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Abstract

The theory of belief functions manages uncertainty and proposes a set of combination

rules to aggregate beliefs of several sources. Some combination rules mix evidential

information where sources are independent; other rules are suited to combine eviden-

tial information held by dependent sources. Information on sources’ independence is

required to justify the choice of the adequate type of combination rules. In this thesis,

we suggest a method to quantify sources’ degrees of independence that may guide the

choice of the appropriate type of combination rules. In fact, we propose a statistical

approach to learn sources’ degrees of independence from all provided evidential infor-

mation. There are three main uses of estimating sources’ degrees of independence:

First, we use sources’ degree of independence to guide the choice of combination rules

to use when aggregating beliefs of several sources. Second, we propose to integrate

sources’ degrees of independence into sources’ beliefs leading to an operator similar

to the discounting. Finally, we define a new combination rule weighted with sources’

degree of independence.

Résumé

La fusion d’informations issues de plusieurs sources cherche à améliorer la prise de

décision. Pour réaliser cette fusion, la théorie des fonctions de croyance utilise des règles

de combinaison faisant bien souvent l’hypothèse de l’indépendance des sources. Cette

forte hypothèse n’est, cependant, ni formalisée ni vérifiée. Elle est supposée pour justi-

fier le choix du type de règles à utiliser sans avoir, pour autant, un moyen de la vérifier.

Nous proposons dans ce rapport de thèse un apprentissage de l’indépendance cognitive

de sources d’information. Nous détaillons également une approche d’apprentissage de la

dépendance positive et négative des sources. Les degrés d’indépendance, de dépendance

positive et négative des sources ont principalement trois utilités. Premièrement, ces

degrés serviront à choisir le type de règles de combinaison à utiliser lors de la com-

binaion. Deuxièmement, ces degrés exprimés par une fonction de masse sont intégrés

par une approche d’affaiblissement avant de réaliser la combinaison d’information. Une

troisième utilisation de cette mesure d’indépendance consiste à l’intégrer dans une nou-

velle règle de combinaison. La règle que nous proposons est une moyenne pondérée

avec ce degré d’indépendance.
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L’indépendance des sources dans la

théorie des fonctions de croyance

1 Introduction

La théorie des fonctions de croyance issue des travaux de (Dempster, 1967) et (Shafer,

1976) permet une bonne modélisation des données imprécises et/ou incertaines et offre

un outil puissant pour fusionner des informations issues de plusieurs sources. Pour ce

faire, les données incertaines et imprécises des différentes sources sont modélisées par

des fonctions de masse et combinées afin de mettre en évidence les croyances communes

et assurer une prise de décision plus fiable.

Le choix de la règle de combinaison à appliquer repose sur des hypothèses

d’indépendance de sources. En effet, certaines règles de combinaison comme celles

de (Dempster, 1967; Smets, 1990; Yager, 1987; Dubois and Prade, 1988) combinent

des fonctions de croyance dont les sources sont supposées indépendantes par contre les

règles prudente et hardie proposées par (Denœux, 2006a) n’exigent pas d’hypothèse

d’indépendance. L’indépendance cognitive est une hypothèse fondamentale pour le

choix des règles de combinaison à appliquer.

Les indépendances évidentielle, cognitive et doxastique ont été définies dans la cadre

de la théorie des fonctions de croyance. D’une part, les travaux de (Ben Yaghlane, 2002)

étudient principalement l’indépendance doxastique des variables. D’autre part, les

travaux de (Shafer, 1976) ont défini l’indépendance cognitive des variables. Dans cette

thèse nous nous sommes focalisés sur l’indépendance cognitive des sources, nous pro-

posons une approche statistique pour l’estimation de l’indépendance cognitive de deux

sources. Deux sources sont cognitivement indépendantes si elles ne communiquent pas

entre elles et si elles n’ont pas le même corpus de croyance1. La méthode proposée per-

met d’étudier le comportement général de deux sources et de les comparer pour déceler

toute dépendance pouvant exister entre elles. Dans le cas de sources dépendantes,

nous proposons d’étudier le type de cette dépendance, c’est-à-dire analyser les données

pour mettre en évidence des sources plutôt positivement ou négativement dépendantes.

Nous avons, également, proposé une généralisation de cette approche statistique pour

plusieurs sources.

1Le corpus de croyance est l’ensemble de connaissances ou d’informations acquises par une source.

i
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Cette approche statistique a pour but de guider la combinaison. En effet, nous

proposons trois solutions; la première solution consiste à justifier le choix du type de

règle de combinaison par le degré de dépendance ou d’indépendance des sources. La

deuxième solution consiste à intégrer les degrés d’indépendance, dépendance positive

et négative dans les fonctions de masse afin de justifier l’hypothèse d’indépendance des

sources. Enfin, comme troisième solution, nous proposons une nouvelle règle de combi-

naison qui est une moyenne pondérée de la combinaison conjonctive et la combinaison

prudente. L’approche proposée a été illustrée sur des données générées.

2 Théorie des fonctions de croyance

La théorie des fonctions de croyance initialement introduite par (Dempster, 1967),

formalisée ensuite par (Shafer, 1976) est employée dans des applications de fusion

d’informations. Nous présentons ci-dessous un résumé de quelques principes de base

de cette théorie. Soit un cadre de discernement Ω = {ω1, ω2, . . . , ωn} l’ensemble

de toutes les hypothèses exclusives et exhaustives. Le cadre de discernement est

aussi l’univers de discours d’un problème donné. L’ensemble 2Ω = {A|A ⊆ Ω} =

{∅, ω1, ω2, . . . , ωn, ω1∪ω2, . . . , Ω}, est l’ensemble de toutes les hypothèses de Ω ainsi

que leurs disjonctions.

Une fonction de masse est une fonction de 2Ω vers l’intervalle [0, 1] qui affecte à

chaque sous-ensemble une masse de croyance élémentaire. Cette fonction de masse

fournie par une source d’information2 est une représentation des connaissances incer-

taines et imprécises. Formellement, une fonction de masse, notée mΩ, est définie comme

suit :

mΩ : 2Ω → [0, 1] (1)∑
A⊆Ω

mΩ(A) = 1 (2)

Dans le cadre de la théorie des fonctions de croyance, plusieurs règles de combinai-

son sont proposées pour la fusion d’informations. Les fonctions de masse sont issues de

différentes sources et sont définies sur le même ensemble de discernement. La combi-

naison permet de synthétiser ces différentes informations en vue d’une prise de décision

plus fiable. Le choix des règles de combinaison dépend de certaines hypothèses initiales,

les opérateurs de type conjonctif tels que (Dempster, 1967; Smets, 1990; Yager, 1987;

Dubois and Prade, 1988) peuvent être employés lorsque les sources sont cognitivement

indépendantes par contre les règles prudente et hardie proposées par (Denœux, 2006a)

ne suppose pas une telle hypothèse.

Après l’acquisition d’une fonction de masse, une information certaine peut ap-

2La source peut être un expert humain, un classificateur, un capteur, . . .
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parâıtre confirmant que l’hypothèse vraie est (ou n’est pas) dans l’un des sous-ensembles

de 2Ω. Dans ce cas, la fonction de masse doit être mise à jour afin de prendre en

considération cette nouvelle information certaine. Cette mise à jour est réalisée par

l’opérateur de conditionnement proposé par (Smets and Kruse, 1997).

Le déconditionnement est l’opération inverse permettant de retrouver une fonction de

masse la moins informative à partir d’une fonction de masse conditionnée.

En combinant des fonctions de masse, un degré de conflit peut surgir reflétant un

certain désaccord entre les sources. La non fiabilité d’une source peut être réglée par

l’affaiblissement des fonctions de masse avant la combinaison en utilisant l’opérateur

d’affaiblissement proposé par (Shafer, 1976). Une fonction de masse, mΩ, est affaiblie

par la fiabilité α de sa source comme suit:

αmΩ(A) = α×mΩ(A) ∀A ⊂ Ω (3)

αmΩ(Ω) = 1− α× (1−mΩ(Ω)) (4)

Smets (Smets, 1993) a justifié cette procédure.

La prise de décision dans la théorie des fonctions de croyance peut être fondée

sur des probabilités pignistiques notées BetP issues de la transformation pignistique

proposée par (Smets, 2005). Cette transformation calcule une probabilité pignistique

à partir des fonctions de masse en vue de prendre une décision.

3 Classification non-supervisée

Dans les travaux de cette thèse, nous proposons d’utiliser un algorithme de classification

non-supervisée de type C-moyenne, utilisant une distance sur les fonctions de masse

définie par (Jousselme et al., 2001) comme proposé par (Ben Hariz et al., 2006; Chebbah

et al., 2012a; Chebbah et al., 2012b). Soit un ensemble T contenant N objets oi : 1 ≤
i ≤ N à classifier dans C clusters. Les valeurs des oi sont des fonctions de masse mΩ

i

définies sur un cadre de discernement Ω. Une mesure de dissimilarité D(oi, Clk) permet

de mesurer la dissimilarité entre un objet oi et un cluster Clk comme suit :

D(oi, Clk) =
1

nk

nk∑
j=1

d(mΩ
i ,m

Ω
j ) (5)

d(mΩ
1 ,m

Ω
2 ) =

√
1

2
(mΩ

1 −mΩ
2 )tD(mΩ

1 −mΩ
2 ), (6)

D(A,B) =

 1 si A = B = ∅
|A ∩B|
|A ∪B|

∀A,B ∈ 2Ω (7)
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La disimilarité d’un objet oi et un cluster Clk est définie par la moyenne des dis-

tances entre la fonction de masse mΩ
i valeur de cet objet et toutes les nk fonctions de

masse valeurs des oj : 1 ≤ j ≤ nk objets contenus dans le cluster Clk. Chaque objet est

affecté au cluster qui lui est le plus similaire (ayant une valeur de disimilarité minimale)

de manière itérative jusqu’à ce qu’une répartition stable soit obtenue.

À la fin de la classification non-supervisée, C clusters contenant chacun un certain

nombre d’objets sont obtenus. Nous supposons que le nombre de clusters C est égal à

la cardinalité du cadre de discernement (C = |Ω|).

4 Indépendance

L’indépendance a été introduite en premier dans le cadre de la théorie des proba-

bilités pour modéliser l’indépendance statistique des évènements. Les fonctions de

masse peuvent être perçues comme des probabilités subjectives fournies par des sources

s’exprimant sur un problème étant donné un ensemble de connaissances ou

d’informations appelé corpus de croyance. Dans le cas d’une hypothèse d’indépendance

cognitive des sources, les corpus de croyance doivent être distincts et aucune commu-

nication entre les sources n’est tolérée.

Nous proposons une démarche statistique comme détaillée dans (Chebbah et al.,

2012a; Chebbah et al., 2012b; Chebbah et al., 2013; Chebbah et al., 2014) afin d’étudier

l’indépendance cognitive de deux sources.

Nous introduisons d’abord la mesure d’indépendance de deux sources s1 et s2, notée

Id(s1, s2), comme étant l’indépendance de s1 de s2. Cette mesure vérifie les axiomes

suivants :

1. Non-négative : L’indépendance d’une source s1 de s2, Id(s1, s2) est une valeur qui

est, soit nulle si s1 est complètement dépendante de s2, soit strictement positive.

2. Normalisée : Id(s1, s2) ∈ [0, 1], si Id est nulle alors s1 est complètement dépendante

de s2. Si Id = 1, alors s1 est complètement indépendante de s2 autrement c’est

un degré de ]0, 1[.

3. Non-symétrique : Si s1 est indépendante de s2, cela n’implique pas forcement

que s2 soit indépendante de s1. Les sources s1 et s2 peuvent être simultanément

indépendantes avec des degrés d’indépendance égaux ou différents.

4. Identité : Id(s1, s1) = 0.

L’approche proposée est une approche statistique pour mesurer le degré d’indépendance

cognitive. Nous proposons ainsi de classifier toutes les fonctions de masse des deux

sources et de comparer les clusters obtenus. La classification non supervisée détaillée

dans la Section 3 regroupe les objets ayant pour valeurs des fonctions de masse simi-

laires. Si les clusters des deux sources sont similaires, alors il est fort probable qu’elles
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soient dépendantes. Nous proposons d’apparier les clusters des sources et de quantifier

leurs similarités.

L’algorithme de classification non-supervisée est appliqué aux fonctions de masse

fournies par différentes sources séparément et puis ces clusters sont comparés dans le

but de voir s’il y a un lien entre eux. Plus les liens entre ces clusters sont forts plus

les sources ont tendance à être dépendantes. Soient deux sources s1 et s2, fournissant

chacune N fonctions de masse pour les mêmes objets. Après avoir classifié les fonctions

de masse de s1 et s2, la matrice de correspondance des clusters M est obtenue par :

M1 =


β1

1,1 β1
1,2 . . . β1

1,C

. . . . . . . . . . . .

β1
k,1 β1

k,2 . . . β1
k,C

. . . . . . . . . . . .

β1
C,1 β1

C,2 . . . β1
C,C

 and M2 =


β2

1,1 β2
1,2 . . . β2

1,C

. . . . . . . . . . . .

β2
k,1 β2

k,2 . . . β2
k,C

. . . . . . . . . . . .

β2
C,1 β2

C,2 . . . β2
C,C

 (8)

avec

βiki,kj =
|Cliki ∩ Cl

j
kj
|

|Cliki |
(9)

Notons que βiki,kj est la similarité des clusters Cliki de si et Cljkj de sj par rapport à si

avec {i, j} ∈ {1, 2} et i 6= j.

Une fois les deux matrices de correspondances M1 et M2 calculées, une correspon-

dance entre les clusters est établie. Chaque cluster est lié au cluster qui lui est le plus

similaire, ayant le β maximal, en vérifiant que deux clusters de la même source ne

peuvent pas être liés au même cluster de l’autre source.

La recherche de correspondances des clusters est faite pour les deux sources. Deux

correspondances différentes peuvent être obtenues pour les deux sources.

Une fois la correspondance des clusters établie, une fonction de masse définissant

l’indépendance de chaque couple de clusters est déduite. Ceci revient à avoir un agent

ayant les correspondances des clusters (ki, kj) avec les similarités correspondantes βiki,kj
comme corpus de croyance pour s’exprimer sur l’indépendance de ces clusters. Après

appariement de clusters, les clusters de s1 sont liés aux clusters de s2 qui leur sont sim-

ilaires et ceux de s2 sont également liés aux clusters de s1 les plus similaires. Différents

appariements sont obtenus pour s1 et s2. Nous définissons l’indépendance de chaque

couple de clusters liés (k1, k2) comme une fonction de masse définie sur le cadre de

discernement I = {Ī , I}, où Ī représente la dépendance et I l’indépendance:
mIki,kj (I) = αiki,kj (1− βiki,kj )
mIki,kj (Ī) = αiki,kj β

i
ki,kj

mIki,kj (I) = 1− αiki,kj

(10)

Le coefficient αiki,kj est un degré de fiabilité utilisé pour tenir compte du nombre d’objets
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contenus dans les clusters de la source référente. Une fonction de masse est définie pour

chaque couple de clusters appariés pour chacune des sources. Pour avoir une fonction

de masse sur l’indépendance globale de chaque source, toutes ces fonctions de masse

sont combinées avec la moyenne. La combinaison de ces C fonctions de masse est une

fonction de masse mIi décrivant l’indépendance globale de la source si par rapport à

sj : 

mIi (I) =
1

C

C∑
ki=1

mIki,kj (I)

mIi (Ī) =
1

C

C∑
ki=1

mIki,kj (Ī)

mIi (Ī ∪ I) =
1

C

C∑
ki=1

mIki,kj (Ī ∪ I)

(11)

Les probabilités pignistiques calculées à partir de la fonction de masse combinée per-

mettent la prise de décision sur l’indépendance des sources. L’indépendance de la

source s1 de la source s2, Id(s1, s2) n’est autre que la probabilité pignistique de I,

Id(s1, s2) = BetP (I) et Īd(s1, s2) = BetP (Ī) ce qui revient à écrire Id comme suit :


Id(si, sj) =

1

C

C∑
ki=1

[αiki,kj β
i
ki,kj

+
1

2
(1− αiki,kj )]

Īd(si, sj) =
1

C

C∑
ki=1

[αiki,kj (1− βiki,kj ) +
1

2
(1− αiki,kj )]

(12)

Si Id(si, sj) < Īd(si, sj), alors si est dépendante de sj , dans le cas contraire si est

indépendante de sj . Notons que cette approche d’estimation de l’indépendance, dépendance

positive et négative a été généralisée pour plusieurs sources.

5 Dépendance positive ou négative

Dans le cas de sources dépendantes Id n’est pas suffisante pour indiquer le type de

la dépendance. Deux sources dépendantes peuvent être positivement ou négativement

dépendantes. Nous définissons une mesure de conflit entre les clusters de si et sj

quantifiant cette dépendance que nous qualifions de positive ou négative. Si les clus-

ters liés ne sont pas conflictuels alors si est positivement dépendante de sj sinon elle

est négativement dépendante. Nous définissons alors le conflit entre les deux clusters

dépendants Cliki et Cljkj ({i, j} ∈ {1, 2} et i 6= j) à partir de la moyenne des distances

entre les fonctions de masse des objets en commun :
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Conf(Cliki , Cl

j
kj

) =
1

|Cliki ∩ Cl
j
kj
|

∑
l∈E(Cliki

,Cljkj
)

d(mΩ,i
l ,mΩ,j

l ) si |Cliki ∩ Cl
j
kj
| 6= 0

1 sinon

(13)

avec

E(Cliki , Cl
j
kj

) = {l ∈ [1, n], n = |Cliki ∩ Cl
j
kj
|,mΩ,i

l ∈ Cl
i
ki
et mΩ,j

l ∈ Cljkj} (14)

Cette mesure de conflit est la moyenne des conflits (Chebbah et al., 2010b; Chebbah

et al., 2010a; Chebbah et al., 2011) entre les objets contenus dans les clusters Cliki et

Cljkj . Le conflit est calculé pour chaque couple de clusters liés. Une fonction de masse

définie sur le cadre de discernement P = {I, P, P̄} (où P représente la dépendance

positive et P̄ la dépendance négative) décrivant la dépendance est obtenue pour chaque

couple de clusters : {
mPki,kj [Ī](P ) = 1− Conf(Cliki , Cl

j
kj

)

mPki,kj [Ī](P̄ ) = Conf(Cliki , Cl
j
kj

)
(15)

Notons que le conflit entre les clusters reflète la contradiction entre ces clusters. Plus le

conflit est important, plus les sources sont dépendantes négativement mais par contre

moins il est important plus les sources sont dépendantes positivement. Ces fonctions de

masse sont conditionnelles puisque la dépendance positive ou négative des clusters n’est

mesurée qu’avec une forte hypothèse de dépendance des clusters liés. L’hypothèse de

dépendance ou encore de non indépendance des clusters explique le fait que les fonctions

de masse de l’équation (4.27) soient conditionnées sur Ī ou encore sur {P ∪ P̄}. Afin

de pouvoir combiner les fonctions de masse (10) et (4.27) pour tenir compte du degré

de dépendance des clusters dans la fonction de masse de la dépendance positive ou

négative, il faut déconditionner les fonctions de masse conditionnelles et redéfinir les

deux fonctions de masse sur un cadre le discernement commun P. Les fonctions de

masse obtenues après déconditionnement sont alors :{
mPki,kj (P ∪ I) = 1− Conf(Cliki , Cl

j
kj

)

mPki,kj (P̄ ∪ I) = Conf(Cliki , Cl
j
kj

)
(16)

D’autre part, le cadre de discernement I = {Ī , I} peut être raffiné en raffinant

l’hypothèse Ī = {P ∪ P̄}, ceci mènera au cadre de discernement raffiné P. Les fonctions

de masse marginales de la dépendance des clusters liés de l’équation (10) deviennent
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après raffinement : 
mPki,kj (I) = αiki,kj (1− βiki,kj )
mPki,kj (P ∪ P̄ ) = αiki,kj β

i
ki,kj

mPki,kj (I ∪ P ∪ P̄ ) = 1− αiki,kj

(17)

Nous définissons ainsi la fonction de masse de l’indépendance, dépendance positive et

dépendance négative de chaque couple de clusters liés de si et sj après combinaison

conjonctive des fonctions de masse des équations (4.28) et (4.29) définies sur le cadre

de discernement P :

mPki,kj (I) = αiki,kj (1− βiki,kj )
mPki,kj (P ) = αiki,kj β

i
ki,kj

(1− Conf(Cliki , Cl
j
kj

))

mPki,kj (P̄ ) = αiki,kj β
i
ki,kj

Conf(Cliki , Cl
j
kj

)

mPki,kj (I ∪ P ) = (1− αiki,kj ) (1− Conf(Cliki , Cl
j
kj

))

mPki,kj (I ∪ P̄ ) = (1− αiki,kj )Conf(Cliki , Cl
j
kj

)

(18)

La fonction de masse générale sur la dépendance de la source si par rapport à sj

est donnée par :

mP(A) =
1

C

C∑
ki=1

mPki,kj (A) (19)

avec {i, j} ∈ {1, 2} et i 6= j, où ki est le cluster de la source si associé au cluster

kj de la source sj . Cette fonction de masse représente ainsi l’ensemble des croyances

élémentaires sur l’indépendance, la dépendance positive et négative de la source si face

la source sj . Le degré d’indépendance est la probabilité pignistique de l’hypothèse I,

BetP (I), ceux des dépendances positive et négative sont respectivement BetP (P ) et

BetP (P̄ ). Le manuscrit de thèse détaille les résultats expérimentaux de l’approche.

6 Utilisation de l’indépendance, dépendance positive ou

négative

La mesure Id(si, sj) informe sur l’indépendance ou a contrario la dépendance de la

source si par rapport à la source sj permettant par exemple de choisir la règle de

combinaison à utiliser ou encore intégrer cette information dans ses fonctions de masse.

Quant au moins l’une des sources si ou sj est dépendante de l’autre (Id(si, sj) <

Īd(si, sj) ou Id(sj , si) < Īd(sj , si)), il est alors préférable d’utiliser les règles de (Denœux,

2006a) sinon les règles de (Dubois and Prade, 1988; Martin and Osswald, 2007b; Smets

and Kennes, 1994; Yager, 1987) permettent par exemple de redistribuer la masse de

l’ensemble vide.

D’autres utlisations de la mesure d’indépendance, dépendance positive ou négative

consiste à les intégrer soit dans les fonctions de masse afin de supposer l’indépendance
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des sources ou encore de les intégrer dans une nouvelle règle de combinaison.

6.1 Intégration de l’indépendance dans une fonction de masse

L’indépendance est généralement une information supplémentaire nécessaire à la fusion

d’informations, mais non prise en compte dans le formalisme choisi. Nous proposons

d’appuyer sur le principe de l’affaiblissement afin de tenir compte de l’indépendance

dans les fonctions de masse en vue de la combinaison.

En effet, lors de la combinaison conjonctive par exemple, l’hypothèse d’indépendance

cognitive des sources d’informations est nécessaire. Si les sources sont dépendantes

on peut penser qu’elles ne devraient pas être combinées par ce biais. Cependant,

comme le montre la Section 4 les sources peuvent avoir des degrés de dépendance et

d’indépendance. L’information fournie sur l’indépendance n’est pas catégorique.

Dans ce cas, il suffit d’appliquer la procédure d’affaiblissement détaillée dans (Smets,

1993) sur la fonction de masse mΩ de la source si en considérant l’indépendance donnée

par la fonction de masse de l’équation (19).

À présent, nous distinguons la dépendance positive de la dépendance négative. Si

une source est dépendante positivement d’une autre source, il ne faut pas en tenir

compte et donc tendre vers un résultat de combinaison qui prendrait cette première

source comme un élément neutre. Enfin si une source est dépendante négativement

d’une autre source, il peut être intéressant de marquer cette dépendance conflictuelle

en augmentant la masse sur l’ensemble vide.

Pour réaliser ce schéma, nous proposons d’affaiblir les fonctions de masse d’une

source si en fonction de sa mesure d’indépendance à une autre source sj , donnée par

la fonction de masse mIi de l’équation (19).

Nous considérons ici une fonction de masse d’une source mΩ en fonction de son

indépendance ou dépendance à une autre source comme détaillé dans (Chebbah et al.,

2014). Ainsi la fonction de masse affaiblie par les degrées d’indépendance, dépendance

positive et négative de la source est définie comme suit :
mΩ[I](X) = mΩ(X)

mΩ[P̄ ](X) = mΩ(X) mΩ(X) = 1 si X = ∅, 0 sinon

mΩ[P ](X) = mΩ(X) mΩ(X) = 1 si X = Ω, 0 sinon

(20)

Cette procédure réalisée pour la source si en rapport à la source sj peut être réalisée

pour la source sj au regard de la source si. Ainsi les deux fonctions de masse obtenues

peuvent être combinées par la règle de combinaison conjonctive qui suppose l’indépendance.

Des illustrations sont détaillées dans la suite de ce manuscrit de thèse.
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6.2 Intégration de l’indépendance dans une règle de combinaison mixte

Les degrés d’indépendance, dépendance positive et négative sont utiles soit pour guider

le choix du type de règles de combinaison à utiliser, soit pour les intégrer dans les fonc-

tions de masse afin de pouvoir supposer l’indépendance cognitive dans la combinaison.

Les degrés d’indépendance, dépendance positive ou négative sont des degrés dans

[0, 1]. Si l’indépendance des sources est 1, les sources sont complètement indépendantes

et si l’indépendance est 0, les sources sont complètement dépendantes. Le choix des

règles de combinaison dans les deux cas extrême est assez simple. Quand le degré de

dépendance est dans ]0, 1[, nous proposons une nouvelle règle de combinaison mixte qui

est une moyenne pondérée des combinaisons conjonctive et prudente. La combinaison

mixte de deux fonctions de masse mΩ
1 et mΩ

2 fournies par deux sources s1 et s2 telle

que leur degré d’indépendance est γ = Id(s1, s2) est défini comme suit :

mMixte = γ ∗m ∩© + (1− γ) ∗m ∧© (21)

La masse combinée d’un élément focal A, mMixte(A), est la moyenne de sa masse

combinée avec la règle disjonctive et sa masse combinée avec la règle prudente calibrée

avec le degré d’indépendance des sources. La règle mixte tend vers la combinaison

conjonctive quand les sources sont indépendantes, et vers la règle prudente quand les

sources sont dépendantes. La règle mixte est:

• Commutative: La règle conjonctive et la règle prudente sont commutatives, le

degré d’indépendance des sources est symétrique donc la règle mixte est commu-

tative.

• Associative: La règle conjonctive et la règle prudente sont associative mais la règle

mixte ne l’est pas.

• Idempotente: L’indépendance d’une source d’elle même est 1, dans ce cas la règle

mixte et la règle prudente sont équivalentes. La règle prudente est idempotente

donc la règle mixte l’est aussi.

• L’élément neutre et l’élément absorbant: La règle mixte ne possède ni un élément

neutre ni un élément absorbant.

7 Conclusion

Lors des travaux de recherche de cette thèse, nous nous sommes focalisés sur l’estimation

de l’indépendance, dépendance positive et négative des sources. En effet, nous avons

proposé une approche statistique afin d’estimer ces degrés d’indépendance/dépendance.

Ces degrés serviront à guider le choix du type de règles de combinaison à appliquer. En

effet, les règles de combinaison du type conjonctive et/ou disjonctive telles que (Dubois
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and Prade, 1988; Martin and Osswald, 2007b; Smets and Kennes, 1994; Yager, 1987)

combinent des fonctions de masse dont les sources sont indépendantes par contres

les règles prudente et hardi combinent des fonctions de masse dont les sources sont

dépendantes. L’information sur l’indépendance des sources peut aussi être intégrée

dans les fonctions de masse afin de supposer l’indépendance des sources. Le degré

d’indépendance est aussi utilisé dans une règle de combinaison mixte que nous avons

proposée. La règle mixte est une moyenne pondérée des combinaisons conjonctive et

prudente.
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Abbreviations and notations

In the following, a list as exhaustive as possible of abbreviations and notations used in

this thesis:

Belief functions

• Θ, Ω: are two distinct frames of discernment; they can be compatible or not. The

frame Ω can be indexed with the first letter of variables’ names (for example: Ωd

is the frame of discernment of the variable disease);

• ω1, ω2, . . . , ωn: hypothesis in Ω; they are singletons;

• θ1, θ2, . . . , θn: hypothesis in Θ; they are also singletons;

• n: number of hypotheses in a frame of discernment, for example n = |Ω|;

• Ω×Θ: is the cartesian product of Ω and Θ;

• ↑: vacuous extension;

• ↓: marginalization;

• ⇑: deconditioning;

• m, mΩ, mΩ
j , mj : is a mass function, m is a mass function defined on any frame of

discernment Ω and provided by a source j. Normality condition is not required

in this mass function;

• mΩ
Ω: a vacuous mass function;

• mΩ
∅ : a contradictory mass function;

• Aw: a simple support function focused on A with a degree of support w;

• bel, belΩ, belΩj : belief function;

• pl, plΩ, plΩj : plausibility function;

• q, b: communality and implicability functions;

• Bel, Pl: normalized belief and plausibility functions;
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xx Abbreviations and notations

• BetPΩ
m, BetPm, BetP : pignistic probability;

• A, B, C, D: focal elements of a mass function mΩ; A B C D ⊆ Ω;

• Ā: complement of A in Ω; Ā = Ω \ {A};

• F : the set of all focal elements of a mass functions;

• |F |: number of focal elements in a mass function;

• FS : set of same focal elements that have same masses;

• |FS |: number of same focal elements that have same masses;

• FNC : set of not conflicting focal elements;

• |FNC |: number of not conflicting focal elements;

• FCO: set of conflicting focal elements;

• |FCO|: number of conflicting focal elements;

• ϕ: is the core of a mass function;

• N : is the number of mass functions;

• Aw: a simple support function focused on A with a degree of support w;

• mΩ
A? : a categorical mass function focused on A?, A? ⊆ Ω. When A? = Ω, the

mass function is vacuous and when A? = ∅, it is contradictory;

• αm, αmΩ, αmΩ
j : a discounted mass function;

• m[A], mΩ[A]: conditioned mass function;

• M : is the number of sources;

• i, j: indexes for sources and their mass functions;

• si, sj : sources i and j. When M = 2, {i, j} ∈ {1, 2} and i 6= j. Mass functions

mi and mj are mass functions respectively provided by si and sj ;

• EC: evidential corpus;

• Ev: evidence.



Abbreviations and notations xxi

Distances

• m′: the transpose of m considered as a vector;

• dPS : Perry and Stephanou’s distance;

• dBP : Blackman and Popoli’s distance;

• dR: Ristic and Smets distance generalizing Bhattacharrya’s distance (Ristic and

Smets, 2006);

• dRS : Ristic and Smets distance using Dempster’s conflict (Ristic and Smets,

2006);

• dFl: distance of (Florea et al., 2009b);

• DifBetP : distance on pignistic probabilities proposed by (Liu, 2006);

• d: Jousselme distance;

• p: an integer such that p ≥ 1;

• d(p), Lp: Minkowski distance;

• d(p)
C : Cuzzolin distance generalizing the Minkowski distance on the theory of belief

functions;

• d(1), L1: Manhatten distance;

• d(2), L2: Euclidean distance;

• d(∞), L∞: Chebychev distance;

• U : upper triangular matrix of the Cholesky decomposition;

• Inc: inclusion matrix;

• Int: intersection matrix.

Conflict

• k, m1 ∩©2(∅), m ∩©(∅): Dempster’s conflict;

• K: re-normalizing constant;

• Con(m1,m2): weight of conflict between two mass functions;

• cos(m1,m2): a cosine-based measure;

• ||.||: the norm of a vector;
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• as: auto-conflict after s times sequential combinations of identical mass functions

m;

• ω?: hypothesis not mentioned on Ω;

• λ: a real not null;

• Conf(si, sj): conflict between two sources.

Evidential databases

• EDB: evidential database;

• c: number of attributes in an EDB;

• aj : attribute j;

• Ωaj : domain of the attribute aj ;

• Vij : evidential value of the object i for the jth attribute;

• mij , m
Ωaj
ij : a mass function value of attribute “j” for object “i”. Mass functions

mij can be certain, probabilistic, possibilistic, evidential and even missing.

Clustering

• ECM : Evidential C-means;

• BKM : Belief C-modes;

• C: number of clusters Clk (1 ≤ k ≤ C);

• N : number of objects to be classified;

• nk: number of objects classified into cluster Clk;

• T : a set of n objects oi : 1 ≤ i ≤ n to classify;

• Q: cluster’s center;

• Ωc: frame of discernment of possible classes Ωc = {Cl1, Cl2, . . . , Clc};

• v̄i: barycenter of clusters classes;

• dis: dissimilarity of an object and a class mode;

• D: distance between an object and cluster’s mode;

• s: similarity between two objects;
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• S: similarity between an object and a cluster;

• q: index of objects;

• p: index of attributes.

Independence

• H1, H2: hypotheses;

• X, Y : stochastic variables, x ⊆ ΩX and y ⊆ ΩY are possible values of X and Y ;

• ΩX , ΩY : domains of X and Y respectively;

• ∝: proportionality;

• mA, mB: mass functions induced by two distinct evidences;

• W : weighting function;

• Υ: angle between two mass functions considered as vectors in a 2|Ω| dimensional

space;

• Id(s1, s2): independence degree of s1 on s2;

• Ind(s1, s2): overall independence of s1 and s2;

• ki, kj , k1, k2: indexes of clusters;

• l, q: indexes for objects to classify;

• D: a distance of an object to cluster, D(oi, Clk) is the distance between the object

oi and the cluster Clk;

• Nk: number of objects classified into a cluster Clk;

• Cliki : the kth
j cluster of the source i, such that 1 ≤ ki ≤ C;

• βiki,kj , β
i(ki, kj): similarity between clusters Cliki and Cljkj ;

• Mi: similarity matrix of the source si;

• I: a frame of discernment of the independence, I = {I, Ī} such that Ī is for

dependent and I for independent hypotheses;

• P: a frame of discernment on the independence, positive and negative indepen-

dence of sources, P = {I, P, P̄} such that I is for independence, P for positive

dependence and P̄ for negative dependence hypotheses;
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• mI,iki,kj : a mass function for the independence of linked clusters Cliki and Cljkj
according to si;

• mI,i: a mass function of the independence of a source si;

• mP,iki,kj
: a mass function of the independence, positive and negative independence

of matched clusters Ckiki and Ckjkj according to si;

• mPi : a mass function on a given source’s (si) independence, positive and negative

dependence;

• αiki : a reliability degree taking into account the number of mass functions in a

cluster Cliki ;

• Conf(Cliki , Cl
j
kj

): the conflict between matched clusters, Cliki of si and Cljkj of sj .

Combination rules

• PCR: Proportional Conflict Redistribution;

• CWAC: Combination With Adapted Conflict;

• CCAC: Cautious Combination With Adapted Conflict;

• m12, mΩ
12: a mass function issued from the combination of two distinct mass

functions mΩ
1 and mΩ

2 using any combination rule;

• m⊕, m1⊕2: the orthogonal sum of m1 and m2;

• m ∪©, m1 ∪©2: combined mass function with the disjunctive rule of combination;

• mY : combined mass function with Yager’s rule;

• mDP : combined mass function with Dubois and Prade’s rule;

• m ∩©: the conjunctive combination of mass functions;

• m↔©: combined mass function with CWAC;

• m ∧©: combined mass function with the unnormalized cautious rule;

• m ∧©? : normalized cautious combination of mass functions;

• m ∨©: bold combination of mass functions;

• m .©: combined mass function with CCAC;

• mMean: mean combination of mass functions;
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• mFlo: combination of mass functions with the rule proposed in (Florea et al.,

2006; Florea, 2007);

• mMixed: proposed mixed combination that is a weighted average of the conjunc-

tive and cautious combinations;

• mΩ[I], mΩ[P ], mΩ[P̄ ]: mass functions defined on any frame of discernment and

conditioned on their source’s independence I, positive P , and negative dependence

P̄ ;

• W1, W2, W : weighting functions;

• W ′: similarity functions;

• γ: sources’ degree of independence (overall independence degree).
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Introduction

Real-world problems are stained by imperfect information. Unfortunately, modeling

these problems cannot be done with certainty because information may be imprecise,

uncertain or even not available. Smithson advances a detailed analysis of imperfect

data (Smithson, 1989). In fact, many areas are stained with uncertainty like machine

learning, medical diagnosis, risk analysis, target recognition, etc. Imperfect informa-

tion is either inconsistent, imprecise or uncertain (Smets, 1997).

Inconsistent information is incoherent and the value of the variable or the attribute

is impossible and not consistent. Uncertain information is provided by a source that is

not sure about their truth. For example, in the case of lack of information in medical

diagnosis, a doctor may hesitate between two diagnoses and supplies an uncertain di-

agnosis which may be insufficient for decision making. On the other hand, information

can be certain but we don’t discern which subset is the truth. Information is imprecise

when it is certain without discerning exactly the truth. In this case, a doctor may be

sure about his diagnosis about which disease can be, but the disease may be one of a set

of possible diseases. Imprecise information is certain but not exact. By misuse of lan-

guage, uncertainty is used instead of imperfection due to their closeness. Information

may be also objective or subjective. Objective information evolves out of measurements

or objective sources. However, subjective information is collected from sources who are

expressing their own opinions or beliefs.

Decision making is more difficult with the use of imperfect information. It may be

easier to decide on certain information; however available data are not always entirely

certain. Even though imperfect information cannot be avoided, we may find appropri-

ate tools to cope with it.

Many theories have been proposed to manage imperfect information, such as fuzzy

sets theory (Zadeh, 1965), possibility theory (Dubois and Prade, 1988; Zadeh, 1999),

imprecise probabilities (Walley, 1991), rough set theory, credal set theory (Abellán

and Moral, 2000), random set theory (Kendall, 1974) and the theory of belief func-

tions (Dempster, 1967; Shafer, 1976). Although the theory of probabilities has been

widely used to manage uncertainty, it cannot handle the case of total ignorance. In

fact, when sources ignore partially or totally values of some parameters, hypotheses

1
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are equiprobable. Equiprobability handles both equiprobable hypotheses and ignorant

sources. Ignorance is not well modeled with the theory of probabilities.

The theory of belief functions is a powerful tool for representing imperfect infor-

mation that can be imprecise, uncertain, missing or incomplete. Usual databases are

used to store a high quantity of structured data which are perfect. When uncertainty

is modeled with the theory of belief functions, such information namely evidential in-

formation may be stored in evidential databases (Hewawasam et al., 2005; Bach Tobji,

2012). Since available information tends to be imperfect, the use of evidential databases

supporting both certain and uncertain data is of a great interest.

In many fields such as medical diagnosis and banking, evidential databases may store

similar information provided by different sources. For example, in medical diagnosis,

several doctors provide same or different (evidential) information when diagnosing the

same patient. In such case, each diagnosis is stored in the evidential database of the

doctor. Integrating evidential databases helps decision makers when handling all avail-

able information. Taking into account several evidential databases to make a decision

is considered as a difficult task; the use of only one integrated evidential database

makes this task easier and more pleasant for decision makers. When integrating sev-

eral evidential databases, evidential information are combined. The combination of

several evidential information helps users and decision makers to reduce the degree of

uncertainty by confronting several opinions. The theory of belief functions presents a

strong framework for combination (Dubois and Prade, 1988; Murphy, 2000; Smets and

Kennes, 1994; Martin and Osswald, 2007a; Yager, 1987). A conflict may arise during

the combination due to the discord between different sources of evidential information.

This conflict may be redistributed through combination rules. The conflict appears

because of the unreliability of at least one source, which can be avoided before com-

bining by taking into account sources’ reliabilities. Discounting operator can be used

to balance evidential information with their sources’ degrees of reliability.

First, we tackle the problem of estimating sources’ degrees of reliability. We propose

a method which aims to estimate source’s reliability degree using information stored in

its database. This method generalizes the approach detailed in (Martin et al., 2008) in

order to estimate reliabilities of evidential databases’ sources. Indeed, source’s reliabil-

ity is estimated in order to discount its evidential information before combining them

with other evidential information supplied by different sources. Once source’s reliability

is estimated, it can be used to discount all evidential information. The conflict defined

to estimate reliability degrees is also used to learn independence degrees of sources.

Then, we detail our method of estimating sources’ independence. The Oxford dic-
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tionary defines the term dependence as “the state of relying on or being controlled by

someone or something else”; however, two sources are dependent if they are confident

and one of them is controlling the other. The Oxford dictionary defines also the term

independence as “the fact or state of being independent”. Nevertheless, two sources

are independent when no one is controlling between each other. For example, in social

networks, two persons are dependent if one of them is controlling the other or if he

relies on and adopts opinions of the other. However, two persons are independent if

no one is controlling the other and no one is adopting beliefs of the opponent. Social

networks are a great example of dependence where users are linked and then they are

dependent. In the theory of belief functions, belief holders may be experts, persons,

algorithms, etc. When combining several evidential information stored in evidential

databases, beliefs provided by several belief holders are aggregated by stressing com-

mon points in their beliefs.

In the theory of belief functions, many combination rules are proposed to aggregate

beliefs. Some combination rules like (Dubois and Prade, 1988; Martin and Osswald,

2007a; Murphy, 2000; Smets and Kennes, 1994; Yager, 1987; Lefèvre and Elouedi,

2013) are fitted to the aggregation of evidential information provided by cognitively

independent sources. Otherwise the cautious, bold (Denœux, 2008) and mean combi-

nation rules can be applied when sources are cognitively dependent because they are

idempotent and tolerate redundant information. A source is assumed to be cognitively

independent on another one when the knowledge of beliefs of that source, does not affect

beliefs of the other one. Information on the independence of sources guides the choice

of the type of combination rules to be used. For example, when beliefs are completely

dependent, only cautious or bold rules can be used. When evidential information is

completely independent, a set of combination rules (Dubois and Prade, 1988; Martin

and Osswald, 2007a; Murphy, 2000; Smets and Kennes, 1994; Yager, 1987; Lefèvre and

Elouedi, 2013) can be applied.

Some researches are focused on cognitive and evidential independence (Shafer, 1976;

Smets, 1993); others (Ben Yaghlane et al., 2002a; Ben Yaghlane et al., 2002b) tackle

doxastic independence of variables. Cognitive dependence is defined as the change of

beliefs on one variable if a new evidence bears on the other variable. In this thesis, we

are focusing on measuring only the independence of sources, not the independence of

variables.

In this thesis, we suggest a novel statistical approach for estimating sources’ in-

dependence from all their evidential information. Evidential information is stored in

evidential databases. There are three possible uses of sources’ degree of independence:

First, it guides the choice of the combination rule to aggregate evidential information.
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In fact, sources’ degree of independence justifies hypothesis made when choosing the

type of combination rules. These degrees may motivate a choice of combination rules

that supposes the independence of sources or contrary, it may justify the choice of an

idempotent combination rule.

Second, sources’ degree of independence may be integrated in evidential information

that they provide leading to an operator similar to the discounting. That combination

integrates information on sources’ independence in evidential information provided by

these sources. Afterward, hypothesis on the independence of sources may be made to

choose the appropriate type of combination rules.

Finally, we propose a new mixed combination rule. The proposed rule weighs the

conjunctive and cautious rules with sources’ degree of independence. When sources’

degree of independence is neither 0 nor 1 but a level over [0, 1], we propose a new com-

bination rule weighted with sources’ degree of independence leading to the conjunctive

rule of combination when sources are fully independent (Smets, 1990) and to the cau-

tious rule when they are fully dependent (Denœux, 2008).

Our thesis is organized in the following four chapters:

• In Chapter 2, we recall some basic concepts of the theory of belief functions. It

proposes strong tools to model uncertain and/or imprecise information. Eviden-

tial information is provided by sources that can be distinct and independent or

not. Many combination rules are also proposed in the theory of belief functions,

they aggregate several sources beliefs. In addition, operations on frames of dis-

cernment are proposed to convert mass functions from any frame of discernment

to a compatible (or not) frame. Converting several mass functions defined on

different frames of discernment allows the combination of that mass functions.

• In Chapter 3, we define evidential databases and a conflict measure between

sources of that databases. We also propose a method to a estimate source’s

reliability in order to resolve the conflict during the combination. We propose

also a clustering algorithm that classifies objects stored in evidential databases.

Clustering technique gather similar objects into the same cluster in order to study

the source’s overall behavior. The proposed clustering algorithm minimizes the

conflict between objects in the same clusters; the conflict between objects in

different clusters are maximized. The use of a clustering algorithm is of interest

in next chapters.

• Chapter 4 is about independence concept in the theory of belief functions. Many

researches are focused on variables’ independence. Evidential, cognitive and dox-

astic independence of variables are defined in the theory of belief functions. This

thesis does not focus on variables’ independence but on sources’ independence.

In this chapter, we propose a method for learning sources’ independence from all
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evidential information. Two sets of evidential information assessed by two differ-

ent sources are classified into two sets of clusters. Clusters of both sources are

matched and the independence of each couple of matched clusters is quantified

in order to estimate sources’ degrees of independence.

We propose also a statistical approach to ascertain if the dependence is positive

or negative. In the case of positive dependent sources, they are communicating

or their evidential corpus is almost the same. In the case of negative depen-

dent sources, sources are also either communicating or their evidential corpora

are almost identical but one of the sources provides the opposite of information

it knows. In this chapter, we propound a refinement of sources’ independence

degrees. Thus if sources are dependent, we learn sources’ degrees of positive and

negative dependence.

• Chapter 5 guides the choice of the type of combination rules according to sources’

degrees of independence. Therefore in a case of dependent sources, only idem-

potent combination rules that tolerate redundant information may be used. Ev-

idential information provided by independent sources can be combined by any

combination rules that are not necessarily idempotent. In cases of strongly de-

pendent or independent sources, the choice of combination rules is quite easy.

However, in a case of an independence degree over ]0, 1[, the choice is not enough

easy. Therefore, we propose a new combination rule that takes into account

sources’ degrees of independence. The proposed combination rule is a weighted

average using sources’ degrees of independence.

Another way to take consideration of sources’ degrees of independence is to in-

tegrate it into mass functions provided by that sources. Justification of such

combination is detailed in this chapter.

• Finally, in Chapter 6 conclusions are drawn and some perspectives of this thesis

are presented.



6 Introduction



2
Basics of the theory of Belief

functions
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Summary

Among theories handling uncertainty, the theory of belied functions detailed in this

chapter deals with imprecise and uncertain information. This thesis handles sources

cognitive independence when uncertainty is modeled with the theory of belief functions.

In fact, sources cognitive independence is learned from all evidential information that

they provide. In this first chapter, we display some basic notions of the theory of belief

functions because it provides flexible tools to cope with uncertainty.

7
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2.1 Introduction

Uncertainty theories like the theory of probabilities, the theory of fuzzy sets (Zadeh,

1965), the theory of possibilities (Dubois and Prade, 1988) and the theory of belief

functions model and manage uncertain data. The theory of belief functions also called

Dempster-Shafer theory was first introduced by (Dempster, 1967) and (Shafer, 1976)

for quantifying beliefs. Thereafter (Smets and Kennes, 1994) proposed an interpreta-

tion of this theory: the Transferable Belief Model (TBM).

In the TBM, the representation of beliefs is on two levels: a credal level1 and a

pignistic level2. The credal level is split into a static part and a dynamic part. In the

static part, beliefs are quantified and represented; they are combined in the dynamic

part. In the pignistic level, decisions are made with regard to the risk and the earnings

associated to these decisions.

The theory of belief functions is a mathematical theory that extends probability the-

ory by giving up the additivity constraint as well as the equal probability in the case

of ignorance. Therefore, in probability theory equal probabilities do not distinguish

equally probable events from the case of ignorance. In the theory of belief functions,

cases of uncertainty, incompleteness and ignorance are modeled and distinguished. In

this theory, justified degrees of support are assessed according to an evidential corpus.

Evidential corpus is the set of all evidential pieces of evidence held by a source that

justifies degrees of support awarded to some subsets.

In the framework of belief functions, uncertainty is modeled and several pieces of ev-

idence provided by different bodies of evidence are combined in order to have synthetic

information that takes into account all pieces of evidence. Thus, this theory deals with

imprecise and/or uncertain data provided by several belief holders and also combines

them. Combining evidential information aggregates the beliefs of various sources by

emphasizing common points in their faiths.

This chapter is a synopsis of basic concepts of the theory of belief functions; in the

first section, we will introduce fundamental notions of the theory of belief functions

such as mass functions, some particular cases, equivalent belief functions and pignistic

transformation used for decision making. In the second section, we will detail operations

on frames of discernment to be used to express mass functions in a common frame when

they are initially defined on different, compatible or incompatible frames of discernment.

The third section is about combination, thus we summarize some combination rules that

1from Latin “credo” means “I believe”
2from Latin “pignus” means “a bet”
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will be used in the sequel but more details will be given in the last chapter of this thesis.

Finally, before concluding, methods for building belief functions are displayed.

2.2 Belief functions

Let Ω = {ω1, ω2, . . . , ωn} be a set of n elementary, non empty and mutually exclusive

hypotheses related to a given problem. The set Ω is called frame of discernment, uni-

verse of discourse or domain of reference. Among Ω only one hypothesis is true. The

theory of belief functions can be used to assess degrees of belief to some hypotheses

when the true hypothesis cannot be defined with certainty.

Smets defined a closed world assumption where all possible hypotheses are enumer-

ated in Ω; an open world assumption which admits the existence of a set of unknown

hypotheses which can include the truth (Smets, 1988; Smets, 1990). Under the closed

world assumption, we suppose that Ω is exhaustive. This assumption was admitted in

Shafer’s model (Dempster, 1967) but it is, in some cases, a bit difficult to enumerate

from the beginning all the hypotheses related to a given problem, thus the use of the

open world assumption. Therefore, Ω is not necessarily exhaustive under the open

world assumption.

Let 2Ω be a set of all subsets of Ω. It is made of hypotheses and unions of hypotheses

from Ω. This set 2Ω is called power set and defined as follows:

2Ω = {A : A ⊆ Ω} (2.1)

Subsets of 2Ω are called propositions or events.

Example 2.1 Let us consider a problem of medical diagnosis where a doctor examines

a patient, he can identify some diseases with uncertainty from identified symptoms.

For example, suppose that possible diseases are either flu, pharyngitis or bronchitis.

Therefore the frame of discernment Ωd is formed of flu F , pharyngitis P and bronchitis

B: Ωd = {F, P, B}.
The corresponding power set is: 2Ωd = {∅, F, P, F ∪P, B, F ∪B, P ∪B, F ∪P ∪B}3.

Along this thesis, this example will be used to illustrate some notions.

A basic belief assignment (bba) is a mapping from 2Ω to [0, 1] that allocates a degree

of justified support over [0, 1] to some subsets A of 2Ω. A basic belief assignment also

called mass function is held by an agent, a source or a belief holder and defined as

follows:

3Set notations F ∪P , F ∪B, P ∪B and F ∪P ∪B are equivalent to {F, P}, {F,B}, {P,B} and {F, P,B}
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mΩ : 2Ω → [0, 1]∑
A⊆Ω

mΩ(A) = 1 (2.2)

The degree of support of A, mΩ(A), also called basic belief mass (bbm) or mass for

short, is the degree of support that is committed exactly to A (the degree of belief that

the true hypothesis is in A) justified by available information. If further information

arises, that amount can be committed to subsets of A. A subset A having a non

null mass is called a focal element. For example if mΩd(F ∪B) = 0.2, F ∪B is a focal

element.

The couple (F ,mΩ) is called body of evidence such that F is the set of all focal

elements of a given mass function mΩ.

The core ϕ of a mass function is the union of all its focal elements and is defined

as follows:

ϕ =
⋃

A:mΩ(A)>0 A⊂F

A (2.3)

Example 2.2 Let us take the same example of medical diagnosis, the doctor assigned

these degrees of support when diagnosing a new patient:

mΩd(F ) = 0.6, mΩd(P ∪B) = 0.4

The belief holder, which is the doctor in this example, believes that the disease of the

patient is flu with a degree of support 0.6; it is a bronchitis or a pharyngitis with a

degree of 0.4.

Note that F and P ∪B are focal elements, (F ,mΩd) is the body of evidence such that

F = {F, P ∪B} and ϕ = {F ∪ P ∪B} is the core of mΩd .

A mass, mΩ(A), assigned to a proposition A from 2Ω, A ⊆ Ω, represents explicitly the

doubt between hypotheses in A. For example if A = F ∪ B, mΩ(F ∪ B) is the degree

of support of F ∪B without supporting any subset of A (it does not support F nor B

but it supports F ∪B). The mass, mΩ(F ∪B), is the degree of belief on F ∪B which

cannot be committed to its subsets F and B if that transfer is not justified.

The degree of support mΩ(Ω) is the part of belief assigned to the whole frame of

discernment which cannot be committed to its subsets. This degree of support repre-

sents the amount of ignorance.

The basic belief mass mΩ(∅) represents the degree of belief that is not committed

to any subset, (Smets, 1992b) interpreted that amount as a degree of conflict or contra-

diction between evidences. That amount can be also interpreted as a degree of belief on

an hypothesis non enumerated on the frame of discernment Ω, interpretations of that
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uncommitted degree of support is detailed in (Smets, 1992b; Smets, 2007). (Shafer,

1976) assumed a normality condition such that:

mΩ(∅) = 0 (2.4)

In this case the closed world assumption is admitted and such mass function is called

a normalized basic belief assignment.

A non-normalized mass function may be transformed into a normalized one using an

operator of normalization defined as follows: m?Ω(A) =
mΩ(A)

1−mΩ(∅)
∀A ⊆ Ω

m?Ω(∅) = 0

(2.5)

Example 2.3 For the same frame of discernment Ωd = {F, P, B}. Suppose that a

doctor assessed these degrees of support:

mΩ(∅) = 0.2, mΩ(F ) = 0.6, mΩ(F ∪B) = 0.2

The normalization of this mass function gives:

m?Ωd(∅) = 0, m?Ωd(F ) = 0.75, m?Ωd(F ∪B) = 0.25

Sets F and F ∪ B are focal elements, therefore F = {F, F ∪ B} is the set of focal

elements and (F ,mΩ) is the body of evidence.

The core of mΩd is: ϕ = {F} ∪ {F ∪B} = {F ∪B}.

(Shafer, 1976) required that the mass of the empty set is null (mΩ(∅) = 0), therefore the

normality condition is required in Shafer’s model. Under a closed world assumption,

the frame of discernment is supposed to be exhaustive where all the possible hypotheses

are enumerated on Ω and thus mΩ(∅) = 0. Smets proposed the open world where a

positive mass can be allocated to the empty set because of the non exhaustivity of the

frame of discernment or the combination of mass functions induced by contradicting

evidences (Smets, 1988; Smets, 1992b).

2.2.1 Particular belief functions

Mass function is the common representation of evidential knowledge. Basic belief

masses are degrees of support justified by available evidences. Other functions model

exactly the same evidences. This section, is a synopsis of some particular mass func-

tions.
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Categorical mass functions

A categorical mass function is a normalized mass function which has a unique focal

element A?. This mass function is noted mΩ
A? and defined as follows:

mΩ
A?(A) =

{
1 if A = A? ⊂ Ω

0 ∀A ⊆ Ω and A 6= A?
(2.6)

Example 2.4 Assume that the doctor identified symptoms showing that the patient

caught either a pharyngitis or a bronchitis (A? = {P ∪ B}), the corresponding mass

function is a categorical belief function: mΩ
A?({P ∪B}) = 1.

When all sources supply categorical mass functions, the theory of belief functions cor-

responds to the classical propositional logic.

We distinguish two particular cases of categorical mass functions: the vacuous mass

functions when A? = Ω and the contradictory mass functions if A? = ∅.

Vacuous mass functions

A vacuous mass function is a particular categorical mass function focused on Ω. It

means that a vacuous mass function is normalized and has a unique focal element

which is Ω. This type of mass functions is defined as follows:

mΩ
A?(A) =

{
1 if A = Ω

0 otherwise
(2.7)

with A? = Ω. Vacuous mass function emphasizes the case of total ignorance.

Example 2.5 Suppose that the doctor was unable to identify the disease of the pa-

tient, thus the situation of total ignorance arises. The mass function supplied by the

doctor is vacuous and is defined as follows:

mΩd(Ωd) = 1, mΩd(A) = 0 ∀A ⊂ 2Ωd , ∀A 6= Ωd

In this case, the doctor does not support any subset of 2Ωd and the unit is attributed

to the whole frame of discernment.

Contradictory mass functions

A contradictory mass function is a particular categorical mass function focused on

the empty set. A contradictory mass function is unnormalized, having a unique focal
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element which is the empty set “∅”. A contradictory mass function is defined as follows:

mΩ
A?(A) =

{
1 if A = ∅
0 otherwise

(2.8)

with A? = ∅. Such mass function emphasizes the case where the true hypothesis is not

enumerated in Ω, therefore Ω is not exhaustive.

Example 2.6 Suppose that the doctor observed symptoms never seen before. Hence,

the patient does not suffer from neither a flu, nor a pharyngitis nor a bronchitis (A? =

∅). The mass function supplied by this doctor will be a contradictory mass function

defined as follows:

mΩd
A?(∅) = 1, mΩd

A?(A) = 0 ∀A ⊂ 2Ωd and A 6= ∅

In this case, the total degree of support is attributed to the empty set. No hypothesis

from the frame of discernment is true, thus the true hypothesis is not enumerated in

Ωd. There is no hypothesis more possible than others. This mass function is defined

under the open world assumption.

Dogmatic mass functions

A dogmatic mass function is a mass function where Ω is not a focal element. A dogmatic

mass function is defined as follows:

mΩ(Ω) = 0 (2.9)

Mass functions of examples 2.2 and 2.6 are dogmatic.

Bayesian mass functions

A Bayesian mass function is a mass function which all focal elements are elementary

hypotheses; it is defined as follows:{
mΩ(A) ∈]0, 1] if |A| = 1

mΩ(A) = 0 otherwise
(2.10)

As all focal elements are single points, this mass function is a probability distribution.

Figure 2.1 illustrates focal elements of a Bayesian mass function where A, B, C and D

are single elements.

Example 2.7 Suppose that a doctor assigned these masses when diagnosing a new

patient:

mΩd(F ) = 0.2, mΩd(P ) = 0.5, mΩ(B) = 0.3
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×

×

×

×

A

B

C

D

Ω

Bayesian mass function

×
A

A ∪ B

A ∪ B ∪ C

Ω

Consonant mass function

Figure 2.1: Focal elements of bayesian and consonant mass functions

This mass function is bayesian and the corresponding probability distribution is:

p(F ) = 0.2, p(P ) = 0.5 and p(B) = 0.3

Consonant mass functions

A consonant mass function is a mass function which focal elements are nested

(A1 ⊂ A2 ⊂ . . . ⊂ Ω). Figure 2.1 illustrates focal elements of consonant mass functions.

Example 2.8 This following mass function is consonant:

mΩd(F ) = 0.2, mΩd(F ∪ P ) = 0.4, mΩd(F ∪ P ∪B) = 0.4

This mass function has common characteristics with possibilities.

Certain mass functions

A certain mass function is a categorical mass function (a mass supporting a unique focal

element) such that its focal element is an elementary hypothesis. This mass function

emphasizes the case of total certainty as the source supports only one hypothesis with

certainty. Certain mass function is defined as follows:

mΩ(A) =

{
1 if A = ω ∈ Ω

0 ∀A ⊆ Ω and A 6= ω
(2.11)
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Example 2.9 The doctor is sure that the patient has a flu therefore:

mΩd(F ) = 1

Simple support functions

A simple support function is a mass function which has only one focal element other

than the frame of discernment Ω. This unique focal element is called the focus of the

simple support function. A simple support function is defined in (Shafer, 1976) and

(Smets, 1995) as follows:

mΩ(B) =


w if B = Ω

1− w if B = A for some A ⊂ Ω

0 otherwise

(2.12)

where A is the focus of the simple support function and w ∈ [0, 1].

A simple support function is also noted Aw where w is the degree of support of the

frame of discernment Ω and the complement of w to 1 is the degree of support of the

focus A. Figure 2.2 is an example of focal elements of a simple support function focused

on A.

A

Ω

A

B

C

Ω

Simple support function Consistent mass function

Figure 2.2: Focal elements of consistent and simple support mass functions

Example 2.10 Suppose the frame of discernment Ωd = {F, P, B} and assume a

mass function mΩd defined on Ωd:

mΩd(P ∪B) = 0.6, mΩd(Ωd) = 0.4

mΩd is a simple support function focused on {P ∪B}, it can also be noted {P ∪B}0.4.
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Consistent mass functions

A consistent mass function is a function which all focal elements have a non empty

intersection. For such mass functions, at least one focal element is common to all the

focal ones. Figure 2.2 illustrates a case of consistent mass function where all focal

elements {A, B, C} intersect.

Example 2.11 The following mass function is an example of a consistent mass func-

tion defined on Ωd:

mΩd(P ) = 0.3, mΩd(P ∪B) = 0.5, mΩd(P ∪ F ) = 0.2

Note that P ∩ {P ∪B} ∩ {P ∪ F} = P .

2.2.2 Transformations of belief functions

Other functions related to mass functions model differently the same pieces of evidence.

These functions are used, amongst others, to simplify computations. They are also

mappings from 2Ω to [0, 1].

Belief (or credibility) function

A belief function, noted belΩ, is the minimal degree of belief justified by available

information. Although mass functions measure the belief committed exactly to some

subsets A from 2Ω, the credibility of a subset, belΩ(A), is the total belief on A. To

compute the total belief on A, the masses of proper subsets B of A, mΩ(B), must be

summed to mΩ(A). Therefore, belΩ(A) is obtained by summing masses of subsets of

A. The belief function is defined by:

belΩ : 2Ω → [0, 1]

belΩ(A) =
∑

B⊆A,B 6=∅

mΩ(B) (2.13)

Furthermore, the mass function that produces a given belief function is unique and

therefore it can be recovered from the belief function as follows: mΩ(A) =
∑
∅6=B⊆A

(−1)|A|−|B|belΩ(B) ∀A ⊂ Ω, A 6= ∅

mΩ(∅) = 1− belΩ(Ω)

(2.14)

Ā is the complement of A in Ω. As the empty set is included in both of A and Ā, it is

discarded from the sum.

Properties
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• Sub-additivity: belΩ(A) + belΩ(Ā) ≤ 1.

• Monotonicity: A ⊆ B ⇒ belΩ(A) ≤ belΩ(B).

• belΩ(A) + belΩ(B) ≤ belΩ(A ∪B).

• belΩ(Ω) = 1 and belΩ(∅) = 0 under the closed world assumption, only belΩ(Ω) ≤ 1

(or equivalently belΩ(∅) 6= 0) is required under the open world assumption.

• belΩ(A1 ∪ A2 ∪ . . . ∪ Az) ≥
∑
i

belΩ(Ai) −
∑
i>j

belΩ(Ai ∩ Aj) − . . . − (−1)z

belΩ(A1 ∩A2 ∩ . . . ∩Az).

Plausibility function

The plausibility function, also noted plΩ, is the maximum amount of potential support

that could be given to a subset. The plausibility of an event A ⊆ Ω, plΩ(A), is the

maximum amount of belief that could be given to A. It is measured by summing masses

of propositions compatible with A. plausibility function is defined as follows:

plΩ : 2Ω → [0, 1]

plΩ(A) =
∑

A∩B 6=∅, B⊆Ω

mΩ(B) (2.15)

Also:

pl(A) = 1− bel(Ā) (2.16)

The mass function that produces a given plausibility function is unique and therefore

it can be recovered as follows: mΩ(A) =
∑
A⊆B

(−1)|B|−|A|+1plΩ(Ā)

mΩ(∅) = 1− plΩ(Ω)

(2.17)

Properties

• Over-additivity: plΩ(A) + plΩ(Ā) ≥ 1

• Monotonicity: A ≤ B ⇒ plΩ(A) ≤ plΩ(B)

• plΩ(A ∪B) ≤ plΩ(A) + plΩ(B)

• belΩ(A) ≤ plΩ(A)

Under the closed world assumption, m(∅) = 0 and bel(Ω) = pl(Ω) = 1 but with

the open world assumption the mass m(∅) can be viewed as a missing mass or a not

committed mass equal to 1− pl(Ω).
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Implicability function

The implicability function, bΩ, is also related to a mass function but it has no inter-

pretation. It is used to simplify computations. The implicability function is defined as

follows:
bΩ : 2Ω → [0, 1]

bΩ(A) =
∑
B⊆A

mΩ(B) (2.18)

and:

bΩ(A) = belΩ(A) +mΩ(∅) (2.19)

The mass function that produces an implicability function is unique and can be recov-

ered as follows:

mΩ(A) =
∑
B⊆A

(−1)|A|−|B|bΩ(B), ∀A ⊆ Ω (2.20)

Commonality function

The commonality function, qΩ, has also computational uses but has no interpretation.

It is defined as follows:
qΩ : 2Ω → [0, 1]

qΩ(A) =
∑
A⊆B

mΩ(B) (2.21)

The mass function that produces a commonality function is unique and can be recovered

as follows:

mΩ(A) =
∑
A⊆B

(−1)|B|−|A|qΩ(B), ∀A ⊆ Ω (2.22)

Example 2.12 Table 2.1, is an example of a mass function provided by a doctor with

the corresponding belief, plausibility, implicability and commonality functions.

Table 2.1: Mass, belief, plausibility, implicability and commonality functions

mΩd belΩd plΩd bΩd qΩd

∅ 0 0 0 0 1

F 0.05 0.05 0.54 0.05 0.54

P 0.3 0.3 0.88 0.3 0.88

F ∪ P 0.2 0.55 0.94 0.55 0.48

B 0.06 0.06 0.45 0.06 0.45

F ∪B 0.01 0.12 0.7 0.12 0.29

P ∪B 0.1 0.46 0.95 0.46 0.38

Ωd 0.28 1 1 1 0.28
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2.2.3 Pignistic transformation

In the credal level, degrees of belief are assessed and mass functions can be combined. In

the pignistic level, decisions are made according to a criteria. One criteria for decision-

making consists on choosing the most probable hypothesis from Ω. Decision-making is

done on the basis of pignistic probabilities (Smets, 2005) noted BetPΩ
m calculated from

mΩ for each hypothesis ωi from Ω.

The pignistic transformation consists on dividing the mass attributed to a propo-

sition A on the hypotheses which train it. The pignistic transformation is a mapping

from Ω to [0, 1] defined as follows:

BetPΩ
m: Ω→ [0, 1]

BetPΩ
m(ωi) = ωi 7→

1

(1−mΩ(∅))
×

∑
B⊆Ω, ωi∈B, B 6=∅

mΩ(B)

|B|
(2.23)

Decision is made according to the maximum of pignistic probabilities.

Example 2.13 To finish with the same problem described in example 2.1, suppose

that the doctor gave this mass function:

mΩd(F ) = 0.2, mΩd(P ) = 0.4, mΩd(B ∪ P ) = 0.3, mΩd(Ωd) = 0.1

The doctor can decide about a patient’s disease after the pignistic transformation of

the supplied mass function:

BetP{F} ' 0.23, BetP{P} ' 0.58, BetP{B} ' 0.19

The patient seems to have a pharyngitis.

2.3 Common space

Before assessing degrees of support, hypotheses have to be enumerated in order to have

an exhaustive frame of discernment. As Shafer said ((Shafer, 1976), chapter 6), “a sin-

gle frame of discernment can embody only a small subset of the immense collection of

concepts and distinctions that any thinker can call to his aid”, different but compatible

frames of discernment embody different and compatible collections.

2.3.1 Compatible frames of discernment: coarsening and refinement

The idea is to obtain a frame of discernment Ω from another frame of discernment Θ

by splitting or merging some or all subsets of Θ. Coarsening and refinement concepts
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are defined to establish relationships between different and compatible frames of dis-

cernment in order to express beliefs on any one of them.

Let Θ and Ω, two different and compatible frames of discernment. The set Ω is a

refinement of Θ if it is obtained by splitting all or some hypotheses from Θ (Shafer,

1976). Conversely, Θ is a coarsening of Ω obtained by grouping together hypotheses of

Ω. Let us define a refining σ which is a mapping from 2Θ → 2Ω satisfying:
σ(θ) 6= ∅ ∀ θ ∈ Θ

σ(θ) ∩ σ(θ′) = ∅ if θ 6= θ′⋃
θ∈Θ

σ(θ) = Ω
(2.24)

For each θ ∈ Θ, σ(θ) is obtained by splitting the elements of θ in Ω (Shafer, 1976).

The set Ω is a refinement of Θ and Θ is a coarsening of Ω. Figure 2.3 emphasizes the

frames of discernment Ω and Θ where Θ is a coarsening of Ω and Ω is a refinement of

Θ.

Θ Ω

×
θ1

×
θ2

×
θ3

×
ω1

×
ω2

×
ω3

×
ω4

×
ω5

×
ω6

Figure 2.3: Coarsening Θ of Ω and refinement σ of Θ

Example 2.14 Let us illustrate with the same example 2.1, Θ = {Flu, Pharyngitis,

Bronchitis}. A possible refinement of Θ is:

Ω = {Flu type A, Flu type B, Flu type C, Pharyngitis, Bronchitis}.
where:

σ(Flu) = {Flu type A, Flu type B, Flu type C}
σ(Pharyngitis) = {Pharyngitis}
σ(Bronchitis) = {Bronchitis}

Also, Θ is a coarsening of Ω.
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2.3.2 Product space

In some applications, pieces of evidence may be defined on different frames of dis-

cernment. To assess flexibly justified degrees of support in different frames, some

tools provide the redefinition of these pieces under a common space. Suppose that

Ω = {ω1, ω2, . . . , ωn1} and Θ = {θ1, θ2, . . . , θn2}, two different frames of discern-

ment. The frame of discernment Ω×Θ is composed of the Cartesian product of Ω and

Θ (Shafer, 1976), Ω×Θ is the product space given as follows:

Ω×Θ = {(ω1, θ1), (ω1, θ2), . . . , (ω1,Θ), . . . , (Ω,Θ)} (2.25)

In this section, the transformations of mass functions in different spaces Ω×Θ, Ω and

Θ are detailed.

Vacuous extension

The vacuous extension (Smets, 1993) is a tool to extend a mass function defined on a

frame of discernment Ω (or Θ) to the product frame Ω × Θ. How to express a mass

function mΩ on the product space Ω×Θ?

The vacuous extension, noted ↑, consists on a transfer of basic belief masses of each

focal element B to its cylindrical extension4 as follows:

mΩ↑Ω×Θ(A) =

{
mΩ(B) if A = B ×Θ, B ⊆ Ω

0 otherwise
(2.26)

Figure 2.4 emphasizes the vacuous extension of mΩ where the mass of a focal element

B is transferred to its cylindrical extension.

B × Θ

Ω

Θ

B

Figure 2.4: Vacuous extension of mΩ in the finer frame Ω×Θ

Example 2.15 Let Ωd = {flu F, pharyngitis P, bronchitis B} and ΩI = {severe S,
moderate M, chronic C} be two frames of discernment and the product frame

4B ×Θ is the cylindrical extension of B
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Ωd × ΩI = {(F, S), (F,M), (F,C), (P, S), (P,M), (P,C), (B,S), (B,M), (B,C)} is

schematically represented by figure 2.5. The doctor provides the following mass func-

tion:

mΩd(F ) = 0.5, mΩd(Ωd) = 0.5

To extend mΩd from Ωd to Ωd×ΩI , the mass of each focal element is transferred to its

cylindrical extension. The joint mass function mΩd↑Ωd×ΩI is given as follows:

mΩd↑Ωd×ΩI (F,ΩI) = 0.5, mΩd↑Ωd×ΩI (Ωd,ΩI) = 0.5.

ΩI

Ωd

F

P

B

S M C

(F, S) (F, M) (F, C)

(P, S) (P, M) (P, C)

(B, S) (B, M) (B, C)

Figure 2.5: Product space ΩI × Ωd

Marginalization

Marginalization is the inverse operation that expresses a mass function defined on the

product space Ω×Θ, mΩ×Θ, in the coarser frame Ω or Θ. The marginalization, noted

↓, transfers basic belief masses of each focal element B ⊆ Ω × Θ to its projection5 on

Ω or Θ as follows:

mΩ×Θ↓Ω(A) =
∑

{B⊆Ω×Θ, B↓Ω=A}

mΩ×Θ(B), ∀A ⊆ Ω (2.27)

Figure 2.6 emphasizes the marginalization of mΩ×Θ where the mass of a focal element

B is transferred to its projection on Ω.

Example 2.16 Suppose the following mass function defined on the joint frame

Ωd × ΩI :

mΩd×ΩI ((F,M) ∪ (P,C)) = 0.2, mΩd×ΩI (B,C) = 0.3, mΩd×ΩI (Ωd,ΩI) = 0.5

To have the marginal mass function mΩd×ΩI↓Ωd , the mass of each focal element is

5A = B ↓ Ω is the projection of B on Ω
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A = B ↓ Ω

B

Ω

Θ

Figure 2.6: Marginalization of mΩ on Ω

transferred to its projection on Ωd as follows:

mΩd×ΩI↓Ωd(F ∪ P ) = 0.2, mΩd×ΩI↓Ωd(B) = 0.3, mΩd×ΩI↓Ωd(Ωd) = 0.5

2.4 Methods for merging belief functions

Combination of several belief functions aggregates beliefs of several bodies of evidence,

that are induced by different evidences. Some combination rules work with a strong as-

sumption of bodies of evidence independence. Other combination rules tolerate redun-

dancy and combine beliefs induced by dependent bodies of evidence. In some particular

cases, combined mass function can be certain which yields to the conditioning.

2.4.1 Some combination rules

There are a great number of combination rules proposed in the framework of belief func-

tions (Dempster, 1967; Yager, 1987; Dubois and Prade, 1988; Smets, 1990; Denœux,

2006a; Martin and Osswald, 2007a). This section is a synopsis of combination rules

that will be used, all combination rules will be detailed in Chapter 5. Combination

rules merge a set of mass functions into only one mass function in order to summarize

them and facilitate decision-making.

Let s1 and s2 be two distinct and cognitively independent sources providing two

different mass functions mΩ
1 and mΩ

2 defined on the same frame of discernment Ω.

Combining these mass functions induces a third one mΩ
12 defined on the same frame of

discernment Ω.

The first combination rule (Dempster, 1967) was proposed by Dempster and defined



24 Chapter2. Basics of the theory of Belief functions

for two mass functions mΩ
1 and mΩ

2 induced by two distinct bodies of evidence as follows:

mΩ
1⊕2(A) = (mΩ

1 ⊕mΩ
2 )(A) =



∑
B∩C=A

mΩ
1 (B)×mΩ

2 (C)

1−
∑

B∩C=∅

mΩ
1 (B)×mΩ

2 (C)
∀A ⊆ Ω, A 6= ∅

0 if A = ∅
(2.28)

The basic belief mass of the empty set is null (mΩ(∅) = 0), therefore this rule veri-

fies the normality condition and works under the closed world assumption. Note that

this combination rule is applied to combine the mass functions, cores of which intersect.

In order to solve the problem enlightened by Zadeh’s counter example (Zadeh,

1984) where Dempster’s rule of combination produced unsatisfactory results, many

combination rules appeared. (Smets, 1990) proposed an open world where a positive

mass can be allocated to the empty set interpreted as the non exhaustivity of the frame

of discernment. Therefore the conjunctive rule of combination for two mass functions

mΩ
1 and mΩ

2 also induced by two distinct bodies of evidence is defined in (Smets, 1990)

as follows:

mΩ
1 ∩©2(A) = (mΩ

1 ∩©mΩ
2 )(A) =

∑
B∩C=A

mΩ
1 (B)×mΩ

2 (C) (2.29)

Even if Smets interpreted the basic belief mass, mΩ(∅), as the amount of conflicts be-

tween evidences that induced mΩ
1 and mΩ

2 (Smets, 2007), that amount is not really a

conflict because it includes some degree of auto-conflict due to the non idempotence of

the conjunctive combination (Martin et al., 2008). The conflict and auto-conflict will

be detailed in the next chapter.

Commonality function is used to simplify the conjunctive combination especially

when a great number of belief functions (N mass functions with N > 2) is involved

in the combination. The combined mass function is obtained by computing the com-

monality function from each mass function using equation (2.21) then, multiplying all

these commonalities as follows:

qΩ(A) =

N∏
j=1

qΩ
j (A) ∀A ⊆ Ω (2.30)

Finally, combined mass function is obtained by converting back the multiplied com-

monality function to a mass function using equation (2.22).

Example 2.17 In table 2.2, three mass functions are given by three different doc-

tors when diagnosing the same patient (example 2.2), these three mass functions are

combined using commonality functions.
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Table 2.2: Conjunctive combination

mΩd
1 mΩd

2 mΩd
3 qΩd

1 qΩd
2 qΩd

3 qΩd mΩd

∅ 0 0 0 1 1 1 1 0.793

F 0.05 0.3 0.5 0.54 0.6 0.5 0.162 0.162

P 0.3 0.4 0 0.88 0.7 0 0 0

F ∪ P 0.2 0.1 0 0.48 0.3 0 0 0

B 0.06 0 0.5 0.45 0.2 0.5 0.045 0.045

F ∪B 0.01 0 0 0.29 0.2 0 0 0

P ∪B 0.1 0 0 0.38 0.2 0 0 0

Ωd 0.28 0.2 0 0.28 0.2 0 0 0

The conjunctive rule is used only when both sources are reliable. (Smets, 1990)

proposed also to use the disjunctive rule of combination when only one source is unreli-

able6. The disjunctive rule of combination of two mass functions mΩ
1 and mΩ

2 is defined

as follows:

mΩ
1 ∪©2(D) = (mΩ

1 ∪©mΩ
2 )(D) =

∑
B∪C=D

mΩ
1 (B)×mΩ

2 (C) (2.31)

Like the use of commonality functions for the conjunctive combination, implicability

function is used to simplify the disjunctive combination. The combined mass function

is obtained by computing the implicability function from each mass function using

equation (2.18) then, multiplying all these implicabilities as follows:

bΩ(A) =
N∏
j=1

bΩj (A) ∀A ⊆ Ω (2.32)

Finally, combined mass function is obtained using equation (2.20).

Example 2.18 In table 2.3, the same mass functions as in table 2.2 are combined

with the disjunctive rule of combination.

Finally, the mean combination rule, mΩ
Mean, of two mass functions mΩ

1 and mΩ
2 is the

average of these ones. Therefore, for each focal element A of N mass functions, the

combined one is defined as follows:

mΩ
Mean(A) =

1

N

N∑
i=1

mΩ
i (A) (2.33)

Besides the idempotence of this combination rule, it verifies normality condition

(mΩ(∅) = 0) if combined mass functions are normalized (∀i ∈ N, mΩ
i (∅) = 0). We note

6No information about which source is the unreliable one.
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Table 2.3: Disjunctive combination

mΩd
1 mΩd

2 mΩd
3 bΩd

1 bΩd
2 bΩd

3 bΩd mΩd

∅ 0 0 0 0 0 0 0 0

F 0.05 0.3 0.5 0.05 0.3 0.5 0.0075 0.0075

P 0.3 0.4 0 0.3 0.4 0 0 0

F ∪ P 0.2 0.1 0 0.55 0.8 0.5 0.22 0.2125

B 0.06 0 0.5 0.06 0 0.5 0 0

F ∪B 0.01 0 0 0.12 0.3 1 0.036 0.0285

P ∪B 0.1 0 0 0.46 0.4 0.5 0.092 0.092

Ωd 0.28 0.2 0 1 1 1 1 0.6595

also that this combination rule is commutative but not associative. However, it does

not matter, because many mass functions can be combined at once.

All combination rules described above work under a strong assumption of cogni-

tive independence since they are used to combine mass functions induced by two dis-

tinct bodies of evidence. This strong assumption is always assumed but never verified.

(Denœux, 2008) proposed a family of conjunctive and disjunctive rules based on tri-

angular norms and conorms. The cautious and bold rules of combination are members

of that family and combine mass functions for which independence assumption is not

verified.

2.4.2 Canonical decomposition

Shafer ((Shafer, 1976), chapter 4) distinguished four types of mass functions. Sim-

ple support function is a mass function supporting homogeneous evidences where a

given subset on the frame of discernment is supported. Separable support function in-

cludes simple support functions as well as their combination with Dempster’s rule of

combination. Support function is obtained by coarsening the frame of discernment of

separable support functions and finally, belief function includes simple support func-

tions, separable support functions, support functions and non-dogmatic belief functions.

Schematically, belief functions are modeled in (Shafer, 1976) as follows:


Simple

support

function

 ⊂


Separable

support

function

 ⊂
{

Support

function

}
⊂

{
Belief

function

}
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Table 2.4: Canonical conjunctive decomposition of a non-dogmatic mass function

2Ω mΩd qΩd wΩd

∅ 0 1 4/3

F 0.5 0.8 3/8

P 0.2 0.5 3/5

F ∪ P 0.2 0.3 1/3

B 0 0.1 1

F ∪B 0 0.1 1

P ∪B 0 0.1 1

Ωd 0.1 0.1 1

(Smets, 1995) distinguished n-separable7 support functions from u-separable8 sup-

port functions. A mass function mΩ? is a n-separable support function if:

mΩ? = ⊕
∅6=A⊂Ω

Aw(A) (2.34)

A mass function mΩ is u-separable support function if:

mΩ = ∩©
∅6=A⊂Ω

Aw(A) (2.35)

A simple support function is a non-dogmatic mass function which supports only one

subset of the frame of discernment as defined in section 2.2.1. The mass function

Aw(A) is a simple support function focused on A. Shafer named this representation of

separable support functions the canonical decomposition. Decompositions of equations

(2.34) and (2.35) are unique as long as mΩ is non-dogmatic. The canonical conjunctive

decomposition (Smets, 1995) of a non-dogmatic mass function mΩ is unique. The

weights of evidence w(A) are given from commonalities as follows:

ω (A) =
∏
B⊆A

q (B)(−1)|B|−|A|+1

(2.36)

Example 2.19 Table 2.4 illustrates an example of calculation of the canonical con-

junctive decomposition.

The cautious combination (Denœux, 2008) of two mass functions mΩ
1 and mΩ

2 issued

from probably dependent sources is defined as follows:

mΩ
1 ∧©m

Ω
2 = ∩©A⊂Ω A

w1(A)∧w2(A) (2.37)

7n for normalized.
8u for unnormalized
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Where Aw1(A) and Aw2(A) are simple support functions focused on A with weights

w1 and w2 issued from the canonical decomposition (Smets, 1995) of mΩ
1 and mΩ

2 re-

spectively, note also that ∧ is the min operator of simple support functions weights.

When, the min operator ∧, is replaced by, the max operator ∨, the bold combination

rule is obtained (Denœux, 2008). Both cautious and bold rules combine mass functions

issued from dependent sources, but the cautious rule is more fitted to reliable sources,

otherwise the bold rule fits to unreliable ones. Both bold and cautious combination

rules are commutative, associative and idempotent.

Example 2.20 In table 2.5, we illustrate the combination of two mass functions with

Dempster’s, conjunctive, disjunctive, mean and cautious rules.

Table 2.5: Combining using different combination rules

mΩ
1 mΩ

2 mΩ
1⊕2 mΩ

1 ∩©2 mΩ
1 ∪©2 mΩ

Mean mΩ
1 ∨©2

∅ 0 0 0 0.168 0 0 0.2763

P 0.12 0.3 0.2596 0.216 0.036 0.21 0.1737

H 0.3 0.4 0.5433 0.452 0.12 0.35 0.3401

P ∪H 0.2 0.1 0.1058 0.088 0.34 0.15 0.0724

M 0 0 0 0 0 0 0

M ∪ P 0 0 0 0 0 0 0

H ∪M 0.1 0 0.024 0.02 0.04 0.05 0.0362

Ω 0.28 0.2 0.0673 0.056 0.464 0.24 0.1013

2.4.3 Conditioning

When handling a mass function, a new evidence can arise confirming that a proposition

A is true (or false). Therefore, the mass function has to be revised in order to take

consideration of this new information. Basic belief masses of some focal elements B

have to be redistributed. This is achieved by the conditioning operator.

Conditioning a mass function mΩ over a subset A ⊆ Ω consists on restricting the

frame of possible propositions 2Ω to the set of subsets compatible with A, subsets

having a non empty intersection with A. Therefore, the mass allocated to each focal

element B ⊆ Ω is transferred to {B ∩ A}. The obtained mass function, being the

result of the unnormalized Dempster’s rule of conditioning (Dempster, 1967), is noted
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mΩ[A] : 2Ω → [0, 1] such that (Smets and Kruse, 1997):

mΩ[A](C) =

 0 for C ∩A = {∅}∑
B∩A=C

mΩ(B) otherwise (2.38)

Figure 2.7 illustrates the transfer of basic belief masses from B to C.

Ω

B C AB

Ω

Figure 2.7: Transfer of beliefs with the conditioning

This unnormalized Dempster’s rule of conditioning provides unnormalized condi-

tional mass functions as a non null mass can be attributed to the empty set.

Dempster’s rule of conditioning is defined in (Dempster, 1967) as follows:

mΩ[A](C) =



∑
X⊆Ā

mΩ(C ∪X)

1−
∑
X⊆Ā

mΩ(X)
for C ⊆ A

0 for C 6⊆ A or C = ∅

(2.39)

(Smets, 1992b) justifies the unnormalized Dempster’s rule of conditioning. In fact,

assume a belief function induced by an evidential corpus which supports propositions

that have a non-empty intersection with Ā, thus non-null masses are assigned to that

propositions. If a new evidence appears and confirms that no positive masses should

be allocated to subsets supporting Ā, thus bel(Ā) is the conflict between the initial

evidential corpus and the new evidence. Two possible solutions arise; that amount of

conflict is either kept on the “contradictory state” that is the empty set or redistributed

among still possible hypotheses by a normalization process. The second solution does

not verify the homomorphism requirement (Gärdenfors, 1988) and does not respect the

condition of non-increase of plausibilities after conditioning. Therefore, only the first

solution is held.

Note that Smets defines an evidential corpus as the set of all pieces of evidence held by

a source.

Example 2.21 After a primary diagnosis, the doctor assessed the following mass
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function:

mΩd(F ) = 0.2, mΩd(P ∪B) = 0.5, mΩd(Ωd) = 0.3

If, after a deep diagnosis, the doctor is sure that the patient suffers from a pharyngi-

tis, the initial mass function mΩd has to be conditioned to take consideration of this

new certain information. Conditioning mΩd with the unnormalized Dempster’s rule of

conditioning is given as follows:

mΩd [P ](∅) = 0.2, mΩd [P ](P ) = 0.8

Conditioning mΩd with Dempster’s rule of conditioning gives: m[P ]Ωd(P ) = 1.

A mass function can also be conditioned on a subset from another frame of discernment.

Thus a mass function, mΩ, defined on Ω can be conditioned on a subset θ ⊂ Θ as follows:

mΩ[θ] = (mΩ↑Ω×Θ ∩©mΘ[θ]↑Ω×Θ)↓Ω (2.40)

2.5 Building belief functions

Belief functions are induced by bodies of evidence according to distinct evidential cor-

pora. In other words, sources provide belief functions to assert their uncertainty on the

basis of evidential corpora. Unfortunately, sources do not model always their uncer-

tainty with the theory of belief functions; therefore we use generated belief functions

to illustrate proposed methods.

2.5.1 Least commitment principle

Before introducing the deconditioning, least commitment principle or principle of min-

imal commitment is defined as follows:

Definition 2.1 When several belief functions are compatible with a set of constraints,

the least informative according to some informational ordering (if it exists) should be

selected.

Definition 2.2 The principle of minimal commitment indicates that, given two equally

supported beliefs, only one of which can apply, the most appropriate is the least com-

mitted (Smets, 1993).

(Smets, 1993) claims that “the principle of minimal commitment formalizes this idea:

one should never give more support than justified to any subset of Ω. It satisfies a form

of skepticism, non-commitment, or conservatism in the allocation of belief ”. The con-

cept of commitment was introduced to create and ordering of mass functions defined

on the same frame of discernment Ω (Yager, 1986; Dubois and Prade, 1986; Dubois
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and Yager, 1987; Hsia, 1991).

According to the least commitment principle, the least-committed mass function

according to some constraints is chosen from a set of compatible mass functions.

For example, let Ω = {ω1, ω2, ω3} a frame of discernment, bel ({ω1}) = 0.2 and

bel ({ω2, ω3}) = 0.5 the only known evidences over Ω. The main question is how

to construct a mass function knowing these partial constraints?

To construct a mass function knowing only these constraints, all mass functions veri-

fying these constraints are enumerated and the least committed one is chosen.

To define the principle, let plΩ1 and plΩ2 (or equivalently belΩ1 and belΩ2 ), two plau-

sibility functions (belief functions) on Ω such that:
plΩ1 (A) ≤ plΩ2 (A) ∀A ⊆ 2Ω

or

belΩ1 (A) ≥ belΩ2 (A) ∀A ⊆ 2Ω

(2.41)

The least commitment principle for unnormalized mass functions is also expressed with

plausibilities but the inequality of belief functions becomes:

belΩ1 (A) +mΩ
1 (∅) ≥ belΩ2 (A) +mΩ

1 (∅) ∀A ⊆ 2Ω (2.42)

Thus plΩ2 is less committed than plΩ1 if there are at least one strict inequality else plΩ2
is no more committed than plΩ1 . The contradictory mass function (mΩ(∅) = 1) is the

most committed belief function and the vacuous mass function (mΩ(Ω) = 1) is the least

committed one.

2.5.2 Deconditioning

The deconditioning consists on retrieving a deconditioned mass function from a condi-

tional one. If mΩ[A] is a conditional mass function where the hypothesis A is assumed

to be surely true, it is hard to retrieve mΩ, the initial mass function before the condi-

tioning on A. Whereas, it is possible to find the least committed mass function such

that its conditioning on A is mΩ[A]. Deconditioning mΩ[A] into mΩ is given as follows:

mΩ(C ∪ Ā) = mΩ[A](C) ∀C ⊆ 2Ω (2.43)

Figure 2.8 illustrates the case where a conditional mass function mΩ[A] is decondi-

tioned and the basic belief mass of C is transferred to C ∪ Ā.

The deconditioning detailed above removes a strong assumption on the truth of



32 Chapter2. Basics of the theory of Belief functions

BA

Ω

A Ā

Ω

CC

Figure 2.8: Deconditioning

A ⊆ Ω from the conditional mass function mΩ[A]. Sometimes, mass functions are

conditional to a subset of another frame of discernment, that is the case of mΩ[θ], a

mass function conditional to θ ⊂ Θ. Figure 2.9 illustrates the case of mΩ[θ] where the

mass of B holds only when θ is assumed.

B Ω

Θ

θ

Figure 2.9: Conditional mass function

Suppose a situation where a mass function mΩ defined on Ω when θ holds, the

purpose is to find mΩ×Θ such that:

(mΩ×Θ ∩©(mΘ[θ])↑Ω×Θ)↓Ω = mΩ[θ] (2.44)

According to the least commitment principle, mΩ×Θ is obtained as follows:

mΩ[θ]⇑Ω×Θ((θ ×B) ∪ (Θ× B̄)) = mΩ[θ](B), ∀B ⊂ Ω (2.45)

Note that mΩ×Θ = mΩ[θ]⇑Ω×Θ and is called ballooning extension. Figure 2.10 illustrates

the ballooning extension.

2.5.3 Discounting

Sometimes, it is possible to quantify the reliability of the body of evidence assessing

degrees of support. The reliability of information sources reflects both its degrees of

expertise and trust. When handling a mass function, we have to take into account the
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B Ω

Θ

θ

B Ω

Θ

θ

Figure 2.10: Ballooning extension

degree of reliability of its source.

The taking into account the reliability of sources is made with an operator named

discounting as this operation calibrates beliefs with their sources reliability degrees.

Thus, the degree of reliability of a source is taken into account by integrating it into all

its mass functions. Using discounting operation in belief functions was first introduced

in (Shafer, 1976).

Discounting a mass function mΩ consists on weighting every mass mΩ(B) by a

coefficient α ∈ [0, 1] called reliability and (1 − α) is the discount rate. The discounted

mass function is given by:{
αmΩ(A) = α×mΩ(A) ∀A ⊆ 2Ω \ Ω
αmΩ(Ω) = 1− α(1−mΩ(Ω))

(2.46)

Properties

• If α = 1, the source is fully reliable; therefore, discounting does not change degrees

of support: αmΩ = mΩ.

• If α = 0, the source is fully unreliable; therefore, discounting cuts down the mass

function to a vacuous mass function: αmΩ = mΩ
Ω with mΩ

Ω is a vacuous mass

function.

The amount of belief due to the source unreliability is transferred to the frame of

discernment as a degree of ignorance.

Example 2.22 Suppose that a doctor gave this mass function:

mΩd(F ∪ P ) = 0.5, mΩd(F ∪B) = 0.5

Suppose that the degree of reliability of that doctor is 0.3. The discounted mass function
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is:

αmΩd(F ∪ P ) = 0.5× 0.3 = 0.15,

αmΩd(F ∪B) = 0.5× 0.3 = 0.15,

αmΩd(Ωd) = 1− 0.3× (1− 0) = 0.7

(Smets, 1993) justified the discounting operator by supposing that the mass function

provided by the source is unchanged if the source is fully reliable. The case of total

ignorance appears when the source is unreliable thus conditioned mass functions are

obtained as follows:

mΩ[R](A) = mΩ(A) (2.47)

mΩ[R̄](A) = mΩ
Ω(A) (2.48)

with: {
mΩ(A) = 1 if A = Ω

mΩ(A) = 0 ∀A ⊆ 2Ω \ Ω
(2.49)

With R the hypothesis confirming that the source is reliable and R̄ the hypothesis

that the source is unreliable, the frame of discernment R = {R, R̄} describes the

sources reliability and mR is the mass function about the source’s reliability described

as follows: {
mR(R) = α

mR(R) = 1− α.
(2.50)

To combine mass functions, mΩ[R], provided by a source and, mR, emphasizing beliefs

about source’s reliability, they have to be defined on the same product space R×Ω.

Therefore, mR is transformed into mR↑Ω×R using the vacuous extension as follows:

mR↑Ω×R (Y ) =

{
mR (X) if Y = Ω×X, X ⊆ R
0 otherwise

(2.51)

The conditional mass function mΩ[R] has to be deconditioned as follows:

mΩ[R]⇑Ω×R((A×R) ∪ (Ω×R)) = mΩ [R] (A) , A ⊆ Ω (2.52)

Finally, mR↑Ω×R and mΩ[R]⇑Ω×R defined on the same product space Ω × R can be

combined using the conjunctive rule of combination as follows:

mΩ×R
∩© (A) = mR↑Ω×R ∩©mΩ[R]⇑Ω×R(A), ∀A ⊂ Ω×R (2.53)
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The combined mass function mΩ×R
∩© is then marginalized on Ω as follows:

mΩ×R↓Ω (A) =
∑

{B⊆Ω×R |Proj(B↓Ω)=A}

mΩ×R
∩© (B) (2.54)

Thus:
αmΩ(A) = mΩ×R↓Ω (A) (2.55)

Mercier proposed to use a mass function on source’s reliability according to subsets of

Ω and generalized the discounting operator to a contextual discounting (Mercier et al.,

2005; Mercier, 2006; Mercier et al., 2008). (Zeng and Wu, 2007) proposed to discount

plausibility functions. Researches like (Mercier et al., 2006; Mercier et al., 2008; Martin

et al., 2008; Huynh, 2009; Chebbah et al., 2010a; Elouedi et al., 2010; Florea et al.,

2010; Chebbah et al., 2011; Liu et al., 2011; Yang et al., 2013; Frikha, 2014) aim on

estimating the discounting factor.

2.5.4 Random generation

A mass function can be obtained by the inverse pignistic transformation in the purpose

of quantifying future realizations of a random variable X when its probability distri-

bution is known (Denœux, 2006b; Aregui and Denœux, 2007). It can also be obtained

by deconditioning or discounting a mass function to have a conditioned or discounted

mass function from another one. Finally, it can even be obtained using the multivalued

mapping (Liu et al., 1992) or by collecting experts opinions (Wong and Lingras, 1994;

Bryson and Mobolurin, 1999; Ben Yaghlane et al., 2006b; Ben Yaghlane et al., 2006a).

Unfortunately, it is not always possible to obtain mass functions as cited above. In

that case mass functions can be generated randomly, algorithm 1 generates a set of N

random mass functions. Number of focal elements and their masses are independently

and randomly chosen according to universal law.

(Burger and Destercke, 2012) proposed an efficient algorithm for random generation

Algorithm 1 Random mass functions generation

Require: |Ω|, N : number of mass functions
for i = 1 to N do

Choose randomly | F |, the number of focal elements on [1, |2Ω|].
Choose randomly | F | focal elements noted F .
Divvy the interval [0, 1] into | F | continuous sub-intervals.
Basic belief masses of focal elements are intervals sizes.

end for
return N mass functions

of mass functions.
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2.6 Conclusion

In this chapter, we have reviewed basics of the theory of belief functions that handles

uncertain information. We started this chapter by introducing belief functions and

decision making. Then we detailed tools for representing belief functions defined on

either compatible or incompatible frames in a common one. Next, we introduced some

combination rules, and more details will be given in the last chapter. Finally, some

methods for building belief functions are pointed out.

This chapter recalls some basics of the theory of belief functions. In the sequel

of this report, uncertainty is modeled with the theory of belief functions. The next

chapter deals with evidential clustering algorithms to classify belief functions which

can be stored in evidential databases. We propose a clustering algorithm minimizing

a conflict between objects of the same cluster. Clustering algorithm is then used for

learning sources independence degree.
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Summary

In the previous chapter, some basic concepts of the theory of belief functions are de-

tailed. Indeed, when sources cannot provide certain information, they provide mass

functions according to a given evidential corpus.

Mass functions are gathered in evidential databases, such type of databases stores

both certain and evidential information. Thus, an evidential database stores all mass

functions provided by the same source for some objects. Classifying objects from an

evidential database groups together similar objects and provides an information about

sources overall behavior. In this chapter, we propose a conflict measure between eviden-

tial databases and a clustering algorithm minimizing the conflict between objects into

clusters. The use of clustering algorithm is to compare several sources overall behavior

in order to estimate their independence or dependence.

37
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3.1 Introduction

Information is plentiful in several fields, it is scattered and not exploited. Grouping

information concerning the same fields gives a high quantity of data to be stored and

information become bulky justifying the use of databases. Databases integrate a high

quantity of information provided by different sources, these data may be conflicting be-

cause their sources may disagree. Most of researches are based on perfect and certain

data but data stored in databases or data warehouses are almost imperfect (incomplete

or uncertain) and may be conflicting; however, users need these data for decision mak-

ing. Therefore, perfect and imperfect data have to be exploited and the conflict has to

be solved.

Evidential databases (Hewawasam et al., 2005; Bach Tobji et al., 2008; Bach To-

bji, 2012) are databases storing both certain and uncertain data where uncertainty is

modeled with the theory of belief functions that is detailed in Chapter 2. A database

stores some or all mass functions provided by a source according to some objects; thus,

many evidential databases may be stored according to the number of sources. Note

that sources are any possible sources of information that can be a human expert, a

classifier, a sensor, etc.

In some fields like sensoring, one may manage a considerable number of eviden-

tial databases as many sensors may observe the same objects from different points.

These evidential databases may be conflicting reflecting the conflict between evidences

observed by sources. This conflict can be defined as a degree of discord between the

beliefs of that sources. It may be noticed either by combining mass functions stored in

evidential databases or by comparing mass functions with a similarity measure. The

conflict appearing in the combination of conflicting evidential information incited the

introduction of several methods intended to solve it. Some of these methods propose to

solve the conflict when combining, like in (Yager, 1987; Dubois and Prade, 1988; Smets

and Kennes, 1994; Murphy, 2000; Martin and Osswald, 2007b). These combination

rules hide the conflict regardless of its causes. Therefore, the conflict does not appear

in the combined information because combination rules redistribute it with different

manners. Other methods consider that the main reason of conflict is the relative unre-

liability of at least one source. Thus, conflict solving can be insured by discounting the

evidential information before combining with sources’ degrees of reliability as detailed

in Section 2.5.3; however, this method requires a preliminary knowledge of this degree

of reliability.

In this chapter, we present an overview of conflict in the theory of belief functions,

some interpretations and methods for solving it. We present also some distances in
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the theory of belief functions. The distance between mass functions informs also about

their similarity; thus, distant mass functions are dissimilar but near ones are quite

similar. Next, we detail a conflict measure between evidential databases as we pro-

posed in (Chebbah et al., 2010b; Chebbah et al., 2010a). This conflict measure is used

hereafter for classifying objects stored in evidential databases. The proposed clustering

algorithm classifies objects of the same evidential database by minimizing the conflict

between them in the same cluster.

This chapter is organized as follows: The second section reviews conflict interpre-

tations and methods to solve it. The third section is an overview of distances between

mass functions in the theory of belief functions; In the forth section, we define eviden-

tial databases as proposed in (Bach Tobji et al., 2008; Bach Tobji, 2012) and detail our

method of estimating the conflict between evidential databases (Chebbah et al., 2010b;

Chebbah et al., 2010a). Section 5 is an overview of clustering algorithms proposed in

the theory of belief functions, we detail also our algorithm of evidential clustering. Fi-

nally before concluding, illustrations of the proposed algorithm are proposed in Section

6.

3.2 Conflict in the theory of belief functions

The main reason of conflict arising when combining mass functions provided by distinct

and independent sources is their unreliability. Some degree of conflict can be tolerated

but in some cases this degree can be alarming and must be eliminated. To eliminate

the conflict, its issue must be detected. The conjunctive rule of combination (equation

(2.29)) is the only combination rule that keeps m(∅) > 0; the conflict is kept on the

empty set and an expert system is used to solve the problem if possible (Smets, 2007).

A positive mass on the empty set alarms the expert system who tries to look for origins

of that conflict and finds the appropriate solution without revising belief functions.

Several combination rules can be chosen according to conflict’s issue.

3.2.1 Origins of the conflict

We detail below the main interpretations of the conflict issued from the combination

of beliefs provided by distinct sources.

• Conflict due to sources unreliability (Huynh, 2009): When combining two

mass functions provided by different sources, one of these sources may be totally

or partially unreliable. If the unreliable source is not known, the disjunctive rule

of combination performs well. Therefore, when combining two mass functions

provided by two distinct and independent sources from which an unknown one is

unreliable, the disjunctive rule of combination can be used to combine that mass
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functions.

Discounting operator detailed in Section 2.5.3 is used when at least one source

is partially unreliable and its degree of reliability is known or can be learned or

estimated. Schubert proposed to solve the conflict by discounting each piece of

evidence with the degree of conflict that it contributes on, in an iterative way till

reaching an aprior fixed level of acceptable conflict (Schubert, 2008; Schubert,

2011).

Table 3.1 summarizes methods used to solve the conflict appearing when at least

one of the sources is unreliable.

Table 3.1: Methods for solving a conflict due to sources unreliability

Sources reliability Solutions

An unknown source is unreliable Disjunctive rule of combination (Smets,
1990)

A known source is unreliable, its de-
gree of reliability can be learned or
estimated

Discounting mass functions provided by
the unreliable source with its degree of re-
liability as detailed in Section 2.5.3

Both sources are reliable Conjunctive rule of combination and de-
rived rules

• Sources reporting about different objects: In that case, sources must be

grouped according to objects they report about. Only mass functions provided

by two distinct and independent sources that have different evidential corpora

can be combined. Therefore, in a case of a high conflict between sources, they

may have different corpora about different objects or problems. Combining is

performed on mass functions that reports about the same object at the same

time.

Example 3.1 Suppose having mass functions of table 3.2 given by a doctor when

examining some patients; the frame of discernment is Ωd = {F, P, B}. These

mass functions emphasize a doctor’s diagnostics of several patients p1, p2 and

p3. None from these mass functions can be combined because they are referred

to different patients for several examinations. Only mass functions of the same

patient for the same examinations done by independent and distinct doctors can

be combined.
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Table 3.2: Bbas given by different sources at different periods

Patient Examinations Massfunction

p1 e1 F (1)

p3 e1 F ∪ P (0.5), F (0.5)

p1 e2 Ω(0.5)

p2 e1 F ∪B(0.5), Ωd(0.5)

p3 e2 H(1)

p2 e2 B(O.5), P (0.5)

• Conflict due to closed world assumption: Suppose m1 and m2 two mass

functions defined on 2Ω to combine under the closed world assumption; in that

case the frame of discernment Ω is assumed to be exhaustive. A conflict may

appear when the hypothesis of the exhaustivity of Ω is not true. The closed

world assumption is not maintained when some alternatives are forgotten when

enumerating alternatives of the frame of discernment or when Ω evolved in time.

One solution proposed by (Smets, 2007) is to add an extra alternative ω? to Ω

that includes all those hypotheses not mentioned in Ω. Therefore Ω? = Ω ∪ {ω?}
is the extended frame; thus ∀A ⊆ Ω the mass of A, m(A), must be transferred

to {A ∪ ω?} (m({A ∪ ω?}) = m(A)). In this case, conflict disappears completely

as {ω?} belongs to all prepositions of both mass functions; therefore, there is no

empty intersection between focal elements.

A problem can arise when making decision if ω? is the most probable solution.

In this case we should condition that mass function on Ω before the pignistic

transformation.

3.2.2 Conflict measures

The first measure of conflict was introduced in (Dempster, 1967) as the mass on the

empty set m1 ∩©2(∅) issued from the conjunctive combination of two mass functions m1

and m2 defined as follows:

k =
∑

A∩B=∅

m1(A)m2(B) (3.1)

And the following re-normalizing constant K (equation (5.1)) redistributes the amount

k to have normal belief functions:

K =
1

1− k
(3.2)
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Dempster (Dempster, 1967) and Yager (Yager, 1983) proposed also a weight of conflict

between two belief functions noted Con(Bel1, Bel2) and defined as follows:

Con(m1,m2) = log K = log
1

1− k
= −log(1− k) (3.3)

The weight Con(m1,m2) is in [0,∞[ in contrast to K which is equal or greater than

1. When mass functions do not conflict k = 0 and Con(m1,m2) = 0 but when belief

functions flatly contradict then m1 ⊕m2 does not exist, k = 1 and Con(m1,m2) =∞.

(Martin et al., 2008) do not consider m(∅) as an indicator about the conflict between

sources because it contains an amount of auto-conflict (Osswald and Martin, 2006)

owed on the characteristic of the combination rule which is not idempotent and the

absorbing character of the empty set.

(Smets, 1992b) justifies the interpretation of k as a conflict and proposes the open

world assumption as a solution. The amount k is issued from the combination of mass

functions induced by an evidential corpus EC and a new contradicting evidence Ev.

Suppose that a body of evidence1 provided a belief function induced by EC supporting

a preposition A such that positive degrees of support are allocated to some non-empty

subsets of A. If further evidence Ev rejects the preposition A, no positive masses

should be allocated to the non-empty subsets of A. Amounts of belief initially assessed

to subsets of A have to be redistributed in two possible ways; the first solution is to

allocate it to the contradictory subset denoted ∅ or to redistribute it among possible

subsets with a normalizing process.

The second solution cannot be retained as that solution does not satisfy the homo-

morphism requirement. Thus k is not redistributed among till possible hypothesis; this

amount is interpreted as a contradictory or conflict between the evidential corpus that

induced an initial mass function and a new evidence.

We do not consider the amount k as a sufficient measure of conflict because the

empty set is the absorbing element in the combination and also most of the combina-

tion rules are not idempotent. The non-idempotence of combination rules can imply

that m ∩©m(∅) 6= 0, thus k is not really a conflict.

Liu noticed in (Liu, 2006) that Dempster’s conflict is not enough informative about

the conflict between evidences; a distance on pignistic probabilities together with Demp-

ster’s conflict points out that amount of conflict. In addition to Dempster’s conflict of

equation (3.1), a distance on pignistic probabilities BetPm1 and BetPm2 transforma-

1source
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tions of m1 and m2 with equation (2.23) is defined as follows:

DifBetP (m1,m2) = maxA⊆Ω(|BetPm1(A)−BetPm2(A)|) (3.4)

A high “distance between betting commitment” of two mass functions m1 ans m2 with

a high Dempster’s conflict
∑

A∩B=∅

m1(A)m2(B) indicates a conflict between bodies of

evidence that induced m1 and m2.

(Jousselme and Maupin, 2012) proposed a cosine-based measure of conflict for two

mass functions m1 and m2 as follows:

cos(m1,m2) = 1− Pl′1Pl2
||Pl1||.||Pl2||

(3.5)

where ||.|| denotes the norm of normalized plausibility functions Pl1 and Pl2. The

cosine function computes the angle between two vectors. Orthogonality is interpreted

as a conflict.

Martin et al. noticed that Dempster’s conflict k is not a conflict measure because

it includes some degree of auto-conflict due to the non-idempotence of the conjunctive

rule of combination (Martin and Osswald, 2006b; Osswald and Martin, 2006; Martin

et al., 2008). The combination of identical mass functions provided by distinct and

independent sources gives some degree of conflict k ≥ 0 although mass functions are

identical and not conflicting. The auto-conflict, which is the intrinsic conflict of a mass

function m, is given by the following equation:

as = ( ∩©s
i=1m) (∅) (3.6)

The conjunctive combination ∩© is given in equation (2.29), the auto-conflict of order s

is the s times sequential combination of identical mass function m. Note that as ≤ as+1,

meaning that combining identical mass functions m many times leads to high degree

of Dempster’s conflict tending to 1. Martin et al. proposed to use a distance between

mass functions as a conflict measure (Martin and Osswald, 2006b; Osswald and Mar-

tin, 2006; Martin et al., 2008); thus, dissimilar mass functions in terms of distance are

conflicting but near ones are not or a little bit conflicting.

(Florea and Bossé, 2009) defined an intrinsic conflict given as follows:

∑
A,B⊆Ω

m(A)m(B)
|A ∪B| − |A ∩B|

|A ∪B|
(3.7)

That conflict is non-null for consonant mass functions. Although, it is not the case of
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the “internal conflict” in (Daniel, 2010). Note that intrinsic conflict and auto-conflict

are different.

(Destercke and Burger, 2012) proposed a conflict measure between mass functions

as an extension of the conflict between sets. Authors of (Elouedi et al., 2004; Martin

et al., 2008; Lefèvre et al., 2011; Martin, 2012; Boubaker et al., 2013) proposed a con-

flict measure based on a distance. This assumption is assumed along this chapter and

will be extended to evidential databases in Section 3.4. Some distances are detailed in

the following section.

3.3 Distances in the theory of belief functions

The mass of the empty set issued from the combination of several belief functions is

considered as an indicator about a conflict between evidences held by sources (Demp-

ster, 1967). That mass is not so informative about conflict between mass functions

as it includes some degree of auto-conflict (Martin et al., 2008). Therefore, distances

are used to quantify the conflict between mass functions. In a general case, a distance

measures the closeness of two points; it computes the nearness of that points. In the

framework of the theory of belief functions, a distance computes the closeness of beliefs;

it computes how much two mass functions are similar.

(Florea et al., 2009b) propose an overview of some distances in the theory of belief

functions; (Jousselme and Maupin, 2010; Jousselme and Maupin, 2012) propose an

exhaustive and comprehensive survey of distances in belief functions framework. Before

enumerating distances proposed to quantify similarity of mass functions, we summarize

in table 3.3 some similarity measures of focal elements. These similarity coefficients

quantify interactions and closeness of focal elements of mass functions.

Some distances on belief functions are surveyed in (Florea et al., 2009b; Jousselme

and Maupin, 2010; Jousselme and Maupin, 2012), we enumerate hereafter some of

them:

• Perry and Stephanou’s distance: (Perry and Stephanou, 1991) proposed a

distance based on (Stephanou and Lu, 1988) for a classification purpose. The

proposed distance quantifies the gap of information between mass functions when

they are considered separately and the combined mass function. That distance

compares the amount of information available in each mass function m1 and m2
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Table 3.3: Similarity functions

Similarity Coefficient

Dice
2|A ∩B|
|A|+ |B|

Sokal & Sneath 2
|A ∩B|

2|A ∪B| − |A ∩B|

Kulczynski 2
|A ∩B|

2|A|
+
|A ∩B|

2|B|

Ochiai
|A ∩B|√
|A | |B|

Jaccard
|A ∩B|
|A ∪B|

separately and their combined mass function m12 as follows:

dPS(m1,m2) = | F1 ∪F2 |
(

1− |F1 ∩F2 |
| F1 ∪F2 |

)
+ (m12 −m1)′(m12 −m2) (3.8)

with m12 = m1 ⊕ m2, and F i are focal elements of mass functions mi. This

distance is on two components; the first component | F1 ∪F2 |
(

1− |F1 ∩F2 |
| F1 ∪F2 |

)
measures dissimilarity between focal elements of m1 and m2. The second compo-

nent (m12 −m1)′(m12 −m2) measures the change of information relative to the

orthogonal sum.

• Blackman and Popoli’s distance: (Blackman and Popoli, 1999) proposed a

distance for association algorithms based on Dempster’s conflict m12(∅) (detailed

in Chapter 2) as follows:

dBP (m1,m2) = −2log

(
1−m1 ∩©2(∅)

1−max(m1 ∩©1(∅),m2 ∩©2(∅))

)
+(m1 +m2)′gA−m′1Gm2

(3.9)

with gA, a vector whose elements are
|A| − 1

|X| − 1
and G = gAg

′
A with elements

(|A| − 1)(|B| − 1)

(|X| − 1)2
, ∀A, B ⊆ X. This distance is also composed of two com-

ponents; the first one −2log

(
1−m1 ∩©2(∅)

1−max(m1 ∩©1(∅),m2 ∩©2(∅))

)
is called “attribute

distance” and the second is (m1 +m2)′gA−m′1Gm2 called “ignorance distance”.
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Unfortunately, Blackman and Popoli’s distance is not positive and thus it is non-

metric.

• Minkowski distance (Lp): The Minkowski distance, noted Lp, between two

mass functions m1 and m2 is defined as follows:

d(p)(m1,m2) =

([
(Um1 − Um2)

p
2

]′ [
(Um1 − Um2)

p
2

]) 1
p

(3.10)

such that U is the upper triangular matrix of the Cholesky decomposition and

p an integer greater than 1. The case where p = 1 corresponds to Manhattan

distance, p = 2 for the Euclidean distance and p =∞ corresponds to Chebyshev

distance.

(Cuzzolin, 2009) proposed the Lp distance on belief functions as follows:

d(p)(m1,m2) =

∑
A⊆Ω

|Bel1(A)− Bel2(A)|p
 1

p

(3.11)

such that Beli are normalized belief functions of mi. Note that equation (3.11) is

equivalent to equation (3.10) when U = Inc′ such that Inc is the inclusion matrix

defined as follows:

Inc(A,B) =

{
1 if A ⊆ B
0 otherwise

(3.12)

• Manhattan distance (L1): Manhatten distance (Klir and Wierman, 1999; Har-

manec, 1999) is obtained from equation (3.10) such that p = 1 as follows:

d(1)(m1,m2) =

([
(Um1 − Um2)

1
2

]′ [
(Um1 − Um2)

1
2

])
(3.13)

When U = Inc′, d(1) is given by the following equation:

d(1)(m1,m2) =

∑
A⊆Ω

|Bel1(A)−Bel2(A)|

 (3.14)

(Denœux, 2001) defined d(1) as follows:

d(1)(m1,m2) =

∑
A⊆Ω

|Pl1(A)− Pl2(A)|

 (3.15)

Pli are normalized plausibility functions of mi. Manhattan distance proposed in
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(Denœux, 2001) is deduced from equation (3.10) when p = 1 and U = Int an

intersection matrix defined as follows:

Int(A,B) =

{
1 if A ∩B 6= ∅
0 otherwise

(3.16)

• Euclidean distance (L2): (Cuzzolin, 2008) proposed an extension of the Eu-

clidean distance from the probability theory to the theory of belief functions by

replacing probability values by masses. The Euclidean distance between two mass

functions m1 and m2 is defined as follows:

d
(2)
C (m1,m2) =

√∑
A⊆Ω

|m1(A)−m2(A)|2 (3.17)

Ristic and Smets proposed also in (Ristic and Smets, 2006) an extension of the

Euclidean distance from probability theory to the theory of belief functions. The

Euclidean distance between two mass functions m1 and m2 is given by the fol-

lowing equation:

d(2)(m1,m2) =
∑
A⊆Ω

∑
B⊆Ω

m1(A)m2(B) (3.18)

This distance is always equal to 1 for any mass functions m1 and m2:∑
A⊆Ω

∑
B⊆Ω

m1(A)m2(B) =
∑
A⊆Ω

m1(A)
∑
B⊆Ω

m2(B)

=
∑
A⊆Ω

m1(A)

= 1

• Chebyshev distance (L∞): Chebyshev distance is the limit of Minkowski dis-

tance in equation (3.10) when p tends to +∞. Chebyshev distance is given as

follows:

d(∞) = maxA⊆X
{
|(Um1)′eA − (Um2)′eA|

}
(3.19)

(Tessem, 1993) proposed an error measure from Chebyshev distance as follows:

d
(∞)
Bet (m1,m2) = maxA⊆X

{
|(Bet m1)′eA − (Bet m2)′eA|

}
(3.20)

and

d
(∞)
Inc (m1,m2) = maxA⊆X

{
|(Inc′ m1)′eA − (Inc′ m2)′eA|

}
(3.21)

• Bhattacharyya’s distance: (Ristic and Smets, 2006) proposed an extension

of the Bhattacharyya’s distance from probability theory to the theory of belief
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functions as follows:

dR(m1,m2) =

√
1−

∑
A⊆Ω

∑
B⊆Ω

√
m1(A)m2(B) (3.22)

We notice that this distance is always null because
∑
A⊆Ω

∑
B⊆Ω

m1(A)m2(B) is always

equal to 1, thus it has no use.

Therefore, (Florea et al., 2009b) proposed a generalization of Bhattacharyya’s

distance extension to the theory of belief functions as follows:

dFl(m1,m2) = |1−
∑
A⊆Ω

√
m1(A)m2(A)|p (3.23)

with p any positive number.

• Jousselme distance (Jousselme et al., 2001): This distance is specific to the

theory of belief functions because of the matrix D which is defined on 2Ω.

This distance is balanced with Jaccard’s coefficient
|A ∩B|
|A ∪B|

as similarity measure

between focal elements allowing the consideration of focal elements cardinality.

Jousselme distance is defined as follows:

d(m1,m2) =

√
1

2
(m1 −m2)tD(m1 −m2) (3.24)

with :

D(A,B) =

 1 if A=B
|A ∩B|
|A ∪B|

∀A,B ∈ 2Ω (3.25)

We notice that Jousselme distance is an extension of Euclidean distance when D

is the identity matrix; Euclidean distance can be written as follows:

d(m1,m2) =
√

(m1 −m2)tD(m1 −m2) (3.26)

with :

D(A,B) =

{
1 if A=B

0 ∀A,B ∈ 2Ω (3.27)

The matrix D is positive definite as proved in (Bouchard et al., 2013) and the

distance of equation (3.24) is a full metric. Jousselme distance has been widely

used for discounting rate estimation (Deng et al., 2008; Guan et al., 2008; Martin,

2009; Florea et al., 2009a; Chebbah et al., 2010b; Chebbah et al., 2010a; Chebbah

et al., 2011).
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(Diaz et al., 2006) proposed an extension of Jousselme distance by replacing the

similarity matrix D emphasizing interaction between focal elements thanks to

Jaccard coefficient by any other similarity coefficient as those detailed in table

3.3. They proposed to use Dice index and the corresponding similarity matrix is

given as follows:

D(A,B) =

 1 if A=B=∅
2|A ∩B|
|A|+ |B|

∀A,B ∈ 2Ω \ ∅
(3.28)

In that case, we cannot claim that the distance is a full metric or not without

proving that similarity matrix D using Dice index is either positive definite or

semi-positive definite.

• Ristic and Smets distance (Ristic and Smets, 2006): Ristic and Smets

defined a distance that they call “additive global dissimilarity measure” for two

mass functions m1 and m2 from their amount of Dempster’s conflict m1 ∩©2(∅) as

follows:

dRS(m1,m2) = −log(1−m1 ∩©2(∅)) (3.29)

Unfortunately, Ristic and Smets distance is a non-metric measure, it is not defined

when m1 ∩©2(∅) = 1. Also dRS(m,m) 6= 0.

Many other distances are proposed in belief functions framework like (Zouhal and

Denœux, 1998; Denœux, 2000; Denœux, 2001; Ristic and Smets, 2006; Liu, 2006). An

exhaustive survey of distances and their properties as well as new distances are proposed

by Jousselme and Maupin in (Jousselme and Maupin, 2012). In some researches, a

distance may enlighten about the conflict; conflict measures are detailed in the previous

section.

3.4 A new conflict measure between evidential databases

An evidential database (EDB), also called D-S database, is a database containing certain

and/or uncertain data, uncertainty is modeled with the theory of belief functions as

presented in (Hewawasam et al., 2005) and (Bach Tobji et al., 2008; Bach Tobji, 2012).

In this section, we introduce evidential databases and then we detail our method of

estimating conflict between such databases as proposed in (Chebbah et al., 2010b;

Chebbah et al., 2010a; Chebbah et al., 2011).

3.4.1 Evidential databases

An evidential database is a database with N records (objects) and c attributes such

that each attribute aj (1 ≤ j ≤ c) has a domain Ωaj enumerating all its possible values.
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Ωaj is the frame of discernment of the jth attribute (Hewawasam et al., 2005).

An EDB must have at least one evidential attribute, values of this attribute are

uncertain expressed by mass functions as defined in (Bach Tobji et al., 2008). An

evidential value Vij for the ith record (1 ≤ i ≤ n) and the jth attribute is a mass

function defined as follows:

m
Ωaj
ij : 2Ωaj → [0, 1] with :

m
Ωaj
ij (∅)=0 and

∑
A⊆Ωaj

m
Ωaj
ij (A)=1 (3.30)

Example 3.2 Table 3.4 is an example of a table of an evidential database, it con-

tains diseases of some patients that are examined by a doctor. The attribute disease

is the only evidential attribute in this evidential table, its frame of discernment is

Ωd = {Flu F, Pharyngitis P,Bronchitis B} enumerating some possible diseases.

Table 3.4: Example of an EDB

id First name Last name Disease

1 David Johanson P (0.2)
{P ∪ F}(0.6)
{P ∪ F ∪B}(0.2)

2 Andrew Smith P (0.5)
B(0.5)

3 Joshua Clark P (0.5)
F (0.2)
{P ∪ F}(0.3)

This evidential database stores data of different levels of certainty. It stores:

• Perfect information: The focal element is a single point having the hole mass

of belief. Value of the evidential attribute is a certain belief function.

• Probabilistic information: The value of the evidential attribute is a mass

function with several focal elements which are singletons. Line 2 of table 3.4 is

an example of probabilistic information.

• Possibilistic information: Line 1 of table 3.4 is a possibilistic information as

focal elements are nested.
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• Missing information: Missing information is represented by a mass function

with only one focal element which is the frame of discernment Ωaj , the corre-

sponding mass function is a vacuous belief function.

• Evidential information: When information is neither perfect, nor probabilistic,

nor possibilistic nor missing, then it is evidential. The mass function defined for

the attribute target in line 3 of table 3.4 is an evidential information.

Evidential databases can be used in several areas such as classification where they

stock mass functions supplied by different classifiers such as in (Hewawasam et al.,

2005). Sources of information stored in EDBs are numerous and the quantity of stored

information is high, although they almost report about the same objects. In this thesis,

we consider the fusion of these information. The fusion decreases their quantity and

helps users for decision making, but the main problem is the type of combination rules

to use. The choice of the type of combination rule depends on the independence of

evidential databases’ sources. Sources’ independence estimation is detailed in Chapter

4. That method is based on the clustering algorithm detailed in Section 3.5.3. That

clustering algorithm minimizes the conflict in clusters. An evidential database is used

to store different mass functions supplied by a source, therefore the number of eviden-

tial databases is dependent on the number of sources. Having M sources implies the

existence of M evidential databases such that every EDB belongs to a unique source.

Also, having a high number of EDBs implies that the quantity of data to be stored

is high and these data may sometimes represent the same pieces of information.

Integrating M evidential databases reduces the quantity of data to be stored and also

helps users in decision making, thus decision makers have to take into account only

one integrated EDB which resumes M ones. When integrating evidential values from

several EDBs, a conflict may appear due to the variety of EDBs sources which might

be conflicting.

Example 3.3 Table 3.5 and table 3.6 are two tables of two different EDBs to inte-

grate, these EDBs are supplied by different sources namely s1 and s2. Integrating these

tables consists on combining stored mass functions (values of the evidential attribute

disease for the same objects).

To integrate these two tables, values of the attribute disease have to be combined.

Therefore, mass functions values of the attribute disease for the first object in both

tables (line 1 in EDB of s1 and line 1 in EDB of s2) have to be combined; these two

mass functions are certain belief functions which are not contradictory. Combining

these two values does not raise any problem contrary to second values of this attribute

for both EDBs because a non null mass is affected to the ∅ alarming about an eventual
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Table 3.5: A table of an EDB of a source s1

Examination Time Disease

e1 t1 mΩ
s11 : P

e2 t2 mΩ
s12 : P (0.5)

B(0.5)

Table 3.6: Another table of an EDB of a second source s2

Examination Time Disease

e1 t1 mΩ
s21 : P

e2 t2 mΩ
s22 : P (0.2)

B(0.6)
{P ∪B}(0.2)

conflict (Dempster, 1967).

Table 3.7 is the integrated table of table 3.5 and table 3.6, the conflict is marked

by a non null mass attributed to the ∅.

Table 3.7: Integration of tables of s1 and s2

id Time Target

1 t1 P

2 t2 P (0, 2)
B(0.4)
∅(0.4)

Different manners of conflict solving are presented in Section 3.2, one manner is to

prevent the conflict before it happens by discounting masses using the source’s degree

of reliability. This method takes into account the degree of reliability of each source

before combining their mass functions, thus the conflict is eliminated or reduced from

the beginning and even if it appears after the combination it will be bearable.

In the following, we suggest a method which aims to solve the conflict appearing

when combining several mass functions while integrating tables from several EDBs.
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3.4.2 Conflict estimation

(Martin et al., 2008) consider that the more mass functions are distant the more they

are conflicting. Thus, the distance between two mass functions reflects the degree of

conflict between them and also the degree of conflict between their sources.

Jousselme distance, detailed in (Jousselme et al., 2001) and already formulated

in equation (3.24), is used because it takes into account interactions between focal

elements with Jaccard coefficient but distances detailed in Section 3.3 can also be used.

The degree of conflict between two sources (s1 and s2) is the distance between their

corresponding mass functions, respectively m1 and m2.

Conf(s1, s2) = d(m1,m2) (3.31)

Example 3.4 Let us take the example of mass functions in tables 3.5 and 3.6, note

that mΩ
sij is the jth mass function value of the attribute disease for the jth record and

the ith source (si).

If the distance d(ms11,ms21) = 0 then Conf(s1, s2) = 0. For this first record, both

sources agree on the value of the attribute target.

If d(ms12,ms22) = 0.2236 then Conf(s1, s2) = 0.2236. For this second record, both

sources disagree partially on the value of the attribute target and the degree of conflict

is about 0.2236.

This distance measure is a binary one because it computes the distance between

only two mass functions reflecting the conflict between their sources with a restriction

on the number of sources which has to be equal to 2.

When the number of sources exceeds 2 (M > 2), the conflict of a given source sj can

be computed in two different ways, each way is a different type of distance, therefore

we distinguish two types of distance.

• Distance type 1: is the mean of distances between a mass function mj supplied

by the source sj and all other mass functions without using a combination rule.

For M sources, the conflict of the source sj is the mean of distances between mΩ
j ,

the mass function provided by sj and all the other M − 1 mass functions one

by one. For each mass function mi from all M − 1 mass functions (all the mass

functions except mj supplied by sj , the source subject of the conflict estimation);

distances between mj and each mi are computed. Therefore M − 1 values of

distance are obtained. The conflict of sj is the mean of these M − 1 distances.

Conf(sj , sM ) =
1

M − 1
×

M−1∑
i=1,i6=j

d(mj ,mi) (3.32)
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Example 3.5 Suppose that we have three sources s1, s2 and s3 supplying re-

spectively mΩ
s1 , mΩ

s2 , and mΩ
s3 in table 3.8.

Table 3.8: Distance type 1

Source Mass functions Distance type 1 Conflict

s1 ms1 : P (0.5) d(ms1 ,ms2) = 0.5323 0.57435
{P ∪B ∪ F}(0.5) d(ms1 ,ms3) = 0.6164

s2 ms2 : P (0.2) d(ms2 ,ms1) = 0.5323
B(0.6) d(ms2 ,ms3) = 0.7832 0.65775
{P ∪B}(0.2)

s3 ms3 : F (0.6) d(ms3 ,ms1) = 0.6164 0.6998
{P ∪ F}(0.4) d(ms3 ,ms2) = 0.7832

• Distance type 2: is the distance between a mass function mj supplied by the

source sj and the combined mass function of all others except mj . This method

needs the use of a combination rule to combine the M − 1 mass functions. Com-

bination rules detailed in Chapter 5 may be used in this context as well as those

not quoted.

For M sources, the conflict of the source sj with all the other sources corresponds

to the distance between mΩ
j , the mass function supplied by this source, and mΩ

M

representing the combined mass function of the M − 1 mass functions provided

by all the other sources.

Example 3.6 Let us continue with the same example 3.5 using Dempster’s rule

of combination. The conflict of each source using distance type 2 is given in table

3.9:

Table 3.9: Distance type 2

Source Mass functions Distance type 2 Conflict

s1 ms1 : P (0.5) d(ms1 ,mM ) = 0.4082 0.4082
{P ∪B ∪ F}(0.5)

s2 ms2 : P (0.2) d(ms2 ,mM ) = 0.6650
B(0.6) 0.6650
{P ∪B}(0.2)

s3 ms3 : F (0.6) d(ms3 ,mM ) = 0.7282 0.7282
{P ∪ F}(0.4)
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Remark: Temporal complexity of distance type 2 is lower than temporal com-

plexity of distance type 1 especially for a great number of mass functions. This

difference in temporal complexities is due to the number of uses of Jousselme

distance which is great in distance type 1 (proportionally to the number of mass

functions) and low in distance type 2 (it is used only once).

This method is a generalization of that proposed in (Martin et al., 2008) for estimating

reliabilities of evidential databases sources (Chebbah et al., 2010b; Chebbah et al.,

2010a; Chebbah et al., 2011). The proposed method, detailed in algorithm 2, is in

three steps; in the first step we compute the conflict of a source against all other

existing sources as detailed above. Then, the reliability of this source is estimated on

the basis of its conflict values and finally, all data are discounted proportionally to their

source’s reliability degree.

Algorithm 2 Reliability estimation and discounting mass functions

Require: Evidential databases (EDB1, EDB2, . . . , EDBM ) for M sources
(s1, s2, . . . , sM )
for i = 1 to M do

Step 1: Compute the conflict, Conf(si, sM ), of the source si according to all other
M − 1 sources using either distance type 1 or distance type 2.
Step 2: Estimate the reliability αi of si from its conflict:

αi = (1− Conf(si, sM )λ)( 1
λ

), with λ a real not null.
Step 3: Discount mass functions stored in EDBi with αi .

end for
return αi reliability of s1.

Conflict is used to discount mass functions stored in evidential databases in order

to estimate its source’s reliability. When source’s reliability is estimated, all mass

functions are discounted before the combination when integrating evidential databases.

In the following, the conflict is used in a clustering approach. Objects will be classified

in groups minimizing the conflict between objects of the same cluster.

3.5 Clustering in the theory of belief functions

In machine learning, clustering techniques classify objects which values are uncertain

into clusters. In this section, we detailed evidential C-means and evidential C-modes

algorithms which are unsupervised as class labels of objects in the training set are

not known a priori. In the end of this chapter, we detail our algorithm of evidential

clustering with illustrations on random data in the following section.
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3.5.1 Evidential C-means

The C-means technique is widely used in classification of objects when their attributes

values are numerical. For example, a database may store several objects with numerical

attributes values. Classifying objects from that databases groups together homogeneous

objects in the same category. Such techniques are useful in data mining. In C-means

algorithm, no prior knowledge on objects’ classes is required because that algorithm is

unsupervised whereas number of clusters C has to be fixed. Two main parameters are

emphasized in C-means algorithm:

• Centers: Suppose a database with N objects oi (1 ≤ i ≤ N) and c attributes aj

(1 ≤ j ≤ c); each object oi is a vector of c values Vij according to attributes aj .

Cluster center is also a vector Q = {q1, . . . , qj , . . . , qc} where qj is the mean of

values of attribute aj for all objects that are in the same cluster.

• Distance: Any distance like Euclidean distance can be used between any object

and centers of clusters according to the attributes.

Algorithm 3 enumerates main steps for C-means algorithm. Each object is allo-

cated to the nearest cluster (for that the distance between the object and its center is

minimal) in an iterative way until reaching an unchanged partition.

Masson and Denoeux defined in (Denœux and Masson, 2003; Denœux and Masson,

2004; Masson and Denœux, 2004) a credal partition as the N -tuple, {m1, . . . ,mN},
where mi is the mass function about membership of an object oi to one or more clus-

ters from Ωc = {Cl1, Cl2, . . . , ClC}. Indeed, a set Ωc = {Cl1, Cl2, . . . , ClC} is the set

of classes; the membership of an object to any class of Ωc is uncertain and formalized

with a mass function. The set of all mass functions about memberships of all objects

is a credal partition.

(Masson and Denœux, 2008) proposed an evidential C-means algorithm called ECM

based on credal partitions. An object oi membership is represented by a mass function

mi as partial knowledge on that object’s class. Credal partitions show objects mem-

bership to one or more clusters. The main difference between ECM and C-means is

computation of mi. Thus, ∀A ⊆ Ωc \ ∅, mi(A) is the barycenter v̄i of the centers of

classes composing A. Formally:

mi(A) = v̄i, ∀A ⊆ Ωc \ ∅ (3.33)

with:

v̄i =
1

|A|

C∑
k=1

skivk (3.34)



3.5. Clustering in the theory of belief functions 57

where:

sci =

{
1 if Clk ∈ A
0 else

(3.35)

Note that vk are centers of classes (k ∈ [1, C]). A distance is then used for ECM

(Masson and Denœux, 2008). ECM is an evidential clustering of certain object data;

(Denœux and Masson, 2004) proposed also a clustering of relational data. A constrained

evidential clustering is also proposed for object and relational data (Antoine et al., 2010;

Antoine et al., 2011; Antoine et al., 2012).

3.5.2 Belief C-modes

The C-modes technique is proposed to extend C-means technique in order to deal with

categorical attributes. Thus, C-modes algorithm classifies objects that attributes’ val-

ues are categorical. The two main following parameters are used in C-modes algorithm:

• Modes: A cluster mode is most frequently encountered categories in a cluster.

Suppose a cluster Clk containing nk objects {o1, o2, . . . , onk}. Note that Vij are

values of attribute aj (1 ≤ j ≤ c) for objects oi. Meaning that each object

oi = {Vi1, . . . , Vij , . . . , Vic} has c values for each attribute aj . A cluster mode

Q = {q1, . . . , qj , . . . , qc} where qj is the most frequent category for attribute aj

encountered in Clk. The category qj is the most frequent value of attribute aj

for all objects in a cluster Clk.

• Dissimilarity measure: C-modes algorithm uses a simple matching dissimilarity

measure to quantify the dissimilarity between an object oi and a cluster mode Q

defined as follows:

dis(oi, Q) =

c∑
j=1

δ(xij , qj) (3.36)

where:

δ(xij , qj) =

{
0 if xij = qj

1 if xij 6= qj
(3.37)

Algorithm 3 is C-modes algorithm that classifies objects in homogeneous clusters when

their values are categorical and certain. The algorithm classifies iteratively objects to

the most similar cluster until reaching an unchanged cluster partition where no change

in the membership of any object. When a cluster partition is obtained, a new object

to classify is attributed to the cluster that mode is the most similar to that object.

Cluster partition is not unique because it depends on initial cluster partition.

(Ben Hariz et al., 2006) adapted C-modes algorithm to uncertain attributes val-

ues. The proposed algorithm of belief C-modes (BKM) classifies objects when their

attribute values are uncertain when uncertainty is modeled with the theory of belief

functions. Note that BKM classifies N objects oi (1 ≤ i ≤ N) from an evidential
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Algorithm 3 C-modes and C-means algorithm

Require: N : objects to classify, C: number of clusters
Choose C initial centers (modes) randomly.
repeat

for i = 1 to N do
1. Compute the dissimilarity between oi and all clusters centers (modes) using
a distance or a dissimilarity measure.
2. Allocate the object to the cluster that center (mode) is the nearest (most
similar) according to the distance (dissimilarity) measure.

end for
until Cluster partition is unchanged
return Cluster partition

database EDB where Vij is the value of attribute aj (1 ≤ j ≤ c) for that object oi.

Attributes aj are categorical; their domains are Ωaj and their values are mass functions

verifying (2.2). Therefore, the algorithm is almost the same although clusters’ modes

and dissimilarity measure are adapted to support attributes evidential values as follows:

1. Modes: Suppose a cluster Clk of nk objects {o1, o2, . . . , onk} with

oi = {Vi1, . . . , Vij , . . . , Vic}. The mode of Clk is noted Q = {q1, q2, . . . , qc} where

qj is the mean combination (equation (2.33)) of attributes aj values of all objects

in Clk.

2. Dissimilarity measure: Clusters modes qj are mass functions mj issued from

the mean combination of attributes aj values of all objects in the same cluster.

The dissimilarity between an object and a cluster mode is the sum of Jousselme

distance (3.24). Thus, the distance between Vij , the mass function value of the

attribute j for an object i, and one value of a cluster mode qi is given as follows:

d(Vij , qj) = d(mij ,mj) (3.38)

where mij = Vij , mj = qj and d(mij ,mj) is given by equation (3.24). The

dissimilarity between an object oi and a cluster mode Q is given as follows:

D(oi, Q) =

c∑
j=1

d(Vij , qj) (3.39)

(Ben Hariz et al., 2007) proposed also a method to choose initial modes, an in-

cremental BKM where number of clusters may be incremented by one after learning

clusters’ partition (Ben Hariz and Elouedi, 2010b) and a decremental number of clusters

(Ben Hariz and Elouedi, 2010a).
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3.5.3 A new evidential clustering technique minimizing the conflict

The previous clustering algorithms use a distance and a dissimilarity measure; however

Shubert proposed in (Schubert, 2003; Schubert, 2004) a clustering technique based on

the conflict. Another perception of the conflict will be used in our clustering algorithm

detailed here after. In this section, we will detail a new clustering technique to classify

objects; their attributes values are evidential and classes are unknown. Proposed clus-

tering algorithm uses a distance on belief functions given in (Jousselme et al., 2001)

such as proposed by Ben Hariz et al. in BKM. Jousselme distance is adapted in BKM

to quantify dissimilarities between objects and clusters modes. These are sets of mass

functions; each one is the combination of an attribute’s values of all objects classified

into that cluster. An object is attributed to the cluster having the minimum dissimi-

larity to its mode.

Temporal complexity of BKM is quite high as clusters modes and distances are

computed in each iteration. The combination by the mean rule to compute modes

values leads to mass functions with a high number of focal elements. Hence, the bigger

the cluster is, the least significant is the distance.

Therefore, we propose a clustering technique to classify objects that attributes val-

ues are uncertain; however uncertainty is modeled with the theory of belief functions.

In the proposed algorithm, we do not use any cluster mode to avoid the growth of focal

elements’ number in clusters’ modes. Temporal complexity is also significantly reduced

because all distances are computed only once. Temporal complexities will be compared

in the next section.

To classify objects oi into C clusters, we use a clustering algorithm with a distance

on belief functions given by (Jousselme et al., 2001). The number of clusters C is

assumed to be known.

Proposed clustering technique is based on a conflict measure which quantifies how much

is in conflict an object oi with a cluster Clk. At first, we define the dissimilarity between

two objects oi and ol as follows:

s(oi, ol) =
1

c

c∑
j=1

d(mij ,mlj) (3.40)

with d is Jousselme distance of equation (3.24). The conflict between two objects oi

and ol is then defined as follows:

Conf(oi, ol) = s(oi, ol) (3.41)
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The dissimilarity between an object oi and a cluster Clk is the mean of the dissimilarities

between oi and all objects oq that are classified into cluster Clk as follows:

S(oi, Clk) =
1

nk

nk∑
q=1

s(oi, oq) (3.42)

The conflict between oi and Clk is defined as follows:

Conf(oi, Clk) = S(oi, Clk) (3.43)

Each object is allocated to the most similar cluster in an iterative way till reaching an

unchanged cluster partition. It is obvious that clusters number C must be known.

The evidential clustering algorithm is detailed in algorithm 4. In the first step clusters

are initialized by random objects; then each object is allocated to the most similar clus-

ter or equivalently the cluster that minimizes the conflict until reaching an unchanged

cluster partition. The proposed algorithm minimizes the conflict into clusters; thus it

Algorithm 4 Evidential clustering

Require: N : objects to classify, C: number of clusters
Initialize clusters with C random objects.
repeat

for i = 1 to N do
1. Compute the conflict between oi and all clusters using equation (3.43).
2. Allocate the object to the cluster that minimizes the conflict. That object is
allocated to the cluster with which it has the minimal degree of conflict. If the
object’s new cluster is different from its cluster in the last iteration, then cluster
partition is updated.

end for
until Cluster partition is unchanged
return Cluster partition

maximizes the conflict between clusters. Note that cluster partition of the proposed

algorithm is one of the possible solutions of ECM algorithm. Indeed, distances to clus-

ters modes (if clusters modes are computed at the end of the algorithm) are optimized

and minimized.

Temporal complexity of the proposed algorithm is significantly optimized as pairwise

distances are computed once a time from the beginning. We do not use any cluster

mode. Consequently, there will be no problem of increasing number of focal elements

because attributes’ values are not combined. Optimization of complexity and number

of focal elements of centers will be emphasized in the following section.



3.6. Experiments 61

3.6 Experiments

To illustrate the proposed algorithm of evidential clustering and especially to com-

pare it with the Belief C-modes algorithm, we generated randomly mass functions as

detailed in algorithm 1. The comparison concerns some criterion like classification re-

sults, distances and variances of mass functions into clusters; finally the optimization

of temporal complexity. These points are detailed in the following:

• Results comparison: C-means and C-modes algorithms are known to be con-

vergent but clusters partition is not unique. Unfortunately, clusters partition of

that clustering techniques depends on initial centers that are generally randomly

chosen. In fact, evidential C-means, belief C-modes and evidential clustering

algorithms are also convergent algorithms but clusters partition are numerous

and dependent on the choice of initial centers. To compare results of our algo-

rithm of evidential clustering to possible clusters partition that can provide belief

C-modes; we firstly generated randomly a set of mass functions and performed

our evidential clustering algorithm on that mass functions. Then, computed the

distance of each object to all clusters’ centers in order to check to which class

would be attributed that mass functions according to the belief C-modes criteria.

However, to affect a mass function to a cluster in the evidential clustering, we

compute the means of distance of that mass function with all mass functions into

each cluster and then attribute that mass function to the most similar cluster

(having the minimal mean of distances). On the other hand, according to the

belief C-means, a mass function is attached to the cluster such that the distance

between that mass function and the cluster’s center is minimal.

To check if the evidential clustering solution is one of the possible solutions of be-

lief C-modes, we performed our algorithm on randomly generated mass functions;

then, computed the distance between each mass function and clusters’ centers

(they do not initially exist in the evidential clustering technique; we computed

center after obtaining clusters partition). Finally, we looked for the cluster of each

mass function according to the belief C-modes criteria. Finally, we compared clus-

ters of mass functions obtained with the evidential clustering and possible classes

of mass functions according to the minimal distance to clusters’ centers.

At the end of evidential clustering and once cluster partitions are obtained, we

noticed that the obtained partition is one possible solution of the belief C-modes

algorithm. Thus, clusters partition of evidential clustering are optimal according

to the minimal distance to centers of clusters. Table 3.10, is an example of

generated mass functions for different sizes of frames of discernment, the number
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of clusters is the same as the size of the frame of discernment (that choice is only

for illustration)2. All generated mass functions are classified with the evidential

clustering algorithm in the cluster with the minimal distance to clusters centers.

Hence, clusters partition of evidential clustering is one possible solution of belief

C-means algorithm.

Table 3.10: Tests of results of evidential clustering

Number of generated |Ω| number of clusters Number of mass functions

mass functions in the optimal cluster3

100

3 3

100

4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11

• Distances and variances into clusters: For the purpose of comparing the evidential

clustering and belief C-modes algorithms, we performed both algorithms on a set

of 100 mass functions and computed the mean of distances into clusters and their

variances. Thus, once clusters’ partitions are obtained with both algorithms, the

mean of pairwise distances of objects into the same clusters are obtained. For each

cluster, we computed pairwise distances of objects classified into the same cluster;

then, we computed the mean of distances into each cluster as well as variances of

th distances. Figures 3.1 and 3.2 shows that distances between objects classified

into the same cluster are slightly improved. Pairwise distances of objects into the

same cluster are minimized.

• Temporal complexity: The main asset of the proposed clustering algorithm is

the gain of run-times. The proposed algorithm insure a gain in the run-time

of the clustering. In figure 3.3, we generated randomly 100 mass functions in

a frame of discernment |Ω| ∈ [2, 10], the size of the frame of discernment and

the number of clusters are assumed to be the same. In plots of figure 3.3, we

notice that the run-time of evidential clustering is optimized according to that

of belief C-modes. In figure 3.4, we also generated randomly 100 mass functions

2We assumed only one evidential attribute for illustrations but similar results are obtained for several
attributes
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Figure 3.1: Mean of distances between objects classified into the same clusters

in a frame of discernment |Ω| ∈ [2, 10], there are 5 clusters. In plots of figure

3.3, only Ω varies in [2, 10]. We notice also a gain in the run-time of evidential

clustering is optimized according to that of belief C-modes. In figure 3.5, we also

generated randomly 200 mass functions in a frame of discernment |Ω| = 5. In

plots of figure 3.3, only the number of clusters varies in [2, 10]. We notice also

a gain in the run-time of evidential clustering is optimized according to that of

belief C-modes. Finally, figure 3.6 shows a big gain in the run-time of evidential

clustering according to that of belief C-modes when the number of mass functions

varies, N ∈ [10, 1000]. Temporal complexity of the evidential clustering algorithm

is optimized and that optimization is especially noticed when the number of mass

functions to classify is high and also when the frame of discernment contains

many hypotheses.

Belief clustering technique provides a cluster partition that minimizes distances to

centers. Distances between objects into the same clusters are also optimized. The main

advantage of the belief clustering algorithm according to belief C-modes algorithm is

the optimization of the temporal complexity. In fact, run-time of the belief clustering

algorithm is better than the run-time of the belief C-modes. The optimization of run-

time depends on the size of the frame of discernment |Ω|, the number of clusters C and

number of mass functions N .

3.7 Conclusion

In this chapter, we proposed a conflict measure for evidential databases. In fact, sources

provide a set of imperfect information that is stored in evidential databases. When
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Figure 3.2: Mean of variances of distances between objects classified into the same
clusters

using several evidential databases, a conflicting may appear reflecting the discord be-

tween beliefs of sources. The proposed conflict measure for evidential databases aims

to estimate the disagreement between sources. We proposed an estimation of sources’

reliabilities from that conflict measure in order to discount mass functions stored in

evidential databases before the combination.

We proposed also an overview of evidential clustering that classifies mass functions.

The belief clustering algorithm detailed in Section 3.5.3 is a clustering algorithm that

classifies mass functions and minimizes the distance between objects and clusters’ cen-

ters. Our proposed algorithm minimizes the conflict into clusters and also optimizes

the run-time computation. The proposed algorithm will be used for estimating sources’

independence in the next chapter.
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Figure 3.3: Comparison of run-times of belief C-modes and evidential clustering when
N = 100, C = |Ω| and |Ω| ∈ [2, 10]
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Figure 3.5: Comparison of run-times of belief C-modes and evidential clustering when
N = 200, |Ω| = 5 and C ∈ [2, 10]
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Summary

An evidential database stores objects that values are mass functions. Classifying ob-

jects stored in an evidential database groups together similar objects in the same group.

Similar objects are those which are not conflicting, thus conflict into clusters is min-

imized and that between clusters is maximized. Conflicting objects are those which

values have conflicting focal elements.

In this chapter, we detail our statistical approach to estimate sources’ independence.

Our approach is based on the clustering algorithm detailed in the previous chapter in

order to estimate sources’ degrees of independence, positive and negative dependence.
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4.1 Introduction

In Chapter 2, basics of the theory of belief functions are introduced. Uncertainty is

modeled with the theory of belief functions and represented by mass functions which

can be stored in evidential databases introduced in Chapter 3. In the previous chapter,

evidential databases are emphasized as well as evidential clustering algorithms that can

be used to classify objects stored in such databases. The clustering algorithm minimiz-

ing the conflict into clusters, introduced in Chapter 3, will be used to estimate sources

independence degrees.

Some researches are focused on doxastic independence of variables such as (Ben

Yaghlane et al., 2000; Ben Yaghlane et al., 2002a; Ben Yaghlane et al., 2002b; Ben

Yaghlane, 2002); others (Shafer, 1976; Smets, 1993) tackled cognitive and evidential

independence of variables. Variables independence can also be defined in terms of irrel-

evance and non-interactivity. This chapter is focused on measuring the independence of

sources. We also present an overview of variables independence in the theory of belief

functions framework although our research are focused on sources’ independence.

We suggest a statistical approach to estimate the independence of sources on the

basis of all evidential information that they provide. The aim of estimating sources’

independence is to guide the choice of combination rules to use when combining belief

functions provided by that sources; or to integrate degrees of independence in a new

combination rule; or to discount belief functions with their source’s degree of indepen-

dence, positive and negative dependence. Uses of independence measure, detailed in

this chapter, will be proposed in the next one.

A source is assumed to be cognitively independent on another one when the knowl-

edge of beliefs of that source, does not affect beliefs of the other one. However, two

sources are dependent when they are either communicating or having the same knowl-

edge. Information on the independence of sources guides the choice of the type of

combination rules to use. For example, when belief information are completely depen-

dent only cautious or bold combinations can be applied (Denœux, 2008; Boubaker et al.,

2013). In another hand, if evidential information are completely independent, another

set of combination rules can be applied (Yager, 1987; Dubois and Prade, 1988; Smets

and Kennes, 1994; Murphy, 2000; Martin and Osswald, 2007a; Lefèvre and Elouedi,

2013).

In the sequel, Section 4.2 is a state of art of variables independence in the theory

of belief functions. In Section 4.3, we detail the notion of correlation between mass

functions. In Section 4.4, clustering algorithm detailed in Chapter 3 will be used in
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the first step of the independence measure process. Independence measure is estimated

in four steps; in the first step the clustering algorithm is applied; second a mapping

between clusters is performed; then independence of clusters and sources are deduced in

the last two steps. Independence is learned for only two sources and then generalized for

a greater number of sources. In the case of dependent sources, type of this dependence

is then estimated in Section 4.5. The proposed method is illustrated on random mass

functions in Section 4.6. Finally, conclusions are drawn.

4.2 Independence concepts in the theory of belief func-

tions

In the theory of probabilities, two hypotheses H1 and H2 are assumed to be statis-

tically independent if P (H1 ∩ H2) = P (H1) × P (H2) or P (H1|H2) = P (H1). In the

context of the theory of belief functions, (Shafer, 1976) defined cognitive and eviden-

tial independence. Ben Yaghlane et al. defined in (Ben Yaghlane et al., 2002a; Ben

Yaghlane et al., 2002b; Ben Yaghlane, 2002) variables’ doxastic independence as well

as non-interactivity and irrelevance.

4.2.1 Cognitive independence: weak independence

According to (Shafer, 1976), two variables are assumed to be cognitively independent

with respect to a belief function if any new evidence that appears on only one of

them does not change the evidence of the other variable. (Shafer, 1976) proposed the

following definition:

Definition 4.1 “Two frames of discernment may be called cognitively independent with

respect to the evidence if new evidence that bears on only one of them will not change

the degree of support for propositions discerned by the other” ((Shafer, 1976), page

149).

The cognitive independence is a weak independence; two variables are independent with

respect to a mass function if new evidence that bears on only one of the two variables

does not change propositions discerned by the other one. For two variables X and Y

such that ΩX and ΩY their domains (frames of discernment) and ΩX ×ΩY the product

space of domains ΩX and ΩY . Variables X and Y are cognitively independent with

respect to mΩX×ΩY if and only if: ∀x ⊆ ΩX and ∀y ⊆ ΩY :

plΩX×ΩY (x, y) = plΩX×ΩY ↓ΩX (x)× plΩX×ΩY ↓ΩY (y) (4.1)

Note that ΩX×ΩY ↓ ΩX is the marginalization of ΩX×ΩY in ΩX as detailed in Section

2.3.2.
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Example 4.1 Let ΩS = {S, S̄}, S for smoking and S̄ for not smoking, a domain of

a variable “Smoking attitude” describing whether a person is smoking or not. The

frame of discernment ΩA = {A, T}, A for adult and T for teenager, defines possible age

categories of a person. The product space ΩS × ΩA = {a, b, c, d}, defining smoking

and not smoking persons for each category of age; it can be schematically represented

by figure 4.1. For short, we note a = (S, T ), b = (S,A), c = (S̄, T ) and d = (S̄, A).

ΩA

ΩS

S

S̄

T A

a b

c d

(S, T ) (S, A)

(S̄, T ) (S̄, A)

Figure 4.1: Product space ΩS × ΩA

Suppose a mass function mΩS×ΩA defined on the product space ΩS × ΩA such that:

mΩS×ΩA(a) = 0.26, mΩS×ΩA(c) = 0.16 and mΩS×ΩA(a ∪ c) = 0.58.

In table 4.1, plΩS×ΩA↓ΩS and plΩS×ΩA↓ΩA are computed, table 4.2 shows that vari-

ables “Smoking attitude” and “Age category” are cognitively independent according to

mΩS×ΩA as the following equalities are verified:
plΩS×ΩA(a) = plΩS×ΩA↓ΩA(T )× plΩS×ΩA↓ΩS (S)

plΩS×ΩA(b) = plΩS×ΩA↓ΩA(A)× plΩS×ΩA↓ΩS (S)

plΩS×ΩA(c) = plΩS×ΩA↓ΩA(T )× plΩS×ΩA↓ΩS (S̄)

plΩS×ΩA(d) = plΩS×ΩA↓ΩA(A)× plΩS×ΩA↓ΩS (S̄)

(4.2)

Table 4.1: plΩS×ΩA↓ΩS and plΩS×ΩA↓ΩA

ΩS plΩS×ΩA↓ΩS ΩA plΩS×ΩA↓ΩA

∅ 0 ∅ 0

S 0.84 T 1

S̄ 0.74 A 0

S ∪ S̄ 1 T ∪A 1
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Table 4.2: Variables cognitively independent according to mΩS×ΩA

ΩS × ΩA mΩS×ΩA ΩS × ΩA plΩS×ΩA Requirement

∅ 0 a 0.84 plΩS (S)× plΩA(T ) = 0.84× 1 = 0.84

a 0.26 b 0 plΩS (S)× plΩA(A) = 0.84× 0 = 0

c 0.16 c 0.74 plΩS (S̄)× plΩA(T ) = 0.74× 1 = 0.74

a ∪ c 0.58 d 0 plΩS (S̄)× plΩA(A) = 0.74× 0 = 0

4.2.2 Evidential independence: strong independence

(Shafer, 1976) defines also a strong independence called evidential independence as

follows:

Definition 4.2 “Two frames of discernment are evidentially independent with respect

to a support function if that support function could be obtained by combining evidence

that bears on only one of them with evidence that bears on only the other” ((Shafer,

1976), page 149).

According to Shafer, two variables are evidentially independent if their joint mass

function can be obtained by combining marginal mass functions that bears on each one

of them. Variables X and Y are evidentially independent with respect to mΩX×ΩY if:{
plΩX×ΩY (x, y) = plΩX×ΩY ↓ΩX (x)× plΩX×ΩY ↓ΩY (y)

belΩX×ΩY (x, y) = belΩX×ΩY ↓ΩX (x)× belΩX×ΩY ↓ΩY (y)
(4.3)

Cognitive independence is weaker than evidential independence; evidential indepen-

dence requires constraints on both pl and bel but cognitive independence requires only

one constraint on only pl. Therefore, if two variables are evidentially independent ac-

cording to a mass function then they are also cognitively independent according to that

mass function. Whereas, if variables are cognitively independent according to a joint

mass function they are not necessarily evidentially independent according to that mass

function. Two variables X and Y are evidentially independent if and only if:

mΩX×ΩY (x, y) = mΩX×ΩY ↓ΩX (x)×mΩX×ΩY ↓ΩY (y) (4.4)

Note that m, pl, and bel are normalized mass, plausibility and belief functions.

Example 4.2 We will show that variables “Smoking attitude” and “Age category”

are evidentially independent according to the mass function of example 4.1. Require-

ment on pl is already checked in tables 4.1 and 4.2. In table 4.3, belΩX×ΩY ↓ΩX and

belΩX×ΩY ↓ΩY are computed. Requirement on bel is then checked in table 4.4. There-
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fore, “Smoking attitude” and “Age category” are evidentially independent according

to mΩS×ΩA .

Table 4.3: belΩS×ΩA↓ΩS and belΩS×ΩA↓ΩA

ΩS belΩS×ΩA↓ΩS ΩA belΩS×ΩA↓ΩA

∅ 0 ∅ 0

S 0.26 T 1

S̄ 0.16 A 0

S ∪ S̄ 1 T ∪A 1

Table 4.4: Variables evidentially independent according to mΩS×ΩA

ΩS × ΩA mΩS×ΩA ΩS × ΩA belΩS×ΩA Requirement

∅ 0 a 0.26 belΩS (S)× belΩA(T ) = 0.26× 1 = 0.26

a 0.26 b 0 belΩS (S)× belΩA(A) = 0.26× 0 = 0

c 0.16 c 0.16 belΩS (S̄)× belΩA(T ) = 0.16× 1 = 0.16

a ∪ c 0.58 d 0 belΩS (S̄)× belΩA(A) = 0.16× 0 = 0

Accordingly, variables “Smoking attitude” and “Age category” are evidentially and

so cognitively independent. Cognitive independence does not imply evidential indepen-

dence but evidential independence implies cognitive independence.

4.2.3 Non-interactivity of variables

Non-interactivity illustrates the compositional independence. Two variables X and Y

are non-interactive according to a joint mass function mΩX×ΩY if it can be retrieved by

combining variables marginal mass functions using Dempster’s rule. Variables X and

Y are non-interactive with respect to mΩX×ΩY noted X ⊥m Y if:

mΩX×ΩY = m(ΩX×ΩY ↓ΩX)↑ΩX×ΩY ⊕m(ΩX×ΩY ↓ΩY )↑ΩX×ΩY (4.5)

That implies the following equalities:{
plΩX×ΩY (x, y) = plΩX×ΩY ↓ΩX (x)× plΩX×ΩY ↓ΩY (y)

belΩX×ΩY (x, y) = belΩX×ΩY ↓ΩX (x)× belΩX×ΩY ↓ΩY (y)
(4.6)

Note that non-interactivity and evidential independence are equivalent.
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Example 4.3 As shown in example 4.2, “Smoking attitude” and “Age category” are

evidentially independent and non-interactive according to the mass function mΩS×ΩA

detailed in example 4.1.

To check that mΩS×ΩA = m(ΩS×ΩA↓ΩA)↑ΩS×ΩA ⊕m(ΩS×ΩA↓ΩS)↑ΩS×ΩA , marginal mass

functions

mΩS×ΩA↓ΩA and mΩS×ΩA↓ΩS are computed in table 4.5.

To combine marginal mass functions mΩS×ΩA↓ΩA and mΩS×ΩA↓ΩS , they must be de-

fined on a common space ΩA × ΩS thus we proceed to a vacuous extension as shown in

table 4.6. The combination of m(ΩS×ΩA↓ΩA)↑(ΩS×ΩA) and m(ΩS×ΩA↓ΩS)↑(ΩS×ΩA) with

Dempster’s rule is illustrated in table 4.7. Note that:

mΩS×ΩA = m(ΩS×ΩA↓ΩA)↑ΩS×ΩA ⊕m(ΩS×ΩA↓ΩS)↑ΩS×ΩA .

Therefore, attributes “Smoking attitude” and “Age category” are non-interactive ac-

cording to mΩS×ΩA because mΩS×ΩA = m(ΩS×ΩA↓ΩA)↑ΩS×ΩA ⊕m(ΩS×ΩA↓ΩS)↑ΩS×ΩA .

Table 4.5: Marginal mass functions mΩS×ΩA↓ΩA and mΩS×ΩA↓ΩS

ΩS × ΩA mΩS×ΩA ΩS mΩS×ΩA↓ΩS ΩA mΩS×ΩA↓ΩA

a 0.26 S 0.26 T 1

c 0.16 S̄ 0.26 A 0

a ∪ c 0.58 S ∪ S̄ 0.58 A ∪ T 0

Table 4.6: Vacuous extension of mΩS×ΩA↓ΩA and mΩS×ΩA↓ΩS

ΩS × ΩA m(ΩS×ΩA↓ΩS)↑(ΩS×ΩA) ΩS × ΩA m(ΩS×ΩA↓ΩA)↑(ΩS×ΩA)

a ∪ b 0.26 a ∪ c 1

c ∪ d 0.16

a ∪ b ∪ c ∪ d 0.58

Table 4.7: Combination of m(ΩS×ΩA↓ΩA)↑(ΩS×ΩA) and m(ΩS×ΩA↓ΩS)↑(ΩS×ΩA)

ΩS × ΩA m(ΩS×ΩA↓ΩA)↑(ΩS×ΩA) ⊕m(ΩS×ΩA↓ΩS)↑(ΩS×ΩA)

a 0.26

c 0.16

a ∪ c 0.58
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4.2.4 Irrelevance of variables

Independence can also be defined in terms of irrelevance. Two variables are irrelevant if

the knowledge of the value of one variable does not change the belief on the other one.

In the theory of belief functions, irrelevance is based on the conditioning. Variables

X and Y are irrelevant with respect to m, noted IRm(X,Y ) if the marginal mass

function on X is obtained by conditioning the joint mass function on values y of Y and

marginalizing this conditioned joint mass function on X:

mΩX×ΩY [y]↓ΩX (x) = mΩX×ΩY ↓ΩX (x) (4.7)

Note that this equality is replaced by proportionality ∝ when mΩX×ΩY [y]↓ΩX and

mΩX×ΩY ↓ΩX are not normalized.

Example 4.4 Suppose that the following mass function mΩS×ΩA is the joint mass

function for variables “Smoking attitude” and “Age category”:

mΩS×ΩA(a ∪ c) = 0.75, mΩS×ΩA(b ∪ d) = 0.13 and mΩS×ΩA(ΩS × ΩA) = 0.12.

The mass function mΩS×ΩA is conditioned on {a ∪ b} and {c ∪ d}, then marginalized

on ΩA as shown in tables 4.8 and 4.9.

Table 4.9 shows that: {
mΩS×ΩA [a ∪ b]↓ΩA = mΩS×ΩA↓ΩA

mΩS×ΩA [c ∪ d]↓ΩA = mΩS×ΩA↓ΩA

Thus, variables “Smoking attitude” and “Age category” are irrelevant.

Table 4.8: Conditioned mass function on {a ∪ b} and marginalized on ΩA

ΩS × ΩA mΩS×ΩA ΩS × ΩA mΩS×ΩA [a ∪ b] ΩA mΩS×ΩA [a ∪ b]↓ΩA

a ∪ c 0.75 a 0.75 T 0.75

b ∪ d 0.13 b 0.13 A 0.13

a ∪ b ∪ c ∪ d 0.12 a ∪ b 0.12 T ∪A 0.12

4.2.5 Doxastic independence of variables

Doxastic independence is especially proposed in the theory of belief functions by (Ben

Yaghlane et al., 2000; Ben Yaghlane et al., 2002a; Ben Yaghlane et al., 2002b; Ben

Yaghlane, 2002).
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Table 4.9: Conditioned mass function on {c ∪ d} and marginalized on ΩA

ΩS × ΩA mΩS×ΩA ΩS × ΩA mΩS×ΩA [c ∪ d] ΩA mΩS×ΩA [c ∪ d]↓ΩA

a ∪ c 0.75 c 0.75 T 0.75

b ∪ d 0.13 d 0.13 A 0.13

a ∪ b ∪ c ∪ d 0.12 c ∪ d 0.12 T ∪A 0.12

Table 4.10: Marginalized mass function mΩS×ΩA on ΩA

ΩS × ΩA mΩS×ΩA ΩA mΩS×Ω↓AΩA

a ∪ c 0.75 T 0.75

b ∪ d 0.13 A 0.13

a ∪ b ∪ c ∪ d 0.12 T ∪A 0.12

Definition 4.3 “Two variables are considered as doxastically independent only when

they are irrelevant and this irrelevance is preserved under Dempster’s rules of combi-

nation” (Ben Yaghlane et al., 2002a; Ben Yaghlane, 2002).

In other words, two variables X and Y are doxastically independent if they are irrel-

evant with respect to m ⊕ m0 when they are irrelevant with respect to m and m0.

Thus, if IRm(X,Y ), IRm0(X,Y ) and IRm⊕m0(X,Y ) are verified then X and Y are

doxastically independent. We do not focus on variables independence (Shafer, 1976;

Ben Yaghlane et al., 2002a; Ben Yaghlane et al., 2002b; Ben Yaghlane, 2002) but on

sources independence. Variables marginal and conditional independencies are checked

with respect to marginal and/or joint belief functions even if according frames of dis-

cernment are almost the same. Sources independence is computed according to a set

of different belief functions provided by each source separately. Sources are dependent

when all their beliefs are correlated; there is a link between all mass functions they

provide. This problem is not tackled till now, we noticed a lack of references treating

this problem.

4.3 Correlation of belief functions

Cognitive, evidential and doxastic independencies as well as non-interactivity and ir-

relevance defines variables’ independencies from a joint mass function. Correlation can

also inform about any relation between pieces of evidence.

Suppose mA and mB two updates of a mass function m0 that is interpreted as the
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correlation between mA and mB. When m0 is a vacuous mass function, there is no

correlation between evidences that induced mA and mB. (Smets, 1992a) defines dis-

tinctness to illustrate independence of pieces of evidence as follows:

Definition 4.4 Two pieces of evidence are distinct if and only if the mass function

common to mass functions they induce is vacuous.

The mass function mAB is the combination of all pieces of evidence that have induced

m0, mA and mB, thus mAB = mA ⊕mB. If m?
AB induced by the conjunction of pieces

of evidence that induced mA and mB individually, the correlation m0 can be deduced

by comparing mAB and m?
AB.

When m?
AB is known, the computation of the correlation is easy and the commonality

m0 of the mass function m0 is given by:

q0(A) =
q1(A)× q2(A)

q?AB
∀A ⊆ Ω (4.8)

with q?AB is the commonality function of the mass function m?
AB induced by the con-

junction of pieces of evidences that induced mA and mB. Unfortunately, m?
AB is almost

unknown.

Cosine function is also an indicator about correlation of mass functions, it is given

as follows:

cos(m1,m2) =
m′1Wm2

||m1||w.||m2||w
(4.9)

Where W is a weighting matrix that is required to be symmetric, square and positive

definite. Cosine function computes the angle between two mass functions considered

as vectors in a 2|Ω| dimensional space. If Υ denotes the angle between two vectors,

cos(Υ) = −1 when vectors are opposite and thus mass functions are negatively cor-

related. Also cos(Υ) = 1 in the case of collinear vectors leading to correlated mass

functions and cos(Υ) = 1 means that vectors are orthogonal. Other cosine values

represent intermediate correlation values.

4.4 Learning sources independence degree

In this section, we detail a statistical approach to learn sources’ independence degree

as we proposed in (Chebbah et al., 2012a; Chebbah et al., 2013). To study sources’

independence, we propose a method based on a great number of mass functions provided

by both sources. This set of mass functions must be defined on the same frame of

discernment according to the same problem. For example, two distinct doctors provide

N diagnoses in the examination of the same N patients. In that case, the frame of
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discernment contains all diseases and is the same for both doctors. We define sources’

independence as follows:

Definition 4.5 Two sources are cognitively independent if they do not communicate

and if their evidential corpora are different.

According to definition 4.5, not only communicating sources are considered dependent

but also sources having the same background of knowledge since their beliefs are cor-

related. The aim of estimating sources independence is either to guide the choice of

combination rules when aggregating their beliefs, or to integrate this degree of inde-

pendence in a new combination rule as detailed in Chapter 5. When sources have the

same evidential corpus, the same background of knowledge and the same reasoning,

they are considered dependent.

In the following, we propose a measure of independence Id, (Id(s1, s2)), as the

independence of a source s1 one another one s2
1 verifying the following axioms:

1. Non-negativity: The independence of a source s1 on another source s2, Id(s1, s2)

cannot be negative, it is either positive or null.

2. Normalization: The degree of independence Id is a degree over [0, 1], it is null when

the first source is dependent on the second one, equal to 1 when it is completely

independent and a degree from [0, 1] otherwise.

3. Non-symmetry: In the case where s1 is independent on s2, s2 is not necessar-

ily independent on s1. Even if s1 and s2 are mutually independent, degrees of

independence are not necessarily equal.

4. Identity: Any source is completely dependent on itself and Id(s1, s1) = 0.

If s1 and s2 are independent, there will be no correlation between their mass functions.

The main idea is: First, classify mass functions provided by each source separately.

Then, study similarities between cluster repartitions to reveal any dependence between

sources. By using clustering algorithm, sources overall behavior is studied.

The proposed method is in three steps: First, mass functions of each source are clas-

sified using a clustering technique. Then, similar clusters are matched. Finally, weights

of linked clusters and sources independence are quantified. In a case of dependent

sources a degree of positive and negative dependence is also assessed.

1Reciprocally, Id(s2, s1) is the independence of s2 on s1
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4.4.1 Clustering of belief functions

Clustering algorithm detailed in Section 3.5.3 is used to classify two sets of N mass

functions respectively provided by sources s1 and s2. Clustering algorithm is performed

on all mass functions of s1 independently of the clustering performed on those of s2.

We remind that all mass functions of both sources are defined on the same frame of

discernment and so considered as values of only one attribute when classifying their

corresponding objects. Mass functions can be stored in evidential databases introduced

in Section 3.4.1.

For the same example of doctors, patients are objects to classify according to an

attribute disease. Values of this attribute are mass functions defined on the frame of

discernment Ωd enumerating all possible diseases. Distance given by equation (3.42)

can be simplified as we have only one attribute. However, we define a distance D of

an object ol and a cluster Clk is the mean of distances between mΩ
i , the mass function

value of the object ol, and all Nk mass functions values of objects oq classified into

cluster Clk as follows:

D(ol, Clk) =
1

Nk

Nk∑
q=1

d(mΩ
i ,m

Ω
q ) (4.10)

We fixed the number of clusters to the number of hypotheses in the frame of discern-

ment2. In a classification point of view, number of hypotheses is the number of possible

classes. For example, the frame of discernment of the attribute disease enumerates all

possible diseases. Hence, when a doctor examines a patient, he gives a mass function

as a classification of the patient in some possible diseases. Number of solutions in the

frame of discernment is the number of possible classes (clusters). Other methods for

determining the number of clusters are reviewed in (Masson and Denœux, 2008).

4.4.2 Cluster matching

Clustering algorithm groups similar mass functions into the same cluster. We mean

by similar mass functions, near mass functions using Jousselme distance defined by

equation (3.24). As this distance uses Jaccard coefficient, similar mass functions are

those having non-contradictory or even similar focal elements.

After clustering technique, mass functions provided by s1 are distributed on C clus-

ters and mass functions of s2 are also distributed on C clusters. Note that C = n = |Ω|.
We try to find a mapping between clusters in order to link those containing the same

objects. If clusters are perfectly linked, meaning all objects are classified similarly for

both sources, we can conclude that sources are dependent as they are choosing similar

2C =| Ω |
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focal elements (not contradictory at least) when providing mass functions for the same

objects. If clusters are weakly linked3, sources choose similar focal elements for differ-

ent objects and so they are independent. Clusters’ independence degree is proportional

to the number of objects similarly classified. More clusters contain the same objects,

more they are dependent more they are correlated.

Once clustering algorithm performed, the most similar clusters have to be linked;

then a cluster matching is performed on clusters of s1 and those of s2. We note Cl1k1

where 1 ≤ k1 ≤ n for clusters of s1 and Cl2k2
where 1 ≤ k2 ≤ n for those of s2. The

similarity between two clusters Cl1k1
and Cl2k2

is a proportion of objects simultaneously

classified into Cl1k1
and Cl2k2

:

βiki,kj = βi(Cliki , Cl
j
kj

) =
|Cliki ∩ Cl

j
kj
|

|Cliki |
(4.11)

with i, j ∈ {1, 2} and i 6= j.

The value β1
k1,k2

quantifies a proportion of objects classified simultaneously in clus-

ters Cl1k1
and Cl2k2

with regard to objects in Cl1k1
, analogically β2

k2,k1
is a proportion of

objects simultaneously in Cl1k1
and Cl2k2

with regard to those in Cl2k2
. In general case,

we have β1
k1,k2

6= β2
k2,k1

since the number of objects classified into Cl1k1
and Cl2k2

can be

different (|Cl1k1
| 6= |Cl2k2

|).
The similarity between clusters is the proportion of objects simultaneously classified

into that clusters. In other words, we suppose that two sources s1 and s2 that provide

evidential values for N objects. Evidential values are values of attributes assessed by

sources. Once clustering algorithm is performed the similarities between clusters are

deduced from the number of objects commonly classified into clusters.

We remind that β1 are similarities towards s1 and β2 are those towards s2. It is

obvious that βi(Cliki , Cl
j
kj

) = 0 when Cliki and Cljkj do not contain any common object;

therefore they are completely different. The similarity βi(Cliki , Cl
j
kj

) = 1 is reached

when clusters Cliki and Cljkj are strongly similar; thus they contain the same objects.

Example 4.5 Suppose two sources s1 and s2 providing (each one) c evidential values

for N objects; i.e. each source provides a mass function for each attribute from the c

evidential values for all the N objects. Figure 4.2 illustrates the output of the clustering

algorithm. Figure 4.3 illustrates the similarities of the cluster Cl12 of the source s1 with

all clusters of s2 (according to s1) and also similarities of all clusters of s2 with Cl12

3The link between clusters is quantified from their similarities. Dissimilar clusters are weakly linked.
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Figure 4.2: Clustering of N objects for which c values are assessed by s1 and s2

(according to s2). Finally, figure 4.4 emphasizes pairwise similarities between clusters

of s1 and s2. Once pairwise similarities are computed, the most similar clusters will be

linked.

A similarity matrix M1 containing clusters similarities of s1 according to those of s2

(β1), and M2 the similarity matrix between clusters of s2 and those of s1 (β2) are

defined as follows:

M1 =


β1

1,1 β1
1,2 . . . β1

1,n

. . . . . . . . . . . .

β1
k,1 β1

k,2 . . . β1
n,n

. . . . . . . . . . . .

β1
n,1 β1

n,2 . . . β1
n,n

 and M2 =


β2

1,1 β2
1,2 . . . β2

1,n

. . . . . . . . . . . .

β2
k,1 β2

k,2 . . . β2
n,n

. . . . . . . . . . . .

β2
n,1 β2

n,2 . . . β2
n,n

 (4.12)

We note that M1 and M2 are almost different since β1
k1,k2

6= β2
k2,k1

. Clusters of s1

are matched to those of s2 according to maximum of β1 such that each cluster Cl1k1
is

linked to only one cluster Cl2k2
and each cluster Cl2k2

has only one cluster Cl1k1
linked to

it. The idea is to link iteratively clusters having the maximal β1 in M1 then eliminate

these clusters and the corresponding line and column from the matrix till reaching a

bijective cluster matching. For example, in the first iteration the maximum of M1 is in

line k1 and column k2. Cluster Cl1k1
is linked to Cl2k2

, then line k1 and column k2 are

eliminated from M1. Algorithm 5 details cluster matching process.
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Figure 4.3: Similarities of Cl12 and all clusters of s2

Algorithm 5 Cluster matching

Require: Similarity matrix Mi.
1: while Mi is not empty do
2: Find max(Mi) and indexes ki and kj of clusters having this maximal similarity.
3: Map clusters ki and kj .
4: Delete line ki and column kj from Mi.
5: end while
6: return Cluster matching.

This algorithm is iterative and the number of iteration is equal to the number of

clusters C. Even if this algorithm is quite simple, it provides a matching of clusters

in order to compare evidential information provided by both sources. The assignment

algorithm proposed by (Munkres, 1957) for square matrices and that for rectangular

matrices (Bourgeois and Lassalle, 1971) can also be used to minimize the dissimilar-

ity between matched clusters. Other methods for cluster matching (Wemmert and

Gançarski, 2002) and (Gançarski and Wemmert, 2005) can also be used.

Example 4.6 Assume two matched clusters Cl11 and Cl21 according to s1, such that

Cl11 contains 25 objects from which 20 objects4 are commonly classified with Cl21. The

cluster Cl21 can be linked to Cl13 according to s2 as 25 objects from 45 are simultaneously

classified into Cl21 and Cl13 according to s2. Other methods for cluster matching detailed

4Objects can be records of evidential databases. Their values can be evidential for evidential attributes.
The clustering is performed according to their evidential values but the matching takes into account
the proportion of objects commonly classified into clusters.



82 Chapter4. Sources independence estimation

++
+
++

+++
+

++

××
×

×
×
××
×
××
×

××
×

×

×
Cl11

Cl12

Cl1C

Cl21

Cl2C

Cl22

. . .

. . .

Source s1 Source s2

×

×
+

+

++
+ +
+

+

× × ×
××× ×

+
+ +

× ×
×

××
×
×

++

Figure 4.4: Pairwise similarities between clusters of s1 and clusters of s2

in (Wemmert and Gançarski, 2002) and (Gançarski and Wemmert, 2005) can also be

used.

Note that different matchings are obtained for s1 and s2 because M1 and M2 are

different.

Example 4.7 Suppose the following matrix M1 a similarity matrix of s1 according

to s2. Clusters of s2 are indexed in rows and those of s1 in lines. Number of clusters is

3, thus M1 is given as follows:

M1 =


Cl21 Cl22 Cl23
0.31 0.36 0.33 Cl11
0.48 0.3 0.22 Cl12
0.32 0.2 0.48 Cl13


1. Iteration 1: maximum of M1 is 0.48 either in cells (2, 1) or (3, 3). We choose

randomly (2, 1), thus cluster Cl21 is linked to Cl12. Line 2 and row 1 are eliminated

from M1 as follows:

M1 =

 Cl22 Cl23
0.36 0.33 Cl11
0.2 0.48 Cl13


2. Iteration 2: maximum of M1 is 0.48 in cell (3, 3), thus cluster Cl23 is linked to

Cl13; line 2 and row 1 are eliminated from M1 as follows:
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M1 =

(
Cl22
0.36 Cl11

)

3. Iteration 3: finally clusters Cl12 and Cl11 are linked. Therefore Cl11 is linked to

Cl22; Cl12 is linked to Cl21 and Cl13 is linked to Cl23 according to s1.

Note that the maximum is chosen randomly when more than two clusters can be

matched

4.4.3 Mass functions of clusters’ independence

Once cluster matching is obtained, a degree of independence/dependence of matched

clusters is quantified in this step. A set of matched clusters is obtained for both

sources and a mass function quantifies each couple of clusters’ independence. Assume

that cluster Cl1k1
is matched to Cl2k2

, a mass function mI defined on the frame of

discernment I = {Ī , I}, such that Ī for dependent and I for independent hypotheses,

describes degree of independent or dependent of this couple of clusters as follows:
mI,ikikj (Ī) = αikiβ

i
ki,kj

mI,ikikj (I) = αiki(1− β
i
ki,kj

)

mI,ikikj (Ī ∪ I) = 1− αiki

(4.13)

A mass function quantifies degree of independence of each couple of clusters according

to each source; mΩI ,i
kikj

is a mass function for the independence of each linked clusters

Cliki and Cljkj according to si with i, j ∈ {1, 2} and i 6= j. More a couple of matched

clusters contains similar objects, more they are dependent.

Coefficient αiki is used to take into account of number of mass functions in each

cluster Clki of the source i. Reliability factor αiki is not the reliability of any source but

it can be seen as the reliability of the clusters independence estimation. Consequently,

independence estimation is more reliable when clusters contain enough mass functions.

For example, assume two clusters; one containing only one mass function and the sec-

ond one containing 100 mass functions. It is obvious that the independence estimation

of the second cluster is more precise and significant than the independence estimation

of the first one.

Reliability factors αiki are functions of number of hypotheses in the frame of dis-

cernment | Ω |, and number of objects classified in Cliki as follows:

αiki = f(| Ω |, | Cliki |) (4.14)
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The bigger | Ω | is, the more mass functions are needed to have a reliable cluster

independence estimation. For example, if | Ω |= 5 then there are 25 possible focal

elements, however independence estimation of a cluster containing 20 objects cannot be

precise. No existing method to define such function f . Hence, we use simple heuristics

as follows:

αiki = 1− 1

| Cliki |
1
|Ω|

(4.15)

As shown in figure 4.5, if | Ω | and number of mass functions in a cluster are big enough,

cluster independence mass function is almost not discounted. Proposed reliability fac-

tors are increasing with the increase of | Ω | and the increase of the number of mass

functions in clusters. Reliability factor is an increasing function of | Ω | and | Cliki |
which favors big clusters5.
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Figure 4.5: Discounting factors αi

4.4.4 A measure of sources’ independence

Obtained mass functions quantify each matched clusters independence according to

each source. Therefore, n mass functions are obtained for each source such that each

mass function quantifies the independence of each couple of matched clusters. The

combination of n mass functions for each source using the mean, defined by equation

(2.33), is a mass function mI defining the whole independence of one source on another

one:

mI,i(A) =
1

n

n∑
kj=1

mI,ikikj (A) ∀A ⊆ 2I (4.16)

with kj is the cluster of sj matched to ki according to si and mI,ikikj are given by equation

4.13. The mean combination is chosen because it is idempotent and the combined

5Big clusters are those containing enough mass functions according to | Ω |.
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mass function is normalized if all mass functions are normalized. We note that any

idempotent combination rule that can combine all types of mass functions can also be

used (the cautious rule is limited to the combination of non-dogmatic mass functions).

Two different mass functions mI,1 and mI,2 are obtained for s1 and s2 respectively. We

note that mI,1 is the combination of n mass functions representing the independence

of matched clusters according to s1 defined in equation (4.13) as follows:

mI,i(Ī) =
1

n

n∑
ki=1

mI,ikikj (Ī)

mI,i(I) =
1

n

n∑
ki=1

mI,ikikj (I)

mI,i(Ī ∪ I) =
1

n

n∑
ki=1

mI,ikikj (Ī ∪ I)

(4.17)

or equivalently: 

mI,i(Ī) =
1

n

n∑
ki=1

αikiβ
i
ki,kj

mI,i(I) =
1

n

n∑
ki=1

αiki(1− β
i
ki,kj

)

mI,i(Ī ∪ I) =
1

n

n∑
ki=1

1− αiki

(4.18)

Mass functions mI,1 and mI,2 are almost always different since cluster matchings are

different which verifies the axiom of non-symmetry. Proportions β1
k1,k2

, β2
k2,k1

∈ [0, 1]

verify the non-negativity and the normalization axioms. Finally, pignistic probabilities

are computed from these mass functions in order to decide about sources independence

Id such that: {
Id(s1, s2) = BetP(I)

Id(s1, s2) = BetP(Ī)
(4.19)

If Id(s1, s2) > Id(s1, s2) we claim that s1 is independent on s2; if Id(s2, s1) > Id(s2, s1)

we conclude that s2 is independent on s1.

4.4.5 General case of sources’ independence

The method detailed above estimates the independence of one source on another one.

Independence measure is non-symmetric because if a source s1 is independent on a

source s2 then s2 is not necessarily independent on s1 and even if it is the case, de-

grees of independence are not necessarily the same. When combining mass functions

provided by both sources, degrees of independence are needed to choose the appropri-

ate type of combination rules. Combination rule using conjunctive and/or disjunctive
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combinations needs a strong hypothesis on sources independence. The question is what

degree of independence do we attribute to a couple of sources (s1, s2) if degrees of inde-

pendence of each one according to the other are different (Id(s1, s2) 6= Id(s2, s1)). It is

wise to choose the minimum independence from Id(s1, s2) and Id(s2, s1) as the overall

independence. Consequently, if at least one of two sources is dependent on the other,

then sources are considered dependent. In other words, two sources are independent

only if they are mutually independent. Hence, overall independence that is denoted

Ind(s1, s2) is given by:

Ind(s1, s2) = min(Id(s1, s2), Id(s2, s1)) (4.20)

We note that Ind(s1, s2) is non-negative, normalized, symmetric and identical.

We define an independence measure, noted Ind, generalizing the independence for M

(M ≥ 2) sources verifying the following axioms:

1. Non-negativity: Many sources independence {s1, s2, s3, . . . , sM},
Ind(s1, s2, . . . , sM ) cannot be negative, it is either positive or null.

2. Normalization: Sources independence Ind is a degree in [0, 1]. The minimum 0 is

reached when sources are completely dependent and the maximum 1 is reached

when they are completely independent.

3. Symmetry: Ind(s1, s2, s3, . . . , sM ) is sources overall independence and

Ind(s1, s2, s3, . . . , sM ) = Ind(s2, s1, s3, . . . , sM ) = Ind(s3, s1, s2, . . . , sM ) =

Ind(sM , s1, s2, s3, . . .).

4. Identity: Ind(s1, s1, s1) = 0. It is obvious that any source is completely dependent

on itself.

5. Increasing with inclusion: Ind(s1, s2) ≤ Ind(s1, s2, s3), more there are sources,

more they are likely to be independent.

To compute the overall independence of M sources {s1, s2, . . . , sM}, independencies of

pairs of sources are computed and the maximum independence is the sources overall

independence:

Ind(s1, s2, . . . , sM ) = max(Ind(si, sj)), ∀i ∈ [1,M ] , j ∈]i,M ] (4.21)

or equivalently:

Ind(s1, s2, . . . , sM ) = max(min(Id(si, sj), Id(sj , si))), ∀i, j ∈ [1,M ] i 6= j (4.22)

Note that the max is chosen to insure the property of increasing with inclusion.
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For example the overall independence of three sources is given by:

Ind(s1, s2, s3) = max(Ind(s1, s2), Ind(s1, s3), Ind(s2, s3)) (4.23)

or

Ind(s1, s2, s3) = max(min(Id(s1, s2), Id(s2, s1)),

min(Id(s1, s3), Id(s3, s1)),

min(Id(s2, s3), Id(s3, s2)))

(4.24)

Sources independence degree is then integrated in the combination step using the mixed

combination rule detailed in Chapter 5.

4.5 Positive and negative dependence for two sources

Mass functions of equation (4.17) quantifies sources’ degrees of independence; unfor-

tunately, that mass functions does not reflect if that dependence is either positive or

negative. In the case of dependent sources, this dependence can be positive meaning

that beliefs of one source are positively dependent on beliefs of the other one, thus both

sources have either the same corpus, they are communicating or evidences they observe

are either correlated or not distinct. In the case of negative dependence, the knowledge

of one source is the opposite of the other one. In (Chebbah et al., 2012b), we detailed a

method for learning sources positive and negative dependence; that method is detailed

in the following.

Definition 4.6 A source is positively dependent on another source when it is dependent

on it and their beliefs are positively correlated.

If a source s1 is negatively dependent on s2, beliefs of s1 are almost opposing to

beliefs of s2.

Definition 4.7 A source is negatively dependent on another source when it is depen-

dent on it and their beliefs are negatively correlated.

Sources are assumed to be dependent if they are choosing similar focal elements for

similar objects, this is checked with the clustering algorithm detailed in Sections 4.4.1

and 3.5.3. Therefore, sources dependence is conditioned on the proportion of objects

similarly classified since it is the proportion of objects where each source choose similar

focal elements. Sources are dependent when similar focal elements are chosen by each

source separately for similar cases (objects). If focal elements chosen by both sources for

similar objects are almost similar, we can claim that sources are positively dependent

but if focal elements chosen by each source for similar objects are different sources are

negatively dependent.



88 Chapter4. Sources independence estimation

As previously said, matched clusters are those having maximal similarity. Simi-

larity of two clusters is the proportion of objects simultaneously classified into that

clusters. In a case of positive dependent clusters, mass functions they contain are con-

flicting. In case of positive dependent clusters, the mass functions they contain are

conflicting. In case of negative dependent clusters, the mass functions classified in that

clusters are conflicting. Thus, we define the conflict between two clusters Cliki and Cljkj
({i, j} ∈ {1, 2} and i 6= j) as the mean of distances between objects simultaneously

classified into Cliki and Cljkj as follows:
Conf(Cliki , Cl

j
kj

) =
1

|Cliki ∩ Cl
j
kj
|

∑
l∈E(Cliki

,Cljkj
)

d(mΩ,i
l ,mΩ,j

l ) if |Cliki ∩ Cl
j
kj
| 6= 0

1 otherwise

(4.25)

with

E(Cliki , Cl
j
kj

) = {k ∈ [1, g], g = |Cliki ∩ Cl
j
kj
|,mΩ,i

k ∈ Cl
i
ki
and mΩ,j

k ∈ Cljkj} (4.26)

Clusters’ conflict is the mean of conflicts between objects commonly classified into

clusters Cliki and Cljkj as defined in Section 3.4.2. Conflict measure considers only

common objects because conflict does not exist between sources only if mass functions

according to the same problems and objects are compared. This conflict is computed for

each source for each couple of matched clusters. A mass function defined on a frame

of discernment 6 P = {I, P, P̄} describes matched clusters (Cliki , Cl
j
kj

) positive or

negative dependence according to a sources si as follows:{
mP,ikikj

[Ī](P ) = 1− Conf(Cliki , Cl
j
kj

)

mP,ikikj
[Ī](P̄ ) = Conf(Cliki , Cl

j
kj

)
(4.27)

These mass functions reflect contradiction between matched clusters. Conflict between

clusters reflects degree of negative dependence. Dependent and conflicting clusters are

negatively dependent whereas dependent and not conflicting clusters are positively de-

pendent.

Mass functions of equation (4.27) are defined for each linked clusters according

to each source. Note that this mass function is conditional to clusters dependence.

Clusters positive or negative dependence is conditional to clusters dependence. Fur-

thermore, for each couple of matched clusters (Cliki , Cl
j
kj

), we have two mass functions;

the first one is about clusters dependence and is defined by equation (4.13); the sec-

ond one is a mass function on the matched clusters (Cliki , Cl
j
kj

) positive and negative

6I for independence hypothesis, P for positive dependence and P̄ for Negative dependence
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dependence conditioned on clusters dependence as defined by equation (4.27).

To combine equations (4.27) and (4.13), they have to be defined on a common frame

of discernment P. The hypothesis on a high dependence of matched clusters in the mass

functions of equations (4.27) have to be removed thus the use of the deconditioning

detailed in Section 2.5.2. Deconditioning mass functions of equation (4.27) is given as

follows: {
mP,ikikj

(P ∪ I) = 1− Conf(Cliki , Cl
j
kj

)

mP,ikikj
(P̄ ∪ I) = Conf(Cliki , Cl

j
kj

)
(4.28)

The frame of discernment P is a refinement I such that Ī = P ∪ P̄ . Mass functions

of equations (4.13) are refined as follows:
mP,ikikj

(I) = αiki,kj (1− βiki,kj )
mP,ikikj

(P ∪ P̄ ) = αiki,kj β
i
ki,kj

mP,ikikj
(I ∪ P ∪ P̄ ) = 1− αiki,kj

(4.29)

Mass functions of equations (4.28) and (4.29) can be combined with the conjunctive

rule of combination as they are defined on the common frame of discernment P. The

combined mass function is defined as follows:

mP,ikikj
(I) = αiki,kj (1− βiki,kj )

mP,ikikj
(P ) = αiki,kj β

i
ki,kj

(1− Conf(Cliki , Cl
j
kj

))

mP,ikikj
(P̄ ) = αiki,kj β

i
ki,kj

Conf(Cliki , Cl
j
kj

)

mP,ikikj
(I ∪ P ) = (1− αiki,kj ) (1− Conf(Cliki , Cl

j
kj

))

mP,ikikj
(I ∪ P̄ ) = (1− αiki,kj ) Conf(Cliki , Cl

j
kj

)

(4.30)

Mass functions on the dependence of sources si and sj are then obtained by the mean

combination of all mass functions of equation (4.30) as follows:

mPi (A) =
1

n

n∑
ki=1

mP,iki,kj
(A), ∀A ⊆ P (4.31)

That mass function quantifies degrees of independence, positive and negative indepen-

dence of one source according to the other one. Thus for two sources s1 and s2, mP1 is

a belief function on the independence, positive dependence of s1 on s2; mP2 is that of

s2 according to s1. In the next chapter, these mass functions will be used to discount

evidential information provided by sources. If one need to make a decision on the type

of the dependence or independence of one source, pignistic transformation detailed in

Section 2.2.3 can be used. Pignistic probabilities of hypotheses P̄ , P and I help to

decide about the type of dependence according to the principal of maximal pignistic

probabilities.



90 Chapter4. Sources independence estimation

4.6 Experiments

Because of the lack of real evidential databases, we use generated mass functions to

test the method detailed above. Moreover, it is difficult to simulate all situations with

all possible combinations of focal elements for several degrees of independence between

sources. At first two sets of mass functions are generated for two sources s1 and s2,

then we illustrate for three sources.

4.6.1 Generated data depiction

Generating sets of N mass functions for several sources depends on sources indepen-

dence. We discern two possible cases:

1. Independent sources: In general, to generate mass functions some information

are needed: the number of hypotheses in the frame of discernment, |Ω|, and the

number of mass functions. We note that number of focal elements, and masses

are chosen randomly. In a case of independent sources, masses can be anywhere

and focal elements of both sources are chosen independently. Mass functions

of s1 and s2 are generated following algorithm 1. We note that focal elements,

their number and mass functions are chosen randomly according to the universal

law. Algorithm 1 generates random mass functions for one, two or several sources

independently. In that case, sources are considered independent as focal elements,

their number and masses are independently and randomly chosen for both sources

according to the universal law.

2. Dependent sources: The case of dependent sources is a bit difficult to simulate

as several scenarios can occur. In this section, we will try to illustrate the most

common situations.

Generated mass functions for dependent sources are supposed to be consistent

and do not enclose any internal conflict (Daniel, 2010). Consistent mass func-

tions contain at least one focal element common to all focal sets.

Algorithm 6 generates a set of N consistent mass functions defined on a frame

of discernment of size |Ω|. In a case of dependent sources, they are almost con-

sistent and at least one of them is dependent on the other. To simulate a case

where one source is dependent on another one, consistent mass functions of the

first one are generated following algorithm 6 then those of the second source are

generated knowing decisions of the first one. In a case of one source dependent on

another one, it knows at least decisions of the other source. In a case of extreme

dependence it may know also number of focal elements and their mass functions.

Algorithm 7 generates a set of mass functions that are dependent on another set
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of mass functions. Dependence is due to the knowledge of other source’s decisions.

Algorithm 6 Consistent mass functions generating

Require: |Ω|, N : number of mass functions
1: for i = 1 to N do
2: Choose randomly a focal set Ai (it can be a single point) from Ω.
3: Find the set S of all focal sets including Ai.
4: Choose randomly | F |, the number of focal elements on [1, |S|].
5: Choose randomly | F | focal elements from S noted F .
6: Divvy the interval [0, 1] into |F | continuous sub-intervals.
7: Masses of focal elements are intervals sizes.
8: end for
9: return N consistent mass functions

Algorithm 7 Dependent mass functions generating

Require: |Ω|, N : number of mass functions, ω decision classes of another source
1: for i = 1 to N do
2: Find the set S of all focal sets including ωi.
3: Choose randomly | F |, the number of focal elements on [1, |S|].
4: Choose randomly | F | focal elements from S noted F .
5: Divvy the interval [0, 1] into | F | continuous sub-intervals.
6: Masses of focal elements are intervals sizes.
7: end for
8: return N consistent mass functions

4.6.2 Tests results

Algorithms detailed in the previous section are used to test some cases of sources de-

pendence and independence. We note that in extreme cases where mass functions

are certain or even when focal elements do not intersect; maximal values of indepen-

dence are obtained. In a case of perfect dependence; mass functions have the same

focal elements; however clusters contain mass functions with consistent focal elements.

Clustering is performed according to focal elements and clusters are perfectly linked.

• Independent sources: In this paragraph, mass functions are independent. Focal

elements and mass functions are randomly chosen ensuing algorithm 1. For tests,

we choose |Ω| = 5 which is considered as medium-sized frame of discernment and

N = 100. Table 4.11 illustrates the mean of 100 tests in the case of independent

sources. As a matter of fact, 100 independent mass functions7 are generated for

7We are talking about mass functions and not objects because we consider only one evidential attribute.
Indeed, we generate 100 mass functions values of one evidential attribute for 100 objects; thus, we will
talk about mass functions rather then objects because the example is quite simple.
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two sources 100 times and the mean of sources independence is illustrated on

table 4.11. The mean of 100 tests for two dependent sources yields to a degree

of independence Ind = 0.67, thus sources are independent. The independence of

three sources is the maximum of degrees of independence of all couples of sources.

To illustrate the case of three independent sources, three sets of 100 independent

mass functions are generated following algorithm 1 with |Ω| = 5. The mean of

100 tests are illustrated in table 4.12.

Table 4.11: Mean of 100 tests on 100 generated mass functions for two sources

Dependence type Degree of independence Overall independence

Independence
Id(s1, s2) = 0.68 Ind(s1, s2) = 0.67
Īd(s1, s2) = 0.32
Id(s2, s1) = 0.67
Īd(s2, s1) = 0.33

Dependence
Id(s1, s2) = 0.34 Ind(s1, s2) = 0.34
Īd(s1, s2) = 0.66
Id(s2, s1) = 0.35
Īd(s2, s1) = 0.65

Table 4.12: Mean of 100 tests on 100 generated mass functions for three independent
sources

Sources Degree of independence Pairwise Overall

independence independence

s1-s2
Id(s1, s2) = 0.65 Ind(s1, s2) = 0.65
Īd(s1, s2) = 0.35
Id(s2, s1) = 0.66
Īd(s2, s1) = 0.34

s1-s3
Id(s1, s3) = 0.68 Ind(s1, s3) = 0.68 Ind(s1, s2, s3) = 0.68
Īd(s1, s3) = 0.32
Id(s3, s1) = 0.69
Īd(s3, s1) = 0.31

s2-s3
Id(s2, s3) = 0.64 Ind(s2, s3) = 0.64
Īd(s2, s3) = 0.36
Id(s3, s2) = 0.65
Īd(s3, s2) = 0.35

• Dependent sources: In a case of dependent sources, mass functions are generated

ensuing algorithms 6 and 7. For tests, we choose |Ω| = 5 and N = 100. We gen-

erate 100 mass functions of both s1 and s2 for 100 times and then compute the
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average of Id(s1, s2), Id(s2, s1) and Ind(s1, s2). Table 4.11 summarizes obtained

results. Table 4.11 illustrates the mean of 100 independence degrees of two depen-

dent sources providing each one 100 randomly generated mass functions. These

sources are dependent with a degree 1− Ind = 0.66.

To illustrate a case of three dependent sources, three sets of 100 dependent mass

functions are generated following algorithms 6 and 7 when |Ω| = 5. The mean

of 100 degrees of independence are illustrated in table 4.13. In other words, 100

dependent mass functions defined on |Ω| = 5 are generated using algorithms 6

and 7 for 100 times. The mean of 100 pairs of independent degrees are illustrated

on table 4.13.

Table 4.13: Mean of 100 tests on 100 generated mass functions for three dependent
sources

Sources Degree of independence Pairwise Overall

independence independence

s1-s2
Id(s1, s2) = 0.35 Ind(s1, s2) = 0.34
Īd(s1, s2) = 0.65
Id(s2, s1) = 0.34
Īd(s2, s1) = 0.66

s1-s3
Id(s1, s3) = 0.68 Ind(s1, s3) = 0.68 Ind(s1, s2, s3) = 0.68
Īd(s1, s3) = 0.68
Id(s3, s1) = 0.31
Īd(s3, s1) = 0.69

s2-s3
Id(s2, s3) = 0.68 Ind(s2, s3) = 0.68
Īd(s2, s3) = 0.64
Id(s3, s2) = 0.35
Īd(s3, s2) = 0.65

In this second part of illustrations, we used generated random mass functions with

keeping some control on number of focal elements in the two sets of mass functions

generated for s1 and s2. In fact, we generated two sets of mass functions for both

sources such that the number of focal elements is know and is the same for both. From

that focal elements, we fixed also the number of focal elements that are exactly the

same with same masses, the number of not conflicting focal elements and the number

of conflicting focal elements. Algorithm 8 details steps of generating two sets of N

mass functions with keeping control on number of not conflicting focal elements focal

elements, number of the same focal elements with exactly the same masses and the

number of conflicting focal elements. We recall that not conflicting focal elements are

those which are intersecting. Suppose F = {A1, A2, . . . , A| F |} the set of focal elements
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of a given mass function; Ai are not conflicting if they are discerning at least one same

hypothesis (leading to
⋃
Ai 6= ∅).

Algorithm 8 Generating mass functions when focal elements are controlled

Require: |Ω|, M mass functions for s1 and s2, | F |: number of focal elements, | FNC |:
number of not contradicting focal elements, | FS |: number of the same focal elements
with the same masses
Choose randomly a set FC of not conflicting focal elements.
Choose randomly | FS | focal elements noted FS .
for i = 1 to M do

Choose randomly | FNC | focal elements noted FC \FS .
Choose randomly | FCO | = | F | − (| FS |+ | FNC | from 2Ω \ FC noted FCO.
Focal elements F of mi are FS and FCO.

end for
Generate randomly masses like in algorithm 1 such that masses of FS are the same
for both mass functions.
return M mass functions

Note that | FNC | + | FS | + | FCO | = | F | such that | F | is the number of focal

elements, | FS | is the number of the same focal elements that have the same masses,

| FNC | is the number of not conflicting focal elements and | FCO | is the number of

conflicting focal elements. The set FNC of not conflicting focal elements is generated

by choosing randomly any hypothesis and enumerating all subsets of 2Ω such that their

intersection with the selected focal element is not empty. For example, if the randomly

chosen hypothesis is ω, FNC is composed of subsets of 2Ω supporting ω.

Algorithm 8 is used to generate two sets of N mass functions for two sources s1 and

s2 such that the number of not conflicting focal elements is the same for mass functions

of the same index for both sources. From that focal elements, some of them are exactly

the same with the same mass for that mass functions. The rest of focal elements are

randomly chosen for both sources.

Plots of figures 4.6, 4.7, 4.8, 4.9 and 4.10 emphasizes the overall independence of

sources s1 and s2, Ind(s1, s2). In each plot, number of not conflicting focal elements

and number of the same focal elements with exactly the same masses are the same

for mass functions with the same index for both sources. In figure 4.6, we generated

100 mass functions with algorithm 8 for two sources s1 and s2. Mass functions are

defined on a frame of discernment |Ω| = 3; there are 4 focal elements and in each

plot the number of not contradictory focal elements is fixed. For the blue plot, there

are 4 focal elements and all these 4 focal elements are not contradicting. The number

of the same focal elements with the same masses is variating in [0, 4]. The blue plot

shows that whatever the number of the same focal elements with the same masses,
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Figure 4.6: Independence degree when the number of focal elements is 4 and |Ω| = 3

sources are dependent, Ind(s1, s2) = 0, because all focal elements are not conflicting.

In that case the clustering of mass functions of both sources gives similar results. Mass

functions with not conflicting focal elements are grouped together; as not conflicting

focal elements are chosen for the same mass functions, clusters of both sources are

similar leading to totally dependent sources.

In the green plot, mass functions of s1 and s2 have 4 focal elements from which 3 focal

elements are not conflicting and only 1 conflicting focal element. The number of the

same focal elements is variating on [0, 3]. Similarly for the red and blue plots, there

are also 4 focal elements from respectively 2 and 1 focal elements are not conflicting

and number of the same focal elements with the same masses are variating. Figure 4.8
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Figure 4.7: Independence degree when the number of focal elements is 5 and |Ω| = 4
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emphasizes the overall independence of s1 and s2, Ind(s1, s2), when |Ω| = 4 with 8 focal

elements. In each plot the number of not conflicting focal elements is fixed from which

the same focal elements with the same masses is variating. Also figure 4.9 emphasizes
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Figure 4.8: Independence degree when the number of focal elements is 8 and |Ω| = 4

the overall independence of s1 and s2, Ind(s1, s2), when |Ω| = 5 with 8 focal elements.

In each plot the number of not conflicting focal elements is fixed from which the same

focal elements with the same masses is variating. Finally, figure 4.10 emphasizes the
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Figure 4.9: Independence degree when the number of focal elements is 8 and |Ω| = 5

overall independence of s1 and s2, Ind(s1, s2), when |Ω| = 5 with 16 focal elements.

In each plot the number of not conflicting focal elements is fixed from which the same

focal elements with the same masses is variating.
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Figure 4.10: The independence when the number of focal elements is 16 and |Ω| = 5

Figures 4.6, 4.7, 4.8, 4.9 and 4.10 shows that sources are dependent when the

majority of focal elements are not conflicting or when the majority and conflicting.

However, when almost all focal elements are not conflicting clusters of both sources are

almost the same as mass functions are grouped according to the similar focal elements

(not conflicting). In the case of almost all focal elements are conflicting they are also

grouped according to the conflicting focal elements that are in this case similar. In

the case of variating number of not conflicting, similar and conflicting focal elements

sources are independent as there are no link between their focal elements.

4.7 Conclusion

In this chapter, we proposed a method to learn sources’ cognitive independence in order

to use the appropriate combination rule either when sources are cognitively dependent

or independent. We proposed also to learn sources’ positive and negative dependence

from the positive or negative correlation of their mass functions. Sources are cognitively

independent if they are different; not communicating and they have distinct evidential

corpora. The proposed statistical approach is based on a clustering algorithm applied to

mass functions provided by several sources. A pair of sources independence is deduced

from weights of linked clusters after a matching of their clusters. Mass functions pro-

vided by both sources are classified into several clusters, then clusters of both sources

are matched in order to estimate their independence, positive and negative dependence.

Clusters positive and negative dependence is conditional to sources dependence. Mass

functions of clusters dependence/independence and that of clusters positive and nega-

tive dependence are written in the same common frame of discernment in order to be
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combined. The sources’ overall dependence is the combination of all mass functions on

clusters positive/negative dependence.

In the next chapter, independence degree of sources is used either guide the choice

of the combination rule if it is either 1 or 0; when it is a degree over ]0, 1[, a new

combination rule that weights the conjunctive and cautious combinations with sources’

independence degree will be proposed. The proposed combination rule takes into ac-

count independence degree of sources. The next chapter is about uses of dependence

degree.
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Summary

Once sources’ degrees of independence are learned, one can decide if sources are inde-

pendent, positively or negatively dependent according to the principal of the maximum

of pignistic probability. Information on sources’ independence can guide the choice of

the type of combination rules to use. Thus, in a case of dependent sources only com-

bination rules tolerating redundant information can be used; otherwise if sources are

independent combination rules using the conjunctive and/or disjunctive combination

can be applied. Another solution is to integrate sources’ degrees of independence in the

provided mass functions. In this chapter, we recall some combination rules proposed

in the framework of the theory of belief functions; we detail a new combination rule

that weights the conjunctive and cautious combinations with sources’ degrees of inde-

pendence. Finally, we propose a tool for integrating sources’ degrees of independence

in their mass functions.
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5.1 Introduction

In previous chapters, we was interested on sources’ cognitive independence and espe-

cially on estimating sources’ degrees of independence, positive and negative dependence.

We proposed a statistical approach for learning sources’ independence from all mass

functions they provide. In our method, we used a clustering algorithm minimizing the

conflict into clusters. The purpose of that algorithm is to group together similar mass

functions or more precisely not conflicting mass functions.

After clustering, links between clusters are quantified in order to reveal any de-

pendence between clusters. When two clusters contain mass functions values of the

same objects, they are linked: The purpose is to link the most similar clusters contain-

ing mass functions values of the same objects. Two different matching of clusters are

obtained according to each source, and a weight is learned for each couple of linked

clusters reflecting their degree of dependence or independence. A set of mass functions

for each couple of linked clusters is obtained for each source.

A mass function reflects the dependence or independence of each linked clusters.

Another mass function can inform if the dependence is positive or negative in the case

of dependent clusters. If mass functions of dependent clusters are not conflicting then

this dependence is positive. In a such case, clusters contain same objects and their

values are not conflicting. Thus, sources are choosing similar focal elements when re-

porting about same objects. Therefore, sources are almost dependent. In the case when

mass functions are conflicting, linked clusters are negatively dependent because they

contain mass functions values of same objects but these mass functions are conflicting.

In that case sources are choosing conflicting focal elements when reporting about the

same objects.

Eventually, two mass function are obtained for each couple of matched clusters;

one mass function for the dependence or independence of that couple of clusters, and

the second is for the positive or negative dependence for the same clusters. The two

mass functions can be easily defined on a common frame of discernment in order to

be combined. The combined mass function illustrates each couple of linked clusters

independence, positive and negative dependence. The combination of obtained mass

functions yields to a unique mass function on the source independence, positive or neg-

ative dependence on the other one.

Learning sources independence, positive or negative dependence has three aims:

First, information about sources independence may guide the choice of the more ap-

propriate combination rule to use in the combination of mass functions provided by
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these sources. Second, that information is used in a new combination rule that is a

weighted average of the conjunctive and cautious combination. We propose a mixed

combination rule that calibrates the conjunctive and cautious combination with sources’

degree of independence. Finally, information on sources’ degree of independence may

be considered as a meta-knowledge that can be integrated in mass functions provided

by that source. In fact, mass function on sources independence and mass function

provided by that source are combined leading to a modified discounting operator.

The sequel of this chapter is organized as follows: In the second section, we present

an overview of combination rules proposed in the framework of the theory of belief

functions. In the third section, we detail our combination rule that is a weighted

average of the conjunctive and cautious combinations. Finally before illustrating and

concluding, we propose the justification of the combination of mass functions provided

by sources and that mass function on sources independence.

5.2 Idempotent and non-idempotent combination rules

Combination rules merge several sources’ beliefs in order to stress common hypotheses

on which they agree. Let s1 and s2 be two distinct and independent sources providing

two different mass functions mΩ
1 and mΩ

2 defined on the same frame of discernment Ω.

Combining these belief functions induces a third one mΩ
12 defined on the same frame

of discernment Ω summarizing mΩ
1 and mΩ

2 . To combine these mass functions, several

rules are proposed. Some combination rules work under the strong assumption that

sources are distinct and independent. That rules are not idempotent and do not tolerate

redundancy. Other rules do not impose such condition because they are idempotent.

Note that mass functions used in this chapter are defined on a frame of discernment Ω

and combined mass functions are defined on the same frame Ω.

5.2.1 Non-idempotent combination rules

(Dempster, 1967) proposed the orthogonal sum as a combination rule. The orthogonal

sum includes a uniform distribution of the conflict among all focal elements; thus it

is hidden and does not appear. The orthogonal sum is defined for two distinct mass

functions m1 and m2 as follows:

mΩ
1⊕2(A) = (mΩ

1 ⊕mΩ
2 )(A) =



∑
B∩C=A

mΩ
1 (B)×mΩ

2 (C)

1−
∑

B∩C=∅

mΩ
1 (B)×mΩ

2 (C)
∀A ⊆ Ω, A 6= ∅

0 if A = ∅

(5.1)
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Note that Dempster interpreted in (Dempster, 1967) the amount k as conflict.

The basic belief mass of the empty set is null, therefore this rule verifies normality

condition and works under the closed world assumption.

We note that m(∅) 6= 1, thus combining contradictory certain mass functions must be

avoided. The orthogonal sum cannot combine mass functions which cores does not

intersect.

(Zadeh, 1984) noticed a counter example where the orthogonal sum provided un-

satisfactory results. The counter example enlightened by Zadeh appears in the case

of a high disagreement between two sources. Suppose a frame of discernment Ω =

{ω1, ω2, ω3} and two mass functions m1 and m2 provided by two distinct and inde-

pendent sources. Mass functions m1, m2 and m1⊕2 are in table 5.1. In that case the

Table 5.1: Zadeh counter example

2Ω m1 m2 mΩ
1⊕2

∅ 0 0 0

ω1 0.9 0 0

ω2 0 0.9 0

ω1 ∪ ω2 0 0 0

ω3 0.1 0.1 1

ω1 ∪ ω3 0 0 0

ω2 ∪ ω3 0 0 0

Ω 0 0 0

least probable hypothesis ω3 becomes the most probable one after the combination due

to the high disagreement between m1 and m2. In order to solve the problem enlight-

ened by Zadeh’s counter example in (Zadeh, 1984) where the orthogonal sum produced

unsatisfactory results, many combination rules appeared.

One solution, proposed by Dubois and Prade in (Dubois and Prade, 1986), consists

on eliminating the mass on the empty set by the use of the disjunctive combination.

The disjunctive combination of two mass functions m1 and m2 is given as follows:

m1 ∪©2(A) = (m1 ∪©m2)(A) =
∑

B∪C=A

m1(B)×m2(C) (5.2)

(Yager, 1987) interpreted m(∅) as the amount of total ignorance, therefore it is

affected to Ω in order to have a normalized mass function. Yager’s rule of combination
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is defined for two mass functions m1 and m2 as follows:
mY (A) = m1 ∩©2(A) ∀A ∈ 2Ω, A 6= Ω and A 6= ∅
mY (Ω) = m1 ∩©2(Ω) +m1 ∩©2(∅)
mY (∅) = 0

(5.3)

(Dubois and Prade, 1988) proposed a suitable distribution of the mass on the empty

set. It is not the mass of the empty set, interpreted as global conflict, that is distributed

but the conflict issued from the combination of each conflicting focal elements. That

partial conflict, issued from the combination of conflicting focal elements, is attributed

to the disjunction of these elements. The combination of two mass functions m1 and

m2 with Dubois and Prade’s rule is given as follows:

mDP (A) =


m1 ∩©2(A) +

∑
B∩C=∅,
B∪C=A

m1(C)m2(B) A 6= ∅, ∀B,C ⊆ Ω, B,C 6= ∅

0 A = ∅
(5.4)

(Smets, 1990) proposed to use an open world assumption where a non null mass can

be affected to the empty set representing the degree of belief that the true hypothesis is

not enumerated in Ω. The conjunctive rule of combination does not redistribute m(∅)
but it is kept on the contradictory state ∅. The conjunctive rule of combination for two

mass functions m1 and m2 is defined as follows:

m1 ∩©2(A) = (m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)×m2(C) (5.5)

Smets proposed to use the conjunctive rule of combination only when both sources are

known to be reliable; the disjunctive rule of combination can be used when one of the

sources is unreliable.

(Lefèvre et al., 2002; Lefèvre et al., 2003) proposed a general framework in order

to unify several classical rules of combination and suggested other combination rules

allowing an arbitrary or adapted distribution of the conflict among subsets. The idea

of the general formulation of the combination rules consists on assigning the conflict

to subsets proportionally to a weighting function W . The general formula is given as

follows:

m(A) = m ∩©(A) +W (A)m ∩©(∅) (5.6)

The weighting function detailed in equation 5.7 is that leading to the conjunctive rules

of combination; that of equation 5.8 leads to Yager’s rule.

W (A) =

{
1 if A = ∅
0 otherwise

(5.7)
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W (A) =

{
1 if A = Ω

0 otherwise
(5.8)

(Lefèvre et al., 2002) proposed a learning of weighting factors by minimizing the

mean square error between pignistic probability and the membership indicator of a

training set.

(Smarandache and Dezert, 2005) proposed a Proportional Conflict Redistribution

(PCR5) rule distributing the partial conflict on conflicting focal elements. The PCR5

was reformulated by Martin and Osswald who proposed a PCR6 for the combination of

two or many mass functions (Martin and Osswald, 2006b; Martin and Osswald, 2006a;

Martin and Osswald, 2007b). The PCR6 combines two mass functions m1 and m2 as

follows:

mPCR6(A) = m1 ∩©2(A) +
∑
B∈2Ω,
A∩B=∅

(
m1(A)2m2(B)

m1(A) +m2(B)
+

m2(A)2m1(B)

m2(A) +m1(B)

)
(5.9)

In order to combine M mass functions provided by M independent and distinct sources,

the PCR6 (Martin and Osswald, 2006b; Martin and Osswald, 2006a; Martin and Oss-

wald, 2007b) is given as follows:

mPCR6(A) = m ∩©(A)+

M∑
j=1

mj(A)2
∑

M−1⋂
j′=1

Bσj(j′) ∩A = ∅

(Bσj(1),...,Bσj(M−1))∈(2Ω)M−1


M−1∏
j′=1

mσj(j′)(Bσj(j′))

mj(A) +

M−1∑
j′=1

mσj(j′)(Bσj(j′))

 (5.10)

And σj is in [1,M ] according to j as follows:{
σj(j

′) = j′ if j′ < j

σj(j
′) = j′ + 1 if j′ ≥ j

(5.11)

Dubois and Prade’s combination rule of equation (5.4) is a mixture of the conjunc-

tive and disjunctive combinations that distributes the partial conflict among conflicting

focal elements. Florea et al. proposed in (Florea et al., 2006; Florea, 2007) a mixed

combination rule that is a weighted average of the disjunctive and conjunctive combina-

tions. That combination rule distributes the global conflict k = m(∅) on focal elements

independently on their partial conflict. The combination of two mass functions m1 and

m2 with combination rule proposed by (Florea et al., 2006; Florea, 2007) is given as
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follows:

mFlo = W1(k)m1 ∪©2 +W2(k)m1 ∪©2 (5.12)

With:

W1(k) =
k

1− k + k2

W2(k) =
1− k

1− k + k2

(5.13)

(Martin and Osswald, 2007a) proposed also a mixed combination rule that weights

the disjunctive and conjunctive combinations with the similarity between focal ele-

ments. The combination of two mass functions m1 and m2 is given as follows:

mMar(A) =
∑

B∪C=A

W ′1(B,C)m1(B)m2(C) +
∑

B∩C=A

W ′2(B,C)m1(B)m2(C) (5.14)

Note that W ′1 and W ′2 are dissimilarity and similarity of B and C. For example:

W ′1(B,C) =
|B ∩ C|

min(|B|, |C|)
(5.15)

and W ′2(B,C) = 1−W ′1(B,C). Note that when W ′2 = 1 the conjunctive rule is obtained

and W ′1 = 1 corresponds to the disjunctive rule.

(Lefèvre and Elouedi, 2013) proposed a mixed combination rule that weights the con-

junctive and Dempster’s rules of combination. the proposed rule, named Combination

With Adapted conflict (CWAC) and noted ↔©, is given as follows:

m↔©(A) = γ1m ∩©(A) + γ2m⊕(A) (5.16)

With:

γ1 = d(m1,m2) (5.17)

γ2 = 1− d(m1,m2) (5.18)

Note that d(m1,m2) is Jousselme distance given in equation (3.24).

Example 5.1 In table 5.2, we present two mass functions given by two different

sources, these mass functions are combined using different combination rules.

5.2.2 Idempotent combination rules

All combination rules detailed in the previous section work under a strong assumption

of cognitive independence since they are used to combine mass functions induced by

two distinct sources. This strong assumption assumed for most of rules but never veri-

fied. (Denœux, 2008), proposed a family of conjunctive and disjunctive rules based on

triangular norms and conorms. Cautious and bold rules are members of that family and
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Table 5.2: Combining two mass functions with several combination rules

m1 m2 m1⊕2 m1 ∩©2 mY mDP mMean

∅ 0 0 0 0.17 0 0 0

P 0 0.3 0.2771 0.23 0.23 0.23 0.15

H 0.3 0.4 0.494 0.41 0.41 0.41 0.35

P ∪H 0.2 0.1 0.1084 0.09 0.09 0.18 0.15

M 0 0 0 0 0 0 0

M ∪ P 0.2 0 0.00482 0.04 0.04 0.04 0.1

H ∪M 0 0 0 0 0 0 0

Ω 0.3 0.2 0.0723 0.06 0.23 0.14 0.25

combine mass functions for which independence assumption is not checked. Cautious

combination of two mass functions m1 and m2 issued from probably dependent sources

is defined as follows:

m1 ∧©m2 = ∩©A⊂Ω A
w1(A)∧w2(A) (5.19)

Where Aw1(A) and Aw2(A) are simple support functions focused on A with weights

w1 and w2 (cf. Section 2.2.1) issued from the canonical decomposition (cf. Section

2.4.2) of m1 and m2 respectively, note also that ∧ is a min operator of simple support

functions weights. Cautious rule of equation (5.19) is unnormalized because of the use

of the conjunctive combination that has the empty set as absorbing element. By the

use of Dempster’s rule, the normalized cautious rule is obtained as follows:

m1 ∧©
?m2 = ⊕A⊂Ω,A6=∅ A

w1(A)∧w2(A) (5.20)

When the min operator ∧, is replaced by a max operator ∨, the bold combination rule

is obtained. Both cautious and bold rules combine mass functions issued from depen-

dent sources, but the cautious rule is more fitted to reliable sources, otherwise the

bold rule fits unreliable ones. Both bold and cautious combination rules are commuta-

tive, associative and idempotent. Cautious and bold rule do not have a neutral element.

(Boubaker et al., 2013) proposed a mixed combination rule that is a weighting of the

unnormalized and normalized cautious rule. The Cautious Combination with Adapted

Conflict (CCAC), noted .©, is given as follows:

m1 .©m2(A) = d(m1,m2)m ∧©(A) + (1− d(m1,m2))m ∧©?(A), ∀A ⊆ Ω

and m ∧©(A) 6= 1

(5.21)

Note that d(m1,m2) is Jousselme distance given by equation (3.24).

Finally, the mean is also a combination rule, thus a combined mass function is the
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average of a set of N mass functions. Therefore, for each focal element A of N mass

functions, the combined one is defined as follows:

mMean(A) =
1

N

N∑
i=1

mi(A) (5.22)

The choice of the combination rule is based on the dependence of mass functions

sources. Combination rules like (Dubois and Prade, 1988; Martin and Osswald, 2007a;

Murphy, 2000; Smets and Kennes, 1994; Yager, 1987) combine mass functions which

sources are independent, whereas cautious, bold, mean and CCAC rules are the most

fitted to combine mass functions issued from dependent sources. In Chapter 4, we

suggested a new learning of sources’ degrees of independence helping the choice of the

type of combination rules to be used. In the next section, we detail our new combination

rule integrating sources’ degrees of independence in the combination.

5.3 Mixed combination rule

In the combination step, sources dependence or independence hypothesis is intuitively

made without any possibility of check. Sources independence degree is not either 0 or

1 but a level over [0, 1]. The main question is “which combination rule to use when

combining partially independent/dependent mass functions?”

In this section, we propose a new mixed combination rule using conjunctive and

cautious rules detailed in equations (5.5) and (5.19). Combined mass function is a

weighted average of conjunctive and cautious combinations. When sources are depen-

dent, combined mass function is similar to the cautious combination; when they are

independent, combined mass function is similar to the conjunctive combination. In a

case of totally dependent sources (where independence is 0), the cautious and proposed

mixed combination rules are similar; whereas in a case of totally independent sources

(independence is 1), the conjunctive and proposed combination rules are similar. In

a case of an independence degree in ]0, 1[, combined mass function is the average of

conjunctive and cautious combinations weighted by independence degree of sources.

Assume that two sources s1 and s2 are independent with a degree γ such that

γ = Ind(s1, s2); m1 and m2 are mass functions provided by s1 and s2. The proposed

mixed combination rule is defined as follows:

mMixed(A) = γ ∗m ∩©(A) + (1− γ) ∗m ∧©(A), ∀A ⊆ Ω (5.23)

Note that the combined mass of a focal element A, mMixed(A), is the mean of its com-

bined mass using the conjunctive and cautious rules weighted by independence degree

of sources.

Degree of independence of a set of sources is given by equation (4.21), and the mixed
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combination of a set of mass functions {m1,m2, . . . ,mM} provided by sources

{s1, s2, . . . , sM} is also a weighted average such that:

γ = Ind(s1, s2, . . . , sM ) (5.24)

Properties of the proposed mixed combination rule

• Commutativity: Conjunctive and cautious rules are commutative. Independence

measure is symmetric because sources degree of independence is the same for a

set of sources. Then the proposed rule is commutative.

• Associativity: Conjunctive and cautious rule are associative but the proposed rule

is not because independence degree of M sources and M+1 ones is not necessarily

the same.

• Idempotent: Degree of independence of one source to itself is 0, in that case

the proposed rule is equivalent to the cautious rule. As the cautious rule is

idempotent, it is the case of the proposed mixed rule.

Therefore, mMixed(A) = m(A), ∀A ⊆ Ω.

• Neutral element: Mixed combination rule does not have any neutral element.

• Absorbing element: No absorbing element also.

Example Assume a frame of discernment Ω = {a, b, c} and two sources s1 and s2

providing two mass functions m1 and m2. Table 5.3 illustrates conjunctive and cautious

combinations as well as mixed combination in the cases where γ = 0, γ = 0.3, γ = 0.6

and γ = 1. When γ = 0, mixed and cautious combinations are equivalent; when γ = 1,

mixed and conjunctive combinations are equivalent, otherwise it is a weighted average

by γ ∈]0, 1[.

5.4 Integrating independence, positive and negative de-

pendence in mass functions

In the aim to take into account sources’ degrees of independence in mass functions they

provide, we proposed in (Chebbah et al., 2014) a method for combining mass functions

provided by sources and mass functions on sources’ degrees of independence.

Two different mass functions are combined in order to take account of sources’

degrees of independence. The first one is that of equation (4.31) which defines the in-

dependence, positive and negative dependence of one source according to another one.

The second one is any mass function mΩ provided by that source. Combining those
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Table 5.3: Combination of two mass functions

2Ω m1 m2 m ∧© m ∩© mMixed mMixed mMixed mMixed

γ = 0 γ = 0.3 γ = 0.6 γ = 1

∅ 0 0 0.1071 0.06 0.1071 0.093 0.0789 0.06
a 0.3 0.3 0.2679 0.45 0.2679 0.3225 0.3771 0.45
b 0 0 0 0 0 0 0 0
a ∪ b 0 0 0 0 0 0 0 0
c 0.2 0 0.1786 0.14 0.1786 0.167 0.1554 0.14
a ∪ c 0.2 0.4 0.2551 0.26 0.2551 0.2566 0.2580 0.26
b ∪ c 0 0 0 0 0 0 0 0
a ∪ b ∪ c 0.3 0.3 0.1913 0.09 0.1913 0.1609 0.1305 0.09

mass functions is similar to the combination of two different mass functions, a mass

function provided by a source with a mass function on that source’s reliability. The

justification of the discounting in Section 2.5.3 inspired us to justify the integration of

sources degrees of independence in mass functions they provide.

When combining with the conjunctive rule, an explicit hypothesis on sources’ total

independence is made. When sources are not so (independent), one can claim that

mass functions do not have to be combined with that rule and a more fitted rule has

to be used. However, sources are not either dependent or independent but they are

independent, positive and negative dependent with some degree in [0, 1].

In the case of independent sources, their mass functions can be combined with the

conjunctive rule; whereas, when sources are positively dependent, the mass function

provided by the dependent one must have no influence in the combination; it has to

be assimilated to a vacuous mass function. In the case of negative dependent sources,

the mass function of the negatively dependent one has to be reduced to a contradictory

mass function.

Consequently, mass functions of independent sources are taken as such; mass func-

tions of positively dependent source are considered vacuous (neutral element of the

conjunctive combination) and mass functions of negatively dependent sources are con-

verted to a contradictory mass function (high conflict due to the negative dependence).

To do this discounting schema, mass function of equation (4.31) that is defined on P
is combined with a mass function mΩ. We recall that in Section 4.5, two mass functions

defined on the frame of discernment P are obtained. Each mass function informs about
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the independence, positive and negative dependence of one source on the other. We

recall that mass functions of (4.31) are given as follows:

mPi (I) =
1

n

n∑
ki=1

αiki,kj (1− βiki,kj )

mPi (P ) =
1

n

n∑
ki=1

αiki,kj β
i
ki,kj

(1− Conf(Cliki , Cl
j
kj

))

mPi (P̄ ) =
1

n

n∑
ki=1

αiki,kj β
i
ki,kj

Conf(Cliki , Cl
j
kj

)

mPi (I ∪ P ) =
1

n

n∑
ki=1

(1− αiki,kj ) (1− Conf(Cliki , Cl
j
kj

))

mPi (I ∪ P̄ ) =
1

n

n∑
ki=1

(1− αiki,kj ) Conf(Cliki , Cl
j
kj

)

(5.25)

When number of mass functions in clusters provide a good estimation of clusters in-

dependence, αiki,kj = 1, ∀{i, j} ∈ {1, 2} and ∀{ki, kj} ∈ [1, n]. In that case, equation

(5.25) is given as follows:

mPi (I) =
1

n

n∑
ki=1

1− βiki,kj

mPi (P ) =
1

n

n∑
ki=1

βiki,kj (1− Conf(Cliki , Cl
j
kj

))

mPi (P̄ ) =
1

n

n∑
ki=1

βiki,kjConf(Cliki , Cl
j
kj

)

(5.26)

Note that αiki,kj is given by equation (4.14).

Mass function on sources dependence of equation (5.25) is defined on the frame of

discernment P but the mass function provided by a source is defined on any frame

of discernment noted Ω. To combine both mass functions, they must be defined on

a common frame of discernment. To do that, we will use the vacuous extension, de-

conditioning and marginalization detailed respectively in Sections (2.3.2), (2.5.2) and

(2.3.2). We assume a mass function provided by a source mΩ according to the source’s

independence or dependence on another source as follows:


mΩ[I](A) = mΩ(A)

mΩ[P̄ ](A) = mΩ(A) mΩ(A) = 1 if A = ∅, 0 else

mΩ[P ](A) = mΩ(A) mΩ(A) = 1 if A = Ω, 0 else

(5.27)

Equation (5.27) illustrates cases of an independent, positive and negative dependent
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source. When the source is independent, its mass function is unchanged; when it is

negatively dependent, its mass function is assimilated to a vacuous mass function and

finally when the source is positively dependent, its mass function is assimilated to a

contradictory mass function.

That mass functions mΩ[I], mΩ[P̄ ] and mΩ[P ] are deconditioned as follows:
mΩ[I]⇑Ω×P((A× I) ∪ (Ω× I)) = mΩ[I](A), A ⊆ Ω

mΩ[P̄ ]
⇑Ω×P

((A× P̄ ) ∪ (Ω× {I ∪ P})) = mΩ[P̄ ](A), A ⊆ Ω

mΩ[P ]⇑Ω×P((A× P ) ∪ (Ω× {I ∪ P̄})) = mΩ[P ](A), A ⊆ Ω

(5.28)

The last two lines of equation (5.28) correspond to the deconditioning of contradictory

and vacuous mass functions.

The mass function mP is extended to the frame Ω×P with the vacuous extension

as follows:

mP↑Ω×P (B) =

{
mP (A) if B = Ω×A, A ⊆ P
0 else

(5.29)

Then, both mass functions mP↑Ω×P and mΩ⇑Ω×P are defined on a common frame

Ω× P and can be combined with the conjunctive rule of combination:

mΩ×P
Conj (B) = mP↑Ω×P ∩©mΩ[I]⇑Ω×P ∩©mΩ

[
P̄
]⇑Ω×P

(B), ∀B ⊂ Ω× P (5.30)

Note that mΩ[P ]⇑Ω×P is a vacuous mass function.

Finally, mΩ×I
Conj is marginalized on Ω:

mΩ×P↓Ω (A) =
∑

{B⊆Ω×P |Proj(B↓Ω)=A}

mΩ×P
Conj (B) (5.31)

That process is done for both mass functions of s1 and s2 according to their indepen-

dence degrees. In other words, mP1 is a mass function on the independence, positive

and negative dependence of s1 according to s2, mP2 is that of s2 according to s1. The

mass function mP1 is combined with mΩ
1 provided by s1 and mP2 is combined with mΩ

2

provided by s2.

5.5 Experiments

Finally, to illustrate the proposed mixed combination rule and compare it to other com-

bination rules, three mass functions are generated randomly using algorithm 1. These

mass functions are combined with conjunctive, Dempster, Yager, disjunctive, cautious

and mean combination rules. They are also combined with the mixed combination rule

with different independence levels.
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Figure 5.1 illustrates distances1 between the mixed combination with several de-

grees of independence and combined mass functions using several rules: conjunctive,

Dempster, Yager, disjunctive, cautious and mean combination rules. Distances between

mixed combination with several independence degrees; and Yager, disjunctive, mean

and Dempster’s rules are linear and decreasing proportionally to γ. When sources’

degree of independence tends to 1, the mixed combination tends to the conjunctive

combination. On the other hand, when sources are dependent; mixed combination is

similar to cautious combination. When γ = 0.5, mixed combination is equally distant

to the cautious and conjunctive combinations.
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Figure 5.1: Distances between combined mass functions

We proposed that combination rule in order to take consideration of sources’ de-

grees of independence in the combination step. The proposed combination rule is a

mixture of the conjunctive and cautious combinations weighted with sources’ degrees

of independence. Another solution to take consideration of sources degrees of indepen-

dence is to integrate that degrees into mass functions provided by that sources.

In the previous section, we detailed the process of discounting mass functions with

their sources’ degree of independence. Assume a frame of discernment containing three

hypotheses: Ω = {ω1, ω2, ω3} and suppose that two sources s1 and s2 provided mass

functions detailed in table 5.4. The third row of table 5.4 is the conjunctive combi-

nation of mΩ
1 and mΩ

2 under a strong assumption of cognitive independence of s1 and

s2. Suppose that the strong assumption of cognitive independence of sources cannot

be made because sources’ independence degrees are learned with methods detailed in

1Jousselme distance detailed in equation (3.24).
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Table 5.4: Mass functions provided by s1 and s2

2Ω mΩ
1 mΩ

2 mΩ
1 ∩©2

∅ 0 0 0.02

ω1 0.2 0 0.18

ω2 0 0.1 0.08

ω1 ∪ ω2 0.5 0.6 0.63

ω3 0 0 0

ω1 ∪ ω3 0 0 0

ω2 ∪ ω3 0 0 0

ω1 ∪ ω2 ∪ ω3 0.3 0.3 0.09

Chapter 4. If s1 is positively dependent on s2 and the mass function on the dependence

of s1 on s2 is given as follows: 
mP(I) = 0.26

mP(P ) = 0.56

mP(P̄ ) = 0.18

(5.32)

Two possible solutions to take consideration of this mass function of the dependence

of s1 on s2:

• Use of the mixed combination rule: The first solution is to use the mixed com-

bination rule to combine mΩ
1 and mΩ

2 . Note that Id(s1, s2) = 0.26 and if we had

Id(s2, s1), Ind(s1, s2) would be the minimum of Id(s1, s2) and Id(s2, s1). For this

example Ind = 0.26 and table 5.5 illustrates the combination of mΩ
1 and mΩ

2 such

that γ = Ind = 0.26.

• Integrating mP in mΩ: Mass functions mP and mΩ are combined leading to

the discounting process detailed in Section 5.4. Table 5.6 details steps of inte-

grating degrees of independence detailed in equation (5.32) into mass function

provided by s2. In the first step (first column), mP is extended to mΩ×P with

the vacuous extension; Then (in the second and third columns) mΩ[I] and mΩ[P̄ ]

are deconditioned on Ω × P to have mΩ[I]⇑Ω×P and mΩ[P̄ ]⇑Ω×P . Finally, mass

functions are combined with the conjunctive rule. Once mass functions mP and

mΩ
1 are combined, discounted mass function mΩ×P↓Ω

1 can be combined with mΩ
2

as detailed in table 5.7.

Table 5.8 compares the combined mass function using the proposed mixed rule and

the mass function obtained by the discounting process proposed to integrate mP in mΩ.

The proposed rule generates less ignorance and Dempster’s conflict than the discounting
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Table 5.5: Mixed combination of mΩ
1 and mΩ

2

2Ω mΩ
1 mΩ

2 mΩ
Mixed

γ = 0.26

∅ 0 0 0.02

ω1 0.2 0 0.18

ω2 0 0.1 0.08

ω1 ∪ ω2 0.5 0.6 0.519

ω3 0 0 0

ω1 ∪ ω3 0 0 0

ω2 ∪ ω3 0 0 0

ω1 ∪ ω2 ∪ ω3 0.3 0.3 0.201

process. The proposed discounting process induces higher masses on the empty set and

on the ignorance because it takes consideration about degrees of independence, positive

and negative dependence and not only the independence degree (the proposed rule uses

only the independence degree).

Table 5.8: Comparison of the proposed mixed rule and the approach of integrating
independence degree in the mass function

2Ω mΩ×P↓Ω
1

∩©mΩ
2 mΩ

mixed

∅ 0.25432 0.02

ω1 0.0468 0.18

ω2 0.00768 0.08

ω1 ∪ ω2 0.15528 0.519

Ω 0.53592 0.201

In table 5.9, we illustrate the combination of mass functions mΩ
1 and mΩ

2 detailed

in table 5.4 with different degrees of independence, positive and negative dependence

given in tables 5.10 and 5.11. We notice that in the case of independent sources, the

combination of discounted mass functions is equivalent to the conjunctive combination.

When one source is negatively dependent on the other, a higher mass is attributed to

the empty set and finally, when one source is positively dependent on the other, some

degree of belief is transferred to the frame of discernment. Thus, the mass on the empty

set alarms about the contradiction between sources.
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Table 5.6: Discounting mΩ with the degree of independence of s1

2Ω mP↑Ω×P mΩ[I]⇑Ω×P mΩ[P̄ ]⇑Ω×P mΩ×P
∩©

∅ 0.18

ω1 × I 0.052

(ω1 ∪ ω2)× I 0.13

Ω× I 0.26 0.078

Ω× P 0.56 0.56

(ω1 × I) ∪ (Ω× P )

((ω1 ∪ ω2)× I) ∪ (Ω× P )

Ω× P̄ 0.18

Ω× (I ∪ P ) 1

(ω1 × I) ∪ (Ω× (P ∪ P̄ )) 0.2

((ω1 ∪ ω2)× I) ∪ (Ω× (P ∪ P̄ )) 0.5

Ω× P 0.3

Table 5.7: Combining discounted mΩ×P↓Ω
1 and mΩ

2

2Ω mΩ×P↓Ω
1 mΩ

2 mΩ×P↓Ω
1

∩©mΩ
2

∅ 0.18 0.25432

ω1 0.052 0.0468

ω2 0.1 0.00768

ω1 ∪ ω2 0.13 0.6 0.15528

Ω 0.638 0.3 0.53592
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Table 5.10: Cases of independence, positive and negative dependence degrees of s1

2P Case 1 Case 2 Case 3

I 0.81 0.09 0.2

P 0.1 0.8 0.1

P̄ 0.09 0.11 0.7

Table 5.11: Cases of independence, positive and negative dependence degrees of s2

2P Case 1 Case 2 Case 3

I 0.9 0.1 0.1

P 0 0.05 0.8

P̄ 0.1 0.85 0.1

Finally, proposed discounting schema changes decision of mass functions. The dis-

counting operator detailed in Section 2.5.3 integrates sources reliability degrees into

mass functions they provide without changing decisions. In other words, after dis-

counting a mass function, the most probable hypothesis does not change. Fortunately,

discounting a mass function with sources’ degree of independence change decision. The

discounting schema enhances faiths on the empty set and the frame of discernment

according to the source’s positive and negative degrees of dependence.

5.6 Conclusion

In this chapter we detailed some uses of independence, positive and negative degrees.

Thus, previous chapters were focused on learning sources’ degrees of independence and

this chapter details some uses of these degrees. A simple use of information on sources

degrees of independence is to guide the choice of the appropriate type of combina-

tion rules to use. Hence, when sources are completely independent, combination rules

detailed in Section 5.2.1 can be applied; but if sources are completely dependent, combi-

nation rules of Section 5.2.2 fit more. When sources degrees of independence are degrees

over [0, 1], we proposed two uses of these degrees: The first use is in a combination rule

that weights to the conjunctive and cautious combinations with sources degrees of in-

dependence. The second solution consists on integrating independence, positive and

negative degrees on mass function. The third solution leads to a discounting opera-

tor that redistributes beliefs on the empty set and the frame of discernment in cases
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of negative and positive dependence. After the discounting process the independence

assumption can be assumed.
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Conclusion

Managing uncertainty is a vast domain of research, many theories are used in this

context such as the theory of belief functions. This theory is a strong tool used for

representing and managing uncertainty and also to combine several uncertain infor-

mation in order to limit uncertainty or to reduce it. Evidential databases are used

to store both certain and evidential information. The main problem appearing when

handling several evidential databases is the conflict which may appear reflecting the

disagreement between their sources.

This conflict can be managed in the combination by using an appropriate combi-

nation rule and can also be eliminated or reduced before combination by taking into

account sources’ reliability degrees. Discounting evidential information before combin-

ing reduces the conflict which may appear after combining but this operator needs an

a prior knowledge on source’s reliability degree.

Many researches are focused on estimating or learning source’s reliability degree.

In this context, we proposed a method estimating a source’s reliability degree from

their conflict. Assuming all evidential information is provided by several sources and

this information is stored in an evidential databases, sources’ degrees of reliability are

estimated from a conflict measure computed from all that evidential information. This

method estimates the conflict of a source with all other available sources and uses that

conflict to compute the reliability of that source.

Source’s reliability estimation using its evidential database is done in the purpose of

discounting all evidential information stored in this evidential database before integrat-

ing them with evidential databases of other sources.

The conflict defined for evidential databases was also used in a clustering algo-

rithm. The clustering technique was proposed in the purpose of grouping together

similar objects of several sources in order to compare sources’ overall dependence and

estimate their independence. The conflict measure defined in evidential databases is

used in the clustering algorithm to minimize the conflict into resulting clusters and

maximize that conflict between clusters. In a case of several sources providing eviden-

tial information according to same objects; objects are classified separately in order

to group situations where a source have the same behavior. After clustering, sources’

119
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clusters are compared to find a clusters’ matching. By matching clusters, most similar

clusters are linked in order to compare cases where sources have roughly same behavior.

Once clusters are matched, the link between these clusters is quantified in order

to have a mass function on clusters independence or dependence. A first mass func-

tion is obtained for each couple of linked clusters. When clusters are dependent, that

dependence can be positive or negative. Clusters’ positive and negative dependencies

are estimated from the conflict between them. Thus, matched clusters contains similar

objects; if that objects are not conflicting then we can claim that sources choose similar

focal elements for same objects. Thus, they are not conflicting and they are positively

dependent. In the case where objects are conflicting, sources are choosing conflicting

mass functions for same objects. Thus clusters are negatively dependent.

Two mass functions are obtained for each couple of matched clusters: A first mass

function for clusters’ independence and dependence. The second mass function is for

matched clusters’ positive and negative dependence; this mass function is a conditional

to the one on clusters dependence. To combine both mass functions, they are trans-

formed to a common frame in order to have only one mass function for matched clusters’

independence, positive and negative dependence. All mass functions on matched clus-

ters’ independence, positive and negative independence are combined in order to have

only one mass function on sources’ independence, positive and negative dependence.

The proposed method of learning sources’ cognitive independence guides the choice

of the appropriate combination rule either when sources are cognitively dependent or

independent. Sources are cognitively independent if they are different; not communi-

cating and they have distinct evidential corpora. The proposed statistical approach is

based on a clustering algorithm applied to mass functions provided by several sources.

Sources’ independence is deduced from weights of linked clusters after a matching of

their clusters.

The mass function on sources’ independence, positive and negative dependence can

be integrated into mass functions provided by that sources. In that case, two different

mass functions defined on different and not compatible frames of discernment have to be

combined. Mass functions are transfered to a common frame of discernment and then

combined. This combination, integrates sources’ degrees of independence into mass

functions they provide. As mass functions are discounted proportionally to sources’

degrees of independence, they can be combined by assuming the hypothesis on their

sources independence.

Sources’ independence degree can either be integrated in mass functions provided
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by that sources or guide the choice of the combination rule if it is either 1 or 0. When

sources independence is 1, they are assumed independent and combination rules using

the conjunctive and/or disjunctive combinations can be applied. When sources indepen-

dence is 0, sources are dependent and an idempotent rule is needed for the combination.

When sources’ degrees of independence is not either 0 or 1, the choice of the combi-

nation rule is quite difficult. In extreme cases of independence, the choice of combina-

tion rules is easy but when independence degree is over ]0, 1[, the choice is not enough

justified. Therefore, when sources’ independence degree is over ]0, 1[, we propose a new

combination rule that weights the conjunctive and cautious combinations with sources

independence degree. The proposed combination rule takes into account independence

degree of sources.

In future works, we will tend to investigate and improve our researches in some fields

such as the combination, social networks, evidential databases and sources’ relevance

and truthfulness as follows:

• In the combination field, we will attack the dynamic part of the combination for

belief revision and updating (Smets, 2007). In the dynamic combination, mass

functions according to the same object are combined. That mass functions are

induced by distinct evidences by not necessarily provided by two distinct bodies

of evidences. Mass functions correspond to an evolving object. It is interesting

to study the combination in that context to propose a decision rule to choice the

more fitted combination rule.

• In the social networks field:

– We will try to collect real data in medical area or from social networks to test

the proposed learning method. In fact, users of social networks are subjective

sources who are communicating and providing dependent and independent

information. Testing the method on real data where sources are known and

their degrees of independence are known may validate the proposed method.

Testing the proposed clustering on real data is quite interesting especially

for comparison with other clustering algorithms.

– Some researches are about trust inference in social networks (Levien, 2002;

Kuter and Golbeck, 2007; Kuter and Golbeck, 2010) can motivate depen-

dence inference in such networks. The proposed method may be adapted to

social networks to detect dependencies between users. In fact, when depen-

dencies between users of social networks are known reliability of propagated

information may also be learned. It can also be used in marketing (Kempe

et al., 2003) for influence propagation to promote new products and define
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new marketing strategies. Indeed, a company wishing to launch a marketing

campaign or a new product can use relations of dependencies to speed up the

propagation. It is interesting to investigate the combination of propagated

messages in social networks and study the combination in that case.

• For evidential databases, we proposed a conflict measure to solve the conflict

that may appear when integrating these databases. Till now, some researches are

focused on possibilistic (Bosc et al., 2003), probabilistic (Cheng et al., 2003) and

fuzzy queries (Bosc and Pivert, 1995); however, there are not enough researches on

evidential databases and evidential queries; there is no model for such databases

even it seems promising (Anand et al., 1996). Thus, it is interesting to investigate

and propose a new model for evidential databases and also a query language

that supports uncertainty in such databases. In uncertain query languages, the

combination and conflict solving have also to be tackled.

• Finally, recent researches (Pichon et al., 2012) are focused on relevance and truth-

fulness of information sources. It may be interesting to propose a learning of

truthfulness and relevance of sources because such information is useful when

coping with evidential information provided by that sources.
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Compiègne, France. Springer Berlin Heidelberg.

Chebbah, M., Ben Yaghlane, B., and Martin, A. (2010a). Reliability estimation based

on conflict for evidential database enrichment. In Workshop on the theory of belief

functions, Brest, France.

Chebbah, M., Kharoune, M., Martin, A., and Ben Yaghlane, B. (2014). Considérant
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