6 v(p)

(i = 1)

2.0331v(p) + 1.5503 6 v(q1),

1.0429v(p) + 1.2235 6 v(q2),

0.9535v(p) − 0.0248 6 v(p)

(i = 2)

We obtain:

w1(q1) = 1.5503, w1(q2) = 1.9501 and w1(p) = 0

We then come back to Line 4 of Algorithm 6.1 and we
compute FR(w1) using the SOS program Eq. (119). The
implemented stopping rule is ‖FR(wk) −wk‖∞ 6 1e–6
and since ‖FR(w1) −w1‖∞ 6 1e–6, Algorithm 6.1 termi-
nates. The two successive inductive invariants are de-
picted at Figure 6.2.

Figure 6.2 Successive sets computed from Policy Itera-
tions

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

In gray, on the left, the set w0? computed from Prob-
lem 116, while, on the right, the set w1? computed from
Policy Iterations. In both figures, black points represents
a discretized version of R.

6.5 related works

As presented in the Formal Methods introduction, in
Chapter 2, the classical framework for abstract interpreta-
tion is a fixpoint over-approximation through a Kleene

fixpoint computation using widening to ensure conver-
gence. Another mechanism, narrowing, enables to re-
cover precision once a postfixpoint has been obtained
through widening.

In static analysis, the more recent approach of policy1

iterations [Cos+05; Gau+07; GS07a] attempts to solve ex-
actly the fixpoint equation for a given abstract domain
when specific conditions are satisfied using appropriate
mathematical solvers. While this chapter addressed a
rather large set of programs – piecewise polynomial sys-
tems – using SOS optimization, related (and previous)
works were considering simpler classes of programs and
of convex optimizations. For example when both the ab-
stract domain and the fixpoint equation use linear equa-
tions, then linear programming could be used to com-
pute the exact solution without the need of widening and
narrowing [Gau+07; GS07a]. Similarly, when the func-
tion and the abstract domain are at most quadratic, semi-
definite programming (SDP) could be used [AGG10;
GS10; Gaw+12]. In all cases, these analyses are per-
formed on template-based abstract domains, represent-
ing the abstract elements as sublevel-sets; optimization
techniques being used to bound these templates.

Regarding policy iterations related works, two dif-
ferent “schools” exist in the static analysis commu-
nity. The “French school” [AGG10; Cos+05; Gau+07;
Gaw+12] offers to iterate on min-policies, starting from
an over-approximation of a fixpoint and decreasing the
bounds until the fixpoint is reached. The “German
school” [Gaw+12; GS07a; GS07b] in contrary operates
on max-policies, starting from bottom and increasing
the bounds until a fixpoint is reached. While the first
can be interrupted at any point leaving a sound over-
approximation, the second approach requires waiting un-
til the fixpoint is reached to provide its result. Note that
a first valid postfixpoint is required in the first case.

Min-Policy Iterations

To some extent, Min-Policy iterations [AGG10] can be
seen as a very efficient narrowing, since they perform de-
scending iterations from a postfixpoint towards some fix-
point, working in a way similar to the Newton-Raphson

method. Iterations are not guaranteed to reach a fixpoint
but can be stopped at any time leaving an overapproxi-
mation thereof. Moreover, convergence is usually fast.

Writing a system of equations b = F(b) with b =

(bi)i∈J1,nK and F : R
n → R

n (n being the number of
templates), a min-policy is defined as follows: F is a min-
policy for F if for every b ∈ R

n, F(b) 6 F(b) and there
exist some b0 ∈ R

n such that F(b0) = F(b0).
The following theorem can then be used to compute

the least fixpoint of F.

Theorem 6.3 Given a (potentially infinite) set F of min-
policies for F. If for all b ∈ R

n there exist a policy F ∈ F

1 The word strategy is also used in the literature for policy, with equivalent meaning.

64 template based analyses

interpolating F at point b (i.e. F(b) = F(b)) and if each F ∈ F

has a least fixpoint lfpF, then the least fixpoint of F satisfies

lfpF =
∧
F∈F

lfpF.

Iterations are done with two main objects: a min-
policy σ and a tuple β of values for variables bi of the
system of equations. The following policy iteration al-
gorithm starts from some postfixpoint β0 of F and aims
at refining it to produce a better overapproximation of a
fixpoint of F. Policy iteration algorithms always proceed
by iterating two phases: first a policy σi is selected, then
it is solved giving some βi. More precisely in our case:

• find a linear min-policy σi+1 being tangent to F at
point βi, this can be done thanks to a semi definite
programming solver and an appropriate relaxation;

• compute the least fixpoint βi+1 of policy σi+1
thanks to a linear programming solver.

Iterations can be stopped at any point (for instance after
a fixed number of iterations or when progress between
βi and βi+1 is considered small enough) leaving an over-
approximation β of a fixpoint of F.

Max-Policy Iterations

Behaving somewhat as a super widening, Max-Policy it-
erations [GS10] work in the opposite direction compared
to Min-Policy iterations. They start from bottom and
iterate computations of greatest fixpoints on so called
max-policies until a global fixpoint is reached. Unlike
the previous approach, the algorithm terminates with a
theoretically precise fixpoint, but the user has to wait un-
til the end since intermediate results are not overapprox-
imations of a fixpoint.

Max-policies are the dual of min-policies: F is a max-
policy for F if for every b ∈ R

n, F 6 F(b) and there exist
some b0 ∈ R

n such that F(b0) = F(b0). In particular, the
choice of one term in each equation is a max-policy.

Iterations are done with two main objects: a max-
policy σ and a tuple β of values for variables bi,j of

the system of equations. Considering that computing
a fixpoint on a given policy reduces to a mathematical
optimization problem and that a fixpoint of the whole
equation system is also a fixpoint of some policy, the fol-
lowing policy iteration algorithm aims at finding such
a policy by solving optimization problems. To initiate
the algorithm, a term −∞ is added to each equation, the
initial policy σ0 is then −∞ for each equation and the
initial value β0 is the tuple (−∞, . . . ,−∞). Then policies
are iterated:

• find a policy σi+1 improving policy σi at point βi,
i.e. that reaches (strictly) greater values evaluated
at point βi; if none is found, exit;

• compute the greatest fixpoint βi+1 of policy σi+1.

The last tuple β is then a fixpoint of the whole system of
equations.

The Max-Policy iteration builds an ascending chain of
abstract elements similarly to Kleene iterations elements.
However, it is guaranteed to be finite, bounded by the
number of policies σ, while Kleene iterations require the
use of widening to ensure termination. Since there are
exponentially many max-policies in the number of tem-
plates and since each policy can be an improving one
only once, we have an exponential bound on the num-
ber of iterations. But in practice, only a small number of
policies are usually considered and the number of itera-
tions remains reasonable. One of the approach to select a
good policy is to rely on SMT-solvers to find a matching
policy [MS14].

Last, recent works [KMW16] relied on Max-policies
based on linear problems and Linear programming
solvers to compute efficiently local invariants on large
programs. This work is applied in a completely different
context than ours: targeting general C programs rather
than critical controllers, with linear properties rather
than expressive semialgebraic ones. It shows the appli-
cability of the approach to a larger set of programs than
numerical controllers.

Part III

S Y S T E M - L E V E L A N A LY S I S AT M O D E L A N D C O D E L E V E L

7
S Y S T E M - L E V E L P R O P E RT I E S A S N U M E R I C A L I N VA R I A N T S

All numerical tools presented in previous chapters
were focused on the precise over-approximation of reach-
able states. In terms of properties addressed, we can
argue about simple properties: e. g.the state space is
bounded, the reachable states avoid a bad region, etc.

We believe that it is however important to be able to
express higher level properties than just bounding reach-
able states.

The idea that drove our invariants and template syn-
thesis was this notion of Lyapunov functions and of Lya-
punov stability. Assuming a control level property, it
would be extremely interesting to be able to express this
property over the code or model artifact.

A main limitation for the study of these control level
properties is the need for the plant description, which
is generally not available when considering code artifact.
In the following we assume the plant semantics is pro-
vided in a discrete fashion and therefore amenable to
code level description as presented in Chapter 3.

We summarize here are first attempts to express clas-
sical notions of control theory such as stability or robust-
ness using our invariant-based tools.

notations . Let us first recall the notations of Chap-
ter 3: we focus on linear systems i.e. a linear plant with
a linear controller feedback. Both the controller and the
plant dynamics are expressed as discrete linear systems.
Let (Ac,Bc,Cc,Dc) and (Ap,Bp,Cp) the matrices defin-
ing the controller and plant dynamics, respectively; e
denotes the input of the controller, often referred to as
the error i.e. the distance to the target reference in; u
denotes both the output of the controller and the input
of the plant, such as the effect of actuator commands; y
denotes the measure of the plant state i.e. the feedback
e. g.as obtained by sensors:

{
xck+1 = Acxck +B

cek

uk = Ccxck +D
cek

{
x
p
k+1 = Apx

p
k +B

puk

yk = Cpx
p
k

(127)

A closed-loop representation of the system is given in
Fig. 7.1; it is expressed over the state space defined by

vectors
(
xc xp

)ᵀ
. Let x be such vectors. The error e is

computed using a reference command in and the feed-
back y obtained from the plant.

ek = ink − yk

One can consider in as the input of the closed-loop
system, and x as its output.

Figure 7.1 Closed-loop system.

ink
xck+1 = Acxck +B

cek

uk = Ccxck +D
cek

x
p
k+1 = Apxpk +B

puk

yk = Cpxpk

xck

uk

x
p
k

+

ek

yk

−

7.1 open-loop and closed-loop stability

As mentioned in Chapter 3, the notion of stability for
a dynamical systems captures both the boundedness of
reachable states and a notion of convergence. A stable
system guarantees that a small change in the input will
not produce a large change in the output. Mathemati-
cally speaking, the notion of asymptotic stability ensures
that with a null input, the system converges to zero. This
stability can be studied in two ways: open loop stability
and closed-loop stability. In the open loop setting the
stability of the controller itself is studied while in the
closed-loop setting the complete system integrating the
feedback interconnection of controller and plant is ad-
dressed.

While closed-loop stability is the main stability prop-
erty of interest – that is, the controlled system will have
a stable behavior – ensuring open-loop stability avoids
the undesirable situation where the feedback intercon-
nection is stable, while the controller alone is intrinsi-
cally unstable. In terms of system implementation, an
open-loop stable controller has a reasonable behavior on
its own, e. g. assuming only bounded input, it will pro-

67

68 system properties as invariants

vide a bounded output. This is called the bounded input
bounded output (BIBO) property.

Stability properties can be assessed in different ways.
A system’s dynamics are expressed as transfer functions
mapping inputs to outputs. These are obtained by tak-
ing the Fourier or Laplace transform of the impulse
response of a system. This so-called frequency domain
approach is commonly used for linear systems, along
with graphical tools such as Bode plots or Nyquist di-
agrams. An alternative approach, temporal domain anal-
ysis, is performed on the state-space representation, and
is based on Lyapunov functions. As mentioned in the
previous parts, Lyapunov functions express a notion of
positive energy that decreases along the trajectories of
the system and captures its asymptotic stability. For lin-
ear systems, such functions are usually defined using a
positive definite matrix P � 0 such that:

AᵀPA− P ≺ 0, (128)

where A is the state matrix of the system.

7.1.1 Lyapunov function computation

Using the tools proposed in Chapters 5 we can compute
inductive numerical invariants, such as positive definite
matrices Po and Pc denoting Lyapunov functions for
these open- and closed-loop systems.

For the open-loop system, the Lyapunov function Po is
used to express a BIBO property of the controller alone:
to bound reachable states xc assuming a bounded input
e:

‖e‖∞ 6 1 =⇒ xcᵀPoxc 6 1

For the closed-loop system, integrating the feedback
of the plant in the controller input, a similar property is
expressed. For a bounded target reference in, the closed-
loop system will admit only bounded reachable states
x:

‖in‖∞ 6 1 =⇒ xᵀPcx 6 1

These boundedness properties may seem weak to con-
trol engineers compared to the asymptotic stability prop-
erties expressed by the Lyapunov functions. However,
they are of extreme importance to guarantee that the
implementation will behave properly, without diverg-
ing and causing runtime errorse. g.producing numerical
overflows. Once provided with a quadratic bound on
reachable states using the Lyapunov function character-
izing the stability of the controller, static analyses of the
discrete model and the code can rely on policy iterations,
cf. Chap. 6, to infer bounds on xc and x.

7.1.2 Stability of Closed-loop system without saturation

Recall that the closed-loop system example presented in
Chapter. 3 was presented in two flavors. The first one
considered a simple feedback between the linear con-
troller and the linear plant. This global linear system
is exactly described by Figure. 7.1.

Figure 7.2 displays the analyzed code for the closed-
loop system described in the previous section. From
such a code, our analyzer extracts the control flow graph
of Figure 7.3.

Figure 7.2 Analyzed code for the closed-loop system.
xc1 = xc2 = xp1 = xp2 = 0;
while (1) {

yd = acquire_input();
assert(yd >= -0.5 && yd <= 0.5);
oxc1 = xc1; oxc2 = xc2; oxp1 = xp1; oxp2 = xp2;
xc1 = 0.499 * oxc1 - 0.05 * oxc2 + (oxp1 - yd);
xc2 = 0.01 * oxc1 + oxc2;
xp1 = 0.028224 * oxc1 + oxp1 + 0.01 * oxp2

- 0.064 * (oxp1 - yd);
xp2 = 5.6448 * oxc1 - 0.01 * oxp1 + oxp2

- 12.8 * (oxp1 - yd);
wait_next_clock_tick();

}

Our analysis then synthesizes a quadratic Lyapunov-
based template P, inductive over system transitions:

AᵀPA− P ≺ 0, (129)

where A denotes the closed-loop system discrete dynam-
ics.

Let P be the matrix obtained:

P :=

1.7776 1.3967 −0.6730 0.1399

1.3967 1.1163 −0.4877 0.1099

−0.6730 −0.4877 0.3496 −0.0529

0.1399 0.1099 −0.0529 0.0111

 ,

From the extracted control flow graph and a set of ex-
pressions ti on program variables, called templates, pol-
icy iterations techniques, cf Chapter 6 compute, for each
graph vertex, bounds bi such that

∧
i ti 6 bi is an invari-

ant.
Given the templates t1 := xᵀPx, t2 := x2c1, t3 :=

x2c2, t4 := x2p1 and t5 := x2p2 where x is the vector
[xc1 xc2 xp1 xp2]

ᵀ and (rounded to four digits) policy
iterations compute the invariant

t1 6 0.2302 ∧ t2 6 51.0162 ∧ t3 6 15.4720

∧ t4 6 10.1973 ∧ t5 6 1767.75

7.1 open- and closed-loop stability 69

Figure 7.3 Control flow graph for code of Figure 7.2.

s. t. 1

true ,

xc1 := 0

xc2 := 0

xp1 := 0

xp2 := 0

−0.5 6 yd 6 0.5 ,

xc1 := 0.499xc1 − 0.05xc2 +xp1 −yd

xc2 := 0.01xc1 +xc2

xp1 := 0.028224xc1 +xp1 + 0.01xp2 − 0.064 (xp1 −yd)

xp2 := 5.6448xc1 − 0.01xp1 +xp2 − 12.8 (xp1 −yd)

which implies

|xc1| 6 7.1426 ∧ |xc2| 6 3.9334 ∧
∣∣xp1∣∣ 6 3.1933

∧
∣∣xp2∣∣ 6 42.0446.

Our static analyzer took 0.76s to produce this tem-
plate and 1.28 to bound it on an Intel Core2 @ 1.2GHz,
hence a fully automatic computation in a total of 2.19s.
This shows the existence of a Lyapunov function, bounds
reachable states and proves stability.

7.1.3 Closed-loop system with saturations

Realistic controllers usually contain saturations to bound
the values read from sensors or sent to actuators, in or-
der to ensure that these values remain in the operating
ranges of those devices. With such a saturation on its
input, the control flow graph of our running example
changes to the one shown in Figure 7.4.

Unfortunately the previous method does not readily
apply for the system flavor with saturation.

A first idea could be to try to generate, as previously
described, a quadratic template P for each edge of the
control flow graph of Figure 7.4. This approach some-
times proves successful but fails on our running exam-
ple. Indeed, only one of the edges of the graph on Fig-
ure 7.4 leads to a template P (for other edges, the Lya-
punov equation has no solution) and this template does
not allow policy iterations to compute a worthwhile in-
variant on the whole program.

Using common Lyapunov functions constitutes a sec-
ond idea. That is, looking for a solution to the conjunc-
tion of Lyapunov equations for each edge. Again, this
fails since Lyapunov equations have no solution for some
edges. This is due to the fact that the closed-loop system
is not globally stable. Indeed, intuitively, when its in-
put is saturated, the controller is not able to stabilize any
arbitrary state of the plant.

Last, other approaches such as piecewise Lyapunov

functions, cf. Sect. 5.3, admit similar limits: they require
strict inequalities to ensure soundness of the analysis.

The following two Sections 7.1.3 and 7.1.3 offer two
alternative ways to generate a template xᵀP x such that
xᵀP x 6 r is an invariant of the closed-loop system with
saturation for some r. Both methods manage to produce

such a template but more investigations are needed to
determine their relative advantages and drawbacks.

Linearizing the Saturation

One solution in this case, strongly inspired from [Fér10],
provides a heuristic that can be used on systems with
saturations, such as the one described in equation (33).
Indeed, let P be a candidate matrix describing an invari-
ant ellipsoid for the system. We try to characterize P
as closely as possible while keeping the solving process
tractable:

Assuming xT
kPxk 6 1, a bound on |Cxk| is given

by γ :=
√
CP−1CT. Since |yd,k| 6 0.5, the constant

γ̃ := γ+ 0.5 is an upper bound on |Cxk − yd,k|. Letting
yc,k := SAT(Cxk − yd,k), we have the following sector
bound:(
yc,k −

1

γ̃
(Cxk − yd,k)

)
(yc,k−(Cxk−yd,k)) 6 0. (130)

Figure 7.5 illustrates the reason for this inequality. With
the added bound γ̃ on |Cxk − yd,k|, we see that yc,k
necessarily lies between Cxk − yd,k and 1

γ̃

(
Cxk − yd,k

)
.

Then yc,k−
1
γ̃ (Cxk−yd,k) and yc,k− (Cxk−yd,k) must

be of opposite signs, hence the inequality.

Figure 7.5 Illustration of the sector bound relationship.
The equality yc = SAT(Cx−yd) (thick line) is abstracted
by the inequalities (Cx − yd)/γ̃ 6 yc 6 Cx − yd (gray
area).

Cx− yd

(Cx− yd)/γ̃

SAT(Cx− yd)

Cx− yd
1

−1

γ̃

−γ̃

70 system properties as invariants

Figure 7.4 Control flow graph for the system with a saturation.

s. t. 1

true ,

xc1 := 0

xc2 := 0

xp1 := 0

xp2 := 0

−0.5 6 yd 6 0.5

xp1 −yd > 1
,

xc1 := 0.499xc1 − 0.05xc2 + 1

xc2 := 0.01xc1 +xc2

xp1 := 0.028224xc1 +xp1 + 0.01xp2 − 0.064× 1
xp2 := 5.6448xc1 − 0.01xp1 +xp2 − 12.8× 1

−0.5 6 yd 6 0.5

−1 6 xp1 −yd 6 1
,

xc1 := 0.499xc1 − 0.05xc2 +xp1 −yd

xc2 := 0.01xc1 +xc2

xp1 := 0.028224xc1 +xp1 + 0.01xp2 − 0.064 (xp1 −yd)

xp2 := 5.6448xc1 − 0.01xp1 +xp2 − 12.8 (xp1 −yd)

−0.5 6 yd 6 0.5

xp1 −yd < −1
,

xc1 := 0.499xc1 − 0.05xc2 − 1

xc2 := 0.01xc1 +xc2

xp1 := 0.028224xc1 +xp1 + 0.01xp2 − 0.064× (−1)

xp2 := 5.6448xc1 − 0.01xp1 +xp2 − 12.8× (−1)

We thus look for a matrix P such that√
CP−1CT 6 γ (131)

and (
xT
kPxk 6 1∧ y

2
d,k 6 0.5

2 ∧ (130)
)

=⇒ xT
k+1Pxk+1 6 1.

(132)

Defining an extended state vector εk :=[
xk yc,k yd,k 1

]ᵀ and the matrices

U :=

ATPA ATPB 04×1 04×1

BTPA BTPB 0 0

01×4 0 0 0

01×4 0 0 −1

V :=

P 04×1 04×1 04×1

01×4 0 0 0

01×4 0 0 0

01×4 0 0 −1

 ,

W :=

2
γ̃C

TC −
(
1+ 1

γ̃

)
CT − 2γ̃C

T 04×1

−
(
1+ 1

γ̃

)
C 2 1+ 1

γ̃ 0

− 2γ̃C 1+ 1
γ̃

2
γ̃ 0

01×4 0 0 0

 ,

Y :=

04×4 04×1 04×1 04×1

01×4 0 0 0

01×4 0 1 0

01×4 0 0 −0.52

 ,

we can rewrite equation (132) as(
εT
kVεk 6 0∧ ε

T
kYεk 6 0∧ ε

T
kWεk 6 0

)
=⇒ εT

kUεk 6 0.

convexification Equation (132) can then be re-
laxed by S-procedure: it will hold if there exists positive
coefficients λ, µ, and ν, such that

U− λV− µW− νY � 0. (133)

Equation (131) can be rewritten using Schur comple-
ment:

[
γ2 C

CT P

]
� 0. (134)

Note that for fixed λ and γ, equations (133) and (134)
form a Linear Matrix Inequality (LMI) in P, µ and ν,
which means it can be solved by an SDP solver. γ̃ =

γ+ 0.5 is expected to be larger than 1 (otherwise the sat-
uration would never be activated), moreover since the
saturation should somewhat “bound” this value, we can
expect it not to span over multiple orders of magnitude.
We also know that λ ∈ (0, 1) thanks to the bottom right
coefficient of the LMI (133) (since ν > 0). One possible
strategy is then to iterate on potential values of λ and γ,
and solving the corresponding LMI at each iteration. If a
solution exists, it will provide the invariant xᵀPx 6 1 for
the system with saturation.

For our running example, we generated a suitable tem-
plate in 279s on an Intel Core2 @ 2.4GHz. Values for λ
are chosen by exploring (0, 1) with numbers of the form
k
2i

for increasing values of i > 1, and k < 2i. For each
choice of λ, the LMI is solved with values of γ̃ ranging
from 1 to 5 by increments of .1. The solution is found for
λ = 63

64 and γ̃ = 3.1, which amounts to 2605 calls to the
LMI solver.

7.1 open- and closed-loop stability 71

First Abstracting the Disturbance

In the previous approach, the method used was mainly
based on an abstraction of the saturation. This second
one exposes an alternative method in which the distur-
bance yd, rather than the saturation, is abstracted.

Let us first neglect the disturbance yd and look for a
Lyapunov function for the following system:

xk+1 =

Axk −B if Cxk 6 −0.5

(A+BC)xk if − 1.5 6 Cxk 6 1.5

Axk +B if Cxk > 0.5

(135)

where A, B and C are the matrices given in (33).

Remark 4 yd is abstracted in the sense that the term (A+

BC)x− Byd of (33) is replaced by (A+ BC)x in (135). Sim-
ilarly, guards such as Cx− yd 6 −1 are replaced by Cx 6
−0.5 (since |yd| 6 0.5).

Remark 5 In case 0.5 6 ±Cxk 6 1.5, the system non de-
terministically takes one of the two available transitions, the
transition taken by the actual system (33) being determined by
the value of the abstracted variable yd.

A quadratic Lyapunov function x 7→ xᵀPx for this
system must then satisfy x

ᵀ
k+1Pxk+1 6 x

ᵀ
kPxk for all

xk ∈ R4 and all possible transitions from xk to xk+1.
Hence, for all x ∈ R4

Cx 6 −0.5⇒ (Ax−B)ᵀP(Ax−B) 6 xᵀPx

−1.5 6 Cx 6 1.5

⇒ ((A+BC)x)ᵀP((A+BC)x) 6 xᵀPx

Cx > 0.5⇒ (Ax+B)ᵀP(Ax+B) 6 xᵀPx.

It is worth noting that we can get rid of the first con-
straint by a symmetry argument. Indeed, the first con-
straint holds for some x if and only if the third one holds
for −x. Similarly, we can remove the left part of the im-
plication in the second constraint. Indeed, the right part
of the implication holds for some x if and only if it holds
for αx and, for α small enough, αx will satisfy the left
part of the implication. Thus x 7→ xᵀPx is a Lyapunov

equation for (135) if and only if for all x ∈ R4{
((A+BC)x)ᵀP((A+BC)x) 6 xᵀPx

Cx > 0.5⇒ (Ax+B)ᵀP(Ax+B) 6 xᵀPx.
(136)

By defining the vector x ′ := [xᵀ 1]ᵀ, this can be rewritten
xᵀ(A+BC)ᵀP(A+BC)x 6 xᵀPx

[C 0] x ′ > 0.5

⇒ x ′ [TA B]ᵀP [A B] x ′ 6 x ′ [TI4 0]
ᵀP [I4 0] x

′.

By a Lagrangian relaxation, this holds when there exists
a λ > 0 such that

P− (A+BC)ᵀP(A+BC) � 0

[I4 0]
ᵀP [I4 0] − [A B]ᵀP [A B] − λ

[
0 Cᵀ

C −1

]
� 0

where M � 0 means that the matrix M is positive semi-
definite (i.e. for all x, xᵀPx > 0).

We eventually want the template xᵀP x to provide an
invariant for the original system with the disturbance yd.
For that purpose, we not only want (A+BC)ᵀP(A+BC)

in the first inequality to be less than P but rather the least
possible, in order to leave some room to later reintroduce
yd. That is, we look for τmin, the least possible τ ∈ (0, 1)
satisfying

τP− (A+BC)ᵀP(A+BC) � 0

for some positive definite matrix P. For any given value
of τ, this is a LMI and an SDP solver can be used to de-
cide whether a P satisfying it exists or not. Thus, τmin
can be efficiently approximated by a bisection search in
the interval (0, 1).

Remark 6 τmin is also called minimum decay rate [Yan92].

We are thus looking for a positive definite matrix P
satisfying

τminP− (A+BC)ᵀP(A+BC) � 0

[I4 0]
ᵀP [I4 0] − [A B]ᵀP [A B] − λ

[
0 Cᵀ

C −1

]
� 0.

This is a LMI and could then be fed to an SDP solver.
Unfortunately, it has no solution. Indeed, A has eigen-
values larger than 1 and taking x large enough can break
the second constraint in (136) for any value of P.

However, x is saturated when Cx > 1.5 and it is then
reasonable to expect Cx not to go to far beyond this
threshold. We thus need to add a constraint Cx 6 γ

for some γ > 1.5, in the hope that the generated invari-
ant will eventually satisfy it. This results in the following
LMI {

τminP− (A+BC)ᵀP(A+BC) � 0
[I4 0]

ᵀP [I4 0] − [A B]ᵀP [A B] − λD � 0
(137)

where D := [C − 0.5]ᵀ [−C γ] + [−C γ]ᵀ [C − 0.5].
Finally, for a solution P of the above LMI, xᵀPx 6 rmax

should be a good candidate invariant for the original sys-

tem (33), with rmax := γ2

CP−1Cᵀ the largest r such that
xᵀPx 6 r implies Cx 6 γ.

On our running example, 15 bisection search iterations
first enable to compute τmin = 0.9804 (rounded to four

72 system properties as invariants

digits). Then, the values 2, 3, 4,. . . are successively tried
for γ in (137). The LMI appears to have a solution for
γ = 2 and γ = 3 but not for γ = 4. The value of P ob-
tained for the last succeeding value of γ (γ = 3) is then
kept as a template and fed to policy iterations along with
rmax = 0.26. All these computations (bisection search
for τmin, tests for γ and computation of rmax) took 0.83s
on an Intel Core2 @ 1.2GHz.

Relying on computed template

We use the second method to compute a matrix P:

P :=

0.2445 0.3298 −0.0995 0.0197

0.3298 1.0000 −0.0672 0.0264

−0.0995 −0.0672 0.0890 −0.0075

0.0197 0.0264 −0.0075 0.0016

 ,

Then the previous steps can be performed:
Given the templates t1 := xᵀPx, t2 := x2c1, t3 :=

x2c2, t4 := x2p1 and t5 := x2p2 where x is the vector
[xc1 xc2 xp1 xp2]

ᵀ and (rounded to four digits) policy
iterations compute the invariant

t1 6 0.1754 ∧ t2 6 6.1265 ∧ t3 6 0.3505

∧ t4 6 4.1586 ∧ t5 6 1705.1748

which implies

|xc1| 6 2.4752 ∧ |xc2| 6 0.5921 ∧
∣∣xp1∣∣ 6 2.0393∧∣∣xp2∣∣ 6 41.2938.

Our static analyzer took 1.39s to produce this result on
an Intel Core2 @ 1.2GHz.

Remark 7 Despite the fact that the disturbance yd was ab-
stracted to generate P, it is worth noting that policy iterations
are performed on the complete system, with yd.

Remark 8 Although quite heuristic, the choice for γ does not
seem that difficult since any value in the interval (2.40, 3.85)
would also have led to a good template.

7.2 robustness with vector margin

Beyond stability, an important property which needs to
be verified is the robustness of the controller. The prop-
erty of robustness is necessary in practice as there are
many sources of imperfection in the feedback loop. It
characterizes “how much” the closed-loop system is sta-
ble and which kind of perturbations or uncertainty can
be sustained without losing stability. These imperfec-
tions can include errors in modeling the plant, uncertain-
ties in the plant that cannot be captured by the model,

noises in the sensors and actuators, limitations of the
controller design, i.e. , not accounting for the complete
range of behaviors of the system, non-linearities in the
actuators, faulty actuators, etc.

The standard metric used in the industry to gauge the
robustness of linear SISO1 controllers consists of phase
and gain margins. While these notions are now over-
seen by more modern techniques such as IQC [MR95]
or µ-analysis [Doy82], there are still widely used in the
industry as measures to be guaranteed for a controlled
system.

However, theses margins are never analyzed or com-
puted on the code artifact, taking into account the real
implementation using floating-point arithmetic.

We propose here to rely on the notion of Vector mar-
gins to characterize such robustness and characterize it
as a numerical invariant property over system states, and
therefore amenable to code level analysis.

Let us first give an informal overview of classi-
cal frequency-based robustness analysis, using Nyquist

plots, then present our use of vector margins to bound
robustness.

7.2.1 Nyquist Plot and Stability Criterion

The Nyquist plot is the frequency response (magnitude
and phase) of the loop transfer function to a sinusoidal
input displayed using a polar coordinate system. To con-
struct the Nyquist plot, the loop transfer function L(z)
is evaluated along the Nyquist contour Γ . The Nyquist

contour, shown in Fig. 7.6, encircles the region outside of
the unit disk (OUD) centered at the origin.

Figure 7.6 Nyquist contour in discrete-time.

+∞ −∞ −1 +1

Unstable Region

Stable Region

Nyquist Contour

1 SISO stands for “Single Input Single Output”

7.2 robustness with vector margin 73

An example Nyquist plot for the loop transfer func-
tion

L(z) :=
7.552×10−5z3−7.583×10−5z2−7.454×10−5z+7.488×10−5

z4−3.979z3+5.937z2−3.937z+0.979

(138)

is shown in Fig. 7.7.

We now introduce the Nyquist stability criterion
which uses the Nyquist plot to determine the closed-
loop stability of the system. Let Zi be the number of
OUD zeros of L(z) + 1 and let Pi be the number of OUD
poles of L(z) + 1. By Cauchy’s principle of argument,
the Nyquist plot should encircle clockwise2 the −1+ 0j

point Ni number of times where

Ni = Zi − Pi. (139)

Using (139) and the Nyquist plot in Fig. 7.7, we can con-
clude the stability of the closed-loop system L(z)

1+L(z) in
the following way. First we know the loop transfer func-
tion L(z) in (138) is stablei.e. L(z) + 1 has 0 OUD poles,
which means Pi = 0. Since the Nyquist plot in Fig. 7.7
does not encircle −1+ 0ji.e. the critical point, we can con-
clude that Zi or the number of OUD zeros of L(z) + 1 is
also 0. Since OUD zeros of L(z) + 1 are also the OUD
poles of the closed-loop transfer function, we can con-
clude that the closed-loop system is also stable.

7.2.2 Phase and Gain Margins

From the Nyquist stability criterion, one can infer that
a possible robustness metric would be the size of the
gap between the Nyquist plot and the −1+ 0j point. In
fact, phase and gain margins are two different approxi-
mations of the “distance" from the Nyquist plot to the
critical point.

The first approximation, phase margin, measures how
much phase lag the system can tolerate. A phase lag of
π
2 or 90◦ corresponds to a delay of a quarter of a period.
Geometrically speaking, introducing a phase lag of ∆ω
in the feedback loop results in the original Nyquist plot
rotated clockwise by ∆ω i.e. L(z)→ ej∆ωL(z).

Figure 7.7 Classical margins versus vector margin shown
on the Nyquist plot of (138).

𝑃𝑀: 69𝑜

𝐺𝑀:∞

𝑉𝑀: 0.263

Classical Robustness Effective Robustness

The phase margin represents the amount of clockwise
rotation that can be applied to the Nyquist plot before
it hits the critical point. As shown in Fig. 7.7, the phase
margin (PM) is precisely the clockwise angle between
the point where the unit circle, centered at the origin,
intersects with the Nyquist plot and −1+ 0j.

The second approximation, gain margin, measures
how much feedback gain the system can toleratei.e. how
much one can scale up the Nyquist plot radially before
it intersects with the −1+ 0j point. As shown in Fig. 7.7,
the gain margin (GM) is precisely 20 log10

1
x where x is

the magnitude of the Nyquist plot at the phase angle of
π. For good robustness, a typical requirement is a phase
margin of at least 30◦ and a gain margin of at least 3db.

7.2.3 Vector Margin computation

Uncertainties in the feedback loop can introduce simul-
taneous phase lags and increases in the feedback gain.
In those cases, interpreting the phase and gain margins
could produce an overly optimistic view of the robust-
ness of the feedback system. For example, a small phase
lag combined with a small gain change would destabi-
lize the system in Fig. 7.7, while a pure increase in gain
would never do so and it would take a large phase lag
alone to destabilize the system. To give a better indica-
tion of the robustness of the system, we look at the dis-
tance between −1+ 0j and the Nyquist plot induced by
the complex modulusi.e. minz∈Γ |L(z) + 1|. In this follow-
ing, we call this robustness measure the vector margin.
By plotting a circle of radius equal to the vector margin
centered at the −1+ 0j point, we get the effective robust-
ness envelope in Fig. 7.7, which for this example, is far
more pessimistic than the robustness envelope formed

2 Counter-clockwise encirclement counts as negative.

74 system properties as invariants

by the classical measures. There are several advantages
to using the vector margin.

1. It is a more faithful measure of the robustness.

2. It can be translated into the time-domain and then
expressed on the code as a quadratic invariant.

3. It readily extends to MIMO systems [GVP00;
Vin01].

The vector margin can be computed by finding the in-
verse of the maximum modulus of the sensitivity func-
tion S(z) := 1

1+L(z) over the Nyquist contour Γ . This can
be seen by noting that

min
z∈Γ

|L(z) + 1| =
1

max
z∈Γ

1

|L(z) + 1|

=
1

max
z∈Γ

∣∣∣∣ 1

L(z) + 1

∣∣∣∣ .
The sensitivity function is a first-order approximation of
the change in the output over the change in the input
for the closed-loop system. The state-space representa-
tion of the sensitivity function S(z) := 1

1+L(z) where
L(z) := P(z)C(z) can be expressed in terms of the ma-
trices which form the state-space realization of the plant
P(z) and the controller C(z). For the example in Fig. 7.1,
the sensitivity transfer function has the following state-
space realization

xk+1 = Asxk +Bsink

ek = Csxk +Dsink
(140)

where

As :=

[
Ac −BcCp

BpCc Ap −BpDcCp

]
Bs :=

[
Bc

BpDc

]
Cs :=

[
0 −Cp

]
Ds :=

[
I

]
.

(141)

By the application of the bounded real lemma [HC08,
pg.821], we have the following result.

Property 7.1 If there exists a positive-definite matrix P and
γ > 0, such that

xT
k+1Pxk+1 − x

T
kPxk 6 γ

2‖ink‖22 − ‖ek‖
2
2 (142)

then maxz∈Γ |S(z)| 6 γ.

The inequality in (142) is a dissipativity condition [Wil72]
and can be checked efficiently by solving a linear matrix
inequality (LMI) [Boy+94]. We have the following propo-
sition.

Property 7.2 The previous inequality (142) can be written as
the following LMI(
As

ᵀPAs − P+Cs
ᵀCs As

ᵀPBs +Cs
ᵀDs

Bs
ᵀPAs +Ds

ᵀCs Ds
ᵀDs +Bs

ᵀPBs − γ
2I

)
≺ 0.

(143)

By Proposition 7.2, for any P � 0 and γ > 0 satisfy-
ing (143), we have maxz∈Γ |S(z)| 6 γ. By minimizing γ
in (143), we get the vector margin δ = 1

γ .

Thus, summing (142) from time 0 to any time T , we
get

xT
T+1PxT+1− x

T
0Px0 6 γ

2

(∑T
k=0

‖ink‖22

)
−
∑T
k=0

‖ek‖22

and since P is positive definite, assuming x0 = 0

∑T
k=0

‖ek‖22 6 γ
2

(∑T
k=0

‖ink‖22

)
. (144)

7.2.4 Relationship
with Phase and Gain Margins

While vector margins could be computed automatically
on the linear system, including its implementation, the
use of phase and gain margins is often required to in-
teract with control engineers. We propose here classical
projections of vector margins onto a safe approximation
of their associated phase and gain margins.

phase margins As explained in Sec 7.2.2, the phase
margin denotes the angle between the intersection of the
Nyquist plot of the transfer function with the unit circle
and the point −1+ 0j.

This angle is necessary larger than the angle between
the intersection of the computed safe circle of radius δ
with the unit circle and the point −1 + 0j (cf. Fig. 7.7,
where δ = VM).

In that case a direct projection of vector margins to
phase margins is

φδ = 2 arcsin(δ/2)

gain margins Similarly a safe gain margin can be
obtained by projecting the vector margin. Gain margin
denotes the acceptable scale of the Nyquist plot to avoid
intersection with the point −1+ 0j.

We can approximate the gain margin associated to the
vector margin δ:

Θδ =
1

1− δ

This gain is usually reported in dB:

Θδ = 20 · log10
(

1

1− δ

)

7.3 related work 75

7.2.5 Spring Mass Damper analysis

When analyzing the example provided in Chapter 3, con-
sidering the closed-loop system, we obtain, with clas-
sical methods, the following phase and gain margins:
Θ = 17dB and φ = 49◦. Note that we assume a system
without saturations since saturation can not be consid-
ered when computing Nyquist plot analysis.

From the discrete plant and controller description, the
sensitivity system is automatically built and analyzed
with the LMI (143), we obtain γ = 1.4914 and

P =

111.8330 88.4842 −48.4990 8.8432

88.4842 278.5963 −20.2482 6.9605

−48.4990 −20.2482 28.7964 −3.7961

8.8432 6.9605 −3.7961 0.7013

 .

The resulting vector margin is δ = 1/γ = 0.6705. And
its projection to conservative gain and phase margins re-
turns:

Θδ = 10dB φδ = 39◦

Fig. 7.8 presents the Nyquist plot and the vector mar-
gin.

Figure 7.8 Nyquist plot of the spring mass damper sys-
tem with vector margin

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

7.3 related work

Few analyses addressed this issue of closed-loop stability
in settings comparable to ours, and none the robustness
as code level compatible analysis.

At control level, both stability and robustness prop-
erties were historically the earliest considered. Lots of
techniques address them through different means, we

refer the interested (computer scientist) reader to an in-
troductory lecture on control theory [Lev96]. In control
theory, two main approaches exist to analyze systems.
Either the temporal domain, mentioned above, or the
frequency domain, more commonly used. In the fre-
quency domain, stability is usually analyzed by studying
the pole placement of the transfer function, either on the
Laplace transform of the signal (negative-real part), or on
its Z-transform (within the unit circle). In both cases, the
system has to be fully linearized (ie removing saturation
around the linearization point) and the analysis assumes
a real semantics, without considering floating-point com-
putations.

Even in the temporal domains analyses, as computed
by control theorists, the effect of floating-point computa-
tions performed at the controller level and those poten-
tially done during the analysis itself are typically forgot-
ten. These will be address by in Chapter 9.

On the static analysis side, few existing analyses are
able to express the simple property of stability. As men-
tioned earlier, most of the existing abstract domains,
used to compute an over-approximation of reachable
states, rely on linear approximations. The methods pro-
posed in Chapters 5 and 6, providing, respectively, the
synthesis of non linear sublevel-set invariants and nar-
rowing of them using min-policy iterations, addressed
this issue. However, as developed in Chapter 9, because
of floating point errors a strict inductive condition is en-
forced, preventing the analysis of saturating controllers.
The proposed methods provide additional means to han-
dle this large set of systems.

Finally, a last line of work has to be mentioned: the
vast set of work focusing on hybrid systems [MT13;
PW07; PS13; RS10; ST11]. It is difficult to summarize
in a few words those analyses. We could however say
that usually (1) they address systems of a somewhat
different nature with a central continuous behavior de-
scribed by differential equations and few discrete events
(for instance a bouncing ball or an overflowing water
tank) whereas controllers perform discrete transitions on
a periodical basis, and (2) they focus on bounded time
properties rather than invariant generation. These two
points can be major obstacles to the adaptation of these
very interesting techniques to our setting.

For instance, although bounded-time analyses (simu-
lation) do not provide invariants, they enable the use
of techniques directly analyzing the continuous plant,
such as guaranteed integration [Bou+09]. This avoids
discretizing the plant, as we do here, which can intro-
duce additional conservatism in the analysis.

8
VA L I D AT I O N O F S Y S T E M - L E V E L P R O P E RT I E S AT C O D E L E V E L

All previous analyzes were performed on models, a
discrete dynamical systems. As mentioned in Section 4.1,
these models can be either provided as early design arti-
facts or extracted for more concrete representation such
as models or code.

However, once the control-level properties have been
expressed and analyzed at model level, we would like to
assert their validity on the code artifact extracted from
the model.

Luckily this extraction of code from models is largely
automatized thanks to autocoding framework generat-
ing embedded code from dataflow models such as Mat-
lab Simulink, Esterel Scade or the academic language
Lustre [Cas+87]. Code generation from dataflow lan-
guages [Bie+08] is now effective and widely used in
the industry, supported by tools such as Matlab Real

Time Workshop, Esterel KCG or Lustre compilers,
eg. [GTK12].

We claim that code generation can be adapted to en-
able the expression of system-level properties at code
level, and be later proved with respect to the code se-
mantics.

The current chapter addresses this issue. We first give
an overview of the modeling framework, enabling the ex-
pression of properties at model and code level. A second
part explains our generation of such code annotations
while a last part focuses on their verification.

8.1 axiomatic semantics of control proper-
ties through synchronous observers and

hoare triples

The framework of control software credible autocoding
using control semantics is summarized in figure 8.1. The
framework provides a conduit that allows the domain ex-
pert e.g. the control engineer to more efficiently produce
code with automatically verifiable guarantees of safety
and high-level functional properties. A credible autocod-
ing framework adds, on top of the basic model-based
development cycle, an additional layer for the genera-
tion, translation, and verification of the control seman-
tics of the system. By control semantics of the system,
we mean precisely the closed-loop stability and perfor-

mance properties of the control system and their accom-
panying proofs. In this framework, the control engineer
can choose either to provide manually the properties
and proofs as part of the specifications of the controller,
or leave it to an automated analyzer that generates the
proofs of stability and performance from the controller
specifications as presented in Chapter 7.

The framework is split into two nominally indepen-
dent self-contained halves, in which, each corresponds
to a side in the classic V-diagram of the software devel-
opment cycle. The left half of the credible autocoding
cycle automatically transforms the model of control sys-
tem into a compilable code annotated with a collection
of Hoare logic statements. Taken as a whole, the collec-
tion of logic statements i.e. the annotations along with
the code, form a claim of proof that the code satisfies cer-
tain closed-loop stability and performance properties of
the control system.

The right half of the framework performs an automatic
deductive verification of the annotated code with respect
to the control system properties expressed by the annota-
tions. The deductive verification process, while assisted
by the proof information provided within the generated
annotations, is nonetheless independent of the credible
autocoding process. It is independence can be seen as
follows: analogously, the deductive verification of a pro-
gram with respect to a property is similar to proving a
theorem in mathematics; within the same analogy, the
annotations generated by the credible autocoding pro-
cess form the steps of a proof, and what the right half of
the framework does is to automatically check the correct-
ness of the provided proof using a computerized proof
system that is sound; just like in mathematics, the proofs
provided by one author can be independently verified by
other parties; the main difference between that and veri-
fying a proof on the code is that the proof statements are
formalized in a such way that it can be checked automat-
ically by a computer proof system.

8.1.1 Languages and Tools

For the framework, the input language could be
any graphical data-flow modeling language such as

77

78 validation at code level

Figure 8.1 Automated Credible Autocoding and Verification Framework for Control Systems

Simulink

Binary

C Code

PVS Theories +
PVS Proofs

Control Semantics:
Stability proofs, bounded-

ness, transient
performances,

stability margins, etc.

ACSL Annotations
(Hoare triples)

Manual

Both

Automatic

Extended Gene-Auto

Certified Compiler

frama-C

Simulink or Scicos [CCN06] that is suited for controller
design. The input language should have formal and pre-
cise semantics so the process for the generation of the
code and the control semantics can be formally verified.
The exact choice for the input language is dependent on
the domain experts’ preference and does not affect the
utility of the framework as it can be adapted to other
modeling languages such as Scade.

For this specific work the experimental tool-chain we
developed accepts a subset of the Simulink language,
since it relies on an existing open-source compiler for
Simulink: GeneAuto. Likewise, for the output lan-
guage, the choice is likely to depend on the preferences
of the industry and the certification authority. We choose
the C language because of its industrial popularity and
the wide availability of static analyzers tailored for C
code, including the Frama-C platform [Cuo+12] from
CEA and its weakest precondition analyzer: WP.

The set of annotations in the output source code con-
tains both the functional properties inserted by the do-
main expert and the proofs that can be used to automat-
ically prove these properties. For the analysis of the an-
notated output, we built a prototype annotation checker
that is based on the static analyzer Frama-C and the the-
orem prover PVS. For automating the proof-checking of
the annotated output, a set of linear algebra definitions
and theories were integrated into the standard NASA
PVS library [Her+12].

In this chapter, the fully automated process from the
input model to the verified output is showcased for the
property of close-loop stability, but the expression of
other functional properties on the model are also dis-
cussed in Chapter 12. At this point, we restrict the input
to only linear controllers with possible saturations in the
loop. For this presentation, example are related to the

Spring-Mass damper introduced in Section. 3.2. How-
ever, we have applied the approach to several other much
larger systems, which include the Quanser 3-degree-of-
freedom Helicopter, an industrial F/A-18 UAV controller
system and a FADEC control system for a small twin jet
turbofan engine [Pak+13]. The state-space size of the en-
gine FADEC, for example, is 15.

In the next three sections, we develop our approach
on expressing and manipulating control-level semantics
at the model in Simulink (see 8.1.2), at the code level in
C (see 8.1.3), and as PVS predicates for the proof part
(see 8.1.4).

8.1.2 Control Semantics in Simulink: Ellipsoid-based syn-
chronous observers

When considering synchronous dataflow language a con-
venient approach to formalize their intend semantics is
to rely on synchronous observers [HLR93; Rus12]. These
observers are defined using the modeling language and
are included in the description of the system. These are
blocks that, depending on internal signals of the system
compute a boolean output. A valid observation will pro-
duce a positive output while a violation of the encoded
property will produce a negative one. These blocks char-
acterize a projection, an observation, of the behavior of
the system and therefore denote an axiomatic semantics.
Synchronous observers can range from simple observa-
tion to complex systems in which the block defining the
observer is itself defined by numerous subsystems in-
cluding memories.

These observers can be used for verification and vali-
dation. When relying on tests, one can evaluate the out-
put of these block, acting as a test oracle for the encoded

8.1 axiomatic semantics for system-level properties 79

property. When performing proof, the goal is to prove
that the output of the block is always positive, for all
reachable states.

Concerning system-level properties, as we saw in pre-
vious chapter, both boundedness and stability can be
expressed using a synchronous observer with inputs
xi, i = 1, . . . ,n, and the boolean-valued function

x→
∑

i,j=1,...,n

xiPijxj 6 µ. (145)

This synchronous observer is parametrized by a symmet-
ric matrix P and a multiplier µ.

For expressing the ellipsoid observers on the Simulink
model, we constructed a custom S block denoted as El-
lipsoid to represent the ellipsoid observer. Additionally,
for expressing the operational semantics of the plant, we
constructed a custom S block denoted as Plant. Its se-
mantics is similar to Simulink’s discrete-time state-space
block with two key differences. One is that the input to
the Plant block contains both the input and output of the
plant. The other is that the output from the Plant block
are the internal states of the plant. These variables are
used to characterize the current state and are therefore
inputs to the ellipsoid observer.

Other properties can also be expressed such as non-
expansivity from the dissipativity framework. The Non-
Expansivity block, when connected with the appropriate
inputs and outputs, can be used to express a variety of
performance measures such as the H∞ characteristic of
the system or the closed-loop vector margin of the con-
trol system. An example of such usage is shown in Fig-
ure 8.2 where the closed-loop vector margin of a constant
gain controller is expressed using a combination of the
Plant block and the Non-Expansivity block.

Figure 8.2 Expressing Vector Margin of the Closed-Loop
System

In this chapter, we focus on the current fully-
automated treatment of the open-loop stability proper-
ties, hence we will not consider the semantics displayed
in Figure (8.2) beyond the description here.

For the running example, we have a Simulink model
connected with two synchronous observers. The ob-
servers are displayed in red for clarity’s purpose.

Figure 8.3 Running Example with Synchronous Ob-
servers

Recall that we made the following assumption for the
quantity y− yd:

‖y− yd‖ 6 0.5, (146)

which is expressed in Figure 8.3 by the Ellipsoid block
BoundedInput with the parameters P = 0.5 and multiplier
µ = 0.0009. The stability proof is expressed in Figure 8.3
by the Ellipsoid block Stability with the parameters P =[
6.742× 10−4 4.28× 10−5

4.28× 10−5 2.4651× 10−3

]
and µ = 0.9991. The

observer blocks in Figure 8.3 are connected to the model
using the VaMux block. The role of the VaMux block is to
concatenate a set of scalar signal inputs into a single vec-
tor output. This special block was constructed because
the Ellipsoid observer block can accept only a single vec-
tor input.

8.1.3 Control semantics at C code-level

For the specific problem of open loop stability, the ex-
pressiveness needed at the C code level is twofold. On
the one hand, one needs to express that a vector com-
posed of program variables belongs to an ellipsoid: this
amounts to a proof of a loop invariant; in our case, this
entails a number of underlying linear algebra concepts.
On the other hand, one needs to provide the static anal-
ysis tools with indications on how to proceed with the
proof of correctness.

The ANSI/ISO C Specification Language (ACSL), is
an annotation language for C [Bau+08]. It is expressive
enough to fulfill our needs, and its associated verification
tool, Frama-C [Cuo+12], offers a wide variety of backend
provers which can be used to establish the correctness of
the annotated code.

80 validation at code level

Linear Algebra in ACSL

A library of ACSL symbols has been developed to ex-
press concepts and properties pertaining to linear alge-
bra. In particular, types have been defined for matri-
ces and vectors, and predicates expressing that a vec-
tor of variables is a member of the ellipsoid EP defined
by {x ∈ Rn : xᵀPx 6 1}, or the ellipsoid GX defined

by

{
x ∈ Rn :

[
1 xᵀ

x X

]
> 0

}
. For example, expressing

that the vector composed of program variables v1 and

v2 is in the set EP where P =

(
1.53 10.0

10.0 507

)
, can be done

with our ACSL extensions using the following annota-
tions:

/*@ logic matrix P = mat_of_2x2_scalar (1.53
,10.0,10.0,507);

@ assert in_ellipsoid(P,vect_of_2_scalar(
v_1,v_2)); */

ACSL

The invariance of ellipsoid EP throughout any program
execution can be expressed by the following loop invari-
ant:

//@ loop invariant in_ellipsoid(
P,vect_of_2_scalar(v_1,v_2));

while (true)\{
//loop body

\}

C+ACSL

This annotation expresses that before and after every ex-

ecution of the loop, the property
[
v1 v2

]ᵀ
∈ EP will

hold. In terms of expressiveness, it is all that is required
to express open loop stability of a linear controller.

However, in order to facilitate the proof, intermediate
annotations are added within the loop to propagate the
ellipsoid through the different variable assignments, as
suggested in [Fér10]. For this reason, a loop body in-
struction can be annotated with a local contract, like so:

/*@ requires in_ellipsoid(P,vect_of_2_scalar
(v_1,v_2));

@ ensures in_ellipsoid(Q,vect_of_3_scalar(
v_1,v_2,v_3));*/

\{
// assignment of v_3
\}

C+ACSL

Including proof elements

An extension to ACSL, as well as a plugin to Frama-C,
have been developed. They make it possible to indicate
the proof steps needed to show the correctness of a con-
tract, by adding extra annotations. For example, the fol-
lowing syntax:

/*@ requires in_ellipsoid(P,vect_of_2_scalar
(v_1,v_2));

@ ensures in_ellipsoid(Q,vect_of_3_scalar(
v_1,v_2,v_3));*/

@ PROOF_TACTIC (use_strategy (
AffineEllipsoid));

\{
// assignment of v_3
\}

C+ACSL

advices Frama-C to use the strategy AffineEllipsoid to
prove the correctness of the local contract considered.

closed-loop semantics: expressing plant dynamics in code

In order to express properties pertaining to the closed-
loop behavior of the system, one needs to be able to re-
fer to the plant variables. This is achieved through the
use of ACSL ghost variables. These variables can be ini-
tialized and updated like regular C ones, but they only
exist in the annotations of the code, and cannot influence
the outcome of actual code computations.

This is possible since all our closed-loop analysis,
stability and robustness through vector margins, were
based on a discrete (linear) representation of the plant se-
mantics. Therefore, the discrete block defining the plant
could be used to generate ghost C code.

At the end of the control loop, we use these variables
to express the state update of the plant that will result
from the computed control signal value. We also enforce
axiomatically the fact that the input read from the sen-
sors equals the output of the plant.

8.1.4 Control semantics in PVS

Through a process described in Section 8.3, verifying the
correctness of the annotated C code is done with the
help of the interactive theorem prover PVS. This type
of prover normally relies on a human in the loop to pro-
vide the basic steps required to prove a theorem. In order
to reason about control systems, linear algebra theories
have been developed. General properties of vectors and
matrices, as well as theorems specific to this endeavor
have been written and proven manually within the PVS
environment.

8.2 generating code annotations 81

Basic types and theories

Introduced in [Her+12] as part of the larger NASA PVS
library, the PVS linear algebra library allows one to rea-
son about matrix and vector quantities, by defining rele-
vant types, operators and predicates, and proving major
properties. To name a few:

• A vector type.

• A matrix type, along with all operations relative to
the algebra of matrices.

• Various matrix subtypes such as square, symmetric
and positive definite matrices.

• Block matrices

• Determinants

• High level results such as the link between Schur’s
complement and positive definiteness

Theorems specific to control theory

In [Her+12], a theorem was introduced, named the ellip-
soid theorem. A stronger version of this theorem, along
with a couple other useful results in proving open loop
stability of a controller, have been added to the library.
The first theorem, presented in Fig. 8.4, expresses in the
PVS syntax how a generic ellipsoid GQ is transformed
into GMQMᵀ by the linear mapping x 7→ Mx. A second
theorem, presented in Fig. 8.5, expresses how, given 2

vectors x and y in 2 ellipsoids GQ1 and GQ2 , and multi-
pliers λ1, λ2 > 0, such that λ1 + λ2 6 1, it can always be

said that
(
x y

)ᵀ
∈ GQ, where Q =

Q1λ1 0

0 Q2
λ2

.

These 2 theorems are used heavily in Section 8.3 to
prove the correctness of a given Hoare triple. While
they are not particularly novel, their proof in PVS was
no trivial process and required close to 10000 manual
proof steps.

Figure 8.4 Ellipsoid theorem in PVS

ellipsoid_general: THEOREM
\(\ forall \) (n:posnat ,m:posnat , Q:SquareMat

(n),
M: Mat(m,n), x:Vector[n], y:

Vector[m]):
in_ellipsoid_Q ?(n,Q,x)
AND y = M*x

IMPLIES
in_ellipsoid_Q ?(m,M*Q*transpose(M),y

)

PVS

Figure 8.5 Ellipsoids combination theorem in PVS

ellipsoid_combination: THEOREM
\(\ forall \) (n,m:posnat , lambda_1 , lambda_2

: posreal , Q_1: Mat(n,n),
Q_2: Mat(m,m), x:Vector[n], y:

Vector[m], z:Vector[m+n]):
in_ellipsoid_Q ?(n,Q_1 ,x)
AND in_ellipsoid_Q ?(m,Q_2 ,y)
AND lambda_1+ lambda_2 <= 1
AND z = Block2V(V2Block(n,m)(x

,y))
IMPLIES
in_ellipsoid_Q ?(n+m,Block2M(M2Block(

n,m,n,m)(1/lambda_1*Q_1 ,
Zero_mat(m,n),

Zero_mat(n,m),1/
lambda_2*Q_2)),z)

PVS

8.2 generating annotations : a strongest

postcondition propagation algorithm

If provided such powerful tools one would only need to
annotate the loop body with a single loop invariant: the
sublevel set µ of the ellipsoid EP. Unfortunately tools,
at that time, were not able to handle such an annotation
and prove it inductive.

Therefore, we relied on intermediate annotations to ex-
press locally the impact of the computations to the loop
invariant.

Remark 9 Ellipsoids can be characterized by positive definite
matrices P: {x | xtPx 6 1}. When P � 0, P is invertible and
then necessarily full rank. As a consequence it cannot contain
any dependencies between the variables and the intermediate
computation may lead the ellipsoid into a degenerate form. A
degenerate ellipsoid P will characterize a set {x | xtPx 6 1}
of lower dimension, for example it can be visualized in two
dimensions as a line segment.

An alternative way is to manipulate ellipsoids through
their Q-form representation, an application of Schur

complement.

Definition 8.1 (Q-form) If matrix P−1 exists and let Q =

P−1, then xᵀPx 6 1 is equivalent to

[
1 xᵀ

x Q

]
> 0 which

is the Q-form

Our framework reads the provided ellipsoids, convert
it in its Q-form and annotate the loop body – usually a
function – with it a an inductive contract.

Then Q-form ellipsoids are injected between each in-
struction to express the local invariant.

The following figures show a portion of the autocoded
output of the running example.

82 validation at code level

The three ACSL annotations in Figure 8.6 defines the
matrix variables QMat_0, QMat_1 and QMat_2. All
three matrix variables parametrize the same ellipsoid
as the one obtained from the stability analysis and in-
serted into the Simulink model as the Ellipsoid#Stability
observer.

Figure 8.6 Definition of ellipsoids as annotations

/*@ logic matrix QMat_0 =
mat_of_2x2_scalar (1484.8760396857954 ,-25

.780980284188082,
-25 .780980284188082 ,406

.11067541120576);
*/
/*@ logic matrix QMat_1 =

mat_of_2x2_scalar (1484.8760396857954 ,-25
.780980284188082,
-25 .780980284188082 ,406

.11067541120576);
*/
/*@ logic matrix QMat_2 =

mat_of_2x2_scalar (1484.8760396857954 ,-25
.780980284188082,
-25 .780980284188082 ,406

.11067541120576);
*/

C+ACSL

Using the ACSL keywords requires and ensures, we can
express pre and post-conditions for lines of code as well
as functions. The ACSL function contract in Figure 8.7
expresses the inserted ellipsoid pre and post-conditions
for the state-transition function of the controller: dis-
crete_timeg_no_plant_08b_compute.

Figure 8.7 Loop body function contract

/*@
requires in_ellipsoidQ(QMat_0,

vect_of_2_scalar(
state->Integrator_1_memory,
state->Integrator_2_memory));

requires \valid(_io_) && \valid(
state);

ensures in_ellipsoidQ(QMat_1,
vect_of_2_scalar(

state->Integrator_1_memory,
state->Integrator_2_memory));

*/
void discrete_timeg_no_plant_08b_compute(

t_discrete_timeg_no_plant_08b_io *_io_,
t_discrete_timeg_no_plant_08b_state *

state);

C+ACSL

Within the body of this loop function, ACSL annota-
tions, such as the one of Figure 8.8, manipulate interme-

diate ellipsoids. In this case, it contains a copy of the pre-
condition from the function contract annotation. This is
the inserted ellipsoid pre-condition for the beginning of
the function body.

Figure 8.8 Statement level annotation

/*@
behavior ellipsoid0_0:
requires in_ellipsoidQ(QMat_2,

vect_of_2_scalar(
state->Integrator_1_memory,

state->Integrator_2_memory));
ensures in_ellipsoidQ(QMat_3,

vect_of_3_scalar(
state->Integrator_1_memory,

state->Integrator_2_memory,x1));
@ PROOF_TACTIC (use_strategy (

AffineEllipsoid));
*/

{
x1 = _state_->Integrator_1_memory;

}

C+ACSL

8.2.1 Invariant Forward Propagation

The manual forward propagation of ellipsoid invariants
was described in [Fér10]. We recall here the basic princi-
ples. More details are available in [Wan+16a] or [Wan15].

Affine Transformation

For the linear propagation of ellipsoids, the AffineEllip-
soid rule is defined. It is used for linear assignments such
as JyK � Lx, where x ∈ Rm is vector of program states
and L ∈ R1×m. It is applied to an existing ellipsoid in
Q-form, Qn, and characterizes the next ellipsoid Qn+1.

Recall that Qn is defined by

[
1 xᵀ

x Q

]
> 0 which is

equivalent to the more classical inequality xᵀQ−1x 6 1.
The formal definition ofQn+1 involves mechanisms to

adapt the dimension of the ellipsoid depending whether
y belong or not to the original set of variables in x. How-
ever, the main idea is the following: the ellipsoid infor-
mation obtained after this assignment can be represented

by

[
1 yᵀ

y LQnL
ᵀ

]
> 0. Forward propagation of linear as-

signment is then easily applicable to Q-form representa-
tions.

S-Procedure

The SProcedure rule is used to combine ellipsoids. We
introduced it in Theorem 4.6, page 34. In case of multi-

8.3 discharging proof objectives 83

ple ellipsoid invariants to be merged in a single one, we
rely on the S-Procedure to compute the multiplies and
generate the stronger one. This typically arises after a
disjunction in the control flow graph such as a satura-
tion.

8.2.2 Verification of the Generated Post-condition

After the invariant propagation step, we obtain the lat-
est ellipsoid post-condition. It is necessary to check if
this new post-condition implies the inserted ellipsoid
pre-condition defined at the function contract level. Cur-
rently, we can do a conservative numerical verification
by using a safe Cholesky decomposition. This is further
developed in Chapter 10.

8.3 discharging proof objectives using pvs

Once the annotated C code has been generated, it re-
mains to be proven that the annotations are correct
with respect to the code. This is achieved by checking
that each of the individual Hoare triples hold. Fig-
ure 8.9 presents an overview of the checking process.
First, the WP plugin of Frama-C generates verification
conditions for each Hoare triple, and discharges the
trivial ones with its internal prover QeD. Then, the re-
maining conditions are translated into PVS theorems for
further processing. It is then necessary to match the
types and predicates introduced in ACSL to their equiv-
alent representation in PVS. This is done through theory
interpretation [OS01] and outlined in subsection 8.3.2.
Once interpreted, the theorems can be generically proven
thanks to custom PVS strategies, as described in subsec-
tion 8.3.3. In order to automatize these various tasks
and integrate our framework within the Frama-C plat-
form, which provides graphical support to display the
status of a verification condition (proved/unproved), we
wrote a Frama-C plugin named pvs-ellipsoid, described
in subsection 8.3.4. Finally, the last ellipsoid inclusion
check does not fall under either AffineEllipsoid of
SProcedure strategies. It is discussed in subsection 8.3.5.

8.3.1 From C code to PVS theorems

The autocoder described in the previous Section gener-
ates two C functions. One of them is an initialization
function, the other implements one execution of the loop
that acquires inputs and updates the state variables and
the outputs. It is left to the implementer to write the
main function combining the two, putting the latter into
a loop, and interfacing with sensors and actuators to pro-
vide inputs and deliver outputs. Nevertheless, the prop-
erties of open and closed loop stability, as well as state-

boundedness, can be established by solely considering
the update function, which this section now focuses on.

Let us consider the following annotated code:

Figure 8.10 Typical example of an ACSL Hoare Triple

/*@
requires in_ellipsoidQ(QMat_4,
vect_of_3_scalar(

state->Integrator_1_memory,
state->Integrator_2_memory,
Integrator_1));

ensures in_ellipsoidQ(QMat_5,
vect_of_4_scalar(

state->Integrator_1_memory,
state->Integrator_2_memory,
Integrator_1,
C11));

PROOF_TACTIC(use_strategy (AffineEllipsoid))
;

*/
\{

C11 = 564.48 * Integrator_1;
\}

C+ACSL

Frama-C/WP is able to characterize the weakest pre-
condition of the ensures statement and to build the proof
objective pre =⇒ wp(code,post). Through the Why3

platform it is able to express it as a PVS theorem. For
example, the ACSL/C triple shown in Figure 8.10, taken
directly from our running example, becomes the theo-
rem shown in Figure 8.11.

Figure 8.11 Excerpt of the PVS translation of the triple
shown in Figure 8.10

wp: THEOREM
FORALL (integrator_1_0: real):
FORALL (malloc_0: [int -> int]):
FORALL (mflt_2: [addr -> real],

mflt_1: [addr -> real],
mflt_0: [addr -> real]):

FORALL (io_2: addr , io_1: addr ,
io_0: addr , state_2: addr ,
state_1: addr , state_0: addr):

...
=> p_in_ellipsoidq(l_qmat_4 ,

l_vect_of_3_scalar(
mflt_2(shift (state_2 , 0)),
mflt_2(shift (state_2 , 1)),
integrator_1_0))

=> p_in_ellipsoidq(l_qmat_5 ,
l_vect_of_4_scalar(

mflt_2(shift (state_2 , 0)),
mflt_2(shift (state_2 , 1)),
integrator_1_0 ,
(14112/25 * integrator_1_0)))

PVS

84 validation at code level

Figure 8.9 General view of the automated verification process. The contribution of this section of the article lies in
the domain specific libraries that have been developed at the different layers of description of the code, as well as
in the generic proof strategies and the custom Frama-C plugin pvs-ellipsoid

Annotated code

C Code

+ ACSL
+ Proof tactics

ACSL linear algebra library

Frama-C

Verification Conditions

WP

PVS Theorems

Why3

pvs-ellipsoid

QeD

PVS
Interpreted Theorems

+ Proof tactics
PVS linear algebra library

PVS strategies

PVS proof
proveit

Go / No Go

Note that, for the sake of readability, part of the hy-
potheses of this theorem, including hypotheses on the
nature of variables, as well as hypotheses stemming from
Hoare triples present earlier in the code, are omitted
here. Note also that in the translation process, functions
like malloc_0 or mflt_1 have appeared. They describe
the memory state of the program at different execution
points.

8.3.2 Theory interpretation

At the ACSL level, a minimal set of linear algebra sym-
bols has been introduced, along with axioms defining
their semantics. Section 8.1.4 describes a few of them.
Each generated PVS theorem is written within a theory
that contains a translation ’as is’ of these definitions and
axioms, along with some constructs specific to handling
the semantics of C programs. For example, the ACSL
axiom expressing the number of rows of a 2 by 2 matrix:

/*@ axiom mat_of_2x2_scalar_row:
@ {\textbackslash}forall matrix A, real

x0101, x0102, x0201, x0202;
@ A == mat_of_2x2_scalar(x0101, x0102,

x0201, x0202) ==>
@ mat_row(A) == 2; /*

C+ACSL

becomes, after translation to PVS:

q_mat_of_2x2_scalar_row:
AXIOM FORALL (x0101_0:real , x0102_0:real ,

x0201_0:real , x0202_0:real):
FORALL (a_0:a_matrix):

(a_0 = l_mat_of_2x2_scalar(x0101_0 ,
x0102_0 , x0201_0 , x0202_0)) =>

(2 = l_mat_row(a_0))

PVS

In order to leverage the existing results on matrices
and ellipsoids in PVS, theory interpretation is used. It is
a logical technique used to relate one axiomatic theory
to another. It is used here to map types introduced in
ACSL, such as vectors and matrices, to their counterparts
in PVS, as well as the operations and predicates on these
types. To ensure soundness, PVS requires that what was

8.3 discharging proof objectives 85

written as axioms in the ACSL library be proven in the
interpreted PVS formalism.

The interpreted symbols and soundness checks are the
same for each proof objective, facilitating the mechaniza-
tion of the process. Syntactically, a new theory is created,
in which the theory interpretation is carried out, and the
theorem to be proven is automatically rewritten by PVS
in terms of its own linear algebra symbols. These manip-
ulations on the generated PVS code are carried out by a
Frama-C plugin called pvs-ellipsoid, which is described
below.

8.3.3 Automatizing proofs in PVS

Once the theorem is in its interpreted form, all that re-
mains to do is to apply the proper lemma to the proper
arguments. Since we now the theorems used to gener-
ate the annotation, as presented in Section 8.2, we pro-
vide PVS with strategies of theorems to apply. Without
detailing all the issues met when dealing with PVS, its
typecheck constraints (tccs) it introduces in the proof el-
ements and the ability to identify arguments in a proof
pattern, we develop a PVS strategy for each of our proof
annotations, both for the affine combination of ellipsoids
and the S-Procedure strategy.

8.3.4 The pvs-ellipsoid plugin to Frama-C

The pvs-ellipsoid plugin to Frama-C automatizes the
steps mentioned in the previous subsections. It calls
the WP plugin on the provided C file, then, whenever
QeD fails to prove a step, it creates the PVS theorem

for the verification condition through Why3 and modi-
fies the generated code to apply theory interpretation. It
extracts the proof tactic to be used on this specific veri-
fication condition, and uses it to signify to the next tool
in the chain, proveit, what strategy to use to prove the
theorem at hand. proveit is a command line tool that
can be called on a PVS file and attempts to prove all the
theories in it, possibly using user guidance such as the
one just discussed. When the execution of proveit ter-
minates, a report is produced, enabling the plugin to de-
cide whether the verification condition is discharged or
not. If it is, a proof file is generated, making it possible
for the proof to be replayed in PVS.

8.3.5 Checking inclusion of the propagated ellipsoid

One final verification condition falls under neither
AffineEllipsoid nor S-Procedure categories. It ex-
presses that the state remains in the initial ellipsoid GP.
Thanks to a number of transformations, we have proved
that the state lies in some ellipsoid G ′P. The conclusion
of the verification lies in the final test P − P ′ > 0. The
current state of the linear algebra library in PVS does
not permit to make such a test, however a number of
very reliable external tools, like the INTLAB package of
the MATLAB software suite, can operate this check. In
the case of our framework, the pvs-ellipsoid plugin inter-
cepts this final verification condition before translating it
to PVS, and uses custom code from [Rou+12] to ensure
positive definiteness of the matrix, with the added bene-
fit of soundness with respect to floating-point computa-
tions. These techniques are further developed in Chap-
ter 10.

Part IV

N U M E R I C A L I S S U E S

9
F L O AT I N G - P O I N T S E M A N T I C S O F A N A LY Z E D P R O G R A M S

When it comes to implementation in a computer, one
is limited by the finite bit-level representation of real
numbers. A real number is then represented in the
computer by a representation in a fixed number of bits.
There exists mainly two families of such representations:
fixed-point and floating-point representations. Their use
largely depends on the application and industrial context
and floating-point arithmetics is the main representation
used in aerospace applications. This can however lead
to strange non expected behaviors, see e.g. [Mon08] for
detailed examples.

Until now all computations and formalizations have
assumed real computations. In this chapter we revisit
previous results and adapt them to account for numer-
ical imprecision. A first part outlines floating-point se-
mantics. A second part revisits previous results and
adapts them to account for floating-point computations,
assuming a bound on the rounding error is provided. A
last part focuses on the approaches to bound these im-
precisions, over-approximating the floating-point errors.

9.1 floating-point semantics

9.1.1 IEEE 754 floating-point representation

The norm IEEE-754 defines the floating-point represen-
tation and operations. In the following we denote by
float an IEEE 754 floating-point representation. Its imple-
mentation can minimally vary but, for the context of this
work, we assume that the C level or machine level imple-
mentation faithfully respect the norm. On a fixed num-
ber of bits – typically 64bits – one can only represent, as
IEEE-754 floating-point values, a finite (but large) num-
ber of real numbers. These values are defined as follows:

f = (−1)s ·man · 2exp (147)

where s is bit of sign, man the significand, also known
as mantissa, relies on a bit representation over n bits of
a positive integer, denoting a fractional part, and exp,
the exponent, depends on a unsigned integer represen-
tation of k bits. In the following we denote by expb the
k bits describing the exponent and by manb the n bits

describing the significand. We also denote by JbKui the
unsigned integer interpretation of a bit word b.

As an unsigned integer, JexpbKui ranges in [0; 2k − 1].
Its bounds 0 and 2k − 1 denote special values: 0 is used
to manipulate floats near zero, we speak about denor-
malized numbers, while 2k − 1 is used for infinities and
not-a-number (NaN) values. For all other values of expb,
the exponent is defined as JexpbKui− 2k−1+ 1; we speak
about normalized numbers.

Let us first focus on these normalized numbers. In
this case, the exponent lives within [−2k−1, 2k−1 + 1]. In
IEEE 754 normalized numbers significand are implicitly
prefixed with a leading 1 bit. These n+ 1 bits character-
ize the word J1manbKui ∈ [2n, 2n+1 − 1].

Then any normalized number can be written as
(−1)s ∗ J1manbKui ∗ 2JexpbKui−2k−1−n+1. The biggest
representable value is then (2n+1 − 1) ∗ 22k−1−n+1 =

(1 − 2−n−1) ∗ 22k−1 . For 32 bits simple precision float,
k = 8 and n = 24, this gives the maximum value
(1− 2−24) ∗ 2128. The smallest positive normal value is
obtained with manb = 10 . . . 0 and JexpbKui = 1 which
evaluates to (2n) ∗ 21−2k−1+1−n = 22−2

k−1
. With simple

precision float, this is 2−126.
In case of a tiny value near zero, a rounding error

may also produce a false zero value. This is called
an underflow. Denormalized numbers are a way to in-
crease the number of floating-point values around zero.
They occur when JexpbKui = 0; there is a 0 prefix
for significand. In that case the number is written as
(−1)s ∗ J0manbKui ∗ 22−2k−1−n. The smallest positive
denormalized value is obtained with manb = 0 . . . 01:
22−2

k−1−n. Let eta be such value; with simple precision
float, this is 22−128−23 = 2−149.

A useful notion is the unit-in-the-last-place (ulp): this
function characterizes the distance between two con-
secutive floats and therefore the maximum imprecision
caused by rounding errors. The ulp depends on the
exponent part of the representation. For a normalized
float value represented as x = m ∗ 2e, with m = 1, ...,
the minimal distance between two floats is 21−n+e or
2−n+e. So the ulp of 1 for simple precision is either
2−n = 2−23 or 21−n = 2−22. For double precision, this

89

90 floating-point in analyzed programs

is 2−53 or 2−52. Since it depends on the scale of the
value, ulp(x) = 2e−n = 2e ∗ulp(1) < |x| ∗ulp(1) and can
then be directly over-approximated by |x| ∗ ulp(1). In the
following we denote by eps such value ulp(1).

The following table summarizes ulp(1) and minimum
positive values for single and double type of floats:

type bits k n eps
= ulp(1)

eta

float 32 8 23 ≈ 10−7 ≈ 10−45

double 64 11 52 ≈ 10−16 ≈ 10−324

9.1.2 Floating-point errors

While computing in floats, rounding errors are intro-
duced and accumulated.

Definition 9.1 Let F ⊂ R be the set of floating-point val-
ues and fl(e) ∈ F represents the floating-point evaluation of
expression e with any rounding mode and any order of evalu-
ation1.

Example 27 Depending on the order of evaluation, the value
fl(0.1+ 0.21+ 0.3) can be either round(0.1+ round(0.21+
0.3)) or round(round(0.1 + 0.21) + 0.3) with round any
valid rounding mode (toward +∞ or to nearest for instance),
leading to different final values.

Value error

Some simple values such as 0.1 are not exactly repre-
sentable in floats since they cannot be expressed with a
finite number of bits. Each use of a constant may there-
fore introduce basic errors. The error associated to the
constant c is bounded by the minimal distance to the
nearest floating-point value, and therefore bounded by
1/2ulp(x) < 1/2|x|ulp(1).

Numerical operations: addition and multiplication.

Similarly, each numerical operation introduces errors.
For example, since the addition of two floats may not be
exactly representable in floats, the result is rounded to a
floating-point value, depending on the rounding mode.

Let e+(u, v) be such additive error. In case of u and v
associated to their existing error eu and ev, the compu-
tation of (u+ eu) + (v+ ev) returns (u+ v) + (eu + ev +

e+(u, v)).
More practically it is possible to provide a bound for

such error using eps:

Theorem 9.2 Let eps = ulp(1) is the precision of the
floating-point format F. We have for all x,y ∈ F

∃δ ∈ R, |δ| 6 eps

fl(x+ y) = (1+ δ)(x+ y)
(148)

Concerning multiplication, similar errors are intro-
duced. We denote by e×(u, v) such multiplicative er-
ror. When considering input with existing errors eu

and ev, the computation of (u + eu) ∗ (v + ev) returns
(u ∗ v) + (eu ∗ v+ ev ∗ u+ e∗(u, v)).

Similarly, this error can be bounded using both the
floating-point precision eps and the underflow constant
eta2:

Theorem 9.3 Let eps be the precision of the floating-point
format F and eta the precision in case of underflows. In par-
ticular, we have for all x,y ∈ F

∃δ,η ∈ R, |δ| 6 eps∧ |η| 6 eta

fl(x× y) = (1+ δ)(x× y) + η.
(149)

Remark 10 Those are fairly classic notations and re-
sults [Hig96; Rum10].

9.2 revisiting inductiveness constraints

Taking floating-point arithmetic into account, one needs
to reevaluate the constraints used in the previous chap-
ters to account for floating-point noise.

Let us be given a function that, provided bounds over
input variables x, compute a safe-overapproximation of
the floating-point error errf > 0 when computing, in
floating-point arithmetics, fl(f(x)).

The semantics of our discrete dynamical systems, as in-
troduced in Section 4.1, were defined using a linear func-
tion f(x,u) = Ax+Bu+b, in Sections 4.1.1 and 4.1.2, or a
polynomial function T(x) for polynomial systems in Sec-
tion 4.1.3. In addition, piecewise systems, linear or poly-
nomial ones, were constrained by guards:

∧
i r
i(x) 6 bi

with ri at most quadratic for piecewise linear systems.

9.2.1 Lyapunov conditions with floats

The Lyapunov condition (67), page 38 imposes that
V ◦ f(x) − V(x) 6 0. When considering a floating-point
implementation, we need to check the more constrained
version V ◦ (fl(f(x)) − V(x) 6 0 considering an upper
bound errV◦f on the floating-point errors resulting from
fl(f(x)) and propagated through function V , such that

(V ◦ f(x) − V(x) + errV◦f 6 0)⇒ (V ◦ (fl(f(x)) − V(x) 6 0)
1 Order of evaluation matters since floating-point addition is not associative.
2 In case of simpler implementation of floating point numbers without denormalized numbers, the η term vanishes.

9.2 inductiveness constraints 91

. Note that, since V(x) = p(x) or V(x) = xᵀPx are at least
quadratic polynomials, the error obtained is not linear in
the initial floating-point error of fl(f(x)). Let errV◦f be
such error.

floating-point assignments . All inductiveness
equations of Chapter 5 can be adapted to account
for these floating-point errors: linear systems (69) and
(70), preserving the shape (71), considering inputs (74)
while bounding f(x) = Ax + Bu, with both x and u

bounded; piecewise linear systems with their invariance

constraint (87) where the term −Fi
ᵀ

(
0 qjᵀ

qj Pj

)
Fi shall

be replaced by −Fi
ᵀ

(
0 qjᵀ

qj Pj

)
Fi − errFiᵀPjFi , and sim-

ilarly for their k-inductive extension: Eqs (106) and (107);
lastly, polynomial systems with the constraint p− p ◦ T i
in Eq. (116) are substituted by p− p ◦ T i − errp◦T i3.

floating-point guards . All methods proposed
for piecewise systems integrate the condition in the con-
straints. Both quadratic constraints in the linear and
more general polynomial ones are encoded as negativ-
ity constraints and introduced in the inductiveness con-
straint through a Lagrangian or SOS relaxation. Simi-
larly to the assignment computed in floating-point arith-
metic, the evaluation of the guard r(x) 6 0 becomes
fl(r(x)) 6 0 ≡ r(x) ± errr 6 0 with errr the actual
floating point error. In case of a bound on variable x
this quantity errr can be over-approximated. Let errr be
such upper-bound. One can therefore encode the con-
straint by the stronger condition r(x) − errr 6 0. If this
condition holds, then the computation with floats of the
guard r(x) 6 0 will also hold. Note that, because of this
stronger encoding, these sound guards do not character-
ize anymore a partitioning of the state space: multiple
transitions could be computed from the same value. This
would correspond to a non deterministic abstract of the
initial deterministic partitioned dynamical system.

In both cases, assignments and guards, a coarse over-
approximation of the floating-point error err will only
over-constrain the result: more feasible transitions, and
stricter inductiveness conditions.

9.2.2 Policy iteration

In the policy iteration algorithm presented in Chapter 6,
the computation of an individual policy, in Eq. (119) and
Eq. (121) for the SOS version, admits similar issues: p◦T i
should account for floating-point errors in the computa-

tion of T i while 〈µ, ri〉 should consider floating-point er-
rors in guards. Thanks to the available templates q ∈ P,
one can bound the variable x and over-approximate these
two floating errors: errp◦T i and errri . The constraint can
be weakened on the guards side and strengthened on the
assignment side:

(
FRi (w)

)
(p) =

p ◦ T i + errp◦T i +
∑
q∈P

λ(q)(w(q) − q)

−〈µ, ri − errri〉+ σ
and deg(σ) 6 2mdeg T i, deg(〈µ, ri〉) 6 2mdeg T i

.

(150)

9.2.3 System-level analyses

Closed-loop system analyses could be similarly analyzed.
However, the plant part is not supposed to generate any
floating-point error and could be omitted when com-
puting the bound on the error. Analyses performed at
code level (see Chapter 8) should compute separately
the transformation of the ellipsoid invariants in Q-form,
assuming a real semantics, and the approximation of
the floating-point errors on the loop body. Then, when
checking the final inductiveness of the final ellipsoid in
P-form with respect to the initial one, the error has to be
considered to further constrain the implication check.

Concerning robustness analysis and vector margins, as
presented in Section 7.2, what we need is not exactly
the inequality (142) describing the dissipativity condition
but rather4

fl(xk+1)
T P fl(xk+1)− xT

kPxk 6 γ
2‖ink‖22− ‖fl(ek) ‖

2
2.

Again, bounding by the positive upper bound ε the
floating point error occurring when computing the linear
update xk+1 evaluated through the Lyapunov function,
one can express the stronger condition:

xk+1
TP xk+1 − x

T
kPxk + ε 6 γ

2‖ink‖22 − ‖ek‖
2
2.

Thus, instead of checking (143), we have to check(
As

ᵀPAs − P+Cs
ᵀCs + εI As

ᵀPBs +Cs
ᵀDs

Bs
ᵀPAs +Ds

ᵀCs Ds
ᵀDs +Bs

ᵀPBs − γ
2I+ εI

)
≺ 0.

This robustness property is still difficult to prove since
the inequality (142) is not absolute but relative to the dif-
ference between the norm 2 of the input and the error.
The inequality should then hold for ink and ek as small
as possible. However, because of finiteness of floating
representation and underflow mechanism, the error they
induce is no longer relative but absolute and we can only
prove:

3 Recall that except the definitions of classical Lyapunov functions for pure linear systems, all our other convexification represent inductiveness
as a positive constraints (rather than a negative one).

4 xk+1 and ek both incur floating-point computations in the controller (cf. (140)) whereas ink is just a real number.

92 floating-point in analyzed programs

fl(xk+1)
T P fl(xk+1) − xT

kPxk

6 γ2‖ink‖22 − ‖fl(ek) ‖
2
2 + η

where η is a constant, depending neither on x, nor on in.
Thus, instead of (144), we get∑T

k=0

‖ek‖22 6 γ
2

(∑T
k=0

‖ink‖22

)
+ (T + 1)η.

However, in practice η is tiny (η ' 10−324) so that it
can remain negligible in front of the input in as long
as the number T of iterations of the system remains
bounded (for instance, the flight commands of a plane
typically operate at 100Hz and certainly no longer that
100 hours [Cou+05], meaning less than T := 100× 3600×
100 ' 108 iterations).

9.2.4 Checking soundness of invariant with floating-point er-
ror noise

In presence of simple linear updates and guards, assum-
ing conditions on the dimension of the considered sys-
tems, and assuming a specific evaluation order, the error
on the computation of linear update Ax can be bounded.
We refer the reader to the work of Pierre Roux [Rou15;
Rou13] for the characterization of such bounds and the
formal proof the results in Coq.

However, in presence of a more complex dynamic,
static analysis provide more flexible means to compute
the floating-point error bound. Assuming such analysis
is available, we propose the following algorithm to per-
form this invariant soundness check.

Figure 9.1 Algorithm to compute invariant soundness
check with respect to floating-point semantics.

input : Dynamical system defined by function f(x)
output : Go/ NoGo

1 Perform a first analysis: synthesize non linear template;
2 Rely on policy iteration to compute a bound per local

variable;
3 Over-approximate floating-point error on a single loop

body evaluation: errbody;
4 Perform a second analysis: synthesize non linear template

based on f(x) + errbody;
5 Rely on policy iteration to compute a bound per local

variable;
6 Check inclusion in the initial bounds;

9.3 bound floating-point errors : taylor-
based abstractions aka zonotopic ab-
stract domains

Provided bounds on each variable, the floating-point er-
ror can be computed with classical interval-based anal-
ysis. Kleene based iterations with the interval abstract

domain provide the appropriate framework to compute
such bounds. In our setting this is even simpler since
we are interested in bounding the floating-point error
on a single call of our dynamic system transition func-
tion, that is a single loop body execution without internal
loops.

9.3.1 Interval based analysis

Classical interval based abstract domains can be eas-
ily adapted to soundly over-approximate floating-point
computation by rounding appropriately each operation:

Injection of a constant is expressed with the ulp(1) con-
stant:

αM(r) = [fl(r) − |r| ∗ ulp(1), fl(r) + |r| ∗ ulp(1)]

While compilers interpret directly constants through
their floating point approximation, this safer interval
contains the constant r that was written in the source
code.

Note that it is difficult to detect whether a provided
value is exactly representable within a given floating rep-
resentation. The proposed encoding may introduce spu-
rious noise with the ±|r| ∗ ulp(1) terms. For example the
exact integer 1 will be encoded by [r− ulp(1), r+ ulp(1)].
A more precise alternative could evaluate the obtained
float and the other float obtained with a much larger
floating-point representation such as a MPFR float over
1000 bits. In case of similar value, the number is likely
(but not proven) to be exactly representable as a float.

Each numerical operation can be adapted to deal with
floating-point rounding, rounding the operator to −∞
for the lower bound and to +∞ for the upper bound. We
define by ↑◦ (x) the rounding of the real value x towards
◦ ∈ {0,+∞,−∞, ∼} denoting respectively the rounding
towards zero, +∞, −∞ and to the nearest value.

Let us consider a binary operator ♦ and the resulting
interval [r1, r2] = [x1, x2]♦[y1,y2] computed with a real
semantics. A sound floating-point interval would then
be [↑−∞ (r1), ↑+∞ (r2)].

The rounding error mode in C can be easily changed
but would not be efficient if it has to be changed twice
for each operation. One usually choose the rounding to
+∞ and rely on a negation to manipulate lower bounds.
We rather compute [− ↑−∞ (−r1), ↑+∞ (r2)].

For example, for addition we obtain

[x1, x2] + [y1,y2] =

[− ↑+∞ (−x1 − y1), ↑+∞ (x2 + y2)]
(151)

Remember that unary negation only change the sign
bit but do not introduce imprecision. In the following we
will rely both on ↑+∞ (x) and ↑−∞ (x) in the notations,
but recall that ↑−∞ (x) is implemented as − ↑+∞ (−x).

9.3 bound floating-point errors 93

While the previous method compute a sound approx-
imation of floating-point computation it does not enable
the identification of the floating-point error part. An
alternative abstraction would rely on rounding to the
nearest, and represent a set of floating-point value by a
pair of intervals [f1, f2] + [e1, e2] where the first interval
[f1, f2] denotes the incorrect bounds obtained when ma-
nipulating floats as reals, and the second interval [e1, e2]
is used to carry on errors. In the following we denote
such element by the 4-tuple (f1, f2, e1, e2). This new ab-
stract domain is defined over the cartesian product of
two lattices and therefore satisfies all abstract interpreta-
tion requirements for an abstract domain: structure lat-
tice, existence of a Galois connection between subset of
R and the domain, etc. We refer the reader to [Gou01;
GP11; Mar05] for more details on means to bound these
floating point accumulated rounding errors.

Let us recall the characterization of floating-point val-
ues for addition and multiplication presented in Sec-
tion 9.1.2:

(u+ eu) + (v+ ev) =

(u+ v) + (eu + ev + e+(u, v))
(152)

(u+ eu) ∗ (v+ ev) =
(u ∗ v) + (eu ∗ v+ ev ∗ u+ e∗(u, v))

(153)

with |e+(u, v)| 6 |u+ v| eps and |e∗(u, v)| 6 |u ∗ v| eps+
eta.

These equations can be adapted to pairs of intervals
representation as detailed in Figure 9.2.

This method allows to characterize both the actual val-
ues obtained by floating-point computation in the value
part and a safe error term. In case of a deterministic
loopless code computing an expression exp, one would
obtain the abstract value [x, x] + [e1, e2] where the single-
ton interval for the value part denotes exactly the value x
that would have been obtained when computing fl(exp).
Thanks to the handling of floating-point errors the com-
putation of exp with reals is guaranteed to lie within
[↑−∞ (x+ e1), ↑+∞ (x+ e2)].

9.3.2 Affine arithmetic

Affine arithmetic was introduced in the 90s by Comba

and Stolfi [CS93] as an alternative to interval arith-
metics, allowing to avoid some pessimistic computation
like the cancellation:

x− x = [a,b] −I [a,b] = [a− b,b− a] 6= [0, 0]

It relies on a representation of convex subsets of R keep-
ing dependencies between variables: e.g. x ∈ [−1, 1]
will be represented as 0 + 1 ∗ ε1 while another vari-
able y ∈ [−1, 1] will be represented by another ε term:

y = 0 + 1 ∗ ε2. Therefore x − x will be precisely com-
puted as ε1 − ε1 = 0 while x− y will result in ε1 − ε2,
i.e. denoting the interval [−2, 2].

Affine arithmetics and variants of it have been stud-
ied in the area of applied mathematics community and
global optimization. In global optimization, the objec-
tive is to precisely compute the minimum or maximum
of a non convex function, typically using branch and
bound algorithms. In most settings the objective func-
tion co-domain is R and interval or affine arithmetics
allow to compute such bounds. Bisection, ie. branch and
bound algorithm, improves the precision by considering
subcases. The work of [MT06] introduced a quadratic
extension of affine forms allowing, to express terms in
εiεj.

In static analysis, affine forms lifted to abstract envi-
ronments, as vectors of affine forms, are an interesting
alternative to costly relational domains. They provide
cheap and scalable relational abstractions: their com-
plexity is linear in the number of error terms – the εi
– while most relational abstract domains have a complex-
ity at least cubic. Since their geometric concretization
characterizes a zonotope, i.e. a symmetric convex poly-
tope, they are commonly known as zonotopic abstract
domains.

However, since zonotopes are not equipped with a lat-
tice structure, their use in pure abstract interpretation
using a Kleene iteration schema is not common. The
definition of an abstract domain based on affine forms
requires the definition of an upper bound and lower
bound operators since no least upper bound and great-
est lower bound exist in general. Choices vary from
the computation of a precise minimal upper bound to
a coarser upper bound that tries to maintain relation-
ship among variables and error terms. For example, the
choices of [GGP09] try to compute such bounds while
preserving the error terms of the operands, as much as
possible, providing a precise way to approximate a func-
tional. In practice convergence of the fixpoint computa-
tion is not as easy to guarantee as it is for (join-)complete
lattice. This is however not an issue in our context since
we do not allow loops within the discrete dynamical sys-
tem transfer function.

Affine arithmetics: affine forms.

An affine form is characterized by a pair (c, (b)m) ∈
R×Rm. It defines a map a ∈ [−1, 1]m → R such that

a(ε) = c+ bᵀε

94 floating-point in analyzed programs

Figure 9.2 Addition and multiplication on intervals with floating-point errors.

(x1, x2, e1, e2) + (y1,y2, f1, f2) =

↑∼ (x1 + y1),

↑∼ (x2 + y2),

↑−∞ (e1 + f1 − e
+(x1,y1)),

↑+∞ (e2 + f2 + e
+(x2,y2))

 (154)

(x1, x2, e1, e2) ∗ (y1,y2, f1, f2) =

min(↑∼ (x1y1), ↑∼ (x1y2), ↑∼ (x2y1), ↑∼ (y1y2)),

max(↑∼ (x1y1), ↑∼ (x1y2), ↑∼ (x2y1), ↑∼ (y1y2)),

↑−∞
 min(↑−∞ (e1y1), ↑−∞ (e1y2), ↑−∞ (e2y1), ↑−∞ (e2y2))

+min(↑−∞ (x1f1), ↑−∞ (x1f2), ↑−∞ (x2f1), ↑−∞ (x2f2))

−min(e∗(x1,y1), e∗(x1,y2), e∗(x2,y1), e∗(x2,y2))

 ,

↑+∞
 max(↑+∞ (e1y1), ↑+∞ (e1y2), ↑+∞ (e2y1), ↑+∞ (e2y2))

+min(↑+∞ (x1f1), ↑+∞ (x1f2), ↑+∞ (x2f1), ↑+∞ (x2f2))

+min(e∗(x1,y1), e∗(x1,y2), e∗(x2,y1), e∗(x2,y2))

(155)

where e+(a,b) is defined as (|a|+ |b|)eps and e∗(a,b) as|a ∗ b| eps+ eta.

Figure 9.3 Range of an affine form.

x0 −
n∑
i=1

|xi|
x0 x0 +

n∑
i=1

|xi|

x

R

In the following we denote by A = R ×Rn the set
of affine forms. The variables εi ∈ [−1; 1], i ∈ [1;n] are
called the error terms.

Geometric interpretation.

An affine form (c, (b)n) denotes a subset of R. We intro-
duce a concretization function denoting the geometric
interpretation of an affine form.

Definition 9.4 Let γA : A → ℘(R) be the concretization
function of A defined as:

γA : A → ℘(R)

(c, (b)n) 7→

{
x ∈ R

∣∣∣∣∣ ∃ε ∈ [−1; 1]n,

x = c+ bᵀε

}

When considering an affine form a ∈ A, one can ob-
tain the set of values γA ∈ ℘(R) it represents by con-
sidering only the absolute values of the coefficients, as
illustrated in Fig. 9.3:

γA(c, (b)m) =
[
c− Σi∈[1;m] |bi| ; c+ Σi∈[1;m] |bi|

]

Arithmetics.

The set A is fitted with arithmetic operators: addition,
negation, multiplication and scalar multiplication.

Definition 9.5

(c, (b)n) +A (c ′, (b ′)n) = (c+ c ′, (b+ b ′)n)

−A(c, (b)n) = (−c, (−b)n)

(c, (b)n)×A (c ′, (b ′)n) = (c× c ′, (b ′′)n+1)

where

{
(b ′′)n = c× (b ′)n + c ′ × (b ′′)n

b ′′n+1 =
∑n
i=1

∑n
i=j |bi × b ′j|

λ ∗A (c, (b)n) = (λ× c, λ× (b)n)

Note that non linear operations introduce a new occur-
rence of an error term while others are exact.

One can inject an interval into an affine form by intro-
ducing a fresh error term εf:

Definition 9.6 Let x = [x−, x+] be an interval of R. Let
εf ∈ [−1; 1] be a fresh error term. We define the affine form
associated to x as:

x =
x− + x+

2
+
x− − x+

2
εf

It characterizes the abstraction function αA : R2 → A:

αA(x) =

(
x− + x+

2
, (
x− − x+

2
)1

)

9.3 bound floating-point errors 95

Poset structure.

While hardly used in the global optimization community
where affine forms are used, let us consider a partial or-
der over affine sets. We rely on the geometrical interpre-
tation given by the concretization function γA, and fit the
set A with a poset structure. We define the partial order
vA as follows:

Definition 9.7 We define the partial order vA: A×A → B

such that:

∀x,y ∈ A, x vA y , γA(x) ⊆ γA(y)

We also introduce a safe meet operator. Since 〈A,vA〉
is not fitted with a meet-complete structure, we cannot
provide an exact meet operator computing the greatest
lower bounds of two affine forms. However, we can rely
on an abstract meet which provides a safe but imprecise
upper bound of maximal lower bounds.

The following function performs such computation: it
projects each affine form to its interval representation on
which it performs the meet computation, before abstract-
ing again to a fresh affine form.

Definition 9.8 Let (c, (b)n) and (c ′, (b ′)n) ∈ A. We define
the meet operator uA : A×A→ A such that

(c, (b)n)uA (c ′, (b ′)n) ={
(c, (b)n) when (c, (b)n) = (c ′, (b ′)n)

αA(γA(c, (b)n)∩ γA(c
′, (b ′)n)) otherwise

floating-point error computation

floating-point errors can be carried in identified error
terms. floating-point error terms can be merged in order
to make sure that the number of associated error terms
does not increase significantly. However, some specific
floating-point errors can be identified such as second or-
der combinations of floating-point errors terms.

9.3.3 Quadratic extension of zonotopes

Quadratic forms.

A (not so) recent extension of affine arithmetics is
quadratic arithmetics [MT06]. It is a comparable repre-
sentation of values fitted with similar arithmetics opera-
tors but quadratic forms also considers products of two
errors terms εiεj. A quadratic form is also parameter-
ized by additional error terms used to encode non linear
errors: ε± ∈ [−1, 1], ε+ ∈ [0, 1] and ε− ∈ [−1, 0]. Let
us define the set Cm , [−1, 1]m × [−1, 1]× [0, 1]× [−1, 0].
A quadratic form on m noise symbols is a function q

from Cm to R defined for all t = (ε, ε±, ε+, ε−) ∈ Cm

by q(t) = c+ bᵀε+ εᵀAε+ c±ε± + c−ε− + c+ε+. The

A term will generate the quadratic expressions in εiεj.
A quadratic form is thus characterized by a 6-tuple
(c, (b)m, (A)m2 , c±, c+, c−) ∈ R×Rm ×Rm×m ×R+ ×
R+ ×R+. Without loss of generality, the matrix A can
be assumed symmetric. To simplify, we will use the ter-
minology quadratic form for both the function defined
on Cm and the 6-tuple.

Let Qm denote the set of quadratic forms.

Geometric interpretation.

Let q ∈ Qm. Since q is continuous, the image of Cm by
q is a closed bounded interval. In our context, the image
of Cm by q defines its geometric interpretation.

Definition 9.9 The concretization map of a quadratic form
γQ : Qm → ℘(R) is defined by:

γQ(q) = {x ∈ R |∃ t ∈ Cm s. t. x = q(t)}

Remark 11 We can have γQ(q) = γQ(q
′) with q 6= q ′ e.g.

q = ε21 and q ′ = ε22. Therefore, γQ could not characterize
an antisymmetric relation on Qm and therefore not a partial
order. We could consider equivalence classes instead to get an
order but we would loose the information that q1 and q2 are
not correlated.

The projection of q to intervals consists in computing
the infimum and the supremum of q over Cm i.e. the
values:

bq , inf{q(x) | x ∈ Cm} (156)

Bq , sup{q(x) | x ∈ Cm} (157)

Computing bq and Bq is reduced to solving a non-
convex quadratic problem which is NP-hard [Vav90].
The approach described in [MT06] uses simple inequal-
ities to give a safe over-approximation of γQ(q). The
interval provided by this approach is [bqMT , BqMT] which
is defined as follows:

bqMT ,
c−

m∑
i=1

|bi|−
∑

i,j=1,...,m
j 6=i

|Aij|+

m∑
i=1

[Aii]
−

−c− − c±

BqMT ,
c+

m∑
i=1

|bi|+
∑

i,j=1,...,m
j 6=i

|Aij|+

m∑
i=1

[Aii]
+

+c+ + c±

(158)

where for all x ∈ R, [x]+ = x if x > 0 and 0 otherwise
and [x]− = x if x < 0 and 0 otherwise.

In practice, we use the interval projection operator
PMTQ (q) , [bqMT , BqMT] instead of γQ(q), since γQ(q) ⊆
γI
(
PMTQ (q)

)
where γI denotes the concretization of

intervals. In [AGW15], we presented a tighter over-
approximation of γQ(q) using SDP.

96 floating-point in analyzed programs

We will need a “reverse” map to the concretization
map γQ: a map which associates a quadratic form to an
interval. We call this map the abstraction map. Note that
the abstraction map produces a fresh noise symbol.

First, we introduce some notations for intervals. Let
I be the set of closed bounded real intervals i.e. {[a,b] |
a,b ∈ R,a 6 b} and I its unbounded extension, i.e. a ∈
R∪ {−∞},b ∈ R∪ {+∞}. ∀[a,b] ∈ I, we define two func-
tions lg([a,b]) = (b− a)/2 and mid([a,b]) = (b+ a)/2.
Let tI be the classic join of I that is [a,b] tI [c,d] ,
[min(a, c), max(b,d)]. Let uI be the classic meet of in-
tervals.

Definition 9.10 The abstraction map αQ : I→ Q1 is defined
by:

αQ([a1,a2]) = (c, (b)1, (0)1, 0, 0, 0)

where c = mid ([a1,a2]) and b = lg ([a1,a2]).

Property 9.11 (Concretization of abstraction)

γQ (αQ ([a1,a2])) ⊇ [a1,a2]

Arithmetic operators.

Quadratic forms are equipped with arithmetic operators
whose complexity is quadratic in the number of error
terms. We give here the definitions of the arithmetics
operators:

Definition 9.12 Addition, negation, multiplication by scalar
are defined by:

(c, (b)m, (A)m2 , c±, c+, c−)

+Q(c
′, (b ′)m, (A ′)m2 , c ′±, c ′+, c ′−) =(

c+ c ′, (b+ b ′)m, (A+A ′)m2 ,

c± + c ′±, c+ + c ′+, c− + c ′−

) (159)

−Q(c, (b)m, (A)m2 , c±, c+, c−) =

(−c, (−b)m, (−A)m2 , c±, c−, c+)
(160)

λ ∗Q (c, (b)m, (A)m2 , c±, c+, c−) =

(λc, λ(b)m, λ(A)m2 , |λ|c±, |λ|c+, |λ|c−)
(161)

The multiplication is more complex since it introduces addi-
tional errors.

(c, (b)m, (A)m2 , c±, c+, c−)

×Q(c
′, (b ′)m, (A ′)m2 , c ′±, c ′+, c ′−) =

 cc ′, c ′(b)m + c(b ′)m,

c ′(A)m2 + c(A
′)m2 + (b)m(b ′)ᵀm,

c ′′±, c ′′+, c ′′−

 with

c ′′x = c ′′x1 + c
′′
x2

+ c ′′x3 + c
′′
x4

,∀x ∈ {+,−,±}

(162)

Each c ′′xi accounts for multiplicative errors with more than
quadratic degree, obtained in the following four sub terms:

(1) εᵀAε × εᵀA ′ε (2) bᵀε × εᵀA ′ε and b ′ᵀε × εᵀAε
(3) multiplication of a matrix element in A, A ′ times an error
term in ±,+,− (4) multiplication between error terms or with
constant c, c ′. Their precise definition can be found in [MT06,
§3].

Quadratic Zonotopes: a zonotopic extension of quadratic forms
to environments

Quadratic vectors are the lift to environments of
quadratic forms. They provide a p-dimensional environ-
ment in which each dimension/variable is associated to
a quadratic form. As for the affine sets used in zonotopic
domains [GP09], the different variables share (some) er-
ror terms, this characterizes a set of relationships be-
tween variables, when varying the values of ε within
[−1, 1]m. The geometric interpretation of quadratic vec-
tors are non convex non symmetric subsets of Rp. In the
following, we call them Quadratic Zonotopes to preserve
the analogy with affine sets and zonotopes.

Example 28 (quadratic vector) Let us consider the follow-
ing quadratic vector q:

q =

x = −1+ ε1 − ε2 − ε1,1

y = 1+ 2ε2 + ε1,2

Figure 9.4 Zonotopic concretization of the quadratic vec-
tor q ∈ Z

p
Qm of Ex. 28: γZQ

(q)

x

y

-4 -2 0 2

-2

4

9.3 bound floating-point errors 97

Note that it corresponds to the following vector of tu-
ples defined over the sequence (ε1, ε2) of error terms:

x =

−1, (1,−1)ᵀ,

−1 0

0 0

 , 0, 0, 0

y =

1, (0, 2)ᵀ,

 0 1/2

1/2 0

 , 0, 0, 0

Fig. 9.4 represents its associated geometric interpretation,
a quadratic zonotope.

Let Z
p
Qm be the set of quadratic vectors of dimen-

sion p: (qp) ∈ Z
p
Qm =

(
cp, (b)pm, (A)p

m2
, cp±, cp+, cp−

)
∈

Rp ×Rp×m ×Rp×m×m ×R
p
+ ×R

p
+ ×R

p
+.

The Zonotope domain is then a parametric relational
abstract domain, parameterized by the vector of m error
terms. In practice, its definition mimics a non relational
domain based on an abstraction Z

p
Qm of ℘(Rp). Oper-

ators are (i) assignment of a variable of the zonotope
to a new value defined by an arithmetic expression, us-
ing the semantics evaluation of expressions in Q and the
substitution in the quadratic vector; (ii) guard evaluation,
i.e. constraint over a zonotope, using the classical com-
bination of forward and backward evaluations of expres-
sions [Min04, §2.4.4].

1. Geometric interpretation and box projection. One
can consider the geometric interpretation as the
concretization of a quadratic vector to a quadratic
zonotope.

From now on, for all n ∈ N, [n] denotes the set of
integers {1, . . . ,n}.

Definition 9.13 The concretization map γZQ
:

Z
p
Qm 7→ ℘ (Rp) is defined for all q = (q1, . . . ,qp) ∈

Z
p
Qm by:

γZQ
(q) =

{
x ∈ Rp

∣∣∣∣∣ ∃ t ∈ Cm s. t.

∀ k ∈ [p], xk = qk(t)

}
.

Remark 12 Characterizing such subset of Rp explic-
itly as a set of constraints is not easy. A classical (affine)
zonotope is the image of a polyhedron (hypercube) by
an affine map, hence it is a polyhedron and can be rep-
resented by a conjunction of affine inequalities. For
quadratic vectors a representation in terms of conjunc-
tion of quadratic or at most polynomial inequalities is
not proven to exist5. This makes the concretization of a
quadratic set difficult to compute precisely.

To ease the latter interpretation of computed val-
ues, we rely on a naive projection to boxes: each
quadratic form of the quadratic vector is con-
cretized as an interval using γQ.

2. Preorder structure.

We equip quadratic vectors with a preorder relying
on the geometric inclusion provided by the map
γZQ

.

Definition 9.14 The preorder vZQ
over Z

p
Qm is de-

fined by:

x vZQ
y ⇐⇒ γZQ

(x) ⊆ γZQ
(y) .

Remark 13 Since γZQ
is not computable, x vZQ

y is
not decidable. Note also that, from Remark 11, the bi-
nary relation vZQ

cannot be antisymmetric and thus
cannot be an order.

Remark 14 The least upper bound of Z ⊆ Z
p
Qm i.e. an

element z ′ s.t.

∀z ∈ Z, z vZQ
z ′∧(

∀z ∈ Z, ∀z ′′ ∈ Z
p
Qm

z vZQ
z ′′

)
=⇒ z ′ vZQ

z ′′

does not necessarily exist.

Related work [GGP10; GGP09; GLP12; GP09;
GPV12] addressed this issue by providing various
flavors of join operator computing a safe upper
bound or a minimal upper bound. The classi-
cal Kleene iteration scheme was adapted6 to fit
this loose framework without (efficient) least up-
per bound computation. Note that, in general, the
aforementioned zonotopic domains do not rely on
the geometric interpretation as the concretization
to ℘(R).

We now detail a join operator used in our imple-
mentation. It is the lifting of the operator proposed
in [GP09] to quadratic vectors. The motivation of
this operator is to provide an upper bound while
minimizing the set of error terms lost in the com-
putation.

First we introduce a useful function argmin: it can-
cels values of opposite sign but provides the argu-
ment with the minimal absolute value when pro-
vided with two values of the same sign:

Definition 9.15 We define for all a ∈ R, sgn(a) = 1 if
a > 0 and -1 otherwise. The argmin function, argmin :

R×R → R is defined as: ∀a,b ∈ R, argmin(a,b) =
sgn(a)min(|a|, |b|) if ab > 0 and 0 otherwise.

5 While it can expressed as a combination of conjunctions and disjunctions of quadratic inequalities. For very simple examples this can be com-
puted through quantifier eliminations with cylindrical algebraic decompositions. The complexity and therefore efficiency is however terrible.

6 Typically this involves a large number of loop unrolling, trying to minimize the number of actual uses of join/meet.

98 floating-point in analyzed programs

We also need the projection map which selects a
specific coordinate of a quadratic vector.

Definition 9.16 ∀ k ∈ [p], the family of projection
maps πk : Z

p
Qm → Qm is defined by: ∀q =

(q1, . . . ,qp) ∈ Z
p
Qm , πk(q) = qk.

When a quadratic form q is defined before a new
noise symbol is created, we have to extend q to
take into account this fresh noise symbol. We in-
troduce an extension map operator that extend the
size of the error term vector considered. Informally,
exti,j(q) adds i null error terms at the beginning of
the error term vector and j at its tail, while keeping
the existing symbols in the middle.

Definition 9.17 Let i, j ∈ N. The extension map
exti,j : Qm → Qi+j+m is defined by: ∀q =

(c, (b)m, (A)m2 , c±, c+, c−) ∈ Qm, exti,j(q) =

(c, (b ′)i+j+m, (A ′)(i+j+m)2 , c±, c+, c−) ∈ Qi+j+m

where b ′k = bk−i if i+ 1 6 k 6 m+ i and 0 otherwise
and A ′k,l = Ak−i,l−i if i + 1 6 k, l 6 m + i and 0
otherwise.

Property 9.18 (Extension properties) Let i, j ∈N.

a) Let t = (ε, ε±, ε+, ε−) ∈ Cm and t ′ =

(ε ′, ε±, ε+, ε−) ∈ Cm+i+j s. t. ∀ i + 1 6 k 6
m + i, ε ′k = εk−i. Then q(ε ′, ε±, ε+, ε−) =

exti,j(q)(ε, ε±, ε+, ε−).

b) For all q ∈ Qm, γQ(q) = γQ(exti,j(q)).

Now, we can give a formal definition of the upper
bound of two quadratic vectors.

Definition 9.19 The upper bound tZQ
: Z

p
Qm ×

Z
p
Qm → Z

p
Qm+p is defined, for all q =

(c,b,A, c±, c+, c−) ,q ′ =
(
c ′,b ′,A ′, c ′±, c ′+, c ′−

)
∈

Z
p
Qm by:

qtZQ
q ′ =

(
ext0,p(q

′′
k)
)
k∈[p] + q

e ∈ Z
p
Qm+p

where q ′′ = (c ′′, (b ′′)pm, (A ′′)p
m2

, c ′′p± , c ′′p+ , c ′′p−) ∈
Z
p
Qm with, for all k ∈ [p]:

• (c ′′)k = mid(γQ(πk(q))∪ γQ(πk(q ′)));

• ∀ t ∈ {±,+,−}, c ′′t,k = argmin(ct,k, c ′t,k);

• ∀ i ∈ [m], (b ′′)k,i = argmin(bk,i,b ′k,i);

• ∀ i, j ∈ [m], (A ′′)k,i,j = argmin(Ak,i,j,A ′k,i,j);

and ∀ k ∈ [p], qek = ext(m+k−1),(p−k)(
αQ
(
Ck tI C ′k

))
with Ck = γQ(πk(q) − πk(q

′′))
and C ′k = γQ(πk(q

′) − πk(q
′′)).

Let us denote the Minkowski sum and the carte-
sian product of sets, respectively, by D1 ⊕D2 =

{d1 + d2 | d1 ∈ D1, d2 ∈ D2} and
∏n
i Di =

{(d1, . . . ,dn) | ∀ i ∈ [n], di ∈ Di}. We have the nice
characterization of the concretization of the upper
bound given by Lemma 9.20.

Lemma 9.20 By construction of q ′′ and qe previously
defined:

γZQ

((
ext0,p(q

′′
k)
)
k∈[p] + q

e
)
=

γZQ
(q ′′)⊕

p∏
k=1

γQm+p(qek)

Now, we state in Theorem 9.21 that the tZQ
opera-

tor computes an upper bound of its operands with
respect to the preorder vZQ

.

Theorem 9.21 For all q,q ′ ∈ Z
p
Qm , q vZQ

qtZQ
q ′

and q ′ vZQ
qtZQ

q ′.

Figure 9.5 Upper bound computation

Q" Q

Q’

x

y

-4 -2 0 2 3

-2

4

Example 29 Let Q and Q ′ be two quadratic vectors:

Q =

x = −1+ ε1 − ε2 − ε1,1

y = 1+ 2ε2 + ε1,2

Q ′ =

x = −2ε2 − ε1,1 + ε+

y = 1+ ε1 + ε2 + ε1,2

The resulted quadratic vector Q ′′ = QtZQ
Q ′ is

Q ′′ =

x = −ε2 − ε1,1 + 2ε3

y = 1+ ε2 + ε1,2 + ε4

9.3 bound floating-point errors 99

Figure 9.6 Guard evaluation

Q

Q’

Guard

x

y

-4 -2 0 2

-2

4

3. Transfer functions.

The two operators guard and assign over the ex-
pressions RelExpr and Expr are defined like in
a non relational abstract domain, as described
in [Min04, §2.4.4]. Each operator relies on the
forward semantics of numerical expressions, com-
puted within arithmetics operators in Q:

Definition 9.22 Let V be a finite set of variables. Let
J·KQ(V → Q) → Q be the semantics evaluation of
an expression in an environment mapping variables to
quadratic forms.

JvKQ(Env) =
πk(Env) where k ∈ [p]

is the index of v ∈ V in Env

Je1 bop e2KQ(Env) =
Je1KQ(Env)

bopQ Je2KQ(Env)
Juop eKQ(Env) = uopQJeKQ(Env)

Guards, i.e. tests, are enforced through the
classical combination of forward and back-
ward operators. Backward operators are the
usual fallback operators, e.g. Jx + yK← =

(xuQ (Jx+ yK−Q y),yuQ (Jx+ yK−Q x)) where
uQ denotes the meet of quadratic forms. As for
upper bound computation, no best lower bound
exists and such meet operator in Q has to com-
pute a safe but imprecise upper bound of maximal
lower bounds.

The meet over Qm works as follows: it projects
each argument to intervals using γQ, (i) performs
the meet computation and (ii) reinjects the result-
ing closed bounded interval to Q using αQ, (iii) in-
troducing it through a fresh noise symbol.

The meet over ZpQm is defined as the lift ofQm meet
to quadratic vectors. Formally:

Definition 9.23 The meet uQ : Qm × Qm → Q1 is
defined by:

∀x,y ∈ Qm, xuQ y , αQ (γQ(x)uI γQ(y)) .

The meet uZQ
: ZpQm × Z

p
Qm → Z

p
Qp is defined, for all

x,y ∈ Z
p
Qm by z = xuZQ

y ∈ Z
p
Qp where:

∀i ∈ [p], zi = πi(x)uQ πi(y)
when πi(x) 6= πi(y),πi(x) otherwise.

Example 30 Let Q be the following quadratic vector.
The meet with the constraint x + 1 > 0 produces the
resulting quadratic vector Q ′:

Q =

x = −1+ ε1 − ε2 − ε1,1

y = 1+ 2ε2 + ε1,2

Q ′ =

x = −38 +
5
8ε3

y = 1+ 2ε2 + ε1,2

floating-point computations

In the specific case of quadratic forms, the term in ε± is
used to accumulate floating-point errors: the number of
error terms does not increase due to floating-point com-
putation. The generalization to zonotopes is straightfor-
ward since numerical operations are evaluated at form
level.

We illustrate here these principles on the addition and
external multiplication operators.

To summarize, all arithmetic operation are provided
in Messine and Touhami [MT06]. Our implementation
with floating point semantics gathers the additive and
multiplicative errors of each operator and accumulate
them in ε± terms, following [SF97] methodology.

1. Addition.

We consider the addition of two quadratic
forms x = (x0, (xi), (xij), x±, x+, x−) and y =

(y0, (yi), (yij),y±,y+,y−). The addition of x and
y is modified to consider these generated errors:

(x0, (xi), (xij), x±, x+, x−)

+Q(y0, (yi), (yij),y±,y+,y−) =(
x0 + y0, (xi + yi), (xij + yij),

x± + y± + r_err, x+ + y+, x− + y−

)
where

• r_err = max(| ↑+∞ (err)|, | ↑−∞ (err)|)

• err =

n∑
i,j=1

e+(xij,yij) +

n∑
i=0

e+(xi,yi) +

e+(x±,y±) + e+(x+,y+) + e+(x−,y−).

100 floating-point in analyzed programs

2. External multiplication.

The operator ∗Q is modified to account for multi-
plicative errors:

λ ∗Q (x0, (xi), (xij), x±, x+, x−) =

(λx0, λ(xi), λ(xij), |λ|x± + r_err, |λ|x+, |λ|x−)

where

• r_err = max(| ↑−∞ (err)|, | ↑+∞ (err)|).

• err =
n∑
i=1

e×(λ, xi) +
n∑

i,j=1
e×(λ, xij) +

e×(λ, x±) + e×(λ, x−) + e×(λ, x+) + eta.

Figure 9.7 Arctan program

if (x > 1.) {
y = 1.5708 - 1/x*(1 -C1/x2+C2/x4+C3/x6+
C4/x8+C5/x10+C6/x12+C7/x14+C8/x16)

}
if (x < 1.) {
y = -1.5708 - 1/x*(1-C1/x2+C2/x4+C3/x6+
C4/x8+C5/x10+C6/x12+C7/x14+C8/x16)

}
else {
y = x*(1 -C1*x2+C2*x4+C3*x6+
C4*x8+C5*x10+C6*x12+C7*x14+C8*x16)

}

C

with the constants defined as:
C1 0.0028662257 C2 −0.0161657367

C3 0.0429096138 C4 −0.0752896400

C5 0.1065626393 C6 −0.1420889944

C7 0.1999355085 C8 −0.3333314528

Evaluation

All presented materials have been implemented in an
open-source tool written in OCaml7. This tool is used
for teaching purpose and only consider simple impera-
tive programs without function calls. It implements in-
terval analysis, affine and quadratic zonotopes.

The quadratic zonotope domain has been evaluated on
examples bundled in APRON library, or Fluctuat distri-
bution, as well as simple iterative schemes. We present
here the results obtained on an arctan function, the ex-
ample of [CS93] and the Householder function analyzed
in [GGP09]. Note that we present here the global value
instead on focusing only on the floating-point error.

Let us first consider the arctan function defined in Fig-
ure 9.7 and the analysis results in Table 9.1. We can
see the dramatic increase in precision obtained with our
quadratic extension. This is particularly visible on this

example which relies widely on multiplication and di-
vision. As a reference the maximal theoretical value for
x ∈ [−1, 1] is π/4. Intervals or Affine Zonotopes compute
a value 144% bigger while Quadratic Zonotopes obtain a
20% imprecision.

x ∈ [−1, 1] x ∈ [−10, 10]

Domain Bounds Bounds

Interval [-1.919149, 1.919149] [-1.919149, 1.919149]

Aff. Z. [-1.919149, 1.919149] [-2.364846, 2.364846]

Quad. Z. [-1.002866, 1.002866] [-1.597501, 1.591769]

Table 9.1: Arctan program analysis results

Figure 9.8 Relative precision obtained with different
analysis in the experiments (log scale for errors)

0 2 4 6 8 10 12 14
100

101

of subdivisions

G
lo

ba
lE

rr
or

Intervals
Zonotopes

Quad. Zonotopes

(a) Stolfi [CS93] example evaluated on partitioned input range

0 5 10 15
10−24

1040

10104

10168

10232

Iterations

G
lo

ba
lE

rr
or

Intervals
Zonotopes

Quad. Zonotopes

(b) Householder precision wrt. number of unrolling.

7 Tool and experiments available at https://cavale.enseeiht.fr/QuadZonotopes/

https://cavale.enseeiht.fr/QuadZonotopes/

9.4 related works 101

In [CS93], Stolfi et al considered the function
√
(x2 +

x− 1/2)/
√

(x2 + 1/2) and the precision obtained using
affine arithmetics while evaluating the function on a par-
tition of the input range as sub-intervals. This is the
classical bisection or branch-and-bound approach to im-
prove precision. Figure 9.8a compares the obtained re-
sults for subdivision from 1 to 14 partitions. The global
error represents the width of the interval obtained and is
represented in a log scale. Higher partition divisions (eg.
500) converge in terms of precision and are not shown on
the picture. The table 9.2 presents the computed values.

Quadratic zonotopes shows here to be a good alterna-
tive to interval or affine zonotopes abstractions. Both in
terms of precision and runtime. Interestingly for this ex-
ample the expected additional cost due to the quadratic
error terms is not exhibited. This may be explained by
a more direct expression of quadratic terms within our
quadratic zonotopes.

Another example analyzed is the Householder func-
tion; this dynamical system converges towards 1/

√
A:

x0 = 2−4

xn+1 = xn(1+
1
2 (1−Ax

2
n) +

3
8 (1−Ax

2
n)
2)

In our experiments the algorithm was computed with
a while loop and a finite bound N on the number of
iterations. We analyzed it using loop unrolling with
A ∈ [16, 20] and compared the global errors obtained at
the i-th iterate, that is, the difference between the max
and min values. Analyzing such system with interval

diverges quickly while Affine and Quadratic Zonotopes
are more stable. The figure 9.8b presents the precision
obtained with a variant of the algorithm wereA ∈ [16, 20]
is randomly chosen at each loop iteration. While this pro-
gram is meaningless, its analysis is interesting in terms
of precision: intervals diverges from the 7th iteration,
affine zonotopes from the 11th and quadratic ones from
the 17th. Quadratic zonotopes here provides again bet-
ter bounds than affine or interval analysis and shows to
scale better than all other analyses. The table 9.2 presents
a selection of iterates computed values.

Most computation are performed within 30ms. Only
the Stolfi example with a large number of partitions
shows a much longer time for Affine and Quadratic
Zonotopes (about 1s) than intervals (91ms).

9.4 related works

Analysis of accuracy of finite-precision arithmetic is not
a new topic. Multiple numerical methods have been pro-
posed to address this issue: interval arithmetics, stochas-
tic arithmetics, automatic differentiation or error series.
See [Gou01; Mar05] for comparative surveys. In static
analysis, most analyses rely on safely rounded intervals
or on zonotopes [GGP10; GGP09; GPV12]. These affine
arithmetics based domain are the core of the tool Fluc-
tuat [Gou13] able to bound the numerical errors and
identify the terms or variables that participate the most
to the final error. These domains are also now imple-
mented as an APRON [JM09] domain.

102 floating-point in analyzed programs

Intervals Affine Z. Quad. Z.

val ms val ms val ms

stolfi1 [0.,∞] 6 [−∞,+∞] 0 [−0.85, 3.25] 7

stolfi2 [0., 3.60] 10 [−∞,+∞] 7 [−∞,+∞] 4

stolfi3 [0., 5.38] 4 [−2.98, 10.81] 5 [−0.62, 3.24] 5

stolfi4 [0., 2.23] 10 [−∞,+∞] 6 [−0.33, 3.26] 11

stolfi5 [0., 2.18] 9 [−0.42, 3.03] 3 [0.08, 2.38] 11

stolfi6 [0., 2.18] 7 [−0.71, 2.91] 5 [0.11, 2.30] 6

stolfi7 [0., 1.89] 7 [0.19, 2.23] 3 [0.29, 1.97] 10

stolfi30 [0.35, 1.43] 15 [0.48, 1.44] 20 [0.48, 1.43] 18

stolfi40 [0.40, 1.40] 15 [0.49, 1.40] 20 [0.50, 1.40] 18

stolfi50 [0.43, 1.38] 19 [0.50, 1.38] 34 [0.50, 1.38] 21

stolfi55 [0.44, 1.37] 24 [0.51, 1.37] 33 [0.51, 1.37] 35

stolfi100 [0.48, 1.34] 29 [0.52, 1.34] 80 [0.52, 1.34] 66

stolfi200 [0.51, 1.32] 48 [0.53, 1.32] 337 [0.53, 1.32] 269

stolfi300 [0.52, 1.31] 73 [0.53, 1.31] 916 [0.53, 1.31] 554

stolfi400 [0.52, 1.31] 91 [0.53, 1.31] 1746 [0.53, 1.31] 1086

householder #3 [0.21, 0.24] 3 [0.21, 0.24] 9 [0.21, 0.24] 4

householder #4 [0.17, 0.29] 0 [0.22, 0.25] 7 [0.22, 0.24] 8

householder #5 [0.03, 0.42] 3 [0.22, 0.25] 8 [0.22, 0.24] 10

householder #6 [−0.90, 1.66] 3 [0.22, 0.25] 19 [0.22, 0.24] 14

householder #7 [−1117.82, 1899.48] 4 [0.22, 0.25] 27 [0.22, 0.24] 11

householder #8 [−2.18e+18, 3.70e+18] 5 [0.22, 0.25] 29 [0.22, 0.24] 11

Best method is highlighted. Results are shown with two decimal digit precision.

Table 9.2: Stolfi example [CS93] and Householder numerical results

10
C O N V E X O P T I M I Z AT I O N A N D N U M E R I C A L I S S U E S

In this chapter we aim at providing the intuition be-
hind convex optimization algorithms and address their
effective use with floating point implementation. A first
section presents briefly the algorithms, assuming a real
semantics, while Section 10.2 presents our approaches
to obtain sound results. Last Section presents our imple-
mentation, OSDP, the Ocaml Semi-definite programming
library.

10.1 convex optimization algorithms

As outlined in Section 4.2.1 convex conic programming is
supported by different methods depending on the cone
considered.

The most known approach for linear constraints is
the simplex method by Dantzig. While having an
exponential-time complexity with respect to the num-
ber of constraints, the simplex method performs well in
general. Intuitively, starting from a vertex of the convex
polytope, it follows the hyperplane minimizing the cost
of the objective function to reach the best neighbor ver-
tex. It can be seen as both a discrete and combinatorial
methods: it enumerates the finite number of faces of the
polytope but each neighbor vertex computation involves
numerical values. These steps could be solved exactly,
for example with rational arithmetics. Theoretically the
optimal solution is always on a vertex. It is either unique
if a single vertex is optimal or has an infinite set of solu-
tions, when all a face of the polytope is optimal.

If the simplex method behaves properly, one of the ad-
vantages of its use is the obtention of a strictly feasible
optimal solution.

On the negative aspects, its complexity could diverge
in some ill-shaped cases and it is not extensible to the
larger set of linear problems over convex cones.

Figure 10.1 Linear optimization over a polytope

Another method, the set of Interior Point methods
were initially proposed by Karmarkar [Kar84] and
made popular by Nesterov and Nemirovski [NN88;
NN94; NN89]. They can be characterized as path-
following methods in which a sequence of local linear
problems are solved, typically by Newton’s method.

10.1.1 Convex optimization with interior point method algo-
rithms

An interior point method optimization is performed in
two steps: A first one computes the analytical center of
the convex set of constraints. This element is character-
ized by a logarithmic barrier function1.

Definition 10.1 (Analytical center) Let
∧
i(fi(x) 6 0) be

a set of convex inequalities, the analytical center is defined as
the optimal solution of the convex problem

minimize φ(x) where φ(x) = −
∑
i

log(−fi(x)) (163)

1 In order to keep the presentation simple we provide definition and illustration here on linear constraints instead of more general linear matrix
inequalities.

103

104 convex optimization

The computation of such value by solving the gradient
equal to zero:

∇φ(x) =
∑
i

1

−fi(x)
∇fi(x) (164)

Intuitively this function tends to +∞ when the x is
near one of the linear constraints fi(x) = 0. In case of
linear constraints, fi(x) = ai(x) − bi and the expression
of ∇φ becomes

∑
i

1
−fi(x)

ai. The following figure illus-
trates such barrier function on the preceding polytope.

Figure 10.2 Barrier function characterizing the analytical
center.

Path-following algorithms encode the search of the so-
lution of a linear optimizing problem as a sequence of
local Newton problems. A Phase I steps compute the
starting point, the analytical center of the set of con-
straints. Then Phase II performs a sequence of local
Newton steps. It characterizes a notion of central path,
a function f̃(t; x) that integrates both the constraint φ(x)
to be in the interior of the set of linear constraints, and
the (linear) objective function f(x):

Definition 10.2 (Central path)

f̃(t; x) = t× f(x) +φ(x)

Note that when t = 0 we have the analytical center
f̃(0; x) = φ(x), and when t → +∞, this constraint van-
ishes while the objective function becomes stronger in
the expression.

Without arguing too much about the details of the
computation, let us illustrate on this simple example the
computed step towards the optimal solution:

Figure 10.3 Interior point method algorithm in LP.

Interior point methods compute a sequence of inter-
mediate feasible solutions. Each step is performed by
computing a linear direction and a step length, such that
the next value remains in the neighborhood of the central
path while improving the objective function cost. This se-
quence stops when a required precision is reached. On a
typical implementation the stopping criterion is around
10−7.

In contrast to the simplex method, we see clearly that
this method will never compute the exact solution but
is able to approximate it as precisely as required. On
the good sides, interior points methods can be defined
for more general settings than linear constraints, for ex-
ample on the large set of convex conic sets (quadratic
programming, second order conic programming, semi-
definite programming, etc). On the complexity side, the
method has a polynomial complexity, in the number of
variable. Typical uses in software works on a thousand
of variables while efficient uses can scale to hundreds of
thousands of variables when smartly implemented, eg.
on FPGA [Jer+14].

10.1.2 Primal-dual feasibility

Recall the definition of duality in optimization (Sec-
tion 4.2.3). Among the most efficient implementations
of interior point methods, Primal/Dual methods rely on
the notion of duality gap to measure the distance to the
optimal solution.

10.2 guaranteed feasible solutions with floats 105

When manipulating matrix variables, the inequal-
ity (60) can be rephrased on the Hilbert space of positive
definite matrices:

d∗ =max
X

〈c,X〉 6 p∗ =miny −〈y,b〉

s.t. AX = b s.t. −c−A ′y = Z

X � 0 Z � 0
(165)

where d∗ and p∗ denote, respectively, the dual and pri-
mal solutions.

The distance between two feasible points of primal
and dual problems is called the duality gap:

〈c,X〉+ 〈y,b〉

The barrier function of the method is then characterized
using the central path expression as the combination of
the analytical center of both primal and dual problems,
and the duality gap as the objective function to mini-
mize.

However, it may happen that either the primal or the
dual problem are ill-defined: they can be unfeasible or
unbounded, ie. d∗ = ∞ or p∗ = −∞. According to the
duality theorem, if both primal and dual solutions are
finite, then both problems are feasible. Otherwise, either
the primal solution is unbounded and its dual unfeasi-
ble, or the dual solution is unbounded and the primal
unfeasible.

10.1.3 Issues

These convex optimization methods have now reached
sufficient maturity and are now used in a large set of
contexts. However, for their specific use in formal verifi-
cation, one need to cope with the following issues:

1. In contrast to simplex methods, these methods
never reach the optimal value. However, they ad-
mit an exponential convergence and can approxi-
mate the solution with arbitrary precision. On the
positive side, the computed suboptimal solution, as
well as all intermediate iterates of Phase II are fea-
sible solutions of the set of constraints. Therefore,
when the objective function is not crucial – as it is
when we synthesize our invariants with these tech-
niques – these solutions can be used safely.

2. Because of floating-point errors, the actual ε-
optimal solution may be (slightly) an unfeasible so-
lution. This is particularly difficult when manipu-
lating equality constraints.

While often neglected, this second issue has to be ad-
dressed in our formal framework. This is a great impor-
tance since we rely on computed solutions to bound the
behavior of the analyzed systems. In case of SOS pro-
gramming, the underlying SDP matrix is associated to a
set of equality constraints enabling the characterizing of
the positive polynomial. The reconstruction of such solu-
tion polynomial with floating point arithmetics has also
to be addressed in a formal way.

10.2 guaranteed feasible solutions with

floats

As we saw in the preceding figures, the optimal value of
a linear objective function with respect to a set of convex
constraints is always on the boundary of the convex set.
In SDP optimization this could be mapped to the search
of the point Q within the ellipsoid characterized by the
set of constraints X � 0, ie. ∀x ∈ R, xᵀXx > 0.

Figure 10.4 Floating point errors with interior point
methods.

{X | X � 0}

Q

Q̃

equality constraints

Because of floating point errors, the computed value
could be slightly outside of the set of constraints, giving
an unfeasible, and therefore unsound, solution Q̃.

10.2.1 Computation over a constrained cone

Since these path-following algorithms never actually
reach the optimal value but stay within the interior of
the set of constraints, the stopping criterion depends on
the achievement of a given precision, typically a duality
gap of 10−7. Without any formal result, remark that, for
all |x| < 10p, |x2| < 102p, so when computing with a pre-
cision of 16 digits, ie. ulp(1) = 10−16, half the digits are
lost by the quadratic form, leading to an imprecision of√
(1016) = 10−8 for Q.
A heuristic to ensure to remain within the interior of

the set of constraints is to pad the convex constraint by
this precision of 10−8. Figure 10.5 presents such a con-

106 convex optimization

strained set of conic constraints. One can ensure that the
floating point value Q̃ still remains within the convex set.

This padding may fail when the set of constraints ad-
mit an empty interior, which cannot be padded. This
happens typically for our invariant search when the dy-
namic considered admits fixpoints. Let us consider the
dynamics f and xfp such as fixpoint, our search for an
inductive invariant v will lead to a constraint of the form:

v ◦ f− v 6 0

But since f(xfp) = xfp, we have

v(f(xfp)) − v(xfp) = v(xfp) − v(xfp) = 0

and this problem admits an empty interior since v should
be exactly equal to zero at xfp. In this case the previous
technique over-approximating the floating point seman-
tics of f will impose an even more difficult constraint:

v(f(xfp)) − v(xfp) − errf(xfp)

= v(xfp) − v(xfp) − errf(xfp)

= −errf(xfp) = 0

with errf(xfp) > 0

In the linear case, when considering stable systems,
there is a single fixpoint which is often zero. A first so-
lution is to impose the Lyapunov function v to admit a
zero coefficient for the monomial 1, allowing the error
to vanish in zero. The problem becomes on non empty
interior.

For the more general setting, a solution is to encode
inductiveness differently as a convex constraint: instead
of v ◦ f− v 6 0 one can rely on αv ◦ f− v 6 0 with α > 1.
This would correspond to a relative padding, applying a
growth factor to the semialgebraic set defined by v 6 0.

Considering, in addition the floating point semantics
of the analyzed program, our inductiveness constraint in
the polynomial case becomes:

p−αp ◦ T iσi +
ni∑
j=1

µijr
i
j − errp◦T i > 0

where errp◦T i is an upper bound on the floating point
errors obtained when evaluating p ◦ T i.

Figure 10.5 Padding conic convex constraints

{X | X � 0}

Q

Q̃

equality constraints

10.2.2 Validate feasibility of the solution

Despite the additional padding, it may happen that
the computed property is not strictly verifying the con-
straints. It then remains to formally check that the com-
puted values satisfy the set of positive constraints.

When manipulating directly LMIs, this can be done
by computing the matrix associated to each positive con-
straint, for instance with exact rational arithmetic, and
then checking that the result is positive definite. This
last check can be performed using a Cholesky decom-
position. For the sake of efficiency, this decomposition
can itself be performed using floating-point arithmetic
by carefully bounding the rounding errors [Rum06]. The
resulting algorithm being non trivial, it has been proved
using the proof assistant Coq [Rou15]. Another ap-
proach [MC11] intends to find such positive definite wit-
nesses using rational coefficients: computing rational so-
lutions of general SDP satisfiability problems.

We describe here our conservative approach, based
only on floating point computations.

When manipulating SOS polynomials, additional
equality constraints relate matrix coefficients to the co-
efficients of the SOS polynomial. It remains to check that
the floating point polynomial solution is such that it ver-
ifies all positive constraints.

To show that a polynomial constraint e is positive
when all its unknown variables have been valued by the
optimization solver, we evaluate in rational arithmetics
the polynomial p associated to the expression e. SOS
optimization will then exhibit a floating point matrix Q
such that p = xᵀQx.

Because of numerical imprecision, due both to the
method (interior point) and the floating point rounding
errors, we rather have p = xᵀQx+ xᵀEx = xᵀ(Q+ E)x

where E denotes the error produced during the SOS pro-
gramming.

10.3 implementation as an ocaml library : osdp 107

This error term xᵀEx can be characterized as p− xᵀQx,
and we can identify an upper bound ε on the error per
coefficient:

∀i, j, |E|i, j 6 ε

In order to prove that there exists a positive semi-
definite matrix Q + E � 0, we check the stronger con-
dition Q−nεId � 0 where n is the dimension of Q. The
Figure 10.6 presents the different results: Q is not exactly
on the constraints but in a neighborhood. In the first case,
all the matrices Q− nεId are positive definite, so there
exists a witness of positivity for the constraint p. In the
second case, the constraint intersects the cone and p is
positive, but the imprecise computed Q does not enable
to prove that Q−nεId � 0. In the last case, p is not posi-
tive, but Q was produced as an SOS witness of positivity
for p. Thanks to the invalidity of the check, we are able
to reject this value.

10.3 implementation as an ocaml library :
osdp

With Pierre Roux, we developed an Ocaml library pro-
viding access to existing SDP solvers. This library eases
the use of convex optimization in our various Ocaml
static analyzer prototypes without rely on Matlab or writ-
ing solver specific code.

The library modules can be structured in three parts:

• basic datatypes;

• convex programming modules;

• backend for solvers.

The Figure 10.7 presents a view of such modules.
On the datatype part, OSDP provide means to manip-

ulate linear algebra and polynomials. All modules are
defined as functors of scalar values and can be instanti-
ated with either rationals or floats.

The main part consists in convex programming mod-
ules. LMI and SOS modules provides types to define ex-
pressions over matrices of polynomial variables, respec-
tively. In both cases these high level convex optimization
problems are recast as SDP problems. For the SOS mod-
ule each polynomial has to be instantiated with a given
degree to enable the computation of appropriate Gram
matrices.

The SDP modules is interfaced with supported solvers,
through their provided API in C or C++. For the moment
we support Csdp [Bor99], the solver of the COIN-OR
project, Sdpa, a solver in C++ with various implemen-
tation versions such as GMP based computations or a
parallel version, and the very efficient commercial soft-
ware Mosek.

In addition to these backend, the PreSDP module pro-
vides some limited means to preprocess the constraints:
mainly the removal of redundant variables to obtain full
rank matrices. In case of redundant variables, the set of
constraints admits an empty interior because of equality
constraint between these variables. In that case, a solu-
tion consists in remove these redundant variables while
keeping the associated relationship. Once the solution
is obtained, these values are recomputed. Sdp mod-
ules provides both dense and sparse matrices datatype
in which to perform the analyses.

Let us look at the signature of the solve function from
the Sdp module:

val solve :
?options:options ->
?solver:solver ->
?init:matrix block_diag * float array * matrix

block_diag ->
matrix obj ->
matrix constr list ->
SdpRet.t * (float * float) * (matrix

block_diag * float array * matrix
block_diag)

OCaml

The options define the stopping criterion for the opti-
mization process: duality gap target or upper bound on
iterations.

The function returns the status of the result (Success,
PrimalInfeasible, DualInfeasible, . . .), both primal and
dual solutions, and the values of primal and dual vari-
ables X, y, and Z.

The two main frontends, the modules Lmi and Sos,
provides more sophisticated solve functions that inte-
grate the soundness checking:

val Lmi.solve :
?options:options ->
?solver:Sdp.solver ->
obj ->
matrix_expr list -> SdpRet.t * (float * float)

* values

OCaml

108 convex optimization

Figure 10.6 Sound positivity check using SOS
{X | X � 0}

{Q+ E}Q

valid equality constraints

{X | X � 0}

{Q+ E}Q

cannot conclude equality constraints

{X | X � 0}

{Q+ E}Q

cannot conclude equality constraints

Figure 10.7 OSDP modules

SdpRet

PreSdp

Sdp

Matrix

Monomial

CsdpSos Posdef SdpaLmi

Scalar

LinExprPolynomial
Moseksdp

val Sos.solve :
?options:options ->
?solver:Sdp.solver ->
obj ->
polynomial_expr list ->
SdpRet.t * (float * float) * values * witness

list

OCaml

The options contain the padding parameter. In both
cases, the LMI or the set of positive polynomial con-
straints is solved thanks to the Sdp frontend, adding
the provided padding on the generated Sdp constraints.
Once the result is obtained, if the return status is Suc-
cess, the variables of the original problem are valued
using the primal variable values returned by the SDP
solver. This generates a context environment, a map
from variable name to floating point value2. Then, us-
ing the rational arithmetics scalar module, the positive
constraints, without padding, are evaluated in this con-
text. This gives a list of matrices or polynomial expres-
sions without free variables (except the monomials of the
polynomial expression) which have to be proved positive.

The Posdef modules provides access to our conservative
Cholesky decomposition in floats, whose algorithm has
been proved in Coq [Rou15]. At last, the return status is
updated with the feedback from this sequence of positive
checks and the set of valued primal variables (witnesses)
is return.

In case of a first Success return status but at least an in-
valid positive check with our Cholesky decomposition,
the PartialSuccess return is produced.

Let us know conclude with a run of the tool on a sim-
ple example inspired by Yalmip documentation:

min (1+ xy)2 − xy+ (1− y)2

s.t. |x| <= 1, |y| <= 1

= max t

s.t. (1+ xy)2 − xy+ (1− y)2 − t

−q1(1− x) − q2(1+X)

−ssq3(1− y) − q4(1+ y) is SOS

and q1,q2,q3 and q4 are SOS.
2 All our SDP backend run floating point computations.

10.3 implementation as an ocaml library : osdp 109

let solver = Osdp.Sdp.Mosek
open Osdp.Sos.Float
let options = { default with verbose = 3 }

let _ =
let lower = var "lower" in
let q1, _ = var_poly "q1" 2 2 in
let q2, _ = var_poly "q2" 2 2 in
let q3, _ = var_poly "q3" 2 2 in
let q4, _ = var_poly "q4" 2 2 in
let p = (!1. + ??0 * ??1)**2 - ??0 * ??1 +

(!1. - ??1)**2 in
let e = p - lower - q1 * (!1. - ??0) - q2 *

(!1. + ??0) - q3 * (!1. - ??1) - q4 *
(!1. + ??1) in

let ret, (pobj, dobj), vars, _ =
solve ~solver ~options (Maximize lower)
[e; q1; q2; q3; q4] in

value lower vars

OCaml

The prefix ! and ?? enable us to declare scalar constant
and variables, respectively. Once the expression e is de-
fined, we can print it:

e = (1 + x0 * x1)^2 - x0 * x1 + (1 - x1)^2
- lower
- q1 * (1 - x0) - q2 * (1 + x0)
- q3 * (1 - x1) - q4 * (1 + x1)

In this case, we have 5 SOS constraints that will be-
come 5 SDP constraints. Each of them is associated to a
scalar bi and the solver will compute the positive matrix
X such that tr(AiX) = bi + perr. A first computed value
corresponds to this perr constant. It depends on the pre-
cision of the representation of this vector b in floats. Typ-
ically, depending on the solver it is either the norm-2 or
norm-∞ of the vector b multiplied by

√
(ulp(1)). Here

we have

perr = 3.43722e− 08

Heuristically, from that perr and depending on the com-
plexity of each constraint, for example the dimension of

the associated matrix, a padding is produced. In this
case, we have a padding of 1.37489e − 07 for the first
complex constraint, and 1.03116e− 07 for the four SOS
multipliers.

Mosek is then called and perform it primal-dual inte-
rior point methods, converging in 12 iterations (and 0.01

second). Its verbose output returns the summary

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: -7.4999775936e-01

Viol. con: 1e-08
var: 0e+00 barvar: 0e+00

Dual. obj: -7.4999775223e-01
Viol. con: 0e+00
var: 1e-08 barvar: 0e+00

This return is propagated back to the Ocaml library
and the primal variables are used to rebuild the con-
straints variables: here the floating expressions of com-
puted polynomials lower, q1, q2, q3 and q4, without
the additional padding.

The checking part, evaluate the rational expression of
each five constraints: e, q1, q2, q3 and q4 from that en-
vironment. Let us consider the expression e: we have its
expression as a polynomial pe, combination of floating
point polynomials, and we have its expression as a pos-
itive definite matrix xtQex. We compute the maximum
difference r between the corresponding coefficients, and
obtain

r = 3.51434e− 08

We then check, using a conservative Cholesky decompo-
sition that

Q− rI � 0

In this case, all five checks are valid, guaranteeing
that, despite floating point imprecision, the lower bound
0.749998 is sound.

Part V

P E R S P E C T I V E S

11
I N T E G R AT I O N O F T H E A N A LY S E S I N T H E S Y S T E M / S O F T WA R E D E V E L O P M E N T
P R O C E S S

A first perspective is the integration our work in a uni-
fied toolchain. Most of the presented works are available
as prototypes applicable in their own representation of
the system to be analyzed. For example chapters of part
II are each of them defined on a different representation
of a dynamical system: purely linear, piecewise linear,
and piecewise polynomial. Similarly, the floating point
precision analysis with quadratic zonotopes is applied
on a different representation of imperative code.

While these different settings can be explained by the
current objectives when the work was performed, it is a
real limitation in the integration of various techniques in
a simple unified fronted.

We present here our related perspectives. They are
presented over existing or future toolsets we have been
developing the last lustre 1.

11.1 cocosim and lustrec toolchain

In Part III we showed that model-based languages, espe-
cially dataflow languages, were widely used to design
and autocoded controllers. The second chapter, Chap-
ter 8, was developed around the tool Geneauto.

Geneauto is complex software, developed through first
a European ITEA2 project, and then through a French
FUI project. It is written in Java as a sequence of compi-
lation steps. While the approach is nice from a engineer-
ing perspective, it was difficult for us to adapt it and ad-
dress, with it, all the formal methods concerns we have
been mentioning in this manuscript.

Therefore, in order to showcase the relevancy of apply-
ing formal methods for controller systems, we designed
our own compilation toolchain from Matlab Simulink to
C code. This toolchain is split in two parts:

• Backend: LustreC

• Frontend: CocoSim

11.1.1 LustreC

Lustre is an academic dataflow language[Hal+91] with a
precise semantics. It was proposed in the 90s and lead to
the definition of the industrial Esterel Scade language 2

which is used in major industries including Airbus. In
Lustre, synchronous flows of data are computed at each
(symbolic) time and complex system can be build by
composing these signals. This kind of description is par-
ticularly adapted to the development of control system,
similarly to the famous industrial tool Matlab Simulink.
In 2008, modular compilation of Lustre models was pro-
posed [Bie+08]. The Esterel Scade compiler KCG was
able to receive a qualification DAL-A in the A3xx pro-
gram, enabling its use for the code generation of the
most critical parts of aircraft controllers.

In collaboration with Xavier Thirioux, we developed
a similar tool, LustreC [GTK12] an open source Lustre
compiler with modular compilation to C code.

We used this tool to develop new formal methods
at the frontier between model level analysis with Lus-
tre, and C code analysis. This covers compiler vali-
dation with MC/DC test generation and mutation test-
ing [Gar+14], to validation of synchronous observers at
model and code level [Die+15]. With Temesghen Kahsai

we also developed another backend of the LustreC com-
piler targeting modular Horn encoding. This enabled
the use of the compiler as a Lustre interpreter for SMT-
based model-checking [GGK14; KTG16]. A lustre model
is compiled into an equivalent Horn encoding represen-
tation, which can then be used by SMT model-checker
such as Spacer [KGC14] or z3 [MB08].

11.1.2 CocoSim

CocoSim has been developed as a way to address, with
our academic tools, the analysis of realistic industry-size
models, written in Matlab Simulink. This is translator
from a reasonable subset of the discrete blocks of Mat-
lab Simulink into the Lustre dataflow language. While

1 Lustre is not only a dataflow language, a lustre is also a period of five years.
2 now ANSYS Scade

113

114 integration in software development process

Simulink can be used to express complex systems mix-
ing discrete and continuous signals or solving dynami-
cal algebraic loops in the model definitions, our choice
of a small subset solves most of these issues. In other
words, for the tiny subset considered, one have a one-
to-one correspondence between Simulink constructs and
Lustre expressions. More advanced, but still reasonable,
constructs, such as z-expressions, gain interpolation, or
more sophisticated datatypes such as buses, are simpli-
fied into simpler constructs, with Simulink before their
translation to Lustre.

This work was mainly done at NASA/CMU and led
by Temesghen Kahsai. A first experiment with Arnaud
Dieumegard, one of the researcher of Geneauto team,
consisted in a fork of Geneauto, with similar early trans-
lation stages, followed by a model-transformation from
the intermediate representation into a meta-model of
Lustre. This first tool suffered from Geneauto inheri-
tance: it was parsing the XML of the Simulink and was
recovering all the information from that file, without any
serious information on the structure of that file. Any
change in the version of Matlab would change the struc-
ture of the file.

In the next experiment, inspired by Caspi et al. ap-
proach [Cas+03] to the compilation of Simulink into Lus-
tre, we build upon Claire Pagetti and Thomas Loquen’s
open-source prototype of the idea, to build the current
CocoSim platform.

In addition to basic translation into Lustre, CocoSim
also provides generation of traceability information and
the integration with model-checker. One possible use is
the following: a Simulink model is annotated with an ob-
server block, acting as a synchronous observer – in other
words, this block has a boolean output which should be
valid for any possible simulation or run; thanks to Co-
coSim and the Horn encoding backend of LustreC, the
model and the property are expressed in a suitable for-
mat for Spacer to analyze it. In case of success the prop-
erty is tagged as valid in Simulink, in case of failure the
counter example is propagated back at Simulink level
and expressed through a simulation trace.

11.1.3 Integration

The following figure illustrates our perspectives: the
integration of presented formal verification into that
toolchain.

Figure 11.1 Process cycle with autocoders

Simulink

Lustre

C code

LUSTRE-C

CocoSim

{
Zustre/PKind/Riny/SMT-AI

Test generation

High level properties

(stability/robustness)

Synchronous observers

Counter-example traces

{
WP

E-ACSL

The toolchain should be compatible with most of the
properties that have to be addressed in terms of func-
tional verification.

Control-level properties

At the Simulink level the system-level properties should
be expressed as synchronous observers at in Chapter 8.
In addition, the plant part should be appropriately
tagged to be considered as such by the compilation.
Then, through the toolchain, the following Lustre nodes
should be produced:

Figure 11.2 Lustre model including discrete plant de-
scription, for the example of Section 7.2.5.

node spring (u:real) returns (y:real);
var xp0 , xp1: real ;
let
xp0 = 0. -> pre xp0 + 0.01 * pre xp1 +

0.00005 * u;
xp1 = 0. -> -0.01 * pre xp0 + pre xp1 +

0.01 * u;
y = xp0;

tel

--@ plant: spring
node ctl (in,y:real) returns (u:real);
var e, xc0 , xc1: real ;
let
e = in - y;
xc0 = 0. -> 0.4990 * pre xc0 - 0.05 * pre

xc1 - e;
xc1 = 0. -> 0.01 * pre xc0 + pre xc1;
u = 564.48 * xc0 + 1280. * e;

tel

Lustre

The plant annotation enables the margin analysis
which extracts the linear representation of the controller
and the plant to build the sensitivity system and analyze
it. The Lustre model is enriched with analysis results (cf.
Fig 11.3).

11.1 cocosim and lustrec toolchain 115

Figure 11.3 Enriched model with computed properties.

--@ plant: spring
node ctl (in, y: real) returns (u: real);
--@ robustness/gamma: 1.4914;
--@ robustness/P: (computed P value);

Lustre

When generating the final C code, the code is anno-
tated with ACSL predicates [Bau+08] relying on our lin-
ear algebra library [Wan+16a]. An additional predicate
encodes the dissipativity property (142). The struct def-
initions represent the internal state of each node in our
modular compilation scheme. The plant internal state
is declared as a ghost struct field within the controller
own memory. This is presented in Fig. 11.4.

Figure 11.4 Header of the generated C code including
node state description.

#include "acsl_matrices.h"

/*@logic matrix P = mat_of_4x4_scalar(
111.8330, 88.4842, -48 .4990, 8.8432,
88.4842, 278.5963, -20 .2482, 6.9605,

-48 .4990, -20 .2482, 28.7964, -3.7961,
8.8432, 6.9605, -3.7961, 0.7013);

logic real gamma = 1.4914; */

/*@ logic vector state(struct ctl_mem self)
=

vector_of_4_scalar (
self->_reg.__ctl_3,
self->_reg.__ctl_2,
self->spec.plant._reg.__plant_3,
self->spec.plant._reg.__plant_2);*/

/*@ predicate dissip(vector snxt, vector s,
real in, real e, matrix P, real gamma) =
normP(snxt, P) - normP(s, P) <= gamma **2

* in**2 - e**2; */

struct plant_mem {
struct plant_reg {double __plant_2;

double __plant_3; } _reg;
struct _arrow_mem *ni_1; };

struct ctl_mem {
struct ctl_reg {double __ctl_2;

double __ctl_3; } _reg;
struct _arrow_mem *ni_0;
/*@ghost struct spec {
struct plant_mem plant; } spec; */};

C+ACSL

Finally, the controller function is associated to an as-
sert statement ensuring the dissipativity property after
each iteration of the system dynamics, as presented in
Fig. 11.5. It is worth noting that the plant code was in-

troduced as ghost C code within the controller code, fol-
lowing the approach we developed in [Wan+16a].

Figure 11.5 Transfer function of the controller, including
the plant description as annotation and the dissipativity
property as function contract.

void ctl_step (double in, double y,
double (*u),
struct ctl_mem *self) {

_Bool __ctl_1;
double e; double xc0; double xc1;
_arrow_step (1 ,0,&__ctl_1,self->ni_0);
if (__ctl_1) { xc1 = 0.; } else {

xc1 = ((0.01 * self->_reg.__ctl_3) +
self->_reg.__ctl_2); }

e = (in - y);
if (__ctl_1) { xc0 = 0.; } else {

xc0 = (((0.499 * self->_reg.__ctl_3) -
(0.05 * self->_reg.__ctl_2)) - e); }

*u = ((564.48 * xc0) + (1280. * e));
self->_reg.__ctl_3 = xc0;
self->_reg.__ctl_2 = xc1;
/*@ghost
_Bool __plant_1;
double xp0; double xp1;
//plant - restricted to state update
_arrow_step (1, 0, &__plant_1, self->spec.

plant.ni_1);
if (__plant_1) { xp0 = 0.; } else {

xp0 = ((self->spec.plant._reg.__plant_3 +
(0.01 * self->spec.plant._reg.
__plant_2)) + (5e-05 * *u)); }

if (__plant_1) { xp1 = 0.; } else {
xp1 = ((((- 0.01) * self->spec.plant._reg.

__plant_3) + self->spec.plant._reg.
__plant_2) + (0.01 * *u)); }

self->spec.plant._reg.__plant_3 = xp0;
self->spec.plant._reg.__plant_2 = xp1;
*/
//@assert dissip(state(self), \old(state(

self)), in, e, P, gamma);
return;
}

C+ACSL

We only sketched the global approach; concerning the
proof of this property at the code level, we already ana-
lyzed similar properties in PVS [Her+12]. Furthermore,
the current property is simpler since it only involves
the positivity of a quadratic form. State of the art SMT
solvers such as Z3 [MB08] should be able to discharge
the generated proof objectives without requiring the use
of proof assistants.

Safety properties

Other properties can be expressed on this figure: the cor-
rect implementation of a triplex voter, of a safety redun-
dancy construct, etc. Simulink can be used with the same
observers to formalize the intended properties. Then,

116 integration in software development process

thanks to the LustreC Horn encoding backend, the proof
of those properties could be made. In [Die+15] and cur-
rent unpublished works, we are studying means to ex-
press this induction proof performed at model level, at
the code level, in an automatic fashion. This would sup-
port the verification and the preservation of the validity
of properties all along the toolchain development.

Numerical accuracy

The toolchain should also be extended to address specif-
ically floating point precision. Recent works such
as [DMC15; IM13] enable the transformation of numeri-
cal expressions to minimize their floating point impreci-
sion. Integrating these approach in the toolchain chain
could improve the quality of the generated code but also
provide information to analyzers about the floating point
errors associated to each numerical expression.

11.2 osdp : ocaml semi-definite programming

We presented OSDP in Section 10.3.
While already fully usable we see a lot of possible ex-

tensions for this library:

• extending the input language to enable or ease the
expression of dual problems;

• provide means to pre-process the problem before
submitting it to the solvers, eg. extract a full rank
matrix on which to solve the problem;

• extend the list of supported solvers.

11.3 seal : system analysis library

One of the perspective is to build another Ocaml library,
on top of OSDP, providing a unified frontend to perform
all analyses presented in Part II, invariant computation
and SOS policy iterations. As mentioned earlier these
analyses were performed through different means: some
were done with OSDP, others directly in Matlab with
Yalmip.

As OSDP for convex optimization problems, SEAL
will provide means to define a dynamical system and
compute its properties or invariants as semi-algebraic
constraints. While independent from OSDP, since users
may want to use convex optimization without discrete
dynamical system analysis, SEAL will rely on OSDP to
perform all interactions with SDP solvers, including the
a-posteriori soundness check of positive definiteness.

This analysis library will also be integrated in the
toolchain presented in Section 11.1. We started to de-
velop another backend for LustreC generating a simple
while true loop, easing the extraction of the discrete dy-
namical system. When integrate the tool will be able to
compute bounds on those systems and feed the toolchain
with additional invariants. An interesting integration
could consider both the discrete dynamical system back-
end to perform the analysis but also the classical C code
backend on which floating-point precision analysis will
have to be performed to compute bounds on the error.
SEAL should also be able to consider float point errors
when provided as an input. Last, as mentioned in the
first section the numerical invariants will be later re-
validated all along the development cycle.

12
E X T E N S I O N S

Once the SEAL library is available, providing easy ac-
cess to all developed analyses, we would like to extend
the range of systems and properties covered. This chap-
ter enumerates without details the identified systems or
properties we would like to target.

12.1 more systems

Our goal is to enable the formal analysis of realistic sys-
tems, such as the ones used in civil aircraft nowadays.
We are not specifically interested in the analysis of state-
of-the-art non linear controllers as the ones found in aca-
demic laboratories, but rather provide applicable meth-
ods to old-school linear controller-based systems.

However, while most systems are linear, their compo-
sition makes the global system highly non linear. We be-
lieve that the capabilities to analyze polynomial systems
may enable us to analyze these composed systems.

We are interested in the following constructs or sys-
tems:

linear parameter varying controllers (lpv)
One the approach in control theory to address the con-
trol of non linear plant is to linearize the plant equations
around specific points. Once the plant is linear, a linear
time-invariant controller is synthesized. In case of a large
domain of applicability, the controller has to be designed
for multiple such linearization points.

xk+1 = A1xk when xk ≈ p1
. . .

xk+1 = Anxk when xk ≈ pn

This large domain captures, for example, the flight en-
velope for aircraft. A way to integrate this set of linear
controllers is to build a unique linear parameter varying
controller using these linear controllers. A common con-
struct is gain scheduling; for example a linear gain inter-

polation in which coefficients of each individual linear
controller are composed linearly1:

xk+1 = (λAi + (1− λ)Ai+1)xk

when xk = λpi + (1− λpi+1)

With current state of art, this kind of systems are hard
to analyze at code level. One can consider first their re-
striction to switched systems, for example:

xk+1 = Aixk when xi ∈
[
pi + pi−1

2
,
pi+1 + pi

2

]

These switched systems fit exactly into our analyzes ded-
icated to piecewise linear systems. But the introduction
of the interpolation parameter λ generates an infinity of
intermediate controllers when varying from point pi to
point pi+1. While the naive idea of interpolating directly
the quadratic Lyapunov functions Pi associated to each
linear controller may seems feasible, it generates a con-
siderably large number of term and is not directly ex-
pressible as an LMI since we have non linear terms in λ,
P1 and P2

For example, we have P1 � 0 and P2 � 0 associated
respectively to linear controllers A1 and A2. For each
λ, we can consider the associated quadratic Lyapunov

function

λP1 + (1− λ)P2 � 0

This term can be easily proved positive semi-definite,
since SDP is a cone: it is closed by addition and positive
external scalar multiplication. Since λ ∈ [0, 1], both terms
λP1 and (1− λ)P2 are SDP. And so does their addition.

However, concerning the inductiveness of the interpo-
lation version, we have

At1P1A1 − P1 � 0
At2P2A2 − P2 � 0

1 In practice these linear gain interpolation are interpolated by a single scalar since considered system are SISO.

117

118 extensions

The inductiveness property can be developed:

(λA1 + (1− λ)A2)
ᵀ(λP1 + (1− λ)P2)(λA1 + (1− λ)A2)

−(λP1 + (1− λ)P2)

=

λ3A
ᵀ
1P1A1 + λ

2(1− λ)Aᵀ
1P1A2+

λ2(1− λ)Aᵀ
1P2A1 + λ(1− λ)

2A
ᵀ
1P2A2+

(1− λ)λ2Aᵀ
2P1A1 + λ(1− λ)

2A
ᵀ
2P1A2+

λ(1− λ)2Aᵀ
2P2A1 + (1− λ)3Aᵀ

2P2A2

−(λP1 + (1− λ)P2)

Existing works addressed this issue on the control
theory side, more than often performing controller syn-
thesis: an interpolated Lyapunov function is exhibited
and a stabilizing controller synthesized from it, e.g.
see [NLS14] in a discrete setting.

One of the direction we could consider is to search di-
rectly for a quadratic or polynomial Lyapunov function
using our SOS framework, c.f. Sec. 5.5. Another related
issue, is the analysis of such LPV controller with a float-
ing point semantics. In practice intermediate values for
the linear update A will not evolve on a line between
Ai and Ai+1 but rather on a discontinuous line because
of floating-point computation. The interpolation is not
strictly linear.

anti-windup/saturation Controllers are often
composed with safety features to avoid submitting large
values to the actuators. For example one can limit the
absolute value of an output signal with a bound; this is
called a saturation; or impose a bound on the rate in-
crease of the signal. These constructs are implemented
with simple if-then-else’s and could, at least theoretically,
be addressed with our policy iteration based analyses

Another issue happens with linear controllers such as
PID that contain an integrative term. In case of satura-
tion the output value is bounded but the internal integra-
tive term diverges. When the controller desaturates, the
behavior of the controller is badly impacted by the diver-
gent integrative term. Anti-windup patterns observe the
activation of the saturation and compensate the integra-
tive term in case of active saturation.

A classical PID controller implemented over a dis-
cretization period of T , would be implemented as:

xk+1 =kI ∗ T ∗ uk + xk
yk =kP ∗ uk + xk−1 + kD ∗ (uk − uk−1)/T

with uk the input signal, xk the integrative term, and
yk the output signal. Constants kP, kI and kD denote
proportional, integral and derivative coefficients.

A version with saturation would give a saturated out-
put signal sk:

sk = sat(yk)

When introducing an anti-windup with gain kA, we
obtain:

xk+1 =(sk − yk) ∗ kA + kI ∗ T ∗ uk + xk
yk =kP ∗ uk + xk−1 + kD ∗ (uk − uk−1)/T

sk = sat(yk)

When the signal is unsaturated, the term (sk − yk) ∗
kA is null and the behavior is the one of the classical
PID. When it saturates, the term is negative and com-
pensates proportionally the integrative term, limiting its
divergence.

Figure 12.1 Anti-windup

kI

Proportional

Integral

Derivative

1
z sat

+

+

kA

+ +

−

+

+

extended reference governor (e-rg) One of
the approach to optimize the behavior of an existing
controller is to tune its input. For example if the refer-
ence is too large, it can filtered to a smaller value, until
the initial reference becomes more accessible. This im-
pact the behavior, providing a slower feedback without
large overshoots. These techniques known as input shap-
ing have been largely extended through reference gover-
nors patterns and extended reference governors. They
enable more advanced behaviors either more aggressive
or smoother than what can be achieved with purely lin-
ear controllers.

Reference governors and their extended version act as
another complete controller with internal memory, that,
depending on the input, the observed output and the in-
ternal state of the reference governor, control the input
of the initial controller.

Existing results [GK99; KGD14] relate Lyapunov func-
tions to reference governors. By construction, an ap-
proach to the design of reference governors relies on the
expression of local Lyapunov functions. Furthermore, it
could be feasible, when provided a Lyapunov function
bounding the reachable states of the initial controller, to
characterize another one specific to controller with its
reference governor.

12.2 more properties 119

Figure 12.2 Reference governor

Reference
governor

Closed-loop
System

w(t)

r(t)

(set-point)

v(t) y(t)

x̂(t)

(state estimate)

discrete controllers with continuous plant

Recent works [Cim12; Kon+15] addressed the issue of
analyzing the satisfiability of properties including a mix
of discrete and continuous equations. One of these ap-
proaches is called δ-satisfiability and combines branch-
and-bound algorithms and a satisfiability core to build
satisfiable models or show their absence.

On the language side, Simulink provides capabil-
ities to express complex hybrid systems but recent
works [BP13] studied more formally the semantics of
such hybrid systems and proposed means to restrict the
language to reasonable constructs.

One of the research directions is to extend SMT-based
model checking to address more finely this combination
of branch-and-bound and satisfiability targeting aircraft
controllers. Another open direction is the study of stabil-
ity or invariant synthesis for a pair of systems in which
the controller is discrete and the plant defined by ODEs.

12.2 more properties

The presented works was motivated first on bounding
reachable states, then it was extended to arbitrary prop-
erties expressed as simple semi-algebraic constraints in
Section 5.5.2. We were then able to focus on system-
level properties such as stability and robustness analysis
through vector margins.

Assuming the plant semantics is given in an analyz-
able form, for example a discrete piecewise polynomial
system, we should be able to analyze a large set of
system-level properties both at model level, and later on
the implementation artifact.

A future research direction will therefore consider the
large corpus of robust control literature: e.g. S-procedure
for non linear systems [Yak71], matrix inequalities in con-
trol [Yak62], the use of LMI to address a variety of prop-
erties [Boy+94], or the method of integral quadratic con-
straints (IQC) [MR97].

Most of these works are defined in the both continu-
ous setting and the frequency domain and their expres-
sion in a discrete setting is not a research contribution on
its own. However, it may enable the analysis at code and
could result on a larger impact on the study of systems.

kyp : kalman-yakubovich-popov lemma A fun-
damental theorem in control is due known as KYP, the
Kalman-Yakubovich-Popov lemma. It relates the fre-
quency domain, time domain (with is the state space
representation for computer scientist) and dissipativity
of a linear system. In discrete time, one can formulate it
in the following way.

Theorem 12.1 (discrete time KYP lemma) Let us con-
sider the following discrete linear system:

xk+1 = Axk + buk

yk = Cxk

x0 = 0

We define its transfer function G(s) as

G(iω) = C(eiωI−A)−1B

The following properties are equivalent:

dissipativity (non-expansiveness)∑T
k=0

‖yk‖22 6

(∑T
k=0

‖uk‖22

)

frequency domain

∃γ ∈ R, ||G(iω)||∞ < γ
where ||G(iω)||∞ is the H∞ norm of G, defined as

||G(iω)||∞ = sup
W(iω)∈H2

||Y(iω)||2
||U(iω)||2

where Y and U denotes the transfer functions associated
to (yk) and (uk), respectively.

time domain

∃P = Pᵀ,

[
AᵀPA− P+CᵀC AᵀPB+CᵀD

BᵀPA+DᵀC BᵀPB+DᵀD− γ2I

]
< 0

Interestingly, as recalled in [Boy+94], the result initi-
ated the frequency domain analysis as it is known in
control theory: a graphical interpretation of a frequency
domain constraint implies the existence of the Lyapunov

function and proves good behavior: Popov criterion, cir-
cle criterion (Nyquist), Tsypkin criterion, and many vari-
ations. All these techniques amount to solving “by hand”
an LMI.

However, since most properties are nowadays ex-
pressed on the frequency domain, for example the µ-
analysis for non linear systems, it may be interesting to
revisit this lemma to drive the computation of frequency
domain properties through their LMI (or comparable)
representation.

The work of Simon Duverger is to focus on this re-
search direction, revisiting performance properties such

120 extensions

as bounded overshoot as H∞ properties which we intend
to prove through their LMI equivalent. This is still too
early work to be presented here.

We refer the reader to [Ran96] for a step-by-step proof
of the theorem in a continuous setting, and to [Ran16]
for a more recent proof specific to positive systems.

iqc : integral quadratic constraints An in-
teresting framework to analyze robustness of non linear
system is the Integral Quadratic Constraints (IQC) ap-
proach [MR97; MR95].

It enables the study of stability for non linear systems.
In that framework a non linear system is split into a lin-
ear G(s) transfer function part, and a non linear one ∆.

Figure 12.3 Non linear system ∆

e G(s)

∆
v f

+

u
−

+

+

As a cut in a proof, or a loop semantics abstracted
by its loop invariant, the non linear part ∆ has to be
accurately described by integral quadratic constraints
(IQC’s):∫∞

−∞
[

v̂

∆̂(v)(jω)

]∗
Π(jω)

[
v̂

∆̂(v)(jω)

]
dω 6 0

where ·̂ denotes the Fourier transform of a signal. The
set of such Π is convex and the associated IQC’s can be
easily combined. When ∆ can be structured in smaller
components, one can combine local IQC’s.

Stability is proved by characterizing a matrix Π such
that [

G(jω)

I

]∗
Π(jω)

[
G(jω)

I

]
< 0,∀ω ∈ R∪ {∞}

As in the previous section, this frequency domain ex-
pression can be mapped, thanks to the KYP lemma, to
an equivalent LMI.

IQC’s have been used to study robustness or conver-
gence under noise of non linear systems. An interesting
future direction would recast this technique in the dis-
crete setting and perform the synthesis and the valida-
tion of this inequality on the code semantics.

contraction analysis Another interesting frame-
work is the theory of contraction. Citing [APS08], we
have the following definition: “Contraction analysis is a
stability theory for non linear systems where stability is
defined incrementally between two arbitrary trajectories.
The existence of a contraction metric [. . .] ensures that a
suitably defined distance between nearby trajectories is
always decreasing. [. . .] Contraction analysis is closely
related to Krasovskii’s Theorem, since one can interpret
the search for a contraction metric as the search for a
Lyapunov function with a certain structure.”

Other works[BS15; LS98] mentioned this relationship
between contraction analysis and Lyapunov stability. As
most concepts in control theory, it is mainly developed
in the continuous setting.

To summarize roughly the idea, a system is contract-
ing when one can exhibit this contraction metric. For a
nonlinear time invariant system defined as

xk+1 = f(xk)

finding a contracting region of the state space amounts
to find a positive definite metric M such that

∂f

∂xi
M
∂f

∂xi
−M < 0

where ∂f
∂xi

denotes the (discrete generalized) Jacobian of
f. In case of linear systems f(x) = Ax and ∂f

∂x = A; we
obtain exactly the Lyapunov equation.

This approach has been applied to numerous contexts
but was never considered to support code level anal-
ysis. Some interesting contraction analysis papers fo-
cused on non linear dynamical systems[LS98], advanced
observers proof of convergence on classes of extended
Kalman filters[BS15], and the use of Sums-of-square pro-
gramming to address the synthesis of the contraction
metric[APS08].

Contracting systems also share nice composition prop-
erties: positive parallel composition, negative feedback,
series and cascade compositions, translation and scaling,
etc.

13
I N VA R I A N T S O F D Y N A M I C A L S Y S T E M S

Inspired by the works by Henrion, Lasserre, Ma-
gron and Korda [HK14; KHJ13a; KHJ13b; KHJ12;
MHL15], we studied recently with Didier Henrion, Vic-
tor Magron and Xavier Thirioux another approach to
bound precisely the reachable states, C of a dynamical
system. Assuming this set C lives in a given compact
set X, let use denote, in the following, by X(∞) the set of
reachable states restricted to X:

X(∞) := {(xt)t∈N ⊆ X : xt+1 = f(xt) ,∀t ∈N, x0 ∈ X0} .

The idea is to express X(∞) as a minimization opti-
mization problem in which we search for an inductive
sub-level set, containing the initial set, and which vol-
ume, with respect to the Lebesgue measure, is minimal.
Thanks to the compactness of X, the Lebesgue measure
is defined. Furthermore, when choosing an appropriate
compact set X, for example an hypercube or a ball, the
computation of the volume of a semialgebraic set is ex-
pressible in a linear fashion, over the moments associated
to monomials.

This method is inspired by a long line of works manip-
ulating polynomial systems properties and compact sets:
In [HLS09], the authors addressed the problem of com-
puting over-approximations of the volume of a general
basic compact semialgebraic set, described by the inter-
section of a finite number of polynomial superlevel sets,
whose coefficients are known in advance. Further work
focused on over-approximating semialgebraic sets where
such a description is not explicitly known: in [Las15],
the author derives converging outer (resp. inner) approx-
imations of sets defined with existential (resp. universal)
quantifiers; in [MHL15], the authors approximate the im-
age set of a compact semialgebraic set § under a poly-
nomial map f. The current study can be seen as an ex-
tension of [MHL15], when § stands for the set of initial
conditions, f represents the dynamics of a discrete-time
system and only one iteration is performed from §.

We propose a hierarchy of converging convex ap-
proximations derived from an infinite-dimensional lin-
ear programming (LP) reformulation of the problem.
Through moment relaxations of this LP, and character-
ize on the dual problem, one can compute tight over-
approximations of the reachable set.

13.1 primal : maximizing measure support

The initial expression of the problem relies on the char-
acterization of the indicator function 1C of the set C.

1A(x) :=

1 if x ∈ A ,

0 otherwise .

Let us introduce some definitions.

Definition 13.1 (Borel measures vector space) Given a
compact set A ⊂ Rn, we denote by M(A) the vector space
of finite signed Borel measures supported on A, namely real-
valued functions from the Borel sigma algebra B(A).

Definition 13.2 (measure support) The support of a mea-
sure µ ∈ M(A) is defined as the set of all points x such that
for each open neighborhood B of x, one has µ(B) > 0. Note
that this set is closed by construction.

Definition 13.3 (Lebesgue measure on a subset) The re-
striction of the Lebesgue measure on a subset A ⊆ X is
λA(dx) := 1A(x)dx., where 1A : X → {0, 1} stands for the
indicator function on A.

Definition 13.4 (Moments of Lebesgue measure) The
moments of the Lebesgue measure on X are denoted by

yX
β :=

∫
X

xβλX(dx) ∈ R , β ∈Nn . (166)

Definition 13.5 (Lebesgue volume) The Lebesgue vol-
ume of X is defined by vol X := yX

0 =
∫

X λX(dx).

Definition 13.6 (Image measure) Given a positive mea-
sure µ ∈ M+(X), the so-called pushforward measure (or
image measure, see e.g. [AFP00, Section 1.5]) of µ under f
is defined as follows:

f#µ(A) := µ(f−1(A)) = µ({x ∈ X : f(x) ∈ A}),

for every set A ∈ B(X).

Definition 13.7 (invariant measures) A measure µ is in-
variant w.r.t. f when µ satisfies µ = f#µ.

The set Xinv is defined as the union of supports of all invari-
ant measures w.r.t. f being dominated w.r.t. λX (the restriction
of the Lebesgue measure over X).

121

122 invariants of dynamical systems

Lemma 13.8 For any given T ∈ N+, α > 1 and a measure
µ0 ∈ M(X0), there exist measures µT ,ν ∈ M(X) which sat-
isfy the discrete Liouville Equation:

µT + ν = αf#ν+ µ0 . (167)

Here, T denotes a number of transition steps which is
left free. muT denotes the occupation measure restricted
over of the states reachable after T transitions.

Using Liouville equation, that encodes a sort of cer-
tain conservation law for measure supports, we can de-
rive the following primal formulation. To approximate
the set X∗ := Xinv ∪ X(∞), one considers the infinite-
dimensional linear programming (LP) problem, for a
given α > 1:

p∗ := sup
µ0,µ,µ̂,ν

∫
X
µ

s.t. µ+ µ̂ = λX ,

µ+ ν = αf#ν+ µ0 ,

µ0 ∈M+(X0) , µ, µ̂,ν ∈M+(X) .

(168)

Intuitively, µ denotes the measure of terminal reach-
able states. However, since the trace is not bounded by
the equation, it can denote any reachable state. The sec-
ond constraint is the so-called Liouville equation: it en-
codes the system semantics within the constraints.

13.2 dual : minimizing positive functions

Positive measures are not fitted with a scalar product
and are then not Hilbert spaces. The (pre-)dual of pos-
itive measures is the set of positive continuous func-
tions C(X). Using the elements of duality introduced in
Sect. 4.2.3, we can construct the dual problem of our max-
imization of measure support:

d∗ := inf
v,w

∫
w(x) λX(dx)

s.t. v(x) > 0, ∀x ∈ X0,

w(x) > 1+ v(x), ∀x ∈ X,

w(x) > 0, ∀x ∈ X,

αv(f(x)) > v(x), ∀x ∈ X,

v,w ∈ C(X).

(169)

Intuitively, we are interested in the superlevel set of the
function v(x). v(x) > 0 on initial states, and this positive
is preserved along system trajectories: this is encoded by
the constraint αv(f(x)) > v(x). If a state x is reachable,
then v(x) > 0 and s does its successor v(f(x)) > v(x) > 0.
However, v can be anything outside reachable states. The
positive function w is such that, when v(x) > 0 then w(x)
is above a specific threshold, here 1. And since w(x) is
positive over X, one can minimize its volume.

13.3 hierarchy of abstractions

Using Henrion and Lasserre’s approach [HK14;
KHJ13a; KHJ12; Las01], we abstract positive functions
by SOS polynomials. Thanks to theoretical results, the
method converges in volume towards X∗.

Positivity of polynomial expressions under certain
semialgebraic constraints, is ensured by imposing them
to be an SOS polynomial of a given degree 2m, as we did
in Section 5.5.3, for example in Eq.(116). The problem to
solve becomes:

d∗r := inf
v,w

∑
β∈Nn

2r

wβz
X
β

s.t. v = σ0 −

nin∑
j=1

σ0j r
in
j ,

w− 1− v = σ1 −

nX∑
j=1

σ1j r
X
j ,

αv ◦ f− v = σ2 −
nX∑
j=1

σ2j r
X
j ,

w = σ3 −

nX∑
j=1

σ3j r
X
j ,

v,w ∈ R2m[x].

∀i ∈ {0, 1, 2, 3},σi ∈ Σ[x] , deg(σi) 6 2m ,

∀ j = 1, . . . ,nin , σj ∈ Σ[x] , deg(σjrin
j) 6 2m ,

∀ j = 1, . . . , ,nX, i ∈ {1, 2, 3} , σij ∈ Σ[x] ,

deg(σijr
in
j) 6 2m ,

(170)

where, as in 5.5.3, initial states belong to the semialge-

braic set X0 =
{
x
∣∣∣∧j∈[1,nin]

rin
j (x) 6 0

}
, and the com-

pact set X is defined as
{
x
∣∣∣∧j∈[1,nX] r

X
j (x) 6 0

}
.

One of the key aspects is the capabilities to express
the volume of the zero superlevelset w(x) > 0 within the
compact X:

∫
w(x) λX(dx). Thanks to [Las01], when w is

of fixed degree and X has a simple shape such as a unit
ball, we can pre-compute the moment zX

β =
∫

X β(x)dx

associated to each monomial β and compute the simpler∑
β∈Nn

2r
wβz

X
β where wβ denotes the coefficient associ-

ated to the monomial β in w.

13.4 experiments 123

13.4 experiments

13.4.1 Toy Example

First, let us consider the made-up discrete-time polyno-
mial system defined by

x+1 :=
1

2
(x1 + 2x1x2) ,

x+2 :=
1

2
(x2 − 2x

3
1) ,

with initial states constraints X0 := {x ∈ R2 : (x1 −
1
2)
2 +

(x2 −
1
2)
2 6 1

42
} and general state constraints within the

unit ball X := {x ∈ R2 : ‖x‖22 6 1}. On Figure 13.1, we
represent in light gray the outer approximations Xr of
X∗ obtained by our method, for increasing values of the
relaxation order r (from r = 4 to r = 14). On each fig-
ure, the colored sets of points are obtained by simulation
for the first 7 iterates. More precisely, each colored set
correspond to (under approximations of) the successive
image sets X1, . . . , X7 of the points obtained by uniform
sampling of X0 under f, . . . , f7 respectively. The set X0
is colored in blue and the set X7 is colored in red. The
dotted circle represents the boundary of the unit ball X.
Figure 13.1 shows that the over approximations are al-
ready quite tight for low degrees.

13.4.2 FitzHugh-Nagumo Neuron Model

Here we consider the discretized version (taken
from [Ben+12, Section 5]) of the FitzHugh-Nagumo

model [Fit61], which is originally a continuous-time
polynomial system modeling the electrical activity of a
neuron:

x+1 := x1 + 0.2(x1 − x31/3− x2 + 0.875) ,

x+2 := x2 + 0.2(0.08(x1 + 0.7− 0.8x2)) ,

with initial states constraints X0 := [1, 1.25] × [2.25, 2.5]
and general state constraints X := {x ∈ R2 : (x1−0.1

3.6)2 +

(x2−1.25
1.75)2 6 1}. Figure 13.2 illustrates that the over ap-

proximations provide useful indications on the system
behavior, in particular for higher values of r. Indeed,
X10 and X12 capture the presence of the central “hole”
made by periodic trajectories and X14 shows that there
is a gap between the first discrete-time steps and the iter-
ations corresponding to these periodic trajectories.

13.5 issues/future directions

From an invariant synthesis perspective, in computer sci-
ence, this approach is interesting. While all other meth-
ods, with Lyapunov function, were searching for a pos-
itive function decreasing over trajectories, no theoretical

convergence properties were available. Here, the search
of the Lyapunov-like function is constraint by minimiz-
ing the volume of the inductive invariant set. In the
quadratic case, minimizing the integral (w.r.t. Lebesgue

measure) of w over X is equivalent to maximizing the
integral of the trace of the matrix x xᵀV on X.

This optimization problem can also be expressed when
considering piecewise polynomial systems, as shown in
the examples. As for the work presented in Sec. 5.5 it
scales linearly in the number of piecewise components.

However, while the theory is attractive, we faced mul-
tiples issues.

certification of the computation results

We faced lot of issues to prove that the generated SDP
solution, which reconciles into an SOS polynomial, was
actually positive. Since our early padding validation and
conservative Cholesky certificate of positiveness were
not validating most solutions, we evaluated other means
to show soundness, and therefore positiveness.

Thanks to the existence of the bigger compact X, we re-
lied on Bernstein polynomial to compute the minimum
of the value on the set X. These computations shown to
be extremely expensive in terms of computer resources
and proved the invalidity of most results. Due to numer-
ical issues, without padding, most solutions were inval-
idated: they were globally positive, except slightly neg-
ative near some violation point, e.g. in case of empty
interior problems.

Recent changes in the choice of the parameters, and
the scaling applied to the system, seem to provide better
results.

tuning the analysis To avoid unsound results we
had to precondition the system before the analysis. This
amounts to applying linear transformations on each vari-
able in order to adapt the reachable region to the unit
circle. While this is a reasonable condition to avoid large
differences between coefficients of the same resulting
function, no clear theoretical motivations appear to jus-
tify this scale. Similarly, the choice of a parameter α > 1
impacted a lot the analyzes.

theoretical constraint : invariant measures .
A more serious concern is the definition of X∗ while we
are interested only in X∞. Initially the idea was to cap-
ture X∞, but because of issues in the proof, we discov-
ered that the encoding was adding as reachable points
unfeasible ones. This can range from non reachable fix-
points, co-limit cycles or strange attractors. If one con-
sider the simple linear system that rotate its input with-
out contraction, the reachable state space is the closure
by rotation of the initial one. But, with the presented
method, if X0 = ||x||22 < .5 while X = ||x||22 < 1 then, by
rotation, we have X∞ = X0 while the method select all X.

124 invariants of dynamical systems

Figure 13.1 Outer approximations Xr (light gray) of X∗ (color dot samples) for Example 13.4.1, from r = 4 to r = 14.

(a) r = 4 (b) r = 6 (c) r = 8

(d) r = 10 (e) r = 12 (f) r = 14

13.5 issues/future directions 125

Figure 13.2 Outer approximations Xr (light gray) of X∗ (color dot samples) for Example 13.4.2, from r = 4 to r = 14.

(a) r = 4 (b) r = 6

(c) r = 8 (d) r = 10

(e) r = 12 (f) r = 14

14
P R O V I N G T H E I M P L E M E N TAT I O N O F C O N V E X O P T I M I Z AT I O N A L G O R I T H M S

The applications of optimization algorithms are not
limited to large scale, off-line problems on the desktop.
They also can perform in a real-time setting as a part of
safety-critical systems in guidance, navigation and con-
trol. For example, modern aircraft often have redundant
control surface actuations, which allows for reconfigu-
ration and recovery in case of emergency. The precise
re-allocation of the actuation resources can be posed, in
the simplest case, as a linear optimization problem that
needs to be solved in real-time [Bod02]. More recent
famous uses include the pinpoint planetary landing of
rockets [AIB13; BAI12] as performed by SpaceX Falcon9

and BlueOrigin NewShepard.
In contrast to off-line desktop optimization applica-

tions, real-time embedded optimization code needs to
satisfy a higher standard of quality, if it is to be used
within a safety-critical system. Some important criteria
for judging the quality of an embedded code include
the predictability of its behaviors and whether or not
its worst case computational time can be bounded. Sev-
eral authors including Richter [RJM13], Feron and Mc-
Govern [McG00; MF98] have worked on the certification
problem for on-line optimization algorithms used in con-
trol, in particular on worst-case execution time issues. In
those cases, the authors have chosen to tackle the prob-
lem at a high level of abstraction. For example, McGov-
ern reexamined the proofs of computational bounds on
interior-point methods for semi-definite programming;
however he stopped short of using the proofs to analyze
the implementations of interior-point methods.

While being usable in practice in time-critical settings,
eg. [Jer+14], the adoption in civil aircraft of optimization-
based control such as model predictive control (MPC) or
emergency trajectory planning, requires a deeper under-
standing of these algorithms and, more specifically, the
proof of their implementation.

Together with a team of people including Timothy
Wang, Romain Jobredeaux, Marc Pantel, Éric Féron

and Didier Henrion, we proposed in [Wan+16b] a Lya-
punov-based annotation of an SDP algorithm showing
the convergence of the method and feasibility of the com-
puted solution. This work was mainly theoretical and
not supported by actual proofs at code level.

The current work of Guillaume Davy is to address
specifically the proof, at code level, of these properties,
for interior point method, in the LP setting.

14.1 formal properties

For a classical interior point method, a sound algorithm
shall:

• preserve the intermediate values within a given
neighborhood of the central path;

• provide sufficient improvement at each iteration to
ensure convergence.

Recall that an interior point method amounts to solv-
ing a sequence of Newton problems that corresponds
to the linearization of the cost function along the central
path (see Chapter 10). Nesterov and Nemirovski pro-
vided in [NN94] precise bounds and constructive proofs
of convergence.

Let us see the theoretical arguments in the SDP setting.

14.1.1 SDP Problem

Let n,m ∈ N, F0 ∈ Sn, F1, F2, . . . , Fm ∈ Sn, and
b =

[
b1 b2 . . . bm

]ᵀ
∈ Rm. Consider an SDP

problem of the form in equation (171). The linear ob-
jective function 〈b,p〉 is to be minimized over all vectors

p =
[
p1 . . . pm

]ᵀ
∈ Rm under the semi-definite con-

straint F0 +
∑m
i=1 piFi � 0. The variable X = −F0 −∑m

i=1 piFi is introduced for convenience of notation.

inf
p,X

〈b,p〉,

subject to F0 +

m∑
i=1

piFi +X = 0

X � 0.

(171)

We denote the SDP problem in (171) as the primal form.
Another SDP problem (172) is called the dual form, and
it is closely related to the primal form. In the dual formu-
lation, the linear objective function 〈F0,Z〉 is to be maxi-
mized over the intersection of positive semi-definite cone

127

128 proving the implementation of convex optimization algorithms

{Z ∈ Sn|Z � 0} and a convex region defined by m affine
equality constraints.

sup
Z

〈F0,Z〉,

subject to 〈Fi,Z〉+ bi = 0, i = 1, . . . ,m

Z � 0.

(172)

The primal and dual feasible sets are defined as

Fp =

{
X|∃p ∈ Rm such that X = −F0 −

m∑
i=1

piFi � 0

}
,

Fd = {Z|〈Fi,Z〉+ bi = 0,Z � 0} .
(173)

For any primal-dual pair (X,Z) in the feasible sets in
(173), the primal cost 〈b,p〉 is always greater than or
equal to the dual cost 〈F0,Z〉. The difference between
the primal and dual costs for a feasible pair (X,Z) is
called the duality gap. It is a measure of the optimality
of a primal-dual pair. The smaller the duality gap is, the
closer to optimal the solution pair (X,Z) is. For (171) and
(172), the duality gap is the function

G(X,Z) = Tr (ZX) . (174)

Assuming both primal and dual feasible sets are not
empty, there exists an optimal primal-dual pair (X∗,Z∗)
such that

Tr (Z∗X∗) = 0. (175)

14.1.2 Interior point method: short-step path-following
primal-dual algorithm in Kojima, Shindoh, and
Hara [KSH97]

Interior point methods represent a family of algorithms
to solve a convex problem, SDP interior points imple-
ment the approach by providing a way to compute the
direction, and 1. a step length while remaining in the fea-
sible set – semi-definite matrices – near the central path,
and reducing the duality gap of the next iterate.

In [Wan+16b], we choose a short-step path-following
primal-dual algorithm in Kojima, Shindoh, and
Hara [KSH97]. At each loop iteration the search direc-
tions (∆X,∆Z, δp) are computed by solving the Newton

equations:

〈Fi,∆Z〉 = 0,
m∑
i

δpiFi +∆X = 0,

HT (Z∆X+∆ZX) = σµI−HT (ZX) ,

(176)

where HT is the symmetrizing linear operator

HT :M→ 1

2

(
TMT−1 +

(
TMT−1

)ᵀ)
, (177)

for some invertible scaling matrix T . The iterates are then
updated using a fixed step-length of α = 1, which guar-
antees that X and Z remains positive-definite.

The algorithm is described in Figure 14.1.

Table 14.1: Primal-Dual Short Path Interior-Point Algorithm

Input: F0 � 0, Fi ∈ Sn, i = 1, . . . ,m, b ∈ Rm

ε: required optimality

1. Initialize:

Compute Z such that 〈Fi,Z〉 = −bi, i = 1, . . . ,m;

Let X← X̂; // X̂ is some positive-definite matrix

Compute p such that
∑m
i piFi = −X0 − F0;

Let µ← 〈Z,X〉
n ;

Let σ← σ̂ where 0 < σ̂ < 1;

Let α← 1;

Let n← sz Fi;

Let m← szbi;

2. while nµ > ε {

3. Let ψ− ← 〈Z,X〉;
4. Let T ← T where T is an invertible matrix;

5. Compute (∆Z,∆X, δp) that satisfies (176);

6. Let Z← Z+α∆Z, X← X+α∆X, p← p+αδp;

7. Let ψ← 〈Z,X〉;
8. Let µ← 〈Z,X〉

n ;

}

An instantiation for a generic optimization problem in
control is presented in Figure 14.1. This is Matlab code.

14.1.3 Program properties

An important property of the program in Figure 14.1 is
the upper bound on the number of loop iterations re-
quired for the program to converge to the required op-
timality. We want to express this high-level property at
the level of the code. The rate of convergence is deter-
mined by the amount of reduction in the duality gap ψ
during each Newton step. We use the following result
from [Mon97].

Theorem 14.1 If the centrality parameter σ ∈ (0, 1) in Fig-
ure 14.1 satisfies the inequality

γ2 +n+nσ2 − 2nσ

2 (1− γ)2 σ
6 γ (178)

14.2 implementation 129

for some γ ∈ (0, 0.5], then

1.

Tr (ZX) − σTr (Z−X−) = 0 (179)

2. ∥∥∥∥Z0.5XZ0.5 −
Tr (ZX)
n

I

∥∥∥∥
F

6 γ
Tr (ZX)
n

(180)

holds throughout the execution of the program loop.

Figure 14.1 Optimization program based on the short-
step primal-dual interior-point algorithm in Matlab

F0=[1, 0; 0, 0.1];
F1 =[-0.750999 0.00499; 0.00499 0.0001];
F2 =[0.03992 -0.999101; -0.999101 0.00002];
F3 =[0.0016 0.00004; 0.00004 -0.999999];
b=[0.4; -0.2; 0.2];
n=length(F0);
m=length(b);
Ft=[vecs(F1), vecs(F2), vecs(F3)];
F=Ft ’;
Z=mats(lsqr(F,-b),n);
X=[0.3409 0.2407; 0.2407 0.9021];
epsilon =1e-8;
sigma =0.75;
psi=trace(Z*X);
P=mats(lsqr(Ft,vecs(-X-F0)),n);
p=vecs(P);
mu=psi/n;
while (n*mu>epsilon)

Xm=X;
Zm=Z;
pm=p;
mu=trace(Zm*Xm)/n;
Zh=Zm ^(0.5);
Zhi=Zh^(-1);
G=krons(Zhi ,transpose(Zh)*Xm,n,m);
H=krons(Zhi*Zm,transpose(Zh),n,m);
Ginv=G^(-1);
r=vecs(sigma*mu*eye(n,n)-Zh*Xm*Zh);
g=-F*Ginv*r;
B=F*Ginv*H*Ft;
dpm=B^(-1)*g;
dxm=-Ft*dpm;
dzm=Ginv*r-Ginv*H*dxm;
p=pm+dpm;
X=Xm+mats(dxm ,n);
Z=Zm+mats(dzm ,n);
psi=trace(Z*X);

end

Matlab

The condition
∥∥∥∥Z0.5XZ0.5 −

Tr (ZX)
n

I

∥∥∥∥
F

6 γ
Tr (ZX)
n

implies that the iterates (X, Z) remains within the γ-
neighborhood of the central path i.e. the set of X � 0,
Z � 0 such that ZX =

Tr(ZX)
n I,X ∈ Fp,Z ∈ Fd. The cen-

tral path condition in (180) guarantees X � 0 and Z � 0
throughout the execution of the loop.

As an consequence of (179), we have the following re-
sult for the example optimization program.

Lemma 14.2 Given an optimality requirement ε and an ini-
tial duality gap ε0 = Tr (Z0X0). If σ satisfies the assumption
of Theorem 14.1, then the example optimization program in
Figure 14.1 is guaranteed to terminate with Tr (ZkXk) 6 ε in

k > logε−1ε0
log (σ−1)

number of iterations.

To use Theorem 14.1, there must exist a 0 < γ 6 0.5
and a 0 < σ < 1 such that the inequality in (178) holds.
One possible choice is γ = 0.3105 and σ = 0.75, which
is the case in our Matlab implementation. With σ = 0.75
we get the loop invariant

Tr (ZX) − 0.75Tr (Z−X−) = 0, (181)

which will be used in the annotation of the example im-
plementation. Using (14.2), and the fact that ε0 = 0.3419,
the Matlab program in Figure 14.1 is guaranteed to con-
verge to the required optimality of 1 × 10−8 within 62

loop iterations.

14.2 implementation

These first results are preliminary in the sense that they
are not validated at code level. One interesting aspect
of the example of Fig. 14.1 is the specialization of the
optimization solver for a specific instance. This is typi-
cally the case when embedding optimization to perform
online computation of trajectories, for example.

This is compatible with our view of autocoded con-
trollers, here optimizers, that are produced along with
their proof arguments.

The general process is sketched in Figure 14.2.

Figure 14.2 Visualization of autocoding and verification
process For Optimization Algorithms

Certified Compiler

Static Analyzer

Credible Autocoder

Problem
Data

Binary

Source Code

Semantics of Interior-Point Algorithms
1. A monotonically decreasing function

which measures optimality.
2. Feasibility of the iterates.

Semantics of the Code
1. Expressing a property

such as the convergence
rate of the program.

2. Expressing a code-level
proof of the property.

Manual

Both

Automatic

Proof
Checker

In the LP setting, Guillaume Davy implemented in
Python a code generator that, considering the descrip-
tion of a linear problem, produces the C code and its
ACSL annotations. Figure 14.3 presents the framework.

130 proving the implementation of convex optimization algorithms

Figure 14.3 Python-based autocoding framework

Figure 14.4 C code pure primal interior point for LP with
ACSL annotations.

double A[M*N], b[M], c[N];
double t, dt;
double x[N], dx[N];

/*@ requires acc(0, x);
@ ensures dot(c, x) - dot(c, sol(A, b, c))

< EPSILON;
@ ensures A * x > b; */

void pathfollowing () {
t = 0;
/*@ loop invariant acc(t, x);

loop invariant A * x > b;
loop invariant t > LOWER(l); */

for (unsigned int l = 0;l<NBR;l++)
{

compute_pre ();
compute_dt ();
compute_dx ();
t = t + dt;
for(unsigned int i = 0;i<N;i++)

x[i] = x[i] + dx[i];
}

}

C+ACSL

The current algorithm considered is a pure primal inte-
rior method for LP, presented in [NN94]. The generated
code follows the general format of interior point method.
The code is generated with ACSL, as presented in Fig-
ure 14.4.

Additional ACSL predicates provide the definition of
acc central path condition, convergence with respect to
theoretical solution sol, and feasibility of iterates A * x
> b. The loop invariant t > LOWER(l) ensures that each
step has a step length sufficient to ensure convergence in
a given number of iterations.

Current ongoing work addresses the proof in Coq of
these contracts, and the automatization on each opti-
mization instance of these proofs. The perspectives are to
extend the approach to more complex convex sets such
as QP, SOCP or SDP.

B I B L I O G R A P H Y

[AIB13] Behçet Açikmese, John M. Carson III, and Lars Blackmore. “Lossless Convexification of Nonconvex
Control Bound and Pointing Constraints of the Soft Landing Optimal Control Problem.” In: IEEE
Trans. Contr. Sys. Techn. 21.6 (2013), pp. 2104–2113. doi: 10.1109/TCST.2012.2237346. url: http:
//dx.doi.org/10.1109/TCST.2012.2237346 (page 127).

[Bau+08] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy, and Virgile
Prevosto. ACSL: ANSI/ISO C Specification Language. frama-c.cea.fr/acsl.html. 2008. url: frama-
c.cea.fr/acsl.html (pages 13, 79, 115).

[AGW15] Assalé Adjé, Pierre-Loïc Garoche, and Alexis Werey. “Quadratic Zonotopes - An Extension of Zono-
topes to Quadratic Arithmetics.” In: Programming Languages and Systems - 13th Asian Symposium, APLAS
2015, Pohang, South Korea, November 30 - December 2, 2015, Proceedings. 2015, pp. 127–145. doi: 10.1007/
978-3-319-26529-2_8 (page 95).

[AGG10] Assalé Adjé, Stéphane Gaubert, and Eric Goubault. “Coupling Policy Iteration with Semi-definite Re-
laxation to Compute Accurate Numerical Invariants in Static Analysis.” In: ESOP. Ed. by A. D. Gor-
don. Vol. 6012. Lecture Notes in Computer Science. Springer, 2010, pp. 23–42. isbn: 978-3-642-11956-9
(pages 60, 63).

[AJ13] Amir Ali Ahmadi and Raphael M. Jungers. “Switched stability of nonlinear systems via SOS-convex
Lyapunov functions and semidefinite programming.” In: CDC’13. 2013, pp. 727–732 (page 55).

[All+15] Xavier Allamigeon, Stéphane Gaubert, Eric Goubault, Sylvie Putot, and Nikolas Stott. “A scalable
algebraic method to infer quadratic invariants of switched systems.” In: 2015 International Conference
on Embedded Software, EMSOFT 2015, Amsterdam, Netherlands, October 4-9, 2015. Ed. by Alain Girault
and Nan Guan. IEEE, 2015, pp. 75–84. isbn: 978-1-4673-8079-9. doi: 10.1109/EMSOFT.2015.7318262.
url: http://dx.doi.org/10.1109/EMSOFT.2015.7318262 (page 56).

[AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity
problems. Oxford mathematical monographs. Autres tirages : 2006. Oxford, New York: Clarendon Press,
2000. isbn: 0-19-850245-1. url: opac.inria.fr/record=b1096464 (page 121).

[AA00] Erling D. Andersen and Knud D. Andersen. “The Mosek Interior Point Optimizer for Linear Program-
ming: An Implementation of the Homogeneous Algorithm.” English. In: High Performance Optimization.
Ed. by Hans Frenk, Kees Roos, Tamás Terlaky, and Shuzhong Zhang. Vol. 33. Applied Optimization.
Springer US, 2000, pp. 197–232. isbn: 978-1-4419-4819-9. doi: 10.1007/978-1-4757-3216-0_8. url:
dx.doi.org/10.1007/978-1-4757-3216-0_8 (page 33).

[App11] Andrew W. Appel. “Verified Software Toolchain - (Invited Talk).” In: Programming Languages and Sys-
tems - 20th European Symposium on Programming, ESOP 2011, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings.
Vol. 6602. LNCS. 2011, pp. 1–17. isbn: 978-3-642-19717-8. doi: 10.1007/978-3-642-19718-5_1. url:
dx.doi.org/10.1007/978-3-642-19718-5_1 (pages 10, 13).

[AM08] Karl Johan Astrom and Richard M. Murray. Feedback Systems: An Introduction for Scientists and Engineers.
Princeton, NJ, USA: Princeton University Press, 2008. isbn: 0691135762, 9780691135762 (page 19).

[APS08] Erin M. Aylward, Pablo A. Parrilo, and Jean-Jacques E. Slotine. “Stability and robustness analysis of
nonlinear systems via contraction metrics and SOS programming.” In: Automatica 44.8 (2008), pp. 2163–
2170. doi: 10.1016/j.automatica.2007.12.012. url: dx.doi.org/10.1016/j.automatica.2007.12.
012 (page 120).

[BT07] Clark Barrett and Cesare Tinelli. “CVC3.” In: Proceedings of the 19th International Conference on Computer
Aided Verification (CAV ’07). Ed. by Werner Damm and Holger Hermanns. Vol. 4590. Lecture Notes in
Computer Science. Berlin, Germany. Springer-Verlag, July 2007, pp. 298–302 (page 11).

131

http://dx.doi.org/10.1109/TCST.2012.2237346
http://dx.doi.org/10.1109/TCST.2012.2237346
http://dx.doi.org/10.1109/TCST.2012.2237346
frama-c.cea.fr/acsl.html
frama-c.cea.fr/acsl.html
frama-c.cea.fr/acsl.html
http://dx.doi.org/10.1007/978-3-319-26529-2_8
http://dx.doi.org/10.1007/978-3-319-26529-2_8
http://dx.doi.org/10.1109/EMSOFT.2015.7318262
http://dx.doi.org/10.1109/EMSOFT.2015.7318262
opac.inria.fr/record=b1096464
http://dx.doi.org/10.1007/978-1-4757-3216-0_8
dx.doi.org/10.1007/978-1-4757-3216-0_8
http://dx.doi.org/10.1007/978-3-642-19718-5_1
dx.doi.org/10.1007/978-3-642-19718-5_1
http://dx.doi.org/10.1016/j.automatica.2007.12.012
dx.doi.org/10.1016/j.automatica.2007.12.012
dx.doi.org/10.1016/j.automatica.2007.12.012

132 Bibliography

[Bau+02] Patrick Baudin, Anne Pacalet, Jacques Raguideau, Dominique Schoen, and Nicky Williams. “CAVEAT:
A Tool for Software Validation.” In: 2002 International Conference on Dependable Systems and Networks
(DSN 2002), 23-26 June 2002, Bethesda, MD, USA, Proceedings. IEEE Computer Society, 2002, p. 537. isbn:
0-7695-1597-5. doi: 10.1109/DSN.2002.1028953. url: dx.doi.org/10.1109/DSN.2002.1028953
(page 10).

[Ben+12] Mohamed Amin Ben Sassi, Romain Testylier, Thao Dang, and Antoine Girard. “Reachability Analysis
of Polynomial Systems Using Linear Programming Relaxations.” In: ATVA 2012 (2012). Ed. by Supratik
Chakraborty and Madhavan Mukund, pp. 137–151. doi: 10.1007/978- 3- 642- 33386- 6_12. url:
dx.doi.org/10.1007/978-3-642-33386-6_12 (page 123).

[Bie+08] Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. “Clock-directed modular
code generation for synchronous data-flow languages.” In: LCTES. 2008 (pages 77, 113).

[Bis+05] Pratik Biswas, Pascal Grieder, Johan Löfberg, and Manfred Morari. “A Survey on Stability Analysis of
Discrete-Time Piecewise Affine Systems.” In: IFAC World Congress. Prague, Czech Republic, July 2005.
url: control.ee.ethz.ch/index.cgi?page=publications;action=details;id=2030 (page 44).

[BAI12] Lars Blackmore, Behçet Açikmese, and John M. Carson III. “Lossless convexification of control con-
straints for a class of nonlinear optimal control problems.” In: Systems & Control Letters 61.8 (2012),
pp. 863–870. doi: 10.1016/j.sysconle.2012.04.010. url: http://dx.doi.org/10.1016/j.sysconle.
2012.04.010 (page 127).

[Blo+01] Vincent D. Blondel, Olivier Bournez, Pascal Koiran, Christos H. Papadimitriou, and John N. Tsitsiklis.
“Deciding Stability and Mortality of Piecewise Affine Dynamical Systems.” In: Theoretical Computer
Science A 1–2.255 (2001), pp. 687–696. url: dx.doi.org/10.1016/S0304-39750000399-6 (page 43).

[Bod02] Marc Bodson. “Evaluation of optimization methods for control allocation.” In: Journal of Guidance,
Control, and Dynamics 25.4 (2002), pp. 703–711 (page 127).

[BS15] Silvere Bonnabel and Jean-Jacques E. Slotine. “A Contraction Theory-Based Analysis of the Stability
of the Deterministic Extended Kalman Filter.” In: IEEE Trans. Automat. Contr. 60.2 (2015), pp. 565–569.
doi: 10.1109/TAC.2014.2336991. url: http://dx.doi.org/10.1109/TAC.2014.2336991 (page 120).

[Bor99] Brian Borchers. “CSDP, A C library for semidefinite programming.” In: Optimization Methods and
Software 11.1-4 (1999), pp. 613–623. doi: 10 . 1080 / 10556789908805765. eprint: www . tandfonline .
com / doi / pdf / 10 . 1080 / 10556789908805765. url: www . tandfonline . com / doi / abs / 10 . 1080 /
10556789908805765 (pages 33, 107).

[Bou+09] Olivier Bouissou, Eric Goubault, Sylvie Putot, Karim Tekkal, and Franck Védrine. “HybridFluctuat:
A Static Analyzer of Numerical Programs within a Continuous Environment.” In: Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings.
Vol. 5643. LNCS. 2009, pp. 620–626. isbn: 978-3-642-02657-7. doi: 10.1007/978-3-642-02658-4_46.
url: dx.doi.org/10.1007/978-3-642-02658-4_46 (page 75).

[BP13] Timothy Bourke and Marc Pouzet. “Zélus: a synchronous language with ODEs.” In: Proceedings of
the 16th international conference on Hybrid systems: computation and control, HSCC 2013, April 8-11, 2013,
Philadelphia, PA, USA. Ed. by Calin Belta and Franjo Ivancic. ACM, 2013, pp. 113–118. isbn: 978-1-4503-
1567-8. doi: 10.1145/2461328.2461348. url: doi.acm.org/10.1145/2461328.2461348 (page 119).

[Boy+94] Stephen Boyd, Laurent El Ghaoui, Éric Féron, and Venkataramanan Balakrishnan. Linear Matrix Inequal-
ities in System and Control Theory. Vol. 15. SIAM. Philadelphia, PA: SIAM, June 1994. isbn: 0-89871-334-X
(pages 39, 74, 119).

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. New York, NY, USA: Cambridge Univer-
sity Press, 2004 (pages 32, 35, 36, 39).

[Bra12] Aaron Bradley. “Understanding IC3.” In: SAT 2012. 2012, pp. 1–14 (page 14).

[Cac+14] David Cachera, Thomas P. Jensen, Arnaud Jobin, and Florent Kirchner. “Inference of polynomial invari-
ants for imperative programs: A farewell to Gröbner bases.” In: Sci. Comput. Program. 93 (2014), pp. 89–
109. doi: 10.1016/j.scico.2014.02.028. url: http://dx.doi.org/10.1016/j.scico.2014.02.028
(page 56).

http://dx.doi.org/10.1109/DSN.2002.1028953
dx.doi.org/10.1109/DSN.2002.1028953
http://dx.doi.org/10.1007/978-3-642-33386-6_12
dx.doi.org/10.1007/978-3-642-33386-6_12
control.ee.ethz.ch/index.cgi?page=publications;action=details;id=2030
http://dx.doi.org/10.1016/j.sysconle.2012.04.010
http://dx.doi.org/10.1016/j.sysconle.2012.04.010
http://dx.doi.org/10.1016/j.sysconle.2012.04.010
dx.doi.org/10.1016/S0304-39750000399-6
http://dx.doi.org/10.1109/TAC.2014.2336991
http://dx.doi.org/10.1109/TAC.2014.2336991
http://dx.doi.org/10.1080/10556789908805765
www.tandfonline.com/doi/pdf/10.1080/10556789908805765
www.tandfonline.com/doi/pdf/10.1080/10556789908805765
www.tandfonline.com/doi/abs/10.1080/10556789908805765
www.tandfonline.com/doi/abs/10.1080/10556789908805765
http://dx.doi.org/10.1007/978-3-642-02658-4_46
dx.doi.org/10.1007/978-3-642-02658-4_46
http://dx.doi.org/10.1145/2461328.2461348
doi.acm.org/10.1145/2461328.2461348
http://dx.doi.org/10.1016/j.scico.2014.02.028
http://dx.doi.org/10.1016/j.scico.2014.02.028

Bibliography 133

[CCN06] Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine Nikoukhah. Modeling and Simulation in
Scilab, Scicos. Springer, 2006 (page 78).

[Cas+03] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, and Stavros Tripakis. “Translating Discrete-
Time Simulink to Lustre.” In: Embedded Software. Ed. by Rajeev Alur and Insup Lee. Vol. 2855. Lecture
Notes in Computer Science. 10.1007/978-3-540-45212-67. Springer Berlin / Heidelberg, 2003, pp. 84–99

(page 114).

[Cas+87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. “Lustre: A Declarative Language for
Programming Synchronous Systems.” In: POPL. ACM Press, 1987, pp. 178–188. isbn: 0-89791-215-2
(page 77).

[CDD15] Adrien Champion, Rémi Delmas, and Michael Dierkes. “Generating property-directed potential invari-
ants by quantifier elimination in a k-induction-based framework.” In: Sci. Comput. Program. 103 (2015),
pp. 71–87. doi: 10.1016/j.scico.2014.10.004. url: dx.doi.org/10.1016/j.scico.2014.10.004
(page 14).

[Cim12] Alessandro Cimatti. “Application of SMT solvers to hybrid system verification.” In: Formal Methods
in Computer-Aided Design, FMCAD 2012, Cambridge, UK, October 22-25, 2012. Ed. by Gianpiero Ca-
bodi and Satnam Singh. IEEE, 2012, p. 4. isbn: 978-1-4673-4832-4. url: ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=6462548 (page 119).

[CS11] Michael Colón and Sriram Sankaranarayanan. “Generalizing the Template Polyhedral Domain.” In:
ESOP. Vol. 6602. LNCS. 2011, pp. 176–195. isbn: 978-3-642-19717-8 (page 38).

[CS93] Joao L. D. Comba and Jorge Stolfi. Affine Arithmetic and its Applications to Computer Graphics. 1993

(pages 93, 100–102).

[Con+08] Sylvain Conchon, Evelyne Contejean, Johannes Kanig, and Stéphane Lescuyer. “CC(X): Semantic Com-
bination of Congruence Closure with Solvable Theories.” In: Electr. Notes Theor. Comput. Sci. 198.2
(2008), pp. 51–69 (page 11).

[Cos+05] Alexandru Costan, Stéphane Gaubert, Eric Goubault, Matthieu Martel, and Sylvie Putot. “A policy
iteration algorithm for computing fixed points in static analysis of programs.” In: Computer aided ver-
ification. Ed. by Kousha Etessami and Sriram K. Rajamani. Vol. 3576. LNCS. Springer. Springer, 2005,
pp. 462–475. isbn: 3-540-27231-3 (pages 60, 63).

[Cou05] Patrick Cousot. “Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian
Relaxation and Semidefinite Programming.” English. In: Verification, Model Checking, and Abstract In-
terpretation. Ed. by Radhia Cousot. Vol. 3385. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2005, pp. 1–24. isbn: 978-3-540-24297-0. doi: 10.1007/978- 3- 540- 30579- 8_1. url:
dx.doi.org/10.1007/978-3-540-30579-8_1 (page 56).

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analy-
sis of Programs by Construction or Approximation of Fixpoints.” In: Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages. POPL ’77. New York, NY, USA: ACM,
1977, pp. 238–252 (page 14).

[CC92] Patrick Cousot and Radhia Cousot. “Abstract Interpretation Frameworks.” In: Journal of Logic and Com-
putation 2.4 (Aug. 1992), pp. 511–547 (page 17).

[CC79] Patrick Cousot and Radhia Cousot. “Systematic design of program analysis frameworks.” In: Conference
Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
San Antonio, Texas: ACM Press, New York, NY, 1979, pp. 269–282 (page 17).

[Cou+07] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
and Xavier Rival. “Combination of Abstractions in the Astrée Static Analyzer.” In: Eleventh Annual
Asian Computing Science Conference (ASIAN’06). Ed. by M. Okada and I. Satoh. Tokyo, Japan, LNCS
4435: Springer, Berlin, Dec. 2007, pp. 1–24 (page 18).

[Cou+05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
and Xavier Rival. “The ASTRÉE Analyser.” In: ESOP. Vol. 3444. LNCS. 2005, pp. 21–30 (pages 4, 92).

[Cuo+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski.
“Frama-C: A Software Analysis Perspective.” In: SEFM. Springer, 2012, pp. 233–247 (pages 10, 78, 79).

http://dx.doi.org/10.1016/j.scico.2014.10.004
dx.doi.org/10.1016/j.scico.2014.10.004
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462548
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6462548
http://dx.doi.org/10.1007/978-3-540-30579-8_1
dx.doi.org/10.1007/978-3-540-30579-8_1

134 Bibliography

[DMC15] Nasrine Damouche, Matthieu Martel, and Alexandre Chapoutot. “Transformation of a PID Controller
for Numerical Accuracy.” In: Electr. Notes Theor. Comput. Sci. 317 (2015), pp. 47–54. doi: 10.1016/j.
entcs.2015.10.006. url: http://dx.doi.org/10.1016/j.entcs.2015.10.006 (page 116).

[Det+14] Morgan Deters, Andrew Reynolds, Tim King, Clark W. Barrett, and Cesare Tinelli. “A tour of CVC4:
How it works, and how to use it.” In: Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne,
Switzerland, October 21-24, 2014. IEEE, 2014, p. 7. isbn: 978-0-9835678-4-4. doi: 10.1109/FMCAD.2014.
6987586. url: dx.doi.org/10.1109/FMCAD.2014.6987586 (page 11).

[Die+15] Arnaud Dieumegard, Pierre-Loïc Garoche, Temesghen Kahsai, Alice Tailliar, and Xavier Thirioux.
“Compilation Of Synchronous Observers As Code Contracts.” In: 30th ACM/SIGAPP Symposium on
Applied Computing, SAC 2015, Salamanca, Spain - April 13 - 17, 2015. Ed. by Roger L. Wainwright, Juan
Manuel Corchado, Alessio Bechini, and Jiman Hong. Short paper. ACM, 2015, pp. 1933–1939. isbn:
978-1-4503-3196-8. doi: 10.1145/2695664.2695819. url: doi.acm.org/10.1145/2695664.2695819
(pages 113, 116).

[Dij76] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice-Hall, 1976 (page 13).

[Doy82] John C. Doyle. “Analysis of feedback systems with structured uncertainties.” In: IEE Proceedings D
- Control Theory and Applications 129.6 (Nov. 1982), pp. 242–250. issn: 0143-7054. doi: 10.1049/ip-
d.1982.0053 (page 72).

[Dut14] Bruno Dutertre. “Yices 2.2.” In: Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Ed.
by Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer, 2014,
pp. 737–744. isbn: 978-3-319-08866-2. doi: 10.1007/978-3-319-08867-9_49. url: dx.doi.org/10.
1007/978-3-319-08867-9_49 (page 11).

[DM06] Bruno Dutertre and Leonardo de Moura. The YICES SMT Solver. Tech. rep. SRI International, 2006. url:
yices.csl.sri.com/ (page 11).

[Fer05a] Jérôme Feret. “Analysis of Mobile Systems by Abstract Interpretation.” PhD thesis. École polytech-
nique, Paris, France, 2005 (page 17).

[Fer05b] Jérôme Feret. “Numerical Abstract Domains for Digital Filters.” In: International workshop on Numerical
and Symbolic Abstract Domains (NSAD). 2005 (page 56).

[Fer04] Jérôme Feret. “Static Analysis of Digital Filters.” In: Programming Languages and Systems, 13th European
Symposium on Programming, ESOP 2004, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings. Ed. by David A.
Schmidt. Vol. 2986. Lecture Notes in Computer Science. Springer, 2004, pp. 33–48. isbn: 3-540-21313-9.
doi: 10.1007/978-3-540-24725-8_4. url: dx.doi.org/10.1007/978-3-540-24725-8_4 (pages 4, 18,
40, 56).

[Fér10] Éric Féron. “From Control Systems to Control Software.” In: Control Systems, IEEE 30.6 (Dec. 2010),
pp. 50–71. issn: 1066-033X. doi: 10.1109/MCS.2010.938196 (pages 21, 69, 80, 82).

[FM07] Jean-Christophe Filliâtre and Claude Marché. “The Why/Krakatoa/Caduceus Platform for Deductive
Program Verification.” In: Computer Aided Verification, 19th International Conference, CAV 2007, Berlin,
Germany, July 3-7, 2007, Proceedings. Ed. by Werner Damm and Holger Hermanns. Vol. 4590. Lecture
Notes in Computer Science. Springer, 2007, pp. 173–177. isbn: 978-3-540-73367-6. doi: 10.1007/978-3-
540-73368-3_21. url: dx.doi.org/10.1007/978-3-540-73368-3_21 (page 10).

[Fit61] Richard FitzHugh. “Impulses and physiological states in theoretical models of nerve membrane.” In:
Biophys J. 1 (1961), pp. 445–466. issn: 0006-3495 (page 123).

[Flo67] Robert W. Floyd. “Assigning Meanings to Programs.” In: Proceedings of Symposium on Applied Mathe-
matics 19 (1967), pp. 19–32 (page 8).

[FWP90] Gene F. Franklin, Michael L. Workman, and Dave Powell. Digital Control of Dynamic Systems. 2nd.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1990. isbn: 0201820544 (page 21).

[Gar08] Pierre-Loïc Garoche. “Static Analysis of Actors by Abstract Interpretation.” PhD thesis. University of
Toulouse, INPT, 2008 (page 17).

http://dx.doi.org/10.1016/j.entcs.2015.10.006
http://dx.doi.org/10.1016/j.entcs.2015.10.006
http://dx.doi.org/10.1016/j.entcs.2015.10.006
http://dx.doi.org/10.1109/FMCAD.2014.6987586
http://dx.doi.org/10.1109/FMCAD.2014.6987586
dx.doi.org/10.1109/FMCAD.2014.6987586
http://dx.doi.org/10.1145/2695664.2695819
doi.acm.org/10.1145/2695664.2695819
http://dx.doi.org/10.1049/ip-d.1982.0053
http://dx.doi.org/10.1049/ip-d.1982.0053
http://dx.doi.org/10.1007/978-3-319-08867-9_49
dx.doi.org/10.1007/978-3-319-08867-9_49
dx.doi.org/10.1007/978-3-319-08867-9_49
yices.csl.sri.com/
http://dx.doi.org/10.1007/978-3-540-24725-8_4
dx.doi.org/10.1007/978-3-540-24725-8_4
http://dx.doi.org/10.1109/MCS.2010.938196
http://dx.doi.org/10.1007/978-3-540-73368-3_21
http://dx.doi.org/10.1007/978-3-540-73368-3_21
dx.doi.org/10.1007/978-3-540-73368-3_21

Bibliography 135

[GGK14] Pierre-Loïc Garoche, Arie Gurfinkel, and Temesghen Kahsai. “Synthesizing Modular Invariants for
Synchronous Code.” In: Proceedings of the First Workshop on Horn Clauses for Verification and Synthesis,
HCVS 2014, Vienna, Austria, 17 July 2014. Ed. by Nikolaj Bjørner, Fabio Fioravanti, Andrey Rybalchenko,
and Valerio Senni. Vol. 169. EPTCS. 2014, pp. 19–30. doi: 10.4204/EPTCS.169.4 (page 113).

[Gar+14] Pierre-Loïc Garoche, Falk Howar, Temesghen Kahsai, and Xavier Thirioux. “Testing-Based Compiler
Validation for Synchronous Languages.” In: NASA Formal Methods - 6th International Symposium, NFM
2014, Houston, TX, USA, April 29 - May 1, 2014. Proceedings. Ed. by Julia M. Badger and Kristin Yvonne
Rozier. Vol. 8430. Lecture Notes in Computer Science. Short paper. Springer, 2014, pp. 246–251. isbn:
978-3-319-06199-3. doi: 10.1007/978-3-319-06200-6_19 (page 113).

[GKT12] Pierre-Loïc Garoche, Temesghen Kahsai, and Cesare Tinelli. Invariant stream generators using automatic
abstract transformers based on a decidable logic. 2012. url: arxiv.org/abs/1205.3758 (page 14).

[GTK12] Pierre-Loïc Garoche, Xavier Thirioux, and Temesghen Kahsai. LustreC: a modular Lustre compiler. 2012–.
url: https://github.com/coco-team/lustrec (pages 77, 113).

[Gau+07] Stéphane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou. “Static Analysis by Policy Iteration
on Relational Domains.” In: ESOP. Ed. by Rocco De Nicola. Vol. 4421. LNCS. Springer, 2007, pp. 237–
252. isbn: 978-3-540-71314-2 (pages 60, 63).

[GS10] Thomas Martin Gawlitza and Helmut Seidl. “Computing Relaxed Abstract Semantics w.r.t. Quadratic
Zones Precisely.” In: SAS. Ed. by Radhia Cousot and Matthieu Martel. Vol. 6337. LNCS. Springer, 2010,
pp. 271–286. isbn: 978-3-642-15768-4 (pages 63, 64).

[Gaw+12] Thomas Martin Gawlitza, Helmut Seidl, Assalé Adjé, Stéphane Gaubert, and Eric Goubault. “Abstract
interpretation meets convex optimization.” In: J. Symb. Comput. 47.12 (2012), pp. 1416–1446 (page 63).

[GS07a] Thomas Gawlitza and Helmut Seidl. “Precise Fixpoint Computation Through Strategy Iteration.” In:
ESOP. Ed. by Rocco De Nicola. Vol. 4421. LNCS. Springer, 2007, pp. 300–315. isbn: 978-3-540-71314-2
(page 63).

[GS07b] Thomas Gawlitza and Helmut Seidl. “Precise Relational Invariants Through Strategy Iteration.” In:
CSL. Ed. by Jacques Duparc and Thomas A. Henzinger. Vol. 4646. LNCS. Springer, 2007, pp. 23–40.
isbn: 978-3-540-74914-1 (page 63).

[GGP10] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. “A Logical Product Approach to Zonotope Intersec-
tion.” In: CAV. 2010, pp. 212–226 (pages 97, 101).

[GGP09] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. “The Zonotope Abstract Domain Taylor1+.” In: CAV.
Vol. 5643. LNCS. 2009, pp. 627–633. isbn: 978-3-642-02657-7 (pages 93, 97, 100, 101).

[Gho+12] Khalil Ghorbal, Franjo Ivančić, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta. “Donut Domains:
Efficient Non-convex Domains for Abstract Interpretation.” In: Verification, Model Checking, and Abstract
Interpretation - 13th International Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012.
Proceedings. Ed. by Viktor Kuncak and Andrey Rybalchenko. Vol. 7148. Lecture Notes in Computer
Science. Springer, 2012, pp. 235–250. isbn: 978-3-642-27939-3. doi: 10.1007/978-3-642-27940-9_16.
url: http://dx.doi.org/10.1007/978-3-642-27940-9_16 (page 56).

[GK99] Elmer G. Gilbert and Ilya V. Kolmanovsky. “Set-point control of nonlinear systems with state and
control constraints: a Lyapunov-function, reference-governor approach.” In: Decision and Control, 1999.
Proceedings of the 38th IEEE Conference on. Vol. 3. 1999, 2507–2512 vol.3. doi: 10.1109/CDC.1999.831304
(page 118).

[Gil13] Jean-Charles Gilbert. Éléments d’optimisation différentiable. 2013 (page 32).

[GVP00] Keith Glover, Glenn Vinnicombe, and George Papageorgiou. “Guaranteed multi-loop stability margins
and the gap metric.” In: CDC. Vol. 4. IEEE. 2000, pp. 4084–4085 (page 74).

[Gou01] Eric Goubault. “Static Analyses of the Precision of Floating-Point Operations.” In: Proceedings of the 8th
International Symposium on Static Analysis. SAS ’01. London, UK, UK: Springer-Verlag, 2001, pp. 234–259

(pages 93, 101).

[Gou13] Eric Goubault. “Static Analysis by Abstract Interpretation of Numerical Programs and Systems, and
FLUCTUAT.” In: SAS. 2013, pp. 1–3 (page 101).

http://dx.doi.org/10.4204/EPTCS.169.4
http://dx.doi.org/10.1007/978-3-319-06200-6_19
arxiv.org/abs/1205.3758
https://github.com/coco-team/lustrec
http://dx.doi.org/10.1007/978-3-642-27940-9_16
http://dx.doi.org/10.1007/978-3-642-27940-9_16
http://dx.doi.org/10.1109/CDC.1999.831304

136 Bibliography

[GLP12] Eric Goubault, Tristan Le Gall, and Sylvie Putot. “An Accurate Join for Zonotopes, Preserving Affine
Input/Output Relations.” In: ENTCS 287 (2012), pp. 65–76 (page 97).

[GP09] Eric Goubault and Sylvie Putot. “A zonotopic framework for functional abstractions.” In: CoRR abs/0910.1763

(2009) (pages 96, 97).

[GP11] Eric Goubault and Sylvie Putot. “Static Analysis of Finite Precision Computations.” In: VMCAI. Ed. by
Ranjit Jhala and David A. Schmidt. Vol. 6538. LNCS. Springer, 2011, pp. 232–247. isbn: 978-3-642-18274-
7 (page 93).

[GPV12] Eric Goubault, Sylvie Putot, and Franck Védrine. “Modular Static Analysis with Zonotopes.” In: SAS.
Vol. 7460. LNCS. Springer, 2012, pp. 24–40. isbn: 978-3-642-33124-4 (pages 97, 101).

[HC08] Wassim M. Haddad and VijaySekhar Chellaboina. Nonlinear Dynamical Systems and Control: A Lyapunov-
based Appr. Princeton University Press, 2008 (pages 38, 74).

[Hal+91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. “The synchronous data-flow
programming language LUSTRE.” In: Proceedings of the IEEE 79.9 (Sept. 1991), pp. 1305–1320 (pages 27,
113).

[HLR93] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. “Synchronous Observers and the Veri-
fication of Reactive Systems.” In: AMAST. Ed. by Maurice Nivat, Charles Rattray, Teodor Rus, and
Giuseppe Scollo. Workshops in Computing. Springer, 1993, pp. 83–96. isbn: 3-540-19852-0 (page 78).

[HK14] Didier Henrion and Milan Korda. “Convex Computation of the Region of Attraction of Polynomial
Control Systems.” In: Automatic Control, IEEE Transactions on 59.2 (2014), pp. 297–312. issn: 0018-9286.
doi: 10.1109/TAC.2013.2283095 (pages 121, 122).

[HLS09] Didier Henrion, Jean-Bernard Lasserre, and Carlo Savorgnan. “Approximate Volume and Integration
for Basic Semialgebraic Sets.” In: SIAM Review 51.4 (2009), pp. 722–743. doi: 10.1137/080730287.
eprint: dx.doi.org/10.1137/080730287. url: dx.doi.org/10.1137/080730287 (page 121).

[Her+12] Heber Herencia-Zapana, Romain Jobredeaux, Sam Owre, Pierre-Loïc Garoche, Éric Féron, Gilberto
Perez, and Pablo Ascariz. “PVS Linear Algebra Libraries for Verification of Control Software Algo-
rithms in C/ACSL.” In: NASA Formal Methods - Forth International Symposium, NFM 2012, Norfolk, VA
USA, April 3-5, 2012. Proceedings. Ed. by Alwyn Goodloe and Suzette Person. Vol. 7226. Lecture Notes
in Computer Science. Springer, 2012, pp. 147–161. doi: 10.1007/978-3-642-28891-3_15 (pages 78, 81,
115).

[Hig96] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 1996. isbn: 0898713552 (page 90).

[Hoa69] Charles. A. R. Hoare. “An axiomatic basis for computer programming.” In: Commun. ACM 12 (Oct.
1969), pp. 576–580 (pages 8, 10).

[IS00] Saidhakim Dododzhanovich Ikramov and N.V. Savel’eva. “Conditionally definite matrices.” In: Journal
of Mathematical Sciences 98.1 (2000), pp. 1–50. issn: 1072-3374. doi: 10.1007/BF02355379. url: dx.doi.
org/10.1007/BF02355379 (page 43).

[IM13] Arnault Ioualalen and Matthieu Martel. “Synthesizing accurate floating-point formulas.” In: 24th In-
ternational Conference on Application-Specific Systems, Architectures and Processors, ASAP 2013, Washing-
ton, DC, USA, June 5-7, 2013. IEEE Computer Society, 2013, pp. 113–116. isbn: 978-1-4799-0494-5. doi:
10.1109/ASAP.2013.6567563. url: http://dx.doi.org/10.1109/ASAP.2013.6567563 (page 116).

[JM09] Bertrand Jeannet and Antoine Miné. “Apron: A Library of Numerical Abstract Domains for Static
Analysis.” In: CAV’09. 2009, pp. 661–667. doi: 10.1007/978-3-642-02658-4_52. url: dx.doi.org/10.
1007/978-3-642-02658-4_52 (page 101).

[Jer+14] Juan Luis Jerez, Paul J. Goulart, Stefan Richter, George A. Constantinides, Eric C. Kerrigan, and Man-
fred Morari. “Embedded Online Optimization for Model Predictive Control at Megahertz Rates.” In:
IEEE Trans. Automat. Contr. 59.12 (2014), pp. 3238–3251. doi: 10.1109/TAC.2014.2351991. url: http:
//dx.doi.org/10.1109/TAC.2014.2351991 (pages 104, 127).

[KGT11] Temesghen Kahsai, Yeting Ge, and Cesare Tinelli. “Instantiation-Based Invariant Discovery.” In: NASA
Formal Methods - Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Pro-
ceedings. 2011, pp. 192–206 (page 14).

http://dx.doi.org/10.1109/TAC.2013.2283095
http://dx.doi.org/10.1137/080730287
dx.doi.org/10.1137/080730287
dx.doi.org/10.1137/080730287
http://dx.doi.org/10.1007/978-3-642-28891-3_15
http://dx.doi.org/10.1007/BF02355379
dx.doi.org/10.1007/BF02355379
dx.doi.org/10.1007/BF02355379
http://dx.doi.org/10.1109/ASAP.2013.6567563
http://dx.doi.org/10.1109/ASAP.2013.6567563
http://dx.doi.org/10.1007/978-3-642-02658-4_52
dx.doi.org/10.1007/978-3-642-02658-4_52
dx.doi.org/10.1007/978-3-642-02658-4_52
http://dx.doi.org/10.1109/TAC.2014.2351991
http://dx.doi.org/10.1109/TAC.2014.2351991
http://dx.doi.org/10.1109/TAC.2014.2351991

Bibliography 137

[KTG16] Temesghen Kahsai, Xavier Thirioux, and Pierre-Loïc Garoche. “Hierarchical state machines as modular
Horn clauses.” In: Proceedings of the Second Workshop on Horn Clauses for Verification and Synthesis, HCVS
2016, Eindhoven, The Netherlands, April 3rd 2016. 2016 (page 113).

[KT11] Temesghen Kahsai and Cesare Tinelli. “PKind: A parallel k-induction based model checker.” In: Pro-
ceedings 10th International Workshop on Parallel and Distributed Methods in verifiCation, PDMC 2011, Snow-
bird, Utah, USA, July 14, 2011. Vol. 72. EPTCS. 2011, pp. 55–62. doi: 10 . 4204 / EPTCS . 72 . 6. url:
dx.doi.org/10.4204/EPTCS.72.6 (pages 14, 49).

[Kar84] Narendra Karmarkar. “A new polynomial-time algorithm for linear programming.” In: Combinatorica
4.4 (Dec. 1984), pp. 373–395 (page 103).

[KMW16] Egor George Karpenkov, David Monniaux, and Philipp Wendler. “Program Analysis with Local Pol-
icy Iteration.” In: Verification, Model Checking, and Abstract Interpretation - 17th International Conference,
VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings. Ed. by Barbara Jobstmann and
K. Rustan M. Leino. Vol. 9583. Lecture Notes in Computer Science. Springer, 2016, pp. 127–146. isbn:
978-3-662-49121-8. doi: 10.1007/978-3-662-49122-5_6. url: http://dx.doi.org/10.1007/978-3-
662-49122-5_6 (page 64).

[Kar76] Michael Karr. “Affine Relationships Among Variables of a Program.” In: Acta Inf. 6 (1976), pp. 133–151.
doi: 10.1007/BF00268497. url: http://dx.doi.org/10.1007/BF00268497 (page 56).

[KSH97] Masakazu Kojima, Susumu Shindoh, and Shinji Hara. “Interior-Point Methods for the Monotone
Semidefinite Linear Complementarity Problem in Symmetric Matrices.” In: SIAM Journal on Optimiza-
tion 7.1 (Feb. 1997), pp. 86–125 (page 128).

[KGD14] Ilya V. Kolmanovsky, Emmanuele Garone, and Stefano Di Cairano. “Reference and command gover-
nors: A tutorial on their theory and automotive applications.” In: 2014 American Control Conference.
June 2014, pp. 226–241. doi: 10.1109/ACC.2014.6859176 (page 118).

[KGC14] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. “SMT-Based Model Checking for Recursive
Programs.” In: Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Ed. by Armin Biere and
Roderick Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer, 2014, pp. 17–34. isbn: 978-3-
319-08866-2. doi: 10.1007/978-3-319-08867-9_2. url: dx.doi.org/10.1007/978-3-319-08867-9_2
(pages 13, 113).

[Kom+13] Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, and Edmund M. Clarke. “Automatic Abstraction in
SMT-Based Unbounded Software Model Checking.” In: Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. Ed. by Natasha Sharygina
and Helmut Veith. Vol. 8044. Lecture Notes in Computer Science. Springer, 2013, pp. 846–862. isbn:
978-3-642-39798-1. doi: 10.1007/978-3-642-39799-8_59. url: dx.doi.org/10.1007/978-3-642-
39799-8_59 (page 13).

[Kon+15] Soonho Kong, Sicun Gao, Wei Chen, and Edmund M. Clarke. “dReach: δ-Reachability Analysis for
Hybrid Systems.” In: Tools and Algorithms for the Construction and Analysis of Systems - 21st International
Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. Ed. by Christel Baier and Cesare Tinelli.
Vol. 9035. Lecture Notes in Computer Science. Springer, 2015, pp. 200–205. isbn: 978-3-662-46680-3. doi:
10.1007/978-3-662-46681-0_15. url: dx.doi.org/10.1007/978-3-662-46681-0_15 (page 119).

[KHJ13a] Milan Korda, Didier Henrion, and Colin Neil Jones. “Convex computation of the maximum controlled
invariant set for discrete-time polynomial control systems.” In: Decision and Control (CDC), 2013 IEEE
52nd Annual Conference on. Dec. 2013, pp. 7107–7112. doi: 10.1109/CDC.2013.6761016 (pages 121, 122).

[KHJ13b] Milan Korda, Didier Henrion, and Colin Neil Jones. “Convex computation of the maximum controlled
invariant set for polynomial control systems.” In: arXiv preprint arXiv:1303.6469 (2013) (page 121).

[KHJ12] Milan Korda, Didier Henrion, and Colin Neil Jones. “Inner approximations of the region of attrac-
tion for polynomial dynamical systems.” In: ArXiv e-prints (Oct. 2012). arXiv: 1210.3184 [math.OC]
(pages 121, 122).

[Las01] Jean-Bernard Lasserre. “Global Optimization with Polynomials and the Problem of Moments.” In:
SIAM Journal on Optimization 11.3 (2001), pp. 796–817 (pages 59, 122).

http://dx.doi.org/10.4204/EPTCS.72.6
dx.doi.org/10.4204/EPTCS.72.6
http://dx.doi.org/10.1007/978-3-662-49122-5_6
http://dx.doi.org/10.1007/978-3-662-49122-5_6
http://dx.doi.org/10.1007/978-3-662-49122-5_6
http://dx.doi.org/10.1007/BF00268497
http://dx.doi.org/10.1007/BF00268497
http://dx.doi.org/10.1109/ACC.2014.6859176
http://dx.doi.org/10.1007/978-3-319-08867-9_2
dx.doi.org/10.1007/978-3-319-08867-9_2
http://dx.doi.org/10.1007/978-3-642-39799-8_59
dx.doi.org/10.1007/978-3-642-39799-8_59
dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/978-3-662-46681-0_15
dx.doi.org/10.1007/978-3-662-46681-0_15
http://dx.doi.org/10.1109/CDC.2013.6761016
http://arxiv.org/abs/1210.3184

138 Bibliography

[Las09] Jean-Bernard Lasserre. Moments, Positive Polynomials and Their Applications. Imperial College Press opti-
mization series. Imperial College Press, 2009. isbn: 9781848164468. url: books.google.nl/books?id=
VY6imTsdIrEC (page 34).

[Las15] Jean-Bernard Lasserre. “Tractable approximations of sets defined with quantifiers.” English. In: Mathe-
matical Programming 151.2 (2015), pp. 507–527. issn: 0025-5610. doi: 10.1007/s10107-014-0838-1. url:
dx.doi.org/10.1007/s10107-014-0838-1 (page 121).

[LD11] Ji-Woong Lee and Geir E. Dullerud. “Joint synthesis of switching and feedback for linear systems in
discrete time.” In: Proceedings of the 14th ACM International Conference on Hybrid Systems: Computation
and Control, HSCC 2011, Chicago, IL, USA, April 12-14, 2011. Ed. by Marco Caccamo, Emilio Frazzoli,
and Radu Grosu. ACM, 2011, pp. 201–210. isbn: 978-1-4503-0629-4. doi: 10.1145/1967701.1967731.
url: doi.acm.org/10.1145/1967701.1967731 (page 49).

[LD07] Ji-Woong Lee and Geir E. Dullerud. “Uniformly Stabilizing Sets of Switching Sequences for Switched
Linear Systems.” In: IEEE Trans. Automat. Contr. 52.5 (2007), pp. 868–874. doi: 10.1109/TAC.2007.
895924. url: dx.doi.org/10.1109/TAC.2007.895924 (page 49).

[LDK07] Ji-Woong Lee, Geir E Dullerud, and Pramod P Khargonekar. “An output regulation problem for
switched linear systems in discrete time.” In: Proceedings of the 46th IEEE Conference on Decision and
Control. 2007, pp. 4993–4998 (page 49).

[Lev96] William S. Levine. The control handbook. The electrical engineering handbook series. Boca Raton (Fl.):
CRC Press New York, 1996. isbn: 0-8493-8570-9. url: opac.inria.fr/record=b1079196 (pages 19, 75).

[Löf04] Johan Löfberg. “YALMIP : A Toolbox for Modeling and Optimization in MATLAB.” In: Proceedings of
the CACSD Conference. Taipei, Taiwan, 2004. url: users.isy.liu.se/johanl/yalmip (page 34).

[LS98] Winfried Lohmiller and Jean-Jacques E. Slotine. “On Contraction Analysis for Non-linear Systems.” In:
Automatica 34.6 (1998), pp. 683–696. doi: 10.1016/S0005-1098(98)00019-3. url: dx.doi.org/10.
1016/S0005-1098(98)00019-3 (page 120).

[MHL15] Victor Magron, Didier Henrion, and Jean-Bernard Lasserre. “Semidefinite Approximations of Projec-
tions and Polynomial Images of SemiAlgebraic Sets.” In: SIAM Journal on Optimization 25.4 (2015),
pp. 2143–2164. doi: 10.1137/140992047. eprint: dx.doi.org/10.1137/140992047. url: dx.doi.org/
10.1137/140992047 (page 121).

[Mar05] Matthieu Martel. “An Overview of Semantics for the Validation of Numerical Programs.” In: Verifica-
tion, Model Checking, and Abstract Interpretation, 6th International Conference, VMCAI 2005, Paris, France,
January 17-19, 2005, Proceedings. Ed. by Radhia Cousot. Vol. 3385. Lecture Notes in Computer Science.
Springer, 2005, pp. 59–77. isbn: 3-540-24297-X. doi: 10.1007/978- 3- 540- 30579- 8_4. url: http:
//dx.doi.org/10.1007/978-3-540-30579-8_4 (pages 93, 101).

[MJ81] D.H. Martin and D.H. Jacobson. “Copositive matrices and definiteness of quadratic forms subject to
homogeneous linear inequality constraints.” In: Linear Algebra and its Applications 35 (1981), pp. 227–
258. issn: 0024-3795. doi: dx.doi.org/10.1016/0024-3795(81)90276-7. url: www.sciencedirect.
com/science/article/pii/0024379581902767 (page 43).

[McG00] Lawrence Kent McGovern. “Computational Analysis of Real-Time Convex Optimization for Control
Systems.” PhD thesis. Boston, USA: Massachussetts Institute of Technology, May 2000 (page 127).

[MF98] Lawrence Kent McGovern and Éric Féron. “Requirements and hard computational bounds for real-
time optimization in safety-critical control systems.” In: Decision and Control, 1998. Proceedings of the
37th IEEE Conference on. Vol. 3. 1998, 3366–3371 vol.3 (page 127).

[MR97] Alexandre Megretski and Anders Rantzer. “System analysis via integral quadratic constraints.” In:
Automatic Control, IEEE Transactions on 42.6 (1997), pp. 819–830 (pages 119, 120).

[MR95] Alexandre Megretski and Anders Rantzer. System Analysis via Integral Quadratic Constraints – Part I.
1995 (pages 72, 120).

[MT06] Frédéric Messine and Ahmed Touhami. “A General Reliable Quadratic Form: An Extension of Affine
Arithmetic.” In: Reliable Computing 12.3 (2006), pp. 171–192 (pages 93, 95, 96, 99).

books.google.nl/books?id=VY6imTsdIrEC
books.google.nl/books?id=VY6imTsdIrEC
http://dx.doi.org/10.1007/s10107-014-0838-1
dx.doi.org/10.1007/s10107-014-0838-1
http://dx.doi.org/10.1145/1967701.1967731
doi.acm.org/10.1145/1967701.1967731
http://dx.doi.org/10.1109/TAC.2007.895924
http://dx.doi.org/10.1109/TAC.2007.895924
dx.doi.org/10.1109/TAC.2007.895924
opac.inria.fr/record=b1079196
users.isy.liu.se/johanl/yalmip
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
dx.doi.org/10.1016/S0005-1098(98)00019-3
dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1137/140992047
dx.doi.org/10.1137/140992047
dx.doi.org/10.1137/140992047
dx.doi.org/10.1137/140992047
http://dx.doi.org/10.1007/978-3-540-30579-8_4
http://dx.doi.org/10.1007/978-3-540-30579-8_4
http://dx.doi.org/10.1007/978-3-540-30579-8_4
http://dx.doi.org/dx.doi.org/10.1016/0024-3795(81)90276-7
www.sciencedirect.com/science/article/pii/0024379581902767
www.sciencedirect.com/science/article/pii/0024379581902767

Bibliography 139

[MFM00] Domenico Mignone, Giancarlo Ferrari-Trecate, and Manfred Morari. “Stability and stabilization of
piecewise affine and hybrid systems: an LMI approach.” In: Decision and Control, 2000. Proc. of the 39th
IEEE Conference on. Vol. 1. 2000, 504–509 vol.1. doi: 10.1109/CDC.2000.912814 (page 44).

[Min06] Antoine Miné. “The octagon abstract domain.” In: Higher-Order and Symbolic Computation 19.1 (2006),
pp. 31–100 (page 27).

[Min04] Antoine Miné. “Weakly relational numerical abstract domains.” PhD thesis. École Polytechnique, Dec.
2004, p. 322 (pages 14, 17, 97, 99).

[MT13] Eike Möhlmann and Oliver E. Theel. “Stabhyli: a tool for automatic stability verification of non-linear
hybrid systems.” In: Proceedings of the 16th international conference on Hybrid systems: computation and
control, HSCC 2013, April 8-11, 2013, Philadelphia, PA, USA. Ed. by Calin Belta and Franjo Ivancic. ACM,
2013, pp. 107–112. isbn: 978-1-4503-1567-8. doi: 10.1145/2461328.2461347. url: doi.acm.org/10.
1145/2461328.2461347 (page 75).

[Mon07] David Monniaux. “Applying the Z-transform for the static analysis of floating-point numerical filters.”
In: CoRR abs/0706.0252 (2007). url: http://arxiv.org/abs/0706.0252 (page 56).

[Mon08] David Monniaux. “The pitfalls of verifying floating-point computations.” In: ACM Trans. Program. Lang.
Syst. 30.3 (2008) (page 89).

[MC11] David Monniaux and Pierre Corbineau. “On the Generation of Positivstellensatz Witnesses in De-
generate Cases.” In: Interactive Theorem Proving: Second International Conference, ITP 2011, Berg en Dal,
The Netherlands, August 22-25, 2011. Proceedings. Ed. by Marko van Eekelen, Herman Geuvers, Julien
Schmaltz, and Freek Wiedijk. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 249–264. isbn:
978-3-642-22863-6. doi: 10.1007/978-3-642-22863-6_19. url: http://dx.doi.org/10.1007/978-3-
642-22863-6_19 (page 106).

[MS14] David Monniaux and Peter Schrammel. “Speeding Up Logico-Numerical Strategy Iteration.” In: Static
Analysis - 21st International Symposium, SAS 2014, Munich, Germany, September 11-13, 2014. Proceedings.
Ed. by Markus Müller-Olm and Helmut Seidl. Vol. 8723. Lecture Notes in Computer Science. Springer,
2014, pp. 253–267. isbn: 978-3-319-10935-0. doi: 10.1007/978-3-319-10936-7_16. url: http://dx.
doi.org/10.1007/978-3-319-10936-7_16 (page 64).

[Mon97] Renato D. C. Monteiro. “Primal–Dual Path-Following Algorithms for Semidefinite Programming.” In:
SIAM J. on Optimization 7.3 (Mar. 1997), pp. 663–678 (page 128).

[Mot51] Théodore Samuel Motzkin. “Two consequences of the transposition theorem on linear inequalities.” In:
Econometrica 19.2 (1951), pp. 184–185 (page 45).

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver.” In: TACAS. Ed. by
C. R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337–340. isbn: 978-3-540-78799-0 (pages 11, 113, 115).

[Moy08] Yannick Moy. “Sufficient Preconditions for Modular Assertion Checking.” In: Verification, Model Check-
ing, and Abstract Interpretation, 9th International Conference, VMCAI 2008, San Francisco, USA, January 7-9,
2008, Proceedings. Ed. by Francesco Logozzo, Doron A. Peled, and Lenore D. Zuck. Vol. 4905. Lecture
Notes in Computer Science. Springer, 2008, pp. 188–202. isbn: 978-3-540-78162-2. doi: 10.1007/978-3-
540-78163-9_18. url: dx.doi.org/10.1007/978-3-540-78163-9_18 (page 17).

[MS02] Markus Müller-Olm and Helmut Seidl. “Polynomial Constants Are Decidable.” In: Static Analysis, 9th
International Symposium, SAS 2002, Madrid, Spain, September 17-20, 2002, Proceedings. Ed. by Manuel
V. Hermenegildo and Germán Puebla. Vol. 2477. Lecture Notes in Computer Science. Springer, 2002,
pp. 4–19. isbn: 3-540-44235-9. doi: 10.1007/3-540-45789-5_4. url: http://dx.doi.org/10.1007/3-
540-45789-5_4 (page 56).

[NN88] Yurii Nesterov and Arkadi Nemirovski. “A general approach to the design of optimal methods for
smooth convex functions minimization.” In: Ekonomika i Matem. Metody 24 (1988), pp. 509–517 (page 103).

[NN94] Yurii Nesterov and Arkadi Nemirovski. Interior-point Polynomial Algorithms in Convex Programming.
Vol. 13. Studies in Applied Mathematics. Society for Industrial and Applied Mathematics, 1994 (pages 39,
103, 127, 130).

http://dx.doi.org/10.1109/CDC.2000.912814
http://dx.doi.org/10.1145/2461328.2461347
doi.acm.org/10.1145/2461328.2461347
doi.acm.org/10.1145/2461328.2461347
http://arxiv.org/abs/0706.0252
http://dx.doi.org/10.1007/978-3-642-22863-6_19
http://dx.doi.org/10.1007/978-3-642-22863-6_19
http://dx.doi.org/10.1007/978-3-642-22863-6_19
http://dx.doi.org/10.1007/978-3-319-10936-7_16
http://dx.doi.org/10.1007/978-3-319-10936-7_16
http://dx.doi.org/10.1007/978-3-319-10936-7_16
http://dx.doi.org/10.1007/978-3-540-78163-9_18
http://dx.doi.org/10.1007/978-3-540-78163-9_18
dx.doi.org/10.1007/978-3-540-78163-9_18
http://dx.doi.org/10.1007/3-540-45789-5_4
http://dx.doi.org/10.1007/3-540-45789-5_4
http://dx.doi.org/10.1007/3-540-45789-5_4

140 Bibliography

[NN89] Yurii Nesterov and Arkadi Nemirovski. Self-Concordant functions and polynomial time methods in con-
vex programming. Materialy po matematicheskomu obespecheniiu EVM. USSR Academy of Sciences,
Central Economic & Mathematic Institute, 1989 (page 103).

[NLS14] Tuan T. Nguyen, Mircea Lazar, and Veaceslav Spinu. “Interpolation of polytopic control Lyapunov func-
tions for discrete-time linear systems.” In: {IFAC} Proceedings Volumes 47.3 (2014). 19th {IFAC} World
Congress, pp. 2297–2302. issn: 1474-6670. doi: dx.doi.org/10.3182/20140824-6-ZA-1003.01513.
url: www.sciencedirect.com/science/article/pii/S1474667016419543 (page 118).

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2nd. New York: Springer, 2006 (page 32).

[NW05] Guy Norris and Mark Wagner. Airbus A380: Superjumbo of the 21st Century. Zenith Press, 2005. isbn:
9780760322185. url: https://books.google.fr/books?id=KcaYjPhRnWUC (page 3).

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. “Local Reasoning about Programs that Alter
Data Structures.” In: Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual Confer-
ence of the EACSL, Paris, France, September 10-13, 2001, Proceedings. Ed. by Laurent Fribourg. Vol. 2142.
Lecture Notes in Computer Science. Springer, 2001, pp. 1–19. isbn: 3-540-42554-3. doi: 10.1007/3-540-
44802-0_1. url: dx.doi.org/10.1007/3-540-44802-0_1 (page 13).

[OV15] Mendes Oulamara and Arnaud J. Venet. “Abstract Interpretation with Higher-Dimensional Ellipsoids
and Conic Extrapolation.” In: Computer Aided Verification - 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. Ed. by Daniel Kroening and Corina S. Pasareanu.
Vol. 9206. Lecture Notes in Computer Science. Springer, 2015, pp. 415–430. isbn: 978-3-319-21689-8.
doi: 10.1007/978-3-319-21690-4_24. url: http://dx.doi.org/10.1007/978-3-319-21690-4_24
(page 56).

[OS01] Sam Owre and Natarajan Shankar. Theory Interpretation in PVS. Tech. rep. SRI International, 2001

(page 83).

[Pak+13] Mehrdad Pakmehr, Timothy Wang, Romain Jobredeaux, Martin Vivies, and Éric Féron. “Verifiable
Control System Development for Gas Turbine Engines.” In: CoRR abs/1311.1885 (2013) (page 78).

[Par03] Pablo A. Parrilo. “Semidefinite programming relaxations for semialgebraic problems.” English. In:
Mathematical Programming 96.2 (2003), pp. 293–320. issn: 0025-5610. doi: 10.1007/s10107-003-0387-5.
url: dx.doi.org/10.1007/s10107-003-0387-5 (page 34).

[PH07] Mathias Péron and Nicolas Halbwachs. “An Abstract Domain Extending Difference-Bound Matrices
with Disequality Constraints.” In: Verification, Model Checking, and Abstract Interpretation, 8th Interna-
tional Conference, VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings. Ed. by Byron Cook and
Andreas Podelski. Vol. 4349. Lecture Notes in Computer Science. Springer, 2007, pp. 268–282. isbn:
978-3-540-69735-0. doi: 10.1007/978-3-540-69738-1_20. url: http://dx.doi.org/10.1007/978-3-
540-69738-1_20 (page 56).

[PW07] Andreas Podelski and Silke Wagner. “Region Stability Proofs for Hybrid Systems.” In: Formal Modeling
and Analysis of Timed Systems, 5th International Conference, FORMATS 2007, Salzburg, Austria, October
3-5, 2007, Proceedings. Ed. by Jean-François Raskin and P. S. Thiagarajan. Vol. 4763. Lecture Notes in
Computer Science. Springer, 2007, pp. 320–335. isbn: 978-3-540-75453-4. doi: 10.1007/978-3-540-
75454-1_23. url: dx.doi.org/10.1007/978-3-540-75454-1_23 (page 75).

[PS13] Pavithra Prabhakar and Miriam Garcia Soto. “Abstraction Based Model-Checking of Stability of Hy-
brid Systems.” In: Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings. Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture
Notes in Computer Science. Springer, 2013, pp. 280–295. isbn: 978-3-642-39798-1. doi: 10.1007/978-3-
642-39799-8_20. url: dx.doi.org/10.1007/978-3-642-39799-8_20 (page 75).

[Ran96] Anders Rantzer. “On the Kalman-Yakubovich-Popov Lemma.” In: Syst. Control Lett. 28.1 (June 1996),
pp. 7–10. issn: 0167-6911. doi: 10.1016/0167-6911(95)00063-1. url: dx.doi.org/10.1016/0167-
6911(95)00063-1 (page 120).

[Ran16] Anders Rantzer. “On the Kalman-Yakubovich-Popov Lemma for Positive Systems.” In: IEEE Trans.
Automat. Contr. 61.5 (2016), pp. 1346–1349. doi: 10.1109/TAC.2015.2465571. url: dx.doi.org/10.
1109/TAC.2015.2465571 (page 120).

http://dx.doi.org/dx.doi.org/10.3182/20140824-6-ZA-1003.01513
www.sciencedirect.com/science/article/pii/S1474667016419543
https://books.google.fr/books?id=KcaYjPhRnWUC
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1007/3-540-44802-0_1
dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1007/978-3-319-21690-4_24
http://dx.doi.org/10.1007/978-3-319-21690-4_24
http://dx.doi.org/10.1007/s10107-003-0387-5
dx.doi.org/10.1007/s10107-003-0387-5
http://dx.doi.org/10.1007/978-3-540-69738-1_20
http://dx.doi.org/10.1007/978-3-540-69738-1_20
http://dx.doi.org/10.1007/978-3-540-69738-1_20
http://dx.doi.org/10.1007/978-3-540-75454-1_23
http://dx.doi.org/10.1007/978-3-540-75454-1_23
dx.doi.org/10.1007/978-3-540-75454-1_23
http://dx.doi.org/10.1007/978-3-642-39799-8_20
http://dx.doi.org/10.1007/978-3-642-39799-8_20
dx.doi.org/10.1007/978-3-642-39799-8_20
http://dx.doi.org/10.1016/0167-6911(95)00063-1
dx.doi.org/10.1016/0167-6911(95)00063-1
dx.doi.org/10.1016/0167-6911(95)00063-1
http://dx.doi.org/10.1109/TAC.2015.2465571
dx.doi.org/10.1109/TAC.2015.2465571
dx.doi.org/10.1109/TAC.2015.2465571

Bibliography 141

[RS10] Stefan Ratschan and Zhikun She. “Providing a Basin of Attraction to a Target Region of Polynomial
Systems by Computation of Lyapunov-Like Functions.” In: SIAM J. Control and Optimization 48.7 (2010),
pp. 4377–4394. doi: 10.1137/090749955. url: dx.doi.org/10.1137/090749955 (page 75).

[RJM13] Stefan Richter, Colin Neil Jones, and Manfred Morari. “Certification aspects of the fast gradient method
for solving the dual of parametric convex programs.” In: Mathematical Methods of Operations Research
77.3 (2013), pp. 305–321 (page 127).

[Rou15] Pierre Roux. “Formal Proofs of Rounding Error Bounds.” English. In: Journal of Automated Reasoning
(2015), pp. 1–22. issn: 0168-7433. doi: 10.1007/s10817-015-9339-z. url: dx.doi.org/10.1007/
s10817-015-9339-z (pages 92, 106, 108).

[Rou13] Pierre Roux. “Static Analysis of Control Command Systems: Synthetizing Non-Linear Invariants.” PhD
thesis. Institut Supérieur de l’Aéronautique et de l’Espace, 2013 (page 92).

[RG13] Pierre Roux and Pierre-Loïc Garoche. “Integrating Policy Iterations in Abstract Interpreters.” In: Auto-
mated Technology for Verification and Analysis - 11th International Symposium, ATVA 2013, Hanoi, Vietnam,
October 15-18, 2013. Proceedings. Ed. by Dang Van Hung and Mizuhito Ogawa. Vol. 8172. Lecture Notes
in Computer Science. Springer, 2013, pp. 240–254. isbn: 978-3-319-02443-1. doi: 10.1007/978-3-319-
02444-8_18 (pages 22, 28).

[Rou+12] Pierre Roux, Romain Jobredeaux, Pierre-Loïc Garoche, and Éric Féron. “A Generic Ellipsoid Abstract
Domain for Linear Time Invariant Systems.” In: Proceedings of the 15th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2012, Beijing, China, April 17-19, 2012, ed. by Thao Dang
and Ian Mitchell. ACM, 2012, pp. 105–114. isbn: 978-1-4503-1220-2. doi: 10.1145/2185632.2185651.
url: doi.acm.org/10.1145/2185632.2185651 (page 85).

[RTC11] Special C. RTCA. DO-178C, Software Considerations in Airborne Systems and Equipment Certification. 2011

(page 3).

[Rum10] Siegfried M. Rump. “Verification methods: Rigorous results using floating-point arithmetic.” In: Acta
Numerica 19 (May 2010), pp. 287–449. issn: 1474-0508. doi: 10.1017/S096249291000005X. url: journals.
cambridge.org/article_S096249291000005X (page 90).

[Rum06] Siegfried M. Rump. “Verification of positive definiteness.” In: BIT Numerical Mathematics 46 (2006),
pp. 433–452 (page 106).

[Rus12] John Rushby. “The versatile synchronous observer.” In: Proceedings of the 15th Brazilian conference on
Formal Methods: foundations and applications. SBMF’12. Natal, Brazil: Springer-Verlag, 2012, pp. 1–1. isbn:
978-3-642-33295-1. doi: 10.1007/978-3-642-33296-8_1. url: dx.doi.org/10.1007/978-3-642-
33296-8_1 (page 78).

[SSM04] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. “Non-linear loop invariant generation
using Gröbner bases.” In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004. Ed. by Neil D. Jones and Xavier
Leroy. ACM, 2004, pp. 318–329. isbn: 1-58113-729-X. doi: 10.1145/964001.964028. url: http://doi.
acm.org/10.1145/964001.964028 (page 56).

[ST11] Sriram Sankaranarayanan and Ashish Tiwari. “Relational Abstractions for Continuous and Hybrid
Systems.” In: Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture Notes
in Computer Science. Springer, 2011, pp. 686–702. isbn: 978-3-642-22109-5. doi: 10.1007/978-3-642-
22110-1_56. url: dx.doi.org/10.1007/978-3-642-22110-1_56 (page 75).

[SB13] Yassamine Seladji and Olivier Bouissou. “Numerical Abstract Domain using Support Functions.” In:
NFM. 2013 (page 56).

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. “Checking Safety Properties Using Induction
and a SAT-Solver.” In: FMCAD. Ed. by Warren A. Hunt Jr. and Steven D. Johnson. Vol. 1954. LNCS.
Springer, 2000, pp. 108–125. isbn: 3-540-41219-0. doi: 10.1007/3-540-40922-X_8. url: dx.doi.org/
10.1007/3-540-40922-X_8 (pages 14, 49).

[SIAM96] “Inquiry Board Traces Ariane 5 Failure to Overflow Error.” In: SIAM News 29.8 (1996). available on
internet archive, pp. 12–13. url: web.archive.org/web/19970605165252/www.siam.org/siamnews/
general/ariane.htm (page 21).

http://dx.doi.org/10.1137/090749955
dx.doi.org/10.1137/090749955
http://dx.doi.org/10.1007/s10817-015-9339-z
dx.doi.org/10.1007/s10817-015-9339-z
dx.doi.org/10.1007/s10817-015-9339-z
http://dx.doi.org/10.1007/978-3-319-02444-8_18
http://dx.doi.org/10.1007/978-3-319-02444-8_18
http://dx.doi.org/10.1145/2185632.2185651
doi.acm.org/10.1145/2185632.2185651
http://dx.doi.org/10.1017/S096249291000005X
journals.cambridge.org/article_S096249291000005X
journals.cambridge.org/article_S096249291000005X
http://dx.doi.org/10.1007/978-3-642-33296-8_1
dx.doi.org/10.1007/978-3-642-33296-8_1
dx.doi.org/10.1007/978-3-642-33296-8_1
http://dx.doi.org/10.1145/964001.964028
http://doi.acm.org/10.1145/964001.964028
http://doi.acm.org/10.1145/964001.964028
http://dx.doi.org/10.1007/978-3-642-22110-1_56
http://dx.doi.org/10.1007/978-3-642-22110-1_56
dx.doi.org/10.1007/978-3-642-22110-1_56
http://dx.doi.org/10.1007/3-540-40922-X_8
dx.doi.org/10.1007/3-540-40922-X_8
dx.doi.org/10.1007/3-540-40922-X_8
web.archive.org/web/19970605165252/www.siam.org/siamnews/general/ariane.htm
web.archive.org/web/19970605165252/www.siam.org/siamnews/general/ariane.htm

142 Bibliography

[SG09] Saurabh Srivastava and Sumit Gulwani. “Program Verification Using Templates over Predicate Abstrac-
tion.” In: SIGPLAN Not. 44.6 (June 2009), pp. 223–234. issn: 0362-1340. doi: 10.1145/1543135.1542501.
url: doi.acm.org/10.1145/1543135.1542501 (page 38).

[SF97] Jorge Stolfi and Luiz Henrique de Figueiredo. Self-Validated Numerical Methods and Applications. Brazil-
ian Mathematics Colloquium monograph. IMPA, Rio de Janeiro, Brazil, July 1997 (page 99).

[Tur49] Alan M. Turing. “Checking a large routine.” In: Report of a Conference on High Speed Automatic Calculating
Machines. 1949. url: http://www.turingarchive.org/browse.php/B/8 (page 8).

[VB96] Lieven Vandenberghe and Stephen Boyd. “Semidefinite Programming.” In: SIAM Review 38.1 (1996),
pp. 49–95. doi: 10.1137/1038003. eprint: epubs.siam.org/doi/pdf/10.1137/1038003. url: epubs.
siam.org/doi/abs/10.1137/1038003 (page 33).

[Vav90] Stephen A. Vavasis. “Quadratic programming is in NP.” In: Information Processing Letters 36.2 (1990),
pp. 73–77. issn: 0020-0190. doi: dx.doi.org/10.1016/0020-0190(90)90100-C. url: www.sciencedirect.
com/science/article/pii/002001909090100C (page 95).

[Vin01] Glenn Vinnicombe. Uncertainty and Feedback: H [infinity] Loop-shaping and the [nu]-gap Metric. World
Scientific, 2001 (page 74).

[Wan15] Timothy Wang. “Credible Autocoding of Control Software.” PhD thesis. School of Engeering – Georgia
Tech, 2015 (page 82).

[Wan+16a] Timothy Wang, Romain Jobredeaux, Heber Herencia-Zapana, Pierre-Loïc Garoche, Arnaud Dieumegard,
Éric Féron, and Marc Pantel. “From Design to Implementation: An Automated, Credible Autocoding
Chain for Control Systems.” In: Advances in Control System Technology for Aerospace Applications. Ed. by
Éric Féron. Vol. 460. Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg,
2016, pp. 137–180. isbn: 978-3-662-47693-2. doi: 10.1007/978-3-662-47694-9_5 (pages 17, 82, 115).

[Wan+16b] Timothy Wang, Romain Jobredeaux, Marc Pantel, Pierre-Loïc Garoche, Éric Féron, and Didier Henrion.
“Credible Autocoding of Convex Optimization Algorithms.” In: Optimization and Engineering (2016).
Ed. by Springer. to appear. url: arxiv.org/abs/1403.1861 (pages 127, 128).

[Wil72] Jan C Willems. “Dissipative dynamical systems part I: General theory.” In: Archive for rational mechanics
and analysis 45.5 (1972), pp. 321–351 (page 74).

[Yak71] Vladimir A. Yakubovich. “S-procedure in nonlinear control theory.” In: Vestnik Leningrad University 1

(1971), pp. 62–77 (page 119).

[Yak62] Vladimir A. Yakubovich. “The solution of certain matrix inequalities in automatic control theory.” In:
Soviet Math. Dokl. Vol. 3. 1962, pp. 620–623 (page 119).

[Yam+10] Makoto Yamashita, Katsuki Fujisawa, Kazuhide Nakata, Maho Nakata, Mituhiro Fukuda, Kazuhiro
Kobayashi, and Kazushige Goto. A high-performance software package for semidefinite programs : SDPA7.
Tech. rep. Tokyo Institute of Technology, Tokyo, Japan: Dept. of Information Sciences, 2010. url: www.
optimization-online.org/DB_FILE/2010/01/2531.pdf (page 33).

[Yan92] Qinping Yang. “Minimum Decay Rate of a Family of Dynamical Systems.” PhD thesis. Stanford Uni-
versity, 1992 (pages 40, 71).

http://dx.doi.org/10.1145/1543135.1542501
doi.acm.org/10.1145/1543135.1542501
http://www.turingarchive.org/browse.php/B/8
http://dx.doi.org/10.1137/1038003
epubs.siam.org/doi/pdf/10.1137/1038003
epubs.siam.org/doi/abs/10.1137/1038003
epubs.siam.org/doi/abs/10.1137/1038003
http://dx.doi.org/dx.doi.org/10.1016/0020-0190(90)90100-C
www.sciencedirect.com/science/article/pii/002001909090100C
www.sciencedirect.com/science/article/pii/002001909090100C
http://dx.doi.org/10.1007/978-3-662-47694-9_5
arxiv.org/abs/1403.1861
www.optimization-online.org/DB_FILE/2010/01/2531.pdf
www.optimization-online.org/DB_FILE/2010/01/2531.pdf

	Publications -- Prototypes
	Publications -- Prototypes

	Contents
	Motivation
	1 Critical Embedded Software
	2 Formal methods
	2.1 Semantics and properties
	2.2 A formal methods overview
	2.3 Deductive methods
	2.4 SMT-based model checking
	2.5 Abstract Interpretation
	2.6 Need for inductive invariants

	3 Control systems
	3.1 Controllers Development process
	3.2 Spring-Mass Damper example

	Invariant synthesis
	4 Definitions -- Background
	4.1 Discrete Dynamical Systems
	4.2 (applied) convex optimization

	5 Invariants as semialgebraic sets
	5.1 Invariants, Lyapunov functions and convex optimization
	5.2 Quadratic invariants
	5.3 Piecewise Quadratic invariants
	5.4 k-inductive Quadratic Invariants
	5.5 Polynomial invariants
	5.6 Related works

	6 Template based analyses
	6.1 Template based abstract domains
	6.2 Fixpoint as an optimization problem
	6.3 SOS-relaxed semantics
	6.4 Example.
	6.5 Related works

	System-level analysis at model and code level
	7 System properties as invariants
	7.1 Open- and Closed-loop stability
	7.2 Robustness with Vector Margin
	7.3 Related work

	8 Validation at code level
	8.1 Axiomatic semantics for system-level properties
	8.2 Generating code annotations
	8.3 Discharging proof objectives

	Numerical issues
	9 floating-point in analyzed programs
	9.1 Floating-point semantics
	9.2 Inductiveness constraints
	9.3 Bound floating-point errors
	9.4 Related works

	10 Convex optimization
	10.1 Convex optimization algorithms
	10.2 Guaranteed feasible solutions with floats
	10.3 Implementation as an Ocaml library: OSDP

	Perspectives
	11 Integration in software development process
	11.1 CocoSim and LustreC toolchain
	11.2 OSDP: Ocaml Semi-Definite Programming
	11.3 SEAL: SystEm Analysis Library

	12 Extensions
	12.1 More systems
	12.2 More properties

	13 Invariants of dynamical systems
	13.1 Primal: maximizing measure support
	13.2 Dual: minimizing positive functions
	13.3 Hierarchy of abstractions
	13.4 Experiments
	13.5 Issues/Future Directions

	14 Proving the implementation of convex optimization algorithms
	14.1 Formal properties
	14.2 Implementation

	Bibliography

