
HAL Id: tel-01373281
https://theses.hal.science/tel-01373281

Submitted on 28 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A study to define an automatic model transformation
approach based on semantic and syntactic comparisons

Tiexin Wang

To cite this version:
Tiexin Wang. A study to define an automatic model transformation approach based on seman-
tic and syntactic comparisons. Other. Ecole des Mines d’Albi-Carmaux, 2015. English. �NNT :
2015EMAC0015�. �tel-01373281�

https://theses.hal.science/tel-01373281
https://hal.archives-ouvertes.fr

Acknowledgements

Time flies!

It has been more than four years since the first time that I stepped on the ground of France; at that time, I

was a student pursuing a master degree. Now, my postdoctoral contract has been carried out for three

months. During the last four years, for me, there are too many moments of both happiness and bitterness.

Also, I grew up from a teenager to a man. I should say thank you to many people who helped me become

a doctor and enjoy the life in France.

My deepest gratitude goes first and foremost to the director of my thesis Professor Frederick Benaben and

my supervisor Sebastien Truptil, for their constant encouragement and guidance. To me, they are not only

my colleagues (help me with work) but also my friends (take care of my life). Without their consistent

and illuminating instruction, my thesis could not have reached its present form; without their concern and

care, my life in France would be totally different (becoming a tough one).

Second, I would like to express my heartfelt gratitude to all of my colleagues from the laboratory “CGI” –

EMAC; they are so kind and enthusiastic. “CGI” is a family and all the colleagues are always ready to

help each other. We had group activities (e.g. the buffet, badminton match and mountain biking) and we

shared the happiness. The friendship is enhanced through such kind of activities. Especially, I want to

mention two colleagues “Aurélie Montarnal” and “Isabelle Fournier”, they helped me a lot with the

official issues (as a foreigner, the official issues are really miscellaneous and distracting in France).

Next, I am also greatly indebted to my friends here. They did sports with me and gave me pleasant leisure

in my spare time. Because of them, my life here is more rich and colorful. Good restaurants, special foods,

visiting attractions, etc. they are everywhere within my good memories. I built international friendship

with friends from America, Montenegro, Costa Rica, etc. I really cherish the hard-won friendship. Many

good people did me good things and left good memories to me. One of them is Laurent Steffan, he is the

first one in France that I regarded as my true foreign friend. No matter where I am in the future, I will

always remember him.

Finally and most importantly, my thanks would go to my beloved family for their loving considerations

and great confidence in me all through these years. Without the support from my parents, I could nerve

image that I can study abroad and get PhD diploma in a developed country. To be a son and the only child

in my family, words could not convey all my feelings to my parents. Hope everything goes well with

them.

 Contents

I

Contents

General Introduction... 1

Chapter I: Problem Statement .. 9

I.1 Introduction ... 10

I.2 Modeling & Model transformation .. 11

I.3 Model transformation usage & weaknesses ... 12

I.3.1 The usage of model transformations in software engineering... 12

I.3.2 Model transformation weaknesses .. 14

I.4 New requirement on model transformation from engineering domains ... 14

I.4.1 Enterprise interoperability .. 15

I.4.2 Web service composition .. 17

I.4.3 Data & knowledge engineering ... 19

I.4.4 Summary of the three situations .. 21

I.5 Origin of the thesis ... 22

I.5.1 MISE 2.0 introduction ... 22

I.5.2 MISE 2.0 & Model transformation .. 23

I.5.3 Specific requirement on model transformation of MISE .. 24

I.6 Conclusion .. 25

Chapter II: Literature review: concurrent and component issues to this research work 27

II.1 Introduction .. 28

II.2 Context of model transformation research domain ... 30

II.2.1 Model-driven architecture and model transformation ... 30

II.2.2 Model transformation techniques ... 32

II.2.3 Model transformation category ... 37

II.3 Model transformation practices ... 40

II.3.1 General practices of model transformation .. 40

II.3.2 Model transformation practices applying semantic detecting .. 41

II.4 Syntactic checking and its usage ... 42

II.5 Semantic checking and its usage .. 43

II.6 Ontology .. 43

Contents

 II

II.7 Model transformation validation .. 44

II.8 Conclusion ... 46

Chapter III: Automatic model transformation methodology (AMTM) overview .. 48

III.1 Introduction ... 49

III.2 Fundamental theories of building AMTM .. 50

III.2.1 Theoretical main framework defined in AMTM ... 50

III.2.2 The meta-meta-model .. 52

III.3 Iterative model transformation process on meta-model level .. 54

III.3.1 Principle of matching in AMTM .. 55

III.3.2 matching on element level ... 57

III.3.3 hybrid matching .. 59

III.3.4 Cross-level matching ... 61

III.3.5 auxiliary matching ... 62

III.4 Validation process on model level ... 64

III.5 Conclusion .. 64

Chapter IV: Combining S&S into model transformation process ... 66

IV.1 Introduction: the reason and objective of applying S&S in AMTM ... 67

IV.2 The mechanism of combining S&S in AMTM .. 68

IV.3 Relation between semantic checking and syntactic checking ... 69

IV.4 the mechanism of selecting matching pairs based on S_SSV .. 70

IV.5 Simple use case of using S&S ... 72

IV.6 Conclusion .. 73

Chapter V: Semantic checking measurements involved in AMTM ... 74

V.1 Introduction .. 75

V.2 Basic requirement of doing semantic checking .. 76

V.2.1 Semantic thesaurus “WordNet” .. 76

V.2.2 AMTM Semantic thesaurus: AMTM_ST ... 78

V.3 Semantic relation detecting mechanism .. 81

V.3.1 Simple semantic relations detection ... 82

V.3.2 Iterative semantic relations detection... 82

V.4 Simple use case ... 83

V.5 Specific content is needed to enrich AMTM_ST ... 84

Contents

 III

V.6 Conclusion ... 86

Chapter VI: Syntactic checking measurements involved in AMTM .. 88

VI.1 Introduction ... 89

VI.2 Syntactic checking measurements in AMTM ... 90

VI.2.1 Predefined syntactic checking measurements ... 90

VI.2.2 “Levenshtein Distances” algorithm .. 91

VI.3 Conclusion .. 93

Chapter VII: Software tool implementation & use case ... 96

VII.1 Introduction .. 97

VII.2 Software tool implementation ... 98

VII.2.1 Requirement analysis .. 98

VII.2.2 System design .. 100

VII.3 Complete use case .. 103

VII.3.1 The first model transformation in this use case .. 104

VII.3.2 The second model transformation iteration in this use case .. 109

General Conclusion ... 116

References .. 124

Annex: AMTM-SS implementation ... 135

Résumé long en français de la thèse .. 155

Introduction ... 155

Conclusion .. 157

Vue d’ensemble de la démarche AMTM .. 160

Méthode de calcul des correspondances S&S ... 163

Calcul de la correspondance sémantique. ... 164

Calcul de la correspondance Syntaxique .. 166

Cas d’étude et présentation du preuve de concept .. 166

References ... 168

Contents

 IV

List of figures

General Introduction

Figure GI-1: Illustration of collaborative situations and its obstacles. ... 3

Figure GI-2: Relation between real systems and its models. .. 4

Figure GI-3: Using model and model transformations to serve to collaboration. .. 5

Figure GI-4: Structure and main parts of this thesis. .. 6

Chapter I Problem statement

Figure I-1: Position of Chapter one in the thesis. ... 10

Figure I-2: Relationships between subject, model and meta-model (OMG, 2008). 11

Figure I-3: Illustration of modeling process. ... 12

Figure I-4: Usage of modeling and model transformations in software developing process. 13

Figure I-5: An illustration of enterprise interoperability issue (Wang et al, 2015a). 15

Figure I-6: EIF structure and data sharing interoperability involved. ... 16

Figure I-7: Web service identifiers (Wang et al, 2015b). .. 18

Figure I-8: Web service composition situation (Wang et al, 2015b). ... 19

Figure I-9: Different presentation layers from data to wisdom (Ackoff, 2010). ... 20

Figure I-10: Relations among natural languages, data, information and specific domains (Wang et al,

2015c). .. 20

Figure I-11: Three levels defined in MISE (Benaben et al, 2015). ... 22

Figure I-12: Four steps in the lifecycle of MISE (Benaben et al, 2015). .. 24

Chapter II Literature Review

Figure II-1: Position of chapter two in the thesis. ... 28

Figure II-2: Map of sections of chapter two with regards to the global objective. 29

Figure II-3: General understanding of MDA (OMG, 2014). ... 30

Figure II-4: MDA three viewpoints (Wang, 2015c). .. 31

Figure II-5: Operational context of QVT (OMG, 2008). ... 32

Figure II-6: QVT languages layered architecture (OMG, 2008). .. 33

Figure II-7: ATL layered architecture (Jouault et al, 2008). ... 33

Figure II-8: ATL VM architecture (Jouault et al, 2008). ... 34

Figure II-9: The object hierarchy of GReAT (Karsai et al, 2003). ... 36

Figure II-10: Marking and pattern model transformation method (Bourey, 2011). 39

Figure II-11: Models merge (Bourey, 2011). ... 39

Figure II-12: Meta-model based model transformation category (Wang, 2015c)...................................... 40

Figure II-13: Example of the trace links collected in a MDE scenario (Santiago et al, 2012). 46

Contents

 V

Chapter III AMTM Overview

Figure III-1: The position of chapter three to the thesis. .. 49

Figure III-2: The theoretical main framework created for AMTM. ... 51

Figure III-3: The meta-meta model involved in the theoretical main framework. 52

Figure III-4: Iterative model transformation process. ... 54

Figure III-5: Detecting process for shared parts between source and target models. 55

Figure III-6: Matching principle defined in AMTM. ... 56

Figure III-7: Matching focus of the first matching step... 57

Figure III-8: Comparing mechanism in matching on element level. ... 57

Figure III-9: Matching focus of hybrid matching step. .. 59

Figure III-10: Comparing mechanism of hybrid matching step. .. 60

Figure III-11: Matching results in hybrid matching step. .. 60

Figure III-12: Possible matching results of cross-level matching step. ... 61

Figure III-13: Matching focus of auxiliary matching step. ... 62

Figure III-14: Structure of AMTM_O (represented thanks to Protégé). ... 63

Chapter IV S&S mechanism

Figure IV-1: The position of chapter four in this thesis... 67

Figure IV-2: Bridge cross the gap of models’ items and word set. ... 69

Figure IV-3: Matching pair choosing mechanism. ... 71

Chapter V Semantic Checking Measurements

Figure V-1: The position of chapter five to the thesis... 75

Figure V-2: Structure of AMTM _ST. ... 78

Figure V-3: Locating step of semantic relations detecting process. ... 81

Figure V-4: Detecting mechanism of simple semantic relations. ... 82

Figure V-5: Iterative semantic relations detecting process illustration. ... 83

Figure V-6: Iterative hypernym semantic relations illustration. ... 84

Figure V-7: Relationship between model transformation domain and semantic checking. 85

Figure V-8: Methods of enriching the general semantic thesaurus. .. 85

Chapter VI Syntactic Checking Measurements

Figure VI-1: The position of chapter six in this thesis. .. 89

Figure VI-2: A simple illustration of syntactic checking measurements involved in S&S. 94

Chapter VII AMTM-SS Implementation & Use Case

Figure VII-1: Positon of chapter seven in this thesis. .. 97

Figure VII-2: A simple illustration of designing AMTM-SS. ... 100

Figure VII-3: Package design illustration. .. 101

Figure VII-4: The complete use case of AMTM. .. 103

Contents

 VI

Figure VII-5: The S&S comparison executed between “student” and “person”....................................... 105

Figure VII-6: The testing results of matching on element level with two elements: “student” and

“person”. ... 106

Figure VII-7: Matching results on element level in the first transformation iteration of this use case. .. 107

Figure VII-8: Illustration of Hybrid matching testing results. .. 108

Figure VII-9: Matching result of the first model transformation iteration in this use case. 109

Figure VII-10: Illustration of second model transformation matching iteration in this use case. 110

Figure VII-11: Matching result on element level of the second iteration phase. 111

Figure VII-12: Matching result on element level of the second iteration phase. 112

Figure VII-13: Final matching result of the second iteration phase in this use case. 112

Figure VII-14: Target models generated by using the automatically detected mappings. 113

General Conclusion

Figure GC-1: Content structure of this thesis. .. 118

Figure GC-2: MISE 1.0, MISE 2.0 and MISE 3.0 iterations (Benaben et al, 2012). 120

Figure GC-3: Illustration of possible automatic validation solution. .. 121

Figure GC-4: A broader vision of the usage of AMTM. ... 123

Contents

 VII

List of tables

Chapter I Problem statement

Table I-1: Three difficulties of defining high efficient model transformation methodology. 25

Chapter II Literature Review

Table II-1: Model transformation techniques comparisons ... 36

Table II-2: Category of model transformation situations ... 37

Table II-3: Comparisons among three model-to-model model transformation practices 41

Table II-4: Examples of existing ontologies ... 44

Table II-5: Difficulties and solutions of defining automatic model transformation methodology 46

Chapter III AMTM Overview

Table III-1: Simple illustration of the four matching steps ... 56

Table III-2: Validation methods for AMTM ... 64

Chapter IV S&S mechanism

Table IV-1: Word pairs defined in this use case ... 72

Chapter V Semantic Checking Measurements

Table V-1: Number of words, word senses, and synsets stored in WordNet 2.1 (Huang, 2007) 77

Table V-2: Semantic relations maintained in WordNet 2.1 (Huang, 2007) .. 77

Table V-3: Semantic relations built in AMTM _ST and their value pairs .. 80

Table V-4: Content stored in AMTM _ST .. 80

Table V-5: Semantic relations and values detected in this use case .. 84

Chapter VI Syntactic Checking Measurements

Table VI-1: Several situations and examples of words in special formats .. 90

Table VI-2: Initiate calculation table of “Levenshtein Distances” ... 92

Table VI-3: “Levenshtein Distances” calculation results of this case .. 93

Chapter VII AMTM-SS Implementation & Use Case

Table VII-1: Assigning values to uncertain impact parameters for this use case 104

Table VII-2: Comparisons on property level for this use case... 106

Table VII-3: Potential matching pairs on element level in this use case... 107

Table VII-4: Hybrid matching results in this use case ... 107

Table VII-5: Cross-level matching results in this use case ... 108

Table VII-6: Potential matching pairs on element level of second iteration in this use case 110

Table VII-7: Comparing pairs in cross-level matching step ... 111

Contents

 VIII

General Conclusion

Table GC-1: three difficulties of defining high efficient model transformation methodology 117

 General introduction

 1

 General Introduction

 General introduction

 2

To describe or measure a subject, different words and units might be used. For instance, Celsius,

Fahrenheit and Kelvin could be used to describe temperature; however, for a same temperature (e.g.

15 ℃), the three measurements use different values to describe it as: 15℃, 59 ℉ and 288.15°K. Another

example, to describe a date (e.g. 15
th
 of September, 2015), people from different countries use different

formats to represent it, such as: 15/09/2015 in France, 09/15/2015 in United State of America and 2015-

09-15 in China, etc. The two instances reveal the difference in syntactic aspect of describing a same

subject. Furthermore, the difference also exists in semantic aspect of describing a same subject. For

example, within the same language (e.g. English), different words could have similar meanings, for

instance: fine, glorious and happy. Also, there are different relationships between different words, such as:

inclusion (automobile - van), composition (university - faculty) and inheritance (father - son), etc. In

different languages, same subjects stand by different words, student (English) to étudiant (French).

Therefore, bridging the gap between syntactic and semantic differences could help people coming from

different cultures (e.g. Muslim and Chinese) or different regions (England and Australia) to work together.

Such a working environment (heterogeneous partners involved) could be regarded as collaboration.

Nowadays, the rapid development of science and technology in various engineering domains makes the

world become “smaller and smaller”. In some aspects, this trend leads changes in people’s lifestyles and

ways of working; furthermore, it also leads the appearance of more and more collaborations among

countries, organizations and persons, who are seeking to an optimal solution (e.g. focusing on political

factor, interest factor, and emotional factor).

Comparing to the traditional collaborations, the new coming collaborations own characteristics such as:

last short period, dynamic combination of partners and globally cooperation (Touzi et al, 2007). These

collaborations are created to achieve specific goals; for achieving a common goal, partners coming from

different domains might be involved in. Furthermore, the involved partners might be heterogeneous:

speaking different languages, belonging to different systems, applying various tools (especially on

information technique aspect) and obeying different cultures. Thus, collaboration could be seen as a

“system of systems (SoS)”; as stated in (Maier, 1998), there are five criteria to define a SoS: (i)

Operational independence of the systems, (ii) Managerial independence of the systems, (iii)

Evolutionary development of the system of systems, (iv) Emergent behavior of the system of

systems, and (v) Geographical distribution of elements. Considering the context of SoS, each partner

involved in collaboration is a system and all partners compose the system of systems. Focusing on the

particular partners (systems), two criteria mentioned above: operational and managerial independences

are important. Indeed, they imply that each partner has to work with its own means and vocabulary, thus

both of the two criteria concern about the semantic and syntactic aspects conveyed by the partners

(systems).

The characteristics of new collaborations bring new problems, which need to be solved. A common

problem of new collaborations is: how to build efficiently and effectively collaboration among the

partners (systems)? Generally, the main obstacles in these collaborations exist on the different syntactic

and semantic representations used by partners. Moreover, these obstacles could be divided into two

levels: human and technique; the idea of this division is adopted from (Chen et al, 2008). Figure GI-1:

Illustration of collaborative situations and its obstacles. Figure GI-1 shows a simple illustration of

collaborations and their obstacles.

 General introduction

 3

Figure GI-1: Illustration of collaborative situations and its obstacles.

Figure GI-1 part (a) is a simple illustration of a collaborative situation, which contains six partners. Based

on the concept of System of Systems, each partner could be seen as a heterogeneous and autonomous

partner, which has to exchange information with other partner during all the lifecycle of the collaboration.

These interactions meet barriers from two levels shown in Figure GI-1 part (b): human and technique. On

human level, the obstacles are: different speaking and writing languages, different working systems and

different embracing cultures; on technique level, the main obstacles are mainly in the technical tools:

production machines and information technology (IT) tools (e.g. information systems: IS). There exists an

overlap region between the two levels: data and knowledge from human level that are stored and

expressed in IT ways. As stated in (Alessandro et al, 2008), a computer Information System (IS) is a

system composed of people and computers that processes or interprets information. Moreover, the

distinction between human and IT is also underline in the definition of Information System given by

(Morley, 2002). Morley defines Information System as a system composed of two sub-systems, which are:

Information treatment system and Informatics system.

Adopted the idea expressed in (Chen et al, 2007) “barriers in enterprise interoperability”, one of the

difficult points in collaboration on human level is communication. The communication difficulties come

from two aspects: languages (e.g. speaking and writing) and working systems (e.g. organizational,

management).

 Languages: communication (with a shared understandable language) among partners is a

preferable solution; but different partners may use their own languages, which have specific:

vocabulary, grammar, special expressions, etc. The structure of one language could be similar to

the structure of another language (e.g. French and Italian) or totally different to each other (e.g.

Chinese and English).

 Working Systems: normally, different countries and organizations apply different

organizational structures to manage daily business. Moreover, people work in different

departments and at different levels that are defined within these organizational structures. In

order to improve the efficiency of collaborations, interactions should take place between same

or similar departments and between people at same or similar working level.

In order to overcome the obstacles on human level, it is necessary to recognize and identify the

differences in languages and in organizational structures that are used by different partners involved in

 General introduction

 4

collaborations. Based on the technical point of view, the difficult points of collaboration are how to allow

interaction between software and heterogeneous production machines. Nowadays, based on the growth of

data, it is not realistic to think that the human level is enough to achieve the shared goals of collaboration.

Thus, collaboration at the IT level is also required.

The aim of the research work, which is presented in this PhD, is to allow heterogeneous partners to

work together in a hurry while keeping their own characteristics. In order to achieve this aim, here

we mainly focus on the obstacles of data transfer. As explained before, these obstacles could have two

kinds of sources. (i) People express and record data (knowledge) based on their languages and cultures.

Normally, this kind of knowledge is domain-specific; leaving the specific context, the knowledge might

become rough data or information without special meaning. (ii) Data & Knowledge expressed in IT tools:

at this moment, large institutions and organizations use many kinds of IT tools (e.g. Microsoft office

software, database, simulation software) to manage their daily business. The data and knowledge are

heterogeneous; furthermore, these kinds of IT tools are also heterogeneous: build within different

software environments, develop by different programming techniques, etc. Vast amounts of data and

knowledge are stored in these tools. In order to overcome the obstacles of collaboration on technique

level, one important aspect is to use and share these data and knowledge stored in different IT tools.

Moreover, the new coming collaborations are complex due to (i) the heterogeneity of involving partners,

and (ii) the interactions between them are complex due to their heterogeneity. To analyze complex

systems and simulate complex processes, models could be built to represent the systems and simulate the

processes. For the reason “models could reflect characteristics of systems depending on some specific

point of views” (Bézivin, 2006), different models could be built to represent one system to highlight

different characteristics of it. As an example, the “Computer Integrated Manufacturing Open System

Architecture”: CIMOSA (Kosanke et al, 1999) is a framework, which defines the mechanism of building

models for enterprise. Figure GI-2 shows the relation between a system and its models.

Figure GI-2: Relation between real systems and its models.

In the modeling world, model has a specific meaning; many definitions have been provided for it.

Adopted from (Bézivin, 2006), a model is an abstraction representation of a subject (or part of a subject)

in the real world and it is built with a specific representation language. As another key concept, model

transformation means the process of taking in a source model and generating a target model; it

could be used to build connections between different models. The two concepts: model and model

transformation will be illustrated in detail in the first chapter. In modeling world, everything is a model or

could be modeled and different models could be connected by model transformations. In this way, models

 General introduction

 5

and model transformations could be used together to do simulation, verification and validation of

complex systems and processes.

Based on the fact “systems (e.g. partners in collaboration) could be presented by models” and

models could be connected by model transformations, we could assume that modeling and model

transformation practices could be used to help collaboration to shared information without lot of human

efforts. Indeed, within collaboration, each of the involved partners could be represented by a group of

models; to simulate the connections among these partners, model transformations are applied. This thesis

focuses on how to build these connections (comparing, sharing and exchanging knowledge among these

partners). Since model transformations provide a proper solution to this kind of problems, an automatic

model transformation methodology: AMTM is proposed in this thesis. Figure GI-3 shows the idea of

using models and model transformations to serve collaboration.

Figure GI-3: Using model and model transformations to serve to collaboration.

As a conclusion, one of the main problems of the new coming collaborations is the complexity of the

heterogeneous partners and building connections (sharing and exchanging data, information and

knowledge) among them. However, as the heterogeneous of the system themselves, the models built to

present them are also heterogeneous. Moreover, the number of modeling techniques is numerous, models

could also be heterogeneous. Due to the complexity and heterogeneity of these models, making

transformations among them is also a challenge.

Large amount of model transformation principles and techniques have been developed; based on them, a

large number of model transformation applications have been created for serving both domain specific

problems and cross-domain problems. However, both of the two kinds of model transformation

applications have their own weakness.

 Domain specific applications: focus on particular problematic; they have constraints on

modeling techniques and applicable domains (e.g. some model transformation applications

could only serve to enterprise engineering or software engineering). So, the reusability and

portability of them are poor, and thus lot of user efforts are asking to achieve it. On the

other hand, this kind of applications has many advantages: as they focus on particular

problematic, they are designed to be automatically or semi-automatically executed, easy to

use, etc.

 Cross-domain applications: serve broad purpose and consider about as many as possible the

transformation situations. The weaknesses of them: complex to use, huge manual efforts have to

 General introduction

 6

be involved, etc. In some cases, this kind of applications has also constraints on modeling

techniques and applicable domains.

The new coming collaborations own specific characteristics: heterogeneous partners from various

domains, transient occurrence and specific period of duration for each partner, dynamic combination of

partners. Based on the fact that many powerful modeling techniques have been developed and many

engineering domains have already adopted one or several of these techniques to serve their problems, an

efficient model transformation methodology is needed. Such a model transformation methodology should

contain the advantages: easy to use, serve broad purpose (ignore application domains) and high

efficient (automatic executing in order to reduce manual efforts and repetitive tasks)

In order to develop a high efficient model transformation methodology, the existing model transformation

principles and practices should be considered and compared to extract useful ideas; furthermore,

techniques and principles from other research and engineering domains might also be involved in this

methodology. Nevertheless, it is important to solve a specific problem to be able to define an easy to use

methodology without lot of human effort. This problem is the exchange of heterogeneous data due to a

syntactic or semantic difference between partners. The whole structure of the proposed methodology

AMTM is shown in Figure GI-4. AMTM is manly based on involving semantic and syntactic checking

measurements into a refined model transformation process.

Figure GI-4: Structure and main parts of this thesis.

 General introduction

 7

On the basis of the relevant research work, the detail of AMTM is illustrated. Moreover, to test the

feasibility and correctness of the theories defined in AMTM, a software tool is developed and a model

transformation use case is executed with this software. The new ideas proposed are presented separately

from the detail of AMTM. These new ideas are regarded as the scientific contribution proposed by this

thesis. Therefore, this thesis is divided in eight main parts.

 The first chapter: problem statement. This chapter focuses on two kinds of problems: (i)

problems in new coming collaborative situations, and (ii) problems of using model transformation

methodologies to solve the first kind of problems. Three concrete examples of new coming

collaborative situations are presented: enterprise interoperability, web service composition and

data & knowledge engineering. The main and common problems in these situations are how to

connect heterogeneous partners involved in and how to share the information (data) among these

partners. By adapting MDE theories: building models to simulate partners and doing model

transformation to share information among them, both of the two problems could be solved. As

the inner requirement of these collaborative situations “information sharing and exchanging

should be done within short period”, the model transformation methodology involved should

have high efficiency. In order to improve the efficiency of traditional model transformation

methodologies, the syntactic and semantic checking methods should be used to replace the

manual effort involved before.

 The second chapter: literature review about AMTM. The content in this chapter could also be

divided into two groups: review the research work that relates to model transformation domain,

and the other techniques involved in AMTM. The review work in first group contains: a brief

introduction to model-driven engineering and model driven architecture, several existing

prominent model transformation techniques and model transformation practices, model

transformation methods category, etc. The review work in the second group contains:

introduction and real applications of syntactic checking methods, semantic checking methods and

ontology, etc.

 The third chapter: overview of AMTM. The content in this chapter could also be divided into

two dimensions. The first dimension concerns the theories involved in AMTM; a theoretical main

framework and the meta-meta-model involved in this framework are presented and explained.

The theoretical main framework reveals the method of doing model transformation in AMTM: a

refined meta-model based model transformation process. The meta-meta-model defines the

mechanism of doing syntactic and semantic checking between meta-models. The second

dimension focuses on the execution process of AMTM. AMTM uses the refined meta-model

based model transformation process iteratively. In each iteration phase, the model transformation

process is divided into four steps: matching on element level, hybrid matching, cross-level

matching and auxiliary matching. Each matching step focuses on different potential matching

pairs and uses different principles to do the comparisons; but, the basic comparing techniques are

always the same: semantic and syntactic checking measurements.

 The fourth chapter: syntactic and semantic checking mechanism in AMTM. This chapter

provided as the first scientific contribution of this thesis. It presents the idea of using syntactic

checking and semantic checking as a whole “S&S” and details the idea of using “S&S” in model

transformation process. Since semantic checking is a time-consuming process and syntactic

checking could detect several semantic relations, merging the two checking measurements as one

brings advantage to AMTM. Furthermore, this chapter also presents the mechanism of choosing

 General introduction

 8

S&S relation pairs; this mechanism could be regarded as one part of the bridge, which crosses the

gap between S&S and model transformation domain.

 The fifth chapter: semantic checking measurements. This chapter presents the semantic

checking methods involved in AMTM. The semantic thesaurus “AMTM_ST” is adopted from

“WordNet”. The scientific contribution is the creation of “AMTM_ST”, which is suitable to serve

to model transformation domain and also serves with good efficiency. Moreover, to use

“AMTM_ST” in AMTM, a set of semantic relations and semantic values pairs are defined in a

table. Thus, the concrete semantic relations become values (range from 0 to 1), which are used as

one of the factors to compare different potential matching pairs.

 The sixth chapter: syntactic checking measurements. Similar to the chapter of semantic

checking measurements, this chapter is also regarded as scientific contribution provided by this

thesis. The syntactic checking measurements involved in AMTM are divided as two phases:

pretreatment and “Levensthein distance”. The pretreatment phase tries to detect several potential

semantic relations between a comparing word pairs and the “Levensthein distance” algorithm

could calculate the syntactic similarity between any pair of strings. In some terms, syntactic

checking could replace the semantic checking, which takes more resource and time to execute.

This replacing idea and the idea of using it in AMTM are the main contribution of AMTM.

 The seventh chapter: software implementation and use case. As the final functional part of

this thesis, this chapter tries to validate the feasibility and correctness of AMTM. A software

system “AMTM-SS” is developed to implement the theories in AMTM and simulate the

matching processes defined in AMTM. The first part illustrates the main developing process of

AMTM-SS; the second part shows a huge test case to verify the whole theoretical basis of

AMTM and working performance of AMTM-SS.

 General conclusion. As the end of this thesis, this part shows a conclusion of this thesis. Also,

this part illustrates the working direction for the future of AMTM. Several points in both AMTM

and AMTM-SS are needed to be improved. Finally, a prospect of using AMTM to serve to real

social problems is shown.

All these eight main parts compose this thesis. Focusing on a specific social problem “sharing and

exchanging data (information) among heterogeneous partners involved in collaboration”, an

automatic model transformation methodology is proposed. Considering the content involved in this

methodology, we present the relevant techniques and principles. To implement the theoretical

solution of AMTM, a software tool AMTM-SS is developed. Moreover, a use case is carried out to

test the theories defined in AMTM and the performance of AMTM-SS.

 Chapter I Problem Statement

 9

 Chapter I:

Problem Statement

I.1 Introduction .. Erreur ! Signet non défini.

I.2 Modeling & Model transformation ... Erreur ! Signet non défini.

I.3 Model transformation usage & weaknesses .. Erreur ! Signet non défini.

I.3.1 The usage of model transformations in software engineering............ Erreur ! Signet non défini.

I.3.2 Model transformation weaknesses ... Erreur ! Signet non défini.

I.4 New requirement on model transformation from engineering domains .. Erreur ! Signet non défini.

I.4.1 Enterprise interoperability ... Erreur ! Signet non défini.

I.4.2 Web service composition ... Erreur ! Signet non défini.

I.4.3 Data & knowledge engineering .. Erreur ! Signet non défini.

I.4.4 Summary of the three situations ... Erreur ! Signet non défini.

I.5 Origin of the thesis .. Erreur ! Signet non défini.

I.5.1 MISE 2.0 introduction .. Erreur ! Signet non défini.

I.5.2 MISE 2.0 & Model transformation ... Erreur ! Signet non défini.

I.5.3 Specific requirement on model transformation of MISE Erreur ! Signet non défini.

I.6 Conclusion ... Erreur ! Signet non défini.

 Chapter I Problem Statement

 10

I.1 Introduction

As illustrated in the general introduction, in some aspects, model transformation provides a possible

solution to share and exchange data (information) between heterogeneous partners involved in

collaborations. However, to meet the requirement (the typical one problem) demanded by new

collaborations, a more effective model transformation methodology is required.

Figure I-1: Position of Chapter one in the thesis.

The position of this chapter in the thesis is shown in Figure I-1 (the square marked by dash lines). This

chapter shows three concrete situations and indicates the information sharing problems involved in them.

Then, by summarizing the characteristics of the information sharing (exchanging) problems, the new

requirement on model transformation domain is proposed.

This chapter contains five main sections: (i) gives the concepts of modeling and model transformation, (ii)

describes an example to show concretely the definition and usage of model transformation, and then

summaries the characteristics and weaknesses of traditional model transformation practices, (iii) presents

three kinds of new coming collaborations and reveals the mechanism of using model transformations to

serve information sharing problems involved, (iv) introduces the origin of the project of the thesis:

serving to the huge research project “Mediation Information System Engineering (MISE) 2.0”, and finally

(v) a short conclusion of this chapter is given.

 Chapter I Problem Statement

 11

I.2 Modeling & Model transformation

Model transformation is a process of actions performed on models. So, before talking about model

transformation, it is necessary to give some knowledge about models and modeling. Thus, both model

and modeling play important roles in the context of model transformation research field.

It is important to firstly define the concept of “subject” before talking about model. A subject is

something (e.g. a complex system) people want to reason about. It can be something from the real world

(an apple tree, a boat, etc.), or something imaginary (e.g. saucer man, devil). The act of reasoning is

typically geared around one specific problem or question. The answer to the question typically only

concerns a small subset of all the characteristics of the subject (Merrill, 1916). In general, to solve a

problem people construct simplifications of the subject that are called models. As defined in (Bézivin,

2006), “model is a simplification of the subject and its purpose is to answer some particular questions

aimed towards the subject. As a model captures only a part of the complete subject, many models could

be built to represent the same subject but capture different variables of the subject”. The other definitions

of model could be consulted in (Vernadat, 1999) and (Terrasse et al, 2005). These definitions are similar

to each other.

To reason about a model, it is necessary to know which exact concepts it offers. In other words, we need

to know the structure of the model. This information is expressed in the “meta-model”, where a meta-

model is a model that makes statements about what can be expressed in valid models (Bézivin, 2006).

Several of the other definitions of meta-model are provided by (OMG, 2008), (Chapron, 2006) and

(Bataille et al, 2001). The basic meaning of meta-model is “a specific model that defines the rules to build

other models which are conformed to it”.

As stated in (Bézivin, 2006), a model shows a simplification of a subject; a meta-model offers the

vocabulary for formulating reasoning on top of a given model. Figure I-2 shows the relationships between

subject, model and meta-model; this figure is adopted from (OMG, 2008).

Figure I-2: Relationships between subject, model and meta-model (OMG, 2008).

Meta-model defines the rules of building models; they could exist on several layers: the higher layer, the

more abstract the meta-model would be (e.g. a meta-meta-model defines the building rules for meta-

models that are conformed to it). Normally, for a specific application domain, the meta-model on the

highest layer should be self-defined and self-explained. The activities of building models are called

modeling. Figure I-3 shows a simple illustration of the modeling process.

 Chapter I Problem Statement

 12

Figure I-3: Illustration of modeling process.

A model is built particularly to present a specific system (subject). Several models could represent one

system; one model for each point of the view of the system. Based on previous definitions, several meta-

models could be used to describe a system. Therefore, the same information could be in different models.

In this case, model transformation is useful.

There are many definitions provided by different research groups for model transformation. Such as: in

(Tratt, 2005) “model transformation is a program that mutates one model into another”. The Object

Management Group (OMG) defines model transformation in the context of the model-driven architecture

(MDA) as “the process of converting a model into another model of the same system” (Miller et al, 2003).

In (Kleppe et al, 2003), model transformation is defined as the “automatic generation of a target model

from a source model, according to a transformation description”. Considering all these definitions, model

transformation is a process of generating a target model based on a source model; the transforming

rules should be built between same or similar concepts that are from the two models, respectively.

I.3 Model transformation usage & weaknesses

As stated in (Biehl, 2010), “model transformation is a central concept in model-driven development

approaches” and since the theories of model-driven development approaches have been widely adopted

by various engineering domains to solve their domain specific problems, a large number of model

transformation practices have been developed and used by engineering domains.

I.3.1 The usage of model transformations in software

engineering

This subsection takes the usage of model transformation practices in software engineering domain as an

example; by analyzing and comparing the model transformation practices involved in, a conclusion about

the characteristics of model transformation is presented.

Software engineering, as one of the engineering domains that could be served by model-driven

development approaches, adopts modeling and model transformation methodologies in software

developing process. Generally, according to (Davis et al, 1988), software developing process contains

four main steps: requirement analysis (business level), system design (functional level), coding

(implement & technical level) and testing (validation & verification). By adapting model-driven

development approaches theories “using models and model transformations to simulate working process”,

all of the four steps could be implemented. The final results of each developing step are represented by

one or a set of models. For connecting different developing steps, model transformations are applied to

 Chapter I Problem Statement

 13

generate the new models based on the existing models (e.g. transforming a set of requirement analysis

models to system design models).

Figure I-4 presents the basic idea of using modeling and model transformation practices in software

developing. Software tools serve to various domains and different domains have different requirements on

these software tools. Thus, software tools are developed to serve to different purposes. Normally, the

process of developing software tools contains four main steps. The purpose of this example is to show:

what are model-driven development approaches and how to use these approaches to serve to real

engineering domains.

Figure I-4: Usage of modeling and model transformations in software developing process.

For developing complex software tools, it is usual that people (without IT background), who come from

specific domains, implement the requirement analysis step; then based on the analysis results, some

professional people finish the second design step. Next, software developers do the coding part on the

base of system design. Finally, according to both the requirement analysis and coding implementation, the

test cases are created (by software test department or final users) to validate and verify the software tool.

According to (Davis et al, 1988), since “different working groups (people with different knowledge

background and focus on different tasks) might be involved in the developing process”, the whole process

of developing is difficult to manage. Especially the communication parts (three main gaps) between

different working groups are difficult to overcome.

According to (France et al, 2007), model-driven development approaches provide the solution to shield

the differences between different working groups and enhance the efficiency of software developing

process. Model-driven development approaches suggest that people come from different working groups

use models instead of textual documents and formulas to express their ideas, and these models are used as

tools to connect different working groups. To improve the efficiency of developing process, model

 Chapter I Problem Statement

 14

transformation practices are used to connect these models (models from the same developing step or

sequential steps).

I.3.2 Model transformation weaknesses

As explained above and the definitions presented, model transformations could be used to connect

different models; it is a process of generating new models (target models) based on existing models

(source models). The target models and source models should have some shared (similar) concepts.

Model transformation practices aim at detecting these shared (similar) concepts. However, these shared

(similar) concepts are difficult to find due to several reasons. Since the difficulty in finding same or

similar concepts in models, as stated in (Del Fabro et al, 2009), there are several typical weaknesses in

model transformation practices: low re-usability, involves repetitive tasks, and requires huge users’

effort. These difficulties are originally from the models.

 The complexity of models. Models are always built to present systems; some systems could be

really huge and complex, thus the models themselves might become complex (even only reflect a

point of view of the system). To analysis complex models is a tough job.

 Contents conveyed by models. Models represent systems from different domains; these systems

could be far away from each other, thus detecting the shared or similar concepts (if such concepts

exist between two systems) between these systems is also a tough job.

 Heterogeneous modeling techniques. Models are built to represent systems, at the same time

they are built based on particular modeling techniques. Such techniques could be Uniform

Modeling Language: UML, System Modeling Language: SysML (Friedenthal, 2014), Integrated

Definition Modeling: IDEF (Cheng-Leng et al, 1999), Business Process Model and Notation:

BPMN, etc. Based on the usages, various modeling techniques have been developed for serving

to different domains. These modeling techniques define their own semantic and syntactic

representations; so, even the same or similar concepts might be expressed differently with

different modeling techniques.

For both the complexity of the systems that are represented by models and heterogeneous modeling

techniques, model transformations become difficult to implement.

I.4 New requirement on model transformation

from engineering domains

Based on our research work, model transformation practices could be used or adopted by several

engineering domains. This section lists three kinds of using mechanism of model transformations in three

particular situations. Moreover, the mechanism of using model transformation theories to serve the

information sharing problem involved in each of these situations is also illustrated.

 Chapter I Problem Statement

 15

I.4.1 Enterprise interoperability

Nowadays, in order to achieve a common goal, enterprises should cooperate with each other; in this way,

enterprises could focus on their specific strengths and use the strengths of other enterprises. As stated in

(Touzi et al, 2007), more and more collaborative situations are frequently appearing and disappearing

within various enterprises. Based on this fact, the ability of cooperating with different partners becomes

crucial to modern enterprises. Furthermore, “interoperability” is proposed specially to describe such

ability. Enterprise interoperability is now considered as a key factor for successful collaborations (Touzi

et al, 2007). It affects the behavior of the enterprise at different levels, ranging from decision-making to

operation via information management.

There are several definitions for interoperability. As defined in (Konstantas et al, 2005), “interoperability

is the ability of a system or a product to work with other systems or products without special effort from

the user”; another definition of interoperability is stated in (Ide, 2010), interoperability is “a measure of

the degree to which diverse systems, organizations, and/or individuals are able to work together to

achieve a common goal. For computer systems, interoperability is typically defined in terms of syntactic

interoperability and semantic interoperability”.

Therefore the general idea of interoperability is: “cooperate without special users’ effort thanks to the

system semantic and syntactic interoperability”. Although in different domains and from different

views of one domain, the definitions of interoperability might be slightly different (e.g. the definitions in

(Konstantas et al, 2005) and (Ide, 2010)), the essence reflected by these definitions is similar.

Figure I-5: An illustration of enterprise interoperability issue (Wang et al, 2015a).

Figure I-5 shows a collaborative situation between two enterprises. Enterprises use information systems to

manage their business; in some aspects, the cooperation among companies depends on the merge of their

information systems. Furthermore, merging information systems relies partly on the interactions of the

applications contained in the information systems. So, sharing data among these applications is important

for enterprise collaboration. However, generally the structures of data are designed for specific

applications used by particular enterprises; it is difficult to share data among different applications. This

 Chapter I Problem Statement

 16

difficulty lies in the format and completeness of the data. For example, one application needs data inputs:

time (hour: minute: second) and date (year: month: day), another application could only provide the data

as: date (day: month: year). The two kinds of data are not exactly the same, so the two applications could

not be merged directly. However, the two data are similar (some concepts are overlapped); they could be

transformed to each other (some special parts should be added or reduced). In the modeling world, these

kinds of data could all be regarded as particular models; model transformation provides a possible

solution to transform models by detecting similar or same concepts between them. So, model

transformations could be used to serve to data sharing problem in merging different information technical

applications.

“Enterprise Interoperability Framework (EIF)” (Chen et al, 2007) shows a possible way of combining

formally enterprise interoperability and model-driven approaches (especially the model transformation

part). Figure I-6 is a representation of EIF.

Figure I-6: EIF structure and data sharing interoperability involved.

“EIF” defines four main concerns and three kinds of barriers of interoperability. Furthermore, focusing on

these concerns and the barriers, there are three approaches defined within “EIF”: “Integrated”, “Unified”

and “Federated”.

Here, we focus on the interoperability on data level. In “Integrated approach”, all the partners involved

use the same common data format, so information and data from these partners could be shared very

easily but each partner has to use exactly the same data format. This assumption is only available in a

long-term collaboration. In “Unified approach”, all the partners use their own data formats but they have

to transform their data to a common shared format before sharing them. In “Federated approach”,

there is no common format, all the partners use their particular data formats and data are on the fly

transformed.

The “integrated” approach is the easiest solution to solve the interoperability problem. However, in the

short-term collaborations, it is difficult for partners to meet the requirement of using “integrated”

approach (This approach asks large users’ effort before turning collaboration to application). The last two

approaches imply that each partner keep its own particular data format, thus no deep modification for a

 Chapter I Problem Statement

 17

specific collaboration but they require users’ effort to solve the interoperability problems, especially on

data sharing part.

As explained in (Wang et al, 2014), model transformation theories could be adopted and used in “Unified

approach” and “Federated approach” to serve enterprise interoperability. Since lots of research works

about enterprise modeling and simulating have been done, many enterprise modeling techniques and

theories have been defined and developed. These modeling techniques and theories concern different

kinds of enterprises and take every aspect within an enterprise into account. So, enterprise could be

represented by a set of models. In this way, model transformation aims at building connections among

models (by detecting same or similar concepts conveyed by models). In “Unified approach” and

“Federated approach”, the models built for enterprises are heterogeneous; a high efficient model

transformation with few users’ effort is required to build connections among them.

I.4.2 Web service composition

Web service composition could be regarded as a situation that many particular partners (atomic web

service) would be involved in; this subsection focuses on illustrating this situation and presenting the

mechanism of using model transformation methodology to serve it.

Web service composition, as one of the key aspects in web service domain, has attracted more and more

research attentions. Generally, in order to provide a capable function to a specific problematic, several

web services should be combined and work together. The process of building such a composition of web

services is regarded as web service composition. There are two main difficulties in web service

composition: selecting web services and making interactions among these web services. Normally, a web

service works as a functional black box; it takes in inputs and generates outputs. As stated in (Curbera et

al, 2003), (Papazoglou et al, 2003), and (Lee et al, 2011), it is widely accepted that combining multiple

web services into a composite service is more beneficial to users than finding a complex and preparatory

atomic service that satisfy a special request. The resulting composite services can be used as atomic

services themselves in other service compositions.

As explain in (Wang et al, 2015b), despite standards, such as Web Services Description Language:

WSDL (Christensen et al, 2001), Simple Object Access Protocol: SOAP (Box et al, 2000), and Universal

Description, Discovery and Integration: UDDI (Richards, 2006), are defined with the purpose to

standardize web service description, discovery and invocation, these standards, in their current form,

suffer from a lack of semantic representation leaving the promise of automatic integration of

applications written to web services standards unfulfilled. Therefore, lots of works, as stated in (Rao

et al, 2005) and (Hwang et al, 2008), define methods of selecting and sequencing web services in order to

create composite service. The principle of selecting web services is based on web services description.

A web service is described by three essential attributes. Figure I-7 shows the three identifiers of web

service.

 Signature: contains service’s inputs, outputs and exceptions.

 State: is specified by precondition and post condition.

 Non-functional values: are used to evaluating the services.

 Chapter I Problem Statement

 18

Figure I-7: Web service identifiers (Wang et al, 2015b).

According to (Rao et al, 2005), the principle of selecting web services depends on their “pre-condition”

and “post-condition” from the description category “state”.

In web service composition, after defining the section and the sequence of web services, the interactions

among web services “especially the data exchanging aspect” have to be defined. These interactions

among web services are complex because of two main reasons:

 Inputs and outputs of web services could be complex because they are described by XSD in

WSDL. Therefore the inputs and outputs could be regarded as models that are conformed to the

building rules of XSD files.

 In order to produce the input of a web service, several web services should be executed before and

their outputs have to be combined and transformed to the format of the input.

Since the lack of semantic representations in standards, it is difficult to combine several outputs to one

input. XML Metadata Interchange: XMI (OMG, 2000) tries to solve this issue. Unfortunately, XMI is

not enough used today and it is assumed that each web service describes their inputs and outputs

with their own semantic that could be different from each other.

Based on the facts that “the resulting composite services can be used as atomic services themselves in

other service compositions” and “web services are created and updated on the fly and a web service

composition may involve large number of web services”, the inputs and outputs of web services cannot

exactly satisfy other inputs or outputs because of:

 Semantic: each web service could use its own semantic.

 Granularity: an output’s element could become an input’s property, e.g. a characteristic of an

element.

 Composition: an input could be defined base on several outputs.

Indeed, the last problem “composition” is due to the three situations of transforming outputs to inputs.

 One web service’s outputs could be transformed just as a part of another web service’s inputs.

 Only a part of one web service’s outputs could be transformed as inputs of another web service.

 A part of one web service’s outputs transform to a part of another web service’s inputs.

For all three situations, the parts of outputs that could be transformed (e.g. data formats, structure) as

inputs should be located and transformed easily. The problems are: how to specify these specific parts

and define the transformation rules based on the description of inputs and outputs.

 Chapter I Problem Statement

 19

Generally, web services’ inputs and outputs are defined by “XML Schema Definition: XSD” (W3C, 2000)

part in WSDL. The XSD part of WSDL defines the structure and the name of the elements of inputs and

outputs. Therefore, it could be seen as a meta-model and the inputs and outputs of a web service could be

seen as models that are conformed to this meta-model (XSD).

Based on this assumption, it is possible to apply model transformation principles in order to transform

outputs into inputs for web services.

As illustrated by Figure I-8 (dash lines), all combination between inputs and outputs of web services has

to be tested. Therefore, manually defining model transformation is not compliant with the automatic

composition of web service.

Figure I-8: Web service composition situation (Wang et al, 2015b).

One of the main problems of web service composition is: how to specify transformable parts of

outputs and define the transformation rules in order to generate inputs for other web services. The

composition of web services could be regarded as a process of selecting and sequencing several web

services as one. Moreover, each atomic web service could be regarded as a model (the outputs are source

models and the inputs are target model) that conforms to the XSD meta-model. So, the interactions among

these selected web services models could be implemented by model transformations.

I.4.3 Data & knowledge engineering

As explained in (Wang et al, 2015c), it is possible to use model transformation to serve data and

knowledge engineering.

Information sharing, as an aspect of data and knowledge engineering, attracts more and more attention

from researchers and practitioners. Since large amount of cross-domain collaborations are appearing,

exchanging and sharing information and knowledge among various domains are inevitable. However, due

to vast amount and heterogeneous structure of information, it becomes impossible to maintain and share

cross-domain information relying mainly on manual effort.

Before talking about information and knowledge, it is necessary to have a quick look on their basis: data.

According to (Ackoff, 2010), “Data are symbols that represent properties of objects, events and their

environments. They are products of observation”; furthermore, “Information is contained in descriptions,

answers to questions that begin with such words as who, what, where, when and how many”. The relation

between data and information is: “information systems generate, store, retrieve and process data” and

 Chapter I Problem Statement

 20

“information is referred from data”. Figure I-9 shows the relationships among data, information,

knowledge and wisdom.

Figure I-9: Different presentation layers from data to wisdom (Ackoff, 2010).

Data is raw; it can exist in any form without significance. Information is generated by adding meaning

(relational connection) on data, for example: the data stored in a relational database could be regarded as

information. Knowledge, which exists on a higher understanding level than information, is “a

deterministic process” (Ackoff, 2010). Knowledge becomes wisdom when add more understanding

principles to it; compare to knowledge, wisdom pays more attention to the connectedness issue.

Based on the context of information sharing, Figure I-10 shows the relationships among “natural

languages”, “data & information” and “specific domains”.

Figure I-10: Relations among natural languages, data, information and specific domains (Wang et al, 2015c).

Data and information are created mainly using natural languages (also with the help of mathematical

symbols, diagrams, etc.). Information applied on specific domain, could be regarded as knowledge; while

this kind of knowledge may be regarded as information (or data) by other domains. Information that

leaves its context is just rough data. In each domain, there are specific expressions for particular items;

these expressions are regarded as domain specific languages: DSL (Fowler, 2010). Furthermore, the

useful information expressed in DSL is regarded as domain specific knowledge: DSK (Carey et al, 1994).

 Chapter I Problem Statement

 21

Due to the development of new technologies, vast amount of heterogeneous data and information appear,

and they are provided by different sources. Indeed, amounts and variety of data arose from the

development of domain ontologies and the development of Internet of Event (IoE). According to (Van der

Aalst, 2014a) and (Van der Aalst, 2014b), IoE could be divided in four sources.

 Internet of Things: all physical objects connected to the network. This includes all things that have

a unique id and a presence in an Internet-like structure. Things may have an Internet connection or

tagged using Radio-Frequency Identification (RFID), Near Field Communication (NFC), etc.

 Internet of Location refers to all data that have a spatial dimension. With the uptake of mobile

devices (e.g. smartphones) more and more events have geospatial attributes.

 Internet of People: all data related to social interaction. This includes e-mails, Facebook, Twitter,

forums, LinkedIn, etc.

 Internet of Content: all information created by humans to increase knowledge on particular

subjects. This includes traditional web pages, articles, encyclopedia like Wikipedia, YouTube, etc.

Data and information are maintained and updated on-the-fly by their sources. In order to use directly the

data provided by other sources, some modifications (transformation) should be made. However, this

transforming (translating) process always involves huge manual work; with the explosion in the amount

of data, it is impossible to maintain such a process relies mainly on manual work.

Model transformation theories provide a possible solution to transform and translate information that

comes from heterogeneous partners. Each kind of data or data sets could be regarded as a model that

respects some specific building rules. Different data sets might have shared concepts (transformable parts)

with each other. So, model transformation could help to detect the potential shared parts in these data sets

models.

I.4.4 Summary of the three situations

All these three situations: enterprise interoperability, web service composition, information sharing in

data & knowledge engineering are kinds of new coming collaborations. Furthermore, they have common

requirement of exchanging and sharing data in an efficient and rapid way. The mechanism of using

modeling and model transformation to serve them is also illustrated briefly.

However, the traditional model transformation practices are not suitable to serve these problems because

of their weaknesses (Del Fabro et al, 2009): low reusability, contain repetitive tasks and involve huge

manual effort, etc. These weaknesses limit the usage of model transformation theories to serve to

heterogeneity semantic representation (e.g. cross-domain, cross-organization) problems, and also reduce

the efficiency of model transformation developing process. Considering about this fact, AMTM is

proposed.

 Chapter I Problem Statement

 22

I.5 Origin of the thesis

The research work presented in this thesis is a part of an internal research project “Mediation Information

System Engineering: MISE”, which lasts more than ten years and contains several PhDs’ research work.

For solving some particular problems involved in “MISE”, this research work was proposed in 2012. This

section focuses on illustrating the relation between this research work and “MISE”; it is divided into three

subsections.

I.5.1 MISE 2.0 introduction

The MISE project “Mediation Information System Engineering” was launched in 2004 and is dedicated to

providing an approach (and the associated tools) for Mediation Information System (MIS) design,

following the mediation principle as described in (Wiederhold, 1992). The overall objective is to meet

both the expectations regarding collaborative situations and the preponderant role of the information

system (IS). The approach aims at defining a mediation system able to connect the whole set of partners’

ISs in a way that is (i) coherent with the business objectives of the network (effective) and (ii) easy and

fast to deploy (efficient). Furthermore, the MIS thus obtained should ensure the interoperability functions

(translation of data, sharing of services and orchestration of workflows) in an agile manner.

In reality, collaborations are very unstable situations requiring adaptation: contexts can change (new

opportunities, modification of objectives, etc.), networks of partners can change (withdrawal or arrival of

partner, lack of resources, etc.) or dysfunction during the collaborative behavior can occur (even if

context and partners are still the same, something may not happen as expected). Therefore, the MIS

should remain well adopted to the potentially changing needs of the collaboration. The general approach

of the MISE project is based on three levels:

 Business level: definition of the appropriate collaborative behavior that fits with the business issues

of the network.

 Technical level: design of the Service-oriented architecture (SOA) system and deployment on an

enterprise service bus (ESB) so that it can assume the role of mediator between all partners' ISs.

 Agility level: management of evolutions and changes required for the MIS. Figure I-11 shows the

three levels.

Figure I-11: Three levels defined in MISE (Benaben et al, 2015).

Two iterations of the MISE project have already been performed. MISE 1.0 is presented in (Touzi et al,

2009), (Rajsiri et al, 2010), (Truptil, 2011) and (Benaben et al, 2010). The first iteration ran from 2004 to

 Chapter I Problem Statement

 23

2010 (including three doctoral works and the two funded national projects ISyCri and JOnES). MISE 2.0

is the second iteration of MISE project started in 2009 and ended in 2013. MISE 2.0 includes four PhD

and three funded projects PLAY (European), SocEDA and ISTA3 (French project). The third iteration

MISE 3.0 started in 2011 and is currently on-going. It is also based on several doctoral works (currently

five) and on funded projects (currently three: SIM-PeTra, OpenPaaS and DRIVER). The main objective

of this research project is to provide any emerging collaborative situation with methods and tools to

deploy a Mediation Information System (MIS). MISE 2.0 aims at defining and designing a service-based

platform, dedicated to initiating and supporting the interoperability of collaborative situations among

potential partners.

I.5.2 MISE 2.0 & Model transformation

The MISE 2.0 platform implements a model driven engineering approach to the design of a service-

oriented MIS dedicated to supporting the collaborative situation. This approach is structured in three

layers (Benaben et al, 2015), each providing their own key innovative points:

 Gathering of individual and collaborative knowledge to provide appropriate collaborative

business behavior (key point: knowledge management, including semantics, exploitation and

capitalization): business level.

 Deployment of a mediation information system able to computerize the previously deduced

collaborative processes (key point: the automatic generation of collaborative workflows, including

connection with existing devices or services): technical level.

 Management of the agility of the obtained collaborative network of organizations (key point:

supervision of collaborative situations and relevant exploitation of the gathered data): agility level.

The overall MISE design approach might be seen as a dive into abstraction layers based on model-driven

engineering: MDE (Schmidt, 2006). As stated in (Benaben et al, 2015), the general principle of the MISE

Enterprise Information Systems approach (whatever the iteration considered) is structured according to

four steps: two at the business level and two at the technical level:

 Design of collaboration model: this level concerns the gathering of knowledge about the

considered collaborative situation to instantiate concepts of the so-called collaborative meta-model

(concerning mainly the environment of the collaboration, the objectives of the collaboration, and

the partners and services of the collaboration).

 Deduction of collaborative behavior model: the second step deals with the automated deduction

of collaborative processes, based on the knowledge collected at the previous level. Schematically,

the aim is to select and organize partners’ services according to the objectives and environment of

the collaboration.

 Design of collaborative workflows: the previously deduced business behavior (processes) is

translated into a technical behavior (workflows) to be implemented. The goal is mainly to match

services with activities and data with information.

 Deployment and orchestration of the MIS: the previously obtained workflows are integrated in a

workflow engine to be executed on an ESB. All available web services of the partners are

connected on the same ESB (in case of necessity, specific interfaces are also deployed to connect

 Chapter I Problem Statement

 24

other service or even human tasks). The collaborative behavior is consequently performed on this

middleware among partners’ services.

Furthermore, these four steps are used in an agile framework, which deals with detection of evolution

and adaptation of behavior. The agility of the MIS is based on event analysis (according to the

received event, is the situation in line with what is expected?) and on behavior adaptation (by re-

invoking step 1, step 2, step 3 or step 4, depending on the nature of the event analysis). From a technical

point of view, the MISE project is based on a Service-Oriented-Architecture (SOA) paradigm and MISE

tools are also deployed as web services on the same ESB as the partners’ web services. Even if there are

some differences and specific features, each of the three iterations of the MISE project is structured

according to the four steps presented above, and the associated agile framework. Furthermore, from a

technical point of view, these iterations are all centered on SOA principles and on web services.

Figure I-12: Four steps in the lifecycle of MISE (Benaben et al, 2015).

Figure I-12 is a simplification about the four steps. Model transformation is a part of the whole project; it

fulfills the gap between the first step to the second step and from the second step to the third step. Also,

within the first and second steps, large number of models will be built to represent the static and dynamic

collaborative situations. There are some potential relations among the models that are built on the same

layer, model transformation practices could also be used to detect the relationships among these models.

I.5.3 Specific requirement on model transformation of MISE

In some aspects, MISE is a mode-driven engineering related platform. Modeling and model

transformation theories and techniques are used in part of the life cycle of MISE.

MISE divides four main layers to deal with collaborative information; each of the layers could be

regarded as a specific domain. The gap between adjacent layers is difficult to fulfill. Furthermore, within

 Chapter I Problem Statement

 25

each layer, information and knowledge expressed in models are heterogeneous. As the inner requirements

of MISE, model transformation practices involved should solve cross-domain problems with high

efficiency. In other words, model transformation practices should work as bridge to cross the gaps

between different layers defined in MISE; also within each layer, model transformation practices should

build connections among heterogeneous models. Considering the purpose of MISE, all the model

transformation practices (detect same or similar concepts and thus sharing data) used in MISE should be

created on the basis of a high efficient model transformation methodology.

I.6 Conclusion

This chapter illustrates the problem statements of the research work presented in this thesis. First, the

usage of model transformation practices is explained with a concrete example of applying “model-driven

development approach” in software development process. Then, three situations of new collaborations in

different engineering domains have been presented. The specific problems involved and the solving

mechanism by applying model transformation to these problems are illustrated. Finally, the original of

this research work is presented. The initial aim and purpose of developing this project is clear.

The focusing problems of this thesis could be divided on two levels: business level and technical level.

 Business level: sharing knowledge between different domains, and exchange and share data

(information) that are owned by heterogeneous partners. Since the appearing of new coming

collaborations, knowledge sharing and data (information) exchanging should be done efficiently:

fast and accurate. However, this kind of tasks is used to be done mainly relying on manual work,

which is inefficient and error-prone. To improve the efficient issue, new theories and techniques are

required. This thesis proposes a possible solution “AMTM” to solve the problems on business

level; the proposal of “AMTM” brings the problems on technical level.

 Technical level: AMTM is a methodology of doing automatically model transformation; the main

problem of it is the detection of same or similar concepts conveyed by different models. As

illustrated above, models are heterogeneous (i.e. heterogeneous modeling techniques,

heterogeneous content presented). The concepts conveyed in models are always expressed with

different syntactic and semantic representations.

As a short conclusion, the main difficulty of defining a high efficient model transformation methodology to

serve collaborations comes from three aspects: semantic checking, syntactic checking and granularity

issue involved. Table I-1 shows the three aspects.

Table I-1: Three difficulties of defining high efficient model transformation methodology.

Origin \ Difficulty semantic detecting syntactic detecting granularity issue

application domains √ √

modeling techniques √ √ √

model transformation domain √

Different engineering domains use their own semantic and syntactic representations to define concepts;

different modeling techniques also define different semantic and syntactic representations (for their

 Chapter I Problem Statement

 26

elements) to build models. So, models, which are built to simulate and analyze collaborations, might have

different semantic and syntactic representations. Furthermore, both modeling and model transformation

domain involve granularity issue “to differentiate the range of concepts, different elements are defined”

(this part will be illustrated in the third chapter with examples). So, using modeling and model

transformation theories to serve new coming collaborations also needs to overcome the problems brought

by them.

Focusing on the problems presented above, an automatic model transformation methodology (AMTM)

created on the basis of semantic and syntactic checking measurements, is proposed in this thesis.

 Chapter II Literature Overview

 27

 Chapter II:

Literature review: concurrent and

component issues to this research work

II.1 Introduction ... Erreur ! Signet non défini.

II.2 Context of model transformation research domain Erreur ! Signet non défini.

II.2.1 Model-driven architecture and model transformation Erreur ! Signet non défini.

II.2.2 Model transformation techniques .. Erreur ! Signet non défini.

II.2.3 Model transformation category .. Erreur ! Signet non défini.

II.3 Model transformation practices .. Erreur ! Signet non défini.

II.3.1 General practices of model transformation Erreur ! Signet non défini.

II.3.2 Model transformation practices applying semantic detecting Erreur ! Signet non défini.

II.4 Syntactic checking and its usage .. Erreur ! Signet non défini.

II.5 Semantic checking and its usage ... Erreur ! Signet non défini.

II.6 Ontology ... Erreur ! Signet non défini.

II.7 Model transformation validation ... Erreur ! Signet non défini.

II.8 Conclusion .. Erreur ! Signet non défini.

 Chapter II Literature Overview

 28

II.1 Introduction

In order to tackle the problem of data sharing and exchanging among heterogeneous partners involved in

collaborations, an effective automatic model transformation methodology is proposed in this thesis. Here,

“effective” means high performance (i.e. involving less manual work, fast implementation, with high

accuracy). To be “effective”, one of the key issues is to define the model transformation process

automatically.

This thesis presents AMTM. For developing AMTM, a large amount of research works have been studied.

The research works can be divided into two categories: concurrent issues “related works to model

transformation domain” and component issues “theoretical and technical issues, which belong to other

research domains, adopted in AMTM”.

The concurrent issues focus mainly on the origin and context of model transformation; the component

issues concern about the technical and theoretical issues that are developed in other research domains and

have been involved in AMTM. Both the two kinds of issues are regarded as literature to this thesis and

being reviewed and presented in this chapter. The position of this chapter in the thesis is shown in Figure

II-1; the part that is marked with square dash lines).

Figure II-1: Position of chapter two in the thesis.

 Chapter II Literature Overview

 29

As shown in Figure II-1, this chapter works as the foundation to the other chapters in the thesis. Since

large amount of research work is presented in this chapter, it is divided into eight sections to illustrate

different research aspects. The relation between each section (research aspect) involved in this chapter is

shown in Figure II-2.

Figure II-2: Map of sections of chapter two with regards to the global objective.

All sections present content that centers on the core “AMTM”.

 The second section illustrates the context of model transformation domain; it contains four

subsections.

 The third section presents four model transformation instances; all of the four instances inspire

the development process of AMTM in some aspects.

 The fourth section focuses on the syntactic checking measurements and its usage; a comparison

and a conclusion of several syntactic checking measurements are given at the end of this section.

 Similarly to the fourth section, the fifth section focuses on semantic checking measurements.

 The sixth section is a simple illustration about ontology; and the usage of ontology in engineering

domains is also presented with simple examples.

 The seventh section talks about the model transformation validation issue. At last, a conclusion of

this chapter is given.

 Chapter II Literature Overview

 30

II.2 Context of model transformation research

domain

This section is the state-of-the-art of model transformation domain. It aims at presenting the origin and

context of model transformation. Three subsections contained in this section. (i) Model-driven

architecture and model transformation, (ii) model transformation techniques presentation and

comparisons, and (iii) model transformation practices category.

II.2.1 Model-driven architecture and model transformation

Model-driven architecture (MDA) is a software design approach for the development of software systems.

It provides a set of guidelines for the structuring of specifications, which are expressed as models. Model-

driven architecture is a kind of domain engineering, and supports model-driven engineering of software

systems. It was launched by the Object Management Group (OMG) in 2001. According to figure II-3, the

relation between MDA and MDD is “MDA can be regarded as a subset of MDD”, for the reason MDA is

the OMG’s particular vision of MDD and thus relies on the use of OMG standards (Brambilla et al, 2012).

The MDA model is related to multiple standards, including the Unified Modeling Language (UML),

the Meta-Object Facility (MOF), XML Metadata Interchange (XMI), Enterprise Distributed Object

Computing (EDOC), the Software Process Engineering Meta-model (SPEM), and the Common

Warehouse Meta-model (CWM). The term “architecture” in Model-driven architecture refers to the

architecture of the various standards and model forms that serve as the technology basis for MDA. As

stated in (OMG, 2014), “MDA provides an approach for deriving value from models and architecture in

support of the full life cycle of physical, organizational and IT systems. The MDA approach represents

and supports everything from requirements to business modeling to technology implementations. By

using MDA models, we are able to better deal with the complexity of large systems and the interaction

and collaboration between organizations, people, hardware, software.” Figure II-3 shows the general

overview of MDA.

Figure II-3: General understanding of MDA (OMG, 2014).

https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Model_(abstract)
https://en.wikipedia.org/wiki/Domain_engineering
https://en.wikipedia.org/wiki/Model-driven_engineering
https://en.wikipedia.org/wiki/Object_Management_Group
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Meta-Object_Facility
https://en.wikipedia.org/wiki/XML_Metadata_Interchange
https://en.wikipedia.org/wiki/Enterprise_Distributed_Object_Computing
https://en.wikipedia.org/wiki/Enterprise_Distributed_Object_Computing
https://en.wikipedia.org/wiki/Software_Process_Engineering_Metamodel
https://en.wikipedia.org/wiki/Common_Warehouse_Metamodel
https://en.wikipedia.org/wiki/Common_Warehouse_Metamodel

 Chapter II Literature Overview

 31

As can be seen from Figure II-3, MDA can be used in many specific fields (Finance, Manufacturing, E-

Commerce, Healthy, etc.). MDA has three levels; for each level, the basic implementing techniques and

tools are shown clearly and the standards of each level are also illustrated in the figure.

MDA has a 4-layer meta-modeling architecture (level M0, M1, M2 and M3): “M0: real things (the

“subject” that is mentioned in the first chapter); M1: UML models; M2: UML meta-model; M3: Meta-

Object Facility (Meta-meta-model level model)”; this 4-layer meta-modeling architecture extends the idea

presented in Figure I-2 by assigning specific modeling techniques for each layer. At the same time, MDA

defines three main viewpoints: “computation independent viewpoint”, “platform independent viewpoint”

and “platform specific viewpoint”. The three main viewpoints form the main framework (structure) of

MDA, and for each viewpoint several models are defined.

Figure II-4: MDA three viewpoints (Wang, 2015c).

MDA approach pays attention to the “computation independent viewpoint”, this viewpoint is more

concerned with the domain experts, the models belonging to this viewpoint are “computation independent

models: CIMs” that are free from programming issues; MDA approach defines system functionality using

the platform-independent models: PIMs, which belong to the platform independent viewpoint, that are

created with domain-specific language: DSL (Fowler, 2010). Then, a platform model corresponding

to CORBA, .NET, the Web, etc. is given, and the PIM is translated into one or more platform-specific

models: PSMs, which belong to platform specific viewpoint and could be executed. This requires

mappings and transformations and should be modeled too. The PSM may use different DSLs, or

a General Purpose Language: GPL as Java, C#, PHP, Python, etc. Model transformation is also used as a

tool in MDA; it connects models belonging to the same viewpoint or cross-viewpoint. The final purpose

is to use model transformations to generate all the other models (i.e. PIMs and PSMs) based on the CIMs.

The OMG organization provides rough specifications rather than implementations, often as answers

to Requests for Proposals (RFPs). Implementations always come from private companies or open source

groups. So, as a short and brief conclusion, model driven architecture provides just a specification which

can separate the concerns (related to the development process of software system based on MDE). It does

not provide the implementation based on its own theory. MDA principles can be also applied to other

domains, such as business process modeling (BPM) where the CIMs are related to business process

simulation.

http://en.wikipedia.org/wiki/Platform-independent_model
http://en.wikipedia.org/wiki/Domain-specific_language
http://en.wikipedia.org/w/index.php?title=Platform_model&action=edit&redlink=1
http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Platform-specific_model
http://en.wikipedia.org/wiki/Platform-specific_model
http://en.wikipedia.org/wiki/General-purpose_programming_languages
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Request_for_Proposal
http://en.wikipedia.org/wiki/Business_process_modeling

 Chapter II Literature Overview

 32

As a conclusion of this part, both of MDE and MDA focus on the theories and standards of using models

and model transformations to solve practical problems in real engineering domains.

II.2.2 Model transformation techniques

In practice, a large number of techniques for model transformation have been developed. Some of these

techniques are mature and have been used by various research organizations (or companies) to serve to

their domain specific problems; while some of the techniques are still at the stage of developing, only a

few of researchers are involved in and use them to solve particularly problems. At the same time, some of

the techniques are supported very well. Many relevant tools and execution engines have been published

out to support them; many integrated development environments (IDE) provide the developing plug-ins

for specific model transformation techniques.

II 2.2.1 QVT

Query/View/Transformation: QVT (OMG, 2008) is a standard set of languages for model

transformation defined by “OMG”; it covers transformations, views and queries together. The QVT

standard defines three model transformation languages and integrates the “Object Constraint Language:

OCL 2.0” (Cabot et al, 2012) standard and also extends it with imperative features. The operational

context of QVT is shown in Figure II-5.

Figure II-5: Operational context of QVT (OMG, 2008).

In the operational context of QVT, models are categorized in four layers: subject, model (M1), meta-

model (M2), meta-meta-model (M3); the idea of this category is illustrated in the first chapter. QVT

provides its own meta-model that defines its abstract syntax. The abstract syntax of QVT is defined as a

meta-meta-model using Meta-Object Facility (MOF) 2.0. This meta-model defines three sublanguages for

transforming models. The three QVT languages collectively form a hybrid transformation language with

http://en.wikipedia.org/wiki/Model_transformation
http://en.wikipedia.org/wiki/Model_transformation
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Object_Constraint_Language

 Chapter II Literature Overview

 33

declarative and imperative constructs. The languages are named “Relations”, “Core” and “Operational

Mappings”. These three languages are organized in a layered architecture shown in Figure II-6.

Figure II-6: QVT languages layered architecture (OMG, 2008).

The languages “Relations” and “Core” are declarative languages at two different levels of abstraction.

The specification document defines their concrete textual syntax and abstract syntax. In addition,

“Relations” language has a graphical syntax. “Operational Mappings” is an imperative language that

extends “Relations” and “Core languages”.

The Black Box mechanism allows the plugging-in and execution of external code during the

transformation execution. This mechanism allows complex algorithms to be implemented in any

programming language and enables reuse of already existing libraries.

II 2.2.2 ATL

ATLAS transformation language: ATL (Jouault et al, 2008) is a model transformation language and

toolkit. It provides ways to produce a set of target models from a set of source models. ATL operates in

the same context as QVT: the four layers of models’ category. ATL architecture is composed of three

layers, as shown in Figure II-7. They are: (in decreasing abstraction level order) the ATLAS Model

Weaving (AMW) (Del Fabro et al, 2005), ATL, and the ATL Virtual Machine (ATL VM).

Figure II-7: ATL layered architecture (Jouault et al, 2008).

ATL provides both declarative and imperative constructs, and is therefore a hybrid model transformation

language. ATL VM compiles ATL programs using a model-oriented instruction set. AMW may

optionally be used as a higher abstraction level transformation specification language.

The declarative part of ATL is based on the notion of matched rule. ATL offers two imperative constructs:

“called rule” and “action block”. A “called rule” is explicitly called, like a procedure, but its body may be

composed of a declarative target pattern. “Action blocks” are sequences of imperative instructions that

 Chapter II Literature Overview

 34

can be used in either matched or called rules. Transformation programs written in ATL are inherently

unidirectional.

The current ATL execution engine is based on virtual machine architecture. The VM is implemented on

top of two model handlers: the “Eclipse Modeling Framework: EMF” (Steinberg et al, 2008) and

NetBeans “Meta-Data Repository: MDR” (Matula, 2003). Figure II-8 shows the positon of VM in ATL.

The ATL compiler works on top of the ATL VM and generates ATL programs capable of running on top

of it too.

Figure II-8: ATL VM architecture (Jouault et al, 2008).

ATL VM provides a basic set of constructs, which are sufficient to perform automatic operations on

models. While ATL provides a higher level language for transformation definition, AMW provides

solutions to express transformations in even more abstract terms. Model weaving is about establishing

typed links between model elements. Links themselves form a model, and link types are therefore defined

in a meta-model. Weaving links are more abstract than ATL rules.

II 2.2.3 VIATRA2

Visual Automated Model Transformations: VIATRA2 (Varró et al, 2007) is a unidirectional

transformation language based mainly on graph transformation techniques. The language operates on

models expressed following the VPM meta-modeling approach (Varró et al, 2003). VIATRA2 also

integrates three sublanguages: Graph pattern language, Graph transformation rules language and

“Abstract State Machine: ASM” (Börger et al, 2012) language.

 Graph pattern language, expresses patterns that are matched to select elements in the current

graph. Patterns may reuse other patterns and may form recursions.

 Graph transformation rules language, expresses graph rewriting rules. Every rule has a left and

a right hand side (form a pattern). Rules are unidirectional. Following the classical scheme of

graph transformations, a rule may delete matched elements, create new elements and preserve

existing elements.

 ASM language, expresses order of execution of the transformation rules. The order is

specified by using ASM constructs. It provides a set of control flow structures: sequencing, rule

call, conditionals, fixed-point iteration, etc. In some terms, VIATRA2 could be regarded as a

hybrid language. ASM language also allows code generation by using code templates.

VIATRA2 focuses only on model-to-model transformations; it is possible to define generic template rules

in which the classes are parameters that may be substituted via template instantiation. The instantiation is

achieved by a meta-transformation in the terms of VIATRA2 (Varró et al, 2004). The instantiation

executes a higher-order transformation (HOT) that manipulates the generic transformation. The execution

environment provides both an interpreter and a compiler. For the purposes of testing and simulation, the

transformation programs may be interpreted. In addition, transformations may be compiled to a given

 Chapter II Literature Overview

 35

target environment (Balogh et al, 2006). It is possible to invoke native functions implemented in Java.

This is similar to the Black Box mechanism in QVT.

II 2.2.4 GReAT

Graph Rewriting and Transformation Language: GReAT (Karsai et al, 2003) is a visual language

developed using Generic Modeling Environment (GME). It enables the specification of unidirectional

translations between sets of models. These models conform to meta-models specified in UML. Each

meta-model is called a domain, and traceability information conforms to a user-specified cross-domain

meta-model. This meta-model may also be used to extend source or target domains with transformation-

specific elements. GReAT contains three sublanguages:

 Pattern specification language. A pattern is a graph that is recognized by pattern matching over

the host graph. The GReAT pattern matcher does not work on the whole host graph but starts

from a set of already matched elements, which is more efficient. The corresponding algorithm

only works on connected graphs. The pattern specification language supports cardinalities and the

grouping of sub-patterns.

 Graph transformation language. Transformation rules are specified in the graph transformation

language, which is an extension of the pattern specification language. Each element of a pattern is

associated to a role depending on the existence of the element before and after the application of

the rule. The bind role corresponds to elements existing before and after. The delete role is used

for elements that exist before, but not after (i.e., they are deleted). The new role specifies

elements that exist only after (i.e., they are created). Guards can be specified as Boolean C++

expressions. Attribute mappings written in C++ are used to initialize the attributes of new

elements.

 Control flow language. Rule application order is specified using a dedicated imperative

language, which provides iterating and conditional constructs. Moreover, partial matches (called

packets) are passed from rule to rule in order to set the initial bindings. This implies a specific

sequencing of execution. Depending on how the rules and the control flow are specified, a given

transformation may be non-deterministic (i.e., have different targets for the same source).

 Chapter II Literature Overview

 36

Figure II-9: The object hierarchy of GReAT (Karsai et al, 2003).

Figure II-9 shows the conceptual hierarchy of GReAT. The “CompoundUnit” is used for Hierarchy and

recursion. “Test” and “Case” are conditional branching. Sequencing and non-deterministic execution are

achieved with the help of sequencing connections (not shown in figure). These connections (implicitly)

specify the order of execution for the rules.

II 2.2.5 Summary of the four model transformation techniques

Four model transformation techniques are presented briefly in the former four subsections, respectively.

ATL and QVT are two general model transformation techniques; they aim at serving all the model

transformation situations. Otherwise, VIATRA2 and GReAT are two model transformation techniques

focusing on graph transformation (rewriting).

Many model transformation techniques have been developed. A comparison among the four techniques

illustrated above is shown in Table II-1. All of the four techniques are mature and complex. They provide

powerful functions to achieve model transformation processes. However, some predefined conditions

should be obeyed in order to use them.

Table II-1: Model transformation techniques comparisons

name hybrid rule scheduling M-to-N note

ATL yes implicit internal explicit yes self-executed

QVT yes implicit internal explicit yes based on MOF 2.0

VIATRA2 yes external explicit yes based on VPM

GReAT yes external explicit yes on UML models

According to the developing purpose, model transformation techniques could be divided into two groups:

serve general purpose (cross-domain) and serve specific domain.

Normally, domain specific model transformation techniques focus on particular problematic. Therefore,

the use of these techniques is limited, and they are not flexible for some special cases; on the other hand,

this kind of techniques could be executed automatic or semi-automatic in some aspects. Model

transformation techniques, which serve cross-domain, are always complex and provide a wide range of

 Chapter II Literature Overview

 37

functions. So, people need more time to learn to use these techniques properly. One of the common

problems of existing model transformation techniques is: involved huge manual effort and repetitive

tasks. Without solving such kind of problem, the usage of model transformation would be always limited.

II.2.3 Model transformation category

Since model transformations could be used to solve real engineering problems, more and more attentions

have been paid to this domain. For developing effectively model transformation process, it is necessary to

differentiate model transformation situations. So, different model transformation theories and techniques

could be created based on different application situations.

II.2.3.1 Model transformation situations

Generally, model transformation could be divided into three groups. The summary of these three groups

is shown in Table II-2. The content presented in models is descripted in abstract syntax, while the content

presented in text is descripted in concrete syntax.

Table II-2: Category of model transformation situations

Category Content

Text to Model concrete syntax to abstract syntax

Model to Model abstract syntax to abstract syntax

Model to Text abstract syntax to concrete syntax

All of the three categories have their own use instances: “Text to Model” – java code to UML class

diagram (model), “Model to Model” – UML class diagram (model) to UML activity diagram (model) and

“Model to Text” – UML class diagram (model) to formal specifications, one of this research works about

this situation is presented in (Bruel et al , 1998). Different theories and techniques are developed focusing

on serving to them, respectively. In this research work, we focus on the model to model transformation

methodology.

II.2.3.2 Classification of model transformation methods

According to (Czarnecki et al, 2003), there are two main kinds of model transformation approaches.

They are: model-to-code approaches and model-to-model approaches. For model-to-code approaches,

there are two categories:

 Visitor-based approaches: provides some visitor mechanism to traverse the internal

representation of a model and write code to a text stream. An example of this approach is

“Jamda”. Jamda is an object-oriented framework providing a set of classes to represent UML

models, an API for manipulating models, and a visitor mechanism to generate code.

 Template-based approaches: templates lend themselves to iterative development as they can be

easily derived from examples. Several instances: e.g., b+m Generator Framework, JET and

FUUT–je. An introduction to template-based code generation is stated in (Cleaveland et al, 2001).

When bridging large abstraction gaps between platform independent models: PIMs and platform special

models: PSMs, it is easier to generate intermediate models rather than go straight to the target PSM. Also,

 Chapter II Literature Overview

 38

to connect different domains model-to-model transformations are needed. For model-to-model

approaches, there are five categories:

 Direct-Manipulation Approaches: offering an internal model representation plus some API to

manipulate this model. They are usually implemented as an object-oriented framework.

 Relational Approaches: grouping declarative approaches where the main concept is

mathematical relations. The basic idea is to state the source and target element type of a relation

and specify it using constraints. Two examples are: (Akehurst et al, 2002) and (OMG, 2008),

declarative approaches in (Gerber et al, 2002), and mapping rules in (OMG, 2008).

 Graph-Transformation-Based Approaches: operate on typed, attributed, and labeled graphs

(Andries et al, 1999), which is a kind of graphs specifically designed to represent UML-like

models. Some examples of these approaches are: VIATRA, ATOM and GReAT.

 Structure-Driven Approaches: two distinct phases contained in this category. First, creating the

hierarchical structure of the target model; second, setting the attributes and references in the

target. The overall framework determines the scheduling and application strategy; users are only

concerned with providing the transformation rules. One examples of this approach is “OptimalJ”

model transformation.

 Hybrid Approaches: combining different techniques from the previous categories. Such

approaches are QVT and ATL.

The detail of these approaches (their applicable situations, working mechanism, etc.) and instances for

each approach could be consulted in (Czarnecki et al, 2003). This reference also presents a comparison

among these approaches. Other two model-to-model transformation approaches are: Common

Warehouse Meta-model (CWM) Specification (Poole et al, 2002) and transformation implemented using

XSLT (Clark, 1999).

Focusing at other viewpoints of model transformation, the classification of model transformation methods

could be different; model transformation methods are also classified as four kinds: marking and pattern,

automatic transformation, meta-model based transformation and model merging.

 Marking and pattern. Mark: a concept of the target model applied to a source model element to

indicate how to transform it. Then, the marked elements of the source are transformed according

to the pattern to produce the target. A simple explanation of this method is shown in Figure II-10

(Based on the context of MDA).

 Chapter II Literature Overview

 39

Figure II-10: Marking and pattern model transformation method.

A model from PIM level is regarded as the source model, and mappings are made according to

the special platform. One mapping connects a concept in source model to an element in target

model. All the mapping consist the pattern. The source model changes to “marked source model”

after adding the marks. According to the pattern, target model could be generated.

 Automatic transformation. This method means: no additional information is needed to produce

the target model from source model. Actually, in practice semi-automatic transformation is more

used than the totally automatic transformation method, for the reason the automatic

transformation results are usually not explicit or acceptable at this moment.

 Meta-model based transformation. Models are built based on their meta-models then mappings

could be made on the meta-model level; next, generate the transformation rules according to the

mappings, and finally execute the transformation rules on model level to generate the target

model.

 Model merging. This method takes several models as the source models; then, based on the pre-

defined rules to merge the source models and generate the target model. Figure II-11 illustrates the

simple principle of this method (using the example PIM-PSM model transformation).

Figure II-11: Models merge.

As shown in Figure II-11, the source model is a PIM, and the target model is a PSM. The transformation

process is “merging another model with the source model to generate the target model”.

II.2.3.3 Meta-model based model transformation

The automatic model transformation methodology “AMTM” presented in this thesis is designed and

implemented as a meta-model based model-to-model transformation methodology. So, a detail illustration

about meta-model based model-to-model transformation methodology is given here. Generally, this kind

 Chapter II Literature Overview

 40

of transformations could be divided into two categories. Figure II-12 shows the principles of the two

categories.

Figure II-12: Meta-model based model transformation category (Wang, 2015c).

In category (a), target meta-model is generated by evolving (add new characteristics to) the source meta-

model; source models conformed to the source meta-model should be updated to target models that are

conformed to the target meta-model. Large amount of research work focusing on this category has been

done; moreover, different theories and practices working on this category have been defined and applied.

For instance, a methodology named “COPE”, which defined in (Herrmannsdoerfer et al, 2009), is a

mature framework dealing with category (a). In category (b), the source meta-model and the target meta-

model are two different models; there is no relationship (e.g. evolutional relation) between them. In order

to transform source models to target models, model transformation mappings should be built on the meta-

model level and use on the model level.

II.3 Model transformation practices

This section focuses on the model transformation practices that are developed. According to the

methodologies of these model transformation practices, this section could be divided into two parts:

general model transformation practices and model transformation practices applying semantic detecting,

which are similar to this research work.

II.3.1 General practices of model transformation

A large number of model transformation practices have been developed along with the emergence of

model transformation techniques. These practices could be classified in different categories, and similar

to model transformation techniques, model transformation practices could be also divided into two

categories: serve to specific-purpose practices and serve to general-purpose practices.

Concerning only about the category of model-to-model transformations, Table II-3 presents three

particular model transformation practices and simple comparisons among the main characteristics of them.

The research work of the three model transformation methodologies are listed as references; the details of

them could be consulted in (De Castro et al, 2011), (Grangel et al, 2010) and (Bollati et al, 2013).

 Chapter II Literature Overview

 41

Table II-3: Comparisons among three model-to-model model transformation practices

name technique
domain

specific
note

Applying CIM-to-PIM model transformations

for the service-oriented development of

information systems (De Castro et al, 2011)

MDA-based yes

Combining MDA with

service-oriented

development of

information system

Transformation of decisional models into UML:

application to GRAI grids (Grangel et al, 2010)
ATL yes

GRAI Grids to UML

model

Applying MDE to the (semi-) automatic

development of model transformations (Bollati

et al, 2013)

MeTAGeM

(Bollati et al,

2011)

no

applying MDE principles

to define model

transformation

Different model transformation theories and techniques are used to create model transformation practices

that serve various purposes. These various purposes could be enterprise integration, software development,

etc. More and more model transformation practices focus on particular problems and provide solution to a

set of special problems since the huge differences between model transformation situations. However, to

serve new collaborative situations, high efficient general-purpose model transformation methodology and

practices are required.

II.3.2 Model transformation practices applying semantic

detecting

As stated in the general introduction, semantic difference is an issue to be solved in collaboration. This

subsection, we focus on the usage of semantic detecting in model transformation domain.

The research work presented in (Kappel et al, 2006) is similar to this research work presented in this

thesis in some terms. The research work (Kappel et al, 2006) concerns the usage of model transformation

in software development domain. It proposes a process lifts semi-automatically meta-models into

ontologies by making implicit concepts in the meta-model explicit in the ontology. In this way, a shift of

focus from the implementation of a certain modeling language towards the explicit reification of the

concepts covered by this language is made. In (Kappel et al, 2006) three steps are defined to lift meta-

models to ontologies.

 Changing of formalism “a meta-model is transformed into ontology”, the transformation is

given by a mapping between the model engineering space and the ontology engineering space,

namely a mapping from a meta-meta-model to ontology meta-model.

 Unfolding typically hidden concepts in meta-models that should better be represented as

explicit concepts in ontology.

 Enriching ontologies being extracted from modeling languages’ meta-models with axioms and

putting in relation with other ontologies representing a shared vocabulary about a certain domain.

The basic idea and principle of the research work stated in (Kappel et al, 2006) is intuitive; however, it

contains three main weaknesses.

 The first step of “mapping between the model engineering space and ontology engineering”

depends on manual work; the mappings rules for this step should be made previously

concerning about the specific modeling techniques.

 Chapter II Literature Overview

 42

 The second step “unfolding typically hidden concepts” also depends mainly on manual effort.

 The third step “enriching ontologies being extracted” needs ontologies from certain domains; in

this research work, no concrete ontologies are used and no huge semantic thesaurus is

created to support the theoretical solution.

Other similar research works presented in (Kappel et al, 2007), (Bruel et al, 2000) and (Dolques, 2011)

also adopt semantic detecting in model transformation process. There are several common weaknesses in

these methodologies: serve specific domains, leave the granularity diversity involved in model

transformation process unsolved, no specific semantic thesaurus created to support automatically

semantic relations detecting, etc. Besides, in database community, semantic checking measurements are

also used to automatically define rules of schema matching. The research work focusing on schema

matching could be referred in (Rahm et Bernstein, 2001) and (Bernstein et al, 2011).

II.4 Syntactic checking and its usage

Syntactic checking measurements are used to calculate the syntactic similarity between two words; they

could be used for matching names and records.

A comparison of string metrics based syntactic checking measurements is illustrated in (Cohen et al,

2003). Syntactic checking focuses on the occurrences of the letters involved in words; it should also

consider about the stemming, prefixes and suffixes of the words.

String metrics are always created while comparing syntactic similarity between two words. There is

several string metrics based syntactic checking methodologies, such as edit-distance metrics, fast heuristic

string comparators, token-based distance metrics, and hybrid methods.

The real usage of syntactic checking in engineering domains could be “matching entity names”. As stated

in (Cohen et al, 2003), the task of matching entity names has been explored by a number of communities,

including: 1) statistics, 2) databases, and 3) artificial intelligence. The basic goal is to classify entity pairs

as matching or nonmatching.

 In statistics, several proposals adopted by subsequent researchers, often with elaborations of the

underlying statistical model (e.g., (Jaro et al, 1989), (Jaro, 1995), and (Winkler, 1999)). These

methods have been used to match individuals and/or families between samples and censuses.

 In the database community, some work on record matching has been based on knowledge-

intensive approaches (e.g., (Hernández et al, 1995) and (Galhardas et al, 1999)). The use of

string-edit distances as a general-purpose record matching scheme was proposed in (Monge et al,

1996) and (Monge et al, 1997).

 In the AI community, supervised learning has been used for learning the parameters of string-

edit distance metrics (e.g., (Ristad et al, 1998) and (Bilenko et al, 2002)) and combining the

results of different distance functions (e.g., (Tejada et al, 2001) and (Cohen et al, 2002)).

As stated in (Pasula et al, 2002), probabilistic object identification methods have been adopted to

matching tasks. In these communities there has been more emphasis on developing autonomous matching

 Chapter II Literature Overview

 43

techniques which require little or no configuration for a new task, and less emphasis on developing

“toolkits” of methods that can be applied to new tasks by experts as explained in (Cohen et al, 2003).

II.5 Semantic checking and its usage

Semantic is the study of meaning. It focuses on the relation between signifiers, like words, phrases, signs,

and symbols, and what they stand for; their denotation. Linguistic semantics is the study of meaning that

is used for understanding human expression through language. Other forms of semantics include the

semantics of programming languages, formal logics, and semiotics.

Relevant studies about semantic are: semantic mapper, semantic network, semantic mapping and semantic

analysis, etc. For each of these studies, it may provide usages based on different application domains.

Taking “semantic analysis” as an example, it could serve machine learning, knowledge representation,

and linguistics, etc. For different usages, semantic analysis might be defined in different ways.

This thesis focuses on semantic checking measurements; (Kim et al, 2012) presents an example of

using these measurements to serve data communication protocol. Protocol translation is a method for

transforming pieces of information from a source protocol into relevant target protocol formats in order to

communicate between heterogeneous legacy systems in interoperability environments. The work in (Kim

et al, 2012) proposes a method that translates messages to semantically equivalent messages. Other

semantic checking applications that are dealing with different domains are listed in the references as

(Feldmann et al, 2014), (Gábor et al, 2013), and (Nikolova et al, 2012).

Semantic checking is complex; furthermore, the use of it will be really different based on different

application domains. So, this section just presents a general introduction to it and gives several research

examples about it (without implementation details). Since semantic checking measurements play a key

role in AMTM, the basic rules and relevant content of it will be detailed in chapter five.

II.6 Ontology

Ontology is the philosophical study of the nature of being, becoming, existence or reality as well as the

basic categories of being and their relations. It is a “philosophical” term; people have used it for many

years. As time goes on, people give this word some new meaning according to their own research fields.

There are many definitions of ontology; some of them have been defined in recent years. One of the

definitions of ontology is stated in (Crowston, 1994): ontology defines the basic terms and relations

comprising the vocabulary of a topic area as well as the rules for combining terms, and relations to define

extensions to the vocabulary. As stated in (Neches et al, 1991), the most quoted definition of ontology by

the ontology community is: “a formal explicit specification of a shared conceptualization for a domain of

interest.”

https://en.wikipedia.org/wiki/Meaning_(linguistics)
https://en.wikipedia.org/wiki/Word
https://en.wikipedia.org/wiki/Phrase
https://en.wikipedia.org/wiki/Sign
https://en.wikipedia.org/wiki/Symbol
https://en.wikipedia.org/wiki/Denotation
https://en.wikipedia.org/wiki/Semiotics
https://en.wikipedia.org/wiki/Philosophy
https://en.wikipedia.org/wiki/Being
https://en.wikipedia.org/wiki/Becoming_(philosophy)
https://en.wikipedia.org/wiki/Existence
https://en.wikipedia.org/wiki/Reality
https://en.wikipedia.org/wiki/Category_of_being

 Chapter II Literature Overview

 44

Comparing to database (DB), which is also used to manage huge amount of data and maintain the

potential relations exist among the data, ontology has its own focus and characteristics. DB schema

focuses mainly on data themselves, while ontology focuses on the meanings of data and sharing

understanding. The core purpose of DB is “structuring instances for efficient storage and querying”, and

the purpose of ontology is human communication, interoperability, etc. In DB, the meanings of data are

missing and the instances are important. Conversely, instances are optional to ontology. Furthermore, DB

schema pays minimum focus on formal semantics, while ontology pays strong focus on formal semantics.

Since AMTM adopts semantic checking and focuses on semantic meanings, ontology is a more suitable

option than database for AMTM.

Nowadays, ontology has been widely used in many domains, such as: knowledge engineering; computer

science; the semantic web, etc. Ontology offers a semantic way to electronic information management

and exchange (Neches et al, 1991). It is a way to organize the knowledge and change the view of it to a

standard form.

At this moment, there exists a set of AI-based ontology implementation languages. Two of the famous

ones are: Resource Description Framework Schema: RDFS (Brickley et al, 2000) and Web Ontology

Language: OWL (McGuinness et al, 2004).

A list of several existing ontology is shown in Table II-4. Different ontologies have been developed for

different purposes as required during the recent years. The ontology covers different domains such as

medicine, tourism, business process, etc.

Concerning the context of usage, different ontologies have been created in different domains. Normally,

ontologies belonging to different domain contain different concepts (it is possible to have some

overlapping concepts but with different semantic meanings); the ontologies belonging to the same domain

may contain similar concepts (overlap parts) but the structures of each ontology could be totally

distinguished from one to one.

Table II-4: Examples of existing ontologies

Ontology Working domain

AIAI Enterprise Ontology (Uschold et al, 1998) Enterprise modeling

Toronto Virtual Enterprise Ontology (Fox et al, 1998) Enterprise engineering

The business Process Management Ontology (Jenz, 2003) Business process & IT

Process Specification Language Ontology (Gruninger, 2000) Manufacturing applications

MIT Process Handbook Ontology (Malone et al, 2003) cross-domain

II.7 Model transformation validation

Model transformation validation could be used to test if the generated model transformation mappings

and rules are good or not; so it is an important aspect of model transformation domain. AMTM also

involves model transformation validation aspect as one of its component; this section focuses on this

aspect. One of the research works about doing verification and validation of model to model

transformations is presented in (Cabot et al, 2010).

 Chapter II Literature Overview

 45

Normally, model transformation validation contains two dimensions: model validation and

transformation traceability. Model validation is put forward after the concept of “model driven

engineering” becoming more and more familiar to people. Many theories and methods have been

proposed concerning about this research field. In the context of model transformation, model validation is

an important dimension. Before executing the transformation rules between two models, the source

model must be validated to prove it is reasonable; after generating the target model, it is also necessary

to prove that the target model can be accepted.

Normally, domain knowledge takes the role of reference in model validation, and it varies from

measured data of real system to qualitative experience of experts. Knowledge-based system is

implemented based on domain knowledge and validation techniques proposed. In practice, experience of

domain expert is often used for model validation when there is not enough measured data about real

system. The idea of knowledge-based validation roots from this fact. Besides measured data and

experiential knowledge, the classical theorem and formula about the dynamic of real system can also be

utilized for the validation of simulation models. All these information, termed as domain knowledge takes

the role of reference for validity judgment. In other words, domain knowledge describes the valid

characterization of simulation output, i.e. what kind of dynamic features it should take. Three model

validation methodologies are listed in the reference (Min et al, 2010), (Romero et al, 2011) and

(Brinkman et al, 2013). In AMTM, involving manual effort to validate the target model is one of the

solutions to test the automatically generated model transformation mappings and rules.

Another dimension of model transformation validation concerns about model transformation traceability.

During the model transformation process, traceability of models modification is very important.

In (Radatz et al, 1990), traceability is defined as: “the degree to which a relationship can be established

between two or more products of the development process, especially products having a predecessor–

successor or master–subordinate relationship to one another; for example, the degree to which the

requirements and design of a given software component match. Traceability implies keeping track of the

relationships between requirements, design artifacts, source code, test cases, etc. As stated in (Santiago et

al, 2012), “in some terms, traceability information becomes obsolete very quickly and sometimes it is

completely omitted. However, the advent of Model-Driven Engineering (MDE), which principles are to

enhance the role of models and modeling activities and to increase the level of automation all along the

development process, can drastically change this landscape.”

The key role of models in any MDE development process can decisively help to facilitate trace

maintenance. Therefore, trace maintenance can be seen mainly as links between the elements of those

models. Furthermore, the traces could be collected in other models and, therefore, processed using any

model processing technique, such as model transformation, model matching or model merging. Moreover,

if the models considered in the development process are connected by a model transformation and the

language used to develop the transformation provides support to keep the trace information, such

information can be generated automatically (Tratt, 2005). Thus, if an element from a source model is

modified, this modification could be propagated to the corresponding elements in the target model. This

scenario is represented by a very simplistic example in Figure II-13: two given models (Ma and Mb) are

connected by a model transformation (MMa2MMb).

 Chapter II Literature Overview

 46

Figure II-13: Example of the trace links collected in a MDE scenario (Santiago et al, 2012).

The transformation maps squares and circles from the source model (Ma) into cubes and cylinders in the

target model (Mb). To keep track of these relationships after the transformation has been executed, it

would be desirable to have at one’s disposal an ‘‘extra’’ model of trace objects (MTrace). MTrace records

the mappings pairs and it could be used to reverse the model transformation process. Two of the other

model transformation traceability methodologies are listed in the reference as (Van Amstel et al, 2012)

and (Yu et al, 2012).

II.8 Conclusion

This chapter presents the literature review about the research work presented in the thesis. The content in

this chapter could be divided into two main groups. First group content is about the relevant domain

knowledge of model transformation; this part concerns the second, third and seventh sections. The second

group content is about the research works from other domains that are adopted by AMTM; this part

concerns the fourth, fifth and sixth sections.

As illustrated at the end of the first chapter, there are three main difficulties: semantic checking, syntactic

checking and granularity issue involved, in defining a high efficient model transformation methodology

that aims at serving collaborations. The research works presented in this chapter could solve parts or

several of the three difficulties. The relations between the research works and the difficulties are shown in

Table II-5.

Table II-5: Difficulties and solutions of defining automatic model transformation methodology

Research works \ Difficulty semantic detecting syntactic detecting granularity issue

MDA √

Model transformation category √

Model transformation techniques √ √

Model transformation instances √ √

Semantic checking √

Syntactic checking √ √

Ontology √

Model transformation validation √ √ √

 Chapter II Literature Overview

 47

As shown in Table II-5, six of the research works are associated partly with the semantic detecting issue;

the syntactic detecting issue could be served by syntactic checking and model transformation validation;

the granularity issue could be partly solved by: MDA (by spreading the focuses in model transformation

process), model transformation category (by differentiating model transformation situations), model

transformation techniques and instances (several of the above mentioned items concern the granularity

issue) and model transformation validation (by testing the transformation results).

 Chapter III AMTM Overview

 48

 Chapter III:

Automatic model transformation

methodology (AMTM) overview

III.1 Introduction .. Erreur ! Signet non défini.

III.2 Fundamental theories of building AMTM ... Erreur ! Signet non défini.

III.2.1 Theoretical main framework defined in AMTM Erreur ! Signet non défini.

III.2.2 The meta-meta-model ... Erreur ! Signet non défini.

III.3 Iterative model transformation process on meta-model level Erreur ! Signet non défini.

III.3.1 Principle of matching in AMTM ... Erreur ! Signet non défini.

III.3.2 matching on element level .. Erreur ! Signet non défini.

III.3.3 hybrid matching ... Erreur ! Signet non défini.

III.3.4 Cross-level matching .. Erreur ! Signet non défini.

III.3.5 auxiliary matching .. Erreur ! Signet non défini.

III.4 Validation process on model level .. Erreur ! Signet non défini.

III.5 Conclusion ... Erreur ! Signet non défini.

 Chapter III AMTM Overview

 49

III.1 Introduction

This chapter presents an overview of the automatic model transformation methodology AMTM. As

explained in the former chapters, AMTM is a component to the research work “MISE”. It focuses on the

problematic of sharing and exchanging data (information & knowledge) among heterogeneous

partners involved in the new coming collaborations. To define such an automatic methodology, the

main obstacles come from three aspects.

 Detecting semantic relations conveyed by input model sets.

 Detecting syntactic relations conveyed by input model sets.

 Solving the granularity issue involved in model transformation process.

This chapter presents the solutions, which are provided in AMTM, to all the three main kinds of obstacles.

The position of this chapter to the thesis is shown in Figure III-1 (the square marked by dash lines).

Figure III-1: The position of chapter three to the thesis.

As shown in Figure III-1, this chapter presents the whole AMTM methodology; it contains three main

parts.

 The fundamental theories of building AMTM.

 Chapter III AMTM Overview

 50

 The process of doing AMTM.

 The idea of combining the main technical issues “semantic and syntactic checking (S&S)”

measurements into model transformation process.

Concerning to the three main obstacles “detecting semantic relations”, “detecting syntactic relations”

and “solving granularity issue”, the third part focuses on the first two obstacles and the second part

focuses on the third obstacle. The first part shows an overview of AMTM, and the second and third part

details particular issues.

III.2 Fundamental theories of building AMTM

This section focuses on the theoretical foundation of building AMTM; it aims at giving the formal

answers to the following questions.

 What is model transformation?

 Why doing model transformation?

 How to do model transformation?

 How to involve semantic and syntactic checking measurements into model transformation

process?

This section contains two main subsections: the theoretical main framework that gives the answers to the

three first questions, and the meta-meta-model (MMM) involved in this main framework that answers the

fourth question.

III.2.1 Theoretical main framework defined in AMTM

In the first chapter, the relationship between modeling and model transformation in model-driven

development domain has been illustrated. Furthermore, several definitions of model transformation,

which are defined in (Tratt, 2005), (Miller et al, 2003) and (Kleppe et al, 2003), have been presented. In

AMTM, model transformation is regarded as a process of taking in source models and generating target

models.

Based on model transformation principles and the mechanism of detecting the potential relationship

between source models and target models compose the theoretical foundation of AMTM. This foundation

has passed several iterative versions presented in (e.g. (Wang et al, 2014b)). This theoretical foundation is

created as a theoretical main framework that is shown in Figure III-2.

This theoretical main framework is created based on the work stated in (Bénaben et al, 2010). This

framework gives answers to the questions “why doing model transformation” and “How to do model

transformation” with the context of AMTM.

 Chapter III AMTM Overview

 51

Figure III-2: The theoretical main framework created for AMTM.

The significance of doing model transformation could be “sharing knowledge”, “exchanging information”,

etc. As stated in (Bézivin, 2006), “models are built based on the rules defined in their meta-models”, such

potential common items on model layer could be traced on meta-model (MM) layer (regarded as shared

concepts here). Thus, for both source model and target model, they could be regarded as composing by

two parts: shared part and specific part. The shared part provides the extracted knowledge, which may be

used for model transformation, while the specific part should be saved as capitalized knowledge in order

not to be lost. The transformed knowledge and additional knowledge may be finally used to create the

shared part and the specific part of the target model, respectively.

Here, we show an example focusing on shared concepts between two meta-models. In the context of

relational database management system, a meta-model should at least contain two elements: “table” and

“column”; the relation between the two elements is: “table” contains “column”. In the context of object-

oriented programming domain, a meta-model should at least contain four elements: “class”, “interface”,

“attribute” and “method”. The shared (or similar) concepts between the two meta-models are: “table-to-

class”, “table-to-interface”, and “column-to-attribute”; they are potential matching pairs on meta-model

level and should be detected.

AMTM is ‘a meta-model based’ model transformation methodology; this means that model

transformation rules should be built on meta-model layer. In order to discover automatically the model

transformation mapping rules on meta-model layer, semantic and syntactic checking measurements

should be used to detect shared (same or similar) concepts on this layer. The principle of applying S&S

on model transformation process is stated in (Del Fabro et al, 2005), transformation mappings should be

built between two models that are conformed to the same meta-meta-model. In this theoretical main

framework, a meta-meta-model (MMM) is defined at a high abstract level. The detail of this MMM is

illustrated in the next subsection.

 Chapter III AMTM Overview

 52

III.2.2 The meta-meta-model

In AMTM, the mechanism of applying S&S on meta-model layer is defined in a MMM, which is shown

at the top of Figure III-2. Normally, a meta-meta-model defines the rules for meta-modeling; there exists

several meta-modeling architectures, for example “MOF: Meta-Object Facility” (OMG, 2008). However,

these architectures serve to general purpose. They aim at serving to general problems coming from all

engineering domains; they define their own semantic and syntactic to build meta-models. For this

research project, which focuses particularly on model transformation domain, these meta-modeling

architectures seem to be huge and complex (without specific focus on model transformation domain). In

AMTM, model transformation mappings should be built automatically. To achieve this purpose, semantic

and syntactic checking measurements are applied on meta-model layer to detect same or similar concepts

between the source and target meta-models. Thus, the meta-models should be built (or deduced) with

special formats; in this way, specific S&S measurements could be involved. Another reason to define

such a MMM in AMTM is to help solve the granularity problems involved in model transformation

process. As explained in the former chapters, one of the problems of defining automatic model

transformation methodology is the granularity issues involved in. The MMM also defines a possible

solution to this problem in an overall perspective. Figure III-3 shows the detail of this meta-meta-model.

Figure III-3: The meta-meta model involved in the theoretical main framework.

There are eight core elements contained in this meta-meta-model. They are listed as following:

 “Environment” describes the context of a system which models belong to.

 Chapter III AMTM Overview

 53

 “Model” stands for all kinds of inputs and outputs (models at different layers: meta-model or

model layer).

 “Element” represents all items that could be contained in models (elements are self-contained).

The “Element” has two instances: “Node” and “Edge”.

 “Node” stands for an object or a concept; it is used to describe a subject that exists in the world.

A node should have at least one role to perform in model containing it.

 “Edge” describes the relationship between “Nodes”. Every “Edge” links two roles (nodes stand

for the same or different conceptual range).

 “Property” is used to identify and explain the “Element” (node or edge) that contains it. Each

“Property” has a “Data Type”. The data type could be either a “Primitive Type” (string, integer,

double, Boolean, etc.) or an “Enumeration type” (defined by users); both of the two types are

used to identify property’s attribute.

 “Semantic Relation” exists on “Environment”, “Model”, “Element”, and “Property” levels; it

helps to define the transformation mappings automatically.

 “Syntactic Relation”, exists only on “Element” and “Property” levels; it works together with

semantic checking to define the transformation mappings.

In a specific domain “Environment” defined in the MMM, many “model” instances could exist. Normally,

an “Environment” and its “model” instances should have meaningful names to be understandable to

people and differentiate to each other. So, semantic relations might exist between different “Environments”

and “Models” contained. A “model” instance contains a set of “Element”: a group of “Nodes” and a

group of “Edges” to connect these “Nodes”. The potential model transformation mappings should be built

among these “Nodes” and “Edges”. For a specific model instance, the “Elements” defined in it might be

some specific domain concepts (terms); such specific concepts may not have exact semantic meanings or

remain un-understandable to other domains. So, only semantic relation checking on “Element” is not

enough; syntactic relation checking is also needed here. Furthermore, “Element” contains a group of

“Property”, which could be regarded as its identifiers. The same reason as on “Element”, syntactic

relation checking is also needed on “Property”. A “Property” in a “Model” instance could also be a

concept or sub-concept with specific context defined by its “Element”. “Property” contains “Data Type”:

“Primitive” or “Enumeration”. This “Data Type” could be regarded as the attribute of “Property”, and it

helps to differentiate “Properties” on some aspects.

As explained in former chapters, semantic and syntactic checking measurements could be used to detect

same (or similar) concepts and relations contained in models; So, two of the semantic and syntactic

checking methodologies that are focused on element and property defined in MMM, are introduced to

detect the potential mappings (replace the manually effort) in AMTM. Also, in the MMM, the property

and its dada type are highlighted; both of them are used to deduce semantic relations among elements.

Furthermore, the inner attribute of element and property: their names, have also been used to define

semantic and syntactic relations.

 Chapter III AMTM Overview

 54

III.3 Iterative model transformation process on

meta-model level

Different to many other model transformation methodologies, model transformation is regarded as an

iterative process in AMTM. Several intermediate target models might be generated between original

source model and final target model. Between the two models, several intermediate models could exist.

Figure III-4 is an illustration of this iterative process.

Figure III-4: Iterative model transformation process.

Within each iteration phase, the specific parts of the source model should be stored (in order not to be lost)

and the ones of target models should be enriched. The iterative process allows using the specific parts

from former transformation phases to enrich the specific parts of the target models that are generated in

the latter transformation phases. In AMTM, a specific ontology is created to store and reuse these specific

parts generated during the iterative transformation process. The reason of choosing ontology (not database

schema or other storage methods) to work in AMTM is: ontology focuses on formal semantic meanings

and shares understandable knowledge; it could help AMTM to enhance the semantic detecting part. This

ontology is designed with the same structure as the MMM and named as “AMTM_O”. To detect the

shared parts within each transformation iteration phase, S&S measurements are applied. An illustration of

the detecting process is shown in Figure III-5.

AMTM builds model-to-model mappings and transformation rules among elements and properties on

meta-model level. The detecting process contains four mains steps.

 Applying S&S measurements on meta-model level to generate potential mappings and

transformation rules.

 Using the generated mappings on model level to get transformation results.

 Validate the potential mappings and transformation rules based on the transformation results.

 Chapter III AMTM Overview

 55

 Considering the validation results from the third step to define new mappings and transformation

rules on meta-model level.

Figure III-5: Detecting process for shared parts between source and target models.

III.3.1 Principle of matching in AMTM

According to (Del Fabro et al, 2009), the main problems of existing model transformation practices are:

low reusability, repetitive tasks and huge manual work involved, etc. In order to solve these problems,

an ideal solution is defining an automatic model transformation methodology based on semantic and

syntactic checking measurements. However, as stated at the end of the first chapter “using modeling and

model transformation to serve collaborations” brings new problematic: granularity diversity”.

Considering the content conveyed by the MMM, the granularity issue reflects mainly on the mismatching

between items that are belonging to “element” level and “property” level, respectively. Normally, model

transformation mappings are built between the items that are belonging to the same level (considering the

context of MMM: element-to-element and property-to-property). However, only such kinds of mappings

are not enough to make model transformation rules capable to solve real engineering problems. So, the

matching mappings between elements and properties are also necessary.

Figure III-6 shows the matching principle. According to the MMM, models are made of elements. So, the

main model transformation mappings are mainly built between the elements that come from source and

target meta-model, respectively. According to the theoretical main framework of AMTM, model

transformation mappings should be built among the shared parts of source and target models; the specific

parts of them should be stored and enriched, respectively.

 Chapter III AMTM Overview

 56

Figure III-6: Matching principle defined in AMTM.

As shown in Figure III-6, to detect the shared parts between two meta-models, three matching steps are

defined (considering the granularity diversity).

 The first matching step “matching on element level” contains two phases: building mappings

between element’s pairs and building mappings between property’s pairs that are within the

matched element pair.

 The second matching step “hybrid matching” focuses on the properties (property-to-property

matching), which are unmatched after the first matching step.

 The third matching step “cross-level matching” concerns making mappings between properties

and elements.

For the specific parts, the ones from source meta-model are stored in AMTM_O; and the ones from target

meta-model are enriched by using the fourth matching step.

 The fourth matching step “auxiliary matching” focuses on enriching the specific parts of target

models by extracting additional knowledge from AMTM_O.

The details (focus and matching mechanism) of these four matching steps are illustrated in the four

following subsections, respectively. Furthermore, the usage of semantic and syntactic checking

measurements within these four steps is illustrated synchronously. Table III-1 shows a simple illustration

of the four matching steps.

Table III-1: Simple illustration of the four matching steps

matching step first step second step third step fourth step

matching

pairs

phase 1: element – element

phase 2: property – property

(Note: the property coming

from matched elements)

property – property

(Note: unmatched

properties from SMM to

all properties in TMM)

unmatched

elements –

unmatched

properties

mixed

matching

unmatched

items

 Chapter III AMTM Overview

 57

III.3.2 matching on element level

According to the MMM, meta-models are made of elements and elements contain a group of properties.

Therefore, model transformation mappings should be built among the elements and properties.

The first matching step focuses on detecting element’s matching pair. If two elements coming from

source model and target model stand for the same concept (shared concepts on meta-model layer), a

mapping should be built between them. Also, if two elements are regarded as a matching pair, the

properties contained in them are also matched. Figure III-7 shows the matching focus of this matching step.

Figure III-7: Matching focus of the first matching step.

In this matching step, there is an important issue: how to define that two elements are potential

matching pair (stand for the same concepts)? A possible solution consists in testing the semantic and

syntactic relations between two elements’ names and their properties’ groups. Figure III-8 shows an

illustration of the detecting process in the first matching step.

Figure III-8: Comparing mechanism in matching on element level.

Meta-model A contains ‘n’ elements and meta-model B contains ‘m’ elements. In the first matching step,

the maximum number of comparisons between the two meta-models is: “m*n” (as shown by the dash

lines). An element from source meta-model should be compared with all the elements from the target

 Chapter III AMTM Overview

 58

meta-model until finding one or none matching element. So, in this example, every element of meta-

model A will be compared at least with one element and at most ‘m’ elements from meta-model B.

A specific value “Ele_SSV” is calculated for every comparing pair of elements. “Ele_SSV” stands for

“element’s semantic and syntactic value”; it is calculated based on the semantic and syntactic relations

between elements’ names, and between their groups of properties. The calculation rule of “Ele_SSV” is

shown in equation (1).

 Ele_SSV = name_weight * S_SSV + property_weight * (∑ 𝑚𝑎𝑥(𝑃_𝑆𝑆𝑉𝑖)
𝑥

𝑖=1
)/ x (1)

“Ele_SSV” is the sum of two independent parts: elements’ names and elements’ properties’ groups;

two impact factors “name_weight” and “property_weight” are used to determine the weight of

“elements’ names” and “elements’ properties”, respectively. The range of their values is between 0

and 1 while the sum of the two impact factors should always be 1. Users could assign values to the two

factors to determine the mutual importance between the two parts: elements’ names and elements’

properties’ groups. In equation (1), “S_SSV” stands for “semantic and syntactic value between two

strings”; it is calculated between two words (i.e. elements’ and properties’ names). This value concerns

the semantic and syntactic relations between two words, the detail of calculating this value is presented in

the fourth chapter. “P_SSV” stands for “semantic and syntactic value between a pair of properties”. In

equation (1), “x” stands for the number of properties of a specific element from source meta-model.

To match a pair of elements, all the properties from the source element should be considered to make

matching with the ones from the target meta-model elements. Then, an example is given to show the

calculating rule for “P_SSV”.

When comparing element “A1” and element “B1”, their properties groups are taken into consideration.

Assuming that “A1” has “x” properties and “B1” has “y” properties; the comparisons on their property

level could be as maximum as “x*y”. There exists a “P_SSV” in each comparing properties’ pair.

Equation (2) shows the calculating rule of “P_SSV”.

 P_SSV = pn_weight * S_SSV + pt_weight * Id_type (2)

The calculation rule of “P_SSV” is very similar to the one for “Ele_SSV”. It is also the sum of two parts:

properties’ names and properties’ types; and also two impact factors “pn_weight” and “pt_weight” are

used to determine the weight of these two parts. The rules for assigning values to the two impact factors

are the same as for the ones in equation (1). In equation (2), “S_SSV” stands for the semantic and

syntactic value between two properties’ names while “Id_type” stands for “identify properties type (e.g.

string, integer, float and double)”. If two properties have the same type, “Id_type” will be assigned a

value as 1; otherwise, this value could be 0.5 (e.g. double and float) or 0 (e.g. integer and string).

With the help of equation (1) and equation (2), every element from source meta-model could get zero or

several potential matching elements from target meta-model. The “Ele_SSV” value between them is the

maximum for the source element. This is only a potential mapping; to become a real transformation rule,

mapping chosen mechanism, which is presented in the fourth chapter, is needed. Within potential

matching pairs of elements, their properties are also mapped based on the “P_SSV” value calculated by

equation (2). The simple example shown in figure III-7 could be used to explain this mechanism. Element

 Chapter III AMTM Overview

 59

“E A1” and element “E B3” are regarded as a matching pair; two of the properties (out of three) in “E A1”

could also be matched with two of the properties in “E B3”.

III.3.3 hybrid matching

For the elements from source meta-models, some of them still being unmatched after the first

matching step. Even for the matched elements, some of their properties might be still unmatched. The

hybrid matching step focuses on these unmatched elements and properties. Hybrid matching step focuses

on properties; all the matching pairs would be built among properties; this focus is shown in Figure III-9.

Figure III-9: Matching focus of hybrid matching step.

Within this matching step, all the matching pairs are built between source property and target property.

Furthermore, these matched properties come from elements that could not be matched as a matching pair.

The comparing mechanism of this matching step is simple: comparing all the unmatched properties

from source meta-model with all the properties from target model, in order to find similar pairs.

Figure III-10 is an illustration of hybrid matching step.

 Chapter III AMTM Overview

 60

Figure III-10: Comparing mechanism of hybrid matching step.

This step aims at breaking the main granularity constraint: property matching pairs only exists within

matched element’s pairs. This step implements many-to-many mappings on element level (Properties

from one element could be transformed to several target elements while one target element could be

generated by combining properties that come from several source elements). Figure III-11 shows the two

granularity issues.

Figure III-11: Matching results in hybrid matching step.

In Figure III-11 part (a), three source elements compose the target element; in b, one source element is

divideded as two parts and transformed into two elements. Hybrid matching provides the mechanism to

achieve both of the two situations by overcoming the matching constraint on elements level.

When comparing two properties, this step also considers the influence from element’s level. The

matching mechanism of this step shows in equation (3).

 Chapter III AMTM Overview

 61

 HM_SSV = en_weight * S_SSV + pl_weight * P_SSV (3)

“HM_SSV” stands for “hybrid matching semantic and syntactic value”; the idea of calculating it is

similar to the ones of “Ele_SSV” and “P_SSV”. “en_weight” and “pl_weight” are two impact factors for

“element level influence” and “property level influence”. They perform the same role as “name_weight”

and “property_weight” in equation (1). The influence from element level mainly depends on elements’

names. In equation (3), “S_SSV” calculates the semantic and syntactic value between two element’s

names. The second calculation part in this equation concerns the property level; the comparing

mechanism for this part is illustrated in equation (2).

III.3.4 Cross-level matching

This matching step focuses on the unmatched elements and properties that are left from the first and

second matching steps. Cross-level means that the matchings are built among the items that come from

different levels (i.e. source meta-model element – to – target meta-model property, source meta-model

property – to – target meta-model element). In simple words, the matching step builds mappings between

elements and properties. The matching focus of this step is shown in Figure III-12. In this matching step,

source element “E A3” is transformed into a property in target element “E B5”; it is also possible to

transform the property of source element “E A7” into a target element “E B8”.

Figure III-12: Possible matching results of cross-level matching step.

When comparing an element and a property, only their names are taken into account. S&S checking are

used to compare their names (both element’s properties group and the type of property are ignored).

Equation (4) is used to calculate the S&S relationship between a pair of element and property.

 CLM_SSV = sem_weight * S_SeV + syn_weight * S_SyV (4)

“CLM_SSV” stands for “cross-level matching semantic and syntactic value”; this calculation rule is only

based on element’s name and property’s name. Semantic and syntactic values between the two names are

calculated, respectively. “sem_weight” and “syn_weight” are two impact factors for “semantic relation”

and “syntactic relation”; they determine the weights of the two aspects. They perform the same role as

“name_weight” and “property_weight” defined in equation (1).

 Chapter III AMTM Overview

 62

III.3.5 auxiliary matching

All the shared parts between source meta-model and target meta-model are regarded to be found after the

three matching steps: matching on element level, hybrid matching and cross-level matching. The specific

parts of source and target meta-models are still left untreated. The auxiliary matching step focuses on

these specific parts. Figure III-13 illustrates the matching focus of this step.

Figure III-13: Matching focus of auxiliary matching step.

Auxiliary matching step defines the mechanism of storing and reusing these specific parts (in some

aspects, this step also helps to do model merging). After the first two matching steps, all the unmatched

items from source meta-model are stored in AMTM_O, which is shown as Figure III-14. For a complete

model transformation process, the specific parts from former iterations could be reused as the specific

parts to enrich the target models generated in the latter iterations. Furthermore, the content in AMTM_O

could also be enriched by the other ontologies or knowledge base from other domains (extracting

concepts from other storages and storing them to AMTM_O following the specific formats). For this

reason, the specific parts from source meta-models are not sufficient to generate all the specific parts

needed by the target meta-models that are in the same iterative process.

 Chapter III AMTM Overview

 63

Figure III-14: Structure of AMTM_O (represented thanks to Protégé).

As stated in (Gruber, 1995), “formal ontologies are viewed as designed artifacts, formulated for specific

purposes and evaluated against objective design criteria”. In AMTM, AMTM_O should be designed and

formulated to serve model transformation process. Since it is used as an aid to do the S&S (storing and

reusing specific parts from source meta-models and items pairs have semantic relations), AMTM_O

should work with the matching mechanism (relevant to S&S) that is defined in MMM. So, it is designed

and formulated following the same structure of the MMM.

AMTM_O could be divided into two parts; an intermediate one and a final one. In order to save time and

improve efficiency of auxiliary matching step, a temporary one (intermediate) is built. For AMTM, a final

ontology is created; a specific temporary ontology is created for one entire model transformation process.

In one model transformation process, all specific parts from source meta-model are stored in this

temporary ontology. Furthermore, to enrich the target meta-model, this temporary ontology would also be

explored first. When the whole matching process is finished, all the specific parts that are still left in this

temporary ontology will be transferred to the final ontology. If there is some specific parts still left

unmatched in the target meta-model, the final ontology could provide a possible solution (contents left

from other model transformation processes) to enrich this part.

 Chapter III AMTM Overview

 64

III.4 Validation process on model level

As shown in the theoretical main framework, the majority model transformation mappings are built on

meta-model layer. Furthermore, figure III-5 illustrates the validation mechanism for these mappings.

Model transformation mappings are built based on the calculation results of S&S measurements between

source meta-model and target meta-model. In order to validate if these mappings are proper, they should

be used on model level (using real practices to test). These generated mappings could be applied between

any source models that are conformed to the source meta-model and target models that are conformed to

the target meta-models. The mapping results should be examined by domain experts or other

professionals: manual verification (MV). Based on the final examination results, new mappings could be

built; also, the S&S measurements (impact factors used in the equations that are mentioned above) could

be modified for the specific application domains, which have been examined by the domain experts.

This validation method involves manual efforts, which violates the original intention of AMTM. So,

another automatic validation methodology is also involved in AMTM. This automatic validation

methodology is named as “reverse detection validation (RDV)”.

Normally, meta-model based model transformation methodologies aim at building mappings on meta-

model layer: from source meta-model to target meta-model. The rules for detecting potential matching

pairs have been illustrated above: from source meta-model to target meta-model. The RDV process takes

the original target meta-model as source meta-model and builds mappings again from target meta-model

to source meta-model. Then, generating another set of model transformation mappings rules. The overlap

parts of the two model transformation rules sets generated by AMTM will be regarded as the final model

transformation rules; the specific parts, which are either from the first comparing phase (source to target)

or from the validation comparing phase (target to source), will be left to the system users to validate.

Since model transformation validation aspect is not a core component in AMTM, just two of the

validation mechanisms applying in AMTM are presented here. A simple comparison between the two

validation methods is given in Table III-2.

Table III-2: Validation methods for AMTM

Methods Feature Credibility Time consuming Costs

MV high yes high

RDV neutral neutral neutral

III.5 Conclusion

This chapter presents the overview of AMTM. The main content of this chapter is divided into two parts:

theoretical solution basis and execution process detail.

 Chapter III AMTM Overview

 65

For the first part, a theoretical main framework and the meta-meta-model involved are shown and

illustrated. The basic theories of doing model transformation in AMTM are defined within this framework.

Since AMTM is a meta-model based, automatic model transformation methodology, semantic and

syntactic checking measurements have been combined into the model transformation process. MMM

defines the mechanism of using S&S measurements on meta-model level to detect the transformation

mappings automatically.

Besides this theoretical main framework, another main principle of AMTM is defined and shown in figure

III-4. Model transformation is regarded as an iterative process in AMTM; each iteration phase is an

independent model transformation process following the principles defined in the theoretical main

framework. This iterative theory also illustrates AMTM execution process detail.

For the second part “execution process detail”, it is divided into four main matching steps. According to

the MMM, S&S measurements have been involved in each matching steps with different focuses and

usage. One of the main weaknesses of automatic model transformation methodologies lies in the

“granularity diversity”; these four main matching steps aim at solving it. AMTM implements the many-

to-many and cross-level (mismatching between property level and element level) matching mechanism.

As a main aspect of doing model transformation, “model transformation validation”, which is a

component in AMTM, has also been illustrated in this chapter. Two main validation methods involved in

AMTM: experts’ validation (relies mainly on manual work) and reverse detection validation (could be

implemented automatically).

 Chapter IV Combining S&S in AMTM

 66

 Chapter IV:

Combining S&S into model

transformation process

IV.1 Introduction: the reason and objective of applying S&S in AMTM Erreur ! Signet non défini.

IV.2 The mechanism of combining S&S in AMTM ... Erreur ! Signet non défini.

IV.3 Relation between semantic checking and syntactic checking Erreur ! Signet non défini.

IV.4 the mechanism of selecting matching pairs based on S_SSV Erreur ! Signet non défini.

IV.5 Simple use case of using S&S .. Erreur ! Signet non défini.

IV.6 Conclusion ... Erreur ! Signet non défini.

 Chapter IV Combining S&S in AMTM

 67

IV.1 Introduction: the reason and objective of

applying S&S in AMTM

This chapter focuses on the mechanism of combining semantic and syntactic checking measurements as a

whole into AMTM. The content involved in this chapter contains three main parts.

 The generous purpose of using semantic and syntactic checking.

 Methods of doing semantic checking and syntactic checking, and the potential relation between

the two checking measurements.

 The mechanism of using S&S in AMTM and relevant issues about using S&S in AMTM.

As stated in the third chapter, S&S measurements play a key role (involved in all the matching steps:

calculation equations) in automatic model transformation process. This chapter also reveals the

importance of S&S in AMTM; the position of this chapter in this thesis is shown in Figure IV-1.

Figure IV-1: The position of chapter four in this thesis.

Semantic checking and syntactic checking are mostly used as a key point to replace manual efforts; for

the reason that the checking process could be executed by using IT (computer assist) methods. These two

checking methods are created on the basis of “natural words”, and focus on the composition of alphabet

 Chapter IV Combining S&S in AMTM

 68

and semantic meanings carried by the words, respectively. Taking the word “star” as a simple example,

on one hand syntactic checking focuses on the alphabet composed ‘s’ ‘t’ ‘a’ and ‘r’, and their positions in

the word (position 1,2,3,4); on the other hand, semantic checking pays attention to the semantic meanings

that are conveyed by this word: four meanings as a noun and two meanings as a verb.

The mechanism of using S&S in AMTM is regarded as one of the scientific contribution that is proposed

in the research work presented in this thesis. AMTM is a general model transformation methodology; it

aims at providing service to all the engineering domains adopted model driven development approaches.

The main reason for using S&S could be replacing huge amount of manual work by using high-

performance computers. In some terms, semantic and syntactic checking measurements have already been

used in model transformation domain; however, the usage is limited to particular model transformation

methodologies (e.g. serving to particular domain, building on specific model transformation techniques).

To be more precise, the scientific contribution of this chapter concerns idea of combining S&S in a

general model transformation methodology.

This chapter is divided into five main sections. The second section presents the principle of applying S&S

both in general situations and in AMTM: focusing on a pair of words. The third section concerns the

mechanism of assigning values to the impact factors that are shown in the equations, which combines

S&S into the model transformation process, in the third chapter. The fourth section illustrates the

mechanism of choosing matching pairs (generated based on the semantic and syntactic relations between

the items involved in potential matching pair), and the fifth section gives a simple example to explain the

mechanism of applying S&S illustrated in this chapter. At the end, a conclusion of this chapter is shown.

IV.2 The mechanism of combining S&S in AMTM

As stated in the second chapter, both semantic and syntactic checking measurements are applied on a pair

of words. Syntactic checking concerns the letters involved in a word and the sequence appearance of

letters. Semantic checking focuses on all the semantic meanings that are conveyed by the word itself. By

detecting the syntactic relation and semantic relation between a pair of words, a proximate similarity

degree between the two words could be generated. Based on this similarity degree, some further processes

could be executed between the two words (e.g. mapping, transform). Normally, the detecting step needs

manual effort.

Considering the context of model transformation domain, the aim of applying S&S is to transform source

model to target model. To achieve this aim, comparing the two models and building transformation

mappings between them are necessary. Furthermore, the MMM defined within the theoretical main

framework of AMTM shows the mechanism of doing S&S comparing between models. Model

transformation mappings should be built between elements, properties, and among elements and

properties, which are defined as the main items contained in meta-models by the MMM.

In simple words, semantic and syntactic checking rules are built on the basis of words sets. But, in the

context of model transformation, the comparing items are properties and elements (not directly words

themselves). In order to fulfill this gap, a bridge between words set and model items (elements and

 Chapter IV Combining S&S in AMTM

 69

properties) should be built. In the third chapter, a simple idea of building this bridge is illustrated. Here,

Figure IV-2 shows this bridge.

Figure IV-2: Bridge cross the gap of models’ items and word set.

Element is regarded as two parts: element name and property’s group. Element name is a word;

between two elements’ names, S&S could be used to get a relation between them. Property group is

regarded as a whole; S&S could be used on single properties’ pairs. A property could also be regarded as

two parts: property name and property type. Property name is a word; between two properties’ names,

S&S could be applied. For property type, there are a range of options (e.g. string, integer and double). To

compare two properties, their types could be same, different or similar (e.g. integer and double). The four

equations presented in the third chapter reflect the idea of building this bridge in detail. All elements’ and

properties’ names are units in the word set; they could be located in word set and compared by S&S as

simple words.

As a short conclusion, the items contained in meta-models own names which represent by words;

furthermore, S&S measurements could be applied between word pairs, and define semantic relations

between specific word pairs. Therefore, S&S measurements are involved in model transformation process

in this way.

IV.3 Relation between semantic checking and

syntactic checking

S&S measurements are used as a whole; whereas it contains two parts: semantic checking and syntactic

checking. In some terms, they are independent: focusing on different aspects of the words. Both of them

could be used between a pair of words; considering the applying objects, some potential relations could

be built between the two checking measurements.

 Chapter IV Combining S&S in AMTM

 70

Between a pair of strings, there always exists a syntactic relation between them. The syntactic relation

stands for the syntactic similarity between them. If two strings are words that are with semantic meanings,

there might be also semantic relation between them. So, there is one question whether the syntactic

relation between two words could influence the semantic relations between them? The answer to this

question is definitely yes. If two words have a very high syntactic similarity, it means they probably stand

for one word (convey same semantic meanings) or two words with opposite semantic meanings (e.g.

usual and unusual). Usually, to detect the semantic relations between two words is more complex and

time-consuming (this part will be illustrated in detail in the sixth chapter) than to detect the syntactic

relation between them. So, in AMTM, syntactic relation checking is always executed before semantic

checking between two words. Equation (5) is defined to calculate the S&S relation between two words (if

either one is just a string ‘without semantic meaning’, there is just syntactic relation between them).

 S_SSV = SeV_weight * S_SeV + SyV_weight * S_SyV (5)

“S_SSV” has been used in the former equations (e.g. equation (1), equation (2)); it stands for the semantic

and syntactic relation (in AMTM, it stands by a value between 0 and 1) between a pair of strings. “S_SeV”

stands for the semantic value while “S_SyV” stands for the syntactic value between two strings. Two

impact factors “SeV_weight” and “SyV_weight” are defined here; they are ranging from ‘0’ to ‘1’ and the

sum of them is ‘1’. They work together to determine whether semantic or syntactic relation is more

important for a specific pair of strings. A special case is between a pair of strings without semantic

meanings, “SeV_weight” should be assigned as ‘0’ and “SyV_weight” should be assigned as ‘1’.

Based on different application situations, the two aspects “semantic and syntactic” might have different

effects (e.g. in enterprise engineering, semantic meaning may be more important but in medical field,

syntactic may be more important). So, a better way of assigning values to the two impact factors should

be: leaving it to domain experts. Another possible solution is applying use case to do tests and based on

the test results (also judged by domain experts) to modify the ranges of the two impact factors.

IV.4 the mechanism of selecting matching pairs

based on S_SSV

The idea of using semantic and syntactic checking to detect the potential relation between a pair of words

has been illustrated above. Moreover, with the mechanism defined in the equations (1) to (5), S&S could

be involved in AMTM to define relationship between a pair of model items defined in the MMM.

However, there is still one issue to be solved: how to choose matching pairs as the final model

transformation mappings based on the S&S relations (stands by values) between the items involved in the

pairs.

To analysis this issue, two levels are defined: S&S relation between a pair of words and S&S relation

between a pair of items that are defined in MMM. The mechanism of choosing potential matching pairs is

needed to build the final model transformation rules in model transformation process. The mechanism of

 Chapter IV Combining S&S in AMTM

 71

using S&S to detect potential mappings has been presented above; this part focuses on the matching pairs

choosing mechanism.

Figure IV-3: Matching pair choosing mechanism.

Figure IV-3 shows two levels of this issue: situation (a) and situation (b). Normally, for most engineering

domains, strong semantic relation means high possibility of making mappings between two words. In

AMTM, S&S relations stand by values that range from ‘0’ to ‘1’; the higher this value is, the stronger the

relation is. Figure IV-3 situation (a) shows the mechanism of choosing potential matching word pairs.

 Region 1 stands for two words that have close relation (strong syntactic relation and strong

semantic relation); two words have such a relation could transform to each other (matching

pairs).

 Region 2 stands for two words that have high semantic and high syntactic relations (or

normal semantic relation and strong syntactic relation); the words pairs belong to this region

are regarded as potential transformable pairs.

 Region 3 stands for two words having weak relations (weak semantic relation and not strong

syntactic relation); such a word pair has low possibility to be a matching pair or a potential

matching pair.

 The special word pairs are in Region 4, which stands for word pairs that have strong syntactic

relation but very weak semantic relation. For example, word pair: common and uncommon.

Such a pair of words is regarded to have an antonym semantic relation between each other, and

thus no transformation mappings would be built between them. In model transformation context,

only same or similar concepts pairs are considered valuable (not concepts with opposite

meanings).

The second level of choosing matching pairs concerns the relation between two potential matching items

defined in the MMM (coming from source and target meta-models, respectively). For example, the

relation between two “elements” is represented by a value “Ele_SSV”, which ranges from 0 to 1.

“Ele_SSV” is calculated based on semantic and syntactic comparisons among two elements’ names and

properties’ groups. The mechanism of selecting matching elements pairs depends particularly on the

range of this value. As explained in the former sections “there is a gap between words pairs and model

items pairs”, so generating an S&S value between a pair of words is not enough to define model items

mappings pairs. Considering about this gap, assigning threshold values for choosing potential matching

model items is necessary.

 Chapter IV Combining S&S in AMTM

 72

As shown in Figure IV-3, two threshold values: 0.5 and 0.8 are defined to choose model items’ (i.e.

element and property) matching pairs. Taking “Element” as example, if two elements have “Ele_SSV” in

region 1 (value between 0.8 and 1), a transformation mapping is built between them; if this value is in

region 2 (value between 0.5 and 0.8), a potential mapping exists between the two elements (this

situation will be left to users to decide if make mappings or not); else, if this value is in region 3 (Less

than 0.5), no mappings will be built between the two elements. When comparing property pairs or

element-property pairs, this choosing mechanism stays the same.

Since the mechanism of choosing potential model items matching pairs is the same for all the three

matching levels: element to element, property to property and element to property, an element (or a

property) may have from “0” to several potential matching items. So, in this way, a “many-to-many”

transformation rules are built on both element and property levels from source meta-model to target meta-

model.

IV.5 Simple use case of using S&S

This section presents a simple use case, which aims at showing the mechanism of applying S&S that is

defined within AMTM. The use case shown in this section is just carried out within words’ pairs; a more

complicated and model transformation functional concerned use case will be given in the seventh chapter.

The use case in this section contains three groups of word pairs; Table VI-1 shows the detail of them.

Table IV-1: Word pairs defined in this use case

Group Word pair Note

No.1 acridorex & acrisorcin only syntactic relation

No.2 students & student syntactic checking is enough

No.3 teacher & person Both semantic and syntactic checking

The word pairs in the first group are some specific strings, which do not have semantic meanings leaving

their special context. The example “acridorex” and “acrisorcin” are two names of some medicines.

Without the context of medical science, they are meaningless. However, for majority semantic thesaurus,

such kinds of words would not be included in. So, dealing with such a pair of words, the impact factors

“SeV_weight” and “SyV_weight” defined in equation (5) should be assigned with special issues: ‘0’ and

‘1’.

The word pairs in the second group have a strong syntactic relation (high syntactic similarity) between the

two involved items. With powerful syntactic checking measurements, the semantic relation between a

pair of words could be detected automatically. Just as shown in the example “students” and “student”, it is

obviously that they convey the same semantic meaning (within the context of model transformation

domain). The purpose of differentiating this group is to avoid unnecessary semantic checking steps.

Considering the usage of equation (5), the “S_SSV” for such a pair of words should always be ‘1’, no

matter what values are assigned to the impact factors “SeV_weight” and “SyV_weight”. Actually, in

AMTM, syntactic checking is divided into two steps; the first step is trying to use syntactic checking to

define potential semantic relations between two words (This part is detailed in chapter six).

 Chapter IV Combining S&S in AMTM

 73

The word pairs in the third group have both semantic relation and syntactic relation between the two

words involved. Both of the syntactic checking measurements and semantic checking measurements

should be applied on such pairs, and work together to generate a “S_SSV” for them. As shown in the

example “teacher” and “person”, it is obviously that they have a weak syntactic relation but a neutral

semantic relation (a teacher must be a person, but a person may not be a teacher). Normally, to determine

the relation between a pair of words, semantic relation influences more than syntactic relation. Depending

on different application domains, the influence degree might be a little different. Considering the equation

(5), two impact factors “SeV_weight” and “SyV_weight” could be assigned with the values of ‘0.8’ and

‘0.2’ or ‘0.9’ and ‘0.1’, respectively. The basic assigning principle is: the value of “SeV_weight” is

greater than the value of “SyV_weight” and the sum of the two values is ‘1’.

IV.6 Conclusion

This chapter presents the S&S checking mechanism involved in AMTM. In order to develop an automatic

model transformation methodology, semantic and syntactic checking measurements are two key issues to

be involved.

In some terms, semantic and syntactic checking could be executed automatically with the help of IT

domains; in this way, huge amount of manual efforts could be replaced. In AMTM, semantic and

syntactic checking measurements work as a whole, but they are independent to each other in some aspects.

Normally, the two checking measurements are applied between a pair of words. To fulfill the gap between

word sets and model items, AMTM builds a bridge by defining a MMM and S&S comparing mechanism

(four equations defined in the third chapter). In AMTM, a value is generated to stand for the S&S relation

between two model items. In order to differentiate matching pairs, potential matching pairs and un-

matching pairs, matching pair choosing mechanism is also presented in this chapter. Furthermore, the

matching pair choosing mechanism also guarantees the many-to-many matching relation between the

items coming from source meta-model and target meta-model, respectively. Finally, a simple use case of

doing S&S in AMTM between word pairs is given. This use case illustrates the idea that S&S checking

should be executed differently based on the specific word pairs. Consequently, the impact factors defined

in equation (5) might be assigned with different pairs of values with small range changes. Normally, the

values assigning part could be done intuitive.

This chapter presents the basic theoretical idea for doing S&S in AMTM and the relevant issues about

S&S. The detail of doing semantic checking and syntactic checking will be illustrated in details in the

following two chapters, respectively.

 Chapter V Semantic checking measurements involved in AMTM

 74

 Chapter V:

Semantic checking measurements

involved in AMTM

V.1 Introduction ... Erreur ! Signet non défini.

V.2 Basic requirement of doing semantic checking ... Erreur ! Signet non défini.

V.2.1 Semantic thesaurus “WordNet” ... Erreur ! Signet non défini.

V.2.2 AMTM Semantic thesaurus: AMTM_ST .. Erreur ! Signet non défini.

V.3 Semantic relation detecting mechanism ... Erreur ! Signet non défini.

V.3.1 Simple semantic relations detection .. Erreur ! Signet non défini.

V.3.2 Iterative semantic relations detection.. Erreur ! Signet non défini.

V.4 Simple use case .. Erreur ! Signet non défini.

V.5 Specific content is needed to enrich AMTM_ST .. Erreur ! Signet non défini.

V.6 Conclusion .. Erreur ! Signet non défini.

 Chapter V Semantic checking measurements involved in AMTM

 75

V.1 Introduction

In AMTM, semantic checking can be regarded as a process of detecting the semantic meanings of words

(e.g. elements’ and properties’ names); one specific word may have several semantic meanings that are

defined by people or defined by its context. Also within the context of AMTM, semantic checking

measurements stand for the methods of comparing semantic meanings and building semantic relations

between specific items, which contain semantic issues. Such an item could be directly a word (in any

languages), something derived from words and some special marks (e.g. math symbols, modeling

elements).

In AMTM, as the main objective concerns detecting of potential model transformation mappings,

semantic checking measurements are used to detect semantic meanings carried by model items (elements

and properties) and to build semantic relations between model items. Semantic checking measurements

involved in AMTM aim at comparing semantic meanings conveyed by items that come from source meta-

model and target meta-model, respectively. The potential matching items between the two meta-models

should have same (or similar) semantic meanings or semantic representations. This chapter focuses on

illustrating the mechanism of semantic checking measurements involved in AMTM. The position of this

chapter in the whole thesis is shown in Figure V-1.

Figure V-1: The position of chapter five to the thesis.

 Chapter V Semantic checking measurements involved in AMTM

 76

Semantic checking mechanism involved in AMTM is regarded as one of the scientific contribution

proposed by this thesis. AMTM adjusts semantic checking measurements to be suitable to model

transformation domain; furthermore, specific software tool is developed for AMTM.

This chapter is divided into six parts. The second section presents the basic requirement of doing semantic

checking measurements: a significant semantic thesaurus. This section divides into two subsections: (i) a

general semantic thesaurus “WordNet” (Fellbaum, 1998), which provides the original data for AMTM

semantic checking, and (ii) the semantic thesaurus that is built particularly for AMTM (AMTM_ST). On

the basis of AMTM_ST, the third section illustrates the mechanism of the detecting process for semantic

relations existing between potential mappings items. The semantic relations to be detected are divided

into two kinds: simple semantic relation and iterative semantic relation. The fourth section shows simple

use case of the detecting process for the two kinds of semantic relations. A possible improvement point

for enhancing AMTM_ST is presented in the fifth section. At last, a conclusion of this chapter is given.

V.2 Basic requirement of doing semantic checking

A word may have more than one semantic meaning; to determine the exact semantic meaning of one

word, the context of the word should be taken into consideration. There exist different relations among

different semantic meanings, such as: similar, hypernym and antonym (such semantic relations are

explained in the second subsection of this section). To do semantic checking, a powerful semantic

thesaurus is necessary. The semantic thesaurus should at least contains semantic meanings of majority

words (here, we only consider English words). A better semantic thesaurus should also provide semantic

relations building among different semantic meanings. AMTM_ST, which is adopted from “WordNet”, is

built for AMTM.

V.2.1 Semantic thesaurus “WordNet”

“WordNet” is a lexical database for English, which could be regarded as a large electronic dictionary. It

contains huge amounts of simple words, phrasal verbs and idioms. Comparing to the traditional paper

dictionaries, which entries have to be arranged according to their spelling (and thus, to some extent, their

pronunciation), entries in WordNet are organized in terms of their semantics. Specifically, words in

WordNet that are similar in meaning are interlinked by means of pointers that stand for a semantic

relation. Formally, WordNet is a semantic network, an acyclic graph (Fellbaum, 1998). WordNet has

been employed as a resource for many applications in natural language processing and information

retrieval.

WordNet is a widely used machine-readable lexicon in natural language processing. Word semantic

senses are organized as a synonym set, which is called “synset”; every synset consists of a list of

synonymous word forms. Here, a word form can be a single word, a phrasal verb and an idiom.

Furthermore, semantic relations that describe relationships are built among these synsets. WordNet

divides words in four groups: nouns, verbs, adjectives and adverbs. Totally, there are 155 327 words that

have 207 016 different word senses; these word senses belong to 117 597 different synsets. Table V-1

 Chapter V Semantic checking measurements involved in AMTM

 77

shows the number of words, word senses and synsets that are divided in four groups: noun, verb, adverb

and adjective.

Table V-1: Number of words, word senses, and synsets stored in WordNet 2.1 (Huang, 2007)

 words word senses synsets

noun 117 097 145 104 81 426

verb 11 488 24 890 13 650

adjective 22 141 31 320 18 877

adverb 4 601 5 720 3 644

total 155 327 207 016 117 597

To connect different synsets, many semantic relations are built among them. The details of these semantic

relations are shown in Table V-2.

Table V-2: Semantic relations maintained in WordNet 2.1 (Huang, 2007)

Semantic relation noun verb adjective adverb

hypernym 75 134 13 124 - -

hyponym 75 134 13 124 - -

instance hypernym 8515 - - -

instance hyponym 8515 - - -

part holonym 8874 - - -

part meronym 8874 - - -

member holonym 12 262 - - -

member meronym 12 262 - - -

substance holonym 793 - - -

substance meronym 793 - - -

attribute 643 - 643 -

domain category 4 147 1 237 1 113 37

domain member category 6534 - - -

domain region 1 247 2 76 2

domain member region 1 327 - - -

domain usage 942 16 227 73

domain member usage 1258 - - -

entail - 409 - -

cause - 219 - -

also - 589 2 683 -

verb group - 1 748 - -

similar-to - - 22 622 -

antonym 2 142 1 089 4 080 718

derivation 35 901 23 095 12 911 1

participle - - 124 -

pertainym - - 4 852 3 213

total 265 297 54 652 49 331 4 044

The semantic relations that are maintained in WordNet are shown in Table V-2. For different words

groups (i.e. noun, verb adjective and adverb), different semantic relations have been defined. For example,

hypernym and hyponym are two corresponding semantic relations that are defined on nouns group and

verbs group. The majority semantic relations maintained in WordNet are on three word groups: noun,

verb and adjective. Furthermore, among the three groups, noun group has the most semantic relations.

 Chapter V Semantic checking measurements involved in AMTM

 78

Since not all of these semantic relations are adopted in AMTM, we do not explain the details of each

semantic relation (e.g. meanings, examples and possible application domains) in this thesis. The details of

WordNet (including these semantic relations) are stated in (Fellbaum, 1998).

As a short conclusion, WordNet is a generous semantic thesaurus. It contains large amounts of words,

their semantic senses and the semantic relations among all these senses. It could provide solutions to

semantic checking problems for all the domains (not focusing on specific engineering domains).

Model transformation is a specific engineering domain. Since semantic checking measurements play a

key role in defining automatic model transformation methodology, a specific semantic thesaurus should

be created for model transformation domain. In AMTM, a specific semantic thesaurus AMTM_ST is built;

WordNet has been chosen to use as the basis to AMTM_ST. There are two main reasons for building

AMTM_ST.

 Improving efficiency of semantic checking process: WordNet contains huge content; model

transformation domain needs only parts of this content. Less content stores in semantic thesaurus

could save the time of accessing and searching the exact information involved in.

 Suitable to serve model transformation domain: model transformation domain mainly focuses

on noun, verb and adjective word groups; furthermore, model transformation focuses only on

several main semantic relations existing among these word groups. WordNet defines and

maintains too many semantic relations to be used by model transformation domain.

For the two main reasons, AMTM_ST is created in AMTM; the detail of this thesaurus is illustrated in the

next subsection.

V.2.2 AMTM Semantic thesaurus: AMTM_ST

The mechanism of doing semantic checking in AMTM has been illustrated in the former chapters and

sections. This section focuses on the basic requirement of doing semantic checking in AMTM: creating a

particular semantic thesaurus “AMTM_ST”.

“AMTM_ST” is also a huge semantic thesaurus, which contains large amounts of words, their semantic

meanings and semantic relations among these words. It is created on the base of WordNet, and it adopts

the majority words and a small part of the semantic relations that are defined in WordNet. Figure V-2

shows the structure of AMTM _ST.

Figure V-2: Structure of AMTM _ST.

 Chapter V Semantic checking measurements involved in AMTM

 79

Similar to WordNet, the items stored in AMTM _ST could also be divided into three categories.

 Word Base contains majority normal English words (coming mainly from three word groups:

noun, verb and adjective); these words have high possibility to be used in model transformation

domain: building models and defining meta-models.

 Word-sense Base contains all the word senses owning by words stored in “Word Base”; a word

could have “one to several” semantic senses. Taking the word “star” as an example; it belongs to

word group: noun and verb. Totally, it has six semantic senses (meanings); as noun, it has four

senses; as verb, it has another two senses.

 Synset Base contains many groups of word senses. A group of word senses is called “Synset”

here. The word senses that are contained in one synset (a group of word senses) own synonym

semantic meanings. As in WordNet, semantic relations are also built among these different

synsets.

Considering the context of defining automatically model transformation mappings and rules, seven kinds

of semantic relations are defined and maintained among synsets in AMTM _ST. They are “synonym”,

“hypernym”, “hyponym”, “similar-to”, “antonym”, “iterative hypernym” and “iterative hyponym”.

If two words have any kinds of these seven semantic relations, they could be located in AMTM_ST.

 Synonym: a word or phrase that means exactly or nearly the same as another word or phrase in

the same language. In AMTM_ST, all the words belong to the same synset have this semantic

relation between each other.

 Hypernym: a word with a broad meaning that more specific words fall under; a superordinate. In

AMTM_ST, this semantic relation exists between the synsets that contain nouns and verbs,

respectively.

 Hyponym: a word of more specific meaning than a general or superordinate term applicable to it.

Similar to the hypernym semantic relation, this semantic relation exists between the synsets that

contain nouns and verbs.

 Similar-to: a word or phrase has similar meanings as another word or phrase. In AMTM_ST, this

semantic relation only exists between the synsets of adjectives.

 Antonym: a word opposite in meaning to another. In AMTM_ST, this semantic relation exists on

all the synsets of the three groups of words.

 Iterative hypernym: a word has an iterative hypernym relation to another. Following the rules of

hypernym semantic relation, this kind of semantic relation only exists on synsets of noun and

verbs.

 Iterative hyponym: a word has an iterative hyponym relation to another. Similar to iterative

hypernym semantic relation, this kind of semantic relation also exists on synsets of noun and

verbs.

Considering the context of model transformation domain “model transformation mappings should be built

between same or similar concepts”, six semantic relations: “synonym”, “hypernym”, “hyponym”,

“similar-to”, “iterative hypernym” and “iterative hyponym”, are defined in AMTM_ST. Since the

“antonym” semantic relation could be detected by syntactic checking (using less resource and more

efficient than semantic checking) and be used as an assistant to make model transformation mappings in

AMTM, it is also defined and maintained in AMTM_ST. Four of the seven semantic relations:

“hypernym”, “hyponym”, “similar-to” and “antonym” are adopted from WordNet, the other three

semantic relations: “synonym”, “iterative hypernym” and “iterative hyponym” are particularly

 Chapter V Semantic checking measurements involved in AMTM

 80

defined in AMTM_ST (on the basis of existing structure of WordNet) to help detect potential model

transformation mappings.

In order to use these semantic relations to define model transformation mappings (to be used in the

equations presented in the third and fourth chapters), a specific value (between 0 and 1) is assigned to

each of the semantic relations. Table V-3 shows these semantic relations, their values pairs, and for each

of the semantic relations, a concrete example of words pairs is presented.

Table V-3: Semantic relations built in AMTM _ST and their value pairs

Semantic relation S_SeV Example

synonym 0.9 shut & close

hypernym 0.6 person-creator

hyponym 0.8 creator-person

similar-to 0.85 perfect & ideal

antonym -1 good & bad

iterative hypernym 0.6
n
 person-creator-maker-author

iterative hyponym 0.8
n
 author-maker-creator-person

For each of the semantic relations, an example of word pairs, which owns it, is shown in table V-3. The

corresponding “S_SeV” (semantic value between a pair of strings: first introduced in equation (1)) value

for a particular semantic relation stands for the similarity of the words pair on semantic aspect. The higher

of this value means the closer of the two words in semantic dimension.

At this moment, all these “S_SeV” values are assigned directly (based on experience that is got from self-

made tests); a better solution to assign these values should also consider the different domain factors and

leave this task to domain expects. In the general conclusion of this thesis, the assigning values issue will

be discussed in detail; furthermore, another possible method of assigning these values is presented.

Thanks to “WordNet”, huge amount of words, word-senses and synsets could be collected and defined in

AMTM _ST. AMTM _ST adopts the majority of the word sets, word sense sets and a small part of the

semantic relations that are defined and maintained in WordNet. Table V-4 shows the quantity of three

category items: words, word senses and synsets that are stored in AMTM _ST.

Table V-4: Content stored in AMTM _ST

Items Number

words 147306

word senses 206941

synsets 114038

With the huge semantic-related content stored in AMTM_ST, AMTM provides the possibility of doing

strong semantic checking measurements for model transformation domain to detect automatically model

transformation mappings and rules.

 Chapter V Semantic checking measurements involved in AMTM

 81

V.3 Semantic relation detecting mechanism

As illustrated in the fourth chapter, semantic checking measurements take place among elements’ and

properties’ names; the semantic relations between a potential matching pair of names are detected. In

AMTM, both elements’ and properties’ names are regarded as normal words. Defining the semantic

relations between two names is the same to define semantic relations between two words.

On the basis of AMTM_ST, AMTM defines a process to detect semantic relations between two words.

The first step of doing semantic relations detection is to locate the two comparing words. Figure V-3

shows the locating part of this process.

Figure V-3: Locating step of semantic relations detecting process.

Normally, a common word could be stored and located in AMTM_ST. The first step of locating process

is to find the two comparing words in AMTM_ST. A word may have several semantic meanings (word

senses stored in AMTM _ST); so the second step in this process is to locate all the word senses that are

owned by the two comparing words. For the reason “one word sense belongs to one synsets”, a word

might belong to one or several synsets. Thus, the final step of locating words in AMTM_ST is to form

two groups of synsets that two words belong to.

After getting two synsets groups, the next step is to detect the semantic relations that are existed among

all the possible synset pairs (one from word1 side, the other from word2 side). In Figure V-3, the dash

lines show those possible matching synset pairs (not all of them). One point to be stated clearly here, the

semantic relations between two words are not limited to zero or one, there may exist several semantic

relations between a specific pair of words (as one word may have several different semantic meanings).

As illustrated in table V-3, there are seven semantic relations defined and maintained in AMTM_ST.

According to the detecting mechanism, these seven semantic relations could be divided into two groups:

simple semantic relations and iterative semantic relations. In the simple semantic relations group,

there are five semantic relations: synonym, hypernym, hyponym, antonym, and similar-to. The detecting

mechanism of these five semantic relations is the same, and it is easy to be implemented in AMTM. For

the iterative semantic relations group, there are two semantic relations: iterative hypernym and iterative

hyponym. The detecting mechanism of the two semantic relations is also the same, but more complex than

the one defined for the simple semantic relations group. The details of the two kinds of detecting

mechanism are presented in the following two subsections, respectively.

 Chapter V Semantic checking measurements involved in AMTM

 82

V.3.1 Simple semantic relations detection

The principle idea of detecting semantic relations for the simple semantic relation group is: using one

loop tries to find two same synsets for all the five semantic relations: synonym, similar-to, hypernym,

hyponym and antonym, respectively. Figure V-4 is the simplification of this mechanism.

Figure V-4: Detecting mechanism of simple semantic relations.

The locating phase of detecting process has been illustrated in the beginning of this section; it assumes

that for both word1 and word2, all of their synsets have been located and form two groups as: synset

group1 and synset group2. All the potential semantic relations are to be found within synset pairs (one

comes from synset group1 and the other comes from synset group2).

In simple word, the principle of detecting simple semantic relations is: for one word (in this case, either

word1 or word2 is ok), search all the synsets that have the five kinds of semantic relations with its synsets

(formed as synset group A, synset group B, etc.), then comparing if there exists one same synset in the

other word’s synset group (synset group 2). Figure V-4 shows five comparing loops; each loop tries to

detect a specific semantic relation between the two words.

V.3.2 Iterative semantic relations detection

For the other group of semantic relations, the detecting process of “iterative hypernym” and “iterative

hyponym” semantic relations is complex. The detecting principle of the two: “iterative hypernym” and

“iterative hyponym” semantic relations is same. The locating phase should be executed at first for

both simple semantic relations detecting and iterative semantic relations detecting. The iterative

semantic relations detecting process will be carried out only after the failure of the simple

semantic relation detecting process. The principle of detecting semantic relations for this

semantic relation group is: locating iteratively the synsets that have hypernym or hyponym

 Chapter V Semantic checking measurements involved in AMTM

 83

relations with word1’s synsets and comparing with the synsets that word 2 belongs to, in order to

find two same synsets. This process is shown clearly in Figure V-5.

Figure V-5: Iterative semantic relations detecting process illustration.

Considering the efficiency issue and the strength of semantic relations between two words, the

iterative loop will be executed at most four times. If there is no semantic relation being found

after four iterative comparisons, we regard that the two words have no iterative semantic

relations between each other. Then the “S_SeV” between them might be “0” in the context of

AMTM.

The main difference between iterative semantic relations detecting and simple semantic relations

detecting is the iterative synsets searching process. Moreover, the calculation rules for “S_SeV”

values of the two groups’ semantic relations are also different to each other (assigned directly or

calculated by applying predefined formulas).

V.4 Simple use case

In this section, the semantic relation “iterative hypernym” is taken as an example to show the structure

and working mechanism of AMTM_ST. As illustrated above, semantic relations are not built directly

between different words in AMTM_ST; they are built among synsets that words belong to. All the items

in the use case shown in this section are synsets, which are represented by the words that belong to them.

The iterative semantic relations among several synsets are defined and maintained in AMTM_ST as

shown in Figure V-6.

 Chapter V Semantic checking measurements involved in AMTM

 84

Figure V-6: Iterative hypernym semantic relations illustration.

In Figure V-6, there are eight synsets and fourteen hypernym (seven of the fifteen are iterative hypernym

semantic relations) semantic relations are defined among them. Based on the semantic relations and their

values pairs that are defined in Table V-3, Table V-5 is generated for this example.

Table V-5: Semantic relations and values detected in this use case

Word 1 Word 2 Semantic Relation Semantic Value

person creator hypernym 0.6

person communicator hypernym 0.6

person artist 1 iterative hypernym 0.36

person maker 1 iterative hypernym 0.36

person author (sense 1) 1 iterative hypernym 0.36

person illustrator 2 iterative hypernym 0.216

person author (sense 2) 2 iterative hypernym 0.216

creator artist hypernym 0.6

creator maker hypernym 0.6

creator illustrator 1 iterative hypernym 0.36

creator author (sense 2) 1 iterative hypernym 0.36

artist illustrator hypernym 0.6

maker author (sense 2) hypernym 0.6

communicator author (sense 1) hypernym 0.6

All the semantic relations mentioned in Table V-3 have been defined and maintained in AMTM_ST; the

implemented algorithms just to search for them (the specific comparing words pairs are used as the input

of the implemented algorithms). Another point to be mentioned in this example is: hypernym and

hyponym are two opposite semantic relations. Applying this example again, “person” to “creator” is

hypernym relation while “creator” to “person” is hyponym relation. Considering the context of

transformation, a creator must be a person but a person may not be a creator; so, the semantic value for

hyponym is higher (easier to build transformation mapping) than the value for hypernym relation.

V.5 Specific content is needed to enrich AMTM_ST

Model transformation could serve many engineering domains to solve different kinds of collaborative

problems (exchanging and sharing data and information). In order to improve efficiency, an automatic

model transformation methodology is required. Semantic checking, which could be used as an artificial

intelligent issue, can replace the manual work from the process of defining model transformation

 Chapter V Semantic checking measurements involved in AMTM

 85

mappings and rules. The relationship of model transformation domain and semantic checking

measurements could be seen in Figure V-7.

Figure V-7: Relationship between model transformation domain and semantic checking.

Semantic thesaurus is used as the fundamental basis for semantic checking; it plays a key role in the

performance of the checking results. At this moment, the semantic thesaurus in AMTM “AMTM_ST” is

created on the basis of a huge general semantic thesaurus WordNet. Normally, the content (e.g. words and

semantic relations) stored in AMTM_ST is sufficient to deal with problems coming from different

engineering domains. However, in some particular situations, such a general semantic thesaurus does not

support specific domain problems. Specific engineering domains adopt special terms (words with

particular semantic meanings & semantic relations) that are not stored in AMTM_ST. In order to deal

with such situations, some additional content from engineering domains could be added into AMTM_ST.

Figure V-8 shows this issue. It is necessary to enrich the general semantic thesaurus “AMTM_ST”. There

are two data sources that could be used to enrich AMTM_ST: special terms (coming from practical

business of engineering domains) and special knowledge that is stored in ontologies (also categorized by

domains).

Figure V-8: Methods of enriching the general semantic thesaurus.

 Chapter V Semantic checking measurements involved in AMTM

 86

The idea of enriching AMTM_ST is dedicated to improve the performance of doing semantic checking.

However, this idea is difficult to be carried out due to two main reasons.

 The special structure defined in AMTM_ST: the content stored in AMTM_ST follows the

three-level structure: word, word sense and synset. The new added content must obey to this

structure. However, the “special terms” and “knowledge” from specific engineering domains and

their ontologies always have special structures; it is complex to transform the structures (remove

unnecessary parts & add necessary parts).

 The connection between new enriched content and old content stored in AMTM_ST: one of

the most important issues to enrich AMTM_ST is to build connections between the existing

content and the new added content. But, the experts, who provide the special terms or knowledge,

could not build these connections for AMTM_ST. So, the step of building connections relies on

the managers of AMTM. It is a huge manual work to complete.

Since solving domain specific problems is not the purpose of AMTM the two problems mentioned above

could not be solved at this moment, we just propose the idea of enriching AMTM_ST here. Another issue

that could be improved for doing semantic checking in AMTM lies in the equations, formulas and

checking mechanism defined to do semantic checking.

In other research or practical works, similar research works about doing semantic checking to replace

manual work has been carried out. The semantic checking measurements involved in AMTM could be

regarded as a summary of several of these works (considering the characteristics of model transformation

domain). These similar research works are listed in references as: (Kappel et al, 2006), (Kappel et al,

2006), (Dolques, 2011) and (Shvaiko et al, 2005).

V.6 Conclusion

In this chapter, the semantic checking measurements involved in AMTM are presented in detail.

In AMTM, semantic checking measurements take place between a pair of comparing words. The

comparing pair of words coming from source meta-model and target-meta model, respectively; and they

stand for model items’ (i.e. elements and properties defined in the MMM) names. The semantic checking

measurements are created on the basis of a huge semantic thesaurus “AMTM_ST”, which is built

particularly for AMTM (on the basis of another general semantic thesaurus “WordNet”).

Semantic checking measurements are regarded as a scientific contribution provided by this thesis. The

semantic checking measurements involved in AMTM contain two main parts: (i) create the semantic

thesaurus, and (ii) defining the checking mechanism according to the semantic thesaurus and model

transformation context. Both the two parts have been presented in detail in this chapter. Furthermore, a

simple use case is given to show how the checking mechanism works. At the fifth section of this chapter,

possible improvements on AMTM semantic checking measurements are illustrated.

 Chapter V Semantic checking measurements involved in AMTM

 87

 Chapter VI Syntactic checking measurements involved in AMTM

 88

 Chapter VI:

Syntactic checking measurements

involved in AMTM

VI.1 Introduction .. Erreur ! Signet non défini.

VI.2 Syntactic checking measurements in AMTM .. Erreur ! Signet non défini.

VI.2.1 Predefined syntactic checking measurements Erreur ! Signet non défini.

VI.2.2 “Levenshtein Distances” algorithm ... Erreur ! Signet non défini.

VI.3 Conclusion ... Erreur ! Signet non défini.

 Chapter VI Syntactic checking measurements involved in AMTM

 89

VI.1 Introduction

Syntactic checking is a process of detecting the syntactic similarity between a pair of comparing words.

For a specific word, it is made of a set of letters. The sequence and positions of these letters involved in

this word determines the syntactic characteristic of it.

In AMTM, syntactic checking measurements are used as an assistant to semantic checking measurements.

For the reason, semantic checking is a time-consuming task and syntactic checking could reveal several of

the semantic relations between two words in some aspects. So, this chapter is presented just following the

semantic checking measurements chapter.

Same as semantic checking measurement involved in AMTM, syntactic checking measurements defined

in AMTM are also regarded as scientific contribution provided by this thesis. Several existing syntactic

checking methods have been learned and adopted to generate the syntactic checking measurements for

AMTM. The position of this chapter in the thesis is shown in Figure VI-1.

Figure VI-1: The position of chapter six in this thesis.

In AMTM, as one of the means to detect potential model transformation mappings, syntactic checking

measurements are used to detect syntactic similarity carried by the names of model items (elements and

properties). This chapter focuses on the mechanism of doing syntactic checking measurements involved

in AMTM.

 Chapter VI Syntactic checking measurements involved in AMTM

 90

VI.2 Syntactic checking measurements in AMTM

The syntactic checking measurements involved in AMTM contain two steps: (i) test if two words that are

in different forms stand for the same word (with same semantic meanings), (ii) calculate the syntactic

similarity between two different words (both in forms and meanings). The two following subsections

present the two syntactic checking steps in detail, respectively.

VI.2.1 Predefined syntactic checking measurements

Comparing to semantic relations, syntactic relations might be more important to build model

transformation mappings in a few specific domains. Also, syntactic checking could reveal some hints of

semantic relations also (with less time and high efficiency). Moreover, syntactic checking could solve

some problem for semantic checking, for example: detecting the words that are in special forms, which

have not been stored in the semantic thesaurus (AMTM_ST).

VI.2.1.1 Special situations focused in predefined measurements

In AMTM, syntactic checking aims several kinds of words that are in special forms. Table VI-1 shows

several situations and examples of words that are in special forms.

Table VI-1: Several situations and examples of words in special forms

Case Word 1 Word 2 Example

1 word 1 + ‘s’ at end son & sons

2 Ends with ‘s’ “sh”, “ch”, ‘x’ word 1 + “es” at end match & matches

3 word 1 + “ing” at the end do & doing

4 Ends with ‘y’ change ‘y’ to ‘i’ + “es” city & cities

5 …… …… ……

Table VI-1 shows clearly that AMTM syntactic checking pretreatment focuses mainly on two situations:

words in plural forms and words in gerund forms. For these situations, a special profile could be built to

record them; there are two ways that syntactic checking could deal with these situations, 1) comparing

these words with their formal forms, and 2) modify these words to their formal forms that are stored in the

semantic thesaurus (further to be detected of semantic meanings). The purpose of pretreatment is to detect

the same word that shows in different forms or modify a word in special form to its original form.

In some terms, the pretreatment phase of syntactic checking step enhances the performance of semantic

checking by expanding the words sets in AMTM_ST. Another possible solution to do pretreatment of

syntactic checking is “applying Porter stemming algorithm” (Willett, 2006), which is illustrated in next

chapter.

VI.2.1.2 applying stemming algorithm to do predefined measurements of syntactic checking

English words have several special composition methods. A majority part of these methods are

concerning stemming. Usually, the stemming parts could determine the semantic meanings of the words

(words with the same stemming convey similar semantic meanings). In AMTM; it seems necessary to

analysis the stemming part of the words to enhance the syntactic checking part.

 Chapter VI Syntactic checking measurements involved in AMTM

 91

Lots of research works about learning and analyzing stemming have been carried out. The

original stemming algorithm paper was written in 1979 in the Computer Laboratory, Cambridge

(England), and appeared as Chapter 6 of the final project report (van Rijsbergen et al, 1980) and (Porter,

1980). And since then it has been reprinted in (Jones, 1997).

A fully automated alternative to truncation is provided by a “stemming algorithm” explained in (Hooper

et al, 2009) and (Porter, 2001). This reduces all words with the same root to a single form, the ‘stem’ by

stripping the root of its derivational and inflectional affixes; in most cases, only suffixes that have been

added to the right-hand end of the root are removed. The removals of prefixes (i.e. strings that have been

added at the left-hand end of a root) have been much less studied in the case of English-language retrieval.

In AMTM, we try to adopt “Porter stemming algorithm” (Willett, 2006) to do the syntactic checking in

the pretreatment step. “Porter stemming algorithm” has two main major features.

 A significant reduction in the complexity of the rules associated with suffix removal.

 The use of a single, unified approach to the handling of context.

Rather than rules based on the number of characters remaining after removal, Porter uses a minimal

length based on the number of consonant-vowel-consonant strings (the “measure”) remaining after

removal of a suffix. Furthermore, the Porter algorithm had become the standard for stemming English,

and it hence provided a natural model for the processing of other languages.

As majority of the common stemming algorithms, “Porter stemming algorithm” also has the problem:

considering comprehensive situations as a whole. To execute such an algorithm is also a time-consuming

task and the potential getting result may be not good. In some terms, running “Porter stemming algorithm”

may take more time than running semantic checking algorithms that are defined in AMTM. Due to this

reason, involving “Porter stemming algorithm” into AMTM is just a proposal at this moment. Maybe, a

better solution is “adopting part of this algorithm or using a starter edition of it”.

VI.2.2 “Levenshtein Distances” algorithm

As the second step of doing syntactic checking, “Levenshtein Distances” (Gilleland, 2009) algorithm has

been chosen to detect syntactic similarity by AMTM. “Levenshtein Distances” algorithm is one of the

similarity metrics, which is used as one of the prominent methodology in syntactic domain, based words’

syntactic checking methodology.

In information theory and computer science, the Levenshtein distance is a string metric for measuring the

difference between two alphabet sequences. Informally, the Levenshtein distance between two words is

the minimum number of single-character edits (i.e. insertions, deletions or substitutions) required to

change one word into the other. It is named after Vladimir Levenshtein, who considered this distance in

1965 (Levenshtein, 1966). Levenshtein distance may also be referred to as edit distance, although that

may also denote a larger family of distance metrics (Navarro, 2001). It is closely related to pairwise string

alignments. Normally, “Levenshtein Distances” algorithm could be used in approximate string matching;

the objective is to find matches for short strings in many longer texts, in situations where a small number

of differences are to be expected. The short strings could come from a dictionary, for instance. Here, one

of the strings is typically short, while the other is arbitrarily long. This has a wide range of applications;

http://tartarus.org/martin/PorterStemmer/def.txt
https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/String_metric
https://en.wikipedia.org/wiki/Vladimir_Levenshtein
https://en.wikipedia.org/wiki/Levenshtein_distance#cite_note-1
https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Sequence_alignment#Pairwise_alignment
https://en.wikipedia.org/wiki/Sequence_alignment#Pairwise_alignment
https://en.wikipedia.org/wiki/Approximate_string_matching

 Chapter VI Syntactic checking measurements involved in AMTM

 92

for instance, spell checkers, correction systems for optical character recognition, and software to assist

natural language translation based on translation memory. The Levenshtein distance can also be computed

between two longer strings, but the cost to compute it, which is roughly proportional to the product of the

two string lengths, makes this impractical. Thus, when used to aid in fuzzy string searching in

applications such as record linkage, the compared strings are usually short to help improve speed of

comparisons.

Mathematically, the Levenshtein distance between two strings: string a and string b with the length │a│

and │b│, respectively) is given by “Leva,b(i,j)”

Where “1 (ai ≠ bj)” is the “indicator function”; it is equal to 0 when “ai = bj” and equal to 1 otherwise.

Note that the first element in the minimum corresponds to deletion (from string a to string b), the second

to insertion and the third to match or mismatch, depending on whether the respective symbols are the

same.

A simple example is given below to illustrate the mechanism of using “Levenshtein Distances” algorithm

to calculate the syntactic similarity between two words. This example is to calculate the “Levenshtein

Distances” between two different words: “sun” and “son”. The calculation process contains two steps:

initiate a two-dimension table and calculate each missed values in this table based on the rules defined in

equation (5). The first step “creating a two-dimension table for the two comparing words” is shown in

Table VI-2.

Table VI-2: Initiate calculation table of “Levenshtein Distances”

 son s o n

 sun 0 1 2 3

s 1 ABS?

u 2

n 3

The two words are listed in column and line of Table VI-2, respectively; the letters (ignore cases) involved

in the words are listed and marked with their positions in the words. “Levenshtein Distances” algorithm

defines the rules to calculate the values to fill in the blank. The value in position “ABS?” should be

calculated based on three values, the one from upper to it: “1”, the one from left to it: “1” and the value in

the upper left corner: “0”. The concrete rule is: the value from upper and left should add “1”, thus get two

“2”; the two corresponding letter (from upper and left) of “ABS?” are the same “s”, so the value in the

upper left corner should add “0” (otherwise, add “1”). Then, the minimum value from the three (2, 2 and

0) is: “0”; the minimum value is chosen to fill in “ABS?”.

Based on the calculating rules, all the blanks “ABS?” in Table VI-2 could be filled. The final result is

shown in Table VI-3. The final value, which is regarded as “Levenshtein Distances” between the two

https://en.wikipedia.org/wiki/Spell_checker
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Translation_memory
https://en.wikipedia.org/wiki/Fuzzy_string_searching
https://en.wikipedia.org/wiki/Record_linkage
https://en.wikipedia.org/wiki/Indicator_function

 Chapter VI Syntactic checking measurements involved in AMTM

 93

words, comes from the lower right corner of the table: “1”; it means only one operation is needed to

transform the word “sun” to the word “son”.

Table VI-3: “Levenshtein Distances” calculation results of this case

 son s o n

 sun 0 1 2 3

s 1 0 1 2

u 2 1 0 1

n 3 2 1 1

By applying “Levenshtein Distances” algorithm, the syntactic difference between two strings (words)

could be calculated, which is represented by an integer value. This integer value stands for the number of

steps needed to change one string to another. In AMTM, syntactic checking methods are needed to

calculate syntactic similarity between two elements’ (or properties’) names. AMTM adopts “Levenshtein

Distances” algorithm as its main syntactic checking methodology. “Levenshtein Distances” algorithm

serves as the second syntactic checking step in AMTM: to calculate the syntactic similarity between two

different words. “Levenshtein Distances” algorithm only focuses on the two comparing words; the

algorithm is easy to implement and takes little resource to execute. Comparing to the other syntactic

checking measurements, “Levenshtein Distances” algorithm is simple, with high efficiency and also

powerful. It has been used by many other research works, as a usage example, the basic theory and

concrete executing process of this algorithm is stated in (Heeringa, 2004). However, “Levenshtein

Distances” algorithm also has its weakness in detecting syntactic similarity (comparing with the high

complexity algorithms, such as “Porter stemming algorithm”). So, in AMTM, syntactic checking part is

divided into two steps. The first checking step aims at offsetting the weaknesses of “Levenshtein

Distances” algorithm. Also, in order to use “Levenshtein Distances” in AMTM, equation (6) is defined.

As illustrated above, “Levenshtein Distances” stands by an integer value. However, a float whose range is

‘0’ to ‘1’ is used to describe the similarity between two words in AMTM. Equation (6) aims at

transferring this integer value (“Levenshtein Distances”) to such a float.

 S_SyV = 1 – LD / max (word1.length, word2.length) (6)

In equation (6), “S_SyV” stands for the syntactic similarity value between two words; “LD” means

“Levenshtein distances” between the two words. The value of “S_SyV” should always be in the range of

0 to 1; the higher of this value, the higher syntactic similarity between the two comparing words. With the

help of this equation, “Levenshtein Distances” algorithm is involved in AMTM. Together with the

predefined treatment phase (or part of rules defined in Porter stemming algorithm), “Levenshtein

Distances” and equation (6) build up the syntactic checking part of AMTM.

VI.3 Conclusion

This chapter describes the syntactic checking methodology involved in AMTM. As the semantic checking

methodology involved in AMTM, syntactic checking methodology is also regarded as scientific

contribution proposed by this thesis to model transformation domain.

 Chapter VI Syntactic checking measurements involved in AMTM

 94

Syntactic checking could be used in many applications that coming from different domains and several

syntactic checking methodologies have been proposed and implemented. The most common usage of it is

to matching entities names. In model transformation domain, in order to build potential model

transformation mappings, entities’ (model items’) names matching is also necessary. In AMTM, syntactic

checking and semantic checking work together to replace the manual work from the process of defining

model transformation mappings and rules. Figure VI-2 is a simple illustration of syntactic checking parts

and its relation with the semantic checking part involved in AMTM.

Figure VI-2: A simple illustration of syntactic checking measurements involved in S&S.

As shown in Figure VI-2, the S&S measurements involved in AMTM contains two parts: syntactic

checking measurements and semantic checking measurements. The S&S takes source meta-model

(SMM) and target meta-model (TMM) items as inputs and the outputs are potential matching pairs of

these items. For the syntactic checking part, it contains two steps: predefined treatment (pretreatment)

and “Levenshtein distance” algorithm. The first step “predefined treatment” also contains two phases:

special situations detection and stemming algorithms. In AMTM, both of the two phases could

discover special semantic relations (e.g. synonym and antonym) between a pair of words by applying

 Chapter VI Syntactic checking measurements involved in AMTM

 95

syntactic checking measurements. If the pretreatment step fails in discovering such kinds of semantic

relations, then “Levenshtein distance” algorithm will be used to calculate the syntactic similarity between

a pair of words. This syntactic similarity stands by a value and works together with the semantic relation

value between the same pair of words to determine potential matching pairs.

 Chapter VII Software tool implementation & use case

 96

 Chapter VII:

Software tool implementation & use

case

VII.1 Introduction ... Erreur ! Signet non défini.

VII.2 Software tool implementation .. Erreur ! Signet non défini.

VII.2.1 Requirement analysis ... Erreur ! Signet non défini.

VII.2.2 System design ... Erreur ! Signet non défini.

VII.3 Complete use case ... Erreur ! Signet non défini.

VII.3.1 The first model transformation in this use case Erreur ! Signet non défini.

VII.3.2 The second model transformation iteration in this use case Erreur ! Signet non défini.

 Chapter VII Software tool implementation & use case

 97

VII.1 Introduction

The theoretical solution, which has been illustrated in the former chapters, requires information

techniques to support; one of the purposes of AMTM “remove manual effort from model transformation

process” also reveals the requirement on artificial intelligent domain. This chapter aims at illustrating

briefly the process of developing such a software tool, and explaining the working mechanism and testing

the working performance of AMTM by carrying out a complete use case. The position of this chapter in

the thesis is shown in Figure VII-1 (the square marked by dash lines).

Figure VII-1: Positon of chapter seven in this thesis.

This chapter presents briefly part of the implementation phase of the theoretical solution defined in

AMTM (the detail implementing process “AMTM-SS developing process” is shown in the Annex). With

the help of the software tool “AMTM-SS”, a complete use case is carried out. This use case shows clearly

the working mechanism of AMTM; based on the testing results of the use case, the advantage and

disadvantage of AMTM is summarized.

 Chapter VII Software tool implementation & use case

 98

VII.2 Software tool implementation

Software engineering (Pressman, 2005) provides solutions to develop complex and huge software systems.

There are several traditional software developing life cycles, such as: waterfall model, rapid prototype

model, spiral model and agile model.

Normally, software developing contains four main steps (organized according to the previously

mentioned developing cycles): requirement analysis, system design, coding and testing. In this chapter,

we only present briefly the requirement analysis step and the design step involved in the developing

process of AMTM-SS; the details of the two steps and the details of the other two implementing steps

could be consulted in the annex of this thesis.

VII.2.1 Requirement analysis

There are six main functional modules that should be implemented in AMTM-SS. Furthermore, each of

them could be divided into several small functional modules concerning the detail of storing intermediate

results, connecting semantic thesaurus and reusing the results from other functional modules. The main

function of each main functional module is explained here.

 Models analysis module: this module aims at dealing with users’ inputs. The inputs of AMTM-

SS are different kinds of model sets; AMTM builds potential model transformation mappings

between two specific meta-models, which are conformed to the MMM (illustrated in the third

chapter). So, there is a gap between the real inputs and the inputs required by AMTM-SS. The

main task of this module is to analyze the input model sets, and based on the analyzing results to

deduce the two specific meta-models required by the following functional modules. Since the

input models might be built in any modeling techniques and contain different semantic and

syntactic representations, the task of this module could be really huge and complex. The design

and implementation parts of this module will be detailed in the following sections and in the

annex.

 Semantic relations detecting module: this module focuses on the semantic checking part, which

is created on the basis of two specific meta-models passed from the “models analysis module”.

Specific meta-models contain semantic representations, which are needed to be detected.

Detecting and comparing the semantic representations between two models help to define the

potential model transformation mappings. This module is the most time-consuming functional

part, and it needs to be completed with high efficient algorithms. Furthermore, this module needs

to be supported by a huge semantic thesaurus “AMTM_ST”, which has been illustrated in the

fifth chapter.

 Syntactic relations detecting module: this module performs a similar role as the semantic

relations detecting module; but it focuses on the syntactic representations carried by the specific

meta-models to build the potential model transformation mappings. This module implements the

“Levensthein distances” (a part of Porter stemming algorithms is also involved as pretreatment)

syntactic similarity checking algorithm. The efficiency of this module also determines the

efficiency of AMTM-SS; so, it is necessary to consider the efficiency aspect while considering

 Chapter VII Software tool implementation & use case

 99

about the powerful of syntactic checking methods used here. Different to the semantic relations

detecting module, this module does not need the support from other resources.

 Relations selecting module: this module aims at selecting potential model transformation

mappings based on the syntactic and semantic relations checking results. The syntactic relations

detecting module and semantic relations detecting module generate a value for each potential

matching pairs (one item from the source meta-model, the other from the target meta-model). The

mechanism of choosing potential matching pairs is defined and implemented in this module. This

module regards the syntactic and semantic checking results as an integrate value and set threshold

values to category the relational values. This module works as a bridge that crosses the gap

between semantic and syntactic checking results and model transformation mappings.

Furthermore, it also combines the two checking methodologies into model transformation

process.

 Transformation mappings generating module: this module builds potential model

transformation mappings and rules based on the selecting results generated in the functional

module “relations selecting”. The selecting results generated in the relations selecting module

might be conflict (e.g. overlap, Mutex) to each other. This module tries to simplify (solve the

overlap and Mutex problems) the potential matching pairs. For instances, in the potential

matching pairs, one item from source meta-model could be matched with several items in the

target mate-model; however, according to the priority level, maybe only one matching pair is

considerable. This module could reduce the interactions between AMTM-SS and its users. It is

necessary to have such a functional module to replace manual efforts from the software system.

 User interaction module: all the functional modules presented above work on generating

automatically the potential model transformation mappings. This module provides a solution to

validate these automatically generated mappings. This module provides interfaces to systems

users to validate and define new model transformation mappings and rules. The final validated

mappings and redefined mappings will be regarded as model transformation rules; and these rules

will be applied on the source model to generate the target model.

All of the six main functional modules provide the basic functions implemented in AMTM-SS. These

functional modules focus on their own core functions, but they are not independent to each other. Among

them, data and information are passed as parameters of functions. They work together as a whole to

complete the process of detecting automatically model transformation mappings.

Besides these functional requirements, non-functional requirements also defined in AMTM-SS. The non-

functional requirements concern two main aspects: user effort involved and system executing efficiency.

AMTM aims at defining model transformation mappings automatically; one of its purposes is to totally

remove users’ effort from the process of detecting mappings. So, AMTM-SS should reduce the

interactions with system users as few as possible.

As one of the common evaluation standards, the execution efficiency for all the software systems is

important. The final purpose of AMTM-SS is to serve the data and information sharing (exchanging)

problems existing in collaborations. So, high efficiency is an inner requirement on AMTM-SS. The

efficiency of executing AMTM-SS is mainly determined by the execution of syntactic and semantic

checking measurements, which are used to replace the manual efforts. So, developing two efficient

 Chapter VII Software tool implementation & use case

 100

algorithms (we are still working on this point) to do the two checking measurements could improve the

efficiency of AMTM-SS.

In detail, the non-functional requirements on AMTM-SS are: (i) shielding the detecting process of model

transformation mappings to the users (however, users have to be involved in the mappings rules

validation part), and (ii) developing high efficient algorithms of doing syntactic checking and semantic

checking.

VII.2.2 System design

This section presents briefly the system design part. The design part follows the data flow in AMTM-SS,

a simple design idea is shown in Figure VII-2.

Figure VII-2: A simple illustration of designing AMTM-SS.

The software system provides three main interfaces to the system users. The first one is for uploading

input model sets, the second one is used to connect with users to validate the automatically generated

model transformation mappings, and the third one is used to show the final transformation results (target

model) to users. The information flow in this software system has three states: information contained in

 Chapter VII Software tool implementation & use case

 101

the input models, information conveyed by the specific meta-models and information carried by the target

model. Figure VII-2 is created based on the information states to show the design step of AMTM-SS.

In AMTM, models are categorized by different layers (model and meta-model); the majority mapping

rules should be built on the abstract model (meta-model) layer. In order to get the specific meta-models,

which are conformed to the MMM, for both the source and target models, two approaches could be

applied.

 Deducing from models (meta-models are not included in the input model sets).

 Transforming from meta-models (meta-models are provided by users).

Both of the two approaches can generate the specific meta-models. The specific part, which is marked

with a star in Figure VII-2, concerns the core functions in AMTM-SS. It points out that the syntactic and

semantic checking methods are applied on the specific meta-models; the mechanism of involving the two

checking methodologies into model transformation process has been illustrated in former chapters. Based

on the requirement analysis, the design of packages composition is created and shown in Figure VII-3.

Figure VII-3: Package design illustration.

As shown in Figure VII-3, five main packages are defined in the design step. Moreover, within each main

package, the important classes are clarified. The main task of each class is marked as the name of it. Here,

a simple illustration of each package and its main classes is given.

 Chapter VII Software tool implementation & use case

 102

 Package 1: this package contains several functional classes to analyze the input model sets, and

store the information contained in these input models to the template that are conformed to

the MMM. The classes in this package also provide an interface or method to users to upload

their inputs into the software system. In simple words, this package has main tasks: (i) receive

inputs from system users, (ii) analyze the inputs and extract the useful information, and (iii) store

and adjust the extract information into a special format (specific meta-models conformed to

MMM). All these tasks could be regarded as the preparation steps for doing automatic model

transformation in AMTM. The outputs of this package are two specific models. The prepared

specific meta-models would be used by the following detecting mappings steps.

 Package 2: this package works as a bridge which crosses the gap between model

transformation domain and syntactic & semantic checking measurements. The inputs of this

package are two specific meta-models generated by the first package. It provides several

templates to store the potential comparing pairs (one item comes from the source meta-model, the

other comes from the target meta-model). These template classes also define a comparing value

and comparing functions. These comparing functions define the mechanism of calling syntactic

and semantic checking measurements, and also define different mechanism of using the two

checking measurements based on different comparing item pairs (i.e. element to element,

property to property, and element to property). The return value of these functions is used to

assign the comparing value defined in these functions. Normally, for each potential matching

pair, there exists such a comparing value, which could be used to select the final matching pairs

and make model transformation rules.

 Package 3: this package contains the semantic checking measurements. The classes (functions)

to get access to semantic thesaurus are also contained in this package. The inputs of this package

are two names (coming from elements and properties). After being called and receiving two

names, the first step is to detect the possible semantic relations between the two names, then

according to the “semantic relation and value” pairs defined in the semantic checking chapter, a

final comparing value is assigned to this comparing pair of names. The output (return value) of

this package is this comparing value. This value just determines a part of the final comparing

value between of pair of comparing model’s items (only concerns the names of the items).

 Package 4: this package performs the similar function as package 3. It focuses on the syntactic

checking measurements. The syntactic checking methodologies: predefined treatment (part of

Porter stemming algorithm) and “Levensthein distances” algorithm, are defined in this package.

The inputs of this package are also a comparing pair of two names; the return value (ranges from

0 to 1) is the comparing result: syntactic similarity. As illustrated in former chapters, syntactic

checking results could influence the semantic checking part by detecting semantic relations

through syntactic checking; the calling mechanism of these two packages is determined by

package 2.

 Package 5: this package provides the functions of generating the final model transformation

mappings and rules. The inputs of this package come from package 2; all the potential mappings

pairs and their comparing relation values. The main tasks of this package are: (i) select the useful

potential mapping pairs (remove the overlap, Mutex ones), (ii) provide connecting interfaces to

system users, and allow them to validate the automatically generated mappings and define new

mapping rules, (iii) store the final mapping rules into ontology and apply these rules on source

model to generate the target model. In order to complete these tasks, this package needs get

 Chapter VII Software tool implementation & use case

 103

access to the ontology (ontology is also needed to provide knowledge to fulfill the specific parts

of the target meta-model). Interactions between system users and AMTM-SS are important in this

package; friendly and efficient user interface is needed here.

All the five packages compose AMTM-SS. In Figure VII-3, only the main functional classes are presented.

Two outside resources to AMTM-SS are the semantic thesaurus “AMTM_ST” and the ontology

“AMTM_O”. AMTM-ST provides three main interfaces: connecting with system users, getting access to

AMTM_ST, and getting access to AMTM_O.

VII.3 Complete use case

This section presents a complete use case to test the functions and performance of AMTM-SS. This use

case aims at covering all the matching theories defined in AMTM, and using all the main algorithms

implemented in AMTM-SS. This use case is shown in Figure VII-4. It simulates the model transformation

process defined in AMTM among three models.

Figure VII-4: The complete use case of AMTM.

This use case contains three meta-models: course management system, resident management system and

education management system. This use case tries to make model-to-model mappings and

transformations between the meta-models “course management system” & “resident management

systems”, and between “resident management system” & “education management”. The model

transformation process involved in this use case is an iterative one. The “resident management system”

could be regarded as an intermediate target model to test the “specific parts store and reuse” mechanism.

 Chapter VII Software tool implementation & use case

 104

This use case focuses on how to use AMTM-SS to detect automatically mappings among the elements

(Especially “Node” responds to the MMM) that are coming from source meta-model and target meta-

model.

VII.3.1 The first model transformation in this use case

The details of each meta-models contained in this use case are shown in figure VII-4. In the first model

transformation process iteration, the source meta-model contains three main concepts: student (with six

properties), teacher (with six properties) and course (with four properties). All of the three concepts will

be compared with the two concepts: person (with seven properties) and address (with six properties) in

the target meta-model.

There is several uncertain impact parameters in the model transformation mechanism defined in AMTM;

the first step of executing this use case should be assigning concrete values to these uncertain parameters.

Table VII-1 shows the impact parameters and their values pairs defined for this use case. Actually, these

are the default values assigned to these impact parameters; AMTM-SS also provides the mechanism of

allowing users to modify them.

Table VII-1: Assigning values to uncertain impact parameters for this use case

No. Group Parameter 1 Assign value 1 Parameter 2 Assign value 2 In Equation

1 name_weight 0.5 property_weight 0.5 1

2 pn_weight 0.8 pt_weight 0.2 2

3 en_weight 0.5 pl_weight 0.5 3

4 sem_weight 1.0 syn_weight 0 4

5 SeV_weight 0.9 SyV_weight 0.1 5

With all these assigned values, the comparing mechanism defined in AMTM could be implemented

(executable) in AMTM-SS. The reason and significance of assigning these values pairs will be illustrated

with the usage of each equation (defined in the third chapter) in this use case.

In the first model transformation iteration “from source meta-model ‘course management system’ to

target meta-model ‘resident management system’”, in order to show the AMTM-SS working mechanism

in detail, the detecting process of comparing two concepts “student” and “person” is shown step by step.

The first comparing step is to calculate the “S_SSV” between two elements’ names (student and person);

equation (5), which is shown below again, is used to do this step.

S_SSV = SeV_weight * S_SeV + SyV_weight * S_SyV

Figure VII-5 is the screenshot of the equation (5) executing in AMTM-SS with “student” and “person” as

two comparing words. According to figure VII-5, in AMTM_ST, the word “student” has two semantic

meanings (belongs to two synsets) and the word “person” has three semantic meanings (belongs to three

synsets). The semantic relation between the two words is “iterative hypernym”, and the semantic value

between them is “0.64”; the syntactic similarity value between them is: 0.1428. In this use case, semantic

relation is assumed more important than syntactic relation, so two impact factors: “SeV_weight” and

“SyV_weight” in equation (5) are assigned with values as 0.9 and 0.1, respectively. The final S&S value

between the two words is: 0.5903.

 Chapter VII Software tool implementation & use case

 105

Actually, such a detail intermediate testing result would not be shown to the users in real use of AMTM-

SS; in this use case, in order to show clearly and to make the testing result understandable to readers, we

divide the whole use case into many small test cases. Within each of the particular small test case, we

show the testing results and give explanations of the results.

Figure VII-5: The S&S comparison executed between “student” and “person”.

The possible semantic relations (and corresponding values) between the two names are shown in table V-

3, which is defined in the fifth chapter. The algorithms implemented in AMTM-SS search in AMTM_ST

to detect the potential semantic relations between the two names. To complete the syntactic checking part

involved in equation (5) and equation (6), “Levensthein distances” algorithm is applied between the two

names; for the reason, the two names do not belong to the situation that two words in different forms but

stand for the same meaning.

According to equation (1), to compare two elements, both their names and properties’ groups should be

taken into consideration. So, the second calculating step is to calculate the S&S value on their property

level. For doing this step, the comparing mechanism is defined both in equation (1) and equation (2).

When calculating S&S values on property level, both properties’ names and their types are taken into

account. In this use case, property’s name is regarded more important than its type for the process of

making transformation mappings. So in equation (2), which is shown below again, “pn_weight” and

“pt_weight” are assigned with values 0.8 and 0.2, respectively. The executing results are shown is Figure

VII-6.

P_SSV = pn_weight * S_SSV + pt_weight * Id_type

As shown in Figure VII-6, to compare a pair of elements, an S&S relation value “P_SSV” is generated for

each potential matching pairs of properties. In this test case, there are totally “6 (source properties) * 7

(target properties): 42” potential properties’ matching pairs.

To improve the efficiency, some strategies are applied during the comparing process. When the “P_SSV”

value between two properties is “1”, the source property will not be used to compare with other properties

from target element. To be more readable, table VII-2 is created to store all these “P_SSV” values.

 Chapter VII Software tool implementation & use case

 106

With all these “P_SSV” values and the “S_SSV” value “0.5903” calculated in the first step (between two

elements’ names: student and person), the “Ele_SSV” between elements “student” and “person” could be

calculated by using equation (1). Equation (1) is shown below again.

Ele_SSV = name_weight * S_SSV + property_weight * (∑ 𝑚𝑎𝑥(𝑃_𝑆𝑆𝑉𝑖)
𝑥

𝑖=1
)/ x

In this use case, two impact factors: “name_weight” and “property_weight” are assigned with values 0.5

and 0.5, respectively. The “element’s name” and “property group” are regarded as same important to

make mappings between elements. In this use case, the final “Ele_SSV” between “student” and “person”

is: 0.673.

Figure VII-6: The testing results of matching on element level with two elements: “student” and “person”.

The testing results shown in Figure VII-6 are stored and presented in Table VII-2. For this model

transformation iteration, there are six tables that are similar to this one are created (on element level, there

are six potential matching pairs, e.g. student to person, teacher to person and course to address).

Table VII-2: Comparisons on property level for this use case

student person id surname forename gender age phone address

id 1 - - - - - -

name 0.2 0.6777 0.672 0.2133 0.04 0.016 0.0114

age 0 0.0229 0.02 0.0133 1 - -

address 0.2114 0.2 0.21 0.2114 0.0228 0.0114 0.8

sex 0.2 0.2114 0.21 0.8613 0 0 0.0114

teacher 0 0 0.01 0.0343 0.0228 0.0114 0.2

Following the same calculating rules and steps, all the “Ele_SSV” values for potential matching pairs of

elements (coming from source model and target model, respectively) could be generated. Table VII-3

shows the final result.

 Chapter VII Software tool implementation & use case

 107

Table VII-3: Potential matching pairs on element level in this use case

Course MS Resident MS person address

student 0.695 0.1439

teacher 0.7502 0.10

course 0.2585 0.243

Based on the result shown in table VII-3 and the mechanism of choosing potential matching pairs, which

is illustrated in the fourth chapter, the potential matching element pairs could be chosen. Furthermore, the

properties matching pairs (exist within the matching element pairs) could also be defined with the help of

contents stored in Table VII-2 (a set of this kind of tables). Figure VII-7 shows the comparing results, which

is got from the former matching steps.

Figure VII-7: Matching results on element level in the first transformation iteration of this use case.

Each model transformation iteration phase defined in AMTM contains four matching steps: matching on

element level, hybrid matching, cross-level matching and auxiliary matching. Only the first matching

step “matching on element level” has been used until now. For the second matching step “Hybrid

matching”, the matching ideas and techniques used are the same as the ones used in first matching step.

“Hybrid matching” focuses on the unmatched properties left from the first matching step. To complete it,

Table VII-4 is created and fulfilled automatically by AMTM-SS. This matching mechanism of this step is

defined in equation (3), which is shown below again.

HM_SSV = en_weight * S_SSV + pl_weight * P_SSV

The two impact factors: “en_weight” and “pl_weight” are assigned with values 0.5 and 0.5, respectively.

In this use case, when making hybrid matchings, the influence from element level and the property level

are regarded as equal important in building mappings.

Table VII-4: Hybrid matching results in this use case

Element: Property person: id person: phone …… address: house address: zip code

student: teacher 0.2951 0.3715 … 0 0

teacher: discipline 0.3918 … … … …

course: id 0.5 … … … …

course: name 0.05 … … … …

course: grade 0.05 … … … …

course: scores 0.05 … … … 0.01

All the unmatched properties from source meta-model are used to compare with all the properties of

target meta-model. Parts of the final result of this step have been shown in Table VII-4. Based on the

comparing results and the potential matching pairs choosing mechanism, no matching pairs should be

 Chapter VII Software tool implementation & use case

 108

built. Since the comparing process of this step is complex, we just take one comparing pair “student:

teacher – person: id” (element: property) as example and show the executing result in Figure VII-8.

Figure VII-8: Illustration of Hybrid matching testing results.

As shown in Figure VII-8, in this small test case, the influence on element level “between two names:

student and teacher” is 0.59; the influence of property level (between property “teacher” with type “class”

and property “id” with type “string”) is: 0. The final hybrid S&S relation value between this pair of

properties is: 0.2951. According to the potential matching pairs choosing mechanism, this pair of items

would not be regarded as model transformation mappings.

Within the first model transformation iteration of this use case, there are totally “5 (unmatched source

properties) * 13 (all target properties): 65” comparing pairs needed to be tested in the hybrid matching

step. The mechanism of comparing them is the same.

The third matching step included in AMTM is “cross-level matching”. In order to make cross-level

matching, unmatched elements and unmatched properties are comparing with each other. In this use case,

Table VII-5 is created and fulfilled by AMTM-SS (the comparing mechanism is defined in equation (4)).

In this use case, while doing the third matching step, syntactic relation between two names is ignored. The

impact factor of semantic relation is assigned with value “1”, and syntactic relation is assigned with value

“0”.

Table VII-5: Cross-level matching results in this use case

Element or Property element: address property: province …… property: house property: zip code

element: course - 0 … 0 0

property: discipline 0 - - - -

property: id 0 - … … …

property: name 0 - … … …

property: grade 0 - … … …

property: scores 0 - … … -

In this matching step, the items from same level (i.e. element to element, property to property) will not be

compared with each other; in Table VII-5, the “-” is used to mark such pairs. The testing results show that

there is no potential matching pairs could be built in this matching step for this use case.

 Chapter VII Software tool implementation & use case

 109

The fourth matching step included in AMTM is “Auxiliary matching”. This step stores specific parts

(unmatched items) of source model in AMTM_O and tries to enrich the specific parts (unmatched items)

in target model by extracting content from AMTM_O. In this use case, only the specific parts from source

model are stored in AMTM_O; since this is the first model transformation iteration phase, there is no

content stored in AMTM_O could be used to enrich the target model.

Figure VII-9: Matching result of the first model transformation iteration in this use case.

The final matching result of the first model transformation iteration in this use case is shown in Figure VII-

9. In Figure VII-9, the items marked with a “star” are matched; all the other items are stored in AMTM_O

and prepared to be used by the second model transformation iteration phase. It is normal that both source

and target meta-model have some specific parts, which could not be matched. The significance of doing

this automatic model transformation is to detect the shared (same or similar) concepts between source and

target meta-models. AMTM replaces manual effort from the process of building model transformation

mappings among shared concepts.

VII.3.2 The second model transformation iteration in this use

case

In the second model transformation iteration, the source meta-model is the target meta-model “resident

management system” in the former model transformation iteration, and the target meta-model is

 Chapter VII Software tool implementation & use case

 110

“education management system”, which has two concepts: school (with five properties) and teacher (with

six properties).

Now, the process of the second model transformation iteration phase is presented. Comparing to the first

model transformation iteration phase, the different part (also the significance) of this iteration is the

possibility to test the mechanism of enriching target meta-model. The illustration of this model

transformation iteration is shown in Figure VII-10.

Figure VII-10: Illustration of second model transformation matching iteration in this use case.

The process of detecting potential model transformation matching pairs in this iteration phase is the same

with the one of the first iteration; it follows the four matching steps: matching on element level, hybrid

matching, cross-level matching and auxiliary matching. In this iteration, the testing results of the first

matching step: matching on element level, are shown in Table VII-6.

Table VII-6: Potential matching pairs on element level of second iteration in this use case

Resident MS Education MS school teacher

person 0.2882 0.3284

address 0.0954 0.0989

The testing results show that element “person” and element “teacher” is a potential matching pair, since

they have the maximum S&S relation value of the four potential matching pairs on element level. Figure

VII-11 shows the testing results in detail (the properties matching pairs within the two elements are also

generated).

 Chapter VII Software tool implementation & use case

 111

Figure VII-11: Matching result on element level of the second iteration phase.

All the unmatched properties from source meta-model after the first matching step will be used to

compare with the properties in the target meta-mode in the second matching step. The comparing process

of the second step “Hybrid matching” is similar to the one in the first model transformation iteration

phase. The testing results of this step show that no potential matching pairs within this model

transformation iteration.

The third matching step is cross-level matching; in this step, the element “address” in the source meta-

model is matched with the property “address” from element teacher, which is in the target meta-model.

Equation (4), which is presented and explained in the third chapter, defines the mechanism of doing this

comparing process.

CLM_SSV = sem_weight * S_SeV + syn_weight * S_SyV

In this test case, the two impact factors “sem_weight” and “syn_weight”, which are shown in the equation

(4) above, are assigned with values: 1 and 0. This means that in cross-level matching, we only consider

the influence of the semantic aspect of elements’ names and property names. Table VII-7 records all the

comparing pairs involved in this matching step.

Table VII-7: Comparing pairs in cross-level matching step

Resident MS Education MS element: school property: id …… property: address

element: address - 0 0.9

property: id 0 - - -

property: age 0 - - -

 0 - - -

property: province 0 - - -

property: city 0 - - -

In this matching step, only “element to property” and “property to element” pairs are considered. Figure

VII-12, shows the testing results of this matching step. The “CLM_SSV” value between element “address”

and property “address” is 0.9, because they are regarded as coming from the same synset; the semantic

relation between them is synonym.

The fourth matching step auxiliary matching step tries to enrich the specific parts (unmatched items) in

target meta-model; for this test case, the property “discipline” in target meta-model could be enriched

with the specific part (property “discipline” in meta-model course management system) stored in

AMTM_O.

 Chapter VII Software tool implementation & use case

 112

Figure VII-12: Matching result on element level of the second iteration phase.

So, after all these matching steps, the final model transformation mappings and rules are shown in Figure

VII-13. The items marked with red stars are all matched.

Figure VII-13: Final matching result of the second iteration phase in this use case.

As a short conclusion, this use case shows a complete example that tests all the main matching theories

defined in AMTM and all the main functions (algorithms) implemented in AMTM-SS to detect

automatically model-to-model transformation mappings and rules. All the equations presented in the third

and fourth sections have been used in this use case. The main model transformation mappings and rules

are built within the first matching step “matching on element level”; while the other three matching steps:

hybrid matching, cross-level matching and auxiliary matching phases solve the granularity issue involved

in model transformation process. All the three latter matching steps perform important roles in detecting

potential matching pairs even the transformation rules detected in these three steps are not as many as the

ones generated in the first matching step. On both element level and property level, the mappings

implement “many-to-many” transformation.

 Chapter VII Software tool implementation & use case

 113

This use case simulates the model transformation mappings detecting process that is executed on meta-

model layer. All the model transformation mappings and rules are built between source meta-models and

target meta-models. Finally, these automatically generated mappings and rules should be used on specific

source models to generate the target models. So, we present a source model which is conformed to the

course management system meta-model. Also, the targets models, which are generated automatically

based on the model transformation rules built above, are presented. Figure VII-14 shows the source model

and two target models.

Figure VII-14: Target models generated by using the automatically detected mappings.

As shown in Figure VII-14, the “Source Model” contains seven “nodes”: three “student” instances, two

“teacher” instances and two “course” instances, and the relations among the seven “nodes” are maintained

by their properties. All of the properties of the seven nodes: six properties of each “student”, six

properties of each “teacher” and four properties of each “course”, have been assigned with values.

In the context of AMTM, the first model transformation iteration phase is taking in this “Source Model”

and generating automatically the “Target Model 1”. The automatically generated model transformation

rules (the generating process, the selecting mechanism and the final selecting results) on meta-model have

been illustrated above. The transformation results are: the “Target Model 1” contains five instances of

“person” that are transformed from instances of “student” and “teacher” in the “Source Model” and the

properties of these new instances of “person” are also partly fulfilled (“student” instances have no

property of “phone” and “teacher” instances have no property of “address”). The second model

 Chapter VII Software tool implementation & use case

 114

transformation iteration phase is taking in the “Target Model 1” (as source model) and generating the

“Target Model 2”. Based on model transformation rules presented above, the transformation results are:

“Target Model 2” contains five “teacher” instances transformed from the “person” instances in “Target

Model 1”. Some of the properties of the new generated “teacher” instances could not be fulfilled: all the

properties of “birthday” and properties of “level”, parts of the properties of “phone” (originate from the

“Source Model” node “student”) and parts of the properties of “address” (originate from “Source Model”

node “teacher”). One point to be made clearly here: in “Target Model 2”, only the last two nodes “Clark”

and “Elise” have the properties of “discipline. The two properties are enriched by extracting the content

from AMTM_O; the extracted content is stored in AMTM_O, as specific parts of the “Source Model”, in

the first model transformation iteration phase.

As a short conclusion of this testing results, some elements and properties in the target model could not be

transformed from the source model (or enriched by AMTM_O); the left unmatched parts require manual

effort to deal with. In some aspects, AMTM could remove manual effort from defining the same (or

similar) concepts between source and target meta-models. The testing result carried out for this use case is

acceptable; there is one problem “the efficiency of AMTM-SS”: it takes more than thirty minutes to

comparing two elements (each of them with five properties). The efficiency part will be one of the

focuses in the future work: the second (or the third) iteration of AMTM.

 Chapter VII Software tool implementation & use case

 115

 General Conclusion

 116

General Conclusion

 General Conclusion

 117

This part aims at giving a general conclusion of this thesis. The content in this part could be divided into

four subparts: (i) a conclusion of the content presented in this thesis, (ii) the prospect usage of AMTM,

(iii) the points involved in AMTM that require to be improved; and (iv) a social perspective of applying

AMTM.

Conclusion of the research work

As illustrated in the general introduction part, a large number of collaborations among heterogeneous

partners are appearing and disappearing within specific periods at this moment. A typical problem

brought by these collaborations is “how to exchange and share data (information and knowledge)

among the heterogeneous partners”. Concerning this problematic, this thesis presents a model-based

methodology to serve it. In simple words, each of the partners involved in collaborations is a system,

which could be represented by a set of models (built based on different functional point of views);

furthermore, model transformations could be used to simulate the processes of connecting heterogeneous

partners (especially on data, information and knowledge sharing and exchanging aspects). As the inner

requirement of collaborations, the model transformation methodology adopted to serve them should be a

high efficient one.

The main difficulty of defining a high efficient model transformation methodology to serve collaborations

comes from three aspects: semantic checking, syntactic checking and granularity issue involved. Table

GC-1 shows the three aspects and the coming sources of them. The detail of this table is presented in

chapter one.

Table GC-1: three difficulties of defining high efficient model transformation methodology

Origin \ Difficulty semantic detecting syntactic detecting granularity issue

application domains √ √

modeling techniques √ √ √

model transformation domain √

After reviewing existing solutions, this thesis presents an automatic model transformation methodology

(AMTM), which answers the requirements of collaboration. This methodology combines syntactic and

semantic checking measurements into model transformation process to detect the potential mappings

automatically. Comparing with the existing model transformation methodologies, the aim of AMTM is

“supporting to effectively build the collaborations”. The involved syntactic and semantic checking

measurements could replace the manual efforts from model transformation process (defining model

transformation mappings). In order to apply the theories defined in AMTM, a software system “AMTM-

SS” has been developed. AMTM-SS is used to test the working mechanism of AMTM and its

performance; a complete use case is carried out and the testing results of this use case are

explained.

The contribution of this thesis could be divided into two categories: scientific contribution and technical

contribution.

 Scientific contribution: providing a model transformation methodology “AMTM” to support

“data (and information) exchanging and sharing issues among heterogeneous partners”.

AMTM could help to build efficiently collaborations (e.g. enterprise collaboration, crisis

management and traffic accidents management).

 General Conclusion

 118

 Technical contribution: defining semantic checking measurements and syntactic checking

measurements, and taking them as a whole to combine into model transformation process.

To define the semantic checking measurements, a specific semantic thesaurus, which aims at

serving particularly to model transformation domain, has been created. To define the syntactic

checking measurements, several existing syntactic checking methods (e.g. “Porter stemming”

algorithm and “Levenshtein distance” algorithm) have been adopted in AMTM considering the

context of model transformation domain. Finally, to combine the two checking measurements

into model transformation process, a theoretical solution has been defined in the theoretical main

framework of AMTM (the MMM and five equations presented in the third chapter).

The whole structure of this thesis is shown in Figure GC-1.

Figure GC-1: Content structure of this thesis.

Prospect usage of AMTM: serves to MISE 3.0

The original purpose of creating this PhD project is to support the research project “MISE”. Actually,

“automatic model transformation methodology” is an important support for MISE project. The “MISE”

project was in its second iteration (MISE 2.0) when this PhD project has been launched. At this moment,

the third version of “MISE” is on the developing process.

MISE 3.0 platform implements the same model-driven engineering approach than MISE 1.0 and MISE

2.0. This approach is structured according to four layers.

 General Conclusion

 119

 Gathering of individual and collaborative knowledge.

 Designing of potential collaborative behavior.

 Deploying of accurate collaborative behavior.

 Managing and adapting of collaborative behavior.

The principle of MISE structure has been illustrated briefly in the first chapter of the thesis based on the

second iteration of this approach: MISE 2.0. MISE 1.0 and MISE 2.0 provided improved solutions to

support collaborative situations by deploying a MIS among heterogeneous organizations. However, there

are still some concrete research avenues to explore. MISE 3.0 brings new characteristics to this huge

research project in six main aspects; as stated in (Benaben et al, 2012), the details of these six improving

aspects are also presented briefly below.

 Knowledge gathering: collaboration model. In MISE 1.0 and MISE 2.0, knowledge gathering

step depended on the users: to fill the instantaneous information available concerning the

collaborative situation. In MISE 3.0, the ambition is to use Event Driven Architecture (EDA) to

continuously gather the knowledge (about organizations and situation) and continuously update

the models (describing organizations and situation).

 Behavior design: model of collaborative behavior. Comparing with the “collaborative

process(es) deduction” step defined in MISE 1.0 and MISE 2.0, MISE 3.0 includes a more soft

principle of doing this step. This main idea of the new principle is “integrating decision support

system to assist the user in selecting potential behaviors.

 Implementation: deployment of Mediation IS. MISE 3.0 uses non-functional requirements

extracted from previously deduced “design-time” indicators to select the most fitting technical

elements to implement the deduced business collaborative behavior. Otherwise, non-functional

requirements have not been used in MISE 1.0 and MISE 2.0 to complete this step.

 Agility: detection and adaptation. MISE 3.0 uses detection through EDA system and adaptation

through a new run of one of the design-time steps (function of the nature of the problem detected).

 MISE 3.0 synthesis. This part concerns the mechanism of integrating the four new improving

aspects mentioned above as a working process in MISE 3.0. The four improving aspects focus on

different steps in MISE, and there are interactions between them.

 Application domains. MISE 1.0 and MISE 2.0 aimed at serving three application domains about

collaborative situations (but there might be really more): support of logistics systems, support of

health care systems and support of crisis management systems. The usage of MISE 3.0 to the last

domain mentioned (crisis management) is detailed in (Benaben et al, 2012): a geographical area

may be watched through an EDA platform, in order to gather all events (from sensors, services,

people, devices, etc.) in order to build and maintain a global picture of that area. According to

some unexpected (or expected) negative changes (such as a lot of tweets mentioning the same

problem, a lot of GPS data showing that a lot of vehicles are stopped, some abnormal values of

temperature sensors, etc.), the MISE 3.0 platform could start the behavior deduction based on (i)

information concerning the situation (risk, facts, etc.) and (ii) information concerning rescue

means (resource, potential actors, etc.) both extracted from the global picture.

Figure GC-2 illustrates the global MISE approach (three steps in an agile framework) and underlines

schematically the specificities of first, second and third iterations.

 General Conclusion

 120

Figure GC-2: MISE 1.0, MISE 2.0 and MISE 3.0 iterations (Benaben et al, 2012).

AMTM performs a key role in MISE 3.0; it helps MISE 3.0 to achieve the agility characteristic by

replacing manual efforts from the whole iterative process. Model transformation practices are used in all

the four layers mentioned above. Actually, model transformations involved in MISE could be divided into

two groups: horizontal model transformations and vertical model transformations. The model

transformations take place within one MISE layer (connecting models from same layer) are belong to the

first group: horizontal model transformations; the model transformations take place between two MISE

layers (connecting models from two adjacent layers) are belong to the second group: vertical model

transformations.

Future works and improvements

Based on the testing results of AMTM-SS, several points in both AMTM and AMTM-SS have to be

improved in future works. The details of these improving points are listed below.

 Automatic validation of the automatically generated model transformation mapping rules.

At this moment, there is only one way to validate the automatically generated model

transformation mappings in AMTM: demanding system users or domain experts to do the

validation. However, this validation method involves manual efforts, which contraries to the

original intention of AMTM. So, an automatic validation method would be a better solution to

AMTM. Here, just a proposal is shown in Figure GC-3.

In AMTM, model transformation mappings rules are built on meta-model level (from source

meta-model to target meta-model); the potential mapping rules concern how to transform model

items in source meta-model to model items in target meta-model. The idea of doing validation on

these mappings is to reverse this building process: changing the roles between source meta-model

and target meta-model and building mappings to transform target meta-model to source meta-

model. The mapping building process also depends on AMTM. Then, two sets of mapping rules

will be generated (one set from source meta-model to target meta-model and the other set from

target meta-model to source meta-model). Figure GC-3 shows the relation of the two sets of

 General Conclusion

 121

mappings rules. The overlapping part between the two sets could be regarded as the final model

transformation mappings; the mapping rules only appear in one set will be left to system users or

domain experts to assess. In this way, the manual efforts involved in AMTM could be reduced

(not necessary to validate all the automatically generated model transformation mappings).

Figure GC-3: Illustration of possible automatic validation solution.

 Mechanism of assigning values to the impact factors in equations (illustrated in the third

chapter) and thread values (illustrated in the fourth chapter about choosing mechanism of

potential matching pairs). Actually, assigning values to these uncertain impact factors should

concern about the context of different applying domains and situations. However, such

consideration would lead this process to be done by manual work. There are two possible

solutions to this problem: assign manually and assign automatically. The two meta-models

may come from different domains, and usually the target meta-model plays a more important role

in determination of values for these uncertain factors. So, the manual assign method depends on

the expert from the domain of target meta-model. The automatic assign method depends on

mathematic strategies, such as “choquet integral” (Abril et al, 2012); these mathematic

strategies could detect the importance of each parameter that involved in a formula and assign the

weights to them automatically. The second solution seems to be a better solution, but it may bring

in new kinds of uncertain problems and reduce the efficiency of AMTM-SS.

 Adding new semantic relations and modifying the respond values (or calculating formulas)

to these semantic relations. As stated in the fifth chapter, seven semantic relations have been

defined and maintained in AMTM_ST and for each of them a respond value is assigned directly.

One of the main problems is “if the seven semantic relations are enough to detect potential

model transformation mappings?” Some new semantic relations (defined and maintained in

WordNet) could be adopted into AMTM_ST, such as: “part holonym (part and whole)”, “domain

category”, etc. More real test cases are needed to make the final decision about enriching

AMTM_ST or not. The huger AMTM_ST is, the lower efficiency of semantic checking

algorithms will be. Another main problem concerns the values assigned to different semantic

 General Conclusion

 122

relations. These assigned values (also with the help of matching pairs’ selection mechanism)

determine directly the creation of final potential mapping rules. Some particular test cases or real

use cases should be executed in relevant software tools (e.g. AMTM-SS) to modify

correspondingly these semantic values and threshold values for choosing potential matching

pairs.

 The efficiency of the algorithms that focus on doing semantic checking measurements. Since

semantic checking measurements rely on a huge semantic thesaurus, the relevant algorithms are

really time-consuming processes of detecting semantic relations between two words. The most

time-consuming part in semantic relation detecting algorithms is the comparing loops for

potential matching pairs. So, there are two solutions to improve the efficiency of this algorithm.

The first solution is to reduce the number of potential matching pairs, and the second solution

is to reduce the number of comparing loops for a specific matching pair. Both the two solutions

are possible and will work. In the second version of AMTM (also AMTM-SS), the improving

efficiency part of it will become a focus.

 The usage of AMTM_ST. At this moment, only formal English words are stored in AMTM_ST;

it means semantic checking measurements could only take place between formal English words.

However, in model transformation domain, the words involved might be in specific forms (e.g.

plural form, gerund form and past tense forms), which are not stored in AMTM_ST. So, to

enhance the usage of AMTM_ST, some preparation work should be done: either modify the

words’ forms before locating them in AMTM_ST or add words with special forms into

AMTM_ST (it is necessary to build connections between the new added words and the existing

content in AMTM_ST). Comparing the two methods, the first method “modify words’ forms” is

easier to implement. Some syntactic relevant algorithms should be introduced in to modify

words’ forms. Another problem in using AMTM_ST is the vocabulary stored in it. In some

specific domain, some vocabularies are used; these vocabularies are not stored in AMTM_ST or

possess different meanings as they should do. For this situation, either creating (or using) a

specific semantic thesaurus or ignoring those specific vocabularies.

The five points mentioned above are needed to be improved. However, without these optimizations, both

AMTM and AMTM-SS could work at this moment.

Prospect usage of AMTM: managing data sets

The usage of AMTM is not limited to serve to MISE project; the syntactic and semantic checking

measurements and the ideas of doing this could serve to many domains (not only in model transformation

domain). The basic function provided by AMTM, which is implemented as AMTM-SS, is to share and

exchange information (data) among heterogeneous partners. A broader vison of the usage of AMTM is

shown in Figure GC-4.

Converting rough data to information might be the further usage of AMTM. This work could help to

solve cross-domain problems. Many data collectors (e.g. sensors, smart equipment and computers) could

gather rough data from a particular region or domain. The collected data focus on various purposes and

reflect different views of a system. Moreover, different collectors store data in their own structures which

might be heterogeneous to each other. So, it is difficult to make use of this kind of data as a whole.

 General Conclusion

 123

Figure GC-4: A broader vision of the usage of AMTM.

In the context of AMTM, each collected data could be regarded as single models. Thus, AMTM could use

semantic and syntactic checking measurements to detect the intrinsic links between data and domain

meta-models. Finally, after comparing and transforming these data, a final target model (overview of a

specific system) could be generated. This final target model could be used by different domains; with

domain specific rules, the information contained in this model could be used as knowledge.

A possible further usage of AMTM is to serve the building process of “smart city”. A smart city uses

digital technologies or information and communication technologies (ICT) to enhance quality and

performance of urban services, to reduce costs and resource consumption, and to engage more effectively

and actively with its citizens. To build a smart city, large amounts of sensors should be used to collect

specific data or information of the city. In a specific region of smart city, different kinds of sensors should

be used to collect different kinds of information depending on different views; in different regions of

smart cities, same sensors are used to collect same kind of data or information to compare to each other.

Finally, the data and information collected by these sensors (or a part of all sensors) should be used by

professional people (focusing on different point of views) to analyze the exact situations of the city and

thus provide suggestions of improving urban services. Before to be used by the professional people, the

data and information should be compared horizontally (data collected by the same sensors) and vertically

(data and information collected by different sensors).

AMTM could be used as a middleware between the collected data and professional people (e.g. city

managers). Based on the real viewpoints (meta-models) made by professional people, AMTM could

generate the specific views (models) by extracting and transforming the collected data (regarding each

data as a single model and applying semantic and syntactic checking measurements between them).

https://en.wikipedia.org/wiki/Information_and_communication_technologies

 References

 124

References

(Abril et al, 2012) Abril, D., Navarro-Arribas, G., & Torra, V. (2012). Choquet integral for record

linkage. Annals of Operations Research, 195(1), 97-110.

(Ackoff, 1971) Ackoff, R. L. (1971). Towards a system of systems concepts. Management

science, 17(11), 661-671.

(Ackoff, 2010) Ackoff, R. L. (2010). From data to wisdom. Journal of applied systems

analysis, 16, 3-9.

(Akehurst et al, 2002) Akehurst, D., & Kent, S. (2002). A relational approach to defining

transformations in a metamodel. In ≪ UML≫ 2002—The Unified Modeling

Language (pp. 243-258). Springer Berlin Heidelberg.

(Alessandro et al, 2008) D'Atri, A., De Marco, M., & Casalino, N. (Eds.). (2008). Interdisciplinary

Aspects of Information Systems Studies: The Italian Association for Information

Systems. Springer Science & Business Media.

(Andries et al, 1999) Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H. J., Kuske, S., ...

& Taentzer, G. (1999). Graph transformation for specification and

programming. Science of Computer programming, 34(1), 1-54.

(Atzori et al, 2010) Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A

survey.Computer networks, 54(15), 2787-2805.

(Balogh et al, 2006) Balogh, A., Varró, G., Varró, D., & Pataricza, A. (2006, April). Compiling model

transformations to EJB3-specific transformer plugins. In Proceedings of the 2006

ACM symposium on Applied computing (pp. 1288-1295). ACM.

(Bataille et al, 2001) Bataille, V., & Castellani, X. (2001). Métamodélisation et ingénierie des

systèmes d’information. Ingénierie des systğmes d͛information, 149-174.

(Bénaben et al, 2010) Bénaben, F., Mu, W., Truptil, S., Pingaud, H., & Lorré, J. P. (2010, April).

Information Systems design for emerging ecosystems. In Digital Ecosystems and

Technologies (DEST), 2010 4th IEEE International Conference on (pp. 310-315).

IEEE.

(Benaben et al, 2012) Benaben, F., Lauras, M., Truptil, S., & Lamothe, J. (2012). Mise 3.0: an agile

support for collaborative situation. In Collaborative networks in the internet of

services (pp. 645-654). Springer Berlin Heidelberg.

(Benaben et al, 2015) Benaben, F., Mu, W., Boissel-Dallier, N., Barthe-Delanoe, A. M., Zribi, S., &

Pingaud, H. (2015). Supporting interoperability of collaborative networks

through engineering of a service-based Mediation Information System (MISE

2.0). Enterprise Information Systems, 9(5-6), 556-582.

 References

 125

(Bernstein et al, 2011) Bernstein, P. A., Madhavan, J., & Rahm, E. (2011). Generic schema matching,

ten years later. Proceedings of the VLDB Endowment, 4(11), 695-701.

(Bézivin, 2001) Bézivin, J. (2001, July). From object composition to model transformation with

the MDA. In tools (p. 0350). IEEE.

(Bézivin et al, 2001) Bézivin, J., & Gerbé, O. (2001, November). Towards a precise definition of the

OMG/MDA framework. In Automated Software Engineering, 2001.(ASE 2001).

Proceedings. 16th Annual International Conference on (pp. 273-280). IEEE.

(Bézivin, 2006) Bézivin, J. (2006). Model driven engineering: An emerging technical space.

InGenerative and transformational techniques in software engineering (pp. 36-

64). Springer Berlin Heidelberg.

(Biehl, 2010) Biehl, M. (2010). Literature study on model transformations. Royal Institute of

Technology, Tech. Rep. ISRN/KTH/MMK.

(Bilenko et al, 2002) Bilenko, M., & Mooney, R. J. (2002). Learning to combine trained distance

metrics for duplicate detection in databases. Submitted to CIKM-2002, 1-19.

(Bollati et al, 2011) Bollati V A. MeTAGeM: a framework for model-driven development of model

transformations[D]. Ph. D. Thesis. University Rey Juan Carlos. http://www.

kybele. etsii. urjc. es/members/vbollati/Thesis, 2011.

(Bollati et al, 2013) Bollati, V. A., Vara, J. M., Jiménez, Á., & Marcos, E. (2013). Applying MDE to

the (semi-) automatic development of model transformations. Information and

Software Technology, 55(4), 699-718.

(Börger et al, 2012) Börger, E., & Stärk, R. (2012). Abstract state machines: a method for high-level

system design and analysis. Springer Science & Business Media.

(Box et al, 2000) Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.

F., ... & Winer, D. (2000). Simple object access protocol (SOAP) 1.1.

(Brambilla et al, 2012) Brambilla, M., Cabot, J., & Wimmer, M. (2012). Model-driven software

engineering in practice. Synthesis Lectures on Software Engineering, 1(1), 1-182.

(Brickley et al, 2000) Brickley, D., & Guha, R. V. (2000). Resource Description Framework (RDF)

Schema Specification 1.0: W3C Candidate Recommendation 27 March 2000.

(Brinkman et al, 2013) Brinkman, S., Abu-Hanna, A., de Jonge, E., & de Keizer, N. F. (2013).

Prediction of long-term mortality in ICU patients: model validation and assessing

the effect of using in-hospital versus long-term mortality on

benchmarking. Intensive care medicine, 39(11), 1925-1931.

(Bruel et al, 1998) Bruel, J. M., & France, R. B. (1998). Transforming UML models to formal

specifications. The Unified Modeling Language, UML.

(Bruel et al, 2000) Bruel, J. M., Lilius, J., Moreira, A., & France, R. B. (2000). Defining precise

semantics for UML. In Object-Oriented Technology (pp. 113-122). Springer

Berlin Heidelberg.

 References

 126

(Cabot et al, 2010) Cabot, J., Clarisó, R., Guerra, E., & De Lara, J. (2010). Verification and

validation of declarative model-to-model transformations through

invariants.Journal of Systems and Software, 83(2), 283-302.

(Cabot et al, 2012) Cabot, J., & Gogolla, M. (2012). Object constraint language (OCL): a definitive

guide. In Formal Methods for Model-Driven Engineering (pp. 58-90). Springer

Berlin Heidelberg.

(Carey et al, 1994) Carey, S., & Spelke, E. (1994). Domain-specific knowledge and conceptual

change. Mapping the mind: Domain specificity in cognition and culture, 169-

200.

(Chapron, 2006) Chapron, J. (2006). L'urbanisme organisationnel: méthode et aides à la décision

pour piloter l'évolution du système d'information de l'entreprise(Doctoral

dissertation, Ecole Nationale Supérieure des Mines de Saint-Etienne).

(Chen et al, 2007) Chen, D., Dassisti, M., & Elves 忙 ter, B. (2007). Enterprise Interoperability

Framework and Knowledge Corpus-Final report Annex: Knowledge

Pieces.Contract no.: IST508, 11.

(Chen et al, 2008) Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise

integration and interoperability: Past, present and future. Computers in

industry, 59(7), 647-659.

(Cheng-Leng et al, 1999) Cheng-Leong, A., Li Pheng, K., & Keng Leng, G. R. (1999). IDEF*: a

comprehensive modelling methodology for the development of manufacturing

enterprise systems. International Journal of Production Research, 37(17), 3839-

3858.

(Christensen et al, 2001) Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001).

Web services description language (WSDL) 1.1.

(Clark, 1999) Clark, J. (1999). Xsl transformations (xslt). World Wide Web Consortium

(W3C). URL http://www. w3. org/TR/xslt.

(Cleaveland et al, 2001) Cleaveland, C. C., & Cleaveland, J. C. (2001). Program Generators with XML

and Java with CD-ROM. Prentice Hall PTR.

(Cohen et al, 2002) Cohen, W. W., & Richman, J. (2002, July). Learning to match and cluster large

high-dimensional data sets for data integration. In Proceedings of the eighth

ACM SIGKDD international conference on Knowledge discovery and data

mining (pp. 475-480). ACM.

(Cohen et al, 2003) Cohen, W., Ravikumar, P., & Fienberg, S. (2003, August). A comparison of

string metrics for matching names and records. In Kdd workshop on data

cleaning and object consolidation (Vol. 3, pp. 73-78).

(Crowston, 1994) Crowston, K. (1994). A taxonomy of organizational dependencies and

coordination mechanisms. Center for Coordination Science, Alfred P. Sloan

School of Management, Massachusetts Institute of Technology.

 References

 127

(Curbera et al, 2003) Curbera, F., Khalaf, R., Mukhi, N., Tai, S., & Weerawarana, S. (2003). The next

step in web services. Communications of the ACM, 46(10), 29-34.

(Czarnecki et al, 2003) Czarnecki, K., & Helsen, S. (2003, October). Classification of model

transformation approaches. In Proceedings of the 2nd OOPSLA Workshop on

Generative Techniques in the Context of the Model Driven Architecture(Vol. 45,

No. 3, pp. 1-17).

(Davis et al, 1988) Davis, A. M., Bersoff, E. H., & Comer, E. R. (1988). A strategy for comparing

alternative software development life cycle models. Software Engineering, IEEE

Transactions on, 14(10), 1453-1461.

(De Castro et al, 2011) De Castro, V., Marcos, E., & Vara, J. M. (2011). Applying CIM-to-PIM model

transformations for the service-oriented development of information

systems.Information and Software Technology, 53(1), 87-105.

(Del Fabro et al, 2009) Del Fabro, M. D., & Valduriez, P. (2009). Towards the efficient development of

model transformations using model weaving and matching

transformations.Software & Systems Modeling, 8(3), 305-324.

(Del Fabro et al, 2005) Del Fabro, M. D., Bézivin, J., Jouault, F., Breton, E., & Gueltas, G. (2005).

AMW: a generic model weaver. In 1 ere Journées sur l'Ingénierie Dirigée par les

Modèles (IDM05) (pp. 105-114).

(Dolques, 2011) Dolques, X., Dogui, A., Falleri, J. R., Huchard, M., Nebut, C., & Pfister, F.

(2011). Easing model transformation learning with automatically aligned

examples. In Modelling Foundations and Applications (pp. 189-204). Springer

Berlin Heidelberg.

(Feldmann et al, 2014) Feldmann, S., Kernschmidt, K., & Vogel-Heuser, B. (2014). Combining a

SysML-based modeling approach and semantic technologies for analyzing

change influences in manufacturing plant models. Procedia CIRP, 17, 451-456.

(Fellbaum, 1998) Fellbaum, C. (1998). WordNet. Blackwell Publishing Ltd.

(Fowler, 2010) Fowler, M. (2010). Domain-specific languages. Pearson Education.

(Fox et al, 1998) Fox, M. S., & Gruninger, M. (1998). Enterprise modeling. AI magazine,19(3),

109.

(France et al, 2007) France, R., & Rumpe, B. (2007, May). Model-driven development of complex

software: A research roadmap. In 2007 Future of Software Engineering (pp. 37-

54). IEEE Computer Society.

(Friedenthal, 2014) Friedenthal, S., Moore, A., & Steiner, R. (2014). A practical guide to SysML: the

systems modeling language. Morgan Kaufmann.

(Gábor et al, 2013) Gábor, A., Kő, A., Szabó, I., Ternai, K., & Varga, K. (2013, January).

Compliance Check in Semantic Business Process Management. In On the Move

 References

 128

to Meaningful Internet Systems: OTM 2013 Workshops (pp. 353-362). Springer

Berlin Heidelberg.

(Galhardas et al, 1999) Galhardas, H., Florescu, D., Shasha, D., & Simon, E. (1999). An extensible

framework for data cleaning.

(Gerber et al, 2002) Gerber, A., Lawley, M., Raymond, K., Steel, J., & Wood, A. (2002).

Transformation: The missing link of MDA. In Graph Transformation (pp. 90-

105). Springer Berlin Heidelberg.

(Gilleland, 2009) Gilleland, M. (2009). Levenshtein distance, in three flavors. Merriam Park

Software: http://www. merriampark. com/ld. htm.

(Grangel et al, 2010) Grangel, R., Bigand, M., & Bourey, J. P. (2010). Transformation of decisional

models into UML: application to GRAI grids. International Journal of Computer

Integrated Manufacturing, 23(7), 655-672.

(Gruber, 1995) Gruber, T. R. (1995). Toward principles for the design of ontologies used for

knowledge sharing?. International journal of human-computer studies, 43(5),

907-928.

(Gruninger, 2000) Gruninger, M., Tissot, F., Valois, J., Lubell, J., & Lee, J. (2000). The process

specification language (PSL) overview and version 1.0 specification. US

Department of Commerce, Technology Administration, National Institute of

Standards and Technology.

(Heeringa, 2004) Heeringa, W. J. (2004). Measuring dialect pronunciation differences using

Levenshtein distance (Doctoral dissertation, [University Library

Groningen][Host]).

(Hernández et al, 1995) Hernández, M. A., & Stolfo, S. J. (1995, June). The merge/purge problem for

large databases. In ACM SIGMOD Record (Vol. 24, No. 2, pp. 127-138). ACM.

(Herrmannsdoerfer et al, 2009) Herrmannsdoerfer, M., Benz, S., & Juergens, E. (2009). COPE-

automating coupled evolution of metamodels and models. In ECOOP 2009–

Object-Oriented Programming (pp. 52-76). Springer Berlin Heidelberg.

(Hooper et al, 2009) Hooper, R., & Paice, C. (2005). The Lancaster stemming algorithm.Retrieved

June, 20, 2009.

(Huang, 2007) Huang, X. X. (2007). An OWL-based WordNet lexical ontology. Journal of

Zhejiang University SCIENCE A, 8(6), 864-870.

(Hwang et al, 2008) Hwang, S. Y., Lim, E. P., Lee, C. H., & Chen, C. H. (2008). Dynamic web

service selection for reliable web service composition. Services Computing,

IEEE Transactions on, 1(2), 104-116.

(Ide, 2010) Ide, N., & Pustejovsky, J. (2010, January). What does interoperability mean,

anyway? Toward an operational definition of interoperability for language

technology. In Proceedings of the Second International Conference on Global

Interoperability for Language Resources. Hong Kong, China.

 References

 129

(Jackson et Keys, 1984) Jackson, M. C., & Keys, P. (1984). Towards a system of systems

methodologies. Journal of the operational research society, 473-486.

(Jaro, 1989) Jaro, M. A. (1989). Advances in record-linkage methodology as applied to

matching the 1985 census of Tampa, Florida. Journal of the American Statistical

Association, 84(406), 414-420.

(Jaro, 1995) Jaro, M. A. (1995). Probabilistic linkage of large public health data files.Statistics

in medicine, 14(5‐ 7), 491-498.

(Jenz, 2003) Jenz, D. E. (2003). BPMO Tutorial: Defining a Private Business Process in a

Knowledge Base. Tutorial, Jenz & Partner GmbH.

(Jouault et al, 2008) Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL: A model

transformation tool. Science of computer programming, 72(1), 31-39.

(Jones, 1997) Jones, K. S. (1997). Readings in information retrieval. Morgan Kaufmann.

(Kappel et al, 2006) Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger,

W., ... & Wimmer, M. (2006). Lifting metamodels to ontologies: A step to the

semantic integration of modeling languages (pp. 528-542). Springer Berlin

Heidelberg.

(Kappel et al, 2007) Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidl, M., Strommer, M.,

& Wimmer, M. (2007, March). Matching Metamodels with Semantic Systems-

An Experience Report. In BTW Workshops (pp. 38-52).

(Karsai et al, 2003) Karsai, G., Agrawal, A., Shi, F., & Sprinkle, J. (2003). On the use of graph

transformation in the formal specification of model interpreters. J. UCS, 9(11),

1296-1321.

(Kim et al, 2012) Kim, J., Kang, S., Lee, J., & Choi, B. W. (2012). A semantic translation method

for data communication protocols. Journal of Systems and Software,85(12),

2876-2898.

(Konstantas et al, 2005) Konstantas, D., Bourrières, J. P., Léonard, M., & Boudjlida, N. (Eds.).

(2006). Interoperability of enterprise software and applications. Springer Science

& Business Media.

(Kleppe et al, 2003) Kleppe, A. G., Warmer, J. B., & Bast, W. (2003). MDA explained: the model

driven architecture: practice and promise. Addison-Wesley Professional.

(Kosanke et al, 1999) Kosanke, K., Vernadat, F., & Zelm, M. (1999). CIMOSA: enterprise engineering

and integration. Computers in industry, 40(2), 83-97.

(Lee et al, 2011) Lee, J. (Ed.). (2011). Service Life Cycle Tools and Technologies: Methods,

Trends and Advances: Methods, Trends and Advances. IGI Global.

 References

 130

(Levenshtein, 1966) Levenshtein, V. I. (1966, February). Binary codes capable of correcting

deletions, insertions, and reversals. In Soviet physics doklady (Vol. 10, No. 8, pp.

707-710).

(Malone et al, 2003) Malone, T. W., Crowston, K., & Herman, G. A. (2003). Organizing business

knowledge: the MIT process handbook. MIT press.

(Maier, 1998) Maier, M. W. (1996, July). Architecting principles for systems-of-systems.

InINCOSE International Symposium (Vol. 6, No. 1, pp. 565-573).

(Matula, 2003) Matula, M. (2003). NetBeans metadata repository. NetBeans Community.

(McDonald et al, 2013) McDonald, N., & Goggins, S. (2013, April). Performance and participation in

open source software on github. In CHI'13 Extended Abstracts on Human

Factors in Computing Systems (pp. 139-144). ACM.

(Merrill, 1916) Merrill, S. (1916). The moose book. EP Dutton.

(Miller et al, 2003) Miller, J., & Mukerji, J. (2003). MDA Guide Version 1.0. 1.

(Min et al, 2010) Min, F. Y., Yang, M., & Wang, Z. C. (2010). Knowledge-based method for the

validation of complex simulation models. Simulation Modelling Practice and

Theory, 18(5), 500-515.

(Monge et al, 1996) Monge, A. E., & Elkan, C. (1996, August). The Field Matching Problem:

Algorithms and Applications. In KDD (pp. 267-270).

(Monge et al, 1997) Monge, A., & Elkan, C. (1997). An efficient domain-independent algorithm for

detecting approximately duplicate database records.

(Morley, 2002) Morley, C. (2002). La modélisation des processus: typologie et proposition

utilisant UML. Processus & Systèmes d’information-Journée ADELI, 13.

(Navarro, 2001) Navarro, G. (2001). A guided tour to approximate string matching. ACM

computing surveys (CSUR), 33(1), 31-88.

(Neches et al, 1991) Neches, R., Fikes, R. E., Finin, T., Gruber, T., Patil, R., Senator, T., & Swartout,

W. R. (1991). Enabling technology for knowledge sharing. AI magazine, 12(3),

36.

(Nikolova et al, 2012) Nikolova, S., Boyd-Graber, J., & Fellbaum, C. (2012). Collecting semantic

similarity ratings to connect concepts in assistive communication tools.

InModeling, Learning, and Processing of Text Technological Data Structures(pp.

81-93). Springer Berlin Heidelberg.

(OMG, 2000) OMG. The XMI Specification 1.0. http://www.omg.org. 2000

(OMG, 2008) Omg, Q. (2008). Meta object facility (mof) 2.0 query/view/transformation

specification. Final Adopted Specification (November 2005).

 References

 131

(OMG, 2014) Object Management Group Model Driven Architecture (MDA) MDA Guide rev.

2.0 OMG Document ormsc/2014-06-01

(Papazoglou et al, 2003) Papazoglou, M. P. (2003, December). Service-oriented computing: Concepts,

characteristics and directions. In Web Information Systems Engineering, 2003.

WISE 2003. Proceedings of the Fourth International Conference on(pp. 3-12).

IEEE.

(Pasula et al, 2002) Pasula, H., Marthi, B., Milch, B., Russell, S., & Shpitser, I. (2002). Identity

uncertainty and citation matching. In Advances in neural information processing

systems (pp. 1401-1408).

(Poole et al, 2002) Poole, J., Chang, D., Tolbert, D., & Mellor, D. (2002). Common warehouse

metamodel (Vol. 20). John Wiley & Sons.

(Porter, 1980) Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137.

(Porter, 2001) Porter, M. F. (2001). Snowball: A language for stemming algorithms.

(Pressman, 2005) Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave

Macmillan.

(Radatz et al, 1990) Radatz, J., Geraci, A., & Katki, F. (1990). IEEE standard glossary of software

engineering terminology. IEEE Std, 610121990(121990), 3.

(Rahm et Bernstein, 2001) Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to

automatic schema matching. the VLDB Journal, 10(4), 334-350.

(Rajsiri et al, 2010) Rajsiri, V., Lorré, J. P., Benaben, F., & Pingaud, H. (2010). Knowledge-based

system for collaborative process specification. Computers in Industry,61(2), 161-

175.

(Rao et al, 2005) Rao, J., & Su, X. (2005). A survey of automated web service composition

methods. In Semantic Web Services and Web Process Composition (pp. 43-54).

Springer Berlin Heidelberg.

(Ristad et al, 1998) Ristad, E. S., & Yianilos, P. N. (1998). Learning string-edit distance. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 20(5), 522-532.

(Romero et al, 2011) Romero, V., Rutherford, B., & Newcomer, J. (2011, April). Some Statistical

Procedures to Refine Estimates of Uncertainty when Sparse Data are Available

for Model Validation and Calibration. In 52nd AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics and Materials Conference 19th

AIAA/ASME/AHS Adaptive Structures Conference 13t (p. 1709).

 References

 132

(Salem et al, 2008) Salem, R. B., Grangel, R., & Bourey, J. P. (2008). A comparison of model

transformation tools: Application for Transforming GRAI Extended Actigrams

into UML Activity Diagrams. Computers in Industry, 59(7), 682-693.

(Santiago et al, 2012) Santiago, I., Jiménez, Á., Vara, J. M., De Castro, V., Bollati, V. A., & Marcos, E.

(2012). Model-Driven Engineering as a new landscape for traceability

management: A systematic literature review. Information and Software

Technology, 54(12), 1340-1356.

(Schmidt, 2006) Schmidt, D. C. (2006). Guest editor's introduction: Model-driven

engineering.Computer, 39(2), 0025-31.

(Shvaiko et al, 2005) Shvaiko, P., & Euzenat, J. (2005). A survey of schema-based matching

approaches. In Journal on Data Semantics IV (pp. 146-171). Springer Berlin

Heidelberg.

(Soley, 2000) Soley, R. (2000). Model driven architecture. OMG white paper, 308(308), 5.

(Steinberg et al, 2008) Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008). EMF: eclipse

modeling framework. Pearson Education.

(Tejada et al, 2001) Tejada, S., Knoblock, C. A., & Minton, S. (2001). Learning object identification

rules for information integration. Information Systems, 26(8), 607-633.

(Tratt, 2005) Tratt, L. (2005). Model transformations and tool integration. Software & Systems

Modeling, 4(2), 112-122.

(Truptil, 2011) Truptil, S. (2011). Etude de l'approche de l'interopérabilité par médiation dans le

cadre d'une dynamique de collaboration appliquée à la gestion de crise.

(Terrasse et al, 2005) Terrasse, M. N., Savonnet, M., Leclercq, E., Grison, T., & Becker, G. (2005).

Points de vue croisés sur les notions de modèle et métamodèle. 1ères journées sur

l’Ingénierie Dirigée par les Modèles, 17-28.

(Touzi et al, 2007) Touzi, J., Lorré, J. P., Bénaben, F., & Pingaud, H. (2007). Interoperability

through model-based generation: The case of the collaborative information

system (CIS). In Enterprise Interoperability (pp. 407-416). Springer London.

(Touzi et al, 2009) Touzi, J., Benaben, F., Pingaud, H., & Lorré, J. P. (2009). A model-driven

approach for collaborative service-oriented architecture design. International

Journal of Production Economics, 121(1), 5-20.

(Richards, 2006) Richards, R. (2006). Universal Description, Discovery, and Integration (UDDI).

In Pro PHP XML and Web Services (pp. 751-780). Apress.

 References

 133

(Uschold et al, 1998) Uschold, M., King, M., Moralee, S., & Zorgios, Y. (1998). The enterprise

ontology. The knowledge engineering review, 13(01), 31-89.

(Van Amstel et al, 2012) van Amstel, M. F., van den Brand, M. G., & Serebrenik, A. (2012).

Traceability visualization in model transformations with tracevis. In Theory and

Practice of Model Transformations (pp. 152-159). Springer Berlin Heidelberg.

(Van der Aalst, 2014a) van der Aalst, W. M. (2014). How People Really (Like To) Work. In Human-

Centered Software Engineering (pp. 317-321). Springer Berlin Heidelberg.

(Van der Aalst, 2014b) van der Aalst, W. M. (2014). Data scientist: The engineer of the future.

InEnterprise Interoperability VI (pp. 13-26). Springer International Publishing.

(van Rijsbergen et al, 1980) Van Rijsbergen, C. J., Robertson, S. E., & Porter, M. F. (1980). New

models in probabilistic information retrieval. Computer Laboratory, University of

Cambridge.

(Varró et al, 2003) Varró, D., & Pataricza, A. (2003). VPM: A visual, precise and multilevel

metamodeling framework for describing mathematical domains and UML (The

Mathematics of Metamodeling is Metamodeling Mathematics). Software and

Systems Modeling, 2(3), 187-210.

(Varró et al, 2004) Varró, D., & Pataricza, A. (2004). Generic and meta-transformations for model

transformation engineering. In «UML» 2004—The Unified Modeling Language.

Modeling Languages and Applications (pp. 290-304). Springer Berlin

Heidelberg.

(Varró et al, 2007) Varró, D., & Balogh, A. (2007). The model transformation language of the

VIATRA2 framework. Science of Computer Programming, 68(3), 214-234.

(Vernadat, 1999) Vernadat, F. (1999). Techniques de modélisation en entreprise: applications aux

processus opérationnels. Economica.

(Wang et al, 2014a) Wang, T., Truptil, S., & Benaben, F. (2014, January). Semantic approach to

automatically defined model transformation. In Model-Driven Engineering and

Software Development (MODELSWARD), 2014 2nd International Conference

on (pp. 340-347). IEEE.

(Wang et al, 2014b) Wang, T., Truptil, S., & Benaben, F. (2014). Semantic Approach to

Automatically Defined Model Transformation. In Enterprise Interoperability

VI(pp. 127-138). Springer International Publishing.

 (Wang et al, 2015a) Wang, T., Truptil, S., & Benaben, F. (2015). A General Model Transformation

Methodology to Serve Enterprise Interoperability Data Sharing Problem. In

Enterprise Interoperability (pp. 16-29). Springer Berlin Heidelberg.

(Wang et al, 2015b) Wang, T., Truptil, S., & Benaben, F. (2015, June). An Automatic Model

Transformation Methodology to Serve Web Service Composition Data

 References

 134

Transforming Problem. In Services (SERVICES), 2015 IEEE World Congress

on (pp. 135-142). IEEE.

 (Wang et al, 2015c) Wang, T., Truptil, S., & Benaben, F. (2015, January). Applying a Semantic &

Syntactic Comparisons Based Automatic Model Transformation Methodology to

Serve Information Sharing. In Proceedings of the International Conference on

Information and Knowledge Engineering (IKE) (p. 3). The Steering Committee

of The World Congress in Computer Science, Computer Engineering and

Applied Computing (WorldComp).

 (Wiederhold, 1992) Wiederhold, G. (1992). Mediators in the architecture of future information

systems. Computer, 25(3), 38-49.

(Willett, 2006) Willett, P. (2006). The Porter stemming algorithm: then and now. Program,40(3),

219-223.

(Winkler, 1999) Winkler, W. E. (1999). The state of record linkage and current research

problems. In Statistical Research Division, US Census Bureau.

(W3C, 2000) XML Schema Definition 2000. http://www.w3.org/TR/xmlschema-0/

(Yu et al, 2012) Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Kato, H., & Montrieux, L. (2012, June).

Maintaining invariant traceability through bidirectional transformations.

InProceedings of the 34th International Conference on Software Engineering(pp.

540-550). IEEE Press.

http://www.w3.org/TR/xmlschema-0/

 Annex

 135

Annex: AMTM-SS implementation

 Annex

 136

The annex part of this thesis concerns about the developing process of AMTM-SS. This part contains

three main sections: (i) requirement analysis, (ii) software implementation, and (iii) software testing. All

the three sections focus on AMTM-SS.

I. Requirement analysis

The requirement analysis activity focuses on the main functional and non-functional points that should be

involved in AMTM-SS. In other words, this step should make clear that the work needed to be done by

this software tool and how the work should be done (depending on the efficiency point of view).

The basic functional requirement of AMTM is building potential model transformation mappings based

on the input models sets. Figure Annex-1 shows this requirement.

Figure Annex-1: Main functional requirement on AMTM-SS.

The input of AMTM-SS is “model sets”. Normally, this “model sets” could contain several combinations,

for instances: a set of “source model, source meta-model and target “meta-model”, a set of “source model

and target model instances” and a set of “source meta-model and target model instances”. The output is a

set of potential model transformation mappings.

Figure Annex-2: Main functional modules in AMTM-SS.

 Annex

 137

According to the principle functional requirement, the software system should contain several main

functional modules. These functional modules are shown in Figure Annex-2. The details (functional and

non-functional requirement and design) of each functional module have been presented in chapter seven.

Here, we mainly focus on the system implementation and testing parts.

II. System implementation

This section focuses on the implementation phase of AMTM-SS. The developing environment “relevant

techniques and main algorithms involved” are presented in the following subsections, respectively.

II.1 AMTM-SS developing environment

AMTM-SS is developed as a desktop application in its first version. It is only used and tested in one local

computer, which is also used to develop it. The basic configuration of this computer is shown in Figure

Annex-3.

Figure Annex-3: Basic configuration of the developing computer.

As a personal computer, this one has a high configuration. The basic technique parameters are: (i) the

operating system: Windows 7 Professional N, (ii) CPU: Inter Core i7-3770, 3.4GHz, (iii) main memory

(RAM): 8.0 GB, etc. Comparing to the other personal computers, this one has high efficiency of

executing programs. It provides a good environment of developing and testing software system.

The main programming language is java, three books about using this programming language are listed in

(Arnold et al, 1996), (Wellings, 2004) and (Dietel, 2009); the version being used is “1.8.0_20”. The

relevant java developing environment contains: the version of runtime environment is “1.8.0_20-b26”,

and the java virtual machine is 64-Bit server, 25.20-b23 mixed mode. The integrated developing

environment (IDE) of java programs is “Eclipse”, the detail of this IDE could be consulted in (Geer,

2005), (Murphy et al, 2006) and (Vogel, 2014); the chosen version is “eclipse-java-luna-SR1-win32-

x86_64”. This is the new and stable version when the project of AMTM-SS was launched. The other

developing environment techniques are: Maven 2.0, which is presented in (Smart, 2005) and (Casey et al,

 Annex

 138

2006), and GitHub stated in (McDonald et al, 2013) and (Vasilescu et al, 2013). The semantic thesaurus

“AMTM_ST” is stored in MongoDB; the introduction and use tips of this database could be consulted in

(Chodorow, 2010), (Membrey et al, 2010) and (Chodorow, 2013).

For developing AMTM-SS, several existing java jar packages are also involved in. These jar packages

could be regarded as functional black boxes; they provide functions to achieve specific tasks and hide the

implementation details to their users. Applying these packages could save developing time and improve

the efficiency of developing software systems. Two of the main jar packages are: (i) the jar packages

provided by CGI laboratory, and (ii) the jar package “JDOM” (Hunter, 2002). The usage of these two jar

packages is shown in the following phrases, respectively.

 Jar packages provided by CGI laboratory: these jar packages provide the functions of connecting

XSD files and java classes (transforming automatically XSD files to java classes). In AMTM-SS,

such functions help to generate automatically the specific meta-model templates conformed to the

MMM. Furthermore, these jar packages could also help to extract the content stored in the user

input model sets into specific meta-model template.

 JDOM jar package: the functions provided by this jar package aims at building connections

between XML files and java classes. It provides many functions dealing with XML files:

extracting information from these files and generating new XML files with special formats that

are defined in the java programs. AMTM-SS uses functions provided by this jar package to

analyze the input model sets (models are uploaded to the software system in XML format). Also,

the output of AMTM-SS “final target model” is a XML file that is generated by JDOM jar

package and based on the transformation results (content stored in java classes).

All the content presented above is about the developing relevant environment and techniques. As AMTM-

SS is a huge and complex project, the developing phrase is a long term process. In the original plan,

AMTM-SS would have several versions; each version will be depending on different developing

techniques (even application situations). Also, there are several points in the original version of AMTM-

SS needed to be improved, such as: enrich the semantic thesaurus, improve the efficiency of algorithms

involved and optimize the user interface. In the further version of AMTM-SS, these improvements would

be added one by one.

II.2 Main algorithms implemented in AMTM-SS

In this subsection, three main functional algorithms involved in AMTM-SS will be presented and

explained. The three algorithms are: syntactic checking methodology (“Levensthein distance” algorithm),

semantic checking methodology (the algorithms of detecting semantic relations between two words and

assigning values to detected relations) and the algorithm of combining syntactic checking and semantic

checking as a whole. The implementation (executable programming codes) of the three algorithms is

shown in the following subsections.

II.2.1 Implementation of “Levensthein distance” algorithm

As a part of the syntactic checking method involved in AMTM, “Levensthein distance” algorithm plays a

very important role. In the majority comparing (to detect potential matching pairs) cases, the two names

(words) involved are different, which could not be defined by the pretreatment phase in syntactic

checking. The syntactic similarity between two different words (in syntactic aspect) needed to be

 Annex

 139

measured by “Levensthein distance” algorithm. The implementation of this algorithm in AMTM-SS is

shown in Figure Annex-4.

Figure Annex-4: Implementation of “Levensthein distance” algorithm.

The main executable codes of this algorithm are only around fifty lines. The calculation idea behind these

lines of code is more valuable. The three main variables defined in this algorithm are used to store the two

comparing words and comparing syntactic similarity value. The lengths and letters involved in the two

comparing are two kinds of information that are important to this algorithm; a comparison matrix for the

two comparing words is built and the initialization values of this matrix are coming from the two kinds of

information. The calculating, mathematical mechanism has been illustrated in the former chapter and this

mechanism is easy to be implemented with codes (around fifteen lines of code). Finally, the comparing

value calculated is the number of steps needed to transform one word to another. A formula is shown at

the bottom of the code fragment; this formula transforms the “Levensthein distance” to the syntactic

similarity value (between 0 and 1) between two comparing words.

II.2.2 Implementation of semantic relation detecting algorithm

Semantic relation detecting plays a key role in making potential model transformation mappings for

AMTM. Model items convey semantic representations as their main identifiers; these identifiers are used

to differentiate model items and provide clues to make matching pairs. Semantic relation checking

methods aim at revealing these semantic representations conveyed by model items; furthermore, assign

different values for different potential matching pairs that own different semantic relations. As illustrated

in former chapters, a specific semantic thesaurus “AMTM_ST” has been created in AMTM to do the

semantic relation detecting process. AMTM-SS needs to define the programs to get access to AMTM_ST;

different functions should be implemented to extract information and make use of AMTM_ST. To make

this point clearly, the main functions provided by AMTM-SS to operate AMTM_ST contains: (i) locating

 Annex

 140

one word in AMTM-SS, (ii) tracing and grouping all the word-senses belonged to the located word, (iii)

tracing and grouping all the synsets that contains all the located word-senses, and (iv) detecting semantic

relations that are built (in AMTM_ST) between synsets.

In AMTM-SS, AMTM_ST is implemented in MongoDB database. All the content of AMTM_ST is

stored in MongoDB following the standard format of XML file. The first function provided by AMTM-

SS is to get access to the MongoDB database; so, before running the programs in AMTM-SS, the

MongoDB program should be started independently. Figure Annex-5 shows the start command and

running interface of MongoDB tool.

Figure Annex-5: MongoDB start command and running interface.

It is shown clearly in Figure Annex-5 that the “Windows PowerShell” program opens “MongoDB”

program, and it is waiting other programs to connect it at the “27017” port (this port number is defined in

MongoDB configuration file, which could be modified). The content stored in MongoDB is shown in

Figure Annex-6.

Figure Annex-6: Contents store in MongoDB.

The file named as “SemanticThesaurus” is the target to get connected by AMTM-SS. The content store in

“SemanticThesaurus” is coming from an “OWL” file named as “WordNet.owl”, which is regarded as the

semantic thesaurus “AMTM_ST”. The code fragment to implement the function of extracting content

from “WordNet.owl” file and storing to MongoDB is shown in Figure Annex-7.

 Annex

 141

Figure Annex-7: Extracting useful information from “WordNet.owl” file.

The analysis part of the “WordNet.owl” file uses the functions provided by “JDOM” jar. A variable (type

is File) is defined to read the “WordNet.owl” file into the software system. Then a variable is defined as a

“pointer”; this “pointer” is used to traverse the whole “WordNet.owl” file. Then, all the useful

information stored in this file could be extracted from it and stored in the structures that stand by java

variables. Finally, these variables, which store the useful information extracted the “WordNet.owl”, could

be used to store into the MongoDB. The code fragment for storing java variables into MongoDB is shown

in Figure Annex-8.

 Annex

 142

Figure Annex-8: Storing content into MongoDB.

The functions of operating MongoDB database are provided by external jars, which are involved into

AMTM_ST by Maven 2.0. The useful information stored in the java variables are written into MongoDB

as data flow. MongoDB is a database management software tool; many databases could be defined and

created in it (with a specific name), and each database could contain several tables. The data (information)

is written as data flow into the specific database and table based on their names. In Figure Annex-9, only

the connecting part (one insert method) between java program and MongoDB tool is shown.

Figure Annex-9: Pre-treatment for doing semantic relation detecting.

All the content presented above is the preparation work of doing semantic relation detecting in AMTM-

SS. It reveals the process of building semantic thesaurus for AMTM-SS to use. Figure Annex-9 shows

simply the work done by the two code fragments shown in Figure Annex-7 and Figure Annex-8.

 Annex

 143

The original content of semantic thesaurus is stored in “WordNet.owl” file. Java program adopts

functions provided by “JDOM” jar to read in the useful information from “WordNet.owl” to its template

classes; then these template classes (with useful content in them) are written into MongoDB as data flow

by the functions provided by the specific external jars. The semantic thesaurus stored in MongoDB is

used by AMTM-SS to do the semantic relation detecting for building automatically model transformation

mappings.

The java program of transforming content from “WordNet.owl” file to the database “semantic thesaurus”

in MongoDB is complex and reduces the efficiency of AMTM-SS. Now, here comes the question “why

do not use the ‘WordNet.owl’ file directly as the semantic thesaurus”? The answer to this question

concerns two main aspects: (i) structure and validity of the content in semantic thesaurus, and (ii)

efficiency of doing semantic relation detecting.

 Structure and validity of the content in semantic thesaurus. The content stored in WordNet has

been illustrated in the former chapter; the “WordNet.owl” file (in ontology format) contains all

the content presented in the WordNet. So, not all the content in “WordNet.owl” file is useful to

do model transformation. Furthermore, the content stored in “WordNet.owl” file has its specific

structure, which is not designed to be used specially for model transformation domain. So, a new

semantic thesaurus with more relevant content that are stored with specially designed structure is

needed.

 Efficiency of doing semantic relation detecting. As explained in the former chapters, semantic

relation detecting relies on the basis of a huge semantic thesaurus. However, one of the problems

of java programming language is the inefficiency of processing huge files. On the other hand,

with the special index and search mechanism, database provides an efficient solution to process

huge data. Comparing to the traditional relational database, MongoDB has its own advantage in

processing the data. In MongoDB, The mechanism of storing and retrieving data has high

efficiency. So, choosing MongoDB as the carrier of semantic thesaurus is a better solution than

just use the “WordNet.owl” file.

It is true that it takes time and resource to transform “WordNet.owl” file into database in MongoDB, but

this process is only needed to be executed one time. After creating the “semantic thesaurus” database in

MongoDB, it could be used in anywhere and anytime. Furthermore, the actions of enriching and

modifying the semantic thesaurus becomes operations (i.e. add, delete, update and query) on database.

Comparing to processing huge files, java programs take less resource (e.g. main memory ‘RAM’ and

CPU time) in doing database operations. So, the step of transformation the content (necessary to AMTM)

from “WordNet.owl” file to MongoDB is meaningful in AMTM-SS.

The semantic relation detecting mechanism in AMTM-SS depends on the querying operations of the

semantic thesaurus “AMTM_ST” stored in MongoDB. The code fragment, which focuses on these

querying operations, is shown in Figure Annex-10.

 Annex

 144

Figure Annex-10: Pre-treatment for doing semantic relation detecting.

The querying operations could be divided into four groups: querying specific word, query word senses of

specific word, query synsets of specific word sense, and query specific semantic relations between two

specific synsets. All these query functions use loop to implement and concerns database (built in

MongoDB) operations. The exact functions that operate on database are shown in Figure Annex-11 as a

fragment of code. This code fragment only shows two main database operations: searching all the word

senses for a specific words and search the specific synset for a word sense.

 Annex

 145

Figure Annex-11: Functions operate on database in MongoDB.

In Figure Annex-11, two main variables: “DBCursor” and “DBObject” are defined to get access to the

database created in MongoDB. “DBCursor” concerns a specific table defined in database (associate by

the table name), and “DBObject” reads a record in table. The two variables work together to get any

records defined in any tables in the databases of MongoDB. Then the two functions define mechanism to

select the real records that are required according to the parameters passed to them. Finally, the selected

records are stored into variables and returned to the calling functions. The final purpose of semantic

relation detecting is to define the relation between two words; so, after locating two groups of synsets

(belong to the source word and target word, respectively), semantic relations detecting between synsets

 Annex

 146

pairs are needed. The code fragment, which concerns the synsets comparing, is shown in Figure Annex-

12.

Figure Annex-12: Semantic relation detecting for specific synset.

Figure Annex-12 shows the fragment of codes that implement the function of detecting antonym semantic

relation for a specific synset. All the synsets that have antonym relations with the synset passed in as

parameter will be return back a group. Since the number of synset records is huge, synsets are divided and

stored in three groups: noun synset, verb synset and adjective synset. So, detecting semantic relations for

a specific synset, the three groups of synsets are needed to be search one by one. One word could have

 Annex

 147

several semantic meanings (e.g. as noun, as verb and as adjective), and thus it could belong to different

synset groups.

The syntactic and semantic checking measurements have been presented and explained, respectively.

However, for the reason “syntactic checking could replace part of semantic checking with less time and

resource occupied”, the two checking methods should work together in AMTM-SS as a whole process.

The code fragment, which combines them together, is shown in Figure Annex-13.

Figure Annex-13: Semantic relation detecting for specific synset.

A function “getSSValue()” has been defined to determine the executing sequence and execution

mechanism between syntactic and semantic checking measurements. Furthermore, in this code fragment a

special variable “factor” has been defined; this variable concerns the weights of semantic and syntactic

within one model transformation process. Until now, all the functional code fragments shown above are

only concerned with comparing within a pair of words. The final purpose of AMTM-SS is: “building

model transformation mappings and generating target model”; so, combining the two checking

measurements into model transformation process is another important functional part for AMTM-SS.

Figure Annex-14 shows the functional code fragment concerns about this part.

 Annex

 148

Figure Annex-14: Combining two checking methods into model transformation process.

The inputs “model sets” have been analyzed and useful information contained has been extracted into

specific template, which is implemented as java class. Syntactic and semantic checking measurements are

used on the two instances “sourceModel” and “targetModel”. As illustrated in the former chapters, model

transformation mappings are built among the models’ items: element and properties. For each potential

matching pair (element-to-element, property-to-property and element-to-property), a relational value,

which is calculated based on items’ names and maybe other relevant attributes, is assigned. For different

potential matching pairs, different comparing mechanisms (calculation formulas and parameters defined

in the formulas) are used. The basis for all these comparing mechanisms is syntactic and semantic

checking methods, which are shown and explained in this section.

As a short conclusion of this section, the implementations of all the main functional parts have been

mentioned here. These functional parts contain: (i) building semantic thesaurus “AMTM_ST”, (ii)

analyzing inputs model sets, (iii) connecting “AMTM_ST”, (iv) syntactic checking algorithm, (v)

semantic checking algorithm, and (vi) combining the two checking methods into model transformation

process. The core code fragments of these functions have been shown. At this moment, the efficiency of

the algorithms mentioned above have been paid attention; however, more work is needed to be done to

improve the algorithm and also for the whole AMTM-SS system.

III. System test

The testing part is very important in the developing process of software systems. There are two main

methods of doing this step are: validation and verification. Similar to the system implementation section,

this section focuses on several main functional test parts. These functional parts are: “inputs model sets

analysis”, “syntactic checking algorithm”, “semantic checking algorithm”, and an instance of comparing

 Annex

 149

two elements. For each of the functional test part, a simple test case is shown; furthermore, the executed

results of java programs are also shown by screenshot of the console.

III.1 Inputs model sets analysis module test

The original inputs to AMTM-SS are model sets. The aim of AMTM-SS is to build potential model

transformation mappings (on meta-model layer) automatically based on semantic and syntactic checking

measurements; so, the perfect inputs to AMTM-SS are two meta-models: source meta-model and target

meta-model. For this test module, the test case inputs are two meta-models that are built with XSD

techniques. Part of the contents of the two meta-models is shown in Figure Annex-15.

Figure Annex-15: Test case inputs: two meta-models in XSD format.

XSD could be regarded as a special file format, which is always used as the technique to build meta-

model. The target of this test case is to read these two files into AMTM-SS, then analyze and extract

useful information from the two files to build specific meta-model that are conformed to the MMM. The

test result of this case is shown in Figure Annex-16.

 Annex

 150

Figure Annex-16: Executing results of the test case.

The executing result shows that the source meta-model contains 17 nodes and the target meta-model

contains 10 nodes. The name and property group of each node are also read out. So, the templates for both

the source and target meta-models could be generated based on the analysis. Two points needed to be

made clearly in this test case: (i) meta-models could follow different formats (XSD file is only one of the

common accepted standards); “JDOM” is used to analyze these inputs model sets, and (ii) not all the

information contained in the original meta-models is useful to AMTM-SS, only the information needed to

build specific meta-models is extracted and used.

III.2 Syntactic checking measurement module test

This module focuses on testing the “Levensthein distance” algorithm. The pretreatment step in syntactic

checking phase is also implemented, but it only concerns several special situations (there is no need to do

the test). The inputs of this test module are two words, and the output of it should be a value between o

and 1, which stands for the syntactic similarity between the two words. The syntactic similarity value is

calculated based on the “Levensthein distance” between two words and the length of them. Here, two

word pairs: person & perfect and artist & maker are taken in as test cases. The executing results are

shown in Figure Annex-17.

 Annex

 151

Figure Annex-17: Test case for syntactic checking measurement.

The executing result shows that the syntactic similarity between “person” and “perfect” is 0.4286 and

between “artist” and “maker” is 0. Intuitively speaking, this result is acceptable. This test also reveals the

truth that “Levenshtein distance” algorithm could not detect the semantic relation at all. The syntactic

checking algorithm is easy to be implemented and the mechanism is easy to understand. So, the test case

is easy to design and carry out.

III.3 Semantic checking measurement module test

The most important and complex functional part in AMTM-SS is the semantic relation detecting. This

part concerns operations on database stored in MongoDB; the efficiency and accuracy are two main aims

to be tested in this part. The inputs of this test module are two words, and the outputs should be a value

that stands for the semantic relation between the two words. As illustrated above, the hypernym

(hyponym) semantic relations among several words maintained in “AMTM_ST” are known. The inputs

of this test case use three pairs of words: “person & author”, “artist & creator” and “good & bad”. The

executing result of the first test case “person & author” is shown in Figure Annex-18.

 Figure Annex-18: Semantic relation detecting test case between “person & author”.

 Annex

 152

The result shown in the console presents that “person” has three semantic meanings (word senses) and

belongs to three synset and “author” also has three semantic meanings and belongs to three synsets. The

semantic relation between them is “iterative hypernym” (person-to-author), and the semantic relation

value between the two words is 0.36 (0.6*0.6). It means that the possibility of transforming “person” to

“author” is 0.36 on semantic aspect: because “person” has a broad meaning than the more specific

meanings conveyed by “author”. As an opposite test case, the second comparing group is between “artist”

and “creator”. The executing result of this test group is shown in Figure Annex-19.

Figure Annex-19: Semantic relation detecting test case between “artist & creator”.

The testing result shows that the word “artist” only has one word sense and belongs to one synset, and the

word “creator” has two word senses and belongs to two synsets. The semantic relation between the two

words is “hypernym” (artist-to-creator), and the semantic relation value is: 0.8. It means that the

possibility of transforming “artist” to “creator” is high on semantic aspect. For the reason “artist is one

kind of creator”; in other words, the concept of “creator” contains the concept of “artist”. Here, it is

necessary to make clearly that the semantic relation between “artist” and “creator” is not the same as the

semantic relation between “creator” and “artist”. In model transformation domain, the transformation

concerns the range of concepts. For instance, a student must be a person but a person might be student; so

student could be transformed to person while person might not be transformed to student. So, in AMTM,

semantic relations “hypernym” and “hyponym” are distinguished. The final test case concern a pair of

adjective words: good and bad. The executing result of this pair is shown in Figure Annex-20.

 Annex

 153

Figure Annex-20: Semantic relation detecting test case between “bad & good”.

The testing result shows that the word “bad” has seventeen word sense and thus belongs to seventeen

synsets, and the word “good” has twenty-seven word senses and belongs to twenty-seven synsets. The

semantic relation between the two words is “antonym”, and the semantic relation value is: 0.2. This value

is assigned manually before executing this program; when two words have antonym semantic relation

between each other, the better assigned value may be negative.

Three test cases are presented in this subsection; they show the process of detecting three different

semantic relations: iterative hypernym, iterative hyponym and antonym between pairs of comparing

words. The mechanism of detecting other semantic relations is similar to the ones shown in these use

cases. The only different aspect is the assigned semantic relation values.

IV. References

(Arnold et al, 1996) Arnold K, Gosling J, Holmes D, et al. The Java programming language[M].

Reading: Addison-wesley, 1996.

(Casey et al, 2006) Casey, J., Massol, V., Porter, B., & Sanchez, C. (2006). Better Builds with

Maven.

(Chodorow, 2010) Chodorow, C. (2010). Introduction to mongodb. In Free and Open Source

Software Developers’ European Meeting (FOSDEM).

 Annex

 154

(Chodorow, 2013) Chodorow, K. (2013). MongoDB: the definitive guide. " O'Reilly Media, Inc.".

(Dietel, 2009) Dietel, P. (2009). Java how to program. PHI.

(Geer, 2005) Geer, D. (2005). Eclipse becomes the dominant Java IDE. Computer, 38(7), 16-

18.

(Hunter, 2002) Hunter, J. (2002). JDOM makes XML easy. In Sun’s 2002 Worlwide Java

Developer Conference.

(McGuinness, 2004) McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology language

overview. W3C recommendation, 10(10), 2004.

(Membrey et al, 2010) Membrey, P., Plugge, E., & Hawkins, D. (2010). The definitive guide to

MongoDB: the noSQL database for cloud and desktop computing. Apress.

(Murphy et al, 2006) Murphy, G. C., Kersten, M., & Findlater, L. (2006). How are Java software

developers using the Elipse IDE?. Software, IEEE, 23(4), 76-83.

(Smart, 2005) Smart, J. F. (2005). An introduction to Maven 2. JavaWorld Magazine. Available

at: http://www. javaworld. com/javaworld/jw-12-2005/jw-1205-maven. html.

(Vasilescu et al, 2013) Vasilescu, B., Filkov, V., & Serebrenik, A. (2013, September). StackOverflow

and GitHub: associations between software development and crowdsourced

knowledge. In Social Computing (SocialCom), 2013 International Conference

on (pp. 188-195). IEEE.

(Vogel, 2014) Vogel, L., & IDE, E. J. (2014). Eclipse IDE tutorial.

(Wellings, 2004) Wellings, A. (2004). Concurrent and real-time programming in Java. John Wiley

& Sons.

 Summary

 155

Résumé long en français de la thèse

Introduction

Dans le but de décrire ou mesurer un objet ou un système, il est possible d’utiliser différent termes avec chacun un

référentiel propre. Par exemple, il est possible d’utiliser l’une des unités suivantes pour décrire une température :

Celsius, Fahrenheit ou encore Kelvin. Ainsi 15 °C, 59 °F et 288.15°K sont des températures équivalentes. Un autre

exemple de notre quotidien porte sur les dates. En effet, une même date peut être écrite de manières différentes tel

que le 15 Septembre 2015 s’écrira 15/09/2015 en France, 09/15/2015 aux Etats-Unis d’Amérique et 2015-09-15 en

Chine. Ce dernier exemple illustre une différence syntaxique, ou comment représenter le même sujet avec différents

formats d’écriture. En complément à la différence syntaxique, il existe aussi une différence sémantique basée sur la

possibilité d’utiliser des mots similaires afin de décrire un même sujet. Cette possibilité à plusieurs origines : les

synonymes (content, heureux) l’inclusion (véhicule – camionnette), la composition (université – faculté) et l’héritage

(enseignant – enseignant de chimie), etc.

De plus, le développement rapide de la Science et des technologies dans certains domaines rend le monde de « plus

en plus petit » en facilitant les moyens de communication. D’une certaine manière, ces avancées permettent

l’accroissement du nombre de collaboration à travers les pays, les organisations et les personnes en recherchent

d’une solution optimale. Ainsi, les collaborations traditionnelles laisse petit à petit la place à un nouveau type de

collaboration « plus volatile » ayant comme caractéristiques : d’avoir un cycle de vie très rapide (de sa constitution à

sa dissolution), un partenariat opportuniste basé sur les compétences des partenaires (Touzi et al., 2007). En

conséquence, les partenaires évoluant dans ce type de collaboration sont hétérogènes par nature. En effet, ils sont

des cultures différentes, ils parlent des langages différents, ils ont des méthodes de travail différentes et enfin des

outils différents (notamment au niveau de la science de l’information et de la communication). Il est par ailleurs

possible de caractériser ces collaborations de « Systèmes de Systèmes » d’après les critères définis par (Maier, 1998).

En effet, ces collaborations ont les cinq critères suivants : (i) une indépendance managériale, (ii) une indépendance

opérationnelle, (iii) les partenaires sont répartis géographiquement, (iv) ces collaborations sont évolutives dans le

temps et (v) la collaboration a un comportement émergent basé sur la composition des comportements des

partenaires. Parmi ces critères, l’indépendance managériale et opérationnelle impliquent que chaque partenaire

travail en utilisant ses propres ressources et son propre vocabulaire. Ce nouveau type de collaboration fait par

conséquent émerger de nouvelles problématiques et particulièrement : Comment construire de façon efficace et

efficiente une collaboration entre des partenaires hétérogènes de façon dynamique ? Généralement, un des

premiers obstacles à franchir est le problème de partage et d’échange d’information entre les partenaires. Une

origine de cet obstacle repose sur les différences syntaxique et sémantique de représentation des données et des

informations utilisées par les différents acteurs. Par conséquent, faciliter la réconciliation syntaxique et

sémantique entre différents formats est un premier pas vers la création efficiente et efficace des

collaborations.

L’ingénierie système basée sur les modèles, MBSE, est une approche permettant de faciliter les collaborations. Cette

approche se base sur deux concepts clés : les modèles et les transformation de modèles. En effet, il est possible de

représenter un système (ou sujet) en soulignant ces caractéristiques au travers de modèles puisque qu’un « modèle

représentent les caractéristiques d’un système en fonction d’un point de vue spécifique » (Bézivin, 2006). Cette

définition, similaire à celles proposées par (Venadat, 1999) et (Terrasse et al., 2005), impliquent que chaque

partenaire de la collaboration, pouvant être vu comme un système d’après la définition précédente du système de

systèmes, peut être représenté par un ou plusieurs modèles en fonction des points de vue souhaités. Ainsi, les

interactions ou les comparaisons entre partenaires peuvent être représentées par une transformation de modèle. Il

existe plusieurs définitions d’une transformation de modèles. (Tratt, 2005) défini une transformation de modèles

comme un programme qui mute un modèle source en un modèle cible. L’Object Management Group (OMG) défini

une transformation de modèles dans le contexte d’une architecture dirigée par les modèles (MDA) comme un

processus de conversion d’un modèle en un autre modèle portant sur le même système (Miller et al., 2003). (Kleppe

et al, 2003) défini une transformation de modèles comme une génération automatique d’un modèle cible sur la base

d’un modèle source selon une description de la transformation. Sur la base de ces définitions, il est possible de

synthétiser une transformation de modèle comme étant un processus de génération d’un modèle cible sur la

base de modèle source. Ainsi, dans le domaine de la collaboration, il est possible de représenter par des modèles les

caractéristiques des partenaires, notamment leurs données et informations. Il est alors possible de transférer des

 Summary

 156

données ou informations entre les partenaires grâce à des transformations de modèles tels que représentés sur la

figure 1.

Fig. 1 Illustration de l’utilisation de modèles et de transformation de modèles en support de la collaboration.

Sur la base de l’idée d’utilisé une MBSE et dans le but de faciliter la réconciliation syntaxique et sémantique entre

différents formats, cette thèse propose une méthodologie automatique de transformation de modèles (AMTM) basée

sur une comparaison sémantique et syntaxique des éléments des modèles. Contrairement aux méthodologies

existantes de transformation de modèles, AMTM ambitionne aussi de résoudre les problèmes liés aux collaborations

inter-domaines. Pour cela, AMTM repose sur une mesure combinée de comparaison sémantique et syntaxique sur la

base d’un méta-méta-modèle et d’un processus de transformation de modèles. L’articulation de cette thèse est

présentée par la Fig. 2.

Fig. 2 Vue d’ensemble de cette thèse

Cette thèse est décomposée en huit chapitres. Le premier chapitre positionne la problématique de transfert

d’information dans différent domaine tel que la collaboration inter-organisation, la composition de web-service ou

 Summary

 157

encore l’interopérabilité. Le deuxième chapitre présentera les notions de bases du domaine de la modélisation et de

la transformation de modèles ainsi que les méthodologies existantes. Le troisième chapitre donnera une vue

d’ensemble de l’approche AMTM ainsi que ses bénéfices par rapport aux méthodologies existantes. La

méthodologie AMTM étant basée sur une comparaison sémantique et syntaxique des éléments des modèles : le

chapitre quatre explique les différents mécanismes de comparaisons utilisés alors que le chapitre cinq est focalisé sur

la comparaison sémantique et le chapitre six sur la comparaison syntaxique déployée dans AMTM. Avant de

conclure, le chapitre sept explique l’implémentation technique de la preuve de concept ainsi que des résultats de

tests effectués.

Conclusion

Cette thèse propose une méthodologie efficiente de transformation de modèle, nommée AMTM, pouvant être

utilisée pour échanger des informations entre organisations hétérogènes et ainsi faciliter la mise en place de leur

collaboration occasionnelle. La contribution de cette méthodologie porte sur l’automatisation totale ou partielle de la

définition de transformation de modèles permettant ainsi de limiter les efforts humains, problème récurrent dans la

définition des transformations de modèles. AMTM repose sur la comparaison de méta-modèle afin de définir les

transformations de modèles, ainsi un méta-méta-modèle (MMM) a été défini afin de définir des correspondances

syntaxique et sémantique entre les différents éléments des méta-modèles. De plus, AMTM est basée sur une

approche itérative se basant sur l’utilisation d’une ontologie (AMTM_O). Cette ontologie sauvegarde les éléments

des différents méta-modèles ainsi que les résultats des correspondances entre les éléments afin de pouvoir déduire

des relations de transitivité entre les éléments des modèles ou encore de compléter la transformation de modèles par

l’ajout de connaissance additionnelle. A chaque itération, quatre étapes de correspondances sont exécutées afin de

résoudre notamment le problème de granularité : au niveau des éléments, la comparaison hybride, la

comparaison inter-niveau et enfin la comparaison auxiliaire. L’ensemble de ces étapes est basé sur une

comparaison syntaxique et sémantique. La comparaison sémantique repose sur une base de référence conséquence,

nommé AMTM_ST, construit sur la base de WordNet alors que le la comparaison syntaxique est basée sur

l’utilisation de plusieurs algorithmes combinés, notamment l’algorithme de « Porter Streaming » et celui de

« Leveinstein Distance ». Ces résultats sont ensuite combinés grâce à six équations permettant de proposer les liens

de correspondance entre les différents méta-modèles. Ces équations reposent sur des seuils permettant de paramétrer

la méthodologie et ainsi essayer de l’optimiser.

Suite à cette thèse, certaines pistes améliorations peuvent encore être explorées :

 Réaliser une validation automatique des correspondances déduites

 Déduire automatiquement les règles de transformations entre les éléments des modèles (i.e. conversion,

etc.)

 Compléter la base AMTM_ST en ajoutant de nouveaux types de relation sémantique, notamment les

relations propres à un domaine spécifique.

 Améliorer la performance du programme développé comme preuve de concept.

 Enrichir la base AMTM_ST sur les bases de données spécifiques à un ou plusieurs domaines.

Avec ces améliorations, l’usage de la méthodologie AMTM pourra être élargi à la mutualisation des sources de

données telles que les objets connectés ou encore l’open data. La Fig. 3 représente un possible usage de la

méthodologie AMTM.

En effet la méthodologie AMTM pourrait être utilisée pour la conversion de données brutes en information (grâce à

de la connaissance). Cette vision est cohérente avec les problématiques des collaborations inter-domaine puisque

différents émetteurs de données (i.e. les capteurs, les ordinateurs ou encore les objets connectés) peuvent émettre de

la donnée brute sur une région particulière ou encore un domaine particulier. Les données collectées doivent ensuite

être comparées et ce malgré leurs hétérogénéités de format (structure de données) et de sémantique (termes utilisées).

Afin de pouvoir appliquer la méthodologie AMTM à ce contexte, chaque donnée collectée doit être vue comme un

modèle. Ainsi, les liens de correspondances entre les données pourraient être déduits ou proposés et ainsi faciliter la

mise en relation des données et ce indépendamment du domaine d’étude.

 Summary

 158

Fig. 3 Usage future de AMTM

Du modèle à la problématique de cette thèse :

Une transformation de modèles est un processus qui agit sur les modèles. Le modèle et la modélisation jouent donc

un rôle important dans le domaine de recherche portant sur la transformation de modèle. Ainsi cette partie débutera

sur une présentation de la notion de modèle avant de s’attarder plus en détail sur les transformations de modèles.

Généralement, afin de résoudre un problème complexe, les personnes décomposent ce problème et en construise une

représentation leur permettant d’appliquer un raisonnement dans le but de trouver une solution. Cette représentation

peut être écrite sur la forme d’un modèle (cf. partie Introduction page 1). (Bézivin, 2016) explique que pour

exploiter un modèle, il est nécessaire de connaître exactement les concepts qui le composent. Cette description est

formalisée dans un méta-modèle.

La figure 4 est une représentation des relations existantes entre un système, un modèle et un méta-modèle. Un méta-

modèle est un modèle décrivant le contenu d’un modèle. Par conséquent, un méta-modèle doit lui-même être

conforme à son propre méta-modèle. Ainsi, un méta-modèle peut exister à différent niveau d’abstraction (Miller et

al., 2003).

Fig. 4 Relations entre système, modèle et méta-modèle

Les transformations de modèles ont une place de choix dans le domaine de l’ingénierie dirigée par les modèles. En

effet, l’automatisation intégrale ou même partielle d’approche, tel que le MDA, MDE, etc., représente un gain en

efficience non négligeable dans la mise en œuvre de solution technique. Bien qu’il existe aujourd’hui de nombreux

 Summary

 159

développement de transformation de modèles et ce dans différents domaines d’application, il existe encore des

difficultés ou piste d’amélioration des transformations de modèles (Del Fabro et al, 2009) : une faible réutilisation,

des tâches répétitives, ceci impliquant un important effort des réalisateurs. Ces difficultés prennent leurs

essences depuis :

 La complexité des modèles. Les modèles sont une représentation d’un système et par conséquent plus ou

moins complexe en fonction du choix des informations à représenter ainsi que de la dimension et de la

complexité du système.

 La diversité des informations contenues par le modèle. La diversité des systèmes provenant de leur

domaine d’application ou encore de leur fonctionnement, est reflétée au niveau des modèles puisque un

modèle est une représentation d’un système.

 L’hétérogénéité des modélisations possible. Un modèle est construit sur la base d’un méta-modèle

exprimant les règles de représentation des informations du système. La diversité de méta-modèle possible,

notamment dû à la gestion de version (tel que les normes par exemple) ou encore la multitude de méta-

modèles existant pouvant être utilisés afin de représenter la même information.

 La diversité des niveaux d’abstraction des méta-modèles. La comparaison entre éléments de différents

méta-modèles est soumise à la différence de niveau d’abstraction des méta-modèles (comme illustré par la

Fig 4.)

Ainsi, il est possible d’en déduire qu’une lacune actuelle des transformations de modèles et le manque d’une

méthodologie efficiente s’applicable à différent domaines. La méthodologie AMTM ambitionne à combler cette

lacune.

Afin de souligner le côté inter-domaine de la méthodologie AMTM, sa mise en œuvre afin de répondre à ces

difficultés a été réalisée dans trois domaines différents : l’interopérabilité des organisations (Wang et al, 2015a), la

composition de web-services (Wang et al, 2015b), et l’ingénierie de la connaissance (Wang et al, 2015c).

Etat de l’art :

Cette partie consiste en une exploration des trois dimensions du domaine de la transformation de modèle : les

catégories, les techniques et enfin des exemples de transformation de modèles.

Les transformations de modèles peuvent s’appliquer à des modèles ou à des textes. Il est ainsi possible de diviser les

types de transformation de modèles selon trois catégories : modèles à texte, modèle à modèle et texte à modèle.

La méthodologie AMTM ambitionnant d’automatiser les transformations de modèle à modèle, la suite de cette

partie se focalisera sur les transformations de modèle à modèles. Il existe cinq principales approches de

transformation de modèles à modèles (Czarnecki et al., 2003) : approche de manipulation directe, approche

relationnel, approche basée sur la transformation de graphe, approche dirigée par les structures et les approches

hybrides. Ces approches sont basées sur les méthodes de transformation suivante : balise et schéma prédéfinis,

transformation automatique, transformation basée sur les méta-modèles et fusion de modèles.

Fig. 5 illustration de transformation basée sur les méta-modèles

Par la suite, l’approche basée sur la transformation de méta-modèles est étudiée en détail puisqu’elle correspond à

l’approche privilégiée par la méthodologie AMTM. Il est possible de distinguer deux types de cette approche :

évolution et transformation. Ces deux situations sont illustrées par la Fig.5 : la partie (a) représente l’évolution.

Ainsi le méta-modèle cible est généré par une évolution du méta-modèle source (exemple : ajouter de nouvelles

caractéristiques). Les modèles sources, conforment aux méta-modèle source, sont mis à jour et deviennent des

modèles cibles conforment au méta-modèle cible. Les activités de recherche, les théories proposées ainsi que les

réalisations effectuées ont notamment permis de définir un cadre mature de réalisation de ce type de transformation

 Summary

 160

à travers la méthodologie « COPE » (Herrmannsdoerfer et al, 2009). La partie (b) de la Fig.5 représente un exemple

de transformation. Dans cette situation, les méta-modèles source et cible étant différents, au sens qu’ils ne sont pas

une évolution de l’un vers l’autre, il est nécessaire de définir des correspondances aux niveaux des méta-modèles et

de les appliqués au niveau modèle afin de transformer le modèle source en modèle cible.

Le tableau 1 est une synthèse de la comparaison de différentes solutions techniques existantes permettant de réaliser

une transformation de modèles selon les différentes catégories. Il est a noté que ce tableau n’est pas exhaustif et ne

représente que les techniques les plus réputées actuellement.

Table 1 Comparaison de technique de transformation de modèles

name hybrid rule scheduling M-to-N note Référence

ATL yes implicit internal explicit yes self-executed (Jouault et al., 2008)

QVT yes implicit internal explicit yes based on MOF 2.0 (OMG, 2008)

VIATRA2 yes external explicit yes based on VPM (Varro et al., 2007)

GReAT yes external explicit yes on UML models (Börger et al., 2012)

Les techniques de transformation de modèles peuvent être classifiées en deux groupes : générique ou spécifique. Les

techniques spécifiques ont été réalisées pour un domaine spécifique et se focalise sur un problème particulier. Par

conséquent, ces techniques sont peu utilisables dans un cas général de par leur manque de flexibilité. Cependant, ces

techniques peuvent être exécutées de façon automatique ou semi-automatique. Les techniques génériques sont quant

à elles complexes et proposent un large éventail de fonction afin de répondre à des problématiques inter-domaine.

Ainsi la maîtrise de ces techniques peut être chronophage pour les utilisateurs et provoque d’importants efforts de la

part des utilisateurs ainsi que de nombreuses tâches répétitifs (Del Fabro et al, 2009). Ces problèmes impliquent une

utilisation limitée de ces techniques par les utilisateurs.

Le tableau 2 synthétise la comparaison de différentes expérimentations de transformation de modèles. En plus de ces

expérimentations, certaines ont adoptés la comparaison sémantique afin de détecter les éventuelles correspondances

tel que les travaux présentés dans (Kappel et al, 2006), (Kappel et al, 2007), (Bruel et al, 2000) and (Dolques, 2011).

Table 2 comparaisons de différentes expérimentations de transformation de modèles

name technique
domain
specific

note

Applying CIM-to-PIM model transformations for the
service-oriented development of information

systems (De Castro et al, 2011)
MDA-based Yes

Combining MDA with service-
oriented development of

information system

Transformation of decisional models into UML:
application to GRAI grids (Grangel et al, 2010)

ATL yes GRAI Grids to UML model

Applying MDE to the (semi-) automatic development
of model transformations (Bollati et al, 2013)

MeTAGeM (Bollati
et al, 2011)

no
applying MDE principles to

define model transformation

Sur la base de l’étude de ces expérimentations, certaines faiblesses peuvent être identifiées : elles sont spécifiques à

un domaine, elle ne résout pas les problématiques liées à la diversité des granularités, elles ne produisent pas de

thesaurus sémantique permettant de détecter automatiquement des relations entre les instances.

Par conséquent, une méthodologie de transformation de modèles automatique pouvant être utilisée indépendamment

du domaine d’application est encore à définir. Cette méthodologie devra reposer sur une réconciliation sémantique

afin de déduire les correspondances entre les instances. Cette réconciliation nécessitera l’utilisation d’un thesaurus

couvrant à la fois la généricité ainsi que les besoins spécifiques à un domaine.

Vue d’ensemble de la démarche AMTM

L’approche AMTM a été construite sur la base d’un cadre de référence reprenant les principaux concepts de la

transformation de modèles basée sur les méta-modèles. Afin de pouvoir réaliser une comparaison syntaxique et

sémantique (S&S) des éléments d’un modèle au cours du processus de transformation de modèles, un méta-méta-

modèle a été proposé. La Fig. 6 représente le cadre théorique de la démarche (a) ainsi qu’une représentation UML

du méta-méta-modèle (b).

L’approche AMTM consiste à déduire des règles de transformation au niveau des méta-modèles afin de pouvoir les

appliquées par la suite sur la partie de concepts partagés des modèles. En effet, un méta-modèle décrit la façon de

représenter un point de vue d’un système impliquant que deux méta-modèles peuvent dans un cas représenter le

 Summary

 161

même point de vue, ou alors deux point de vues partiellement différents. Il en découle que seule une partie du

modèle source peut générer une partie du modèle cible. Ces parties, nommées concepts partagés, seront la base de la

transformation alors que les parties spécifiques devront être sauvegardées, pour le modèle source, ou enrichies, pour

le modèle cible.

Fig. 6 cadre théorique de la démarche AMTM et représentation du méta-méta-modèle

L’originalité de la démarche AMTM réside dans son approche itérative. En effet, la transformation se réalise en

différentes transformations intermédiaires, produisant chacune un modèle intermédiaire. Cette approche, représentée

par la Fig. 7, permet d’une part d’améliorer la réconciliation S&S entre les modèles et d’autre part de rechercher la

connaissance additionnelle, nécessaire à la complétude du modèle cible, au sien d’autres modèles.

Fig. 7 représentation de l’approche itérative de AMTM

Pour cela et en respectant le cadre théorique de référence (Fig. 6 (a)), suite à chaque transformation, la partie

spécifique du modèle est sauvegardée et l’ensemble des éléments du modèle cible encore orphelin de lien de

correspondance (la partie spécifique) devient la source de la transformation suivante. Ces éléments sont alors

comparés à des modèles précédemment utilisés afin de compléter la transformation précédente et ainsi de suite.

Cette approche itérative repose sur une ontologie, nommée AMTM_O, en charge de capitaliser les éléments des

modèles afin de permettre leur réutilisation pour l’approche itérative.

Par conséquent, l’approche AMTM est une répétition de recherche de correspondance syntaxique et sémantique des

éléments de modèles. Chaque étape de l’approche, illustrée par la Fig. 8, se décompose selon quatre étapes

principales :

 Summary

 162

 Calculer la réconciliation S&S au niveau des éléments des méta-modèles dans le but de générer de

potentielles correspondances et des règles de transformation.

 Appliquer les résultats de la première phase au niveau des modèles dans le but de voir le résultat de la

transformation.

 Demander une validation, utilisateur pour le moment, du résultat de l’étape précédente dans le but d’affiner

les règles de transformation.

 Sur la base des résultats de l’étape précédente, les règles de transformation sont affinées ou de nouvelles

sont créées au niveau des méta-modèles.

Fig. 8 Vue d’ensemble d’une étape de transformation de l’approche AMTM

Comme expliquer précédent, l’élément central de l’approche AMTM consiste en sa précision de mesure de

correspondance syntaxique et sémantique d’éléments. Cette correspondance est déduite en quatre étapes,

représentées par la Fig. 9 : correspondance au niveau des éléments, correspondance hybride, correspondance inter-

niveau et correspondance auxiliaire.

Fig. 9 les quatre correspondances S&S définies dans l’approche AMTM

 Summary

 163

 correspondance au niveau des éléments : cette étape consiste à calculer la correspondance entre éléments

en incluant le calcul de correspondance entre les propriétés et le nom de ces éléments. Ce calcul est basé

sur deux équations (1) et (2). L’équation (2) calcul la similarité de deux propriétés tant dis que l’équation (1)

calcul la similarité des éléments.

 Ele_SSV = name_weight * S_SSV + property_weight * (∑ 𝑚𝑎𝑥(𝑃_𝑆𝑆𝑉𝑖)
𝑥

𝑖=1
)/ x (1)

 P_SSV = pn_weight * S_SSV + pt_weight * Id_type (2)

 correspondance hybride : les propriétés, non réconciliées lors de l’étape précédente, sont comparées aux

autres propriétés grâce à l’équation (3).

 HM_SSV = en_weight * S_SSV + pl_weight * P_SSV (3)

 correspondance inter-niveau : cette étape consiste à comparer des propriétés à des éléments dans le but de

résoudre des problématiques de granularité grâce à l’équation (4).

 CLM_SSV = sem_weight * S_SeV + syn_weight * S_SyV (4)

 correspondance auxiliaire : cette étape consiste à rechercher au sein de l’ontologie des correspondances

pour les éléments non réconcilié par les étapes précédentes grâce à l’équation (5) présentée dans la partie

suivante.

Méthode de calcul des correspondances S&S

La méthodologie AMTM consiste à comparer un couple de mots selon deux dimensions : la syntaxe et la

sémantique. La correspondance syntaxique consiste à comparer les lettres des mots ainsi que leur séquence

contrairement à la correspondance sémantique s’intéressant aux sens portés par les mots.

Dans le contexte de la transformation de modèles, cette comparaison est effectuée entre éléments, entre propriétés et

entre éléments et propriétés en fonction de l’étape de la démarche AMTM en cours. Cependant, les règles de

correspondance syntaxique et sémantique sont basées sur les mots, alors que les transformations de modèles portent

sur des éléments ou propriétés et non sur de mots. Par conséquent, il est nécessaire de ramener la problématique au

niveau des mots tel que représenté par la Fig.10.

Fig. 10 lien entre les mots et les éléments et les propriétés de modèles.

Un élément d’un modèle est composé de : un nom et d’un groupe de propriétés. Le nom d’un élément est un mot, il

est donc possible d’appliquer une correspondance S&S entre les noms de différents éléments. Le groupe de

 Summary

 164

propriétés quant à lui doit être comparé de façon intégrale. Par conséquent, le résultat de la comparaison de deux

groupes de propriétés se base sur les comparaisons du produit cartésien des propriétés. Une propriété est comparée

avec une autre propriété sur la base de deux facteurs les caractérisant : leur nom et leur type. Le nom des propriétés

étant un mot, la comparaison S&S peut être directement appliquée à l’instar de la comparaison du nom des éléments.

Il existe une multitude de type des propriétés possible (i.e. chaîne de caractères, entier, réel, etc.) ainsi deux

propriétés peuvent avoir des types identiques, différents ou similaire (i.e. entier et réel) impliquant une valeur de

correspondance différente.

Une relation syntaxique et sémantique entre deux mots peut être évaluée. De plus, si les deux mots ont une valeur

importante de similarité syntaxique, il est probable qu’il s’agisse du même mot (i.e. le même mot au singulier et au

pluriel) ou d’un antonyme (i.e. normale et anormale). Ainsi il n’est pas possible de se limiter à une comparaison

syntaxique des mots, il est nécessaire de comparer à chaque fois les valeurs de correspondance syntaxique et

sémantique et d’en déduire une valeur de correspondance calculé grâce à l’équation suivante :

 S_SSV = SeV_weight * S_SeV + SyV_weight * S_SyV (5)

Dans cette équation, S_SSV correspond à la valeur de la correspondance syntaxique et sémantique des mots. Cette

valeur, comprise entre 0 et 1, est calculée sur la base de la valeur de la correspondance syntaxique, notée S_SyV, et

de la valeur de la correspondance sémantique, notée S_SeV. Ces deux valeurs sont pondérées par leur poids

respectif. La somme des poids doit être égale 1 et dans le cas particulier d’un calcul de correspondant sans relation

sémantique, le poids de la relation syntaxique, notée SyV_weight, sera égale à 1.

En se Basant sur les valeurs de l’équation précédente, il est possible de construire un repère permettant de qualifier

les correspondances entre les mots et par conséquence les éléments des modèles. La Fig.11 est une représentation de

ce repère divisé en quatre régions. La région 1 correspond à une correspondance automatique entre les mots ou les

éléments. La région 2 correspond à une correspondance éventuelle laisser au choix de l’utilisateur. La région 3

correspond à un défaut de correspondance entre les éléments et enfin la région 4 correspond aux relations

particulières comme les antonymes.

Fig. 11 Repère permettant de qualifier les relations entre éléments.

Calcul de la correspondance sémantique.

Le calcul de la correspondance sémantique de l’approche AMTM repose sur un thesaurus sémantique, nommée

AMTM_ST, basé sur l’ontologie WordNet (Fellbaum, 1998). La Fig.12 représente la structure du thesaurus

sémantique.

Ce thesaurus est composé de trois niveaux :

 Word Base: les mots de base, essentiellement provenant de la langue Anglaise, font référence à des noms,

verbes et adjectifs pouvant être utilisées au sein d’un modèle ou d’un méta-modèle.

 Word-sense Base: lexique de sens des mots. Les mots peuvent être porteur de plusieurs sens tel que le mot

star peut faire référence à de l’astrologie, ou à une célébrité ou tout autre de ces quatre autre sens. Ainsi un

mot de base peut être lié à plusieurs sens (i.e. Word-sense).

 Synset Base: est composé de groupes de sens de mots ayant une relation (i.e. antonyme, similaire, etc.)

entre eux.

 Summary

 165

Fig. 12 Structure du thesaurus sémantique AMTM_ST

Dans le cadre de l’approche AMTM, sept relations entre Synsets (groupe de sens de mots) ont été définies et

maintenues. Chaque relation s’est vue attribuée une valeur de pondération en fonction de son degré de similarité. Le

tableau 3 liste ces relations ainsi que leurs pondérations.

Table 3 Liste des relations sémantiques utilisées par l’approche AMTM

Semantic relation S_SeV Example

synonym 0.9 shut & close

hypernym 0.6 person-creator

hyponym 0.8 creator-person

similar-to 0.85 perfect & ideal

antonym -1 good & bad

iterative hypernym 0.6n person-creator-maker-author

iterative hyponym 0.8n author-maker-creator-person

Il est nécessaire d’avoir un thesaurus sémantique conséquent afin d’obtenir des résultats exploitables de

réconciliation sémantique. Le tableau 4 énumère le nombre de mots de base, de sens de mot et de synsets contenus

dans AMTM_ST.

Table 4 Items stored in AMTM_ST

Items Number

words 147 306

word senses 206 941

synsets 114 038

La Fig. 13 est une illustration du processus de calcul de correspondance sémantique entre deux mots. Ce calcul se

base sur deux méthodes : directe et itérative. La partie (a) de la Fig. 13 représente la méthode directe. La méthode

directe consiste à rechercher, entre les synsets, les relations de types : hypernyme, hyponyme, antonyme, synonyme

et similaire à. Si la méthode directe ne donne pas de résultat, la méthode itérative est alors utilisée afin de parcourir

les synsets liés par une relation de type hypernyme jusqu’à l’obtention d’un résultat de la méthode directe. Le

principe de la méthode itérative est représenté par la partie (b) de la Fig.13.

Fig. 13 méthode de calcul de la correspondance sémantique entre deux mots.

 Summary

 166

La Fig.13 illustre la méthode de calcul de correspondance sémantique entre deux mots. La partie (a) illustre le

mécanisme de détection directe entre deux mots alors que la partie (b) illustre l’approche itérative. Le calcul direct

entre deux mots repose sur une correspondance, listée dans le tableau 3, entre un type de relation et une valeur

prédéfinie. Dans le cas d’une relation d’hypernyme, l’ensemble des relations sémantique de ce sysnset est exploré et

ainsi de suite ce qui permet de proposer une approche itérative.

Calcul de la correspondance Syntaxique

Le calcul de la correspondance syntaxique se déroule en deux étapes : un prétraitement de mots puis l’application de

l’algorithme de calcul de distance de Levensthein. Le prétraitement de mots ambitionne à trouver un mot et ceux

malgré ces diverses écritures possibles (i.e. singulier et pluriel par exemple). Le tableau 5 liste un ensemble, non-

exhaustif, de prétraitement possible. Le prétraitement de mots repose sur l’algorithme de Poter stemming algorithm

(Willett, 2006).

Table 5 Exemple de prétraitement

Case Word 1 Word 2 Example

1 word 1 + ‘s’ at end son & sons

2 Ends with ‘s’ “sh”, “ch”, ‘x’ word 1 + “es” at end match & matches

3 word 1 + “ing” at the end do & doing

4 Ends with ‘y’ change ‘y’ to ‘i’ + “es” city & cities

5 …… …… ……

L’objectif de ce prétraitement est retrouvé au sein d’un mot, un mot de base du thesaurus AMTM_ST afin de

pouvoir y appliquer un calcul de correspondance sémantique.

La seconde partie du calcul de la correspondance syntaxique consiste à appliquer l’algorithme de calcul de distance

de Levensthein. Cet algorithme est un des algorithmes le plus utilisés dans le domaine de la réconciliation

syntaxique (Gilleland, 2009). Le calcul de distance entre deux mots correspond au nombre minimum d’opérations à

effectuer sur les caractères afin d’obtenir le mot cible. Ces opérations peuvent être de l’insertion, de la suppression

ou du remplacement.

La formule ci-dessous représente les formules de l’algorithme de calcul de distance de Levensthein (Gilleland, 2009)

où a et b sont deux chaînes de caractères de tailles respectivement notées |a| et |b|.

Dans cette formule « 1 (ai ≠ bj) » est la fonction d’indicateur égale à 0 si « ai = bj » et égale à 1 autrement. Il est à

noter que le premier élément du minimum correspond à la suppression de caractère de a vers b, le deuxième élément

correspond à l’insertion de caractère et le troisième élément correspond à la cohérence ou l’incohérence des

caractères en fonction de l’équivalence des caractères.

Cas d’étude et présentation du preuve de concept

Une preuve de concept, nommée AMTM_SS, a été réalisée afin d’illustrer la démarche et évaluer ces performances.

Cette preuve de concept, consistant en un programme informatique, a été réalisée suivant un processus classique de

développement informatique divisée en quatre étapes : recueil des besoins, définition de l’architecture logique,

développement et réalisation de tests. Ce chapitre se focalise essentiellement sur la définition de l’architecture

logique de la preuve de concept AMTM_SS et évoquera les étapes de recueil des besoins, de développement et de

réalisation de tests.

AMTM_SS est divisé en six modules fonctionnels : analyse des modèles, détection de relations sémantique,

détection de relations syntaxique, sélection de relations, génération de correspondance de transformation,

interaction avec l’utilisateur. De plus, ces six modules sont eux même décomposés en sous-modules permettant la

réutilisation de « brique élémentaire » dans plusieurs modules.

 Summary

 167

La Fig. 14 est une représentation de la décomposition de AMTM_SS en cinq packages représentant ici uniquement

les Classes principales et deux ressources externes à savoir le thesaurus sémantique AMTM_ST et l’ontologie

AMTM_O.

Fig. 14 décomposition de AMTM_SS en package

La démarche AMTM reposant sur la réconciliation sémantique et syntaxique des éléments, la suite de ce chapitre

illustre un exemple simple de cette réconciliation entre deux éléments : étudiant et personne. La Fig.15 illustre les

deux méta-modèles basiques utilisés. L’élément Student a cinq propriétés : name, age, address, sex et teacher. Alors

que l’élément person a sept propriétés : id, surname, forename, gender, age, phone et address.

Fig.15 exemple basique utilisé pour illustrer AMTM_SS

La Fig. 16 est une impression écran de la comparaison des éléments. Il est possible d’y noter que le mot student est

lié à deux synsets alors que le mot person est lié à trois synsets. La relation sémantique entre les deux mots est une

relation d’hypernyme obtenue par itération et la valeur de S&S entre les deux mots est de 0.5903

 Summary

 168

Fig. 16 résultat de la comparaison S&S entre “student” et “person”

Enfin, la Fig. 17 est une capture d’écran du résultat de la comparaison des deux groupes de propriétés.

Fig. 17 résultat de la comparaison des deux groupes de propriétés

Finalement, la réconciliation finale entre les éléments student et person est de : 0.673. Cette correspondance est par

conséquent qualifiée comme correspondance potentielle d’après le repère expliquer dans la partie précédente. Cet

exemple simple, illustre la faisabilité de détection de correspondance entre modèles hétérogènes.

References

(Bézivin, 2006) Bézivin, J. (2006). Model driven engineering: An emerging technical space. InGenerative

and transformational techniques in software engineering (pp. 36-64). Springer Berlin

Heidelberg.

(Bollati et al, 2011) Bollati V A. MeTAGeM: a framework for model-driven development of model

transformations[D]. Ph. D. Thesis. University Rey Juan Carlos. http://www. kybele. etsii.

urjc. es/members/vbollati/Thesis, 2011.

(Bollati et al, 2013) Bollati, V. A., Vara, J. M., Jiménez, Á., & Marcos, E. (2013). Applying MDE to the

(semi-) automatic development of model transformations. Information and Software

Technology, 55(4), 699-718.

 Summary

 169

(Bruel et al, 2000) Bruel, J. M., Lilius, J., Moreira, A., & France, R. B. (2000). Defining precise semantics

for UML. In Object-Oriented Technology (pp. 113-122). Springer Berlin Heidelberg.

(Czarnecki et al., 2003) Czarnecki, K., & Helsen, S. (2003, October). Classification of model transformation

approaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in

the Context of the Model Driven Architecture(Vol. 45, No. 3, pp. 1-17).

(De Castro et al, 2011) De Castro, V., Marcos, E., & Vara, J. M. (2011). Applying CIM-to-PIM model

transformations for the service-oriented development of information systems.Information

and Software Technology, 53(1), 87-105.

(Del Fabro et al, 2009) Del Fabro, M. D., & Valduriez, P. (2009). Towards the efficient development of model

transformations using model weaving and matching transformations.Software & Systems

Modeling, 8(3), 305-324.

(Dolques, 2011) Dolques, X., Dogui, A., Falleri, J. R., Huchard, M., Nebut, C., & Pfister, F. (2011).

Easing model transformation learning with automatically aligned examples. In Modelling

Foundations and Applications (pp. 189-204). Springer Berlin Heidelberg.

(Grangel et al, 2010) Grangel, R., Bigand, M., & Bourey, J. P. (2010). Transformation of decisional models

into UML: application to GRAI grids. International Journal of Computer Integrated

Manufacturing, 23(7), 655-672.

(Herrmannsdoerfer et al, 2009) Herrmannsdoerfer, M., Benz, S., & Juergens, E. (2009). COPE-automating

coupled evolution of metamodels and models. In ECOOP 2009–Object-Oriented

Programming (pp. 52-76). Springer Berlin Heidelberg.

(Kappel et al, 2006) Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W., &

Wimmer, M. (2006). Lifting metamodels to ontologies: A step to the semantic integration

of modeling languages (pp. 528-542). Springer Berlin Heidelberg.

(Kappel et al, 2007) Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidl, M., Strommer, M., &

Wimmer, M. (2007, March). Matching Metamodels with Semantic Systems-An

Experience Report. In BTW Workshops (pp. 38-52).

(Kleppe et al, 2003) Kleppe, A. G., Warmer, J. B., & Bast, W. (2003). MDA explained: the model driven

architecture: practice and promise. Addison-Wesley Professional.

(Maier, 1998) Maier, M. W. (1996, July). Architecting principles for systems-of-systems. InINCOSE

International Symposium (Vol. 6, No. 1, pp. 565-573).

(Miller et al., 2003) Miller, J., & Mukerji, J. (2003). MDA Guide Version 1.0. 1.

(Touzi et al, 2007) Touzi, J., Lorré, J. P., Bénaben, F., & Pingaud, H. (2007). Interoperability through

model-based generation: The case of the collaborative information system (CIS).

In Enterprise Interoperability (pp. 407-416). Springer London.

(Terrasse et al., 2005) Terrasse, M. N., Savonnet, M., Leclercq, E., Grison, T., & Becker, G. (2005). Points de

vue croisés sur les notions de modèle et métamodèle. 1ères journées sur l’Ingénierie

Dirigée par les Modèles, 17-28.

(Tratt, 2005) Tratt, L. (2005). Model transformations and tool integration. Software & Systems

Modeling, 4(2), 112-122.

(Vernadat, 1999) Vernadat, F. (1999). Techniques de modélisation en entreprise: applications aux

processus opérationnels. Economica.

(Wang et al, 2015a) Wang, T., Truptil, S., & Benaben, F. (2015). A General Model Transformation

Methodology to Serve Enterprise Interoperability Data Sharing Problem. InEnterprise

Interoperability (pp. 16-29). Springer Berlin Heidelberg.

(Wang et al, 2015b) Wang, T., Truptil, S., & Benaben, F. (2015, June). An Automatic Model Transformation

Methodology to Serve Web Service Composition Data Transforming Problem.

In Services (SERVICES), 2015 IEEE World Congress on (pp. 135-142). IEEE.

 Summary

 170

 (Wang et al, 2015c) Wang, T., Truptil, S., & Benaben, F. (2015, January). Applying a Semantic & Syntactic

Comparisons Based Automatic Model Transformation Methodology to Serve Information

Sharing. In Proceedings of the International Conference on Information and Knowledge

Engineering (IKE) (p. 3). The Steering Committee of The World Congress in Computer

Science, Computer Engineering and Applied Computing (WorldComp).

A study to define an automatic model transformation approach based on semantic and syntactic
comparisons

Abstract. The models are increasingly used both for the description of a view of a complex system or for

information exchange. However, to share the information, transferring information from one model to

another is an issue related to the interoperability of systems now. This problem can be approached in

three ways: integrated (all identical models), unified (all models refer to a pivot model), federated (no

specific rules on the models). Although standards exist, they are rarely respected rigorously. The

federated approach therefore seems to be the most realistic approach. However, because of the

different models, this approach is complicated. Models can have a very heterogeneous structure and

different vocabulary to describe the same concept. Therefore, we must identify the common concepts

of different models before defining the transformation rules for transforming from one format to

another. This thesis proposes a methodology to achieve these goals. It is partly based on the proposal of

a metametamodel (to unify the description of the model structure), i.e. the metamodel, and secondly

calculating the distance between each element of models to deduce the transformation rules. This

distance reflecting both syntactic distance (words occurrence) and semantic relation that related to the

synonymous. Researching synonym relation is based on the use of knowledge base, represented as

ontology, such as WordNet.

Keywords: Model transformation, Model-driven engineering, Ontology, Semantic & Syntactic checking

Etude d’une approche de transformation de modèles automatisée basée sur des comparaisons
sémantique et syntaxique

Résumé. Les modèles sont de plus en plus utilisés que ce soit pour la description d’un point de vue d’un

système complexe ou pour l’échange d’information. Cependant, le partage d’information, le transfert

d’information d’un modèle à un autre est aujourd’hui une problématique liée à l’interopérabilité des

systèmes. Cette problématique peut être abordée selon trois approches : intégrée (tous les modèles

identiques), unifiée (tous les modèles font référence à un modèle pivot), fédérée (pas de règles précises

sur les modèles). Bien que des standards existent, ils sont rarement respectés avec rigueur. L’approche

fédérée semble par conséquent l’approche la plus réaliste. Cependant, cette approche est complexe car

les différents modèles, bien que comportant des concepts communs, peuvent avoir une structure et un

vocabulaire très hétérogène pour décrire le même concept. Par conséquent, il faut identifier les

concepts communs des différents modèles avant de définir les règles de transformation permettant de

passer d’un format à un autre. Cette thèse propose une méthodologie permettant d’atteindre ces

objectifs, elle se base d’une part sur la proposition d’un métamétamodèle permettant d’unifier la

description de la structure des modèles, i.e. le métamodèle, et d’autre part sur le calcul de distance

entre chaque élément des modèles qui permettront de déduire les règles de transformation. Cette

mesure de distance reflète la distance à la fois syntaxique, écritures différentes d’un même terme, ainsi

que sémantique liée à l’utilisation de synonyme. La recherche de synonyme est basée sur l’utilisation de

base de connaissance, représentée sous forme d’ontologie, tel que WordNet.

Mots-clés : Transformation de modèles, Ingénierie dirigée par les modèles, Ontologie, Sémantique et

Syntaxique réconciliation

