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RESUME 

 

Les archées sont principalement connues pour leur capacité à croître et survivre dans des 

conditions extrêmes de température, pression, pH, etc. qui sont hostiles à l’homme. 

Néanmoins, il est désormais clair que les archées sont aussi présentes de manière ubiquitaire 

dans divers environnements. L’étude détaillée des différents aspects de la biologie de ces 

microorganismes a amené à des découvertes pour le moins inattendues comme celle de la 

virosphère associée aux archées qui est unique. En effet, plusieurs virus infectant les archées 

ont été isolés et présentent une incroyable diversité tant au niveau morphologique que 

génomique et ne ressemblent aucunement aux virus connus de bactéries ou d’eucaryotes. 

Récemment, l’analyse en détails du cycle viral a mis à jour de nouveaux mécanismes 

d’interactions avec la cellule hôte. Au cours de mes travaux de thèse, nous nous sommes 

intéressés aux systèmes virus-hôtes présents dans les milieux hyperthermiques et acidophiles 

en sélectionnant les virus fusiforme et filamenteux SSV1 et SIRV2 en tant que modèles 

d’étude. Tout d’abord, nous avons défini une nouvelle classification des virus fusiformes 

basée sur l’analyse comparative des protéines structurales et des génomes viraux. L’ensemble 

des virus considérés forme un réseau global malgré le fait qu’ils ont été isolés dans des 

environnements distincts ; qu’ils infectent des hôtes qui sont distant phylogénétiquement 

parlant et que certains de leurs virions présentent une certaine pléomorphicité. Ensuite, la 

caractérisation en détails de l’architecture des virions fusiformes de SSV1 a révélé qu’ils 

étaient enveloppés, composés de protéines de capside glycosylées et contenaient le complexe 

nucléoprotéique. Finalement, nous nous sommes concentrés sur la manière dont les virus 

d’archées interagissent avec la cellule hôte. Alors que les virions de SIRV2 semblent utiliser 

une stratégie pour l’entrée qui est similaire aux bactériophages dits flagellotrophiques ; on 

observe que les virions de SSV1 emploient un mécanisme de sortie qui rappelle le 

bourgeonnement des virus eucaryotes enveloppés. L’ensemble de ces recherches participent à 

une meilleure compréhension de la biologie des archées ainsi que de leurs virus et permettent 

de définir des cibles intéressantes pour de futures études.  
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ABSTRACT 

 

Although, archaea were initially regarded as exotic microorganisms capable of growing in 

conditions which are hostile to humans, it became clear that they are ubiquitous and abundant 

in various environments. Detailed studies focusing on different aspects of archaeal biology 

have led to many unexpected discoveries, including the unique virosphere associated with 

archaea. Indeed, highly diverse viruses characterized by uncommon virion shapes and 

mysterious genomic contents have been isolated that typically do not resemble viruses of 

either bacteria or eukaryotes. Recent analysis of the sequential events of the viral cycle 

resulted in major breakthroughs in the field. In the framework of my PhD studies, I have 

focused on two model hyperthermo-acidophilic virus-host systems, the spindle-shaped SSV1 

and rod-shaped SIRV2, both infecting organisms of the genus Sulfolobus. Initially, we defined 

structure-based lineages for all known spindle-shaped viruses isolated from highly divergent 

hosts and residing in very different environments. Then, we provided insights into the 

architecture of spindle-shaped viruses by showing that SSV1 virions are composed of 

glycosylated structural proteins and contain a lipid envelope. Finally, we focused on virus-

host interplay. Whereas SIRV2 virions appear to use a similar entry strategy as flagellotrophic 

bacteriophages, SSV1 virions employ an exit mechanism reminiscent of the budding of 

eukaryotic enveloped viruses. Collectively, these studies shed light on the biology of archaeal 

viruses and help to define interesting targets that should be the focus of intensive research in 

the next future. 

 

 

Key words 

archaea – hyperthermohpiles – spindle-shaped viruses – rod-shaped viruses – viral entry –
viral egress.  
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INTRODUCTION 

 

The third domain of life. 

The classification of living organisms into three cellular domains, namely the Bacteria, the 

Archaea and the Eukarya, was initially proposed by Carl R. Woese based on ribosomal RNA 

gene sequences (Woese and Fox, 1977). This phylogenetic approach also indicated that the 

third domain of life, the Archaea, could be subdivided into two kingdoms: the Euryarchaeota 

and the Crenarchaeota (Woese et al., 1990). Although Euryarchaeota encompass 

methanogens, extreme halophiles, thermoacidophiles and a few hyperthermophiles; 

Crenarchaeota exclusively include thermophiles and hyperthermophiles. Subsequently, the 

possibility to sequence uncultivated organisms by high-throughput methods led to the 

proposal of other phyla (Figure 1). Historically, the first additional division was called 

Korarchaeota and included a large group of deep-branching unclassified archaea. These 

microorganisms have been detected in several geographically isolated terrestrial or marine 

thermal environments and remain uncultured (Barns et al., 1994; Barns et al., 1996; Elkins et 

al., 2008). Members of the Thaumarchaeota were initially classified as mesophilic 

crenarchaea and later on, their ecological importance together with peculiar genomic features 

were recognized (Brochier-Armanet et al., 2008). Indeed, thaumarchaea are highly diversified 

and widely distributed in oceans and soils where they are abundant and significantly 

contribute to the global cycles of carbon (Thauer, 2011) and nitrogen (Pester et al., 2011). The 

unprecedented parasitic lifestyle of Nanoarchaeum equitans argued in favor of a novel and 

early-diverging archaeal phylum, the ‘Nanoarchaeota’ (Huber et al., 2000). Alternatively, 

Nanoarchaeum equitans, the obligate symbiot of Ignicoccus hospitalis, might also be part of a 

fast-evolving lineage within the Euryarchaeota (Brochier et al., 2005). ‘Candidatus 

caldiarchaeum subterraneum’ has as well been proposed to represent a separate phylum 

tentatively named ‘Aigarchaeota’ based upon specific genomic characteristics (Nunoura et 

al., 2010). Interestingly, the Thaumarachaeota, ‘Aigarchaeota’, Crenarchaeota and 

Korarchaeota have a common set of genes involved in cytokinesis, membrane remodeling, 

cell shape determination and protein recycling. The fact that these genes are also shared with 

eukaryotes led to the hypothesis that they are related to, and even emerged from, the so-called 

‘TACK’ superphylum (Guy and Ettema, 2011). In-depth phylogenetic analyses and tree 

reconstruction even placed Eukarya as a sister group of the ‘TACK’ superphylum (Raymann 

et al., 2015). In support of this hypothesis, phylogenomic analyses of recently 
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Figure 1: Unrooted Bayesian tree of the archaeal domain based on a concatenation of 57 ribosomal proteins present in at 
least 89 of 99 genomes (5838 unambiguously aligned amino acid positions); for details on the procedure for dataset 
assembly see [3•]. We used Phylobayes 3.3 [56] to recode the alignment according to the Dayhoff-6 amino acid 
categories and to infer a tree with the CAT+Γ model to take into account evolutionary rate site variations among sites. 
The scale bar indicates the average number of substitutions per site. Numbers at branches represent posterior 
probabilities as inferred by Phylobayes 3.3. Most relationships are well supported, but some need further investigation, 
in particular (i) the monophyly of Desulfurococcales, (ii) the relationships among Class I methanogens, (iii) the 
relationships among Class II methanogens and their link with Halobacteriales, (iv) the phylogenetic position of ARMAN 
(in particular the grouping of some of them with Nanoarchaeum equitans) and (v) the relationship among main archaeal 
phyla.  

Reproduced with permission from Brochier-Armanet et al., 2011: Phylogeny and evolution of the Archaea: one hundred 
genomes later. 
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described ‘Lokiarchaeota’ concluded to a common ancestry between eukaryotes and this 

deeply-rooting clade of the ‘TACK’ superphylum. The genomes reported, although only 

partially assembled, stem from the most abundant and uncultured organisms found in deep 

marine biosphere (Spang et al., 2015). Future research is likely to provide significant insights 

into the classification and biology of the closest relative to eukaryotes known to date. 

 

Highly diversified archaea. 

Metagenomic approaches have proven to be powerful in identifying and characterizing novel 

lineages of uncultivated archaea thereby increasing our comprehension of the diversity of life 

on our planet. Environmental surveys revealed that archaea are ubiquitous and present in 

almost all ecosystems examined until now including humans. Although archaea have never 

been shown to cause any disease, several reports described human-associated species from the 

gut (Miller et al., 1982), vagina (Belay et al., 1990), oral cavity (Kulik et al., 2001; Lepp et 

al., 2004) and skin (Probst et al., 2013). The potential activation of innate and adaptive 

immune systems by archaea as well as the overall impact of the human microbiome have been 

the focus of recent studies (Dridi et al., 2011; Bang and Schmitz, 2015). Various 

environments around the world have been sampled by scientists and sequences of genomes 

isolated from very different ecosystems are now available. The massive amount of data 

generated by metagenomic methods revealed that archaea are globally distributed. 

Prokaryotes form a significant fraction of the total biomass and in subsurface sediments 

archaea represent up to 87% of the biomarkers used to assess the presence of living cells 

(Lipp et al., 2008). In fact, the relative abundance of prokaryotes in soil and freshwater is 

known to vary depending on locations (Simon et al., 2000; Keough et al., 2003; Ochsenreiter 

et al., 2003; Tringe et al., 2005; Jorgensen et al., 2012; Jorgensen et al., 2013; Urich et al., 

2014). In oceans, up to 20% of total microbiota is made of ammonia-oxidizing archaea and 

bacteria involved in the process of nitrification (Pester et al., 2011). Importantly, the copy 

number of archaeal amoA genes – encoding a subunit of the key ammonia monooxygenase 

enzyme – from crenarchaea was found to be 3,000 times more abundant than their bacterial 

homologues (Leininger et al., 2006). Activities of methanogens have been extensively 

investigated in deep-sea marine sediments (DeLong, 2005), hot spots of anaerobic oxidation 

of methane (Knittel et al., 2005), peatland ecosystems (Galand et al., 2005) or even petroleum 

hydrocarbon-contaminated aquifer (Kleikemper et al., 2005). Interestingly, methanogenic 

archaea are the only organisms capable of methanogenesis identified so far and other non-
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classical energy metabolisms have been detected in metagenomes (Pester et al., 2011). Hence, 

members of the third domain of life significantly contribute to Nitrification and Carbon cycles 

(Offre et al., 2013). The predominance of archaea in marine plankton might also have a major 

impact in the global biogeochemistry of Earth, especially in the deep Ocean and cold marine 

water (DeLong et al., 1994). In addition, several species have been described as alkalophiles, 

acidophiles, halophiles, barophiles, hyperthermophiles or psycrophiles depending on optimal 

growth requirements. They are found in habitats with high or low pH, salinity close to 

saturation, high atmospheric pressure, and temperature above 80°C or down to -20°C. 

Although such ecological niches were initially regarded as sterile, they are now known to be 

almost exclusively inhabited by archaea (Alves et al., 2013; Eme et al., 2013; Gittel et al., 

2014; Jaakkola et al., 2014). It has also become clear that archaea cannot only be seen as 

extremophiles but are highly diversified microorganisms in terms of metabolism and 

incredibly successful in colonizing almost all environments possible.  

 

Unique archaeal virosphere. 

Archaeal viruses belong to 15 families or equivalent groups and infect members of 16 

archaeal genera, nearly exclusively hyperthermophiles and extreme halophiles. In 

comparison, bacterial viruses belong to 11 families and infect members of 179 bacterial 

genera (Ackermann and Prangishvili, 2012). A certain proportion of the viruses infecting 

archaea which have been described up to date resemble bacteriophages: (i) head-tail viruses 

belong to the well-studied families Myoviridae, Siphoviridae and Podoviridae from the order 

Caudovirales, (ii) icosahedral viruses with internal envelope structures are part of the 

Sphaerolipoviridae and Turrivirdae (Tectiviridae and Corticoviridae in bacteria) and (iii) 

pleomorphic viruses form the Pleolipoviridae (Plasmaviridae in bacteria). Direct observations 

suggested that the majority of virus-like particles (VLPs) found in hypersaline environments 

are non-tailed (Santos et al., 2012; Brum et al., 2013), however geographical and temporal 

screens for viral diversity in liquid and solid samples came to opposite conclusions 

(Atanasova et al., 2012; Atanasova et al., 2015). Indeed, all early isolated haloarchaeal viruses 

were similar to tailed bacteriophages (Reiter et al., 1988) and this holds true for the great 

majority of haloviruses characterized so far (Dyall-Smith et al., 2003; Kukkaro and Bamford, 

2009). Beside the predominant myo-, sipho- and podoviruses, the first archaeal virus with 

ssDNA genome displayed enveloped, pleomorphic virions with protein spikes extending from 

the membrane surface (DeLong et al., 1994; Pietila et al., 2009; Pietila et al., 2010). 
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Halorubrum pleomorphic virus 1 (HRPV1) represented a novel viral group together with all 

lipid-containing, pleomorphic viruses: the ‘Pleolipoviridae’ family (Roine et al., 2010; Pietila 

et al., 2012). For example, a detailed biochemical characterization indicated that His2 is a 

pleolipovirus (Pietila et al., 2012) although it had been initially assigned to the floating 

‘Salterprovirus’ genus with the spindle-shaped virus His1 (Bath et al., 2006). Another family, 

the Sphaerolipoviridae, comprises tail-less, icosahedral viruses with a selectively acquired 

lipid membrane underneath the outer protein capsid. On top of the original members, the 

haloarchaeal viruses SH1, PH1, Haloarchaea hispanica icosahedral virus 2 (HHIV-2) and 

SNJ1, the family was expanded to include bacteriophages P23-77 and IN93 which infect 

Thermus thermophiles. Beside an overall similar virion morphology and structure of capsid, 

all members share a conserved block of core genes arranged in the same order, i.e. a gene for 

a putative genome packaging ATPase in close proximity to the genes encoding the small and 

the large MCPs (Pawlowski et al., 2014).  

There are considerably fewer viruses characterized for methanogenic archaea: PG (Bertani 

and Baresi, 1987), φF1, φF3 (Nolling et al., 1993), ψM1 (Jordan et al., 1989), its deletion 

variant ψM2 (Pfister et al., 1998) and the prophage ψM100 (Luo et al., 2001). All the viruses 

listed above, except defective ψM100, have virions which display the typical morphology of 

siphoviruses. Notably, a VLP with morphology similar to fuselloviruses (see below) was 

found in cultures of Methanococcus voltae A3 (Wood et al., 1989). Further analyses of the 

diversity of VLPs in natural environments that contain predominantly archaea, i.e. extreme 

geothermal ecosystems, revealed that head-tail viruses are rather rare (Prangishvili et al., 

2013). Electron microscopy on enrichment cultures from two hot springs of Yellowstone 

National Park shed light on the unexpected diversity reporting 12 different morphotypes 

(Rachel et al., 2002). Surveys in various locations – Iceland, Japan, USA – provided insights 

into the exceptional diversity of viruses infecting hyperthermophilic members (Rice et al., 

2001; Rachel et al., 2002; Geslin et al., 2003; Bize et al., 2008; Garrett et al., 2010; Mochizuki 

et al., 2010; Quax et al., 2010). In fact, cultured archaeal viruses isolated from geothermal 

environments exhibit unique morphologies described hereinafter (Figure 2). They all, except 

two with single-stranded (ss) DNA, contain double-stranded (ds) DNA genomes and infect 

members of the genera Pyrococcus, Thermococcus, Thermoproteus, Pyrobaculum, 

Aeropyrum, Sulfolobus and Acidianus (Pina et al., 2011; Prangishvili, 2015).  

Viruses with fusiform virions, either tail-less, tailed or two-tailed, are common in archaea-

dominated environments and constitute a large fraction of described archaeal viruses. Within 
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the family Fuselloviridae, members share a unique spindle-shaped morphology with spindle- 

or lemon-shaped particles (60x100 nm) decorated by sticky terminal fibres at one of the two 

pointed ends (Wiedenheft et al., 2004). Exceptions are viruses Sulfolobus spindle-shaped 

virus 6 (SSV6) and Acidianus spindle-shaped virus 1 (ASV1), whose virions tend to be more 

pleomorphic resembling a thin cigar or a pear, respectively (Redder et al., 2009). In addition, 

they seem to differ from the other fuselloviruses in the presence of three or four thicker and  

slightly curved fibres at one pole (Redder et al., 2009). Pyrococcus abyssi virus 1 (PAV1) and  

Thermococcus prieuri virus 1 (TPV1) infect hyperthermophilic euryarchaea and also produce 

enveloped, lemon-shaped particles with a tail-like protrusion terminated by fibres (Geslin et 

al., 2003; Gorlas et al., 2012). Single-tailed fusiform viruses, Sulfolobus tengchongensis 

spindle-shaped virus 1 (STSV1) and STSV2 discovered in China are distantly related to the   

Bicaudaviridae (Xiang et al., 2005; Erdmann et al., 2014). This family has been established 

 

Figure 2: Transmission electron micrographs of representative members of eight families of viruses of the 
Crenarchaeota.  

Reproduced with permission from Krupovic et al., 2012: Chapter 2 – Postcards from the Edge: Structural Genomics of 
Archaeal Viruses. 
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based on one known representative, Acidianus two-tailed virus (ATV) (Prangishvili et al., 

2006). Notably, the two-tailed fusiform virions are extruded from host cells as tail-less 

particles and in conditions close to natural habitat, i.e. 85°C, two long tails are being 

developed from the spindle-shaped body. At the two identical ends, tubes are formed with a 

thin periodic filament inside and terminate in an anchor-like structure (Haring et al., 2005c).  

Exclusive to archaea, fusiform viruses comprise several isolates which remained unclassified 

for a long time. They are associated with a broad range of hosts which are highly diverse in 

terms of metabolism and belong to phylogenetically distant groups. Using structural markers, 

we defined that the two viral lineages: the Bicaudaviridae or Fuselloviridae families depend 

on the unique helix-bundle fold in the major capsid protein (MCP) or the presence of two 

hydrophobic domains, respectively. Importantly, we show that most of the isolates display the 

hallmark of the Fuselloviridae making it the most prominent and evolutionary successful 

family among the viral groups which have been described in Archaea up to now (Krupovic et 

al., 2012). The results of our in-depth comparative analysis have been published and can be 

found in the Chapter 3 of the manuscript.  

In environments dominated by archaea, linear viruses are also very abundant and all of them 

have dsDNA genomes, a property not previously observed for any linear virus. They are part 

of the Ligamenvirales order which includes the two families Rudiviridae and Lipothrixviridae 

(Prangishvili and Krupovic, 2012). The discrimination between the rudiviruses and 

lipothrixviruses was initially claimed based on different principles of virion architecture and 

is now supported by comparative genomic data. Rudiviruses have non-enveloped virions with 

a length proportional to the size of the linear genomes (23x610-900 nm). They contain a 

superhelix formed by dsDNA genome and copies of a single glycosylated, basic DNA-

binding protein. At the two ends of the tube-like structure are anchored three short tail fibres 

made of a minor structural protein of 100 kDa (Prangishvili et al., 2013). Members of the 

Lipothrixiviridae exhibit a variety of terminal appendages. In particular, there can be up to six 

terminal filaments forming the terminal appendage in the case of Sulfolobus islandicus 

filamentous virus (SIFV) (Arnold et al., 2000) or even synthesis of complex structures such as 

‘claws’ in the case of Acidianus filamentous virus 1 (AFV1) (Bettstetter et al., 2003) or ‘bottle 

brush’ for AFV2 (Haring et al., 2005b). Consistently, they significantly differ in the structures 

of virion core, genomic properties and replication mechanisms sustaining a classification into 

four different genera (Pina et al., 2011). Historically, Thermoproteus tenax virus 1 (TTV1), 

TTV2, TTV3 were the first studied and belong to the α-lipothrixviruses (Reiter et al., 1988). 
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Other morphotypes are completely atypical and their unique characteristics justified the 

establishment of novel viral families by the International Committee for the Taxonomy of 

Viruses (ICTV). Acidianus bottle-shaped virus (ABV) is the only representative of the 

Ampullaviridae family and virions exhibit a complex architecture. The viral particles 

resemble a bottle with three structural elements: the ‘stopper’ or pointed end, the 

nucleoprotein core and the inner core. The dsDNA-containing nucleoprotein is folded into a 

cone-shaped core that is further encased in an envelope. There is a narrow, pointed end and a 

broad end with 20 short, thick filaments which insert into a disc and are also interconnected at 

their bases (Haring et al., 2005a). Members of the Guttaviridae are Sulfolobus neozealandicus 

droplet-shaped virus (SNDV) and Aeropyrum pernix ovoid virus 1 (APOV1). Virions of 

SNDV display a droplet-shaped body (90x180 nm) made of a core surrounded by a 7-nm-

thick coat. Despite an overall droplet form, the surface seems to be helically ribbed and 

appears ‘bearded’ by multiple, long, thin fibres covering about half of the particles from the 

apex (Arnold et al., 2000). Interestingly, virions of APOV1 (70x55 nm) are about 1.5 times 

smaller than SNDV particles and do not exhibit any attached fibre (Mochizuki et al., 2011). 

The Globuloviridae includes Pyrobaculum spherical virus (PSV) and Thermoproteus tenax 

spherical virus 1 (TTSV1) infecting anaerobic and hyperthermophilic archaea of the genera 

Pyrobaculum and Thermoproteus (Haring et al., 2004; Ahn et al., 2006). The spherical virion 

(100 nm) of PSV contains multimers of a CP and host derived lipids enclosing a superhelical 

nucleoprotein (Haring et al., 2004). The first virus to be isolated from the order 

Desulfurococcales was Aeropyrum pernix bacilliform virus 1 (APBV1), family Clavaviridae. 

Viral particles have a rigid bacilliform topology (140x20 nm) with one end pointing and the 

other, round (Mochizuki et al., 2010). In the Spiraviridae, the ssDNA is bound by several 

copies of MCP folding into a superhelix with two levels of organization. Indeed, the non-

enveloped, hollow, cylindrical virions of Aeropyrym coil-shaped virus (ACV) have 

appendages at both ends and are based on a rope-like fiber of two intertwined halves of a 

single nucleoprotein complex (Mochizuki et al., 2012). Sulfolobus turreted icosahedral virus 

(STIV) was the first icosahedral virus with an archaeal host identified. Viral particles are 

composed of circular dsDNA genome enclosed within an internal membrane and have been 

classified in the Turriviridae family (Rice et al., 2004; Maaty et al., 2006). Another 

icosahedrally symmetric, membrane-containing archaeal virus has been isolated, STIV2 for 

which the host-attachment structures are significantly different (Happonen et al., 2010). 
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To conclude, archaea, and hyperthermophilic members in particular, are infected by a range 

of viruses with unique morphotypes. The unexpected and unprecedented diversity of reported 

particle shapes is linked with unique aspects of the cellular biology of archaea (Prangishvili, 

2015). Fusiform and filamentous viruses are the most abundant VLPs found in hyperthermic 

and hypersaline environments where archaea outnumber bacteria and thus have been quite 

extensively studied in comparison with the rest of the archaea-specific virosphere. The 

fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1) and rudivirus Sulfolobus islandicus 

rod-shaped virus 2 (SIRV2) infect hosts of the genus Sulfolobus and have become model 

systems to study the biology of viruses infecting archaea.  

 

Sulfolobus, a model for hyperthermophilic archaea. 

One of the most impressive features of archaea is their capacity to sustain temperatures up to 

122°C (Kashefi and Lovley, 2003). Thermophiles and hyperthermophiles have been the focus 

of pioneering research from Wolfman Zillig’s laboratory (Albers et al., 2013). Numerous 

sampling campaigns provided insights into the diversity of archaeal species — often 

associated with various genetic elements — present in major solfataric fields, i.e. acidic 

springs, water and mud holes (Zillig et al., 1993). The members of the genus Sulfolobus are 

characterized by: (i) an overall spherical shape of cells with lobes; (ii) facultative autotrophy 

and growth on sulfur or simple organic compounds; (iii) non-classical cell wall structure 

devoid of peptidoglycan; (iv) pH requirement ranging from 0.9 to 5.8; (v) conditions of 

temperature between 55 and 80°C (Brock et al., 1972). Several species and strains have been 

isolated from different geographical locations including Naples, Italy; Kamchatka, Russia; 

Lassen Volvanic National Park and Yellowstone National Park, USA (Guo et al., 2011). 

Interestingly, the structure of populations showed intra-species diversification and local 

adaptation without any correlation with temperature or pH (Whitaker et al., 2003; Grogan et 

al., 2008). Comparative analyses of genomes from all Sulfolobus islandicus strains available 

concluded that there is a strong conservation of gene synteny with distinguishable 

biogeographical patterns of differentiation (Jaubert et al., 2013).  In general, members of the 

Sulfolobus have been extensively studied and several aspects of their biology are now well 

understood (Stetter, 1999; Urbieta et al., 2014). For example S. solfataricus and S. 

acidocaldarius were used to conduct the first studies on the cell cycle in Archaea (Bernander 

and Poplawski, 1997; Hjort and Bernander, 1999). Detailed characterization has recently 

revealed that homologues to the endosomal sorting complex required for transport (ESCRT) 
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in Eukayotes are involved in cell division in Archaea as well (Samson et al., 2008; Lindas and 

Bernander, 2013). Sulfolobus species are relatively easy to cultivate under laboratory 

conditions, in comparison with other archaeal members, and have emerged as a model of 

choice for investigating adaptation to geothermal environments.  

 

Cell surface characteristics. It was realized very early that the cell surface of archaea and 

bacteria differ substantially. The first noticeable characteristic is the presence of polar lipids 

composed of hydrocarbon chains of 20 to 40 carbons in length and usually saturated (Figure 

3). The isoprenoid moieties are ether-linked to the glycerol-1-phosphate (G-1-P) backbone. 

By contrast, in bacteria and eukaryotes the fatty acid derived chains are ester-linked to G-3-P 

 

Figure 3: The lipids found in the archaeal membrane are fundamentally different from those found in eukaryotic and 
bacterial membranes. In eukaryotes and bacteria, the glycerol moiety is ester-linked to an sn-glycerol-3-phosphate 
backbone, whereas in archaea the isoprenoid side chains are ether-linked to an sn-glycerol-1-phosphate moiety. The sn1 
stereochemistry of the glycerol backbone is a truly archaeal feature, as ether lipids occur in minor amounts in eukaryotes 
and bacteria. The common bilayer-forming lipids in bacteria are phophatidylglycerol (upper lipid) and 
phosphatidylethanolamine (lower lipid) (see the figure, part a). Part b of the figure shows the structure of monolayer-
forming tetraether lipids; for example, the glycophospholipid from the thermoacidophilic archaeon Thermoplasma 
acidophilum, in which the hydrophobic core consists of C40C40 caldarchaeol. Part c of the figure shows a bilayer 
formed of archaeal diether lipids, which can be found, for example, in Halobacteriales. The hydrophobic core consists of 
C20C20 archaeol isoprenoids. The headgroups of phospholipids can be a range of polar compounds — for example, 
glycerol, serine, inosine, ethanolamine, myo-inositol or aminopentanetetrols. Glycolipids also exhibit a range of sugar 
residues — for example, glucose, mannose, galactose, gulose, N-acetylglucosamine or combinations thereof.  

Reproduced with permition from Albers and Meyer, 2011: The archaeal cell envelope.  
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(De Rosa et al., 1986; De Rosa and Gambacorta, 1988; Leininger et al., 2006). Notably, 

Sulfolobus cells were shown to almost exclusively contain glycerol dialkyl glycerol tetraether 

(GDGT) lipids organized in a covalently-bound bilayer resembling a monolayer (Langworthy 

et al., 1974; 1976; Langworthy, 1977; Chong, 2010). In nature, a variety of archaeal lipid 

species is found (Koga and Morii, 2005) and their biosynthesis pathways are just starting to 

be investigated (Jain et al., 2014; Villanueva et al., 2014). The polar head groups are identical 

between the three domains and it is generally assumed that the bipolar lipids found in archaea 

play an important role in the survival and adaptation of these microorganisms to extreme 

environments (Chong, 2010). On the basis that they are more chemically stable than their 

bacterial and eukaryotic lipids, archaeosomes, i.e. liposomes made of archaeal lipids, are 

being developed as potential next-generation adjuvants and drug delivery systems (Krishnan 

and Sprott, 2008). In vivo, the monolayer-like membrane is involved in the maintenance of 

cell homeostasis in combination with specific properties of the cell wall. Indeed, only a 

subgroup of archaea contains pseudomurein and the cytoplasmic membrane is normally 

surrounded by a proteinaceous, quasi-crystalline surface (S-) layer (Figure 4). In Sulfolobus, 

the cell wall is composed of two conserved polypeptides instead of one-component systems 

found in many other groups (Albers and Meyer, 2011). The outer layer assumes a three-fold 

symmetry based on dimers of the large protein SlaA and is anchored by membrane-bound 

stalks made of small peptide SlaB (Veith et al., 2009). The S-layer is proposed to contribute to 

cell shape, osmotic balance and protection from harsh environmental conditions. S-layer 

proteins (Peyfoon et al., 2010), as well as other surface-exposed proteins, undergo extensive 

post-translational modification by the N- and O-glycosylation pathways (Meyer and Albers, 

2013; Jarrell et al., 2014).  

 

Cell surface appendages. Several appendages and membrane-associated components have 

been identified at the surface of Sulfolobus, like flagella and pili which, at first glance, appear 

similar to their bacterial counterparts (Figure 5). However, detailed studies showed that the 

archaeal flagella, the archaella (Albers and Meyer, 2011), resemble bacterial flagella only in 

terms of function. A single locus is responsible for ‘flagellation’ in the vast majority of 

species; the fla operon contains seven genes which are conserved and essential for 

biosynthesis and function of the apparatus (Lassak et al., 2012a). FlaB encodes archaellins, 

subunit components homologous to bacterial pilins which maturate through proteolytic 
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Figure 4: a,b | Electron micrographs of ultra-thin sections of the euryarchaeote Methanocaldococcus villosus (a) and the 
crenarchaeote Metallosphaera prunae (b). c,d | Electron micrographs of a freeze-etched cell (c) and a thin-section cell (d) 
of Ignicoccus hospitalis144. e | Schematic side view of cell wall profiles from different archaea. Pseudoperiplasmic 
space is shown in blue. f | Schematic of bacterial cell walls. Gram-positive bacteria have a thick, amorphous, 
multilayered coat of peptidoglycan, teichonic and lipoteichonic acid as their cell wall and in some cases have surface-
layer (S-layer) glycoproteins as the outermost layer above the peptidoglycan (also known as murein), for example, in 
Bacillus stearothermophilus20, 21. Gram-negative bacteria have an outer asymmetric bilayer membrane composed of 
two leaflets, an outer one containing lipopolysaccharides (LPSs), and an inner one containing mainly phospholipids, a 
gel-like periplasm containing peptidoglycan and the cytoplasmic membrane. CM, cytoplasmic membrane; SL, S-layer.  

Reproduced with permition from Albers and Meyer, 2011: The archaeal cell envelope.  
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cleavage. FlaG and FlaF are membrane proteins of unknown function and FlaH is an ATP- 

binding protein. In addition, FlaI (Reindl et al., 2013) and FlaJ are homologous to PilB and 

PilC, which correspond to the motor ATPase and basal membrane protein of the type IV pili 

in bacteria, respectively. Another key component is FlaX, the central protein required as a 

priming subunit during assembly in S. acidocaldarius (Banerjee et al., 2012). Structures of 

archaella from Halorubrum salinarium and S. shibatae are overall similar and display a thin 

filament with a right-handed helix around a central core (Cohen-Krausz and Trachtenberg, 

2008). Given the assembly model and the structural characteristics, the archaellum is more 

related to bacterial type IV pili as opposed to flagella, despite the fact that they play the same 

role in motility, attachment to surface and biofilm formation (Ellen et al., 2010). In bacteria, 

the type IV pili are key structures mediating a variety of biological processes including 

adhesion to surface, cell-cell interactions, conjugation, twitching motility, and pathogenicity 

(Craig et al., 2004). In archaea, thin, flexible 10-nm filaments of variable lengths have also 

 

Figure 5: a | A transmission electron micrograph of negatively stained of Sulfolobales acidocaldarius cells showing 
flagella (~14 nm in diameter, red arrows) pili (~10–12 nm, white arrows) and threads (~5 nm, black arrows). b | A 
scanning electron micrograph of Methanocaldococcus villosus157 cells grown on a surface, exhibiting bundles of 
flagella that act in cell–cell connections and surface adherence. c | Electron micrograph of a platinum-shadowed SM1 
euryarchaeal coccus. d | Three-dimensional model of the hamus structure as visualized by surface rendering of a de-
noised data set, obtained by cryo-electron tomography. The hook is 60 nm in width. e | Scanning electron micrograph of 
Pyrodictium spp. cells growing in a net of cannulae. 

Reproduced with permition from Albers and Meyer, 2011: The archaeal cell envelope.  
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been observed and resemble pili in their appearance (Ng et al., 2008; Ajon et al., 2011). For 

example, the UV-pilus is encoded by the ups operon and is strongly induced by UV 

irradiation. Its biosynthesis involves the potential secretion ATPase, two pre-pilins, a putative 

transmembrane protein and a protein of unknown function (Frols et al., 2008). Another 

operon critical for surface adhesion has also been identified: the aap operon (Lassak et al., 

2012a). Notably, archaeal homologues to the ATPase PilB which provides the energy 

necessary for pilus assembly in bacteria has been characterized. However, no ATPase 

involved in retraction could be identified by in silico approaches, suggesting that pili and 

flagella are unable to retract in Archaea. Other reported structures seem to be unique to the 

third domain of life (Figure 5). In S. solfataricus, a large number of sugar binding proteins 

have been identified with a class III signal peptide. These proteins require the bas operon for 

their functional surface localization. It has been proposed that BasEF would form the core of 

the assembly machinery at the membrane while BasABC would participate in cleavage of 

pilin signal peptides and correct assembly of binding proteins into a macromolecular complex 

(Zolghadr et al., 2007). The ‘bindosome’ would serve as a platform dedicated for sugar uptake 

from the environment in addition to pore-like openings of S-layer which are suggested to only 

permit passage of nutrients and other small molecules (Ellen et al., 2010). Although never 

reported for Sulfolobus, cannulae and hamus are fascinating appendages associated with 

surface. Cannulae of hyperthermophilic Pyrodictium abyssi are hollow tubes with a diameter 

of ~25 nm and associate in a network facilitating intercellular communication, nutrient 

exchange or transport of genetic material (Rieger et al., 1995).  Hamus found at the surface of 

the psychrophilic archaeon SM1 plays a role in surface attachment, biofilm formation and 

anchoring; the filaments are 7-8 nm in diameter forming a complex helix with three hooks 

present every 4 nm (Moissl et al., 2005). 

 

Insights into the biology of hyperthermophilic archaeal viruses. 

Fusiform and filamentous VLPs are highly abundant and widely distributed in archaea-

dominated habitats. The two groups of viruses are represented by fusellovirus SSV1 and 

rudivirus SIRV2 which have been among the first archaeal viruses to be isolated from 

geothermal environments where they can infect Sulfolobus cells. SSV1 has a rather broad host 

range (Schleper et al., 1992), whereas SIRV2 can only infect a limited number of strains of S. 

islandicus (Bize et al., 2009). The two viruses serve as model systems for the study of 

hyperthermophilic archaeal viruses.  
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SSV1. The genome of SSV1 was shown to be present in S. shibatae B12 in two forms: as a 

linear form within the host chromosome and as free, circular episomal copies in the cytoplasm 

(Yeats et al., 1982). UV irradiation is a strong stimulus to enhance the production of lemon-

shaped particles encasing the circular form of the viral genome (Martin et al., 1984). SSV1 

was initially called SAV-1 due to misclassification of its natural host as a strain of S. 

acidocaldarius. It is a temperate virus and infection results in a lysogenic cycle leading to 

growth recovery of cultures even after stimulation (Schleper et al., 1992). The capacity to 

integrate into the cellular genome at a specific site within a tRNA-Arginine gene (Reiter et al., 

1989) has been used to establish one of the first genetic systems in Archaea (Schleper et al., 

1992). As a result, the viral tyrosine recombinase has been extensively studied 

(Muskhelishvili et al., 1993; Serre et al., 2002; Letzelter et al., 2004; Zhan et al., 2012). 

Development of genetic tools has also allowed systematic analysis of the functions of viral 

open reading frames (ORFs) and effects of their deletions on virus fitness (Stedman et al., 

1999; Iverson and Stedman, 2012). In particular, the integrase gene has been shown to be 

non-essential for infection (Clore and Stedman, 2007). Interestingly, unlike the situation 

found in bacteriophages, upon viral genome integration, the integrase gene is partitioned in 

two fragments (Reiter et al., 1989). Several isolates are now known to be similar to SSV1 in 

morphology, genomic content, replication strategy, etc. (Stedman et al., 2003; Wiedenheft et 

al., 2004; Redder et al., 2009); nevertheless, SSV1 remains to be a model to understand the 

biology of spindle-shaped viruses. Using genome-wide microarray, it was shown that there is 

a tight regulation of gene expression timing, reminiscent of bacteriophages and eukaryotic 

viruses. The transcription starts with a small UV-specific transcript and continues with early 

and late transcripts towards the end of the viral cycle (Frols et al., 2007a; Fusco et al., 2013). 

Interestingly, there was no marked difference detected in the transcriptome of the host S. 

solfataricus, in line with the postulated egress of SSV1 by budding through the cytoplasmic 

membrane without lysis of the host (Martin et al., 1984). Most of the particles released are 

uniform in size (60x100 nm) although up to 1% of viral population can be larger, the 

maximum length being about 300 nm (Reiter et al., 1988). Recently, the structure of SSV1 

was examined by cryo-electron microscopy (cryo-EM) and 3D image reconstruction. A model 

of SSV1 structure has been proposed despite the fact that resolution was severely limited by 

particle size, lack of global symmetry, structural heterogeneity, and a small number of 

particles considered (Stedman et al., 2015). In particular, the presence of an actual lipid 
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membrane encasing the virion body could not be verified and remained controversial up to 

now. Thus, one of the main objectives of my PhD was to perform a comprehensive 

biochemical characterization of SSV1 virions which is described in the Chapter 4. Briefly, 

we showed that SSV1 is a lipid-containing virus composed of glycrosylated proteins and host-

derived lipids encasing the nucleoprotein filament (Quemin et al., 2015). These findings 

provide insights into the architecture of unique archaeal viruses and are used as a foundation 

for ongoing studies targeting the interactions of SSV1 with its host Sulfolobus (Quemin et al., 

in preparation). We recently obtained significant insights into the assembly and release 

strategy utilized by SSV1 virions which are presented in the Chapter 5.  

 

SIRV2. The non-enveloped, linear dsDNA virus SIRV2 is the type-species of the Rudiviridae 

family. The stiff, rod-shaped particles (950x26 nm) were observed for the first time in the 

culture of S. islandicus strain KVEM10H3 (Zillig et al., 1993). There is a central cavity of 6 

nm in diameter and three 28-nm-short appendages protruding from both ends. The viral 

particles consist of a tube-like superhelix which length correlates with the genome size, i.e. 

SIRV1 virions are 70 nm shorter than those of SIRV2 and have genomes of 32.3 versus 35.8 

kbp in SIRV2. Recently, the structure of SIRV2 virions using cryo-EM and 3D image 

reconstruction became available and revealed a unique DNA topology in the A-form which 

has only been previously observed in bacterial spores and in vitro (DiMaio et al., 2015). 

Interestingly, SIRV1 is also known to have a very high mutation rate of 3.10-3 substitutions 

per nucleotide per replication cycle, whereas SIRV2 is considered to be invariant 

(Prangishvili et al., 1999). The genome of SIRV2 is covalently closed at the termini and 

carries inverted terminal repeats. It contains 54 ORFs (Peng et al., 2001). Transcription of the 

viral genome has been shown to start simultaneously at multiple sites and spread over the two 

strands in a uniform pattern through the course of infection (Kessler et al., 2004). Microarray 

analysis (Okutan et al., 2013) and RNA-seq approach (Quax et al., 2013) revealed that 

transcription is limited to the two distal termini of the viral genome immediately after 

infection and then spreads over the totality of ORFs within 2 hours. The host cell machinery is 

extensively reprogrammed with more than half of host genes having a different level of 

expression. The genes involved in cell division, chromosome maintenance, and stress 

response were down-regulated while anti-viral defense mechanisms, i.e Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) – CRISPR associated proteins (Cas) and 

toxin/antitoxin systems, were massively activated (Quax et al., 2013). The results on 
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transcription are consistent with the lytic cycle of SIRV2. Indeed, the virus orchestrates an 

elaborated mechanism leading to degradation of host chromosome and remodeling of the 

surface which results in cell death. The progeny is assembled in the cytoplasm occupying the 

entire space and released after formation and opening of specific virus-associated pyramids 

(VAPs) which are anchored in the plasma membrane and protrude through the S-layer (Bize 

et al., 2009; Quax et al., 2011; Daum et al., 2014). As opposed to the egress mechanism of 

SIRV2, prior to the advent of my PhD project literally nothing was known about the early 

stages of the infection cycle, i.e. adsorption to the host cell surface and entry of the viral 

genome into the cell interior. In order to gain insights into the entry of SIRV2 virions, we 

have utilized a number of different assays to assess the binding kinetics, reversible and 

irreversible adsorption, receptor saturation, etc. as well as transmission electron microscopy 

and whole-cell electron tomography (Quemin et al., 2013). The recently published article is 

included in my PhD thesis and reported in the Chapter 6.  

The cases of SSV1 and SIRV2 exemplify the uniqueness of the virosphere specific to 

Archaea. Not only they display morphotypes which have never been associated with bacteria 

or eukaryotes but also reveal uncommon principles for virus biology and infection. Although, 

data have been accumulating on the diverse architectures of virions (Prangishvili et al., 2013) 

and original genomic content (Krupovic et al., 2012), the exploration of virus-host 

interactions in the third domain of life is still in its infancy. The aim of the work performed 

during the course of my PhD was to provide insights into the infection cycle of archaeal 

viruses. The global strategies employed for entry, assembly and egress have been investigated 

by a combination of electron microscopy approaches, biochemistry, cellular and molecular 

biology techniques. The data presented here on the molecular mechanisms of virus-host 

interactions for both lipid-containing, fusiform SSV1 and non-enveloped, filamentous SIRV2 

allows comparison with bacterial and eukaryotic virus-host systems.  

 

Virus-host interactions in Archaea: state-of-the-art.   

Members of the third domain of life, the archaea, were initially regarded as exotic 

microorganisms capable of growing in conditions which are hostile to humans. Among other 

intriguing features, they are now known to host unique viruses classified into exclusive viral 

families. Several studies have permitted the isolation of highly diverse viruses characterized 

by atypical virion shapes and mysterious genomic contents. The research undertaken in the 



~ 26 ~ 
 

past thirty years has improved our appreciation of the virosphere associated with archaea. 

However, the study of archaeal viruses imposes serious constraints and the collection of virus-

host systems found in laboratories is far from representing the situation observed in natural 

environments. The isolation and characterization are indeed limited due to the need of 

culturing cells under extreme conditions of temperature, pH, salinity, pressure, etc. which are 

complicated to set up in laboratory. Another restriction comes from the viruses themselves 

which tend to be produced in low titers rendering analysis by classical techniques often 

challenging.  

Using high-throughput approaches, one can neglect some of these factors and overcome the 

major difficulties linked to the research on archaeal viruses. In the Chapter 1, the editorial 

outlines the recent insights that have been obtained on the infection cycle of hyperthermo-

acidophilic virus-host models, namely SSV1, SIRV2, and STIV (Quemin et al., 2014). We 

put a particular emphasis on data covering structural genomics, whole-genome microarrays or 

RNA-sequencing, as well as large-scale proteomic analysis of infected cells. In fact, 

comparative genomics defined the structure and/or function of more than 10% of the ORFs 

identified in viral genomes. Additional insights came from screens for interactions or whole-

transcriptome analyses in the case of SIRV2. Viral and host gene expression through the 

course of infection varies and a tight timing of transcription has been described for SSV1 with 

early, middle and late genes. Considering the proteome, STIV infection was shown to induce 

significant differences in protein levels and, more importantly, in post-translational 

modification profiles. Together these studies highlight the rapid development of high-

throughput methods in the field of archaeal viruses and help to define interesting targets that 

should be the focus of intensive research in the near future. 

Moreover, recent studies trying to decipher the sequential events of the viral life cycle have 

led to major breakthroughs in the field. The review proposed in the Chapter 2 has been 

written during the framework of my PhD. It summarizes the available information concerning 

the virus-host interplay in Archaea with a focus on hyperthermo-acidophilic virus-host 

systems (Quemin and Quax, 2015). We discuss the possibility that appendages, which are 

observed to decorate virion termini in various families and can even form complex structures, 

are required during the entry process of these viruses. In the same line, novel strategies 

employed for egress have been recently described and are reported in great detail. The 

molecular mechanisms of virus-host interactions in archaea are also compared to the ways 

bacterial and eukaryotic viruses interact with their respective hosts. Together with the harsh 
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environmental conditions, the characteristics of archaeal cell surface, i.e. cytoplasmic 

membrane and S-layer, might render the delivery of viral nucleic acids and the release of viral 

progeny quite difficult. Therefore, the host specificities in terms of ecology and biology could 

have compelled viruses to adapt and employ uncommon strategies that we are just starting to 

discover and understand.  
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CHAPTER 1 

 

Insights into the biology of archaeal viruses by high-throughput approaches. 

  



~ 32 ~ 
 

 

  



703ISSN 1746-0794Future Virol. (2014) 9(8), 703–706

REVIEW

part of

10.2217/FVL.14.52 © 2014 Future Medicine Ltd

EDITORIAL

Hard out there: understanding 
archaeal virus biology

1Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 

75015 Paris, France

*Author for correspondence: krupovic@pasteur.fr

KEYWORDS   
• Archaea • hyperthermophiles 
• Sulfolobus rod-shaped virus 2 
• virus evolution • virus–host 
interactions

Each of the three domains of life, Archaea, 
Bacteria and Eukarya, is associated with a 
specific virosphere. Despite the fact that 
archaeal viruses represent only a minute 
portion of the characterized virosphere, 
they have recently gained wider attention, 
mainly due to the unexpected morpho-
logical properties of their virions and the 
unprecedented molecular mechanisms 
employed throughout their life cycles. 
Archaeal viruses are currently classified 
into 15 different families [1,2]. Especially 
remarkable are the viruses of the hyper-
thermohilic archaea; these viruses are 
extremely diverse morphologically and 
include members with lemon-shaped, 
droplet-shaped and bottle-shaped viri-
ons [1]. Furthermore, the viral genomes 
encode proteins with little to no significant 
similarity to proteins in public databases 
and often possess unique structural folds 
[3]. Although classical biochemical and 
genomic studies have yielded important 
information on the architectures of sev-
eral hyperthermophilic archaeal viruses, as 
well as on the functions of some viral pro-
teins, the molecular mechanisms underly-
ing different aspects of the infection cycle 

remain poorly understood for most of 
these viruses.

Studies on bacterial and eukaryotic 
viruses have benefited from the availabil-
ity of well-established genetic tools that 
have been developed for the respective 
hosts and, more generally, from the broad 
knowledge base on the host biology. This, 
unfortunately, has not been the case for 
most of the archaeal virus–host systems. 
The assays that are considered trivial 
when thinking about bacterial or eukary-
otic viruses (e.g., the plaque test used for 
virus particle enumeration) present dif-
ficulties in the case of hyperthermophilic 
archaeal viruses. Indeed, the cultivation 
of hyperthermophilic acidophiles, such 
as Sulfolobus, which, for optimal growth, 
requires 80°C and pH 2–3, might be 
challenging. Similarly, live-cell imaging at 
physiological temperatures, which is widely 
used to investigate virus–host interaction 
in eukaryotes, is normally also off the table 
when dealing with hyperthermophiles. 
Consequently, the scientif ic inquiries 
into the properties of hyperthermophilic 
archaeal viruses have been, for a long time, 
limited by the lack of adequate tools.

Emmanuelle RJ Quemin1, David Prangishvili1 & Mart Krupovic*,1
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Given all of these difficulties, one might 
wonder why anyone would bother with stud-
ying archaeal viruses in the first place. The 
major incentives are the following. First, the 
morphological diversity of hyperthermophilic 
archaeal viruses is astonishing [1]. Whereas 
sampling of the bacterial virosphere seems to 
have reached convergence (i.e., no truly new 
morphotypes of bacterial viruses have been 
discovered for decades), virions with unique, 
previously unseen morphologies are constantly 
being discovered in the Archaea. It has been 
suggested that the archaeal virosphere more 
closely reflects the ancient diversity of viruses 
on our planet [1]. Consequently, exploration of 
the archaeal virus diversity provides an exclu-
sive opportunity to learn about the ancient 
viral architectures that might not have been 
retained in other cellular domains. Second, the 
molecular mechanisms underlying virus–host 
interactions in Archaea combine components 
that are specific to archaeal viruses with those 
that are shared with viruses infecting other 
cellular domains. Thus, in addition to uncov-
ering new Archaea-specific features that are 
sometimes breathtakingly elegant (as in the 
case of the recently discovered pyramidal 
egress structures [4,5]), these studies allow us 
to better understand the origin and evolution 
of the mechanisms underlying the infection 
processes of viruses infecting eukaryotic hosts 
(see below). Third, due to their ability to with-
stand harsh environmental conditions, hyper-
thermophilic archaeal viruses contain consid-
erable appeal for developing various bio- and 
nano-technological applications. Furthermore, 
the enzymes encoded by these viruses can be 
potentially employed for molecular biology 
applications.

During the past few years, many mod-
ern high-throughput techniques have been 
adapted for studying archaeal viruses, and 
new genetic tools have been developed for an 
increasing number of archaeal hosts and their 
viruses [6–8]. These newly developed/adapted 
approaches and genetic tools, in combination 
with the more classical biochemical techniques, 
have recently yielded valuable information on 
the biology of some archaeal viruses. Two 
hyperthermophilic viruses infecting Sulfolobus 
species have been investigated from different 
perspectives and served as models for under-
standing the biology of archaeal viruses. These 
include Sulfolobus turreted icosahedral virus 

(STIV) and Sulfolobus islandicus rod-shaped 
virus 2 (SIRV2). These two viruses funda-
mentally differ from each other in virion mor-
phology, genomic content and viral cycle [1]. 
STIV is a prototype member of the family 
Turriviridae. The STIV virion consists of 
an icosahedral protein capsid that covers the 
lipid membrane vesicle enclosing the circular 
dsDNA genome [9]. Such a virion architecture 
is commonly found in bacterial and eukaryotic 
viruses [10]. SIRV2 is the type organism of the 
family Rudiviridae, which comprises viruses 
with elongated rod-shaped particles contain-
ing linear dsDNA genomes [11]. The termini 
of SIRV2 virions are decorated with terminal 
protein fibers that mediate the attachment of 
the viral particles to the pili-like appendages at 
the host cell surface [12]. Interestingly, despite 
profound morphological and genomic differ-
ences, both STIV and SIRV2 utilize a unique 
virion release mechanism involving the forma-
tion and opening of large pyramidal structures 
at the surface of the host cell [4,5].

Even though high-throughput approaches 
generate impressive amounts of data, the com-
prehensive picture of the viral infection cycle 
can only be unraveled using a combination 
of different high-throughput and more clas-
sical techniques targeted at particular aspects 
of the infection cycle and specific viral pro-
teins. Indeed, clues obtained in the course of 
high-throughput studies have proved to be 
instrumental for identifying prominent play-
ers in the viral life cycles and designing tar-
geted studies in order to understand the func-
tions of these proteins. For example, RNA 
sequencing analysis of SIRV2-infected cells 
has revealed that ORF83a/b transcripts are 
dominant, starting within the first minutes of 
infection and remaining abundant throughout 
the infection [13], predicting an important role 
for P83a/b. The x-ray structure of the P83a/b 
homolog from rudivirus SIRV1, which was 
solved during the structural genomics pro-
ject, revealed a helix-turn-helix DNA-binding 
motif, suggesting that the protein might be 
involved in the processing of viral DNA [3]. 
Subsequent yeast two-hybrid analysis has 
showed that P83a/b interacts with the subu-
nit of the host-encoded PCNA, a processivity 
factor for DNA polymerase [14]. These results 
indicate that P83a/b might be responsible for 
recruiting the PCNA for viral genome replica-
tion. Consequently, the complementary results 

“…exploration of the 
archaeal virus diversity 
provides an exclusive 

opportunity to learn about 
the ancient viral 

architectures that might 
not have been retained in 
other cellular domains.”
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obtained from different studies illuminated a 
key role of P83a/b in SIRV2 propagation, pro-
viding a framework for further inquiries into 
the molecular mechanisms of its action.

An important step forward in understand-
ing the biology of archaeal viruses has also been 
obtained for the example of STIV by the com-
bination of different approaches. In this case, 
large-scale proteomic analysis of infected cells 
by 1D and 2D differential gel electrophoresis 
coupled with protein identification by mass 
spectrometry and activity-based protein profil-
ing has been used to investigate the interaction 
between STIV and two Sulfolobus solfataricus 
strains (P2 and P2-2-12) that significantly 
differ with respect to their susceptibility to 
STIV [15,16]. In the highly susceptible P2-2-12 
strain, only ten cellular proteins were changed 
in abundance. By contrast, 71 host proteins 
representing 33 different cellular pathways were 
affected during the infection of the poorly sus-
ceptible P2 strain [15,16], shedding some light on 
the basis of the different susceptibilities to infec-
tion of closely related Sulfolobus strains. Most 
notably, among the highly upregulated proteins 
were components of the antiviral CRISPR-Cas 
system and cell division proteins that are 
homologous to the eukaryotic endosomal sort-
ing complexes required for transport (ESCRT) 
machinery [17,18], suggesting that the latter 
proteins play an important role in the STIV 
infection cycle. In eukaryotes, the ESCRT 
machinery is employed as the major escape route 
for many enveloped viruses, including impor-
tant human pathogens, such as retroviruses, 

filoviruses, paramyxoviruses and herpesviruses 
[19]. Importantly, a recent study has confirmed a 
critical role of the archaeal ESCRT proteins dur-
ing the late stages of STIV infection, specifically 
during the maturation of the virion membrane 
and possibly the opening of pyramidal portals 
located at the host cell envelope and involved in 
the release of viral progeny [20].

To conclude, a combination of different 
high-throughput approaches with more con-
ventional biochemical and microscopic tech-
niques has helped us to uncover the secrets of 
the enigmatic archaeal viruses. Even though 
studies on viruses thriving in extreme environ-
ments remain challenging, they are also highly 
rewarding. We have learned a great deal about 
the inventiveness of these viruses and new sur-
prises are certainly expected in the future. The 
detailed understanding of archaeal viruses and 
their interactions with their hosts will enable 
comparisons with the bacterial and eukaryal 
virus–host systems, which should eventually 
reveal the general tendencies underlying the 
functioning of the virosphere.
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The cell envelope represents the main line of host defense that viruses encounter on
their way from one cell to another. The cytoplasmic membrane in general is a physical
barrier that needs to be crossed both upon viral entry and exit. Therefore, viruses from
the three domains of life employ a wide range of strategies for perforation of the cell
membrane, each adapted to the cell surface environment of their host. Here, we review
recent insights on entry and egress mechanisms of viruses infecting archaea. Due to the
unique nature of the archaeal cell envelope, these particular viruses exhibit novel and
unexpected mechanisms to traverse the cellular membrane.

Keywords: archaea, archaeal virus, bacterial virus, virion entry, virion egress, archaeal membrane, pili, lysis

Introduction

Members of the three domains of life, Archaea, Bacteria and Eukarya, are all subject to viral
infections. Viruses have been isolated from various environments, where they are often abundant,
outnumbering prokaryotic cells by a factor of 10 (Bergh et al., 1989; Borsheim et al., 1990; Suttle,
2007). Viruses infecting archaea tend to display high morphological and genetic diversity compared
to viruses of bacteria and eukaryotes (Pina et al., 2011). Several archaeal viral families havemembers,
which display unique shapes that are not found amongst other viruses, such as a bottle, droplet or
spiral (Prangishvili, 2013).

The cell envelope represents a major barrier for all viruses. In fact, the cell membrane has to be
traversed twice by viruses to establish successful infection, first upon entry and secondly during exit.
In order to cross the cell envelope, viruses have developed various strategies, each adapted to the
membrane environment of their host.

The combination of high-throughput approaches with more classical techniques has shed light
on the process of viral entry and release in some archaeal virus-host model systems. However, the
detailed molecular mechanisms underlying the various stages of the viral life cycle remain poorly
understood in archaea in general (Quemin et al., 2014). Recently, a few studies have focused on the
adsorption at the surface of the archaeal host cell before viral entry and release of viral particles at
the end of the infection cycle (Bize et al., 2009; Brumfield et al., 2009; Ceballos et al., 2012; Quemin
et al., 2013; Deng et al., 2014). This has delivered the very first insights into the fashion in which
viruses interact with the archaeal membrane.

The cell surface of archaea is fundamentally different from bacteria (Albers and Meyer,
2011). Archaeal membranes have an alternative lipid composition and generally lack a cell wall of
peptidoglycan. In addition, the motility structures present at the surface of archaea are constructed
from different building blocks than their bacterial counterparts (Pohlschroder et al., 2011). Gram
positive bacteria contain a lipid bilayer covered by a thick peptidoglycan cell wall and gram negative
cells are surrounded by two membranes with a thinner peptidoglycan in the periplasmic space in
between. While bacteria typically contain a cell wall polymer of peptidoglycan (Typas et al., 2012),
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peptidoglycan cell walls are absent from archaea. Instead, most
archaea are surrounded by a thin proteinaceous surface layer
(S-layer) that consists of glycosylated proteins, which are anchored
in the cell membrane. In contrast to the peptidoglycan, which
has a molecular composition that can be very similar from
one species to another, S-layer proteins show a great diversity
(Fagan and Fairweather, 2014). Hence, archaea exhibit specific
features, in particular at the cell surface, which are not shared with
bacteria and influence the mechanisms at play in the course of
infection.

The first studies on archaeal viral entry and egress have
shown that some archaeal viruses employ entry strategies that
superficially resemble those of bacterial viruses (Quemin et al.,
2013; Deng et al., 2014), while others utilize surprisingly novel
exit mechanisms (Brumfield et al., 2009; Quax et al., 2011).
Here we will give an overview of the first studies reporting
viral interaction with the archaeal cell envelope, focusing on
hyperthermophilic crenarchaeal viruses. Furthermore, current
research permits comparison with corresponding mechanisms
taking place during the viral cycle of bacterial viruses. We will
discuss how features of cell surfaces compel viruses to employ
specific strategies for entry and egress.

Viral Entry

A virus is able to infect only a few strains or species.
Such specificity in interaction of viruses with their host is
determined by the characteristics of entry, which in turn rely
on the nature and structural peculiarities of the cell envelope.
Adsorption as the first key step of the viral cycle is one of
the most restrictive in terms of host range, depending on
the accessibility and number of receptors present at the cell
surface (Poranen et al., 2002). Structural proteins are found
within the viral particle in metastable conformation and it
is the interaction with the host cell, which leads to a more
stable, lower-energy conformation of these proteins (Dimitrov,
2004). Indeed, virus entry and genome uncoating are energy-
dependent processes and irreversible conformational change
of the capsid proteins (CP) during adsorption triggers the
release of the genome from the extracellular virions (Molineux
and Panja, 2013). As a general rule, entry can be subdivided
in two steps. For the well-studied viruses infecting bacteria,
the first contact with the host is reversible and then, viruses
attach irreversibly to a specific, saturable cell envelope receptor.
Primary and secondary adsorptions can take place with the
same receptor or, more frequently involve different players.
Common cellular determinants in bacteria are peptidoglycan,
lipopolysaccharide S (LPS), or cellular appendages (Poranen
et al., 2002). Subsequently, delivery of the viral genome into the
cellular cytoplasm happens through the cell wall and bacterial
membrane. Indeed, the nature of the host cell wall has a
great influence on the viral entry mechanism and different cell
types expose diverse external envelope structures. Three main
entry strategies have been reported for viral entry in bacteria:
genome release through an icosahedral vertex; dissociation
of virion at the cell envelope; and virion penetration via
membrane fusion (Poranen et al., 2002). Thus far insights into

the mechanisms of entry by archaeal viruses have been based
on coincidental observations. However, more recently a few
detailed analyses have provided a better understanding of the
molecularmechanisms at play in archaeal virus-host systems from
geothermal environments.

Interaction with Cellular Appendages
Filamentous, flexible viruses of the Lipothrixviridae family have
been classified into four different genera partly based on the virion
core and terminal structures. Indeed, the exposed filaments can
vary in number from one (AFV9, Acidianus filamentous virus 9)
to six (SIFV, Sulfolobus islandicus filamentous virus) or even form
complex structures like claws (AFV1) or brushes (AFV2; Arnold
et al., 2000; Bettstetter et al., 2003; Haring et al., 2005b; Bize et al.,
2008). The high diversity of terminal structures observed in this
particular family strongly suggests their involvement in cellular
adsorption processes. Indeed, AFV1 particles terminate with
claws that mediate attachment to cellular pili (Bettstetter et al.,
2003). In the case of AFV2, the “bottle brush,” a complex collar
termini with two sets of filaments, should be able to interact with
the surface of host cells directly since its specific host doesn’t show
any extracellular appendages (Haring et al., 2005b). In addition,
SIFV virions display mop-like structures found in open or closed
conformations (Arnold et al., 2000). Hence, lipothrixviruses
are decorated with diverse and unique terminal structures that
play a major role in recognition and interaction with the
host cell.

In a similar manner, the stiff, filamentous rudivirus SIRV2
(Sulfolobus islandicus rod-shaped virus 2) was also shown to
bind host pili by the three terminal fibers of virions. SIRV2
is one of the more appealing models to study virus-host
interactions in archaea (Prangishvili et al., 2013). Recently
published analyses concluded that adsorption occurs within
the first minute of infection, much more efficiently than in
halophilic archaeal systems for which binding requires several
hours (Kukkaro and Bamford, 2009). The particles of SIRV2
specifically attach to the tip of host pili-like structures leading
to a strong and irreversible interaction between the viral and
cellular determinants (Figure 1A). Subsequently, viruses are
found on the side of the appendages indicating a progression
toward the cell surface where DNA entry is concomitant with
virion disassembly (Quemin et al., 2013; Figures 1C,D). Thus, the
three fibers located at the virion termini represent the viral anti-
receptors involved in recognition of host cells and are responsible
for the primary adsorption (Figure 1B). It is noteworthy that
both ends of the virions have an equal binding capacity as
previously noticed for the lipothrixvirus AFV1 (Bettstetter et al.,
2003). The families Lipothrixviridae and Rudiviridae belong to
the order Ligamenvirales and are known to attach to extracellular
filaments (Prangishvili and Krupovic, 2012). Although AFV1 is
capable of binding the side of host pili, a feature shared with
bacterial leviviruses, cystoviruses and some tailed bacteriophages
(Poranen et al., 2002), the interaction of SIRV2 with Sulfolobus
filaments occurs initially via the tip. This resembles more closely
the primary adsorption observed in the inoviruses (Rakonjac
et al., 2011). All these data suggest that linear archaeal viruses
employ a common strategy for the initiation of infection although
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FIGURE 1 | Entry of SIRV2 in S. islandicus LAL14/1 cells.
(A) Transmission electron micrographs showing that SIRV2 virions interact
with purified cellular filaments. Stained with 2% uranyl acetate for 2 min. Scale
bar, 200 nm. Electron micrographs of SIRV2 interaction with S. islandicus
LAL14/1 cells. Samples were collected 1 min post-infection and flash-frozen
for electron cryotomography (cryo-ET). The virions interact both at the
filament tips (B) and along the length of the filaments (C). The lower left panel
(B) also shows a segmented tomographic volume of the SIRV2 virion (red)
attached to the tip of an S. islandicus filament (green). The three terminal
virion fibers that appear to mediate the interaction are shown in blue (the inset
depicts a magnified view of the interaction between the virion fibers and the
tip of the filament). The inset in the lower right panel (C) depicts two virions
bound to the sides of a single filament. Scale bars, 500 nm. (D) Tomographic
slices through S. islandicus LAL14/1 cells at 1 min after infection with SIRV2
reveals partially disassembled SIRV2 virions at the cell surface. Adapted from
(Quemin et al., 2013). Scale bar, 100 nm.

the molecular mechanisms involved are most likely to be
distinct.

Interaction with Cell Surface
As a general rule, viral entry implies direct or indirect binding to
the cell surface depending on whether a primary adsorption step
is required. In the case of SIRV2, analysis of virus-resistant strains
provided interesting candidates for the receptors of SIRV2 virions
at the cell surface. In fact, two operons were identified: sso2386-
2387 and sso3139-3141 (Deng et al., 2014). The former encodes
proteins homologous to components of type IV pili and the
latter presumably a membrane-associated cell surface complex.
In S. acidocaldarius, the assembly ATPase, AapE, and the central
membrane protein, AapF, homologous to Sso2386 and Sso2387,
respectively, are both essential for the assembly of the type IV
adhesive pilus (Henche et al., 2012). The sso3139-3141 operon
is thought to encode a membrane bound complex, which could
function as a secondary receptor for SIRV2 (Deng et al., 2014).

While entry of rudiviruses, and filamentous archaeal viruses
in general, relies on two coordinated adsorption steps, other

systems interact spontaneously with the cell surface. As far back
as 1984, SSV1 (Sulfolobus spindle-shaped virus 1) was reported
to exist in different states: isolated particles, incorporated in
typical rosette-like aggregates or even bound to cell-derived
membrane (Martin et al., 1984). The best known member of the
Fuselloviridae family displays a lemon-shaped morphotype with
terminal fibers at one of the two pointed ends (Stedman et al.,
2015). The set of short, thin filaments of the α-fuselloviruses
are involved in viral attachment and association with host-
derived structures in general. However, the β-fuselloviruses, SSV6
and ASV1 (Acidianus spindle-shaped virus 1), exhibit more
pleomorphic virionswith three or four thick, slightly curved fibers
(Krupovic et al., 2014). Although these appendages do not interact
with each other as observed for SSV1, some genomic features
strongly suggest that the fibers are composed of host-attachment
proteins (Redder et al., 2009). Notably, one gene common to all
family members (SSV1_C792) and two genes in β-fuselloviruses
(SSV6_C213 and SSV6_B1232) encode for the protein responsible
for terminal fibers. This protein shares a similar fold with the
adsorption protein P2 of bacteriophage PRD1 (Grahn et al.,
2002; Redder et al., 2009). In addition, the pointed end of the
enveloped virus ABV (Acidianus bottle-shaped virus), from the
Ampullaviridae family, is involved in attachment to membrane
vesicles and formation of virion aggregates (Haring et al., 2005a).
Therefore, even if data are still scarce, interaction with cellular
membranes appears to be a common feature of hyperthermophilic
archaeal viruses that contain a lipidic envelope. This particularly
interesting feature merits further investigation.

Release of Viral Genome
Receptor recognition and binding typically induce a cascade of
events that start with structural reorganization of the virions
and lead to viral genome penetration through the cell envelope
(Dimitrov, 2004). Non-enveloped viruses either inject the genome
into the cell interior while leaving the empty capsid associated
with the cell envelope or deliver the nucleic acids concomitantly
with disassembly of the virion at the cell surface. Superficially,
the entry of SIRV2 is similar to that of Ff inoviruses or
flagellotrophic phages, which bind F-pili and flagella respectively
(Guerrero-Ferreira et al., 2011; Rakonjac et al., 2011). First, the
interaction with host pili-like structures has been shown and
secondly, partially broken particles have been observed at the
cellular membrane (Quemin et al., 2013; Figure 1). Notably, no
archaeal retraction pili has been identified so far and flagella
(called archaella in archaea) of Sulfolobus are considerably thicker
than the filaments to which SIRV2 binds (Lassak et al., 2012).
Additional experiments are needed in order to determine whether
the mechanisms of SIRV2 translocation and genome delivery are
related to those employed by Ff inoviruses and flagellotrophic
bacteriophages, or are completely novel.

Lipid-containing viruses display unusual virion architecture
and appear to make direct contact with the plasma membrane.
It is reasonable to assume that enveloped viruses rely on a
fundamentally different entry mechanism to that employed
by non-enveloped filamentous viruses, such as rudiviruses.
They might deliver their genetic material into the cell interior
by fusion between the cytoplasmic membrane and the viral
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envelope in a similar fashion to the eukaryotic enveloped
viruses (Vaney and Rey, 2011). ATV (Acidianus two-tailed virus)
resembles fuselloviruses with virions extruded from host cells
as lemon-shaped. However, ATV has been classified within
the Bicaudaviridae partly due to its peculiar life cycle (Haring
et al., 2005c). Surprisingly, at temperatures close to that of its
natural habitat (85°C), the released tail-less particles show the
formation of two long tails protruding from the pointed ends.
These extracellular developed tubes contain a thin filament inside
and terminate in an anchor-like structure, not observed in the
tail-less progeny. The two virion forms, tail-less and two-tailed,
were reported to be infectious, thereby indicating that the termini
are not involved in the initial stages of infection (Prangishvili
et al., 2006b). However, genomic analysis as well as molecular
studies highlighted some viral encoded proteins that could
be important during infection. For example, the three largest
open reading frames (ORFs) and one of the CPs have putative
coiled-coil domains, which are usually associated with specific
protein–protein interactions and protein complex formation.
Moreover, two other proteins carry proline-rich regions (ORF567
and ORF1940) similar to the protein TPX and are abundant
during infection by lipothrixvirus TTV1 (Thermoproteus tenax
virus 1; Neumann and Zillig, 1990). Notably, in particular the
motif TPTP has been implicated in host protein recognition
for the African swine fever virus (Kay-Jackson, 2004). Finally,
pull-down experiments provided evidence for a strong interaction
between the ATV protein P529 and OppAss as well as cellular
Sso1273, encoding a viral AAA ATPase. The cellular OppAss,
an N-linked glycoprotein, is most likely part of the binding
components of the ABC transporter system. It is encoded
within the same operon and could serve as a receptor. It has
also been proposed that the AAA ATPase would trigger ATV
host cell receptor recognition. This is based on the hypothetical
requirement of its endonuclease activity for the cleavage of the
circular viral DNAprior to entry in the cell (Erdmann et al., 2011).

The case of the bottle-shaped virus ABV is also particularly
intriguing. The enveloped particles display an elaborate
organization with a funnel-shaped body composed of the
“stopper,” the nucleoprotein core and the inner core. Presumably,
the so-called “stopper” takes part in binding to the cellular
receptor and is the only component to which the viral genome
is directly attached. Therefore, it has been suggested that the
“stopper” could play the role of an “injection needle” in a manner
similar to that found in bacterial viruses. Actually, it is well known
that head-tail bacteriophages belonging to the Caudovirales order
use this transmembrane pathway for channeling and delivery of
nucleic acids (Poranen et al., 2002). The inner core of ABV virions
is the most labile part and could undergo structural changes that
would facilitate the release of viral DNA (Haring et al., 2005a).
Whether the energy accumulated in the structure after packaging
of the supercoiled nucleoprotein is sufficient to transport the
whole genetic material into the cytoplasm is unclear. However,
relaxation of the nucleoprotein filament, wound up as an inverse
cone, concomitantly with its funneling into the cell could be an
efficient way of utilizing the energy stored during packaging for
DNA injection as previously observed in bacteria (Poranen et al.,
2002).

How archaeal viruses interact with the cell surface and
deliver the viral genome into the host cytoplasm is still
puzzling. Some systems, rudiviruses and lipothrixviruses,
show similarities to their bacterial counterparts while others,
fuselloviruses, bicaudavirus and ampullavirus, could be related to
eukaryotic viruses. Identification of the pathways utilized by both
filamentous and unique lipid-containing viruses represents a
great challenge and one of the main issues that should be tackled
in the near future. It is noteworthy that the S-layer is generally
composed of heavily glycosylated proteins and many archaeal
viruses exhibit glycosylated capsid proteins. The fact that several
glycosyltransferases are encoded in viral genomes (Krupovic et al.,
2012) is particularly intriguing. Indeed, protein glycosylation is
an important process, which could be involved in virion stability
and/or interaction with the host cell (Markine-Goriaynoff et al.,
2004; Meyer and Albers, 2013).

Strategies for Viral Escape from the Host
Cell

The last and essential step of the viral infection cycle is escape of
viral particles from the host cell. So far, the egress mechanism has
been analyzed for only a small subset of archaeal viruses (Torsvik
and Dundas, 1974; Bize et al., 2009; Brumfield et al., 2009; Snyder
et al., 2013a). Some viruses are completely lytic, while others
are apparently stably produced without causing evident cell lysis
(Bettstetter et al., 2003). In addition, there are temperate archaeal
viruses with a lysogenic life cycle for which induction of virion
production in some cases leads to cell disruption (Janekovic et al.,
1983; Schleper et al., 1992; Prangishvili et al., 2006b).

The release mechanisms utilized by archaeal viruses can be
divided in two categories: those for which the cell membrane
is disrupted and those where the membrane integrity remains
intact. The strategy for egress is linked with the assembly
mechanism of new virions. Some archaeal viruses are known
to mature inside the cell cytoplasm and provoke lysis, such as
STIV1 (Sulfolobus turreted icosahedral virus) and SIRV2 (Bize
et al., 2009; Brumfield et al., 2009; Fu et al., 2010). However, most
non-lytic viruses undergo final maturation concomitantly with
passage through the cell membrane (Roine and Bamford, 2012)
or even in the extracellular environment, as observed for ATV
(Haring et al., 2005c).

Cell Membrane Disruption
Lysis by Complete Membrane Disruption
Disruption of cell membranes can be caused by lytic or temperate
viruses. In case of temperate viruses the cell lysis occurs typically
after induction of virus replication and virion formation. Virion
production of lysogenic viruses can be induced by various stimuli
such as; UV radiation, addition ofmitomycin C, starvation or shift
from aerobic to anaerobic growth (Janekovic et al., 1983; Schleper
et al., 1992; Prangishvili et al., 2006b; Mochizuki et al., 2011).

The first archaeal viruses were isolated from hypersaline
environments long before archaea were recognized as a separate
domain of life (Torsvik and Dundas, 1974; Wais et al., 1975).
These viruses infect halophiles, which belong to the phylum
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Euryarchaeota. The viral particles exhibit a head-and-tail
morphology classical for bacterial viruses. Infection with these
viruses resulted in complete lysis of the cells, suggested by a
decrease in culture turbidity. Later on, more euryarchaeal viruses
were isolated from hypersaline or anaerobic environments, and
several of these viruses displayed non-head-tail morphologies
such as icosahedral or spindle shapes. Again, in some cases,
optical density diminishes with time after viral infection,
indicating that a part of these viruses initiate cell lysis (Bath
and Dyall-Smith, 1998; Porter et al., 2005; Jaakkola et al., 2012).
However, several euryarchaeal viruses apparently do not cause
cell lysis.

Amongst hyperthermophilic crenarchaeal viruses there has
only been a single report of a decrease in the turbidity of infected
cultures (Prangishvili et al., 2006a). In this case, induction of
virion production of the lysogenic viruses TTV1-3 led to cell lysis,
which was measured by decreasing turbidity (Janekovic et al.,
1983). Lysis induced by archaeal viruses can either be coupled
with virion production (Jaakkola et al., 2012), or take place after
the largest virion burst, therefore raising the possibility of an
additional release mechanism in such systems (Bath and Dyall-
Smith, 1998; Porter et al., 2005, 2013). Although measurement
of optical density is a classical method for the characterization of
viral cycles and decrease in turbidity has been observed for several
archaeal viruses, no molecular mechanism to achieve complete
membrane disruption in archaea has been proposed as yet.

Bacterial virus-host systems are widely studied and as a
result the mechanism of lysis used by bacterial viruses is
better understood. Bacterial viruses typically induce cell lysis
by degradation of the cell wall, which is achieved by muralytic
endolysins (Young, 2013). In addition, most bacterial viruses
encode small proteins named holins (Bernhardt et al., 2001a,b;
Catalao et al., 2013). Holins usually accumulate harmlessly in the
bacterial cell membrane until a critical concentration is reached
and nucleation occurs. Nucleation results in formation of two
dimensional aggregates, “holin rafts,” that rapidly expand and
create pores in lipid layers through which the endolysins can
reach the cell wall (Young, 2013). In gram negative bacteria the
presence of an outermembrane requires additional virus-encoded
proteins, spanins, which are suggested to induce fusion of the
inner and outer membrane (Berry et al., 2012). After an initial
degradation of the peptidoglycan cell wall, the cells burst due
to osmotic pressure, explaining total loss of turbidity observed
for infected bacterial cultures (Berry et al., 2012). Accurate
timing of lysis is essential for successful virus reproduction
and is achieved by regulation of holin expression (Young,
2013). Since archaea lack a peptidoglycan cell wall, endolysin-
holin egress systems are not effective in archaea. Only a few
archaeal species contain a peptidoglycan-like cell wall consisting
of pseudomurein polymers (Albers and Meyer, 2011). The
oligosaccharide backbone and amino acid interbridges of murein
and pseudomurein are different, rendering bacterial endolysins
ineffective to pseudomurein (Visweswaran et al., 2011). However,
pseudomurein degrading enzymes are encoded by a few archaeal
viruses infecting methanogens; the integrated provirus ψM100
from Methanothermobacter wolfeii and the virus ψM1 infecting
M. marburgensis (Luo et al., 2001). How these intracellularly

produced viral endolysis traverse the archaeal cell membrane in
order to degrade the pseudomurein cell wall is not clear, since
the mandatory pore forming holins have not been identified in
the genomes of these viruses. The possible presence of archaeal
holins could be currently overlooked, as genes encoding holins
share generally very little sequence similarity, making it difficult
to predict their presence in genomes (Saier and Reddy, 2015).

The large majority of archaea lack a pseudomurein cell wall.
Therefore instead of a endolysin-holin system, a fundamentally
different lysis mechanism would be required for release of virions
from these cell wall lacking archaea. One hypothesis is that
archaeal viruses employ holins to disrupt the cell membrane,
possibly combined with proteolytic enzymes in order to degrade
the S-layer. To date there are about a dozen holin homologs
identified in archaeal genomes based on sequence similarity
(Reddy and Saier, 2013), but none of the predicted proteins
have been tested in vivo. Moreover, not a single holin-encoding
gene has been identified in the genomes of currently isolated
archaeal viruses (Reddy and Saier, 2013; Saier and Reddy, 2015).
In addition, specific enzymes capable of S-layer degradation are
currently unknown and S-layer proteins and sugars display a large
diversity in different species (Albers and Meyer, 2011). Thus in
contrast to bacterial endolysins that degrade peptidoglycan cell
walls of virtually all bacteria, specific tailor made proteases would
be required to degrade archaeal S-layers of different species.

Lysis by Formation of Defined Apertures
The egress mechanism of only two archaeal viruses (STIV1 and
SIRV2) has been studied in high molecular detail. Both employ
a release mechanism that relies on the formation of pyramidal
shaped egress structures, which are unique to archaeal systems
(Bize et al., 2009; Brumfield et al., 2009; Quax et al., 2011; Snyder
et al., 2011). At first glance, both viruses were regarded as non-
lytic viruses, since a decrease in cell culture turbidity was never
observed (Prangishvili et al., 1999; Rice et al., 2004). However, the
use of several electron microscopy techniques clearly showed that
the two viruses induced cell lysis (Bize et al., 2009; Brumfield et al.,
2009). Their particular lysis mechanism yields empty cell ghosts
explaining the maintenance of culture turbidity.

Infection by SIRV2 and STIV1 leads to formation of several
pyramidal shaped structures on the cell membrane of S. islandicus
and S. solfataricus respectively (Bize et al., 2009; Brumfield
et al., 2009; Prangishvili and Quax, 2011; Figure 2A). These
virus-associated pyramids (VAPs) exhibit sevenfold rotational
symmetry and protrude trough the S-layer (Quax et al., 2011;
Snyder et al., 2011; Figures 2B–D). At the end of the infection
cycle, the seven facets of the VAPs open outward, generating large
apertures through which assembled virions exit from the cell (Fu
et al., 2010; Quax et al., 2011; Daum et al., 2014; Figure 2B). The
baseless VAP consist of multiple copies of a 10 kDa viral encoded
protein, PVAP (STIV1_C92/SIRV2_P98) (Quax et al., 2010;
Snyder et al., 2013a). This protein contains a transmembrane
domain, but lacks a signal sequence and seems to be inserting
in membranes based on hydrophobicity of its transmembrane
domain (Quax et al., 2010; Daum et al., 2014). PVAP has the
remarkable property to form pyramidal structures in virtually
all biological membranes, as was demonstrated by heterologos
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FIGURE 2 | Remarkable archaeal virion egress structure. (A) Scanning
electron micrograph of an SIRV2 infected S. islandicus cell displaying several
VAPs. (B) Transmission electron micrographs of isolated VAPs in closed and
(C) open conformation. (D) Solid representation of VAP obtained by
subtomogram averaging displaying the (E) outside and (F) interior. (G) Model
of VAP formation. Adapted from (Bize et al., 2009; Quax et al., 2011; Daum
et al., 2014). Scale bar, 100 nm.

expression of PVAP in archaea, bacteria and eukaryotes (Quax
et al., 2011; Snyder et al., 2013a; Daum et al., 2014).

Nucleation of the PVAP-induced structure starts on the cell
membrane, most likely with the formation of a heptamer of

PVAP subunits (Daum et al., 2014). The structures develop by
the outward expansion of their seven triangular facets. They
reach sizes of up to 200 nm in diameter, both in natural and
heterologous systems (Quax et al., 2011; Daum et al., 2014). In
contrast to bacterial holin rafts, the formation of VAPs is not a
sudden process depending on a critical protein concentration.
PVAP transcripts steadily increase throughout the infection cycle
and PVAP integrates in themembrane until late stages of infection
(Quax et al., 2010, 2013; Maaty et al., 2012). Although VAPs are
slowly formed, their actual opening is quite rapid (Bize et al., 2009;
Brumfield et al., 2009; Snyder et al., 2011; Daum et al., 2014). The
nature of the signal triggering this opening has not been identified
yet. VAPs, formed after heterologous PVAP expression, in bacteria
and eukaryotes were never observed in open conformation,
suggesting that an archaeal specific factor is required (Daum
et al., 2014). It has been proposed that the archaeal ESCRT
(Endosomal Sorting Complex Required for Transport)machinery
could be involved in the STIV1 VAP-based exit (Snyder et al.,
2013b). Considering that genes encoding ESCRT machinery are
specifically down regulated during SIRV2 infection (Quax et al.,
2013), and that STIV1 contains in contrast to SIRV2 an inner
lipid layer (Veesler et al., 2013), STIV1 requirement of the ESCRT
system might be independent from VAP-induced lysis.

The ultrastructure of VAPs of SIRV2 was studied by whole cell
cryo-tomography and subtomogram averaging. This revealed the
presence of two layers, of which the outer one is continuous with
the cell membrane and presumably formed by the N-terminal
transmembrane domain (Daum et al., 2014; Figures 2E,F).
The inner layer represents a protein sheet formed by tight
protein–protein interactions of the C-terminal domain of the
protein (Daum et al., 2014). The strong interactions between
PVAP monomers are suggested to exclude most lipids and
membrane proteins from the VAP assembly site, in a similar
fashion as holin raft formation (White et al., 2011; Figure 2G).
S-layer proteins are anchored in the membrane, and consequently
will be excluded from the VAP assembly site, providing a strategy
for VAP protrusion through the S-layer.

The described VAP-based egress mechanism is archaeal
specific. Homologues of PVAP are only found amongst some
archaeal viruses (Quax et al., 2010). However, the majority of
archaeal viruses lack PVAP, suggesting that they rely on a different
and as yet unknown mechanism for egress.

Viral Extrusion without Membrane Disruption
While the first isolated archaeal viruses were lytic, subsequent
characterization of more viruses revealed that the large majority
do not cause lysis of the host cell. To date, lytic viruses make
up half of the viruses infecting euryarchaeota, and only three
in crenarchaea (Torsvik and Dundas, 1974; Wais et al., 1975;
Janekovic et al., 1983; Bize et al., 2009; Brumfield et al., 2009; Pina
et al., 2011). In addition, some studies indicate that free virions
can be observed before disruption of archaeal cells, suggesting that
another egress mechanism exists, which preserves cell membrane
integrity. It might be possible that some lytic archaeal viruses
have been currently overlooked due to special characteristics of
their lysis mechanism, as was the case for STIV1 and SIRV2
(Prangishvili et al., 1999; Rice et al., 2004). Nevertheless, the low
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number of lytic archaeal viruses contrasts with the situation in
bacteria, for which lytic viruses are very common. Themajority of
archaeal viruses are thought to be continuously produced without
integrating into the host genome or killing their hosts (Pina et al.,
2014). This equilibrium between viruses and cells is referred to
as a “stable carrier state” (Bettstetter et al., 2003; Prangishvili
and Garrett, 2005; Prangishvili et al., 2006a). The nature of this
stable carrier state and the mechanisms by which virions are
extruded from archaea without causing cell lysis, remain poorly
understood.

In contrast to the situation in archaea, the majority of bacterial
viruses are lytic. Almost all bacterial viruses exit via the holin
based mechanism described above. However, an exception to
the rule are the bacterial filamentous viruses belonging to the
Inoviridae that egress without causing cell lysis (Rakonjac et al.,
2011). The majority of the inoviruses infect gram negative
bacteria. Assembly of inoviruses is finalized during particle
extrusion. The interaction between the packaging signal of the
viral genome and the cellular membrane initiates the exit step
(Russel and Model, 1989). Virally encoded proteins are thought
to form pores in the inner membrane through which the DNA
is extruded. Multiple copies of the major CP accumulate in the
innermembrane and associatewith the ssDNAviral genomewhile
it is passing through the virus-induced pores (Rakonjac et al.,
1999). A barrel-like structure in the outer membrane permits the
release of progeny and is composed of multiple copies of a virus-
encoded protein with homology to proteins of type II secretion
systems and type IV pili (Marciano et al., 2001). Alternatively,
other inoviruses use the host secretion machinery to traverse the
outermembrane (Davis et al., 2000; Bille et al., 2005). Even though
replication of the viral genome and constituents might burden the
cell, the infection of inoviruses does not lead to cell death and
is a continuous process. There are several archaeal filamentous
viruses known. However, filamentous archaeal viruses are not
related to the bacterial inoviruses, nor encode homologs of the
secretion-like proteins involved in egress of inoviruses (Janekovic
et al., 1983; Bize et al., 2009; Quax et al., 2010; Pina et al.,
2014). Therefore the filamentous archaeal viruses must rely on an
alternative mechanism for viral extrusion from the cell.

Interestingly, lipid-containing archaeal viruses are quite
common (Roine and Bamford, 2012). There are some archaeal
icosahedral viruses that possess an innermembrane, such as STIV
and SH1 (Bamford et al., 2005; Khayat et al., 2005; Porter et al.,
2005). In addition, the filamentous lipothrixviruses (Janekovic
et al., 1983; Arnold et al., 2000; Bettstetter et al., 2003), the
spherical virus PSV (Pyrobaculum spherical virus; Haring et al.,
2004) and the pleiomorphic euryarchaeal viruses (Pietila et al.,
2009, 2013) all contain an external lipid envelope. The lipids
are typically derived from the host cell. Several eukaryotic
viruses contain a membrane that is usually obtained during
“budding,” a process by which particles egress without disturbing

the membrane integrity. Eukaryotic enveloped viruses either
encode their own scission proteins, or hijack vesicle formation
machinery of their host (Rossman and Lamb, 2013). Archaea are
also reported to produce vesicles (Soler et al., 2008; Ellen et al.,
2011), and themachinery responsible for vesicle productionmight
be utilized by lipid envelope containing viruses in archaea as well.
In particular, the pleiomorphic viruses infecting euryarchaea are
likely to be released through budding as their envelope has the
same lipid composition as the host they infect (Pietila et al., 2009;
Roine et al., 2010).

Themost common scissionmachinery employed by eukaryotic
viruses is the ESCRT system (Votteler and Sundquist, 2013). In
eukaryotes these proteins are responsible for endosomal sorting
in the multi vesicular body. Well-characterized viruses such as
Ebola and human immunodeficiency virus (HIV) use the ESCRT
proteins during egress (Harty et al., 2000; Weissenhorn et al.,
2013). Interestingly, proteins homologous to ESCRT components
have been identified in several archaea, where they are involved
in cell division (Lindas et al., 2008; Samson et al., 2008; Makarova
et al., 2010; Pelve et al., 2011). These proteins represent potential
players in budding-like extrusion processes in archaea. The
mechanism underlying the release of temperate archaeal viruses
remains largely unexplored and represents an appealing area of
research that should shed light on original and unconventional
strategies.

Concluding Remarks

The last few years have shown a steady increase in an
understanding of archaeal virus-host interactions, therefore
revealing the first insights into viral interactions with the archaeal
membrane. Viruses have developed various strategies to cross the
membrane. These strategies are adapted to the nature of the cell
envelope of their host. Some archaeal viruses employ fascinating
novel mechanisms, while others appear to rely on processes
that at first sight are analogous to their bacterial counterparts.
Additional research will help to determine to which extent
bacterial, eukaryotic and archaeal virospheres are evolutionary
related. The uniqueness of the archaeal cell surface, and the
diversity of the currently described archaeal entry and egress
mechanisms, argue in favor of future discovery ofmore innovative
and surprising molecular mechanisms.
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Viruses with spindle-shaped virions are abundant in diverse environments. Over the years, such viruses have been isolated from
a wide range of archaeal hosts. Evolutionary relationships between them remained enigmatic, however. Here, using structural
proteins as markers, we define familial ties among these “dark horses” of the virosphere and segregate all spindle-shaped viruses
into two distinct evolutionary lineages, corresponding to Bicaudaviridae and Fuselloviridae. Our results illuminate the utility of
structure-based virus classification and bring additional order to the virosphere.

Recent environmental studies have revealed that viruses with
spindle-shaped virions are widespread and abundant in di-

verse habitats, including deep sea hydrothermal vents (1–3), hy-
persaline environments (4–7), anoxic freshwaters (8), cold Ant-
arctic lakes (9), terrestrial hot springs (10–15), and acidic mines
(16, 17), where these viruses often outnumber the ubiquitous
head-tailed viruses and are likely to play an important ecological
role. All spindle-shaped viruses that have been isolated so far ex-
clusively infect archaeal hosts (18); none are associated with the
two other cellular domains, the Bacteria or Eukarya. The virus
species are classified by the International Committee on Taxon-
omy of Viruses (ICTV) into two families (Fuselloviridae and Bi-
caudaviridae) and one unassigned genus (Salterprovirus). Nota-
bly, there is certain flexibility in virion morphology among
spindle-shaped viruses, even for members of the same family. For
example, genetically close members of the genera Alphafusellovi-
rus and Betafusellovirus (family Fuselloviridae) (19) are very differ-
ent morphologically (compare Fig. 1B1 and B2). Importantly, vi-
rion flexibility might represent an inherent, biologically relevant
property common to all spindle-shaped viruses. It has been
demonstrated recently that under certain conditions, virions of
halophilic salterprovirus His1 (5, 20) and hyperthermophilic vi-
rus Pyrococcus abysii virus 1 (PAV1) (2) also undergo structural
transformation from regular spindles into elongated particles (2,
21, 22).

Over the years, a number of spindle-shaped viruses that could
not be assigned to the existing taxa based on genome similarity
have been isolated from phylogenetically distant archaeal lineages,
including Thermococcales (Thermococcus prieurii virus 1 [TPV1]
[3] and PAV1 [2, 23]), Methanococcales (Methanococcus voltae A3
VLP [A3-VLP] [24, 25]), Desulfurococcales (Aeropyrum pernix
spindle-shaped virus 1 [APSV1] [26]), and Sulfolobales (Sulfolobus
tengchongensis spindle-shaped viruses 1 and 2 [STSV1 and -2] [27,
28]). For a long time, these viruses remained “dark horses” of the
archaeal virosphere, with their origins and relationships to other
archaeal viruses being untraceable. Here, we assess the morpho-
logical and genomic diversity of this prominent virus group, re-
veal the evolutionary relationships between different spindle-
shaped viruses, and refine their classification.

Viral proteins underlying the key principles of virion assembly
and architecture provide a valuable marker for tracing deep evo-

lutionary connections between distantly related viruses (29–31).
Major capsid proteins (MCP) have been experimentally charac-
terized for Sulfolobus spindle-shaped virus 1 (SSV1), a type species
of the Fuselloviridae (32, 33), Acidianus two-tailed virus (ATV), a
type species of the Bicaudaviridae (34), and, more recently, for
His1 virus, a type species of the genus Salterprovirus (22). We used
this information to perform an in-depth genome analysis of all
known unclassified spindle-shaped viruses.

Spindle-shaped viruses with tails. Acidianus two-tailed virus
(ATV) is the sole member of the Bicaudaviridae family. A remark-
able characteristic of this virus is that it can develop long tails at
both pointed ends of the spindle-shaped virion outside the host
cell (34, 35). The ATV virion consists of several structural pro-
teins; high-resolution structures for two of these proteins are
known (36, 37). Among the unclassified viruses, only STSV1 (27)
and STSV2 (28) were found to encode homologues of the major
structural protein gp131 of ATV (Fig. 2A and B). Notably, the
same protein was indeed identified as the MCP of STSV1 (27). In
addition, comparative genome analysis revealed that ATV has 18
genes in common with STSV1 and STSV2 (Fig. 2A), suggesting an
evolutionary relationship between these viruses. Unlike ATV,
STSV1 and STSV2 each have a single long tail emanating from one
of the pointed ends of the virion (Fig. 1). Furthermore, extracel-
lular morphogenesis has not been demonstrated for these viruses
(27). STSV1 and STSV2 apparently possess more simple virions
than ATV: (i) they do not encode homologues of the structural
ATV protein gp273 (Fig. 2C), and (ii) a paralog of the ATV MCP,
gp145 (Fig. 2B), also a structural component of the ATV virion, is
not encoded by STSV1 or STSV2. Based on the shared gene con-
tent and similarities between their MCPs, we propose to classify
STSV1 and STSV2 into a new genus, Betabicaudavirus, within the
family Bicaudaviridae.
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Tailless spindle-shaped viruses. Fuselloviruses and salterpro-
virus His1 typically display regular spindle-shaped morphology
and build their virions using utterly different structural proteins
than bicaudaviruses. Whereas MCPs of bicaudaviruses display a
unique helix bundle topology (Fig. 2C) (37, 38), those of fusello-
viruses and His1 are characterized by two hydrophobic domains
(22, 32). Thus, it has been suggested that hyperthermophilic

fuselloviruses and halophilic salterprovirus His1 might be evolu-
tionarily related (5, 22), despite infecting hosts residing in differ-
ent archaeal phyla—Crenarchaeota and Euryarchaeota, respec-
tively. Notably, fuselloviruses encode two paralogous MCPs (VP1
and VP3), while His1 suffices with the product of a single gene
(open reading frame 21 [ORF21]). We have investigated the ge-
nomes of unclassified spindle-shaped viruses for the presence of
ORFs that would (i) display sequence similarity to the MCPs of
fuselloviruses and His1 and (ii) share similar hydrophobicity pro-
files with these proteins. (Homologs were searched for using
BLASTP [39], while hydrophobicity profiles were calculated with
TMHMM v2 [40]). In all of the viral genomes studied, we could
identify ORFs encoding proteins matching our search criteria
(Fig. 3A and B). Notably, ORF121 of PAV1, which was identified
as a homologue of fuselloviral MCPs (22), has been identified as
the major structural component of the PAV1 virions (23), con-
firming the validity of our approach. Likewise, we identified ho-
mologous MCPs in TPV1, A3-VLP, and APSV1 (Fig. 3), which
previously eluded functional annotation. The identification of a
fusellovirus-like MCP in APSV1 is perhaps most unexpected;
based on virion morphology, APSV1 was originally considered to
be related to bicaudaviruses (26). However, our analysis shows
that it is related to fuselloviruses instead. Although sequence iden-
tities between the MCPs of different viruses were generally low,
the overall pairwise sequence similarities were typically above 50%
(Fig. 3C). (Sequence identities and similarities were calculated
using SIAS [http://imed.med.ucm.es/Tools/sias.html], consider-
ing the physicochemical properties of aligned amino acids.) No-
tably, all of the predicted MCPs contain positively charged amino
acid residues in the short hydrophilic tail following the C-terminal

FIG 1 Negative-contrast electron micrographs of viral species with spindle-
shaped virions. (A1) Three stages of extracellular tail development of ATV, the
type species of the family Bicaudaviridae (35); (A2) STSV1 (27). (B1) SSV1, the
type species of the genus Alphafusellovirus, family Fuselloviridae; (B2) Sulfolo-
bus spindle-shaped virus 6 (SSV6), the type species of the genus Betafusellovirus,
family Fuselloviridae (19); (B3) TPV1 (3); (B4), A3-VLP (25); (B5) PAV1 (2);
(B6) APSV1 (26); (B7) His1 (20), the type species of the genus Salterprovirus.
Scale bars, 100 nm.

FIG 2 Evolutionary relationship between spindle-shaped viruses with tails. (A) Genome maps of Acidianus two-tailed virus (ATV) and Sulfolobus tengchongensis
spindle-shaped viruses 1 and 2 (STSV1 and -2). Homologous regions shared between STSV1 and STSV2 are connected by gray shading. Names of ATV genes that
have homologs in STSV1 and/or STSV2 are indicated; the names of corresponding STSV1 and STSV2 genes are also shown. The new genus “Betabicaudavirus”
within the family Bicaudaviridae is proposed for classification of STSV1 and STSV2. (B) Multiple alignment of major capsid protein sequences of ATV, STSV1,
and STSV2. Note that products of ATV ORF145 and ORF131 are paralogs. GenBank identification (GI) numbers: ATV ORF131, 75750454; ATV ORF145,
75750440; STSV1 ORF40, 51980166; STSV2 gp37, 448260184. (C) Available X-ray structures of two ATV structural proteins, ORF131 (PDB ID no. 3FAJ) and
ORF273 (PDB ID no. 4ATS), both displaying unique folds. Whereas a homologue of ORF131 is encoded by both STSV1 and STSV2 (A and B), ORF273 is unique
to ATV.
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hydrophobic domain (Fig. 3A). However, the functional signifi-
cance of these residues remains to be tackled experimentally.

Horizontal gene transfer plays a profound role in shaping the
genomic landscape of viruses: any given gene in a viral genome,
including those responsible for essential functions, such as ge-
nome replication and virion formation, can be replaced by non-
homologous counterparts (41–44). Consequently, virus classifi-
cation based on a small number of shared characters does not
always faithfully represent the evolutionary history of a given viral
group. With this caveat in mind, we sought to further validate the
grouping of tailless spindle-shaped viruses by performing an ex-
haustive comparative genomic analysis of spindle-shaped viruses.
We found that besides the MCP genes, these viruses share an over-
lapping set of genes encoding various proteins involved in viral
genome replication and integration (Fig. 4). For example, APSV1
encodes four other proteins with homologues in tailless spindle-

FIG 3 Evolutionary relationship between tailless spindle-shaped viruses. (A) Multiple alignment of major capsid protein sequences. Red bars above the
alignment denote the positions of the two hydrophobic �-helixes. The positively charged residues (R and K) found at the hydrophilic C-terminal tail following
the hydrophobic domain are highlighted in red. GenBank identification (GI) numbers: SSV1 VP1, 19263455; ASV1 VP1, 270281782; His1 ORF21, 123827233;
PAV1 ORF121, 125863384; TPV1 gp15, 378554458; A3-VLP Mvol0497, 297619025; APSV1 orf17-96, 371924949. (B) Hydrophobicity profiles of the capsid
proteins aligned in panel A. (C) Pairwise identity and similarity (in parentheses) values calculated from the alignment shown in panel A using SIAS (http://imed
.med.ucm.es/Tools/sias.html). Sequence similarity was calculated by taking into consideration the following physicochemical properties of aligned amino acids:
aromatic (F, Y, W), hydrophobic (V, I, L, M, C, A, F, Y, W), aliphatic (V, I, L), positively charged (R, K, H), negatively charged (D, E), polar (N, Q, H, K, R, D,
E, T, S), or small (A, T, S, G). The proposed taxonomic classification of the tailless spindle-shaped viruses is shown on the right.

FIG 4 An overlapping gene set shared by tailless spindle-shaped viruses. The
diagram shows that in addition to the capsid protein (CP) gene, the viruses share
an overlapping set of genes. The numbers next to the lines connecting the viruses
denote the number of shared genes. PAV1, TPV1, and A3-VLP are proposed to be
grouped into a new genus “Deltafusellovirus,” and are indicated with a triangle.
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shaped viruses, including the DnaA-like AAA� ATPase believed
to be involved in genome replication (45). Similarly, in addition to
the MCP, PAV1 shares a three-gene cassette with A3-VLP (23, 46),
while with TPV1, it shares two other genes for putative minor
structural proteins (3). Notably, our analysis has shown that all
spindle-shaped viruses encode AAA� ATPases. Interestingly,
however, the DnaA-like ATPases typical of SSV1-like fusellovi-
ruses apparently have been replaced in some of the lineages with
nonorthologous AAA� ATPases from plasmids. Such an ex-
change is most explicit in the case of PAV1 and a group of Ther-
mococcales plasmids (46), emphasizing the network-like process
of evolution in this viral group. Based on the evidence of related
capsid proteins (Fig. 3) and the shared overlapping gene content
(Fig. 4), we propose to classify all tailless spindle-shaped viruses
into different genera within the family Fuselloviridae (Fig. 3C).

Here we have addressed a long-standing, unsettled question
regarding the evolutionary relationships among spindle-shaped
archaeal viruses. Previous efforts failed to reveal links between
spindle-shaped viruses infecting phylogenetically distant hosts.
Our analysis shows that all known spindle-shaped viruses can be
segregated into two distinct groups, corresponding to the families
Fuselloviridae and Bicaudaviridae. Peculiarly, similarity in the
overall virion morphology for the two viral groups appears to be a
result of convergence, rather than divergence; notably, unlike
MCPs of fuselloviruses, which are highly hydrophobic (Fig. 3B),
the MCPs of bicaudaviruses are predicted to be soluble, consistent
with experimental evidence (37). It is rather surprising that spin-
dle-shaped viruses are abundant in archaea but have not been
discovered in bacteria or eukaryotes. Presumably, this morpho-
type is well suited for interaction with archaeal cells, which often
dwell in harsh habitats. Clearly, further studies on the biology and
structure of spindle-shaped viruses are necessary to explain this
specific association. The observation that evolutionarily related
spindle-shaped viruses infect hosts thriving in extremely diverse
environments and belonging to distinct phylogenetic, metabolic,
and physiological groups (acidophiles, hyperthermophiles, meth-
anogens, and halophiles) suggests that the origin of this viral lin-
eage is likely to antedate the radiation of major archaeal groups.
More generally, our results demonstrate the utility of the struc-
ture-based virus classification (29, 30) and bring additional order
to the viral universe.
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ABSTRACT 36 

Geothermal and hypersaline environments are rich in virus-like particles among which spindle-shaped 37 

morphotypes dominate. Currently, viruses with spindle- or lemon-shaped virions are exclusive to 38 

Archaea and belong to two distinct viral families. The larger of the two families, the Fuselloviridae, 39 

comprises tail-less, spindle-shaped viruses, which infect hosts from phylogenetically distant archaeal 40 

lineages. Sulfolobus spindle-shaped virus 1 (SSV1) is the best known member of the family and was one 41 

of the first hyperthermophilic archaeal virus to be isolated. SSV1 is an attractive model for 42 

understanding virus-host interactions in Archaea; however, the constituents and architecture of SSV1 43 

particles remain only partially characterized. Here, we have conducted an extensive biochemical 44 

characterization of highly purified SSV1 virions and identified four virus-encoded structural proteins, 45 

VP1-VP4, as well as one DNA-binding protein of cellular origin. The virion proteins VP1, VP3 and VP4 46 

undergo post-translational modification by glycosylation seemingly at multiple sites. VP1 is also 47 

proteolytically processed. In addition to the viral DNA-binding protein VP2, we show that viral particles 48 

contain the Sulfolobus solfataricus chromatin protein Sso7d. Finally, we present evidence indicating 49 

that SSV1 virions contain glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, resolving a long-50 

standing debate on SSV1 lipid issue. Comparison of the contents of lipids isolated from the virus and its 51 

host cell suggests that GDGTs are acquired by the virus in a selective manner from the host cytoplasmic 52 

membrane, likely during the progeny egress.  53 

 54 

IMPORTANCE  55 

Although spindle-shaped viruses represent one of the most prominent viral groups in Archaea, 56 

structural data on their virion constituents and architecture are still scarce. The comprehensive 57 

biochemical characterization of the hyperthermophilic virus SSV1 presented here brings novel and 58 

significant insights into the organization and architecture of spindle-shaped virions. The obtained data 59 

permit the comparison between spindle-shaped viruses residing in widely different ecological niches, 60 

improving our understanding on the adaptation of viruses with unusual morphotypes to extreme 61 

environmental conditions. Our findings also pave the way for future research on the unique archaeal 62 

virosphere that will further shed light on the structure and biology of viruses. 63 

  64 
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INTRODUCTION 65 

Viruses infecting extremophilic archaea have evolved to withstand very high temperatures, low or high 66 

pH, or near-saturating salt concentrations (1-5). Remarkably, most of these viruses do not seem to be 67 

evolutionarily related to viruses of bacteria or eukaryotes and display a considerable diversity of unique 68 

virion morphotypes (3, 4). Indeed, eleven novel viral families have been established by the 69 

International Committee for the Taxonomy of Viruses (ICTV) for classification of archaeal viruses, 70 

emphasizing the uniqueness of rod-shaped, spindle-shaped, droplet-shaped or even bottle-shaped 71 

particles that have never been observed among viruses infecting bacteria or eukaryotes (3). Functional 72 

studies proved to be highly challenging due to the lack of similarity between the protein sequences and 73 

structures of archaeal viruses and those from other viruses and cellular organisms (6-10). Among the 74 

morphotypes that are exclusively associated with archaea, spindle-shaped viruses are particularly 75 

widespread (11) and have been isolated from highly different environments, including deep sea 76 

hydrothermal vents (12-14), hypersaline environments (15-18), anoxic freshwaters (19), cold Antarctic 77 

lakes (20), terrestrial hot springs (21-23), and acidic mines (24).  78 

 79 

Recently, we refined the evolutionary relationships among spindle-shaped viruses by assessing the 80 

morphological and genomic diversity of all available isolates infecting hosts belonging to 81 

phylogenetically distant archaeal lineages, including Thermococcales, Methanococcales, 82 

Desulfurococcales and Sulfolobales (11). The analysis has shown that spindle-shaped viruses can be 83 

broadly segregated into two evolutionarily distinct lineages. The first group includes members of the 84 

Bicaudaviridae family and several currently unclassified viruses. Viruses of this group have large 85 

spindle-shaped virions with one or two long tails and contain circular double-stranded (ds) DNA 86 

genomes of ~70 kb (11, 25). In the case of Acidianus two-tailed virus (ATV), the type species of the 87 

Bicaudaviridae family, the two tails develop following the release into the environment and completely 88 

independently from the host cell (26, 27). Unlike ATV, the unclassified Sulfolobus tengchongensis 89 

spindle-shaped viruses 1 and 2 have never been observed to undergo this kind of transformation and 90 

contain only one tail (28, 29). Nevertheless, both viruses share a number of genes with ATV, including 91 

those encoding unique four-helix bundle major capsid proteins (30, 31).   92 

 93 

The second group includes smaller, tail-less spindle-shaped viruses, which have been tentatively 94 

classified into seven genera within the family Fuselloviridae (11). Sulfolobus spindle-shaped virus 1 95 

(SSV1) is one of the most extensively studied members of this group and is also among the first 96 

archaeal viruses to be isolated (32). SSV1 is a temperate virus and its circular, positively-supercoiled 97 

dsDNA genome of 15.4 kb can site-specifically integrate into the host genome with the aid of a virus-98 

encoded integrase (33-37). SSV1 has been used as a model to establish the genetic system in 99 

hyperthermophilic archaea (38, 39). As a result, the research on SSV1 has mainly focused on the 100 
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mechanism of viral genome integration into the host chromosome (34, 36, 40) and transcriptional 101 

regulation (41, 42). By contrast, only a few studies focused on the organization of SSV1 virions; it has 102 

been shown that SSV1 virion consists of three capsid protein species: two paralogous proteins VP1 and 103 

VP3, and the DNA-binding protein VP2 (32, 43). In addition, the virions were reported to contain a host-104 

derived DNA-binding protein; however, its identity has not been determined (43). Small amounts of 105 

viral proteins C792 and D244 have also been reported based on mass spectrometry analysis of viral 106 

preparations (7, 44), but presence of the two proteins in highly purified virions remains to be 107 

confirmed. Finally, although SSV1 and fuselloviruses in general are considered to exit the host cell by 108 

budding through the cytoplasmic membrane, the actual presence of lipids in SSV1 virions is a matter of 109 

debate and has never been rigorously demonstrated (1, 32, 45). Lipids initially detected in SSV1 110 

preparations could be derived from contaminant membrane vesicles which could co-purify with the 111 

virions (32). Recent attempts to reconstruct the SSV1 virion structure based on cryo-electron 112 

microscopy, encumbered by the heterogeneity of the viral particles, provided rather limited insight into 113 

the organization of capsid proteins in the virion, whereas the presence of a lipid-containing envelope 114 

could not be determined (46). 115 

 116 

Although spindle-shaped particles are dominant in hypersaline environments (16, 17), only one such 117 

hyperhalophilic archaeal virus, His1, has been isolated to date (15). Recent biochemical and structural 118 

studies have shown that His1 virions are composed of one major (VP21) and a few minor capsid protein 119 

species (47, 48). Interestingly, a subset of VP21 is apparently modified by lipid moieties, although lipid 120 

bilayer could not be detected by either biochemical or structural approaches (47, 48). Furthermore, 121 

treatment of His1 virions with various compounds induced the transformation of spindle-shaped 122 

particles into tube-like structures which were devoid of the genomic DNA (47, 49). It has been 123 

suggested that such reorganization might be biologically relevant and reflects structural changes 124 

accompanying virus entry into the host (47). Although SSV1 and His1 infect widely different hosts — 125 

thermoacidophilic crenarchaea and hyperhalophilic euryarchaea, respectively — the two viruses 126 

display a very similar particle shape and their major capsid proteins share ~47% sequence identity, 127 

suggesting that they might have evolved from a common ancestor (11, 48).  128 

 129 

To investigate the evolutionary relationships among spindle-shaped viruses residing in highly different 130 

environments, we set out to perform a rigorous biochemical characterization of SSV1 particles. We 131 

show that SSV1 virions consist of five structural protein species among which one, a DNA-binding 132 

protein, is encoded by the host. The virus-encoded proteins undergo post-translational modifications, 133 

including proteolytic cleavage and glycosylation. Finally, we put to rest the debate on the presence 134 

versus absence of lipids in SSV1 virions by showing that highly purified SSV1 virions contain tetraether 135 

lipids selectively recruited from the host cytoplasmic membrane.   136 

137 



5 
 

MATERIALS AND METHODS 138 

Viruses, strains and growth conditions. Sulfolobus shibatae strain B12 (50) and Sulfolobus solfataricus 139 

strain P2 (51) were used as hosts for SSV1 (32). All cultures were grown aerobically (120 rpm; Innova 44 140 

Eppendorf) at 78°C. The Sulfolobus growth medium was prepared as described previously (52).  141 

 142 

His1 (15) and its host, Haloarcula hispanica strain ATCC 33960, were grown in modified growth medium 143 

(MGM) at 37°C as previously described [(48) and references therein]. 144 

 145 

Virus production and purification. To induce SSV1 viruses, cultures of lysogenized S. shibatae B12 at an 146 

optical density [OD600nm] of 0.5 were treated with UV as previously described (32). 24 hours after 147 

irradiation, cells and debris were removed by two steps of centrifugation (4,000 rpm, 30 min, 4°C and 148 

8,000 rpm, 30 min, 4°C - Jouan BR4i rotor AB 50.10A). The cell-free supernatant was mixed with S. 149 

solfataricus P2 cells and added to the soft-layer of plates prepared as described in Schleper et al. (40), 150 

except that Gelzan™ CM Gelrite® (Sigma-Aldrich) was substituted with Phytagel™ (Sigma-Aldrich). After 151 

72 h at 75°C, the top-layers of confluent plates were collected and 2 mL of medium was added per 152 

plate. The suspension was incubated with aeration (120 rpm; Innova 44 Eppendorf) at 78°C for 1 h. 153 

Cells and debris were removed by two rounds of centrifugation (8,000 rpm, 30 min, 4°C - Jouan BR4i 154 

rotor AB 50.10A, followed by 12,000 rpm, 30 min, 4°C - Avanti J-26XP rotor JLA 16.250). Virus stocks 155 

were stored at 4°C. 156 

 157 

Virus particles were precipitated from the stocks by addition of ammonium sulfate (Sigma-Aldrich) to 158 

50% (wt/vol) saturation at 4°C as described previously (32). The precipitate (12,000 rpm, 30 min, 4°C - 159 

Avanti J-26XP rotor JLA 16.250) was resuspended in SSV1-buffer (20 mM KH2PO4, 1 M NaCl, 2.14 mM 160 

MgCl2, 0.43 mM Ca(NO3)2, <0.001% trace elements of Sulfolobales medium, pH=6; (52)). In order to 161 

remove traces of ammonium sulfate, the virus preparation was dialysed (Spectra/Por 1, SPECTRUM 162 

LABS) twice against the SSV1-buffer at 4°C.  163 

 164 

The virus concentrate was purified in a linear 5-20% sucrose gradient (in SSV1-buffer) by rate-zonal 165 

centrifugation (24,000 rpm, 20 min, 15°C – Sorvall rotor AH629) and the light-scattering zone was 166 

collected. The virus was further concentrated and purified by equilibrium centrifugation (21,000 rpm, 167 

20 h, 15°C – Sorvall rotor AH629) in a CsCl gradient in SSV1-buffer (mean density 1.30 g/mL). The light-168 

scattering band was collected and diluted three-fold in SSV1-buffer, followed by concentration by 169 

differential centrifugation (21,000 rpm, 20 h, 15°C – Sorvall rotor AH629). The pellet was resuspended 170 

in a minimal volume of the SSV1-buffer. The resultant preparation is referred to as the 2x purified 171 

sample. The quality of the purification procedure was verified after each step by protein gel analysis 172 
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(see below), measurement of absorbance at 260 nm wavelength, recovery of infectivity (plaque assay) 173 

and transmission electron microscopy (TEM, see below).  174 

 175 
Production and purification of His1 virions were performed as previously described (48).  176 

 177 

Control of SSV1 aggregation. SSV1 preparations after ammonium sulfate precipitation were dialyzed 178 

against the SSV1-buffer containing 0.1, 0.25, 0.5, 1 or 2 M NaCl. SSV1 virions purified in the CsCl density 179 

gradient were incubated for 30 min at room temperature in the presence of 1% (vol/vol) ethanol in 180 

SSV1-buffer containing 1 M NaCl. The samples were negatively stained and processed for TEM. Virions 181 

were ascribed to three different categories: (i) single particles, (ii) rosette-like virion aggregates 182 

containing between 2 and 5 particles and (iii) aggregates with more than 5 particles. The proportion of 183 

virions in each of the three categories under the different conditions was determined by TEM. At least 184 

1,000 viral particles from three independent biological replicates were analyzed per condition and 185 

standard deviation was calculated. Infectivity of each sample was also verified by plaque assay as 186 

previously described (40). 187 

 188 

Protein analyses. Proteins were analyzed using modified tricine-sodium dodecyl sulphate 189 

polyacrylamide gel electrophoresis (tricine-SDS-PAGE) with 4% and 14% (wt/vol) acrylamide 190 

concentrations in the stacking and separation gels, respectively (53). After electrophoresis, gels were 191 

stained with Coomassie blue (detection limit of >7 ng) or SYPRO® Ruby (detection limit of 0.25 to 1 ng) 192 

(Life Technologies). Glycosylation of SSV1 proteins was assessed using Pro-Q® Emerald 300 193 

glycoprotein gel stain kit according to the manufacturer’s instructions (Life Technologies).  194 

 195 

N-terminal sequencing of virion proteins was performed at the Protein Chemistry Core Facility of the 196 

Institute of Biotechnology, University of Helsinki and mass spectrometry (MS) of peptides released by 197 

in-gel trypsin digestion was done at Meilahti Clinical and Basic Proteomics Core Facility, University of 198 

Helsinki as described previously (54). 199 

 200 

Transmembrane domains and secondary structure elements in viral proteins were predicted using 201 

TMHMM (55) and Jpred3 (56), respectively. 202 

 203 

The relative quantification of the amount of proteins in each SDS-PAGE gel band was done using ImageJ 204 

software (National Institutes of Health). The determined value was then divided by the number of virus 205 

particle estimated from the viral DNA absorbance at 260 nm as described below.  206 

  207 

Lipid analyses.  208 
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S. solfataricus cell pellet and 2x purified SSV1 preparation were freeze-dried and the biomass was 209 

directly acid hydrolyzed by refluxing  with 5% HCl in methanol for 3 h, following Pitcher et al. (57), to 210 

release glycerol dibiphytanyl glycerol tetraether (GDGTs) lipids. A known amount (10 ng) of a C46 GDGT 211 

standard (58) was added to the acid hydrolyzed fraction and GDGT lipids were analyzed by high 212 

performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry 213 

according to Schouten et al. (59). The mass spectrometer was operated in single ion mode (SIM) to 214 

monitor GDGTs with 0-8 cyclopentane moieties and the C46 GDGT standard. Relative abundances of 215 

GDGTs were determined by integrating peak areas of the SIM signal. The signal of the C46 GDGT 216 

standard was corrected for the difference in ionization efficiency using a 1:1 mixture of the standard 217 

and purified GDGT-0. 218 

 219 

To establish the head groups of the GDGTs, S. solfataricus cells were extracted by a modified Bligh-Dyer 220 

method and analyzed for intact polar lipids as described by Pitcher et al (57).  221 

 222 

Quantification of viral particles. The number of infectious particles was determined by plaque assay as 223 

described above. Alternatively, SSV1 particles were enumerated by determining the number of genome 224 

copies in the preparation. To this end, viral DNA was extracted from the purified virion preparation 225 

using the standard phenol:chloroform method and the number of the genome copies was estimated by 226 

measuring the absorbance at λ=260 nm and considering that the molecular weight of the SSV1 genome 227 

(15 465 bp; NC_001338) is 9,554,261.87 g/mol.  228 

 229 

Electron microscopy. For conventional negative-stain TEM, samples were prepared as described 230 

previously (60). Briefly, 10 µL of sample was adsorbed on grids for 1 min, air dried and stained with 3% 231 

uranyl acetate pH 4.5 (EuroMedex) for 1 min. Samples were imaged using a TECNAI BIOTWIN 120 FEI 232 

transmission electron microscope operating at 100 kV in the Plateforme de Microscopie 233 

Ultrastructurale of the Institut Pasteur, Paris or JEOL JEM-1400 transmission electron microscope 234 

operating at 80 kV in the Electron Microscopy Unit of the Institute of Biotechnology, University of 235 

Helsinki.   236 
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RESULTS 237 

Aggregation of SSV1 particles is modulated by ionic and hydrophobic interactions. Virions of SSV1 and 238 

other fuselloviruses tend to interact with each other by the terminal fibers located at one of the two 239 

pointed ends of the viral particles, forming polyvalent aggregates (22, 32, 61). Based on the aggregation 240 

state, SSV1 virions can be grouped into one of three categories: (i) individual virions, (ii) rosette-like 241 

aggregates containing between 2 and 5 particles and (iii) aggregates with more than 5 viral particles 242 

(Fig. 1A). Since large virion aggregates aggravate virion purification and prevent accurate virion 243 

enumeration, we attempted to reduce virion aggregation by varying the ionic strength conditions. 244 

Increasing the salt concentration in the “SSV1-buffer” led to the dissociation of aggregates containing 245 

more than 5 particles in a concentration-dependent manner, with concomitant increase in the 246 

proportion of single virions (Fig. 1B), implicating ionic interactions in virion aggregation. However, the 247 

portion of rosette-like viral assemblages composed of up to 5 particles remained constant (19 ± 1.5% 248 

on average) even at the highest NaCl concentration tested (Fig. 1B). It is noteworthy that SSV1 249 

remained stable and retained infectivity for up to three months in a wide range of salt concentrations 250 

(0.1 to 2 M NaCl), highlighting the robustness of the viral particles. Considering the highly pronounced 251 

hydrophobicity of the protein implicated in the formation of terminal fibers (see below), we tested 252 

whether the smaller aggregates could be dissociated by mild treatment with organic solvents. Indeed, 253 

in the presence of 1% (vol/vol) ethanol the proportion of single particles increased to ~88%, whereas 254 

the remaining virion aggregates mainly consisted of 2 particles and no aggregates with 5 particles were 255 

observed under TEM. Such treatment reduced the infectivity by ~50%, while ethanol concentrations 256 

above 10% (vol/vol) resulted in complete dissociation of the SSV1 virions (data not shown).  257 

  258 

Production of highly purified virions. In order to ensure high purity of the viral preparation for 259 

unambiguous determination of the SSV1 virion constituents, we developed and optimized a multistep 260 

purification protocol (see Materials and Methods). S. shibatae lysogens sporadically release SSV1 261 

virions. However, even following UV irradiation, which increased SSV1 production by one order of 262 

magnitude (from ca. 105 to 106 PFU/ml), the virus titer was insufficient for robust biochemical virion 263 

characterization. To overcome this hurdle, virions were precipitated with ammonium sulfate from the 264 

virus stocks obtained by collecting the soft layer of confluent Phytagel™ plates. The virus preparation 265 

was subsequently purified using rate zonal centrifugation in a linear sucrose gradient to produce “1x” 266 

purified SSV1. However, the resultant virus preparation contained a substantial amount of impurities, 267 

as judged by SDS-PAGE analysis (not shown), necessitating an additional step of purification. The latter 268 

included equilibrium centrifugation in a CsCl gradient and concentration by differential centrifugation, 269 

resulting in the production of “2x” purified SSV1 preparation (Fig. 1C). The purification was performed 270 

under conditions minimizing aggregation of virions (1 M NaCl). Virion recovery was monitored 271 

throughout the purification procedure and the final 2x preparation corresponded to ~31% recovery of 272 
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infectious particles with a specific infectivity of ~2x108 PFU/mL/Abs260 (Fig. 1C). The buoyant density of 273 

the purified SSV1 virions in CsCl was estimated to be 1.29 g/mL, which is somewhat higher than that 274 

previously reported for SSV1 (1.24 g/mL; (32)), but similar to the buoyant density of membrane-275 

containing pleolipoviruses (1.3 g/mL; (62)).  276 

 277 

Structural proteins of SSV1. The availability of highly purified preparation allowed us to assess the 278 

biochemical composition of the SSV1 viral particles. Hyperhalophilic spindle-shaped virus His1 was 279 

analyzed in parallel as a control and for comparison. 2x purified SSV1 and His1 virions were examined 280 

by tricine-SDS-PAGE. Following Coomassie blue staining, the migration profiles of SSV1 and His1 281 

preparations appeared similar and displayed several major protein bands of low molecular mass (in the 282 

range of 7–17 kDa) and a minor high-molecular mass protein band (Fig. 2A); migration of His1 proteins 283 

was similar to that previously reported (48). Unexpectedly, as has also been reported for His1 virus 284 

(48), protein concentration of the purified SSV1 samples could not be determined using the Bradford 285 

method (63); it appears that the virions of SSV1 and His1 do not display sufficient reactivity with the 286 

Coomassie blue reagent, although the corresponding proteins in the tricine-SDS-PAGE gels could be 287 

detected.   288 

 289 

The identity of SSV1 proteins was determined by a combination of N-terminal sequencing and MS 290 

techniques. Consistent with previous analysis (43), in the lower molecular mass bands we identified the 291 

proteins VP1, VP2 and VP3. Proteins VP1 and VP3 are paralogous, highly hydrophobic proteins (each 292 

contains two predicted α-helical transmembrane domains [TMDs]) (Fig. 3C). N-terminal sequencing 293 

showed that, unlike VP3, VP1 is proteolytically processed resulting in the removal of 65 N-terminal 294 

amino acids (Fig. 3B and C), as has been also shown previously (43). The high molecular mass band was 295 

identified as a product of ORF C792 (Fig. 3A). Adhering to the nomenclature used for SSV1 structural 296 

proteins (43), we denote the product of ORF C792 as VP4. The presence of VP4 in SSV1 virions has been 297 

reported previously (44). However, since the SDS-PAGE analysis of the virion preparation was not 298 

presented, the possibility of contamination could not be ruled out. Like VP1 and VP3, VP4 is highly 299 

hydrophobic; sequence analysis showed that VP4 contains three confidently-predicted (probability 300 

higher than 0.9) α-helical TMDs, but high-hydrophobicity regions are also distributed throughout the 301 

protein length (Fig. 3C). Notably, the region flanked by TMD1 and TMD2 is predicted to be β-strand-rich 302 

and is likely to adopt a β-propeller or β-barrel topology.  303 

 304 

SSV1 virions were found to contain a considerable amount of one host-encoded protein, Sso7d (Fig. 3A 305 

and B). Sso7d is a small, basic protein, which belongs to the extensively studied Sul7d family of 7-kDa 306 

DNA-binding proteins and represents one of the major chromatin proteins of Sulfolobus solfataricus 307 

(64, 65). Notably, SDS-PAGE analysis of fractions collected from the CsCl gradient showed that Sso7 is 308 
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exclusively detected in the fraction containing SSV1 virions. In addition, a previous study (43) has 309 

reported the presence of an unidentified host-encoded DNA-binding protein in SSV1 virions. 310 

Consequently we assign Sso7d as a virion component. Staining of the protein gel with SYPRO® Ruby, 311 

which is eight times more sensitive compared to Coomassie brilliant blue stain (66), did not reveal any 312 

additional protein bands (Fig. 2B), strongly suggesting that incorporation of Sso7d into SSV1 particles is 313 

specific and biologically-relevant rather than accidental.  314 

 315 

VP1, VP3 and VP4 are glycosylated. Molecular masses of SSV1 structural proteins deduced from the 316 

gel (Fig. 3A) did not coincide with those calculated from the sequence (Fig. 3B). VP1, VP2 and VP3 317 

migrated in gels as ~11, ~13 and ~16 kDa proteins, which is considerably slower than expected based 318 

on their calculated molecular masses (i.e., 7.7, 8.6 and 9.8 kDa, respectively; Fig. 3A and B). Similarly, 319 

VP4, with predicted mass of 85 kDa, migrated as a 100 kDa protein (Fig. 3A). The discrepancy in 320 

migration pattern could not be explained by potential formation of higher-order oligomers. Thus, the 321 

possibility of post-translational modifications was considered. Since virion proteins of several archaeal 322 

viruses are known to undergo glycosylation (67-69), we tested whether this modification can be 323 

detected in the case of SSV1 virions by staining the proteins with a glycoprotein-specific stain. Indeed, 324 

VP1, VP3 and VP4 were found to be glycosylated (Fig. 2C). Unlike many crenarchaeal viruses (6, 8, 70, 325 

71), SSV1 does not encode an identifiable glycosyltransferase; thus, glycosylation of viral proteins is 326 

likely to be performed by cellular enzymes. Protein glycosylation has been studied in several members 327 

of Sulfolobales (72), including S. solfataricus (73) which was used in this study for SSV1 production. It 328 

has been found that glycosylation in Sulfolobus occurs on the asparagine residue within the consensus 329 

motif N-X-S/T (where X is any amino acid except proline). All three SSV1 proteins which we found to be 330 

glycosylated (Fig. 2C) contain multiple N-X-S/T motifs: VP1 and VP3 each contain 2 such motifs located 331 

in the linker region between the TMDs, whereas VP4 possesses 20 motifs which could undergo 332 

glycosylation (Fig. 3C). The extent of glycosylation as well as detailed characterization of the glycans 333 

attached to the SSV1 proteins will be the focus of future studies.  334 

 335 

SSV1 acquires lipids from the host cytoplasmic membrane. Membranes of organisms from the order 336 

Sulfolobales predominantly consist of sn-2,3-dibiphytanyl diglycerol tetraether lipids (also known as 337 

glycerol dibiphytanyl glycerol tetraether [GDGT]), in which the two glycerol moieties are connected by 338 

two C40 isoprenoid chains, enabling the formation of monolayer membranes (74, 75). GDGTs differ by 339 

the number of cyclopentane moieties within the isoprenoid chains, which can vary from 0 to 8 (i.e., 340 

GDGT-0 through GDGT-8).   341 

 342 

Preliminary thin-layer chromatography analysis of the material extracted from SSV1 virions and host S. 343 

solfataricus cells by chloroform/methanol treatment strongly suggested the presence of phospholipids, 344 
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although in the case of SSV1 the amount detected using iodine vapor was rather low (data not shown). 345 

To determine the exact nature of SSV1 lipids and to compare it to the lipid content of the host, we 346 

analyzed GDGTs by liquid chromatography coupled with mass spectrometry on 2x purified SSV1 virions 347 

as well as S. solfataricus cells (see Materials and Methods). The analysis revealed that S. solfataricus 348 

membrane contains seven GDGT species (Fig. 4A) which are present in different amounts. Under 349 

conditions tested, GDGT-4 constituted more than half of the cellular membrane lipids (Fig. 4B). 350 

Furthermore, the lipid head groups were found to contain 2 to 3 sugar moieties. This is consistent with 351 

the previous analysis which showed that glycolipids of Sulfolobus contain di- and trisacharides 352 

composed of glucose, galactose or mannose moieties (76, 77).Analysis of the viral particles showed 353 

that all 7 GDGT species identified in S. solfataricus membrane are also present in low amounts in SSV1 354 

virions. Interestingly, however, the ratios of different lipids in the viral particles were different when 355 

compared to the host cytoplasmic membrane. SSV1 virions were strongly enriched in GDGT-0, which 356 

represented ~68% of all viral lipids (Fig. 4B). The proportions of other lipids in the virions roughly 357 

followed those in the cellular membrane, i.e., the second most abundant lipid was GDGT-4, followed by 358 

GDGT-3 and GDGT-5. Notably, lipid analysis carried out on different SSV1 preparations showed that 359 

whereas the proportion of GDGT-0 remained constant in different experiments, the ratios of GDGT-3, -360 

4, and -5 were more variable. Unfortunately, low abundance of lipids in viral particles precluded the 361 

detailed analysis of their head groups.  362 

 363 

Quantification of the SSV1 virion components. To gain better understanding on SSV1 virion 364 

organization, we have performed a relative quantitation of lipids and proteins. Due to various reasons, 365 

not all virions released from the cell are infectious (i.e., plaque-forming); the ratio between non-366 

infectious and infectious particles can vary greatly between different viruses (78). Thus, we have 367 

established the correspondence between the number of infectious SSV1 particles determined by the 368 

plaque assay and the number of genome copies estimated from the purified viral DNA absorbance at 369 

260 nm. The particle-to-PFU ratio was estimated to be around 5, which is consistent with the values (5–370 

10 particle/PFU) determined previously by quantitative TEM (40). Since there are more particles than 371 

PFUs (i.e., the ratio is more than 1), for subsequent calculations, we used the number of particles 372 

estimated from the number of genome copies rather than PFUs. Quantitation of virion components 373 

(see Materials and Methods) showed that each virion contains ~6 fg of lipids and ~14 fg of proteins, i.e., 374 

the two components are present in 1:2.4 ratio. Given that estimated total number of SSV1 particles 375 

might be slightly skewed due to potential artifacts (e.g., presence of empty virions, etc), these values 376 

should be considered with caution.   377 
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DISCUSSION 378 

Large-scale production and high-level purification procedures are a prerequisite for comprehensive 379 

biochemical and structural characterization of any virus. Here, we have optimized a purification 380 

protocol for the hyperthermophilic spindle-shaped virus SSV1, which allowed its biochemical 381 

characterization. Environmental distribution of spindle-shaped viruses is particularly broad (11). 382 

Interestingly, although the natural habitats of SSV1 are characterized by very low pH and high 383 

temperatures, we found that SSV1 virions are also stable in high-salinity conditions; prolonged 384 

incubation in the presence of 2 M NaCl had no effect on virion stability or infectivity. This indicates that 385 

the design of spindle-shaped virions is inherently robust, which might explain the success of this virus 386 

group in colonizing very diverse ecological niches where their archaeal hosts are found (11, 48).  387 

 388 

Our analyses have shown that SSV1 virion consists of four virus-encoded (VP1–4) and one host-derived 389 

protein (Sso7d) (Fig. 3). Paralogous proteins VP1 and VP3 have homologs in all spindle-shaped viruses 390 

characterized thus far (11), including hyperhalophilic virus His1 (48), and represent a signature protein 391 

in this group of viruses. Protein VP4 has been previously suggested to be involved in the formation of 392 

terminal fibers based on correlation between the fiber morphology and the presence of vp4-like genes 393 

in different members of the Fuselloviridae (22). Here we have demonstrated that VP4 is indeed a part 394 

of the virion, confirming the previous report by Menon et al (44). Electron microscopy analysis indicates 395 

that terminal fibers are implicated in virion aggregation (Fig. 1A). Two groups of virion aggregates can 396 

be defined: (i) aggregates composed of up to five virions and (ii) those containing more than five viral 397 

particles. The latter assemblages seem to be dependent on ionic interactions, whereas the former ones 398 

are not (Fig. 1B). Instead, the smaller rosette-like aggregates are apparently held together by 399 

hydrophobic interactions, presumably involving VP4, and can be dispersed by mild treatment with 400 

organic solvents. High hydrophobicity of VP4 (Fig. 3C) is in line with this conclusion.  401 

 402 

VP2 has been previously shown to be tightly bound to dsDNA suggesting a role in organizing SSV1 403 

genome (43). Unexpectedly, VP2 is conserved in only four (SSV1, SSV6, ASV1 and SMF1) out of ten 404 

fuselloviruses for which complete genome sequences are available. Moreover, in-frame deletion of the 405 

VP2-encoding gene had no observable effect on virion assembly or infectivity, indicating that the gene 406 

is dispensable under laboratory growth conditions (79). Interestingly, unlike other SSV1 VPs, VP2 is not 407 

specific to fuselloviruses but is also encoded by unrelated proviruses of euryarchaeon Archaeoglobus 408 

veneficus SNP6 (80), Sulfolobus turreted icosahedral virus 2 (81) as well as bacterial viruses of the 409 

recently established family Sphaerolipoviridae (82). Such patchy phyletic distribution of vp2-like genes 410 

in fuselloviruses, its conservation in other archaeal and bacterial viruses as well as dispensability of VP2 411 

for SSV1 infectivity might indicate that vp2 gene has been acquired relatively late in the history of 412 

fuselloviruses from a different group of viruses.  413 
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 414 

Identification of the host-encoded DNA-binding protein Sso7d in SSV1 virions suggests that Sso7d could 415 

play an important role in the organization and condensation of viral genome prior to packaging.  Sso7d, 416 

a member of Sul7d family, is one of the major chromatin proteins responsible for chromosome 417 

organization in Sulfolobus (65). This small basic protein is known to bind dsDNA non-specifically and 418 

induces negative supercoiling (83) as well as compaction of relaxed or positively supercoiled DNA in 419 

vitro (64). SSV1 DNA is highly positively supercoiled in SSV1 virions (33). This positive supercoiling might 420 

result from the activity of Sulfolobus reverse gyrase, an enzyme that introduces positive supercoiling in 421 

vitro in topologically closed DNA (33). Alternatively, positive supercoiling might be induced by 422 

stoichiometric binding of a DNA-binding protein, followed by the relaxation of compensatory negative 423 

superturns by cellular DNA topoisomerases. In the latter hypothesis, this DNA binding protein cannot 424 

be SSo7d since this protein induces negative supercoiling in vitro (83). SSV1 DNA might be thus first 425 

positively supercoiled by reverse gyrase and later on condensed during the packaging process by 426 

interaction between Sso7d and positively supercoiled viral DNA.  However, the effects of VP2 on DNA 427 

supercoiling as well as condensation of SSV1 DNA by VP2 and Sso7d remain to be investigated.  428 

 429 

Notably, previous analysis has also suggested that viral particles contain protein D244 (44) which, 430 

however, is not essential for virion assembly and infectivity (79). X-ray structure of the D244 431 

orthologue from Sulfolobus spindle-shaped virus Ragged Hills revealed that the protein is a member of 432 

the PD-(D/E)XK nuclease superfamily (84), arguing against the possibility that D244 plays a structural 433 

role in virion formation. We could not detect D244 in our virus preparation, although its presence in 434 

amounts that were below our detection limit cannot be ruled out.  435 

 436 

Protein glycosylation is one of the most common post-translational modifications in archaeal viruses — 437 

particularly in viruses infecting hyperthermophilic hosts (67-69) — and could play an important role in 438 

virion stability and/or interaction with the host cell. Accordingly, many hyperthermophilic archaeal 439 

viruses encode their own glycosyltransferases (6, 8, 70, 71), with some viruses containing as many as 440 

five different glycosyltransferase genes per genome (8). However, this is not the case for SSV1 or any 441 

other known fusellovirus. Nevertheless, three of the SSV1 virion proteins, VP1, VP3 and VP4, are 442 

glycosylated (Fig. 2C). To the best of our knowledge, glycosylation of virion proteins has never been 443 

observed for any spindle-shaped virus. Somewhat paradoxically, hyperhalophilic spindle-shaped virus 444 

His1 encodes a putative glycosyltransferase but does not seem to glycosylate its virion proteins, at least 445 

not under the laboratory conditions (48) (Fig. 2C). In the absence of dedicated virus-encoded 446 

glycosyltransferases, glycosylation of SSV1 VPs is likely to be performed by the host enzymes. 447 

Consistently, multiple consensus glycosylation motifs (N-X-S/T; (72, 73)) are present in all three SSV1 448 

glycoproteins; VP4 contains particularly high number of such motifs (Fig. 3C). Recent study of protein 449 
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glycosylation in S. solfataricus has shown that some cell surface proteins can be heavily glycosylated 450 

(73). For example, protein SSO1273 contains 20 N-X-S/T motifs and all of them were found to be 451 

modified with a glycan, which has a mass of 1,298.4 Da (73). The slower migration of VP4 in tricine-SDS-452 

PAGE gel (as 100 kDa instead of the calculated 85 kDa), would be consistent with glycosylation on most 453 

of the theoretical glycosylation sites. Detailed characterization of the glycan structures and extent of 454 

the SSV1 VP glycosylation as well as biological significance of this modification will be an exciting area 455 

of future research.  456 

 457 

The presence of lipids in SSV1 virions has been a matter of debate for many years (1, 32, 45). Indeed, 458 

even recent low-resolution (~32 Å) reconstruction of SSV1 virion structure provided no insight 459 

concerning this issue (46). Here we resolve this long-lasting dispute by providing evidence for the 460 

presence of lipids in highly purified SSV1 virions. Furthermore, for the first time, we determine the 461 

molecular composition of the lipid content and show that SSV1 virions contain seven different species 462 

of GDGT lipids (Fig. 4). This result is consistent with the early electron microscopic observations of SSV1 463 

budding through the cell membrane (32). Notably, the ratio of different lipid species in the virions was 464 

different from that found in the cytoplasmic membrane of the host cells, suggesting a selective 465 

incorporation of lipids into the virion. Similarly, lipid composition of Sulfolobus turreted icosahedral 466 

virus, which has an internal membrane, and lipid content of membrane vesicles produced by S. 467 

solfataricus were found to differ considerably from that of the cellular membrane (68, 85). 468 

Interestingly, the hyperhalophilic spindle-shaped virus His1 does not appear to contain free lipids; 469 

instead its major capsid protein, homologous to VP1/VP3 of SSV1, was concluded to be covalently 470 

modified by a lipid moiety (48), suggesting that different spindle-shaped viruses use different 471 

mechanisms for lipid acquisition from the host.  472 

 473 

The biochemical characterization of SSV1 virions presented here provides a foundation for future 474 

investigations on different aspects of biology and structure of hyperthermophilic spindle-shaped 475 

viruses. Of special interest is the role of lipids during the entry and exit stages of fusellovirus infection; 476 

comparison of these strategies with those employed by eukaryotic membrane-containing viruses might 477 

provide particularly important insights into the evolution of mechanisms mediating membrane fusion 478 

and virus budding.  479 

 480 
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Figure legends 491 

Figure 1. Purification of SSV1. (A) Transmission electron micrograph of negatively stained SSV1 sample. 492 

Single particles as well as different aggregates are shown. (B) Depending on the concentration of NaCl 493 

in the SSV1-buffer, different stages of aggregation were observed: single particles (white columns); 494 

rosette-like structures containing between 2 and 5 particles (grey columns), and aggregates with more 495 

than 5 particles (black columns). The number of viruses in each category was determined from 496 

negatively-stained electron micrographs obtained from three independent experiments. At least 1,000 497 

particles were counted per condition and error bars represent standard deviations. (C) Analysis of 498 

samples taken after each step of the 2x purification procedure. Absorbance at λ=260 nm, virus titer, 499 

recovery of infectivity and specific infectivity are indicated.  500 

 501 

Figure 2. Structural proteins of SSV1. (A) Protein profiles of 2x purified SSV1 virions compared to 2x 502 

purified His1 virions in a tricine-SDS-polyacrylamide gel stained with Coomassie blue. Molecular mass 503 

markers (M) are shown (kDa). The amount of SSV1 and His1 samples loaded are comparable based on 504 

absorbance measurements at λ=260 nm. (B-C) 2x purified SSV1 and His1 virions analyzed in a tricine-505 

SDS-PAGE gel stained (B) with SYPRO® Ruby protein stain (detecting all proteins) and (C) with Pro-Q® 506 

Emerald 300 glycoprotein detecting reagent (detecting glycosylated proteins). Candy-Cane 507 

Glycoprotein molecular weight standard (labeled as CC) contains a mixture of non-glycosylated and 508 

glycosylated proteins. Half of the amount loaded in (A) was added to the gel shown in (B) and (C). 509 

 510 

Figure 3. Identification of the structural proteins of SSV1. (A) Protein pattern of the 2x purified SSV1 511 

virions in a tricine-SDS-PAGE stained with Coomassie blue. M and numbers indicate the molecular mass 512 

marker (kDa). Locations of protein bands processed for proteomic analyses are depicted with black 513 

boxes and names of proteins identified are indicated on the right. (B) Proteins identified by N-terminal 514 

sequencing (NS) and Mass Spectrometry (MS): the NCBI accession number, theoretical molecular 515 

masses, putative functions and peptide sequences determined during analysis are provided. (C) 516 

Sequence analysis of the SSV1 structural proteins VP1, VP3 and VP4. Sequences of the predicted 517 

transmembrane domains are highlighted in grey, whereas the theoretical glycosylation consensus 518 

motifs (N-X-S/T) are shown on the black background. The position of proteolytic cleavage in VP1 is 519 

indicated by a black arrowhead and the N-terminal 65 amino acid (aa) residues not shared with VP3 are 520 

boxed. Paralogous proteins VP1 and VP3 are aligned; identical and similar amino acid positions are 521 

indicated with asterisk and colon signs, respectively. At the bottom of the panel is the hydrophobicity 522 

profile of VP4. The broken line indicates the 0.9 probability threshold for the prediction of the 523 

transmembrane domains (TMD1-3). Predicted secondary structure elements are shown with green 524 

boxes (α-helixes) and blue arrows (β-strands). 525 

 526 



17 
 

Figure 4.  Analysis of lipids of Sulfolobus solfataricus and SSV1. (A) Structures of lipids analyzed in this 527 

study: glycerol dibiphytanyl glycerol tetraethers (GDGTs). The numbers denote how many cyclopentane 528 

moieties are present within the isoprenoid chains. (B) Relative distribution of core lipid species 529 

identified by HPLC-APCI-MS in S. solfataricus cells and 2x purified SSV1 virions as described in Materials 530 

and Methods.   531 
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Abstract 21 

Viruses infecting archaea display a high diversity of virion morphotypes, many of which were 22 

never observed among bacterial or eukaryotic viruses. In particular, viruses with spindle-23 

shaped, or fusiform, virions are common in geothermal and hypersaline environments 24 

dominated by archaea. Indeed, fusiform viruses represent the largest group of unique archaeal 25 

viruses and Sulfolobus spindle-shaped virus 1 (SSV1) serves as a model for understanding 26 

their biology. We have recently shown that SSV1 virions are composed of glycosylated 27 

proteins and host-derived lipids, which together encase the nucleoprotein filament. However, 28 

very little is known about the ways spindle-shaped viruses, and viruses of archaea in general, 29 

interact with their hosts. Here, we characterized the assembly and release of SSV1 from its 30 

natural host, the hyperthermo-acidophilic Sulfolobus shibatae B12. The replication of SSV1 31 

has a pronounced effect on the subcellular organization of the host cell. At the cell periphery, 32 

the periplasmic space between the cytoplasmic membrane and the proteinaceous surface (S-) 33 

layer becomes wider, most likely as a result of modification by viral proteins. Approximately 34 

half of the cell population was deprived of any cytoplasmic content and exhibit discontinuities 35 

in the cytoplasmic membrane. Electron tomography of infected Sulfolobus cells revealed that 36 

assembly of SSV1 virions is concomitant with release from the host via budding through the 37 

cytoplasmic membrane and S-layer. The viral nucleoprotein complexes are extruded in the 38 

form of tube-like structures which have an envelope continuous with the cytoplasmic 39 

membrane. Subsequently, but still in association with the cell envelope, the tube-like virions 40 

appear to maturate to assume the characteristic, spindle-shaped morphology of infectious 41 

virions. Some of these spindle-shaped particles are also connected to the membrane by a dark, 42 

constricting ring-like structure which is similar to the “bud neck” involved in membrane 43 

scission during the budding of enveloped eukaryotic viruses.  44 

  45 



Introduction 46 

One of the most intriguing features of archaea is their capacity to thrive in nearly all 47 

conceivable environments. Members of the third domain of life are highly diversified in terms 48 

of metabolic capacities which allow them to sustain a wide range of temperature, pH, salinity, 49 

pressure, etc. (Robertson et al., 2005). Archaea are abundant in moderate environments where 50 

they can constitute a substantial fraction of the microbial biomass but their dominance over 51 

other microorganisms is particularly pronounced in hypersaline and geothermal habitats. 52 

Accordingly, recent studies have shown that archaeal species play a major role in 53 

geochemical cycles (Offre et al., 2013). Numerous environmental sampling expeditions have 54 

not only shed light on prokaryotic diversity but also provided a glimpse into the diversity of 55 

viruses present on our planet. The specific virosphere associated with archaea comprises 56 

several groups of viruses with virion morphotypes never observed for viruses that infect 57 

bacteria or eukaryotes (Prangishvili, 2013). Beside filamentous, bacilliform, spherical, 58 

droplet-shaped, bottle-shaped, etc. virus-like particles, spindle-shaped virions represent thus 59 

far the largest and probably one of the most evolutionarily successful groups of archaeal 60 

viruses (Pina et al., 2011). However, our understanding of these unique and highly diverse 61 

viruses is limited by the fact that the majority of their genes do not display any similarity to 62 

sequences in public databases (Krupovic et al., 2012).  63 

Recently, we used structural proteins as markers and protein homology to determine the 64 

relationships between all fusiform viruses infecting archaea (Krupovic et al., 2014). It became 65 

apparent that all previously unclassified spindle-shaped viruses isolated from highly diverse 66 

habitats and infecting hosts with very different metabolic strategies belong to the family 67 

Fuselloviridae. All these viruses have very similar overall virion organization: the small 68 

lemon-shaped body (60x100 nm) is decorated with terminal fibers at one of the two pointed 69 

ends and encases the nucleoprotein complex. The virions are typically constructed from one 70 

major capsid protein (MCP) species which is characterized by the presence of two 71 

hydrophobic domains in the N- and C-terminus, respectively (Krupovic et al., 2014). 72 

Sulfolobus spindle-shaped virus 1 (SSV1) is the prototype of the Fuselloviridae family 73 

(Martin et al., 1984). Research up to date was aimed at characterization of (i) the infection 74 

cycle (Fusco et al., 2015, Stedman et al., 1999, Schleper et al., 1992, Palm et al., 1991); (ii) 75 

establishment of lysogeny by site-specific integration of viral genome into the host 76 

chromosome (Zhan et al., 2012, Clore and Stedman, 2007, Letzelter et al., 2004, 77 

Muskhelishvili et al., 1993, Serre et al., 2002); (iii) transcription regulation of viral and host 78 



genes during virus replication (Frols et al., 2007, Fusco et al., 2013, Reiter et al., 1987b); (iv) 79 

architecture of virions (Iverson and Stedman, 2012, Palm et al., 1991, Quemin et al., 2015, 80 

Reiter et al., 1987a, Stedman et al., 2015).  81 

The viral particles are composed of four virus-encoded capsid proteins, namely VP1, VP2, 82 

VP3 and VP4, as well as one host-encoded protein. The SSV1 MCP, VP1, is known to 83 

maturate through proteolytic cleavage of a precursor molecule and together with VP3 and 84 

VP4, undergo post-translational modification by glycosylation (Quemin et al., 2015, Reiter et 85 

al., 1987a). The cellular DNA-binding protein Sso7d, which is the most abundant chromatin-86 

remodeling protein present in the host, is also found in purified virions. Glycerol dialkyl 87 

glycerol tetraether (GDGT) lipids have also been unambiguously identified in SSV1 particles. 88 

The composition and ratios of the different lipid species were different between the viral and 89 

cellular samples arguing for a selective acquisition in virions from the host cytoplasmic 90 

membrane (Quemin et al., 2015). These archaea-specific lipids are structurally distinct from 91 

their bacterial and eukaryotic counterparts and display an ether linkage between glycerol and 92 

hydrocarbon chains forming a covalently-bound monolayer (De Rosa et al., 1986). Therefore, 93 

SSV1 is a unique lipid-containing virus composed of glycosylated structural proteins and 94 

host-derived lipids which together encapsidate the nucleoprotein filament. 95 

Several aspects of the virus biology still remain unstudied, including the way SSV1 interacts 96 

with its host (Quemin and Quax, 2015). Early reports on SSV1 featured electron micrographs 97 

of Sulfolobus cells from which virus-like particles were released through the cytoplasmic 98 

membrane (Martin et al., 1984). Based on these observations, it was concluded that SSV1 99 

virions exit the host cell via budding. However, until now this finding has not been further 100 

investigated. Here, we report the detailed analysis of SSV1 assembly and egress from its 101 

natural lysogenized host, Sulfolobus shibatae B12. We show that virus induction by UV 102 

irradiation leads to severe modifications of the organization of the lysogenic cells. Profound 103 

reorganization was observed both at the level of cellular membrane as well as in the 104 

cytoplasm. Furthermore, electron tomography provided valuable insights into the different 105 

stages of the assembly and budding of SSV1 virions through the host cytoplasmic membrane 106 

and the S-layer. 107 

  108 



Results 109 

Replication of SSV1 retards the growth of its host.  110 

Replication of the virus can be induced by UV irradiation of S. shibatae B12, the natural 111 

carrier of SSV1 (Martin et al., 1984, Schleper et al., 1992). As previously observed, the 112 

growth of UV-irradiated culture was retarded compared to control cells and recovered a 113 

normal growth rate only 48 hours post irradiation (hpi) (Figure 1A). Time-course analysis of 114 

viral replication using electron microscopy techniques revealed three phenotypes of S. 115 

shibatae cells: regular, extracted and condensed cells.  The regular cells contain an evenly 116 

distributed cytoplasmic content and in all aspects do not seem to be affected by UV irradiation 117 

when analyzed by transmission electron microscopy (TEM) (Figure 1C). By contrast, the 118 

extracted cells appear to be empty, deprived of all intracellular components (Figure 1D). 119 

Other cells, which we refer to as condensed, were about half the diameter of regular cells, 120 

exhibited an irregular shape and the cytoplasmic content was denser than in regular cells 121 

(Figure 1E). Although the last two categories – extracted and small – accounted for less than 122 

4% (n=279) of the total population in the non-irradiated control cultures, their proportion 123 

slowly increased in samples from 9 hpi (Figure 1B). By 24 hpi, the so-called extracted sub-124 

population represented nearly half (40%; n=336) of all S. shibatae cells. SSV1 is a temperate 125 

virus and has been considered not to induce lysis of the host (Schleper et al., 1992). However, 126 

it has been reported recently that induction of the viral cycle by UV leads to the death of 35% 127 

of the cell population (Fusco et al., 2015). In another recent study, infection of S. islandicus 128 

with fusellovirus SSV9 led to the emergence of a cell sub-population which phenotypically 129 

resembles our extracted cells; it was proposed that such cells are in a dormant state but can 130 

eventually recover and resume the growth (Bautista et al., 2015). Consequently, the 131 

phenotypic changes which we observe in S. shibatae cells induced for virus production might 132 

represent a general effect associated with the propagation of different fuselloviruses (SSV1 133 

and SSV9). Importantly, the fact that extracted cells are also present in SSV9-infected (rather 134 

than induced) populations suggests that the phenomenon is not a result of UV irradiation but 135 

is a genuine outcome of virus propagation. 136 

Changes in cell morphology over time are linked to viral replication.  137 

TEM analysis of high-pressure-frozen and thin-sectioned S. shibatae B12 cells revealed the 138 

presence of spherical, electron-lucent structures in the cell cytoplasm (Figure 2A). These 139 

macromolecular aggregates were also found in a small subset of cells in the control (non-140 



irradiated) culture. However, the proportion of cells with such structures increased in the cell 141 

population following replication of the virus (Figure 2B). Although they display an overall 142 

spherical shape, there is certain heterogeneity in their size. Their diameter was larger at 6 and 143 

9 hpi when compared to those observed at earlier and later time points (Figure 2A). Initially, 144 

only a few of them – typically less than 5 – were present per cell but their number increased 145 

with time, and by 6 hpi they occupied most of the intracellular space, where they were tightly 146 

packed side by side (Figure 2A). A priori the production of these macromolecular aggregates 147 

could be a result of either SSV1 multiplication or UV treatment. Unfortunately, we failed to 148 

cure the lysogenized S. shibatae B12 strain from both the integrated and episomal copies of 149 

the viral genome, in agreement with the previous report (Schleper et al., 1992). Therefore, to 150 

verify if the observed increase in number and size of these cytoplasmic structures is linked 151 

with virus replication, cells of S. solfataricus P2, a close relative of S. shibatae B12 which can 152 

also be infected by SSV1, were used as a control (Schleper et al., 1992). A small proportion of 153 

S. solfataricus P2 cells also contained structures which were similar in their appearance to 154 

those observed in S. shibatae B12 cells. However, even after UV irradiation, neither their 155 

number nor their size increased in S. solfataricus P2 (Figure 2B). The results indicate that the 156 

dynamics of the cytoplasmic aggregates in the lysogenized strain is due to the active 157 

replication of SSV1 rather than a global stress response induced by the UV treatment.  158 

Modifications of the cytoplasmic membrane, periplasmic space and S-layer.  159 

The extracted cells were always present in cultures of Sulfolobus representing 4% of control 160 

cells that did not undergo UV treatment and 40% of UV-irradiated cells at 24 hpi (Figure 1B). 161 

Closer examination of S. shibatae B12 cells by electron microscopy techniques provided 162 

valuable insights into the ultrastructural differences between the different cell phenotypes. 163 

Whereas the membranes of the regular cells were continuous, those in the extracted sub-164 

population were often fragmented (Figure 3A and D). In the latter, the cytoplasmic membrane 165 

appeared ruptured and these ruptures were particularly pronounced in the irradiated 166 

population, where the proportion of extracted cells was higher (Figure 3C and F; red arrows). 167 

The discontinuity in the cytoplasmic membrane was accompanied by the appearance of small 168 

intracellular vesicle-like structures or membrane remnants localized close to the membrane 169 

rupture points (Figure 3F; red arrows). Concerning, the regular cells, although the membrane 170 

appears intact, it is the cell envelope which is visibly modified. The periplasm, defined as the 171 

space between the cytoplasmic membrane and the protein S-layer which surrounds the cell 172 

(Albers and Meyer, 2011), was significantly wider at late time points after UV irradiation. 173 



When compared to the non-irradiated cells, it increased from 18 nm (SD=4 nm; n=10) to 24 174 

nm (SD=2 nm; n=10) at 24 hpi, most likely as a result of expression and accumulation of viral 175 

proteins (Figure 3B and E; blue square brackets). Furthermore, the cell surface is also 176 

extensively modified through the course of viral replication. S-layer density changes are 177 

obvious in the majority of cells (Figure 4). Whereas, under normal growth conditions the S-178 

layer is dense and homogeneous, at late time points there is a hexagonal organization 179 

rendering its appearance spiky-like and less dense.   180 

SSV1 assembly and budding at the cytoplasmic membrane. 181 

Assembly and release of SSV1 virions were observed to be concomitant and occur in close 182 

proximity to the cytoplasmic membrane. Nascent tube-like structures continuous with the host 183 

cytoplasmic membrane were observed at the surface of irradiated cells at 12 hpi (Figure 5Aa 184 

and b). Notably, the inner leaflet of the bilayer appeared more contrasted by negative staining 185 

when compared to the outer leaflet. The fact that this difference was not visible in the 186 

controls, non-irradiated S. shibatae B12 and irradiated S. solfataricus P2, suggests a 187 

modification by proteins of viral origin. Interestingly, heavily stained complexes, which are 188 

likely to represent the viral nucleoprotein, were also found to be juxtaposed to the membrane 189 

and occasionally seen in the process of being encased into the tube-like structures (Figure 5Aa 190 

and b). Beside the tube-like particles, we have also observed — particularly at the latest time 191 

points after induction — spindle-shaped virions attached to the cell surface (Figure 5Ac). 192 

Unlike the situation of tube-like structures for which the lumen and envelope showed 193 

continuity with the cytoplasmic content and cellular membrane, respectively, the spindle-194 

shaped virions were no longer continuous with the cell but rather loosely attached to its 195 

surface. Observation of two morphologically distinct particles suggests that SSV1 virion 196 

maturation occurs outside of the host cell but in association with its envelope. Consistently, 197 

the viral envelope is thinner (~4 nm) than the membrane of Sulfolobus cells (~5 nm), despite 198 

the fact that the former is derived from the latter. Electron tomography of infected Sulfolobus 199 

cells revealed additional features associated with the release of SSV1 virions. In particular, in 200 

some cases the membrane between the budded virion and the cell was constricted (Figure 201 

5Aa, Ab and Bb; yellow arrows). Such structures are specifically located at the site of 202 

membrane constriction, suggesting a key role in the mechanism of scission between the 203 

cytoplasmic membrane and the viral envelope.   204 



Discussion 205 

For the first time, the assembly and egress of an enveloped virus infecting archaea has been 206 

investigated. We selected the well-characterized fusellovirus SSV1 and its natural carrier S. 207 

shibatae B12 as a model. After induction of viral replication by UV stimuli, the growth of the 208 

irradiated culture was slowed down and required 48h to recover a growth rate comparable to 209 

that of control cells (Figure 1A). Beside what we considered as regular and condensed 210 

phenotypes, extracted cells appeared to be empty, as if they were devoid of cytoplasmic 211 

content (Figure 1C, D and E). At late time points, the proportion of such cells increased from 212 

4% to more than 40% which might be due to a lack of recovery from virus infection and/or 213 

UV stress for some of the growth-retarded population (Figure 1B). We hypothesize that this 214 

category represents cells in which virus replication and production have occurred. The 215 

proportion of such cells in the control cultures is negligible and likely represents the basal 216 

level of spontaneous SSV1 induction under optimal growth conditions of its host.  217 

Analysis of the thin-sections further revealed the presence of spherical, electron-lucent 218 

aggregates in the cytoplasm of cells. They were found to increase in number and size between 219 

3 and 9 hpi as a result of SSV1 infection (Figure 2). However, the composition and exact role 220 

of such structures during the viral cycle requires further investigation. In particular, we cannot 221 

exclude the possibility that they have a protective role in conferring immunity nor that they 222 

represent the initial stages of a phenomenon leading to the extracted phenotype. Therefore, it 223 

seems that activation of SSV1 cycle has strong effects on the subcellular organization and 224 

structure of the host cell. The so-called extracted cells are also characterized by the presence 225 

of ruptures in the cytoplasmic membrane questioning the integrity of Sulfolobus surface and 226 

whether the cell homeostasis is maintained (Figure 3C and F). Additional changes at the 227 

cellular membrane and surface take place in infected and irradiated Sulfolobus cells. Indeed, 228 

the periplasmic space which is located between the plasma membrane and the S-layer is 6 nm 229 

wider at 24 hpi when compared to non-irradiated controls (Figure 3B and E). The regular cells 230 

could represent a dormant state of the infection cycle. Following induction by UV, the viral 231 

genome will be replicated and the viral proteins synthetized (Frols et al., 2007, Fusco et al., 232 

2013). The resulting accumulation of viral proteins and in particular of the structural 233 

components of virions would lead to modification of the cell periphery and increase in the 234 

periplasmic space. Whether the disorganization of the S-layer reported here is due to a direct 235 

(accumulation of viral membrane-binding proteins in the cytoplasmic membrane) or indirect 236 

(budding of virus leads to membrane ruptures and loss of cell turgor) effect of SSV1 237 



replication has to be further investigated. Eventually, the production of SSV1 particles in the 238 

cell might be high, provoking the ruptures of the host cytoplasmic membrane in a way that 239 

most of the cytoplasmic content would leak out.  240 

Furthermore, electron tomography revealed virion release from infected Sulfolobus cells via 241 

budding through the cytoplasmic membrane (Figure 4). Our findings suggest that the 242 

nucleoprotein filament is condensed at the cell periphery. Viral nucleoprotein appears to be 243 

extruded through the cytoplasmic membrane in the form of tube-like structures which 244 

subsequently assume the spindle-shaped morphology once membrane scission has occurred. 245 

Observation of morphologically distinct virions at different stages of virion release indicates 246 

that SSV1 needs to undergo structural rearrangement to gain the morphology of mature, 247 

infectious virions. In fact, although the viral envelope is clearly acquired from the cytoplasmic 248 

membrane during the process of egress; additional re-organization of structural components 249 

takes place within the particles, probably during or immediately after scission of the nascent 250 

virions from the parental membrane. Host-derived lipids have been identified in SSV1 251 

virions, consistent with the observed budding mechanism(Quemin et al., 2015). These GDGT 252 

lipids are specific to archaea and differ from their bacterial and eukaryotic counterparts in that 253 

they are composed of long isoprenoid chains which are covalently linked forming a tightly-254 

bound bilayer membrane (Albers and Meyer, 2011, De Rosa et al., 1986). Therefore, how 255 

membrane scission occurs in the case of SSV1 is intriguing and one of the main questions we 256 

are trying to address. 257 

Assembly and exit are thus concomitant and the membrane scission events reported here as 258 

well as the presence of putative “bud neck” structures during virion release strongly suggest 259 

that SSV1 employs an egress strategy similar to that of eukaryotic enveloped viruses, such as 260 

HIV or influenza virus. Key machinery involved in the budding of enveloped eukaryotic 261 

viruses includes the ESCRT system and the ESCRT-III complex in particular (Hurley and 262 

Hanson, 2010, Marsh and Thali, 2003, Wollert et al., 2009). The role of known archaeal 263 

homologues to the ESCRT-III system (Lindas and Bernander, 2013, Moriscot et al., 2011, 264 

Samson and Bell, 2009) during SSV1 egress are the focus of ongoing research in our 265 

laboratory since several eukaryotic systems have been shown to bud through the host 266 

cytoplasmic membrane by hijacking the cellular ESCRT machinery (Hurley and Hanson, 267 

2010).  268 

  269 



Materials and Methods 270 

Viruses, strains and growth conditions. 271 

Sulfolobus shibatae strain B12 (Yeats et al., 1982) and Sulfolobus solfataricus strain P2 (She 272 

et al., 2001) were used as hosts for SSV1 (Martin et al., 1984). All cultures were grown 273 

aerobically (120 rpm; Innova 44 Eppendorf, Germany) at 78°C. The Sulfolobus growth 274 

medium was prepared as described previously (Zillig et al., 1993).  275 

To induce SSV1 replication, cultures of lysogenized S. shibatae B12 at an optical density 276 

[OD600nm] of 0.2-0.3 were treated with UV as previously described (Martin et al., 1984).  277 

Growth curve  278 

The growth of S. shibatae B12 cultures was followed by measuring optical density at a 279 

wavelength of 600 nm [OD600nm] after UV irradiation.   280 

Sample preparation for electron microscopy 281 

Cultures of 50 mL of S.shibatae B12 at 0, 3, 6, 9, 12 and 24 hpi or S. solfataricus P2 at 0, 3, 6, 282 

9 hpi were pelleted by low-speed centrifugation (4 000rpm – 15 min – 15°C ; Jouan BR4i, 283 

Thermo Scientific) and (4 000 rpm – 10 min – 15°C ; Beckmann-Coulter Alegra X-22). Cell 284 

pastes were transferred into a lecithin coated sample holder type A and frozen with a high 285 

pressure freezing machine, Bal-Tec HPM 010 (Bal-Tec Products, Middlebury, CT, USA). 286 

Following cryo-fixation, the samples were freeze-substituted with 0.5% glutaraldehyde 287 

(Electron Microscopy Sciences, Washington, PA, USA), 1% OsO4 (Merck Millipore, 288 

Germany), 0.2% uranyl acetate (Merck, Darmstadt, Germany), 2% H2O and 4% methanol in 289 

acetone (Electron Microscopy Sciences, Washington, PA, USA) according to the following 290 

schedule: -90°C for 40h, 5°C/h for 6h, -60°C for 8h, 5°C/h for 6h and -30°C for 8h. The cells 291 

were rinsed three times in acetone (Electron Microscopy Sciences, Washington, PA, USA) 292 

and slowly infiltrated with Agar 100 Epoxy Resin (Agar Scientific, United Kingdom). After 293 

heat polymerization, 70 nm thin sections were cut with an Ultracut R Microtome (Leica, 294 

Vienna, Austria) and collected on Formvar-coated copper grids (Electron Microscopy 295 

Sciences, Washington, PA, USA). Sections were post-stained with 4% uranyl acetate for 45 296 

min followed by 5 min in Reynold’s lead citrate. The grids were viewed using a TecnaïTM T12 297 

transmission electron microscope (FEI, OR, USA) operated at 120 kV. 298 

Electron tomography 299 



For electron tomography, embedded cells were cut into serial 200 nm thick sections with an 300 

Ultracut R Microtome (Leica, Vienna, Austria) and collected on Formvar-coated copper slot 301 

grids (Electron Microscopy Sciences, Washington, PA, USA). The sections were decorated 302 

with 10 nm protein-A gold particles (EMS, Hatfield, PA) on both sides of the section and 303 

post-stained with 2% lead citrate in water. Single or dual-axis electron tomography was 304 

performed in a FEI TecnaiTM 20 transmission electron microscope (FEI, Eindhoven, 305 

Netherlands) operated at 200 kV and equipped with K2 Summit camera (Gatan, Pleasanton, 306 

CA, USA). Tomographic tilt ranges were collected, typically from +55° to -55° with an 307 

angular increment of 1° at nominal magnification of 11 500x and pixel size of 0.259 nm/pixel. 308 

Tomograms were reconstructed using the IMOD software suite (Kremer et al., 1996).   309 
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Figure legends 410 

Figure 1:  411 

Induction of SSV1 retards the growth of S. shibatae cultures. (A) Growth curves of control 412 

(circles, dark grey line) and irradiated (squares, light grey line). Optical density measured at a 413 

wavelength of 600 nm is shown. (B) Proportion in percentage of each phenotype of cells 414 

observed in cultures at different time points after irradiation with UV: dark grey bars 415 

represent regular; light grey, extracted and grey, condensed cells. Electron micrographs of 200 416 

nm thick sections of S. shibatae representative of each of the phenotypes are shown: regular 417 

(C); extracted (D) and condensed (E). Scale bars = 1 000 nm.  418 

Figure 2:  419 

Changes in cell morphology through the course of SSV1 replication are linked with viral 420 

replication. (A) Electron micrograph of thin-sections of S. shibatae at 6 hpi showing 421 

spherical, electron-lucent aggregates in the cytoplasm of condensed and extracted cells. (B) 422 

Proportion of cells containing cytoplasmic structures (light grey) or characteristic of regular 423 

(dark grey) and extracted phenotypes (grey) for controls and UV irradiated S. shibatae and S. 424 

solfataricus cultures at different time points after induction. Scale bar = 500 nm. 425 

Figure 3:  426 

Subcellular location of viral components leads to modification of the plasma membrane and 427 

periplasmic space. Electron tomogram of sections of non-irradiated controls (A) or S. shibatae 428 

at 24 hpi (D) displaying regular – R – and extracted – E – cells. The area defined by dark 429 

squares in (A) and (D) are shown in (B) and (E) for regular or (C) and (F) for extracted cells, 430 

respectively. Blue square brackets represent the periplasmic space located between the plasma 431 

membrane and the S-layer. Red arrows indicate ruptures in the cytoplasmic membrane (C) or 432 

membrane remnants (F). Scale bar = 50 nm.  433 

Figure 4:  434 

Modification of the S-layer. Representative electron micrographs of thin-sections of S. 435 

shibatae at 24 hpi (A), (B) and (C). Scale bar = 200 nm.  436 

Figure 5:  437 

Assembly and budding of SSV1 progeny occur at the cytoplasmic membrane. Electron 438 

tomograms of SSV1 virions being assembled at the cytoplasmic membrane or budding 439 

through the S-layer. The yellow arrows indicate ring-shaped, dark structures at the base of the 440 

constriction of SSV1 virions (A and B). The green stars indicate ruptures of the S-layer after 441 

budding of SSV1 virions (C).  Scale bar = 50 nm.  442 
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CHAPTER 6 

 

Unravelling the early stages of SIRV2 infection. 
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First Insights into the Entry Process of Hyperthermophilic Archaeal
Viruses
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A decisive step in a virus infection cycle is the recognition of a specific receptor present on the host cell surface, subsequently
leading to the delivery of the viral genome into the cell interior. Until now, the early stages of infection have not been thoroughly
investigated for any virus infecting hyperthermophilic archaea. Here, we present the first study focusing on the primary interac-
tions between the archaeal rod-shaped virus Sulfolobus islandicus rod-shaped virus 2 (SIRV2) (family Rudiviridae) and its hy-
perthermoacidophilic host, S. islandicus. We show that SIRV2 adsorption is very rapid, with the majority of virions being irre-
versibly bound to the host cell within 1 min. We utilized transmission electron microscopy and whole-cell electron
cryotomography to demonstrate that SIRV2 virions specifically recognize the tips of pilus-like filaments, which are highly abun-
dant on the host cell surface. Following the initial binding, the viral particles are found attached to the sides of the filaments, sug-
gesting a movement along these appendages toward the cell surface. Finally, we also show that SIRV2 establishes superinfection
exclusion, a phenomenon not previously described for archaeal viruses.

Viruses infecting Archaea constitute an integral, yet unique part
of the virosphere. In particular, a significant portion of the

viruses infecting hyperthermophilic archaea display morpho-
types— bottle shaped, lemon shaped, droplet shaped, etc.—not
known to be associated with the other two cellular domains, Bac-
teria and Eukarya (1–3). Furthermore, the distinctiveness of ar-
chaeal viruses extends to their genome sequences (4, 5) and the
structure of proteins that they encode (1). The ways these viruses
interact with their hosts are therefore also likely to be unique.
However, until now, the studies on archaeal viruses were mostly
confined to biochemical and genetic characterization of their vi-
rions, and the knowledge on virus-host interplay in Archaea is
minuscule compared to the wealth of data available on bacterial
and eukaryotic systems. In particular, insights are lacking into the
entry process of hyperthermophilic archaeal viruses.

Recognition of a suitable host cell is an essential first step in the
infection cycle of any virus. This is typically achieved by specific
interactions between a receptor-binding protein exposed on the
virion and a receptor present on the host cell surface, which sub-
sequently leads to cell envelope penetration, accompanied by in-
ternalization of the viral genome (6). A variety of cell surface
structures are known to be targeted by viruses. For example, in the
case of bacterial viruses, nearly all components of the cell envelope
are known to serve as receptors (7), including lipopolysaccharide
(8–10), pili (11–13), flagella (14–17), (lipo-)teichoic acids (18–
20), peptidoglycan (21), or various integral membrane proteins
(22–24). The only archaeal virus for which a potential cellular
receptor has been identified is �Ch1, infecting the hyperhalophilic
host Natrialba magadii (25). Notably, �Ch1 is a member of the
viral order Caudovirales (26), sharing clear evolutionary history
with tailed double-stranded DNA (dsDNA) bacteriophages (27).
Similarly to bacterial viruses, �Ch1 utilizes tail fibers to bind to its
cellular receptor. Galactose moieties were found to be important
for �Ch1 adsorption; however, the exact nature of the receptor
remains to be identified (25).

Sulfolobus islandicus rod-shaped virus 2 (SIRV2) (28) and its

host, Sulfolobus islandicus LAL14/1 (29), represent a valuable
model system to study virus-host interactions in Archaea (30).
SIRV2 is a member of the family Rudiviridae, within the recently
established order Ligamenvirales (31). It has a nonenveloped, stiff,
rod-shaped virion composed of four structural proteins encasing
a linear dsDNA genome of 35 kb (28). Both termini of the virion
are decorated with three fibers composed of the minor structural
protein P1070 (32) and thought to be involved in host recogni-
tion. At the end of the infection cycle, SIRV2 induces the forma-
tion of large pyramidal structures on the surface of infected cells
that serve as portals for the release of progeny viruses (33–35). A
similar egress mechanism has been also demonstrated for the un-
related icosahedral archaeal virus STIV (36, 37), indicating that
mechanisms underlying virus-host interactions in a particular vi-
rus-host system are sometimes applicable to a wider range of ar-
chaeal viruses. In contrast to the egress mechanism, which has
been characterized to some detail, almost nothing is known about
the entry process of SIRV2. Here, we investigate the SIRV2-S.
islandicus interaction, focusing on the early stages of infection.

MATERIALS AND METHODS
Strain cultivation and virus purification. Sulfolobus islandicus strain
LAL14/1 (29) was used as a host for SIRV2 in all experiments. The cells
were cultivated with aeration (150 rpm) in a water bath shaker, Innova
3100 (Eppendorf), filled with silicon oil, in 50-ml flasks at 75°C, pH 3.5.
The rich medium was prepared as described previously (38). SIRV2 was
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purified by CsCl density gradient centrifugation and the virus titer deter-
mined by plaque assay as described previously (28).

Adsorption assay. For adsorption assays, LAL14/1 cells (optical den-
sity at 600 nm [OD600] � 0.15; 108 CFU/ml) were infected using a mul-
tiplicity of infection (MOI) of 0.1. At defined time intervals, a sample of
infected culture was removed and the adsorption stopped by immediate
centrifugation (10,000 � g, 5 min, room temperature [RT]). The number
of remaining PFU was determined by the plaque assay and compared to
the amount of virus present in a cell-free control incubated at 75°C. The
adsorption rate constant was calculated as described previously (39).

Receptor saturation assay. For the receptor saturation assay, a con-
stant number of LAL14/1 cells (grown to a cell density of 108 CFU/ml)
were infected using MOIs between 0.1 and 370. At 30 min postinfection,
the cells were removed by centrifugation (10,000 � g, 5 min, RT) and the
number of nonadsorbed viral particles in the supernatants was deter-
mined using the plaque assay and compared to the amount of virus pres-
ent in a cell-free control incubated at 75°C.

Superinfection assay. LAL14/1 cells were infected at an MOI of 10 for
1 h. Cells were washed twice with fresh rich medium in two rounds of
gentle centrifugation (Jouan BR4i, rotor AB 50.10A [Thermo Scientific];
3,500 rpm, 10 min, 20°C). Infected cells were subjected to a second round
of infection using an MOI of 0.1, and the number of unadsorbed particles
remaining in the supernatant was determined as described above.

Filament purification. S. islandicus filaments were purified as de-
scribed previously (40) with minor modifications. Briefly, 3 liters of
LAL14/1 cells were grown to an OD600 of 0.3, collected (Avanti J-26XP,
rotor JLA 16.250 [Beckman Coulter]; 3,500 rpm, 15 min, 15°C) and re-
suspended in 15 ml of Brock’s basal salt medium. Filaments were mechan-
ically sheared from the cells by vortexing at maximum speed for 15 min.
Cells and debris were removed by two steps of centrifugation (Jouan BR4i
rotor AB 50.10A; Thermo Scientific): 8,000 rpm for 30 min at 15°C, fol-
lowed by 6,000 rpm for 1 h at 15°C. The filaments were pelleted (Beckman
rotor 70.1Ti at 65,000 rpm, 1 h, 15°C) and further purified on a CsCl
gradient (Beckman rotor SW60, 55,000 rpm, 48 h, 15°C). Gradient frac-
tions containing filaments were collected and processed for transmission
electron microscopy (TEM).

Interaction of SIRV2 with cellular appendages. SIRV2 virions were
incubated with either S. islandicus LAL14/1 cells (MOI � 10) or purified
filaments in a thermoblock (Fisher Scientific) at 75°C for 1 to 2 or 5 to 10
min, respectively, and immediately prepared for TEM.

TEM. For conventional negative-stain TEM, 10 �l of sample was
added on Formvar-coated grids (Eloïse Instruments Service SARL) for 2
min, air dried, and stained with 2% uranyl acetate (EuroMedex) for 30 s.
Samples were imaged in a JEOL 1200EX-II transmission electron micro-
scope at 80 kV.

Electron cryotomography. A suspension of LAL14/1 cells infected
with SIRV2 was mixed (1 min postinfection) with an equal amount of 10
nm gold fiducial markers (Aurion). Three microliters of this mixture was
added to a glow-discharged R2/2 Quantifoil grid and rapidly plunged into
liquid ethane.

Samples were transferred into a FEI TITAN Krios transmission elec-
tron microscope at liquid nitrogen temperature. The microscope was
equipped with a field emission gun operated at 300 kV. Zero-loss filtered
tilt series were collected on a 4x4k Gatan charge-coupled-device (CCD)
camera in a range of �60° to � 60° in steps of 1.5° or 2° and a defocus of
8 to 9 �m. The magnification was chosen to give a pixel size of 0.477 nm in
the final image. Tomograms were generated with the IMOD software (41)
and denoised by nonlinear anisotropic diffusion (NAD) (42). Tomo-
grams were segmented and surface rendered using Amira (Mercury sys-
tems).

RESULTS AND DISCUSSION
SIRV2 adsorption is very rapid. To gain insights into the initial
stages of SIRV2 entry, we followed the kinetics of SIRV2 adsorp-
tion to LAL14/1 cells. The adsorption was very efficient, with

FIG 1 Adsorption of SIRV2 to cells of S. islandicus LAL14/1. (A) Kinetics of
SIRV2 adsorption. Cells were infected with SIRV2 using an MOI of 0.1 at 75°C.
The number of unbound virus particles was determined at different time
points postinfection as described in Materials and Methods. (B) SIRV2-medi-
ated superinfection exclusion. Cells were infected at an MOI of 10 for 1 h,
washed twice with rich medium, and subjected to a second round of infection
using an MOI of 0.1. The number of unadsorbed particles remaining in the
supernatant was determined. The kinetics of adsorption to noninfected, con-
trol cells is shown by closed circles, while open circles represent adsorption to
preinfected cells. All experiments were conducted in triplicate, and error bars
represent standard deviations. When error bars are not visible, the deviation
was below 5%. (C) Receptor saturation. Cells were infected with SIRV2 using
MOIs ranging from 0.1 to 370. At 30 min postinfection, the number of unad-
sorbed viral particles present in the supernatant was determined by plaque
assay and compared to that of the cell-free control.
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�80% of virions being bound to cells within the first 30 s of infec-
tion (Fig. 1A). Further incubation of the virus in the presence of
the host cells resulted in additional virion binding; �99% of viri-
ons were bound within 20 to 30 min postinfection (p.i.). All ad-
sorption assays were conducted under the conditions optimal for
the growth of S. islandicus cells, i.e., at high temperature (75°C)
and in acidic pH (pH 3.5). The possibility that the observed effects
were due to high-temperature- and/or acid-induced virion inac-
tivation rather than adsorption was eliminated by performing a
cell-free control in which the same amount of SIRV2 as used for
the infection was incubated at 75°C in the LAL14/1 growth me-
dium.

Upon the first encounter of a susceptible host, many bacterial
viruses initially bind reversibly to the structures on the cell surface

and only then commit to the infection by attaching to the cell
irreversibly, a stage subsequently followed by delivery of the viral
genome into the cell interior (8, 21, 43–45). To test the reversibil-
ity of the SIRV2 adsorption, we investigated whether viral parti-
cles could be washed off from the host cell surface. However, no
virus particles could be released at any of the time points tested
(starting with 1 min postinfection), suggesting that SIRV2 binding
very quickly becomes irreversible and the reversible step, if it oc-
curs, is transient.

Such a rapid adsorption rate (calculated as 2 � 10�8 ml min�1

at 1 min p.i.) is surprising, given that viruses of halophilic ar-
chaea—the only group of archaeal viruses for which adsorption
has been studied— often bind to their hosts extremely slowly (46).
For example, only 30% of salterprovirus His1 (47, 48) and Halo-

FIG 2 Electron micrographs of SIRV2 interaction with S. islandicus LAL14/1 cells. Samples were collected 1 min postinfection and negatively stained for TEM
(A) or plunge-frozen for electron cryotomography (cryo-ET) (B). The virions interact both at the filament tips (right panels) and along the length of the filaments
(left panels). The inset in the lower left panel depicts two virions bound to the sides of a single filament. The lower right panel shows a segmented tomographic
volume of the SIRV2 virion (red) attached to the tip of an S. islandicus filament (green). The three terminal virion fibers that appear to mediate the interaction
are shown in blue (the inset depicts a magnified view of the interaction between the virion fibers and the tip of the filament). A complete tomogram of the cell
depicted in the lower right panel can be found in the supplemental material. Scale bars, 500 nm.
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arcula hispanica tailed virus 1 (HHTV-1; Siphoviridae) (46) viri-
ons adsorb in 3 h. The fast adsorption of SIRV2 is consistent with
recent transcriptomics data revealing that transcription of the
early SIRV2 genes starts within 1 min of infection (49). Despite the
fact that SIRV2 adsorption is quick, the intracellular phase of
the viral cycle is fairly long (�10 to 15 h). We hypothesize that the
duration of both stages has been fine-tuned during SIRV2’s evo-
lution to minimize the time spent by the virus in the hostile extra-
cellular environment, i.e., high temperature and acidic pH.

SIRV2 establishes superinfection exclusion. In the case of
many bacterial virus-host systems, virus infection of a cell renders
it resistant to subsequent infections by related viruses—a phe-
nomenon known as superinfection exclusion (50). Although rel-
atively widespread among bacterial viruses, to the best of our
knowledge, superinfection exclusion has not been described for
any archaeal virus. We investigated whether SIRV2 infection
modulates the susceptibility of its host to subsequent infections.
For this purpose, LAL14/1 cells were preinfected with SIRV2 at an
MOI of 10 for 1 h, to ensure that infection was established in all
cells. After removing the unadsorbed viral particles, the cells were
challenged with a second course of infection at an MOI of 0.1. We
observed a dramatic decrease in the amount of virions bound to
preinfected cells compared to the noninfected control cells

(Fig. 1B). Infected cells were no longer able to efficiently adsorb
the virus even after 90 min of incubation. This result suggests that
upon infection SIRV2 establishes superinfection exclusion; the
exact mechanism underlying this phenomenon remains to be elu-
cidated.

SIRV2 receptor is highly abundant. The abundance and na-
ture of cell surface molecules that serve as receptors for virions are
specific for each virus-host system. The receptor saturation assay
is a classical experiment used to determine the approximate num-
ber of receptors present on the host cell surface (39). For this
purpose, S. islandicus cells were infected with SIRV2 at various
MOI values ranging from 0.1 to 370 and the number of free par-
ticles remaining in the supernatant was determined and compared
to the initial number of virions added into the cell-free control
(Fig. 1C). Remarkably, even at the highest MOI tested, 95% of
virions were bound 30 min p.i., indicating that the receptor me-
diating the primary interaction between SIRV2 and LAL14/1 is
highly abundant, consistently with the high adsorption rate.

SIRV2 binds to long filaments on S. islandicus cells. To gain
more-detailed insight into the interaction of SIRV2 with LAL14/1
cells, we followed the initial stages of infection by transmission
electron microscopy and whole-cell electron cryotomography
(cryo-ET). The surface of noninfected LAL14/1 cells was covered

FIG 3 Transmission electron micrographs of SIRV2 interaction with purified cellular filaments. The filaments were removed from S. islandicus LAL14/1 cells as
described in Materials and Methods.
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with pilus-like filaments. The number of filaments varied be-
tween individual cells. With negative staining, the filament di-
ameter was close to 10 nm but the length was highly variable. In
cryo-ET, the filaments appeared thinner, with a diameter of 5
nm. Negative staining involves dehydration and flattening of
the sample on the carbon support film, which may cause the
filaments to appear thicker in projection. In contrast, for
cryo-ET the filaments are rapidly frozen in their native, fully
hydrated state. Cryo-ET thus shows the actual in situ structure
and dimensions of the filaments. The exact nature of the fila-
ments remains to be determined.

It has been previously observed that SIRV2 virions copurify
with filamentous structures (51). To verify whether the structures
on the surface of S. islandicus cells might be involved in SIRV2
binding, the cells were infected at an MOI of 10 and observed by
TEM and cryo-ET. Indeed, an interaction between SIRV2 viri-
ons and the cellular filaments was observed (Fig. 2). The inter-
action involved the terminal fibers of the SIRV2 virion. Typi-
cally, a single filament accommodated several SIRV2 virions
(Fig. 2B). This is consistent with the receptor saturation exper-
iment, which indicated that nearly 370 particles could adsorb
per one LAL14/1 cell.

SIRV2 specifically interacts with the tips of the cellular fila-
ments. To verify that the filaments indeed represent SIRV2 recep-
tors, the fibers were removed from noninfected LAL14/1 cells by
vortexing and purified on CsCl density gradient (see Materials and
Methods). The filament preparations were then tested for SIRV2
binding. TEM analysis revealed that virions preferentially interact
with the tip of the filaments (Fig. 3); of the 202 observed interac-
tions (in 4 independent experiments), only 9.9% (20 interactions)
occurred along the length of a filament (Fig. 4A). In some cases,
the two termini of a rod-shaped virion were bound to two differ-
ent filaments (Fig. 3), indicating that the two ends of the virion are
functionally equivalent. Unexpectedly, this preference was not
observed with filaments attached to LAL14/1 cells, where the viri-
ons typically bound not only to the tip but also to the sides of the
filaments (Fig. 2) and were also observed at the cell surface. Of the

629 observed cases of virus-host interactions (in 6 independent
experiments), 31% (195) occurred with the tips and 48.2% (303)
with the sides of the LAL14/1 filaments, while the remaining
20.8% (131) of virions were found to interact directly with the cell
surface (Fig. 4B).

Concluding remarks. Collectively, our data provide valuable
insight into the entry process of SIRV2 and suggest the following
sequence of events. SIRV2 binds to the tip of the filament with its
three terminal fibers (Fig. 2 and 3) and subsequently progresses
along the filaments toward the cell surface. Interestingly, in one
case we observed virions bound to the tip of a 12.5-�m-long fila-
ment, which raises the question of how the virus overcomes such
a long distance to reach the cell body. Once the SIRV2 virion
reaches the cell surface, it disassembles, presumably as the viral
DNA is delivered to the cell interior. Although the last step re-
mains enigmatic, partially disassembled virions that we observed
by cryo-ET at the cell surface postinfection (Fig. 5) are consistent
with such a process. Many bacterial viruses utilize filamentous
cellular appendages, such as pili or flagella, as primary receptors
(7). Superficially, the adsorption of SIRV2 to LAL14/1 filaments
resembles the interaction of filamentous Ff inoviruses with F-pili.
The pIII protein of Ff phages binds to the tip of the F-pilus; sub-
sequent retraction of the pilus brings the virion close to the cell
surface, where upon binding the secondary receptor, TolA, the
viral genome is translocated into the cytoplasm (12). A similar
F-pilus retraction-driven entry has been also described for certain
single-stranded RNA (ssRNA) phages of the family Leviviridae
(13). However, the apparent translocation of SIRV2 virions along
the LAL14/1 filaments, as judged from the differential binding of
the virions to purified filaments (Fig. 4A) and filaments attached
to LAL14/1 cells (Fig. 4B), implies that the mechanism of SIRV2
entry might differ from that employed by pilus-specific bacterial
viruses. Indeed, no retracting pili have been identified in archaea
so far, which is also consistent with the apparent lack of genes
encoding typical retraction ATPases in the archaeal pilus operons
(52, 53). A retraction-independent mechanism is utilized by flag-
ellotrophic bacteriophages, which instead harness the energy of

FIG 4 Interactions between SIRV2 and purified filaments (A) or S. islandicus
LAL14/1 cells (B). SIRV2 virions were incubated with purified filaments for 5
to 10 min or LAL14/1 cells for 1 to 2 min at 75°C and prepared for TEM (see
Materials and Methods). Binding of viral particles to the tips, the sides of
LAL14/1 filaments, or the cell surface was counted in electron micrographs of
negatively stained samples.

FIG 5 A tomographic slice through S. islandicus LAL14/1 cells 1 min after
infection with SIRV2 reveals partially disassembled SIRV2 virions at the cell
surface. Scale bar, 100 nm.
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flagellar rotation to move along the flagellum toward the cell sur-
face (14, 16, 17). Notably, the flagella (called archaella in archaea)
of Sulfolobus are considerably thicker (�14 nm in diameter [54])
than the LAL14/1 filaments to which SIRV2 binds. Whether the
mechanism of SIRV2 translocation along the filaments is related
to that of flagellotrophic bacteriophages is under investigation.
The work described here provides the basis for future studies,
which should illuminate the mechanistic details of SIRV2 cell
entry.
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45. Jakutytė L, Lurz R, Baptista C, Carballido-Lopez R, São-José C, Tavares
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DISCUSSION 

 

Successful spindle-shaped archaeal viruses. 

Archaea-specific virosphere exhibits a rich diversity of viruses which display unique virion 

morphotypes and uncommon genomic properties (Krupovic et al., 2012; Prangishvili et al., 

2013). Viruses infecting hyperthermophilic archaea are particularly diverse in terms of their 

morphologies, including bottle-shaped, droplet-shaped, spindle-shaped, bacilliform, etc. 

which have never been associated with the other two cellular domains (Pina et al., 2011). 

Research on archaeal viruses has focused on the isolation of new members and their 

characterization led to the establishment of novel viral families by the ICTV (Prangishvili, 

2015). However, a number of isolates have thus far remained unclassified including a vast 

majority of spindle-shaped viruses.  

Despite the fact that there is some pleomorphicity, the viral particles display an overall similar 

lemon-shaped body which is either tail-less, single-tailed or two-tailed. They are known to 

infect a broad range of hosts which rely on very diverse metabolisms and belong to 

phylogenetically distant groups. Using structural proteins as markers, we defined two viral 

lineages: the Bicaudaviridae and the Fuselloviridae depending on the fold of the MCP 

(Krupovic et al., 2014) (Chapter 3). The two-tailed bicaudavirus ATV was shown to be 

related to single-tailed STSV1 and STSV2 based upon the helix-bundle fold of their MCPs 

and shared gene content with 18 genes in common. On the other hand, His1, former 

‘Salterprovirus’, and other tail-less fusiform viruses display similar hydrophobicity profiles 

with two transmembrane domains present in the N- and C-terminal parts of the MCP. In 

addition, some of these viruses share an overlapping set of genes for viral genome replication 

and integration into the host chromosome and are proposed to represent the subgroups α-, β-, 

γ-, δ- and ε-fuselloviruses.  

Our in-depth comparative analysis between all the spindle-shaped viruses infecting archaea 

has permitted to retrieve a global network of relationships between distantly-related viruses. 

The Fuselloviridae appears as the most prominent and potentially evolutionarily successful 

family of viruses infecting archaea. Fuselloviruses and spindle-shaped viruses in general are 

particularly abundant in ecosystems where archaea outnumber bacterial species such as 

geothermal and hypersaline habitats which suggest that they might play an important 

ecological role. Unfortunately, the information on the organization of spindle-shaped virions 
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and the ways these viruses interact with their hosts is limited (Quemin and Quax, 2015) 

(Chapter 2).  

 

Architecture of spindle-shaped virions: the case-study of SSV1. 

SSV1 has been one of the first archaeal viruses to be isolated and is the prototypical member 

of the Fuselloviridae family (Martin et al., 1984; Pina et al., 2011). Like most fuselloviruses, 

SSV1 virions are lemon-shaped and possess short filamentous appendages at one end. In 

order to improve our understanding on the architecture of spindle-shaped archaeal viruses, we 

carried out a comprehensive biochemical characterization of SSV1 virions (Quemin et al., 

2015) (Chapter 4). As a prerequisite, we established large-scale virus production and 

purification methods which were not available before. Indeed, recent structural analysis by 

cryo-EM and 3D reconstruction could not conclude on the organization of SSV1 virions being 

limited in the resolution by the number of particles considered and heterogeneity within 

sample (Stedman et al., 2015). In addition, the presence of lipids and/or viral envelope could 

not be addressed and has remained controversial up to now (Martin et al., 1984; Reiter et al., 

1987).  

In agreement with previous reports, the virions were found to contain four virus-encoded 

structural proteins: VP1, VP2, VP3 and VP4 – formerly known as C792 (Reiter et al., 1987; 

Redder et al., 2009). The MCP VP1 maturates through proteolytic cleavage of a precursor 

molecule and together with VP3 and VP4 undergo post-translational glycosylation. Notably, 

the viral DNA-binding protein VP2 is not essential for virus infectivity and for most of the 

fuselloviruses, no homologous ORF has been identified in the viral genome (Redder et al., 

2009; Iverson and Stedman, 2012). For the first time, our findings suggest that another 

cellular DNA-binding protein included in the viral particles, Sso7d, can replace VP2. Sso7d is 

the most abundant chromatin remodeling protein in the host and a member of the 7-kDa 

protein superfamily (Koster et al., 2015). Hence, it is likely that the viral and cellular DNA-

binding proteins play a similar function in condensing the circular dsDNA genome in SSV1 

virions. Furthermore, we could unambiguously resolve the controversy concerning the viral 

architecture and specifically the presence of lipids in the viral particles. We identified GDGT 

lipids in highly purified SSV1 virions using mass spectrometry techniques. These lipids are 

specific to archaea and structurally distinct from their bacterial and eukaryotic counterparts. 
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They display an ether linkage between the glycerol moiety and the hydrocarbon chains 

forming a covalently-bound monolayer (De Rosa et al., 1986).  

Collectively our data showed that SSV1 is a unique lipid-containing virus composed of 

glycosylated structural proteins encapsidating the nucleoprotein filaments made of circular 

dsDNA genome either bound to viral VP2 and/or cellular Sso7d. The detailed understanding 

of the structural components and the architecture of SSV1 virions is a prerequisite for 

subsequent studies targeting SSV1-Sulfolobus interactions. In particular, the spindle-shaped 

body is decorated at one of the two pointed ends by thin terminal fibres which mediate 

interactions with cell-derived vesicles or even between the particles themselves (Figure 6). It 

has been shown that aggregates of SSV1 virions rely on ionic and most importantly 

hydrophobic interactions (Quemin et al., 2015) (Chapter 4). Hence, the terminal appendages 

must be involved in adsorption to the host cell surface. Based on the fact that SSV1 is a lipid-

containing virus, we propose a mechanism for entry by fusion between the viral envelope and 

the cytoplasmic membrane of the host which would be mediated by the terminal fibres. In 

analogy with eukaryotic enveloped viruses, the viral progeny might bud through the 

cytoplasmic membrane thereby acquiring lipids while exiting the cell without apparent lysis 

(Martin et al., 1984; Schleper et al., 1992).  

 

SSV1 as a model for lipid-containing viruses infecting archaea.  

Apart from transcriptomic analyses of viral and host gene expression levels through the 

course of the viral cycle (Frols et al., 2007b; Fusco et al., 2013; Fusco et al., 2015), the 

interactions between SSV1 and Sulfolobus, as well as other fuselloviruses and their hosts, 

remain poorly characterized. In particular, the entry mechanism has never been studied and 

there has been only one report concerning the egress of this virus. Based on negatively-stained 

electron micrographs of infected Sulfolobus cells, it was concluded that SSV1 virions are 

released from the host via budding through the cytoplasmic membrane without lysis of the 

cell (Martin et al., 1984). In order to gain more detailed understanding into the late stages of 

SSV1 infection and particularly into the mechanism of virion egress, we analyzed the 

infection cycle of SSV1 in its natural host, S. shibatae B12 (Quemin et al., in preparation) 

(Chapter 5).  
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Electron tomography showed that the exit of SSV1 progeny from the host occurs via budding 

through the cytoplasmic membrane and the S-layer. The virions are initially assembled at the 

cell periphery in a tubular form piercing through the membrane towards the extracellular 

environment. They encase the viral nucleoprotein filaments which are presumably 

accumulating in close proximity to the cytoplasmic membrane. Interestingly, the inner leaflet 

of the membrane is differentially stained than the outer one, most likely as a consequence of 

the presence of viral structural proteins. Although the tube-like intermediates exhibit an extra-

layer originating from and continuous with the plasma membrane of Sulfolobus, this viral 

envelope is always thinner than the cellular membrane (~4 versus ~5 nm). Subsequently, the 

virions assume the lemon-shaped morphology representing the mature form of SSV1 virions. 

Although the possibility that the different morphotypes observed in our samples are aberrant 

products of assembly, they are more likely to be intermediates depending on whether 

 

Figure 6: Electron micrographs of virus particles. (A) Cell apparently extruding virus. (B) Free virus and virus particles 
attached to cellular material. Two large particles are arrowed. (C) Purified free virus particles exhibiting tail structures. 
Three bullet-shaped particles are seen on the right. (D) Thin sections of cells sampled 6 h after u.v. irridation showing 
three cell -cell contacts. The bars represent 0.2 Imn.  

Reproduced with permission from Martin et al., 1984: SAV 1, a temperate u.v.-inducible DNA virus-like particle from 
the archaebacterium Sulfolobus acidocaldarius isolate B12. 
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membrane scission and structural rearrangements have occurred or not. In particular, ring-

shaped, dark structures are often located at the junction between the enveloped virions 

protruding through the S-layer and the parental membrane from the host cell. The constriction 

of membranes observed in the case of SSV1 resembles the scission mechanism of eukaryotic 

enveloped viruses. One hypothesis is that the maturation of SSV1 virions involves the ESCRT 

proteins in a similar manner as described during infection by HIV for example (Morita et al., 

2011).  

Membrane budding is an essential step of the life cycle of eukaryotic enveloped viruses and 

most, but not all, of them exit the host cell by co-opting the ESCRT machinery of their host 

(Hurley, 2010; Votteler and Sundquist, 2013). The ESCRT is a conserved cellular machinery 

involved in cell division, multi-vesicular body (MVB) formation and virus budding (Figure 7) 

(Raiborg and Stenmark, 2009; Babst, 2011). It performs three distinct but connected functions 

orchestrated by four ESCRT protein complexes. ESCRT-0 first recognizes and forms a 

network around the ubiquitylated cargo preventing its recycling and retrograde trafficking 

(Mayers et al., 2011).  Then, ESCRT-I serves as a signal for sorting the ubiquitylated cargo 

into the MVB pathway (Katzmann et al., 2001). Together, ESCRT-I and ESCRT-II drive 

endosomal invagination and membrane budding (Gill et al., 2007). Finally, ESCRT-III 

recruitment leads to stabilization of the budding neck, vesicle abscission and is dissociated 

upon the action of the ATPase Vps4 (Obita et al., 2007; Lata et al., 2008). In archaea, a 

number of species encode homologues to the eukaryotic ESCRT-III proteins although no 

similarity has been detected for components of the ESCRT-0, ESCRT-I and ESCRT-II 

complexes (Makarova et al., 2010; Lindas and Bernander, 2013). In Sulfolobus, there are four 

homologs of ESCRT-III and one for Vps4 (Hobel et al., 2008; Samson et al., 2008; Samson 

and Bell, 2009). Such a simplified version of the system is also encountered in protozoan 

parasites in which ESCRT-III complex is assembled without the upstream machinery on the 

neck of spontaneously forming vesicles (Babst, 2011). Notably, the archaeal homologs to 

ESCRT-III are up-regulated during infection by STIV (Maaty et al., 2012a; Maaty et al., 

2012b) and have even been identified in STIV virions (Maaty et al., 2006). However, they 

were found to be down-regulated upon exposure of Sulfolobus cells to UV irradiation in two 

independent studies (Frols et al., 2007a; Gotz et al., 2007) and have never been reported to be 

part of SSV1 virions (Reiter et al., 1987; Quemin et al., 2015) (Chapter 4). Whether the 

ESCRT-III homologues present in Sulfolobus are involved in the structural rearrangements 

which are required for the assembly and release of SSV1 virions remains to be confirmed. 
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The terminal fibres which are located at one of the two pointed ends could be involved in the 

budding process serving as an encapsidation signal for example or alternatively, they might 

also take part in the scission of membranes at late stages. Indeed, VP4 – the supposedly sole 

component of the terminal fibres – might play a pivotal role by mediating ionic and, most 

importantly, hydrophobic interactions (Quemin et al., 2015) (Chapter 4). It is well-known 

that SSV1 virions spontaneously bind to host-derived vesicles and this interaction specifically 

involves the virus appendages (Figure 6) (Martin et al., 1984). Based on this property of 

virions and the fact that they contain lipids, it has also been proposed that SSV1 virions reach 

the cell interior by fusion between the host cytoplasmic membrane and the viral envelope. To 

the best of our knowledge, the entry mechanism of SSV1 hasn’t been investigated so far and 

no similarity has been detected between VP4 and any of the described eukaryotic viral fusion 

proteins.  

 

Figure 7: ESCRT-III is a conserved machinery for the abscission of narrow membrane stalks filled with cytosol. In 
MVE biogenesis (left), ESCRT-III is recruited by ESCRT-0, -I and -II. In cytokinesis (middle), ESCRT-III is recruited 
by the centrosome/midbody protein CEP55 and Alix (and, to a lesser extent, by ESCRT-I). In HIV budding (right), 
ESCRT-III is recruited by the viral GAG protein and ESCRT-I (and, to a lesser extent, by Alix).  

Reproduced with permission from Raibord and Stenmark, 2009: The ESCRT machinery in endosomal sorting of 
ubiquitylated membrane proteins. 
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In eukaryotes, viral proteins which mediate fusion belong to four classes depending on the 

structural hallmarks of their pre- and post-fusion conformations (Figure 8) (White et al., 2008; 

Li and Modis, 2014). The class I fusion proteins (Influenza, HIV, Ebola, etc.) exhibit a 

proteolytically generated N-terminal fusion peptide and a core composed of three central α-

 

Figure 8: Conformational changes associated with membrane fusion in the different structural classes of membrane 
fusion proteins. In all classes, a fusion motif (orange) that is shielded from the solvent in the prefusion conformation (left 
column) becomes exposed in response to environmental cues (e.g., low pH or coreceptor binding). The fusion motif 
inserts into the cell membrane and the protein folds back on itself, forcing the fusion motif and the C-terminal 
transmembrane domain (not shown) anchored in the viral membrane towards each other. The proteins are trimeric in 
their postfusion conformations (right column). (A) In class I fusion proteins, such as influenza A virus hemagglutinin 
(Flu HA) shown here, membrane fusion is catalyzed by extensive refolding and secondary structure rearrangements of 
prefusion trimers to form a six-helix bundle [Protein Data Bank (PDB) codes 2HMG, 1HTM, 1QU1]. (B) Class II 
proteins usually form icosahedral shells in infectious virions. The envelope proteins respond to the reduced pH of an 
endosome with a repositioning of the three domains with only minor changes in secondary structure. The proteins form 
trimers during the fusion transition and the fusion loop in the central domain is directed towards the viral transmembrane 
anchor. The pre- and postfusion conformations of dengue type 2 virus E (DEN E) are shown here (PDB codes 1OKE, 
1OK8). (C) Class III proteins are trimeric before and after fusion and undergo extensive refolding during the fusion 
transition like class I fusion proteins, but they contain internal fusion loops like class II proteins. The pre- and postfusion 
structures of vesicular stomatitis virus G (VSV G) are shown here (PDB codes 2J6J, 2CMZ). (D) The structure of 
envelope glycoprotein E2 from the pestivirus bovine viral diarrhea virus (BVDV) has been proposed to serve as a 
molecular scaffold for E1, which may define a new structural class of fusion machinery (PDB code 4JNT). The structure 
of envelope protein E1 (gray) and the nature of the fusogenic conformational change remain unknown. The outer leaflets 
of the viral and cellular membranes are represented in green and cyan, respectively.  

Reproduced with permission from Li and Modis, 2014: A novel membrane fusion protein family in Flaviviridae? 
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helices in the pre-fusion conformation, which refolds into a six-helix bundle after fusion 

(Skehel and Wiley, 2000). The class II fusion proteins (Dengue virus, Semliki Forest virus, 

Tick-Borne Encephalitis virus, etc.) consist primarily of β-sheet structures with internal fusion 

peptides formed as loops at the tips of the β-strands. They are often associated with a 

chaperone protein which is cleaved during or soon after viral assembly (Modis, 2013). The 

third class of fusion proteins (Herpes Simplex virus 1, Vesicular Stomatitis virus, Rabies 

virus, etc.) shares features of both class I and class II fusion proteins. Like the former they 

possess core helical bundles but the central β-stranded domain contains one or more fusion 

 

Figure 9: The common trimer-of-hairpins pathway of membrane fusion. (A) The model depicts a Class I fusion protein, 
but related structures (e.g., prehairpins and trimers-of-hairpins) form for Class II and III proteins, which also promote 
membrane merger through stages of close apposition (iv), hemifusion (v), small fusion pores (not shown), and large 
fusion pores (vi). See Table 2 and text for comparisons among the different classes of viral fusion proteins. The depicted 
Class I fusion protein is one that does not require any other viral surface proteins for fusion (e.g., influenza HA or a 
retroviral Env); it contains both a receptor binding subunit (labeled rb in image i) and a fusion subunit (labeled f in 
images i to iii). The target and viral membranes are, respectively, at the top and bottom of the images. The receptor 
binding subunit (rb) is not shown beyond image i as its location at the later stages is not known; in all cases studied, 
however, the rb subunit of this type of class I fusion protein must move out of the way, thus unclamping the fusion 
subunit in the metastable fusion competent state and allowing fusion to proceed. For Class I fusion proteins six helix 
bundles (6HBs) are seen in their bundle (v) and trimer-of-hairpins (vi) forms; the length and position of the 6HB varies 
for different proteins. The starting (i) and final (vi) images represent structures that are known for several viral fusion 
proteins; high level structural information is currently lacking on the intermediates. (B) The key features of a class I 
fusion protein from N- to C-terminus: a fusion peptide (FP) at or near the N-terminus, an N-heptad repeat (N-HR aka 
HR1 or HRA), a C-heptad repeat (C-HR aka HR2 or HRB), a transmembrane domain (TMD), and a cytoplasmic tail 
(squiggle). Linkers of variable lengths are indicated as straight lines. (The // between the N- and C-heptad repeats 
indicates that the length of these linkers varies considerably). Peptide analogs of the N-HR and C-HR helices can inhibit 
fusion and infection.  

Reproduced with permission from White et al., 2008: Structures and Mechanisms of Viral Membrane Fusion Proteins. 
Multiple Variations on a Common Theme.  
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loops resembling those of the latter (Backovic and Jardetzky, 2011). Recently, the envelope 

proteins from Hepatitis C virus and a pestivirus were found to have two novel folds, distinct 

from each other, which have been suggested to define a new structural class IV for viral 

fusion proteins (Li and Modis, 2014). The fusion proteins encoded by viruses not only belong 

to different classes which are genetically and structurally unrelated but also vary in their mode 

of activation: receptor-binding, acidification, a mix between the two factors, etc. Despite these 

differences, common principles behind the action of fusion proteins have emerged (Figure 9). 

In response to the activating trigger, the metastable fusion protein found on virion surface 

converts to an extended structure which inserts into the target membrane via its fusion 

peptide. A subsequent conformational change causes the fusion loop to fold back upon itself, 

thereby bringing its fusion peptide and its transmembrane domain into close contact, together 

with the attached target and viral membranes. Fusion ensues as the initial lipid stalk 

progresses through local hemifusion, and then there is opening and enlargement of the fusion 

pore (Earp et al., 2005). Hemifusion is a key intervening step during which small regions of 

the outer contacting monolayers merge while the inner ones remain intact (White et al., 2008). 

However, in Sulfolobus and SSV1, the membrane exclusively contains GDGTs. These lipid 

species are completely different from the lipids of eukaryotes or bacteria and form a 

monolayer-like membrane (De Rosa et al., 1986). If fusion of the envelope of SSV1 virions 

with the cytoplasmic membrane of the archaeon occurs, it would rather happen directly 

without any hemifusion stage. Therefore, if and how fusion of membranes can be completed 

at once and how the energy required is provided are intriguing questions that remain 

unanswered. These key aspects of the life cycle of enveloped viruses infecting archaea require 

further investigation in order to reveal fundamental principles of virus biology in the different 

domains of life.  

 

SIRV2 as a model for non-enveloped viruses infecting archaea.  

Beside fusiform viruses, filamentous VLPs are the other morphotypes encountered in 

abundance in archaea-dominated ecosystems such as geothermal environments. To date, all 

the filamentous viruses isolated encase linear dsDNA genomes and are unique to Archaea 

(linear viruses with dsDNA genomes are not known in Bacteria or Eukarya). They belong to 

the Rudiviridae and Lipothrixviridae families within the order Ligamenvirales (Prangishvili 

and Krupovic, 2012). The rudiviruses display stiff, rod-shaped, non-enveloped virions and 
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have recently emerged as virus model systems in archaea (Prangishvili et al., 2013). While 

studying SIRV2-Sulfolobus interactions, a new mechanism of virion release has been 

described. At the end of the infection cycle, virus-encoded pyramidal structures are formed on 

the cell surface. Eventually, these pyramids open up leading to virion escape from the cell 

interior (Bize et al., 2009). In addition, data have been accumulating on virion architecture, 

replication of viral genome and transcription regulation upon infection (Prangishvili et al., 

2013; Quax et al., 2013; DiMaio et al., 2015). As opposed to the egress mechanism of SIRV2 

which has been extensively studied (Quax et al., 2010; Quax et al., 2011; Daum et al., 2014), 

nothing was known about the early stages of the infection cycle, i.e. adsorption to the host cell 

surface and entry of the viral genome into the cell cytoplasm (Quemin et al., 2013) (Chapter 

6).  

To gain insights into the entry of SIRV2 virions, we have utilized a number of different assays 

to assess the binding kinetics, reversible and irreversible adsorption, receptor saturation, etc. 

which were initially developed to study the interaction of bacteriophages with their hosts 

(Hyman and Abedon, 2009). As a result, we have determined that adsorption is rapid and 

more than 80% of the viral particles are irreversibly bound to the host cells within the first 

minute of infection. Thus, it appears that host recognition and adsorption of SIRV2 virions is 

much more efficient than that of halophilic viruses which require several hours to bind to the 

surface of their hosts (Kukkaro and Bamford, 2009). The receptor present on the host cell 

surface is abundant since more than 370 viral particles are able to bind to a single cell. 

Furthermore, transmission electron microscopy and whole-cell electron tomography strongly 

suggest that SIRV2 virions specifically attach to the tip of pili-like filaments allowing a strong 

and irreversible interaction between the viral and cellular determinants. Subsequently, viral 

particles are found on the side of the appendages indicating a progression along these 

appendages to reach the cell surface. At the cell surface, there is the delivery of the viral 

genome into the cell interior which seems to be concomitant with disassembly of particles 

lying outside. The next step towards understanding the entry mechanism of SIRV2 will be to 

identify the cellular and viral determinants responsible for the different interactions observed. 

The two ends of the viral particles are equivalent in their capacity of binding to pili-like 

filaments and specifically involve the three terminal fibers; whether the virion body also plays 

a role has to be determined. On the host side, the nature of the filaments and the presence of a 

secondary receptor at the cell surface are under investigation. Another question which also 
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needs to be addressed is how SIRV2 virions move along the pilus-like cellular receptor and 

reach the cell surface.  

Receptor recognition and binding are key steps and typically induce a cascade of events that 

starts with structural reorganization of virion leading to viral genome penetration through the 

cell envelope. In general, non-enveloped prokaryotic viruses rely on two strategies: (i) 

genome injection into the cell interior while leaving the empty capsid associated with the cell 

envelope (e.g., tailed dsDNA bacteriophages); (ii) disassembly of the virion at the cell 

envelope concomitantly with genome delivery (e.g., filamentous bacteriophages) (Poranen et 

al., 2002). Interestingly, partially broken viral particles were observed at the cell membrane 

following the course of adsorption by electron microscopy techniques suggesting a genome 

delivery mechanism similar to filamentous bacteriophages. In particular, filamentous Ff 

inoviruses interact with the F-pili of their host and utilize the retraction system to reach the 

cell surface and finally bind the secondary receptor in order to deliver their genome into the 

host cytoplasm (Rakonjac et al., 2011). The interaction of SIRV2 with Sulfolobus filaments 

appears similar although retraction of the latter was never observed either during infection or 

under normal growth conditions (Lassak et al., 2012a; Lassak et al., 2012b). On the other 

hand, flagellotrophic bacteriophages bind the host flagella and harness the energy of rotation 

to reach the host cell surface (Guerrero-Ferreira et al., 2011). Notably, flagella (called 

archaella in archaea) of Sulfolobus are considerably thicker, ~14 nm in diameter (Ghosh and 

Albers, 2011) than the filaments to which SIRV2 binds, arguing against the possibility that 

flagella serves as an entry receptor during SIRV2 infection. Whether the mechanism of 

SIRV2 translocation along the filaments is related to that of Ff inoviruses, flagellotrophic 

bacteriophages or is completely novel is one of the open questions that remain to be adressed. 
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Concluding remarks and future perspectives. 

The work undertaken during my PhD thesis aims to provide a better understanding on virus-

host interplay in Archaea. Typical environments where archaea outnumber bacteria are 

geothermal ecosystems. In such environments, the vast majority of the encountered VLPs are 

fusiform and filamentous in shape. As models of these two viral groups, we selected: (i) the 

temperate, spindle-shaped SSV1 – the best-known member of the family Fuselloviridae – and 

(ii) the lytic, non-enveloped, rod-shaped SIRV2 – the type-species of the family Rudiviridae. 

Both viruses infect members of the genus Sulfolobus, contain dsDNA genomes and were 

among the first hyperthermophilic archaeal viruses to be isolated (Martin et al., 1984; 

Prangishvili et al., 1999). Our findings provide insights into the entry, assembly and egress 

stages of these viruses throughout the course of infection cycle. The obtained information is 

not only improving our comprehension of two different virus-host systems but also empowers 

more general comparisons with the corresponding mechanisms employed by bacterial and 

eukaryotic viruses. However, further research is required to fully appreciate the properties 

which are exclusive to archaeal viruses as well as the viral strategies which are reminiscent to 

those employed by viruses of the other two domains.  

Many spindle-shaped viruses which are thus far unique to archaea, have been isolated from 

diverse hosts. The relationships between these viruses are mainly established based on 

comparative genomics studies which have revealed a set of genes conserved in fuselloviruses. 

These genes are supposedly involved in viral genome replication and integration although the 

exact roles of encoded proteins during the viral cycle remain to be demonstrated 

experimentally. Even though bioinformatic approaches provide valuable information on the 

evolutionary relationships between distant isolates and could retrieve potential capsid proteins 

that previously eluded annotation (Krupovic et al., 2014), complementary comprehensive 

biochemical characterization of virions is often lacking. More importantly, no high-resolution 

structure has been solved for any spindle-shaped virus. In the case of SSV1 virions (Quemin 

et al., 2015; Stedman et al., 2015), information regarding the organization of viral particles is 

particularly scarce. It is not clear what is the exact location and arrangement of the structural 

proteins in SSV1 virion; does it contain an internal or external lipid membrane; how is the 

genome packed and condensed by viral and/or cellular proteins? Cryo-EM and 3D-

reconstruction have been used to determine the structure of SSV1 virions and resulted in a 

model with limited resolution due to the pleomorphic nature of viral particles (Stedman et al., 

2015). Thus, alternative approaches to study viral architecture should be explored. For 
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example, controlled dissociation of structural components composing SSV1 virions by 

treatments with detergents could be used, as it has been done in the case of the other spindle-

shaped His1 virions (Hong et al., 2015). Such systematic biochemical dissociation would 

provide valuable information on the organization of viral particles which might also be 

relevant to the life cycle of the virus. Based on the results of various treatments, an in vitro 

system has been established to study DNA ejection from His1 virions helping to shed light on 

the potential entry process of spindle-shaped viruses (Hanhijarvi et al., 2013).  

The analysis of SSV1 egress by electron tomography provided significant insights into the 

budding and assembly of enveloped viruses in Archaea (Quemin et al., in preparation). We 

thus proposed a model for the assembly and egress of SSV1 virions which will have to be 

confirmed using a combination of molecular biology, biochemical, genetics and microscopy 

approaches. In particular, the following questions should be addressed: where each of the 

capsid proteins is located, in the cytoplasm or at the membrane? What is their role during 

building of viral capsids? How is the dissymmetry of the virion with two different pointed 

ends determined? Is the surface of the host cell modified as a result of capsid proteins 

anchoring? Does the composition of the cytoplasmic membrane change through the course of 

the viral cycle? What is scission machinery utilized? How does it assemble and bend the 

membrane to form spindle-shaped virions? How budding of viral progeny is controlled? What 

is the effect of viral budding on cell viability?  

Previous research focused on the assembly and exit of SIRV2 and our study of the entry 

process completed the available picture of the viral cycle (Quemin et al., 2013). However, 

several aspects of the primary interactions between the virus and its host remain unraveled. 

Until now, the nature of cellular appendages to which SIRV2 virions are binding, the energy 

requirement for their movement along the filaments or else, the presence of a secondary 

receptor at the cell surface have not been investigated. Therefore, additional work is needed to 

understand the entry mechanism of rudiviruses in greater detail and identify the molecular 

players involved. Although the infection cycle of SIRV2 is one of the best characterized 

among archaeal viruses, there are still unanswered questions, e.g. concerning the dependence 

of the viral life cycle on environmental factors like high temperature, acidic pH, etc.  

When compared to the wealth of data available on bacterial and eukaryotic viral systems, the 

knowledge on archaea-specific virosphere is minuscule. Various lines of research proposed 

hereinabove should not only illuminate the molecular mechanisms underlying virus-host 
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interactions but are also expected to reveal the parallels between the corresponding processes 

in Bacteria and Eukarya. Therefore, functional studies targeting molecular processes and 

players involved throughout the viral life cycle might also permit to tackle questions 

regarding the emergence and evolution of viruses from the three domains of life.   
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