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SUR LE SECOND THÉORÈME FONDAMENTAL

Résumé

La conjecture de Kobayashi stipule qu’une hypersurface générique Xd ⊂ Pn+1(C) de de-
gré d ≥ 2n + 1 est hyperbolique complexe, un problème qui a attiré une grande attention ré-
cemment, avec l’espoir de mettre au point une théorie de Nevanlinna complète en dimension
supérieure.

Dans la première partie de cette thèse, notre objectif est de construire des exemples d’hy-
persurfaces hyperboliques de l’espace projectif dont le degré soit aussi petit que possible. Tout
d’abord, en tenant compte du niveau de troncation dans le Second Théorème Principal de Car-
tan, nous établissons l’hyperbolicité de complémentaires de certaines configurations d’hyper-
plans avec points de passages, ce qui étend un résultat classique de Bloch-Fujimoto-Green.
Ceci nous permet d’amorcer un algorithme récent de Duval, basé sur la méthode de déforma-
tion de Zaidenberg, pour créer des sextiques hyperboliques dans P3(C), et de construire ainsi
des familles d’hypersurfaces hyperboliques Xd ⊂ Pn+1(C) de degré d = 2n +2 pour 2 ≤ n ≤ 5.
En adaptant cette technique aux dimensions supérieures, nous obtenons aussi des exemples
d’hypersurfaces hyperboliques de degré d ≥ ( n+3

2 )2 dans Pn+1(C).
Dans la deuxième partie, nous étudions le problème de diminuer le niveau de troncation

dans le Second Théorème Principal de Cartan. Noguchi a conjecturé que dans ce théorème,
pour une famille de 4 droites en position générale dans P2(C), si une courbe holomorphe en-
tière f : C→P2(C) est supposée n’être pas algébriquement dégénérée, alors le niveau de tronca-
tion peut être abaissé à 1. En utilisation la théorie de recouvrement d’Ahlfors pour les surfaces,
nous proposons une réponse positive dans le cas où la courbe f est proche d’une certaine
courbe algébrique C ⊂ P2(C), au sens où l’ensemble d’accumulation de f (C) à l’infini, le clus-
ter set de f

Clu( f ) := ∩
r>0

(
f (C\∆r )

)
est contenu dans C .

Mots-clefs : Théorie de Nevanlinna, Hyperbolicité complexe, Théorie de Ahlfors, Conjecture de
Kobayashi, Second Théorème Principal, courbe holomorphe, Courant de Nevanlinna, Lemme
de Brody.
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ON THE SECOND MAIN THEOREM

Abstract

Kobayashi’s conjecture asserts that a generic hypersurface Xd ⊂Pn+1(C) having degree d ≥
2n +1 is complex hyperbolic, a problem that has attracted much attention recently, also with
the hope of setting up a complete higher dimensional Nevanlinna theory.

In the first part of this thesis, our goal is to construct examples of hyperbolic hypersurfaces
in projective spaces of degree as low as possible. First of all, taking into account the trunca-
tion level in Cartan’s Second Main Theorem, we establish the hyperbolicity of complements of
some configurations of hyperplanes with passage points, extending a classical result of Bloch-
Fujimoto-Green. This allows us to launch a recent algorithm of Duval, based on the deforma-
tion method of Zaidenberg, on creating hyperbolic sextics in P3(C), hence to construct families
of hyperbolic hypersurfaces Xd ⊂Pn+1(C) having degree d = 2n +2 for 2 ≤ n ≤ 5. Adapting this
technique to higher dimensional cases, we also obtain examples of hyperbolic hypersurfaces
of degree d ≥ ( n+3

2 )2 in Pn+1(C).
In the second part, we study the problem of decreasing the truncation level in Cartan’s Sec-

ond Main Theorem. It was conjectured by Noguchi that in this theorem, for a family of 4 lines
in general position inP2(C), if an entire holomorphic curve f : C→P2(C) is assumed to be alge-
braically nondegenerate, then the truncation level can be decreased to 1. Using Ahlfors’theory
of covering surfaces, we propose a positive answer in the case where the curve f is close to some
algebraic curve C ⊂ P2(C), in the sense that the set of accumulation points of f (C) at infinity,
the cluster set of f

Clu( f ) := ∩
r>0

(
f (C\∆r )

)
is contained in C .

Keywords : Nevanlinna Theory, Complex hyperbolicity, Ahlfors’ Theory, Kobayashi’s conjec-
ture, Second Main Theorem, holomorphic curve, Nevanlinna current, Brody’s Lemma.
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PRÉSENTATION DES RÉSULTATS

Soit X une variété complexe connexe. Pour deux points p, q de X , une chaîne ho-
lomorphe allant de p à q est une suite {( fi , ai ,bi )}νi=1, où fi sont des courbes holo-
morphes du disque unité ∆ à valeurs dans X , et ai , bi sont des points de ∆ tels que

p = f1(a1), f1(b1) = f2(a2), . . . . . . , fν−1(bν−1) = fν(aν), fν(bν) = q.

f2f1

X

b1

a1
a2

b2

f1(b1)

f2(b2)

p

f1(a1)
f2(a2)

X

fν−1(aν−1)

fν−1(bν−1)
fν(aν)

q
fν(bν)

fνfν−1

aν−1

bν

bν−1
aν

La pseudo-distance de Kobayashi est alors définie par

dX (p, q) := inf
{ ν∑

i=1
ρ(ai ,bi )

}
,

où ρ est la distance de Poincaré sur ∆, et l’infimum est pris sur toutes les chaînes holo-
morphes de p à q . Cette pseudo-distance est la forme intégrée de la pseudo-métrique
infinitésimale de Kobayashi-Royden sur X , définie par

FX (v) := inf
{
λ > 0 : ∃ f ∈ Hol(∆, X ), f (0) = p, f ′(0) = v

λ

}
(p ∈X , v ∈Tp X ).

Par définition, la pseudo-distance de Kobayashi possède la propriété de distance dé-
croissante, c’est-à-dire que pour toute application holomorphe ϕ : X → Y entre deux
variétés complexes, pour tout couple (p, q) de points de X , on a

dX (p, q) ≥ dY (ϕ(p),ϕ(q)).

1



Grâce au Lemme de Schwarz-Pick, la pseudo-distance de Kobayashi sur le disque unité
∆ coïncide avec la distance de Poincaré. En général, la pseudo-distance de Kobayashi
peut-être dégénérée. Par exemple, si X est le plan complexe ou une courbe elliptique,
alors dX ≡ 0. Ceci nous conduit à la définition suivante :

Hyperbolicité au sens de Kobayashi. La variété complexe X est hyperbolique au sens
de Kobayashi si dX est une vraie distance, i.e. si pour tout couple (p, q) de points distincts
de X , dX (p, q) > 0.

En dimension 1, nous avons une théorie complète satisfaisante : une surface de
Riemann compacte est hyperbolique au sens de Kobayashi si et seulement si son genre
est ≥ 2. En utilisant le critère de Brody rappelé ci-dessous, cela revient au Théorème
classique de Picard. Dès la dimension 2, il est très difficile de déterminer l’hyperbolicité
au sens de Kobayashi en termes de la géométrie des espaces.

Par une courbe entière, nous entendons une courbe non constante f : C → X .
Comme la pseudo-distance de Kobayashi satisfait la propriété de distance décroissante
et comme dC ≡ 0, une variété complexe hyperbolique au sens de Kobayashi ne contient
pas de courbe entière. La réciproque n’est pas vraie en général, mais elle est également
vraie si X est compacte par un résultat de base de Brody [Bro78].

La production de courbes entières liées à la dégénérescence de la pseudo-métrique
infinitésimale de Kobayashi-Royden sur les variétés complexes compactes que nous
allons décrire maintenant est un outil efficace fondamental de la méthode de défor-
mation, dont l’objectif est de créer des exemples d’hypersurfaces hyperboliques. Une
courbe de Brody dans une variéte complexe compacte X munie d’une métrique hermi-
tienne ‖·‖ est une courbe entière f :C→ X dont la dérivée ‖ f ′‖ est bornée. Ces courbes
résultent de limites de suites d’applications holomorphes, comme suit (voir [Bro78]).

Lemme de reparamétrisation de Brody. Soit fk :∆→ X une suite d’applications holo-
morphes du disque ∆ à valeurs dans une variété complexe compacte X . Si ‖ f ′

k (0)‖→∞
lorsque k → ∞, alors il existe un point a ∈ ∆, une suite (ak ) convergeant vers a et une
suite décroissante (rk ) de réels positifs convergeant vers 0 tels que la suite d’applications

z → fk (ak + rk z)

converge uniformément sur tout compact deC vers une courbe de Brody, après extraction
d’une sous-suite.

Par conséquent, on a une caractérisation bien connue de l’hyperbolicité au sens de
Kobayashi.

Critère de Brody. Une variéte complexe compacte X est hyperbolique au sens de Ko-
bayashi si et seulement si elle ne contient pas de courbe entière.

Le problème de la caractérisation de l’hyperbolicité au sens de Kobayashi d’une
variété complexe X , dans le cas des variétés projectives, est motivé par la conjecture
suivante [Kob70].



Conjecture de Kobayashi. Une hypersurface générique Xd ⊂Pn+1(C) de degré d ≥ 2n+1
est hyperbolique.

Bien qu’il ait été affirmé que toutes les hypersurfaces suffisamment générales dans
l’espace projectif sont hyperboliques au sens de Kobayashi, peu d’exemples d’hyper-
surfaces hyperboliques ont été donnés. Nous limiterons notre ambition à trouver des
exemples d’hypersurfaces hyperboliques de degré le plus bas possible. Même en pe-
tites dimensions, cette question est encore très ouverte, car jusqu’à présent, personne
ne sait s’il existe une seule quintique hyperbolique dans P3(C).

Un outil très efficace pour construire de tels exemples est la méthode de déforma-
tion introduite par Zaidenberg [Zai88], [SZ02a], [SZ05], [Zai09], qui se compose de deux
ingrédients principaux. Le premier est le lemme de Brody qui doit être utilisé sous la
forme suivante.

Suite de courbes entières. Soit X une variéte complexe compacte et soit ( fk ) une suite
de courbes entières dans X . Alors il existe une suite de reparamétrisations rk : C→ C et
une sous-suite de ( fk ◦ rk ) qui converge uniformément sur tout compact de C vers une
courbe entière (où courbe de Brody).

Le deuxième ingrédient principal dans la méthode de déformation est la persis-
tance d’intersections qui s’énonce comme suit.

Stabilité des intersections. Soit X une variéte complexe et soit H ⊂ X une hypersurface
analytique. Supposons qu’une suite ( fk ) de courbes entières dans X converge vers une
courbe entière f . Si f (C) n’est pas contenue dans H, alors

f (C)∩H ⊂ lim
k→∞

fk (C)∩H .

L’idée générale de la méthode de déformation est de rechercher des hypersurfaces
hyperboliques dans le pinceau linéaire {Σε}ε d’hypersurfaces de degré d dans Pn+1(C)
engendré par S0 = {s0 = 0} et S = {s = 0} :

Σε =
{

s0 +εs = 0
}
,

où S0 est une hypersurface singulière et où ε est assez petit. Ici, on considère le cas le
plus singulier où S0 est la réunion de d hyperplans génériques H1 = {h1 = 0}, . . . , Hd =
{hd = 0}. Supposons que les Σεk ne soient pas hyperboliques pour une suite (εk )
convergeant vers 0. Alors le critère de Brody assure qu’il existe des courbes entières
fεk : C→Σεk .

Par le lemme de Brody, après reparamétrisation et extraction, on peut supposer
que la suite ( fεk ) converge vers une courbe entière f : C→∪d

i=1Hi . Par conséquent, on
déduit du principe d’unicité qu’il existe un sous-ensemble I ⊂ {1, . . . ,d} de cardinalité
maximale |I | = n +1−n′ tel que :

f (C) ⊂ ∩
i∈I

Hi
∼= Pn′

(C) ⊂ Pn+1(C) (1≤n′≤n).



Maintenant, nous voudrions analyser la disposition de la courbe limite f (C) par
rapport à la famille d’hyperplans H j ∩Pn′

(C) dans Pn′
(C) pour j 6∈ I . Comme indiqué

dans [Zai09], la Stabilité des intersections donne un autre principe de dégénérescence :
la courbe limite f (C) ne peut pas passer par des points arbitraires de H j ∩Pn′

(C). Plus
précisément, il interdit f (C) de rencontrer H j ( j 6∈ I ) en dehors des points de S ∩H j ∩
Pn′

(C), car
f (C)∩H j ⊂ lim

k→∞
fεk (C)∩H j ⊂ lim

k→∞
Σεk ∩H j ⊂ S ∩H j (∀ j 6∈ I ).

Par conséquent, la courbe limite f (C) doit atterrir dans[∩
i∈I

Hi

∖∪
j 6∈I

H j

]⋃[(∩
i∈I

Hi

)∩ (∪
j 6∈I

H j

)∩S
]
= ∩

i∈I
Hi

∖(∪
j 6∈I

H j
∖

S
)
.

De cette analyse, l’hyperbolicité de suffisamment petites déformations de S0 exige
que tout complémentaire de la forme

∩
i∈I

Hi

∖∪
j 6∈I

H j

devrait satisfaire la propriété de non-percolation hyperbolique [SZ02a] par une hyper-
surface appropriée S, c’est-à-dire ce complémentaire lui-même est hyperbolique et si
l’on ajoute plus de points de passage comme ∩i∈I Hi ∩ (∪ j 6∈I H j )∩S, l’hyperbolicité ne
soit pas perdue.

Pour l’hyperbolicité du complémentaire de la réunion de q hyperplans génériques
dans Pm(C), il faut et il suffit de prendre q ≥ 2m+1 [Fuj72], [Gre72]. Cela donne à pen-
ser que l’hypersurface singulière S0 devrait être la réunion de d ≥ 2n + 2 hyperplans
génériques. Maintenant, le problème se réduit à trouver une hypersurface S satisfai-
sant la propriété de non-percolation hyperbolique. Il a été conjecturé [Zai03] que cette
propriété devrait être valide pour des hypersurfaces génériques S, mais ici, une seule
hypersurface appropriée est suffisante pour donner un exemple d’une hypersurface
hyperbolique de degré d .

Duval [Duv14] introduit un algorithme pour créer une telle surface S dans P3(C)
par déformation. En commençant par l’hyperbolicité de tous les complémentaires de
la forme Hi \∪ j 6=i H j et une surface générique, chaque étape de cet algorithme donne
une surface qui autorise des points de passage sur une autre droite H j ∩ Hi , et après
avoir épuisé tous les points de passage, on obtient une surface appropriée S.

En adaptant cette technique aux dimensions supérieures, la difficulté réside dans
le point de départ de l’algorithme, qui exige non selement l’hyperbolicité de tous les
complémentaires de la forme

∩
i∈I

Hi

∖∪
j 6∈I

H j ,

mais aussi l’hyperbolicité de certaines configurations d’hyperplans décrites comme
suit.

Soit {Hi }1≤i≤u , u ≥ 2v +1 une famille d’hyperplans génériques dans Pv (C). Par un
étoile-sous-espace de dimension k, nous entendons un complémentaires de la forme

Pk,Ik = ∩
i∈Ik

Hi

∖( ∪
j 6∈Ik

H j
)
,



où k est un nombre entier avec 0 ≤ k ≤ v − 2, et où Ik = {i1, . . . , iv−k } est un sous-
ensemble de l’ensemble d’indices {1, . . . ,u} ayant cardinalité v −k. Pour lancer l’algo-
rithme, nous exigeons que tous les complémentaires de la forme

∩
i∈I

Hi

∖(∪
j∈J

H j

∖
Am,n+1−|I |

)
sont hyperboliques, où I et J sont deux sous-ensembles disjoints de l’ensemble d’in-
dices {1, . . . ,d} tels que 1 ≤ |I | ≤ n−1, et |J | = d+m+1−2|I | pour certains 0 ≤ m ≤ |I |−1,
et où Am,n+1−|I | est une collection d’au plus m étoile-sous-espaces provenant de la fa-
mille d’hyperplans {∩i∈I Hi ∩H j } j∈J dans ∩i∈I Hi

∼=Pn+1−|I |(C).

La théorie de Nevanlinna dans l’espace projectif est un outil puissant pour étudier
l’hyperbolicité de ces configurations. Soit E = ∑

µνaν un diviseur sur C avec µν ≥ 0 et
soit k ∈N∪ {∞}. En résumant les degrés k-tronqué du diviseur sur les disques par

n[k](t ,E) := ∑
|aν|<t

min{k,µν} (t >0),

la fonction de comptage tronqué au niveau k de E est définie par

N [k](r,E) :=
∫ r

1

n[k](t ,E)

t
d t (r >1).

Quand k =∞, on écrit n(t ,E), N (r,E) au lieu de n[∞](t ,E), N [∞](r,E). On note le divi-
seur des zéros d’une fonction méromorphe non-nulle ϕ par (ϕ)0.

Soit f : C→ Pn(C) une courbe entière ayant une représentation réduite f = [ f0 :
· · · : fn] dans les coordonnées homogènes [z0 : · · · : zn] de Pn(C). Soit D = {Q = 0} une
hypersurface dans Pn(C) définie par un polynôme homogène Q ∈C[z0, . . . , zn] de degré
d ≥ 1. Si f (C) 6⊂ D , alors on définit la fonction de comptage tronqué de f par rapport à
D par

N [k]
f (r,D) := N [k](r, (Q ◦ f )0

)
.

La fonction de proximité de f pour le diviseur D est définie par

m f (r,D) :=
∫ 2π

0
log

∥∥ f (r e iθ)
∥∥d ‖Q‖∣∣Q( f )(r e iθ)

∣∣ dθ

2π
,

où ‖Q‖ est la valeur absolue maximale des coefficients de Q et∥∥ f (z)
∥∥ = max{| f0(z)|, . . . , | fn(z)|}.

Comme
∣∣Q( f )

∣∣≤ ‖Q‖ · ‖ f ‖d , on a m f (r,D) ≥ 0. Enfin, la fonction ordre de Cartan de f
est définie par

T f (r ) : = 1

2π

∫ 2π

0
log

∥∥ f (r e iθ)
∥∥dθ

=
∫ r

1

d t

t

∫
∆t

f ∗ωn +O(1),

où ωn est la forme de Fubini–Study sur Pn(C).

Le noyau de la théorie de Nevanlinna se compose de deux théorèmes.



Premier Théorème Principal. Soit f :C→Pn(C) une courbe holomorphe et soit D une
hypersurface de degré d dans Pn(C) telles que f (C) 6⊂ supp(D). Alors, pour tout nombre
réel r > 1, on a

m f (r,D)+N f (r,D) = d T f (r )+O(1),

donc
N f (r,D) ≤ d T f (r )+O(1).

Une courbe holomorphe f : C → Pn(C) est linéairement non-dégénérée si son
image n’est contenue dans aucun hyperplan. Pour deux fonctions ϕ(r ), ψ(r ) à valeurs
dans [0,∞), on écrit

ϕ(r ) ≤O(ψ(r )) ∥
si l’inégalité est vraie en dehors d’un sous-ensemble borélien E de [0,∞) de mesure de
Lebesgue finie.

Second Théorème Principal de Cartan [Car33]. Soit {Hi }1≤i≤q une famille d’hyper-
plans en position générale dans Pn(C). Si f : C→ Pn(C) est une courbe holomorphe li-
néairement non-dégénérée, alors

(q −n −1)T f (r ) ≤
q∑

i=1
N [n]

f (r, Hi )+S f (r ),

où S f (r ) est un terme petit par rapport à T f (r )

S f (r ) = O(logT f (r )+ logr ) ∥ .

Maintenant, soit {Hi }1≤i≤2n+1+m une famille de 2n +1+m avec m ≥ 0 hyperplans
génériques dans l’espace projectif Pn(C). En utilisant la théorie de Nevanlinna-Cartan
dans Pn(C), en tenant compte du niveau de troncation dans le Second Théorème
Principal et en utilisant certaines estimations de base sur les nombres de contact de
courbes entières le long de cycles de codimension ≥ 2, nous établissons que tous les
complémentaires de la forme

Pn(C) \ (∪2n+1+m
i=1 Hi \ Am,n), (0.0.1)

où Am,n est une
collection d’au plus m étoile-sous-espaces provenant de {Hi }1≤i≤2n+1+m , sont hyper-
boliques dans les trois cas suivants

• n = 2,m ≤ 3,

• n = 3,m ≤ 2,

• n = 4,m ≤ 1.

Ceci nous permet d’amorcer l’algorithme en dimensions 2 ≤ n ≤ 5 pour créer
une hypersurface S ⊂ Pn+1(C) de degré d ≥ 2n + 2 satisfaisant la propriéte de non-
percolation hyperbolique par rapport à une famille de d hyperplans génériques, ce qui
donne des exemples d’hypersurfaces hyperboliques de degré d ≥ 2n +2 dans Pn+1(C).

Notre premier résultat, publié dans [Huy15], s’énonce comme suit.



Théorème I. Soit n un nombre entier dans {2,3,4,5}. Soit {Hi }1≤i≤2n+2 une famille de
2n +2 hyperplans génériques dans Pn+1(C) définies par Hi = {hi = 0}. Alors il existe une
hypersurface S = {s = 0} de degré 2n +2 telle que l’ypersurface

Σε =
{
εs +Π2n+2

i=1 hi = 0
}

est hyperbolique pour ε 6= 0 assez petit.

Il est très naturel de se demander si cette affirmation est encore vraie en dimen-
sions supérieures. Ce problème se réduit à prouver l’hyperbolicité de toutes les confi-
gurations d’hyperplans (0.0.1) sans restriction sur n et m, ce qui est encore très ouvert.
Mais au moins l’algorithme peut être amorcé à partir d’un point de départ restreint qui
exige que l’hypersurface singulière S0 devrait être la réunion de d ≥ (n+3

2

)2 hyperplans.
Cela donne une légère amélioration du résultat de Shiffman et Zaidenberg [SZ02b], qui
ont donné des exemples d’hypersurfaces hyperboliques de degré ≥ 4n2 dans Pn+1(C).

Notre second résultat, publié dans [Huy16], s’énonce comme suit.

Théorème II. Soit {Hi }1≤i≤q une famille de d ≥ (n+3
2

)2 hyperplans en position générale
dans Pn+1(C) où Hi = {hi = 0}. Alors il existe une hypersurface S = {s = 0} de degré d telle
que l’hypersurface

Σε =
{
εs +Πd

i=1hi = 0
}

est hyperbolique pour ε 6= 0 assez petit.

La limite de notre technique actuelle basée sur le Second théorème principal de
Cartan nous conduit au problème de diminuer le niveau de troncation. Yamanoi
[Yam04] a établi un Second théorème principal pour les courbes algébriquement non-
dégénérées dans les variétés abéliennes avec la troncation 1, en autorisant le petit
terme à être εT f (r ). Noguchi, Winkelmann et Yamanoi [NWY08] ont obtenu un résul-
tat similaire pour les courbes algébriquement non-dégénérées dans les variétés semi-
abéliennes et comme application, ils ont obtenu une généralisation d’une conjecture
de Green [Gre74] sur la dégénérescence de courbes holomorphes dans le complémen-
taire de deux droites et un cône dans le plan projectif.

Diminuer le niveau de troncation dans le Second théorème principal de Cartan
semble être un problème très difficile, même dans le cas le plus simple. Rappelons
que pour une famille de 4 droites en position générale {Li }1≤i≤4 dans le plan projectif,
pour une courbe holomorphe linéairement non-dégénérée f : C→ P2(C), le Second
théorème principal de Cartan stipule que

T f (r ) ≤
4∑

i=1
N [2]

f (r,Li )+o(T f (r )) ∥ . (0.0.2)

Les fonctions de comptage tronquées dans la partie droite de cette inégalité sont opti-
males dans le sens où elles ne peuvent pas être tronquées au niveau 1. Autrement dit,
il existe une certaine courbe holomorphe linéairement non-dégénérée f : C→ P2(C)
telle que l’inégalité suivante n’est pas vraie

T f (r ) ≤
4∑

i=1
N [1]

f (r,Li )+o(T f (r )) ∥ . (0.0.3)



Exemple : Soit C la conique unique qui est tangente à L1, L2 en A1 = L1 ∩L4, A2 =
L2 ∩L4 respectivement, et qui est tangente à L3 en un certain point A3.

L1 L2

A1

L3

L4

A3

A2

C

Comme C \{A1, A2} ∼=C∗ n’est pas hyperbolique, il contient une certaine courbe entière
f . Par le choix de C , les fonctions de comptage tronquées de f par rapport à Li satisfont

N [2]
f (r,Li ) = 0 (i 6=3),

N [2]
f (r,Li ) = 2 N [1]

f (r,Li ) (i =3).

En appliquant le Premier Théorème Principal et le Second Théorème Principal de Car-
tan, on obtient

N [2]
f (r,L3) ≤ N f (r,L3) ≤ T f (r )+O(1)

≤ N [2]
f (r,L3)+ ∑

i 6=3
N [2]

f (r,Li )︸ ︷︷ ︸
=0

+S f (r ).

Donc toutes les inégalités sont les égalités modulo S f (r ). En particulier, on a

T f (r ) = N [2]
f (r,L3)+S f (r )

= 2 N [1]
f (r,L3)+S f (r )

= 2
4∑

i=1
N [1]

f (r,Li )+S f (r ),

ce qui montre que l’inégalité 0.0.3 n’est pas vraie.

Dans l’exemple ci-dessus, la courbe f est linéairement non-dégénérée, mais son
image est contenue dans une courbe algébrique C ⊂ P2(C)). Les courbes entières sa-
tisfaisant cette propriété sont dites algébriquement dégénérées. Sinon, on dit que ces
courbes sont algébriquement non-dégénérées. Jusqu’à ce jour, il n’y a pas de contre-
exemple à la conjecture suivante de Noguchi.

Second Théorème Principal de type Cartan avec troncation 1. Si f : C→ P2(C) est
algébriquement non-dégénérée, alors 0.0.3 est vrai.



Nous proposons une réponse positive dans un cas particulier où la courbe f est
proche d’une certaine courbe algébrique C dans P2(C), au sens où l’ensemble d’accu-
mulation de f (C) à l’infini (le cluster set de f )

Clu( f ) := ∩
r>0

(
f (C\∆r )

)
est contenu dans C .

Notre troisième résultat s’énonce comme suit.

Théorème III. Soit {Li }1≤i≤4 une famille de 4 droites en position générale dans le plan
projectif P2(C) et soit f : C → P2(C) une courbe holomorphe algébriquement non-
dégénérée. Si l’ensemble d’accumulation Clu( f ) est contenue dans une courbe algébrique
C ⊂P2(C), alors

T f (r ) ≤
4∑

i=1
N [1]

f (r,Li )+o(T f (r )) ∥ .

Notre preuve se compose des trois ingrédients principaux suivants.

À Courants positifs fermés associés à une courbe entière.

Soit X une variété projective munie d’une forme de Kähler ω. On peut associer
à une courbe entière f : C→ X dans X certains courants positifs fermés de bi-
dimension (1,1), qui sont appelés courants de Nevanlinna. Ces courants appa-
raissent notamment dans la preuve par M. McQuillan de la conjecture de Green-
Griffiths pour les surfaces de type général dont les première et deuxième classes
de Segre satisfont c2

1−c2 > 0 [McQ98] (voir également [Bru99]). Ils sont construits
en prenant la limite de certaines suites de courants positifs de masse bornée
{Φrk }∞k=1, où

Φrk (η) =

∫ rk

0

d t

t

∫
∆t

f ∗η∫ rk

0

d t

t

∫
∆t

f ∗ω
,

pour toute (1,1)–forme lisse η sur X , et où {rk }∞k=1 est une suite de réels positifs
convergeant vers ∞ telle que (il en existe)

lim
k→∞

∫ rk

0

d t

t
Length

(
f (∂∆t )

)
∫ rk

0

d t

t

∫
∆t

f ∗ω
= 0.

Á L’intersection géométrique, l’intersection algébrique et leur relation. L’intersec-
tion géométrique du courant limite Φ par rapport à un diviseur Z ⊂ X est alors
définie par

ik (Z ) =
∫ rk

0
Card

(
f (∆t )∩Z

)d t

t
,

i(Z ) = liminf
k→∞

ik (Z )

T f ,rk (ω)
,



où Card
(

f (∆t )∩Z
)

est le nombre total de points d’intersection entre f (∆t ) et Z .

Avec les notations ci-dessus, le problème se réduit à démontrer que

4∑
i=1

i(Li ) ≥ 1.

Notons [Φ], [Z ] la classe d’homologie de Φ, Z dans H 1,1(X ,R). L’intersection al-
gébrique de [Φ] et [Z ] est alors définie par

[Φ] · [Z ] :=Φ(ωZ ),

oùωZ est une (1,1)–forme différentielle contenue dans la classe fondamentale de
cohomologie {Z }. La relation suivante [Bru99] entre l’intersection géométrique
i(Z ) et l’intersection algébrique [Φ] · [Z ] peut être considérée comme une consé-
quence du Premier Théorème Principal dans la théorie de Nevanlinna :

i(Z ) ≤ [Φ] · [Z ].

Â La théorie de recouvrement d’Ahlfors pour les surfaces.

Présentons d’abord quelques notations et définitions. Une surface à bord de type
fini est une région fermée sur une surface orientable compacte délimitée par un
nombre fini de courbes fermées simples. Pour une surface à bord Σ, notons Σ̊
son intérieur et ∂Σ son bord. Une application f : Σ→ Σ0 entre deux surfaces à
bord de type fini est dite holomorphe si f est holomorphe dans Σ̊ et se prolonge
continûment jusqu’au bord. Supposons maintenant que Σ0 est munie d’une mé-
trique hermitienne ρ0. Notons ρ la métrique tirée-en-arrière de ρ0. On mesure
toutes longueurs et aires surΣ etΣ0 par rapport à ρ et ρ0. Une courbe est appelée
régulière si elle est lisse par morceaux. Une région est appelée régulière si elle est
délimitée par un nombre fini de courbes régulières. Supposons que Σ0 est une
région régulière. Le nombre de feuillets moyen de f est défini par

S := Aire(Σ)

Aire(Σ0)
.

De la même façon, on définit le nombre de feuillets au-dessus d’une région ré-
gulière D ou d’une courbe régulière γ sur Σ0 par

S(D) := Aire
(

f −1(D)
)

Aire(D)
,

S(γ) := Longueur
(

f −1(γ)
)

Longueur(γ)
.

Notons L = Longueur
(
∂Σ\ f −1(∂Σ0)

)
la longueur du bord relatif. La théorie d’Ahl-

fors se compose des deux analogues suivants du Premier Théorème Principal et
du Second Théorème Principal dans la théorie de Nevanlinna classique.

Premier Théorème Principal d’Ahlfors. Pour chaque région régulière D et
chaque courbe régulière γ sur Σ0, il existe une constante h qui est indépendante
de Σ et f pour laquelle :

|S −S(D)| ≤ h L, |S −S(γ)| ≤ h L.



Second Théorème Principal d’Ahlfors. Il existe une constante h qui ne dépend
que de (Σ0,ρ0) pour laquelle :

min{0,χ(Σ)} ≤ S · χ(Σ0)+h L.

Donnons maintenant une esquisse de la preuve du Théorème III. En nous ba-
sant sur À, nous construisons simultanément les courants positifs fermés associés à
la courbe holomorphe f et à ses relèvements dans le processus de résolution de la
configuration de la courbe C et des quatre droites Hi . Ensuite, en appliquant la théo-
rie d’Ahlfors décrite dans Â, qui est alors entièrement valable pour les applications
quasiconformes π◦ f , où π est la projection définie dans un petit voisinage de certains
diviseurs dans l’arbre de résolution, on obtient une relation entre les intersections géo-
métriques et les masses du courant positif fermé le long de l’ensemble de certains divi-
seurs. Nous appliquons donc l’inégalité entre l’intersection algébrique et l’intersection
géométrique Á pour les diviseurs exceptionnels à chaque étape du processus de réso-
lution et et nous travaillons avec la combinatoire de l’arbre de résolution pour obtenir
la conclusion.



OVERVIEW OF THE MAIN RESULTS

Let X be a connected complex manifold. For two points p, q in X , a holomor-
phic chain connecting p and q is a sequence {( fi , ai ,bi )}νi=1, where fi are holomorphic
curves from the unit disk ∆ to X , and ai , bi are points in ∆ such that

p = f1(a1), f1(b1) = f2(a2), . . . . . . , fν−1(bν−1) = fν(aν), fν(bν) = q.

f2f1

X

b1

a1
a2

b2

f1(b1)

f2(b2)

p

f1(a1)
f2(a2)

X

fν−1(aν−1)

fν−1(bν−1)
fν(aν)

q
fν(bν)

fνfν−1

aν−1

bν

bν−1
aν

The Kobayashi pseudodistance is then defined by

dX (p, q) := inf
{ ν∑

i=1
ρ(ai ,bi )

}
,

where ρ is the Poincaré distance on ∆, and the infimum is taken over all holomor-
phic chains from p to q . This pseudodistance is the integrated form of the Kobayashi-
Royden infinitesimal pseudometric on X , defined by

FX (v) := inf
{
λ > 0 : ∃ f ∈ Hol(∆, X ), f (0) = p, f ′(0) = v

λ

}
(p ∈X , v ∈Tp X ).

It follows from the definition that the Kobayashi pseudodistance enjoys the distance
decreasing property, namely for any holomorphic map ϕ : X → Y between complex
manifolds, for all p, q in X , we have

dX (p, q) ≥ dY (ϕ(p),ϕ(q)).

1



Thanks to the Schwarz-Pick’s Lemma, the Kobayashi pseudodistance on the unit disk
∆ coincides with the Poincaré distance. In general, the Kobayashi pseudodistance may
not be a distance. For example, if X is the complex plane C or an elliptic curve, then
dX ≡ 0. This leads to the following definition:

Kobayashi hyperbolicity. The complex manifold X is said to be Kobayashi hyperbolic
if dX is a true distance, namely dX (p, q) > 0 whenever p 6= q.

In the one-dimensional case, we have a beautiful and complete picture: a compact
Riemann surface is Kobayashi hyperbolic if and only if its genus is ≥ 2. By Brody’s
criterion recalled below, this boils down to the classical Picard’s theorem. In higher-
dimensional cases, it is very difficult to determine the Kobayashi hyperbolicity in terms
of the geometry of the spaces.

By an entire curve in X , we mean a nonconstant holomorphic map f :C→ X . Since
the Kobayshi pseudodistance satisfies the distance decreasing property and since dC ≡
0, a Kobayashi hyperbolic complex manifold must contain no entire curve. The con-
verse is not true in general, but it is true at least when the manifold is compact by a
basic result of Brody [Bro78].

The production of entire curves from the degeneracy of the Kobayashi–Royden in-
finitesimal pseudometric on compact complex manifolds that we are going to describe
now is fundamental to the deformation method, an effective tool to create examples of
hyperbolic hypersurfaces. A Brody curve in a compact complex manifold X equipped
with a hermitian metric ‖ · ‖ is an entire curve f : C → X whose derivative ‖ f ′‖ is
bounded. Such curves arise as limits of sequences of holomorphic maps as follows
(see [Bro78]).

Brody’s reparametrization lemma. Let fk :∆→ X be a sequence of holomorphic maps
from the unit disk to a compact complex manifold X . If ‖ f ′

k (0)‖ → ∞ as k → ∞, then
there exist a point a ∈∆, a sequence (ak ) converging to a and a decreasing sequence (rk )
of positive real numbers converging to 0 such that the sequence of maps

z → fk (ak + rk z)

converges towards a Brody curve, after extracting a subsequence.

Consequently, we have a well known characterization of Kobayashi hyperbolicity.

Brody’s criterion. A compact complex manifold X is Kobayashi hyperbolic if and only
if it contains no entire curve.

The problem of characterizing the Kobayashi hyperbolicity of complex manifolds
X , in the case of projective varieties, is motivated by the following conjecture due to
Kobayashi [Kob70].

Kobayashi’s conjecture. A generic hypersurface Xd ⊂Pn+1(C) having degree d ≥ 2n +1
is hyperbolic.



Although it was asserted that all sufficiently general hypersurfaces in projective
space are Kobayashi hyperbolic, few examples of hyperbolic hypersurfaces were given.
We restrict our ambition to find examples of hyperbolic hypersurfaces of degree as low
as possible. This question is still wide open, even in low dimensional cases since until
now, nobody knows whether there exists a single hyperbolic quintic in P3(C).

A very effective tool to construct such examples is the deformation method intro-
duced by Zaidenberg [Zai88], [SZ02a], [SZ05], [Zai09], which consists of two main in-
gredients. The first one is Brody’s Lemma which shall be used under the following form.

Sequences of entire curves. Let X be a compact complex manifold and let ( fk ) be a
sequence of entire curves in X . Then there exist a sequence of reparameterizations rk :
C→C and a subsequence of ( fk ◦ rk ) which converges towards an entire curve (or Brody
curve).

The second main ingredient in the deformation method is the persistence of inter-
sections stated as follows.

Stability of intersections. Let X be a complex manifold and let H ⊂ X be an analytic
hypersurface. Suppose that a sequence ( fk ) of entire curves in X converges towards an
entire curve f . If f (C) is not contained in H, then

f (C)∩H ⊂ lim
k→∞

fk (C)∩H .

The general idea of the deformation method is to seek hyperbolic hypersurfaces in
the linear pencil {Σε}ε hypersurfaces of degree d in Pn+1(C) generated by S0 = {s0 = 0}
and S = {s = 0}:

Σε =
{

s0 +εs = 0
}
,

where S0 is a singular hypersurface and where ε is chosen to be sufficiently small. Here,
we consider the most singular case where S0 is the union of d generic hyperplanes
H1 = {h1 = 0}, . . . , Hd = {hd = 0}. Suppose that Σεk are not hyperbolic for a sequence (εk )
converging to 0. Then Brody’s criterion insures that there exist entire curves fεk : C→
Σεk .

By Brody’s lemma, after reparameterization and extraction, we may assume that
the sequence ( fεk ) converges to an entire curve f : C→∪d

i=1Hi . Hence we deduce from
the uniqueness principle that there is a subset I ⊂ {1, . . . ,d} of maximal cardinality |I | =
n +1−n′ such that:

f (C) ⊂ ∩
i∈I

Hi
∼= Pn′

(C) ⊂ Pn+1(C) (1≤n′≤n).

Now we would like to analyse the disposition of the limit curve f (C) with respect to
the family of hyperplanes H j ∩Pn′

(C) in Pn′
(C) for j 6∈ I . As pointed out in [Zai09], the

Stability of intersections yields a further degeneration principle: the limit curve f (C)
cannot pass through arbitrary points of H j ∩Pn′

(C). More precisely, it prohibits f (C)

from meeting H j ( j 6∈ I ) outside the points of S ∩H j ∩Pn′
(C), since

f (C)∩H j ⊂ lim
k→∞

fεk (C)∩H j ⊂ lim
k→∞

Σεk ∩H j ⊂ S ∩H j (∀ j 6∈ I ).



Consequently, the limit curve f (C) must land inside[∩
i∈I

Hi

∖∪
j 6∈I

H j

]⋃[(∩
i∈I

Hi

)∩ (∪
j 6∈I

H j

)∩S
]
= ∩

i∈I
Hi

∖(∪
j 6∈I

H j
∖

S
)
.

From this analysis, the hyperbolicity of sufficiently small deformations of S0 re-
quires that any complement of the form

∩
i∈I

Hi

∖∪
j 6∈I

H j

should enjoy the hyperbolic non–percolation property [SZ02a] through a suitable hy-
persurface S, namely this complement itself is hyperbolic and if one adds more passage
points like ∩i∈I Hi ∩ (∪ j 6∈I H j )∩S, the hyperbolicity is not lost.

For the hyperbolicity of the complement of a union of q generic hyperplanes in
Pm(C), it is necessary and sufficient to take q ≥ 2m + 1 [Fuj72], [Gre72]. This sug-
gests that the singular hypersurface S0 would be the union of d ≥ 2n+2 generic hyper-
planes. Now the problem reduces to finding a hypersurface S satisfying the hyperbolic
non–percolation property. It was conjectured [Zai03] that this property should hold for
generic hypersurfaces S, but here, a single suitable one is enough to give an example of
a hyperbolic hypersurface of degree d .

Duval [Duv14] introduced an algorithm to create such a surface S inP3(C) by defor-
mation. Starting with the hyperbolicity of all complements of the form Hi \∪ j 6=i H j and
a generic surface, each step of this algorithm gives a surface that allows passage points
on one more line H j ∩Hi , and after exhausting all passage points, a suitable surface S
is obtained.

Adapting this technique in higher dimensional cases, the difficulty lies in the start-
ing point of the algorithm, which requires not only the hyperbolicity of all comple-
ments of the form ∩

i∈I
Hi

∖∪
j 6∈I

H j ,

but also the hyperbolicity of some configurations of hyperplanes described as follows.

Let {Hi }1≤i≤u , u ≥ 2v + 1 be a family of generic hyperplanes in Pv (C). By a star-
subspace of dimension k, we mean a complement of the form

Pk,Ik = ∩
i∈Ik

Hi

∖( ∪
j 6∈Ik

H j
)
,

where k is an integer with 0 ≤ k ≤ v −2, and where Ik = {i1, . . . , iv−k } is a subset of the
index set {1, . . . ,u} having cardinality v −k. To launch the algorithm, we require that all
complements of the form

∩
i∈I

Hi

∖(∪
j∈J

H j

∖
Am,n+1−|I |

)
are hyperbolic, where I and J are two disjoint subsets of the index set {1, . . . ,d} such
that 1 ≤ |I | ≤ n − 1, and |J | = d +m + 1 − 2|I | with some 0 ≤ m ≤ |I | − 1, and where



Am,n+1−|I | is a collection of at most m star-subspaces coming from the family of hyper-
planes {∩i∈I Hi ∩H j } j∈J in ∩i∈I Hi

∼=Pn+1−|I |(C).

Nevanlinna theory in projective space is a strong tool to study the hyperbolicity of
these configurations. Let E = ∑

µνaν be a divisor on C with µν ≥ 0 and let k ∈N∪ {∞}.
Summing the k-truncated degrees of the divisor on disks as

n[k](t ,E) := ∑
|aν|<t

min{k,µν} (t >0),

the truncated counting function at level k of E is defined by

N [k](r,E) :=
∫ r

1

n[k](t ,E)

t
d t (r >1).

When k =∞, we write n(t ,E), N (r,E) instead of n[∞](t ,E), N [∞](r,E). We denote the
zero divisor of a nonzero meromorphic function ϕ by (ϕ)0.

Let f : C→ Pn(C) be an entire curve having a reduced representation f = [ f0 : · · · :
fn] in the homogeneous coordinates [z0 : · · · : zn] of Pn(C). Let D = {Q = 0} be a hy-
persurface in Pn(C) defined by a homogeneous polynomial Q ∈ C[z0, . . . , zn] of degree
d ≥ 1. If f (C) 6⊂ D , we define the truncated counting function of f with respect to D as

N [k]
f (r,D) := N [k](r, (Q ◦ f )0

)
.

The proximity function of f for the divisor D is defined as

m f (r,D) :=
∫ 2π

0
log

∥∥ f (r e iθ)
∥∥d ‖Q‖∣∣Q( f )(r e iθ)

∣∣ dθ

2π
,

where ‖Q‖ is the maximum absolute value of the coefficients of Q and∥∥ f (z)
∥∥ = max{| f0(z)|, . . . , | fn(z)|}.

Since
∣∣Q( f )

∣∣≤ ‖Q‖ · ‖ f ‖d , one has m f (r,D) ≥ 0. Finally, the Cartan order function of f
is defined by

T f (r ) : = 1

2π

∫ 2π

0
log

∥∥ f (r e iθ)
∥∥dθ

=
∫ r

1

d t

t

∫
∆t

f ∗ωn +O(1),

where ωn is the Fubini–Study form on Pn(C).

The core of Nevanlinna theory consists of two theorems.

First Main Theorem. Let f : C→ Pn(C) be a holomorphic curve and let D be a hyper-
surface of degree d in Pn(C) such that f (C) 6⊂ supp(D). Then for every real number r > 1,
the following holds

m f (r,D)+N f (r,D) = d T f (r )+O(1),

hence
N f (r,D) ≤ d T f (r )+O(1).



A holomorphic curve f : C→ Pn(C) is linearly non-degenerate if its image is not
contained in any hyperplane. For functions ϕ(r ), ψ(r ) valued in [0,∞), we write

ϕ(r ) ≤O(ψ(r )) ∥

if the inequality holds outside a Borel subset E of [0,∞) of finite Lebesgue measure.

Cartan’s Second Main Theorem [Car33]. Let {Hi }1≤i≤q be a family of hyperplanes in
general position in Pn(C). If f : C → Pn(C) is a linearly nondegenerate holomorphic
curve, then

(q −n −1)T f (r ) ≤
q∑

i=1
N [n]

f (r, Hi )+S f (r ),

where S f (r ) is a small term compared with T f (r )

S f (r ) = O(logT f (r )+ logr ) ∥ .

Now, let {Hi }1≤i≤2n+1+m be a family of 2n +1+m with m ≥ 0 generic hyperplanes
in the projective space Pn(C). Applying Nevanlinna-Cartan theory in Pn(C), taking into
account the truncation level in Cartan’s Second Main Theorem and using some basic
estimates on the numbers of contacts of entire curves along cycles of codimension ≥ 2,
we establish that all complements of the form

Pn(C) \ (∪2n+1+m
i=1 Hi \ Am,n), 0.0.5

in which Am,n is a collection of at most m star-subspaces coming from {Hi }1≤i≤2n+1+m ,
are hyperbolic in the following three circumstances

• n = 2,m ≤ 3,

• n = 3,m ≤ 2,

• n = 4,m ≤ 1.

This allows us to launch the algorithm in dimension 2 ≤ n ≤ 5 to create a hyper-
surface S ⊂ Pn+1(C) of degree d ≥ 2n + 2 satisfying the hyperbolic non–percolation
property with respect to a family of d generic hyperplanes, which yields examples of
hyperbolic hypersurfaces of degree d ≥ 2n +2 in Pn+1(C).

Our first result, published as [Huy15], states as follows.

Theorem I. Let n be an integer number in {2,3,4,5}. Let {Hi }1≤i≤2n+2 be a family of 2n+2
generic hyperplanes in Pn+1(C) defined as Hi = {hi = 0}. Then there exists a hypersurface
S = {s = 0} of degree 2n +2 such that the hypersurface

Σε =
{
εs +Π2n+2

i=1 hi = 0
}

is hyperbolic for sufficiently small complex ε 6= 0.

It is very natural to ask whether this claim still holds in higher-dimensional cases.
This problem reduces to proving the hyperbolicty of all configurations of hyperplanes



0.0.5 without restriction on n and m, which is still very open. But at least, the algo-
rithm can be launched from a restricted starting point which requires that the singular
hypersurface S0 should be the union of d ≥ (n+3

2

)2 hyperplanes. This yields a slight
improvement of the result of Shiffman and Zaidenberg in [SZ02b], where examples of
hyperbolic hypersurfaces of degree ≥ 4n2 in Pn+1(C) were given.

Our second result, published as [Huy16], states as follows.

Theorem II. Let {Hi }1≤i≤q be a family of d ≥ (n+3
2

)2 hyperplanes in general position in
Pn+1(C) where Hi = {hi = 0}. Then there exists a hypersurface S = {s = 0} of degree d such
that the hypersurface

Σε =
{
εs +Πd

i=1hi = 0
}

is hyperbolic for sufficiently small complex ε 6= 0.

The limit of our current technique based on Cartan’s Second Main Theorem leads
us to the problem of decreasing the truncation level as low as possible. Yamanoi
[Yam04] established a Second Main Theorem for algebraically nondegenerate curves in
abelian varieties with the truncation level 1, allowing the remainder term to be εT f (r ).
Noguchi, Winkelmann and Yamanoi [NWY08] obtained a similar result for algebraically
nondegenerate curves in semi-abelian varieties and as an application, they proved a
generalization of a conjecture of Green [Gre74] about the degeneracy of holomorphic
curves into the complement of two lines and one conic in the projective plane.

Decreasing the truncation level in Cartan’s Second Main Theorem seems to be a
very difficult problem, even in the simplest case. Recall that for a family of 4 lines in
general position {Li }1≤i≤4 in the projective plane, for a linearly nondegenerate holo-
morphic curve f :C→P2(C), Cartan’s Second Main Theorem states that

T f (r ) ≤
4∑

i=1
N [2]

f (r,Li )+o(T f (r )) ∥ . 0.0.6

The truncated counting functions in the right hand side of this inequality are optimal
in the sense that they can not be truncated to level one. In other words, there exists
some linearly nondegenerate holomorphic curves f :C→P2(C) such that the following
inequality does not hold

T f (r ) ≤
4∑

i=1
N [1]

f (r,Li )+o(T f (r )) ∥ . 0.0.7

Example: Let C be the unique conic which is tangent to L1, L2 at A1 = L1 ∩ L4,
A2 = L2 ∩L4 respectively, and which is tangent to L3 at some point A3.



L1 L2

A1

L3

L4

A3

A2

C

Since C \{A1, A2} ∼=C∗ is not hyperbolic, it contains some entire curve f . By the choice
of C , the truncated counting functions of f with respect to Li satisfy

N [2]
f (r,Li ) = 0 (i 6=3),

N [2]
f (r,Li ) = 2 N [1]

f (r,Li ) (i =3).

It follows from the First Main Theorem and Cartan’s Second Main theorem that

N [2]
f (r,L3) ≤ N f (r,L3) ≤ T f (r )+O(1)

≤ N [2]
f (r,L3)+ ∑

i 6=3
N [2]

f (r,Li )︸ ︷︷ ︸
=0

+S f (r ).

Hence, all inequalities are equalities modulo S f (r ). In particular, we have

T f (r ) = N [2]
f (r,L3)+S f (r )

= 2 N [1]
f (r,L3)+S f (r )

= 2
4∑

i=1
N [1]

f (r,Li )+S f (r ),

which shows that the inequality 0.0.7 does not hold.

In the above example, the curve f is linearly nondegenerate but its image is con-
tained in an algebraic curve C ⊂P2(C)). Such entire curves satisfying this property are
said to be algebraically degenerate. Otherwise, they are said to be algebraically non-
degenerate. Up to date, there is no counterexample to the following conjecture due to
Noguchi.

Cartan’s type Second Main Theorem with truncation 1. If f :C→P2(C) is algebraically
nondegenerate, then 0.0.7 holds.

We propose a positive answer to the above conjecture in a special case, namely
when the curve f is close to some algebraic curve C in P2(C), in the sense that the set
of accumulation points of f (C) at infinity (the cluster set of f ) defined by

Clu( f ) := ∩
r>0

(
f (C\∆r )

)
is contained in C .

Our third result states as follows.



Theorem III. Let {Li }1≤i≤4 be a family of 4 lines in general position in the projective
plane P2(C) and let f :C→P2(C) be an algebraically nondegenerate holomorphic curve.
If its cluster set is contained in an algebraic curve C ⊂P2(C), then

T f (r ) ≤
4∑

i=1
N [1]

f (r,Li )+o(T f (r )) ∥ .

Our proof consists of the following three main ingredients.

À Closed positive currents associated to holomorphic curves.

For a complex projective variety X equipped with a Kähler formω, one can asso-
ciate to any nonconstant holomorphic curve f : C→ X closed positive currents
of bidimension (1,1), which are called Nevanlinna currents. Such currents have
been considered for instance by M. McQuillan in his proof of the Green-Griffiths
conjecture for surfaces of general type having second Segre class c2

1 − c2 > 0
[McQ98] (see also [Bru99]). They are constructed by taking the limit of some se-
quences of positive currents of bounded mass {Φrk }∞k=1, where

Φrk (η) =

∫ rk

0

d t

t

∫
∆t

f ∗η∫ rk

0

d t

t

∫
∆t

f ∗ω
,

for all smooth (1,1)–forms η on X , and where {rk }∞k=1 is a sequence of positive
real numbers converging to ∞ such that

lim
k→∞

∫ rk

0

d t

t
Length

(
f (∂∆t )

)
∫ rk

0

d t

t

∫
∆t

f ∗ω
= 0.

Á Geometric intersection, algebraic intersection and their relationship. The geo-
metric intersection of the limit current Φ with respect to a divisor Z ⊂ X is then
defined as

ik (Z ) =
∫ rk

0
Card

(
f (∆t )∩Z

)d t

t
,

i(Z ) = liminf
k→∞

ik (Z )

T f ,rk (ω)
,

where Card
(

f (∆t )∩ Z
)

is the total number of intersection points between f (∆t )
and Z .

With the above notation, the problem reduces to proving that

4∑
i=1

i(Li ) ≥ 1.

Denote by [Φ], [Z ] the cohomology classes of Φ, Z in H 1,1(X ,R). The algebraic
intersection of [Φ] and [Z ] is then defined as

[Φ] · [Z ] :=Φ(ωZ ),



where ωZ is a differentiable (1,1)–form in the cohomology class {Z }. The follow-
ing relationship [Bru99] between the geometric intersection i(Z ) and the alge-
braic intersection [Φ] · [Z ] can be regarded as a consequence of the First Main
Theorem in Nevanlinna theory:

i(Z ) ≤ [Φ] · [Z ].

Â Ahlfors’ theory of covering surfaces.

We first introduce some notations and definitions. A bordered surface of finite
type is a closed region on a compact orientable surface bounded by finite many
simple closed curves. For a bordered surface Σ, we denote by Σ̊ its interior and
by ∂Σ its boundary. A map f : Σ→ Σ0 between two bordered surfaces of finite
type is said to be holomorphic if f is holomorphic in Σ̊ and extends continuously
up to the boundary. Assume now Σ0 is equipped with a hermitian metric ρ0. We
denote by ρ the pull–back of ρ0. We measure all lengths and areas on Σ and Σ0

with respect to ρ and ρ0. A curve is called regular if it is piecewise smooth. A
region is called regular if it is bounded by finitely regular curves. Assume now
that Σ0 is a regular region. The average number of sheets of f is defined by

S := Area(Σ)

Area(Σ0)
.

Similarly, we define the average number of sheets over a regular region D or a
regular curve γ on Σ0 as

S(D) := Area( f −1(D))

Area(D)
,

S(γ) := Length( f −1(γ))

Length(γ)
.

Let L = Length
(
∂Σ \ f −1(∂Σ0)

)
be the length of the relative boundary. Ahlfors’

theory consists of the two following analogues of the First Main Theorem and
the Second Main Theorem in classical Nevanlinna theory.

Ahlfors’ First Main Theorem. For every regular region D and every regular curve
γ on Σ0, there exist a constant h which is independent of Σ and f such that

|S −S(D)| ≤ h L, |S −S(γ)| ≤ h L.

Ahlfors’ Second Main Theorem. There exist a constant h depending only on
(Σ0,ρ0) such that

min{0,χ(Σ)} ≤ S · χ(Σ0)+h L.

We now give a sketch of the proof of the Theorem III. Based on À, we construct si-
multaneously closed positive currents associated to the holomorphic curve f and its
lifting curves in the resolution process of the configuration of the curve C and the four
lines Hi . Next, Ahlfors’ theory described in Â, which is also valid for any quasicon-
formal mapping π ◦ f , where π is the projection defined in a small neighbourhood of
some divisor in the resolution tree, yields a relationship between the geometric inter-
sections and the masses of the closed positive current along the set of certain divisors.
We then apply the inequality between algebraic intersection and geometric intersec-
tion in Á for exceptional divisors in each step of the resolution process and deal with
the combinatorics on the resolution tree to reach the conclusion.



Chapter 1

EXAMPLES OF HYPERBOLIC
HYPERSURFACES OF LOW DEGREE IN

PROJECTIVE SPACES

We construct families of hyperbolic hypersurfaces of degree 2n in the projective
space Pn(C) for 3 ≤ n ≤ 6.

Abstract

11



12 INTRODUCTION AND THE MAIN RESULT

1.1 Introduction and the main result

The Kobayashi conjecture states that a generic hypersurface Xd ⊂ Pn(C) of degree
d ≥ 2n − 1 is hyperbolic. It is proved by Demailly and El Goul [DEG00] for n = 3 and
a very generic surface of degree at least 21. In [Pău08], Păun improved the degree to
18. In P4(C), Rousseau [Rou07] was able to show that a generic three-fold of degree
at least 593 contains no Zariski-dense entire curve, a result from which hyperbolic-
ity follows, after removing divisorial components [DT10]. In Pn(C), for any n and for
d ≥ 2(n−1)5

, Diverio, Merker and Rousseau [DMR10] established algebraic degeneracy
of entire curves in Xd . An improvement of the effective degree bound in this result was
given in [Dar16]. Recently, for any dimension n, a positive answer for generic hyper-
surfaces of degree d ≥ d(n) À 1 very high was proposed by Siu [Siu15], and a strategy
which is expected to give a confirmation of this conjecture for very generic hypersur-
faces of degree d ≥ 2n was announced by Demailly [Dem15].

Concurrently, many authors tried to find examples of hyperbolic hypersurfaces of
degree as low as possible. The first example of a compact Kobayashi hyperbolic mani-
fold of dimension 2 is a hypersurface in P3(C) constructed by Brody and Green [BG77].
Also, the first examples in all higher dimensions n −1 ≥ 3 were discovered by Masuda
and Noguchi [MN96], with degree large. So far, the best degree asymptotic is the square
of dimension, given by Siu and Yeung [SY97] with d = 16(n −1)2 and by Shiffman and
Zaidenberg [SZ02b] with d = 4(n − 1)2. In P3(C) many examples of low degree were
given (see the reference of [Zai03]). The lowest degree found up to date is 6, given by
Duval [Duv04]. Later, Ciliberto and Zaidenberg [CZ13] gave a new construction of hy-
perbolic surface of degree 6 and their method works for all degree d ≥ 6 (hence, this
is the first time when a hyperbolic surface of degree 7 was created). There are not so
many examples of low degree hyperbolic hypersurfaces in P4(C). We mention here an
example of a hypersurface of degree 16 constructed by Fujimoto [Fuj01]. Various ex-
amples in P5(C) and P6(C) only appear in the cases of arbitrary dimension mentioned
above.

Before going to introduce the main result, we need some notations and conven-
tions. A family of hyperplanes {Hi }1≤i≤q with q ≥ n +1 in Pn(C) is said to be in general
position if any n +1 hyperplanes in this family have empty intersection. A hypersur-
face S in Pn(C) is said to be in general position with respect to {Hi }1≤i≤q if it avoids all
intersection points of n hyperplanes in {Hi }1≤i≤q , namely if:

S ∩ (∩i∈I Hi
)=;, ∀I ⊂ {1, . . . , q}, |I | = n.

Now assume that {Hi }1≤i≤q is a family of hyperplanes of Pn(C) (n ≥ 2) in general
position. Let {Hi }i∈I be a subfamily of n + 2 hyperplanes. Take a partition I = J ∪K
such that |J |, |K | ≥ 2. Then there exists a unique hyperplane HJK containing ∩ j∈J H j

and ∩k∈K Hk . We call HJK a diagonal hyperplane of {Hi }i∈I . The family {Hi }1≤i≤q is said
to be generic if, for all disjoint subsets I , J , J1, . . . , Jk of {1, . . . , q} such that |I |, |Ji | ≥ 2 and
|I |+|Ji | = n+2, 1 ≤ i ≤ k, for every subset {i1, . . . , il } of I , the intersection between the |J |
hyperplanes H j , j ∈ J , the k diagonal hyperplanes HI J1 , . . . , HI Jk , and the l hyperplanes
Hi1 , . . . , Hil is a linear subspace of codimension min{k + l , |I |}+|J |, with the convention
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that when min{k + l , |I |}+|J | > n, this intersection is empty. Such a generic condition
naturally appears in our constructions, and it has the virtue of being preserved when
passing to smaller-dimensional subspaces

Our aim is to prove that, for 3 ≤ n ≤ 6, a small deformation of a union of generic 2n
hyperplanes in Pn(C) is hyperbolic.

Main Theorem. Let n be an integer number in {3,4,5,6}. Let {Hi }1≤i≤2n be a family of
2n generic hyperplanes in Pn(C), where Hi = {hi = 0}. Then there exists a hypersurface
S = {s = 0} of degree 2n in general position with respect to {Hi }1≤i≤2n such that the hy-
persurface

Σε =
{
εs +Π2n

i=1hi = 0
}

is hyperbolic for sufficiently small complex ε 6= 0.

Our proof is based on the technique of Duval [Duv14] in the case n = 3. By the de-
formation method of Zaidenberg and Shiffman [SZ02a], the problem reduces to finding
a hypersurface S such that all complements of the form

∩i∈I Hi \
(∪ j 6∈I H j \ S

)
are hyperbolic. This situation is very close to the classical result of Fujimoto-Green
[Fuj72], [Gre72]. To create such S, we proceed by deformation in order to allow points
of intersection of S with more and more linear subspaces coming from the family
{Hi }1≤i≤2n .

1.2 Notations and preparation

1.2.1 Nevanlinna theory and some applications

We recall some facts from Nevanlinna theory in the projective space Pn(C). Let
E =∑

µνaν be a divisor on C and let k ∈N∪ {∞}. Summing the k-truncated degrees of
the divisor on disks by

n[k](t ,E) := ∑
|aν|<t

min{k,µν} (t >0),

the truncated counting function at level k of E is defined by

N [k](r,E) :=
∫ r

1

n[k](t ,E)

t
d t (r >1).

When k =∞, we write n(t ,E), N (r,E) instead of n[∞](t ,E), N [∞](r,E). We denote the
zero divisor of a nonzero meromorphic function ϕ by (ϕ)0. Let f : C→ Pn(C) be an
entire curve having a reduced representation f = [ f0 : · · · : fn] in the homogeneous co-
ordinates [z0 : · · · : zn] of Pn(C). Let D = {Q = 0} be a hypersurface in Pn(C) defined by a
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homogeneous polynomial Q ∈ C[z0, . . . , zn] of degree d ≥ 1. If f (C) 6⊂ D , we define the
truncated counting function of f with respect to D as

N [k]
f (r,D) := N [k](r, (Q ◦ f )0

)
.

The proximity function of f for the divisor D is defined as

m f (r,D) :=
∫ 2π

0
log

∥∥ f (r e iθ)
∥∥d ‖Q‖∣∣Q( f )(r e iθ)

∣∣ dθ

2π
,

where ‖Q‖ is the maximum absolute value of the coefficients of Q and∥∥ f (z)
∥∥ = max{| f0(z)|, . . . , | fn(z)|}.

Since
∣∣Q( f )

∣∣≤ ‖Q‖ · ‖ f ‖d , one has m f (r,D) ≥ 0. Finally, the Cartan order function of f
is defined by

T f (r ) := 1

2π

∫ 2π

0
log

∥∥ f (r e iθ)
∥∥dθ.

It is known that [Ere10] if f is a Brody curve, then its order

ρ f := limsup
r→+∞

T f (r )

logr

is bounded from above by 2. Furthermore, Eremenko [Ere10] showed the following.

Theorem 1.2.1. If f : C → Pn(C) is a Brody curve omitting n hyperplanes in general
position, then it is of order 1.

Consequently, we have the following theorem.

Theorem 1.2.2. If f : C→ Pn(C) is a Brody curve avoiding the first n coordinate hyper-
planes {zi = 0}n−1

i=0 , then it has a reduced representation of the form

[1 : eλ1 z+µ1 : · · · : eλn−1 z+µn−1 : g ],

where g is an entire function and λi , µi are constants. If f also avoids the remaining
coordinate hyperplane {zn = 0}, then g is of the form eλn z+µn .

The core of Nevanlinna theory consists of two main theorems.

First Main Theorem. Let f : C→ Pn(C) be a holomorphic curve and let D be a hyper-
surface of degree d in Pn(C) such that f (C) 6⊂ D. Then for every r > 1, the following holds

m f (r,D)+N f (r,D) = d T f (r )+O(1),

hence
N f (r,D) ≤ d T f (r )+O(1). 1.2.1
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A holomorphic curve f : C→Pn(C) is said to be linearly nondegenerate if its image
is not contained in any hyperplane. For non-negatively valued functionsϕ(r ),ψ(r ), we
write

ϕ(r ) ≤ ψ(r ) ∥
if this inequality holds outside a Borel subset E of (0,+∞) of finite Lebesgue measure.
Next is the Second Main Theorem of Cartan [Car33].

Second Main Theorem. Let f : C→ Pn(C) and let {Hi }1≤i≤q be a family of hyperplanes
in general position in Pn(C). Then the following estimate holds:

(q −n −1)T f (r ) ≤
q∑

i=1
N [n]

f (r, Hi )+S f (r ),

where S f (r ) is a small term compared with T f (r )

S f (r ) = o(T f (r )) ∥ .

The next three theorems can be deduced from the Second Main Theorem.

Theorem 1.2.3. Let {Hi }1≤i≤n+2 be a family of hyperplanes in general position in Pn(C)
with n ≥ 2. If f : C→ Pn(C) \∪n+2

i=1 Hi is an entire curve, then its image lies in one of the
diagonal hyperplanes of {Hi }1≤i≤n+2.

The following strengthened theorem is due to Dufresnoy [Duf44].

Theorem 1.2.4. If a holomorphic map f : C→ Pn(C) has its image in the complement
of n +p hyperplanes H1, . . . , Hn+p in general position, then this image is contained in a

linear subspace of dimension
⌊

n
p

⌋
.

As a consequence, we have the classical generalization of Picard’s Theorem (case
n = 1), due to Fujimoto [Fuj72] (see also [Gre72]).

Theorem 1.2.5. The complement of a collection of 2n+1 hyperplanes in general position
in Pn(C) is hyperbolic.

For hyperplanes that are not in general position, we have the following result (see
[Kob98], Theorem 3.10.15).

Theorem 1.2.6. Let {Hi }1≤i≤q be a family of q ≥ 3 hyperplanes that are not in general
position in Pn(C). If f : C→Pn(C)\∪q

i=1Hi is an entire curve, then its image lies in some
hyperplane.

1.3 Starting lemmas

Let us introduce some notations before going to other applications. Let {Hi }1≤i≤q

be a family of generic hyperplanes of Pn(C), where Hi = {hi = 0}. For some integer 0 ≤
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k ≤ n −1 and some subset Ik = {i1, . . . , in−k } of the index set {1, . . . , q} having cardinality
n −k, the linear subspace Pk,Ik =∩i∈Ik Hi ' Pk (C) is called a subspace of dimension k.
For a holomorphic mapping f : C→Pn(C), we define

n f (t ,Pk,Ik ) := ∑
|z|<t , f (z)∈Pk,Ik

min
i∈Ik

ordz(hi ◦ f ) (t >0),

where we take the sum only for z in the preimage of Pk,Ik , and

N f (r,Pk,Ik ) :=
∫ r

1

n f (t ,Pk,Ik )

t
d t (r >1). 1.3.1

We denote by P∗
k,Ik

the complement Pk,Ik \
(∪i 6∈Ik Hi

)
which will be called a star-

subspace of dimension k. We can also define n f (t ,P∗
k,Ik

) and N f (r,P∗
k,Ik

). Assume now
q = 2n +1+m with m ≥ 0. Consider complements of the form

Pn(C) \ (∪2n+1+m
i=1 Hi \ Am,n), 1.3.2

where Am,n is a set of at most m elements of the form P∗
k,Ik

(0 ≤ k ≤ n−2). We note that
if m = 0, these complements are hyperbolic by Theorem 1.2.5.

In P2(C), a union of lines ∪q
i=1Hi is in general position if any three lines have empty

intersection, and it is generic if in addition any three intersection points between three
distinct pairs of lines are not collinear.

Lemma 1.3.1. In P2(C), if m ≤ 3, all complements of the form 1.3.2 are hyperbolic.

Proof. Without loss of generality, we can assume that Am,2 is a set of m distinct points
belonging to ∪1≤i1<i2≤5+m Hi1 ∩Hi2 .

When m = 1, an entire curve f : C→P2(C)\(∪6
i=1Hi \ A1,2), if it exists, must avoid at

least four lines.

���
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�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
����������

���
���
���

���
���
���
���

�
�
�

�
�
�

��

�
�
�
�

����

��

A1,2

f (C)

By Theorem 1.2.3, its image lies in a diagonal line, which does not contain the inter-
section point of the two remaining lines by the generic condition. Hence, f must be
contained in the complement of four points in a line. By Picard’s theorem, f is con-
stant, which is contradiction.



1.2.1 - Nevanlinna theory and some applications 17

When m = 2, A2,2 is a set consisting of two points A, B , where A = Hi1 ∩ Hi2 , B =
Hi3 ∩Hi4 . We denote by I the index set {i1, i2, i3, i4}, which has three elements if both A
and B belong to a single line Hi and which has four elements otherwise.

Hi3 Hi4
Hi2

L L

Hi1

A Hi2 = Hi3
B

Hi1

A B

Hi4

Let f : C→P2(C) \ (∪7
i=1Hi \ A2,2) be an entire curve. If z ∈ f −1(A), we have

ordz(hi1 ◦ f ) ≥ 1,

ordz(hi2 ◦ f ) ≥ 1.

This implies

min{ordz(hi1 ◦ f ),2}+min{ordz(hi2 ◦ f ),2} ≤ 3 min
1≤ j≤2

ordz(hi j ◦ f ). 1.3.3

Hence, by summing this inequality∑
|z|<t , f (z)=A

min{ordz(hi1◦ f ),2}+ ∑
|z|<t , f (z)=A

min{ordz(hi2◦ f ),2} ≤ 3
∑

|z|<t , f (z)=A
min

1≤ j≤2
ordz(hi j ◦ f ).

1.3.4

Similarly for hi3 , hi4 and z ∈ f −1(B), we have∑
|z|<t , f (z)=B

min{ordz(hi3◦ f ),2}+ ∑
|z|<t , f (z)=B

min{ordz(hi4◦ f ),2} ≤ 3
∑

|z|<t , f (z)=B
min

3≤ j≤4
ordz(hi j ◦ f ).

1.3.5

By taking the sum of both sides of these inequalities and by integrating, we obtain∑
i∈I

N [2]
f (r, Hi ) ≤ 3

(
N f (r, A)+N f (r,B)

)
. 1.3.6

Now, let L = {`= 0} be the line passing through A and B . Since `=α1hi1 +α2hi2 =
α3hi3 +α4hi4 for some α1, . . . ,α4 ∈C, the following inequalities hold

min
1≤ j≤2

ordz(hi j ◦ f ) ≤ ordz(`◦ f ) (z∈ f −1(A)),

min
3≤ j≤4

ordz(hi j ◦ f ) ≤ ordz(`◦ f ) (z∈ f −1(B)). 1.3.7

Since f −1(A) and f −1(B) are two disjoint subsets of f −1(L ), by taking the sum of both
sides of these inequalities on discs and by integrating, we obtain

N f (r, A)+N f (r,B) ≤ N f (r,L ). 1.3.8

If f would be linearly nondegenerate, then starting from Cartan Second Main The-
orem, and using 1.3.6, 1.3.8, we would get

4T f (r ) ≤
7∑

i=1
N [2]

f (r, Hi )+S f (r )
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= ∑
i∈I

N [2]
f (r, Hi )+S f (r )

≤ 3
(
N f (r, A)+N f (r,B)

)+S f (r )

≤ 3 N f (r,L )+S f (r )

[Use 1.2.1] ≤ 3T f (r )+S f (r ), 1.3.9

which is absurd. Thus, any entire curve f : C→ P2(C) \ (∪7
i=1Hi \ A2,2) must be con-

tained in some line L. Furthermore, the number of points of intersection between L
and ∪7

i=1Hi \{A,B} is at least 3 by the generic condition. By Picard’s Theorem, this con-
tradicts the assumption that f is nonconstant.

When m = 3, A3,2 is a set consisting of three points A, B , C , where A = Hi1 ∩ Hi2 ,
B = Hi3 ∩Hi4 , C = Hi5 ∩Hi6 . In this case, the index set J = {i1, i2, i3, i4, i5, i6} may contain
4, 5 or 6 elements.

Hi6

Hi2

C

B

Hi1 = Hi3

Hi4 = Hi5

C

Hi1 = Hi3 = Hi5

A B

Hi4Hi2

Hi6

A

Hi6

A

CHi5

Hi5

A Hi1 = Hi3
B

C

Hi2
Hi4

Hi6

Hi2

Hi1

B

Hi3

Hi4

Suppose to the contrary that there is an entire curve f : C→ P2(C) \ (∪8
i=1Hi \ A3,2).

Similarly as above, cf. 1.3.4, 1.3.5, 1.3.6, we can show in all the four illustrated cases∑
i∈J

N [2]
f (r, Hi ) ≤ 3

(
N f (r, A)+N f (r,B)+N f (r,C )

)
.
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Next, let C = {c = 0} be the degenerate cubic consisting of the three lines AB =
{`AB = 0}, BC = {`BC = 0}, and C A = {`C A = 0}. Similarly as in 1.3.7, we have

2 min
1≤ j≤2

ordz(hi j ◦ f ) ≤ ordz(`AB ◦ f )+ordz(`C A ◦ f )

= ordz(c◦ f ) (z∈ f −1(A)).

We also have two other inequalities for hi3 , hi4 , z ∈ f −1(B) and for hi5 , hi6 , z ∈ f −1(C ).
Summing these inequalities and integrating, we get

2
(
N f (r, A)+N f (r,B)+N f (r,C )

) ≤ N f (r,C ).

If the curve f is linearly nondegenerate, then by proceeding as we did in 1.3.9, we
also get a contradiction.

5T f (r ) ≤
8∑

i=1
N [2]

f (r, Hi )+S f (r )

≤ 3
(
N f (r, A)+N f (r,B)+N f (r,C )

)+S f (r )

≤ 3

2
N f (r,C )+S f (r )

≤ 9

2
T f (r )+S f (r ).

Thus the curve f must be contained in some line. By analyzing the position of this
line with respect to {Hi }1≤i≤8 \ {A,B ,C } and by using Picard’s theorem, we conclude as
above.

In P3(C), the generic condition for the family of planes {Hi }1≤i≤q excludes the fol-
lowing cases.

(1) There are three disjoint subsets I , J , K of {1, . . . , q} with |I | = 3, |J | = 2, |K | = 3 such
that the diagonal (hyper)plane HI J contains the point ∩k∈K Hk .

(2) There are four disjoint subsets I , J , K1, K2 of {1, . . . , q} with |I | = 3, |J | = 2, |K1| =
|K2| = 2 such that the three points (∩k1∈K1 Hk1 )∩HI J , (∩k2∈K2 Hk2 )∩HI J and ∩i∈I Hi

are collinear.

∩i∈I Hi

∩ j∈J H j

∩k∈K Hk

HI J HI J

∩k1∈K1
Hk1

∩i∈I Hi

∩k2∈K2
Hk2

∩ j∈J H j
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Lemma 1.3.2. In P3(C), if m ≤ 2, all complements of the form 1.3.2 are hyperbolic.

Proof. Without loss of generality, we can assume that Am,3 is a set of m elements be-
longing to: (∪1≤i1<i2≤7+m (Hi1 ∩Hi2 )∗

) ⋃ (∪1≤i1<i2<i3≤7+m Hi1 ∩Hi2 ∩Hi3

)
.

Suppose to the contrary that there exists a Brody curve f : C→P3(C) \ (∪7+m
i=1 Hi \ Am,3).

When m = 1, the curve f must avoid at least five planes. By Theorem 1.2.4, its image
is contained in some line L. By the generic condition, the number of intersection points
between L and∪8

i=1Hi \A1,3 is at least 3. By Picard’s theorem, f must be constant, which
is a contradiction.

Next, we consider the case m = 2. If A2,3 = {l∗1 , l∗2 } where l1, l2 are lines, then the
curve f avoids five planes, say {Hi }1≤i≤5. By Theorems 1.2.4 and 1.2.3, its image lands in
some line L , which is contained in a diagonal plane P of the family {Hi }1≤i≤5. We may
assume that the plane P passes through the point H1 ∩H2 ∩H3 and contains the line
H4 ∩H5. If the line L does not pass through the point H1 ∩H2 ∩H3, then it intersects
{Hi }1≤i≤3 in three distinct points, hence f is constant by Picard’s theorem. Thus L

must pass through the point H1∩H2∩H3. In the plane P , the curve f can pass through
the points l1∩P and l2∩P . But by the generic condition, cf. (2) above, the three points
H1∩H2∩H3, l1∩P , l2∩P are not collinear. Hence, f (C) is contained in a complement
of at least three points in the line L , which is impossible by Picard’s theorem.

Two substantial cases remain:

(a) A2,3 = {A, l∗}, where A is a point and l is a line;

(b) the set A2,3 consists of two points.

We treat case (a). If both A and l are contained in some common plane Hi , then
f avoids five planes. By Theorem 1.2.3, its image must be contained in some diagonal
plane, which does not contain the point A by the generic condition. Hence f must
avoid seven planes in general position, which is absurd by Theorem 1.2.5. Thus, we
can assume that A = H1 ∩ H2 ∩ H3 and l∗ = (H4 ∩ H5) \∪i 6=4,5Hi . Hence f avoids four
planes Hi (6 ≤ i ≤ 9).

First, we show that f is linearly nondegenerate. Suppose to the contrary that f (C)
is contained in some plane P . If A 6∈P , then f also avoids H1, H2, H3, which is impos-
sible by Theorem 1.2.5. Hence the plane P must pass through the point A. If f (C) is
contained in some line L ⊂P , then L must also pass through A, for the same reason.
Note that the number of intersection points between L and {Hi }6≤i≤9 is at least 2, and
it equals 2 only if either L passes through some point Hi1∩Hi2∩Hi3 (6 ≤ i1 < i2 < i3 ≤ 9)
or L intersects two lines Hi1 ∩Hi2 , Hi3 ∩Hi4 ({i1, i2, i3, i4} = {6,7,8,9}). If L has empty
intersection with H4 ∩ H5, then f avoids at least four points in the line L , hence it
is constant. If L intersects H4 ∩ H5, then by considering the diagonal plane passing
through A and containing H4∩H5, the two cases where |L ∩{Hi }6≤i≤9| = 2 are excluded
by the generic condition. Thus f always avoids three distinct points in L , hence it is
constant.
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Consequently, we can assume that f does not land in any line in the plane P . There
are two possible positions of P :

(a1) it is a diagonal plane containing A and some line in ∪6≤i1<i2≤9 Hi1 ∩Hi2 ;

(a2) it does not contain any line in ∪6≤i1<i2≤9 Hi1 ∩Hi2 .

In case (a1), assume that P contains the line H6 ∩ H7. Among {Hi ∩P }1≤i≤9, two
lines H6∩P , H7∩P coincide, and dropping the line H1∩P , by the generic condition,
it remains seven lines {Hi ∩P }i 6=1,7 in general position in P .

H6 ∩H7

H4 ∩H5

A

B

P

Letting B be the intersection point of the line l = H4 ∩H5 with the plane P , the curve
f lands in P \(∪1≤i≤9Hi ∩P )\{A,B})). As in 1.3.9, f (C) is contained in some line, which
is a contradiction.

Next, consider case (a2).

A

H6 ∩H7 ∩H8

P

H4 ∩H5
H8 ∩H9

A

P

H6 ∩H7

If P contains some point in ∪6≤i1<i2<i3≤9 Hi1∩Hi2∩Hi3 , say H6∩H7∩H8, then the curve
f avoids three lines Hi ∩P (6 ≤ i ≤ 8), which are not in general position. By Theo-
rem 1.2.6, f (C) must be contained in some line, which is a contradiction. Therefore, P

does not contain any point in ∪6≤i1<i2<i3≤9 Hi1∩Hi2∩Hi3 . But then the curve f avoids a
collection of four lines {Hi ∩P }6≤i≤9, which are in general position. By Theorem 1.2.3,
its image must land in some diagonal line of this family, which is a contradiction.

Still in case (a), we can therefore assume that f is linearly nondegenerate. Assume
that the omitted planes H6, H7, H8, H9 are given in the homogeneous coordinates
[z0 : z1 : z2 : z3] by equations {zi = 0} (0 ≤ i ≤ 3). By Theorems 1.2.2, f has a reduced
representation of the form

[1 : eλ1 z+µ1 : eλ2 z+µ2 : eλ3 z+µ3 ], 1.3.10
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where λi , µi are constants with λi 6= 0 (1 ≤ i ≤ 3 and λi 6= λ j (i 6= j ). Let D be the
diagonal plane passing through the point A = H1 ∩ H2 ∩ H3 and containing the line
l = H4 ∩H5. By similar arguments as in Lemma 1.3.1, cf. 1.3.7, 1.3.8, we can show that

N f (r, A)+N f (r, l∗) ≤ N f (r,D). 1.3.11

From the elementary inequality

min{ordz(h4 ◦ f ),3}+min{ordz(h5 ◦ f ),3} ≤ 4 min
4≤i≤5

ordz(hi ◦ f ) (z∈ f −1(l∗)),

by taking the sum on disks and then by integrating, we get

N [3]
f (r, H4)+N [3]

f (r, H5) ≤ 4 N f (r, l∗). 1.3.12

Next, we try to bound N [3]
f (r, Hi ) (1 ≤ i ≤ 3) from above in terms of N f (r, A). Since f

is of the form 1.3.10, for any z1, z2 ∈ f −1(A), we have

f (k)(z1) = f (k)(z2) (k ∈N),

hence
ordz1 (hi ◦ f ) = ordz2 (hi ◦ f ) (1≤ i ≤3). 1.3.13

Thus, it suffices to consider the two cases:

(a3) ordz(hi ◦ f ) ≤ 2 for all 1 ≤ i ≤ 3 and for all z ∈ f −1(A);

(a4) ordz(hi ◦ f ) ≥ 3 for some i with 1 ≤ i ≤ 3 and for all z ∈ f −1(A).

In case (a3), the elementary inequality

3∑
i=1

min{ordz(hi ◦ f ),3} ≤ 5 min
1≤i≤3

ordz(hi ◦ f ) (z∈ f −1(A)),

yields
N [3]

f (r, H1)+N [3]
f (r, H2)+N [3]

f (r, H3) ≤ 5 N f (r, A). 1.3.14

Since f is linearly nondegenerate, we can proceed similarly as in 1.3.9

5T f (r ) ≤
9∑

i=1
N [3]

f (r, Hi )+S f (r )

≤ 5 N f (r, A)+4 N f (r, l∗)+S f (r )

= 5
(
N f (r, A)+N f (r, l∗)

)−N f (r, l∗)+S f (r )

≤ 5 N f (r,D)−N f (r, l∗)+S f (r )

≤ 5T f (r )−N f (r, l∗)+S f (r ). 1.3.15

This implies
N f (r, l∗) = S f (r )

and hence, by 1.3.12, we have

N [3]
f (r, H4)+N [3]

f (r, H5) = S f (r ).
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Therefore, the first inequality of 1.3.15 can be rewritten as

5T f (r ) ≤
3∑

i=1
N [3]

f (r, Hi )+S f (r ).

By the First Main Theorem, the right-hand side of the above inequality is bounded from
above by 3T f (r )+S f (r ). Thus we get

5T f (r ) ≤ 3T f (r )+S f (r ),

which is absurd.

Next, we consider case (a4). Assume that ordz(h1 ◦ f ) ≥ 3 for all z ∈ f −1(A). Since f
is of the form 1.3.10, we claim that

ordz(hi ◦ f ) ≤ 2 (z∈ f −1(A), 2≤ i ≤3). 1.3.16

Indeed, if ordz(hi ◦ f ) ≥ 3 for some z ∈ f −1(A) and for some 2 ≤ i ≤ 3, say i = 2, then
(eλ1 z+µ1 ,eλ2 z+µ2 ,eλ3 z+µ3 ) is a solution of a system of six linear equations of the form

0 = a10 +a11 u +a12 v +a13 w,

0 = a11λ1 u +a12λ2 v +a13λ3 w,

0 = a11λ
2
1 u +a12λ

2
2 v +a13λ

2
3 w,

0 = a20 +a21 u +a22 v +a23 w,

0 = a21λ1 u +a22λ2 v +a23λ3 w,

0 = a21λ
2
1 u +a22λ

2
2 v +a23λ

2
3 w,

where u, v , w are unknowns, and where ai j (0 ≤ i ≤ 3) are the coefficients of hi (1 ≤
i ≤ 2) in the homogeneous coordinate [z0 : z1 : z2 : z3]. Since λi are nonzero distinct
constants, this forces the two linear forms h1, h2 to be linearly dependent, which is a
contradiction.

It follows from 1.3.16 that

min{ordz(h2 ◦ f ),3}+min{ordz(h3 ◦ f ),3} ≤ 3 min
1≤i≤3

ordz(hi ◦ f ) (z∈ f −1(A)).

By taking the sum on disks and by integrating, we get

N [3]
f (r, H2)+N [3]

f (r, H3) ≤ 3 N f (r, A). 1.3.17

We may therefore proceed similarly as in 1.3.15

5T f (r ) ≤
9∑

i=1
N [3]

f (r, Hi )+S f (r )

≤ N [3]
f (r, H1)+3 N f (r, A)+4 N f (r, l∗)+S f (r )

≤ N f (r, H1)+4
(
N f (r, A)+N f (r, l∗)

)−N f (r, A)+S f (r )

≤ T f (r )+4 N f (r,D)−N f (r, A)+S f (r )
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≤ 5T f (r )−N f (r, A)+S f (r ). 1.3.18

This implies
N f (r, A) = S f (r ).

By 1.3.17, we have
N [3]

f (r, H2)+N [3]
f (r, H3) = S f (r ).

Hence we can rewrite the first inequality of 1.3.18 and use First Main Theorem to get a
contradiction

5T f (r ) ≤ N [3]
f (r, H1)+N [3]

f (r, H4)+N [3]
f (r, H5)+S f (r )

≤ 3T f (r )+S f (r ).

Let us consider case (b). Assume now A2,3 = {A,B}, where A, B are two points con-
tained in ∪1≤i1<i2<i3≤9 Hi1 ∩Hi2 ∩Hi3 . There are three possibilities for the positions of
A and B :

(b1) both A and B are contained in some line Hi ∩H j ;

(b2) both A and B are contained in some plane Hi but they are not contained in any
line Hi ∩H j ;

(b3) there is no plane Hi containing both points A and B .

In case (b1), the curve f avoids a family of five planes and, therefore, its image is
contained in some diagonal plane of this family, which contains neither A nor B by the
generic condition. Hence f avoids all planes Hi , which is absurd by Theorem 1.2.5.

Next, we consider case (b2). Assume that A = H1 ∩H2 ∩H3 and B = H1 ∩H4 ∩H5,
hence f avoids the 4 planes Hi (6 ≤ i ≤ 9). Similarly as in case (a), the generic condition
allows us to assume that f is linearly nondegenerate.

Since f avoids four planes, it is of the form 1.3.10 in some affine coordinates onP3(C).
Since f has no singular point, we have

min
i∈{1,2,3}

ordz(hi ◦ f ) = 1 (z∈ f −1(A)),

min
i∈{1,4,5}

ordz(hi ◦ f ) = 1 (z∈ f −1(B)). 1.3.19

Hence by using these two equalities together with 1.3.16,∑
i∈{1,2,3}

min{ordz(hi ◦ f ),3} ≤ 6 = 6 min
i∈{1,2,3}

ordz(hi ◦ f ), (z∈ f −1(A)),

∑
i∈{1,4,5}

min{ordz(hi ◦ f ),3} ≤ 6 = 6 min
i∈{1,4,5}

ordz(hi ◦ f ), (z∈ f −1(B)).

Thus, by taking the sum on disks of both sides of these inequalities and by integrating,

5∑
i=1

N [3]
f (r, Hi ) ≤ 6

(
N f (r, A)+N f (r,B)

)
.
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Next, using again that f is of the form 1.3.10, one can find two planes P1 = {p1 = 0},
P2 = {p2 = 0} containing the line AB such that

ordz(p1 ◦ f ) ≥ 2 (z∈ f −1(A)),

ordz(p2 ◦ f ) ≥ 2 (z∈ f −1(B)).

Let Q = {q= p1p2 = 0} be the degenerate quadric P1 ∪P2. We have

3 = 3 min
i∈{1,2,3}

ordz(hi ◦ f ) ≤ ordz(p1 ◦ f )+ordz(p2 ◦ f ) = ordz(q◦ f ) (z∈ f −1(A)),

3 = 3 min
i∈{1,4,5}

ordz(hi ◦ f ) ≤ ordz(p1 ◦ f )+ordz(p2 ◦ f ) = ordz(q◦ f ) (z∈ f −1(B)),

which implies, by integrating, that

3
(
N f (r, A)+N f (r,B)

) ≤ N f (r,T ).

We proceed similarly as above to get a contradiction

5T f (r ) ≤
9∑

i=1
N [3]

f (r, Hi )+S f (r )

≤ 6
(
N f (r, A)+N f (r,B)

)+S f (r )

≤ 2 N f (r,T )+S f (r )

≤ 4T f (r )+S f (r ).

Now, we consider case (b3). Assume that A = H1∩H2∩H3, B = H4∩H5∩H6, when
f avoids the three planes H7, H8, H9. If f (C) is contained in some plane P , then it
is not hard to see that P must pass through both A and B . Furthermore, by using
Theorem 1.2.6, one can show that P does not pass through the point C = H7∩H8∩H9.
One can then always find 7 lines in general position in P among {Hi ∩P }1≤i≤9. Hence
one can use similar arguments as in Lemma 1.3.1, case m = 2, to get a contradiction.
Thus, we can suppose that f is linearly nondegenerate.

Assume that the omitted planes H7, H8, H9 are given in the homogeneous coordi-
nates [z0 : z1 : z2 : z3] by the equations {z0 = 0}, {z1 = 0}, {z2 = 0}. Since {Hi }1≤i≤9 is a
family of planes in general position, the planes Hi (1 ≤ i ≤ 6) are given by

hi =
3∑

j=0
ai j z j = 0,

with ai 3 6= 0 (1 ≤ i ≤ 6). Set li1,i2 = Hi1 ∩Hi2 (1 ≤ i1 < i2 ≤ 3), l j1, j2 = H j1 ∩H j2 (4 ≤ j1 <
j2 ≤ 6). For 1 ≤ i < j ≤ 3 or 4 ≤ i < j ≤ 6, let Ri , j = {ri , j = 0} be the plane containing the
lines AB , li , j and let Ti , j = {ti , j = a j 3 hi − ai 3 h j = 0} be the plane passing through the
point C = [0 : 0 : 0 : 1] and containing the line li , j . We note that all ri , j , ti , j are linear
combinations of hi and h j with nonzero coefficients.

Since f avoids three planes, by Theorem 1.2.2 it has a reduced representation of the
form

[1 : eλ1 z+µ1 : eλ2 z+µ2 : g ], 1.3.20
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where λ1, λ2, µ1, µ2 are constants with λ1 6= λ2, λ1,λ2 6= 0 and where g is an entire
function. Since f has no singular point, we have

min
1≤i≤3

ordz(hi ◦ f ) = 1 (z∈ f −1(A)),

min
4≤ j≤6

ordz(h j ◦ f ) = 1 (z∈ f −1(B)). 1.3.21

Since f is of the form 1.3.20, we claim that

min{ordz(hi1 ◦ f ),ordz(hi2 ◦ f )} ≤ 2 (z∈ f −1(A) 1≤ i1< i2≤3),

min{ordz(h j1 ◦ f ),ordz(h j2 ◦ f )} ≤ 2 (z∈ f −1(B), 4≤ j1< j2≤6). 1.3.22

Indeed, if one of these inequalities does not hold, say min{ordz(h1◦ f ),ordz(h2◦ f )} ≥ 3
for some z ∈ f −1(A), then z is a solution of the following system of equations

0 = (t1,2 ◦ f )(z),

0 = (t1,2 ◦ f )′(z),

0 = (t1,2 ◦ f )′′(z).

Equivalently, (eλ1 z+µ1 ,eλ2 z+µ2 ) is a solution of a system of three linear equations of the
form 

0 = (a23 a10 −a13 a20)+ (a23 a11 −a13 a21) x + (a23 a12 −a13 a22) y,

0 = (a23 a11 −a13 a21)λ1 x + (a23 a12 −a13 a22)λ2 y,

0 = (a23 a11 −a13 a21)λ2
1 x + (a23 a12 −a13 a22)λ2

2 y,

where x, y are unknowns. Since λ1 6= λ2, λ1,λ2 6= 0, this implies that the two linear
forms h1, h2 must be linearly dependent, which is a contradiction.

It follows from 1.3.21 and 1.3.22 that

3∑
i=1

min{ordz(hi ◦ f ),3} ≤ 6 (z∈ f −1(A)),

6∑
j=4

min{ordz(h j ◦ f ),3} ≤ 6 (z∈ f −1(B)). 1.3.23

Now we prove the following equality

Claim 1.3.1.
T f (r ) = N f (r, A)+N f (r,B)+S f (r ). 1.3.24

Proof. Since f is of the form 1.3.20 and since ti , j does not contain the term x3, we have

ordz1 (ti1,i2 ◦ f ) = ordz2 (ti1,i2 ◦ f ) (z1,z2∈ f −1(A),1≤ i1<i2 ≤3),

ordz1 (t j1, j2 ◦ f ) = ordz2 (t j1, j2 ◦ f ) (z1,z2∈ f −1(B),4≤ j1< j2 ≤6). 1.3.25

Thus, it suffices to consider the four cases depending on f and ti , j :
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(b3.1) ordz(ti1,i2 ◦ f ) = 1 for all 1 ≤ i1 < i2 ≤ 3, for all z ∈ f −1(A) and ordz(t j1, j2 ◦ f ) = 1 for
all 4 ≤ j1 < j2 ≤ 6, for all z ∈ f −1(B);

(b3.2) ordz(ti1,i2 ◦ f ) ≥ 2 for some 1 ≤ i1 < i2 ≤ 3, for all z ∈ f −1(A) and ordz(t j1, j2 ◦ f ) = 1
for all 4 ≤ j1 < j2 ≤ 6, for all z ∈ f −1(B);

(b3.3) ordz(ti1,i2 ◦ f ) = 1 for all 1 ≤ i1 < i2 ≤ 3, for all z ∈ f −1(A) and ordz(t j1, j2 ◦ f ) ≥ 2 for
some 4 ≤ j1 < j2 ≤ 6, for all z ∈ f −1(B);

(b3.4) ordz(ti1,i2 ◦ f ) ≥ 2 for some 1 ≤ i1 < i2 ≤ 3, for all z ∈ f −1(A) and ordz(t j1, j2 ◦ f ) ≥ 2
for some 4 ≤ j1 < j2 ≤ 6, for all z ∈ f −1(B).

Consider case (b3.1). Since ti , j is a linear combination of hi and h j with nonzero
coefficients, we have

min{ordz(hi1 ◦ f ),ordz(hi2 ◦ f )} = 1 (z∈ f −1(A) 1≤ i1< i2≤3),

min{ordz(h j1 ◦ f ),ordz(h j2 ◦ f )} = 1 (z∈ f −1(B), 4≤ j1< j2≤6).

Using these equalities together with 1.3.21, we get

3∑
i=1

min{ordz(hi ◦ f ),3} ≤ 5 = 5 min
1≤i≤3

ordz(hi ◦ f ) (z∈ f −1(A)),

6∑
i=4

min{ordz(hi ◦ f ),3} ≤ 5 = 5 min
4≤i≤6

ordz(hi ◦ f ) (z∈ f −1(B)). 1.3.26

By taking the sum on disks and by integrating these two inequalities, we obtain

N [3]
f (r, H1)+N [3]

f (r, H2)+N [3]
f (r, H3) ≤ 5 N f (r, A),

N [3]
f (r, H4)+N [3]

f (r, H5)+N [3]
f (r, H6) ≤ 5 N f (r,B).

Letting B be a plane passing through A and B , we proceed similarly as before

5T f (r ) ≤
9∑

i=1
N [3]

f (r, Hi )+S f (r )

≤ 5 N f (r, A)+5 N f (r,B)+S f (r )

≤ 5 N f (r,B)+S f (r )

≤ 5T f (r )+S f (r ). 1.3.27

Here, S f (r ) = o(T f (r )) is negligible, hence all inequalities are equalities modulo S f (r ).
This gives 1.3.24, as wanted.

Next, we consider case (b3.2). Let us set

Et ,A = {z ∈C : |z| < t , f (z) = A},

E 1
t ,A,i = {z ∈C : |z| < t , f (z) = A,ordz(hi ◦ f ) = 1} (1≤ i ≤3),

E≥2
t ,A,i = {z ∈C : |z| < t , f (z) = A,ordz(hi ◦ f ) ≥ 2} (1≤ i ≤3),

Et ,B = {z ∈C : |z| < t , f (z) = B},

E 1
t ,B ,i = {z ∈C : |z| < t , f (z) = B ,ordz(hi ◦ f ) = 1} (4≤ i ≤6),
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E≥2
t ,B ,i = {z ∈C : |z| < t , f (z) = B ,ordz(hi ◦ f ) ≥ 2} (4≤ i ≤6).

Assume that ordz(t1,2 ◦ f ) ≥ 2 for all z ∈ f −1(A). Since t1,2, r1,2 are linear combinations
of h1 and h2 with nonzero coefficients, we have

E≥2
t ,A,1 = E≥2

t ,A,2,

ordz(r1,2 ◦ f ) ≥ 2 (z∈E≥2
t ,A,1). 1.3.28

For the same reason
E 1

t ,A,1 = E 1
t ,A,2,

which yields
3∑

i=1
min{ordz(hi ◦ f ),3} ≤ 5 (z∈E 1

t ,A,1). 1.3.29

Letting R = {r = r1,2 r4,5 r5,6 r4,6 = 0} be the degenerate quartic R1,2 ∪R4,5 ∪R5,6 ∪R4,6

whose four components pass through A and B , we have

ordz(r◦ f ) ≥ 4 (z∈Et ,A∪Et ,B ). 1.3.30

Furthermore, it follows from 1.3.28 that

ordz(r◦ f ) ≥ 5 (z∈E≥2
t ,A,1).

Using this inequality together with 1.3.23 and 1.3.21, we get

3∑
i=1

min{ordz(hi ◦ f ),3} ≤ 6 = 6 min
1≤i≤3

ordz(hi ◦ f ) ≤ 6

5
ordz(r◦ f ) (z∈E≥2

t ,A,1).

Combining 1.3.29, 1.3.21 and 1.3.30, we receive

3∑
i=1

min{ordz(hi ◦ f ),3} ≤ 5 = 5 min
1≤i≤3

ordz(hi ◦ f ) ≤ 5

4
ordz(r◦ f ) (z∈E 1

t ,A,1).

Since ordz(t j1, j2 ◦ f ) = 1 for all 4 ≤ j1 < j2 ≤ 6, for all z ∈ f −1(B), by similar arguments as
in 1.3.26 and by using 1.3.30, we also have

6∑
i=4

min{ordz(hi ◦ f ),3} ≤ 5 = 5 min
4≤i≤6

ordz(hi ◦ f ) ≤ 5

4
ordz(r◦ f ) (z∈Et ,B ).

By taking the sum on disks and by integrating these three inequalities, we obtain

3∑
i=1

∫ r

1

∑
z∈E≥2

t ,A,1
min{ordz(hi ◦ f ),3}

t
d t ≤ 6

∫ r

1

∑
z∈E≥2

t ,A,1
min1≤i≤3 ordz(hi ◦ f )

t
d t

≤ 6

5

∫ r

1

∑
z∈E≥2

t ,A,1
ordz(r◦ f )

t
d t , 1.3.31

3∑
i=1

∫ r

1

∑
z∈E 1

t ,A,1
min{ordz(hi ◦ f ),3}

t
d t ≤ 5

∫ r

1

∑
z∈E 1

t ,A,1
min1≤i≤3 ordz(hi ◦ f )

t
d t
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≤ 5

4

∫ r

1

∑
z∈E 1

t ,A,1
ordz(r◦ f )

t
d t , 1.3.32

6∑
i=4

∫ r

1

∑
z∈Et ,B min{ordz(hi ◦ f ),3}

t
d t ≤ 5 N f (r,B)

≤ 5

4

∫ r

1

∑
z∈Et ,B ordz(r◦ f )

t
d t . 1.3.33

We then proceed similarly as before:

5T f (r ) ≤
9∑

i=1
N [3]

f (r, Hi )+S f (r )

≤
3∑

i=1
N [3]

f (r, Hi )+
6∑

i=4
N [3]

f (r, Hi )+S f (r )

=
3∑

i=1

∫ r

1

∑
z∈Et ,A min{ordz(hi ◦ f ),3}

t
d t +

6∑
i=4

∫ r

1

∑
z∈Et ,B min{ordz(hi ◦ f ),3}

t
d t +S f (r )

=
3∑

i=1

(∫ r

1

∑
z∈E≥2

t ,A,1
min{ordz(hi ◦ f ),3}

t
d t +

∫ r

1

∑
z∈E 1

t ,A,1
min{ordz(hi ◦ f ),3}

t
d t

)
+

6∑
i=4

∫ r

1

∑
z∈Et ,B min{ordz(hi ◦ f ),3}

t
d t +S f (r )

≤ 6

5

∫ r

1

∑
z∈E≥2

t ,A,1
ordz(r◦ f )

t
d t + 5

4

∫ r

1

∑
z∈E 1

t ,A,1
ordz(r◦ f )

t
d t

+ 5

4

∫ r

1

∑
z∈Et ,B ordz(r◦ f )

t
d t +S f (r )

= 5

4

(∫ r

1

∑
z∈Et ,A ordz(r◦ f )

t
d t +

∫ r

1

∑
z∈Et ,B ordz(r◦ f )

t
d t

)
+

(6

5
− 5

4

)∫ r

1

∑
z∈E≥2

t ,A,1
ordz(r◦ f )

t
d t +S f (r )

≤ 5

4
N f (r,R)− 1

20

∫ r

1

∑
z∈E≥2

t ,A,1
ordz(r◦ f )

t
d t +S f (r )

≤ 5T f (r )− 1

20

∫ r

1

∑
z∈E≥2

t ,A,1
ordz(r◦ f )

t
d t +S f (r ). 1.3.34

This implies ∫ r

1

∑
z∈E≥2

t ,A,1
ordz(r◦ f )

t
d t = S f (r ) 1.3.35

and whence all inequalities in 1.3.34 become equalities modulo S f (r ), which gives

6∑
i=1

N [3]
f (r, Hi ) = 5T f (r )+S f (r ), 1.3.36

3∑
i=1

N [3]
f (r, Hi ) = 5

4

∫ r

1

∑
z∈Et ,A ordz(r◦ f )

t
d t +S f (r ), 1.3.37
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6∑
i=4

N [3]
f (r, Hi ) = 5

4

∫ r

1

∑
z∈Et ,B ordz(r◦ f )

t
d t +S f (r ). 1.3.38

It follows from 1.3.33 and 1.3.38 that

6∑
i=4

N [3]
f (r, Hi ) = 5 N f (r,B)+S f (r ). 1.3.39

Owing to 1.3.35, the two inequalities 1.3.31 become

3∑
i=1

∫ r

1

∑
z∈E≥2

t ,A,1
min{ordz(hi ◦ f ),3}

t
d t = S f (r )

∫ r

1

∑
z∈E≥2

t ,A,1
min1≤i≤3 ordz(hi ◦ f )

t
d t = S f (r ).

Hence
3∑

i=1
N [3]

f (r, Hi ) =
3∑

i=1

∫ r

1

∑
z∈E 1

t ,A,1
min{ordz(hi ◦ f ),3}

t
d t +S f (r ), 1.3.40

N f (r, A) =
∫ r

1

∑
z∈E 1

t ,A,1
min1≤i≤3 ordz(hi ◦ f )

t
d t +S f (r ). 1.3.41

Combining 1.3.32, 1.3.40, 1.3.41, we get

3∑
i=1

N [3]
f (r, Hi ) = 5 N f (r, A)+S f (r ). 1.3.42

The equality 1.3.24 follows from 1.3.36, 1.3.39, 1.3.42.

Case (b3.3) can be treated by similar arguments as for case (b3.2).

Next, we consider case (b3.4). Assume that

ordz(t1,2 ◦ f ) ≥ 2 (z∈ f −1(A)),

ordz(t4,5 ◦ f ) ≥ 2 (z∈ f −1(B)).

By similar argument as in 1.3.28, we have E≥2
t ,A,1 = E≥2

t ,A,2, E≥2
t ,B ,4 = E≥2

t ,B ,5, E 1
t ,A,1 = E 1

t ,A,2,

E 1
t ,B ,4 = E 1

t ,B ,5, which implies

ordz(r1,2 ◦ f ) ≥ 2 (z∈E≥2
t ,A,1), 1.3.43

ordz(r4,5 ◦ f ) ≥ 2 (z∈E≥2
t ,B ,4), 1.3.44

3∑
i=1

min{ordz(hi ◦ f ),3} ≤ 5 (z∈E 1
t ,A,1),

6∑
i=4

min{ordz(hi ◦ f ),3} ≤ 5 (z∈E 1
t ,B ,4).
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Letting S = {s= r12 r4,5 = 0} be the degenerate quadric R1,2 ∪R4,5, we see that

ordz(s◦ f ) = ordz(r1,2 ◦ f )+ordz(r4,5 ◦ f ) ≥ 2 (z∈Et ,A ∪Et ,B ).

Furthermore, by using 1.3.43 and 1.3.44, we have

ordz(s◦ f ) = ordz(r1,2 ◦ f )+ordz(r4,5 ◦ f ) ≥ 3 (z∈E≥2
t ,A,1∪E≥2

t ,B ,4).

Similarly as in the previous case, by using these inequalities together with 1.3.21 and
1.3.23, we receive

3∑
i=1

min{ordz(hi ◦ f ),3} ≤ 6 = 6 min
1≤i≤3

ordz(hi ◦ f ) ≤ 6

3
ordz(s◦ f ) (z∈E≥2

t ,A,1),

3∑
i=1

min{ordz(hi ◦ f ),3} ≤ 5 = 5 min
1≤i≤3

ordz(hi ◦ f ) ≤ 5

2
ordz(s◦ f ) (z∈E 1

t ,A,1),

6∑
i=4

min{ordz(hi ◦ f ),3} ≤ 6 = 6 min
4≤i≤6

ordz(hi ◦ f ) ≤ 6

3
ordz(s◦ f ) (z∈E≥2

t ,B ,4),

6∑
i=4

min{ordz(hi ◦ f ),3} ≤ 5 = 5 min
4≤i≤6

ordz(hi ◦ f ) ≤ 5

2
ordz(s◦ f ) (z∈E 1

t ,B ,4).

By taking the sum on disks and by integrating these four inequalities, we obtain

3∑
i=1

∫ r

1

∑
z∈E≥2

t ,A,1
min{ordz(hi ◦ f ),3}

t
d t ≤ 6

∫ r

1

∑
z∈E≥2

t ,A,1
min1≤i≤3 ordz(hi ◦ f )

t
d t

≤ 2
∫ r

1

∑
z∈E≥2

t ,A,1
ordz(s◦ f )

t
d t ,

3∑
i=1

∫ r

1

∑
z∈E 1

t ,A,1
min{ordz(hi ◦ f ),3}

t
d t ≤ 5

∫ r

1

∑
z∈E 1

t ,A,1
min1≤i≤3 ordz(hi ◦ f )

t
d t

≤ 5

2

∫ r

1

∑
z∈E 1

t ,A,1
ordz(s◦ f )

t
d t ,

6∑
i=4

∫ r

1

∑
z∈E≥2

t ,B ,4
min{ordz(hi ◦ f ),3}

t
d t ≤ 6

∫ r

1

∑
z∈E≥2

t ,B ,4
min4≤i≤6 ordz(hi ◦ f )

t
d t

≤ 2
∫ r

1

∑
z∈E≥2

t ,B ,4
ordz(s◦ f )

t
d t ,

6∑
i=4

∫ r

1

∑
z∈E 1

t ,B ,4
min{ordz(hi ◦ f ),3}

t
d t ≤ 5

∫ r

1

∑
z∈E 1

t ,B ,4
min4≤i≤6 ordz(hi ◦ f )

t
d t

≤ 5

2

∫ r

1

∑
z∈E 1

t ,B ,4
ordz(s◦ f )

t
d t .
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Now, we proceed similarly as above

5T f (r ) ≤
9∑

i=1
N [3]

f (r, Hi )+S f (r )

=
3∑

i=1

∫ r

1

∑
z∈Et ,A min{ordz(hi ◦ f ),3}

t
d t +

6∑
i=4

∫ r

1

∑
z∈Et ,B min{ordz(hi ◦ f ),3}

t
d t +S f (r )

=
3∑

i=1

(∫ r

1

∑
z∈E 1

t ,A,1
min{ordz(hi ◦ f ),3}

t
d t +

∫ r

1

∑
z∈E≥2

t ,A,1
min{ordz(hi ◦ f ),3}

t
d t

)
+

6∑
i=4

(∫ r

1

∑
z∈E 1

t ,B ,1
min{ordz(hi ◦ f ),3}

t
d t +

∫ r

1

∑
z∈E≥2

t ,B ,4
min{ordz(hi ◦ f ),3}

t
d t

)
+S f (r )

≤ 5

2

(∫ r

1

∑
z∈Et ,A ordz(s◦ f )

t
d t +

∫ r

1

∑
z∈Et ,B ordz(s◦ f )

t
d t

)
+

(
2− 5

2

)(∫ r

1

∑
z∈E≥2

t ,A,1
ordz(s◦ f )

t
d t +

∫ r

1

∑
z∈E≥2

t ,B ,4
ordz(s◦ f )

t
d t

)
+S f (r )

≤ 5

2
N f (r,S )− 1

2

(∫ r

1

∑
z∈E≥2

t ,A,1
ordz(s◦ f )

t
d t +

∫ r

1

∑
z∈E≥2

t ,B ,4
ordz(s◦ f )

t
d t

)
+S f (r )

≤ 5T f (r )− 1

2

(∫ r

1

∑
z∈E≥2

t ,A,1
ordz(s◦ f )

t
d t +

∫ r

1

∑
z∈E≥2

t ,B ,4
ordz(s◦ f )

t
d t

)
+S f (r ).

This implies∫ r

1

∑
z∈E≥2

t ,A,1
ordz(s◦ f )

t
d t = S f (r ),∫ r

1

∑
z∈E≥2

t ,B ,4
ordz(s◦ f )

t
d t = S f (r ),

6∑
i=1

N [3]
f (r, Hi ) = 5T f (r )+S f (r ),

3∑
i=1

N [3]
f (r, Hi ) = 5

2

∫ r

1

∑
z∈Et ,A ordz(r◦ f )

t
d t +S f (r ),

6∑
i=4

N [3]
f (r, Hi ) = 5

2

∫ r

1

∑
z∈Et ,B ordz(r◦ f )

t
d t +S f (r ).

By proceeding similarly as in 1.3.42, we receive

3∑
i=1

N [3]
f (r, Hi ) = 5 N f (r, A)+S f (r ),

6∑
i=4

N [3]
f (r, Hi ) = 5 N f (r,B)+S f (r ).

Hence, the equality 1.3.24 also holds in this case. Claim 1.3.1 is thus proved.

Next, since f is of the form 1.3.20, one can find a plane K = {k= 0} passing through
A and C such that

ordz(k◦ f ) ≥ 2 (z∈ f −1(A)).
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Let Bi = {bi = 0} be the plane containing the two lines AB , Hi ∩K (1 ≤ i ≤ 3). Since bi

is a linear combination of hi and k with nonzero coefficients, we have

ordz(bi ◦ f ) ≥ 2 (z∈E≥2
t ,A,i ),

which yields
3∑

i=1
ordz(bi ◦ f ) ≥ 4 (z∈∪3

i=1 E≥2
t ,A,i ). 1.3.45

Let C = {c = b1b2b3 = 0} be the degenerate cubic ∪1≤i≤3 Bi . It follows from 1.3.21

and 1.3.45 that

min
1≤i≤3

ordz(hi ◦ f ) = 1 ≤ 1

4

3∑
i=1

ordz(bi ◦ f ) = 1

4
ordz(c◦ f ) (z∈∪3

i=1 E≥2
t ,A,i ),

min
1≤i≤3

ordz(hi ◦ f ) = 1 ≤ 1

3

3∑
i=1

ordz(bi ◦ f ) = 1

3
ordz(c◦ f ) (z∈Et ,A\∪3

i=1 E≥2
t ,A,i ),

min
4≤i≤6

ordz(hi ◦ f ) = 1 ≤ 1

3

3∑
i=1

ordz(bi ◦ f ) = 1

3
ordz(c◦ f ) (z∈Et ,B ).

By taking the sum on disks and by integrating these inequalities,∫ r

1

∑
z∈∪3

i=1E≥2
t ,A,i

min1≤i≤3 ordz(hi ◦ f )

t
d t ≤ 1

4

∫ r

1

∑
z∈∪3

i=1E≥2
t ,A,i

ordz(c◦ f )

t
d t ,∫ r

1

∑
z∈Et ,A\∪3

i=1E≥2
t ,A,i

min1≤i≤3 ordz(hi ◦ f )

t
d t ≤ 1

3

∫ r

1

∑
z∈Et ,A\∪3

i=1E≥2
t ,A,i

ordz(c◦ f )

t
d t ,

N f (r,B) =
∫ r

1

∑
z∈Et ,B min4≤i≤6 ordz(hi ◦ f )

t
d t ≤ 1

3

∫ r

1

∑
z∈Et ,B ordz(c◦ f )

t
d t .

By using these inequalities together with 1.3.24, we receive

5T f (r ) = 5 N f (r, A)+5 N f (r,B)+S f (r )

= 5
(∫ r

1

∑
z∈∪3

i=1E≥2
t ,A,i

min1≤i≤3 ordz(hi ◦ f )

t
d t +

∫ r

1

∑
z∈Et ,A\∪3

i=1E≥2
t ,A,i

min1≤i≤3 ordz(hi ◦ f )

t
d t

)
+ 5

∫ r

1

∑
z∈Et ,B min4≤i≤6 ordz(hi ◦ f )

t
d t +S f (r )

≤ 5

3

(∫ r

1

∑
z∈Et ,A ordz(c◦ f )

t
d t +

∫ r

1

∑
z∈Et ,B ordz(c◦ f )

t
d t

)
+

(5

4
− 5

3

)∫ r

1

∑
z∈∪3

i=1E≥2
t ,A,i

ordz(c◦ f )

t
d t +S f (r )

≤ 5

3
N f (r,C )− 5

12

∫ r

1

∑
z∈∪3

i=1E≥2
t ,A,i

ordz(c◦ f )

t
d t +S f (r )

≤ 5T f (r )− 5

12

∫ r

1

∑
z∈∪3

i=1E≥2
t ,A,i

ordz(c◦ f )

t
d t +S f (r ).

This implies ∫ r

1

∑
z∈∪3

i=1E≥2
t ,A,i

ordz(c◦ f )

t
d t = S f (r ). 1.3.46
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By using 1.3.23 and 1.3.45, we get

3∑
i=1

min{ordz(hi ◦ f ),3} ≤ 6 ≤ 3

2
ordz(c◦ f ) (z∈∪3

i=1E≥2
t ,A,i ),

which yields∫ r

1

∑
z∈∪3

i=1E≥2
t ,A,i

min1≤i≤3 ordz(hi ◦ f )

t
d t ≤ 3

2

∫ r

1

∑
z∈∪3

i=1E≥2
t ,A,i

ordz(c◦ f )

t
d t

[Use 1.3.46] = S f (r ). 1.3.47

Moreover, we also have

3∑
i=1

min{ordz(hi ◦ f ),3} = 3 = 3 min
1≤i≤3

ordz(hi ◦ f ) (z∈Et ,A \∪3
i=1E≥2

t ,A,i ),

which implies, by integrating, that

3∑
i=1

∫ r

1

∑
z∈Et ,A\∪3

i=1E≥2
t ,A,i

min{ordz(hi ◦ f ),3}

t
d t ≤ 3

∫ r

1

∑
z∈Et ,A\∪3

i=1E≥2
t ,A,i

min1≤i≤3 ordz(hi ◦ f )

t
d t .

1.3.48

By combining 1.3.47 and 1.3.48, we get

3∑
i=1

N [3]
f (r, Hi ) =

3∑
i=1

∫ r

1

∑
z∈Et ,A min{ordz(hi ◦ f ),3}

t
d t

=
3∑

i=1

(∫ r

1

∑
z∈Et ,A\∪3

i=1E≥2
t ,A,i

min{ordz(hi ◦ f ),3}

t
d t

+
∫ r

1

∑
z∈∪3

i=1E≥2
t ,A,i

min{ordz(hi ◦ f ),3}

t
d t

)
+S f (r )

≤ 3
∫ r

1

∑
z∈Et ,A\∪3

i=1E≥2
t ,A,i

min1≤i≤3 ordz(hi ◦ f )

t
d t +S f (r )

≤ 3 N f (r, A)+S f (r ).

By symmetry, we also have

6∑
i=4

N [3]
f (r, Hi ) ≤ 3 N f (r,B)+S f (r ).

Hence we can rewrite 1.3.27 to get a contradiction:

5T f (r ) ≤
9∑

i=1
N [3]

f (r, Hi )+S f (r )

≤ 3 N f (r, A)+3 N f (r,B)+S f (r )

≤ 3 N f (r,B)+S f (r )

≤ 3T f (r )+S f (r ).
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In P4(C), by the generic condition for the family of hyperplanes {Hi }1≤i≤q , when
q ≥ 10, we see that, for all three disjoint subsets I , J , K of {1, . . . , q} with |I | ≥ 2, |J | ≥ 2,
|I |+ |J | = 6, |K | = 4, the diagonal hyperplane HI J does not contain the point ∩k∈K Hk .

Lemma 1.3.3. In P4(C), all complements of the form 1.3.2 are hyperbolic if m = 1.

Proof. We can assume that A1,4 is a set consisting of one element in(∪1≤i1<i2≤10 (Hi1∩Hi2 )∗
) ⋃ (∪1≤i1<i2<i3≤10 Hi1∩Hi2∩Hi3

)∗⋃ (∪1≤i1<i2<i3<i4≤10 Hi1∩Hi2∩Hi3∩Hi4

)
.

Suppose to the contrary that there is an entire curve f : C→ P4(C) \
(∪10

i=1 Hi \ A1,4
)
. If

A1,4 is not a set of a point, then f avoids at least seven hyperplanes. By Theorem 1.2.4,
its image is contained in a line L and we can continue to analyze the position of L with
respect to ∪10

i=1Hi \ A1,4 to get a contradiction. Consider the remaining case where A1,4

consists of a point, say ∩4
i=1 Hi . By Theorem 1.2.3, the curve f lands in some diagonal

hyperplane of the family {Hi }5≤i≤10, which does not contain the point ∩4
i=1Hi by the

generic condition. Hence, f must avoid all Hi (1 ≤ i ≤ 10), which is impossible by
Theorem 1.2.5.

1.3.1 Stability of intersections

We will also invoke the following known complex analysis fact.

Stability of intersections. Let X be a complex manifold and let H ⊂ X be an analytic
hypersurface. Suppose that a sequence ( fn) of entire curves in X converges toward an
entire curve f . If f (C) is not contained in H, then we have

f (C)∩H ⊂ lim fn(C)∩H .

1.4 Proof of the Main Theorem

We keep the notation of the previous section. Let S be a hypersurface of degree
2n, which is in general position with respect to the family {Hi }1≤i≤2n . We would like to
determine what conditions S should satisfy for Σε to be hyperbolic. Suppose that Σεk

is not hyperbolic for a sequence (εk ) converging to 0. Then we can find entire curves
fεk : C→ Σεk . By the Brody lemma, after reparameterization and extraction, we may
assume that the sequence ( fεk ) converges to an entire curve f : C→∪2n

i=1Hi . The curve
f (C) lands inside some hyperplane Hi . Moreover, it cannot land inside any subspace
of dimension 1 (a line). Indeed, if f (C) ⊂ ∩i∈I Hi for some subset I of the index set
Q = {1, . . . ,2n} having cardinality n−1, then for all j ∈ Q \ I , by stability of intersections,
one has

f (C)∩H j ⊂ lim fεk (C)∩H j ⊂ limΣεk ∩H j ⊂ S ∩H j .

Thus f (C) and H j have empty intersection by the general position. Hence the curve
f (C) lands in

∩i∈I Hi \
(∪ j∈Q\I H j

)
.



36 PROOF OF THE MAIN THEOREM

This is a contradiction, because the complement of n + 1 (n ≥ 3) points in a line is
hyperbolic by Picard’s theorem.

Now, let I be the largest subset of Q such that the curve f (C) lands in ∩i∈I Hi . We
have |I | ≤ n −2. By stability of intersections, f (C)∩H j is contained in S for all l ∈ Q \ I .
Therefore the curve f (C) lands in

∩i∈I Hi \
(∪ j∈Q\I H j \ S

)
. 1.4.1

So, the problem reduces to finding a hypersurface S of degree 2n such that all comple-
ments of the form 1.4.1 are hyperbolic, where I is a subset of Q of cardinality at most
n −2. For example when n = 3 ([Duv14]), we need to find a sextic curve S such that all
complements of the form Hi \

(∪ j 6=i H j \ S
)

are hyperbolic. In this case, we have the
complement of five lines in the hyperplane Hi on which all points of intersection with
S are deleted.

We will construct such S by deformation, step by step. For 2 ≤ l ≤ n − 1, let ∆l be a
finite collection of subspaces of dimension n− l , in the sense of section 1.3. Let Dl 6∈∆l

be another subspace of dimension n − l , defined as Dl =∩i∈IDl
Hi . For a hypersurface

S = {s = 0} in general position with respect to the family {Hi }1≤i≤2n and ε 6= 0, we set

Sε =
{
εs +Πi 6∈IDl

hni
i = 0

}
,

where ni ≥ 1 are chosen (freely) so that
∑

i 6∈IDl
ni = 2n. It is not hard to see that the

hypersurface Sε is also in general position with respect to the family {Hi }1≤i≤2n . We de-
note by∆l the family of all subspaces of dimension n−l (2 ≤ l ≤ n) with the convention
∆n =;.

Lemma 1.4.1. Assume that all complements of the form

∩i∈I Hi \
(∪ j∈J H j \ (((∆l ∪∆l+1)∩S)∪ Am,n−|I |)

)
1.4.2

are hyperbolic where I , J are two disjoint subsets of {1, . . . ,2n} such that |I | ≤ n −2, |J |+
2|I | ≥ 2n+1 and m ≤ |J |+2|I |−(2n+1). Here, Am,n−|I | is a set of at most m star-subspaces
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coming from the family of hyperplanes {∩i∈I Hi ∩H j } j∈J in ∩i∈I Hi
∼= Pn−|I |(C). Then all

complements of the form

∩i∈I Hi \
(∪ j∈J H j \ (((∆l ∪Dl ∪∆l+1)∩Sε)∪ Am,n−|I |)

)
1.4.3

are also hyperbolic for sufficiently small ε 6= 0.

Proof. By the definition of Sε, we see that Sε ∩
(∩m∈M Hm

) = S ∩ (∩m∈M Hm
)

when
M ∩ (Q \ IDl ) 6= ;, hence

(∆l ∪Dl ∪∆l+1)∩Sε = ((∆l ∪∆l+1)∩S)∪ (Dl ∩Sε).

When |I | ≥ l , using this, we observe that two complements 1.4.2, 1.4.3 coincide.

Assume therefore |I | ≤ l −1. Suppose by contradiction that there exists a sequence
of entire curves ( fεk (C))k , εk → 0 contained in the complement

∩i∈I Hi \
(∪ j∈J H j \ (((∆l ∪Dl ∪∆l+1)∩Sεk )∪ Am,n−|I |)

)
.

By the Brody Lemma, we may assume that ( fεk ) converges to an entire curve f (C) ⊂
∩i∈I Hi . Our aim is to prove that the curve f (C) lands in some complement of the form
1.4.2. Let ∩k∈K Hk be the smallest subspace containing f (C). It is clear that K ⊃ I . Take
an index j in J \ K . By stability of intersections, one has

f (C)∩H j ⊂ lim fεk (C)∩H j

⊂ ((∆l ∪∆l+1)∩S)∪ Am,n−|I |∪ lim(Dl ∩Sεk ). 1.4.4

If the index j does not belong to IDl , then H j ∩Dl ∩Sεk ⊂∆l+1 ∩S. It follows from 1.4.4

that
f (C)∩H j ⊂ ((∆l ∪∆l+1)∩S)∪ Am,n−|I |. 1.4.5

If the index j belongs to IDl , noting that lim(Dl ∩Sεk ) is contained in Dl ∩ (∪i 6∈IDl
Hi ),

again from 1.4.4, one has

f (C)∩H j ⊂ ((∆l ∪∆l+1)∩S)∪ Am,n−|I |∪ (Dl ∩ (∪i 6∈IDl
Hi )). 1.4.6

Assume first that K = I . We claim that 1.4.5 also holds when the index j ∈ J \ I be-
longing to IDl . Indeed, for the supplementary part in 1.4.6, we have

f (C)∩H j ∩
(
Dl ∪i 6∈IDl

Hi
)⊂∪i 6∈IDl

( f (C)∩H j ∩Hi ),

so that 1.4.5 applies here to all i 6∈ IDl . Hence, the curve f (C) lands inside

∩i∈I Hi \
(∪ j∈J H j \ (((∆l ∪∆l+1)∩S)∪ Am,n−|I |)

)
,

contradicting the hypothesis.

Assume now that I is a proper subset of K . Let us set

Am,n−|I |,K = {X ∩ (∩k∈K Hk )|X ∈ Am,n−|I |}.
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This set consists of star-subspaces of ∩k∈K Hk
∼= Pn−|K |(C). Let Bm,K be the subset of

Am,n−|I |,K containing all star-subspaces of dimension n−|K |−1 (i.e., of codimension 1
in ∩k∈K Hk ), and let Cm,K be the remaining part. A star-subspace in Bm,K is of the form
(∩k∈K Hk ∩H j )∗ for some index j ∈ J \ K . Then let R denote the set of such indices j , so
that

|R| = |Bm,K |.
We consider two cases separately, depending on the dimension of the subspace Y =
∩k∈K Hk ∩Dl .

Case 1. Y is a subspace of dimension n−|K |−1. In this case, Y is of the form (∩k∈K Hk )∩
Hy for some index y in IDl . It follows from 1.4.4, 1.4.5, 1.4.6 that the curve f (C) lands
inside the set

∩k∈K Hk \
(∪ j∈(J\K )\(R∪{y}) H j \ (((∆l ∪∆l+1)∩S)∪Cm,K )

)
.

Now we need to show that this set is of the form 1.4.2. First, we verify the corre-
sponding required inequality between cardinalities

|(J \ K ) \ (R ∪ {y})| ≥ |J \ K |− |Bm,K |−1

≥ |J |− |J ∩K |− (|J |+2|I |−2n −1−|Cm,K |
)−1

= 2(n −|K |)+|Cm,K |+2|K \ I |− |J ∩K |
≥ 2(n −|K |)+1+|Cm,K |,

where the last inequality holds because I and J are two disjoint sets and I is a
proper subset of K . Secondly, we verify that the set K is of cardinality at most
n − 2. Indeed, if |K | = n − 1, then since S is in general position with respect to
{Hi }1≤i≤2n , we see that

∩k∈K Hk \
(∪ j∈(J\K )\(R∪{y})H j \(((∆l∪∆l+1)∩S)∪Cm,K )

)=∩k∈K Hk \
(∪ j∈(J\K )\(R∪{y})H j \Cm,K

)
.

Owing to the inequality |(J \ K ) \ (R ∪ {y})| ≥ 3 + |Cm,K |, the curve f lands in a
complement of at least three points in a line. By Picard’s theorem, f is constant,
which is a contradiction.

Case 2. Y is a subspace of dimension at most n−|K |−2. In this case, the curve f (C) lands
inside

∩k∈K Hk \
(∪ j∈(J\K )\R H j \ (((∆l ∪∆l+1)∩S)∪Cm,K ∪Y ∗)

)
.

This set is of the form 1.4.2 since

|{ j ∈ (J \ K ) \ R}| ≥ 2(n −|K |)+1+|Cm,K ∪Y ∗|,

which also implies |K | ≤ n −2 by similar argument as in Case 1.

The lemma is thus proved.

End of proof of the Main Theorem. We now come back to the proof of the Main Theo-
rem. Keep the notation as in Lemma 1.4.1. We claim that {∩i∈I Hi ∩ H j } j∈J is also a
family of generic hyperplanes in the projective space ∩i∈I Hi

∼=Pn−|I |(C). Indeed, let I ,
J , J1, . . . ,Jk be disjoint subsets of J such that |I |, |Ji | ≥ 2, |I | + |Ji | = (n − |I |)+2,
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1 ≤ i ≤ k and let {i1, . . . , il } be a subset of I . Let us set I = I ∪I ; then the intersection
between the |J | hyperplanes H j , j ∈ J , the k diagonal hyperplanes HIJ1 , . . . , HIJk ,
and the |I | + l hyperplanes Hi (i ∈ I ), Hi1 , . . . , Hil is a linear subspace of codimension
min{k+|I |+l , |I|}+|J |, with the convention that when min{k+|I |+l , |I|}+|J | > n, this
intersection is empty. Since

min{k +|I |+ l , |I|}+|J | = min{k + l , |I |}+|I |+ |J |
we deduce that in the projective space ∩i∈I Hi , the intersection between the |J | hyper-
planes H j , j ∈ J , the k diagonal hyperplanes HIJ1 , . . . , HIJk , and the l hyperplanes
Hi1 , . . . , Hil is a linear subspace of codimension min{k + l , |I |}+|J |, with the conven-
tion that when min{k + l , |I |}+|J | > n −|I |, this intersection is empty.

Starting point of the process by deformation: We start with the hyperbolicity of all
complements of the forms

∩i∈I Hi \
(∪ j∈J H j \ Am,n−|I |

)
,

where I , J , Am,n−|I | are as in Lemma 1.4.1. More precisely,

• when n = 3, we start with the hyperbolicity of all complements Hi \
(∪ j 6=i H j

)
,

which follows from Theorem 1.2.5 in P2(C);

• when n = 4, we start with the hyperbolicity of all complements

Hi \
(∪ j 6=i H j

)
,

∩i∈I Hi \
(∪ j∈J H j \ A1,2

)
(|I |=2,5+|A1,2|≤|J |≤6),

which follows from Theorem 1.2.5 in P3(C) and Lemma 1.3.1 for m = 1;

• when n = 5, we start with the hyperbolicity of all complements

Hi \
(∪ j 6=i H j

)
,

∩i∈I Hi \
(∪ j∈J H j \ A1,3

)
(|I |=2,7+|A1,3|≤|J |≤8),

∩i∈I Hi \
(∪ j∈J H j \ A2,2

)
(|I |=3,5+|A2,2|≤|J |≤7),

which follows from Theorem 1.2.5 in P4(C), Lemma 1.3.2 for m = 1, and
Lemma 1.3.1 for m = 2;

• when n = 6, we start with the hyperbolicity of all complements

Hi \
(∪ j 6=i H j

)
,

∩i∈I Hi \
(∪ j∈J H j \ A1,4

)
(|I |=2,9+|A1,4|≤|J |≤10),

∩i∈I Hi \
(∪ j∈J H j \ A2,3

)
(|I |=3,7+|A2,3|≤|J |≤9),

∩i∈I Hi \
(∪ j∈J H j \ A3,2

)
(|I |=4,5+|A3,2|≤|J |≤8),

which follows from Theorem 1.2.5 in P5(C), Lemma 1.3.3 for m = 1, Lemma 1.3.2
for m = 2, and Lemma 1.3.1 for m = 3.

Details of the process by deformation: In the first step, we apply inductively
Lemma 1.4.1 for l = n − 1 and get at the end a hypersurface S1 such that all comple-
ments of the forms

∩i∈I Hi \
(∪ j∈J H j \ (S1 ∪ Am,n−|I |)

)
(|I |=n−2),
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∩i∈I Hi \
(∪ j∈J H j \ ((∆n−1 ∩S1)∪ Am,n−|I |)

)
(|I |≤n−3)

are hyperbolic. Considering this as the starting point of the second step, we apply in-
ductively Lemma 1.4.1 for l = n −2. Continuing this process, we get at the end of the
(n −2)th step a hypersurface S = Sn−2 satisfying the required properties.

1.5 Some discussion

Actually, our method works for a family of at least 2n generic hyperplanes in Pn(C).
We hope that the Main Theorem is true for all n ≥ 3. As we saw above, the problem
reduces to proving the following conjecture.

Conjecture. All complements of the form 1.3.2 are hyperbolic.

We already know it to be true for n = 2, since Lemma 1.3.1 holds generally, without
restriction on m.

Lemma 1.5.1. In P2(C), all complements of the form 1.3.2 are hyperbolic

Proof. Assume now m ≥ 4 and Am,2 = {A1, . . . , Am}, where Ai = Hi1 ∩Hi2 (1 ≤ i ≤ m). We
denote by I the index set {i j : 1 ≤ i ≤ m,1 ≤ j ≤ 2}. Suppose to the contrary that there
exists an entire curve f : C → P2(C) \ (∪5+m

i=1 Hi \ Am,2). By the generic condition, we
can assume that f is linearly nondegenerate. By similar arguments as in Lemma 1.3.1
(cf. 1.3.6), we have ∑

i∈I
N [2]

f (r, Hi ) ≤ 3
m∑

i=1
N f (r, Ai ).

Let Cm = {cm = 0} be an algebraic curve in P2(C) of degree d passing through all points
in Am,2 with multiplicity at least k which does not contain the curve f (C). Starting from
the inequality

min
1≤ j≤2

ordz(hi j ◦ f ) ≤ 1

k
ordz(cm ◦ f ) (z∈ f −1(Ai ))

and proceeding as in 1.3.8, we get

m∑
i=1

N f (r, Ai ) ≤ 1

k
N f (r,Cm).

We may then proceed similarly as in 1.3.9

(m +2)T f (r ) ≤
5+m∑
i=1

N [2]
f (r, Hi )+S f (r )

≤ 3
m∑

i=1
N f (r, Ai )+S f (r )

≤ 3

k
N f (r,Cm)+S f (r )

≤ 3d

k
T f (r )+S f (r ). 1.5.1

When m ≥ 5, the following claim yields a concluding contradiction.
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Claim 1.5.1. If m ≥ 5, we can find some curve Cm which does not contain f (C) such that

k > 3d

m +2
. 1.5.2

Indeed, the degree of freedom for the choice of a curve of degree d is

(d +1)(d +2)

2
−1.

We want Cm to pass through all points in Am,2 with multiplicity at least k. The number
of equations (with the coefficients of Cm as unknowns) for this is not greater than

m
k(k +1)

2
.

Thus, for the existence of Cm , it is necessary that

(d +1)(d +2)

2
−1 > m

k(k +1)

2
. 1.5.3

We try to find two natural numbers k,d satisfying 1.5.2 and 1.5.3. This can be done by
choosing d = (m +2)M and k = 3M +1 for large enough M . Using the remaining free-
dom in the choice of Cm , we can choose it not containing f (C), which proves the claim.

Next, we consider the remaining case where m = 4.

A3

E1 jHiAi2
Ai1

Ai3

Ai4

A1

A2

A4
H1 j

If there exists a collinear subset {Ai1 , Ai2 , Ai3 } of A4,2, then by the generic condition, it
must be contained in some line Hi . Let Ai4 be the remaining point of the set A4,2 and let
C4 be the degenerate quintic consisting of the three lines Ai j Ai4 (1 ≤ j ≤ 3) and of the
line Hi with multiplicity 2. Since C4 passes through all points in A4,2 with multiplicity
at least 3, the inequality 1.5.2 is satisfied. By using 1.5.1, we get a contradiction.

Now we assume that any subset of A4,2 containing three points is not collinear. Let
Ei j = {ei j = 0} (1 ≤ i ≤ 4, 1 ≤ j ≤ 2) be the eight conics passing through all points of
A4,2, tangent to the line Hi j at the point Ai (1 ≤ i ≤ 4, 1 ≤ j ≤ 2). Let E = {e = 0} be the
degenerate curve of degree 16 consisting of all these Ei j . We claim that f does not land
in E . Otherwise, it lands in some conic Ei j . Since the number of intersection points

between Ei j and ∪9
i=1 Hi \ A4,2 is > 3 and since any complement of three distinct points

in an irreducible curve is hyperbolic, f must be constant, which is a contradiction.
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Letting z be a point in f −1(Ai ), we have

ordz(ei j ◦ f ) ≥ 1 (1≤ i ≤4,1≤ j ≤2).

By the construction of Ei j , if ordz(hi j ◦ f ) ≥ 2 for some 1 ≤ j ≤ 2, then we also have
ordz(ei j ◦ f ) ≥ 2. Furthermore, if ordz(hi j ◦ f ) ≥ 2 for all 1 ≤ j ≤ 2, then ordz(ei j ◦ f ) ≥ 2
for all 1 ≤ i ≤ 4, 1 ≤ i ≤ 2. Thus, the following inequality holds:

min{ordz(hi1 )◦ f ,2}+min{ordz(hi2 )◦ f ,2} ≤ 1

3

4∑
i=1

2∑
j=1

ordz(ei j ◦ f )

= 1

3
ordz(e◦ f ) (z∈ f −1(Ai )).

This implies ∑
i∈I

N [2]
f (r, Hi ) ≤ 1

3
N f (r,E ).

We proceed similarly as before to derive a contradiction

6T f (r ) ≤
9∑

i=1
N [2]

f (r, Hi )+S f (r )

≤ 1

3
N f (r,E )+S f (r )

≤ 16

3
T f (r )+S f (r ).

Lemma 1.5.1 is thus proved.

1.6 Examples of hyperbolic hypersurfaces in arbitrary
dimension

The first examples of hyperbolic hypersurfaces in any dimension n − 1 ≥ 3 were
discovered by Masuda and Noguchi [MN96], with high degree. Improving this result,
such examples with lower degree asymptotic were given by Siu and Yeung [SY97] with
d(n) = 16(n −1)2, and by Shiffman and Zaidenberg [SZ02b] with d(n) = 4(n −1)2.

Adapting the technique in the previous part, we improve the result of Shiffman and
Zaidenberg [SZ02b] by proving that a small deformation of a union of q ≥ ( n+2

2 )2 hy-
perplanes in general position in Pn(C) is hyperbolic.

Theorem II. Let {Hi }1≤i≤q be a family of q ≥ ( n+2
2 )2 hyperplanes in general position in

Pn(C), where Hi = {hi = 0}. Then there exists a hypersurface S = {s = 0} of degree q in
general position with respect to {Hi }1≤i≤q such that the hypersurface

Σε =
{
εs +Πq

i=1hi = 0
}

is hyperbolic for sufficiently small complex ε 6= 0.
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By similar arguments as in the first part, the problem reduces to finding a hyper-
surface S of degree q such that all complements of the form

∩i∈I Hi \
(∪ j∈Q\I H j \ S

)
. 1.6.1

are hyperbolic, where I is an arbitrary subset of Q having cardinality at most n −2.

Starting point of the deformation process. Let {Hi }1≤i≤q be a family of hyper-
planes in general position in Pn(C). For some integer 0 ≤ k ≤ n − 1 and some subset
Ik = {i1, . . . , in−k } of the index set {1, . . . , q} having cardinality n −k, the linear subspace
Pk,Ik = ∩i∈Ik Hi ' Pk (C) will be called a subspace of dimension k. We will denote by
P∗

k,Ik
the complement Pk,Ik \

(∪i 6∈Ik Hi
)
, which we will call a star-subspace of dimension

k. The process of constructing S by deformation will start with the following result,
which is an application of Theorem 1.2.5.

Starting Lemma. Let {Hi }1≤i≤q be a family of q ≥ ( n+2
2 )2 hyperplanes in general position

in Pn(C). Let I and J be two disjoint subsets of the index set {1, . . . , q} such that 1 ≤ |I | ≤
n −2, and |J | = q +m +1−2|I | with some 0 ≤ m ≤ |I |−1. Then all complements of the
form

∩i∈I Hi \
(∪ j∈J H j \ Am,n−|I |

)
1.6.2

are hyperbolic, where Am,n−|I | is a set of at most m star-subspaces coming from the family
of hyperplanes {∩i∈I Hi ∩ H j } j∈J in the (n − |I |)-dimensional projective space ∩i∈I Hi

∼=
Pn−|I |(C).

Proof. Suppose on the contrary that there exists an entire curve f :C→∩i∈I Hi \
(∪ j∈J

H j \ Am,n−|I |
)
. Since each star-subspace in Am,n−|I | is constructed from at most n −|I |

hyperplanes in the family {∩i∈I Hi ∩H j } j∈J , the curve f must avoid completely at least
|J |−m(n −|I |) hyperplanes in the projective space ∩i∈I Hi

∼= Pn−|I |(C). By the elemen-
tary estimate

|J |−m(n −|I |) = q +1−2|I |−m(n −|I |−1)

≥ 2(n −|I |)+1+
[(n +2

2

)2
−2n − (|I |−1)(n −|I |−1)

]
≥ 2(n −|I |)+1,

and by using Theorem 1.2.5, we derive a contradiction.

Deformation lemma. For 2 ≤ l ≤ n −1, let ∆l be a finite collection of subspaces of
dimension n−l coming from the family {Hi }1≤i≤q , possibly with∆l =;, and let Dl 6∈∆l

be another subspace of dimension n − l , defined as Dl = ∩i∈IDl
Hi . For an arbitrary

hypersurface S = {s = 0} in general position with respect to the family {Hi }1≤i≤q and for
ε 6= 0, we set

Sε =
{
εs +Πi 6∈IDl

hni
i = 0

}
,

where ni ≥ 1 are chosen (freely) so that
∑

i 6∈IDl
ni = q . Then the hypersurface Sε is also in

general position with respect to {Hi }1≤i≤q . We denote by ∆l the family of all subspaces

of dimension n − l (2 ≤ l ≤ n), with the convention ∆n =;. We shall apply inductively
the following lemma.
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Lemma 1.6.1. Assume that all complements of the form

∩i∈I Hi \
(∪ j∈J H j \ (((∆l ∪∆l+1)∩S)∪ Am,n−|I |)

)
1.6.3

are hyperbolic where I and J are two disjoint subsets of the index set {1, . . . , q} such that
1 ≤ |I | ≤ n−2, and |J | = q+m+1−2|I | with some 0 ≤ m ≤ |I |−1, and where Am,n−|I | is a
set of at most m star-subspaces coming from the family of hyperplanes {∩i∈I Hi ∩H j } j∈J

in ∩i∈I Hi
∼=Pn−|I |(C). Then all complements of the form

∩i∈I Hi \
(∪ j∈J H j \ (((∆l ∪Dl ∪∆l+1)∩Sε)∪ Am,n−|I |)

)
1.6.4

are also hyperbolic for sufficiently small ε 6= 0.

Proof. By the definition of Sε, we see that Sε ∩
(∩m∈M Hm

) = S ∩ (∩m∈M Hm
)

when
M ∩ (Q \ IDl ) 6= ;, hence

(∆l ∪Dl ∪∆l+1)∩Sε = ((∆l ∪∆l+1)∩S)∪ (Dl ∩Sε).

When |I | ≥ l , using this, we observe that the two complements 1.6.3, 1.6.4 coincide.

Assume therefore |I | ≤ l −1. Suppose by contradiction that there exists a sequence
of entire curves fεk (C), εk → 0, contained in the complement 1.6.4 for ε = εk . By the
Brody Lemma, we may assume that ( fεk ) converges to an entire curve f (C) ⊂ ∩i∈I Hi .
We are going to prove that the curve f (C) lands in some complement of the form 1.6.3.

Let ∩k∈K Hk be the smallest subspace containing f (C), so that I is a subset of K .
Take an index j in J \ K . By stability of intersections, we have

f (C)∩H j ⊂ lim fεk (C)∩H j

⊂ ((∆l ∪∆l+1)∩S)∪ Am,n−|I |∪ lim(Dl ∩Sεk ). 1.6.5

If the index j does not belong to IDl , then H j ∩Dl ∩Sεk ⊂∆l+1 ∩S. It follows from 1.6.5

that
f (C)∩H j ⊂ ((∆l ∪∆l+1)∩S)∪ Am,n−|I |. 1.6.6

If the index j belongs to IDl , noting that lim(Dl ∩Sεk ) is contained in Dl ∩ (∪i 6∈IDl
Hi ),

hence from 1.6.5

f (C)∩H j ⊂ ((∆l ∪∆l+1)∩S)∪ Am,n−|I |∪ (Dl ∩ (∪i 6∈IDl
Hi )). 1.6.7

Assume first that K = I . We claim that 1.6.6 also holds when the index j ∈ J \I belongs
to IDl . Indeed, for the supplementary part in 1.6.7, we have

f (C)∩H j ∩
(
Dl ∪i 6∈IDl

Hi
)⊂∪i 6∈IDl

( f (C)∩H j ∩Hi ),

so that 1.6.6 applies here to all i 6∈ IDl . Hence, the curve f (C) lands inside

∩i∈I Hi \
(∪ j∈J H j \ (((∆l ∪∆l+1)∩S)∪ Am,n−|I |)

)
,

contradicting the hypothesis.
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Assume now that I is a proper subset of K . Let us set

Am,n−|I |,K = {X ∩ (∩k∈K Hk )|X ∈ Am,n−|I |}.

This set consists of star-subspaces of ∩k∈K Hk
∼= Pn−|K |(C). Let Bm,K be the subset of

Am,n−|I |,K containing all star-subspaces of dimension n −|K |−1 (i.e. of codimension 1
in ∩k∈K Hk ), and let Cm,K be the remaining part. A star-subspace in Bm,K is of the form
(∩k∈K Hk ∩H j )∗ for some index j ∈ J \ K . Let then R denote the set of such indices j , so
that

|R| = |Bm,K |.
We consider two cases separately, depending on the dimension of the subspace Y =
∩k∈K Hk ∩Dl .

Case 1: Y is a subspace of dimension n−|K |−1. In this case, Y is of the form (∩k∈K Hk )∩
Hy for some index y in IDl . It follows from 1.6.5, 1.6.6, 1.6.7 that the curve f (C) lands
inside

∩k∈K Hk \
(∪ j∈(J\K )\(R∪{y}) H j \ (((∆l ∪∆l+1)∩S)∪Cm,K )

)
.

To conclude that this set is of the form 1.6.3, we need to show that

(1) |(J \ K ) \ (R ∪ {y})| = q +m′+1−2|K | with |Cm,K | ≤ m′ ≤ |K |−1;

(2) |K | ≤ n −2.

Consider (1). We need to verify the corresponding required inequality between
cardinalities

|Cm,K | ≤ |(J \ K ) \ (R ∪ {y})|−q +2|K |−1 ≤ |K |−1.

The right inequality is equivalent to

|(J \ K ) \ (R ∪ {y})| ≤ |{1, . . . , q} \ K |,

which is trivial. The left inequality follows from the elementary estimates

|(J \ K ) \ (R ∪ {y})|−q +2|K |−1 ≥ |J \ K |− |Bm,K |−q +2|K |−2

= |J |− |J ∩K |− |Bm,K |−q +2|K |−2

= (m −|Bm,K |)+ (2|K |−2|I |− |J ∩K |−1)

≥ |Cm,K |,

where the last inequality holds because I and J are two disjoint sets and I is a
proper subset of K .

Consider (2). Suppose on the contrary that |K | = n − 1. Since S is in general
position with respect to {Hi }1≤i≤2n , we see that

∩k∈K Hk \
(∪ j∈(J\K )\(R∪{y})H j \(((∆l∪∆l+1)∩S)∪Cm,K )

)=∩k∈K Hk \
(∪ j∈(J\K )\(R∪{y})H j \Cm,K

)
.

Since |(J \ K ) \ (R ∪ {y})| ≥ q + 3− 2n + |Cm,K | ≥ 3+ |Cm,K |, the curve f lands in
a complement of at least 3 points in a line. By Picard’s Theorem, f is constant,
which is a contradiction.
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Case 2: Y is a subspace of dimension at most n−|K |−2. In this case, the curve f (C) lands
inside

∩k∈K Hk \
(∪ j∈(J\K )\R H j \ (((∆l ∪∆l+1)∩S)∪Cm,K ∪Y ∗)

)
,

which is also of the form 1.6.3, since

|(J \ K ) \ R| ≥ q −2|K |+1+|Cm,K ∪Y ∗|,

and since |K | ≤ n −2, by similar arguments as in Case 1.

The Lemma is thus proved.

Inductive deformation process and end of the proof of Theorem II. We may begin by
applying Lemma 1.6.1 for l = n −1 (with ∆n =;), firstly with ∆n−1 =;, and with some
Dn−1 ∈ ∆n−1, since (∆n−1 ∪∆n)∩S = ;, hence the assumption of this lemma holds by
the Starting Lemma. Next, we reapply Lemma 1.6.1 inductively until we exhaust all
Dn−1 ∈ ∆n−1. We get at the end a hypersurface S1 such that all complements of the
forms

∩i∈I Hi \
(∪ j∈J H j \ (S1 ∪ Am,n−|I |)

)
(|I |=n−2)

∩i∈I Hi \
(∪ j∈J H j \ ((∆n−1 ∩S1)∪ Am,n−|I |)

)
(|I |≤n−3)

are hyperbolic, since when |I | = n − 2, two components ∩i∈I Hi \
(∪ j∈J H j \ ((∆n−1 ∩

S1)∪Am,n−|I |)
)

and ∩i∈I Hi \
(∪ j∈J H j \(S1∪Am,n−|I |)

)
are equal. Considering this as the

starting point of the second step, we apply inductively Lemma 1.6.1 for l = n −2 and
receive at the end a hypersurface S2 such that all complements of the forms

∩i∈I Hi \
(∪ j∈J H j \ (S2 ∪ Am,n−|I |)

)
(n−3≤|I |≤n−2)

∩i∈I Hi \
(∪ j∈J H j \ ((∆n−2 ∩S2)∪ Am,n−|I |)

)
(|I |≤n−4)

are hyperbolic, for the same reason as in above. Continuing this process, we get at the
end of the (n−2)th step a hypersurface S = Sn−2 such that all complements of the forms

∩i∈I Hi \
(∪ j∈J H j \ (Sn−2 ∪ Am,n−|I |)

)
(1≤|I |≤n−2)

are hyperbolic. In particularly, by choosing m = |I | − 1, whence |J | = q − |I |, and by
choosing Am,n−|I | =;, all complements of the form 1.6.1 are hyperbolic for S = Sn−2.



Chapter 2

A GEOMETRIC SECOND MAIN
THEOREM

Using Ahlfors’ theory of covering surfaces, we establish a Cartan’s type Second Main
Theorem in the complex projective plane P2(C) with counting functions truncated
to level 1 for entire holomorphic curves whose set of accumulation points at infinity
is contained in a non-hyperbolic curve C ⊂P2(C).

Abstract

47
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2.1 Introduction and Main Result

2.1.1 Nevanlinna theory in projective spaces

We recall some facts from Nevanlinna theory in the projective space Pn(C). Let
E =∑

µνaν be a divisor on C and let k ∈N∪ {∞}. Summing the k-truncated degrees of
the divisor on disks by

n[k](t ,E) := ∑
|aν|<t

min{k,µν} (t >0),

the truncated counting function at level k of E is defined by

N [k](r,E) :=
∫ r

1

n[k](t ,E)

t
d t (r >1).

When k =∞, we write n(t ,E), N (r,E) instead of n[∞](t ,E), N [∞](r,E). We denote the
zero divisor of a nonzero meromorphic function ϕ by (ϕ)0. Let f : C→ Pn(C) be an
entire curve having a reduced representation f = [ f0 : · · · : fn] in the homogeneous co-
ordinates [z0 : · · · : zn] of Pn(C). Let D = {Q = 0} be a hypersurface in Pn(C) defined by a
homogeneous polynomial Q ∈ C[z0, . . . , zn] of degree d ≥ 1. If f (C) 6⊂ D , we define the
truncated counting function of f with respect to D as

N [k]
f (r,D) := N [k](r, (Q ◦ f )0

)
.

The proximity function of f for the divisor D is defined as

m f (r,D) :=
∫ 2π

0
log

∥∥ f (r e iθ)
∥∥d ‖Q‖∣∣Q( f )(r e iθ)

∣∣ dθ

2π
,

where ‖Q‖ is the maximum absolute value of the coefficients of Q and∥∥ f (z)
∥∥ = max{| f0(z)|, . . . , | fn(z)|}.

Finally, the Cartan order function of f is defined by

T f (r ) : = 1

2π

∫ 2π

0
log

∥∥ f (r e iθ)
∥∥dθ

=
∫ r

1

d t

t

∫
∆t

f ∗ωn +O(1),

where ωn is the Fubini–Study form on Pn(C).

The core of Nevanlinna theory consists of two theorems.

First Main Theorem. Let f :C→Pn(C) be a holomorphic curve and let D be a hypersur-
face of degree d in PN (C) such that f (C) 6⊂ supp(D). Then for every real number r > 1,
the following holds

m f (r,D)+N f (r,D) = d T f (r )+O(1).
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A holomorphic curve f : C→ Pn(C) is linearly non-degenerate if its image is not
contained in any hyperplane. For functions ϕ(r ), ψ(r ) valued in [0,∞), we write

ϕ(r ) ≤O(ψ(r )) ∥

if the inequality holds outside a Borel subset E of [0,∞) of finite Lebesgue measure.

Cartan’s Second Main Theorem [Car33]. Let {Hi }1≤i≤q be a family of hyperplanes in
general position in Pn(C). If f : C → Pn(C) is a linearly nondegenerate holomorphic
curve, then

(q −n −1)T f (r ) ≤
q∑

i=1
N [n]

f (r, Hi )+S f (r ),

where S f (r ) is a small term compared with T f (r )

S f (r ) = O(logT f (r )+ logr ) ∥ .

2.1.2 The main result

In dimension n = 2, with the smallest possible number q = 4 of lines {Li }1≤i≤4, Car-
tan’s Second Main Theorem reads as

T f (r ) ≤
4∑

i=1
N [2]

f (r,Li )+o(T f (r )) ∥, 2.1.1

where f :C→P2(C) is a linearly nondegenerate curve. The 2–truncated counting func-
tions in the right hand side of this inequality is optimal in the sense that they can not
be truncated to level 1.

Lemma. In P2(C), for any family of 4 lines {Li }1≤i≤4 in general position, there exits a
linearly nondegenerate f : C→P2(C) such that the following inequality does not hold

T f (r ) ≤
4∑

i=1
N [1]

f (r,Li )+o(T f (r )) ∥ . 2.1.2

Proof. Indeed, let C be the unique conic which is tangent to L1, L2 at A1 = L1 ∩ L4,
A2 = L2 ∩L4, respectively and which is tangent to L3 at some point A3.

L1 L2

A1

L3

L4

A3

A2

C
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Since C \ {A1, A2} ∼= C∗ is not hyperbolic, it contains some nonconstant holomorphic
curve f (C). By the choice of C , it is not hard to verify the following equalities

N [2]
f (r,Li ) = 0, (i 6=3)

N [2]
f (r,Li ) = 2 N [1]

f (r,Li ). (i =3)

Using these equalities together with the First Main Theorem, we obtain

T f (r ) = 2 N [1]
f (r,L3)+S f (r )

= 2
4∑

i=1
N [1]

f (r,Li )+o(T f (r )),

which shows that the inequality 2.1.2 does not hold.

In the above example, the curve f is linearly nondegenerate, but its image is con-
tained in an algebraic curve C ⊂ P2(C). Such entire curves satisfying this property are
said to be algebraically degenerate. Up to date, there is no counterexample to the fol-
lowing

Conjecture. If f :C→P2(C) is algebraically non-degenerate, then 2.1.2 holds.

We propose a positive answer for the above conjecture with an additional assump-
tion on the cluster set of f :C→P2(C), defined to be

Clu( f ) := ∩
r>0

(
f (C\∆r )

)
.

Main Theorem. Let {Li }1≤i≤4 be a family of lines in general position in the projective
plane. Let f : C→ P2(C) be an algebraically nondegenerate holomorphic curve. If its
cluster set is contained in an algebraic curve C ⊂P2(C), then

T f (r ) ≤
4∑

i=1
N [1]

f (r,Li )+o(T f (r )). 2.1.4

A curve f satisfying the condition in this theorem must approach C without being
contained in C . To confirm that this assumption is meaningful, we shall prove at the
end of this chapter that every nonhyperbolic curve C ⊂P2(C) is the cluster set of some
algebraically nondegenerate holomorphic curve f : C→P2(C).

2.1.3 Strategy of the proof of the Main Theorem

First, we take a good resolution of singularities for the configuration C ∪L of the
curve C and the family of four lines L = {Li }1≤i≤4

P2
n(C)

σn−→P2
n−1(C) → ··· → P2

j (C) → ··· →P2
1(C)

σ1−→P2
0(C) =P2(C).
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We then construct simultaneously closed positive currents T j on P2
j (C) associated to

the initial curve f : C→ P2(C) and the lifted curves f̃ j : C→ P2
j (C) at each step of the

resolution process. The total number of intersections between f (C) and L is bounded
from below by the total number of intersections between the lifted curve f̃n(C) and the
family of divisors in (σ1◦· · ·◦σn)−1(C ∪L ) consisting of the strict transforms of Li and
a collection of exceptional divisors in the resolution tree.

Next, we estimate the masses of the current Tn along divisors in P2
n(C) by apply-

ing Ahlfors’ theory and Riemann-Hurwitz’s formula. In the last step, we deal with the
combinatorics on the resolution tree and apply the inequality between geometric in-
tersections and algebraic intersections.

2.2 A brief summary on Ahlfors’ theory

Topology of surfaces

A bordered surface of finite type is a closed region on a compact orientable surface
bounded by finitely many smooth simple closed curves bounding disks. For a bordered
surface Σ, we denote by Σ̊ its interior and by ∂Σ its boundary. The Euler characteristic
of Σ is

χ(Σ) = 2−2g −k,

where g is the number of handles and k is the number of boundary components.

A map f : Σ→ Σ0 between two bordered surfaces of finite type is said to be holo-
morphic if f is holomorphic on Σ̊ and extends continuously up to the boundary. From
now on in this section, we assume that f is a non constant holomorphic map. A point
p on Σ̊ is is a ramification point of f if the differential of f at p vanishes, namely if
∂ f
∂z (p) = 0 with respect to some local coordinate z near p. With

ord f (p) = min{n ≥ 1 : f (n)(p) 6= 0},

the ramification of f at p is
r f (p) = ord f (p)−1.

When f (∂Σ) ⊂ ∂Σ0, f is a ramified covering. In this case, the function d(q) =∑
f (p)=q ord f (p) onΣ0 is independent of q and called the degree of f , denoted by deg f .

The relationship between the Euler characteristics of Σ and Σ0 is then given by the
Riemann–Hurwitz formula

χ(Σ) = deg f ·χ(Σ0)− ∑
p∈Σ

r f (p), 2.2.1

from which follows the inequality

χ(Σ) ≤ deg f ·χ(Σ0). 2.2.2

Ahlfors’ theory [Ahl35] can be considered as a generalization of the above facts to
the case when f is not proper. Equivalently, we allow the relative boundary of f , de-
fined as ∂Σ\ f −1(∂Σ0), to be nonempty.
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Ahlfors’ theory

We keep the notation Σ, Σ0, f and we suppose that Σ0 is equipped with a smooth
conformal metric ρ0. We denote by ρ the pull–back of ρ0 by f . We measure all lengths
and areas on Σ and Σ0 with respect to ρ and ρ0. The average number of sheets of f is
defined by

S := Area(Σ)

Area(Σ0)
.

When f is a ramified covering, S = deg f .

A region is called regular if it is bounded by finitely many piecewise smooth curves.
Generally, we define the average number of sheets over a regular region D0 ⊂Σ0 as

S(D0) := Area( f −1(D0))

Area(D0)
,

with S = S(Σ0).

Let L = Length
(
∂Σ\ f −1(∂Σ0)

)
be the length of the relative boundary. Ahlfors’ theory

contains two theorems corresponding to the First Main Theorem and the Second Main
Theorem in Nevanlinna theory. We would like to mention that Ahlfors’ theory can be
extended to quasi-conformal mappings (see [Sal14]) for further discussion).

Theorem 2.2.1. Given (Σ0,ρ0), there exists a constant h = h(Σ0,ρ0) > 0 such that for
every Σ, for every f : Σ→Σ0, for every region D0 ⊂Σ0,

|S(Σ0)−S(D0)| ≤ h

Area(D0)
L. 2.2.3

Theorem 2.2.2. Given (Σ0,ρ0), there exists a constant h = h(Σ0,ρ0) > 0 such that for
every f : Σ→Σ0,

χ−(Σ) ≤ S(Σ0) · χ(Σ0)+h L, 2.2.4

where χ−(Σ) denotes min{0,χ(Σ)}.

The above theorem is interesting only when the surface Σ0 has negative Euler char-
acteristic.

Let f : C → P1(C) be a nonconstant meromorphic function and let a1, . . . , aq be
q distinct points in the Riemann sphere P1(C). Nevanlinna’s Second Main Theorem
states that

(q −2)T f (r ) ≤
q∑

i=1
N [1]

f (r, ai )+o(T f (r )) ∥ . 2.2.5

Let us give a brief explanation how this classical result can be recovered by using
Ahlfors’ theory [Tsu59]. Let w be a complex coordinate on the affine part C⊂P1(C). All
lengths and areas on P1(C) are measured by using the conformal metric associated to
the Fubini–Study form

ω1 = dd c log(1+|w |2),
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so that ∫
P1(C)

ω1 = 1.

Now, let {D j }q
j=1 be a collection of q ≥ 3 open disks D j with disjoint closure such

that a j ∈ D j and let Σ0 be the bordered surface in P1(C) obtained by removing from
P1(C) all D j , so that its Euler characteristic χ(Σ0) = 2−q is negative.

For a positive number t , a connected component Ω of f −1(D j )∩∆t is called an
island over D j if it is relatively compact in ∆t , otherwise it is called a peninsula.

Let {F i s
j ,µ}1≤µ≤µ j , {F pe

j ,µ}1≤ν≤ν j denote the families of islands and peninsulas over D j ,
respectively. It is clear that

∆t =
[ ∪

1≤ j≤q
∪

1≤ν≤ν j
F pe

j ,ν

]⋃[ ∪
1≤ j≤q

∪
1≤µ≤µ j

F i s
j ,µ

]⋃
Σt ,

where the remaining part Σt consists of a finite number of connected surfaces:

Σt =∪
η
Σt ,η

such that each Σt ,η is a covering surface of Σ0. If F i s
j ,µ is a simple connected island then

1 =χ(F i s
j ,µ) =χ−(F i s

j ,µ)+1, otherwise 0 ≥χ(F i s
j ,µ) =χ−(F i s

j ,µ). Similarly, χ(Σt ,η) =χ−(Σt ,η)+
1 if and only if Σt ,η is simple connected.

Now, let k be the number of simple connected components of Σt and let n̄(t ,D j ) be

the number of simple connected islands over D j . For generic t , after removing from∆t

all peninsulas, we receive the surface Ft consisting of h ≥ k disjoint simply connected
surfaces, so that its Euler characteristic is given by

h=χ(Ft ) =
q∑

j=1

µ j∑
µ=1

χ
(
F i s

j ,µ

)+∑
η

χ(Σt ,η)

=
q∑

j=1

( µ j∑
µ=1

χ−
(
F i s

j ,µ

)+ n̄(t ,D j )
)
+∑

η

χ−(Σt ,η)+k.

Consequently, one has

q∑
j=1

n̄(t ,D j ) = −
q∑

j=1

µ j∑
µ=1

χ−
(
F i s

j ,µ

)−∑
η

χ−(Σt ,η)+h−k

≥ −∑
η

χ−(Σt ,η). 2.2.6

Since each Σt ,η is a covering surface of Σ0, by applying the Ahlfors’ Second Main Theo-
rem 2.2.2 for f |Σt ,n , we receive

−χ−(Σt ,η) ≥ (q −2)S(Σt ,η)−h L(Σt ,η),

where S(Σt ,η) and L(Σt ,η) denote the average number of sheets and the length of the rel-
ative boundary of Σt ,η, respectively. Taking the sum of both sides of these inequalities,
we get

−∑
η

χ−(Σt ,η) ≥ (q −2)S(Σt )−h
∑
η

L(Σt ,η),
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where S(Σt ) is the average number of sheets of Σt . Since |S(Σt )− S(∆t )| ≤ h L(∆t ) by
Ahlfors’ First Main Theorem 2.2.1 and since the total length of the relative boundaries
of all Σt ,η is bounded from above by L(∆t ), it follows from the above inequality and 2.2.6

that
q∑

j=1
n̄(t ,D j ) ≥ (q −2)S(∆t )−h L(∆t )

= (q −2)
∫
∆t

f ∗ω1 −h L(∆t ).

Since each a j lies in the interiors of D j (1 ≤ j ≤ q) and since the restriction of f on an

island is a ramified covering over some D j , it is evident that n[1]
f (r, a j ) ≥ n̄(r,D j ). Hence

q∑
j=1

n[1]
f (t , a j ) ≥

q∑
j=1

n̄(t ,D j ) ≥ (q −2)
∫
∆t

f ∗ω1 −h L(∆t ). 2.2.7

Using Length–Area principle (see [Hay64]), one sees that the complex plane C is regu-
larly exhaustible in Ahlfors’ sense, namely it satisfies

lim
r→∞

Length
(

f (∂∆r )
)

Area
(

f (∆r )
) = 0 ∥ .

Hence the length of the relative boundary L(∆t ) is negligible compared with S(∆t ).
Therefore the inequality 2.2.7 can be regarded as an analog of the classical Second Main
Theorem of Nevanlinna without log integration.

Dividing 2.2.7 by t and taking integration from 1 to r , we receive

q∑
j=1

N [1]
f (t , a j ) ≥

q∑
j=1

N̄ (r,D j ) ≥ (q −2)T f (r )−h
∫ r

1

d t

t
L(∆t ).

Hence, it suffices to control the error term

S f (r ) := h
∫ r

1

d t

t
L(∆t ).

Here we could obtain only a weaker result compared with the classical Second Main
Theorem, see [Din39], [Wil57], [Mil69] for concerned discussions.

2.3 Nevanlinna currents

2.3.1 Construction of Nevanlinna currents

Let (X ,ω) be a complex projective variety of dimension n equipped with a Kähler
form ω and let f : C→ X be a nonconstant holomorphic curve. Our aim in this part is
to associate to f a closed positive current of bidimension (1,1). For any smooth (1,1)–
form η on X , we define

T f ,r (η) =
∫ r

1

d t

t

∫
∆t

f ∗η. 2.3.1
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Let A(1,1)(X ) denote the set of smooth (1,1)–forms on X . Consider the family of positive
currents of bounded mass {Φr }r>0 defined as

Φr (η) = T f ,r (η)

T f ,r (ω)
(r >0,η∈ A(1,1)(X )).

Theorem – Definition. There exist infinitely many sequences {rk } converging to ∞ such
that the sequence of currents {Φrk } converges in weak topology to a closed positive current
Φ ∈ A(1,1)(X )′. Such limit currents are called Nevanlinna currents for f .

Proof. From any sequence {rk } converging to ∞, by Banach–Alaoglu’s theorem, we can
always find a subsequence {rkl } such that the sequence of currents {Φrkl

} converges to
a positive current. We would like to determine which conditions {rk } must satisfy so
that the limit currentΦ= liml→∞Φrkl

is closed.

For any smooth 1–form β on X , using Stokes’ formula and the compactness of X ,
we receive ∣∣T f ,r (dβ)

∣∣≤ ∫ r

1

d t

t

∫
∂∆t

| f ∗β|

≤C (β)
∫ r

1
Lengthω

(
f (∂∆t )

) d t

t
,

where C (β) is a positive constant which is independent of f , r . Set

L f ,r (ω) =
∫ r

1
Lengthω

(
f (∂∆t )

) d t

t
.

Then for the closedness of the limit current Φ, it suffices to choose the sequence {rk }
such that

lim
k→∞

L f ,rk (ω)

T f ,rk (ω)
= 0.

For this, we use the following result presented in [Bru99].

Ahlfors’ lemma. Under the above assumptions and notations, for any positive number
ε> 0, the set {

r > 1 :
L f ,r (ω)

T f ,r (ω)
≥ ε

}
has finite Lebesgue measure.

Proof. Suppose that in the polar coordinate (ρ,θ) of C, the pull-back of ω by f is of the
form

f ∗ω= F 2(ρ,θ)ρdρ∧dθ,

where F 2(ρ,θ) is smooth and F (ρ,θ) ≥ 0 is at least continuous. Then for each t > 0, the
length of f (∂∆t ) and the area of f (∆t ) are given by

Lengthω
(

f (∂∆t )
)= t

∫ 2π

0
F (t ,θ)dθ,
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Areaω
(

f (∆t )
)= ∫ t

0
ρdρ

∫ 2π

0
F (ρ,θ)2 dθ,

respectively. Using Cauchy-Schwarz’s inequality, we get

L f ,r (ω) =
∫ r

1

∫ 2π

0
tF (t ,θ)dθ

d t

t

≤
(∫ r

1

∫ 2π

0
dθ

d t

t

) 1
2 ·

(∫ r

1

∫ 2π

0
t 2F (t ,θ)2 dθ

d t

t

) 1
2

≤ (
2π logr

) 1
2 · (Areaω

(
f (∆r )

)) 1
2

= (
2πr logr

) 1
2 ·

( d

dr
T f ,r (ω)

) 1
2

.

Dividing the above inequality by T f ,r , we obtain

L f ,r (ω)

T f ,r (ω)
≤

(2πr logr

T f ,r (ω)2

dT f ,r (ω)

dr

) 1
2

. 2.3.2

Since f is nonconstant, the order function T f ,r (ω) is strictly increasing and has at least
a logarithmic growth rate. As a consequence, we have∫ ∞

1

2πr logr

T f ,r (ω)2

dT f ,r (ω)

dr

dr

2πr logr
= lim

R→∞

( 1

T f ,1(ω)
− 1

T f ,R (ω)

)
<∞. 2.3.3

Ahlfors’ Lemma follows from 2.3.2, 2.3.3 and the fact that∫ ∞

1

dr

2πr logr
=∞.

It is known that any Nevanlinna current is of mass 1. We would like to mention
that there is a basic version of these results without log integration

∫ d t
t (·) described as

follows. For any non-constant holomorphic curve f : C→ X , for any positive number
ε> 0, the set {

r > 0 :
Lengthω

(
f (∂∆r )

)
Areaω

(
f (∆r )

) }
has finite Lebesgue measure. As a consequence, there exist infinitely many sequences
of positive real numbers {rk } converging to ∞ such that

lim
rk→∞

Lengthω
(

f (∂∆rk )
)

Areaω
(

f (∆rk )
) = 0.

For any such sequence {rk }, the following sequence of positive currents

{ ∫
∆rk

f ∗η∫
∆rk

f ∗ω

}
k

(η∈ A(1,1)(X ))

converges, after exacting a subsequence, to a closed positive current. This limit current
is called an Ahlfors current for f .
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2.3.2 Geometric intersections

Let Z be a divisor on X with f (C) 6⊂ Z . Summing without multiplicity the total
number of intersection points on disks and integrating, introduce

i f ,rk (Z ) =
∫ rk

1
Card

((
f (∆t )∩Z

)d t

t
,

where {rk }∞k=1 is a sequence giving birth to a Nevanlinna current T for f . Then define
the geometric intersection of T with Z as

iT (Z ) = liminf
k→∞

i f ,rk (Z )

T f ,rk (ω)
.

It is clear that iT (Z ) ≥ 0. When no confusion can arise, we often abbreviate it as i(Z ).

2.3.3 Singularities of Nevanlinna currents

Throughout this subsection, let (X ,ω) be a smooth complex projective surface
equipped with a Kähler formω and let f :C→ X be a nonconstant holomorphic curve.
The singularities of Ahlfors currents for f were studied in [Duv06], which extends to
Nevanlinna currents.

Theorem 2.3.1. If an irreducible algebraic curve C ⊂ X is charged by some Nevanlinna
current (or Ahlfors current), then its genus is equal to 0 or 1.

Now, let D = ∪q
i=1Di be a divisor of simple normal crossing type on X , namely

{Di }1≤i≤q is a collection of pairwise transverse smooth curves, any three curves hav-
ing empty intersection. Denote by D∗

i the complement Di \ ∪ j 6=i D j . The following
application of Riemann–Hurwitz’s formula and Ahlfors’ theory shall play an important
role in the proof of the Main Theorem.

Proposition 2.3.1. Let T be a Nevanlinna current for f . If T is supported in D, namely

T =
q∑

i=1
λi [Di ],

where λi ≥ 0 (1 ≤ i ≤ q), then

−
q∑

i=1
λi χ(D∗

i ) ≤ i(D). 2.3.4

Proof. An intersection point between two curves in {Di }1≤i≤q is called a double point.
Let {Aι}ι∈I be the set consisting of all double points. For each index i , denote by κi the
number of double points in the divisor Di . The Euler characteristic of D∗

i is then given
by

χ(D∗
i ) = 2−2 gi −κi ,
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where gi is the genus of the curve Di . If χ(D∗
i ) < 0, then Di is said to be stable. If

χ(D∗
i ) = 1, then Di is said to be free. It is not hard to check that Di is free if and only if

gi = 0 andκi = 1. Denote by E f r ee the set consisting of all free divisors, by Est able the set
consisting of all stable divisors, and by Enon−st able the set consisting of all non-stable
divisors.

Let {Ui ,ε}ε (0 < ε< δ) be a family of neighbourhoods of Di such that there exists the
projection πi : Ui ,ε→ Di whose composition with f is a quasi–conformal mapping. Let
{Vι,ε}ε be a family of neighbourhoods of the double Aι. Set

Wε =
(∪i∈Est able Ui ,ε

)
\
((∪E∈Enon−st able Ui ,ε

)∪ (∪ι∈I Vι,ε
))

,

W c
ε = (∪E∈〉non−st able Ui ,ε

)∪ (∪ι∈I Vι,ε
)
.

Now, for each t > 0, set Σi ,ε,t = f −1(Ui ,ε)∩∆t and denote by ϕi ,ε,t : Σi ,ε,t → Di the
restriction of πi ◦ f on Σi ,ε,t . Let CWε,t be the set of all components of f (∆t ) in Wε and
denote by bε,t the total number of all boundary components of all C ∈ CWε,t . We sep-
arate CWε,t into two disjoint subsets, depending on the properness of the projections
πi .

Let Cp,Wε,t be the subset of CWε,t consisting of all components C such that the re-
striction on C of some projection πi is proper. Since the Euler characteristic of a com-
ponent C ∈ Cp,Wε,t such that πi |C is proper is given by

χ(C) = 2−bC,

where bC is the number of all boundary components of C, it follows from Riemann–
Hurwitz’s formula that

bC ≥ 2+ (κi +2 gi −2)deg(πi |C) (C∈Cp,Wε,t ).

Denote by bp,ε,t the total number of all boundary components of all C ∈ Cp,Wε,t . Taking
the sum of both sides of the above equalities, we obtain∑

C∈Cp,Wε,t

bC︸ ︷︷ ︸
bp,ε,t

≥ 2 |Cp,Wε,t |+
∑

C∈Cp,Wε,t

(κi +2 gi −2)deg(πi |C). 2.3.5

Now, let Cnp,Wε,t be the complement of Cp,Wε,t in CWε,t . Denote by bnp,ε,t the total num-
ber of all boundary components of allC ∈ Cnp,Wε,t . We are going to apply Ahlfors’ theory
for ϕi ,ε,t to estimate the number of all non-proper components bnp,ε,t . First, we show
that there exists a positive number ε satisfying the following two properties.
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(a) Firstly, the length of the image under the map f of ∂Σi ,ε,t is negligible (compared
with the order function):∫ rk

1
Length

(
f (∂Σi ,ε,t )

) d t

t
= o

(
T f ,rk (ω)

)
. 2.3.6

(b) Secondly, the Euler characteristic of Σi ,ε,t is also a negligible quantity:∫ rk

1
−χ(Σi ,ε,t )

d t

t
= o

(
T f ,rk (ω)

)
. 2.3.7

Consider the first required property. Fix a positive real number δ > 0 so that in
any neighbourhood Ui ,3δ, we always have the projection πi . Starting with the co-area
formula and using the fact that the current T is supported in D , we obtain∫ rk

1

(∫ 2δ

δ
Length

(
f (∆t )∩∂Ui ,s

)
d s

) d t

t
=

∫ rk

1
Area

(
f (∆t )∩ (Ui ,2δ \Ui ,δ)

) d t

t
= o

(
T f ,rk (ω)

)
,

which implies ∫ 2δ

δ

(∫ rk

1
Length

(
f (∂Σi ,s,t )

)d t

t

)
d s = o

(
T f ,rk (ω)

)
.

Hence, by choosing ε ∈ [δ,2δ] such that∫ rk

1
Length

(
f (∂Σi ,ε,t )

) d t

t
= inf

{∫ rk

1
Length

(
f (∂Σi ,s,t )

) d t

t
,δ< s < 2δ

}
,

2.3.6 is satisfied.

Now, we consider the second required property. Each connected component Σ`i ,t
of Σi ,ε,t is the complement of a union of finite small disks in a large disk, namely it is of
the form:

Σ`i ,t =Ωi ,t ,`

∖( ∪
1≤τ≤ai ,t ,`

Ωτ

)
,

where Ωi ,t ,` is a disk, Ωτ (1 ≤ τ ≤ ai ,t ,`) are open disks such that Ωτ ⊂ Ωi ,t ,` and
f (∂Ωτ) ⊂U i ,ε. The Euler characteristic of Σ`i ,t is then computed by counting the num-
ber of small disks:

χ
(
Σ`i ,t ) = 1−ai ,t ,`.

Σ`i ,t

2δ

3δ

Di

πiΩτ

Ωi ,t ,`

f (Ωτ)

δ

}
Ui ,ε
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The total number of such small disks is approximately equal to the number of inter-
section points between f and ∂Ui ,ε. Since each small disk Ωτ with f (Ωτ) ⊂ Ui ,3δ will
be projected onto Di , we don’t take into account these disks when compute χ(Σi ,ε,t ).
Hence, χ(Σi ,ε,t ) is approximately equal to the number of small disksΩτ such that f (Ωτ)
intersects with ∂Ui ,ε and ∂Ui ,3δ. A small disk that satisfies this property is called a
counting disk. To estimate the number of these disks, we first note that each count-
ing diskΩτ contains a domainΩ′

τ such that

f (Ω′
τ) ⊂Ui ,3δ \Ui ,ε,

f (∂Ω′
τ) ⊂ ∂(Ui ,3δ \Ui ,ε).

Since the current T is supported in D , the total sum of areas of images of all such Ω′
τ

under f is a negligible quantity. By Lelong’s Theorem, for each aboveΩ′
τ, there exists a

positive constant c depending only on (X ,ω) such that

Area
(

f (Ω′
τ)

)≥ c (3δ−ε)2.

Hence the total number of such Ω′
τ is negligible, so is the total number of counting

disks. Thus 2.3.7 is also satisfied.

We now comeback to the proof of the proposition. Denote by Cnp,i ,ε,t the set of non
proper components over divisor E and by bnp,i ,ε,t the total number of boundary com-
ponents of all C ∈ Cnp,i ,ε,t . Applying Ahlfors’ theory for the map ϕi ,ε,t and for Cnp,i ,ε,t ,
there exists a constant hi > 0 such that

bnp,i ,ε,t ≥
∑

C∈Cnp,i ,ε,t

(κi +2 gi −2)
∫
C
π∗

i ωDi +min{0,χ(Σi ,ε,t )}−hi Length
(

f (∂Σi ,ε,t )
)
,

where ωDi is the Kähler form on Di . Taking the sum of both sides of these inequalities,
we receive ∑

i∈Est able

bnp,i ,ε,t ≥
∑

i∈Est able

∑
C∈Cnp,i ,ε,t

(κi +2 gi −2)
∫
C
π∗

i ωDi

+ ∑
i∈Est able

[
min{0,χ(Σi ,ε,t )}−hi Length

(
f (∂Σi ,ε,t )

)]
,

or equivalently

bnp,ε,t ≥
∑

C∈Cnp,Wε,t

(κi+2 gi−2)
∫
C
π∗

i ωDi +
∑

i∈Est able

[
min{0,χ(Σi ,ε,t )}−hi Length

(
f (∂Σi ,ε,t )

)]
.

2.3.8

Summing both sides of 2.3.5 and 2.3.8, we obtain

bε,t ≥
∑

C∈CWε,t

(κi +2 gi −2)
∫
C
π∗

i ωDi +2 |Cp,Wε,t |+h(t ), 2.3.9

where
h(t ) = ∑

i∈Est able

[
min{0,χ(Σi ,ε,t )}−hi Length

(
f (∂Σi ,ε,t )

)]
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satisfies ∫ rk

1
h(t )

d t

t
= o

(
T f ,rk (ω)

)
.

Next, let CW c
ε ,t be the set consisting of all components of f (∆t ) in W c

ε having some
boundary components counted in bε,t . A component C ∈ CW c

ε ,t is said to be simple if
it has only one boundary component, otherwise it is said to be multiple. Denote by
sε,t , mε,t the number of all simple, multiple components of CW c

ε ,t , respectively. It’s clear
from the definition that

bε,t ≥ sε,t +2mε,t . 2.3.10

Now, let Gε,t be the undirected graph defined by

• A vertex of Gε,t is an element of Cp,Wε,t ∪CW c
ε ,t ,

• There is an edge between two vertices C1, C2 if they have a common boundary com-
ponent.

We claim that Gε,t is a tree. Indeed, suppose to the contrary that there is a simple cycle
defined by the sequence of vertices C1, . . . ,Ce in Gε,t . By gluing all two consecutive
vertices, we receive a bordered surface Σ with a handle on it. This is a contradiction
since Σ is contained in a disk.

Since Gε,t is a tree, the number of its edges is bounded from above by the number of its
vertices:

bε,t ≤ |Cp,Wε,t |+ sε,t +mε,t . 2.3.11

It follows from 2.3.10, 2.3.11 that mε,t ≤ |Cp,Wε,t | and therefore, by using again 2.3.11, we get

2 |Cp,Wε,t |+ sε,t ≥ bε,t . 2.3.12

Now we would like to estimate the total number of simple components sε,t . Let
iε,t (D) be the number of intersection points in W c

ε between f (∆t ) and D . Let CW c
ε ,t , f r ee

denote the set consisting of all complements in CW c
ε ,t over some free divisors. Since

each simple component either intersects with D or contributes to the mass of the cur-
rent T along some free divisors, one has

sε,t ≤ iε,t (D)+ ∑
C∈CW c

ε ,t , f r ee

∫
C
π∗

i ωDi .
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Using this inequality together with 2.3.9, 2.3.12 and noting that κi +2 gi −2 =−1 for each
free divisor Di , we obtain∑

C∈CWε,t∪CW c
ε ,t , f r ee

(κi +2 gi −2)
∫
C
π∗

i ωDi +h(t ) ≤ iε,t (D).

Since (πi )∗(1Ui ,εT ) = λi [Di ], after integrating, dividing by T f ,rk (ω) and taking the limit
both sides of the above inequality, we receive 2.3.4.

2.4 Resolution of singularities

Let S is a smooth complex surface and let P be a point in S . A blowing up of S

at P is a smooth surface T together with a holomorphic map φ : T → S such that
E =φ−1(P ) ∼= P1(C) is a smooth rational curve and T \ E is isomorphic to S \ {P }. The
surface T is unique up to isomorphism. The curve E is called the exceptional divisor
of the blowing up.

Now, let C be a reduced curve in S . The strict transform C̃ of C with respect to the
blowing up (T ,φ) of S at P is the closure of φ−1(C \ {P }) in T

C̃ :=φ−1(C \ {P }).

When P 6∈ C , the strict transform C̃ = φ−1(C ) coincides with the inverse image. But
when P ∈C , the exceptional divisor must be added

φ−1(C ) = C̃ ∪E .

Now, assume that P is a point of multiplicity m in C . The total transform φ∗(C )
with respect to the blowing up (T ,φ) of S at P is the divisor in T defined as

φ∗(C ) := C̃ +m E ,

whose support is contained in φ−1(C ).

For a divisor E ⊂T , we denote by [E ] its homology class in H1,1(T ,R). The follow-
ing well-known result shall be repeatedly used to compute algebraic intersections.

Theorem 2.4.1. Let C be a curve in a surface S and let P ∈C be a point of multiplicity
m. If φ : S̃ →S is the blowing up at P with the exceptional divisor E, then

[E ] · [E ] =−1.

Furthermore, for any two curves F , G in S

[φ∗F ] · [E ] = 0,

[φ∗F ] · [φ∗G ] = [F ] · [G ].

Consequently, with F =G =C so that C̃ =φ∗(C )−m E

[C̃ ] · [E ] = m,

[C̃ ] · [C̃ ]− [C ] · [C ] =−m2.
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A resolution of singularities for a curve C in a smooth surface S is a smooth surface
T together with a holomorphic map φ : T →S isomorphic outside the singularities

φ|T \φ−1(Sing(C ))
∼=S \ Sing(C ),

such that the total inverse image φ−1(C ) is of normal crossings type. It is known (see
[Wal04]) that resolutions of singularities exist for every plane curve by means of a finite
sequence of blowing ups.

2.4.1 The genus formula for plane curves

Let C ⊂ P2(C) be a plane curve and let P0 be a singular point of C . Let (P̃2(C),φ)
be a resolution of singularity for C by repeatedly blowing up. Assume that {σi }1≤i≤k

be the sequence of blowing ups starting at the point P0, where σi+1 (0 ≤ i ≤ k − 1) is
the blowing up at the point Pi in the strict transform C i of C i−1 with the convention
that C 0 =C . Denote by Ei the exceptional divisor of the blowing up σi . For simplicity
of notation, we write Ei to denote its strict transformations in the next blowing ups σ j

( j ≥ i +1). A point of the exceptional divisor Ei is said to be an infinitely near point of
the i –order to P0.

The following formulas shall be used in the sequel. The reader is referred to [Wal04,
Chapter 6, 7] for proofs.

Theorem 2.4.2. The Milnor number of a curve C ⊂ P2(C) at a singular point P ∈ C is
given by

MilP =∑
Q

mQ (mQ −1)− rP +1,

where rP is the number of local branches of C passing through P, where the sum is ex-
tended over infinitely near points Q in some strict transform of C at which the multi-
plicity mQ is at least 2.

Theorem 2.4.3. Let C ⊂P2(C) be a plane curve of degree d. For a given point P in C , set

δP = MilP +rP −1.

Then the normalisation C̃ of C has Euler characteristic

χ= 3d −d 2 + ∑
P∈SingC

δP .

In particular, when the curve C is irreducible, the Riemann surface C̃ has genus

g = 1

2
(d −1)(d −2)− ∑

P∈SingC

1

2
δP .
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2.5 Proof of the Main Theorem

2.5.1 Resolution of singularities and constructions of close positive
currents

Suppose that the cluster set of f is contained in a reduced algebraic curve C ⊂
P2(C), then any Nevanlinna current (or Ahlfors current) for f is supported on C . We
can further assume that these currents charge all irreducible components of C . By
Theorem 2.3.1, these components must be rational or elliptic. Let C j (1 ≤ j ≤ m) be
the irreducible components of the curve C , let d j be the degrees of C j and let g j be the
genus of C j . Let

P̃2
N(C)

σN−→ P̃2
N−1(C) → ··· → P̃2

K(C)
σK−→ P̃2

K−1(C) → ··· → P̃2
1(C)

σ1−→ P̃2
0(C) =P2(C)

be a resolution of singularities for the configuration of the curve C and the family L =
{Li }1≤i≤4, where σK : P̃2

K(C) → P̃2
K−1(C) are the blowing ups of P̃2

K−1(C) at some points
PK−1. Denote by C K ⊂ P̃2

K(C) the strict transform of C K−1, by C K
j the strict transform of

C K−1
j , by L K ⊂ P̃2

K(C) the strict transform of the family L K−1, and by f̃K : C→ P̃2
K(C) the

lifted curves, with the convention that C 0 =C , L 0 =L and f̃0 = f . Let EK =σ−1
K (PK−1)

be the exceptional divisor of the blowing upσK. For simplicity of notation, we continue
to write EK to denote its strict transforms in the next blowing ups σ` (`≥ K+1).

Now we would like to construct simultaneously closed positive currents TK associ-
ated to f̃K by similar arguments as in the previous section. We firs recall the following
standard result.

Lemma 2.5.1. Let (X ,ω) be a Kähler surface. If φ : X̃ → X is a blowing up of X at some
point P with the exceptional divisor E =φ−1(P ), then there exists a Kähler form ω̃ on X̃
such that

ω̃=φ∗ω−εΘhE , 2.5.1

where ΘhE is the curvature of some hermitian metric hE on the line bundle O (E) and
ε> 0 is a positive constant.

Now, for a non-constant holomorphic curve g : C → X whose image is not con-
tained in the critical value of φ, we always have the lifted curve g̃ :C→ X̃ . Based on the
First Main Theorem, we obtain:

Observation 2.5.1.
Tg̃ ,r (ω̃) ≤ Tg ,r (ω)+O(1).

Proof. We follow the proof of [Bru99, Lemma 1]. Taking pull-back by g̃ , dividing by t
and integrating from 1 to r the equality 2.5.1, we receive

Tg̃ ,r (ω̃) = Tg̃ ,r (φ∗ω)−εTg̃ ,r (ΘhE )

= Tg ,r (ω)−εTg̃ ,r (ΘhE ). 2.5.2
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Let s of be a section of O (E) with E = {s = 0} and ‖s‖ ≤ 1. Using Poincaré-Lelong’s
formula, we get

ΘhE = δE −ddc log‖s‖2,

where δE is the current of integration over E and the equation is in the sense of cur-
rents. Now, taking pull-backs by g̃ , dividing by t and integrating from 1 to r , we obtain

Tg̃ ,r (ΘhE ) =
∫ r

1

d t

t

∫
∆t

g̃∗E +2
∫ r

1

d t

t

∫
∆t

ddc
[

log
1

‖s ◦ g̃‖
]

.

Using Jensen’s formula, we rewrite the above equality as

Tg̃ ,r (ΘhE ) =
∫ r

1

d t

t

∫
∆t

g̃∗E + 1

2π

∫ 2π

0
log

1

‖s ◦ g̃ (r e iθ)‖ dθ− 1

2π

∫ 2π

0
log

1

‖s ◦ g̃ (e iθ)‖ dθ.

2.5.3

Since ∫ r

1

d t

t

∫
∆t

g̃∗E ≥ 0

and since ‖s‖ ≤ 1, it follows from 2.5.2 and 2.5.3 that

Tg̃ ,r (ω̃) ≤ Tg ,r (ω)+ 1

2π

∫ 2π

0
log

1

‖s ◦ g̃ (e iθ)‖ dθ

= Tg ,r (ω)+O(1).

Lemma 2.5.1 allows us to construct inductively Kähler formsωK
2 on P̃2

K(C) satisfying

(1) ω0
2 =ω2,

(2) for 1 ≤ K ≤ N, the pull-back of ωK−1
2 expresses as

(σK)∗ωK−1
2 =ωK

2 +εKΘhEK
,

whereΘhEK
is the curvature form of some hermitian metric hEK

on the line bundle
O (EK) and εK > 0 is a positive constant.

For 1 ≤ K ≤ N, we infer from Observation 2.5.1 that

T f̃ ∗
K ,r (ωK

2) ≤ T f̃ ∗
K−1,r (ωK−1

2 )+O(1)

≤ ·· ·
≤ T f ,r (ω2)+O(1).

Hence, by using similar arguments as in the proof of Ahlfors’ Lemma, we deduce that
for each ε> 0, the set {

r > 0 :
L f̃K ,r (ωK

2)

T f ,r (ω2)
≥ ε, 0 ≤ K ≤ N

}
is of finite Lebesgue measure. This implies

lim
r→∞

L f̃K ,r (ωK
2)

T f ,r (ω2)
= 0 ∥ (0≤K≤N).
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Consequently, there exist infinitely many sequences of positive numbers {rk }∞k=1 tend-

ing to ∞ and giving simultaneously closed positive currents associated to f̃K:

TK(η) = lim
k→∞

T f̃K ,rk
(η)

T f ,rk (ω2)

(
η∈ A(1,1)

(
P̃2

K(C)
)

, 0≤K≤N
)

.

When n = 0, T0 is a Nevanlinna current for f , hence it is of mass 1. Since T0 is
supported on C and charges all irreducible component C j , it is of the form

T0 =
m∑

j=1
µ j [C j ],

where µ j > 0 are positive real numbers such that
∑m

j=1µ j d j = 1. By construction, the
currents TK (0 ≤ K ≤ N) are of the form

TK =
m∑

j=1
µ j

[
C K

j

]+ ∑
1≤`≤K

λ`[E`],

where λ` ≥ 0.

2.5.2 Geometric intersections and algebraic intersections

Let Z be a divisor on P̃2
K(C) with f̃K(C) 6⊂ Z . Similarly as in the previous section, we

can define the geometric intersection of the closed positive current TK with Z as fol-
lows. First, taking the sum without multiplicity the total number of intersection points
on disks and integrating, introduce

i f̃K ,rk
(Z ) =

∫ rk

1
Card

((
f̃K(∆t )∩Z

)d t

t
,

where {rk }∞k=1 is a sequence giving birth to closed positive currents T0, . . . ,TN. Then
define the geometric intersection of TK with Z as

iTK
(Z ) = liminf

k→∞

i f̃K ,rk
(Z )

T f ,rk (ω2)
.

When it is understood that Z ⊂ P̃2
K(C), often we will abbreviate it as

i(Z ) ≥ 0.

Proposition 2.5.1. In order to prove the Main Theorem, it suffices to show that for any
sequence of positive numbers {rk }∞k=1 satisfying

lim
rk→∞

L f̃K ,rk
(ωK

2)

T f ,rk (ω2)
= 0 (0≤K≤N),

that defines closed positive currents TK as in the previous subsection, we have

4∑
i=1

i(Li ) ≥ 1. 2.5.4
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Proof. Indeed, for such above sequence {rk }∞k=1, it follows form the definition of geo-
metric intersection that

liminf
k→∞

∑4
i=1 N [1](rk ,Li )

T f (rk )
≥ 1.

Hence
4∑

i=1
N [1](rk ,Li ) ≥ T f (rk )−o

(
T f (rk )

)
,

for all sequence rk →∞ outside a set E of finite Lebesgue measure, or equivalently

4∑
i=1

N [1](r,Li ) ≥ T f (r )−o
(
T f (r )

) ∥ .

Now, denote by [TK], [Z ] the cohomology classes of TK, Z in H 1,1
(
P̃2

K(C),R
)
, respec-

tively. The algebraic intersection of [TK] and [Z ] is then defined as

[TK] · [Z ] := TK(ωZ ),

where ωZ is a differentiable (1,1)-form in the cohomology class {Z }. The following
relationship between i(Z ) and [TK] · [Z ] can be regarded as a consequence of the First
Main Theorem in Nevanlinna theory.

Proposition 2.5.2. The geometric intersection is bounded from above by the algebraic
intersection:

0 ≤ i(Z ) ≤ [TK] · [Z ]. 2.5.5

Proof. Our arguments are similarly as in the proof of Observation 2.5.1. Fix a hermitian
metric h on the line bundle O (Z ) and denote byΘh its curvature form. Taking a section
s of O (Z ) with Z = {s = 0} and ‖s‖ ≤ 1. Using Poincaré-Lelong’s formula, we get

Θh = δZ −ddc log‖s‖2,

where δZ is the current of integration over Z and the equation is in the sense of cur-
rents. Taking pull-backs by f̃K, dividing by t and integrating from 1 to rk , we obtain

T f̃K ,rk
(Θh) =

∫ rk

1

d t

t

∫
∆t

f̃K
∗

Z +2
∫ rk

1

d t

t

∫
∆t

ddc
[

log
1

‖s ◦ f̃K‖
]

.

Using Jensen’s formula, we rewrite the above equality as

T f̃K ,rk
(Θh) =

∫ rk

1

d t

t

∫
∆t

f̃K
∗

Z+ 1

2π

∫ 2π

0
log

1

‖s ◦ f̃K(rk e iθ)‖ dθ− 1

2π

∫ 2π

0
log

1

‖s ◦ f̃K(e iθ)‖ dθ.

This yields

T f̃K ,rk
(Θh) ≥ i f̃K ,rk

(Z )+ 1

2π

∫ 2π

0
log

1

‖s ◦ f̃K(rk e iθ)‖ dθ− 1

2π

∫ 2π

0
log

1

‖s ◦ f̃K(e iθ)‖ dθ,

by definition of the geometric intersection. Using the assumption ‖s‖ ≤ 1, after divid-
ing by T f ,rk (ω2) and taking the limit of both sides of the above inequality, we obtain
2.5.5.
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2.5.3 Applications of Riemann-Hurwitz formula and Ahlfors’ theory

In the resolution tree[ ∪
1≤ j≤m

C N
j

]⋃[ ∪
1≤i≤4

L N
i

]⋃[ ∪
1≤K≤N

EK

]
⊂ P̃2

N(C),

an intersection point between two divisors is called a double point. Let κD denote the
number of double points in the divisor D . Proposition 2.3.1 still holds when we replace
the Nevanlinna current T by the closed positive current TN. Using this fact together
with Proposition 2.5.2, we obtain:

Proposition 2.5.3. In the resolution tree, we have

m∑
j=1

µ j (κC N
j
+2 g j −2)+

N∑
K=1

(κEK
−2)λK ≤ i(L N)+ i(C N)+

N∑
K=1

i(EK) 2.5.6

≤ i(L N)+ [TN] · [C N]+
N∑

K=1
i(EK). 2.5.7

2.5.4 Some examples

Before giving proof of the Main Theorem, we would like to treat some special cases.
Recall that from the very definition of the geometric intersection, it suffices to prove
that i(L ) ≥ 1.

1. Consider the case where C is the diagonal line passing through A1 = L1 ∩ L2,
A2 = L3 ∩L4. After blowing up the two points A1, A2 with exceptional divisors
E1, E2, we receive the resolution tree containing the strict transforms C 2, L 2 =
{L2

i }1≤i≤4 of C , L , respectively and the exceptional divisors E1, E2. The closed
positive current associated to the lifted curve f̃2 constructed in the first part is of
the form

T2 =
[
C 2]+λ1[E1]+λ2[E2],

for some non-negative constants λ1,λ2 ≥ 0.

L1 L3
L2

C

A1 A2

L4

L2
2

L2
4L2

3

L2
1

E1

C 2

E2

We first use Theorem 2.4.1 to compute the intersection numbers
[
C 2

]2 =([
C 2

]2 − [C ]2
)+ [C ]2 = −2+ 1 = −1,

[
C 2

] · [Ei ] = 1 (1 ≤ i ≤ 2). Next, by apply-
ing Proposition 2.5.3, we obtain

i(L 2)+ i(E1)+ i(E2)+ [T2] · [C 2] ≥λ1 +λ2.
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Now, note that for any z ∈ C, if f̃2(z) ∈ Ei then f (z) = Ai . One can deduce from
this fact that

4∑
i=1

i(Li ) ≥ i(L 2)+ i(E1)+ i(E2).

Combining the two above inequalities, we get

4∑
i=1

i(Li ) ≥λ1 +λ2 − [T2] · [C 2]

=λ1 +λ2 −
([

C 2]2 +λ1
[
C 2] · [E1]+λ2

[
C 2] · [E2]

)
=λ1 +λ2 − (−1+λ1 +λ2)

= 1.

2. We comeback to the counter example in the first part of this note, where C is
the conic which is tangent to L1, L2 at A1 = L1 ∩ L4, A2 = L2 ∩ L4, respectively
and which is tangent to L3 at some point A3. We have a good resolution for this
configuration after six blowing ups described as follows. First, we blow up at the
three points Ai with exceptional divisors Ei . We then continue to blow up at the
three intersection points between Ei and the strict transform of the conic C with
exceptional divisors Fi . After this process, we receive a resolution tree containing
the strict transforms C 6, L 6 = {L6

i }1≤i≤4, respectively and six exceptional divisors
Ei , Fi (1 ≤ i ≤ 3).

L4

A1 A2

L2L1

L3

C

L6
3L6

4

L6
4

L6
2

L6
1

A3

F1

C 6

F2

E3

F3

E2E1

The closed positive current associated to the lifted curve f̃6 is of the form

T6 = 1

2

[
C 6]+λ1[E1]+λ2[E2]+λ3[E3]+ν1[F1]+ν2[F2]+ν3[F3],

for some non-negative constants λi , νi . Note that E3 is a free divisor and all Fi are
stable divisors. Applying Proposition 2.5.3, we get

i(L 6)+ i(E1)+ i(E2)+ i(E3)+ i(F1)+ i(F2)+ i(F3)︸ ︷︷ ︸
≤∑4

i=1 i(Li )

+[T6] · [C 6] ≥ 1

2
+ν1 +ν2 +ν3 −λ3,

which yields
4∑

i=1
i(Li )+ [T6] · [C 6] ≥ 1

2
+ν1 +ν2 +ν3 −λ3,
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by similar arguments as in the first example. Next, we compute the intersection num-
ber [T6] · [C 6] and use Proposition 2.5.2 to estimate λ3:

[T6] · [C 6] = 1

2

([
C 6]2 − [C ]2)+ν1

[
C 6] · [F1]+ν2

[
C 6] · [F2]+ν3

[
C 6] · [F3]+ 1

2
[C ]2

[Use Theorem 2.4.1] = 1

2
· (−6)+ν1 +ν2 +ν3 + 1

2
·4

= ν1 +ν2 +ν3 −1,

0 ≤ [T3] · [E3]

=
(1

2

[
C 3]+λ1[E1]+λ2[E2]+λ3[E3]

)
· [E3]

= 1

2
−λ3.

Combining the three above estimates, we receive
∑4

i=1 i(Li ) ≥ 1, as wanted.

2.5.5 Estimations of intersections numbers - end of the proof

In general case, we can not estimate directly
∑4

i=1 i(Li ) from Proposition 2.5.3 be-
cause of the complexity of the resolution tree. The key technique to overcome this
difficulty is to view this quantity locally, site by site in the resolution tree near singular
points of the configuration C ∪L . First, we rewrite the inequality 2.5.7 as follows

i(L N)+
N∑

K=1
i(EK)+

m∑
j=1

µ j (2−2g j )+[T0]·[C ] ≥
m∑

j=1
µ jκC N

j
+

N∑
K=1

(κEK
−2)λK−

(
[TN]·[C N]−[T0]·[C ]

)
,

2.5.8

where the quantity [TN] · [C N]− [T0] · [C ] can be viewed locally. Let Sing(C∪L ) denote
the set of singular points of the configuration C ∪L . Let

Sing(C∪L ) = Sing0∪Sing1∪Sing2

be the partition of Sing(C∪L ) determined by

Singv = {Q ∈ Sing(C∪L ) : there are v lines of L passing through Q} (0≤v≤2).

Note that locally in any site near some singular point, we always have
∑4

i=1 i(Li ) ≥
i(L N). For a point Q ∈ Sing2, for a divisor E in the site near Q, for any z ∈C, if f̃N(z) ∈ E
then f (z) = Q. Hence for any site near some point in Sing2, the local contribution to∑4

i=1 i(Li ) is ≥ the sum of the local contribution to i(L N) and all i(E), where E are ex-
ceptional divisors in this site. Note also that for any exceptional divisor EK, one has
i(EK) ≤ [TN] · [EK] by Proposition 2.5.2. Thanks to these remarks, we deduce from 2.5.8

that
4∑

i=1
i(Li )+

m∑
j=1

µ j (2−2g j )+ [T0] · [C ] ≥ ∑
Q∈Sing(C∪L )

( m∑
j=1

µ jκC N
j
+

N∑
K=1

(κEK
−2)λK −

(
[TN] · [C N]− [T0] · [C ]

))
Q

− ∑
Q∈Sing0∪Sing1

( N∑
K=1

[TN] · [EK]
)

Q
, 2.5.9

where AQ denotes the local contribution of A near Q.
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Lemma 2.5.2. For a point Q ∈ Sing(C∪L ), denote by Mil j
Q the Milnor number of C j at Q

and by r j
Q the number of branches of C j at Q. Set

δ
j
Q = Mil j

Q +r j
Q −1,

then the local contribution of the right hand side of 2.5.9 at Q is bounded from below by

m∑
j=1

µ jδ
j
Q +

m∑
j=1

µ j
∑
k 6= j

(C j ·Ck )Q +
m∑

j=1
µ j (C j ·L )Q .

Proof. Without lost of generality, we may assume that {EK,1 ≤ K ≤ NQ } is the set consist-
ing of exceptional divisors starting from the point Q = P0 in the resolution tree. We first
introduce some notations and basic properties. For two indexes K1, K2 with K1 > K2,
the exceptional divisor EK1 is said to be proximate to EK2 if EK2 intersects EK1 when EK1

appears in the resolution tree. It is clear that EK is always proximate to EK−1. Further-
more, if EK1 is proximate to EK2 for some K2 < K1−1, then EK1−1 is also proximate to EK2 .
Set

ProxEK
:= {`≤ K−1 : EK is proximate toE`},

ChildEK
:= {`≥ K+1 : E` is proximate toEK}.

Denote by pK the cardinality of ProxEK
. If EK appears in the resolution tree by blowing

up an intersection point of two exceptional divisors, then pK = 2. Otherwise pK = 1. Let
aK denote the self-intersection [EK] · [EK]. Note that at its first appearance, EK has self-
intersection number −1 and this is diminished by 1 each time a point on EK is blown
up. Hence,

|ChildEK
| = −1−aK. 2.5.10

Now, in the resolution tree, let nK be the number of intersection points between EK and
the other exceptional divisors E` (` 6= K). Its relationship to pK is described as follows.

Observation 2.5.2. One has

2−nK = 2−pK −
∑

`∈ChildEK

(2−p`).

Proof. The quantity 2−nK can be computed inductively by tracing EK, form the first
time it appears until the end of the resolution process. When EK appears, it intersects
with the other exceptional divisors at pK points. Hence we set 2−nK,0 = 2−pK. Next,
when a point A1 in EK is blown up with exceptional divisor E`1 , we determine 2−nK,1 as
follows. If A1 does not belong to any other exceptional divisor Eµ,µ< K, then after the
blowing up, EK still intersects with all old exceptional divisors. Since EK also intersects
with E`1 , we set 2−nK,1 = 2−nK,0 −1. Note that in this case p`1 = 1, hence 2−nK,1 =
2−nK,0 − 1 = 2− pK − (2− p`1 ). If A1 = EK ∩Eµ for some µ < K, then the number of
intersection points between EK and the other exceptional divisors does not change,
since it intersects with the new exceptional divisor E`1 , but has empty intersection with
Eµ. Hence we set 2−nK,1 = 2−nK,0. Note that in this case p`1 = 2, thus 2−nK,1 = 2−nK,0 =
2−pK−(2−p`1 ). Continue this process until the end, we obtain 2−nK = 2−nK,|ChildEK | =
2−pK −∑

`∈ChildEK
(2−p`), as wanted.
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Next, let {B j ,ν}1≤ν≤R j be the collection of branches of the component C j at Q. Sim-
ilarly as in the first part of this section, we use the notation B K

j ,ν to denote the strict

transform of B K−1
j ,ν , with the convention that B 0

j ,ν = B j ,ν. Let Ea j ,ν be the exceptional

divisor in the resolution tree that intersects B
NQ

j ,ν . The number of double points κEa j ,ν
is

then given by
κEa j ,ν

= na j ,ν +1+|Ea j ,ν ∩L NQ |. 2.5.11

Let mK
j , mK

j ,ν (1 ≤ K ≤ NQ ) be the multiplicity of C K−1
j , B K−1

j ,ν at PK−1, respectively. Note

that the sequence {mK
j ,ν}

NQ

K=1 is of the form m1
j ,ν, · · · ,m

a j ,ν−1
j ,ν ,1,0, · · · ,0. Note also that

mK
j =

R j∑
ν=1

mK
j ,ν. 2.5.12

The following equality is a basic property of the proximity relation (see [Wal04, Propo-
sition 3.5.1]):

mK
j ,ν =

∑
`≥K+1,`∈ProxEK

m`
j ,ν (1≤K≤a j ,ν−1).

As a consequence, one has

Observation 2.5.3.
m1

j ,ν =
∑

K≥2, pK=2
mK

j ,ν+1 (1≤ j ≤m ;1≤ν≤R j ).

Proof. Taking the sum of both sides of the a j ,ν above equalities, we receive

a j ,ν−1∑
K=1

mK
j ,ν =

a j ,ν−1∑
K=1

∑
`≥K+1,`∈ProxEK

m`
j ,ν,

which yields

m1
j ,ν =

a j ,ν−1∑
K=1

( ∑
`≥K+1,`∈ProxEK

m`
j ,ν−mK+1

j ,ν

)
+1

= ∑
K≥2, pK=2

mK
j ,ν+1.

Now we are ready to prove Lemma 2.5.2. Using Theorem 2.4.1 and Theorem 2.4.2,
the local contribution of

(
[TN] · [C N]− [T0] · [C ]

)
at Q can be computed as follows(

[TN] · [C N]− [T0] · [C ]
)

Q

=
( m∑

j=1
µ j

R j∑
ν=1

[
B

NQ

j ,ν

]+ NQ∑
K=1

λK[EK]
)
·
( m∑

j=1

R j∑
ν=1

[
B

NQ

j ,ν

])− ( m∑
j=1

µ j

R j∑
ν=1

[B j ,ν]
)
·
( m∑

j=1

R j∑
ν=1

[B j ,ν]
)

=
m∑

j=1
µ j

([ R j∑
ν=1

B
NQ

j ,ν

]2 − [ R j∑
ν=1

B j ,ν
]2

)
+

m∑
j=1

µ j

( R j∑
ν1=1

∑
1≤k ≤m,k 6= j

Rk∑
ν2=1

([
B

NQ

j ,ν1

] · [B
NQ

k,ν2

]− [B j ,ν1 ] · [Bk,ν2 ]
))
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+
( NQ∑

K=1
λK[EK]

)
·
( m∑

j=1

R j∑
ν=1

[
B

NQ

j ,ν

])
=

m∑
j=1

µ j

( R j∑
ν=1

([
B

NQ

j ,ν

]2 − [
B j ,ν

]2)+2
∑

1≤ν<η≤R j

([
B

NQ

j ,ν

] · [B
NQ

j ,η

]− [B j ,ν] · [B j ,η]
))

+
m∑

j=1
µ j

( ∑
1≤k≤m,k 6= j

R j∑
ν1=1

Rk∑
ν2=1

([
B

NQ

j ,ν1

] · [B
NQ

k,ν2

]− [B j ,ν1 ] · [Bk,ν2 ]
))

+
m∑

j=1

R j∑
ν=1

λa j ,ν

[
B

NQ

j ,ν

] · [Ea j ,ν

]
=

m∑
j=1

µ j

(
−

R j∑
ν=1

NQ∑
K=1

(
mK

j ,ν

)2 −2
∑

1≤ν<η≤R j

NQ∑
K=1

mK
j ,νmK

j ,η

)

+
m∑

j=1
µ j

( ∑
1≤k≤m,k 6= j

R j∑
ν1=1

Rk∑
ν2=1

(
−

NQ∑
K=1

mK
j ,ν1

mK
k,ν2

))
+

m∑
j=1

R j∑
ν=1

λa j ,ν

=−
m∑

j=1
µ j

NQ∑
K=1

( R j∑
ν=1

mK
j ,ν

)2
−

m∑
j=1

µ j
∑

1≤k≤m,k 6= j

NQ∑
K=1

( R j∑
ν1=1

mK
j ,ν1

)( Rk∑
ν2=1

mK
k,ν2

)
+

m∑
j=1

R j∑
ν=1

λa j ,ν

=−
m∑

j=1
µ j

NQ∑
K=1

(
mK

j

)2 −
m∑

j=1
µ j

∑
1≤k≤m,k 6= j

NQ∑
K=1

(
mK

j

)(
mK

k

)+ m∑
j=1

R j∑
ν=1

λa j ,ν

=−
m∑

j=1
µ j

NQ∑
K=1

[(
mK

j

)2 −mK
j

]− m∑
j=1

µ j
∑

1≤k≤m,k 6= j

NQ∑
K=1

(
mK

j

)(
mK

k

)+ m∑
j=1

R j∑
ν=1

λa j ,ν −
m∑

j=1
µ j

NQ∑
K=1

mK
j

=−
m∑

j=1
µ j

(
µ

j
Q + r j

Q −1
)− m∑

j=1
µ j

∑
k 6= j

(C j ·Ck )Q +
m∑

j=1

R j∑
ν=1

λa j ,ν −
m∑

j=1
µ j

NQ∑
K=1

mK
j . 2.5.13

Next, by very definition of aK, nK, the local contribution of
∑N

K=1[TN] · [EK] at Q is given
by

( N∑
K=1

[TN] · [EK]
)

Q
=

( m∑
j=1

µ j

R j∑
ν=1

[
B

NQ

j ,ν

]+ NQ∑
K=1

λK[EK]
)
·
( NQ∑

K=1
[EK]

)
=

( m∑
j=1

µ j

R j∑
ν=1

[
B

NQ

j ,ν

]) · ( NQ∑
K=1

[EK]
)
+

( NQ∑
K=1

λK[EK]
)
·
( NQ∑

K=1
[EK]

)
=

m∑
j=1

µ j

R j∑
ν=1

[
B

NQ

j ,ν

] · [Ea j ,ν

]+ NQ∑
K=1

λK[EK]2 +
NQ∑

K=1
λK[EK] ·

( NQ∑
`=1,`6=K

[E`]
)

=
m∑

j=1
µ j R j +

NQ∑
K=1

λKaK +
NQ∑

K=1
λKnK. 2.5.14

We consider three cases depending on the position of Q with respect to the family L .

Case 1: the point Q is contained in Sing0. Since any exceptional divisor in the site
near Q does not intersect L N, we infer from 2.5.11 that the local contribution of the right
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hand side of 2.5.9 at Q is given by

m∑
j=1

R j∑
ν=1

λa j ,ν +
m∑

j=1
µ j R j −

NQ∑
K=1

(2−nK)λK −
((

[TN] · [C N]− [T0] · [C ]
)+ N∑

K=1
[TN] · [EK]

)
Q

,

which is equal to

m∑
j=1

µ jδ
j
Q +

m∑
j=1

µ j
∑
k 6= j

(C j ·Ck )Q +
m∑

j=1
µ j

NQ∑
K=1

mK
j −

NQ∑
K=1

(2+aK)λK,

by using 2.5.13, 2.5.14. Since
∑m

j=1µ j (C j ·L )Q = 0, it suffices to verify the following in-
equality

NQ∑
K=1

(2+aK)λK ≤
m∑

j=1
µ j

NQ∑
K=1

mK
j . 2.5.15

For each 1 ≤ K ≤ NQ , by applying Proposition 2.5.2, we get

0 ≤ [TK] · [EK]

=
( m∑

j=1
µ j

R j∑
ν=1

[
B K

j ,ν

]+ K∑
`=1

[E`]
)
· [EK]

[Use Theorem 2.4.1] =
m∑

j=1
µ j

R j∑
ν=1

mK
j ,ν+

∑
`∈ProxEK

λ`−λK

[Use 2.5.12] =
m∑

j=1
µ j mK

j +
∑

`∈ProxEK

λ`−λK,

or equivalently

λK ≤
m∑

j=1
µ j mK

j +
∑

`∈ProxEK

λ`.

Summing both sides of these inequalities, we receive

NQ∑
K=1

λK ≤
m∑

j=1
µ j

NQ∑
K=1

mK
j +

NQ∑
K=1

∑
`∈ProxEK

λ`,

=
m∑

j=1
µ j

NQ∑
K=1

mK
j +

NQ∑
K=1

|ChildEK
|λK

[Use 2.5.10] =
m∑

j=1
µ j

NQ∑
K=1

mK
j +

NQ∑
K=1

(−1−aK)λK,

which yields 2.5.15.

Case 2: the point Q is contained in Sing1, i.e. there is only one line L of the fam-
ily L containing the point Q. Assume that in the resolution tree, LNQ intersects the
exceptional divisor EaL . We first observe that

m∑
j=1

µ j (C j ·L )Q =
m∑

j=1
µ j

R j∑
ν=1

(
B j ,ν ·L

)
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=
m∑

j=1
µ j

R j∑
ν=1

aL∑
K=1

mK
j ,ν

=
m∑

j=1
µ j

aL∑
K=1

mK
j . 2.5.16

Using 2.5.11 and noting that κEaL
= naL +1+|EaL ∩C N|, the local contribution of the right

hand side of 2.5.9 at Q is given by

m∑
j=1

R j∑
ν=1

λa j ,ν +
m∑

j=1
µ j R j −

NQ∑
K=1

(2−nK)λK −
((

[TN] · [C N]− [T0] · [C ]
)+ N∑

K=1
[TN] · [EK]

)
Q
+λaL ,

which is equal to

m∑
j=1

µ jδ
j
Q +

m∑
j=1

µ j
∑
k 6= j

(C j ·Ck )Q +
m∑

j=1
µ j

NQ∑
K=1

mK
j −

NQ∑
K=1

(2+aK)λK +λaL ,

by 2.5.13, 2.5.14. Hence, using this fact together with 2.5.16, it’s enough to prove that

NQ∑
K=1

(2+aK)λK −λaL ≤
m∑

j=1
µ j

NQ∑
K=1

mK
j −

m∑
j=1

µ j

aL∑
K=1

mK
j . 2.5.17

Since K−1 ∈ ProxEK
, λK ≥ 0 (1 ≤ K ≤ NQ ), we have

λK +
( m∑

j=1
µ j mK

j −λK +λK−1
)≤ m∑

j=1
µ j mK

j +
∑

`∈ProxEK

λ` (1≤K≤aL),

with the convention that λ0 = 0. For each index K > aL , applying Proposition 2.5.2 for
TK and EK, we receive

λK ≤
m∑

j=1
µ j mK

j +
∑

`∈ProxEK

λ` (aL+1≤K≤nQ ),

as in Case 1. Summing both sides of these inequalities, we obtain

NQ∑
K=1

λK +
m∑

j=1
µ j

aL∑
K=1

mK
j −λaL ≤

m∑
j=1

µ j

NQ∑
K=1

mK
j −

NQ∑
K=1

(−1−aK)λK,

which yields the inequality 2.5.17.

Case 3: Q is contained in Sing2, i.e. Q is the intersection point of two lines in L , says
L1 and L2. Assume that in the resolution tree, LN

u (1 ≤ u ≤ 2) intersects the exceptional
divisors EaLu

. Since each branch B j ,ν intersects transversally with L1 or L2, we observe
that

B j ,ν ·L = m1
j ,ν+

aL j ,ν∑
K=1

mK
j ,ν,

where L j ,ν is the remaining line that B j ,ν may not intersect transversally. Consequently,
one has

m∑
j=1

µ j (C j ·L )Q =
m∑

j=1
µ j

Ri∑
ν=1

(B j ,ν ·L )
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=
m∑

j=1
µ j

R j∑
ν=1

(
m1

j ,ν+
aL j ,ν∑
K=1

mK
j ,ν

)
. 2.5.18

Similarly as in the two above cases, the local contribution of the right hand side of 2.5.9

at Q is given by

m∑
j=1

R j∑
ν=1

λa j ,ν +
m∑

j=1
µ j R j −

NQ∑
K=1

(2−nK)λK −
(
[TN] · [C N]− [T0] · [C ]

)
Q +λaL1

+λaL2
.

If follows from 2.5.13 that this quantity is equal to

m∑
j=1

µ jδ
j
Q +

m∑
j=1

µ j
∑
k 6= j

(C j ·Ck )Q +
m∑

j=1
µ j

R j∑
ν=1

NQ∑
K=1

mK
j ,ν+

m∑
j=1

µ j R j −
NQ∑

K=1
(2−nK)λK+λaL1

+λaL2
.

2.5.19

Using this fact together with 2.5.18, the problem reduces to proving that

NQ∑
K=1

(2−nK)λK −λaL1
−λaL2

+
m∑

j=1
µ j

R j∑
ν=1

m1
j ,ν−

m∑
j=1

µ j R j ≤
m∑

j=1
µ j

R j∑
ν=1

NQ∑
K=aL j ,ν+1

mK
j ,ν. 2.5.20

First, we infer from Observation 2.5.2 that

NQ∑
K=1

(2−nK)λK −λaL1
−λaL2

= (2−n1)λ1 +
NQ∑

K=2
(2−nK)λK −λaL1

−λaL2

= (2−n1)λ1 +
NQ∑

K=2

(
(2−pK)− ∑

`∈ChildEK

(2−p`)
)
λK −λaL1

−λaL2

=
(
(2−n1)+ ∑

`∈ChildE1

(2−p`)
)
λ1 −λaL1

−λaL2

+
NQ∑

K=2
(2−pK)

(
λK −

∑
`∈ProxEK

λ`

)
= 2λ1 −λaL1

−λaL2
+ ∑

K≥2,pK=1
(λK −λK−1)

=−
aL1∑
K=2

(λK −λK−1)−
aL2∑
K=2

(λK −λK−1)+ ∑
K≥2,pK=1

(λK −λK−1)

≤ ∑
K≥aL j ,ν+1, pK=1

(λK −λK−1)

[Use Proposition 2.5.2] ≤
m∑

j=1
µ j

R j∑
ν=1

∑
K≥aL j ,ν+1, pK=1

mK
j ,ν. 2.5.21

Next, using Observation 2.5.3, we rewrite the remaining term in the left hand side of
2.5.20 as:

m∑
j=1

µ j

R j∑
ν=1

m1
j ,ν−

m∑
j=1

µ j R j =
m∑

j=1
µ j

R j∑
ν=1

(
m1

j ,ν−1
)
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=
m∑

j=1
µ j

R j∑
ν=1

∑
K≥2, pK=2

mK
j ,ν

=
m∑

j=1
µ j

R j∑
ν=1

∑
K≥aL j ,ν+1,pK=2

mK
j ,ν, 2.5.22

where the last equality holds since pK = 1 for all 1 ≤ K ≤ aL j ,ν . The inequality 2.5.20

follows directly from 2.5.21 and 2.5.22.

We now come back to the proof of the Main Theorem. It follows from Proposi-
tion 2.5.3 and Lemma 2.5.2 that

4∑
i=1

i(Li )+
m∑

j=1
µ j (2−2g j )+ [T0] · [C ] ≥

m∑
j=1

µ j
∑
Q
δ

j
Q +

m∑
j=1

µ j
∑
k 6= j

∑
Q

(C j ·Ck )Q

+
m∑

j=1
µ j

(∑
Q

(C j ·L )Q

)
. 2.5.23

The algebraic intersection of T0 and C is given by

[T0] · [C ] =
( m∑

j1=1
µ j1 [C j1 ]

)
·
( m∑

j2=1
[C j2 ]

)
=

m∑
j2=1

( m∑
j1=1

µ j1 d j1

)
d j2

=
m∑

j=1
d j .

Hence, using Theorem 2.4.3

m∑
j=1

µ j
∑
Q
δ

j
Q =

m∑
j=1

µ j
(
(d j −1)(d j −2)−2 g j

)
=

m∑
j=1

µ j (d 2
j −3d j )+

m∑
j=1

µ j (2−2 g j ),

and noting that

m∑
j=1

µ j
∑
k 6= j

∑
Q

(C j ·Ck )Q =
m∑

j=1
µ j

∑
k 6= j

d j dk ,

m∑
j=1

µ j
∑
Q

(C j ·L )Q = 4
m∑

j=1
µ j d j ,

the inequality 2.5.23 can be rewritten as

4∑
i=1

i(Li ) ≥
m∑

j=1
µ j (d 2

j −3d j )+
m∑

j=1
µ j

∑
k 6= j

d j dk +4
m∑

j=1
µ j d j −

m∑
j=1

d j
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=
m∑

j=1
µ j d 2

j +
m∑

j=1
µ j

∑
k 6= j

d j dk −
m∑

j=1
d j + (4−3)

m∑
j=1

µ j d j

=
( m∑

j=1
µ j d j

)( m∑
j=1

d j

)
−

m∑
j=1

d j +1

= 1 ·
( m∑

j=1
d j

)
−

m∑
j=1

d j +1

= 1

The Main Theorem is thus proved.

2.6 Construction of algebraically nondegenerate curve
having cluster set contained in a given

nonhyperbolic curve

In this section, we will give an example of holomorphic curve satisfying the condi-
tion on the main theorem. When C is a line, such an example was given by Da Costa in
[dC13], and its method can be generalized to arbitrary nonhyperbolic curves.

Theorem 2.6.1. Let C ⊂ P2(C) be an irreducible nonhyperbolic curve. Then there ex-
ists an algebraically nondegenerate holomorphic curve f : C→ P2(C) having cluster set
contained in C .

Proof. Let [z0 : z1 : z2] be the homogeneous coordinates of P2(C) and let P1∞(C) := {z0 =
0} be the line at infinity. Fix a point A ∉ P1∞(C) and let q : C → P1∞(C) be the restriction
to C of the projection from A to the line P1∞(C). Since C is not hyperbolic, its universal
cover is eitherP1(C) or an elliptic curveC/Λ, whereΛ∼=Z×Z is a lattice inC. Hence, us-
ing any doubly periodic elliptic function C/Λ→ P1, we can always find a nonconstant
holomorphic mapping p :C/Λ→C .

Let L be the pull-back by q ◦p of the line bundle O (1) on P1∞(C) and let π :C→C/Λ
be the canonical projection.

π∗L

��

// L= (q ◦p)∗(O (1))

��

// q∗(O (1))

��

// O (1)

��

� � // P2(C)

C
π // C/Λ

p // C

c

OO

q //

j
99

P1∞(C) �
� // P2(C)

Since the line bundle L has a metric of strict positive curvature, its Chern number is
strict positive. Hence it admits a hermitian metric h′ such that its curvature cohomolo-
gous to α ddc (|z|2) for some α> 0, namely their different is of the form ddc ϕ for some
smooth real function ϕ on C/Λ. Thus, after replacing the initial metric h′ by h′e−ϕ, we
receive the hermitian metric h having the associated curvature of the form

Θh = α ddc (|z|2).
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For a section k trivializing the line bundle π∗L, using Lelong-Poincaré equation, one
has

ddc (
log‖k‖2

h

) = −α ddc (|z|2),

which implies that log‖k‖2
h +α |z|2 is a harmonic function. Therefore, we can write

log‖k‖2
h +α |z|2 = Re g ,

for some holomorphic function g . Hence by taking the exponential both sides of the
above equation, we obtain

‖k‖2
h .eα |z|2 = |eg |,

or equivalently

‖e−g /2 k‖2
h = e−α |z|2 .

Thus, one can find a trivial section s1 of π∗L such that ‖s1‖2
h = e−α |z|2 . Now, since the

line bundle O (1) →P1∞(C) can be regarded as the pencil of lines though the point A, the
embedding j : C → O (1) ⊂ P2(C) induces a section c : C → q∗(O (1)). Let s2 be the sec-
tion of π∗L induced by c in the diagram. The section s = s1+s2 induces an algebraically
nondegenerate holomorphic curve f : C→P2(C) having the cluster set contained in C ,
since for r →∞, the image f (C\∆r ) is contained in the e−αr 2

–neighbourhood of C .
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Titre : SUR LE SECOND THÉORÈME FONDAMENTAL

Mots clés : Théorie de Nevanlinna, Hyperbolicité complexe, Théorie de Ahlfors, Conjecture de Kobayashi,

Second Théorème Principal, courbe holomorphe, Courant de Nevanlinna, Lemme de Brody

Résume : La conjecture de Kobayashi stipule qu’une hy-
persurface générique Xd ⊂ Pn+1(C) de degré d ≥ 2n + 1
est hyperbolique complexe, un problème qui a attiré une
grande attention récemment, avec l’espoir de mettre au
point une théorie de Nevanlinna complète en dimension
supérieure.
Dans la première partie de cette thèse, notre objectif
est de construire des exemples d’hypersurfaces hyperbo-
liques de l’espace projectif dont le degré soit aussi pe-
tit que possible. Tout d’abord, en tenant compte du ni-
veau de troncation dans le Second Théorème Principal
de Cartan, nous établissons l’hyperbolicité de complé-
mentaires de certaines configurations d’hyperplans avec
points de passages, ce qui étend un résultat classique de
Bloch-Fujimoto-Green. Ceci nous permet d’amorcer un
algorithme récent de Duval, basé sur la méthode de dé-
formation de Zaidenberg, pour créer des sextiques hy-
perboliques dans P3(C), et de construire ainsi des fa-
milles d’hypersurfaces hyperboliques Xd ⊂ Pn+1(C) de
degré d = 2n +2 pour 2 ≤ n ≤ 5.

En adaptant cette technique aux dimensions supé-
rieures, nous obtenons aussi des exemples d’hypersur-
faces hyperboliques de degré d ≥ ( n+3

2 )2 dans Pn+1(C).
Dans la deuxième partie, nous étudions le problème de
diminuer le niveau de troncation dans le Second Théo-
rème Principal de Cartan. Noguchi a conjecturé que dans
ce théorème, pour une famille de 4 droites en posi-
tion générale dans P2(C), si une courbe holomorphe en-
tière f : C → P2(C) est supposée n’être pas algébrique-
ment dégénérée, alors le niveau de troncation peut être
abaissé à 1. En utilisation la théorie de recouvrement
d’Ahlfors pour les surfaces, nous proposons une réponse
positive dans le cas où la courbe f est proche d’une
certaine courbe algébrique C ⊂ P2(C), au sens où l’en-
semble d’accumulation de f (C) à l’infini, le cluster set de
f

Clu( f ) := ∩
r>0

(
f (C\∆r )

)
est contenu dans C .

Title : ON THE SECOND MAIN THEOREM

Keywords : Nevanlinna Theory, Complex hyperbolicity, Ahlfors’ Theory, Kobayashi’s conjecture,

Second Main Theorem, holomorphic curve, Nevanlinna current, Brody’s Lemma

Abstract : Kobayashi’s conjecture asserts that a generic
hypersurface Xd ⊂ Pn+1(C) having degree d ≥ 2n + 1 is
complex hyperbolic, a problem that has attracted much
attention recently, also with the hope of setting up a
complete higher dimensional Nevanlinna theory.
In the first part of this thesis, our goal is to construct
examples of hyperbolic hypersurfaces in projective
spaces of degree as low as possible. First of all, taking
into account the truncation level in Cartan’s Second
Main Theorem, we establish the hyperbolicity of com-
plements of some configurations of hyperplanes with
passage points, extending a classical result of Bloch-
Fujimoto-Green. This allows us to launch a recent algo-
rithm of Duval, based on the deformation method of Zai-
denberg, on creating hyperbolic sextics in P3(C), hence
to construct families of hyperbolic hypersurfaces Xd ⊂
Pn+1(C) having degree d = 2n +2 for 2 ≤ n ≤ 5.

Adapting this technique to higher dimensional cases, we
also obtain examples of hyperbolic hypersurfaces of de-
gree d ≥ ( n+3

2 )2 in Pn+1(C).
In the second part, we study the problem of decreasing
the truncation level in Cartan’s Second Main Theorem.
It was conjectured by Noguchi that in this theorem, for
a family of 4 lines in general position in P2(C), if an en-
tire holomorphic curve f : C→P2(C) is assumed to be al-
gebraically nondegenerate, then the truncation level can
be decreased to 1. Using Ahlfors’theory of covering sur-
faces, we propose a positive answer in the case where the
curve f is close to some algebraic curve C ⊂P2(C), in the
sense that the set of accumulation points of f (C) at infi-
nity, the cluster set of f

Clu( f ) := ∩
r>0

(
f (C\∆r )

)
is contained in C .
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