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Abstract

Wave problems involving the medium and high frequency range have been receiving in-
creased attention in recent years, a wide range of applications of short wave problems can be
found in the various engineering fields. One of the most challenging problems in scientific
computation is to achieve accuracy and efficiency simultaneously at high wavenumber. It
has been acknowledged that conventional Finite element Method (FEM) and Boundary Ele-
ment Method (BEM) are extremely demanding computationally to reach a good resolution
of medium and high frequency wave problems. Therefore, some advanced deterministic
prediction techniques with enhanced computational efficiency have been developed in recent
years to overcome these shortcomings. Partition of unity finite element method (PUFEM) is
one of the candidates among them.

PUFEM has great ability for dealing with short wave problems. The fundamental concept
and the related formulations of the PUFEM are introduced in this work, and the numerical
implementation of the plane wave enrichment in the finite element model are also explained
in detail. In brief, the known physical feature of the propagating waves(a set of oscillatory
wave functions satisfying the Helmholtz equation) are included into the approximation pro-
cess of local element space. Then, we present two selection approaches of these plane waves,
both the advantages and disadvantages of them are investigated.

We also focus on the computation of propagating sound fields in two dimensions with
respect to PUFEM technique. As it will be discussed, the heavy computational cost resulting
from numerical quadrature of non-polynomial shape functions poses a threshold in terms of
efficiency of the PUFEM. Thereby, an Exact Integration Scheme (EIS) for 2D problems is
presented and explained with all necessary details. This procedure allows us to significantly
accelerate the computation of the system coefficient matrices and ease the computational
burden. Finally, a numerical model of practical interest is set up for validation purpose. The
efficiency of the numerical model developed in this chapter which combines PUFEM and
EIS together will be assessed.



viii

The full development of the PUFEM for 3D acoustical problems is presented and illus-
trated in this work. We propse the underlying theory of the Exact Integration Scheme (EIS)
as well as the associated algorithm for 3D tetrahedron PUFEM element. Detailed analysis
with regard to several numerical aspects of 3D PUFEM are conducted in this thesis, includ-
ing error estimation, convergence rate and computational cost. A few numerical examples
involving the response of a point source in a 3D cavities with or without porous material are
implemented to validate and verify the PUFEM model combined with EIS. In the end of
this work, PUFEM is extended further to simulate the acoustic waves in a porous material
modeled as a equivalent homogeneous fluid. The numerical performances and efficiency are
also analyzed in detail.
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Chapter 1

Introduction

1.1 Wave background

The phenomenon of wave propagation can be captured and observed almost everywhere in
our daily life, without it, we can not hear and appreciate the amazing world surrounding
us. If we try to imagine the most impressive and vivid waves propagation phenomena, the
first picture popping into our head probably might be water waves ranging from the small
ripple caused by a stone thrown into river when we were little children, to the huge sea waves
which are staggering enough to overturn the cruise ship in movies. Other people who love
listening to the radio would be interested in the way of transmission of its signal which in
fact is electromagnetic waves, electromagnetic waves cover a spectrum from low frequency
radio waves, through visible light to X- and gamma rays. We can state that the sound wave,
water wave, light wave and electromagnetic wave etc. constitute the most fundamental way
of physical movement of nature.

The term wave enjoys various descriptions and definitions, several most appropriate ones can
be attributed to: a pattern of matter or energy that is spread over a volume of space [125, 84]
and a disturbance that carries energy from one place to another [34]. However, the definition
of wave is not easily made, we usually choose to view them as a generic set of phenomena
with many similarities [18]. Sincerely speaking, waves phenomena is amazing, while at
the same time found to be abstract and elusive. More importantly, it is so close to our daily
life so as to constantly arouse the interests of many famous mathematicians and physicians.
Many of them have profoundly studied and put it into practice use in wide spread fields such
as acoustics, non-destructive evaluation of materials, seismic analysis, electromagnetic and
so on.



2 Introduction

1.2 Numerical simulation of waves

The practical interest of studying wave propagation problems is its great influence in the
domain of science and engineering, including aerospace engineering, civil and mechanical
engineering to name a few. It is important to take advantage of wave properties and behaviors
and then put them into practical use for the interests of human being and the whole of society.
Although numerous challenges with regards to wave problems have already been recognized
and some parts of it have been overcome since the 16th century when the mathematicians and
physicians started to work on the mathematical models of wave, there still exists numerous
difficulties waiting to be conquered for the scientists in our time. For example, the long range
propagation wave problems, short wave problems and wave propagating in complex media
are always viewed as challenging multi-scale problems both mathematically and numerically.

For the long propagation wave problems, we would think of underwater acoustics and
ocean acoustic waves which are known to propagate over several thousand kilometers. The
corresponding practical remote sensing applications would also cross our mind, such as ocean
current measurement, early warning system for Tsunamis and oil spills, remote surveillance
[3, 11]. For instance, a devastating Tsunami caused by a underwater earthquake with a
big magnitude occurred in the near sea of Japan in 2011, resulting in a destruction of the
eastern coastline of Japan, where thousands of building collapsed and lead to more than
20, 000 people dead and missing. The Tsunamis even reached Hawaii’s coastline which
is located 6, 400 kilometers from its epicenter after several hours. Therefore, the study of
long propagation wave problems definitely becomes valuable for the sake of our interest. In
essence, the characteristic of all the long distance transmission problems is that their traveling
distances of wave are always several orders of magnitude larger than their wavelength, which
consequently brings about the issue that too many wavelengths will be contained in numerical
models for the studying purpose.

The wave problem concerned with medium and high frequency range receives increas-
ing attention in recent years. With the continuous development of computational hardwares
and facilities as well as the advanced numerical techniques, the studying range of wave
frequency has been continuously extended. However, the difficulty of simultaneously achiev-
ing accuracy and efficiency at high wavenumber has still been cited as one of the most
challenging problems in scientific computation [129]. We can find many applications of short
wave problems in medical image field, which mainly take advantage of ultrasonic waves with
frequencies ranging from 1 MHz to 15 MHz. For the wave speed c = 1500 m/s, the average
wavelength is varying from 1.5 mm to 100 microns. Another example could be a radar wave
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scattered by an aircraft, the ratio between the radio wavelength and the size of aircraft could
reach several thousands. In addition, we know the thumb rule for the wave simulation is that
at least seven to ten nodal spaces per wavelength are required to achieve a certain level of
accuracy. As a result, it’s not hard to imagine that the density of the mesh grid required for
the simulation of high frequency waves issues would definitely lead to remarkable computing
loads and resources.

1.3 Low-frequency methods

The fundamental questions related to the existence and uniqueness of solutions to the
Helmholtz problems were solved by the end of the 1950’s, these results accomplished by
several authors [63, 31] underly the most basic theories for the developments of numerical
analysis and methods in acoustical domain. Because of that the general analytical solu-
tions [98, 96, 20, 59] for wave problems are always limited to the idealized geometries and
homogeneous domains, we have to develop much more advantageous and flexible methods to
predict the dynamic field solutions in problems involving heterogeneous materials, complex
geometries and different kinds of nonlinearities.

The most widely adopted numerical methods for simulating low-frequency waves belong to
the Finite Element Method (FEM) and the Boundary Element Method (BEM). Both methods
use very dense partitioning mesh and small elements to discretize the dynamic field variables.
So basically, they share both the specific advantages and disadvantages of the element-based
approach. But they also possess different capabilities and properties for modeling various
kinds of acoustical problems. In the following, we will discuss these principles and properties
in more detail.

1.3.1 Finite Element Method (FEM)

The development of FEM for time-harmonic wave problems governed by the reduced wave
equation (Helmholtz equation), have been constantly regarded as an active and important
research area for almost 50 years. Initial applications of Finite Element Methods on interior
problems with complex geometries including direct and modal coupling of structural acous-
tic systems for forced vibration analysis, frequency response of acoustic enclosures, and
waveguides [49, 33, 52, 99, 106, 128]. Considering that the FEM is based on a discretization
of the entire problem domain into large but finite number of small elements, it has no ability
to inherently handle unbounded problems. As a solution, an artificial boundary around the
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region of interest have to be introduced to truncate the unbounded problem into an equivalent
bounded problem. Different techniques are then required to reduce spurious reflection of
waves at the truncation boundary to a level below that of the discretization error. There
exists three main strategies to solve this problem [119]: absorbing boundary conditions
[13, 56], infinite elements [16] and absorbing layers [14]. Review papers on the broader
subject of absorbing schemes include those of [51, 55, 120]. Although the introduction for
the unbounded field will exert some additional complexities on the simulating process, the
FEM has a lot of numerical advantages which can make it an efficient technique:

• The system matrix is composed of a real and sparse mass and stiffness matrix, and
additionally a damping matrix which in some cases shares the same properties. In
the case of uncoupled acoustic problems, the matrices are also generally symmetric.
Moreover, the matrices are mostly frequency-independent, saving time in system
construction. Besides, the construction of those matrices only requires evaluation of
simple integrals involving polynomial functions. These advantageous properties allow
for an easy and fast construction of the system matrices. The specific matrix structure
can also be exploited in highly optimized solvers to yield a fast solution of the FE
system.

• The FE method was developed with the aim of discretizing geometrically complex
structures. The necessary use of a large number of small elements allows to repre-
sent any arbitrary geometry without particular effort, thus giving the method a great
geometrical flexibility.

The good performance and flexibility of the FEM make it a popular numerical technique,
especially, for low-frequency bounded problems. However, it also suffers from some inherent
shortcomings when we aim at solving higher frequencies and unbounded problems:

• The use of simple low-order polynomial shape functions could lead to the substantial
approximation errors. We can find extensive error analysis with regards to this topic
and two main types of error are indicated in the work of [21, 69], the first type is
Interpolation errors resulting from the fact that the exact dynamic field is inevitably
different from the approximating field which usually consists of piecewise polynomials.
The second type is known as the Pollution errors or phase errors resulting from the
over- or underestimation (depending on the FE formulation) of the physical wavelength
by the FE model. The pollution effect is related to the loss of stability of the Helmholtz
operator at large wave numbers. This results in a frequency shift in the calculated
results with respect to the exact solution of the problem.
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• The FEM is not capable of inherently dealing with unbounded problems. In order
to use the FEM on unbounded domains, an artificial surface have to be introduced,
on which some specific boundary conditions are applied to prevent spurious wave
reflections. The application of the these boundary techniques presents an additional
burden. Moreover, most of those techniques yield different matrix properties to
the standard FEM, rendering the system complex, and additionally resulting in a
possible loss of the sparse or symmetric characteristics, deteriorating the performance
of dedicated solvers.

1.3.2 Boundary Element Method (BEM)

As another popular element-based technique for solving acoustic problems, BEM [22] has
the ability to model unbounded problems without the need for considering the artificial
truncation or extra simulating process because the problem is reduced to a formulation
depending merely on the boundary. The BEM has been used to solve exterior acoustic
problems for many years [32, 92, 118]. To be more specific, the assets of the BEM are:

• Thanks to the boundary integral formulation, BEM enjoys the popularity when it
comes to solve wave problems for unbounded homogeneous media [26, 29, 30, 83,
127]. It only requires the discretization of the boundary of the region of interest and
automatically satisfies the radiation condition at infinity [115].

• Although the assembled system matrices in the finite element formulation can be
evaluated very easily due to their sparse structure, the numerical restriction arising
from tremendous number of unknowns in FEM will still hamper the application of
FEM in many cases. In contrast, BEM for the Helmholtz problems benefit from the
advantage of one dimension fewer than FEM (e.g. only a 2D mesh for a 3D problem),
and BEM model generates consistently smaller system matrices involving much less
degrees of freedom.

• The boundary of the domain is discretized using elements which is analogous to the
finite elements. Also for the BEM, the elements have to be small enough in order to
satisfy the necessary accuracy of simulation results. Therefore, the BE mesh is able to
model any geometrical domain of the model without additional procedures, leading to
a robust and flexible method.

The above-mentioned properties make BEM a competitive and efficient method when dealing
with unbounded wave problems. However, the BEM also has its drawbacks:
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• Even though the system matrices of BEM are normally much smaller than the coun-
terpart of FEM, they are fully populated, non symmetric and contain complex entries
in most cases. These disadvantageous properties severely limit the applicability of
optimised solvers.

• BEM in acoustics is based on the use of boundary integral equations (BIE) which are
known to suffer from non-uniqueness difficulties at certain characteristic frequencies
(or wavenumbers) for unbounded problems, and lead to a possible loss of accuracy
around these frequencies. Special treatments can be made to mitigate this issue, but at
the cost of more computational load and lower efficiency.

• BEM is not suitable for dealing with wave propagation in heterogeneous media.

1.4 Medium and high-frequency deterministic methods

Through the above discussion concerned with the disadvantages of FEM and BEM, we are
aware of the fact that classical low-frequency methods are not sufficient enough to reach
a good resolution of short wave problems due to the approximation and pollution errors.
As a consequence, a huge amount of degrees of freedom would be required, if we want
to ensure a certain level of accuracy. Let us consider a high frequency scattering problem
at 1133 Hz from a cubic shaped obstacle with a lateral surface of 0.24 m × 0.24 m, the
wavelength is 0.03m in the air (with c = 340 m/s). If we adopt a discretization level of
ten nodes per wavelength to approximate the dynamic field, then at least 48 nodes along
each side of the cube are needed, indicating that around 14000 finite elements are necessary
on the surface of the cube. In this case, even though we could afford the high demand of
computing resources such as CPU and memory and use an efficient iterative solver for high
frequency scattering [85], the dispersion error problem would be largely accumulated during
the approximation process in FEM [69], thus, leading to unreliable results and uncertainty
analysis.

To overcome these shortcomings of conventional FEM, new deterministic prediction tech-
niques have been developed in recent years through the process of expanding the dynamic
field solution with wave functions that capture the oscillating character of the waves. For
the Helmholtz equation, such wave functions generally take the form of plane, circular or
spherical waves. These developments have given rise to different numerical methods which
allowed to tackle medium and high frequency problems. This includes:

• Partition of Unity Finite Element Method (PUFEM),
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• Wave-Based Method (WBM),

• Variational Theory of Complex Rays (VTCR),

• Ultra Weak Variational Formulation (UWVF).

1.4.1 PUFEM

PUFEM can be classified into the category of the meshless methods because it possesses
the ability to include apriori knowledge about the local behavior of the solution into the
finite element space, underlying the major difference between traditional finite element
method and PUFEM. With this property, PUFEM possesses the overwhelming advantage
over the traditional FEM in terms of the computational cost, the complexity of the resulting
numerical model and the adaptivity of the finite element space when handling medium and
high frequency problems. The concept of PUFEM was firstly proposed by Melenk in his
PhD thesis "On Generalized Finite Element Methods" [88] in which the mathematical back-
ground related to this technique was introduced and explained. Melenk and Babuška further
extended this work into two most fundamental papers of PUFEM [90, 9] where a proof of
convergence was given and some numerical tests were illustrated. Similar to their work,
Mayer and Mandel [86] proposed a finite ray element method to solve the Helmholtz equation.

Laghrouche et al. [77, 78] took advantage of the PUFEM to solve wave scattering and
diffraction problems in 2D. The finite element space in their model was approximated and
expanded through a set of plane wave basis with carefully chosen propagation directions. The
method was implemented for the purpose of solving several short wave problems, showing a
great reduction of degrees of freedom compared with the traditional FEM. The application of
the method was further extended to 3D problems by Laghrouche et al. [79] and Perrey-Debain
et al. [105]. In their work, a 3D plane wave basis finite element model was developed and
validated for the specific problem of a incident plane wave scattered by a rigid sphere. Later,
the method of PUFEM was further developed to cope with more complex problems in which
the wave speed is discontinuous [80].

Kacimi and Laghrouche [71, 73] studied both the L2 error and conditioning behavior of the
PUFEM with respect to the mesh size, frequency and the number of approximating plane
waves. Mohamed et al. [93] pointed out the influence of the geometry on the numerical
errors, and showed that the conjugated formulation performs better than the unconjugated one
when odd numbers of plane waves are considered in the basis. Laghrouche and Mohamed
[81] investigated the convergence behavior of PUFEM, and their analysis showed that both
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h-refinement (i.e. by reducing the size of the mesh grid) and q-refinement (i.e. by increasing
the number of approximating plane waves) lead to fast convergence rates. In this regard, the
q-refinement was shown to perform better.

A new PUFEM model for solving acoustic propagation problems in non-uniform potential
flows was proposed by Gamallo and Astley [47]. They achieved this purpose by enriching
the solution space with plane waves in which the wavenumber is a function of the Mach
number. The results showed the good performance of the method. In their second paper [91],
the Partition of Unity Method was coupled to infinite elements based on the Astley–Leis
conjugated formulation to deal with convected wave propagation in axisymmetric unbounded
domains. Two specific applications concerning propagation in ducts and the radiation of
a dipole have been analyzed in order to validate and show the advantages of the proposed
method compared to classical FEM discretization.

1.4.2 Wave Based Method

The Wave-Based Method (WBM) was put forward by Desmet in his PhD dissertation [39]
as an indirect Trefftz method. It is a deterministic prediction technique to solve steady-
state dynamic problems and has the ability to handle the frequency limitations problems
encountered in the traditional element-based prediction method. It has been successfully
applied for acoustic [57, 15], equivalent fluid [82], uncoupled elastic [121, 122] and fully
coupled vibro-acoustic problems [108, 107]. The fundamental theory of this approach relies
on using a weighted sum of wave functions which are exact solutions of the governing
partial differential equations, to approximate the dynamic field variables. This approach
results in a smaller system of equations and enjoys a higher convergence rate and lower
computational loads in comparison to conventional finite element prediction techniques. The
disadvantage of the method becomes evident when complex geometrical features are in-
volved. The geometrical complexity has to be moderate to obtain efficient solutions, because
otherwise a subdivision into a large number of convex sub-domains is required or may even
be impossible for some configurations. We can cite two recently developed approaches aimed
to relax these limitations: a multi-level modeling framework allows the WBM to efficiently
tackle configurations with complicated multiple scatterers or inclusions [48, 50] and a hybrid
FE-WBM formulation was developed to handle complicated domains [49].

Deckers et al. [37] investigated the vibro-acoustic behavior of poroelastic materials by
formulating the material as boundary value problems based on the Biot’s theory. Exact
solutions of the three coupled waves supported by Biot’s equations are adopted as the basis
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functions in the solution expansion process to approximate the wave field. As a result, more
computationally efficient solutions of the Biot’s equations can be achieved. Considering the
limitation of the WBM in terms of geometry, Bert Jonckheere et al. [70] developed an hybrid
simulation technique for coupled structural acoustic analysis. The idea of this technique is to
apply a wave based model for the acoustic cavity while using a direct or modally reduced
FEM model for the structural part, so that the whole hybrid model can benefit from the
computational efficiency of the WBM, and at the same time, be capable of taking many
more complex geometries into account. The authors showed that this hybrid method can be
regarded as a powerful tool for analyzing structural-acoustic systems in the mid frequency
range. WBM was also further developed for the analysis of time-harmonic three-dimensional
interior acoustic problems by Vergote et al. [123]. Numerical tests showed computational
efficiency for simulating acoustic waves in both damped and undamped cavities. Also, an
empirically derived general guideline for determining the required number of wave based
approximation functions was presented.

1.4.3 Variational Theory of Complex Rays

The Variational Theory of Complex Rays (VTCR) was introduced in Ladevèze [75] which is
designed to calculate the vibrational response of structures in the medium-frequency range.
The capability of this strategy has already been demonstrated in several works, including
3-D plate assemblies in [113], for plates with heterogeneities in [76] and for shells in [111].
Its extensions to acoustics can be found in reference [112]. The VTRC relies on a special
weak formulation of the problem which makes the approximations within the substructures
a priori independent of one another. Thereby, any type of wave function can be used in a
substructure provided that it satisfies the governing equations. This gives the approach great
flexibility and makes it very efficient. All the wave directions are taken into account and their
amplitudes become the new unknowns of the problem. This method leads to a small system
of equations which, contrary to element-based methods, does not result from a refined spatial
discretization.

1.4.4 Ultra Weak Variational Formulation

The original concept of Ultra Weak Variational Formulation (UWVF) was introduced in the
1990’s by Cessenat and Després in [23, 24]. Since then it has received remarkable attention
and has been applied to numerous PDEs and BVPs. The first basic idea of UWVF is to
divide the domain of interest into a set of sub-domain or elements, of which the inter-element
continuity is imposed through a modified variational formulation applied on the boundary



10 Introduction

interface between two sub-domains, yielding a weak impedance-type continuity. Second,
alike to the former strategies, UWVF incorporates the apriori analytical solutions of the
considered PDEs into its trial functions. Later on, UWVF was regarded as an unusual version
of the standard upwind discontinuous Galerkin (DG) method [66].

It has been proposed as an effective method for solving Helmholtz problems with high
wavenumber. Huttunen et al. [68] considered the computational aspects of the ultra-weak
variational formulation for the inhomogeneous Helmholtz problem. They introduced a
method to improve the UWVF scheme and compare iterative solvers for the resulting linear
system, they also considered a nonuniform number of basis functions per element to improve
the conditioning of the resulting matrix system. Other papers investigated several relevant
computational aspects of the UWVF: [65] showed how to implement the PML in the UWVF
to accurately approximate physically unbounded problems and discuss the parallelization of
the UWVF, the comparison with other wave-based schemes (e.g. PUFEM and least squares)
are conducted in the references [45, 46, 64]. Furthermore, the UWVF has been used to couple
Trefftz and polynomial trial spaces on different elements in [94], this is a very promising
direction showing that the method can be employed to tackle realistic problems. Finally,
three-dimensional numerical simulations are performed in [67] to examine the feasibility of
the UWVF for simulating wave propagation and scattering in inhomogeneous media with
complex structures.

1.5 The development of Exact Integration Scheme (EIS)

The above-introduced wave-based prediction techniques always accompany the highly os-
cillatory integrals, which renders the numerical calculation of the matrix coefficients very
challenging. High computational cost will emerge if we follow conventional numerical inte-
gration using high order quadrature schemes such as the classical Gauss-Legendre quadrature.
The root cause lies in the fact that too many integration points will be involved in the process
of computing the system matrices. For instance, up to 120 by 120 integration points were
used in the work [78] to evaluate element matrices when solving a wave scattering problem
in 2D. Thus, a nature extension in 3D would involve approximately 1203 = 1, 728, 000
integration points per finite element! To mitigate this issue, the exact integration schemes
have been proposed which are capable of largely reducing the computational cost.

Sugimoto et al. [117] used a semi-analytical approach to integrate the oscillatory func-
tions in a straight edged quadrilateral finite element. Ortiz and Sanchez [101] used triangular
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elements and performed a coordinate transformation by rotating the local coordinate system
so that the oscillatory kernel varies only in a singe direction. In another approach, Gordon
[54] used the divergence theorem to integrate exactly an oscillatory function over a polygon.
This approach reduces the surface integral to a line integral over the polygon boundary, which
can in turn be evaluated at the vertices over the polygon edges provided that they are straight
lines. Kacimi and Laghrouche [72] developed a similar explicit closed-form solution for
two-dimensional wave-based integrals The fundamental theorem behind their scheme is to
take most advantage of the Green’s theorem to reduce the integration dimensions. It was
shown that the proposed integration scheme allows to evaluate accurately the entries of the
system matrix with drastic reduction of the computational time. Similar to their work, a set
of closed-form solutions for the integrals involving product of polynomial and exponential
functions in two and three dimensions was proposed by Gabard [43]. These results apply
to arbitrary polygons in two dimensions, and for arbitrary polygonal surfaces or polyhedral
volumes. Quadrature methods are therefore not required for this class of integrals that can be
evaluated quickly and exactly.

1.6 Overview of this thesis

In Chapter I, we have surveyed and presented the background and significance of waves, and
reviewed the prior work in the field of numerical simulation. Advanced numerical schemes
for solving short wave problem have been discussed.

In Chapter II, we present the fundamental concept of the PUFEM and introduce the ba-
sic PUFEM formulation for the acoustical wave propagation problem in a bounded domain.
Also, the numerical implementation of the plane wave enrichment in the finite element model
is explained in detail.

In Chapter III, we focus on the computation of sound fields in two dimensions using the
PUFEM technique. The heavy computational cost resulting from numerical quadrature of
non-polynomial shape functions force us to develop an Exact Integration Scheme (EIS) for
2D problems, all necessary details are presented and explained.

In Chapter IV, the full development of the PUFEM for 3D acoustical problems is pre-
sented. Several critical aspects of the method are investigated in detail.

In Chapter V, we concentrate on the application of the PUFEM element combined with
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EIS for the analysis of interior sound field problems where absorbers are present. In par-
ticular, the PUFEM is extended to simulate the propagation of acoustic waves in a porous
material.

In Chapter VI, the main conclusions and contributions of this dissertation and a discus-
sion of potential avenues for future research are presented.



Chapter 2

The PUFEM applied to the Helmholtz
equation

The aim of this chapter is to present the fundamental concept of the PUFEM and introduce
the basic PUFEM formulation for the acoustical wave propagation problem in a bounded
domain. Also, the numerical implementation of the plane wave enrichment in the finite el-
ement model is explained in detail. The whole structure of this chapter is organized as follows:

In Section 2.1, we present the linear wave equation and the boundary conditions as well
as the associated weak formulation. Section 2.2 briefly recaps the classical finite element
discretization process. Section 2.3 is devoted to illustrate the plane wave enrichment process,
and the selection methods with regard to the wave directions for 2D and 3D problems. In
Section 2.4, we investigate the inherent properties of the PUFEM coefficient matrices. Some
other basis functions for PUFEM are also discussed in Section 2.5. Finally, we draw some
conclusions in Section 2.6.

2.1 Variational formulation and boundary conditions

The basic formulations of linear time-harmonic acoustics are first derived through the use
of two fundamental laws of the theory of continuum mechanics. They are, respectively, the
principle of conservation of mass and the principle of balance of momentum. Under the
assumptions that we are only dealing with small perturbations of ambient quantities, and
only ideal gases with constant temperature are considered to ensure an adiabatic process, we
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can easily derive the classical wave equation for the pressure p:

∆p − 1
c2

∂2p

∂t2 = 0, (2.1)

where, c is the sound wave speed in the medium, which is constant. This wave equation
is valid for the sound pressure but it may also apply to the velocity potential. For the time
harmonic wave oscillation problem, where time-dependence p(x, t) = p(x)e−iωt is assumed,
the homogeneous Helmholtz equation for the acoustic pressure in a bounded domain Ω thus
becomes

∆p + κ2p = 0 in Ω, (2.2)

where κ = ω
c

is the wavenumber and ω is the angular frequency. In order to get a solution,
it’s imperative to provide the boundary conditions for this partial differential equation. We
can write different types of local boundary condition in a compact form as follows

(1 + Q) ∂p

∂n
+ (Q − 1)iκp = g on Γ. (2.3)

Apparently, the Dirichlet boundary is recovered when Q = −1, and the Neumann boundary
corresponds to Q = 1. Here, g denotes an imposed source term on the boundary. This
boundary condition equation associated with the Helmholtz equation allow us to define a
unique sound pressure field p (except when |Q| = 1, to avoid cavity’s resonant frequencies).
Applying the standard weighted residual scheme to the governing equation, we can write

Z

Ω
δp(∆p + κ2p)dΩ = 0, (2.4)

where δp stands for the weighting function. It’s worth mentioning that the choice of this
function is not unique. Among them, the Galerkin method which is probably the most com-
mon approach adopted in the finite element community, consists in choosing the weighting
function to be identical to the trial basis function. The reason of its popularity among others
stems from the fact that this selection allows the fast construction of a symmetric linear
system.

By applying integration by parts, we can reduce the order of derivative from Laplace operator
to the calculation of gradients for both weighting and trial functions. Consequently, the weak
form of the Helmholtz equation becomes

Z

Ω

�
∇p · ∇(δp) − κ2pδp

�
dΩ −

Z

Γ

∂p

∂n
δpdΓ = 0, (2.5)
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Fig. 2.1 General acoustic domain with different types of boundary condition.

where Γ is the boundary of Ω. The second integral term contains the boundary conditions
expressed in (2.3). For the sake of illustration, Figure 2.1 shows an example of an interior
acoustic problem with a closed boundary Γ = Γp + Γv + ΓZ surrounding the fluid domain Ω,
in which we let Γp represent the Dirichlet boundary, and Γv and ΓZ represent the Neumann
and Robin type boundary conditions, respectively. In the following, in order to simplify the
presentation, we shall consider a particular Robin type boundary condition with Q = 0 in
(2.3), which gives rise to

∂p

∂n
− iκp = g on Γ. (2.6)

The associated weak form of the Helmholtz equation to be solved becomes
Z

Ω

�
∇p · ∇(δp) − κ2pδp

�
dΩ − iκ

Z

Γ
δp · p dΓ −

Z

Γ
δp · g dΓ = 0. (2.7)

Note that the integrand terms appearing in the above equation have to satisfy a certain
requirements of continuity (smoothness) across interfaces between elements (conventionally
termed as compatibility condition). This indicates that the selected trial and test functions p

and δp of the field variable must have the derivatives up to the order n − 1 inside and between
the elements, where n is the highest derivative of the integrand terms involved in the weak
formulation. In other words, the trial functions p must have the continuity of Cn−1 between
interconnected elements, and also be Cn piecewise differentiable inside each element. Under
this circumstance, we can say that the discrete function in the above weak form equation
should be continuous everywhere.

Besides, boundary condition (2.5) becomes more complicated when we deal with the numer-
ical problems involving wave propagation in porous materials. Special treatments must be
followed in order to satisfy the continuity conditions between the two domains. This shall be
explained and discussed in Chapter 5.
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2.2 Classical finite element discretization

The enriched finite element encountered in the context of PUFEM can be viewed as an
generalization or extension of the traditional finite element method, so in this section we
briefly review the classical process of FE discretization. The core idea of the finite element
method is to partition the domain of interest into a set of elements, then to approximate the
physical field by a discrete method to establish the finite element space. The trial functions
which are largely used in the finite element community generally consist of piecewise
polynomials ranging from low order functions (e.g., hat function shown in Figure 2.2) to
high order functions (e.g., spline function). The convergence rate greatly depends on the
choice of these trial functions.

Fig. 2.2 Low order hat function is chosen to be the trial function for 1D problem.

The whole sound field domain is partitioned as Ω = SNel
e=1 Ωe, in which Nel denotes the

number of partitioned element of the whole domain, and the sound pressure field in each
element Ωe in the computational domain can be approximated in the form of

p(x) =
nX

j=1
Nj(x)pj = N⊤p, (2.8)

in which Nj is the classical Lagrangian shape function with regard to the jth node of the
element, and all shape functions are linearly independent. Here, n stands for the number of
nodes, for example, n = 3 refers to the classical triangular element for 2D problems, and
pj = p(xj) represents the value of the pressure at node position xj . As a consequence, if
we substitute the interpolation (2.8) for the test and trial functions in equation (2.7), we can
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finally arrive at a finite system of equations:

NelX

e=1

Z

Ωe



∇Ni(x) · ∇




nX

j=1
Nj(x)pj


 − κ2Ni(x)




nX

j=1
Nj(x)pj






 dΩe(x)

= iκ
Z

Γ
Ni(x)




nX

j=1
Nj(x)pj


 dΓ(x) +

Z

Γ
Ni(x)g(x)dΓ(x).

(2.9)

For the purpose of clarity, we introduce element mass matrix Me with entries me
ij given by

me
ij =

Z

Ωe

Ni(x)Nj(x)dΩe(x), (2.10)

the element stiffness matrix Ke with entries ke
ij given by

ke
ij =

Z

Ωe

∇Ni(x) · ∇Nj(x)dΩe(x), (2.11)

and the element matrix Ce with entries ce
ij given by the boundary terms is

ce
ij =

Z

Γe

Ni(x)Nj(x)dΓe(x). (2.12)

Then the load vector be is given by

be
i =

Z

Γe

Ni(x)g(x)dΓe(x). (2.13)

Consequently, through the assembly of all the contributions from element matrices, the
system of equations can be written in the following matrix form

[K − κ2M + iκC]x = b. (2.14)

Here, the unknown vector x contains the nodal values for the acoustic pressure. The above
equations system can be further written in a more compact form

Ax = b. (2.15)

The accuracy of FEM results depends not only on the discretization level which refers to the
refinement of the mesh, but also on the order of polynomial functions used to approximate
the field variables. In the context of FEM, there exists two primary approaches to improve the
accuracy of simulation results. On one hand, we can use the refinement of the computational
mesh, which can be briefed as h-refinement. On the other hand, it is also feasible to meet the
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requirement of the accuracy level through the enhancement of the order n of approximating
polynomials (sometimes called p-refinement). The performances of both strategies, or the two
combined (hp-refinement) can be found in the work of Babuška and Guo [7] and Melenk [89].

However, when it comes to medium and high frequency problems, the usually adopted
‘ten nodes rule per wavelength’ becomes insufficient to maintain the same accuracy level.
This phenomenon which is linked to the indefiniteness of the Helmholtz operator and origi-
nally derived by Garding’s inequality [12], is also known as pollution effect in [38, 8]. In
essence, this comes from the phase difference between the simulated wave and the exact
wave with increasing wavenumber κ, resulting in that the wavenumber of the FEM solution
becomes different from the counterpart of the exact solution. It has been proved by Babuška
and Sauter [10] that the pollution error cannot be avoided in two and three dimensions when
classical FEM is employed. Due to this inherent numerical shortcoming, we have to use
some other advanced numerical prediction techniques not influenced by the pollution effect.
PUFEM is one candidate among them.

2.3 Plane wave enrichment for PUFEM

As we introduced in Chapter one, the PUFEM is recognized as a general approach for
enhancing the numerical solution of partial differential equations. It provides a framework
for incorporating part of the analytical solution of the PDEs in the shape function. Plane
waves are usually selected to be the expansion basis for the sake of their convenience. More
precisely, the starting point of PUFEM is to consider, for each node j, the following plane
wave expansion

Pj(x) =
QjX

q=1
Ajq exp(iκdjq · (x − xj)), (2.16)

where, Pj is a function of x and consists of a set of Qj plane wave directions. In order
to better explain this plane wave enrichment process of PUFEM, Figure 2.3 depicts an
two-dimensional enriched finite element of PUFEM where four plane wave directions are
considered at each node of this element. It can be seen that they are indicated by four red
arrows, namely Qj = 4. Moreover, Ajq stands for the amplitude of each plane wave attached
to the jth node, which is now viewed as the new unknown of the equations system. And djq

denotes the wave directions of the plane wave basis applied on the jth node of the enriched
element. It’s also worth noting that the node xj appears in (2.16) in order to:
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• ensure that the nodal values can be recovered simply as

Pj(xj) =
QjX

q=1
Ajq, (2.17)

• avoid the round-off error due to the computation of the exponential function when the
wavenumber κ is complex.

The fully discrete sound pressure field of the PUFEM is found by replacing the nodal value
pj in (2.8), which yields

p(x) =
nX

j=1
NjPj(x). (2.18)

Here, particular attention must be paid to the interpolation functions Nj . They are usually
chosen to be of very low order in PUFEM due to the fact that the exponential wave functions
are already sufficient to capture the oscillating behavior of the wave field. So in this work,
we will focus on the lowest order: n = 3 in 2D and n = 4 for 3D problems.

Fig. 2.3 Enriched triangle finite element with 4 plane waves attached to each node.

2.3.1 Selection of the plane waves in 2D

For 2D numerical models, the distribution of the plane wave directions is regularly based on
the equal spacing of points on the unit circle, as shown in Figure 2.4. So the wave directions
can be formally expressed as djq = (cos(θq), sin(θq)), where

θq = 2πq

Qj

and q = 1, ..., Qj. (2.19)
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It’s worth mentioning again that, in classical FEM, the discretization level of finite element
space is determined by the h or p-refinement associated with mesh partitioning. However,
the discretization level for all wave based methods is mainly dependent on the number of
plane wave directions Qj . For instance, the triangular element in the FEM possesses three
degrees of freedom (dof), while the enriched finite element in PUFEM, shown in Figure
2.3, has 3 × 4 = 12 number of unknowns. Since we know that at least 10 nodal points per
wavelength are required in conventional FEM, it is necessary to set up a similar criteria for
the purpose of evaluating the number Qj in the plane wave enrichment.

h

Fig. 2.4 Distribution of plane wave directions in a 2D mesh.

This parameter determines the size and structure of the system matrix which also exert the
direct influence on the overall computational costs. In this regard, some research work has
been carried out by several authors. Huttunen et al. [68, 64] used nonuniform plane wave
basis functions to enhance the applicability of the UWVF with varying element sizes. Vergote
et al. [123] proposed an empirical formulation for selecting the number of bending wave
functions for plate vibration problems. Hence, we can make the conclusion that the number
of plane waves depends mainly on the size of the PUFEM element and the wave frequency.
The criteria taken from [64] is adopted to provide a good estimate in 2D:

Qj = round[κh + C(κh)1/3]. (2.20)

Here, h is taken as the longest edge connected to node j, which is specified in Figure 2.4.
The constant C can be regarded as a coefficient that usually lies in the interval C ∈ [2, 20] as
indicated in [27]. The value of this coefficient can be adjusted according to the configuration
and the expected accuracy that we want to achieve. It has been observed that this number
Qj grows mildly with frequency. For 3D problems, it is found that the choice of number of
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plane waves still relies on the wavenumber and the element size as in (2.20), except that the
selection criteria for 3D problems is different, and we will address this problem in detail in
Chapter 4.

2.3.2 Selection of plane waves in 3D

For 3D problems, the 3-node triangular element becomes a 4-node volume element and
the boundary Γ in (2.5) is made of triangular surfaces. It turns out that the wave directions
djq in (2.16) are no longer equally distributed over a unit circle (Figure 2.4), but rather
spaced uniformly over a spherical surface, see Figure 2.5. Although this purpose can be
achieved through several methods in [41, 53, 95, 114], the involvement of a large number of
plane wave directions still poses a great challenge. In this work, we take the Coulomb force
method developed by Peake et al. [103] as a solution, it is based on the use of an explicit
time stepping scheme to converge to a static equilibrium state for a set of charged particles
on a unit spherical surface. In the following, the basic theory about Coulomb force method is
introduced, and a dedicated program has been realized in Matlab.

Let us consider a set of particles randomly located on a sphere of unit radius at positions
indicated by vectors Ui, i = 1, 2, ..., Q. Each of these particles has unit mass and unit
electrical charge so that they repel each other with Coulomb forces varying like 1/ |r2|,
where rij = Ui − Uj . The initial setting for the position vectors of all the particles is set
as U 0

i , the superscript denotes the initial time step when the force begins to act on. The
Coulomb force vector Fi at time step t is, therefore, given by

Fig. 2.5 Distribution of plane wave directions in 3D.
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F t
i = A

QX

j=1

(1 − δij) × rij

|rij|3
, (2.21)

where A is a scalar multiplier and δij is the Kronecker delta which means the force applied on
one particle equals to the sum of all the force components resulting from the other particles
except for itself. Then, we need to get the vector f t

i which is taken as the projection vector
of resultant force F t

i on the surface of the sphere and can be expressed as

f t
i = (F t

i × U t
i ) × U t

i . (2.22)

Next, the acceleration Ü t
i of each particle is equal to the second derivative of displacement

and we have
Ü t

i = f t
i − CU̇ t

i , (2.23)

where, C represents an equivalent viscous damping coefficient (which avoids numerical
oscillations) ranging from 1 to 50, and U̇ t

i is the velocity of the particle. In the time-stepping
scheme, we have to get the velocity and position at the subsequent time t + ∆t, both of them
can be obtained through

U̇ t+∆t
i = U̇ t

i + Ü t
i ∆t, (2.24)

Û t+∆t
i = U t

i + U̇ t
i ∆t, (2.25)

U t+∆t
i = Û t+∆t

iÛ t+∆t
i


, (2.26)

where (2.26) corresponds to the normalization of the position vector to ensure that the end
points always lies on the spherical surface. Next, a stopping criteria among severals needs to
be defined properly to make sure the final result converges. Herein, we use the criteria that
once the maximum fluctuation of the electron position vector U t+∆t

i is smaller than the preset
tolerance ϵ = 10−4, we are sure that this time-stepping scheme has converged successfully.
Alternatively, the second appropriate option is to assess the evolution of minimum angle ρ

between two vectors Ui and Uj , which can be computed from

ρ = min(cos−1 Ui · Uj

∥Ui∥ ∥Uj∥
), i = 1, ..., Q and j = 1, ..., Q. (2.27)

Getting the maximum value of minimum angle ρ permits us to obtain the uniform distribution
of electron particles surrounding the spherical surface. Furthermore, we must pay attention to
the suitable selection of parameters A, C and ∆t. They should be selected properly according
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Fig. 2.6 Distribution of wave directions using Coulomb force method: Q = 20 plane wave
directions (left), Q = 200 plane wave directions (right).

to the number of directions Q involved in the PUFEM discretization to avoid excessive time
steps or even non-convergence. Numerical experiments show that bigger time steps could
be used when there exists a large number of plane wave directions if both A, C are fixed.
For example, if we set A = 100, C = 30 and 500 time steps, then it was found that ∆t is
required to be less than 3 × 10−3 when 1000 < Q < 1500, whereas ∆t is only required to be
less than 3 × 10−2 when 5 < Q < 20. Figure 2.6 shows different number of wave directions
using the Coulomb force distribution method.

Compared to the discretized cube method depicted in Figure 2.7, the use of Coulomb
force method allows to obtain uniformly spaced directions, and at the same time, avoid
the possibility of a group of plane waves gathering together in a preferred direction which
might deteriorate the stability of the PUFEM solution. Through dozens of numerical tests for
3D problems, it was verified that the numerical errors based on the same number of plane
waves are not severely influenced by the different distribution schemes. However, the major
advantage of Coulomb force method is that an arbitrary number of wave directions can be
assigned on each node, which renders the PUFEM method much more flexible.

2.4 PUFEM coefficient matrices

Since we have presented the weak formulation and the discretization procedure for the
conventional FEM, and introduced the concept of the enriched approximation finite element
space in PUFEM, we now proceed to derive the coefficient matrices. From (2.18), both trial
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and test functions are of the following form (we omit the presence of xj here):

p = Ni exp(iκd′ · x) and δp = Nj exp(iκd′′ · x), (2.28)

where Ni and Nj are the interpolation functions corresponding to the trial and test function,
respectively. Indices i and j refer to the node number of the element. Note that we denote by
d′ the directional vector of the trial function, it is one of the wave directions of the plane wave
basis with regard to node i as shown in (2.16). Similarly, d′′ stands for the wave directions
associated with the basis attached to node j. Substituting (2.28) in the weak form of the
governing Helmholtz equation (2.7), we arrive at PUFEM matrix coefficients which are of
the form:

Apum = − κ2(1 + d′ · d′′)
Z

Ωe

NiNjφ dΩ + iκd′′ ·
Z

Ωe

∇NiNjφ dΩ

+ iκd′ ·
Z

Ωe

∇NjNiφ dΩ +
Z

Ωe

∇Ni · ∇Njφ dΩ, (2.29)

where, we introduced

φ = exp(ikd · x) with k = κ|d′ + d′′| and d = d′ + d′′

|d′ + d′′| . (2.30)

Figure 2.8 (right) shows the typical pattern of the resulting system matrix, size of which
depends on the number of wave directions in the PUFEM basis. To be more specific, if
the classical low-order FEM matrices are real-valued, large, frequency independent and
sparsely populated with a banded structure, PUFEM is characterized by full block system
matrices which are always complex, frequency dependent and generally non-symmetric. The
system matrices of PUFEM model are much smaller than the counterpart of low-order FEM

Fig. 2.7 Distribution using the discretized cube method (taken from the reference [103]).
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Fig. 2.8 The coefficient system matrix for classical FEM (left) and PUFEM (right).

model for comparable problems. The properties of FEM allow for the reuse of the matrices
for different frequencies, leading to an efficient solution, except for some problems (e.g.
poroelastic materials featuring complex and frequency dependent properties). In this case,
the FE matrices, which are complex, have to be recalculated for each frequency, hampering
the efficient solution and also the applicability of modal reduction schemes. In contrast, for
PUFEM and all other wave-based approaches, the matrices need to be reconstructed for every
frequency of interests. Therefore, the computational performances of the PUFEM are not
influenced by the inclusion of localised or complex frequency dependent damping models.

2.5 Some other functions basis for PUFEM

For solving harmonic wave propagation problems, not only the plane wave basis can be
used in the enrichment procedure of the finite element space (see(2.16)), but also some
other options exist. For example, Bessel functions, Hankel functions, evanescent wave
basis functions and Fourier-based functions and so on. The imperative feature of those
basis functions is that they are supposed to be the solutions of the homogeneous Helmholtz
equation. The decision of which basis function should be used, in fact, depends strongly on
the different physical properties and geometries of the problem, as well as some consideration
for accuracy, efficiency and computational burden. Clearly, the plane wave basis enjoys
the biggest advantage that the integrals of system matrix can be evaluated analytically (this
will be shown and illustrated in detail in the next chapters), thus leading to the reduction
of numerical cost by eliminating the use of Gaussian quadrature procedures. We shall now
briefly present some other alternative PUFEM basis that exist in the literature.
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2.5.1 Bessel basis functions

Instead of expanding the nodal value of the pressure according to equation (2.16), this value
at each node j is expanded by introducing the Bessel function of the first kind and order l,
which is

Pj =
m−1X

l=0
AjlJl(κ|x − xj|)eilθ, (2.31)

where l is the order of the Bessel function, θ is the polar angle with regard to node xj .
Similarly, the Ajl corresponds to the amplitude of each radial wave. Herein, the advantages
of the Hankel basis over plane wave basis are summarized as follows:

Firstly, a Hankel basis allows greater flexibility than the plane wave basis, the traditional
plane wave basis is likely to become close to linearly dependent when a large number of
basis functions are used on each element, resulting in the system matrices becoming badly
conditioned. According to [61], the Bessel functions basis is less linearly dependent. Sec-
ondly, it can be adjusted to capture the singular behavior at corners where a mesh-refinement
is usually needed [35]. Thirdly, numerical tests show better performance in the far field of a
scattering problem and provides higher accuracy [81]. However, the corresponding integrals
for the Bessel basis in PUFEM must be calculated through quadrature methods, so that it
becomes much more time-consuming for medium and high frequency problems compared
to the plane wave basis. It’s suggested that in cases where the requirement for the accuracy
is not too high (say around 1%), the plane wave basis is generally a better choice for its
efficiency in comparison with Bessel functions.

2.5.2 Polynomials and trigonometric functions

In the work of Ham and Bathe [58], it was shown that the solution field can be discretized
with the usual Lagrangian functions augmented with trigonometric functions within the
elements. Rather than incorporating the specific wave propagation solutions into the finite
element approximation space, they propose to embed the general multiple wave patterns into
the solution space based on the fact that we often do not know a priori the wave pattern.
Therefore, using trigonometric functions seems to be a more systematic way of capturing the
unknown wave solutions. The typical solution variable for one-dimensional problems is [58]:

Pj =
nX

ℓ=1
Ajℓ

�
cos

�2π

λ
ℓx

�
+ sin

�2π

λ
ℓx

��
, (2.32)
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where, x denotes the coordinates at any point of the element, λ is the fundamental wavelength,
and n is a cutoff number. It can be seen that the nodal value is enriched by trigonometric
functions instead of a priori analytical solution to the wave equation. Here we considered
only one-dimensional problems, an important point is that their enrichment method can, in
principle, also be extended to three-dimensional, beam, plate, shell and general nonlinear
problems [58].

2.6 Concluding remarks

In this chapter, we have introduced the underlying concept of PUFEM and presented the
basic formulation for the acoustical wave propagation problem in a bounded domain. The
plane wave enrichment process of PUFEM variables has been illustrated in detail, which
incorporates part of the a priori analytical solutions of the physical problems. In addition, we
showed that the number of plane wave directions depends on the size of the PUFEM element
and the wave frequency both in 2D and 3D. The selection approaches for these plane waves
were also thoroughly explained. For 3D problems, we have investigated two distribution
schemes of plane wave directions which are the discretized cube method and the Coulomb
force method. It was shown that the latter allows to get uniformly spaced wave directions
and enables us to acquire an arbitrary number of plane waves attached to each node of the
PUFEM element.





Chapter 3

PUFEM for 2D acoustic waves

This chapter focuses on the computation of propagating sound fields in two dimensions
using the PUFEM technique. As it will be discussed, the heavy computational cost resulting
from numerical quadrature of non-polynomial shape functions poses a threshold in terms of
efficiency of the PUFEM. Thereby, an Exact Integration Scheme (EIS) for 2D problems is
presented and explained in this chapter with all necessary details. This procedure allows us
to significantly accelerate the computation of the system coefficient matrices and ease the
computational burden. Finally, a numerical model of practical interest is set up for validation
purpose. The efficiency of the numerical model developed in this chapter which combines
PUFEM and EIS together will be assessed.

3.1 The Exact Integration Scheme (EIS) in 2D

From the previous chapter, we know that the classical low-order FEM produces very sparse
matrices whereas PUFEM is characterized by full block matrices. Now, if we want to
tackle medium and high frequency problems using wave finite elements, one has to deal
with highly oscillatory integrals consisting of the product of polynomials and exponential
functions, see equation (2.29). In this context, efficient analytical integration methods have
been developed in the literatures [17, 116] for rectangular and triangular elements, and the
technique presented here follows a similar approach.

When the wavelength becomes much smaller than the dimension of the PUFEM element, a
large number of integration points have to be used in order to attain sufficient accuracy. For
the sake of illustration, the Gauss points required to integrate highly-oscillating functions
over a triangular element is depicted in Figure 3.1.
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Fig. 3.1 Gauss points needed to integrate a highly oscillating wave function.

The red points depicted in the above figure represent the Gauss-Legendre quadrature points
for two dimensional wave problems. The Gauss-Legendre integration over the triangular
domain can be implemented by using general Cartesian product rules [74, 105] as:

Z 1

0

Z ζ0

0
F (ζ1, ζ0)dζ1dζ0 ≈

n0X

i=1
w

(n0)
i t

(n0)
i

n1,iX

j=1
w

(n1,i)
j F (t(n0)

i t
(n1,i)
j , t

(n0)
i ), (3.1)

where ζ0 = ζ1 + ζ2 and F is the quantity to be integrated. The set

n
w

(n)
i ; t

(n)
i ; i = 1, ..., n

o

are the classical quadrature weights and abscissae obtained from the n-point Gauss-Legendre
formula on the interval [0, 1]. In order to get a homogeneous distribution of the integration
points over a triangular domain, n1,i is generally taken to be linearly varying with the ζ0-
coordinate following the relation n1,i = [αn0t

(n0)
i ] + β. In practice, α = 1 and β = 10 is

found to be adequate for numerical integration [105].

It is known that the computed results using PUFEM are highly sensitive to each entry
of the system matrix due to the ill-conditioned nature of the PUFEM matrix, as shown later.
In this context, the expected quadrature accuracy largely depends on: (1) the number of
Gauss points and (2) the wavenumber under consideration. As a consequence, we have to
inevitably consider the issue of heavy computational cost when standard quadrature methods
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Fig. 3.2 2D coordinates mapping system between real and local element space.

are employed for solving medium or high frequency wave problems.

Let us consider the geometry of the PUFEM element. For the implementation of EIS,
it must be ensured that there exists a linear mapping between the local space (ζ1, ζ2) and the
real space x = (x, y), as shown in Figure 3.2. With the adopted 2D linear shape functions
being N1 = 1 − ζ1 − ζ2, N2 = ζ1 and N3 = ζ2, the mapping system is, thus, given by

x = x1N1 + x2N2 + x3N3, (3.2)

where x1 = (x1, y1), x2 = (x2, y2) and x3 = (x3, y3) are the coordinates of the vertices of
the triangular element. The Jacobian matrix of the mapping can be simply expressed as

J =



∂x
∂ζ1

∂x
∂ζ2

∂y
∂ζ1

∂y
∂ζ2


 =


x2 − x1 x3 − x1

y2 − y1 y3 − y1


 = [e12 e13] ,

which allows us to write
dxdy = |det(J)|dζ1dζ2. (3.3)

Moreover, the inverse of the Jacobian matrix H = J−1 is a constant matrix and we can also
obtain the value of the gradients using the following identity (F is arbitrary here):

∇F = H∇ζF. (3.4)

Now, let us recall that the PUFEM coefficient matrices are obtained from equation (2.29).
Since the geometric mapping is linear and that shape functions Ni are also linear, some terms
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can be moved out of the integral which gives:

Apum = − κ2(1 + d′ · d′′)
Z

Ωe

NiNjφ dΩ + iκd′′ · ∇Ni

Z

Ωe

Njφ dΩ

+ iκd′ · ∇Nj

Z

Ωe

Niφ dΩ + ∇Ni · ∇Nj

Z

Ωe

φ dΩ. (3.5)

We can identify 3 different types of integral:

I2 =
Z

Ωe

NiNj φ dΩ, (3.6)

I1 =
Z

Ωe

Ni φ dΩ, (3.7)

I0 =
Z

Ωe

1 φ dΩ. (3.8)

Clearly, our objective is to develop an efficient 2D exact integration algorithm with respect to
above integrals, which can be written in a more general form

I =
Z

Ωe

F φ dΩ. (3.9)

In order to treat (3.9), the main idea is based on the important feature of the plane wave
function exp(ikd · x), which is denoted by φ and satisfies

∇φ = ikd · φ and ∆φ = −k2φ. (3.10)

With the help of the above properties, we are able to reduce the dimension of the integration
domain by applying the Green theorem. If we iterate this procedure, the linear integration
will be further reduced to closed-from expressions which involve no integration at all. Finally,
only the coordinate information with respect to the three nodes of the element are needed.
The first step is to apply the Green theorem iteratively on equation (3.9), so we can transfer
the surface integral over Ωe to its boundary Γ = ∂Ωe through the infinite series:

I = −
Z

Γ
(ϵF + ϵ2(d · ∇)F + ϵ3(d · ∇)2F + · · · ) d · n φ dΓ, (3.11)

where, ϵ is equal to i/k. In fact, only the first three terms are involved since the maximum
order of polynomial F appearing in (3.9) is 2. In order to get the analytical solutions to the
above integral, let us begin by considering the specific case where F = NiNj , this actually
corresponds to (3.6). Thereby, it can be rewritten as

I2 = −(ϵG0 + ϵ2G1 + ϵ3G2), (3.12)
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where, Gm (m = 0, 1, 2) corresponds to three integrals involving gradient operators of
different order, and can be summarized as

Gm =
Z

Γ
(d · ∇)mNiNj d · n φ dΓ, (3.13)

where, the derivative terms (d · ∇)mNiNj obey the following rules:

• for m = 1:
(d · ∇)NiNj = Ni(d · ∇)(Nj) + Nj(d · ∇)(Ni), (3.14)

• for m = 2:
(d · ∇)2NiNj = 2(d · ∇Ni)(d · ∇Nj). (3.15)

Then, equations (3.13), where m = 0, 1, 2, become

G0 =
Z

Γ
NiNj d · n φ dΓ, (3.16)

G1 = (d · ∇Ni)
Z

Γ
Nj d · n φ dΓ + (d · ∇Nj)

Z

Γ
Ni d · n φ dΓ, (3.17)

G2 = 2(d · ∇Ni)(d · ∇Nj)
Z

Γ
d · n φ dΓ. (3.18)

Three edge integrals are identified:
Z

Γ
NiNj d · n φ dΓ,

Z

Γ
Ni d · n φ dΓ,

Z

Γ
1 d · n φ dΓ. (3.19)

Now, we put Γ = Γ12 ∪ Γ23 ∪ Γ13, and the integrals have to be calculated along each edge of
the element. As an example, let us consider the case where i = 1, 2 and j = 1, 2 with respect
to the edge Γ12 (the other integrals can be easily obtained in the same way). So we arrive at
the following 6 line integrals:

D12(1) =
Z

Γ12
1 d · n φ dΓ,

D12(N2) =
Z

Γ12
N2 d · n φ dΓ,

D12(N1) =
Z

Γ12
N1 d · n φ dΓ,

D12(N1N2) =
Z

Γ12
N1N2 d · n φ dΓ,

D12(N2
1 ) =

Z

Γ12
N2

1 d · n φ dΓ,

D12(N2
2 ) =

Z

Γ12
N2

2 d · n φ dΓ.
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The analytical solution related to the above integrals can be calculated explicitly. After
calculation, we can get

D12(1) = 1
ik(d · e12)

d · n1 l12 (φ(x2) − φ(x1)), (3.20)

D12(N1) = 1
ik(d · e12)

(−d · n1 l12 (φ(x1) + D12(1))), (3.21)

D12(N2) = 1
ik(d · e12)

(d · n1 l12 (φ(x2) − D12(1))), (3.22)

D12(N1N2) = 1
ik(d · e12)

(2D12(N2) − D12(1)) (3.23)

D12(N2
2 ) = 1

ik(d · e12)
(d · n1 l12 (φ(x2) − 2D12(N2))), (3.24)

D12(N2
1 ) = D12(1) − 2D12(N2) + D12(N2

2 ), (3.25)

where, xi is the position vector of node i, and eij = xj − xi, and lij = |eij| . Furthermore,
we must take into account the particular case where d · eij = 0, this situation signifies that
the directional vector d, which corresponds to the sum of two plane wave directions, is
perpendicular to the edge of the triangular element. In this case, the analytical solution can
be easily obtained as follows:

D12(1) = d · n1l12(φ(x1)), (3.26)

D12(N1) = 1
2D12(1), (3.27)

D12(N2) = 1
2D12(1), (3.28)

D12(N1N2) = 1
6D12(1). (3.29)

Based on the same process, the analytical expressions of the integrals over the other two
edges Γ23 and Γ31 can be derived as well. Consequently, calculation of the exact integration
terms in (3.13) is, therefore, achieved. Following the same principle, we can calculate all
coefficients Gm appearing in (3.13).

Another particular care must be taken for the case where d = 0, which physically means
that two plane waves from the PUFEM basis functions happen to propagate totally opposite
to each other. In this case, it turns out that the exponential part of the integral in equation
(3.6) disappears and only polynomial function is left in the integral, which also can be easily
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computed. For instance:

I2 =
Z

Ωe

N1N2 dΩ = 1
24 |det(J)|. (3.30)

From a numerical point of view, the quantities d and d · eij are taken to be zero when their
Euclidean norm |d · eij| 6 ϵ and ∥d∥ 6 ϵ, with ϵ = 10−6. This Exact Integration Scheme
has been validated thanks to the software Maple. The efficiency of the PUFEM combined
with EIS is now shown in the next section.

3.2 Numerical examples

In this section, we aim at investigating the method via a simple numerical model taken
form reference [27]. Since the main performances of 2D PUFEM in terms of numerical
accuracy and data reduction have been widely studied and the related conclusions can be
found in previous works [90, 24, 1, 104], so this will not be the main topic here. The main
purpose of this part is, first, to validate the EIS combined with PUFEM. Secondly, to show
the computational efficiency (in terms of CPU time) compared to the Gaussian quadrature
method. At last, we will also conduct a brief discussion about the numerical performances
of PUFEM for solving a standing wave tube problem with porous material. The coupling
between porous and air domains and its corresponding numerical implementation is presented
in details in Chapter 5 for 3D problems, so this will not be discussed here. The development
code is written in Matlab with double precision and accelerated by taking advantage of
Fortran, numerical tests are carried out on Xeon X7542 2.67GHz win64 pilcam server.

3.2.1 Numerical model

Figure 3.3 exhibits the geometry of this numerical model where a standing wave tube is
presented. The total length of this tube L equals to 0.15 m and is divided into three regions of
equal length with x1 = L/3 and x2 = 2L/3. In the first region, a normal velocity boundary
condition is prescribed on the left wall. The second region denoted in gray stands for the
porous absorber. The last region of the tube consists of an air gap terminated by a rigid wall.
Each region has been partitioned into two triangular elements and the related mesh is also
shown in Figure 3.3. The analytical solution can be easily obtained. It’s worth noting that
the characteristic length of the mesh, which is indicated by hmax, is chosen to be the longest
edge of the PUFEM mesh. Here, hmax =

√
0.052 + 0.032 ≈ 0.06 m and the width of the

tube is equal to 0.03 m.
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Fig. 3.3 The standing wave tube test and mesh partition

3.2.2 Definition of variables and parameters

Before we proceed to the analysis of the numerical performance, it’s necessary to properly
define several important parameters. Here, we denote by κa and κp the wavenumber in air and
the porous material, here an artificial value for the porous wavenumber as κp = κa(1 + χi) is
adopted where χ is defined as the ratio between the imaginary and the real part of κp. It’s
important to observe that, with this definition, the wavelength λ = 2π/κa is identical in both
domains. Moreover, in order to simplify the analysis, we shall take the density values for
both regions to be equal, which means ρp = ρa. In addition, with the aim of presenting how
many wavelengths are contained in one single finite element, we define the quantity β as:

β = hmax

λ
. (3.31)

Recall that hmax is the characteristic length of the mesh. The coefficient C from equation
(2.20) is chosen to be 3 in order to provide enough plane wave directions and ensure that
results are sufficiently accurate. Moreover, we propose to introduce the average discretization
level nλ which is defined as the number of variables needed to capture a single wavelength,
and it can be evaluated via

nλ = λ

s
NdofR
Ω dΩ , (3.32)

where Ndof is the total number of the degrees of freedom. In the conventional finite element
discretization, the golden rule is that at least 10 degrees of freedom per wavelength (nλ = 10)
are required to ensure acceptable accuracy. The discretization level can be much smaller in
PUFEM, it’s already been reported in reference [80] that a substantial gain can be observed
if the element size spans over few wavelengths and a discretization level less than 3 degrees
of freedom per wavelength is normally sufficient to ensure a converged solution.

From the relation indicated in (2.20), the average discretization level with regard to the
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ideal case of a regular triangular mesh of infinite extent in PUFEM is given by [27]

nideal
λ = λ

a

q
Q = 1

β

q
4πβ + 2C(2πβ)1/3, (3.33)

in which, a refers to the edge length of an ideal mesh of infinite extent, see Figure 3.4. Most
importantly, we can notice that if β is very large, the average discretization level tends to 0,
which means, in theory, that very high frequency problems could be solved with nearly 0
degree of freedom per wavelength!

Fig. 3.4 Ideal mesh of infinite extent.

3.2.3 Performance of the method

Figure 3.5 shows the computed acoustic pressure (in dB) with respect to the horizontal axis
of the test tube. In this example, the wavenumber κ is chosen to be equal to κa. This is a high
frequency problem with non-dimensional quantity κahmax = 50 which corresponds to the
frequency f ≈ 45, 000 Hz. It can be evaluated that around eight wavelengths are included
per element in the given mesh grid, namely, β ≈ 8. It can be observed from Figure 3.6
that the sound pressure decreases to a certain level which is close to 0 dB after propagating
through the porous region, note that these results correspond to κp = κa(1+0.1i) in this case.

We can also observe from Figure 3.5 and 3.6 that the computed results based on PUFEM are
almost identical to the analytical solution. Detailed analysis of the convergence rate offered
by the PUFEM has been the subject of previous research work. The main concern here is to
compare the EIS with standard quadrature method. The analysis is performed on the same
mesh grid (hmax ≈ 0.06 m) for both cases. We can distinguish low frequency applications
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Fig. 3.5 Computed acoustic pressure for standing wave tube test with porous material in the
middle region, for κhmax = 50 and f ≈ 45, 000 Hz. Analytical solution (top) and PUFEM
solution (bottom).
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Fig. 3.6 Sound pressure level in (dB) for standing wave tube test with porous material in
the middle region, for κhmax = 50 and f ≈ 45, 000 Hz: analytical solution (blue curve) and
PUFEM solution (red curve).
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κhmax f (Hz) Qmax Ndof hmax/λ
ngauss
(elem)

1 900 4 64 0.16 60
2 1800 6 96 0.32 72
3 2700 7 112 0.48 100
4 3600 9 144 0.63 116
5 4500 10 160 0.79 150

10 9000 16 256 1.59 326
15 13500 22 352 2.39 566
20 18000 28 448 3.18 870
25 22500 34 544 3.98 1238
30 27000 39 624 4.77 1670
35 31500 45 720 5.57 2166
40 36000 50 800 6.37 2726
45 40500 56 896 7.16 3350
50 45000 61 976 7.96 4038

Table 3.1 Parameters for the PUFEM model.

and high frequency applications: 1 ≤ κhmax ≤ 5 and 10 ≤ κhmax ≤ 50, which are related
to the frequencies of 900 Hz ≤ f ≤ 4500 Hz and 9, 000 Hz ≤ f ≤ 45, 000 Hz, respectively.
For the sake of fairness, both integration methods are applied to the same PUFEM matrix.
Besides, at least 10 Gauss points per wavelength are used for the numerical quadrature of
equation (3.1). The parameters for the PUFEM model are reported in Table 3.1, the last
column shows the number of Gauss points used for a single element.

Figure 3.7 shows that, for the relatively low frequency range (κhmax ≤ 5), the exact
integration scheme is not as efficient as Gauss-Legendre quadrature method because very
few gauss points are required for low frequency integrals which is enough to provide high
quality results. When the frequency increases, the elapsed time with regard to EIS remains
at a relatively low level in comparison with the quadrature method. This great benefit is
due to the fact that EIS is frequency-independent. The rise of CPU time for EIS merely
stems from the growth of plane wave directions. On the contrary, the consuming time for the
quadrature method increases at a high rate when a growing number of gauss points are used.
It is expected that the computational burden should grow quadratically with the frequency.
To illustrate this, the time ratio between the two methods is given in Figure 3.9, here the
number of Gauss points (horizontal-axis) corresponds to the number of points n0 used along
one edge (see (3.1)).
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Fig. 3.7 Elapsed CPU time for computing and assembling the system matrices: using EIS
(blue curve) and Gauss-Legendre quadrature (red curve) .
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Fig. 3.8 L2 Error as a function of the frequency: using EIS (blue curve) and Gauss-Legendre
quadrature (red curve).

The L2 error is employed to measure the level of accuracy of the PUFEM solutions, which is
defined as:

ε2(%) = ∥pex − ppum∥L2(Ω)

∥pex∥L2(Ω)
× 100. (3.34)

Figure 3.8 plots all the numerical errors with respect to various frequencies (recall the number
of plane waves in evaluated from equation (2.20), with C = 3). It is obvious that two curves
are almost in coincidence with each other for the whole frequency domain. This implies that
solution with sufficient precision can be achieved through both methods. It can be noticed
that the error remains at a certain level which primary results from the PUFEM approximation
procedure rather than the integration error. As the exact solution can be expressed as the
sum of two horizontal plane waves propagating in opposite directions, all calculations were
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performed without the horizontal directions in order to ensure that the exact solution is not
included in the plane wave basis. Provided that one plane wave direction of PUFEM basis
happens to be quite close to the horizontal one, the error might improve drastically and that
partly explain the fluctuation of the error. In addition, the numerical error can also be affected
by round-off errors due to the ill-conditioned nature of the PUFEM matrix, which is reported
in Figure 3.10.

3.3 Concluding remarks

In this chapter, numerical simulation of 2D acoustic waves is performed using PUFEM. An
Exact Integration Scheme has been put forward and presented with all necessary details,
allowing us to access to a fast integration algorithm for computing system coefficient matrices
while maintaining sufficient accuracy. We also took advantage of the 2D PUFEM element to
solve an acoustic transmission problem in which porous material is present. The obtained
results have been verified and validated by comparing with analytical solutions. Numerical
performances of the Exact Integration Scheme have been compared with classical Gauss-
Legendre quadrature method.



Chapter 4

PUFEM for 3D acoustic waves

In this chapter, the full development of the PUFEM for 3D acoustical problems is presented.
The three critical aspects of the method are investigated in detail and they are organized
as follows. First, in Section 4.1, we explain the underlying theory of the Exact Integration
Scheme (EIS) as well as the associated algorithm for 3D tetrahedron PUFEM element. Then,
in Sections 4.2 and 4.3, we focus on investigating several numerical aspects of 3D PUFEM
including error estimation, convergence rate and computational cost. Thirdly, some numerical
examples including the response of a point source in a 3D cavity are shown in Section 4.4.
Finally, the concluding remarks are given in Section 4.5.

4.1 Exact Integration Scheme (EIS) for 3D PUFEM

As explained in the previous chapter, it is imperative to develop an efficient three-dimensional
integration scheme for addressing the computation of 3D highly oscillatory wave integrals.
Typically, the computational burden stemming from the huge amounts of integration gauss
points will be inevitable if standard quadrature methods are used. This is well illustrated in
Figure 3.1 except that one more dimension needs to be taken into account in 3D. In order
to alleviate this limitation, an advanced exact integration scheme is, therefore, developed
and presented in this section. The core idea of EIS for solving 3D problems is similar to its
2D counterpart and is summarized herein. Through the application of Green theorem, the
volume integral can be reduced to its surface integrals. Then, by iterating the same strategy,
the integration domain can be further simplified from the triangular surfaces to their edges.
Finally, the volume integrals can be fully expressed via analytical formulas that require the
values of the wave functions at the 4 vertices of the PUFEM element.
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4.1.1 Applying Green theorem to the volume integral

Let us recall that the PUFEM coefficient matrices can be obtained from (2.29) in Chapter 2,
which is of the form:

Apum = − κ2(1 + d′ · d′′)
Z

Ωe

NiNjφ dΩ + iκd′′ ·
Z

Ωe

∇NiNjφ dΩ

+ iκd′ ·
Z

Ωe

∇NjNiφ dΩ +
Z

Ωe

∇Ni · ∇Njφ dΩ. (4.1)

Following the same analysis as for the 2D problem, we also consider a linear mapping system
between real and local coordinate, as shown in Figure 4.1. The linear shape functions are of
the form: N1 = ζ1, N2 = ζ2, N3 = ζ3 and N4 = 1 − ζ1 − ζ2 − ζ3, and we can write explicitly
the linear mapping between real space (x, y, z) and local space (ζ1, ζ2, ζ3) as

x =
4X

i=1
Nixi = x4 + ζ1e41 + ζ2e42 + ζ3e43. (4.2)

Here, note that we adopt the notation eij = xj − xi, so that the Jacobian matrix can be
written by

J = [e41 e42 e43]⊤. (4.3)

Its inverse H = J−1 is then can be easily calculated, which allows us to get the transformation
formulas for the gradient and Laplace operators:

∇F = H∇ζF and △F = HilHij∂ζlζj
F. (4.4)

Fig. 4.1 3D coordinates systems in real and local element space.
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Since the geometric mapping is linear and the shape functions Ni are also linear, some terms
can be moved out of the integrals in (4.1), which results in

Apum = − κ2(1 + d′ · d′′)
Z

Ωe

NiNjφ dΩ + iκd′′ · ∇Ni

Z

Ωe

Njφ dΩ

+ iκd′ · ∇Nj

Z

Ωe

Niφ dΩ + ∇Ni · ∇Nj

Z

Ωe

φ dΩ, (4.5)

where we can find that three volume integrals from equation (4.5) are of the form
Z

Ωe

NiNjφ dΩ,
Z

Ωe

Niφ dΩ and
Z

Ωe

φ dΩ. (4.6)

Meanwhile, the above integrals can be written into a general type, which gives rise to
Z

Ωe

Fφ dΩ. (4.7)

The use of Green theorem yields:
Z

Ωe

F φdΩ = −
Z

∂Ωe

(ϵFd + ϵ2∇F + ϵ3△Fd + · · · ) · n φ d(∂Ω), (4.8)

where ϵ = i/k. The important feature of the linear mapping signifies that the maximum
order of the polynomial F in the above volume integrals is quadratic, so only the first three
terms of the series are kept. Note that the above equation is just an alternative formulation
to equation (3.11), but more convenient to derive analytical formulas in the context of 3D
PUFEM element. In the following, we define the notation:

∂Ωe =
4[

α=1
Tα, (4.9)

to represent all surfaces of the tetrahedron element, where Tα denotes each surface of the
element, and it’s important to keep in mind that α stands for the node number of the element
which lies opposite to the surface. For the sake of illustration, T1 is highlighted in Figure 4.1,
where we can see that it refers to the surface opposite to node 1. Moreover, it is understood
that the term F in (4.7) represents three different kinds of polynomials which are NiNj , Ni

and 1, respectively. Applying (4.8), we get

Z

Ωe

NiNjφ dΩ = −
4X

α=1
d · nα

�
ϵ
Z

Tα

NiNjφ dS + ϵ3△(NiNj)
Z

Tα

φ dS
�

−ϵ2
4X

α=1
nα · ∇Ni

Z

Tα

Njφ dS − ϵ2
4X

α=1
nα · ∇Nj

Z

Tα

Niφ dS,

(4.10)
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and

Z

Ωe

Njφ dΩ = −
4X

α=1
d · nαϵ

Z

Tα

Njφ dS, −ϵ2
4X

α=1
nα · ∇Nj

Z

Tα

φ dS, (4.11)

and Z

Ωe

φ dΩ = −
4X

α=1
d · nαϵ

Z

Tα

φ dS. (4.12)

For the above equations, we must pay attention to the direction of normal vectors nα, they
have to point out of the surfaces of each element. At this stage, we can identify three types of
surface integrals, namely:

Z

Tα

φ dS,
Z

Tα

Niφ dS and
Z

Tα

NiNjφ dS. (4.13)

Operating an appropriate change of variable from the real space Tα to the local coordinate
system (note that the reference triangle domain is denoted by △ here) gives (start with the
first integral):

Z

T1
φ dS =

Z

T1
exp(ikd · (x4 + ζ2e42 + ζ3e43)) dS

= 2A1 eω4
Z

△
exp(ζ2(ω2 − ω4) + ζ3(ω3 − ω4)) dζ2dζ3

= 2A1 eω4I△
00(a) and a = (ω2 − ω4, ω3 − ω4),

(4.14)

Z

T2
φ dS =

Z

T2
exp(ikd · (x4 + ζ1e41 + ζ3e43)) dS

= 2A2 eω4
Z

△
exp(ζ1(ω1 − ω4) + ζ3(ω3 − ω4)) dζ1dζ3

= 2A2 eω4I△
00(a) and a = (ω1 − ω4, ω3 − ω4),

(4.15)

Z

T3
φ dS =

Z

T3
exp(ikd · (x4 + ζ1e41 + ζ2e42)) dS

= 2A3 eω4
Z

△
exp(ζ1(ω1 − ω4) + ζ2(ω2 − ω4)) dζ1dζ2

= 2A3 eω4I△
00(a) and a = (ω1 − ω4, ω2 − ω4),

(4.16)
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Z

T4
φ dS =

Z

T4
exp(ikd · (x3 + ζ1e31 + ζ2e32)) dS

= 2A4 eω3
Z

△
exp(ζ1(ω1 − ω3) + ζ2(ω2 − ω3)) dζ1dζ2

= 2A4 eω3I△
00(a) and a = (ω1 − ω3, ω2 − ω3).

(4.17)

Here, we define:

ωα = ikd · xα and Aα =
Z

Tα

dS, α = 1, ..., 4.

Thus, the above 4 surface integrals can be rewritten in a compact form:
Z

Tα

φ dS = 2Aαeωα−1
Z

△
exp(x(ωα+1 − ωα−1) + y(ωα+2 − ωα−1)) dxdy, (4.18)

with the convention that ωα+4 = ωα (α can be regarded as an arbitrary integer). Equivalently,
we shall write

Z

Tα

φ dS = 2Aαeωα−1I△
00(a) with a = (ωα+1 − ωα−1, ωα+2 − ωα−1). (4.19)

By following the same principle, the other integrals presented in (4.13) can also be expressed
in a compact form using the reference coordinates system. Let us continue with the second
integral:

Z

Tα

Niφ dS = 2Aαeωm

Z

△
Ni exp(x(ωi − ωm) + y(ωn − ωm)) dxdy

= 2AαeωmI△
10(a) with a = (ωi − ωm, ωn − ωm).

(4.20)

At this point, it’s useful to introduce a set of integers S which contains the four node numbers
associated with the element, that is

S = {1, 2, 3, 4}. (4.21)

So, in formula (4.20), the set of indices α, i, n and m must constitute the set S, namely,

{α, i, n, m} = S, (4.22)
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which signifies that α, i, n, m must be all different. Otherwise, the value of the integral will
be equal to zero (this happens when α = i). Similarly, the last integral in (4.13) becomes:

Z

Tα

NiNjφ dS = 2Aαeωr

Z

△
NiNj exp(x(ωi − ωr) + y(ωj − ωr)) dxdy

= 2AαeωrI△
11(a) with a = (ωi − ωr, ωj − ωr),

(4.23)

where
{i, j, α, r} = S. (4.24)

Otherwise, the value of the integral will be equal to zero (this happens when α = i or α = j).
For particular case where i = j, we have

Z

Tα

N2
i φ dS = 2AαeωmI△

20(a) with a = (ωi − ωm, ωn − ωm). (4.25)

4.1.2 Integration over the reference triangle

By summarizing equations (4.19)-(4.25), we have introduced:

I△
mn(a) =

Z

△
xmynφ̂ dxdy, (4.26)

where φ̂ = exp(ax + by) and the vector a = (a, b). The new indices m, n are only varying
from 0 to 2. Figure 4.2 shows the reference triangular domain. Since the dimension of the
integral domain can be further reduced from surface to its edges by applying Green theorem
as in formula (4.8), the surface integrals, therefore, become:

I△
mn(a) = 1

a2

�
a ·

Z

γ
xmyn φ̂ n̂ dxdy

| {z }
I△1

mn(a)

−
Z

γ
∇(xmyn) · n̂ φ̂ dxdy

| {z }
I△2

mn(a)

+ a

a2 · △(xmyn)
Z

γ
φ̂ n̂ dxdy

| {z }
I△3

mn(a)

�
,

(4.27)
in which, the first line integral can be written in its closed-form expression:

I△1
mn(a) =

3X

β=1
a · n̂β

Z

γβ

xmynφ̂ dxdy

= −b
Z 1

0[y=0]
xmyneax dx − a

Z 1

0[x=0]
xmyneby dy + (a + b)eb

Z 1

0
xm(1 − x)nesx dx

= −bIm,0(a) δn,0 − aIn,0(b) δm,0 + (a + b)ebIm,n(s), (4.28)

in which s = a − b. The closed-form expression for the second integral can be expressed as



4.1 Exact Integration Scheme (EIS) for 3D PUFEM 49

Fig. 4.2 The integration domain of the reference triangle in the local coordinates system.

I△2
mn(a) =

3X

β=1

Z

γβ

∇(xmyn) · n̂βφ̂ dxdy

= −
Z 1

0
nxmyn−1eax dx −

Z 1

0
mxm−1yneby dy

+ eb
Z 1

0
[nxm(1 − x)n−1 + mxm−1(1 − x)n]esx dx

= − Im,0(a) δn,1 − In,0(b) δm,1 + eb[nIm,n−1(s) + mIm−1,n(s)].

(4.29)

The closed-form expression of third integral can be derived based on the previous calculated
integrals, which is given by

I△3
20 (a) = I△3

02 (a) = 2
a2 I△1

00 (a). (4.30)

To summarize, we have:

I△1
00 (a) = −bI0,0(a) − aI0,0(b) + (a + b)ebI0,0(s) (4.31)

I△1
10 (a) = −bI1,0(a) + (a + b)ebI1,0(s), (4.32)

I△1
20 (a) = −bI2,0(a) + (a + b)ebI2,0(s), (4.33)

I△1
01 (a) = −aI1,0(b) + (a + b)ebI0,1(s), (4.34)

I△1
02 (a) = −aI2,0(b) + (a + b)ebI0,2(s), (4.35)

I△1
11 (a) = (a + b)ebI1,1(s), (4.36)
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and

I△2
00 (a) = 0, (4.37)

I△2
10 (a) = −I0,0(b) + ebI0,0(s), (4.38)

I△2
20 (a) = 2ebI1,0(s), (4.39)

I△2
01 (a) = −I0,0(a) + ebI0,0(s), (4.40)

I△2
02 (a) = 2ebI0,1(s), (4.41)

I△2
11 (a) = −I1,0(a) − I1,0(b) + eb[I1,0(s) + I0,1(s)], (4.42)

and

I△3
00 (a) = I△3

10 (a) = I△3
01 (a) = 0, (4.43)

I△3
20 (a) = I△3

02 (a) = 2
a2 I△1

00 (a). (4.44)

The line integrals expressed by the notation Im,n can be calculated explicitly as:

I0,0(a) =
Z 1

0
eaxdx = (−1 + ea)

a
, (4.45)

I1,0(a) =
Z 1

0
x · eaxdx = (1 − ea + a · ea)

a2 , (4.46)

I2,0(a) =
Z 1

0
x2 · eaxdx = (−2 + 2ea − 2a · ea + ea · a2)

a3 , (4.47)

I0,1(a) =
Z 1

0
(1 − x) · eaxdx = −(1 − ea + a · ea)

a2 , (4.48)

I0,2(a) =
Z 1

0
(1 − x)2 · eaxdx = (−2a − a2 − 2 + 2ea)

a3 , (4.49)

I1,1(a) =
Z 1

0
(1 − x) · x · eaxdx = (a + 2 + a · ea − 2ea)

a3 . (4.50)

For the purposes of avoiding round off errors, enhancing the numerical stability as well as
saving computational time, Evans and Webster [42, 43] have shown that (4.45)–(4.47) can
be obtained with the recurrence:

Qn =
Z 1

0
xneaxdx, (4.51)

Qn = [ea − nQn−1(a)] /a, (4.52)

where Q0 = (ea−1)/a and Qn(0) = 1/(n+1) when a = 0. The other integrals (4.48)–(4.50)
can be easily recovered once all monomials have been computed.
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4.1.3 Limit cases

During the process of deriving the closed-form expression for the integrals, it’s imperative to
consider exceptional cases that might lead to wrong results corrupted by round-off errors. In
this section, three cases belonging to this category are pointed out. Meanwhile, the corre-
sponding procedures for enhancing the robustness and accuracy of our algorithm are provided.

(a). For k ≈ 0, this case physically means that two plane waves of the PUFEM basis
happen to propagate in an opposite direction because k = κ|d′ + d′′|. In this case, the EIS
is no longer suitable to calculate the integrals expressed in (4.1). Since integrals involved
in (4.1) do not contain oscillating terms, standard Gauss-Legendre quadrature method be-
comes sufficient to accomplish the computational task. In fact, this particular case can be
eliminated by carefully choosing the plane wave directions and taking into account small
random variation, such that two wave directions will never be exactly opposite to each other.

(b). For a ≈ 0 in equation (4.26), this case characterizes the fact that the resulting plane
wave direction is orthogonal to one of the surfaces of the PUFEM element. To tackle this
problem, one approach is to use Taylor series expansion, which gives

I△
00(a) ≈ 1

2 + a + b

6 + a2 + b2 + ab

24 ,

I△
10(a) ≈ 1

6 + b + 2a

24 + a2

40 + b2

120 + ab

60 ,

I△
20(a) ≈ 1

12 + b + 3a

60 + a2

60 + b2

360 + ab

120 ,

I△
01(a) ≈ 1

6 + 2b + a

24 + b2

40 + a2

120 + ab

60 ,

I△
02(a) ≈ 1

12 + 3b + a

60 + a2

360 + b2

60 + ab

120 ,

I△
11(a) ≈ 1

24 + a + b

60 + a2 + b2

240 + ab

180 .

Alternatively, the second approach is to use numerical quadrature methods. Here, we favored
the second approach for the following reasons: (1) Taylor series is not as stable as quadrature
methods because the expected accuracy of Taylor series relies heavily on the number of
terms in the expansion, (2) the oscillatory behavior of the plane waves is negligible when
the plane waves are nearly orthogonal to the triangular surfaces, so quadrature methods are
competent enough to address this scenario, (3) some highly efficient quadrature methods
over the triangular domain, such as Wandzura’s method (which is presented in Appendix B),
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can be used to improve the computational efficiency.

(c). For a ≈ 0 or b ≈ 0 or s ≈ 0 in equations (4.45) – (4.50), this case signifies that
the resulting plane wave direction is orthogonal to one edge of the integration domain. Again,
two numerical approaches can be employed to cope with this problem, namely, the Gauss
quadrature and the use of the Taylor expansion. The performance of these two approaches is
now discussed.
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Fig. 4.3 The numerical error performances of three methods which are: Exact Integration
Scheme (EIS), Taylor series expansion and Gauss-Legendre quadrature.

First, how to properly define the criteria of "close to zero" as above-mentioned is of great
importance. For the sake of illustration, let us take one example of equation (4.48). Here, we
need to compute:

I2,0(a) =
Z 1

0
x2 · eaxdx. (4.53)

We try to evaluate the accuracy performance related to the three methods which are EIS,
Taylor series expansion and Gauss-Legendre quadrature, respectively. As shown in Figure
4.3, EIS provides an accuracy that decreases steadily when a goes to zero due to calculation
errors and loss of significant digits. In contrast, the errors for the other approaches are
maintained at a low level when a goes to 0. Most importantly, the intersection points among
all these curves just provide the proper definition of "close to zero", which serves as a criteria
to decide the most appropriate method to be used. In this example, it is shown in Figure 4.3
that the quadrature method takes precedence over the EIS when a < 10−2, providing us with
a stable accuracy level around 10−14. By following this criteria, we can make sure that all
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Fig. 4.4 Error value for all the entries of system matrix A obtained via the algorithm without
considering the limit cases (Left), considering the limit cases (Right).

integrals involved can be computed with sufficient accuracy.

In order to verify the improvement in terms of accuracy of the resulting system matrix
A, let us consider the case of a single element. The precision of the computed system
matrix A is shown in Figure 4.4, here horizontal-axis represents each entry of the matrix, and
vertical-axis corresponds to the level of accuracy which is evaluated via

Error(i, j) = |Acomp
ij − Aexact

ij |, (4.54)

where, Acomp
ij refers to the computed entries of A, and Aexact

ij is simply computed via the
Gauss-Legendre quadrature method that involves a sufficiently large number of gauss points,
so that the values of Aexact

ij can be regarded as exact.

This investigation shows that, after the treatment of the particular limit cases, several numeri-
cal inaccuracies that may occur during the computational procedure have been successfully
excluded. The whole computed PUFEM system matrix can be considered as nearly exact
with errors that do not exceed 10−9. It’s worth stressing that a single bad entry of the system
matrix can deteriorate the final solution. Now, it can be ensured that the developed 3D linear
tetrahedron PUFEM element combining with 3D exact integration scheme is robust enough
to provide highly accurate and stable numerical solutions for 3D acoustic problems.
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4.1.4 Complexity estimation

The running time of the proposed algorithm should increase quadratically with Q (assuming
the same number of plane waves per node). This is confirmed in Figure 4.5 (note calculations
were performed on calcul.supmeca.fr, so running time is different from Table 4.2).
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Fig. 4.5 Running time according to the plane wave number per node Q for one thread.

The analysis of the computational complexity of the PUFEM matrix can be done for the case
of single regular tetrahedron. In the following, N = Q2 corresponds to the total number
of plane waves involved for a pair of indices (i, j). The computational cost depends on the
number of faces (f ) required in the volume integral and on the number of blocks (b) in the
elementary matrix:

Apum =




× × × ×
× × ×

× ×
×




. (4.55)

There are 6 off-diagonal and 4 diagonal blocks. Note if i = j, only the upper part of the
symmetric block matrix is computed with N ′ = 1

2Q(Q − 1) + Q entries.

All details are presented in Table 4.1 and expressed in terms of the number of edge in-
tegral computation (eic) in (4.52). The integers appearing in Table 4.1 stems from the
selection rule of equations (4.22) and (4.24). Besides, all recombination steps are omitted
which renders a comparison with Gabard[43] easier. The author also presented an integration
algorithm in the real coordinate system (which renders the algorithm quite different from the
one developed here).
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int. Number of eic eic calls for Q = 50
R

Ωe
φdΩ (6b · N + 4b · N ′) · 4f · 3e 241 200

R
Ωe

NiφdΩ (6b · N + 4b · N ′) · 3f · 3e 180 900
R

Ωe
NjφdΩ (6b · N + 4b · N ′) · 3f · 3e 180 900

R
Ωe

N2
i φdΩ 4b · N ′ · 3f · 3e 45 900

R
Ωe

NiNjφdΩ 6b · N · 2f · 3e 90 000

Total (in eic) 738 900
Table 4.1 Computational cost of the different volume integrals, expressed as number of call
of the edge integral computation (e=edge, f=face, b=block) (Note the limit cases listed in
Section 4.1.3 are ignored here).

4.1.5 Implementation and parallelism

The implemented version of the algorithm follows the description of the previous section :
the volume integral is converted into surface integral over the reference triangle and then
converted into line integrals where a closed-form solution is available. To speed up the
integration, a fortran version has been implemented and linked as a mexfile to matlab core.
This version takes advantage of multithread capability of modern CPU with openMP shared
memory parallelism.

The double loop over the tetrahedron vertices is distributed over the available threads. This
loop leads to 10 independent blocks when using the symmetry of the matrix Apum. Note that
the diagonal blocks are symmetric and only the half of the block matrix is computed. Each
block has almost the same complexity and this simple approach leads to a rather good load
balance between the threads. This approach is faster than using threaded version of BLAS3.

For a significant number of plane wave (say Q > 150), when the overhead time become
small in comparison with the computational time, the scaling is almost linear up to 5 threads
but suboptimal due to the overhead. As shown in Fig.4.6, with 5 threads, it takes less than 1 s
per tetrahedron for 250 plane waves per node (test ran on calcul.supmeca.fr with 4 Intel(R)
Xeon(R) CPU E5-2670 @ 2.60GHz with 16 core and 32 threads available).

A profile (valigrind/cachegrind) indicates that around 14% of CPU time is spent in the
computation. The reminder of the computational time is spend mostly for the recombination.
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Fig. 4.6 Running time for several plane waves per node Q (50, 150, 250 and 350).

4.2 Convergence test

In this section, we shall investigate the numerical performance of the PUFEM in terms of
accuracy and data reduction. Here the idea is to test the convergence of the method without
modifying the coarse PUFEM mesh. In other words, we perform a q-refinement as opposed
to a h-refinement. Through numerous numerical tests, it was observed that the PUFEM
accuracy depends mainly on 2 parameters: the element size, call it hj which is defined as the
longest edge attached to node j and the number of wavelengths spanned by the element. In
the following, we may assume that the number of plane waves attached to each node should
vary quadratically like (κhj)2, as in [64], so we put

Qj = C(κhj)2. (4.56)

Coefficient C can also be viewed as a function of κhj and it must be adjusted according to the
configuration and expected accuracy. The behavior of C with respect to the non-dimensional
frequency κhj can be found by taking advantage of an artificial wave propagation problem
for which the analytical solution is easily available. To do this, we consider an arbitrary
incident plane wave propagating inside a single regular tetrahedron (the 4 edges are all of
equal length (h = hj, j = 1, · · · , 4)). The boundary condition applied on each face is given
by

∂p

∂n
= iκ(p − pinc) + ∂pinc

∂n
. (4.57)

To be fair in our convergence test, the incident plane wave direction is always chosen as far as
possible from the plane waves directions of the PUFEM basis, so that peculiar behaviors can
be avoided. Otherwise, the computational error will move back and forth severely because
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Fig. 4.7 The model (left), PUFEM solution (right), κh = 50 and Q=276.

the final numerical solution that might be contained in the plane wave basis will give rise to
excessive accuracy and vice versa. Figure 4.7 illustrates the PUFEM solution for κh = 50
and the number of plane wave directions Q associated to each node is selected to be 276
(in total, 4 × 276 = 1104 are used to simulate the arbitrary plane wave in the element). We
should be aware that the plane wave directions are computed through the algorithm presented
in Section 2.3.2, with the aim to ensure a regularly spaced distribution. The numerical error is
evaluated via L2 error criteria on the boundary of the domain (here we have simply: Γ = ∂Ωe,
as there is a single element, and pex = pinc)

ε2(%) = ∥pex − ppum∥L2(Γ)

∥pex∥L2(Γ)
× 100. (4.58)

The numerical error for the above-mentioned particular case (κh = 50) is around 3%, which
is satisfying for engineering purposes. In Table 4.2, we listed other cases with different
parameters, all of them have been carried out to test the convergence behavior and verify the
effectiveness of the method. Note that: (1) the condition number Cond is estimated with
Matlab by using the command Condest, and (2) the CPU time includes the computation
of A and its inversion. Moreover, we also introduce the average discretization level nλ in
the context of 3D PUFEM, nλ describes the number of variables needed to capture a single
wavelength. For 3D problems, it is evaluated via:

nλ = λ

 
NdofR
Ωe

dΩe

!1/3

. (4.59)
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Fig. 4.8 The relative error (top), condition number (bottom), with respect to κh.
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κh C Q nλ h/λ log10(Cond) ε2(%) CPU
Time (s)

20

0.080 32 2.04 3.18 6.99 86.59 0.9
0.130 52 2.39 3.18 9.24 9.21 1.3
0.180 72 2.67 3.18 11.53 0.42 2.0
0.230 92 2.89 3.18 14.26 0.020 3.4
0.280 112 3.09 3.18 16.44 0.0036 4.5
0.300 120 3.16 3.18 17.70 0.0057 5.1

45

0.090 183 1.62 7.16 10.72 2.82 10.9
0.105 213 1.70 7.16 12.37 0.64 14.5
0.120 243 1.78 7.16 14.07 0.077 18.5
0.135 273 1.85 7.16 16.19 0.018 24.1
0.150 303 1.91 7.16 17.67 0.0027 27.9
0.164 333 1.98 7.16 19.23 0.0025 34.0

65

0.085 360 1.40 10.35 13.12 9.41 38.4
0.094 395 1.45 10.35 14.33 0.19 45.8
0.102 430 1.49 10.35 16.39 0.037 53.1
0.110 465 1.53 10.35 17.22 0.018 63.6
0.118 500 1.56 10.35 18.68 0.0027 74.3
0.127 535 1.60 10.35 19.20 0.0029 85.2

80

0.080 513 1.28 12.73 14.09 1.08 77.7
0.086 549 1.31 12.73 15.30 0.29 88.9
0.091 585 1.34 12.73 16.28 0.092 100.2
0.097 621 1.37 12.73 17.29 0.011 111.4
0.103 657 1.39 12.73 18.75 0.0021 124.8
0.108 693 1.42 12.73 19.78 0.0018 140.1

Table 4.2 Parameters for the performance analysis of the PUFEM (calculation ran on pilcam
server at UTC).

After running a series of numerical tests, we managed to obtain the error performance with
respect to different values of the non-dimensional parameter κh, varying from 5 to 80. For
the sake of clarity, only four of them are displayed in Figure 4.8. We can observe that the
region of convergence, once it begins, is relatively narrow, and the error drops abruptly
until it reaches a plateau. This is mainly caused by the large condition number inherent to
PUFEM with plane waves. A closer analysis reveals that the plateau is reached as soon as
the condition number exceeds 1016 or 1017.

Interestingly, if we draw a horizontal line corresponding to a specified error level (say
1% for instance), then the intersection points with all curves will give the required number
of plane wave directions to attain this accuracy. Hence, by inverting formula (4.56), we
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Fig. 4.9 Coefficient C and κhj for 1% and 0.1% error range

can deduce the value of coefficient C that guarantees a certain prescribed accuracy. Values
of coefficient C are reported in Figure 4.9 for 2 prescribed accuracies of ε2 = 1% and
ε2 = 0.1%. It can be observed that the value of C decreases and converges to a certain
value around 0.1 for high frequency. More precisely, the curves show similar asymptotic
behavior as Qj ∼ 0.1(κhj)2 and the coefficient C ranges between 0.1 and 0.7 as long as the
frequency is sufficiently high compared to the element length (i.e., κh > 10). Therefore, the
convergence of our PUFEM element has now been validated and verified.

The last observation suggests that an unreasonable number of plane waves are needed
for small value of κh. In practice, it shows that PUFEM is not efficient enough for the "low-
frequency" scenario when κh < 10. In this case, the use of classical piecewise polynomial
functions would be a better option. For sufficiently large frequency, or more precisely when
κh > 10, the PUFEM clearly outperforms standard piecewise polynomial FEM. From results
of Figure 4.9, we can anticipate that the number of plane waves should vary quadratically
with respect to κh as:

Qj ≈ (1 + D(κhj)−1)(κhj)2

10 . (4.60)

Since the number of degrees of freedom required by the PUFEM should grow cubically with
frequency, the computational gain is expected to be very substantial at high frequency.
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4.3 Note on SVD truncation for relatively low frequency

In this section, we shall focus specifically on the low frequency regime, that is when κh ≤ 10
(recall that h can be regarded as a characteristic length of the PUFEM element). This regime
should be avoided, if possible, because the PUFEM performances in terms of data reduction
are not optimal. Another important characteristic is that the numerical accuracy for the
low frequency regime is usually more sensitive to the ill-conditioned nature of the PUFEM
matrix. To identify this, we consider the model problem of the previous section with κh = 10.

The error obtained with respect to the number of wave directions Q is shown in Figure 4.10
(left). The error decreases with Q as expected. However, the degradation of error can be
observed when Q exceeds 30. In Figure 4.10 (right) is plotted the associated conditioning
number of the system matrix, allowing us to identify more clearly the accumulation of
round-off errors when the conditioning number exceeds 1016. This is a typical feature of
all wave-based methods. Fortunately, this issue can be mitigated by using SVD technique.
Recall that we want to solve the complex algebraic system of the form,
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Fig. 4.10 The relative error ε2(%) (left), condition number (right), for κh = 10 in tetrahedron
element

Ax = b. (4.61)

The SVD decomposition consists in writing the matrix A = USVH where (S)ii = σi > 0 are
the singular values. The solution can be formally obtained as,

x =
NX

i≥1

b̂i

σi

Vi, (4.62)
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Fig. 4.11 The relative error after filtering process with δ = 10−14 (left), with δ = 10−12

(right), for κh = 10 of the tetrahedron case.

where b̂i = (UHb)i are the coordinates of the source vector in the orthogonal basis U. We
recall that:

cond2(A) = ∥A∥2 ·
A−1


2

= σ1/σN . (4.63)

The ill-conditioning of the matrix results from the accumulation of singular values that can
be extremely small and will, therefore, affect the quality of the solution in equation (4.62).
Thanks to a filtering process, we can access to a solution that is likely to be less corrupted by
round-off errors:

xδ =
rX

i=1

b̂i

σi

Vi, (4.64)

here, r corresponds to the rank of the filtered matrix:

Aδ = USδVH, (4.65)

and is defined so that σr+1 ≤ δσ1 < σr. The thresholding parameter δ should be in
accordance with the precision of matrix A. For an "exact" matrix, namely, calculated
according to the machine precision, the most frequent proposed thresholding level is δ ∼
10−12. The lost of information caused by the truncation is tolerable as long as the coefficients
b̂i>r are negligible. Effect of the filtering can be seen in Figure 4.11, indicating that a
threshold of about δ = 10−12 allows to reach 10−4% accuracy instead of around 10−1%
accuracy with no filtering.
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4.4 Numerical examples

As model problems,we shall consider a cubic-shaped cavity as shown in Figure 4.12. The
first example concerns that of a prescribed velocity boundary condition on part of the wall
cavity. Then, we shall investigate the effect of a monopole source located in the cavity. Two
different numerical models are tested for the source point, and their numerical performance
are compared. Finally, we shall also examine the effect of the location of the point source
(which could be extremely close to the corner of the cavity) on the accuracy. In all cases, the
cavity is a cube of size 2 m ×2 m ×2 m with the longest edge hmax = 2 m, and the model is
partitioned into 24 PUFEM elements and 14 nodes (see Figure 4.12).

Fig. 4.12 The model problem.

4.4.1 Response to a prescribed velocity at the wall

In the first numerical example shown in Figure 4.12, we apply a velocity boundary condition
∂p/∂n = 1 on a triangular area of a specified surface of the cube. Here, an initial guess for
the number of plane wave functions Q can be taken by following the selection criteria (4.56),
where the coefficient C can be evaluated through the two curves of Figure 4.9. By choosing
the curve pertaining to an expected accuracy (here 0.1 % and 1%), we can anticipate that the
numerical solution should be delivered with similar precision. For the sake of illustration,
Figure 4.13 displays both the real and imaginary part of the computed fluid pressure for the
non-dimensional value κhmax = 60. This result was computed by taking Qmax = 958 (this
corresponds to the number of plane waves attached to the 8 vertices of the cube, whereas the
other 6 nodes only involve 476 plane wave directions).
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This particular example does not possess an analytical solution and the numerical error
can not be estimated with sufficient confidence through the ideal criteria (4.58). Considering
the fact that the exact solutions to this problem is purely real, we, therefore, propose an new
estimation of the error which is to examine the imaginary part of the numerical solution.
As shown in Figure 4.13, the correctness of the results can be verified if the imaginary part
is nearly equal to 0. Hence, the imaginary part can be treated as an error indicator and we
introduce:

ε(%) = ∥pimag∥L2(Γ)

∥preal∥L2(Γ)
× 100, (4.66)

where, pimag and preal refer to the imaginary and the real part of the computed pressure,
respectively. In this example, it can be checked that the relative error is around 0.6% by using
this new error indicator (4.66) (we will compare this error indicator with the former criteria
(4.56) in the next example).

Fig. 4.13 High frequency solution with κhmax = 60, Qmax = 958: PUFEM solution (left),
the imaginary part of the numerical solution serves to indicate the accuracy of the result
(right).

Here, only around 15, 000 dof are used in our PUFEM numerical model for κhmax = 60,
which signifies that around 10 wavelengths are spanned in the element because hmax/λ ≈ 10.
Therefore, if we use classical FEM which adopts piecewise linear or quadratic interpolation
to deal with the same case containing around 10 wavelengths, then at least (10nλ)3 dof are
required to attain sufficient accuracy level of the solution, here nλ is the number of dof
necessary to capture one wavelength in traditional FEM. For instance, taking nλ = 15 leads
to an estimate of more than two millions FE nodes!
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4.4.2 Response to a point source

The second example is related to the simulation of a sound field caused by a monopole source
placed in the cavity, as shown in Figure 4.14 (left). The boundary Γ is assumed to be a rigid
wall, on which ∂p/∂n = 0 is prescribed. In this case, the numerical tests are carried out
based on two different numerical models and their performance and advantage are compared.
The analytical solution to this problem is available in reference [62].

Model 1: computation of the total field

Fig. 4.14 The building model (left), and its analytical solution for κhmax = 30 (right).

In this first model, we attempt to solve the point source problem by simply taking into account
the Dirac function on the right-hand side of the wave equation. Hence, we seek for the total
pressure field satisfying,

∆p + κ2p = Aδ(x − x0), (4.67)

where A is the amplitude of the monopole source and x0 stands for the source position inside
the cube. In this example, we set x0 = (0.9, 0.8, 1) which is near the center of the cavity.
The analytical solutions to this physical model is shown in Figure 4.14.

To evaluate the computational performance of the first model, we consider the case where
κhmax = 30 and three numerical tests are investigated by taking respectively Qmax = 278,
417 and 556 plane wave directions. Results are conveniently displayed in Figure 4.15. They
show poor convergence and it was observed that errors can not go below 20% regardless
of the number of wave directions. This limiting factor which prevents us from obtaining a
converged result stems from the inability of the plane wave basis to simulate a singular sound
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field. The next model will be devoted to tackle this issue. Note that the error is measured
by using criteria (4.58), the imaginary part allows us to visualize the numerical error in the
computational domain.

Model 2: computation of the scattered field

The main idea of the alternative model is to split the pressure p into two terms: p = pi + psc

where pi and psc represent the incident wave pressure and the scattered wave pressure, respec-
tively. The modified governing equations and boundary conditions can then be formulated
as:





∆pi + κ2pi = Aδ(x − x0) in Ω,

∆psc + κ2psc = 0 in Ω,
∂psc

∂n
= −∂pi

∂n
on Γ.

(4.68)

The first equation describes the incident sound field pi caused by a monopole source, which is
represented by applying a Dirac function at position x0 on the right side of the inhomogeneous
Helmholtz equation. Here, we shall take the free-field Green function:

pi = A
eiκr

4πr
. (4.69)

Now, applying PUFEM for the scattered field leads to a boundary term of the form,

Z

Γ

∂psc

∂n
· δp dΓ = −

Z

Γ

∂pi

∂n
· δp dΓ, (4.70)

The boundary integral involves the normal direction of the incident field,

∂pi

∂n
= A

eiκr

4πr
(iκ − 1

r
)x − x0

r
· n, (4.71)

where r is the distance from source point x0 to the point x, and the amplitude of point source
A is chosen to be 1.

To evaluate the computational performance of this model, we consider the case where
κhmax = 30 which is identical to the previous model, and three numerical tests are carried
out by taking Qmax = 139, 278 and 417, respectively. All the computed results are depicted
in Figure 4.16. Clearly, the second numerical model shows a much better performance and



4.4 Numerical examples 67

Fig. 4.15 Response in the cavity due to a point source represented by directly applying a
Dirac function: PUFEM solution with Qmax = 278 and ε2 = 51% (top), PUFEM solution
with Qmax = 417 and ε2 = 39% (middle), PUFEM solution with Qmax=556 and ε2 = 28%
(bottom).
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Fig. 4.16 Response in the cavity due to a point source by splitting the total pressure p into
pi and psc: PUFEM solution with Qmax = 139 and ε2 = 212% (top), PUFEM solution with
Qmax = 278 and ε2 = 0.93% (middle), PUFEM solution with Qmax = 417 and ε2 = 0.29%
(bottom).
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very fast convergence rate. In order to better illustrate this, the comparison between the two
models is made and shown in Figure 4.17.
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Fig. 4.17 The accuracy performance using two different numerical models for the interior
point source problem with κhmax = 30.

It can be seen from Figure 4.17 that the numerical error for both models is decreasing with
respect to the number of plane wave directions. However, the first model presents a much
slower convergence rate due to the shortcomings of the model mentioned above. Only
Qmax = 169 wave directions are required to reach 30% of accuracy for the second model
while at least, more than 556 directions are needed for the first model to achieve the same ac-
curacy. It may also be observed that the error reaches a plateau around 0.3% regardless of the
number of wave directions. This error stems simply from the fact that the "exact" solution pex

is calculated with a finite number of cavity modes [62]. So the analytical solution is not exact.

To verify this, we shall now adopt the error indicator given by equation (4.66). The computed
results, given in Figure 4.18, demonstrate the true performance of the PUFEM (red curve)
and that the indicator based on the imaginary part provides a very good estimation of the
error. In principle, this indicator can be used whenever the solution to the problem is purely
real.
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Fig. 4.18 The accuracy performance using two different error indicators (indicator 1 (4.58),
indicator 2 (4.66)) for the interior point source problem with κhmax = 30.

4.4.3 Criteria for more realistic problems

The aim of this subsection is to come up with a confident criteria for the plane wave enrich-
ment. In section 4.2, it was advocated that the number of wave directions attached to node
j should vary quadratically as Qj = C(κhj)2. In the context of a simple artificial problem,
the coefficient C reported in Figure 4.9 was found to behave like equation (4.60). For more
realistic problems such as those of section 4.4, it is useful to provide similar formulas. To
achieve this, a series of numerical tests have been carried out for the cubic cavity problem.
In Figure 4.19 are reported the values of coefficient C with respect to κhj to ensure that the
numerical error should be around 1%.

The observation is that, although the enrichment criteria depends on the problem, the three
curves show very similar tendencies. The biggest derivation comes from the interior point
source problem, for which the number of wave directions must be doubled compared to the
ideal scenario. For a given coarse mesh, the enrichment criteria given by Figure 4.19 can be
used to provide an "initial enrichment strategy" as numerical examples of the next sections
will show.
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Fig. 4.19 Coefficient C with respect to κhmax: the monopole source in the cubic cavity with
1% error range (blue curve), the prescribed velocity boundary condition with 1% error range
(red curve).

4.5 Concluding remarks

In this chapter, a 3D Exact Integration Scheme is presented for the accelerated and accurate
computation of highly oscillatory integrals arising from the PUFEM matrix coefficients
associated with the 3D Helmholtz equation. It’s shown that, through successive use of
Green’s theorem, volume integrals have closed-form expressions in which no integration
is involved. Through convergence tests, a criteria for selecting the number of plane waves
is proposed. It is shown that this number only grows quadratically with the frequency thus
leading to a drastic reduction in the total number of degrees of freedoms in comparison to
classical FEM. The method has been verified for two numerical examples. In both cases, the
method is shown to converge to the exact solution. For the cavity problem with a monopole
source located inside, we tested two numerical models to assess their relative performance.
In this scenario where the exact solution is singular, the number of wave directions has to
be chosen sufficiently high to ensure that results have converged. The numerical model
which consists in separating the total pressure p into a singular incident field pi and a more
regular scattered field psc allow us to circumvent this limiting factor. Finally, we proposed
enrichment strategies based on the criteria (4.66).





Chapter 5

PUFEM with porous absorbers

A wide range of applications of absorbing materials can be found in the building sector,
the aviation and vehicle industries and so on, in order to control the inevitable sound and
noise issues. Optimum efficiency and flexible solutions are often regarded as the important
standards in the designs and applications of porous materials. In this chapter, we focus on the
application of the PUFEM element combined with EIS for the analysis of interior sound field
problems where absorbers are present. The outline of this chapter is organized as follows:

Section 5.1 briefly reviews several common models of absorbing materials usually en-
countered. Section 5.2 presents the application of the PUFEM for a cavity problem with
acoustically treated walls (surface impedance). In Section 5.3, the PUFEM is extended further
to simulate the acoustic waves in a porous material modeled as a equivalent homogeneous
fluid. The numerical performances and efficiency are also analyzed. Concluding remarks are
given in Section 5.4.

5.1 Absorbing material

5.1.1 Acoustic surface impedance

Definition

Impedance is one of the most important concepts in acoustics. In the mechanical field,
the common definition of the impedance refers to the ratio of the complex amplitude of a
sinusoidally varying force, moment or couple, to the complex amplitude of the resulting
velocity at a point on a vibrating object. This specific ratio also can be called the mechanical
impedance in a driving mechanical system. It’s usually a function of frequency and consists
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of a complex number of which the real part origins from the damping or friction system and
the imaginary part results from the stiffness and mass systems. Similarly, the acoustic surface
impedance represents the ratio between the complex amplitude of harmonic fluid pressure
(associated force acting on a surface) to the normal fluid particle velocity or volume velocity
passing through that surface. This ratio is generally complex and conventionally denoted
by Z. Under the assumption of plane wave motion in which both quantities are uniformly
distributed over the cross-section of the tube, the specific acoustic impedance over a unit-area
surface can be defined as

Z = p

vn

, (5.1)

where vn is the normal component of the fluid velocity directed into the surface. It physically
describes how much sound pressure acting on the wave over a unit-area is needed for driving
the fluid particle to attain a unit velocity.

Boundary representations of porous absorbers

Typically, there exists several different boundary representations of porous absorbers in
the field of room acoustic simulation according to the properties and geometries of the
porous material, this includes the simplest impedance boundary condition as well as the
more complicated Biot’s model taking into account skeleton and fluid phase motions. The
use of acoustic surface impedance to simulate the sound field in an enclosed cavity with
porous absorber materials on its boundary is only appropriate under some specific conditions.
It has been widely acknowledged in the acoustic community that the acoustic reflection
characteristics of room boundary can be fully described by its acoustic surface impedance Z

if the boundary is "locally reacting". According to Mechel [87], the absorber can be viewed
as "locally reacting" if it satisfies the following conditions:

• The interaction between the incident sound and absorber is fully described by the
absorber characteristics at the specific location where we observe p and vn,

• Sound propagation inside the absorber is only possible in the normal direction to the
boundary surface.

Under these assumptions, the acoustic surface impedance Z can be specified as a boundary
condition for the Helmholtz equation, and it is totally independent of the incident sound field
and its angle of incidence. In practice, the given absorber can be regarded as "locally reacting"
when the porous material possesses high flow resistivity, or in the case of a perforated plate
backed with honeycomb structures for instance. Otherwise, the response of the porous
absorbers will depend on the angle of incidence and show a growing damping once the
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incident angle increases. This problem can be partly overcome in the context of a diffuse
field as shown [60]. The use of a diffuse field impedance indicates that we take into account
the special behavior of the laterally reacting material, so the average damping of the porous
absorber will not be underestimated in comparison with the normal incidence impedance.

5.1.2 Equivalent Homogeneous Fluid (EHF)

A common and practical approach adopted by many researchers for describing the porous
material is to regard it as an equivalent homogeneous fluid (or EHF), this concept was first
proposed by Rayleigh [109] who considered the porous material as a rigid or motionless
frame with parallel and identical cylindrical pores. This idea was further worked out and
extended in the work of Zwikker and Kosten [130], Attenborough [6], Champoux and
Stinson [25]. The basic assumption is that only one longitudinal sound wave can propagate
through this porous material model with very stiff skeleton. In other words, porous absorber
behaves like the fluid with an adjusted density and bulk modulus, and the elastic and inertial
contribution of the solid phase are not taken into account. The quantities of the fluid density
ρp and the dynamic fluid bulk modulus Kp used to describe the remaining fluid phase in our
study are calculated form the frequency-dependent Johnson-Champoux-Allard’s expression
[2] (which is presented in Appendix A).

5.1.3 Biot’s model

However, the EHF assumption is not suitable for a certain category of absorbent materials
such as polymer foams whose solid structure possess a finite stiffness, if the sound absorbing
materials has a high flow resistivity and a high decoupling frequency, or the absorbing
materials are coupled to a vibrating structure. In these cases, the elasticity of the skeleton
cannot be neglected due to the fact that there exists various interaction between the solid
phase and fluid phase. Therefore, a set of coupled differential equations which describe the
movement of both phases and their interaction have to be considered.

The model based on the Biot theory [19] is of great value. It fully describes the propa-
gation of elastic and pressure waves in porous materials, mainly stating that a transversal
wave and a longitudinal wave can exist in an isotropic solid and a longitudinal wave can
propagate in the fluid. More detailed information and discussion can be found in the book of
Allard and Atalla [2].

The numerical solution of Biot’s equations is usually achieved with the finite element method
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(FEM) and this has been extensively used by many researchers [102, 5, 4]. In this regard,
the mixed (u, pp) formulation of Atalla et al. [5] offers the great computational advantage of
reducing the number of degrees of freedom as well as easing the transmission conditions at
the air-porous interface. The numerical simulation of Biot’s waves in poroelastic materials
has also been investigated in the context of wave-based methods [44, 37, 36, 100, 28] (see
Chapter 1), though these developments are restricted to two-dimensional domains.

5.2 PUFEM with surface impedance

Two numerical examples involving porous absorbers are considered. The first example is
concerned with a reverberant room where we use a normal surface impedance boundary to
represent the absorber material on the roof. We attempt to investigate the wave propagation
field inside the reverberant room incited by a monopole source which is placed near the center
of the room. We use a simplified geometrical model of the reverberant room shown in Figure
5.1, and the porous absorber is assumed to be "locally reacting". This numerical model
involves 19 nodes and is partitioned into 37 tetrahedron elements, here the characteristic
length is still set to be longest edge of the PUFEM mesh which is hmax ≈ 3.27 m.

Fig. 5.1 The physical and numerical models of reverberant room: the realistic geometry (left),
and the simplified numerical model with PUFEM mesh (right).
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The governing equations and boundary conditions is given in terms of the scattered pressure
psc: 




∆psc + κ2psc = 0 in Ω,
∂psc

∂n
= Ỹ pi + Ỹ psc − ∂pi

∂n
on Γ1,

∂psc

∂n
= −∂pi

∂n
on Γ2,

(5.2)

where, the pi represents the incident pressure due to a point source, Γ1 refers to the roof
surface where porous absorber are used, and Γ2 are the remaining rigid surfaces. In these
equations, Ỹ corresponds to the normalized surface admittance, Ỹ = iκZ0/Z where Z is the
surface impedance, here Z0 = ρ0c0 stands for the characteristic acoustic impedance of the
air. Note that the two surface integrals (see equations (4.69) and (4.71)) due to the Neumann
boundary condition on Γ1 and Γ2 do not have closed-form expressions, and the Gaussian
quadrature method must be employed (see Appendix B).

5.2.1 Numerical results

Since the analytical solution is impossible to obtain, the error evaluation criteria proposed in
Chapter 4 without involving exact analytical solution becomes the only option, this criteria is
reminded here:

ε(%) = ∥pimag∥L2(Γ)

∥preal∥L2(Γ)
× 100. (5.3)

However this error estimate is limited to the problems with real-valued solutions. These
solutions, although not physical because there is no absorption, shall serve to evaluate the
PUFEM numerical error. To illustrate this, let us consider a point source at x0 = (0, 0, 0.5)
(which is near the center of the room) and a surface impedance Z = Z0(2+2i). The first step
is to consider the real-valued version to this problem by taking a purely imaginary impedance
Z = Z02i. Numerical results are shown in Figure 5.2 by increasing the number of wave
directions per node (here Q̄ indicates the average value over the whole PUFEM mesh). The
error indicators are also reported showing very good convergence as expected.

Figure 5.3 shows the absolute values of the pressure corresponding to an absorbing impedance
condition Z = Z0(2+2i) with the same PUFEM parameters (Q̄ = 133 and Q̄ = 177). When
Q̄ = 177, the results have clearly converged (this was checked by increasing Q̄), and it is
anticipated that errors should be comparable as for the real-valued solution of Figure 5.2.
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Fig. 5.2 Pressure response in the reverberant room due to a point source near the center
of the room for κhmax = 30, with Z = Z02i: PUFEM solution with Q̄=133, ε ≈ 42.39%
(top), PUFEM solution with Q̄=177, ε ≈ 4.02% (middle), PUFEM solution with Q̄=221,
ε ≈ 0.55% (bottom).
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Fig. 5.3 Pressure response in the reverberant room due to a point source near the center of
the room for κhmax = 30, with Z = Z0(2 + 2i) prescribed on the roof, using Q̄ = 133 (left)
and Q̄ = 177 (right).

5.2.2 Impact of the source position

In this section, we shall investigate the effect of the position of source point on the numerical
error. It can be observed from Figure 5.4 that the point source is shifted from the room center
to a position x0 = (1.73, 0.54, 2.00) which is extremely close to one of the top corners of
the reverberant room. To be more precise, the distance between the source and the top corner
is set to be d = 5.5 × 10−3 m, which also corresponds to the non-dimensional parameter
κd = 4.95 × 10−2. The related sound pressure is shown in Figure 5.4 for three different
PUFEM enrichments. If we compare the imaginary part with the previous case where the
point source is located near the room center, we can easily find that, for the the same PUFEM
parameters (say Q̄ = 177), the level of numerical error is much higher than the counterpart
of the previous case.

In order to better illustrate this point of view, we plot two curves with respect to the relative
errors in Figure 5.5. It can be clearly observed that the numerical errors are significantly
influenced by the position of the source. More plane wave directions are required if we
attempt to reach the same accuracy level when the source is placed near the corner of the
reverberant room. This phenomenon probably stems from the amplified sound pressure due
to the surrounding solid walls. Nevertheless, both curves demonstrate that the PUFEM results
converge well.
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Fig. 5.4 Pressure response in the reverberant room due to a point source near the top corner
of the room for κhmax = 30: PUFEM solution with Q̄=177, ε ≈ 52.30% (top), PUFEM
solution with Q̄=221, ε ≈ 14.30% (middle), PUFEM solution with Q̄=265, ε ≈ 1.76%
(bottom).
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Fig. 5.5 Accuracy performance with regard to different positions of the point source: near
the center (blue), near the corner (red).

5.2.3 Re-entrant corner

In this example, we shall consider a cavity problem in the presence of a re-entrant corner,
where the sound field is produced by a monopole source placed inside the cavity. In Figure
5.6, it can be seen that a small cube of size 1m × 1m × 1m is cut out from the original
cubic cavity of dimension 2m × 2m × 2m. Similar to the reverberant room case, we also
apply a surface impedance boundary condition Z = Z0(2 + 2i) on the roof of the cavity.
The characteristic length of this cavity is hmax = 2 m. The position of the point source
x0 = (0.99, 0.99, 1.01) is located very close to the re-entrant corner of the cavity, with the
distance d ≈ 1.73 × 10−2 m. Results (viewed from a given observing angle) are shown in
Figure 5.7.

For the purpose of comparison, we investigate the accuracy performance with respect to
three different cases where the monopole sources are respectively put near the normal corner
(vertices of the cavity), re-entrant corner, and far from the corner. The curves plotted in
Figure 5.8 reveal that the error can be affected by the location of the monopole source. The
measured numerical error is relative larger when the monopole source is placed near a normal
corner (vertex of the cavity) in comparison with the other two cases. This increased error
probably stems from the amplified sound pressure which is caused by the surrounding solid
walls. These curves also show that the numerical error is not sensitive to the re-entrant corner.
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Fig. 5.6 The building model with re-entrant corner.

Fig. 5.7 Numerical solutions due to a point source near the re-entrant corner of the room
with surface impedance Z = Z0(2 + 2i) applied on the roof for κhmax = 30: using Q̄ = 220
(left), using Q̄ = 275 (right).
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Fig. 5.8 Accuracy performance with regard to the location of the point source: near the center
(blue), near the corner (red).

5.3 PUFEM with EHF

5.3.1 Formulation for the air and absorbing media

The general interior acoustic problem is sketched in Figure 5.9. It consists of two domains,
Ω = Ωa

SΩp, where Ωa represents the air-filled cavity and Ωp denotes the porous absorber.
For the sake of clarity, all quantities associated with the air domain are denoted by the
subscript a while the porous domain is referred by the subscript p. We consider that the
porous media can be modeled as an equivalent homogeneous fluid so the governing equations

Fig. 5.9 General interior case and variables notation.
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in each domain are given by the Helmholtz equation:

∆pa + κa
2pa = 0 in Ωa, (5.4)

∆pp + κp
2pp = 0 in Ωp. (5.5)

Recall that κa = ω/ca stands for the wavenumber in the air domain as mentioned above,and
κp = ω(ρp/Kp)1/2, where the quantities such as mean density and dynamic bulk modulus
can be calculated through Johnson-Champoux Allard’s model described in Appendix A. The
coupling condition at the interface boundary Γca and Γcp (see Figure 5.9 ) has to satisfy the
continuity of pressure and normal velocity, which gives

pp = pa, (5.6)

and
φ

ρp

∂pp

∂np

= − 1
ρa

∂pa

∂na

. (5.7)

Here, np and na are the outward normals of porous and air domain with the convention that
np = −na, φ is the porosity of the absorber. On the other part of the boundary of the air
cavity Γ′

a, a prescribed normal velocity va is imposed:

∂pa

∂na

= iρaωva in Γ′
a, (5.8)

whereas the porous absorber is assumed to be in contact with rigid walls, which reads

∂pp

∂np

= 0 in Γ′
p. (5.9)

By following the steps of the work published in reference [80], we now introduce Λ, the
Lagrange multiplier defined as the normal derivative of the acoustical pressure at the air-
porous interface. The variational formulation for the air domain writes

Z

Ωa

�
∇pa · ∇(δpa) − κ2

apaδpa

�
dΩ −

Z

Γca

δpaΛdΓ = iρaω
Z

Γ′
a

vaδpadΓ. (5.10)

And similarly, for the porous domain, it writes

φρa

ρp

Z

Ωp

�
∇pp · ∇(δpp) − κ2

pppδpp

�
dΩ +

Z

Γcp

δppΛdΓ = 0. (5.11)
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Applying standard Lagrange multiplier techniques, the continuity condition of pressure
across the air-porous interface which is weakly enforced as

Z

Γc

(pp − pa) δΛdΓ = 0, (5.12)

where δΛ stands for an appropriate weight function and Γc denotes the air-porous common
interface. Similar to the strategy for the approximation of the potential pa and pp which is
presented in equation (2.18), the Lagrange multiplier Λ is approximated by using real plane
waves having the highest oscillations to make sure that the wave pattern at the interface is
well captured. Hence, the Lagrange multiplier takes the form

Λ(x) =
3X

j=1
Nj

QjX

q=1
Λjq exp(iRe(κp)djq · (x − xj)), (5.13)

where amplitudes Λjq are the unknown coefficients, Nj are the classical linear shape functions
on triangular elements at the interface. Through the use of Galerkin method, we can finally
obtain the coefficient matrices for the multiple subdomains problems. Note that the weight
functions δpα(α = a, p) and δΛ are selected from the plane wave basis indicated in equation
(2.18). The above steps gives rise to the following symmetric system:




Ka 0 −Ca

0 Kp Cp

−CT
a −CT

p 0







Aa

Ap

Λ


 = iρaω




Va

0
0


 . (5.14)

Here, Kα (α = a, p) are the plane wave finite element matrices for the Helmholtz problem,
Cα denote the coupling matrices, vectors Aα and Λ contain the plane wave amplitudes in
formulas (2.18) and (5.13). It should be aware that the wavelength in the porous domain is
usually much smaller than its counterpart in the acoustic domain, so the PUFEM element
associated with the porous domain will span more wavelengths and lead to a higher computa-
tional cost. The 3D PUFEM element combined with exact integration scheme is used here to
perform the analytical integrations of the PUFEM matrix coefficients.

5.3.2 3D standing wave tube test

This example is carried out to investigate the numerical performance of the PUFEM ele-
ment for solving the acoustic transmission and coupling problem. Note that the absorbing
materials are treated as an equivalent homogeneous fluid, and the corresponding acoustic
properties of the sound absorbing porous material are taken from [40, 110] and reported in
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Fig. 5.10 The geometry and PUFEM mesh of the model.

Appendix A. In fact, the geometry and boundaries are similar to the 2D standing wave tube
test introduced in Chapter 3. The additional dimension (width of the tube) is set to be 0.03 m,
so the dimensions are 0.03 m ×0.03m ×0.15m. As shown in Figure 5.10, the whole length
of the tube L is divided into three regions of equal length, and the porous absorber is placed
in the middle region and represented in yellow. This numerical model is partitioned into 72
PUFEM element and contains 32 nodes in total. For this configuration, the characteristic
length of the mesh which is still assigned to be the longest edge of the partitioning mesh, is
hmax =

√
0.052 + 0.032 + 0.032 ≈ 0.066 m.

Recall that, in Chapter 3, we used an artificial value for the porous wavenumber. However, in
the 3D standing wave tube test, the porous absorber is made of a realistic material A (acoustic
properties of the materials used in this work are given in Appendix A). In this example, we
apply the prescribed velocity boundary condition, ∂pa

∂na
= 1, on the front surface of the tube,

and the end of the tube is a rigid wall. Figure 5.11 and 5.12 exhibits both the analytical and
numerical solutions for κahmax = 30 (this corresponds to a frequency of about 21, 000 Hz).
In this example, the numerical error is around 1% when the average plane wave directions per
node Q̄ is 305, and this corresponds to a total number of degrees of freedom Ndof = 12784
(including the Lagrange multipliers) and nλ = 2.25 (this value is estimated by considering
the wavelength in the air). From Figure 5.13, we may note that the solution in the "quiet
zone" is typical of a stationary wave and the accuracy is excellent.
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Fig. 5.11 Pressure response (absolute value) in the standing wave tube with material A (see
Appendix A): analytical solution for κahmax = 30 (top), PUFEM solution with Q̄ = 305
(bottom).
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Fig. 5.12 Real part of the sound pressure field in the standing wave tube with material A,
κahmax = 30: analytical solution (blue curve) and PUFEM results (red curve).
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Fig. 5.13 The sound pressure field (in log scale) in the standing wave tube with material A,
κhmax = 30: analytical solution (blue curve) and PUFEM results (red cross symbol).

5.3.3 3D standing wave tube test with geometric singularity

This last example is carried out to illustrate the performance of the PUFEM element for
tackling geometric singularities, the geometry and mesh of the standing wave tube with
variable backing is shown in Figure 5.14, where 41 nodes and 101 PUFEM elements are
included in this numerical model in total. In Figure 5.15, we display the sound pressure level
in the tube for κahmax = 30 and no material is present. It can be observed that the scattering
of waves by the edge singularity generates a transverse mode in the tube. On the contrary,
this mode can not be observed when a porous absorber is placed in the middle region of the
tube, as shown in Figure 5.16. The adopted average number of plane waves per node Q̄ in
these two models (with and without porous material) are both equal to 308, giving the total
number of dof, Ndof = 15676.

Fig. 5.14 The geometry and the PUFEM mesh of the model with geometric singularity.
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Fig. 5.15 Pressure response (absolute value) in the standing wave tube without porous
material, for κahmax = 30.

Fig. 5.16 Pressure response (absolute value) in the standing wave tube with material B (see
Appendix A) placed in the middle region, for κahmax = 30.
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5.4 Concluding remarks

This chapter has investigated the numerical performances of the PUFEM for solving 3D
interior sound fields and wave transmission problems in which absorbing materials are
present. In the specific case of a locally reacting material modeled by a surface impedance,
the numerical error can be easily estimated via equation (5.3) by simply considering a purely
imaginary impedance which is known to produce real-valued solutions. Based on this error
estimate, it has been shown that the PUFEM can provide accurate solutions at a relatively
low computational cost, and around 2 degrees of freedom per wavelength are found to be
sufficient. In the last section of the chapter, we extended the PUFEM for solving wave
transmission problems between the air and a porous material modeled as an equivalent
homogeneous fluid. A simple 1D problem was tested (standing wave tube) and the PUFEM
solutions were found to be around 1% error which is sufficient for engineering purposes.



Chapter 6

Conclusion and perspectives

In this work, we have introduced the underlying concept of PUFEM and the basic formulation
related to the Helmholtz equation in a bounded domain. The plane wave enrichment process
of PUFEM variables was shown and explained in detail. The main idea is to include a priori
knowledge about the local behavior of the solution into the finite element space by using
a set of wave functions that are solutions to the partial differential equations. In this study,
the use of plane waves propagating in various directions was favored as it leads to efficient
computing algorithms. In addition, we showed that the number of plane wave directions
depends on the size of the PUFEM element and the wave frequency both in 2D and 3D. The
selection approaches for these plane waves were also illustrated. For 3D problems, we have
investigated two distribution schemes of plane wave directions which are the discretized
cube method and the Coulomb force method. It has been shown that the latter allows to get
uniformly spaced wave directions and enables us to acquire an arbitrary number of plane
waves attached to each node of the PUFEM element, making the method more flexible.

In Chapter 3, we investigated the numerical simulation of propagating waves in two di-
mensions using PUFEM. The main priority of this chapter is to come up with an Exact
Integration Scheme (EIS), resulting in a fast integration algorithm for computing system
coefficient matrices with high accuracy. The 2D PUFEM element was then employed to solve
an acoustic transmission problem involving porous materials. Results have been verified and
validated through the comparison with analytical solutions. Comparisons between the Exact
Integration Scheme (EIS) and Gaussian quadrature showed the substantial gain offered by
the EIS in terms of CPU time.

A 3D Exact Integration Scheme was presented in Chapter 4, in order to accelerate and
compute accurately (up to machine precision) of highly oscillatory integrals arising from the
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PUFEM matrix coefficients associated with the 3D Helmholtz equation. Through conver-
gence tests, a criteria for selecting the number of plane waves was proposed. It was shown
that this number only grows quadratically with the frequency thus giving rise to a drastic
reduction in the total number of degrees of freedoms in comparison to classical FEM. The
method has been verified for two numerical examples. In both cases, the method is shown to
converge to the exact solution. For the cavity problem with a monopole source located inside,
we tested two numerical models to assess their relative performance. In this scenario where
the exact solution is singular, the number of wave directions has to be chosen sufficiently high
to ensure that results have converged. The numerical model which consists in separating the
total pressure p into a singular incident field pi and a more regular scattered field psc allows
us to circumvent this limiting factor. In the last part of this chapter, enrichment strategies
based on the criteria (4.66) have been proposed.

In the last Chapter, we have investigated the numerical performances of the PUFEM for solv-
ing 3D interior sound fields and wave transmission problems in which absorbing materials are
present. For the specific case of a locally reacting material modeled by a surface impedance,
a numerical error estimation criteria is proposed by simply considering a purely imaginary
impedance which is known to produce real-valued solutions. Based on this error estimate, it
has been shown that the PUFEM can achieve accurate solutions while maintaining a very
low computational cost, and only around 2 degrees of freedom per wavelength were found to
be sufficient. We also extended the PUFEM for solving wave transmission problems between
the air and a porous material modeled as an equivalent homogeneous fluid. A simple 1D
problem was tested (standing wave tube) and the PUFEM solutions were found to be around
1% error which is sufficient for engineering purposes.

To the best knowledge of the author, the development and application of PUFEM for solving
three-dimensional acoustical problems have been the subject of rather limited research work.
Some potential developments of 3D PUFEM could be carried out in any of the following 3
relevant aspects: the selection of wave basis, the speed up process for integration and the
hybrid approaches. Some suggestions and perspectives concerning future research topics are
given herein:

1. As we have introduced in Chapter 2, some other wave functions could be adopted to
enrich the finite element space. They could take precedence over the performance of
plane wave basis under some certain circumstances. Although some of them might
have been studied in other wave-based methods, there still exists great potential of
their applications in the context of PUFEM, especially in 3D. For the plane wave basis,
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the distribution of plane wave directions could be further extended by introducing an
external charge in order to cluster the wave directions towards a desired orientation.
This kind of effort could give rise to a higher convergence rate of the method as well
as a reduction of the computational load.

2. For the 3D Exact Integration Scheme, some other approaches could be used to avoid
redundant edges integral evaluation, we can first compute all the unique and then to
recombine them. However this approach requires the storage of a large number of
values and may lead to the issue of memory consuming. Another way of improvement
can be obtained is by using tensorization. For instance if elements are similar (in the
volume core) the same plane wave can be used and most of elementary computation
can be performed only once. The development of PUFEM curved element should also
be investigated.

3. To increase the applicability of PUFEM method to tackle realistic configurations,
the development towards the hybrid approaches (e.g. FEM and PUFEM combined
together) represents an interesting direction. This hybrid framework takes benefits
from the best properties of two numerical approaches, which allows us to alleviate
the restrictions of geometrical complexity of the problem while maintaining the high
efficiency for solving large domain or high frequency problems.
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Appendix A

Porous model

In this work, we take advantage of the frequency-dependent Johnson-Champoux-Allard’s
expression of the fluid density ρp and the dynamic fluid bulk modulus Kp to describe the
fluid phase. This two fundamental characteristic parameters of fluid are given by [2]

ρp = ρ0α∞

 
1 − σφ

iρ0α∞ω

s
1 − 4iηα2

∞ωρ0

Λ2φ2σ2

!
, (A.1)

Kp = γP0

γ − (γ − 1)




1 −
8η

s
1 − iρ0

PrΛ′2ω

16η

iΛ′2Prωρ0




−1 , (A.2)

respectively, with i2 = −1. These expressions are based on the harmonic time variation e−iωt

where the excitation of the source varies sinusoidally in time with a single frequency. This
equivalent homogeneous fluid (EHF) requires the knowledge of five semi-phenomenological
parameters to be taken into account, including the volume porosity φ, the tortuosity α∞, the
airflow resistivity σ, and the viscous and thermal characteristic lengths Λ and Λ′. All the
explanations and measurement techniques with respect to these acoustical parameters are
introduced concretely in the reference [2].

Figure A.1 shows the value of the complex wavenumbers kp = Re(kp)(1 + iχ) as function
of the frequency for several different materials denoted by A-D, which would be used in the
following examples in this chapter. All the other necessary parameters mentioned before can
be found in reference [40] for material A-C. The material D related to FM2 foam is in [110].
For the sake of completeness, the values are listed in Table A.1.
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Fig. A.1 Ratio between the imaginary and the real part of the wavenumber for various
materials (top); Complex wavenumbers (imaginary part) for various materials (bottom).

Parameters Mat A Mat B Mat C Mat D
φ 0.95 0.95 0.97 0.90

α∞ 1.00 1.00 1.54 7.8
σ (kNm−4s) 105 23.0 57.0 25.0

Λ (µm) 35.1 54.1 24.6 226
Λ′ (µm) 105.3 162.3 73.80 226

ρs (kgm−3) 17 58 46 30
Table A.1 Characteristics of the materials.



Appendix B

Remarks on high order numerical
quadrature

In this work, we also took advantage of advanced quadrature method to implement the
surface integrals involved in the PUFEM algorithm, giving rise to a significant acceleration
for computing the system matrix coefficients. To extend Gaussian quadrature to highly
oscillating functions on triangle, there is a need to find dedicated quadrature rules. For
instance Wandzura and Xiao [124] have obtained symmetric quadrature rules on triangle up
to the order 30 1. More recently, Witherden and Vincent [126] proposes a algorithm and an
open source software to compute near optimal rule valid up to the order 25 or 302.

If the order increases beyond 30, the polynomial systems are poorly conditioned and hence it
is difficult to use such approaches. Alternative methods become more appropriate because it
is more important to have an efficient rule than the optimal one. Three strategies have been
tested during the PhD and have provided accurate results

1. The first is based on a Cartesian product rules (see [74, 105]) and involved the classical
quadrature weights and abscissa of the Gauss-Legendre formula in the interval [0, 1].
In order to get a homogeneous distribution of the integration points, the number of
points in the second direction is taken to be linearly varying.

2. The second is based on Wandzura rules (the highest) and triangle splitting. The triangle
is split into sub-triangle to get the required accuracy.

1The coordinate and the weight can be found at https://people.sc.fsu.edu/~jburkardt/m_src/
triangle_wandzura_rule

2https://github.com/vincentlab/Polyquad
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Fig. B.1 Gauss points obtained with the 3 presented strategies. a) With the Cartesian product,
b) the triangle splitting and c) the Duffy transform. Around 700 points are used for each case.

3. The third is based on high-order rule inside of a quadrilateral. These rules can be
constructed through a tensor product of one dimensional Gauss-Legendre rules and
then use a Duffy type transformation to map these points onto a triangle [97].

The different strategies are conveniently plotted in Figure B.1. A benchmark of these methods
has been performed. It has been shown that the triangle splitting and the Cartesian product
are the most efficient in the intermediate range where the order is above 30. Then if the order
increases again, the Duffy and triangle splitting become the two best. Because of its good
versatility, the triangle splitting has been used throughout this work and especially for the
computation of the boundary term involving the monopole incident field. A rule of thumb
has been developed to find a relation between the number of split and the oscillation of the
integrand.




