
HAL Id: tel-01373431
https://theses.hal.science/tel-01373431

Submitted on 28 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual interpretation of hand postures for
human-machine interaction

van Toi Nguyen

To cite this version:
van Toi Nguyen. Visual interpretation of hand postures for human-machine interaction. Com-
puter Vision and Pattern Recognition [cs.CV]. Université de La Rochelle, 2015. English. �NNT :
2015LAROS035�. �tel-01373431�

https://theses.hal.science/tel-01373431
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE LA ROCHELLE
ÉCOLE DOCTORALE S2IM

LABORATOIRE L3i

INSTITUT POLYTECHNIQUE
DE HANOI

INSTITUT DE RECHERCHE
INTERNATIONAL MICA

THÈSE présentée par :

Van-Toi NGUYEN

soutenue le : 15 Décembre 2015
pour obtenir le grade de : Docteur de l’université de La Rochelle

Discipline : Informatique et Applications

Interprétation visuelle de gestes
pour l’interaction homme-machine

JURY :

Jean-Philippe DOMENGER            Professeur, Université de La Rochelle, Président du jury
Patrick LAMBERT Professeur, Université Savoie Mont Blanc, Rapporteur
Duc-Dung NGUYEN Docteur, Directeur adjoint IOIT - Vietnam Academy

of Science and Technology (VAST), Rapporteur
Rémy MULLOT Professeur, Université de La Rochelle, Directeur de thèse
Vincent COURBOULAY Maître de Conférence HDR, Université de La Rochelle,

Encadrant scientifique
Thi-Lan LE Maître de Conférence, Institut de recherche international MICA

- Institut Polytechnique de Hanoi, Co-Directrice de thèse

Thi-Thanh-Hai TRAN Maître de Conférence, Institut de recherche international MICA
- Institut Polytechnique de Hanoi, Encadrant scientifique

Eric CASTELLI Professeur, Institut de recherche international MICA
- Institut Polytechnique de Hanoi, Encadrant scientifique



Acknowledgements

2



Van-Toi NGUYEN
Interprétation visuelle de gestes pour l’interaction homme-machine

Aujourd’hui, les utilisateurs souhaitent interagir plus naturellement avec les systèmes

numériques. L’une des modalités de communication la plus naturelle pour l’homme est le geste

de la main. Parmi les différentes approches que nous pouvons trouver dans la littérature, celle

basée sur la vision est étudiée par de nombreux chercheurs car elle ne demande pas de porter de

dispositif complémentaire. Pour que la machine puisse comprendre les gestes à partir des im-

ages RGB, la reconnaissance automatique de ces gestes est l’un des problèmes clés. Cependant,

cette approche présente encore de multiples défis tels que le changement de point de vue, les

différences d’éclairage, les problèmes de complexité ou de changement d’environnement. Cette

thèse propose un système de reconnaissance de gestes statiques qui se compose de deux phases

: la détection et la reconnaissance du geste lui-même. Dans l’étape de détection, nous utilisons

un processus de détection d’objets de Viola Jones avec une caractérisation basée sur des carac-

téristiques internes d’Haar-like et un classifieur en cascade AdaBoost. Pour éviter l’influence

du fond, nous avons introduit de nouvelles caractéristiques internes d’Haar-like. Ceci augmente

de façon significative le taux de détection de la main par rapport à l’algorithme original. Pour la

reconnaissance du geste, nous avons proposé une représentation de la main basée sur un noyau

descripteur KDES (Kernel Descriptor) très efficace pour la classification d’objets. Cependant,

ce descripteur n’est pas robuste au changement d’échelle et n’est pas invariant à l’orientation.

Nous avons alors proposé trois améliorations pour surmonter ces problèmes: i) une normali-

sation de caractéristiques au niveau pixel pour qu’elles soient invariantes à la rotation ; ii) une

génération adaptive de caractéristiques afin qu’elles soient robustes au changement d’échelle ;

iii) une construction spatiale spécifique à la structure de la main au niveau image. Sur la base

de ces améliorations, la méthode proposée obtient de meilleurs résultats par rapport au KDES

initial et aux descripteurs existants. L’intégration de ces deux méthodes dans une application

montre en situation réelle l’efficacité, l’utilité et la faisabilité de déployer un tel système pour

l’interaction homme-robot utilisant les gestes de la main.

Mots clés : Vision par ordinateur, apprentissage automatique, reconnaissance de posture de la

main, visualisation basée sur l’interaction homme-machine, détection de la main, caractéris-

tiques Haar-like internes, AdaBoost, Cascade de classifieurs, noyaux descripteurs, machine à

vecteurs de support (SVM).



Van-Toi NGUYEN
Visual interpretation of hand postures for human-machine interaction

Nowadays, people want to interact with machines more naturally. One of the powerful com-

munication channels is hand gesture. Vision-based approach has involved many researchers

because this approach does not require any extra device. One of the key problems we need to

resolve is hand posture recognition on RGB images because it can be used directly or integrated

into a multi-cues hand gesture recognition. The main challenges of this problem are illumina-

tion differences, cluttered background, background changes, high intra-class variation, and high

inter-class similarity.

This thesis proposes a hand posture recognition system consists two phases that are hand detec-

tion and hand posture recognition.

In hand detection step, we employed Viola-Jones detector with proposed concept Internal Haar-

like feature. The proposed hand detection works in real-time within frames captured from real

complex environments and avoids unexpected effects of background. The proposed detector

outperforms original Viola-Jones detector using traditional Haar-like feature.

In hand posture recognition step, we proposed a new hand representation based on a good

generic descriptor that is kernel descriptor (KDES). When applying KDES into hand posture

recognition, we proposed three improvements to make it more robust that are adaptive patch,

normalization of gradient orientation in patches, and hand pyramid structure. The improve-

ments make KDES invariant to scale change, patch-level feature invariant to rotation, and final

hand representation suitable to hand structure. Based on these improvements, the proposed

method obtains better results than original KDES and a state of the art method.

Keywords : Computer vision, Machine learning, Hand posture recognition, Visual based

Human-machine interaction, Hand detection, Internal Haar-like feature, AdaBoost, Cascade

of classifiers, Kernel descriptor, Support vector machine.
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Chapter 1

Introduction

1.1 Objective

The aim of this work is to develop a good hand posture recognition method within video

frames for human-machine interaction using consumable 2D camera. Despite the huge

effort of researchers over decades, this objective has remained, especially in the real envi-

ronment, unreached. Although reasonably successful attempts have been made for certain

constraints, such as uniform background, no satisfactory methods exist that work with ac-

tual conditions and a large number of hand posture classes. There are two important tasks

that are to detect the hand in the frame and classify it into a predefined class of hand

posture.

This thesis will develop a method including two phases that are hand detection and

hand posture recognition. The hand detection method will be able to work in real time

within frames captured from real complex environments. The hand posture recognition

method is then required to work with hand images containing complex background that

are the results of the detection step. The two-phase integrated system will be used to build

a human-machine interaction system.

1.2 Motivation

Hand gestures are a powerful communication channel among human. In fact, hand ges-

tures play a significant role in information transfer in our everyday life. Especially, sign

languages are used informally by dumb people. Gesturing is a natural way of interaction.

Once sensor-based machines can understand the meaning of human hand gestures, the

future communication between people and machines will be more natural and intuitive.

In other word, these sensor-based human-machine interaction systems will allow people

to interact with machines more closely resembling human-human communication.
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1.2. MOTIVATION

Hand gestures can be used in a broad range of applications. Such applications are con-

ventional human-computer interactions, objects manipulation in Virtual Environments,

exchanging information with other people in a virtual space, guiding some robots to per-

form certain tasks in a hostile environment.

Over the recent three decades, many researchers have studied and developed hand-

gesture based human-machine interfaces. We would like to contribute a study to the

progress in this field.

There are two main approaches for hand gesture interaction that are “Data-Glove

based” and “Vision Based” approaches. The Data-Glove based approach uses sensor

devices to capture hand and finger motions (Fig. 1.1(a)). The extra sensors facilitate

to collect easily hand configuration and movement. Nevertheless, the sensor devices are

quite expensive and make users feel cumbersome and inconvenient.

In contrast, the Vision Based methods require only a camera [29] (Fig. 1.1(b)). With

this approach, the interaction between humans and computers is natural without the use

of any extra devices; as a result, it makes the interface more convenient. The system will

capture the video stream from the camera as input then use vision-based hand gesture

recognition techniques to recognize hand gestures. Besides, vision-based hand gesture

recognition systems can provide an intuitive communication channel for human-machine

interaction. For this reason, we decide to follow this approach.

Figure 1.1 – Two main approaches for hand gesture interaction. (a) The Data-Glove based
approach (An example of the Data Glove: The CyberGlove from the Immersion Corpora-
tion [1]). (b) Vision Based approach.

We normally identify two types of hand gesture: static gesture (hand posture) and dy-

namic gesture [16,48]. A hand posture is a specific configuration of hand with a static pose

and its current location without any involved movements. A hand gesture is a sequence

of hand postures connected by continuous hand or finger movements over a short time

span. We focus on hand posture recognition because hand postures can directly replace

some remote control devices, using a one-to-one correspondence between hand postures
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1.3. CONTEXT, CONSTRAINTS, AND CHALLENGES

and commands. Moreover, the identification of key hand postures is useful for dynamic

hand gesture recognition.

Nowadays, depth sensors such as Microsoft Kinect has become a common device in

many areas including computer vision, robotics human interaction, augmented reality.

These devices provide depth information of the scene. Depth information is very useful

for hand detection and recognition. However, we are still interested in improving methods

working on color information because of three reasons: (1) In many application systems,

depth information is not satisfied because of the particular designs of the systems and

the limitation of the measurable ranges of the depth sensors; (2) The depth information

is quite noisy; (3) Most of the systems use depth information combining with color cues

even speech. Therefore, good methods based on color information are useful for multiple

cue interaction systems.

Most of hand posture recognition systems consist of two phases, hand detection and

hand posture recognition. This framework is reasonable because hand covers a small

region of the image and it is inefficient to use the whole image as the input of hand

posture recognition method. A few hand posture recognition methods work on entire

input image without hand detection step. However, the assumption of these methods is

that hand covers a significant region of the input image.

In summary, the above analysis motivates us to do research to develop a hand posture

recognition system for human-machine interaction that works well on color frames se-

quences. This system will have two main steps that are hand detection and hand posture

recognition.

1.3 Context, constraints, and challenges

We can easily imagine about many interesting applications of hand posture recognition in

controlling instruments in house such as televisions and communicating with some kinds

of service robots such as information consultation robot in libraries. In these systems,

instruments are often immobile and work in indoor environments. In case of moving

robots, they also often stand still while interacting with the user. The vision-based systems

can exploit hand postures for the command in smart environments without any remote

control unit. The camera is installed in a strategic position to obtain good performance

as well as to make users feel comfortable. To develop these kinds of application system,

we define a convenient installation as well as the constraints for study on hand posture

recognition as the following:

• Indoor Environment: The users interact with machines through a camera in the

indoor environment.

15



1.3. CONTEXT, CONSTRAINTS, AND CHALLENGES

• Fixed Camera: The camera is immobile while interacting.

• Face-to-face stand: The user stands in front of the camera that is installed on the

machine. The user naturally raises one hand to control the machine using hand pos-

tures. When the user raises their hand, the camera and the hand are approximately

at the same height so as the camera can perceive the hand clearly.

In this context, we have to cope with the following issues:

• Illumination difference. The value of a pixel in the image will change when the

lighting of the environment changes. The pixel values could be shifted or scaled.

When the positions of the light sources change, the pixel values will change accord-

ing to a non-linear transformation and/or be complicated by shadows falling on the

hand.

• Background clutter and change. In the real environment, in most cases, the back-

ground is clutter. Moreover, the background contains many other objects with sim-

ilar skin color. Thus, it is very difficult to clearly detect and segment hand from the

background. In addition, background often changes because of changing lighting

condition and the other objects’ movement.

• Scale change. The change in distance between the user and the camera depends

on each user and working section. The distance changes make the scale change of

hand images. Moreover, sizes of hand are also different from user to user.

• High intra-class variation and high inter-class similarity. The hand is a highly de-

formable object; there is a considerable number of mutually similar hand postures

as well as there are high varieties of instances of each hand posture. Two instances

of a hand posture class could be different because of different angles of the hand

and the variance of the fingers’ distortion. For the same reasons, a hand posture

instance could be different from its class and similar to other class concurrently. In

Fig.1.2(a-d), (a) and (b) are images of Posture #12 in our dataset; (c) and (d) are

images of Posture #6. However, we can see that the similarity between (b) and (c)

is higher than between (a) and (b) as well as between (c) and (d) concerning the

positions of the fingers in the hand images. Moreover, some hand posture class are

very similar. For example Fig.1.2(i,j,k) are three different hand postures however

they are quite similar.

• Computational time and user-independence. Applications using hand posture gen-

erally require real-time and user-independent recognition.

16



1.4. CONTRIBUTIONS

Figure 1.2 – Some examples of Intra-class variation and Inter-class similarity

Our work in this thesis aims at addressing the aforementioned issues for hand posture

recognition.

1.4 Contributions

In this thesis, we propose a framework of hand posture recognition system consisting of

two main phases: hand detection and hand posture recognition. We then propose a strat-

egy to integrate the proposed methods into a real application. In the following, we present

more detail of our contributions in terms of hand detection, hand posture recognition, and

application:

• Hand detection: Our hand detection method is inspired by Viola-Jones method that

uses Haar-like features and Cascade of AdaBoost classifiers. As a consequence, the

proposed hand detector has the properties of Viola-Jones detector such as fast com-

putation time. However, when applying Viola-Jones detector into hand detection,

we meet a problem, that is the unexpected effect of the background. To tackle this
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issue, we introduce a new concept of internal Haar-like feature. It is shown that

internal Haar-like features outperform Haar-like features.

• Hand posture recognition: Concerning hand posture recognition, we propose a

new hand posture representation based on kernel descriptor (KDES) [5] with the

following properties:

– Invariant to rotations at patch level: At patch level, the original KDES com-

putes gradient based features without considering the orientation. Therefore,

the generated features will not be invariant to rotation. We propose to com-

pute the dominant orientation of patch and normalize all gradient vectors in

the patch to this orientation. By this way, patch-level features will be invariant

to rotation.

– Robust to scale change: The original KDES computes features on patches of

fixed size. At two different scales, the number of patches to be considered and

the corresponding patch descriptions will be different. We propose a strat-

egy to generate patches with adaptive size. This strategy makes the number

of patches remain unchanged and patch description robust. As a result, the

image-level feature is invariant to scale change.

– Suitable specific structure of the hand: At the image level, the original KDES

organizes a spatial pyramid structure of patches to build the final description

of the image. However, we observe that hand is an object with a particular

structure. We hence design a new pyramid structure that reflects better the

structure of the hand.

• Application: To illustrate the applicability of the proposed methods, we propose

a deployment of the hand gesture recognition on a service robot in a library en-

vironment. A strategy for efficient recognition over multiple temporal frames is

proposed, despite the recognition system taking still images as input. The exper-

imental results in a simulated library context show good recognition performance

for most of the tasks.

1.5 Outline of the thesis

The structure of the thesis is as follows:

• In Chapter 2, we review existing works in the field of hand detection and hand

posture recognition. We classify existing works according to the feature extraction

and hand representation aspects.
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• Chapter 3 presents proposed hand detection method based on Viola-Jones detec-

tor with a new concept that is internal Haar-like feature. In this chapter, we also

describe our own dataset (MICA-L3i dataset) which is used to evaluate the perfor-

mance of hand detection method as well as hand posture recognition method. The

experimental results on hand detection are presented and discussed at the end of this

chapter.

• In Chapter 4, our new hand representation based on kernel descriptor is presented.

The hand posture recognition method is described step by step. In each step, we

point out our improvements compared with original KDES.

• In Chapter 5, based on our works for hand detection and hand posture recognition,

we have built a fully automatic hand posture recognition system and applied it in

a human-robot interaction application: service robot in library. The goal of this

application is to demonstrate that we can apply proposed methods of hand detection

and hand posture recognition to build a human-machine interaction system.

• In Chapter 6, we draw the conclusions and discuss the future works.
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Chapter 2

Literature review

2.1 Introduction

In this chapter, we will present a survey of hand posture recognition system. As pre-

sented in Chapter 1, our work aims to develop a hand posture recognition system for

human-machine interaction in the real indoor environment. The framework of our ex-

pected system consists of two phases that are hand detection and hand posture recogni-

tion. Therefore, we will analyze the state of the art works with regard to two problems:

hand detection and hand posture recognition.

In general, the hand gesture recognition system consists of hand detection, tracking

and recognition steps. However, some papers present only hand detection step while

other works focus on hand posture recognition. We also review some papers working

on dynamic hand gesture recognition because they also perform the hand detection and

recognition.

In this thesis, our work towards to feature extraction and representation because they

are important components in object recognition systems. Therefore, in this chapter we

focus on analyzing the methods for feature extraction and hand representation.

2.2 Hand detection

Hand detection is a process that aims at determining the hand region in frames/images.

This is the first and important step in the hand postures recognition since the quality of

this step will affect the performance of the whole system. However, accurate detection

of hands in still images or video remains a challenging problem, due to the variability of

hand appearances and environments. In this section, we focus on reviewing the works

that are closely related to our work. Some comprehensive surveys on hand detection are

available [29, 65, 76].
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2.2. HAND DETECTION

A number of features have been proposed for hand detection. We divide these features

into five categories: pixel value, shape, topography, context, and motion. In most of the

methods, a combination of more than one types of the feature is used. Table 2.1 shows

the features used in different works in the literature. In the following subsections, we will

present a brief description of these features.

2.2.1 Pixel value (intensity/color)

Most hand detection methods utilize pixel values. The pixel value can be the intensity

and/or the color. Many methods use color cues to detect skin pixel while some others use

intensities to decide whether a pixel belongs to hand region. We can divide these works

into two main categories: individual and relationship pixel value. Approaches in the first

category rely on the value of individual pixels that often detects hand pixels based on skin

color while approaches in the second category utilize the relationship between pixels or

regions.

Individual pixel

In the first category, the value of each pixel in the image is matched with a skin color

model or a criteria to define whether it is skin pixel or not. To the best of our knowledge,

skin color is a popular cue used in hand detection (see Tab. 2.1). However, using only skin

color normally is not enough because of unexpected effects of background and illumina-

tion (see Fig.2.1 for example). For this reason, the hand detection methods using skin

color segmentation employ more features such as context information like faces and other

human components. In the following, we will review the detail of some representative

papers.

Figure 2.1 – Variation of skin color under different lighting conditions [90].
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Table 2.1 – Visual features for hand detection in the literature

ID Reference
Pixel value
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1 Triesch and Malsburg, 1998 [93] x x
2 Huang and Huang, 1998 [35] x
3 Marcel and Bernier, 1999 [57] x x
4 Zhu et al., 2000 [103] x
5 Wu et al., 2000 [100] x x
6 Kurata et al., 2001 [44] x
7 Lockton and Fitzgibbon, 2002 [53] x x
8 Kolsch and Turk, 2004a [42] x
9 Kolsch and Turk, 2004b [59] x

10 Ong and Bowden, 2004 [70] x
11 Licsar and Sziranyi, 2005 [49] x x
12 Wang and Wang, 2007 [98] x
13 Francke et al., 2007 [24] x x
14 Choi et al., 2009 [13] x x x
15 Ravikiran J et al., 2009 [77] x
16 Stergiopoulou et al., 2009 [83] x
17 Yoder and Yin, 2009 [102] x
18 Ding and M. Martinez, 2009 [20]
19 Le and Mizukawa, 2010 [22] x x
20 Roomi et al., 2010 [78] x
21 Tran and Nguyen, 2010 [90] x
22 M.Hasan and K.Mishra, 2010 [63] x
23 Mittal et al., 2011 [66] x x x
24 Lee and Lee, 2011 [45] x x
25 Dardas and Georganas, 2011 [19] x x x
26 Pisharady and Vadakkepat, 2012 [75] x
27 Liu et al., 2012 [52] x x
28 Boughnim et al., 2013 [7] x
29 Sgouropoulos et al., 2013 [82] x x
30 Priyal and Bora, 2013 [71] x
31 Stergiopoulou et al., 2014 [84] x x
32 Chuang et al., 2014 [15] x x
33 Mei et al., 2015 [61] x x
34 Bretzner et al., 2002 [8] x x
35 Wachs et al., 2005 [97] x x
36 Chang et al., 2006 [10] x
37 Yin and Xie, 2007 [101] x

#Papers used the feature 27 7 5 8 3 7
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Some methods used only skin segmentation in hand detection step [63,78,83,90,102,

103]:

Zhu et al. [103] proposed a way to determine the hand in a wearable environment.

For a given image, a hand color model and a background color model are generated using

Gaussian Mixture Models with the restricted EM algorithm. Then, each pixel in the image

is classified into hand pixel and background one based on the generated models. The suc-

cess of this method relies on the assumption that hand color in a given image is consistent,

and hence can be modeled by a Gaussian distribution. Another important prerequisite is

that several positions where hand tends to occur with high probability are predefined so

that the average hand color in a given image can be estimated reliably. However, in fact,

in many applications (e.g. interaction with robots in the real environment), the user stands

far from the camera; therefore the above constraints are not satisfied.

In [83], Stergiopoulou et al. applied a color segmentation technique based on a skin

color filtering procedure in the YCbCr color space. However, the input image using in

this work is simple because it contains only the hand taken in a uniform background.

Yoder and Yin [102] proposed a hand detection approach using a Bayesian classi-

fier based on Gaussian Mixture Models (GMM) for identifying pixels of skin color. A

connected component based region-growing algorithm is included for forming areas of

skin pixels into areas of likely hand candidates. The skin tone pixel segmentation uses

a single Bayesian classifier based on the GMMs that are determined from a static set

of training data. The classifier is fully computed ahead of time by a training program

which processes a set of example images to extract the user-specified color components

and train the GMMs accordingly. Once the training program has completed, the classifier

remains fixed, and may be used by a separate hand detection application. The hand detec-

tion application examines each pixel independently and assigns the pixel to a given class

based solely on the output of the classifier for that pixel. Once the Bayesian classifier has

identified each block as either skin or background (essentially producing a down-scaled

classification image), the results are scanned for connected regions consisting of blocks

with a skin confidence of at least 50%. They applied a skin-pixel based region-growing

approach to detect the connected components of skin-regions. Connected regions whose

width or height is below an empirically derived threshold are assumed to be false pos-

itives and are discarded. Any remaining connected regions are presumed to be hands.

There are still some limitations in terms of the color information versus various imaging

conditions. Hand occlusion is also a challenging issue for model based gesture tracking.

The authors indicated a perspective to improve hand detection method that is developing

a second post-detection algorithm for hand patch estimation based on the detected skin-

pixels. This expected algorithm is intended to separate hand regions from other skins
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regions. They pointed out an approach like local binary pattern with AdaBoosting (sim-

ilar to face detection approach) will be investigated to improve the performance of hand

detection and classification.

Tran et al. [90] proposed a method to detect skin regions using an algorithm of color

segmentation based on thresholding technique. This segmentation is robust to lighting

condition thank to a step of color normalization using a neural network. However, the

normalization takes so much time because each pixel will be passed to the neural network.

Hand detection methods using only skin color segmentation often work with a con-

straint that is the input image contains only hand object taken in a simple background.

In case of the complex background, the skin segmentation is used in order to reduce the

search space for the next step that is a sliding window technique for hand posture recog-

nition [90].

To improve the accuracy of hand detection, many additional features are combined

with skin color cue. In many works, the pixel value based visual features reflect re-

lationship between pixels or regions are combined with skin color [24, 52, 61]. Some

methods utilized topographical features to decide if a skin region is hand region or not

[8, 15, 22, 53, 82]. Context information is used in [19, 57, 66]. One of the popular addi-

tional features combined with skin segmentation is motion [45, 84, 93, 97, 100].

In some cases [19,66], hand detection method integrates three or more kinds of feature

to obtain good accuracies. In [19], after detecting face region using Viola-Jone detector,

the face area is removed by replacing by a black circle. Then, hand region is searched

using skin detection and hand contour comparison algorithm based on given hand posture

templates. Mittal et al. [66] proposed a hand detector using a two-stage hypothesize

and classify framework. In the first stage, hand hypotheses were proposed from three

independent methods including a sliding window hand-shape detector, a context-based

detector, and a skin-based detector. In the second stage, the proposals are scored by all

three methods and a discriminatively trained model is used to verify them. This method

obtains improvements in precision and recall (average precision: 48.20%; average recall:

85.30% on PASCAL VOC 2010 dataset). However, the computation time is too expensive.

The time taken for the whole detection process is about 2 minutes for an image of size

360× 640 pixels on a standard quad-core 2.50 GHz machine.

Relationship between pixels or regions

In contrary to the approaches in the first category, the methods in the second category use

features that reflect the relationship between pixels/regions or statistic information. Such

features are Local Binary Pattern feature (LBP) [68], Histogram of Gradient (HOG) [18],

Scale Invariant Feature Transform (SIFT) [54], and Haar-like [96].
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In [24], Francke et al. combined Haar-like and mLBP (modified Local Binary Pattern)

with adaptive skin model generated from face region to detect hand before tracking. Wang

et al. [98] use sharing SIFT features of different hand posture classes to detect hand.

Sharing features are common and can be shared across the classes [87]. HOG feature is

often used in hand detection [52, 61, 66]. Mittal et al. proposed a hand detection using

multiple proposals. In this method, deformable models based on HOG feature is used

to detect the hand and the end of the arm. In [52], the hand is located in segmented skin

regions using a Cascades AdaBoosted detector based on HOG feature. The hand detection

method proposed by Mei et al. [61] also segments the skin-color regions first to reduce

the detection area then use Gentle Adaboost and Cascade classifier with 3 features: HOG

feature, VAR Feature, and Haar feature. VAR feature value of an image is the variance of

the gray-scale values of pixels in the image.

Recently, the methods based on Haar-like feature with AdaBoost and Cascade of clas-

sifier [96] have obtained good results in face and hand detection. It was used alone

[2,42,59,70] or combine with other features [24,61]. To the best of our knowledge, Haar-

like feature is one of the most popular features for hand detection [2, 24, 42, 59, 61, 70].

In [76], the authors also gave a similar comment and spent significant space in reviewing

these methods. We will survey in more detail below.

Ong et al. [70] presented an unsupervised approach to train an efficient and robust

detector which detects the hand in an image and classifies the hand shape. In their paper,

a tree structure of boosted cascades is constructed. The root of the tree provides a general

hand detector while the individual branches of the tree classify a valid shape as belonging

to one of the predetermined clusters. For the general hand detector, they trained a cascade

of 11 layers with a total of 634 weak classifiers. To build weak classifiers, they used Haar

wavelet like features and FloatBoost algorithm. With their database, they reported that

the general hand detector obtained an unexpectedly high success rate of 99.8%. How-

ever, the hand images for both training and test databases have fairly simple and similar

backgrounds.

Kolsch and Turk [42] presented a view-specific hand posture detection. They em-

ployed Viola-Jones detector [96]. Since training a detector for every possible hand pos-

ture (in order to find the best-performing one) is prohibitively expensive, they proposed

a method to quickly estimate the classification potential, based on only a few training

images for each posture. They found vast differences in detectability with Viola-Jones’

method to find a good Vision-based interfaces initialization gesture. The best detector

combined with skin color verification achieves outstanding performance in the practical

application, indoors and outdoors: about one false positive in 100,000 frames. The final

hand detector that they chose for their application detects the closed posture. For sce-
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narios where they desired fast detection, they picked the parameterization that achieved a

detection rate of 92.23% with a false positive rate of 1.01*10-8 in the test set, or one false

hit in 279 VGA sized frames. According to this paper, mostly convex appearances with

internal gray-level variation are better suited to the purpose of detection with the rect-

angle feature-classification method. Background noise hinders extraction of consistent

patterns. The detector’s accuracy confirms the difficulty to distinguish hands from other

appearances.

Kolsch and Turk [59] analyzed the in-plane rotational robustness of the Viola-Jones

object detection method [96] when used for hand appearance detection. They determined

the rotational bounds for training and detection for achieving undiminished performance

without an increase in classifier complexity. The result - up to 15◦total - differs from the

method’s performance on faces (30◦total). They found that randomly rotating the training

data within these bounds allows for detection rates about one order of magnitude better

than those trained on strictly aligned data. Fig.2.2 shows the feature types used in [42,59].

Figure 2.2 – The feature types used in [42, 59]

Barczak and Dadgostar [2] performed a detailed analysis of Viola-Jones detectors

[96] for in-plane rotations of hand appearances. To experiment with hand detection, they

implemented a version of Viola-Jones’ method using parallel cascades. Each cascade is

able to detect hands (one particular gesture) within a certain angle of rotation (on an axis

normal to the image’s plan). The original set of images is automatically twisted to angles

from -90 to 90, spaced by 3 degrees. According to this way, a total of 61 orientations were

trained. They indicated that only about 15◦ of rotations could be efficiently detected with

one detector. The training data must contain rotated example images within these rotation

limits.

In [24], a hand detector was implemented using a cascade of boosted classifiers to

detect hands within the skin blobs. The authors commented that although detectors using

cascade of boosted classifiers allow obtaining robust object detectors in the case of face

[96] or car objects [31], we could not build a reliable generic hand detector. The reasons

are those: (i) hands are complex, highly deformable objects, (ii) hand possible poses

have a large variability, and (iii) their target is a fully dynamic environment with cluttered

background. Therefore, they decided to switch the problem to be solved. The first hand

should be detected then the hand is tracked in the consecutive frames. To detect the first

hand, they assume that a specific gesture (fist posture) is made firstly. To determine which

posture is being expressed, they apply in parallel a set of single posture detectors over
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the ROIs delivered as the output of the tracking module. They indicated that detectors is

greatly difficult to process in cluttered backgrounds.

2.2.2 Shape

The shape feature has been utilized to detect the hand in images. The shape feature is

often obtained by extracting the contours and edges [13, 19, 35, 77].

The system in [35] applies the corona effect smoothing and border extraction algo-

rithm to find the contour of the hand then uses the Fourier descriptor (FD) to describe the

hand shapes. The Fourier Descriptor is defined as the power spectrum of discrete Fourier

Transform of the boundary points that are represented by complex numbers. The Haus-

dorff distance measure is used to track shape-variant hand motion. A combination of the

shape and motion information is used to select the key frames. While, Dardas and Geor-

ganas [19] used contour comparison algorithm to search for the human hands and discard

other skin-colored objects for every frame captured from a webcam or video file. In [77],

Canny edge detector and a clipping technique are used to detect edges then the boundary

is tracked for fingertip detection.

Choi et al. [13] propose a method based on the assumption that a hand-forearm re-

gion (including a hand and part of a forearm) has different brightness from other skin

colored regions. They firstly segment the hand-forearm region from other skin colored

regions based on the brightness difference. The brightness difference is represented by

edges. They distinguish the hand-forearm region from others by using the shape feature.

They regard the long and big blob as the hand-forearm region. The method can not detect

hand region without forearm. While, the constraint is often not satisfied in real appli-

cations. After detecting the hand-forearm region, they detect the hand region from the

hand-forearm region by detecting a feature point that indicates the wrist. Finally, they

extract the hand by using the brightness based segmentation that is slightly different from

the hand-forearm region detection.

We can remark that if we can detect the hand contour correctly, the contour will repre-

sent well the shape of the hand. However, in the real environment, hand contour extraction

is still a challenge.

2.2.3 Topography

The topographical information of the hand such as blobs and ridges, fingertips, wrist, hand

center.

Some methods utilized additional topographical features to decide if a skin region is

hand region or not [8, 15, 22, 53, 82]. Lockton et al. asked user wears a wristband to
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compute hand orientation and scale. After detect skin pixels, Le et al. [22] determine the

center of the hand and the fingertip positions based on the distance transformation image,

the connected component labeling image, and a type of feature pixels, which is called

distance-based feature pixel. However, this method is required to perform on a good skin

color detection image. Sgouropoulos et al. [82] detect hand blobs from segmented skin

regions based on the size of blobs compared to the face size. In [15], Chuang et al. use an

integration of a general image saliency detection method and skin information to improve

the performance of hand posture detection. In [8], blobs and ridges are extracted from

segmented skin regions. Blob and ridge features are then used in hand posture detection,

tracking, and recognition.

Some methods [13,49] extract hand region from the hand-forearm region by detecting

feature points indicating the wrist. Licsar and Sziranyi [49] used a width-based method to

detect wrist points after segmenting hand and arm region based on background segmenta-

tion with specific constraints of a camera-projector system. The wrist points then allow of

hand region segmentation. The background subtraction method based on the difference

between the hand and background reflection in the camera-projector system obtains good

results. This good hand and arm segmentation make wrist points detection reliable.

In [75], the hand postures are detected by thresholding the saliency map. Saliency

map is created using the posterior probabilities of locations based on shape, texture, and

color attention, for the set of hand posture and the background images. A Bayesian model

of visual attention is utilized to generate a saliency map, and to detect and identify the

hand region. If the posterior probability is above a threshold value, the presence of hand

is detected.

2.2.4 Context

Context information is used in some works [19, 57, 66]. They are often combined with

other information such as color. In [57], Marcel et al. determine if a skin color blob

is a hand candidate if it enters an “active window”. “Active windows” are defined in

the body-face space. Mittal et al. [66] use a context-based detector combining with two

other detectors (a sliding window hand-shape detector and a skin-based detector) to built

a multiple proposals hand detector. The context-based detector proposes hand bounding

boxes depending on the end of arms. In [19], Dardas and Georganas used face subtraction

combining with skin detection and hand posture contour to detect and track bare hand in

the cluttered background.
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2.2.5 Motion

Motion is one of the popular feature for hand detection [7, 45, 49, 84, 93, 97, 100]. Motion

feature is often combined with skin color [45, 84, 93, 97, 100].

Triesch et al. [93] used a thresholded version of the absolute difference images of

the intensity combining with skin information to track the user’s hand. In [100], Ying

Wu et al. used motion segmentation to make the localization system based on color

segmentation more robust and accurate. In [45], hand regions are found by selecting skin

regions having a large number of pixels with sufficiently small values of consecutive count

of non-movements (CCNM).

Stergiopoulou et al. used a combination of existing techniques, based on motion de-

tection and a skin color classifier to detect hand. Motion detection is based on image

differencing and background subtraction. Specifically, image differencing of three con-

secutive frames, which detects sudden movements, are considered to define the motion

Region of Interest (mROI). Consequently, a background subtraction step is applied on the

mROI, to track the hand even if it stops moving temporarily.

In [97], the motion of the hand is interpreted by a tracking module. Boughnim et

al. [7] used a pyramidal optical flow for the detection of large movements and hence

determine the region of interest containing the expected hand. They employed an elliptic

least-squares fitting to remove non-hand moving points. They hence segment the hand

surface.

2.2.6 Discussions

We can see that motion is one of the good features for hand detection in case of dynamic

hand posture. However, the goal of our work is static hand gesture recognition. Besides

skin color, topographical features and shape features are used more often than context

information because they are good for hand detection and hand posture representation.

Nevertheless, the extraction of these features of hand posture is still a challenge in real

environments.

Skin color also is a popular feature for hand detection. However, in most of real

systems, good skin color detection is not feasible because of very complex conditions

such as cluttered background and variety of illumination. The precision depends strongly

on lighting condition, camera characteristics, and human ethnics [37]. In [76], the authors

review many methods in skin color segmentation then also gave a similar conclusion.

To obtain good results of skin color segmentation, many approaches are used. Some

of them is based on specific constraints in that the skin detector can work well. Tran et

al. [90] proposed a skin color normalization method based on neural network however the
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computation time is too expensive.

Another way to improve accuracy of hand detection is combining skin color with some

additional features to build complex detectors. For example, recently, a hand detection

using multiple proposals [66] was proposed. The three proposal mechanisms ensure good

recall, and the discriminative classification ensures good precision. However, the time

taken for the whole detection process is about 2 minutes for an image of size 360 × 640

pixels on a standard quad-core 2.50 GHz machine. The complex hand detectors with high

computation time could not be used for human-machine interaction systems. Moreover,

an integrated method that use skin color combining with other features still obtains false

negatives when real skin pixels are not matched skin model because of complex conditions

concerned above.

The way to cope with hand detection problem based on background subtraction and

motion is good for dynamic hand gestures. However, background subtraction is typically

based on the assumption that the camera system does not move with respect to a static

background while the foreground moves. This constraint is not satisfied in our work

where the hand is often static during user trigger a command by a hand posture.

To the best of our knowledge as well as information in a recent comprehensive sur-

vey [76], one of the most popular features reflects relationship between pixels or regions

is Haar-like because of its benefits. The methods utilized Viola-Jones detector that use

Haar-like feature and Cascade of AdaBoost classifiers are outstanding because of their

advantages that are to be invariant to scale change and illumination change, and have

real-time performance. Using Viola-jones detector for hand detection in our context is a

realizable approach. However, the main drawback of Viola-Jones method for hand de-

tection is that it is affected by background. In our work, we will try to adapt Viola-Jones

method into hand detection that keeps advantages of Viola-Jones method as well as avoids

unexpected effects of background.

2.3 Hand postures recognition

Hand postures recognition takes a hand region image as a result of hand detection step

and returns a label of hand posture. Challenges to vision-based hand posture recognition

are the following: (i) similar to other problems in computer vision, vision-based hand

posture recognition is affected by changes in lighting condition, cluttered backgrounds,

and changes in scale; (ii) hand is a deformable object; there exist a considerable number

of mutually similar hand postures; (iii) applications using hand posture generally require

real-time, user-independent recognition.

A number of hand recognition methods have been proposed to address these chal-
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lenges [11,33,72,76]. These methods can be divided into two main categories depending

how the hand is represented: explicit or implicit. Table 2.2 shows different types of visual

features used for hand posture recognition in the literature.

2.3.1 Implicit representation

Implicit representation means that the representation replies on visual features are com-

puted directly from pixel values or reflect the relationship between pixels or regions.

Pixel value based features

One of the simple kinds of features is raw values of pixels. In this case, the image is often

shaped into a 1D vector as the feature vector.

Marcel and Bernier [57] used resized hand image as the input of a neural network

model that is already applied to face detection: the constrained generative model (CGM)

to recognize hand posture. The number of inputs for each neural network model hence

corresponds to sizes of hand images for each posture. In [53], a hand image is represented

as a 1D column vector that is the concatenation of the image columns. On the raw 1D vec-

tors, they use a combination of exemplar-based classification [30, 88] and their proposed

“deterministic boosting” algorithm to recognize hand postures.

The using raw images often makes dimensionality of feature vector space large. To

reduce the dimensionality, the Principal Component Analysis (PCA) is used [13, 99]. In

[99], Who and Huang test their proposed learning approach, the Discriminant-EM (D-

EM) algorithm, on physical and mathematical features. To extract mathematical features,

a hand image is resized to 20 × 20, which gives a 400-dimension raw image space. PCA

is then employed to find a lower-dimensional feature space. In [13], hand gestures are

recognized by using PCA and Neural Network. The input of PCA is a column vector of

the elements including the pixel values of a hand image. The weight vector of PCA is

used as the input of Neural Network.

Besides the using PCA, Hasan and Mishra [63] divide the input hand posture image

into 25×25 blocks then calculate the local brightness of each divided block to compute the

feature vector. Each hand posture image produces 25×25 feature values. The recognition

algorithm is based on their proposed matching algorithm.

The pixel value based features are simple and easy to calculate. However, they do not

sound robust to rotation as well as do not capture the relationship between pixels/regions.

These hand representations work well with aligned hands, nevertheless it will not work in

case of the variability in alignment.
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Table 2.2 – Visual features for hand posture recognition in the literature

ID Reference
Implicit Explicit

Pixel value
based

Relationship
between
pix-
els/regions

Sh
ap

e

To
po

gr
ap

hy

1 Freeman and Roth, 1994 [25] x
2 Triesch et al., 1996 [91] x
3 Triesch and Malsburg, 1998 [93] x
4 Huang and Huang, 1998 [35] x
5 Marcel and Bernier, 1999 [57] x
6 Wu and Huang, 2000 [99] x x x
7 Lockton and W. Fitzgibbon, 2002 [53] x
8 Ong and Bowden, 2004 [70] x x
9 Licsar and Sziranyi, 2005 [49] x

10 Just et al., 2006 [36] x
11 Chen et al., 2007 [12] x
12 Wang and Wang, 2007 [98] x
13 Francke et al., 2007 [24] x
14 Choi et al., 2009 [13] x
15 Ravikiran J et al., 2009 [77] x
16 Stergiopoulou et al., 2009 [83] x
17 Ding and M. Martinez, 2009 [20] x
18 Kaufmann et al., 2010 [38] x
19 Kelly et al., 2010 [39] x
20 Roomi et al., 2010 [78] x
21 Tran and Nguyen, 2010 [90] x
22 M.Hasan and K.Mishra, 2010 [63] x
23 Kumar et al., 2010 [43] x
24 Chuang et al., 2011 [14] x
25 Lee and Lee, 2011 [45] x
26 H. Dardas and D. Georganas, 2011 [19] x
27 Pisharady and Vadakkepat, 2012 [75] x
28 Liu et al., 2012 [52] x
29 Gupta et al., 2012 [32] x
30 Boughnim et al., 2013 [7] x
31 Sgouropoulos et al., 2013 [82] x
32 Li and Wachs, 2013 [46] x
33 Li and Wachs, 2014 [47] x
34 Priyal and Bora, 2013 [71] x
35 Chuang et al., 2014 [15] x
36 Bretzner et al., 2002 [8] x x
37 Wachs et al., 2005 [97] x
38 Chang et al., 2006 [10] x
39 Yin and Xie, 2007 [101] x

#Papers use feature 5 15 8 14
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Features reflect relationship between pixels/regions

Instead of the using directly pixel values, some other visual features that reflect relation-

ship between pixels or regions are proposed for hand posture recognition.

One of the popular features using for hand posture recognition is Gabor filter. Gabor

filter has used for feature extraction since a long time in image processing because of its

remarkable mathematical and biological properties. Moreover, frequency and orientation

representations of Gabor filters are similar to those of the human visual system, and they

have been found to be particularly appropriate for texture representation and discrimina-

tion. For these reasons, they are applied to hand posture recognition.

In [99], the authors test their proposed learning algorithm, Discriminant-EM (D-EM),

on two kinds of feature physical and mathematical features. Where the physical features

is a concatenation of texture features (Gabor wavelet filters) and some other features in-

cluding edge, Fourier descriptor (10 coefficients), statistic features (the hand area, contour

length, total edge length, density, and 2-order moments of edge distribution). To extract

texture features, they use Gabor wavelet filters with 3 levels and 4 orientations. Each of

the 12 texture features is the standard deviation of the wavelet coefficients from one filter.

Kumar et al. [43, 75] used Gabor filters at two layers of a 4-layer hierarchical system

based on the primate visual system. In this system, the simple cells in the primary vi-

sual cortex (V1) are imitated at Layer 1 by a battery of Gabor filters with 4 orientations

(0◦,45◦,90◦,135◦) and 16 sizes (divided into 8 bands). At Layer 2, the complex cells in V1

are modeled by applying a MAX operator locally to the outputs of Layer 1 (over different

scales and positions). The standard model features (SMFs) [81] are computed from Layer

2 then passed into an SVM classifier with linear kernel to classify hand postures.

Gupta et al. [32] used 15 Gabor filters computing on 3 different scales and 5 different

orientations. A combination of PCA and LDA is used to reduce the dimensionality of the

Gabor filtered image. Classification of hand postures is done using the extracted features,

with a multiclass SVM classifier. Fig.2.3 illustrates the Gabor filters using in [32].

Besides Gabor filter, Haar-like feature is another wavelet feature being more simple

and cheaper computation time. Haar-like feature is well known in Viola-Jones detector

for face detection [96]. Many researchers also have employed it to design hand posture

recognition [12, 24, 70, 90, 97]. Most of them are obtained by using several single gesture

detectors working in parallel.

Ong et al. [70] trained each hand shape detector corresponding to a group of hand

shapes using a Cascade of AdaBoost Classifiers and Haar-like feature. In [12], a two-level

approach is used. The lower level of the approach implements a parallel cascades structure

using Haar-like features and the AdaBoost learning algorithm to classify different hand

postures. The higher level implements the linguistic hand gesture recognition using a
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Figure 2.3 – (a) Kernel response with different scales and orientations. (b) Gabor filter
response of a typical hand gesture [32]

.

context-free grammar-based syntactic analysis.

Francke et al. [24] uses a set of single gesture detectors in parallel over the ROIs

(output of the tracking module) to classify hand postures. Each single gesture detector

is implemented using a cascade of boosted classifiers (active learning and bootstrap tech-

nique with Haar-like and mLBP-modified Local Binary Pattern feature). Wachs et al. [97]

used Haar-like features to represent the shape of the hand. These features are then input

to a Fuzzy C-Means Clustering algorithm [4] for pose classification.

Tran et al. [90] proposed a hand posture classification method consisting of 2 steps.

The first step aims at detecting skin regions using a very fast algorithm of color segmen-

tation based on thresholding technique. In the second step, each skin region is classified

into one of hand posture classes using Cascaded Adaboost technique. The methods in this

category avoid the bad effect of variant lighting condition and some case of skin-colored

background region. However, they are affected by cluttered background because their

positive samples still contain some background surround the object.

Besides Gabor filter and Haar-like feature, some other features have been used for

hand posture recognition. Such features are orientation histogram (used in [25]), Local

Binary Pattern feature (LBP) (used in [24]), the features based on the Modified Census

Transform (MCT) (used in [36]), visual cortex-based feature (use in [15, 43]), and sym-

bolic features (used in [97]).
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Among many visual features for hand posture recognition, recently some researchers

have obtained good results with SIFT features. SIFT features, proposed by Lowe [54],

are local and based on the appearance of the object in the image from particular interest

points. They are invariant to image scale and rotation, robust to illumination changes,

noise, and minor changes in viewpoint. SIFT features are highly distinctive of the image.

For this reason, SIFT feature has used in hand posture recognition [14, 19, 98]. Wang et

al. [98] use the discrete AdaBoost learning algorithm with SIFT. Chuang et al. [14] use a

Hierarchical Bag-of-Features with Affine-SIFT (ASIFT) to extract features.

Among the methods using SIFT features, a remarkable method is proposed by Dardas

and Georganas in [19]. In [19], good results were obtained when applying SIFT features

with BoW (Bag of Words) and SVM (Support Vector Machine) into hand posture recog-

nition. This method, however, does not work well with low resolution due to the limited

number of detected keypoints. Fig.2.4 shows some images with their keypoints in [19].

Figure 2.4 – The keypoints extracted from 640 × 480 training images in [19]. (a) First
with 35 features. (b) Index with 41 features. (c) Little finger with 38 features. (d) Palm
with 75 features.

2.3.2 Explicit representation

We class hand representation methods which present intuitive features of hand to "explicit

representation" category. The methods belonging to this category often require good hand

segmentation results to extract hand shape features (for example edges, contours) or to-

pographical features such as fingers. Shape and topographical features are good for hand

posture representation if we can segment well the hand region from the image.

Shape

Shape features described here include edges, contours, and the features extracted based

on edges and contours of the hand. Some of these features are Fourier descriptors, Shape

Context. The following is some methods for hand posture recognition using shape fea-

tures.

Huang and Huang [35] applied the scale and rotation-invariant Fourier descriptor to

characterize hand figure. They firstly apply Otsu thresholding method, the corona effect
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smoothing and border extraction algorithm to find the border of the hand shape. The hand

region is segmented clearly because of simple background, Fig.2.5. The hand boundary

(a) (b)
Figure 2.5 – Good segmentation result from simple background in [35]. (a) Original input
image. (b) Binary image produced by Ostu thresholding.

points is described by Fourier series representation with coefficients. The closed contour

then be depicted by a Fourier descriptor (FD) vector [17]. They assume that the local

variations of hand shape is smooth. The hand gesture model is built based on motion

and shape information of the key frames. The gesture recognition is done by a graph

matching between the input gesture model and the stored models using a 3D Hopfield

neural network (HNN).

In [99], 10 coefficients from the Fourier descriptor are used to represent hand shapes

combining with Gabor wavelet filters to build mathematical features. The mathematical

features are used to test the authors’ proposed algorithm: Discriminant-EM (D-EM). Lic-

sar and Tamas [49] applied a boundary-based method for the classification. The hand

contours are classified by the nearest-neighbor rule and the distance metric based on the

modified Fourier descriptors (MFD) [79] being invariant to transition, rotation and scaling

of shapes.

Besides Fourier Descriptor, some other hand representations based on shape have been

proposed. Ong et al. [70] used Shape Context [3] (Fig.2.6) with K-mediod algorithm to

classify hand shapes into a number of clusters. A cascade of classifiers was then trained

on the images of each cluster to build a tree of hand detectors. The head of the tree is

a general hand detector, and the individual branches of the tree classify a valid shape as

belong to one of the predetermined clusters.

In [38], Kaufmann et al. proposed a hand posture recognition based on searching

hand models (Fig.2.7). The searched models are hand contours shapes, encoded as lists of
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Figure 2.6 – Shape context components [70]: (a) the log polar histogram used, (b) shows
it centered on a point on a hand contour. (c) and (d) visualisations of the set of log polar
histograms for two hand contours. (e) some correspondances between points on two hand
contours using the shape context metric.

points. The search space, i.e. the space of all possible solutions, is a 5 dimension space,

which corresponds to the 5 following parameters: hand model; horizontal translation of

the model; vertical translation; apparent scale of the model, which varies with the size of

the user’s hand and its distance to the camera; and rotation of the hand with respect to the

optical axis of the camera.

Figure 2.7 – Hand models used in [38]

Kelly et al. [39] used a combination of eigenspace Size Functions and Hu moments

features to classify different hand postures. Eigenspace Size Functions is a variation of
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Size Functions. Size Functions are integer valued functions that represent both qualitative

and quantitative properties of a visual shape [94]. While, Hu moments [34] are a set of

transition, scale and rotation invariant moments. The set of Hu moments are calculated

from the hand contour. For each posture class, they use a set of two support vector ma-

chines corresponding to eigenspace Size Functions and Hu moments respectively to build

a classifier.

Boughnim et al. [7] used a preprocessing step to compute the hand contour then use an

image scanning method providing a signature that characterizes non-star-shaped contours

with a one-pixel precision for hand posture recognition. Star-shaped contours is described

by a relation from the angular coordinates of its pixels into their radial coordinates. The

signature is a set of data that characterize the corresponding contour. The components

of the signature are equal to the distance from the pixel located at different intervals and

along different directions in polar coordinates. They use PCA to reduce the dimensionality

of the signature data. The hand posture classification is done by a Bayesian classifier with

Mahalanobis distance.

In [71], after segment and normalize hand region, Priyal and Bora use Krawtchouk

moments to represent hand shape (Fig.2.8). The Krawtchouk moments are discrete or-

thogonal moments derived from the Krawtchouk polynomials [41]. The moment features

are then computed with a Nearest Neighbourhood classifier to classify static hand ges-

tures.

Figure 2.8 – Hand geometry [71]

Shape features are important information allowing to improve the performance of hand

posture recognition. Most of the concerned methods above are based on an assumption

that the hand segmentation result is good. However, hand segmentation is still a challenge

in the real environment.
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Topography

Topographical features such as fingers have used in many hand posture recognition meth-

ods because of they are intuitive representations of hand posture. Palm and fingers are

popular topographical features used for hand posture recognition. Many hand posture

recognition base on extracted fingers, fingertips and/or palm [8, 10, 20, 45, 52, 77, 82, 83,

101].

Ravikiran et al [77] proposed a boundary-trace based finger detection technique to

locate the fingertip. They used the locations of fingertips to identify 9 classes of hand

gestures belonging to the American Sign Language which have open fingers. This method

requires good segmentation results. The images in this paper have simple backgrounds,

Fig.2.9.

Figure 2.9 – Image of a Hand Gesture Before and After Edge Detection in [77]

In [83], the region of hand is detected by applying a color segmentation technique on

a simple uniform background. Then, the palm morphological characteristics and finger

features that allow identifying the raised fingers are extracted based on the Self-Growing

and Self-Organized Neural Gas network, Fig.2.10. The likelihood-based classification

technique is used to recognize hand gestures. This method could not be applied for

applications with complex backgrounds because the segmentation of the hand in a real

environment with cluttered backgrounds is not always good.

In [20], hand shapes are defined by the 3D-world positions of a set of hand points

(fiducials), corresponding to the hand knuckles, finger tips and the wrist (Fig.2.11). A

new test hand shape is classified to have the same meaning (class) as that shape with the

smallest value for a simple combination of the three errors (error of the fitting process, the

comparison of the angle, and the visibility difference between two handshapes). However,

all the three components can be reliably recovered from two-dimensional video sequences

because of using semi-automatic detection.

In [82], Sgouropoulos et al. used the hand morphology described by the palm and
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Figure 2.10 – Identifying the raised fingers in [83]: (a) Input image and (b) numbering of
fingers.

Figure 2.11 – An illustration of (a) the joint angles, and (b) the angle differences between
fingers used in [20].

its centre, the number of the raised fingers and their tips and roots to represent hand

posture. To classify the raised fingers into five classes (thumb, index, middle, ring, little),

they extracted three features based on the hand morphology: RC angle, TC angle and

distance from the palm centre for the index finger then used a HMM classifier. RC Angle

corresponds to the angle between the vertical axis and the line that joins the root point and

the palm centre. While, TC Angle is the angle of the line that joins the fingertip point and

the palm centre, Fig.2.12.

Liu et al. [52] presented a hand posture recognition using finger geometric feature. In

this system, the geometric features among fingers, palm and forearm are extracted based

on arranged hand components that are found out with the help of skeleton. The finger
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Figure 2.12 – Hand representation used in [82]. (a) Local maxima of horizontal distance
transform; (b) Root and fingertips points; (c) RC, TC angles and distance from the palm
center; (d) Raised fingers classification.

geometric features are translation, rotation and scale invariant. Those features are used

in SVM classification for hand posture recognition. This method can recognize twelve

different types of hand postures for both hands respectively. However, the extraction of

this hand posture descriptor needs a good hand boundary that is the result of hand seg-

mentation. For this reason, the poor skin segmentation caused by complex backgrounds

will lead to wrong recognition results.

Beside the representation of components of the hand such as fingers, blobs and ridges

are used in some methods [8, 52].

In [52], blob and ridge features are extracted. After that, hand components are searched

with the help of skeleton. Then they are ordered into a serial arrangement. Fingers, palm,

forearm and relative geometric features are also extracted to explore the kinematical con-

straints of the hand with forearm in order to extract finger geometric features. Those

features are used in SVM classification for hand posture recognition.

Bretzner et al. [8] used a hand model that consists of the palm as a coarse scale blob,

the five fingers as ridges at finer scales, and fingertips as even finer scale blobs. Fig.2.13

shows an example of blobs and ridges feature extracted from hand image. Blobs and

ridges are intuitive for palm and fingers representation.
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Figure 2.13 – The result of computing blob features and ridge features from an image of
a hand [8].

In [10], to extract hand feature for hand posture recognition, Chang et al. decom-

posed the binary hand silhouette into the finger part and the palm part by morphological

operations according to the radius of the minimum bounding circle (MBC). The Zernike

moments (ZMs) [40] and pseudo-Zernike moments (PZMs) of the finger part and the palm

part, respectively, are then computed with different importance based on the center of the

MBC. They used 1-nearest neighbor techniques to perform feature matching between the

input feature vector and stored feature vectors to identify static gestures.

In [101], the topological features, such as the number and positions of fingers, are

found based on edge points of fingers. They extract the branch number (BN), the width

of the branches (BW), the distance between the finger, and the arm (BD), then recog-

nize hand postures based on a classification criterion of the postures using BN, BW, BD

parameters, Fig.2.14. A branch is a segment between two conjoint feature points (edge

point) detected on a search circle. The widest branch should be the arm. The parameters

are simple and easy to estimate in real time as well as distinctive enough to differentiate

hand postures defined explicitly in the paper. The recognition algorithm in this paper is in-

variant to rotations and user independent because the topological features of human hands

are quite similar and stable. However, some extracted parameters will be false because of

the false edge points detecting from imperfect segmentation. The authors have proposed

a simple threshold-based technique to remove these false detections. However, it is still a

limitation.

Another beautiful method for hand posture representation is a method based on Elas-

tic graph matching [46, 47, 91, 93]. This approach does not require a good segmentation,

but the computation time is too great for many applications. In [47], hand postures are

matched with predesigned bunch graph models (Fig.2.15). Each node in this model con-

tains local features. The classification task is done by finding the best matching region

between bunch graph and the target image. The bunch graph is slid on the image. At

each position of the bunch graph, the position of each node is refined to find the best one

considering the distortions of the nodes.
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Figure 2.14 – The extraction of topological features in [101]. The green circles represent
the search circles and the red points represent the extracted feature points.

Figure 2.15 – 10 classes of sample hand gesture images after the matching process in [47]

2.3.3 Discussions

The hand representation methods belonging to explicit presentation approach are intuitive

and easy to understand for hand posture representation. However, these method requires

a good hand segmentation result such as a clear hand contour.

The implicit hand representation methods do not reflect the structure of the hand.

These methods hence do not take advantages of the specific structure of the hand. Some

method using SIFT feature obtains good results on specific datasets that can provide a rich

set of key points. However, when the resolution of hand image is low, the extracted set

of key points is poor. In this situation, the method using SIFT feature will obtain a bad

performance.
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There is not a good combination between implicit and explicit representation. Some

method used both kinds of feature implicit and explicit. Nevertheless, to use explicit

features, we still need a good segmentation. The method based on Elastic graph matching

is good representation for hand posture recognition. However, the computation time is too

expensive because of shifting and transforming positions of both graph and nodes to find

the best candidate.

In this thesis, we try to find a method for hand presentation that is a flexible combina-

tion of implicit and explicit representation approaches. The expected hand representation

method does not require a very good segmentation result as well as has an ability to reflect

the structure of hand.

2.4 Conclusions

Based on our analysis and discussions above, we summary here our research directions in

each task, hand detection and hand posture recognition:

• Hand detection: Develop a method based on Viola-Jones detector that takes ad-

vantages of Viola-Jones detector and avoid unexpected effects of background at the

same time.

• Hand posture recognition: Develop a good hand representation that exploits the

flexibilities of implicit representation and reflects the structure of hand at the same

time. The proposed method will be based on a good implicit visual object represen-

tation combining with a structure suitable to hand.
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Chapter 3

Hand detection

Hand detection is the first step in the overall framework for posture recognition. In this

chapter, we present a method for hand detection. Inspired by the ideas of the Viola-Jones

detector [96], we introduce a concept that is internal features and then propose to use

internal Haar-like features instead of Haar-like features like in the original work of Viola-

Jones. The internal Haar-like features are the ones extracted from regions inside object

of interest without background. By this way, our method is independent of background

changing. We show that internal Haar-like features significantly outperforms Haar-like

features on a challenging dataset.

3.1 Introduction

Hand detection takes an image as input, does processing and results in candidate hand re-

gions. This is the first step in most of the hand posture recognition systems. However, this

is not a simple task because hand is a deformable object with a high degree of freedom,

color and shape changing from one to another. A hand detector is evaluated as good if two

main requirements are satisfied: the high detection rate and the small computational time.

In a real application of human-robot interaction as our case, the main objective is to de-

sign a robust and fast method for hand detection that could be integrated into the posture

recognition system. As presented in the section 2.2, many methods have been proposed

for hand detection. Among these methods, Viola-Jones detector is one of the most impact

algorithms for object detection in still images in the 2000’s [96]. It employs the integral

image technique to compute Haar-like features in a very fast manner. Then the detector

is built from a cascade of classifiers based on Adaboost learning method. Viola-Jones de-

tector achieved competitive detection rates in real-time. A Haar-like feature is defined by

a set of black and white rectangles in a particular direction. The feature value is computed

as the difference between the sum of pixel values in rectangular regions, so it is invariant
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to varieties of skin color and light intensity changing. Meanwhile, the methods for hand

detection based on skin color depend on lighting condition and skin color. To be invariant

to scale change, the researchers propose a set of features at different scales.

The high detection rates obtained in real-time (e.g. face detection) given by Viola-

Jones detector motivate us to use for hand detection. However, we observe some problems

of the original Viola-Jones detector. For training, the Viola-Jones detector computes Haar-

like features on positive samples that contain the whole object of interest. Unlike the face

which is a pseudo convex and rigid object, hand posture is deformable and less compact on

the image. Therefore, for many hand postures, background pixels possesses a large region

in images that make the algorithm strongly affected by background changing [42, 59, 96]

(see Fig.3.1). To deal with this issue, we introduce a novel concept that is Internal Haar-

like feature. The detection procedure will remain exactly the same as the original Viola-

Jones detector.

(a) (b)

Figure 3.1 – (a) A positive face sample used in [96]; (b) A positive hand sample use in [42]

3.2 The framework of hand detection

The framework of hand detection is shown in Fig.3.2. This framework is general with

three main steps similar to the Viola-Jones detector.

Sliding 
window

Feature 
extraction

Binary 
Classification

Image
Detected 
windows

Figure 3.2 – The framework of hand detection

1. Sliding window: This step uses sliding window technique to generate detection

windows at different scales.
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2. Feature extraction: For each detection window, we extract features to represent

hand region. In the original work of Viola-Jones, they extract Haar-like features.

In our work, we extract Internal Haar-like features. The main difference between

Haar-like and Internal Haar-like feature is its supporting region on which the feature

is computed. The Internal Haar-like feature is computed only on internal regions

of the interested object without background while Haar-like feature is computed on

the region containing the whole object of interest that often includes background.

By this way, Internal Haar-like features do not depend on the background changing

as Haar-like features.

3. Binary classification: Features extracted from the previous step will be inputted

into a binary classifier that is a cascade of Adaboost classifiers. This step classifies

detection windows into two categories: hand and non-hand.

In the following, we will present feature extraction and classification steps of the frame-

work.

3.3 Feature extraction

As presented previously, Haar-like features have been used in the original work of Viola-

Jones detector and shown to be very powerful in many practical applications, specifically

in face detection [96]. The Viola-Jones detector also has been applied successfully in

hand detection (see Section 2.2). In this section, we remind what a Haar-like feature is

and how to compute it. Then we introduce Internal Haar-like features.

3.3.1 Haar-like features

A Haar-like feature f in a detection window is defined by hL, S, T i, where:

• L is the location of the pixel at which we compute the Haar-like feature. The loca-

tion L is defined by a two-dimension coordinate (x, y).

• S is the scale factor showing the size of the Haar-like feature. The scale S is com-

posed of hsx, syi, where sx is scale factor of x axis, sy is scale factor of y axis. sx
and sy are independent.

• T is the type of Haar-like feature, see Fig. 3.3. A type of Haar-like feature is defined

by a set of black and white rectangles RECT .
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Detection window

Type of Haar-like 
feature T

(0,0) x

y

Location L

Figure 3.3 – A Haar-like feature in a detection window in a frame

The value of a Haar-like feature is defined as the difference between the sum of pixel

values inside black rectangles and the one inside white rectangles. This value on image I

is calculated as follows:

f (I) =
X

r∈RECT

wr.RectangleSum(r, I) (3.1)

where wr ∈ R is the weight of rectangle r. When r is a black rectangle, wr < 0, oth-

erwise wr ≥ 0 when r is a white rectangle. The weight compensates for the difference in

area size between black rectangles and white rectangles. This means
P

r is black −wr.Area(r) =P
r is white wr.Area(r). RectangleSum(r, I) is sum of the pixels of image I inside rect-

angle r that is calculated as:

RectangleSum(r, I) =
X

(x,y)∈r

I(x, y) (3.2)

Haar-like features reflect relationship of intensity between regions in a detection win-

dow. Depending on the configuration of rectangles, a Haar-like feature could represent

characteristics of edge (see Fig. 3.4(a-d)), line (see Fig. 3.4(e-l), center surround (see

Fig. 3.4(m-n)), or diagonal regions (see Fig. 3.4(o)). In pratice, many types of Haar-like

features have been proposed [21, 50, 51, 62, 64, 73, 96]. The most popular ones are the set

of Haar-like feature types in [96] (Fig. 3.5) and the extended set in [51] (Fig. 3.4). In our

work, we use the extended set of Haar-like feature types as in [51].
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Figure 3.4 – The extended set of Haar-like features [51] used in our system.

Figure 3.5 – Set of Haar-like feature types in [96].

3.3.2 Fast computation of Haar-like features using integral image

To compute Haar-like features, Viola-Jones [96] proposed a very fast computation method

based on integral image. After that, Lienhart et al. [51] extended the set of Haar-like

feature types by adding some new types and 45◦ rotated Haar-like features. Lienhart et al.

also extended the computation method based on integral image for 45◦ rotated Haar-like

features.
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Computation method for axis-aligned Haar-like features

Axis-aligned integral image Given a gray-scale image I , the value of integral image

II (x, y) at position (x, y) is the sum of pixel values inside the axis-aligned rectangle that

ranges from the top-left corner of image I at the position (0, 0) to the bottom-right corner

at (x, y), see Fig. 3.6. The integral image II can be defined as:

�0,0�

II(x,y)

x

y

Figure 3.6 – Axis-aligned integral image.

II (x, y) =
xX

i=0

yX

j=0

I (i, j) (3.3)

II (x, y) =






I (x, y) , if x = 0 and y = 0
y−1X

j=0

I (x, j) + I (x, y) , if x = 0 and y > 0

x−1X

i=0

I (i, y) + I (x, y) , if y = 0 and x > 0

x−1X

i=0

y−1X

j=0

I (i, j) +

y−1X

j=0

I (x, j)

+
x−1X

i=0

I (i, y) + I (x, y) , if y > 0 and x > 0

(3.4)
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II (x, y) =





I (x, y) , if x = 0 and y = 0
y−1X

j=0

I (x, j) + I (x, y) , if x = 0 and y > 0

x−1X

i=0

I (i, y) + I (x, y) , if y = 0 and x > 0

 
x−1X

i=0

y−1X

j=0

I (i, j) +

y−1X

j=0

I (x, j)

!

+

 
x−1X

i=0

y−1X

j=0

I (i, j) +

x−1X

i=0

I (i, y)

!

−

x−1X

i=0

y−1X

j=0

I (i, j) + I (x, y) , if y > 0 and x > 0

(3.5)

II (x, y) =






I (x, y) , if x = 0 and y = 0
y−1X

j=0

I (x, j) + I (x, y) , if x = 0 and y > 0

x−1X

i=0

I (i, y) + I (x, y) , if y = 0 and x > 0

xX

i=0

y−1X

j=0

I (i, j) +

x−1X

i=0

yX

j=0

I (i, j)

−
x−1X

i=0

y−1X

j=0

I (i, j) + I (x, y) , if y > 0 and x > 0

(3.6)

II (x, y) =





I (x, y) , if x = 0 and y = 0

II (x, y − 1) + I (x, y) , if x = 0 and y > 0

II (x− 1, y) + I (x, y) , if y = 0 and x > 0

II (x, y − 1) + II (x− 1, y)

− II (x− 1, y − 1) + I (x, y) , if y > 0 and x > 0

(3.7)

We can make the computation easier by considering the value at row −1 and col −1

equals to zero:
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II(−1, y) = 0, y ≥ −1

II(x,−1) = 0, x ≥ −1
(3.8)

Then, the equation 3.7 becomes:

II (x, y) = II (x, y − 1) + II (x− 1, y)− II (x− 1, y − 1) + I (x, y) ,

y ≥ 0, x ≥ 0
(3.9)

Equation 3.9 is illustrated in Fig. 3.7.

Figure 3.7 – Computation of integral image.

The Integral image II can be calculated with one pass over all pixels of image I , see

Fig.3.8

Computation of axis-aligned Haar-like features based-on axis-aligned integral image

Using axis-aligned integral image, we can calculate the sum of pixel values inside an axis-

aligned rectangle r = hx, y, w, hi as follows:

RectangleSum(r, I) = II(x+ w − 1, y + h− 1)− II(x+ w − 1, y − 1)

−II(x− 1, y + h− 1) + II(x− 1, y − 1)
(3.10)

Equation 3.10 is illustrated in Fig. 3.9.

An axis-aligned Haar-like feature is calculated as Eq. 3.1 with sum of rectangle cal-

culated as Eq. 3.10.
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Begin

Gray scale image I 
with size of WxH

Initial integral image II with size of 
(W+1)x(H+1), index starts from -1

x =  0

x < W

y = 0 y < H

II(x,y) = I(x,y) + II(x-1,y) 
+ II(x,y-1) – II(x-1,y-1);

True

x = x+1

False
True

False

Integral image II

End

y = y+1;

Figure 3.8 – Diagram of computation integral image.

Computation method for 45◦ rotated Haar-like features

45◦ rotated integral image Given a gray-scale image I , the value of 45◦ rotated integral

image at (x, y), RII (x, y), is the sum of the pixel values of image I in range of rotated

rectangle with the bottom most corner at (x, y) (see Fig 3.10). Similar to the computation

of axis-aligned integral image, we add two rows −1, −2 and two cols −1, −2 with zero

values. The 45◦ rotated integral image RII can be defined as:

RII (x, y) = RII(x− 1, y − 1)−RII(x+ 1, y − 1)−RII(x, y − 2)

+I(x, y) + I(x, y − 1)
(3.11)

The scheme of computation for 45◦ rotated integral image is shown in Fig. 3.11. In this

scheme, integral image RII also can be calculated with one pass over all pixels of I .
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II(x+w-1,y+h-1)

II(x-1,y-1)

II(x-1,y+h-1)

II(x+w-1,y-1)

w

h

(x,y)

r=(x,y,w,h)

Figure 3.9 – Computation of sum of pixel values inside an axis-aligned rectangle r =
hx, y, w, hi

RII(x,y)

(0,0) x

y

Figure 3.10 – 45◦ rotated integral image.

Computation 45◦ rotated Haar-like features based-on 45◦ rotated integral image

45◦ rotated integral image allows we calculate sum of pixels inside a 45◦ rotated rect-

angle r = hx, y, w, hi as:

RectangleSum(r, I) =RII(x+ w − h, y + h + w − 1)

− RII(x+ h, y + h− 1)

− RII(x+ w, y + w − 1) +RII(x, y − 1)

(3.12)

Equation 3.12 is illuminated in Fig. 3.12. A 45◦ rotated Haar-like feature is calculated as

Eq. 3.1 with sum of rectangle calculated as Eq. 3.12.
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RII(x,y-2)

RII(x-1,y-1) I(x,y-1) I(x,y-2) RII(x+1,y-1)

Figure 3.11 – Calculation scheme for 45◦ rotated integral image.

Figure 3.12 – Calculation scheme for sum of 45◦ rotated rectangle.

3.3.3 Internal features

As presented previously, in the original work of Viola-Jones [96], Haar-like features are

extracted from the whole region of object of interest including background. In the case

where the number of background pixels is important, Haar-like features characterizing

background will contribute to learning the model of hand postures. As consequence, the

detection could be missed or false when the background changes. Our objective is to

55



3.3. FEATURE EXTRACTION

design a method for hand detection that is independent of background changing. We then

introduce novel concepts of Internal features and Internal Haar-like features as follows.

Definition 1 (Internal features). An Internal feature is a feature extracted on a region

inside the object of interest (without background).

Remark 1. As computed on a region inside the object, Internal features are invariant to

background changes.

Internal features are features that reflect in general only the own characters of the

object but do not include characters of any another component like background.

3.3.4 Internal Haar-like features

Definition 2 (Internal Haar-like features). An Internal Haar-like feature is a Haar-like

feature extracted on a region inside the object of interest (without background).

Internal Haar-like features are Internal features. As a result, they have the same prop-

erty of Internal features we present in Remark 1. Figure 3.13b shows an example of

Internal Haar-like feature. This Haar-like feature is calculated based-on the difference

(a) (b)

Figure 3.13 – (a) An example of Haar-like features that is not an Internal Haar-like feature.
(b) An example of Internal Haar-like features.

between the sum of the pixel values inside the black rectangles and the ones inside the

white rectangles. Notice that all these rectangles are inside the hand area. Therefore, they

do not suffer from background changing. Meanwhile, Fig. 3.13a is an ordinary Haar-like

feature that is extracted from background region. The value of this Haar-like feature, in

this case, will be changed when the background change.

We propose a technique to lead the trainer extract only features inside the hand re-

gion. In this technique, the positive sample is the approximate inscribed rectangle area of

hand (Fig. 3.14b) instead of the approximate circumscribed rectangle’s area of hand (Fig.

3.14a).
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(a) (b)

Figure 3.14 – Two kinds of positive sample of a hand posture: (a) Traditional positive
sample which is an ACRH; (b) Positive sample used in our system which is an AIRH.

Definition 3 (ACRH). An Approximate Circumscribed Rectangle’s area of a Hand (ACRH)

is an axis-aligned rectangle which contains the whole hand with background as little as

possible.

Definition 4 (AIRH). An Approximate Inscribed Rectangle’s area of a Hand (AIRH) is

an axis-aligned rectangle which contains the maximum hand region without background.

Remark 2. The Haar-like features extracted in the AIRH are Internal Haar-like features.

Figure 3.15 illustrates the definitions of ACRH, AIRH, Haar-like and Internal Haar-

like features. Figure 3.16 shows some examples of extracted Haar-like features in AIRH

ACRH

AIRH
Internal Haar-like Feature

Haar-like Features

Figure 3.15 – Examples of Haar-like features extracted from ACRH and Internal Haar-like
features extracted from AIRH
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and ACRH of a positive sample.

Internal Haar-like FeaturesHaar-like Features

ACRH AIRH

Figure 3.16 – Examples of Haar-like and Internal Haar-like features extracted from ACRH

(left) and AIRH (right) respectively.

As we can see, a lot of Haar-like features have been extracted from the background

of the ACRH. In contrast, all the features extracted from the AIRH is Internal Haar-like

features. When we train a hand detector using a positive training dataset that is a set of

AIRHs, then the detector will avoid the unexpected effect of background. However, the

detector will detect AIRH that is an internal region of hand but not a region that contains

whole hand region. All of the previous works, for example [42, 90], that applied Viola-

Jones detector into hand detection or hand posture recognition use positive samples that

are ACRHs, so the positive sample includes a lot of background. Figure 3.17 shows Haar-

like features for 3 types of postures used in [90]. As we can see, there are many features

found on background area. During the training process, some of them are chosen to build

weak classifiers. This means the selected rectangle features remember characteristics of

both background and hand. So, when hand has been detected, the detector may accept

a background sub-window that is similar to the remembered characteristics. The detec-

tor also may reject foreground sub-window that is not similar to remembered character

because of a dissimilar background. For this reason, to avoid the unexpected effect of

background, we use Internal Haar-like features instead of traditional Haar-like features.

When we use AIRH positive samples to train Viola-Jones detector, the learner only
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Figure 3.17 – Examples of Haar-like features for 3 types of postures used in [90]

remembers Internal Haar-like features. Therefore, the learner only remembers own char-

acters of the hand postures which helps detector separating non-hand posture windows

from hand posture windows. Therefore, the detector will not make confusion of the hand

posture with the background. Of course, if there is a background sub-window that is

very similar to the positive hand posture then the detector will make confusion of this

background sub-window with a hand posture.

There is a problem that may occur in case of a particular hand posture has an internal

region with poor characteristics, there are many background regions similar to the internal

region of this hand posture. In this case, the detector will make more confusion between

the hand and the background. This problem can be resolved in the further processing steps

of the hand posture recognition system. According to the experimental results, in overall,

the detector using Internal Haar-like features is better than the detector using traditional

Haar-like features.

3.4 Classification

Hand detection in image can be formulated as a binary classification problem. All sub-

windows of a given input image are considered. Each one is classified to hand or non-hand

class. In general binary class problem, the input data for learning is N training examples

(x1, y1), ..., (xN , yN) where x ∈ ℜk and yi ∈ {−1, 1}. xi is a k − dimension vector.

Each element of xi vector encodes a feature relevant for the learning task at hand. The

desired two-class output is encoded as −1 and +1. In the case of hand detection, the

input component xi is one Haar-like feature. An output of +1 and −1 indicates whether

the input pattern contains a complete instance of the object class of interest. We employ

an object detection framework that was proposed in [96] by Viola-Jones to detect hand.

However, instead of using Haar-like features, we use Internal Haar-like features.

Viola-Jones object detection framework uses a cascaded architecture of strong classi-
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fiers. Each strong classifier is trained using learning algorithm AdaBoost that was intro-

duced in [26]. AdaBoost algorithm is the improved Boosting algorithm that is proposed

by the same authors. The next sections will present these algorithms.

3.4.1 Boosting

Boosting [23, 80] is one of the most important and popular approaches in machine learn-

ing. The main idea of boosting is combining a set of weak classifiers for constructing a

more powerful classifier. The detail of Boosting algorithm is presented in Algorithm 1.

Algorithm 1: Boosting algorithm [80]

input : N examples (x1, y1), ..., (xN , yN) with x ∈ ℜk, yi ∈ {−1, 1}
output: H(x), a classifier suited for the training set

1 Randomly select, without replacement, L1 < N samples from Z to obtain Z1; train
weak learner H1 on it.

2 Select L2 < N samples from Z with half of the samples misclassified by H1 to
obtain Z2; train weak learner H2 on it.

3 Select all samples from Z that H1 and H2 disagree on; train weak learner H3.
4 Produce final classifier as a vote of weak learners H(x) = sign

�P3
n=1Hn(x)

�
.

5 return H(x)

Figure 3.18 shows graphically algorithm boosting. The input of Boosting algorithm

x

y

x

y

x

y

x

y

x

y

H

H1 H1 H1

H2
H2 H3

(a) (e)

(b) (c) (d)

Figure 3.18 – Illustration of boosting algorithm

is illustrated in Fig. 3.18(a). The rectangular red points indicate examples which have a
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label of 1, and the round blue points indicates examples which have a label of −1. The

L1 examples that is selected in Step 1 is illustrated in Fig. 3.18(b). The weak classifier

H1 that is trained on selected L1 may makes many wrong classifications when it works on

all the N input examples. The L2 examples that is selected in Step 2 is illustrated in Fig.

3.18(c). The weak classifier H2 that is trained on selected L2 examples helps to classify

a part of wrong classifications of H1. The classifier H3, in the last, is trained to give the

decision in case of that H1 and H2 get different results, see Fig. 3.18(d). With this way

of construction for classifiers, the final classifier H that produced in Step 4 is a strong

classifier, see Fig. 3.18(e). The final strong classifier is constructed by combining three

weak classifiers.

3.4.2 AdaBoost (Adaptive boosting)

Adaptive Boosting (AdaBoost) is also proposed by Freund and Schapire [26,27] in 1996.

The main idea of AdaBoost algorithm is graphically presented in Fig. 3.19. Figure 3.20

Initial uniform weight 
on training examples

Weak classifier 1

Incorrect classifications 
re-weighted more heavily

Weak classifier 2

Weak classifier 3

Final classifier is weighted 
combination of weak classifiers

))()()(()( 332211 xhxhxhsignxH ααα ++=

Figure 3.19 – Illustration of AdaBoost algorithm with number of weak classifiers M = 3.

shows the detail of this method. The idea of AdaBoost algorithm is also to combine weak

classifiers to produce a strong classifier with better performance. Different from Boosting

algorithm, in AdaBoost algorithm the adaptive weights of samples are updated during

training such as further training process will focus on misclassified samples of previous

trained weak classifier.

Figure 3.19 shows AdaBoost algorithm with the number of weak classifiers is 3. As

shown in Fig. 3.19, the idea of AdaBoost is to focus on the difficult examples that are
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Training 
dataset

Init weight

Weighted 
dataset

Train classifier h1(x)

Compute a1

Update weight

Weighted 
dataset

Train classifier h2(x)

Train classifier hM(x)

Final classifier

Compute a2

Update weight

Classifier h1(x)

Classifier h2(x)

Classifier hM(x)

Figure 3.20 – The idea of the AdaBoost algorithm, adapted from [23]

misclassified by previous weak classifier during training process. To do this, the weights

of the examples are updated sensibly. The weight of an example will be increased if this

example is misclassified and will be decreased if it is correctly classify. In Fig. 3.19, the

examples with greater value of weight is indicated by bigger circles. The weights of the

examples are normalized so as the sum of them equals 1. The weights can be initialized

with equal values. Many different variants of AdaBoost algorithm have developed that are

Real AdaBoost, Gentle AdaBoost, Discrete AdaBoost, etc [23]. All of them are identical

with respect to computational complexity from a classification perspective but differ in

their learning algorithm. The Real AdaBoost algorithm performs exact optimization with

respect to weak classifier fm(x). The Gentle AdaBoost algorithm improves it by using

Newton stepping to provide a more reliable and stable ensemble. The Gentle AdaBoost al-

gorithm uses weighted least-squares regression to minimize the function instead of fitting

a class probability estimate. In [96], strong classifiers are trained by using Discrete Ad-

aBoost algorithm. We chose Gentle AdaBoost instead for our learning algorithm because

it has been shown to outperform other AdaBoost variants in [28, 51]. Gentle Adaboost
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algorithm [26] is presented in Algorithm 2.

Algorithm 2: Gentle AdaBoost algorithm

input : N examples (x1, y1), ..., (xN , yN) with x ∈ ℜk, yi ∈ {−1, 1}
output: H(x), a classifier suited for the training set

1 Initial uniform weight on training examples: wi =
1

N
, i = 1, ..., N

2 for m = 1 to M do
3 (a) Fit the regression function fm(x) by weighted least-squares of yi to xi with

weight wi

4 (b) Set wi ←− wi.exp(−yi.fm(xi)), i = 1, ...N , and re-normalize weights so
that

P
i wi = 1

5 end
6 return H(x) = sign[

PM

m=1 fm(x)]

3.4.3 Cascade of classifiers

The cascade of classifiers structure (Fig.3.21) is employed to speed up the performance.

Each stage of the cascade is a strong classifier that consists of a bunch of weak classifiers.

All sub-windows

Stage 1
(Strong classifier 1)

Stage 2
(Strong classifier 2)

Stage K
(Strong classifier K)

True True

Detected
sub-windows

Rejected sub-windows

False False False

Figure 3.21 – The cascade of classifiers structure

A strong classifier is trained to detect most of the positive samples whereas rejecting a

certain fraction of negative samples.

A cascade of classifiers is a degenerated decision. In the detection phase, a sub-

window will be rejected if there is any stage (strong classifier) in the cascade rejects

this sub-window. A sub-window will be accepted as hand if it is passed all stages. Each
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sub-window is processed in the first stage. If the first stage accepts the sub-window, then

it is processed in next stage. Otherwise, no any process is performed, and the first stage

processes next sub-window.

Suppose that K is the number of stages of trained cascade of classifiers; fi and di are

the false positive rate and the detection rate of the ith stage respectively. The false positive

rate F of the cascade then is

F =

KY

i=1

fi (3.13)

and the detection rate is

D =

KY

i=1

di (3.14)

For example, each stage is trained to eliminate 50% of the non-hand patterns whereas

incorrectly eliminating only 0.1% of the hand patterns; 20 stages are trained. We then will

expect an overall false alarm rate about 0.520 ≈ 9.5e − 07 and an overall hit rate about

0.99920 ≈ 0.98.

3.5 Experiments

The aim of the experiments is to evaluate the advantage of our detector using Internal

Haar-like features. To do this, we collect a dataset that is suitable for our application goal.

We then train two detectors that are our detector and the traditional Viola-Jones detector.

Performances of these two detectors are compared to evaluate the advantages of proposed

Internal features.

3.5.1 Dataset and evaluation measure

L3i-MICA hand posture dataset

As described in Chapter 1, we would like to develop a system that recognize hand pos-

tures for human-machine interaction application in the indoor environment. Therefore,

the dataset for hand detection evaluation will be prepared with regard to this context. We

collect our own dataset (L3i-MICA hand posture dataset) from a representative applica-

tion that is human-robot interaction system.

The robot in this situation is an assistant robot in library or museum. They stay in the

reception area. The robot may move around their area. However, they do not move during

interacting with the user. The user will stand face to face in front of the robot during

interaction using hand postures. The distance from the robot to the user is around 1m to

3m, see Fig. 3.22. All videos are collected in L3i laboratory with a natural fluorescent
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Figure 3.22 – The illustration of the setup of capturing dataset.

lighting condition. The background is naturally cluttered. We use a Hercules Deluxe

Optical Glass webcam with the default resolution of 320 × 240 pixels and default frame

rate of 30 frames per second.

The easiest and most comfortable way to give a command by hand postures is nor-

mally raising right hand and play a hand posture. According to our investigation result

with 10 subjects, people feel comfortable to play 21 postures as shown in Fig. 3.23. The

easiness for playing each of 21 postures is different. In all postures, the hand point up

except posture 4.

The dataset was obtained from 10 subjects in L3i laboratory who come from France,

Canada, Japan, and Vietnam. The subjects include 6 males and 4 females. Each person

was asked to play the 21 hand postures 4 times at different positions in a room. The length

of each video is about 4 seconds. Each video contains one hand posture of one person.

The total number of videos is 21× 10× 4 = 840. The dataset was divided into two parts.

Each part includes 2 videos of every subject. One part was used for training, and another

one was used for testing. The information of MICA-L3i dataset is shown in Table 3.1.

Our dataset is challenging at some points:

• The number of hand postures in MICA-L3i dataset is largest (21) in comparison

with some other public datasets [43,58,75,91,92]. Table 3.2 shows the comparison

between MICA-L3i dataset and previous published datasets.
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Figure 3.23 – List of 21 upright right-hand postures

Table 3.1 – Information of collected dataset.

Attribute Value

Number of subjects 10
Number of postures 21

Image resolution 320 x 240
Frame rate 30

Length of each video about 4 seconds
Number of videos for training: Set 1 420
Number of videos for testing: Set 2 420

Table 3.2 – Comparison of datasets

Dataset #Postures #Subjects Background

Jochen Triesch I [91] 10 24 3 backgrounds (light, dark, complex)
Jochen Triesch II [92] 12 N/A 3 backgrounds (light, dark, complex)
Sebastien Marcel [58] 6 10 uniform and complex

NUS I [43] 10 N/A uniform
NUS II [75] 10 40 complex
Our dataset 21 10 complex

• In MICA-L3i dataset, lighting changes from position to position of robot and user

in the room. These illumination changes leads to changes in hand color. Fig.3.24

shows an example in which hand colors changes significantly due to the lighting

change.
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Figure 3.24 – An example of the variety of hand colors in MICA-L3i dataset.

• The different positions in a room and the changes in hand pose make different

gleaming parts and shadow in the hand. Figure 3.25(a) shows a heavy shadow

at the hand center while Fig. 3.25(b) illustrates heavy gleaming part on the top of

the hand.

Figure 3.25 – An example of the variety of gleaming parts and shadows in the hand.

• The rotation angle of the hand also has some difference (see Fig. 3.26).

Figure 3.26 – An example of the variety of rotated hand poses in MICA-L3i dataset.

• The distances from human to robot is not fixed. We just ask people to stay in

front of robot so as feeling comfortable for interacting face to face with robot. The

differences of distances between user and robot cause the differences of the size of

hand in the images. We can see an example in Fig. 3.27.
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Figure 3.27 – An example of the variety of scale.

• Each person performs a hand posture differently. For example with posture number

6, some people often place the thumb over the middle finger (see Fig. 3.28(a)) while

some other place next to the point finger (see Fig. 3.28(b)).

Figure 3.28 – An example of the variety of the ways for playing the same hand posture.

• The similar between postures also cause difficulty for hand postures classification

methods. For example, figure 3.29(a) is posture 14 that is quite similar to posture

number 6 3.29(b) in opening the index finger. The difference of posture 14 and

posture 16 is just in the thumb. The thumb in posture 14 is open while the thumb in

posture 6 is close. Posture number 12 (see Fig. 3.29(c)) is also similar to posture 6.

Both these posture has only one open finger.

• In natural indoor environment, the background is often cluttered that makes diffi-

culties in hand detection and posture recognition.

We prepared positive samples for training by uniform sampling on the set of training

videos to make a set of 10.000 frames. We then cropped manually to create a set of
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Figure 3.29 – An example of similar postures.

10.000 AIRH samples for training our proposed hand detector and a set of 10.000 ACRH

samples for training traditional Viola-Jones detector for hand detection.

The set of 10.000 negative samples was collected by adding 5020 non-hand frames

that captured in an L3i room into the set of 4980 images downloaded from. http://tutorial-

haartraining.googlecode.com/svn/trunk/data/negatives/

Evaluation measure

To evaluate the performance of the detector, we used Precision, Recall, and F-measure

factors. These factors were defined in [69].:

Precision =
tp

tp + fp

Recall =
tp

tp + fn

F = 2
Precision ∗Recall

P recision+Recall

(3.15)

where tp is true positive that means correct detection, fp is false positive that means un-

expected result, fn is false negative that means missing result. Jaccard index is employed

to determine whether a detection is correct or not. It is computed as follows [60]:

JI =
RECTr ∩RECTgt

RECTr ∪RECTgt

(3.16)

where RECTr is result detection rectangle, RECTgt is ground truth rectangle. Our

detector is trained to detect AIRH , so ground truth for evaluation of our detector is

AIRH . Meanwhile, ground truth for evaluation of traditional Viola-Jones detector is

ACRH .

A detection is correct if the value of JI is greater than or equal 50%.
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3.5.2 Training detectors

We train two detectors in the same configuration but using two different sets of positive

samples presented in section 3.5.1. In each stage of the cascade of classifiers, we choose

minimum desired hit rate at 99.5%, and maximum desired false alarm at 50%. We then

choose maximum number of stages #stagesmax = 25. We would like to show investiga-

tion results of 25 stages because our experiments show that the optimal number of stages

is often met at around 20. All the training samples are resized to a standard size. Rainer

Lienhart et al. [51] indicated that the sample size of 20 × 20 is optimal in case of square

sample. To determine the standard size of training sample, we computed the average ratio

between width and height of all the 10.000 positive samples. The standard size of samples

was then selected in such a way that width or height is closest to 20 pixels as well as the

size is best fit with the computed average ratio. We determined the standard size for inter-

nal hand center sample is 20×20, and whole hand sample is 21×28. The configuration of

training process is shown in Table 3.3. Each attribute in both detectors has similar value.

Table 3.3 – Configuration of training process

Our detector
Traditional

Viola-Jones detector

Number of positive samples 10000 10000
Number of negative samples 10000 10000

Size of sample (Width x Height) 20× 20 21× 28
Minimum desired hit rate of each stage 99.5% 99.5%

Maximum desired false alarm of each stage 50% 50%
Maximum number of stages 25 25

This helps us to compare fairly Internal Haar-like features with traditional Haar-like

features.

Both training processes stop when the number of stages is 25. Figure 3.30 shows

numbers of weak classifiers in each stage of trained classifiers. Our detector needs more

weak classifiers than the traditional Viola-Jones detector. This is because the information

in ACRH is richer than AIRH . However, the rich information of ACRH contains a

lot of background information. Consequently, the traditional Viola-Jones detector will

give more mistakes than our detector when the background changes. If we collect all the

variants of background for training process, the traditional Viola-Jones detector will work

well. However, to collect all variants of background is very expensive and unfeasible.

The frequency of occurrence of Haar-like feature prototypes in the trained cascades is

shown in Fig. 3.31. These frequencies of occurrence in two cascades are similar. These

figures give recommendations if we want to re-train a hand detector in the future. When
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Our detector 5 13 24 25 34 27 41 53 58 55 28 77 88 96 98 103 124 131 127 135 140 143 150 168 277

Traditional Viola-Jones detector 7 13 22 24 28 27 33 32 36 22 37 41 42 42 36 55 52 49 50 48 49 59 62 61 59
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Figure 3.30 – Numbers of weak classifiers in each stages.

0%

5%

10%

15%

20%

25%

a b c d e f g h i j k l m n o

P
er

ce
nt

ag
e

Haar-like feature

Viola-Jones detector Our detector

Figure 3.31 – The frequency of occurrence of Haar-like feature prototypes.

we want to remove some unimportant Haar-like feature prototypes in order to get a smaller

set of features, we can remove some ones that have the lowest frequency of occurrence

such as prototype f,l,n, see Fig. 3.4(f,l,n). We should remove prototype n because it is

not chosen completely. Meanwhile, we should keep prototype o (see Fig. 3.4(o)) that is

not used in [50] due to their comment that is the prototype o can be well approximated by

prototype h and j. We observe that prototype o can represent the characteristic of diagonal

lines like h, j, and it simultaneously presents the characteristic of large blocks arranged in

diagonal patterns that can not be represented by prototypes h and j. We also see that the

most used prototypes are simple such as prototype a and c.

3.5.3 Results

The results of our detector and Viola-Jones detector are shown in Table 3.4. The data in

this table is obtained by changing the number of stages from 5 to 25. The performance of
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Table 3.4 – Detection results with different numbers of stages

Traditional Viola-Jones detector Our detector
Number of stages Precision Recall F Precision Recall F

5 0.00 0.14 0.01 0.02 0.72 0.04
6 0.01 0.19 0.01 0.03 0.90 0.06
7 0.01 0.31 0.03 0.04 0.97 0.08
8 0.02 0.37 0.04 0.05 0.99 0.10
9 0.03 0.45 0.06 0.07 0.99 0.12

10 0.05 0.52 0.10 0.09 0.99 0.16
11 0.08 0.57 0.14 0.10 0.99 0.17
12 0.11 0.62 0.19 0.14 0.98 0.25
13 0.16 0.66 0.26 0.20 0.97 0.33
14 0.22 0.68 0.33 0.25 0.96 0.40
15 0.28 0.69 0.39 0.38 0.93 0.54
16 0.35 0.70 0.47 0.49 0.90 0.63
17 0.44 0.70 0.54 0.68 0.86 0.76
18 0.50 0.70 0.59 0.79 0.84 0.81
19 0.61 0.67 0.64 0.87 0.81 0.84
20 0.68 0.66 0.67 0.93 0.77 0.84
21 0.74 0.65 0.69 0.97 0.73 0.83
22 0.76 0.63 0.69 0.99 0.69 0.81
23 0.82 0.59 0.69 0.99 0.66 0.79
24 0.85 0.54 0.66 1.00 0.61 0.76
25 0.87 0.50 0.63 1.00 0.56 0.72

a detector having less than 5 stages makes no sense because the detector in this case has a

lot of wrong detection as well as loses a lot of true positive windows. Fig3.32 and Fig.3.33

give an intuitive view of Table 3.4. We could see that our detector gets the best result (in

term of F-score) at the number of stages being 20 while traditional Viola-Jones detector

gets the best result at the number of stages being 21. To compare the performances of

two detectors, we draw the Precision-Recall curves that reflect the relationship between

Precision and Recall values of two detectors (see Fig. 3.34). The Precision-Recall curves

show that our detector is better than traditional Viola-Jones detector in overall. In addition,

Fig.3.35, Fig.3.36, and Fig.3.37 give an intuitive view of comparison between our detector

and traditional Viola-Jones detector on individual factors (Precision, Recall, and F-score).

We can see that at each number of stages, our detector outperforms traditional Viola-

Jones detector in term of all three factors Precision, Recall, and F-Score.

The reason is that our detector avoids unexpected effects of background thanks to the

use of Internal Haar-like feature while traditional Viola-Jones detector meets this unex-

pected effect. Examples 1 and Examples 2 in Fig.3.38 illustrate the unexpected effect of

background on the traditional Viola-Jones detector. These examples also illustrate our
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Figure 3.32 – The chart of the results of our detector.
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Figure 3.33 – The chart of the results of traditional Viola-Jones detector.

improvement in avoiding this unexpected effect.

However, there are some specific cases in which the Viola-Jones detector works better

than ours. Look at Example 3 in Fig.3.38, our detector gives a false positive that is a

sub-window in the arm area because this sub-window is similar to AIRH of the wrong

recognized posture. While, traditional Viola-Jones detector does not make this confusion

in this example. The reason is that with traditional Viola-Jones, the sub-window on the

arm is not similar to ACRHs because ACRHs contain a lot of information of background as

well as hand within fingers. In case of Example 4 in Fig.3.38, our detector does not detect

the hand while the traditional Viola-Jones works well. The cause of this result is that the

characteristic of the AIRH of this posture is not enough to distinguish the hand from the

background. Meanwhile, the ACRH contains more information of both the background

and the whole hand that helps the detector distinguish the ACRH from other regions. In
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Figure 3.34 – Precision-Recall curves for comparison between our detector and traditional
Viola-Jones detector.
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Figure 3.35 – Comparison on Precision

addition, the background in this frame similar to the background in some ACRH training

positive samples.

In the case where the working environment of hand detection system is defined before

training the detector, we can use traditional Viola-Jones detector to get a better result.

In this situation, features extracting on background should be selected during training.

Conversely, if we do not know the environment of the system, we can improve the per-

formance of our detector by using higher resolution camera in order to get more detail

information of the hand.
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Figure 3.36 – Comparison on Recall
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Figure 3.37 – Comparison on F score

3.6 Conclusions

This chapter presents our work on hand detection that employs Viola-Jones object detec-

tion framework. Our main contributions are summarized as follows:

• We have introduced a novel concept of Internal features in general and specifically

Internal Haar-like features. The detector using internal features will avoid the effect

of background changing. We have shown that Internal Haar-like features outper-

forms Haar-like features in the framework of hand detection of Viola-Jones in term

of detection rate while has similar computation time (real-time). The internal fea-

tures could be applied in any context of object detection.
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Advantage of our detector Disadvantage of our detector

Example 1 Example 2 Example 3 Example 4

Traditional 
Viola-Jones 
detector
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Figure 3.38 – Examples of advantages and disadvantages of our detector.

• We have built a very challenging dataset of hand postures in term of number of

hand postures, cluttered background, pose and lighting changes. Our dataset is in

the context of human-robot interaction. This dataset could be published for research

purpose.

• We have performed extensive experiments on two detectors: Viola-Jones detector

and our detector. We analyzed in detail the size of positive samples, the number

of stages as well the Haar-like features frequencies. This makes a recommendation

when re-training a detector.
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Chapter 4

Hand postures recognition

4.1 Introduction

As we analyze in Chapter 2, the explicit hand representation approach requires a good

hand segmentation. However, in the context of our work, the background is complicated,

so it is very difficult to segment perfectly hand region. In this case, the implicit hand

representation is a more suitable approach. The analysis in Chapter 2 also indicate some

limitations of the previous works dedicated to implicit hand representation approaches.

Recently, Liefeng Bo et al. [5] proposed a descriptor for generic object representa-

tion named kernel descriptor (KDES). The authors have proved that KDES outperforms

the state-of-the-art methods on different benchmark datasets such as CIFAR-10, Caltech-

101, ImageNet. Therefore, we propose to apply KDES for hand posture recognition. The

experimental results have shown that KDES is a robust descriptor for hand posture recog-

nition problem [67]. Moreover, among different kernels, the gradient is the best for our

problem. However, while working with KDES for hand posture recognition, we have ob-

served several limitations. We will point out the limitations of the KDES for hand posture

recognition and our improvements.

• Patch-level features are not invariant to rotation: At patch level, the original KDES

computes the gradient based features without considering the orientation. For this

reason, the generated features are sensitive to rotation. So, we propose to compute

the dominant orientation of the patch and normalize all gradient vectors in the patch

to this orientation. Patch-level features will thus be invariant to rotation.

• KDES is not invariant to scale: The original KDES computes features over patches

of fixed size. At two scales, the number of patches to be considered and the cor-

responding patch descriptions will be different. We propose a strategy to generate

patches with adaptive size. This produces the same number of the extracted patches.
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As a consequence, image-level feature is invariant to scale change.

• KDES is not suitable to the specific structure of the hand: At the image level, the

original KDES organizes a spatial pyramid structure of patches to build the final

description of the image. However, the hand has its own specific structure. We then

design a new pyramid structure that better represents the structure of the hand.

To evaluate the proposed method, we use four datasets (Triesch dataset [91], NUS II

dataset [75], our dataset, and a dataset we collected from [9]). We perform different exper-

iments in order to demonstrate the recognition performance according to each proposed

improvement, and compare with the state-of-the-art methods.

The remaining of this chapter is organized as follows. The section 4.2 presents the

framework of proposed hand postures recognition based on KDES. The section 4.3 de-

scribes in detail the proposed method. The experimental results are presented in the sec-

tion 4.4. The conclusions and future works are given in the section 4.5.

4.2 The framework of hand posture recognition

The proposed framework of hand posture recognition using kernel is presented in Fig. 4.1.

It comprises two main steps: Hand posture representation and Hand posture recognition.

Hand representation

Patch-level
feature extraction

Hand posture 
classification

Multiclass 
Support 
Vector 

Machine
(SVM)

Rectangular
hand regions

Classified 
results

Pixel-level
feature extraction

Compute
gradient 

vector for 
each pixel

Image-level
feature extraction

Design
Hand 

Pyramid 
Structure

Generate patches
with adaptive size

Compute normalized 
orientation gradient 

kernel descriptor
Create

final image 
descriptor

Figure 4.1 – The framework of proposed hand posture recognition method.

• Hand posture representation: This step takes a hand region image (from now on

called image, for short) as input and returns a descriptor of the hand candidate. It is

composed of multiple sub-steps:

– Pixel-level feature extraction: At this level, a gradient vector is computed for

each pixel of the image.
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– Patch-level feature extraction: At this level, we firstly have to generate a set of

patches then compute patch-level features. Different from [5], depending on

image resolution, we create patches with adaptive size instead of fixed size.

This adaptive size ensures the number of patches to be considered unchanged.

In addition, it makes the patch descriptor more robust to scale change. For

each patch, we compute patch features as follows. Given an image patch, we

compute a gradient descriptor based on the original idea proposed in [5]. How-

ever, unlike [5], we first compute the dominant orientation of the patch, then

normalize all gradient vectors to this orientation. This normalization is done

inside the gradient kernel allowing the descriptor to be invariant to rotation.

– Image-level feature extraction: At this step, we propose a modification with

respect to [5]: To combine patch features, we propose a pyramid structure

specific to hand postures instead of a general pyramid structure. This specific

pyramid structure makes the descriptor more suitable for hand representation.

Given an image, the final representation is built based on features extracted

from lower levels using efficient match kernels (EMK) proposed in [5]. First,

we have to compute the feature vector for each cell of the hand pyramid struc-

ture, and then concatenate them into a final descriptor.

• Hand posture classification: Once the hand is represented by a descriptor vector,

any classifier could be applied for the classification task. In this paper following

the strategy originally proposed [5], we will use Multi-class SVM. In the following

sections, we focus to present in detail the successive steps in hand representation.

In the following sections, we present the detail of hand presentation.

4.3 Hand representation

4.3.1 Extraction of pixel-level features

According to [5] and [67], a number of features can be computed at the pixel level, such

as pixel values, texture, and gradient. In [67], we argued that gradient is the best feature

for hand posture recognition; therefore, we use the gradient at pixel level. We will present

pixel values, texture, and investigation results in Section 4.4.

With an input image, we firstly compute the gradient vector at each pixel of the image.

The gradient is computed by the same gradient computation as used for SIFT [54]. The

gradient vector at a pixel z is defined by its magnitude m(z) and orientation θ(z). In [5],
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Figure 4.2 – Adaptive patch with npx = npy = 8, therefore ngridx = gridy = 9.

the orientation eθ(z) is defined as follows:

eθ(z) = [sin(θ(z)) cos(θ(z))] (4.1)

4.3.2 Extraction of patch-level features

Generate a set of patches with adaptive size from an image

In the original KDES [5], the author generated patches with a fixed size for all images

in the dataset. These images can have different resolutions. For low-resolution images,

the number of generated patches can be limited, producing a poor representation of the

image. Besides, the feature vectors of two images of the same hand posture at two scales

can be highly different. Consequently, the original KDES is not invariant to scale change.

Fig. 4.3(a,b) illustrates this problem. Fig. 4.3(a) and (b) are two images of the same

hand posture at two scales. Fig. 4.3(a) has a size of 40× 56 while Fig. 4.3(b) is two times

bigger (64 × 96). When we use a uniform patch of size 16 × 16 and uniform grid 8 × 8,

Fig. 4.3(b) has 77 patches while Fig. 4.3(a) has only 24 patches. A patch of Fig. 4.3(a)

contains more real area of hand than a patch of Fig. 4.3 (b). Obviously, the feature vectors

of patches are very different.

The above analysis motivates us to make an adaptive patch size in order to get a similar

number of patches along both horizontal and vertical axes.

Figure 4.2 shows the description of the proposed adaptive patch technique. Suppose

that the given number of patches is npx × npy (npx patches along the horizontal axis

and npy patches along the vertical axis). The number of grid cells ngridx × ngridy is

defined as: ngridx = npx + 1, ngridy = npy + 1. With an image has size of w × h,

the adaptive grid cell size along horizontal axis gridsizex = w
ngridx

and the adaptive

grid cell size along vertical axis gridsizey = h
ngridy

. The adaptive patch has the size of
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patchsizex×patchsizey where patchsizex = 2gridsizex and patchsizey = 2gridsizey.

A patch is constructed from 4 cells of the grid. The overlap of two adjacent patches along

the horizontal or vertical axes is a region of two cells of the grid. By this way, the size of

the patches is directly proportional to the size of the image.

Fig.4.3(b,c) illustrates the advantage of the proposed adaptive patch. Different from

(c)(b)(a)

Figure 4.3 – An example of the uniform patch in the original KDES and the adaptive patch
in our method. (a,b) two images of the same hand posture with different sizes are divided
using a uniform patch; (b, c): two images of the same hand posture with different sizes
are divided using the adaptive patch.

Fig.4.3(a,b), we apply the adaptive patch into two image in Fig.4.3(a,b). Fig.4.3(a,b) are

two different scales of the same hand posture. With this, we obtain the same number of

patches along x axis and y axis. The information in a patch of Fig.4.3(b) is similar to that

of the corresponding patch Fig.4.3(c). Therefore, the sets of patch level feature vectors of

image in Fig.4.3(b) and (c) are similar. That makes the image level features similar. This

means our representation is invariant to scale changes.

Compute patch-level feature

Patch-level features are computed based on the idea of the kernel method. Derived from a

match kernel representing the similarity of two patches, we can extract the feature vector

for the patch using an approximate patch-level feature map, given a designed patch level

match kernel function.

The gradient match kernel is constructed from three kernels that are gradient magni-

tude kernel k �m, orientation kernel ko and position kernel kp. In [5], gradient match kernel

is defined as follows:

Kgradient(P,Q) =
X

z∈P

X

z′∈Q

k �m(z, z
′)ko(eθ(z), eθ(z′))kp(z, z′) (4.2)
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where P and Q are patches of two different images that we need to measure the similarity.

z and z′ denote the 2D position of a pixel in the image patch P and Q. θ(z) and θ(z′) are

gradient orientations at pixel z and z′ in the patch P and Q respectively.

Directly using the gradient orientation eθ(z) in orientation kernel, the patch level fea-

tures extracted from the match kernel will not be invariant to rotation. We hence propose

to normalize gradient orientation before applying in match kernel. Specifically, inspired

by the idea of SIFT descriptor [54], we compute a dominant orientation of the patch and

normalize all gradient vectors to this orientation. We propose two ways to determine the

dominant orientation θ(P ) of the patch P . First, we use the dominant orientation of the

patch as proposed in [54]. Second, we compute a vector sum of all the gradient vectors in

the patch. The normalized gradient angle of a pixel z in P thus becomes:

ω(z) = θ(z)− θ(P ) (4.3)

Then, according (4.1), the normalized orientation of a gradient vector will be:

eω(z) = [sin(ω(z)) cos(ω(z))]

= [sin(θ(z)− θ(P )) cos(θ(z)− θ(P ))]

= [sin(θ(z))cos(θ(P )) + cos(θ(z))sin(θ(P ))

cos(θ(z))cos(θ(P ))− sin(θ(z))sin(θ(P ))]

(4.4)

Finally, we define the gradient match kernel with the normalized orientation as fol-

lows:

Kgradient(P,Q) =
X

z∈P

X

z′∈Q

k �m(z, z
′)ko(eω(z), eω(z′))kp(z, z′) (4.5)

Kh(P,Q) = Kh(p)
⊤Kh(Q)

=
X

z∈P

X

z′∈Q

em(z)em(z′)δ(z)⊤δ(z′) (1)

The gradient magnitude kernel k �m is defined as:

k �m(z, z
′) = em(z)em(z′) (4.6)

Where the normalized gradient magnitude em(z) is defined as:

em(z) =
m(z)pP

z∈P m(z)2 + ǫg
(4.7)

where ǫg is a small constant. m(z) is magnitude of the image gradient at a pixel z. The

gradient magnitude kernel k �m is conspicuously a positive definite kernel. Both the orien-
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tation kernel ko and the position kernel kp are Gaussian kernels which is of the form:

k(x, x′) = exp(−γkx− x′k2) (4.8)

The factor γ will be defined individually for ko and kp that are denoted by γo and γp

respectively.

Now, given the definition of match kernel, how to extract feature vector for a patch.

Let ϕo(.) and ϕp(.) the feature maps for the gradient orientation kernel ko and position

kernel kp respectively. The Eq. 4.5 is then rewritten as:

Kgradient(P,Q) =
P

z∈P

P
z′∈Q em(z)

�
em(z′)ϕo(eω(z))⊤ϕo(eω(z′))

� �
ϕp(z)

⊤ϕp(z
′)
�

=
�P

z∈P em(z)ϕo(eω(z))⊗ ϕp(z)
�⊤ �P

z′∈Q em(z′)ϕo(eω(z′))⊗ ϕp(z
′)
�

= Fgradient(P )⊤Fgradient(Q)
(4.9)

where Fgradient(P ) feature over image patch P that is defined as:

Fgradient(P ) =
X

z∈P

em(z)ϕo(eω(z)) ⊗ ϕp(z) (4.10)

Then, the approximate feature over image patch P is constructed as:

F gradient(P ) =
X

z∈P

em(z)φo(eω(z)) ⊗ φp(z) (4.11)

where ⊗ is the Kronecker product, φo(eω(z)) and φp(z) are approximate feature maps for

the kernel ko and kp, respectively.

The approximate feature maps are computed based on a basic method of kernel de-

scriptor. The basic idea of representation based on kernel methods is to compute the

approximate explicit feature map for kernel match function, Fig.4.4.

In other word, the kernel match functions are approximated based on explicit feature

maps. This enables efficient learning methods for linear kernels to be applied to the non-

linear kernel. This approach was introduced in [5, 6, 55, 56, 95].

One of the methods for approximating explicit features has been presented in [6]. In

the following, we review this method briefly. Given a match kernel function k(x, y), the

feature map ϕ(x) for the kernel k(x, y) is a function mapping x into a vector space so as:

k(x, y) = ϕ(x)⊤ϕ(y) (4.12)

Suppose that we have a set of basis vectors B = {ϕ(vi)}
D
i=1, the approximation of
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k(x, y)

x 7−→ ϕ(x)

ϕ(x) ≈ φ(x) k(x, y) ≈ φ(x)Tφ(y)

Figure 4.4 – The basic idea of representation based on kernel methods.

feature vector ϕ(x) can be Hzx where zx is defined as:

zx = argmin
zx

kϕ(x)−Hzxk
2 (4.13)

where H = [ϕ(v1), ...,ϕ(vD)] is the transformation matrix, zx are the projection coeffi-

cients of ϕ(x) on B. Eq. (4.13) is a convex quadratic program. The analytic solution of

Eq.(4.13) is:

zx = (H⊤H)−1(H⊤ϕ(x)) (4.14)

The approximated feature map is [6]:

φ(x) = GkB(x) (4.15)

where G is defined by:

G⊤G = K−1
BB (4.16)

where KBB is D × D matrix with {KBB}ij = k(vi, vj). kB is a D × 1 vector with

{kB}i = k(x, vi).

With a set of features X = {x1, ..., xp} the approximated feature map on X is defined

as:

φ(X) =
1

p
G

"
X

x∈X

kB(x)

#
(4.17)
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The approximated explicit feature map computation requires set of basis vectors B =

{ϕ(vi)}
D
i=1. The set of basis vector B is learned from a training pool of F features

{x1, ..., xF} by using the constrained kernel singular value decomposition (CKSVD), [6].

To extract approximate features φo(eω(z)), φp(z) in Eq.4.11 from match kernels, com-

pact basis vectors need to be generated by learning. The compact basis vectors are learned

from sufficient basis vectors using kernel principal component analysis. Where, the suf-

ficient basis vectors are sampled uniformly and densely from support region using a fine

grid so as these basis vectors make an accurate approximation to match kernels. We use

the shared set of basis vectors and match kernel parameters from [5] that were learned

using a subset of ImageNet.

Let the learned set of do basis vectors is Bo = {ϕo(x1),ϕo(x2), ...,ϕo(xdo)} and the

set of dp basis vectors is Bp = {ϕp(y1),ϕp(y2), ...,ϕp(ydp)} considering ko and kp kernels

respectively. Where xi are sampled normalized gradient vectors and yi are normalized 2D

position of pixels in an image patch.

The Kronecker product causes high dimension of the feature vector F gradient(P ). To

reduce the dimension of F gradient, the kernel principal component analysis is applied into

the joint basis vectors {ϕo(xi)⊗ ϕp(yj)}i=1..do,j=1..dp
. Let t-th component αt

ij is learned

through kernel principal component analysis, following [5], the resulting gradient kernel

descriptor for match kernel in (4.5) has the form:

eF t
gradient(P ) =

doX

i=1

dpX

j=1

αt
ij

X

z∈P

em(z)ko(eω(z), xi)kp(z, yj) (4.18)

4.3.3 Extraction of image-level features

Once patch-level features are computed for each patch, the remaining work is computing

a feature vector representing the whole image. In [6], the authors used a spatial pyramid

structure by dividing the image into cells using horizontal and vertical lines at several

layers (Fig.4.5(a)). This structure is generic, therefore does not take into account the

specific shape of objects. In our work, as the hand is an object with a specific structure,

we propose a new pyramid structure specifically for the hand. In the following, we present

in detail each step to build the final descriptor of the image.

Design a hand specific pyramid structure for patch-level features pooling

Fig. 4.5(b) shows the proposed hand pyramid structure. The main idea is to exploit

characteristics of hand postures. Let the hand posture image have a size of w × h. We

observe that the regions at the image corners often do not contain information. For this

reason, we only consider the area inside the inscribed ellipse of the hand image rectangle
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A B C D

EOF

e1

e2

e3

(a) (b)

Figure 4.5 – (a) General spatial pyramid structure used in [6]. (b) The proposed hand
pyramid structure.

bounding box (e3). The lines along the fingers converge at the lowest center point of the

palm, near the wrist (O). Based on the structure of the hand, the ellipses (e1, e2, e3) and

the lines (OA,OB,OC,OD) are used to divide the hand region into parts that contain

different components of the hand such as palm and fingers where AB = BC = CD. The

detail of designed structure is described as: O is the midpoint of FE(OF = OE). The

ellipse e1 is the inscribed ellipse of the rectangle that has a size of (1
2
w × 1

2
h). The line

FE is a tangent line of the ellipse e1. The contact between the line FE and the ellipse e1
is O. The ellipses are axis-aligned. In the similarity, the ellipsis e2 is the inscribed ellipsis

of the rectangle that has size of (3
4
w × 3

4
h).

In a layer, we define a cell as being a full region limited by these ellipses and lines. In

our work, the hand pyramid structure has 3 layers, (see Fig.4.6).

• Layer 1: This layer contains only one cell defined by the biggest inscribed ellipse

e3.

• Layer 2: In [5], this layer has four rectangular cells. Unlike this, we create eight

cells: three cells created from 3 ellipses and five cells created from the intersection

of four lines with the biggest ellipse.

• Layer 3: This layer has 15 cells generated from the intersection between lines and

three ellipses.
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Figure 4.6 – Construction of image-level feature concatenating feature vectors of cells in
layers of hand pyramid structure.

Create the final descriptor of the whole image

To create the final descriptor of the whole image, we firstly compute the feature vector for

each cell of the hand pyramid structure, and then concatenate them into a final descriptor.

To compute the feature vector for a cell, we use a method of generation feature vector

for a region that has a set of patch level features. The method is an adaptation of BoW

method using match kernels to measure the similarity between two local features. The

most contents of the specific method we use in our work relates to the Efficient Match

Kernels (EMK) between sets of features that is introduced in [6].

Let C be a cell with its set of patch-level features is:

X = {x1, ..., xp} (4.19)

Where p is the number of patches of C.

In BoW, each patch-level feature vector of image is treated as a word. Suppose that

V = {v1, ..., vD} is the dictionary (a set of visual words). A patch-level feature vector is
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quantized into a D dimensional binary indicator vector:

µ(x) = [µ1(x), ..., µD(x)]
⊤ (4.20)

where, µi(x) is defined as:

µi(x) =




1, if x ∈ R(vi)

0, otherwise
(4.21)

where R(vi) = {x : kx − vik ≤ kx − vk, ∀v ∈ V }. The feature vectors of an image is

defined as a normalized histogram:

µ(X) =
1

|X|

X

x∈X

µ(x) (4.22)

where |X| is the cardinality of X . When BoW is used in conjunction with a linear classi-

fier, the match kernel function is:

KB(X, Y ) = µ(X)⊤µ(Y )

= ( 1
|X|

P
x∈X µ(x))⊤( 1

|Y |

P
y∈Y µ(y))

= ( 1
|X|

P
x∈X µ(x)⊤)( 1

|Y |

P
y∈Y µ(y))

= 1
|X|

1
|Y |

(
P

x∈X µ(x)⊤)(
P

y∈Y µ(y))

= 1
|X|

1
|Y |

P
x∈X

P
y∈Y µ(x)⊤µ(y)

(4.23)

Let to denote the similarity between two path-level features x and y as (see the defini-

tion of µ(x) in Eq. 4.20 and Eq. 4.21):

δ(x, y) = µ(x)⊤µ(y)

=




1, if ∃i ∈ {1, ..., D} : x ∈ R(vi) and y ∈ R(vi)

0, otherwise

(4.24)

The Eq. 4.23 is then rewritten as:

KB(X, Y ) =
1

|X|

1

|Y |

X

x∈X

X

y∈Y

δ(x, y) (4.25)

The meaning of Eq. 4.24 is that the similarity between x and y is 1 if x and y belong

the same region R(vi), and 0 otherwise. The two path-level features assigned to different

(even very close) clusters are considered completely different (see Fig. 4.7). In Fig.4.7,

points v1, ..., v4 represent cluster centers (visual words), and points x, y, z are patch-level
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Figure 4.7 – Disadvantages of hard assignment, adopt from Fig. 1 in [74].

features. Here two disadvantages of hard assignment are showed: (i) In hard assignment,

the similarity between patch-level features y and z will be 0 that means they are com-

pletely different because they are assigned to different visual words despite being close

in patch-level feature space. (ii) Features x and y are both assigned to visual word v3

equally and there is no way of distinguishing that x is closer than y as well as there is

no way to know that in fact patch-level feature y is closer to z than x. This quantization

provides a very coarse approximation to the actual similarity between the two path-level

features, 1 if assigned to the same visual word, and 0 otherwise. This hard assignment

can causes errors due to variability in the feature descriptor such as image noise, varying

scene illumination, instability in the feature detection process and non-affine changes in

the measurement regions. In [74], Philbin et al therefore described a “soft assignment”

based technique by a weighted combination of visual words. This is an improvement in

matching (compared to a hard assignment) of the patches. The term “soft assignment”

describes techniques in that the weight assigned to neighbouring words depends on the

distance between the descriptor and the centers.

In similar idea, in EMK, δ(x, y) in Eq. 4.25 is replaced with a continuous kernel

function k(x, y) that more accurately measures the similarity between path-level features

x and y. The kernel function then become:

KS(X, Y ) =
1

|X|

1

|Y |

X

x∈X

X

y∈Y

k(x, y) (4.26)

Suppose that k(x, y) is a finite dimensional kernel (see Definition 5), the match kernel

is then:
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KS(X, Y ) = 1
|X|

1
|Y |

P
x∈X

P
y∈Y k(x, y)

= 1
|X|

1
|Y |

P
x∈X

P
y∈Y φ(x)⊤φ(y)

= 1
|X|

1
|Y |

(
P

x∈X φ(x)⊤)(
P

y∈Y φ(y))

= ( 1
|X|

P
x∈X φ(x)⊤)( 1

|Y |

P
y∈Y φ(y))

= ( 1
|X|

P
x∈X φ(x))⊤( 1

|Y |

P
y∈Y φ(y))

(4.27)

Definition 5 (Finite dimensional kernel, [6]). The kernel function k(x, y) = φ(x)⊤φ(y) is

called finite dimensional if the feature map φ(.) is finite dimensional.

The feature map on the set of vectors is defined as:

φS(X) =
1

|X|

X

x∈X

φ(x) (4.28)

The match kernel is rewritten as:

KS(X, Y ) = φS(X)⊤φS(Y ) (4.29)

The feature vector on the set of patches, φS(X), is extracted explicitly. The linear clas-

sifier can be then applied on the extracted feature vectors. In Eq.4.28, φ(x) is approximate

feature maps (4.15) for the kernel k(x, y) with the set of basis vector that is generated by

constrained singular value decomposition method (CKSVD) [6]. The feature vector on

the set of patches, φS(X), is extracted explicitly.

Once feature vectors for cells are computed, we concatenate them to construct image

level feature vector. Given an image, let L be the number of spatial layers to be considered.

In our case L = 3. The number of cells in layer l-th is (nl). X(l, t) is set of patch-level

features falling within the spatial cell (l, t) (cell t-th in the l-th level). A patch is fallen in

a cell when its centroid belongs to the cell. The spatial hand structure match kernel then

is:

KP (X, Y ) =
PL

l=0

Pnl

t=1 (w
(l))

2
KS(X

(l,t), Y (l,t))

=
PL

l=0

Pnl

t=1 (w
(l))

2
φS(X

(l,t))⊤φS(Y
(l,t))

= [w(0)φS(X
(0,1))⊤, ..., w(l)φS(X

(l,t))⊤, ..., w(L)φS(X
(L,nL))⊤]

[w(0)φS(Y
(0,1)); ...;w(l)φS(Y

(l,t)); ...;w(L)φS(Y
(L,nL))]

= [w(0)φS(X
(0,1)); ...;w(l)φS(X

(l,t)); ...;w(L)φS(X
(L,nL))]⊤

[w(0)φS(Y
(0,1)); ...;w(l)φS(Y

(l,t)); ...;w(L)φS(Y
(L,nL))]

= φP (X)⊤φP (Y )

(4.30)

Where φP (X) is the feature map on the spatial hand structure:
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φP (X) = [w(0)φS(X
(0,1)); ...;w(l)φS(X

(l,t)); ...;w(L)φS(X
(L,nL))] (4.31)

In (4.31), the weight associated with level l is defined as:

w(l) =

1
nlPL

l=1
1
nl

(4.32)

Fig. 4.6 shows image-level feature extraction on the proposed hand pyramid structure.

Until now, we obtain the final representation of the whole image, which we call image-

level feature vector. This vector will be the input of a Multiclass SVM for training and

testing.

We can see that the hand pyramid gives a suitable representation for upright frontal

hand postures in that the difference between postures is the configuration of the fingers

(open or closed). In addition, the proposed hand representation has another advantage

that is the image level feature is more invariant to slightly rotation/finger distortion. The

reason of this ability is that the feature vector of a cell in pyramid is computed based on

the set of feature vectors of patches belonging to the cell without concerning the locations

of patches in the cell. Moreover, the patch level feature is invariant to rotation. In case

of our constraints (upright frontal hand postures with slightly rotation/finger distortion),

the hand pyramid with normalized orientation gradient in the patch is suitable for hand

representation, see Fig.4.8(a,b).

(a) (b) (c) (d)

Figure 4.8 – (a) Slight finger distortion and (b) slight hand rotation that do not make
the same fingers belong to different cells; (c) heavy finger distortion and (d) strong hand
rotation that make the same fingers belong to different cells.

When hands strongly rotate or fingers heavily distort that make the same finger (or part

of hand) in two hand images belongs to different cells in pyramid, above advantages of

proposed hand presentation are not shown, see Fig.4.8(c,d). In the case of strong rotation
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of hand, we could normalize hand image before applying hand pyramid.

4.4 Experiments

4.4.1 Dataset

This section presents the datasets that we use to evaluate the hand posture recognition

algorithms. They are two benchmark dataset [75,91], one dataset we collect from [9], and

one dataset with more number of hand postures that we build ourself (L3i-MICA dataset).

The Table 4.1 recapitulates these datasets. The details are presented in the subsections.

NUS II dataset

The NUS II dataset is introduced in [75]. Fig. 4.9 shows several examples of a subset

of this dataset. The hand postures in this dataset were captured in complex natural back-

Figure 4.9 – Sample images from NUS hand posture dataset-II (data subset A), showing
posture class from 1 to 10, [75]

grounds. The shapes, sizes of postures and ethnicities of subjects are various. The dataset

has 2000 hand posture color images of 10 posture classes performed by 40 subjects, 5 five

images per class per subject. The image size is 160× 120. To evaluate the hand postures

recognition method, we crop manually to build a set of whole hand regions from NUS II

dataset. This means we assume that the segmentation step is perfect. Fig. 4.10 shows

samples of cropped whole hand region images from NUS II dataset. The hand posture

recognition step will be tested on NUS II dataset using 10 fold cross-validation.

Triesch dataset

The Jochen Triesch static hand posture database [91] is one of the most popular bench-

mark dataset for hand postures recognition researches. The database consists of 10 hand
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Table 4.1 – Summary of the datasets for evaluation

Dataset Dataset description Comments
NUS II

• 10 postures

• 40 subjects

• 5 images per class per subject

• 2000 hand posture color image

• Image resolution: 160x120

• Complex background

• Low resolution

• Hand appears as the
biggest object in the
image

Triesch

• 10 hand postures

• 24 subjects

• 17280 8bits grayscales images

• Image resolution: 128x128

• 3 backgrounds: Light, dark, complex

• Low resolution

• Cropped hand region

Caron

• 5 hand postures

• 4 subjects

• Each of five postures has 572 images
in training dataset and 572 images in
testing dataset

• Uniform simple background

• High resolution

• Cropped hand region

L3i-MICA

• 21 hand postures

• 10 subjects

• 840 color videos, 30fps

• Image resolution: 320x240

• Complex background

• Medium resolution

• Hands appears as a small
object in the image
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Figure 4.10 – Samples of cropped whole hand region images from NUS II dataset.

signs (a, b, c, d, g, h, i, l, v, y). We also evaluate the hand postures recognition on whole

hand regions that were provided in the protocol including in Jochen Triesch dataset. The

dataset performed by 24 persons against three backgrounds (light, dark, complex). For

each person, the ten postures were recorded in front of uniform light, uniform dark and

complex background giving 720 images (see Fig.4.11). The training dataset contains 60

a b c d g h i l v yPosture:

light background:

dark background:

Complex background:

Figure 4.11 – Samples of Jochen Triesch static hand postures dataset.

images of three persons against light and dark background. The remaining of the dataset

is treated as a testing dataset. The format of images is 8-bit grey-scale with resolution of

128× 128.

L3i-MICA hand posture dataset

L3i-MICA hand posture dataset was presented in Section 3.5.1. We prepare two kinds of

dataset for evaluation hand posture recognition methods.

The first one is manual detection dataset. We prepare the training and testing set of

frames by uniform sampling of the training videos set and the testing videos set respec-

tively with step of 10 frames. We then manually crop the image in order to have the

whole hand regions. The training dataset has 4636 cropped whole hand images. The

testing dataset has 4690 cropped whole hand images. The number of training and testing

images for each of 21 hand postures are nearly equal. Fig.4.12 shows several samples of

L3i-MICA dataset. The size of hand posture images are variant.
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Figure 4.12 – Samples of the set of 21 hand postures in L3i-MICA dataset.

The second one is automatic detection dataset. For automatic hand detection, we ap-

ply the hand detection method proposed in Chapter 3 to detect internal center region of

the hand. We then expand the detected region to obtain the whole hand region. For this,

we keep only true detections (based on the Jaccard index) and discard the false detections

since we focus on evaluating the hand posture recognition method. We randomly se-

lect 100 examples per posture from the automatic detection results on L3i-MICA dataset

for testing. We also create the testing dataset, in the same way. Fig.4.13 shows several

samples of the automatic detection dataset. In this case, the hand region contains more

background.

Caron’s dataset

Caron’s dataset contains five hand postures of the 4 subjects with a uniform simple back-

ground. This dataset is suitable for the method in [19]. Using this dataset allows to avoid

the effect of the complex background.

We collect this dataset from [9]. In [9], Lefebvre-Gascon and Caron implemented

the hand postures recognition method that presented in [19]. They also provided a hand

postures dataset that is similar to hand postures in [19] (see Fig.4.14). For our evaluation

purpose, we use the cropped part of this dataset. Each posture has 572 images for training

and 572 images for testing. These images are manually cropped images with a uniform

dark background.
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1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

Figure 4.13 – Samples of the set of 21 hand postures in L3i-MICA dataset with automatic
segmentation.

Figure 4.14 – Example images of the five hand postures in [9].

4.4.2 Performance measurement

We use accuracy to measure the performance of the hand posture recognition method. The

accuracy is defined by the ratio between the number of correct recognition images and the

number of testing images. In our experiments, each input sample will be classified to one

of the predefined classes.

Accuracy =
#{True classifications}
#{Input testing samples}

(4.33)

4.4.3 Experiment 1: Comparison of gradient with other types of KDES

In [5], the authors introduced three types of KDES that are Gradient-KDES, Texture-

KDES, and Pixel-value-KDES. In this experiment, we evaluate the performance of differ-

ent KDES types: gradient-KDES, Texture-KDES, Pixel-value-KDES and Combination.

For these types of KDES, we try 3 different color spaces that are RGB, HSV, and Lab. We

firstly present these types of KDES briefly.
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Texture-KDES

In Texture-KDES, Local binary patterns (LBP) [68] is treated as a type of pixel-level

feature that is computed in the manner shown in Fig. 4.15. Each pixel is compared to

Figure 4.15 – Local binary patterns (LBP)

each of its 8 neighbors. Where the neighborhood pixel’s value is greater than the center

pixel’s value, the resulting LBP value is 1. Otherwise, it is 0. The result is an 8-digit

binary number. Let denote the resulting binary 8-dimensional vector at pixel z by b(z),

and denote the standard deviation of pixel values in the 3 × 3 neighborhood around z by

s(z). b(z) and s(z) are treated as texture pixel level features.

The texture match kernel is constructed from three kernels that are the standard

deviation kernel ks, the binary pattern kernel kb, and the position kernel kp.

Ktexture(P,Q) =
X

z∈P

X

z′∈Q

ks(z, z
′)kb(eb(z),eb(z′))kp(z, z′) (4.34)

where the standard deviation kernel ks(z, z′) is the inner product of two vector es(z) and

es(z′):
ks(z, z

′) = es(z)es(z′) (4.35)

where es(z) is the normalized standard deviation of pixel values that is defined as:

es(z) = s(z)pP
z∈P s(z)2 + ǫs

(4.36)

where s(z) is the standard deviation of pixel values in the 3 × 3 neighborhood around z,

ǫs is a small constant.

In Eq.4.34, the binary pattern kernel kb is a Gaussian kernel that is defined in Eq.

4.8. In this kernel, γ factor is replaced by γb. eb(z) is binary column vector binaries the

pixel value differences in a local window around z. The meaning of standard deviation

kernel ks is the weight that indicates the contribution of each local binary pattern. The

binary pattern kernel kb provides the similarity between two patches through local binary
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patterns.

In the same way of Gradient-KDES extraction, the Texture-KDES for (4.34) has the

form:

eF t
T exture(P ) =

dtX

i=1

dpX

j=1

αt
T exture(ij)

X

z∈P

es(z)kb(eb(z), wi)kp(z, yj) (4.37)

where where dv is number of elements of the set of basis vectorsBv = {ϕt(w1), ...,ϕt(wdt)},

wi are normalized standard deviation of pixel values in an image patch.

Pixel-value-KDES

In Pixel-value-KDES, the intensities of pixels are used as pixel level features. The pixel

value match kernel is constructed from two kernels that are the value kernel kv and the

position kernel kp.

KPixelV alue(P,Q) =
X

z∈P

X

z′∈Q

kv(v(z), v(z
′))kp(z, z

′) (4.38)

where v(z) is the pixel value at position z that is intensity of pixel z. kv is a Gaussian

kernel that is defined in Eq. 4.8 with γ factor is replaced by γv. The color kernel kv
measures how similar two pixel values are. Therefore, the pixel value match kernel will

capture image appearance.

In the same way of Gradient-KDES extraction also, the PixelValue-KDES for match

kernel (4.38) has the form:

eF t
P ixelV alue(P ) =

dvX

i=1

dpX

j=1

αt
v(ij)

X

z∈P

kv(v(z), ui))kp(z, yj) (4.39)

where dv is number of elements of the set of basis vectors Bv = {ϕv(u1), ...,ϕv(udv)}, ui

are value of pixels in an image patch.

Combination-KDES

The combination of the three kernel descriptors (Combination-KDES) is constructed by

concatenating the image-level features vectors of three type of KDES.

Results

We performance this comparison on two color dataset that are L3i-MICA dataset and

NUS II dataset. In this experiment, we use manual hand segmentation. The results of
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this experiment is shown in Table 4.2 (on L3i-MICA dataset) and Table 4.3 (on NUS II

dataset).

Table 4.2 – The investigation results on L3i-MICA dataset

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Feature
Method Original KDES Improved method

RGB HSV Lab RGB HSV Lab
Gradient 0.844 0.624 0.624 0.912 0.721 0.857

PixelValue 0.694 0.725 0.719 0.871 0.614 0.741
Texture 0.783 0.576 0.688 0.779 0.751 0.824

Combination 0.850 0.741 0.823 0.913 0.796 0.880

Table 4.3 – The investigation results on NUS II dataset

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Feature
Method Original KDES Improved method

RGB HSV Lab RGB HSV Lab
Gradient 0.953 0.921 0.951 0.974 0.938 0.959
Texture 0.829 0.803 0.868 0.943 0.912 0.881

PixelValue 0.927 0.886 0.903 0.852 0.833 0.886
Combination 0.961 0.946 0.973 0.968 0.946 0.964

The results indicate that the gradient kernel descriptor obtains the best result on RGB

color space on both two datasets. The combination kernel descriptor is slightly better

than the best individual descriptor. However, the recognition time takes three times more

expensive than the individual descriptor because the feature extraction time plays a critical

role in recognition time. In real application, reducing computation time is important. For

this reason, the best choice for hand posture recognition is Gradient-KDES on RGB color

space.

4.4.4 Experiment 2: Comparison with the state of the art methods

In this experiment, among different approaches proposed for hand posture recognition, we

compare our method with a method presented in and in [19] because it is closely related

to our work and proved robust for hand posture recognition. The proposed method is

also compared with original KDES. We perform this experiment on all four datasets with

manual segmentation and automatic segmentation result on L3i-MICA dataset.

Figure 4.16 shows obtained accuracy of three methods on four datasets with perfect

hand detection while Fig. 4.17 illustrates the accuracy of the three methods for L3i-MICA

dataset with automatic hand detection.

We observe that our method outperforms the state of the art method [19] and original

KDES [5] on all datasets for both manual and automatic hand detection. The recognition
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L3i-MICA NUS II Triesch Caron
Dardas' method 34.5 43.2 60.8 96.7

OriginalKDES 84.4 95.3 95.7 99.6

Proposed method 91.2 97.4 96.7 99.6

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Precision (%)

Dataset

Figure 4.16 – Comparison our proposed method with original KDES and Dardas method
[19] on manual segmentations from four datasets.

Dardas' method Original KDES Proposed method

Accuracy (%) 20.6 74.0 80.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Figure 4.17 – Comparison our proposed method with original KDES and Dardas method
[19] on automatic segmentation results from L3i-MICA dataset.

accuracy with automatic hand detection is, of course, lower than with manual detection,

but remains relatively good (80%). This suggests that we can combine our recognition

method with the hand detection method in order to build a complete human-robot inter-

action using hand postures.
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However, the performance of the method depends on the characteristics of the data

which it is applied to. With L3i-MICA dataset, since this dataset contains images of the

same hand postures in different scales, our method has been proved its robustness. Our

method gets 7% better than the original method based on kernel descriptor. For the two

others datasets, the improvement in recognition accuracy is smaller. The method pre-

sented in [19] shows limitations when applied to L3i-MICA dataset, NUS II dataset and

Triesch dataset, due to the small number of detected key points. With Caros dataset, all

three methods obtain high accuracies, and our proposed method get the best with slightly

higher. The cause of this result is that this dataset is simple and satisfy properties suit-

able to Dardas’ method. Tab. 4.4 shows the main diagonal of the confusion matrix ob-

tained from Dardas’ method, original KDES, and our method with the same dataset (L3i-

MICA dataset). Table 4.5, 4.6, and 4.7 are the confusion matrixes obtained with Dardas’

method, original KDES, and our proposed method for 21 hand posture classes in L3i-

MICA dataset. Our method improves the recognition accuracy for almost hand posture

classes (19 over 21). Especially, for class #7 and #8, the recognition accuracy increases

30% after applying our improvement.
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4.4. EXPERIMENTS

4.4.5 Experiment 3: Evaluation of our improvements

In this experiment, to obtain a detailed analysis of the behavior of our three improvements,

we perform different comparisons on L3i-MICA dataset. As described in Section 4.3, our

method has three improvements: adaptive patch, normalized gradient orientation, and

hand pyramid structure. We observe the performance of the method in the following

cases: Case 1: Apply only adaptive patch; Case 2: Combine both the adaptive patch and

hand pyramid structure; Case 3: Combine all improvements (our proposed method).

The obtained result is shown in Tab. 4.11. The confusion matrixes for 21 hand posture

Table 4.11 – Effects of our improvements in three cases: Case 1: Apply only adaptive
patch; Case 2: Combine both the adaptive patch and hand pyramid structure; Case 3:
Combine all improvements

Method Original KDES Case 1 Case 2 Case 3
Accuracy (%) 84.4 90.6 91 91.2

classes in L3i-MICA dataset with the Case 1, Case 2, and Case 3 are shown in Tab. 4.9,

4.10, and 4.7 respectively. We can see that the adaptive patch improvement makes a great

difference. The performance increases 6% after applying the adaptive patch instead of

the uniform patch in the original method. With this dataset, the hand pyramid structure

and normalized gradient orientation have a minor contribution. The hand pyramid gives

a suitable representation for upright frontal hand postures in that the difference between

postures is the configuration of the fingers (open or closed). However, this constraint is

not always satisfied in the working datasets so that we can not see the improvement. Even

though, the performance obtained with this pyramid is at least equal to that of the general

pyramid. Tab. 4.8 provides the recognition accuracy obtained for 21 hand posture classes

in three testing cases. From this result, one time again, the adaptive patch improvement

shows that it has an important impact on the recognition accuracy. This improvement

makes the recognition accuracies of 15 over 21 classes increases. The spatial hand posture

is relatively sensitive. Its robustness depends on the characteristics of the hand posture.

4.4.6 Computation time

Concerning computation time, our method takes averagely 0.3s per image when working

with 50 × 100 image using Matlab 8 (R2013a), Window 64-bit Operating System with

processor Intel(R) Core(TM) i5-2520M.
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4.5. CONCLUSION

4.5 Conclusion

In this chapter, we have introduced a method adapting kernel descriptor into hand posture

recognition. The proposed hand representation is proved that it is robust for hand postures

recognition. Our main contributions are:

• We propose an adaptive patch that helps the proposed method to be invariant to

scale change.

• We propose a normalization for gradient orientation in patch based on soft dominant

gradient direction of patch that is sum of all the gradient vectors of pixels in patch.

This normalization helps gradient features in patch is invariant with rotation.

• We proposed a spatial hand structure that allow to capture the proper characteristics

of the hand postures.

• In overall, we proposed a new and robust method for hand posture recognition based

on kernel descriptor.

We have tested our proposed method on four datasets. The experimental results in-

dicate that the proposed method is better than recent success method for hand postures

recognition [19] that use SIFT features and SVM. The proposed method based on KDES

with our improvements has been proved better than original KDES method when applying

into hand postures recognition problem. Our improvements also can apply into generic

object recognition. The proposed spatial hand structure is designed and suitable for our

constraint. However, the proposed invariant rotation gradient kernel descriptor and the

proposed adaptive patch technique can be used for any other objects recognition system.

Based on the experimental results, we highly recommend to use our proposed method to

build a human-robot interaction using hand postures.

107



Chapter 5

Application

5.1 Introduction

We have integrated our proposed hand detection and recognition approaches into a fully

hand posture recognition system and deployed this system in a human-robot interaction

application. The main purpose of this is to evaluate the whole system in a real application

and to demonstrate that this system could be applied successfully in real situations. The

chosen application is service robot in a library. This application is built in the framework

of a research project at MICA Institute, funded by Orange lab in Japan with the aim is

to evaluate the behavior of the user while interacting with the robot. In this application,

the robot plays the role of librarians in a conventional library. In the following, we will

describe in more detail how we build this application and validate it.

5.2 Service robot in library

5.2.1 Investigation of library environment and end user requirements

We have visited the Ta Quang Buu Library of Hanoi University of Science and Technol-

ogy to understand the organization of a library as well as borrowing and returning book

activities. The library spans on several floors of the building and is organized into spe-

cific rooms such as storing room, reading room or borrowing room. The users are mainly

students. Books and users have been managed through 1D barcode management system

(Fig.5.1a). Every year, new students will be provided with an account for using library

services. This account will be created based on the student profile including his/her stu-

dent card number and the barcode onside the card. The library provides different station

machines allowing students to lookup:
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5.2. SERVICE ROBOT IN LIBRARY

a) b)

Figure 5.1 – a) Ta Quang Buu Library management using 1D barcode, the consultation
is carried out at station machine; b) Robot acts as a librarian, the end user could interact
with it using hand postures.

• User information (including user account information and list of books borrowed

by this user) by entering a barcode number on the student card.

• Information of a borrowed book by entering the barcode ID of this book or search

in the borrowed list.

The library used the library database management software named VTLS (http://www.vtls.com/)

to manage the users, books, as well as book borrowing and returning information. When a

user wants to get into the library, he/she needs to show his/her student card to a reception-

ist of the library. In reading rooms, the user can lookup information using OPAC interface

(a module of VTLS) on a station machine. In borrow rooms, the user brings books that

they want to borrow to the librarian. According to librarians as well as users, the most

frequent and important queries are the one about overdue books.

5.2.2 Definition of human-robot interaction scenarios

After investigating the library and its activities, we propose to simulate the library Ta

Quang Buu by implementing a room (that plays the role of reading and borrowing room)

inside the showroom of MICA Institute. The simulated library is a room of size 3m x 5m
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5.2. SERVICE ROBOT IN LIBRARY

in which we equip with some tables, chairs, bookshelves. All are similar to a reading room

in the library so that the human can feel as in a real library (see Fig.5.1b and Fig.5.2). In

Figure 5.2 – Stimulated library for testing robot services

this context, the scenarios are played by two actors: a human and an assistant robot in the

library. We focus on some general and basic requirements that a human needs and often
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5.2. SERVICE ROBOT IN LIBRARY

uses in the library such as search for user information or book.

To define interaction scenarios, we invent situations and assign roles to human and

robot as follows (see Fig.5.3):

Start

(1)
User come to 

stand face to face 
with robot

(2)
Recognize face

Registered user? No
(3)

Consider registration

Yes

(4)
Salute, remind overdue books

End

(5)
User triggers the 
robot action by 

doing hand 
gestures

Figure 5.3 – The activity diagram of the system

1. User comes and stands in frontal of the robot.

2. Robot captures photos of user face and recognizes him.

(a) If the robot can not recognize the user, go to (3).
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5.2. SERVICE ROBOT IN LIBRARY

(b) If the user is recognized successfully, go to (4).

3. Robot considers as the user has not been registered before. The robot will say by

synthetic voice: “Hello, you are not registered. Please do the registration first”.

4. Robot says : “Hello, welcome to the library! I’m ready for your consultation”. The

robot searches overdue books borrowed by this user and reminds him by displaying

all overdue books on the screen.

5. Once getting login, user can trigger the robot commands by hand gestures to:

(a) Ask for user information

(b) Lookup borrowed books, select a book

(c) Listen summary of a selected book

(d) Stop interaction with the robot

The step 5 is described detail in the statechart diagram (Fig.5.4). Before user login

successfully, the robot shows the "standby screen". After login, the robot reminds over-

due books borrowed by this user by displaying on the "Borrowed book list (S1)" screen

(Fig.5.5). At the S1 screen ("Borrowed book list"), the user can trigger following com-

mands:

• Go to next or Next page (command A1), Back (command A2) to lookup the bor-

rowed book list. The user still stays in the S1 screen.

• Open user information (command A3): the robot shows the "User information"

screen (S2) (Fig.5.6).

• Open book information (command A4): the robot shows the "Book information"

screen (S3) (Fig.5.7).

At the S2 screen ("User information"), the user can trigger the command Back (com-

mand A2); the robot goes back to the S1 screen ("Borrowed book list").

At the S3 screen ("Book information"), the user can trigger following commands:

• Back (command A2): the robot goes back to the S1 screen ("Borrowed book list").

• Read book (command A5): the robot read the summary of a selected book and still

stay at the S3 screen ("Book information").

At any screen (S1, S2, or S3), the user can trigger the Stop command (command A6)

to stop interactive with the robot.
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5.2. SERVICE ROBOT IN LIBRARY

Figure 5.4 – The state chart diagram of the system

5.2.3 Design of postural command vocabulary

With the above scenario, we design a set of hand postures and map them to set of com-

mands for human-robot interaction. It covers two groups of command: Interface Control-

ling and Consultation. Figure 5.8 shows the commands with corresponding hand postures.

• Interface controlling (four commands): Back, Next, Next page, and End.

• Consultation (three commands): Open user info, Open book info, Read book sum-

mary.
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5.2. SERVICE ROBOT IN LIBRARY

Figure 5.5 – The screen borrowed book list (S1)

Figure 5.6 – The screen user information (S2)

We did not focus on analyses to find an optimal hand gesture vocabulary (GV) because

it is costly and time consuming [85, 86]. In addition, GV design research is not our

current goal. We will take account into this task in the near future. In this thesis, we

selected hand postures from our set of postures presenting in Chapter 4 with a simple

way. Based on performance measures of GV considering in [85] (intuitiveness, comfort,

and recognition accuracy), we ourselves selected the GV with regard to our qualitative
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5.2. SERVICE ROBOT IN LIBRARY

Figure 5.7 – The book information (S3)
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Figure 5.8 – Set of postural commands

intuitiveness&comfort analysis and recognition accuracy in the experiments in Chapter 4.

5.2.4 Deployment of the proposed method on robot for human-robot

interaction

To deploy such method for hand posture recognition, we integrate the modules of hand de-

tection and hand posture recognition on a robot. However, these modules are designed to

take still images as input. For real application, the camera captures consecutively frames

then the question is how to make the decision of recognized command at a certain time in

order to control the robot.

To deal with this question, several methods require the user to start controlling the
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robot by raising his hand, keep the posture in a certain time (normally from one to two

seconds) and finish his command by putting his hand down. By this way, the system can

determine more easily the period of playing hand postures then follow a voting scheme

on frame by frame recognition results. This approach does not allow the user to make

consecutive commands without putting down the hand. In addition, because the command

is only executed after segmentation and recognition, the response could be slow.

We propose a strategy that detects and recognizes hand posture every frame and makes

the decision based on the number of consecutive similar recognized hand postures and the

duration between them (Fig.5.9). This method avoids the mentioned drawbacks and gives

satisfied results as shown in experiments section.

Suppose at time k, the system captures frame Fk and does hand detection and posture

recognition. If the posture P is recognized, we confirm a command corresponding to the

posture P to control the Library Management System and if the following conditions are

satisfied:

1. The system detects the same hand posture P at fpc frames before Fk1, Fk2 , ...Fkfpc

2. The system detects nothing at remaining frames counting from Fk1 to Fk

3. The number of frames between every couple of frames Fki, Fki+1
dees not exceed

fpr frames.

After sending a command to control the Library Management System, we reset pa-

rameters to start the process of the upcoming command. Fig.5.10 visualizes how to make

a decision in our deployment.

5.3 Experiments

The aim of experiments is to evaluate the performance of the hand posture-based human-

robot interaction in library context. The robot used for testing is a PCbot 914. It is like

PC under the form of robot with 1 Gbyte of RAM DDR 2. We have mounted a frame to

keep a small monitor and a camera on the robot at a height convenient for communicating

with human. For evaluation, the robot is put at a corner of the simulated room, neon-

lighting condition, and office background. Besides, we had developed a simulated library

management system with main functionalities such as VTLS. In addition, as presented

Section 5.2.2, face recognition is used to login to the library management system. The face

detection and recognition module has been developed in a previous works [89]. Fig.5.11

shows an example image captured from working session. The user makes the command

"Open Book Info", the system recognizes and goes to the book info page.
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5.3. EXPERIMENTS

Figure 5.9 – System deployment.

We invite 10 subjects to play the pre-defined scenario. The data coming from the

first five subjects are used for training the multi-class SVM for hand posture recognition
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5.3. EXPERIMENTS

Figure 5.10 – System deployment: making decision.

Figure 5.11 – An example image captured from working session.

module while the remaining subjects participate to evaluate the system. We have to train

a new classifier instead of reuse the trained classifier in Chapter 4 because of different

numbers of classes. For hand detection module, we use the hand detector that is trained in

Chapter 3. Each subject is required to trigger any command using hand postures in order

to control the robot so as one posture could appear several times. We collect all the frames

the system processed. The ground truth is created manually on the original captured data
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without any information of the results generated by the system. We compare the results

with the ground truth to evaluate the performance of the system.

Table 5.1 shows the confusion matrix of the results. We add the column “Other” for

Table 5.1 – The confusion matrix of command recognition.

Action

B
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ex

t
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fo

E
nd

O
pe
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fo
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ex
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Back 30 0 0 0 0 0 0 0
Next 0 30 0 0 0 0 0 0

Open book info 0 0 30 0 0 0 0 0
End 0 0 0 30 0 0 0 0

Open user info 0 0 0 0 30 0 0 0
Next page 0 0 10 0 0 10 0 10

Read book summary 0 0 0 0 0 0 30 0
Other 0 0 0 0 0 20 0 0

the missed recognitions and the row “Other” for the false recognition. The system obtains

very good performance on most of hand postures except the “Next page”. In the overall

result, the average Precision is 83%, the average Recall is 91%, and the average F-score

is 86%. We can see that the hand pyramid help distinguish hand postures very similar

with different open/close fingers. In Figure 5.8, the postures for “Next Page” and “Open

User info” are very similar except for the fist posture and the particular fingers involved

in the postural command. The confusion matrix in Table 5.1 however, does not reflect

this confusion. The confusion matrix shows a perfect performance for the “Open User

info”. We see a relatively degraded performance for the “Next Page” command. Fig. 5.12

illustrates an example of wrong recognition. The hand is well detected. The hand pos-

ture recognition module, however, makes a wrong decision because of the participation of

background information in the hand bounding box that makes the gradient of this rectan-

gle region is similar that of “Open book info” posture. Removing the unexpected effects

of background on hand posture recognition is a further topic need to research.

In this application, we only evaluate the system on the final command recognition

results. We did not individually evaluate the hand detection and hand posture recogni-

tion on frames because when a hand candidate is detected on a frame, the average time

computation of next steps is 0.6 second. During processing steps after hand detection, a

large number of frames are skipped. Therefore, we can not evaluate each module on these
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Hand detection bounding box 
with wrong result label of 
hand posture recognition

The background region 
has gradient similar to 
the gradient maked by 
open finger of posture 
``Open book info’’.

Figure 5.12 – An example of wrong recognition. A “Next page” posture is recognized as
“Open book info”.

frames.

All of the users who used this application have following common comments. They

are interested in the interacting with the robot using hand posture. However, the robot

response to user’s command slight slowly. The system also does not works really smooth.

The accuracy of the system is quite high. Sometimes the robot makes a wrong response

or no response to user. In this case, user can slightly move to change the position of the

hand to make slight background change.

In overall, the application system is acceptable to use. However, it is necessary to

improve the response time as well as to reduce the unexpected effects of background.

To do this, we need to reduce computation time of hand segmentation and hand posture

recognition after detecting hand. To avoid unexpected effects of background, we need to

find a better hand segmentation based on detected hand center region. Another approach

we can apply is that sliding window on the region expanding from detected hand center

region. In this case, the expanded region is large enough to contain whole hand. However,

we have to concern about time computation when use this approach. Additional task we

have to do is that do research to design a optimal hand postures vocabulary.

5.4 Conclusion and Future works

This chapter shows a fully automatic hand posture recognition system, integrated success-

fully on a robot for human-robot interaction application in the library context. Extensive

experiments show that the proposed system works well in real situation and responses in a
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quite satisfied time duration. We also observed that the people feel quite comfortable and

funny to use hand postures to communicate with the system. Even thought, it is necessary

to do research to improve the performance of the system such as to reduce computation

time, to avoid unexpected effects of background, and to design an optimal GV. In the long

term future works, we will combine hand postures with other modality such as speech to

make the interaction more natural and efficient. The chapter shows a specific context but

the framework could be extended for more generic application.
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Chapter 6

Conclusions and future works

6.1 Conclusions

This thesis presents a hand posture recognition system consisting two phases that are hand

detection and hand posture recognition. An application based on detection and recognition

results on frames is also deployed.

The proposed system can work on the input image containing a small hand region with

cluttered background in real indoor environment. The proposed method can be applied

directly to build human-machine interaction systems. The application in Chapter 5 is an

example.

The proposed hand detection method is based on Viola-Jones detector therefore it has

all advantages of this good detector. The hand detection method is able to perform in

real time, robust under different lighting conditions and invariant to scale changes. Be-

sides, our hand detection method avoids the unexpected effects of background because

of using proposed internal Haar-like features. The experimental results indicate that the

hand detector using internal Haar-like feature obtains better performance than the hand

detector using traditional Haar-like features. On MICA-L3i dataset, internal Haar-like

features help the F-score of Viola-Jones detector improve from 0.69 to 0.84. However,

when we train a detector using internal Haar-like feature, positive samples without back-

ground have less information than those containing whole hand with background. This

can causes more false positive detections.

For hand posture recognition, we proposed a new hand representation based on kernel

descriptor with three improvements. These improvements makes KDES invariant to scale

change and make patch-level feature invariant to rotation. The experimental results show

that improved KDES is more robust than original KDES and a state of the art method for

hand posture recognition. The accuracies of the proposed method are 6.8%, 2.1%, and 1%

higher than those of original KDES and 56.7%, 54.2% and 35.9% higher than the Dardas’s
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method [19] on MICA-L3i dataset, NUS II dataset, and Triesch dataset respectively.

The proposed hand representation belongs to implicit representation approach, hence

it does not require a clear hand segmentation. In spite of this, we designed a special pyra-

mid structure that is suitable for the hand. This structure helps to capture configurations

of the hand posture especially in cases of upright frontal hand postures with the different

open/close fingers. In other cases, the performance of KDES with hand pyramid is still

not lower than general pyramid structure.

We have applied the improved KDES into some other object recognition and obtained

better results than original KDES and the current methods in the same fields. However,

there are some limitations of hand representation in different images: the unexpected

impacts of background and hand positions in images.

To illustrate the applicability of our proposed hand posture recognition system as well

as evaluate the proposed system, we deployed a human-robot interaction system in library

context using a subset of our hand postures set. With this system, the user can use prede-

fined hand postures to trigger the robot actions. In this system, we use only one normal 2D

camera. The success of this real application allow us believe that we can extend to apply

directly the proposed hand posture recognition method into a real suitable application. We

also can believe that the proposed method can contribute a good role in a RGB-D based

hand posture/gesture recognition systems.

6.2 Future works

We proposed some improvements for hand detection and hand posture recognition. These

improvements dedicate a small portion to the progress of developing fully automatic

human-machine interaction systems using hand gestures. As we presented our objec-

tives and motivations in Chapter 1 Introduction, we want to continue to do some research

works based on the results of this works. In addition, there are a number of research ques-

tions and ideas come when we have to finish this thesis. In this section, we summary the

selected works we would like to do after this thesis.

1. Short term:

In the near future, we will do some technical tasks to improve the performance of

the system and complete some experiments to get fuller evaluation for the proposed

method.
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(a) Learn to build the set of basis vectors and match kernel parameters from hand

images:

The performance of hand posture recognition based on KDES will improve

when the set of basis vectors and match kernel parameters are selected con-

sidering the particular characteristics of hand images (selection based on set

of hand images instead of ImageNet).

(b) Complete experiments:

Due to the lack of time, we have not done some deeper experiments we want

to do to evaluate more detail our proposed method such as the role of normal-

ized gradient orientation in the patch. In the near future, we want to spend

time to complete these experiments. We also would like to build some hand

posture/gesture dataset with evaluation proposals.

2. Long term:

(a) For hand detection and segmentation, we proposed new concepts that are

Internal features and Internal Haar-like features. We pointed out that Internal

Haar-like features have some advantages compare with normal Haar-like fea-

tures. After studying on this topic, we find some research topics coming as

follow:

i. Design a set of Haar-like feature that is more suitable to hand:

In this thesis, we used generic set of Haar-like features that is proposed

for face and general object detection. A specific set of Haar-like feature

designed for hand might make hand detector more robust.

ii. Develop a hand detection method based on internal features and context

information of internal features:

In this thesis, we only exploit the internal Haar-like features extracting

from hand center region. We have not exploited any context information.

In the future, we want to develop a hand detection method that added con-

text informations. In this direction, all candidates of rigid components of

hand will be detect individually then the best combination of a subset of

these components will be found as detected hand/hand posture. A prob-

lem we will have to tackle is how to reduce time computation.

iii. Find a effective strategy to integrate skin color into hand detector:

In this thesis, we did not use existing combination with skin color de-

tection methods because of the limitation of them. Most of the existing

ways to combine skin color cue with Haar-like features is that firstly do
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skin color detection then apply Viola-Jones detector on segmented skin

regions. This technique still meet a problem that is missed skin regions

detection. In the future, we want to do a research to find a effective strat-

egy to integrate skin color into hand detector.

iv. Develop a method to segment whole hand region based on detected hand:

In this thesis, we use a simple method to expand detected hand center

region to find a large region that contains whole hand. Finding a method

to segment whole hand region based on detected hand center region is

reasonable research task in the future.

(b) For hand posture recognition:

i. Design better kernel descriptor for hand posture recognition:

In this thesis, we built hand representation based on kernel functions and

kernel match functions in [5] for generic object recognition. In the future,

we want to do research to find a better kernels and then build better kernel

match function for hand images for example a kernel descriptor based on

Haar-like features.

ii. Develop a method to normalize rotated hand images: In this thesis, we

assume that hand is upright. However, the hand is often rotated even user

try to keep it upright. To tackle this problem, we need to develop a method

for hand rotation normalization.

(c) For applications and extensions based on our proposed methods:

i. Apply proposed method into a dynamic hand gestures recognition based

on recognized key postures:

In this case, hand detection step can use additional motion cue to improve

performance of hand localization. We also combine hand detection and

hand tracking. The proposed hand posture recognition can be used to

recognize hand posture on key frames. This research is necessary because

a HCI system based on gesture will exploit both static and dynamic hand

gestures, even includes facial expressions and body gestures.

ii. Exploit depth information:

Nowadays, RGB-D sensors become more popular and cheaper. They pro-

vides depth information besides RGB information. Depth information is

useful to help us improve performance of the computer vision system. For

this reason, we would like to integrate our proposed method into a hand

posture/gesture recognition using both color and depth informations.
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iii. Develop applications:

The application in Chapter 5 mainly aims to illustrate that the proposed

hand posture recognition system is feasible to build a real application. In

the future, beside above works we want to do, we also want to build real

and meaningful applications.

6.3 Publications

Book chapters:

B1. Nguyen, V., Vu, H., Tran, T.: An Efficient Combination of RGB and Depth for

Background Subtraction. In: Quang A Dang, Xuan Hoai Nguyen, Hoai Bac Le,

Viet Ha Nguyen, and V.N.Q.B. (ed.) Some Current Advanced Researches on Infor-

mation and Computer Science in Vietnam. Post-proceedings of The First NAFOS-

TED Conference on Information and Computer Science. Springer (2014).

International journals:

J1. Nguyen, V.-T., Le, T.-L., Tran, T.-H., Mullot, R., Courboulay, V., Castelli, E.: Vi-

sual interpretation of hand postures for human-machine interaction. Completed

manuscript, ongoing process for submission to Pattern Analysis and Applications

journal in November, 2015.

J2. Doan, H.-G., Nguyen, V.-T., Vu, H., Tran, T.-H.: A combination of User-Guide

scheme and Kernel Descriptor on RGB-D data for robust and realtime hand pos-

ture recognition. Submitted to Engineering Applications of Artificial Intelligence

journal.

National journals:

J3. Nguyen, T.-T., Nguyen, V.-T., Nguyen, T.-T.-T., Le, T.-T.: A hand posture dataset

(in Vietnamese). J. Sci. Technol. Thai Nguyen Univ. Vietnam. 99, 145-150 (2012).

International conferences and workshops:

C1. Nguyen, V., Le, T., Tran, T., Mullot, R., Courboulay, V.: A method for hand de-

tection based on Internal Haar-like features and Cascaded AdaBoost Classifier. The

International Conference on Communications and Electronics (ICCE). pp. 608-613

(2012). Hue, Vietnam.
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C2. Nguyen, V.-T., Nguyen, T., Mullot, R., Tran, T.-T.-H., Le, H.: A Method For Hand

Detection Using Internal Features And Active Boosting-Based Learning Categories

and Subject Descriptors. The 4th International Symposium on Information and

Communication Technology - SoICT 2013. pp. 213-221 (2013). Da Nang, Viet-

nam.

C3. Nguyen, V.-T., Le, T.-L., Tran, T.-H., Mullot, R., Courboulay, V.: Hand Posture

Recognition Using Kernel Descriptor. Procedia Comput. Sci. 39, 154-157 (2014).

Evry, France.

C4. Nguyen, V.-T., Le, T.-L., Tran, T.-H., Mullot, R., Courboulay, V.: A New Hand

Representation Based on Kernels for Hand Posture Recognition. The 11th IEEE

International Conference on Automatic Face and Gesture Recognition (FG 2015)

(2015). Ljubljana, Slovenia.

C5. Nguyen, V.-T., Tran, T.-H., Le, T.-L., Mullot, R., Courboulay, V.: Using hand

postures for interacting with assistant robot in library. The 1st International Work-

shop on Pattern Recognition for Multimedia Content Analysis (PR4MCA 2015) In

conjunction with the 7th International Conference on Knowledge and System En-

gineering Ho Chi Minh City, Vietnam. (2015). Ho Chi Minh city, Vietnam.

C6. Pham, T.-T.-T., Le, T.-L., Dao, T.-K., Nguyen, V.-T., Le, D.-H.: A robust model for

person re-identification in multi-modal person localization. The Ninth International

Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

(UBICOMM 2015) (2015). Nice, France.

C7. Le, T.-L., Duong, N.-D., Nguyen, V.-T., Vu, H.: Complex Background Leaf-based

Plant Identification Method Based on Interactive Segmentation and Kernel Descrip-

tor. 2nd International Workshop on Environmental Multimedia. In Conjunction

with ACM Conference on Multimedia Retrieval (ICMR) 2015. (2015). Shanghai,

China.

C8. Tran, T.-H., Nguyen, V.-T.: How good is Kernel Descriptor on Depth Motion Map

for Action Recognition. 10th International Conference on Computer Vision Sys-

tems (2015). Copenhagen, Denmark.

C9. Tran, T., Nguyen, V., Nguyen, V., Midy, Q.: Vision based dynamic hand ges-

ture recognition. 2013 ICT PAMM Workshop on Mobility Assistance and Service

Robotics. pp. 43-47 (2013). Kumamoto, Japan.
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C10. Le, T.-L., Nguyen, V.-N., Tran, T.-T.-H., Nguyen, V.-T., Nguyen, T.-T.: Temporal

gesture segmentation for recognition. 2013 Int. Conf. Comput. Manag. Telecom-

mun. 369-373 (2013). Ho Chi Minh City, Vietnam.

National conferences:

C11. Nguyen, V., Vu, H., Tran, T., Le, T., Technology, C.: Noise suppression in depth

map for improved background segmentation. 7th Conference on Fundamental and

Applied IT Research (FAIR2014). (2014). Thai Nguyen, Vietnam.

C12. Nguyen, V., Vu, H., Tran, T.: Background Subtraction with KINECT data : An

Efficient Combination RGB and Depth. The first NAFOSTED Conference on In-

formation and Computer Science (2014). Hanoi, Vietnam.

The contributions and results of this thesis have published in one book chapter, one na-

tional journal, and twelve conference papers including the IEEE conference on Automatic

Face and Gesture Recognition that is the premier international forum for research in im-

age and video-based face, gesture, and body movement recognition. We have completed

two other journal paper manuscripts, and the publishing processes are ongoing.

The main results on hand detection are presented in papers #C1 and #C2. While,

papers #C3 presents our investigation results of KDES on hand posture recognition prob-

lem, and paper #C4 presents our proposed hand representation method based on KDES. A

hand posture dataset is reported in paper #J3. The deployment of an application example

and its results is presented in paper #C5. Manuscript #J1 presents fully and more detail

our contributions in hand detection, hand posture recognition, and application.

We remark that our improved KDES will make other object recognition better than

original KDES. According to this remark, we applied the improved KDES that we pro-

posed for hand posture recognition into some other problems, and we obtained good re-

sults. These results were presented in published papers #C6 - #C8.

In this thesis, it is important to study about dynamic hand gesture recognition, human

action recognition because these problems are closely related to our problem, static hand

gesture recognition. In terms of sensor, the understanding about RGB-D sensor helps us

know the role of color information in a RGB-D system as well as define our motivation of

research on color information. Upon the above reasons, we did some related studies and

prented results in published papers #C9 - #C12 and manuscript #J2. Manuscript #J2 also

presents the results of our improved KDES on Kinect sensor.
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6.4 Awards

1. Travel Award to The 3rd IAPR Asian Conference on Pattern Recognition (ACPR2015)

Doctoral Consortium, November 3-6, 2015, Kuala Lumpur, Malaysia.

2. Best Paper Award "Using hand postures for interacting with assistant robot in li-

brary," The 1st International Workshop on Pattern Recognition for Multimedia Con-

tent Analysis (PR4MCA 2015) In conjunction with the 7th International Conference

on Knowledge and System Engineering, 2015, Ho Chi Minh city, Vietnam.

3. Best Paper Award "Vision based dynamic hand gesture recognition," 2013 ICT

PAMM Workshop on Mobility Assistance and Service Robotics, 2013, Kumamoto,

Japan.
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