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Depuis le début de mes travaux de recherches, j’ai eu la chance d’avoir de multiples col-

laborations avec des chercheurs d’un large horizon, du plus fondamental au plus appliqué ainsi
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Merci également à mes collègues et amis du Grappa, d’Inria, du CNRS, de l’université de
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Introduction

All models are wrong, but some are useful. George Box.

This document presents the research I have undertaken since the end of my PhD thesis.

This work was done as assistant professor at the University of Lille and the Inria Lille Nord

Europe research center. Most of it was done in the SequeL team which was created in 2006

both in the Laboratoire d’Informatique Fondamentale de Lille (LIFL) which is now know as

CRIStAL and in the Inria Lille under the direction of Philippe Preux.

My main research directions are statistical learning and machine learning with the goal of

sequential prediction or decision making under uncertainty. This field is at the intersection of

statistics, computer science, applied mathematics and signal processing. In my opinion its main

objective is to build tools able to face situations where vanilla statistics does not apply well

because of some constraints carried by the application. As an example this can be due to the

lack of a good model, highly non linear data, size of the data, non independent sampling. With

the fast decay of the storage cost and the exponential grow of the number of sensors -including

smartphones- some tremendous amounts of data are available to build some new applications.

As the growth rate of available data -including some public one with the open access initiative-

is higher than the growth rate of the number of brains available to take care of it, there is a

strong industrial interest in automated methods with good performances. We also have to keep

in mind that the data size has grown faster than the speed of processors and that an important

part of the complete system performance is directly related to the ability to handle all the

available data. Thus in some situations, even a quadratic complexity in the size of the data is

too much which strongly advocates for algorithms that scale at most linearly and are anytime.

Even if in some games and some dedicated applications machines, became better than

humans, as soon as the model is not fully available or reasonably sized the human is still

undefeated. Nevertheless machine learning can be used to handle efficiently at low cost some

large scale tasks such as recommender systems, Ads personalization, time series predictions,

planning, image annotation and segmentation.

Many tools and techniques of machine learning are now deployed at large scale. Nevertheless

the techniques still require some deep understanding to be applied to a new domain. My PhD

thesis was mostly oriented towards a theoretical analysis of some classes of algorithms, in these

years I tried to pay much more attention to the final application and to help to bridge the gap

between the practice and theory. I always tried to do it in a principled way and I feel that
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grounding the studied system with a real problem is a key ingredient of the Machine Learning

as a field.

The most common formulation in statistics is the following: we assume a set of n (obser-

vation, label) tuples, after these training examples a new observation comes and we want to

be able to predict the label. This setting can nicely fit a wide variety of problems as shown in

these few examples:

• Observations can be explicit ratings given to some movies, music or items and the label

would be the next item to be interested in.

• Observation can be some network traffic and label would be an expert labeling about the

detection of an fraudulent behavior.

• Observation can be emails or forum posts and the label can be the sentiment of the user

or a spam tag.

• Observation can be visited webpages or Facebook like or friends and label would be prob-

ability of credit default or more controversially political orientations and customer value.

• . . .

The link is usually discovered by the minimization of a well chosen regularized loss function.

[Bottou, 2012] provides some common losses such as quadratic, Hinge, Quantile, Logistic with

their common uses. In machine learning it is common to deal with a large number of features

or discrete values. This requires to estimate a large number of parameters which is prone to

overfitting. To avoid this we often penalize -aka regularize- the loss function with a term which

constraints the model. Common regularizers are norms -L2, L1, F robenius, . . . - on the param-

eters of the model. Turning a problem into the minimization of a well chosen and understood

function is the main trick of the Machine Learning.

The rest of this document is organized as follow: first I’ll highlight the very core of the

recommender systems. This is not designed to be an exhaustive recall of all the existing work

around this, but rather what I feel to be the most central after years of industrial tests and

challenges over real data. Then I’ll present one of the first work we had on recommender systems

which had the particularity to work under budget/time constraints. I feel like it was a step

towards the complete description on a recommender system which is not only about guessing

the tastes of customers but also on how to make an efficient use of this guess. Secondly I’ll

move to my contributions to one of the most important problems for these systems which is the

offline evaluation of new policies. This is central because being able to estimate with guarantees

enables confident optimization, and we will see that even for contextual bandits some difficulties

occurs. Then I’ll present some of our work on the clustering problem in the case of sequences.

This part is much more theoretical than the rest of the document, but as the number of available

unsupervised data grows incredibly fast over the internet, we think there is a practical need to

shift from supervised settings to unsupervised learning and this will require some grounding.

Finally, I’ll conclude this document by some thoughts on the future of the developed questions

and select some publications to provide a supplementary material.
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Whenever possible I’ll mention the industrial problem which motivated this study and the

contacts I developed working on it. I omitted my work on games -more specifically poker- and

in bioinformatics because this does not fit well in the main line of this document.
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Chapter 1

Large scale recommendation

algorithms

The work described in this chapter is based on these publications and on the PhD of Olivier

Nicol [Nicol, 2014]:

• O. Nicol, J. Mary & Ph. Preux ICML Exploration ans Exploitation challenge: Keep it

Simple! Journal of Machine Learning Research (JMLR), 2012

• S. Girgin, J. Mary, Ph. Preux & O. Nicol Managing Advertising Campaigns - an Approx-

imate Planning approach Frontiers of Computer Science, 2011

• S. Girgin, J. Mary, Ph. Preux & O. Nicol Advertising Campaigns Management: Should

We Be Greedy? The 10th IEEE International Conference on Data Mining (ICDM), 2010

• F. Guillou, G. Romaric, J. Mary and Ph. Preux User Engagement as Evaluation: a

Ranking or a Regression Problem?, RecSys’14 Challenge Workshop.

• S. Girgin, J. Mary, Ph. Preux & O. Nicol Large-Scale Online Learning and Decision-

Making Workshop, Windsor, 2012 Planning-based Approach for Optimizing the Display of

Online Advertising Campaigns MLOAD 2010 - NIPS 2010 Workshop on online advertising,

2010

Recommender Systems (RSs) collect information on the preferences of its users for a set

of items (e.g., movies, courses, songs, books, jokes, items, applications,. . . ). They target to

answers questions that are hard to formulate or not formulated questions such as Propose me

something interesting for this afternoon, or What are good birthday gift ideas for my mom? .

Facing such questions, the idea of Collaborative Filtering (CF) is to mimic the way in which

humans build their own decisions: besides our own experiences, we also integrate the experience

and knowledge that reach each of us from a group of relatives.
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1.1 Core algorithms

There is a huge amount of work in recommender systems and my goal is not here to provide a

complete survey which is already done in [Bobadilla et al., 2013]. In the following I am going to

emphasize two flavors of well known algorithms - namely the logistic regression and the matrix

factorization - which received an intense attention from the community and are the core of many

deployed systems. I’ll try to present some knowledge developed by taking part into challenges

before introducing my actual interest which is recommendations performed in a sequential and

possibly evolving environment.

1.1.1 Logistic Regression

The logistic regression is a linear regression model which tries to fit the probability for an

observation to belong to one class. A reformulation as a L2 regularized loss to minimize can be

written:

L (w) =
λ

2
‖w‖22 +

n∑

i=1

log
(

1 + e−yi·w
T xi
)

Where (xi, yi), i ∈ 1 . . . n a set of n examples (description, class) with the description in

dimension d (in order to add an intercept we often append a 1 in front of all the description

vectors). w is the vector of parameters to optimize (dimension of w is the same than the

description space) and λ ∈ R. The minimization is done by an iterative algorithm: gradient

descent, Newton’s method, stochastic gradient,. . .

Remark 1. For more complex objective functions the gradient strategies are still very effective

and one can cite in particular Nesterov accelerated gradient [Nesterov, 2004] which by a clever

“sliding” is an optimal method (in terms of oracle complexity) for smooth convex optimization

and Frank-Wolfe methods which considers a linear approximation of the objective function, and

moves slightly towards a minimizer of this linear function [Frank and Wolfe, 1956].

At first glance working with a large number of features can be a problem. Besides the

problems of overfitting, it is intractable to conduct a systematically search through a high-

dimensional space, but this is not only a curse:

Linear separation

For a fixed number of independent observations sampling the whole space while the dimension-

ality of the data increase the probability of finding a linear separator -for any affectation of

classes- increases. This is a remarkable advocate for the use of linear methods as the logistic

regression when the dimensionality is large. In a noisy setting adding some new dimensions

-with non redundant information- helps because the distance between two different centroids is

increasing as a square root of the dimensionality.

It can even be interesting to build new features from the data. This direction has been

intensively studied through the use of kernels [Schölkopf and Smola, 2002]. As a bonus the

14



kernel trick allows to turn any linear machine learning algorithm based which only involves

scalars products computations into a non linear method (in the initial space), by providing

efficient method to minimize the objective function over the higher dimensional space. This trick

is extensively used in SVMs. Though these methods are very useful their scaling is problematic

even if there exist some linear approximations to the Gaussian kernel as done in [Jose et al.,

2013].

Fast approximated linear algebra

It is surprisingly easy to perform some approximated linear algebra computations in high di-

mension. One example of this is the squared-length sampling technique which consists in sub-

sampling the rows and/or columns of a matrix according to the square of their L2 norm. An

excellent version is given Chapter 6 of [Kannan and Vempala, 2009] but the first result is in

[Frieze et al., 1998].

Let p1, p2, . . . , pd be nonnegative reals adding up to 1. Pick j ∈ {1 . . . n} with probability

pj .

For any vector ~v, consider the vector valued random variable

X =
M (j)~vj
pj

Then E(X) = M~v. So X is an unbiased estimator of M~v and

V ar(X) =

n∑

j=1

‖M (j)‖2~v2j
pj

− ‖M~v‖2

So if pj =
‖M(j)‖22
‖M‖F , after s samples if we note Y the random variable which averages the

realizations, then E(Y ) is an estimator of M~v with

V ar(Y ) =
1

s
‖M‖2F ‖v‖2

Let j1, . . . , js be s independant identitcally distributed (i.i.d.) random variables taking

values in {1 . . . n} such as the probability that j1 is equal to i ∈ [n] is proportional to ‖M (i)‖22.
Let B a matrix such that its ith column is 1√

spji
Mji . Let u1, . . . , uk be the k top left singular

vectors of B. A low rank approximation to M is

M̃ =
k∑

i=1

uiu
>
i M.

One can prove that for s = 4k/ε2 this approximation satisfies:

E‖M − M̃‖2F ≤ ‖M −M∗‖2F + ε‖M‖2F

where M∗ is the best rank k approximation to M .

15



The most surprising part of this algorithm is that the complexity of computing the projection

matrix
∑k

i=1 uiu
>
i is independent of n.

On the regularization

The goal of a regularizer is to promote some simplification into the choice of the model. This

is related to the Occam’s razzor which is a principle that promotes simplicity. Here a natural

choice would be to add a penalty to our loss that would be the number of non zeros parameters

in the model. This penalty is often referred as L0 despite this is not a norm. This is called

sparsity promotion.

Unfortunately L0 is not convex and this leads to computationally intractable optimization

- which is NP-Hard even in the noiseless setting.

In such situation a natural idea is to relax. The convex norm closest to L0 is L1 which

allows to optimize efficiently with guarantees using linear gradient methods. This replacement

can be justified in the noiseless setting, because if coefficients of X are i.i.d subgaussian entries

the probability of exact recovery of the coefficients replacing L0 by L1 is Ω(s log d
s ) [Candes and

Tao, 2005].

In application, this is common to test a set of regularizers including L2 norms in order to

minimize an estimator of the loss built by cross validation or bootstrap.

Heterogenous Data handling

Probability prediction is one of the most important problems in ML. When trying to apply

these methods on real world datasets, we often face some heterogenous data mixing numerical

and categorial features. There has been many attempts to override this point including the

tedious handcrafting of features.

Nevertheless a strategy succeeded in several Kaggle/KDD challenges [all, 2014, 2012], even

outperforming random forests and in my opinion should now be used as a baseline for any

probability prediction task:

• Split any categorical feature with k different values in k boolean features,

• Discretize any numerical features individually using your favorite clustering method.

Quantiles, k-means or latent Dirichlet allocation are usually good choices [Boullé, 2006].

• (Optional) Add some other binary features built upon some gradient booster decision

trees GBDT [Friedman, 2000]. This step sometimes does not improve a lot the final

performance but can be crucial to win a competition such as the Yandex one [Serdyukov

et al., 2014] and the RecSys 2014 one [Said et al., 2014b].

• Now perform a variant of a regularized logistic regression trained by gradient descent on

the binary data. The missing values are replaced by 0.

From a practical point of view there are several remarks on the last step of this approach.
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• This is useless to do a gradient descent if you can afford the cost of the quadractic solving

but this methods is designed to work with large volumes of data. As with deep learning

this is common to start with some stochastic gradient descent and then after some passes

to switch to more sophisticated methods as Adagrad [Duchi et al., 2010] - see [Bottou,

2012] for a lot of clever considerations on SGD.

• It can be useful to perform a second order -or higher- logistic regression. This leads

to a great increase in the number of parameters to estimate. To avoid this problem an

interesting regularization is to push towards a low rank constraint on the matrix of second

order terms. This is the core of the idea behind factorizing machines [Rendle, 2012] which

is used in many state of the art softwares for large data as libFM and Vowpal Wabbit (lqr

option).

Implementation details

The gradient descent described above only updates parameters associated to features with a

value set to 1. Because of the binarization, for each example the number of features with value

1 is usually low with respect to the total number of features. Thus it is very efficient to code the

model using a hash tables to store the value of the parameters using the names of the features

to generate a key. If you are running in trouble with the memory because of the number of

possible features a common practice is to use the hashing trick [Weinberger et al., 2009] which

can be interpreted as a regularization and simply consists in allowing collisions.

It is possible to keep several low rank matrixes instead of one by affecting a “field” to each

feature. Then a low rank matrix is estimated for each couple of field of features. This additional

step can cause severe overfitting but it is useful to reach the very top of the performance. It is

also recommended to take advantage of SSE operations to speed up the computation of scalar

products. A BSD implementation of this strategy is available in the LibFFM library.

An other very popular approach is the random forest but their classical implementation

does not scale very well on online data. A possibility here is to use extremely randomized forest

[Geurts et al., 2006] which are very interesting to handle heterogenous data. Nevertheless we

never succeeded in recommender challenge using these methods though they are competitive.

1.1.2 Matrix Factorization

Logistic regression and more generally supervised learning require some descriptors of the situ-

ation to predict, also known as features. As an example it is as answering the question: What

is the probability that a male of 17 years who owns an iPhone is going to buy this product with

tags A,B,C?

But sometimes we do not have these descriptors of the context. As an example in the Netflix

dataset we only have some ratings of movies - with a date - for some users and movies. A natural

idea to predict which movies could be interesting for a user is to evaluate this probability using

the movies he already rated as a context. Though effective, this approach is outperformed by

the matrix factorization formulation when the available data is sparse.
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First the known ratings are presented as a matrix M with one row per user and one column

by movie (also called item of size m×n. Of course this matrix has a lot of unknown values and

our objective is to fill these ones.

A classic -though not perfect- measure of performance is to evaluate the L2 norm also known

as Mean Square Error (MSE) of the reconstructed matrix using some cross validation on the

known terms. In other words we want to minimize the:

MSE(M̂) =
1

nm

∑

i,j∈M
(mi,j − m̂i,j)

2

If we add the constraint on M̂ to be of rank k then the optimal solution is the singular value

decomposition of M truncated to the k highest singular values.

Of course in practice we are going to perform this minimization using only the known values

of M so we will need some additional regularization. A natural class of estimator for m̂i,j is to

express it as a scalar product < ui,vj > from points of a latent space of dimension k.

Thus for a fixed k which is a parameter of the approach we aim to minimize:

ζ(U,V)
def
=

∑

i,j∈M

(
mi,j −Ui,V

t
j

)2
+ Ω(U, V ) (1.1)

in which λ ∈ R+ and the usual regularization term is:

Ω(U,V)
def
= ||U||2 + ||V||2 =

∑

i

||Ui||2 +
∑

j

||Vj ||2.

ζ is not convex. The minimization is usually performed either by stochastic gradient descent

(SGD), or by alternate least squares (ALS). ALS-WR [Zhou et al., 2008] a Tikhonov regular-

ization which weights users and items according to their respective importance in the matrix

of ratings. This is the default setting for Mahout1 and is very hard to defeat consistently even

with some more recent approaches as PMF [Salakhutdinov and Mnih, 2007].

Ω(U,V)
def
=
∑

i

#J (i)||Ui||2 +
∑

j

#I(j)||Vj ||2.

Guaranties

This formulation as a recovery of a low rank matrix from a fraction of observed values has

attracted the attention of mathematicians, [Fazel, 2002] is possibly the first work in this field.

A key idea [Cai et al., 2010] is the minimization of a convex surrogate of the rank under con-

straints on the L2 norm of the reconstruction which is a convex optimization problem tractable

by standard algorithms. This method has the advantage of exactly, rather than approximately,

recovering the entries of the matrix when a suitable low rank assumption is satisfied. This

path leads to the Soft-Impute algorithm [Mazumder et al., 2010] which iteratively replace

1https://mahout.apache.org/
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the missing elements with those obtained from a soft-thresholded SVD. The classically studied

quantity is the Lagrange form of the minimization of the nuclear norm -as a convex surrogate

of the rank- of M̂ under constraint of L2. This is equivalent to minimize equation 1.1 with

Ω(U,V)
def
= λ · ‖UV ‖∗.

where ‖M‖∗ is the nuclear norm, that is the sum of the singular values of M and λ ≥ 0 a

regularization parameter.

This estimator is asymptotically consistent with a rate of convergence of in O(1/numbers of

iterations), though there is no guarantee for a fixed number of known ratings.

The minimization of the sole nuclear norm allows to get some interesting properties. If the

rank of M of dimension n1 × n2 is k and has a “strong incoherence property” then with high

probability nuclear norm minimization will recover M from a random uniform sample provided

that the number of known rating of m � nk logO(1)(n), where n = max(n1, n2) [Candès and

Tao, 2010]. The strong incoherence property is a condition on the matrix coefficients of U and

V basically saying that they behave in magnitude as if the singular vectors were distributed

randomly. [Candès and Recht, 2009] had a different incoherence property - `∞ norm of singular

vector should be close to the minimal possible value, namely O(1/
√
n)- and they obtain a

n1.2k log(n) number of observations requirement.

Nevertheless these methods are not competitive on real data with state of the art matrix

factorization: as an example on Netflix the RMSE of these methods is 0.94 while an ALS-WR

reaches 0.86 and runs much faster: less than 20 seconds on an Intel i7 using with 8 cores against

several hours.

The main limit to these works for RS comes from the uniform and independent sampling

hypothesis. This is possible to get rid of the uniform assumption at a cost of increased variance

over the reconstruction but the goal of a RS is to not sample independently from the previous

recommendation: we want to take into account the preferences of the user which are expressed

through its own ratings.

Remark 2. In order to keep the temporal information it is also possible to work with a tensor

instead of a matrix, see [Rendle et al., 2010] for more details.

Remark 3. A factorization machine can mimic the behavior of a matrix factorization by using

the right input data (e.g. feature vector) [Rendle, 2010].

Remark 4. One should pay more attention to the fact that the sampling of known values in M

is not uniform. This impact the evaluation of the L2 norm of the error but this effect is usually

neglected.

1.1.3 Bandits algorithms

Let us consider a bandit machine with m independent arms. When pulling arm j, the player

receives a reward drawn from [0, 1] which follows a probability distribution νj . Let µj denote

the mean of νj and j∗
def
= argmaxj µj be the best arm. The parameters {νj}, {µj}, j∗ and µ∗

are unknown.
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A player aims at maximizing its cumulative reward after T consecutive pulls. More specifi-

cally, by denoting jt the arm pulled at time t and rt the reward obtained at time t, the player

wants to maximize the quantity CumRewT =
∑T

t=1 rt. As the parameters are unknown, at each

time-step (except the last one), the player faces the dilemma:

• either exploit by pulling the arm which seems the best according to the estimated values

of the parameters;

• or explore to improve the estimation of the parameters of the probability distribution of

an arm by pulling it;

A well-known approach to handle the exploration vs. exploitation trade-off is the Upper Confi-

dence Bound strategy (UCB) [Auer et al., 2002] which consists in playing the arm jt:

jt = argmax
j

µ̂j +

√
2 ln t

tj
, (1.2)

where µ̂j denotes an estimation of µj at time-step t and tj corresponds to the number of pulls

of arm j since t = 1. UCB is optimal up to a constant. This equation clearly expresses the

exploration-exploitation trade-off: while the first term of the sum (µ̂j) tends to exploit the

seemingly optimal arm, the second term of the sum tends to explore less pulled arms.

Work by [Li et al., 2010] extend the bandit setting to contextual arms. They assume that

a context is associated to each arm j in the form of a vector of real features vj ∈ Rk and that

the expectation of the reward associated to an arm is u∗ · vj , where u∗ is an unknown vector.

The algorithm handling this setting is known as LinUCB. LinUCB follows the same scheme as

UCB in the sense that it consists in playing the arm with the largest upper confidence bound

on the expected reward:

jt = argmax
j

û · vTj + α
√

vjA−1vTj ,

where û is an estimate of u∗, α is a parameter and A =
∑t−1

t′=1 vjt′ .v
T
jt′

+ Id, where Id is

the identity matrix. Note that û.vTj corresponds to an estimate of the expected reward, while√
vjA−1vTj is an optimistic correction of that estimate.

While the objective of UCB and LinUCB is to maximize the cumulative reward, theoretical

results [Li et al., 2010; Abbasi-yadkori et al., 2011] are expressed in term of cumulative regret

(or regret for short)

RegretT
def
=

T∑

t=1

r∗t − rt,

where r∗t stands for the best expected reward at time t (either µ∗ in the UCB setting or

maxj u∗.vTj in the LinUCB setting). Hence, the regret measures how much the player looses

(in expectation), in comparison to playing the optimal strategy. Standard results prove regrets

of order Õ(
√
T ) or O(lnT ), depending on the assumptions on the distributions and depending

on the precise analysis 2.

2Õ means O up to a logarithmic term on T .
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During preliminary time-steps, the value of the eq. (1.2) is dominated by the second term.

Afterwards, the first term becomes predominant, and the one that influences the most the choice

of the arm to pull. Hence, the behavior of UCB is very similar to the strategy Explore-Exploit

which consists in uniformly exploring the arms during a few steps, then focussing on the arm

with the best empirical mean. On the other hand, UCB never stops exploring seemingly sub-

optimal arms. This continuous exploration is usually confined to ε-greedy strategy which plays

the seemingly-best arm with probability (1− ε) and explores otherwise.

The strength of UCB lies in the following property: the number of pulls of a sub-optimal

arm j is in the order lnT
(µ∗−µj)2 . Hence, the continuous exploration of arm j only costs a regret

of the order lnT
µ∗−µj . As a corollary to that property, the exploration budget is non-uniformly

spread among the set of arms: the larger the regret of arm j, the less frequently arm j is played.

UCB does not lose time, hence rewards, playing arms which are likely to be non-optimal.

In short, while (i) UCB-like algorithms continuously explore to avoid focussing on a sub-

optimal arm, (ii) the number of exploration steps is kept reasonable, and (iii) the exploration

budget is non-uniformly shared among the set of arms (most promising arms are more explored).

This (automatically) finely tuned exploration grants UCB algorithm with an optimal regret (up

to a constant), while Explore-Exploit suffers a regret of O
(
T 2/3

)
and ε-greedy needs the

knowledge of minj 6=j∗(µ∗ − µj) to reach a O(lnT ) regret [Auer et al., 2002].

This strategy can be extended to the choice of arm with respect to a context described

by some features. The intuition of the extension is illustrated in figure 1.1 when the reward

depends linearly on features -this is known as LinUCB. Some work extends the methodology

using a kernel [Valko et al., 2013]. Of course LinUCB, and more generally contextual bandits

requires the context (values of features) to be provided. In real applications this is done using

side information over the items and the users [Shivaswamy and Joachims, 2011] -i.e. expert

knowledge, categorization of items, Facebook profiles of users, implicit feedback . . .

As highlighted by [Chapelle and Li, 2011] in some applications, an old Bayesian version

of this strategy performs extremely well: the Thompson sampling. The principle is to keep

a distribution law for each parameter and to update it with respect to the new observations.

When these parameters are required to take an action, they are sampled from their estimated

distribution rather than picked at the maximum of likelihood. This ensures a level of exploration

because parameters which have been rarely updated will have higher variance. This idea was

initially an heuristic, but there is now some non asymptotic guarantees [May et al., 2012]. Sadly

the proof does not explain the reasons of the fast convergence because it analyses the regret in

a very similar way to UCB.

Of course, it is possible to include some knowledge in the prior distribution of parameter or

in the update rule. The Xbox live matchmaking system -TrueSkill [Herbrich et al., 2007]- and

AdPredictor from Microsoft [Graepel et al., 2010] are using these strategies.

1.1.4 Common limits and improvement margin

Yet these methods are not totally new, they needed some time to be widely understood and

used in real systems. Moreover to build an actual system we often need to pay some attention
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Figure 1.1: This figure illustrates the use of the upper confidence ellipsoid for item selection

in the context of a new user. As explained in the text, items and users are represented as

vectors in Rk. In the figure, the red dots correspond to the known items vectors. The blue area

indicates the confidence ellipsoid on the unknown vector associated to the user. The optimistic

rating of the user for item 1 is the maximum scalar product between V̂1 and any point in this

ellipsoid. By a simple geometrical argument based on iso-contours of the scalar product, this

maximum scalar product is equal to the scalar product between V̂1 and ũ(1). The optimistic

recommendation system recommends the item maximizing the scalar product 〈ũ(j), V̂j〉.

to some important side effects. I mention here some of the questions we tried to contribute:

Hybrid systems Most of the time there are different ways to attack a problem, and as for

challenges, one does not rely just on one tool, but on a wide variety of methods as well,

combined together in some empirically optimized fashion. This was the case in our winning

submission to RecSys’14 as well as in the work with Deezer - more info in section 1.2.

Coldstart Most of the time we have no data is some regions of the space. With RS it corre-

sponds to new users and new items. Unfortunately they are possibly the most important

ones because you want to fidelize your new users and when you accept a new item this

is because you feel it’s a better one. One could rely on the hybrid approach but we be-

lieve in optimization of the recommender policy to embed some exploration/exploitation

dilemma. More information in sections 1.2 and 1.3.

Evaluations of systems You can always compute the classification error on model predicting

the probability of a click. But is this really related to the online performance of a new

model? The real world evolves and can even be non stationary. In this setting, offline

evaluation of algorithms is problematic. Developed in section 2.

Unsupervised learning for sequences More and more data is available but labeling is not

always possible or too expensive. This field is close to pattern identification and is at the

limit of non parametric statistics. Our main contribution was to provide some theoretical

ground to the clustering of processes. See section 3.

22



1.2 Challenges and collaborations

In my opinion a core difference between statistics and machine learning is to put more emphasis

on some task from real world. This means to take some care to design some algorithms able to

be computed in reasonable time with large amounts of data, but it also means to attack some

usage cases in a setting transferable to the industrial level. I feel that challenges organized

in conjunction with industrial parters cast an interesting light on the development of machine

learning. I took part and I was involved in the organization of 3 of them.

1.2.1 ICML’12

This competition was the second Exploration vs. Exploitation challenge organized by the Uni-

versity College of London jointly with ICML 2011. The goal was to learn online a link between

the description of some users and a recommendation taken by Adobe. To avoid to perform the

evaluation online a task was designed as follow:

1. Six tuples (values of features, taken action) where presented to the algorithm.

2. The algorithm selects one

3. Result of the action aka reward (0 or 1) is revealed,

4. Loop to 1 until no more available data. The score is the sum of the reward.

To win this challenge we modified a state-of-the-art algorithm: Ad Predictor which we also

provided with additional possibilities. This algorithm makes assumptions that are quite similar

to the ones made by LinUCB. LinUCB is possibly the most famous contextual bandit algorithm

but as the linear assumption does not work extremely well there we use some versions made to

take care of discrete features (although we show how to relax this constraint). After deriving a

new algorithm, LAP, able to deal with the classical contextual bandit problem, we show that

this new algorithm exhibits a performance that is comparable with that of the state-of-the-art

solution LinUCB while being much more computationally efficient: linear versus cubic time

complexity. We also derive a generalized version of this algorithm, GAP, which is able to deal

with a much wider range of types of data that can be met in real applications than LinUCB.

More details can be found in [Nicol et al., 2012]. Nevertheless the most surprising part of

this work was the fact that we were able to build an even slightly better algorithm by ignoring

the “action” taken by Adobe. This means that the difference between the users -in terms of click

probability- is much stronger than the lift which can be obtained using some personalization.

Thus we felt like the measure of performance of this challenge was not fully relevant for building

an actual RS and we proposed a different metric for the next challenge.

1.2.2 ICML’13

As a follow up to the ICML’12 challenge we organized a new one [Mary et al., 2012] based on

some Yahoo! news data using the offline evaluation as described in[Langford et al., 2008; Li
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et al., 2011]. The task was to optimize the click probability on a recommended news given a

description of a visit: some features are about the news and some others about the user. This

was the first challenge with data collection done using a random uniform allocation of the news,

which allows to test any policy without requiring to bias the estimators to avoid variances issues

because all the regions of space are explored in the same way.

This challenge was a great success with more than 5000 submitted algorithms from more

than 20 teams - including MIT and Princeton. Different methodologies were tested and some

conclusions where shared among teams:

• Thompson sampling is actually effective an requires almost no tuning while UCB bases

methods were more sensitives

• It was hard but possible to perform well using the features. i.e. there is some information

hidden in but hard to spot online.

• Some news are so important that any exploration and personalization should be turned

off when they occur. This is because the click probability on a news decrease with time.

Moreover this news will be replaced by a new one after some delay. So it was very

important to get as more click as possible with them.

The winner of phase 1 managed to handle all these parts and built a truly personalized news

recommender system. Yet the final result was surprising: the winner -a master student from

Peter Auer- used a UCB-v variant [Audibert et al., 2009] which consist in selecting the arm

(active news) with the highest score µ̂ that takes care of variance estimation:

µ̂ = µ+

√
c · µ · (1− µ) · log(t)

n
+ c ·

(
0.5− µ
n

)
log(t)

Where t is the current time step, c a constant to tune -winner used 1 as a value, µ empirical

mean of the arm (news), n number of plays with this arm. This entry did not performed so

well in the first part of the challenge but had no overfitting. Latter studies on the data showed

that:

• C = 1 was close the optimal choice on the test set,

• The performance was due to the presence of a high number of news with a low variance

on the click rate. As the variance of a Bernoulli of parameter p is p(1− p), in UCB-v this

leads to a great penalty of optimism for news with a click rate close to 0 while best news

benefits both from a higher mean estimate and higher variance.

More details can be found in the chapter 4 of the Olivier Nicol’s PhD thesis [Nicol, 2014].

1.2.3 RecSys’14

This challenge is described in [Said et al., 2014a] and was about identifying tweets with high

probability of retweet. despite the fact that the task is inherently sequential, it was turned into
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a ranking problem, which is a common surrogate in recommender systems because users prefers

RS to be able to discover to a good ordering over their tastes rather than being able to precisely

estimate their ratings in terms of RMSE.

With Frédéric Guillou, Romaric Gaudel and Philippe Preux we won this challenge by de-

veloping a variant of LambdaMART [Burges, 2010] which is the boosted tree version of Lamb-

daRank, which is based on RankNet which is a way to learn to rank using stochastic gradient

algorithm. Our variant was more sensitive to features strongly correlated to the result (namely

retweet was definitely the most important feature).

So again we emphasized the importance of data analysis when working on an offline task,

but also demonstrated that the achieved result is strongly biased by the evaluation metric which

should as close as possible to the actual use which is online.

More details can be found in [Guillou et al., 2014].

1.2.4 Orange

This collaboration was at the origin of my interest in recommender systems and click opti-

mization. The idea is not only to build some estimators of the click probability but also to

decide how to use them when one needs to include some constraints from the application. As

an example Ads are usually sold with a budget and a duration and this is not considered as a

good practice to spend all the customer’s budget on the first day. I provide more focus to this

work in the section 1.3.

1.2.5 Deezer

This work is not fully disclosable, but the idea was to overcome the drawbacks from vanilla

matrix factorization in the case of music recommendation. Common drawbacks are the presence

of “Hubs” which are points which tend to be too close to many other ones and the fact that

music recommendation is inherently a sequential task within a context. Most of people do not

appreciate the brutal mixing between two different types of music -even if they do like both-

and have preferences which fluctuates with the period of the day. There is also a particular

attention to pay to the popularity of the artists: the most popular ones are very useful to explore

the taste of a user but good music recommender system should avoid only focussing on them.

Finally an other problem is the building of satisfaction indicators and to be able to modify the

recommendation flow under negative feedbacks from the user.

1.2.6 Nuukik

Nuukik is a start-up created in 2012 which targets the market of the sales recommendation form

mid-sized online stores. In order to give as much as possible flexibility to their customers in their

marketing strategy, they developed an easy to configure engine to plug over any recommender

system. Our first collaboration was in the field of the cold start in order to be able to address

smaller businesses. When actually very few data are available, matrix recommendation based

systems usually requires to be completed with some additional features (this is known as hybrid
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systems), Francis Bach showed how the use any kernel on these features to conduct a generalized

low rank matrix completion [Abernethy et al., 2006]. But on some situations, including the new

products, the amount of data is not big enough and one has to rely on the exploration strategy

to collect the required amount of information. We used an adaptation of the ideas from the

linear bandits to do it [Mary et al., 2014a] leading to a patent deposit. A new contract is

ongoing about the clever use of the seasonality of sales and the mixing of data from different

stores.

1.2.7 TBS

This work was about the prediction of affluence on newspaper websites. This question is im-

portant for several reasons: First, hardware and network bandwidth need to be provisioned if a

site is growing. Secondly, sites that sell premium advertising space need to estimate how many

page views will be available within the 6 to 8 next weeks. If vanilla time series are applied they

are trapped mostly by two phenomenons:

• Strong impulsive and occasional changes because of some breaking news. The impulses

cause large prediction errors, long after their occurrences.

• Complex seasonality: there is a superposition of many seasonalities: day in the week,

holidays, weather, hour of the day. . .

Based on data from several major French news websites including some TVs and radios, we

built a robust prediction algorithm based on wavelet decomposition of the seasonal trend out-

performing the state of the art by more than 20% in terms of mean square error at 6 weeks.

1.3 Approximate planing

In this section we consider a particular case of recommendation with some constraints on the

advertising campaign. Usual constraints on campaigns can be limits on the number of displays

as well as lifetimes with the requirement to not spend too fast a fixed budget. This problem is

essentially sequential in time, having virtually no end. At a given time t, there is a pool of Kt

running ad campaigns Ad1, Ad2, . . . , AdKt . At time t, each ad campaign Adj has its remaining

click budget Bt
j which is the number of clicks that this ad has to receive during a certain amount

of time, its remaining lifetime Ltj . The Bt
j and Ltj are known (these are specified by the contract

between the announcer, and the website manager). Finally, at each time, some ad campaigns

reach the end of their lifetime, and new ad campaigns, along with their particular budget and

lifetime, may appear with probability u. For this purpose, we may assume that there exists an

unknown generative model M that generates ads at each time step.

Each time a visitor requests a certain page (url) on the website, we assume some side

information may be available about the visitor (for instance because of the presence of a cookie

on the visitor’s computer, or because he/she logged in on the website and some information

has been kept about him/her); this information may or may not be accurate with regards

to the current visitor, that is, the real person being behind the computer, and navigating
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this website. Based on this information and the requested webpage itself, or more likely, the

category of this requested webpage, each visitor is assigned to one among N profiles, denoted

Profilei, i ∈ 1, . . . , N . To each profile is associated its daily probability of visit on the website

R1, . . . , RN (
∑N

1 Ri = 1). The requested page is part of the profile so that two requests of the

same visitor of two different webpages are associated to two different profiles. We also assume

that ∀i, Ri is known: indeed, these quantities are easily estimated from weblogs: the number

of visits is so large that the confidence on these estimates is very high.

Now, when a visitor requests a certain page of the website, one ad is selected to be displayed

on the page. The goal is that during its lifetime, each ad is clicked according to its budget; at

the end of a given ad campaign, an inferior amount of clicks decreases the income of the web

operator, the decrease being rather sharp. For ease of presentation, we suppose that the pay-off

associated to a successful ad campaign (the budget of clicks has been obtained), as well as the

cost of not fulfilling it is the same for all campaigns. Moreover, the ads of a given campaign are

expected to be clicked at a quite uniform rate along its lifetime.

Here, we assume that the problem is stationary, this means that the profiles, the probability

of visits belonging to each profile, the probability that a visit of a profile produces a click on an

ad, and the ad campaign generative model are constant in time.

To be precise, we define the following words: a “visitor” is a real person who is currently

viewing web pages; a “request” is a request to a web server to open an url along with the

available (if any) side information; an “announcer” is an entity who is responsible for an ad

campaign; the announcer contracts the “website manager” to buy a certain amount of clicks on

some ads.

1.3.1 Towards our solution

In order to maximize the expected total number of clicks, a very valuable piece of information

is the probability of click (usually called Click-Through Rate – CTR) of any profile, on any

ad. Let us denote pi,j , the probability that a request belonging to Profilei results in a click

on ad Adj . The probabilities pi,j are unknown. An accurate prediction of these pi,j results

in the display of attractive commercial banners to the website visitors. Still, as this learning

is performed online, the main issue is to balance the estimation (exploration) of the unknown

parameters, with the exploitation of their current estimates. This problem can be formulated

as a multi-armed bandit problem (with the ads in the role of the arms).

However, the existence of finite click budgets, along with ad mortality after a finite and

rather small lifetime, requires non asymptotic optimal, or to the least good, solution: indeed,

we can not satisfy ourselves with an optimal policy that would be reached after a very large

numbers of page visits, and clicks, waiting for the law of large numbers to be acceptable. This

finiteness of click budgets and lifetimes makes the problem a combinatorial one, along with

stochasticity, uncertainty, and an evolution in time. Finiteness creates dependencies between

the allocation of the visits to the different ads. The optimal solution is thus no longer to display

its favorite ad to each profile that is, the ad which is the most likely to be clicked by this visitor.

The pure greedy approach to satisfy each profile would fail to balance the odds of click with

the necessary fulfillment of contracts, which is the real goal.
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A workable technique to obtain an ad allocation policy is linear programing (LP), based on

the current estimators of the probabilities pi,j . However, as the LP needs to be specified a finite

total number of visits, this method is designed for finite time problems. Though at first sight

this finite number of visits seems to lose its meaning in a dynamic environment, we observe

that it actually balances policies between greedy behaviors and too far-sighted ones on the set

of current ads. Finally, one has to choose the best behavior with respect to the arrival of new

ads. Hence in this part, we endeavor the use of a linear programming approach in the context

of a never ending traffic of website visitors and uncertain upcoming arrival of new ads.

When we started to work on this problem, the most relevant works may be split into two

groups: those based on a bandit approach and those based on a linear programming approach.

Then, a flurry of variations of the basic bandit problem has been studied in different contexts.

“Contextual bandits”, also known as “side information bandits”, is a development in which extra

information is available, hopefully to help choosing the best arm to pull [Pandey et al., 2007;

Langford and Zhang, 2008; Wang et al., 2005; Kakade et al., 2008]. In the on-line advertisement

problem, these information would typically be the information available on the Internet user,

the page he/she is visiting, the day, the time of the day, the season, . . . Among these works,

Pandey et al. [Pandey et al., 2007] considered clusters on the website pages and on the ads

and built a two-stage bandit method: select the cluster first, then select the ad in this cluster.

For Kakade et al. [Kakade et al., 2008], the side information is a vector x ∈ Rd. Inspired by

the perceptron, their “Banditron” is an algorithm which goal is to classify those vectors into K

labels, i.e. the K bandit arms. Here, the ad serving problem is reduced to an on-line multiclass

prediction problem with bandit feedback.

Chakrabarti et al. [Chakrabarti et al., 2008] analyzed a version of MAB where ads lifetime

could be budgeted and revealed to the player, or even be stochastic to model uncertain events

which are beyond the control of the ad system. Their results are based on the knowledge of

a prior on the arm reward distribution, and they focus on finding rapidly a good arm to stick

with among a very large set of ads.

Pandey and Olston [Pandey and Olston, 2006] proposed an adaptation of the MAB frame-

work to tackle an instance of the problem with click budgets on the ads in the multiple ad

display context.

These methods could be useful in our model if they helped us to infer the click probabilities.

But, most of the time, they only select the best ads in each context. Yet, to be optimal,

the allocation of the different clusters of profile on limited resources has to be scheduled. This

planning can be computed with a linear program. Moreover, and most importantly, these works

do not consider the limitation on budgets, and the mortality of ads in their planning.

Linear Programming

[Abe and Nakamura, 1999] mixed the multi-armed bandit setting with a linear program reso-

lution for on-line advertising with constraints on the impressions proportions. The relevance of

the model was demonstrated through simulations. Still, they only considered a context with

unlimited resources and a static set of ads.
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[Mehta et al., 2005] treated this problem as an on-line bipartite matching problem with

daily budget constraints. However, it assumed that we have no knowledge of the sequence of

appearance of the profile, whereas in practice we often have a good estimate of it. [Mahdian

and Nazerzadeh, 2007] tried then to take advantage of such estimates while still maintaining a

reasonable competitive ratio, in case of inaccurate estimates. Extensions to click budget were

discussed in the case of extra estimates about the click probabilities. Nevertheless, the daily

maximization of the income is not equivalent to a global maximization.

Hybridizing Bandits and Linear Programming

To sum-up, we wish to optimize a combinatorial problem in order to determine the probability

of allocation si,j of a certain profilei on a certain Adj . However, a key ingredient for such

a traditional approach is missing which is the probability of click pi,j of any profilei on any

Adj . These probabilities have to be estimated. This two-fold problem calls for a combination

of combinatorial optimization method, along with a learning algorithm. Linear programming

and multi-armed bandits provide such tools to be used in sequence: first MAB to estimate the

probabilities, and then LP to obtain the optimal solution; however, the word “optimal” may be

misleading since we mean here, optimal up to the accuracy of the estimation. However, we are

not yet solving the real problem in which:

1. requests observed during a certain time span are not distributed according to the estimated

probability of visits Ri,

2. real visitors do not click according to estimated probabilities,

3. new ad campaigns will appear in a near future. The way they appear, their frequency and

quality, influences the way we should allocate our ads in the present.

These three issues create discrepancies between the “optimal” solution computed at a certain

time, and what may be considered optimal later on, when visitors, and clicks are actually

observed (even not mentioning the upcoming ads).

To cope with these observed events, a first solution is to continuously adapt the solution of

the problem to new observed conditions. Basically, this is done by merely iterating the process

of estimation of probabilities, and solving the combinatorial optimization problem with those

current estimates on the current ads.

Before delving into the details of our algorithm, let us define precisely the following:

• pi,j is the probability of click of any profilei on a displayed Adj . For the sake of simplicity,

we assume that these probabilities are stationary.

• p̂ti,j is the estimated probability of click of any profilei on a displayed Adj , thus p̂ is an

estimate of p. Even though p is stationary, p̂ depends on time t because this estimate

relies on the series of events that have been observed up to time t.

• xti,j is the “optimal” probability of allocation of profilei to a displayed Adj . This would

provide the optimal policy if we were relying on the real p, not on this estimate p̂t to

compute x. Henceforth, x depends on time as p̂ depends on time.
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Sort the set of ads so that Ad1 dies first and AdKt dies last.

Maximize
∑

1≤i≤N
1≤j≤Kt

xi,j pi,j (1.3)

Subject to
∑

1≤i≤N
xi,j pi,j ≤ Bt

j ∀j ∈ {1, . . . ,Kt} (1.4)

∑

1≤j≤Kt

xi,j ≤ Ri ∗H ∀i ∈ {1, . . . , N} (1.5)

∑

1≤k≤j
xi,k ≤ Ltj ∗Ri ∀i ∈ {1, . . . , N},∀j ∈ {1, . . . ,Kt} (1.6)

∑

1≤k≤j
xi,j ≥ 0 ∀i ∈ {1, . . . , N},∀j ∈ {1, . . . ,Kt} (1.7)

• sti,j is the effective probability of allocation of profilei to a displayed Adj . If p was known,

x would be optimal, and s would be equal to x; however, since we rely on p̂ to compute

x, we should not stick to (exploit) the current allocation x, but also explore alternate

allocations. s is thus a combination of exploitation (rely on x) and exploration.

1.3.2 Our hybrid algorithm: MAB+LP

Our idea is to cast this problem into the linear program framework paying some attention

to the building of reliable estimators. We note H the horizon, that is, an expected number

of ad requests. x, the result of the LP is a matrix where xi,j is the number of visits from

profile i to allocate on ad j. Given (N,Kt) ∈ N2, the number of profiles and the number of

currently running ad campaigns respectively, p ∈ [0, 1]N×K
t
, the click probabilities, (Bt, Lt) ∈

NKt ×NKt
the budgets, and R ∈ [0, 1]N , the profiles appearance proportions, find xt ∈ RN×Kt

,

the allocation policy:

So we have to solve a linear problem with N×Kt variables and N×Kt+N+Kt constraints.

The objective (eq. (1.3)) is to maximize the number of clicks. Inequalities (1.4) express the

constraints on the click budget of the ads. Inequalities (1.5) express the constraints on the

number of visits in the profiles. Inequalities (1.6) express the constraints on the lifetime of the

ads. For the latter inequalities, the idea is to constrain, for each profile, the allocation on an ad

to be less than the number of people that the ad will see during its life. But, recursively, the

allocation on ad A has also to take into account the number of persons already taken by the

ads which will die before A. Note that the Lj may be considered as a number of ad requests,

as we will assume the number of visits is constant over days (which is false in the general case,

but do not significantly alter the solution).

If the click probabilities pi,j were known, the planning induced by x would be, in expectation,

the best non adaptive policy to follow. Still, the CTRs have to be learned on-line. A simple

idea, already used in [Abe and Nakamura, 1999], is to use the current estimate of p to compute

the planning. For example, after having observed a certain amount of visits, a straightforward
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Table 1.1: The iterated routine.

.

Loop at time t:

Allocation policy:

Current estimators: p̂ti,j
Compute the linear program: xt = LP (p̂t, Bt, Lt, R,H)

Compute the probability allocations: sti,j =
xti,j
‖xti‖
∀i ∈ {1 . . . N}, ∀j ∈ {1 . . .Kt}

with ‖xti‖ =
∑Kt

j=1 x
t
i,j

Visit: A visit, the tth, occurs from Profilei.

Display: One ad, Adl, is chosen, each Adj being displayed with probability sti,j .

Click: A click occurs or not.

Update: p̂ti,l is updated.

Lt+1
k ← Ltk − 1 ∀ k ∈ {1, . . . ,Kt}

Bt+1
l ← Bt

l − 1 if a click has occurred.

A new Ad appears with probability u (update Kt if so).

estimate for pi,j is p̂ti,j =
NCt

i,j

NIti,j
with, for each profile i and ad j, NCti,j being the number of clicks

observed up to time t and NIti,j the number of displays performed up to time t. This involves

that each time a new visit is observed, p̂ti,j can be updated because there is a pair (i, j) for

which NIi,j has been incremented (and perhaps even the associated NCi,j). Then one should

immediately take into account this improved estimator and recompute the associated allocation

policy. This leads to the algorithm outlined in table Tab. 1.1.

Yet, in practice, repeatedly solving the LP after every web page request is not reasonable

when facing very large amounts of website visitors per day. Hence, to make it effective, we can

set a time period T (T � 1) and carry out this computation every T visits.

Moreover, this is an on-line learning problem where one has to learn the pi,j which are

used to compute the LP solution, from which the probability of display of ads to the different

visit profiles is deduced (the sti,j in the algorithm 1.1). Then, we have to balance between ex-

ploiting the current estimates and exploring the set of possible actions to improve this estimate.

This exploration-exploitation trade-off is naturally addressed in the multi-armed bandit setting.

Based on the MAB framework, different ways to introduce exploration in the allocation policy

are possible, among which we mention the following two:

LP-ε: Deflect from LP solution ε-greedy methods can be applied. This means following

the LP solution with a (high) probability 1 − ε and with probability ε, choose an ad at

random.

Exp-LP: Modify the LP the p̂ti,j can be modified to compel the planning to include explo-

ration. For this purpose, Abe and Nakamura used Gittins’ indices [Abe and Nakamura,

1999]. We may also substitute the p̂ti,j for the associated UCB indices, or with a value

sampled from the posterior Beta distribution over the probability of click (See [Granmo,
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Budget 100 100

H Ri Ad 1 Ad 2

20
↗ 1/2→ Profile 1 10 0

↘ 1/2→ Profile 2 10 0

Planning with H = 20 → Greedy

Profile 1: 100% on Ad1
Profile 2: 100% on Ad1

Budget 100 100

H Ri Ad 1 Ad 2

300
↗ 1/2→ Profile 1 125 25

↘ 1/2→ Profile 2 0 150

Planning with H = 300 → Far-sighted
Profile 1: 73% on Ad1, 17% on Ad2
Profile 2: 100%on Ad2

2008]).

1.3.3 The Horizon of allocation

In [Girgin et al., 2011], we report the performance of this first method on a 4 days simulation.

For this finite time simulation, the horizon parameter H can be precisely set to the remaining

number of visits to be treated. Then H becomes Ht and is decreased by one after every ad

request. Still, in the real problem, time does not stop after a fixed number of days. The flow of

website visitors is infinite and new ads are constantly created, and others are stopped. Moreover,

we wish to maximize the total number of clicks, rather than a daily amount of clicks. Therefore,

the performance of our policies is dependent on the way new ad campaigns are created, and also

on their quality (whether the ad is attractive or not). At this point, an important question is

raised: should we be greedy with our current ads and just give to every visitor his/her favorite

ad because really soon other interesting ads will enrich our pool of ads? Or should we be more

far-sighted and allocate as if a long time will pass before a new ad campaigns appears?

Actually, tuning the horizon parameter, i.e. the number of visits we are planning to process,

let us balance between a greedy and a far-sighted strategies on the current set of ads. Indeed, if

we allocate the next visits as if there were just a little number of visitors yet to come, then the

budget constraints would not prevent any visitor from getting its favorite ad, and the algorithm

would play greedily. On the contrary, forecasting the arrival of people on a long term basis

would render MAB+LP more far-sighted on how to manage the current set of ads. H will now

be a fixed parameter with which the MAB+LP algorithm will compute the policy applied to

next visit. To illustrate this point, let us consider the following problem displayed in a tabular

format that provides the pi,j (Note that they are set here to unrealistic values for the sake of

comprehension):

Ad 1 Ad 2

Profile 1 0.8 0.1

Profile 2 0.8 0.5

Now assume both ad campaigns have a budget of 100 clicks, and 2 visit profiles, each with

H expected visits. In the two tables below, the allocation computed by the LP is given for two

horizons, H = 20, and H = 300:

The figures inside these 2 arrays are the numbers of visits allocated to each (profile, ad)
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pair. To obtain the amount of clicks for each pair, these figures have to be multiplied by the

pi,j . With H = 20, the allocation is greedy whereas when H = 300, the algorithm tries to take

into account the constraints because this big horizon makes it think that a large number of

visits will have to share the limited budgets. However, the setting of H strongly depends of the

ad campaigns that will come into play in the future. But as two different values of H results in

distinct policies, one has to carefully choose the right horizon for its problem.
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Chapter 2

Offline Evaluation of Sequential

Decision Making Algorithms

The work described in this chapter is based on these publications:

• [Mary et al., 2014b]J. Mary, O. Nicol & P. Preux Improving offline evaluation of contex-

tual bandit algorithms via bootstrapping techniques International Conference on Machine

Learning, ICML 2014

• J. Mary Exploration and Exploitation, Lessons from challenges, Large-Scale Online Learn-

ing and Decision-Making Workshop, Windsor, 2012

In machine learning being able to measure the performance is usually the first step to solve

a real world problem. Most of the time cross validated losses can be used for this task. But

this is not enough when we enter the full loop of decision making: we want to use an algorithm

not only to predict a click probability but in fact we aim to maximize this probability. So the

algorithm has to take some actions, observes the results and loop. This is why we are interested

in formalizing our measure in term of regret or cumulated rewards. For short we are optimizing

a policy rather than a predictor.

But in reinforcement learning -which includes multi-armed bandits- this task of policy eval-

uation is possibly the most fundamental problem. Of course to estimate the average reward

obtained by running a given policy to select actions can be done by running the policy and

measure the average reward collected online. However in many applications, running a new

policy in the actual system can be expensive or even impossible. For example, controlling a

vehicle with a new policy can be risky and deploying a new ad display policy on a website may

lead to bad user experience and loss of customers. . .

Being able to evaluate offline (also known as off-policy evaluation [Precup et al., 2000] or

counterfactual reasoning [Bottou et al., 2012] or covariante shift [Quionero-Candela et al., 2009])

is an important problem of any algorithm aiming to learn a policy.
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2.1 Replay

This can be formalized as follows: we collect some data using a policy πLOG to make the

decision online. As we are online, it is possible to gather the rewards and to build a dataset. D =

(xt, πLOG(xt), rt), t = 1 . . . T where xt is the description of the context of the visit- i.e. the feature

you want to use to make a decision, πLOG(xt) is the chosen action -i.e.. the recommendation-

and rt the reward - i.e. click action, buying,. . .

Our goal is to use the collected data to evaluate a new policy π. Sadly there is some

impossibility results. First obviously if the probability of πLOG to take action a in context xt
has never been explored then it is impossible to build a consistent estimator.

Secondly [Langford et al., 2008] shows that if πLOG is context dependent it is impossible to

assert that a given statistic about a given policy can be computed using a dataset, even if we

know that the logging policy plays all the actions in equal proportion. Such an example can be

constructed as follows. Let D be a contextual bandits distribution with two arms (or actions)

and a context set X composed of only two distinct elements 0 and 1. For all t, ~rt = (0, 0) -

which means that both actions yield a reward of 0 - if the context is 0 and ~rt = (0, 1) - which

means that action 0 yields a reward of 0 whereas action 1 yields a reward of 1 - if the context

is 1.

Provided that the contexts are equiprobable, a logging policy defined by πLOG(i) = i per-

forms both actions in equal proportions. A dataset logged by this policy would look like that:

context 0 0 1 0 0 1 1

action 0 0 1 0 0 1 1

reward 0 0 1 0 0 1 1

...

Let another policy be defined as π(i) = 1− i. It is easy to see that π would have a CTR of

0 on D. However it would be impossible to use a dataset logged by πLOG to have the slightest

idea of any characteristic of π’s CTR. Indeed it only contains context-action couples of the form

(0, 0) or (1, 1) whereas π performs action 1 in context 0 and action 0 in context 1.

When πLOG is random uniform, it is possible to use the replay strategy: 1 and to analyze

it. The idea is to present the contexts to the new policy in the same order than during the

data acquisition phase. For each context we ask to the new policy π to choose an action. If the

chosen action is the same than πLOG then the corresponding reward is revealed and the policy

π is updated, else we just go to the next available context without updating not rewarding π.

Yet simple this strategy is very effective when a limited number of actions are possible.

Which is usually the case with problems like news recommendation or best seller identification.

Nevertheless the problem has some interesting extensions.

2.1.1 Bias and variance

First even if not actually stated in the initial analysis which was only asymptotic, the algorithm

presents a bias that was identified in [Nicol, 2014].
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Algorithm 1 Replay method(introduced by Langford et al. [Langford et al., 2008], analyzed

by Li et al. [Li et al., 2011]) on a dataset S acquired via uniformly random interactions -i.e.

πLOG is random uniform- with a context distributed following a distribution D.

Remark: In order to be rigorous, we use a history of events ht which is the list of triplets (x, a, r)

from S that the method did not reject before time t.

Input: A contextual bandit algorithm A and a dataset S of T triplets (x, a, r)

Output: An estimate of gA

h1 ← ∅
ĜA ← 0

V ← 0 . Counts the number of evaluations.

for each t ∈ {1 .. T} do

π ← A(ht)

if π(xt) = at then . ≈ choosefunction
ht+1 ← ht + {(xt, at, rt)} . ≈ updateprocedure
ĜA ← ĜA + r

V ← V + 1

else

ht+1 ← ht . We do nothing, the history does not change.

end if

end for

return ĜA
V

Theorem 1. Given a contextual bandit problem D, a static policy π, a dataset S of size T

containing i.i.d. recommendations acquired using a random uniform logging policy on D, the

estimator defined as follows:

ĝ(replay)π (S) =





∑T
t=1 Vt.rt∑T
t=1 Vt

when
∑T

t=1 Vt > 0

0 when
∑T

t=1 Vt = 0

which is outputted by the replay method is a biased estimator of gπ(D). This bias, which can be

quantified as follows:

Eĝ(replay)π − gπ = −gπ.
(
K − 1

K

)T
,

goes to zero exponentially fast as T grows.

This bias comes from the observation initial sampling policy πLOG where all actions are not

present the exact same number of times. We also provided an unbiased algorithm to estimate

the next policy π Replay∗. This algorithm uses our knowledge of the initial sampling policy

(random uniform) to build a estimator which can be interpreted as the “importance sampling”

estimate.

This bias reduction comes at cost of an increased variance on the estimator. In fact this

variance increase is enough to make the unbiassed estimator not admissible in terms of means

square error. We had some early results but [Li et al., 2015] where the first to provide a complete

analysis. For short, it is better to the estimate of πLOG from the sampled data rather to use

the theoretical values. This can be interpreted as a variant of the James Stein’s paradox.
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Remark 5. The James Stein’s paradox states that it is possible to reduce the quadratic risk

-with respect to “ordinary” least square estimate- for the estimator of a mean of observation of

gaussian n random vectors of known variance σ2 using estimates of the form of

µ̂ =

(
1− n

n+ x̄2x

)

This obviously comes at the cost of a bias on the estimator.

2.1.2 Non uniform sampling

In a running system, the cost of uniform sampling can be too high in terms of revenue or user

experience. If the system is performing some epsilon greedy exploration, it is possible to use

this data as in section 2.2. But there is a strong desire to use all the data and not only a subpart

of it.

If we keep the assumption of a πLOG independent from the context - which is acceptable

when recommendations are based on best sales - then it is possible to reweigh the estimates of

Replay to build some estimators low bias or unbiased estimators. Again here the importance

sampling is not an admissible estimator as a reweighed replay has a lower MSE. But even in

this setting, the learning of a new policy π can be very problematic as some regions of the

(context,action) space are more sampled. It is easier to learn (and not only to evaluate) a

policy close to πLOG than a different one. This is a core problem because all the guarantees

only hold when both π and πLOG are fixed. If we do not pay attention to this problem it is

very likely that we are going to be trapped in a local optima because we are not able to train

and evaluate poorly policies different from πLOG. Of course the analysis holds only with an

independence assumption on the context with respect to the past actions which is often false.

The solution to overcome this is to pay more attention to confidence intervals and to use the

causality framework. Of course these can be difficult to build and the problem is equivalent to

the batch reinforcement learning which is not fully solved. One interesting step in this direction

is done by Leon Bottou [Bottou et al., 2012] in the case of Ad placement optimization together

with some bidding strategies. The core idea is to model explicitly some of the dependences and

to assume they are the only one which are relevant to objective function. Then using some

concentration theorem it is possible to compute confidence intervals of the performance of the

policy with respect to some variations around πLOG. Then the choice of the new policy to use

in production is left to expert choice and will involve a tradeoff between risk and performance.

2.2 Bootstraped Replay

When replay-like algorithms are used to evaluate the performance of policies, one issue is that

they uses only a small part of the initial data to evaluate the policy. A large part of the initially

collected dataset is discarded to ensure unbiased evaluation asymptotically. This is what we

called the time acceleration issue. Now, we propose an adaptation of the method: each line of

the dataset is going to be presented to the policy several times. This repetition increases the

number of lines used to update the policy at the cost of a possible overfitting. To tackle this

bias we also introduce a cross-validation step.
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We first tag some lines of the dataset S collected under πLOG as “validation lines”. Then

we build a bigger dataset B duplicating a fixed number of times each non tagged lines (number

of possible actions on each choices seems to be a good empirical value for the number of dupli-

cations). We now use the replay methodology on this bigger dataset -so the policy is allowed to

have more time to explore interesting areas - but the CTR estimate will be built only on lines

tagged for validation (which are not duplicated). We also proposed some heuristics to fit the

case of non constant click rates. It leads to a new algorithm BRED 2 which can be interpreted

as the use of the bootstrap to build estimates for contextual bandits algorithms.

Algorithm 2 Bootstrapped Replay on Expanded Data BRED.

Input

• A (contextual) bandit algorithm A

• A set S of T triplets (x, a, r)

• An integer B

Output: An estimate of gA

h(b) ← ∅, ∀b ∈ {1..B} /*empty history*/

Ĝ
(b)
A ← 0, ∀b ∈ {1..B}

T (b) ← 0, ∀b ∈ {1..B}
/* Bootstrap loop*/

for b ∈ {1..B} do

/* estimation of CTR
(b)
A (T )*/

for i ∈ {1..T ∗K} do

Sample with replacement an element (x, a, r) of S

x← JITTER(x) /*optional - adds some noise*/

π ← A(h(b))

if π(x) = a then

add (x, a, r) to h(b)

Ĝ
(b)
A ← Ĝ

(b)
A + r

T (b) ← T (b) + 1

else

/* Do nothing. */

end if

end for

end for

return 1
B

B∑
b=1

Ĝ
(b)
A

T (b) OR return

B∑
b=1

Ĝ
(b)
A

B∑
b=1

T (b)

/* The first one is the bagged estimate as it is usually defined in bootstrapping. The second

comes with the nice property of having a bias in O(aTB) instead of O(aT ), with a = K−1
K

which is slightly less than one. This may be significant if T is small.*/

The algorithm has provable concentration rates around the estimates of CTRs using the
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nicest property of the bootstrap: we are asymptotically more accurate than the standard inter-

vals obtained using sample variance and assumptions of normality.

Theorem 2. Assuming that

ξ (CTRA(T )) = z +
p1√
T

+ . . .+
pα

Tα/2
+ o

(
1

Tα/2

)

Then for algorithm A producing a fixed policy over time, BRED applied on a dataset of size

T evaluates the expectation of the CTRA with no bias and with high probability for B and T

large enough:

∣∣∣ξ (CTRA(T ))− ξ
(
ĈTRA(T )

)∣∣∣ = O

(
1

T

)

This means that the convergence of the estimator of ξ (CTRA(T )) is much faster than the

convergence of the estimator of gA(T ) (which is in O(1/
√
T ). This will allow a nice control of

the risk that ĝA(T ) may be badly evaluated.

The sketch of the proof of theorem 2 is the following: first we prove that the replay strategy

is able to estimate the moments of the distribution of CTRA fast enough with respect to T . The

second step consists in using classical results from bootstrap theory to guarantee the unbiased

convergence of the aggregation ĈTRA(T ) to the true distribution with an O( 1
T ) speed. The

rational behind this is that the gap introduced by the subsampling will be of the order of

O( 1√
TB

).

Adding some noise in the duplicates (aka Jittering which can be interpreted as a regular-

ization or some smoothing) we are also able to build better empirical estimates for context

dependent policies. We also introduced a variant of the bootstrap S-BRED which exhibits

better performance in this setting. Instead of performing B bootstrap resamples of size KT ,

S-BRED gets the B resamples as follows: it expands the dataset by simply appending K − 1

copies of S to itself. S-BRED then applies a random permutation to all the Sb (this is called

shuffling, hence the S in front of the acronym). This is illustrated on 2.1.

More details can be found in [Mary et al., 2014b] and in chapter 5 of [Nicol, 2014].
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(a) No convolution.
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(b) Convolution with a Gaussian

Kernel of bandwidth 1,000.
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(c) Convolution with a Gaussian

Kernel of bandwidth 50,000.

Figure 2.1: Absolute error of S-BRED (B=10) and replay on the various zones of the Yahoo!

R6B dataset [Research, 2012]. The results are averaged (convoluted) locally using a Gaussian

Kernel. Lower is better. The curves speak for themselves but one little additional detail is

worth discussing. When the bandwidth is equal to 1,000, we see that there is no error with

very small datasets. Then the error made by S-BRED increases faster than the one made by

replay which sounds surprising. This is because when the dataset is very small, the CTR found

by a replay method including the one found by the ground truth replay is small or even zero.

Therefore an evaluation method that always outputs zero has low error. At some point when

there is a little bit more data, the method becomes very variate as one click found completely

changes the value of the estimate. Then where more data starts becoming available, the error

rate drops again progressively. S-BRED only follows this process much faster than replay (see

that the error then goes down faster too) as it tries to make the most with the data at hand.
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Chapter 3

Ergodic time series

The work described in this chapter is based on these publications:

• [Ryabko and Mary, 2012] D. Ryabko & J. Mary Reducing statistical time-series problems

to binary classification Neural Information Processing Systems (NIPS), 2012

• [Khaleghi et al., 2012] A. Khaleghi, D. Ryabko, J. Mary, and P. Preux. Online clustering

of processes. In AISTATS, JMLR W&CP 22, pages 601–609, 2012.

• [Ryabko and Mary, 2013] D. Ryabko & J. Mary A Binary-Classification-Based Metric be-

tween Time-Series Distributions and Its Use in Statistical and Learning Problems Journal

of Machine Learning Research, 2013

• A. Khaleghi, D. Ryabko, J. Mary & P. Preux Consistent algorithms for clustering time

series, Journal of Machine Learning Research, 2015 (accepted to appear)

This chapter is also about sequential machine learning, but focusses on more theoretical

aspect of what is a reasonable task if we have only some weak hypothesis on our data. In

particular we are interested in grounding the clustering of time series. This is an important

in the field of recommendation because most of the marketing department are eager to cluster

their customer in meaningful categories to be able to focus their actions.

Here we choose the stationary ergodic assumption. This implies that the process will not

change its statistical properties with time and that its statistical properties can be deduced

from a single, sufficiently long sample (realization) of the process. This means that we can

estimate the frequencies of occurrence of any “pattern” on the data by collecting data for a

sufficient time and that this data collection can start at anytime. In particular the mean of the

variance of the observed process cannot shift with time. This assumption is one of the weakest

in statistics and it is already impossible to test the ergodicity of a signal. For intuition it can be

useful to recall that ergodic Markov chains which are the chains where it is possible to go from

every state to every state (not necessarily in one move). seasonality are not stationary but can

be ergodic.
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3.1 From time-series to classification

Binary classification is one of the most well-understood problems of machine learning and statis-

tics: a wealth of efficient classification algorithms has been developed and applied to a wide

range of applications. Perhaps one of the reasons for this is that binary classification is concep-

tually one of the simplest statistical learning problems. It is thus natural to try and use it as a

building block for solving other, more complex, newer or just different problems; in other words,

one can try to obtain efficient algorithms for different learning problems by reducing them to

binary classification. This approach as described in chapter 1 has been applied to many different

problems, starting with multi-class classification, and including regression and ranking [Balcan

et al., 2007; Langford et al., 2006], to recall just a few examples. However, all of these problems

are formulated in terms of independent and identically distributed (i.i.d.) samples. This is also

the assumption underlying the theoretical analysis of most of the classification algorithms.

In this work we consider learning problems that concern time-series data for which inde-

pendence assumptions do not hold. The series can exhibit arbitrary long-range dependence,

and different time-series samples may be interdependent as well. Moreover, the learning prob-

lems that we consider — the three-sample problem, time-series clustering, and homogeneity

testing — at first glance seem completely unrelated to classification.

We show how the considered problems can be reduced to binary classification methods, via

a new metric between time-series distributions. The results include asymptotically consistent

algorithms, as well as finite-sample analysis. To establish the consistency of the suggested

methods, for clustering and the three-sample problem the only assumption that we make on

the data is that the distributions generating the samples are stationary ergodic; this is one of

the weakest assumptions used in statistics. For homogeneity testing we have to make some

mixing assumptions in order to obtain consistency results (this is indeed unavoidable, as shown

by [Ryabko, 2010b]). Mixing conditions are also used to obtain finite-sample performance

guarantees for the first two problems.

The proposed approach is based on a new distance between time-series distributions (that

is, between probability distributions on the space of infinite sequences), which we call telescope

distance. This distance can be evaluated using binary classification methods, and its finite-

sample estimates are shown to be asymptotically consistent. Three main building blocks are used

to construct the telescope distance. The first one is a distance on finite-dimensional marginal

distributions. The distance we use for this is the following well-known metric: dH(P,Q) :=

suph∈H |EPh−EQh| where P,Q are distributions andH is a set of functions. This distance can be

estimated using binary classification methods, and thus can be used to reduce various statistical

problems to the classification problem. This distance was previously applied to such statistical

problems as homogeneity testing and change-point estimation [Kifer et al., 2004]. However,

these applications so far have only concerned i.i.d. data, whereas we want to work with highly-

dependent time series. Thus, the second building block are the recent results of [Adams and

Nobel, 2012], that show that empirical estimates of dH are consistent (under certain conditions

on H) for arbitrary stationary ergodic distributions. This, however, is not enough: evaluating

dH for (stationary ergodic) time-series distributions means measuring the distance between their

finite-dimensional marginals, and not the distributions themselves. Finally, the third step to

construct the distance is what we call telescoping. It consists in summing the distances for
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all the (infinitely many) finite-dimensional marginals with decreasing weights. The resulting

distance can “automatically” select the marginal distribution of the right order: marginals

which cannot distinguish between the distributions give distance estimates that converge to

zero, while marginals whose orders are too high to have converged have very small weights.

Thus, the estimate is dominated by the marginals which can distinguish between the time-

series distributions, or converges to zero if the distributions are the same. It is worth noting

that a similar telescoping trick is used in different problems, most notably, in sequence prediction

[Solomonoff, 1978; Ryako, 1988; Ryabko, 2011].

We show that the resulting distance (telescope distance) indeed can be consistently estimated

based on sampling, for arbitrary stationary ergodic distributions. Further, we show how this fact

can be used to construct consistent algorithms for the considered problems on time series. Thus

we can harness binary classification methods to solve statistical learning problems concerning

time series. A remarkable feature of the resulting methods is that the performance guarantees

obtained do not depend on the approximation error of the binary classification methods used,

they only depends on their estimation error.

Moreover, we analyze some other distances between time-series distributions, the possibility

of their use for solving the statistical problems considered, and the relation of these distances

to the telescope distance introduced in this work.

To illustrate the theoretical results in an experimental setting, we chose the problem of

time-series clustering, since it is a difficult unsupervised problem which seems most different

from the problem of binary classification. Experiments on both synthetic and real-world data

are provided. The real-world setting concerns brain-computer interface (BCI) data, which

is a notoriously challenging application, and on which the presented algorithm demonstrates

competitive performance.

A related approach to address the problems considered here, as well as some related prob-

lems about stationary ergodic time series, is based on (consistent) empirical estimates of the

distributional distance, see [Ryabko and Ryabko, 2010; Ryabko, 2010a; Khaleghi et al., 2012],

as well as [Gray, 1990] about the distributional distance. The empirical distance is based on

counting frequencies of bins of decreasing sizes and “telescoping.”

3.2 Notation and Definitions

Let (X ,F1) be a measurable space (the domain), and denote (X k,Fk) and (XN,F) the product

probability space over X k and the induced probability space over the one-way infinite sequences

taking values in X . Time-series (or process) distributions are probability measures on the space

(XN,F). We use the abbreviation X1..k for X1, . . . , Xk. A set H of functions is called separable

if there is a countable set H′ of functions such that any function in H is a pointwise limit of a

sequence of elements of H′.
A distribution ρ is called stationary if ρ(X1..k ∈ A) = ρ(Xn+1..n+k ∈ A) for all A ∈ Fk,

k, n ∈ N. A stationary distribution is called (stationary) ergodic if

lim
n→∞

1

n

∑

i=1..n−k+1

IXi..i+k∈A = ρ(A) ρ− a.s.
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for every A ∈ Fk, k ∈ N. (This definition, which is more suited for the purposes of this work,

is equivalent to the usual one expressed in terms of invariant sets, see, e.g., [Gray, 1990].)

3.3 A Distance between Time-Series Distributions

We start with a distance between distributions on X , and then we extend it to distributions on

XN. For two probability distributions P and Q on (X ,F1) and a set H of measurable functions

on X , one can define the distance

dH(P,Q) := sup
h∈H
|EPh− EQh|. (3.1)

This metric in its general form has been studied at least since the 80’s [Zolotarev, 1983]; its

special cases include Kolmogorov-Smirnov [Kolmogorov, 1933], Kantorovich-Rubinstein [Kan-

torovich and Rubinstein, 1957] and Fortet-Mourier [Fournie, 1992] metrics. Note that the

distance function so defined may not be measurable; however, it is measurable under mild con-

ditions which we assume whenever necessary. In particular, separability of H is a sufficient

condition (separability is required in most of the results below).

We are interested in the cases where dH(P,Q) = 0 implies P = Q. Note that in this case dH
is a metric (the rest of the properties are easy to see). For reasons that will become apparent

shortly (see Remark below), we are mainly interested in the sets H that consist of indicator

functions. In this case we can identify each f ∈ H with the indicator set {x : f(x) = 1} ⊂ X
and (by a slight abuse of notation) write dH(P,Q) := suph∈H |P (h) − Q(h)|. In this case it is

easy to check that the following statement holds true.

Lemma 1. dH is a metric on the space of probability distributions over X if and only if H
generates F1.

The property that H generates F1 is often easy to verify directly. First of all, it trivially

holds for the case where H is the set of halfspaces in a Euclidean X . It is also easy to check

that it holds if H is the set of halfspaces in the feature space of most commonly used kernels

(provided the feature space is of the same or higher dimension than the input space), such as

polynomial and Gaussian kernels.

Based on dH we can construct a distance between time-series probability distributions. For

two time-series distributions ρ1, ρ2 we take the dH between k-dimensional marginal distributions

of ρ1 and ρ2 for each k ∈ N, and sum them all up with decreasing weights.

Definition 1 (telescope distance DH). For two time series distributions ρ1 and ρ2 on the space

(XN,F) and a sequence of sets of functions H = (H1,H2, . . . ) define the telescope distance

DH(ρ1, ρ2) :=

∞∑

k=1

wk sup
h∈Hk

|Eρ1h(X1, . . . , Xk)− Eρ2h(Y1, . . . , Yk)|, (3.2)

where wk, k ∈ N is a sequence of positive summable real weights (e.g., wk = 1/k2 or wk = 2−k).

Lemma 2. DH is a metric if and only if dHk
is a metric for every k ∈ N.
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Proof. The statement follows from the fact that two process distributions are the same if and

only if all their finite-dimensional marginals coincide.

Definition 2 (empirical telescope distance D̂). For a pair of samples X1..n and Y1..m define

the empirical telescope distance as

D̂H(X1..n, Y1..m) :=

min{m,n}∑

k=1

wk sup
h∈Hk

∣∣∣∣∣
1

n− k + 1

n−k+1∑

i=1

h(Xi..i+k−1)−
1

m− k + 1

m−k+1∑

i=1

h(Yi..i+k−1)

∣∣∣∣∣ . (3.3)

All the methods presented in this work are based on the empirical telescope distance. The

key fact is that it is an asymptotically consistent estimate of the telescope distance, that is, the

latter can be consistently estimated based on sampling.

Theorem 3. Let H = (Hk)k∈N be a sequence of separable sets Hk of indicator functions (over

X k) of finite VC dimension such that Hk generates Fk. Then, for every stationary ergodic time

series distributions ρX and ρY generating samples X1..n and Y1..m we have

lim
n,m→∞

D̂H(X1..n, Y1..m) = DH(ρX , ρY ) (3.4)

Note that D̂H is a biased estimate of DH, and, unlike in the i.i.d. case, the bias may depend

on the distributions; however, the bias is o(n).

Remark 6. The condition that the sets Hk are sets of indicator function of finite VC dimension

comes from the results of [Adams and Nobel, 2012], who show that for any stationary ergodic

distribution ρ, under these conditions, suph∈Hk

1
n−k+1

∑n−k+1
i=1 h(Xi..i+k−1) is an asymptotically

consistent estimate of suph∈Hk
Eρh(X1, . . . , Xk). This fact implies that dHk

can be consistently

estimated, from which the theorem is derived.

An identical but possibly easier to catch version of the telescope distance it to split it’s

computation in small steps: Say we have samples X = (X1 . . . Xn) and Y = (Y1 . . . Ym) and we

want to compute the telescope distance between them.

First, we just run a classifier (as an SVM) on the two samples, considering each Xi, i =

1, . . . , n as a class-0 example and each Yi, i = 1, . . . ,m as class-1 example. Train the classifier

and measure the number of (training) examples of class 0 (Xi) classified as 0. call this T 1
x

Then measure the number of (training) examples of class 1 (Yi) classified also (!) as 0. call

this T 1
y then take

d1 = |T 1
x/n− T 1

y /m|

Now we’ll construct dk in the same way, for each k = 2, . . . ,
√
n: we take the k-tuples

(X1, . . . , Xk), (X2, . . . , Xk+1), . . . (Xn−k+1, . . . , Xn)

and call them class 0 examples, and the same with k-tuples for Y, we take

(Y1, . . . , Yk), (Y2, . . . , Yk+1), . . . , (Ym−k+1, . . . , Ym)
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and call them class 1 examples.

We train our favorite classifier, get T kx and T ky in the same way, and obtain

dk = |T kx /(n− k + 1)− T ky /(m− k + 1)|

Finally the empirical estimate of the distance is:

d =

√
n∑

k=1

wkdk

where wk = 1/k2 but can be any summable sequence.
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Figure 3.1: Toy example of telescope distance computed on 20 randomly generated sequences of

length 200. The 10 first sequences were from an uniform law on [0,1] and the 10 next sequences

are from N(0,1) distribution. Red means the distance is bigger, white that it is 0. The classifier

was an SVM with RBF kernel with default parameters.

More informations and experiments on real data in [Ryabko and Mary, 2013, 2012]
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3.4 Consistent Clustering of processes

Clustering is a widely studied problem in machine learning, and is key to many applications

in almost all fields of science. The goal is to partition a given dataset into a set of non-

overlapping clusters in some natural way, thus hopefully revealing an underlying structure in

the data. In particular, this problem for time series data is motivated by many research problems

from a variety of disciplines, such as marketing and finance, biological and medical research,

video/audio analysis, etc., with the common feature that the data are abundant while little is

known about the nature of the processes that generate them.

Nevertheless clustering is an ill defined problem if not related to a supervised task. In this

work we decided to focus on clustering of stationary ergodic processes generating sequences

of number (in any dimension). The assumption that a given time series is stationary ergodic

is one of the most general assumptions used in statistics; in particular, it allows for arbitrary

long-range serial dependence, and subsumes most of the non-parametric as well as modeling

assumptions used in the literature on clustering time series, such as i.i.d., (Hidden) Markov, or

mixing time series.

This allows us to define the following clustering objective: group a pair of time series into

the same cluster if and only if the distribution that generates them is the same.

To perform this task we use properties of the distributional distance between two temporal

processes ρ1 and ρ2:

d(ρ1, ρ2) =

∞∑

m,l=1

wm,l
∑

B∈Bm,l

|ρ1(B)− ρ2(B)|

Where wm,l = wm · wl and wi = 2−i, i ∈ N and the sets Bm,l,m, l ∈ N are obtained via

the partitioning of R into cubes of dimension m and volume 2−ml (starting at the origin). and

show it is possible to estimate it efficiently. This naturally leads to a asymptotically consistent

clustering algorithm. The intuition is the following: for a fixed stationary ergodic process the

average frequency of occurrence of any pattern converges to the same value if the process is

observed long enough. Then we just have to pay some attention on how to be sure to be able to

grasp any pattern from a sequence of numbers - this is done using a set of discretizations and

to take care of all the patterns with where the length of the process is long enough to estimate

the frequency of occurrence.

More information and experiments in [Khaleghi et al., 2012]
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Chapter 4

Future of this work

This section is about closely related topics or directions that I wish to investigate in the future.

4.1 Multitask Learning and Recommendation

An old goal of AI is to mimic the learning behavior of biological systems. One of the idea is

that for some tasks it seems easier to first learn a simplified version and then move to more

sophisticated and complex goals. What we feel here is that there is more to learn in a task

than being able to complete it, something about representation. To some extents convolutional

neural networks [Lecun et al., 1998] trained on large datasets of labelled pictures achieve this

goal: it is possible to train a new network for a different classification just by a replacement

of the last layer of the network [Karayev et al., 2013]. A statistical machine learning variant

of this approach is to use tensors of order 3 or more to represent data as videos or multiples

relations between the same items (aka adjacency tensor of hypergraphs).

Applied to recommender systems [Rendle et al., 2010], the idea is to use the spectral structure

of a tensor rather than the spectral decomposition of a matrix. The extra dimensions are used

to store the time and/or to separate observations as using one layer for each category of movies

or navigations/basket/buy. Here we aim to transfer knowledge between the layers of the tensor.

Some recent work studied transfer learning techniques for recommender systems with the main

objective of alleviating the sparsity problem of collaborative filtering. For example, [Pan et al.,

2010] introduce a solution called Coordinate System Transfer in which they assume the existence

of two dense source domains (user-item affinity matrix) from which the knowledge was going

to be transferred to the sparse target domain, assuming that one dense source shared the same

user as the target domain, and the other source the same item. [Li et al., 2009] also works on

transfer learning from one dense source to a sparse target but did not that the domains shared

neither user or item. Their solution based on orthogonal nonnegative matrix tri-factorization

[Ding et al., 2006] copy the core matrix (called the codebook) learned from the source domain

to the core matrix of the target domain. [Moreno et al., 2012] go further and transfer multiple

source domains to the target domain.

One problem is that the spectral theory of third order tensor is not as nice as the matrix

one. In particular there is no unicity of the decomposition without adding some additional

51



constraints (KKT) and the tensor is of course much more sparse than the matrices we usually

work with (because of the high dimensionality of tensors). So for practical use much of the

performance comes from the regularization/factorization schemes being used. The two dominant

ones are CANDECOMP/PARAFAC (decomposition as a sum of rank one tensors [Harshman

and Lundy, 1994]) and Tucker3/HOSVD [Lathauwer et al., 2000] (decomposition as a core

tensor of constrained rank expanded to the right dimension using 3 orthogonal matrices). This

approach, which induces inherently some sharing of parameters between both different terms

and different relations also inspired some probabilistic formulations [Chu and Ghahramani,

2009].

This kind of strategy has been successfully applied [Jenatton et al., 2012] on large multi-

relational datasets with thousands of relations. The proposed model does not perform an actual

tensor decomposition but captures various orders of interaction of the data by extracting and

factorizing several matrix extracted from the data tensor. This outperforms classical tensor

decomposition on some tensor test datasets and present a good scaling to a huge number of

classes. The method is purely statistically driven and can compete with a good wordnet [Miller,

1995] for verb detection.

Many of the ideas developed in RS to improve the results of a pure SVD can be adapted

to the tensor case. As an example, it is possible to think to preparations of the data matrix

(the bias removal on rows and columns, together with some renormalization across the layers),

the weighted boolean representation for navigation data (work on implicit data by [Hu et al.,

2008]), the use of Tikhonov regularization (ALS-WR by [Zhou et al., 2008]) to handle missing

data, the factorization machine point of view. . .

Moreover little attention has been paid to efficient implementations of tensor decompositions.

Percy Liang [Kuleshov et al., 2015] proposes tensor factorization using random projections to

reduce the problem to simultaneous matrix diagonalization with guarantees on the spectral

information, and we guess that L2
2 subsampling could be also used. Finally [Jain and Oh,

2014] provides some guarantees of recovery of a tensor from partial observation in the noiseless

setting. The guarantee is for three-mode n× ntimesn dimensional rank-r tensor which can be

recovered exactly from O(n3/2r5log4n) independently randomly sampled entries. This also work

advocates for the use of alternate least square schemes which are shown to be able to recover

tensor of real data with high probability. Moreover for matrix factorization ALS schemes can

be implemented in a very parallelized way because on each step of the ALS we are required to

solve as many independent linear systems as the number of rows (for left step) and columns

(for right step).

4.2 Sequential Recommendation and Offline evaluation

Mean square error, nDCG, logistic loss,. . . are convenient measures intensively used as a surro-

gate to evaluate the performances of a recommender system. There is some work on more exotic

measures such as “diversity” [Lathia et al., 2010] -a good recommender system should present

different alternatives- or “hubness” -in order to avoid the presence of items recommended for

anyone- [Flexer et al., 2012]. But the nature of a recommender systems is to be online, and

its performance should be expressed in terms of the collection of some sort of rewards (clicks,
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buying, loved item,. . . ). This is why many Internet companies like Netflix are running some

A/B testing of different versions of their websites and some surprises can occur. As an example

Netflix reported in 2012 on its forum that the increase of the size of the picture of the movies

had more positive impact on the average user engagement than a diminution of the MSE of

the taste matrix recovery by 5%. Of course it is possible to use bandit variants of A/B testing

in order to reduce their cost (but it comes at a cost of a decreased statistical confidence from

the identification of the best arm). The important point here is that recommender systems are

online algorithms that take decisions.

We saw that a simplified framework for to study this setting is the contextual bandit problem.

But when this framework is mixed with matrix factorization, many questions are open. A

straightforward way to cast the matrix recovery problem into the bandit framework is to draw

a row -a user- under a distribution and to give him a recommendation -i.e. select a column-

then a reward is given accordingly to a distribution parametrized by the corresponding entry

in the matrix.

Assuming that we are allowed to select the same position in the matrix several times, the

question is: would it be possible to get a logarithmic regret bound with respect the time? The

setting is quite similar to the linear bandit framework except that we have to compute the

context (which is the V part of the SVD) from our observations. The core issue is that most

of guarantees on matrix recovery are for independently sampled entries which is not the case

here. We have the hope to adapt the proof of εn greedy here.

But then a new question arises: what is the impact of the latent space size d?. Of couse the

smaller the latent space, the easier the problem should be.

To answer this question we first need to revisit the linear bandit analysis. Here the goal

is to estimate an unknown vector u of dimension d. At each round we are provided k arms

described by a known context vector xi, i ∈ 1 . . . k of dimension d. The algorithm has to select

an arm i and receive a reward 〈u,xi〉. There are several slightly different ones but our current

favorite is OFUL [Abbasi-yadkori et al., 2011] which provides a strategy with a regret bound in

O(d log2 T ) where T is the number of arms pulled.

Now let us assume that the arms context vector lies in a lower space of dimension d′ with

d′ � d and d′ � k. Then there exists an unknown matrix A such that the reward for arm i

can be expressed as 〈Ax,Axi〉 which is a linear bandit problem of dimension d′. So we hope to

prove a regret bound like O(d′ log2 T ) plus the cost of the estimate of A with O(k log2(T )) as a

very first guess. But it could turn in a negative result if the estimation of A has a high cost in

terms of regret. Of course we also need to take care of the non independent sampling here.

Now if we go back to the matrix factorized bandit problem we should consider the fact that

in real systems, some new items and users appear on a regular basis. In the non contextual

framework this part is handled by assuming some knowledge on the probability of apparition

of a new better arm (UCB-air [Wang et al., 2009]), but we also have the problem that some

arms are discarded with time (and in many applications you cannot recommend the same arm

forever so you need to focus on new ones). The problem is that if we assume a constant rate of

arrival of new arms/items, for each arm we are going to spend a few pulls in order to evaluate

their description in the latent space. This also means that it will lead us to a linear growing of
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the regret. This mandatory linear growing of the regret can be regarded as a negative result

here. Nevertheless one could study the dependency of growth with respect to d′. We also have

some hope for the tensor case. More precisely we could pay the cost of exploration of some

cheap layers and transfert it to the most valuable layers.

We also remarked in some experiments that in terms of regret using the “right” value for

the latent space size is not always optimal. It is often better to start with a small value of d′

and to increase it progressively. Intuitively this is reasonable: first focus on popular items, then

popular categories -i.e. highest singular values. But we need to build here a finer understanding

of the aggregated/clustered strategies of contextual bandits.

Besides theses aspects that would enable a better understanding of online “low rank” rec-

ommendation, there is also the hope to cast the problem inside a more general framework:

the reinforcement learning problem [Sutton and Barto, 1998]. For example people from sales

usually use their expert knowledge to the predicted personalized sales probabilities to build

some cross-sales, up-sales or promotions. In music recommender systems it seems a good idea

to include more diversity in the recommendations periodically to avoid to bore the listener.

Leon Bottou also showed during his invited talk at ICML’2015 that the display position and

the number of displayed ads is of crucial importance when using a complete system and can

totally spoil the collected data if done improperly. The spoil comes from variations around

the CTR due to an external factor not recorded: all the emplacements over a webpage are not

equivalents and if the information is not recorded, you could favorise too much the elements

recommended by your current system, which will lead to reinforce your confidence in the fact

that you are doing well. A NIPS’15 workshop Machine Learning for (e-)Commerce is aiming

to portray the main challenges of recommendation as a reinforcement learning problem and to

propose an industry-academia agreed collection of benchmarks problems for theoretical study

and experimental work on theses questions, but we can already list a few of them:

• How to collect the explorative data? The choice of the sampling distribution (or the

need for rollouts) is a hard problem of RL. The question presents some obvious links with

offline evaluation problems, but a random uniform exploration can lead to some very bad

user experience. Here we expect to limit this effect using an initially good policy and to

try to use only some small modifications around this policy.

• What should be the degrees of freedom of such algorithms? In RL The representation

space is crucial and cannot be too large if we want to avoid convergences issues. In RS it

is often possible to discretize many of the actions (size of recommendations, number,. . . ).

But it is much harder to also include some online optimizations of real valued parameters.

One could try approximate reinforcement learning or direct policy search [Busoniu et al.,

2011], but the feature constructed by neural network should also be considered.

• When the rewarding process is only partially observable (i.e. the observable space contains

important variables that influes on the behavior), most of the RL methods fail. When the

value of latent variables only depends on the actions, if the dependency is not too long we

can brute force the problem by considering sequences of actions rather than single actions.

Nevertheless if the order of the corresponding Markov Decision Process is too large, brute

force is out of reach. The idea would be to use some transfer between tasks, starting by
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easy ones and adding layers of complexity as in a tutorial.

These lines of work will probably require online access or enough data to perform some

offline evaluation of the optimization strategy. Hopefully we have this access thanks to some

industrial collaborations as the CIFRE PhD thesis of Romain Warlop and with the collabo-

ration with Nuukik and Orange. The mid/long term goal is to build end-to-end systems for

recommender systems. A key element of the success of deep learning is the increased availability

for computational power and data but this is not enough in an evolving environment.
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Offline evaluation of recommendation systems

Abstract
The evaluation of recommendation algorithms is
a critical issue. Live evaluation is often avoided
due to the potential loss of revenue. Live evalua-
tion on a part of the audience is possible for peo-
ple having access to a working recommendation
system. However, the accuracy of existing of-
fline evaluation is not satisfactory. We precisely
address this issue in this paper. After reminding
some recent work on the use of contextual ban-
dits to solve exploration/exploitation dilemma in
online recommendation, we show how to per-
form offline evaluation of a recommendation al-
gorithm using a batch of data, give a method-
ology, an algorithm, as well as investigate the
theoretical properties of this evaluation proce-
dure. We demonstrate the efficiency of this pro-
cedure experimentally on a large publicly avail-
able dataset.

1. Introduction
This paper is about the offline evaluation of recommenda-
tion algorithms. Offline evaluation is realized using data
collected on a live recommendation system. We wish to
be able to evaluate offline the performance of algorithms
on such a dataset. We also wish this performance evalu-
ated offline to be close to the performance of the algorithm
played live. Our contribution is based on a combination of
bandit theory and bootstrap theory. We provide a theoreti-
cal analysis of our evaluation method and an experimental
assessment of its performance on a large publicly available
dataset.

The paper is organized as follows. Sec. 2 introduces and
details of the problem we tackle. Readers familiar with the
evaluation of recommendation algorithms may skip it. Sec-
tion 3 provides the necessary background in bandit theory,
non contextual bandit algorithms such as UCB, and con-
textual bandit algorithm such as LinUCB; it also relates
bandit problems with the recommendation problem; this
section may be skipped by readers acquainted with bandit

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

theory. Readers who skipped sections are invited to board
at section 4 which sets the stage: building on previous ex-
perimentation, issues related to current method for offline
evaluation are detailed. This section closes with the main
contribution of this paper which is a new method for of-
fline evaluation of recommendation algorithms we named
BRED. Sec. 5 analyzes the accuracy of the estimation of
performance provided by BRED which is conveyed in the-
orem 2. Sec. 6 demonstrates experimentally that BRED is
effective and is much more accurate than the current state
of the art replay method.

2. The evaluation of recommendation
algorithms

Under various forms, and under various names, recom-
mendation is a very common activity over the web. One
can think of the Netflix challenge type of applications,
news systems, Digg, Amazon, online advertising,. . . The
key idea is always to take advantage of a user profile in
order to identify the most attractive content in a given con-
text (here, the context contains all the information we have
on the user: objective features like the requested url and
timestamp as well as subjective features provided by the
user: date of birth, gender, . . . , and features that may be
obtained from various sources of information, such as so-
cial networks). Moreover, we want to be able to track
changes in user preferences, and quickly adapt to events
such as breaking news or product releases. A common is-
sue with this kind of data is the partial labeling: the user
feedback (click or not on a recommended item) is observed
only for the displayed items, and often only for a single
item, the one that is clicked. So we face a classical explo-
ration/exploitation dilemma: on the one hand, we want to
explore in order to collect precise enough information to
be able to perform the best recommendation in all the pos-
sible contexts while on the other hand, we want to exploit
the collected information in order to maximise the actual
revenue on an online system. A natural way to model this
situation is as a reinforcement learning problem (Sutton &
Barto, 1998), and more precisely using the contextual ban-
dit framework (Lu et al., 2010). For such systems, the best
way to compare the performance of two algorithms is to
perform A/B testing on a subset of the web audience (Ko-
havi et al., 2009). Of course, doing this raises a lot of diffi-
culties: high cost because of the engineering effort to do it
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Offline evaluation of recommendation systems

live, degradation of the user experience, problems with nat-
ural variations of performance over time (“special” periods
of time such as pre-Christmas sales). So it is highly desir-
able to have an accurate offline methodology of evaluation
of recommendation algorithms.

A lot of evaluation methods for recommendation systems
have been proposed (Shani & Gunawardana, 2011). One
possibility is to ignore the partial labeling problem. By
so doing, the problem turns into a supervised classifica-
tion task, or a regression task. In this case we do not learn
an online policy of recommendation but rather we learn to
predict the probability of click of a user, or the most likely
outcome (click or not), or a rating. If the world can be
assumed to be stationary, it is reasonnable to use a large
amount of data collected on the web-server in order to learn
the relation between the user and the probability of click on
the items. However, for swiftly evolving set of items (such
as ads, news, . . . ) it gets much trickier. We need simpler
systems, that are able to learn fast and to be reactive in face
of changes.

A second possibility is to simulate an online behavior: this
requires a “behavior” simulator. But creating such a simu-
lator requires a lot of effort and is hardly reliable in the end.
The simulator will not behave like a real user and design-
ing a well working algorithm is usually easy once we know
how the simulator works. Then, chances are high that algo-
rithms overfit the simulator, rather than performing well in
the real online setting.

The last possibility is to use web-server logs and perform
some sort of rejection sampling to obtain an unbiased eval-
uator of a recommendation policy. The idea has been pro-
posed by (Langford et al., 2008; Li et al., 2011); it is pre-
sented later in the paper as the “replay method”. A well-
known issue with this approach is the usual high variance
of the estimator of the performance. Studies have been con-
ducted to understand and to reduce this variance (Strehl
et al., 2010; Dudı́k et al., 2011), or to collect more data
when the variance is too high (Bottou et al., 2012). An
other less studied issue is the time acceleration: due to the
rejection mechanism at the core of the evaluation method-
ology, only a fraction of the data is used to compute the
performance of a policy, this fraction being (1/number of
possible recommendations at the current time step) if the
logged data were acquired by a random uniform policy. As
long as only a fraction of the visits is used for evaluation,
this is exactly as if we had a smaller number of visits per
unit of time, a situation which can be problematic in our
non stationary world.

In this paper, we focus on the problem of the offline evalu-
ation of a recommendation policy: our aim is to get a more
accurate estimation of the performance of a recommenda-
tion policy while minimizing the amount of data required

to do so. To achieve this goal, we propose a new evalua-
tion protocol. A theoretical analysis of this and we provide
some background material in the next section.

3. Background on bandits
We formalize the news recommendation problem as a con-
textual bandit problem. Before dealing with contextual
bandits, we introduce basic material about the non contex-
tual bandit problems, along with algorithms to solve them.

3.1. (Non contextual) bandits

The bandit problem is also known in the litterature as the
multi-arm bandit problem and other variations. This prob-
lem can be traced back to Robbins and Munro in 1952
(Robbins, 1952) and even Thompson in 1933 (Thompson,
1933). There are many variations in the definition of the
problem: a basic setting is as follows.

Let us consider a bandit machine withK independent arms.
At each time step, the player performs one out of K ac-
tions: we denote aj the action of pulling arm j. When
performing action aj , the player receives a reward drawn
from [0, 1] according to a probability distribution νj . Let
µj denote the mean of νj and j∗ be the arm with maxi-
mum expected reward µ∗ = µj∗ . νj , µj , j∗ and µ∗ are
unknown. A common objective is to maximize the cumu-
lative reward after T consecutive pulls. More specifically,
by denoting jt the arm pulled at time t and rt the reward
obtained at time t, the player aims at maximizing the quan-
tity CumRewT =

∑T
t=1 rt. At each time-step (except the

last one), the player faces the exploration vs. exploitation
dilemma. An optimal strategy has to balance exploration
and exploitation. A well-known approach to handle this
trade-off is the Upper Confidence Bound strategy (UCB)
(Auer et al., 2002). At time t, the UCB strategy consists in
playing the arm jt with maximum upper confidence bound
on its expectation

jt = argmax
j

µ̂j +

√
2 ln t

tj
, (1)

where µ̂j denotes an estimation of µj , and tj is the number
of pulls of arm j since t = 1.

Let us discuss the behavior of UCB qualitatively. During
preliminary time-steps, the value in eq. (1) is dominated by
the rightmost term: indeed, for each arm, this term quanti-
fies the uncertainty about the expected reward, and during
the first pulls, we have no knowledge at all, hence very
large uncertainty. After a while, the leftmost term becomes
predominant and the one that influences the most the choice
of the arm to pull. Hence, the behavior of UCB is very
similar to the strategy Explore-Exploit which con-
sists in uniformly exploring the arms during a few steps,
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then focussing on the arm with the best empirical mean.
On the other hand, UCB never stops exploring seemingly
sub-optimal arms.

The strength of UCB lies in the following property: the
number of pulls of a sub-optimal arm j is in the order

lnT
(µ∗−µj)2

. Hence, the continuous exploration of arm j only

costs a loss of the order lnT
µ∗−µj

. As a corollary to that prop-
erty, the exploration budget is non-uniformly spread among
the set of arms. UCB does not lose time, hence rewards,
playing arms which are likely to be non-optimal.

3.2. The recommendation problem as a bandit problem

In the recommendation problem, one has a set of items to
recommend (that is a set of arms to pull). In general, each
item is associated to a set of features; likewise, when rec-
ommendation are made for a particular user who may also
be characterized by a set of features. Hence, when a recom-
mendation has to be made, there exists a context composed
of both sets of features. When arms have features, the prob-
lem becomes a contextual bandit problem. We now briefly
introduce the contextual bandit setting.

3.3. Contextual bandits

We follow (Langford & Zhang, 2007) to define the contex-
tual bandit problem.

Let X be an arbitrary input space and A = {1..K} be a
set of K actions. Let D be a distribution over tuples (x,~r)
with x ∈ X and ~r ∈ {0, 1}K is a vector of rewards: in
the (x,~r) pair, the jth component of ~r if the reward associ-
ated to action aj , that is pulling arm j in the context x. In
the recommendation problem, this reward corresponds to
whether the item k is clicked or not in a given context.

A contextual bandit problem is an iterated game in which
at each round t:

• (xt, ~rt) is drawn from D.

• xt is provided to the player.

• The player chooses an action at ∈ A based on xt and
on the knowledge it gathered from the previous rounds
of the game.

• The reward ~rt[at] is revealed to the player whose score
is updated.

• The player updates his knowledge based on this new
experience.

It is important to note the partial observability of this game:
the reward is known only for the action performed by the
player, not for others. In the recommendation setting, this

simply means that we know whether the displayed item has
been clicked or not, but we have no information about any
other item.

We define a recommendation algorithm A as taking as in-
put the ordered list of (x, a, r) triplets and output a policy
π. A policy πt mapsX toA, that is chooses an action given
a context.

We measure the performance of a recommendation algo-
rithm A with its average score obtained after T rounds,
according to the distribution D. We note this quantity
CTRA(T,D). To simplify notations, we will also note that
quantity CTRA(T ) by dropping D.

The objective is to design a recommendation algorithm A
that maximizes the expectation of the cumulated rewards
over T time steps, i.e.

GA(T )
def
= ED

T∑

t=1

~rt[A(xt)]

For convenience, we define the per-trial payoff as the aver-
age click rate after T time steps:

gA
def
=
GA(T )

T
= ED (CTRA(T ))

gA is the quantity we wish to estimate as the measure of
performance of a recommendation algorithm.

The contextual bandit problem is theoretically more chal-
lenging than the non contextual bandit problem since the
kind of performance bound that can be derived is highly
dependent on the nature of X . However one very popu-
lar contextual bandit algorithm is LinUCB (Li et al., 2010)
which can be considered as optimal under some very spe-
cific assumptions on X . We can also mention one of the
first works on the topic: the epoch-greedy algorithm (Lang-
ford & Zhang, 2007) that is similar to ε-greedy with an ε
decreasing along time.

4. Exhibiting time acceleration
4.1. Lessons drawn from the ICML E&E Challenge 3

There has been a series of ICML challenges about Explo-
ration & Exploitation. The latest is detailed in the sup-
plementary material. The main conlusions drawn from the
ICML Exploration & Exploitation Challenge held in 2012
have been:

• Non-contextual algorithms such as UCB or ε-greedy
performed surprisingly well. The very best algorithm
was a UCB-V with normality asumption (Audibert
et al., 2009) .
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• LinUCB — which had been tested using the same
methodology on the same kind of data from Ya-
hoo! (Li et al., 2010) — performed surprisingly bad,
whichever effort was done to tune the exploration pa-
rameter. Adding a regularization term improved its
performance but not enough to catch up with UCB-V.

The intuitive reason is actually very simple: as everyone
knows, the real world is not stationary, really not! In partic-
ular, news are aging and being constantly replaced by new
ones; each news only lives a fraction of a day. So, basically,
non contextual algorithms have to learn whether a news is
likely to be clicked or not whereas a contextual algorithm
has to learn if a combination (news, user profile) is likely
to produce a click or not. Clearly in the second case, the
space to learn from is much larger than in the first case; to
learn in this much larger space requires much longer spans
of time, spans of time that are longer than the actual lifes-
pan of news.

Algorithm 1 Replay method (Langford et al., 2008; Li
et al., 2011).
Remark: for the sake of the precision of the specification
of the algorithm, we use a history h which is the list of
triplets (x, a, r) that have yet been used to estimate the per-
formance of the algorithm A. The goal is to avoid hiding
internal information maintenance in A; a real implementa-
tion may be significantly different for the sake of efficiency,
by learning incrementally.
Input:

• A contextual bandit algorithm A

• A set S of L triplets (x, a, r)

Output: An estimate of gA
h← ∅
ĜA ← 0
T ← 0
for t ∈ {1..L} do

Get the t-th element (x, a, r) of S
π ← A(h)
if π(x) = a then

add (x, a, r) to h
ĜA ← ĜA + r
T ← T + 1

end if
end for
return ĜA

T

There is a more subtle reason that makes thing much worse.
This is related to the evaluation protocol which resulted
from a lot of smart thinking, but unfortunately merely
yield such deceptive conclusions. Basically, to estimate

the performance of a recommendation algorithm, the replay
method uses the dataset S and iteratively selects one data,
queries the algorithm to get its recommendation for this
context and checks whether this recommendation matches
the logged one. In case of a match, the algorithm may
learn from this data, and its score is accordingly updated
(whether a click was observed or not). Otherwise, the data
is simply discarded. When there are K items to choose
from, the probability that the chosen action and the action
in S do not match is K−1K , which is then the probability that
the data is discarded, and is not used for the evaluation of
the recommendation algorithm. Thus only a small fraction
of the collected data are actually used for the evaluation.
This is as if time was accelerated, using only 1 data out of
K, hence the “time acceleration” phenomenon.

4.2. Intuition of the time acceleration

While the evaluation of CTRA(T ) is meant over T
time steps, the replay method tends to really evaluate
CTRA(T/K) because of time acceleration. As long as
T is large enough, these two values are the same since their
estimators have converged. However, when T is smaller,
the estimator obtained by the replay method obviously con-
verges slower so that after T rounds, the estimated quantity
is really CTRA(T/K) rather than CTRA(T ). This fact
has severe consequences for learning algorithms: they ba-
sically learn with K times less data than expected. So, to
be fair, one should useK times more data to evaluate a rec-
ommendation algorithm with the replay method. This has a
cost obviously, and this is simply not possible in a changing
environment: one can not slow down the pace of time.

The situation gets even worse for contextual learning algo-
rithms1. Indeed, in this situation (illustrated in example 3
of (Li et al., 2011)), the replay method can not even con-
verge to the correct CTR estimate.

4.3. Offline evaluation with BRED

Now that the shortcoming of the replay method has been
understood, we look for an other offline evaluation protocol
that does not suffer from the time acceleration issue. The
idea we propose stems from the idea of bootstrap.

Let us remind the standard bootstrap approach and apply it
to the present situation. The general idea of bootstrap is to
build B datasets Sb∈{1,...B} each of size L out of a single
dataset S of size L by drawing L examples randomly with
replacement. In each of the resulting datasets Sb, there are
data that occur more than once, and other data that do not
appear at all. Then the CTRA(T ) of the recommendation

1Please, note that the proof of unbiased convergence of the
replay method only holds for algorithms producing fixed policies,
that is not adaptive algorithms
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algorithm A is estimated on each of the B datasets. Each
of the B evaluations provides an estimator of CTR(b)

A (T ).
The estimated CTRA(T ) is simply the average of these
B estimates. From a theoretical point of view, and under
mild assumptions, the bootstrap estimator converges with
no bias to the actual error rate at a speed in O(1/L).

The core idea of the evaluation protocol we propose in this
paper is inspired by the bootstrap, and somehow inherits its
theoretical properties.

Algorithm 2 Bootstrapped Replay on Expanded Data
BRED.

We sketch this algorithm so that it looks very much like the
replay method in Alg. 1. The same remark may be done
regarding the histories h(b).
Input

• A (contextual) bandit algorithm A

• A set S of L triplets (x, a, r)

• An integer B

Output: An estimate of gA

h(b) ← ∅, ∀b ∈ {1..B} /*empty history*/
Ĝ

(b)
A ← 0, ∀b ∈ {1..B}

T (b) ← 0, ∀b ∈ {1..B}
/* Bootstrap loop*/
for b ∈ {1..B} do

/* estimation of CTR(b)
A (T )*/

for i ∈ {1..L×K} do
Sample with replacement (x, a, r) of S
x← JITTER(x) /*optional*/
π ← A(h(b))
if π(x) = a then

add (x, a, r) to h(b)

Ĝ
(b)
A ← Ĝ

(b)
A + r

T (b) ← T (b) + 1
end if

end for
end for

return 1
B

B∑
b=1

Ĝ
(b)
A

T (b)

From a dataset of size L with K possibles choices at each
time step, we generateB datasets of sizeK×L in the same
way as bootstrap does. This implies that each data of the
initial set of data appears K times on average. In order
to avoid the duplication of any data, we may introduce a
random perturbation to the context, a technique known as
jittering. Then we use the replay method (Alg. 1) to evalu-
ate the CTR(b)

A ’s on each of the datasets Sb. As explained
above, the replay method evaluates the CTR of an algo-

rithm using 1/K of the data on average. So on any of the
Sb datasets, the algorithm is evaluated usingK×L/K = L
data on average. The algorithm is thus evaluated on L data,
and performs L learning steps. Hence, the bias is reduced
for contextual algorithms. Each of the dataset Sb is used
to produce an estimate of CTRA(L). The complete algo-
rithm is summarized in Alg. 2. We call this method: “Boot-
strapped Replay on Expanded Data”, or BRED for short.

This BRED approach may seem very unlikely to succeed,
and prone to overfitting. However, its close relationship
with the celebrated bootstrap method in statistics yields a
straightforward theoretical analysis, showing that the esti-
matedCTRA is unbiased, and converging rather quickly to
its true value. In particular, it converges much faster than
the estimator provided by the replay method. The next sec-
tion provides the theoretical analysis of BRED.

5. Theoretical analysis
In this section, we make a theoretical analysis of our evalu-
ation method BRED. The core loop in BRED is a bootstrap
loop; henceforth, to complete this analysis, we first restate
the theorem 1 which is a standard result of the bootstrap
asymptotic analysis (Kleiner et al., 2012).

Bootstrap is used to estimate an unbiased expected value
of a random variable based on a sample of data. Bootstrap
computes the empirical value on a set of B samples of the
dataset. Each sample b is obtained by sampling with re-
placement the dataset. Here, the quantity we wishes to es-
timate is E(CTRA(T )), that is the average performance of
an algorithm A after T recommendations. Each of the B
bootstrap step estimates a realization of CTRA(T ). Their
mean estimates E(CTRA(T )). The estimation of CTR(b)

A

simulates T (b) time steps (this is a random variable when
A is stochastic).

Theorem 1. Suppose that:

• A is a recommendation algorithm which generates a
fixed policy fixed over time (this hypothesis can be
weakened as discussed in remark 2),

• K items may be recommended at each time step,

• CTRA(T ) admits an expansion as an asymptotic se-
ries

CTRA(T ) = z +
p1√
T

+ . . .+
pα
Tα/2

+ o

(
1

Tα/2

)

where z is a constant independent of the distribution
D (as defined in Sec. 3.3), and the pi are polynomials
in the moments of the distribution of CTRA(T ) un-
der D (this hypothesis is discussed and explained in
remark 1),
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• For any b, the empirical estimator ĈTR
(b)

A (T (b)) ad-
mits a similar expansion:

z +
p̂
(b)
1√
T (b)

+ . . .+
p̂
(b)
α

(T (b))α/2
+ o

(
1

(T (b))α/2

)
.

(2)

Then, for L ≤ T (b) ×K and assuming finite first and sec-
ond moments of CTR(b)

A (T (b)), with high probability:
∣∣∣∣∣
1

B

B∑

b=1

CTRA(T
(b))− ĈTR

(b)

A (T (b))

∣∣∣∣∣ =

O

(
Var(p̂(1)α − pα|DL)√

T (b) ·B

)
+O

(
1

T (b)

)
+O

(
1

L
√
T (b)

)

(3)

where DL is the resampled distribution of D using L real-
izations.

Proof. it is actually a straightforward adaptation of the
proof of theorem 3 of (Kleiner et al., 2012). Indeed, we
only have to take care of L. Also note that this theorem is a
reformulation of the bootstrap main convergence result as
introduced by (Efron, 1979).

Now, we use theorem 1 to bound the error made by BRED
in the theorem 2.

Theorem 2. Assuming that

CTRA(T ) = z +
p1√
T

+ . . .+
pα
Tα/2

+ o

(
1

Tα/2

)

Then for a algorithm A producing a fixed policy over time,
BRED applied on a dataset of size L evaluates the expec-
tation of the CTRA with no bias and with high probability
for B and L large enough:

∣∣∣∣∣
1

B

B∑

b=1

CTRA(T
(b))− ĈTR

(b)

A (T (b))

∣∣∣∣∣ = O

(
1

L

)

This means that the convergence of the estimator of
CTRA(L) is much faster than the convergence of gA
(which is in O(1/

√
L). This will allow us to make a very

good estimator of gA by replacing CTRA(L) by our esti-
mate.

The sketch of the proof of theorem 2 is the following: first
we prove that the replay strategy is able to estimate the mo-
ments of the distribution ofCTRA fast enough with respect
to the size of S. The second step consists in using classi-
cal results from bootstrap theory to guarantee the unbiased

convergence of the average ĈTRA(T (b)) to the true distri-
bution with an O( 1

T (b) ) speed. The rational behind this is
that the gap introduced by the subsampling averaging will
be of the order of O( 1√

T (b)B
). The proof of 2 is available

in the supplementary material.

This work being meant to be of practical use, we make
a series of remarks about this theorem. These remarks
should be considered as conveying important qualitative
understanding of the theorem and thus, properties of the
proposed algorithm, BRED.

Remark 1: The key point of the theorems is the existence
of an asymptotic expansion of CTRA(T (b)) in polynoms
of 1/

√
L. This is a natural hypothesis for CTRA(T (b))

because the CTR is an average of bounded variables (prob-
abilities of click). For a recommendation algorithm A pro-
ducing a fixed policy, the mean is going to concentrate ac-
cording to the central limit theorem (CLT).

Remark 2 Let us consider algorithms that produce a policy
which changes along time (a learning algorithm or an algo-
rithm which has some parameters which vary along time).
After a sufficient amount of recommendations, such algo-
rithm which is reasonable enough will produce a policy that
will not change any longer (if the world is stationary). Thus
again, the CLT will apply and we will observe a conver-
gence of the CTRA(L) to its limit in 1/

√
L. Of course

if the algorithm does not converges to a fixed policy — or
can converge to policies with different CTR — then all the
guarantees are lost. Section 6 shows that empirically this
point is not a problem.

Remark 3: BRED can be adapted to the case in which data
have not been collected uniformly but following a known
policy πcollect. This can be done by renormalization. This
would lead to a dependency of the confidence intervals on
the algorithm A. Indeed, if A tends to play often like the
collecting strategy πcollect, the confidence interval around
E(CTRA(T )) will be tighter than if the policy produced by
A is very different from πcollect. We can easily deal with
this situation by using the fact that BRED provides more
than an estimate of CTRA(L): BRED also provides an
estimation of its distribution, so that we do have confidence
intervals.

Remark 4: The proof holds thanks to the assumption that
the evaluated recommendation algorithmA produces a pol-
icy that is fixed along time. As such, this theorem does not
hold for general bandit algorithms. (Li et al., 2011) pro-
vides an example showing that a similar proof is impossi-
ble in the general case. This is due to the fact that we lose
the independence between the choices of A because of the
context, and the Chernoff’s bounds no longer applies. This
undesired behavior is likely to appear because the same ex-
ample is presented several times to the algorithm, leading
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to strong risks of overfitting. That is why we have to intro-
duce some kind of independence between the data. This is
done using the JITTER function.

In the neural network field, the technique of jittering con-
sists in deliberately adding artificial noise to the inputs (the
attributes of data) during training2. Jittering has been inten-
sively studied in this field (Koistinen & Holmström, 1992;
Bishop, 1995). It is strongly related to kernel regression
and regularization methods. Training with jitter is an ap-
proximation to training with the kernel regression estima-
tor as target (Scott, 1992) — the amount of noise is the
bandwidth of the kernel. Empirically in such a context,
jitter works because the associations to learn are usually
smooth. This means that for two similar users, the objec-
tive function makes similar choices. This point is clear with
LinUCB which makes a linear combination of the features
to infer the appeal of an item to a user. As long as the jitter
is small, it does not change too much the objective func-
tion and it provides “new” examples for free (noisy ver-
sions of the examples contained in the training set). Obvi-
ously, if the jitter is too strong, the noise is predominant,
and hides the information contained in the dataset. Also
note than jitter is a convenient way to avoid overfitting be-
tween the recommendation algorithm and the context. In-
deed, as each tuple (context,action,reward) of the dataset is
presented several times to the recommendation, it is possi-
ble to design a recommendation algorithm that tries to take
an unfair advantage of this behavior (assuming the recom-
mendation algorithm has been designed knowing the eval-
uation methodology, and taking advantage of it instead of
trying only to solve the live recommendation system prob-
lem). By adding some noise to the context, we avoid this
unwanted behavior by making each example unique. While
the theoretical analysis of the algorithm does not hold in
this setting, we can think of jittering as a way to make ex-
amples more independent from one another; this helps the
Chernoff bound being respected even if the independence
assumption is still false — In fact Chernoff-like bounds are
true even for non identically distributed variables if these
variables are bounded and independent (Levchenko, 2005).

6. Experiments in realistic settings
As we proved that BRED has promising theoretical guar-
antees in the setting introduced in (Li et al., 2011), let us
now compare its empirical performance to that of the re-
play method

2Please, keep in mind that a typical neural network iterates
several times over the whole training set, a procedure looking like
the bootstrap iterations in BRED.

6.1. Synthetic data and discussing Jittering

The first set of experiments was run on synthetic data. In-
deed, we needed to be able to compare the errors of estima-
tion of the two methods on various fixed size datasets rela-
tively to the ground truth: an evaluation against the model
itself.

Before going any further, let us describe the model we used.
It is a linear model with Gaussian noise (as in (Li et al.,
2010)) and was built as follows:

• a fixed action set (or news set) of size K = 10.

• The context space X has F dimensions (with F = 15
here). A given context is a real valued vector x of
dimension F such that x = c+n with the informative
part c sampled from N (0, 1) and the noise n sampled
from N (0, 12 ).

• Each news i has two hidden components: a real num-
ber qi which characterizes its overall quality and a real
valued vector wi of length F which characterizes its
affinity with X .

• The CTR of a news i displayed in a context x is given
linearly by qi + wTi x.

• Finally there are two kinds of news:

– news that are interesting in general like Obama
is re-elected for which qi is high (sampled from
U(0.4, 0.5)) and wi = 0F

– specific news like New Linux distribution re-
leased for which qi is low (sampled from
U(0.1, 0.2)) and wi is composed of mostly ze-
ros and 1,2 or 3 relevant weights sampled from
N (0, 15 ).

A reasonable but coarse approach consists in always se-
lecting a news which is appealing to anyone for which a
non-contextual algorithm such as UCB is enough. A finer
algorithm like LinUCB (contextual) could perform better
in the long run by trying to learn how to efficiently display
specific news.

Figure 1 display the results and interpretation of experi-
ments which consisted in evaluating both UCB and Lin-
UCB using the different methods. It is clear that BRED
converges much faster than the replay method.

Remark 5: as it can be seen on Figure 1, jittering is very
important to obtain good performance when evaluating a
learning algorithm. Empirically, a good choice for the level
of jitter seems to be a function in O

(
1√
L

)
, with L the

size of the dataset. This confirms our intuition and what
is shown by the Jitter-free curve: jittering is very important
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when the dataset is small but gets less and less necessary as
the dataset grows.
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Figure 1. Mean of the absolute value of the difference between
the true CTR of a LinUCB and the estimated one for different
methodologies. Conducted on artificial dataset as described by
section 6.1. The lower, the better. Jittering is actually efficient
to avoid overfitting issues. The rather small error rates for very
small datasets are due to the fact that on too small datasets all the
recommendation algorithm tend to make random choices which
are not very hard to evaluate.

6.2. Real data

On a real dataset, it is not reasonable to assume the world
to be static. Moreover, as shown in (Agarwal et al., 2009),
the click probability of a given news depends on the hour
of the day and of the elapsed time since its release. A pos-
sible approach is to build a model of this evolution and to
use it in oder to correct the bias from the CTR. But on re-
ally large datasets (such as the Yahoo! news dataset), it is
possible to split the data in small batches, that is small pe-
riods of time during which the world may assumed to be
static. Of course the recommendation algorithm is not re-
set at each batch; it has to be able to handle appearances
and disappearances of news. This adaptation is fairly easy
for bandit algorithms: we simply remove from the history
h each pull of an arm corresponding to an outdated news,
and we add new news as an unplayed arm. This will result
in a strong exploration of new ones.

Remark 6: the adaption of BRED to this non static setting
is also straightforward. It is enough to run it on the whole
dataset of size L. The convergence results hold as long as
the length of the batch where the static assumption holds
grows linearly in L.

Finally we ran the very same experiment as one that was
run by (Li et al., 2011): they measured the error of the es-
timated CTR of UCB (α = 1) by the replay method on

datasets of various sizes relatively to what they call the
ground truth: an evaluation of the same algorithm on a
real fraction of the audience. As we obviously cannot do
that, we used a simple trick: we divided the Yahoo! To-
day dataset into the minimum number of batches such that
within a batch, the action set is static. For each batch, we
computed a ground truth by averaging the estimated CTR
of the algorithm using the replay method on a number of
random permutations of the data of the batch. Note that the
CTR of an algorithm estimated via the replay method on a
dataset of size L is an unbiased estimate of the CTR of this
algorithm over L/K real time steps (K being the size of
the action set). This is why for each batch, we subsampled
L/K events and evaluated the algorithm using the replay
method and BRED on this smaller dataset — this means
that reported points for the replay method uses an average
of L/K2. In this dataset K = 30 and we used B = 10.

7. Conclusion and perspectives
In this paper, we studied the problem of recommenda-
tion system evaluation, sticking to a realistic setting: we
focused on obtaining a methodology for practical offline
evaluation, providing a good estimate using a reasonable
amount of data. Previous methods are prooved to be
asymptotically unbiased with a low speed of convergence
on a static dataset, but yield counter-intuitive estimates of
performance on real datasets. Here, we introduce BRED, a
method with a much faster speed of convergence on static
datasets (at the cost of loosing unbiasedness) which allows
it to be much more accurate on dynamic data. Experiments
demonstrated our point; they were performed on a publicly
available dataset made from Yahoo! server logs and on syn-
thetic data presenting the time acceleration issue. This pa-
per was also meant to highlight the time acceleration issue
and the misleading results given by a careless evaluation of
an algorithm.

A possible extension of this work is to use BRED to build
a “safe controller”. Indeed, when a company uses a recom-
mendation system that behaves according to a certain pol-
icy π that reaches a certain level of performance, the hope
is that when changing the recommendation algorithm, the
performance will not be drop. As an extension of the work
presented here, it is possible to collect some data using the
current policy π, compute small variations of π with tight
confidence intervals over their CTR and then replace the
current policy π with the improved one. This may be seen
as a kind of “gradient” ascent of the CTR in the space of
policies.

An other important extension for practical use is to handle
the situations where we are allowed to present k > 1 items
to the user. This can be done using the variance reduction
methodology presented in (Langford et al., 2008).
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Supplementary material

Abstract
These notes contain supplementary material for
the paper entitled “Offline evaluation of recom-
mendaiton systems” submitted to ICML 2014.

1. The ICML Exploration&Exploitation
Challenge 3

1.1. The ICML E&E Challenge 3

The ICML Exploration vs. Exploitation challenge was or-
ganized in 2012 as a follow-up to a similar in spirit chal-
lenge held at ICML 2011. The challenge was based on a
dataset associated to Yahoo! front page, corresponding to
30 millions news displays. We note S this dataset. The col-
lection of data was done carefully, so that an unbiased eval-
uation of recommendation algorithms may be done offline
on this dataset, according to (?). To meet this goal, news
were served uniformly at random on Yahoo! front page to a
fraction of the audience also sampled uniformly at random,
and contextual information about the served news, the visi-
tor of the webpage and whether he/she clicked on the news
was logged to make up the dataset. The dataset was col-
lected over a month. This involved that the set of items
to recommend was not fixed (each item lives only during
a few hours on average). Subsequently, the whole dataset
was made publicly available on Yahoo! Labs webscope as
the R6 dataset. To be specific, each data in S is a tuple
(x, a, r) where:

• x is a context (including a timestamp),

• a is the news that was served,

• r is the user feedback, either click or not.

To be precise, it should be pointed out that the set of dis-
playable news is changing along time. This set of dis-
playable news is part of the context x, and a refers to one of
the elements of this set of displayable news. Though we do

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

not mention it in the sequel and drop time indices to make
notations lighter, the reader should keep in mind that the
set of possible actions changes over time, and the number
of possible actions also changes over time. So, the entities
such as K or D are really Kt and Dt.

The goal of the challenge was to successfully demonstrate
the superiority of contextual algorithms over non contex-
tual algorithms. It is noteworthy that a set of 135 features
associated to the users (the x in the tuple of data) was care-
fully crafted by Yahoo! engineers to be useful and improve
the quality of recommendations. The evaluation of algo-
rithms was done following the replay method described by
Alg. 1 introduced in (??). The core idea of this method is
to use rejection sampling. That is, data of the dataset S
are considered iteratively; for each data, if the algorithm
chooses an action that is different from the one logged in
S (which mean we are not able to know what the reward
would be), we simply skip this data. As actions of S have
been chose randomly uniform the stored action and the
choice of A matches with probability 1/K. The interest
of this strategy on this kind of data is discussed by (?).

2. Proof of theorem 2
We remind theorem 2 of the main paper:

Theorem 1. Assuming that

CTRA(T ) = z +
p1√
T

+ . . .+
pα
Tα/2

+ o

(
1

Tα/2

)

Then for a algorithm A producing a fixed policy over time,
BRED applied on a dataset of size L evaluates the expec-
tation of the CTRA with no bias and with high probability
for B and L large enough:

∣∣∣∣∣
1

B

B∑

b=1

CTRA(T
(b))− ĈTR

(b)

A (T (b))

∣∣∣∣∣ = O

(
1

L

)

This means that the convergence of the estimator of
CTRA(L) is much faster than the convergence of gA
(which is in O(1/

√
L). This will allow us to make a very

good estimator of gA by replacing CTRA(L) by our esti-
mate.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Supplementary material

Algorithm 1 Replay method (??).
Remark: for the sake of the precision of the specification
of the algorithm, we use a history h which is the list of
triplets (x, a, r) that have yet been used to estimate the per-
formance of the algorithm A. The goal is to avoid hiding
internal information maintenance in A; a real implementa-
tion may be significantly different for the sake of efficiency,
by learning incrementally.
Input:

• A contextual bandit algorithm A

• A set S of L triplets (x, a, r)

Output: An estimate of gA
h← ∅
ĜA ← 0
T ← 0
for t ∈ {1..L} do

Get the t-th element (x, a, r) of S
π ← A(h)
if π(x) = a then

add (x, a, r) to h
ĜA ← ĜA + r
T ← T + 1

end if
end for
return ĜA

T

The sketch of the proof of theorem 2 is the following: first
we prove that the replay strategy is able to estimate the mo-
ments of the distribution ofCTRA fast enough with respect
to the size of S. The second step consists in using classi-
cal results from bootstrap theory to guarantee the unbiased
convergence of the average ĈTRA(T (b)) to the true distri-
bution with an O( 1

T (b) ) speed. The rational behind this is
that the gap introduced by the subsampling averaging will
be of the order of O( 1√

T (b)B
). Now, we turn to the real

proof of theorem 2.

Proof. For the sake of simplicity, let us forget about the
JITTER(x) step in BRED. This point is discussed in re-
mark 4 below.

At each iteration of the bootstrap loop (indexed by b),
BRED is estimating the CTR using the replay method on
a dataset of size L′ = K × L. As the actions in S are ran-
domly uniformly chosen, we have E(T (b)) = L′/K = L.

As the policy is fixed, we can use the multiplicative Cher-
noff’s bound as in (?) to obtain for all bootstrap step b:

Pr
(∣∣∣T (b) − L

∣∣∣ ≥ γ1L
)
≤ exp

(
−Lγ

2
1

3

)

for any γ1 > 0 (where Pr(e) denotes the probability
of event e). A similar inequality can be obtained with
E(ĜA) = LgA:

Pr
(∣∣∣ĜA − LgA

∣∣∣ ≥ γ2LgA
)
≤ exp

(
−LgAγ

2
2

3

)

Thus with γ1 =
√

3
L ln 4

δ and γ2 =
√

3
LgA

ln 4
δ using a

union bound over probabilities, we have with probability at
least 1− δ:

1− γ1 ≤
T (b)

L
≤ 1 + γ1

gA1− γ2 ≤
ĜA
L
≤ gA1 + γ2

which implies
∣∣∣∣∣
ĜA
T (b)

− gA
∣∣∣∣∣ ≤

(γ1 + γ2)gA
1− γ1

= O

(√
ga
L

ln
1

δ

)

So with high probability the first moment of ĈTRA(T (b))
as estimated by the replay method admits an asymptotic
expansion in 1/

√
E(T (b)) = 1/L.

Now we need to focus on higher order terms. All the mo-
ments are finite because the reward distribution over S is
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bounded. Recall that by hypothesis CTRA(T ) admits a
αth order term:

pα = ED
(
CTRA(T

(b))α
)

The Chernoff’s bound can be applied to |(T (b))α−Lα| and
|ĜαA − LαgαA| leading to

∣∣∣∣∣
ĜαA

(T (b))α
− gαA

∣∣∣∣∣ = O

((ga
L

)α
2

ln
1

δ

)

With probability at least 1− δ. So for a large enough T (b),
ĈTRA(T

(b)) admits a expansion in polynoms of 1/
√
L.

Thus theorem 1 applies. For a large enough number of
bootstrap iterations (the value of B in BRED), we obtain a
convergence speed in O(1/L) with high probability, which
concludes the proof.

3. Some more experimental results
3.1. Artificial data
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Figure 1. Mean of the absolute value of the difference between the
true CTR of a UCB and the estimated one for different method-
ologies. Conducted on artificial dataset as described in the section
6.1 of the main paper. The lower, the better. Jittering is useless
here because UCB does not use the context.

3.2. Real data
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Figure 2. The difference between the estimated CTR and the ac-
tual one on some batches extracted from the Yahoo! R6B dataset
for a UCB. Batches are build as explained in section 6.2 of the
main paper. The closer to 0, the better. Please note that the replay
method tends to under-estimate the true CTR for small batches.
This is due to the fact that UCB does not have enough time to
reach its actual CTR.



80



Chapter 6

Recommendation systems

81



Journal of Machine Learning Research 1 (2000) 1-48 Submitted 4/00; Published 10/00

ICML Exploration & Exploitation challenge:
Keep it simple!

Olivier Nicol olivier.nicol@inria.fr

Jérémie Mary jeremie.mary@inria.fr

Philippe Preux philippe.preux@inria.fr

LIFL (UMR CNRS 8022) & INRIA Lille Nord Europe

Université de Lille
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Abstract

Recommendation has become a key feature in the economy of a lot of companies (online
shopping, search engines...). There is a lot of work going on regarding recommender systems
and there is still a lot to do to improve them. Indeed nowadays in many companies most
of the job is done by hand. Moreover even when a supposedly smart recommender system
is designed, it is hard to evaluate it without using real audience which obviously involves
economic issues. The ICML Exploration & Exploitation challenge is an attempt to make
people propose efficient recommendation techniques and particularly focuses on limited
computational resources. The challenge also proposes a framework to address the problem
of evaluating a recommendation algorithm with real data. We took part in this challenge
and achieved the best performances; this paper aims at reporting on this achievement; we
also discuss the evaluation process and propose a better one for future challenges of the
same kind.

Keywords: Recommendation - Bayesian - Exploration - Exploitation - Evaluation - Click
prediction

1. Introduction

The ICML Exploration & Exploitation challenge considers the problem of predicting clicks
of visitors on items presented on a website, based on website logs. The challenge relies
on data provided by Adobe. The dataset represents a website activity regarding visitors’
appeal towards a set of options. The options correspond to a set of news, one being dis-
played in a small box on the visited web page. The aim is to propose interesting news to
the visitor; their interest for a given news is asserted by a click on it, which provides the
visitor further information on the subject.

Let us list a few characteristics of this challenge:

• This is an online process, that is, the data in the dataset are ordered by time.

c©2000 author list.
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• Participants do not have access to the data set: the evaluation of proposed algo-
rithm is performed by the organisers. This lack of availability of data also limits the
optimisation of the hyper parameters.

• Name and purpose of the attributes are unknown; so it is impossible to rely on some
expert knowledge. We only know that all the attributes are somehow characterising
the visitor except one: the id of the option.

• We do not have access to the domain of definition of the discrete attributes.

• We do not know the distribution of the value of the continuous attributes. Some of
the values are very small, while some others are very large.

• There are missing values in the data. Some of the attributes are never available.

• We have no way to know if we see a visitor for the first time or not (no id accessible
during the evaluation process).

In a nutshell, our approach is based on an additive model updated at after each data
handling in a Bayesian way. After an overview of the algorithm, we present how we pro-
gressively improved our performances. This improvement was mostly obtained thanks to
our continuous work on the feature construction issue, and, more surprisingly, by a con-
tinuous simplification of the model. Indeed, we ended up making our predictions ignoring
completely the displayed option. More importantly for an “Exploration & Exploitation”
challenge, all our attempts to take into account any underlying dynamics, or to explore
carefully also led to a decrease of the performance. We then exhibit a few reasons why we
think simplicity was the best option in this challenge, but that it might not be the case in
real recommendation systems. Actually, we think that the bias towards simple algorithms
comes from, at least partially, the evaluation process of the challenge. Finally, we conclude
by proposing a better procedure to evaluate recommendation systems on that kind of data
set.

2. Formalisation of the task and organisation of the challenge

We consider the following problem. A display d is a point in a space C×D×O characterising
an option presented to a visitor where:

• C is a compact subspace of R99.

• D is a space of dimension 20 of discrete values.

• a point u ∈ C ×D characterises a visitor.

• O is the option space: O = {1, . . . ,K}, K = 6 in the challenge.

We have a data set D made of N = 18 ·106 records ordered by time. To each display di is
associated a reward ri ∈ {0, 1}, meaning whether the option was clicked or not. As already
mentioned, there are lots of missing values for the discrete and continuous attributes, but
the option and the reward are known for all data.
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A batch b is a group of 6 consecutive tuples (display, reward). During the evaluation
process of a program P, the batches are given one at a time in chronological order. At
iteration t, P receives bt without the associated rewards. P chooses the element of bt which
it considers the most likely to be associated with a reward of 1. The reward of this element
(and only this one) is then revealed to P and added to the current score. The goal is
obviously to score as much as possible.

Computational resources are limited: approximately 1GB of memory for the process of
the whole data set, and 100 ms on a 2GHz processor to process each batch.

For debugging purposes, we were initially given 60 lines of the data set. Those 60 data
should not be assumed to be representative of the whole data set in terms of attribute
values, and their distribution. In particular, the number of successful displays is grossly
over-represented in these 60 lines with regards to the whole data set. Thus, it is clear
that one should neither train his/her algorithm with these 60 data, nor even learn precise
information about attribute values with these 60 data.

In the first part of the challenge, each participant was evaluated on the same set of data,
made of the first 3 · 106 lines (so on 5 · 105 batches) of the data set. This set of data is
unknown: the evaluation is performed on a server managed by the organisers of the chal-
lenge. Each participant is allowed to repeatedly submit his/her program to get his/her
score. There are computational limits so that the frequency at which each participant can
submit a code is not very high; it depends on the server load, that is, the number of partic-
ipants having submitted their code; in our experience, the time to perform one evaluation
of one program ranged from less than 1 hour to more than a whole day. As our algorithm,
and probably most of submitted algorithms, is stochastic, the score obtained is varying at
each submission: chance plays a role.

At the end of the first round of the challenge, the 3 · 106 data were revealed to let the
participants improve their algorithm. The resulting program was then run only once on
the whole data set made of N data, just before the workshop was held. Our algorithm was
designed using only the data revealed after the first part of the challenge. After the second
part, as the whole data set was revealed, we made use of it to better understand our results.

3. Our approach

We investigated the use of ideas based on adPredictor to predict click rates in online adver-
tisement by Graepel et al. (2010). This solution is inspired from the TrueSkillTM algorithm
by Herbrich et al. (2007) used to rank online players on the Xbox gaming network. The
main idea is to consider the probability of click of a visitor u on an option o as the sum of
some contributors having different levels of uncertainty and which are updated in a Bayesian
way.
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3.1 The model of the clicks

The model for the click probability of a visitor on an option is made up of k discrete
features built on C ×D×O. The construction of these features will be discussed in section
4. Before that, let us precise that for each possible value of each feature, we estimate
a Gaussian distribution N (m,σ). Subsequently, values from this distribution are drawn
on demand, acting as weights; each value of a given feature has a weight which is drawn
from a Gaussian distribution each time this is required; we name such weights “Gaussian
weights”, and our algorithm estimates their parameters (mean, and variance). For a given
display d, each feature of C ×D ×O takes a value (which may be NA). We say that these
values are active for d. The Gaussian weight associated to this value is called a contributor
and reflects its contribution to the click probability of d. This contribution is more or less
uncertain depending on σ. We note active(d) the active contributors of a display d. Given
a contributor c, mc (resp. σc) is the mean (resp. the standard deviation) of the associated
Gaussian weight.

3.2 Making the decision on a batch

When a batch b is received, a score s(d) is computed for each display d ∈ b as follows:

s(d) =
∑

a∈active(d)

X(ma, α · σa) (1)

where X(m,σ) is a realisation of a N (m,σ) and α a real parameter. Then the display with
the maximum score is chosen.

3.3 Online learning

After an option has been chosen for a display d, the algorithm is notified whether d led to
a click or not, by way of the binary reward. The active contributors of d are updated in a
positive way if a click occurred, and in a negative way otherwise. This comes close to the
update of the weights of a perceptron, but in the present case, the weights are not scalar
but Gaussian, and this necessitates smarter updates. We use the following notations:

• y = 1 if there is a click, −1 otherwise.

• Σ2 = β2 +
∑

a∈active(d)σ
2
a, with β a real parameter

• Λ =
y·∑a∈active(d)ma

Σ

Σ quantifies the uncertainty on the score and Λ its correctness. The numerator of the
fraction defining Λ may be understood as follows: if a score is positive we expect a click
and if it is negative we do not; so this numerator is positive if the prediction was correct,
and the larger this product, the more correct the prediction. Then, this product is divided
by the uncertainty, which means that the more uncertain the prediction, the less it can be
considered as really meaningful since we did know that it was uncertain. The update rules
for the parameters of the active contributors are as follows:

m̃a = ma + y · σa
Σ
· v(Λ)
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σ̃2
a = σ2

a ·
(

1− σ2
a

Σ2
· w(Λ)

)
,

where v and w are real valued functions. Many different functions can be used for v and
w. With respect to our tests, as long as the shape is similar, the results are quite robust
to variations on v and w. So we decided to use the same functions as Graepel et al. (2010)
(see Fig. 1).
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with Φ(t) the cumulative
distribution function of N (0, 1)

Figure 1: The functions v and w.

The main idea of these update equations is that the update is small if the outcome is
not surprising (i.e., the prediction was correct). This can easily be seen from the shape of
v and w (see Fig. 1). Indeed when Λ (the correctness) is negative, v(Λ) is large and so is
the correction to m whereas if Λ is positive, then almost no update is performed. The same
thing is true for the multiplicative update of σ as when Λ grows, w(Λ) gets closer to 1. To
see why this is important, let us consider a bad contributor c active along with a lot of good
contributors in a display. If we observe a click which is not surprising given the number of
good contributors, should we change a lot our estimation of c? Obviously the answer is no
since it is very likely that the click has resulted from the contributions of the good ones and
not from a bad estimation of c.

This update strategy offers some similarities with TD-learning by Sutton (1988): the more
we are surprised by the consequences of a decision, the larger the correction. This strategy
usually leads to faster convergence rates of learning.

Another interesting idea is the use of the uncertainty. It makes the learning of the model
much more robust than the learning strategy of a simple perceptron for example. Indeed,
let us consider the case in which we are sure that a display is bad (low uncertainty on the
contributors), and in which unexpectedly, we get a click. This is very surprising, but since
the update also depends on the uncertainty, we will not make a big update because of an
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event that is most certainly noise.

Note that the update equations were computed through the approximate message passing
algorithm. The reader who would like to have a deeper understanding of these equations
and of the functions v and w in addition to the intuition we gave here should refer to
Herbrich et al. (2007) and Graepel et al. (2010).

4. Our performances along the course of the challenge

The goal of the challenge is to score as much as possible on the 5.105 first batches (3.106

displays). The final score is the only output we get when an algorithm is submitted; so
it is the only criterion we will use to compare different approaches in this section. This
section describes how we improved our program along the course of the challenge. For a
pseudo-code implementation of our final algorithm, see Appendix B.

4.1 Early results

A purely uniform random strategy scores slightly lower than 1200 on 5.105 batches; a strat-
egy that always chooses the same option scores equally. If we model the number of clicks
with a Poisson law of parameter λ = 1200, a significant difference (with risk 5%) is 57 points.
This order of magnitude should be kept in mind when trying to compare two different scores.

The algorithm presented in section 3 needs discrete features; so during the first trials,
we just ignored the continuous ones. Moreover as the main goal of the challenge was to
do recommendation, it is quite natural to try to catch the preferences of the visitors in the
features. So we simply built 20 features, each one of them being the Cartesian product of
a discrete feature fd ∈ D and the option feature. We handled the missing values by just
assigning them to a specific contributor.

Note that running the algorithm on D ×O is equivalent as having 6 models, one for each
option, using only D. Indeed, two contributors of two different features associated with
different options can never be active together. This is actually the approach we took in the
beginning but we changed a bit later to be able to handle both features resulting from a
Cartesian product with O and features built otherwise without having to duplicate them.

The first attempts scored equally as random. Our first improvement occurred when we
set the value of β to 100 instead of 1 (as it was arbitrary set when first executed). Our
score was approximately 1500 (25% more than random). In that setting, our score went
up to 1610 (34% more than random) after optimising β and the value of the priors on the
contributors. It was a good start as we performed significantly better than the random
strategy using only 21 out of the 120 features of (C,D,O) (in fact we were using (D,O)).
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4.2 Discretisation

4.2.1 Cartesian products

From this point, the most natural idea to get better performances out of this model was to
include the continuous features. Since we need discrete ones, we began with a discretisation
of the continuous values in 5 buckets. Cutting values were fixed using the first seen values
using an EM algorithm (Mc Lachlan and Krishnan, 1996) to cluster the 64 first values in 5
Gaussian weights. As with the discrete features, the null value (for missing values) has its
own bucket. Each bucket of each feature was then associated to a different contributor.

We note Cd the discretised version of C. Using this, we tried to run the algorithm with
different versions of the model:

• Still with the idea of trying to find the favourite option of each visitor, we first tried
to do a Cartesian product of each feature with the option. So with Cd ×O,D ×O ,
our algorithm scored around 1550. It was very disappointing since it is worse than
with only D ×O.

• As adding Cd ×O made the performances decrease, we tried to add the continuous fea-
tures without any Cartesian product. With Cd, D ×O, our algorithm scored around
1900 (58% more than random).

• As removing the Cartesian product with O for Cd drastically improved the perfor-
mances, we also tried Cd, D but our algorithm only scored around 1600.

We tried to combine (with a Cartesian product) only a few features from Cd with the option
but no matter which ones we picked, we found no contribution scoring more than 1900. We
also tried to identify online which features from Cd were actually correlated with the option
using ANOVA and then to dynamically combine them with the option. It did not work
either. According to these results, it seems clear that the features from D are characterising
the visitor preferences whereas the features from C are characterising the general behaviour
of the visitor facing an option.

4.2.2 A better discretisation

We were trying different approaches in parallel to the one we present in this paper and we
had noticed that using only one cutting value per feature was pretty efficient (so two buck-
ets per feature). Nevertheless trying to find the good cutting value using only the 60 given
lines was pretty hopeless. That is why we decided to build several 2-buckets discretisations
for each continuous feature and then choose the best one.

More formally, for each feature Ci ∈ C we have a set Si of possible cutting values each
of which corresponds to a 2-buckets discretisation. The possible cutting values are chosen
before running the algorithm looking at the 60 lines of the data set we have been given
(∀Ci ∈ C |Si| ≈ 20 in order to cover Ci quite exhaustively). For each cutting value vij

of Si we have 2 Gaussian weights w
(1)
ij and w

(2)
ij (one for values lower than vij and one for

greater values).
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In principle, for a given display, each feature has one active Gaussian weight (see sec-
tion 3.1). To compute the score of this display, we sum these active Gaussian weights (see
section 3.2). Here for each feature Ci ∈ C we have several active weights, one per discretisa-
tion/cutting value. So for each Ci ∈ C we only consider as active the one weight associated
to the cutting value which maximises the following criterion:

booleanToInt
(
σ

(1)
ij ≤ T (t) AND σ

(2)
ij ≤ T (t)

)
× d(w

(1)
ij , w

(2)
ij )

where:

• σ(k)
ij is the standard deviation of the weight w

(k)
ij .

• booleanToInt(x) is equal to 1 if x is true and 0 otherwise.

• d(w1, w2) is the probability that the Gaussian weight with the greatest mean between
w1 and w2 is actually greater than the other. It is a metric of how far apart the two
weights are.

• T (t) is a threshold function depending on time. The one we used is just a linearly
decreasing function of time T (t) = γ · t with a minimum value (time is actually the
batch index).

During the update, we update the active weights of all the discretisations as in section 3.3.

To sum up, for each feature Ci ∈ C instead of building only one complex discretisation
we build |Si| discretisations with 2 discrete values (so with only on cutting value). We then
choose the cutting value with the two most separated weights if they are both accurately
enough estimated. This approach slightly outperformed the EM based discretisation men-
tioned above (see Sec. 4.2.1). Indeed, it scored around 1940 (62% more than random).

Note that while running, the algorithm could add new values to some Si if it observed
too much values outside of the minimum and maximum observed in the 60 given lines.
However when we were able to run the algorithm by ourselves after the end of phase 1,
we noticed that it was almost never the case, hence the good results we observed building
discretisations only observing these data.

4.2.3 A simpler discretisation

To check whether we were learning interesting things with our two previous approaches, we
tried to build an offline fixed discretisation. To do so, we looked at the density plot of the
continuous features for the 60 lines of the data set given during phase 1 (see Fig. 2). We did
not use the frequency of clicks as there were too few of them. To build the discretisation,
we just assigned one interval per peak on the plot. We identified 12 features as different
from the others and from each other like the two ones in the left part of Fig. 2. Their
discretisations were built one by one. For the 87 others, we made three groups:

• A group where all the values in the 60 lines were missing. We just kept the approach
that tries to find only one cutting value. We found out during phase 2 that these
features were actually null in all data.
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• A group where all the features looked almost exactly like the one on the right of Fig.
2. They represent one third of all the continuous features and we only built a unique
discretisation for all of them.

• A group where the value of the features is 0 most of the time but not always. They
represent half of all the continuous features and as the previous groups we only built
a unique discretisation for all of them.

Figure 2: The density plot of 3 continuous features for the 60 lines of the data set given
during phase 1. The two on the right are on a logarithmic scale.

With this simple method of discretisation, our algorithm scored 1950 (63% more than
random) which was already more than the previous approach. We then focused on the two
largest groups of features and after merging and splitting a few intervals, we were able to
bring our score up to 2000 (67% more than random) and sometimes a bit more because of
the variance of the algorithm. This has remained our best score for a while.

4.3 Dynamics

The batches were served in chronological order during the challenge to let us identify the
dynamics of the system. When we observe the update equation for σ we notice that what-
ever happens, σ always decreases making the model unable to handle the fact that some
weights may vary over time. None of the approaches we tried allowed us to improve our
performances. We try to explain why in section 5. However we present here two of these
approaches.

4.3.1 Microsoft’s idea

In Graepel et al. (2010), the following update rule is proposed to be used at each time step
and for each weight of each feature:

σ̃2
i =

σ2
i(p) · σ2

i

(1− ε) · σ2
i(p) + ε · σ2

i

m̃i = σ2
i ·
(

(1− ε)mi

σ2
i

+ ε ·
mi(p)

σ2
i(p)

)
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The idea behind these update equations is to let the weights evolve back to their prior in
order to slowly forget the influence of past data. This allows the model to adapt to the
dynamics. In the equations, the bigger ε, the faster the algorithm forgets. Unfortunately
the smaller ε, the better the algorithm performed in the challenge. The better performances
were achieved with ε = 0.

4.3.2 Two or more models

The previous approach is not fully satisfying as it cannot take into account the fact that
some weights may evolve at different speeds. Some other may also not evolve at all. More-
over, the convergence of the weights towards their prior makes the model learn slower as
we are always forgetting a little.

To deal with these issues, we propose to use m models. At each time step only the oldest
model is used to make a prediction and all of them are updated. Every τ time steps, we
destroy the oldest model and replace it by a new one. This new model can be initialised
in several ways. The simplest one would be to always give to each weight the same prior.
Then we would handle the dynamics by making prediction with a model which has been
learning during between τ · (m − 1) and τ ·m time steps. We could also try to build the
priors using the history of their values. Are these values very stable? unstable? evolving
following some kind of trend? We tried such estimators but as nothing worked, we will not
go into the details. However we will see in section 5 that we have good reasons to think
that this failure was due to the challenge itself. We will study this idea more carefully in
some future work.

4.4 Exploration

Throughout the challenge we had been using the update equation (1) with α = 1. Actually
this parameter did not even exist. As none of our approaches seemed to do better than
2000 we were starting to explore different paths. Just to see what happened we submitted
an algorithm which was not taking into account the standard deviations in the prediction
phase (it was actually summing up the means of the weights). Surprisingly this approach
scored 2130 (130 points more than with exploration and 78% more than random). Then,
we tried to optimize the value of α but the best value was 0 (no exploration at all). A value
up to 0.05 was not making any difference though.

We obviously tried decreasing exploration approach as εn − greedy but it did not improve
the performances. The only one that seemed to slightly improve the algorithm (in terms
of performance and variance) is the following: for the first 5000 batches (1% of the total)
instead of choosing the display with the best score, we choose the display d maximising:

v(d) =
∑

a∈active(d)

σ2
a

which is the variance of the sum of the active Gaussian weights. During phase 2, by running
the two approaches 100 times, we were able to check whether the performances were really
improved or not. Here are the results: using s(d) for the 5000 first batches: mean = 2130
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variance = 1086, while using v(d) for the 5000 first batches: mean = 2140 variance = 587.
That is how our final score 2170 for phase 1 was achieved.

4.5 Further score improvements

For phase 2 we got access to the data of phase 1. Then we could run a lot more simulations
to optimise the algorithm. Trying to optimise α, β and the prior on the weights led to minor
improvements. However to be able to present the results, we did again a few experiments.
In one of them, we tried to use Cd, D as a model which is the raw feature space with our
discretisation over C and without the option. We ran the algorithm 100 times with these
features and it achieved a mean score of 2215 and a variance of 190. The best score we
got during this experiment is 2240 (85% more than random) which is much better than our
previous approach. This is the algorithm that won the second phase of the challenge. In
summary, the simplest version of the model ended up having the better performances and
being the more stable.

We had tried this approach before and it had scored badly on the server of the challenge.
We can only try to guess why: a bug on the server’s side, a mistake in the file submission
on our side... We could have avoided that kind of thing by submitting each algorithm more
than once but we would have lost a lot of time as one submission usually returned after
several hours. This is an interesting idea to think about in case of a future challenge. The
simplest thing would be to run the algorithm 5 or 10 times at each submissions. However
if computational resources are limited, it becomes an issue. To address this problem, more
data could be given to the challengers so that they can test their algorithm by themselves
before submitting it. Restrictions on the number of submissions per day could even be
imposed in that case to easily allow a sharing of resources between challengers.

5. Understanding the results

The purpose of the challenge was to design an algorithm capable of doing three main things:

• identify the preferences of a visitor to recommend something to him/her

• balance exploitation and exploration

• adapt to the dynamics of system (some options may for example become less popular
for some visitors)

However, in the challenge we had to choose between 6 couples (visitor, option) and what we
did is basically visitor selection. Indeed our best approach only used C and D — the visitor
features — to make its decisions. Moreover as presented in the last section the approach
which performs the best neither explores, nor adapts.

5.1 Why did visitor selection work so well?

What we did is identifying the general behaviour of visitors in front of an option without
paying attention to evolutions or exploring anything. Then when a batch comes we select
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the visitor who clicks the most in general regardless to the displayed option. We can try to
explain why that works so well in two ways.

5.1.1 Intuition

Trying to find the click probability of a visitor in general is a lot easier than trying to find
it for each option. Indeed each time a visitor is seen, the model can be updated whereas to
find the preferences, no information is obtained for non displayed options. When working on
the logs of a big french company we had also noticed that some variables are very important
as far as clicks are concerned. For instance some pages have higher click probabilities than
others and the time of the day matters (visitors do not click at night). C,D might have
contained that kind of features making our task even easier. Moreover half of the visitors
in the company’s logs never click. Identifying all of them in the challenge already doubles
the click probability (which is basically the maximum score we achieved).

Intuitively the general behaviour of someone on the Internet is very unlikely to change
dramatically as opposed to his preferences. That is why trying to find some kind of dy-
namics was hopeless. So having to identify something pretty easy to characterise and very
stable, the reason why almost no exploration was needed is rather clear. To picture a bit
more that the task was not that hard see Fig. 3 and 4 where we see that we very quickly
improve the performances and stabilise them. Note that the low click rate around batch
170, 000 must be due to the data as it is also there for the random strategy.

Figure 3: Evolution of our score during
phase 1. The x-axis is the num-
ber of the current batch.

Figure 4: Evolution of the click rate during
phase 1.

5.1.2 Features

In a more pragmatic way we can explain why we performed so well without using the options
(or any other Cartesian product) by looking at the click frequency plot of some features.
Looking at Fig. 5, we can clearly identify patterns both for the discrete and the continuous
features. The one in the middle of Fig. 5 is particularly informative. We tried to run a
very simple UCB strategy as described by Auer and Kivinen (2002) with one arm per value
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Figure 5: Click frequency against the value of 3 different features. The two features on
the left are discrete and the values appearing less than 5000 times in the data
set have been removed. The one on the right is continuous and plotted on a log
scale. For that latter feature, please note that the high frequencies on the right
only represents 0.5% of the values.

of this feature and scored 1450. It means that using only one feature from D allows us to
perform 21% better than a purely uniform random strategy!

5.2 Crossed effects

Does this mean that there are not any crossed effects between features in this data set? The
answer is no. We performed an analysis of variance (ANOVA) and found a lot of crossed
effects between O and some other features. We also found crossed effects between features
of D,C. During phase 1 we had tried to learn them online and during phase 2, we knew
about the Cartesian products. However we still have not been able to exploit them. We can
only try to give an intuition to explain that. The general behaviour of visitors seems to be
something very stable and very well characterised by the set of features we have been given.
Trying to enhance the model with things like preferences which are much more unstable
and much harder to identify is very tricky. In our experiments we have even noticed that it
adds disturbance to the model making it less efficient in learning and using the behaviour
of visitors.

6. More experiments

6.1 Click rate prediction

In Graepel et al. (2010) the following way to infer click probability from the model is
proposed:

p(d) = Φ(
s(d)√
β2 + σ2

)

with the same notations as in section 3.3.
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Figure 6: Mean squared error on the proba-
bility over time (computed on 100
randomly generated displays).

Figure 7: Probability that two predictions
are correctly ranked over time
(computed on 100 couples of ran-
domly generated displays).

We experimented this equation on a toy example. In this example, we assume that reality
is as assumed by the model: each click probability is the result of a sum of contributors.
In the following experiment we use 10 features which can take 5 possible values. For each
feature fi, the values of the 5 contributors are as follows:

{10−4.p0
i , 10−4.p1

i , 10−4.p2
i , 10−4.p3

i , 10−4.p4
i }

The real parameters pi are uniformly drawn in [1, 5] at the beginning of the experiment.

At each time step a random display is presented with its reward to update the model
(the values of the features are drawn uniformly). The squared error (Fig. 6) on the pre-
dictions converges but its value remains very high when it stabilises. Indeed the squared
error stabilises around 0.002. The average over the click probabilities is around 0.04 and√

0.0002 ≈ 0.014 (35% of 0.04).

However as it can be seen on Fig. 7 the order of the probabilities is very well learnt
and it is learnt very fast. The model reaches a rate of 80% of well ranked probabilities after
less than 1, 000 steps and then goes up to 95%. Hence the success of the algorithm when
it comes to choose between displays during the challenge. Also note that when the error
on the predictions stops improving after 30, 000 time steps, the probability of good ranking
keeps improving until the end of the experiment.

14
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6.2 Influence of the parameters

The model has a few parameters and we propose here to study their influence on the
performance of our algorithm. We will not talk about α since the best option in the
challenge was to do no exploration at all (α = 0).

6.2.1 Beta

β impacts the learning speed. Fig. 8 shows that the algorithm is not very sensitive to its
value. Any value between 300 and 600 achieves almost the best performances. Then when
β grows we do not learn fast enough and the performances decrease until stabilising around
1630. If β gets closer to 0 we try to learn too fast and performances dramatically decrease
until 1200 (random strategy).

6.2.2 Priors

Another important parameter is the prior we take for the Gaussian weights. As we had
no prior knowledge about the data, we had to give default values. As far as the mean is
concerned, if it is between −1 and 1 it does not change anything. For larger values, we
eventually learn correctly but it takes more time, hence a decrease in the performances.

Optimising the standard deviation (σ) was more interesting. As we can see on Fig. 9
we can find an optimal value to give to each weight which is around 20. However Fig. 10
and 11 (the latter being a zoom on the best scores of the former) show that we can do
better. If we initialise with different values the standard deviation of the discrete features
(σd) and the standard deviation of the continuous features (σc), we can win something like
30 points. It seems to mean that learning from D is easier than learning from C. We tried
to split C and give different values of σ to each resulting group but nothing significant
came out. Note that on Fig. 10 even though we can find optimal values for σd and σc the
algorithm remains very stable. Only very low values for σ (less than 2) or very high values
(more than 80) leads to scores inferior to 2000.

Figure 8: Score in the challenge against β. Figure 9: Score in the challenge against σ.
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Figure 10: Score in the challenge against σd
and σc.

Figure 11: Zoom on the best scores in the
challenge against σd and σc.

7. Evaluation protocol

As already mentioned, the evaluation protocol used during the challenge is problematic
because there exists a much stronger link between the visitor and the click probability,
than between the option × visitor and the click rate. So if we are given a batch with the
possibility to choose a couple (visitor, option), we should focus only on the visitor.

Of course it is impossible in this situation to know what would have been the perfor-
mance of an algorithm because we can not go backward in time or find an exactly identical
situation. One good solution to compare two algorithms would be to use them online with
real visitors at the same time but it would be very expensive (in terms of missed clicks) and
would necessitate a big visitor flow to conduct experiments.

An other possibility would have been to use rejection sampling on the option. The process
would be:

• Pick the first non used row (u, o, r) from D (u is the visitor, o the displayed option, r
the click or no click information).

• Input u to the recommendation algorithm and let it choose an option oa,

• If oa and o are identical, then give the reward r to the algorithm, otherwise discard
this visitor.

• loop until no more rows in D.

• The score of the algorithm is the average click rate for non discarded visitors.

This method based on rejection would only use 1/K records to evaluate the algorithm, and
would act as a “time accelerator”; it is assumed that(options are uniformly distributed in

16
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D. Similar ideas have been used by Li et al. (2010). Here it is acceptable because there is
only 6 possible options and a large number of records (so dropping 5/6 of them is not a big
deal). But sometimes we can not afford such a method.

7.1 A new method for offline evaluation

In this section, we propose a new way to evaluate recommendation algorithm on a task such
as the one considered in this challenge. In the next section, we show that this approach is
sound and actually evaluates what it is meant for.

With the data set D, we can create another data set D1 by only taking the lines of D
associated with a reward of 1. Then we can design an online classification problem in which
the classes are the options. So the goal is to map each visitor of D1 to the right option. The
only way to perform well in that case is to find connections between visitor preferences and
the options: simple visitor selection is no longer relevant. By trying to solve this problem
online, we might also be able to identify some kind of dynamics in the preferences or to
benefit from exploration. We call that problem P1.

In problem P1, a given visitor may have more than one class if he/she has been shown
different options and that he/she has clicked on at least two of them. In fact one can con-
sider that each visitor u belongs to K classes. Each time we encounter visitor u during the
online process and try to classify him/her as class (or option) o the probability to be correct
is given by:

pou = p(o|u ∈ D1)

Note that pou = 0 if u has never clicked on o in the data set D and that:

∀u
∑

o∈Options
pou = 1

We call that kind of classification problem a stochastic classification problem.

We can also design a harder stochastic classification problem where we have to map each
visitor of D to the right option. When we consider a visitor which is in D1, the reward is
given as in P1. Mapping an option to a visitor which is not in D1 always lead to a reward of
0. So in this problem that we call P2 we have visitors with no known class. One can think
of them as noise added to problem P1. In the evaluation process, no difference is made
between a misclassified visitor, and a visitor without class: in both cases, the reward is 0
and that is all. This is what makes the problem harder.

7.2 Theoretical result

Theorem 1 With the notation introduced in section 2. We denote:

• f∗ the optimal function that maps a visitor to an option for the recommendation
problem.

• g∗ the optimal function that maps a visitor to an option for P1

17
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• h∗ the optimal function that maps a visitor to an option for P2

Under the assumption that the options were allocated uniformly while creating D, we
have the following result:

∀u ∈ D1 f∗(u) = g∗(u) = h∗(u)

This means that if we manage to design a good mapping function for P1 or P2 (two problems
whose proposed solutions are easy to evaluate), we have theoretical guarantees that it will
also perform well on the real recommendation problem.

The proof in provided in Appendix A. The uniformity assumption is true in the case
of the Adobe data set. It should be possible to extend this result (up to a renormalisation)
to the case were the probability of distribution is not uniform but known and with a non
null probability of having any option attributed to visitor u.

8. Conclusion and future work

We presented a Bayesian approach to the recommendation problem. This approach led us
to win the 2011 ICML Exploration & Exploitation challenge. Based on a data set provided
by Adobe, we have shown that on this particular dataset, the click probability is much
more related to the visitor than to the option. Moreover this behaviour is very stable over
time. This means that not all visitors are equal, and that there are much more “valuable”
visitors than others. In the advertising context, this means that some part of the optimisa-
tion problem of advertising display is to allocate some of this “premium” visitors to some
well chosen ads. To perform this optimisation, a mixture of bandit algorithm and linear
programming was proposed by Girgin et al. (2010).

We also proposed to use an other evaluation protocol to use collected data to compare
the performance of new online algorithms. Further work will investigate the link between
the Thompson sampling step of adPredictor and the global performance. As we outperform
the Thompson sampling using likelihood maximisation, and do even better doing something
in between, we are interested in the non-asymptotic behaviour of Thompson sampling and
will try to exhibit better strategies (especially in the small probability case).
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Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and Ralf Herbrich.
Web-scale Bayesian click-through rate prediction for sponsored search advertis-
ing in Microsoft’s Bing search engine. In Johannes Fürnkranz and Thorsten
Joachims, editors, Proceedings of the 27th International Conference on Machine
Learning (ICML-2010), pages 13–20, Haifa, Israel, June 2010. Omnipress. URL
http://www.icml2010.org/papers/901.pdf.

Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskilltm: A bayesian skill rating system.
In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19 (NIPS-2006), pages 569–576. MIT Press, 2007.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach
to personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web, WWW’2010, pages 661–670, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-799-8. doi: http://doi.acm.org/10.1145/1772690.1772758. URL
http://doi.acm.org/10.1145/1772690.1772758.

Geoffrey J. Mc Lachlan and Thriyambakam Krishnan. The EM Algorithm and Ex-
tensions. Wiley-Interscience, 1st edition, November 1996. ISBN 0471123587. URL
http://www.worldcat.org/isbn/0471123587.

Richard S. Sutton. Learning to predict by the methods of temporal differences.
In Machine Learning, pages 9–44. Kluwer Academic Publishers, 1988. URL
http://webdocs.cs.ualberta.ca/ sutton/papers/sutton-88-with-erratum.pdf.

19



Nicol et al.

Appendix A. Proof of the theorem

Let us remind the notations:

• D is the whole data set.

• D1 is the data set containing only the lines of D associated with a reward of 1.

• f∗ is the optimal function that maps a visitor to an option for the recommendation
problem.

• P1 is the stochastic classification problem where we have to map each visitor of D1 to
the correct option. g∗ is its optimal mapping function.

• P2 is the stochastic classification problem where we have to map each visitor of D to
the correct option. Classifying a visitor not present in D1 only leads to a reward of 0.
h∗ is its optimal mapping function.

A.1 g∗ and h∗

It is straight forward to see that if u ∈ D1 we have:

h∗(u) = g∗(u)

Indeed rewards are earned the same way in P1 and P2 and the only lines that matter in P2

are the ones from D1. To complete h∗ we can map anything to the visitors who are not in
D1 since they do not produce rewards anyway (because all visitors not in D1 correspond to
a non click row, and in P2 there is no way to score even providing a different option).

A.2 f∗ and g∗

An optimal mapping function for the recommendation problem is as follows:

f∗(u) = argmax
o∈Options

p (Click = 1| (u, o))

For the stochastic classification problem in D1, an optimal mapping function can be written
as follows:

g∗(u) = argmax
o∈Options

p(o|u ∈ D1)

Let us call N(u,o) the number of times option o was displayed to visitor u in D and C(u,o)

the number of times u clicked on o in D. We have the two following equalities:

p(o|u ∈ D1) =
E(u,o)∈D[C(u,o)]∑

o′∈Options E(u,o′)∈D[C(u,o′)]
(2)

E(u,o)∈D[C(u,o)] = E(u,o)∈D[N(u,o)].p (Click = 1|(u, o)) (3)
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If the options were allocated uniformly while creating D - which is the case in the data
set used for the challenge according to the information we have been given by Adobe - then

∀u E(u,o1)∈D[N(u,o1)] = E(u,o2)∈D[N(u,o2)] = ... = E(u,ok)∈D[N(u,ok)], k = |Options| (4)

Replacing (2) in (1) and then simplifying using (3) we obtain:

p(o|u ∈ D1) =
E(u,o)∈D[N(u,o)] . p(Click = 1|(u, o))∑

o′∈Options E(u,o′)∈D[N(u,o′)] . p (Click = 1|(u, o′))

=
p (Click = 1|(u, o))∑

o′∈Optionsp (Click = 1|(u, o′))

Finally, using this result in the expression of g*, we get:

g∗(u) = argmaxo∈Options
p (Click = 1|(u, o))∑

o′∈Optionsp (Click = 1|(u, o′))

= argmaxo∈Optionsp (Click = 1|(u, o))

= f∗(u)

So we do have:
∀u ∈ D1 f∗(u) = g∗(u) = h∗(u)

�
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Appendix B. Pseudo code of the algorithm

B.1 The winning algorithm

Note that before using the algorithm, a set of discrete features is to be built. For each pos-
sible value of each feature, we keep track of a Gaussian weight (its mean m and standard
deviation σ). For a given display, each feature takes on one value. The weights correspond-
ing to these values are said to be active for this display.

Function chooseDisplay(D: SetOfDisplays): Display

parameter: T : the number of initial pure exploration steps
parameter: α
foreach Display di ∈ D do

s[i]← 0
foreach a ∈ active(di) do

if #iterations ≥ T then
draw x from N (ma, σa · α)

else
x← σ2

a

end
s[i]← s[i] + x

end

end
maxIndex← argmaxis[i]
return dmaxIndex

Procedure updateModel(d: Display, click: Boolean)

parameter: β
if click then

y ← 1
else

y ← −1
end
uncertaintySq ← β2 +

∑
a∈active(d) σ

2
a

uncertainty ← √uncertaintySq
correctness← y·∑a∈active(d)ma

uncertainty

foreach a ∈ active(d) do
ma ← ma + y · σa

uncertainty · v(correctness)

sq ← σ2
a ·
(

1− σ2
a

uncertaintySq · w (correctness)
)

σa ← √sq
end
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Algorithm 1: Evaluation of the two previous functions during the challenge

foreach Batch b : B do
d← chooseDisplay(b)
r ← observeReward(d)
updateModel(d, r)

end

B.2 More than one model

This approach is the one presented in section 4.3.2. We note updateModelM the procedure
updating model M and chooseDisplayM the function choosing a display using model M.

Algorithm 2: using more than one model to handle the dynamics

modelList← emptyList
i← 0
add a new model to modelList
foreach Batch b : B do

M ← firstElement(modelList)
d← chooseDisplayM (b)
r ← observeReward(d)
foreach Model M ∈ modelList do

updateModelM (d, r)
end
i← i+ 1
if i = τ then

if size(modelList) = mmax then
remove the last element of modelList

end
add a new model at the beginning of modelList
i = 0

end

end
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Abstract We consider the problem of displaying commer-

cial advertisements on web pages, in the “cost per click”

model. The advertisement server has to learn the appeal of

each type of visitors for the different advertisements in order

to maximize the profit. Advertisements have constraints such

as a certain number of clicks to draw, as well as a lifetime.

This problem is thus inherently dynamic, and intimately com-

bines combinatorial and statistical issues. To set the stage, it

is also noteworthy that we deal with very rare events of in-

terest, since the base probability of one click is in the or-

der of 10−4. Different approaches may be thought of, rang-

ing from computationally demanding ones (use of Markov

decision processes, or stochastic programming) to very fast

ones. We introduce NOSEED, an adaptive policy learning al-

gorithm based on a combination of linear programming and

multi-arm bandits. We also propose a way to evaluate the ex-

tent to which we have to handle the constraints (which is di-

rectly related to the computation cost). We investigate perfor-

mance of our system through simulations on a realistic model

designed with an important commercial web actor.
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tion, non-stationary setting, linear programming, multi-arm
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exploitation trade-off.
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1 Introduction

The ability to efficiently select items that are likely to be

clicked by a human visitor of a web site is a very important

issue. Whether for the mere comfort of the user to be able to

access the content he/she is looking for, or to maximize the

income of the website owner, this problem is strategic. The

selection is based on generic properties (date, world news

events, ...), along with available personal information (rang-

ing from mere IP related information to more dedicated in-

formation based on the login to an account). The scope of ap-

plications of this problem ranges from advertisement or news

display (see for instance the Yahoo! Front Page Today Mod-

ule), to web search engine result display. There are noticeable

differences between these examples: in the first two cases, the

set of items from which to choose is rather small, in the order

of a few dozens; in the latter case, the set contains billions

of items. The lifetime of items may vary considerably, from

a few hours for news, to weeks for web advertisements, to

years for pages returned by search engine. Finally, the ob-

jective ranges from drawing attention and clicks on news, to

providing the most useful information for search engines, to

earning a maximum of money in the case of advertisement

display. Hence, it seems difficult to consider all these settings

at once and in this paper, we consider the problem of select-

ing advertisements, in order to maximize the profit earned

from clicks: we consider the “cost to click” economic model

in which each single click on an advertisement brings a cer-

tain profit. We wish to study principled approaches to solve

this problem in the most realistic setting; for that purpose, we
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consider the problem with:

• finite amounts of advertising campaigns,

• finite amounts of clicks to gather on each campaign,

• finite campaign lifetimes,

• the appearance and disappearance of campaigns along

days, and

• a finite flow of visitors and page requests.

With these assumptions, we would like to emphasize that

our goal is not to optimize any asymptotic behavior and ex-

hibit algorithms that are able to achieve optimal asymptotic

behavior (but perform badly for much too long). To the op-

posite, we concentrate on the practical problem faced here

and now by the web server owner: he/she wants to make

money now, and do not really care about ultimately becom-

ing a billionaire when the universe will have collapsed (which

is likely to happen in a not so remote future with regards

to asymptotic times either). In the same order of ideas, we

also want to keep the solution computable in “real”-time, real

meaning here within a fraction of a second, and able to sup-

port the high rate of requests observed on the web server of an

important web portal. Of course, such requirements impede

the quality of the solution, but these requirements are neces-

sary from the practical point of view; furthermore, since we

have to deal with a lot of uncertainty originating from various

sources, the very notion of optimality is quite relative here.

In Section 2, we formalize the problem under study, and

introduce the vocabulary and the notation used throughout

the paper. Our notations are summarized in an appendix to

the paper. The problem we tackle is actually changing over

time; for pedagogical reasons, in Section 3 we first study

the problem under a static setting where the set of advertis-

ing campaigns are known in advance and the time horizon

is fixed, before moving to the more general dynamic setting

without these constraints in Section 4. We define a series of

problems of increasing complexity, ranging from the case in

which all information is available, to the case where key in-

formation is missing. Assessing algorithms in the latter one

is difficult, in particular from a methodological point of view,

and spanning this range of problems let us assess our ideas

in settings in which there is a computable optimal solution

against which the performance of algorithms may be judged.

Section 5 presents related works. Section 6 presents some ex-

perimental results of our algorithm near optimal sequential

estimation and exploration for decision (NOSEED) in both

static and dynamic settings. Finally, Section 7 concludes and

we briefly discuss the lines of foreseen future works.

2 Formalization of the problem

At a given time t, there is a pool of advertising campaigns.

Each advertising campaign in the pool has a starting time,

a lifetime and a click budget that is expected to be fulfilled

during its lifetime. At each click on an advertisement of the

campaign, a certain profit is made. The status of an advertis-

ing campaign can be either one of the following (Fig. 1):

Fig. 1 At time t = 300, Ad1 is in scheduled state (in dark grey), Ad2 has
expired (in white), Ad3 and Ad4 are running with remaining lifetimes of 100
and 300, respectively (in light grey)

scheduled when the campaign will begin at some time in

the future,

running when the campaign has started but not expired

yet,

expired when either the lifetime of a campaign has ended

or the click budget has been reached.

The advertisements of a campaign can only be displayed

when it is in the running state.

Each advertising campaign is assumed to have a unique

identifier, and we will represent an advertising campaign by a

tuple (S , L, B, cp, rb) where S , L, B and cp denote its starting

time, lifetime, click budget and profit per click, respectively;

rb � B denotes the remaining click budget of the advertising

campaign. Note that, for a given advertising campaign, all

parameters except the remaining click budget are constant;

the remaining click budget is initially equal to the click bud-

get of the advertising campaign and decreases with time as

it receives clicks from the visitors. Throughout the paper, the

advertising campaign with identifier k will be denoted by Adk

and its parameters will be identified by subscript k, e.g., S k

will denote the starting time of the advertising campaign with

identifier k.

Now, the problem that we are interested in is as follows

(Fig. 2):

• The web site receives a continuous stream of page re-

quests. Each request originates from a “visitor”, that is,
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Fig. 2 The interaction between a visitor and the system

a human being browsing in some way the website. We

assume that non human visitors (robots) may be iden-

tified as such, and are filtered out1) . Each visitor is as-

sumed to belong to one among N possible user profiles;

the user profiles are numbered from 1 to N. We will

use Ui to denote the ith user profile and vi to denote the

probability that a visitor belongs to that user profile2) .

• When a visitor visits the web site, a new “session” be-

gins and we observe one or several iterations of the fol-

lowing sequence of events:

– The visitor requests a certain page of the web site.

– The requested page is displayed to this visitor with

an advertisement from advertising campaign with

identifier k embedded in it.

– The visitor clicks on the advertisement with a cer-

tain probability pi,k where i denotes the user pro-

file of the visitor; this probability is usually called

the click-through rate (CTR) and the event itself is

a Bernoulli trial with success probability pi,k.

– If there is a click, then the profit associated with

the advertising campaign is incurred.

• After a certain number of page requests, the visitor

leaves the web site and the session terminates.

Returning visitors do not change the nature of the problem

given that the session information persists, and for the sake

of simplicity we will be assuming that there are no returning

visitors.

The objective is to maximize the total profit by choosing

the advertisements to be displayed “carefully”. Since page re-

quests are atomic actions, in the rest of the paper we will take

a page request as the unit of time to simplify the discussion,

i.e., a time step will denote a page request and vice versa.

Note that in the real-world, some of the parameters men-

tioned above may not be known with certainty in advance.

For example, we do not know the visit probabilities of the

user profiles, their probability of click for each advertising

campaign, the actual profiles of the visitors, or the number

of requests that they will make; the number of visitors may

change with time and new advertising campaigns may begin.

These and other issues that we will address in the following

sections of the paper make this problem a non-trivial one to

solve.

3 Static setting

In order to better understand the problem and derive our so-

lution, we will first investigate it under a static setting. In this

setting, we assume that

• there is a pool of K advertising campaigns, and

• the properties of the advertising campaigns (i.e., their

starting times, lifetimes, click budgets and click profits)

are known in advance.

Note that, this leads to a fixed time horizon T which is

equal to the latest ending time of the advertising campaigns.

At time T , the task is finished. Other parameters of the prob-

lem, such as the click and visit probabilities, may or may not

be known with certainty. We will start with the case in which

all the information is available, and subsequently move to the

setting in which uncertainty comes into play, and then only a

part of the information will be available.

3.1 Static setting with full information

In the static setting with full information, we assume that all

parameters are known. To be more precise:

(a) the visit probabilities of user profiles, vi, and their click

probabilities for each advertising campaign, pi,k are known,

and,

(b) there is no uncertainty in the actual profiles of the visi-

tors, i.e., we know for sure the profile of each visitor.

Note that, even if we have full information, the visitor at

time t and whether the visitor will click on the displayed ad-

vertisement or not are still unknown.

We first define the problem we wish to solve as a Markov

1) The identification of robots is not necessarily easy to perform, but even if some of them are not filtered out, that would not bring serious problems to our
study.
2) The sum of vi over all user profiles is equal to 1, which forms a categorical distribution with probability mass function fP(Ui) = vi
3) To be precise, one optimal solution, or a set of equally performing optimal solutions.
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decision process (MDP) [1]. This implies that the problem

under consideration has an optimal solution3) . For the sake

of clarity, we only detail the MDP formulation in the static

setting, but subsequent, more complex settings, may easily

be cast into the MDP (or partially-observable MDP) frame-

work. Then, we consider the problem of determining an op-

timal policy for this MDP. As it will be shown in the fol-

lowing section, the state space of the MDP grows linearly

with time and exponentially with the number of advertising

campaigns. This huge state space makes it difficult to de-

termine an optimal policy by straightforward dynamic pro-

gramming approaches in a reasonable time for any practical

application; this raises the question of whether there can be

other approaches to solve the problem and obtain a policy that

performs “well” (also this explains why we do not solve the

problem using traditional MDP algorithms).

Being interested in real settings, thus looking for non

asymptotic performance, and wishing to have an algorithm

that performs as best as possible in an efficient way, we ex-

amine various issues and subsequently propose the NOSEED

algorithm which aims to handle them both in simple and more

complex settings as will be detailed in Sections 3.2, 3.3, and

4.

3.1.1 The underlying Markov decision problem for the ad-

vertising selection problem

At any time t, the state of this version of the problem can be

fully represented by a tuple that consists of time t, the time

horizon T , the visit and click probabilities, and a set of tuples

denoting the advertising campaigns:

〈t, T, {vi}, {pi,k}, Ad1 = 〈S 1, L1, B1, cp1, rb1〉, . . . , AdK〉.

By omitting the fixed parameters, this tuple can be more

compactly represented as 〈t, rb1, . . . , rbK〉.
Given a state s = 〈t, rb1, . . . , rbK〉, if there is no click at

that time step or there is no running advertising campaign

then the next state, which we will denote by s′
noclick

, has

the same representation as s except the t component since

click budgets of campaigns do not change, i.e., s′
noclick

=

〈t + 1, rb1, . . . , rbK〉. In case an advertisement from a running

advertising campaign Adk is clicked, the remaining click bud-

get of Adk will be reduced by 1 and the next state becomes

〈t + 1, rb1, . . . , rbk − 1, . . . , rbK〉; we will denote this state by

s′
click,k.

A policy is defined as a mapping from states to a distribu-

tion over the set of advertising campaigns; given a particular

state, the policy determines which advertising campaign to

display at that state. A policy is called optimal if it maxi-

mizes the expected total profit. Let V(s) denote the expected

total profit that can be obtained by following an optimal pol-

icy starting from state s until the end of time horizon; V(s) is

usually called the value of state s. Now, suppose that there is

a visitor from the ith user profile at state s; the expected to-

tal profit that can be obtained by displaying an advertisement

from a running advertising campaign Adk can be defined as:

Vi,k(s) = pi,k[cpk + V(s′click,k)] + (1 − pi,k)V(s′noclick), (1)

and the optimal policy, i.e., the best advertising campaign to

display, would be to choose advertising campaign with the

maximum expected total profit, i.e., argmaxAdk
Vi,k(s). Note

that, the value of state s can be calculated by taking the ex-

pectation of maximum Vi,k(s) values over all user profiles and

we have:

V(s) =
∑

Ui

max
Adk

Vi,k(s). (2)

Regarding expired campaigns, we define their value to be

0. Using Eqs. (1) and (2), the value of any state can be de-

termined, for example, by dynamic programming; hence-

forth, the optimal policy can be determined too. However,

the size of the state space is equal to (T − t) × rb1 . . . × rbK

and grows exponentially with the number of advertising cam-

paigns (with order equal to their budgets). From a practical

point of view, this huge state space makes such solutions very

computationally demanding, and unable to meet our require-

ments in this regard.

3.1.2 A greedy approach

When we look at Eq. (1) more carefully, it is easy to see

that the value of the next state without a click, V(s′
noclick

), is

an upper bound for the value of the next state with a click,

V(s′
click,k). Replacing the second term by V(s′

noclick]) − ξi,k
where ξi,k is a constant that depends on s, Adk and the user

profile Ui, we obtain:

Vi,k(s) = pi,kcpk − pi,kξi,k + V(s′noclick). (3)

If ξi,k values are small compared to the corresponding click

profits, i.e., their effect is negligible, or they are ignored, then

the optimal policy becomes choosing the advertising cam-

paign with the highest expected profit per click among the

set of running campaigns at that state denoted by C:

arg max
Adk∈C

Vi,k(s) = arg max
Adk∈C

[pi,kcpk + V(s′noclick)]

= arg max
Adk∈C

pi,kcpk.
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We will call this particularly simple method the highest

expected value (HEV) policy. Alternatively, we can employ a

stochastic selection method where the selection probability of

a running advertising campaign is proportional to its expected

profit per click. This variant will be called the stochastic ex-

pected value (SEV) policy.

As both policies exploit advertising campaigns with possi-

bly high return and assign lower priority to those with lower

return, one expects them to perform well if the lifetimes of the

advertising campaigns are “long enough” to ensure their click

budgets. However, they may show inferior performances even

in some trivial situations, that is ξi,k terms are significant. For

example, assume that there is a single user profile and two ad-

vertising campaigns, Ad1 and Ad2, starting at time t = 0 with

click probabilities of 0.005 and 0.01, lifetimes of L1 = 2 000

and L2 = 4 000 time steps, budgets of B1 = 10 and B2 = 20

clicks, and unit profits per click i.e., cp1 = cp2 = 1 (Fig.

3). In this particular case, starting from t = 0, HEV policy

always chooses Ad2 until this campaign expires (on expec-

tation at t = 2 000, at which point the other campaign Ad1

also expires) and this results in an expected total profit of 20

units; SEV policy displays on average twice as many adver-

tisements from Ad2 compared to Ad1 during the first 2000

time steps, and performs slightly better with an expected to-

tal profit of 23 1
3 . However, both figures are less than the value

of 25 that can be achieved by choosing one of the campaigns

randomly with equal probability. Note that, by displaying ad-

vertisements from only Ad1 in the first 2000 time steps until

it expires and then Ad2 thereafter, it is possible to obtain an

expected total profit of 30 that satisfies the budget demands

of both advertising campaigns; the lifetime of Ad2, which is

long enough to receive a sufficient number of clicks with the

associated click probability, allows this to happen. In order to

derive this solution, instead of being short-sighted, it is com-

pulsory to take into consideration the interactions between

the advertising campaigns over the entire timeline and deter-

mine which advertising campaign to display accordingly, in

other words, consider a planning problem, as in the dynamic

Fig. 3 A toy example in which HEV and SEV policies have suboptimal
performance. Ad1 and Ad2 have the same unit profit per click, click proba-
bilities of 0.005 and 0.01, and total budgets of B1 = 10 and B2 = 20 clicks,
respectively. The expected total profits of HEV and SEV are 20 and 23 1

3
compared to a maximum achievable expected total profit of 30

programming solution mentioned before.

Observing Fig. 3, it is easy to see that the interactions be-

tween the advertising campaigns materialize as overlapping

Fig. 4 The timeline divided into intervals and parts. I j denotes the jth in-
terval [t j−1 , t j] and ak, j denotes the allocation for advertising campaign Adk

in interval I j. The first index of a (user profile) is left unmentioned for the
sake of clarity. In this particular example, the set of running advertising cam-
paigns in the second interval is AI2 = {Ad2, Ad3}, and the set of intervals that
cover Ad1 is IA1 = {I3, I4}

time intervals over the timeline4); in this toy example the in-

tervals are I1 = [0, 2 000] and I2 = [2 000, 4 000], and what

we are trying to find is the optimal allocation of the number

of advertising campaign displays in each interval. This can

be posed as the following optimization problem where ak, j

denotes the number of displays allocated to Adk in the inter-

val I j:

maximize 0.005 × a1,1 + 0.01 × (a2,1 + a2,2),

s.t. a1,1 + a2,1 � 2 000, a2,2 � 2 000,

0.005 × a1,1 � 10, 0.01 × (a2,1 + a2,2) � 20,

which has an optimal solution of a1,1 = a2,2 = 2000 and

a2,1 = 0. One can then use this optimal allocation to calculate

the display probabilities for both advertising campaigns pro-

portional to the number of displays allocated to them in the

corresponding time intervals.

3.1.3 Optimal allocation approach

Let Ek be the ending time of advertising campaign Adk, which

is simply equal to the sum of its starting time and lifetime.

Given a pool of K advertising campaigns C, the time inter-

vals during which the advertising campaigns overlap with

each other can be found from the set of their starting and

ending times. Let t0, t1, . . . , tM , M � 2 × K, be the sorted

list of elements of the set of starting and ending times of the

advertising campaigns; without loss of generality, we will

assume that t0 = 0 as otherwise there will not be any ad-

vertising campaigns to display until t0. By definition, the M

intervals defined by I j = [t j−1, t j], 1 � j � M cover the en-

tire timeline of the pool of the advertising campaigns. Let

AI j = {Adk |S k < t j � Ek} be the set of running advertising

4) See Fig. 4 for a more detailed example.
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campaigns in interval I j. Note that for some of the intervals,

this set may be empty; these intervals are not of our interest

as there will be no advertising campaigns to display during

such intervals (which is certainly not good for the web site)

and we can ignore them. Let A = {I j|AI j � ∅} be the set of

remaining intervals, l j = t j− t j−1 denote the length of interval

I j, and IAk = {I j|Adk ∈ AI j} be the set of intervals that cover

Adk (Figure 4). Generalizing the formulation given above for

the simple example and denoting the number of displays al-

located to Adk in the interval I j for the user profile Ui by ai,k, j,

we can define the optimization problem that we want to solve

as follows:

maximize
∑

I j∈A

∑

Adk∈AI j

cpkpi,kai,k, j, (4)

s.t.
∑

Adk∈AI j

ai,k, j � vil j, ∀ Ui, I j ∈ A, (5)

∑

Ui

∑

I j∈IAk

pi,kai,k, j � rbk, ∀ Adk ∈ C. (6)

The objective function (Eq. 4) aims to maximize the total

expected profit, the first set of constraints (Eq. (5)) ensures

that for each interval we do not make an allocation for a par-

ticular user profile that is over the capacity of the interval

(i.e., the portion of the interval proportional to the visit prob-

ability of the user profile), and the second set of constraints

(Eq. (6)) ensures that we do not exceed the remaining click

budgets. This corresponds to the maximization of a linear ob-

jective function (ai,k, j being the variables), subject to linear

inequality constraints, which is a linear programming prob-

lem. This problem can be solved efficiently using the simplex

algorithm, or an interior-point method, or an other existing

large scale approach if necessary. The number of constraints

in the linear program is of order O(NK) where N is the num-

ber of user profiles and K is the number of advertising cam-

paigns, and the number of variables is of order O(NK2).

The solution of the linear program, i.e., the assignment of

values to ai,k, j, indicates the number of displays that should be

allocated to each advertising campaign for each user profile

and in each interval, but it does not provide a specific way to

choose the advertising campaign to display to a particular vis-

itor from user profile Ui at time t. For this, we need a method

to calculate the display probability of each running advertis-

ing campaign from their corresponding allocated number of

displays.

Let âi,k, j = ai,k, j/
∑

Adk∈AI j
ai,k, j be the ratio of the alloca-

tion for user profile Ui and advertising campaign Adk in in-

terval I j to the total number of allocations for that user pro-

file in the same interval. One can either pick the advertis-

ing campaign having the highest ratio in the first interval,

i.e., argmaxk âi,k,0, which we will call the highest LP pol-

icy (HLP), or employ a stochastic selection method similar to

SEV in which the selection probability of a campaign Adk is

proportional to its ratio âi,k,0, which will be called the stochas-

tic LP policy (SLP); SLP introduces certain degree of explo-

ration which will be useful in more complex settings. Note

that, as we are planning for the entire timeline, the solution of

the linear program at time t may not allocate any advertising

campaigns to a particular user profile i, i.e., it may be the case

that ai,k, j = 0 for all k, simply suggesting not to display any

advertisement to a visitor from that user profile. In practice,

when the current user is from such a user profile, choosing an

advertising campaign with a low (or high) expected profit per

click would be a better option and likely to increase the total

profit at the end.

3.1.4 NOSEED: a two-phases, alternating algorithm

By defining and solving the linear program at each time step

0 � t < T for the current pool of non-expired advertising

campaigns (which depends on the visitors that have visited

the web site up until that time step, the advertising campaigns

displayed to them and visitors’ reactions to those displays),

and employing one of the policies mentioned above, adver-

tising campaigns can be displayed in such a way that the total

expected profit is maximized, ignoring the uncertainty in the

predictions of the future events (we will subsequently discuss

the issues related to uncertainty).

When the number of advertising campaigns, and conse-

quently the number of variables and constraints, is large, or

when there is a need for fast response time, solving the opti-

mization problem at each time step may not be feasible. An

alternative approach would be to solve it regularly, for exam-

ple, at the beginning for each interval or when an advertising

campaign fulfills its click budget, and use the resulting allo-

cation to determine the advertising campaigns to be displayed

until the next resolution. In short, the algorithm alternates

planning, with exploitation of this planning during multiple

steps. This can be accomplished by updating the allocated

number of advertising campaign displays as we move along

the timeline, reducing the allocation of the chosen advertis-

ing campaigns in the corresponding intervals, and calculat-

ing the ratios that determine the advertising campaign to be

displayed accordingly5). Note that in practice, the planning

step and the exploitation step can be asynchronous as long

5) The complete algorithm can be found in the appendix.
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as the events that have occurred from the time that planning

has started until its end are reflected properly to the result-

ing allocation. Such an algorithm belongs to the approximate

dynamic programming family.

3.2 Dealing with uncertainty in the static setting with full

information

The static setting with full information has two sources of

uncertainty:

(a) the user profiles of visitors are drawn from a categorical

distribution, and

(b) each advertising campaign display is a Bernoulli trial

with a certain probability, which is known, and the result is

either a success (i.e., click) or a failure (i.e., no click).

The aforementioned linear program solution of the optimiza-

tion problem focuses on what happens in the expectation.

Following the resulting policy in different instances of the

same problem6) may lead to different realizations of the total

profit that vary from its expected value (due to the fact that

the number of visitors from each user profile and the num-

ber of clicks on the displayed advertising campaigns will not

exactly match their expected values).

As a simple example, consider the case in which there is

a single user profile and two advertising campaigns Ad1 and

Ad2 both having the same unit profit per click and a lifetime

of 105 time steps, click probabilities of 0.001 and 0.002, and

total budgets of 50 and 100, respectively. The solution of the

linear program would allocate 50 000 displays to each adver-

tising campaign with an expected total profit of 150, thus sat-

isfying the budget demands. Figure 5 shows the cumulative

distribution of the total profit over 1 000 independent runs for

this problem using the stochastic LP policy and solving the

optimization problem once at the beginning. Although values

that are equal to or near the expected total profit are attained

in more than half of the runs, one can observe a substantial

amount of variability. In reality, reducing this variability may

also be important and could be considered as a secondary

objective to obtaining a high total profit. For the given ex-

ample, slightly increasing the display probability of Ad2 and

decreasing that of Ad1 would enable the accomplishment of

this objective by preventing the risk of receiving fewer clicks

than expected for Ad2 without considerably compromising

the outcome as the same risk also exists for Ad1. This leads

to the question of how to incorporate risk-awareness to our

formulation of the optimization problem.

When we look closely at the objective function and the

constraints of the linear program (Eqs. (4)–(6)), we can iden-

tify two sets of expressions of the form vil j and pi,kai,k, j; the

first one denotes the expected number of visitors from user

profile Ui during the time-span of interval I j, and the second

one denotes the expected number of clicks that would be re-

ceived if the advertising campaign Adk is displayed ai,k, j times

to the visitors from user profile Ui. Note that visits from a par-

ticular user profile Ui occur with a known average rate vi, and

each visit occurs independently of the time since the previous

visit. Therefore, the number of such visits in a fixed period of

time t can be considered a random variable having a Poisson

distribution with parameter λ = vit which is equal to the ex-

pected number of visits that occur during that time period.

Similarly, the number of clicks that would be received in a

fixed period of time if advertising campaign Adk is displayed

to the visitors from user profile Ui can also be considered a

random variable having a Poisson distribution with parameter

λ = pi,kt. Let Po(λ) denote a Poisson-distributed randomvari-

able with parameter λ. Replacing vil j and pi,kai,k, j terms with

the corresponding random variables, we can convert the lin-

ear program into the following stochastic optimization prob-

lem:

max
∑

I j∈A
∑

Adk∈AI j
cpkE[Po(pi,kai,k, j)], (7)

s.t.
∑

Adk∈AI j
ai,k, j � Po(vil j), ∀ Ui, I j ∈ A, (8)

∑
Ui

∑
I j∈IAk

Po(pi,kai,k, j) � rbk, ∀ Adk ∈ C. (9)

The summation of independent Poisson-distributed ran-

dom variables also follows a Poisson distribution whose pa-

rameter is the sum of the parameters of the random variables.

Assuming that Po(pi,kai,k, j) are independent, the budget con-

straints in Eq. (9) can be written as:

Po

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

Ui

∑

I j∈IAk

pi,kai,k, j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ � rbk, ∀ Adk ∈ C, (10)

which is equivalent to its linear program counterpart in ex-

pectation. The rationale behind this set of constraints is to

bound the total expected number of clicks for each advertis-

ing campaign (while at the same time trying to stay as close

as possible to the bounds due to maximization in the objective

function). Without loss of generality, assume that in the opti-

mal allocation the budget constraint of advertising campaign

Adk is met. This means that the expected total number of

clicks for Adk will be a Poisson-distributed random variable

with parameter rbk and in any particular instance of the prob-

lem the probability of realizing this expectation (our target)

would be 0.5. In order to increase the likelihood of reaching

6) An “instance” refers here to a certain realization of the random problem.
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the target expected total number of clicks, a possible option

would be to use a higher budget limit in the constraint. Let

Λk be our risk factor7) and Po(λk) be the Poisson-distributed

random variable having the smallest parameter λk such that

Pr(Po(λk) > rbk − 1) � Λk which is equivalent to

1 − Λk � FPo(λk)(rbk − 1),

where FPo(λk) is the cumulative distribution function of

Po(λk). Note that rbk and Λk are known, and λk can be found

using numerical methods. If we replace rbk with λk in the

budget constraint and solve the linear optimization problem

again, the expected total number of clicks for Adk based on

the new allocation would be greater than or equal to rbk and

will have an upper bound of λk. Following the same strategy,

one can derive new bounds for the user profile constraints

and replace vil j terms in Eq. (8) with the smallest value of

λi, j such that the Poisson-distributed random variable Po(λi, j)

satisfies 1 − Λi, j � FPo(λi, j)(vil j) and Λi, j is the risk factor. In

this case, an additional set of constraints defined below is nec-

essary to ensure that for each interval the sum of advertising

campaign allocations for all user profiles do not exceed the

length of the interval:
∑

Ui

∑

Adk∈AI j

ai,k, j � l j, ∀I j ∈ A . (11)

As presented in Fig. 5, in our simple example using a com-

mon risk factor of 0.95 results in a cumulative distribution

of total profit which is more concentrated toward the optimal

value compared to the regular linear program approach.

Fig. 5 The distribution of the total profit less than its expected value over
1000 independent runs on the toy example with two advertising campaigns;
the dark shaded bars depict SLP with a risk factor of 0.95. In reality, the re-
alization will be only one of the runs and therefore more concentration near
the maximum value is better (see text for more explanation)

3.3 Static setting with partial information

In the settings discussed so far, we have assumed that two

important sets of parameters, the visit probabilities of user

profiles {Ui} and their click probabilities for each advertising

campaign {pi,k} are known. However, this is a rather strong as-

sumption and in reality these probabilities are hardly known

in advance; instead, they have to be estimated based on ob-

servations, such as the profiles of the existing visitors, the

advertising campaigns that have been displayed to them and

their responsive actions (i.e., whether they have clicked on

a displayed advertisement or not). An accurate prediction of

these probabilities results in the display of more attractive ad-

vertisements to the web site visitors.

Once this estimation problem is solved, one has to deal

with probabilities to decide on which advertisement to dis-

play. This problem of decision making in face of uncertainty

raises the exploration/exploitation dilemma, one having to

balance the exploitation of what is already known, with the

exploration of new, potentially better, decisions.

We discuss these two issues in the next two sections.

3.3.1 Estimating the probabilities

The simplest way to estimate unknown probabilities would

be to use maximum likelihood estimation. In our problem,

the profile of a visitor can be considered a categorical random

variable U with profile Ui having an estimated visit probabil-

ity of v̂i, and the click of a visitor from user profile Ui on an

advertisement from advertising campaign Adk can be consid-

ered a Bernoulli random variable pi,k with success probability

p̂i,k.

Let visiti denote the total number of visitors from user pro-

file Ui that have visited the web site at time 0 � t, then the

maximum likelihood estimate of v̂i will be visiti/(t + 1), and

similarly the maximum likelihood estimate of p̂i,k at time t

will be clicki,k/displayi,k where clicki,k is the number of times

that visitors from user profile Ui clicked on advertisement

Adk and displayi,k is the number of times Adk had been dis-

played to them8) . Since visiti values are initially 0, the esti-

mates will also be 0 until we observe a visit from the cor-

responding user profiles. In order remedy this situation, it is

customary to assign a prior ϑi, e.g., 1, for each user profile

and define v̂i as

v̂i =
visiti + ϑi

t + 1 +
∑N

i=1 ϑi

.

The priors of click probabilities can also be assigned in a

similar manner. In practice, as the number of visits is high and

the number of user profiles is low, the maximum likelihood

estimates of visit probabilities will be quite accurate.

7) Typical values include 0.90, 0.95, and 0.99.
8) For brevity, the time indices have been dropped from visiti , displayi,k and clicki,k .
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Alternatively, we can employ Bayesian maximum a poste-

riori estimates using the conjugate priors. The conjugate pri-

ors of the categorical and Bernoulli distributions are Beta and

Dirichlet distributions, respectively. If Beta(αi,k, βi,k) is the

Beta prior with hyper-parameters αi,k and βi,k for click prob-

ability pi,k, then the posterior at time t is the Beta distribution

with hyper-parameters αi, j + clicki,k and βi, j + displayi,k −
clicki,k. Setting both hyper-parameters to 1 corresponds to

having a uniform prior. At time t, the posterior of the prior

Dirichlet distribution with hyper-parameters vi for U will

have hyper-parameters vi+visiti. The initial hyper-parameters

can be guessed or determined empirically based on historical

data. As we will see later in the experiment section, choosing

good priors may have a significant effect on the outcome.

By estimating probabilities at each time step (or periodi-

cally) and replacing the actual values with the corresponding

estimates, we can use the approach presented in the previous

section to determine allocations (optimal up to the accuracy

of the estimations) and choose advertising campaigns to dis-

play. For maximum a posteriori estimates, the mode of the

posterior distribution can be used as a point estimate and a

single instance of the problem can be solved, or several in-

stances of the problem can be generated by sampling proba-

bilities from the posterior distributions, solved separately and

then the resulting allocations can be merged (for example tak-

ing their mean; note that, in this case the final allocations will

likely be not bound to the initial constraints).

3.3.2 Exploration-exploitation trade-off

As in many online learning problems, one important issue

is the need for balancing the exploitation of the current es-

timates and exploration, i.e., estimation of the unknown or

less-known (e.g., with higher variance) parameters. Using the

solution of the optimization problem without introducing any

additional exploration may introduce substantial bias to the

results. This exploration/exploitation trade-off problem can

be formulated as a multi-arm bandit problem (with the adver-

tising campaigns in the role of arms). Based on the multi-arm

bandit framework, exploration can be introduced to the allo-

cation policy in various ways, among which we mention the

following two:

• Policy-modification

The existing non-exploratory policies can be augmented

with an additional mechanism in order to have exploration.

This may be achieved by an ε-greedy in which the under-

lying policy is followed with a high probability 1 − ε, and

a running advertising campaign is chosen at random with a

small probability ε. One can derive other possible solutions

from the bandit literature, such as the UCB rule [2]. Stand-

ing for Upper-Confidence Bound, UCB is a very simple way

to achieve asymptotically optimal policy to choose the best

action among a set of available actions. Each action is as-

sociated to a certain average return; the principle consists in

sampling each action, gathering for each its average observed

return r̄i, and the number of times each action has been se-

lected ni. After n actions have been performed, the next action

is selected as being the one that maximize the UCB bound:

ri +

√
C ln n

ni
, where C is an appropriately tuned constant.

• Estimation-modification

In this approach, the probability of click estimates are sys-

tematically modified (before solving the optimization prob-

lem) in order to favor the advertising campaign and user pro-

file couples according to the uncertainty on their estimation

based on the following principle: the more uncertain the es-

timate, the more exploration may be rewarding. By giving

them artificially a higher probability of click tends to favor

their use, and consequently the exploration. For this purpose,

[3] use Gittins indices. Similarly one can also use UCB in-

dices associated with the estimates, or with a value sampled

from the posterior Beta distribution over the expected reward

(see [4]). Empirically, this second way of increasing explo-

ration does not seem to work as well as the first one (for ex-

ample, ε-greedy with fine-tuned ε) especially if we do not

re-plan at each time step. We believe that the reason for this

situation is that such methods lead to solutions that only ex-

plore the most uncertain areas of the search space.

4 Dynamic setting

Under the static setting of the problem, there are two main

constraints: the set of advertising campaigns is known in ad-

vance and, consequently, the time horizon is fixed. In the

more general and realistic dynamic setting, we remove these

constraints. The time horizon is no longer fixed, i.e., does

not have a limited length T but instead it is assumed that T

is infinite; furthermore, new advertisement campaigns may

appear with time. Thus, to the 3 aforementioned categories

of advertising campaigns (scheduled, running, and expired),

we add a new category made of the yet-unknown campaigns,

that is, the advertising campaigns that will come into play in

the future, but which future existence is not yet known. In

contrast to these unknown advertising campaigns, scheduled,

running, and expired advertising campaigns will be qualified

as “known”.
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In the next two subsections, we will consider two main

cases in which either a generative model of advertising cam-

paigns is available, or not. Given a set of parameters and the

current state, a generative model generates a stream of adver-

tisement campaigns during a specified time period, together

with all related-information, such as, the click probabilities

of user profiles for each generated advertising campaign.

4.1 Model based resolution

When a generative model of advertising campaigns is avail-

able, it can be utilized to compensate for the uncertainty in

future events. In this case, in addition to the set of known

advertising campaigns, the model allows us to generate a set

of hypothetical unknown advertising campaigns, for exam-

ple, up to H
9)
max , simulating what may happen in future, and

include them in the planning phase of NOSEED. By omit-

ting allocations made for these hypothetical advertising cam-

paigns from the (optimal) allocation scheme found by solv-

ing the optimization problem, display probabilities that in-

herently take into consideration the effects of future events

can be calculated. Note that this would introduce a bias in the

resulting policies which can be reduced by running multiple

simulations and combining their results as discussed before.

4.2 Model free resolution

When a generative model is not available, we have an incom-

plete and uncertain image of the timeline; we only have infor-

mation about known advertising campaigns, and new adver-

tising campaigns appear periodically or randomly according

to a model which is unknown. In this setting, at any time step

t, the set of known advertising campaigns (running or sched-

uled) implies a maximum time horizon Hmax. Although, it is

possible to apply the aforementioned methods and calculate

the allocations for the known advertising campaigns, doing

so would ignore the possibility of the arrival of new advertis-

ing campaigns that may overlap and interact with the existing

ones; the resulting long-term policies may perform well if

the degree of dynamism in the environment is not high. On

the contrary, one can focus only on short or medium-term

conditions omitting the scheduled advertising campaigns that

start after a not-too-distant time H in the future, i.e., do plan-

ning for the advertising campaigns within the chosen plan-

ning horizon. The resulting policies will be greedier as H is

smaller and disregard the long-time interactions between the

existing advertising campaigns; however, they will also be

less likely to be affected by the arrival of new campaigns. An

example that demonstrates the effect of the planning horizon

on the resulting policies is presented in Fig. 6. For such poli-

cies, choosing the optimal value of the planning horizon is not

trivial due to the fact that it strongly depends on the unknown

underlying model. One possible way to overcome this prob-

lem would be to solve the problem for a set of different plan-

ning horizons H1, . . . ,Hu = Hmax, and then combine the re-

sulting probability distributions of advertising campaign dis-

plays (such as by majority voting).

Fig. 6 The effect of the planning horizon H. Ad1 and Ad2 start at time 0
and have the same unit profit per click. The click probabilities are p1,1 =

0.8, p1,2 = 0.1 for the user profile U1 and p2,1 = 0.8, p2,2 = 0.5 for the user
profile U2. Both profiles have the same visit probability

The sketch of NOSEED algorithm is presented in Fig. 7

and the complete algorithm can be found in the Appendix.

5 Related work

We review the existing work on the problem of advertisement

selection for display on web pages, and related problems. We

also discuss our own work in respect to these works.

The oldest reference we were able to spot is [5] who mixed

a linear program with a simple estimation of CTR to select

advertisements to display. In this work, no attention is paid

to the exploration/exploitation trade-off and more generally,

the problem of the estimation of the CTR is very crudely

addressed. Then, [3] introduce a multi-arm bandit approach

to balance exploration with exploitation. Their work is based

on display proportions, that is unlimited resources; they also

9) We will use H to denote the planning horizon and differentiate it from the time horizon of the problem T .
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Fig. 7 Sketch of the NOSEED algorithm: NOSEED selects advertising campaigns by solving the optimization problem from times to times,
and then exploiting its solution to display a certain amount of advertisements

deal with a static set of advertisements. This was later im-

proved by [6] who deal with the important problem of multi-

impression of advertisements on a single page; they also deal

with the exploration/exploitation trade-off by way of Gittins

indices. Ideas drawn from their work on multi-impression

may be introduced in ours to deal with that issue.

Aiming at directly optimizing the advertisement selection,

side information (information about the type of advertise-

ment, page, date of the request, ...) is used to improve the

accuracy of prediction in several recent papers [7–11]. Inter-

estingly, [12] also deals with the multi-impression problem.

However, all these works do not consider finite budget con-

straints, and finite lifetime constraints, as well as the contin-

uous creation of new advertising campaigns; they also do not

consider the CTR estimation problem. Recently, [11] focuses

on the exploration/exploitation trade-off and proposes inter-

esting ideas that may be combined to ours (varying ε in the

ε-greedy strategy, and taking into account the history of the

displays of an advertisement). Though not dealing with ad-

vertisement selection but news selection, which implies that

there is no profit maximization, and no click budget con-

straint, but merely maximization of the amount of clicks, [13,

14] investigate a multi-arm bandit approach.

Some works have specifically dealt with the accurate pre-

diction of the CTRs, either in a static setting [15], or dealing

with a dynamic setting, and non stationary CTRs [16]. [17,

18] also use a hierarchically organized side information on

advertisements and pages. Recently, the extent of the con-

tent relevance between the pages and the personal interests

of users based on intention and sentiment analysis are also

considered for improving the predictions [19].

A rather different approach is that of [20] who treated

this problem as an on-line bipartite matching problem with

daily budget constraints. However, it assumed that we have

no knowledge of the sequence of appearance of the profile,

whereas in practice we often have a good estimate of it.

[21] tried then to take advantage of such estimates while still

maintaining a reasonable competitive ratio, in case of inaccu-

rate estimates. Extensions to click budget were discussed in

the case of extra estimates about the click probabilities. Nev-

ertheless, the daily maximization of the income is not equiv-

alent to a global maximization.

6 Experiments

We do not see any way to provide a relevant theoretical as-

sessment of this work regarding the performance of the al-

gorithm. Indeed, the algorithm we propose is aimed at deal-

ing with large problems in an efficient way, efficient mean-

ing with the constraint of rather short answering time (“quasi

real-time”, that is in the order of the micro-second to decide

which advertisement to display). Clearly this constraint on

time requires an approximate solution to the problem we con-

sider; however, even if we remove this constraint on time,

we are unable to solve exactly the problem we wish to solve

within a reasonable amount of time, for a significant size of

the problem, so that we can not compare our results with the

optimal results. All this makes the experimental assessment a

necessity.

Assessing live the approach we propose is impossible; this

is a well-known issue of the community. Even if we plugged

NOSEED in a real advertisement server, we would have ab-

solutely no way to assess its performance in comparison with

an other algorithm. Some workarounds have been proposed
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(see e.g., [22]10)), but the issue is clearly not settled today.

So, we set up a set of experiments to study its performance,

and study how different tunings of the parameters, and how

different display policies affect the performance of the algo-

rithm. We report on these experiments in the next sections.

6.1 The generative model

To fit the real-world problem, our approach was tested on a

toy-model designed with experts from the research division

of Orange Labs. Orange Labs is an important commercial

web actor with tens of millions of page views per day over

multiple web sites. We took care that each advertising cam-

paign has its own characteristics that more or less appeal to

the different visitor profiles.

The model assumes that each advertising campaign Adk

has a base click probability pk that is sampled from a known

distribution (e.g., uniform in an interval, or normally dis-

tributed with a certain mean and variance). As clicking on

an advertisement is in general a rare event, the base click

probabilities are typically low (around 10−4). The click prob-

ability of a visitor from a particular user profile is then set

to pi,k = pkγ
d−1 where γ > 1 is a predefined multiplica-

tive coefficient, and the random variable d is sampled from

the discrete probability distribution with parameter n that

has the following probability mass function Pr[d = x] =

2n−x/(2n − 1), 1 � x � n. When n is small, all advertising

campaigns will have similar click probabilities that are close

to the base click probability; as n increases, some advertising

campaigns will have significantly higher click probabilities

for some but not all of the user profiles. Note that, the num-

ber of such assignments will be exponentially low; if γ is

taken as fixed, then there will be twice as many advertising

campaigns with click probability p compared to those with

click probability γp. This allows us to effectively model situ-

ations in which a small number of advertising campaigns end

up being popular in certain user profiles.

In the experiments we used two values for the γ parameter,

2 and 4; experts recommended the use of the latter value, but

as we will see shortly, having a higher value for γ may be

advantageous for the greedy policy. The value of n is varied

between 2 and 6.

6.2 The experiments

Similar to the way that we introduce the proposed method in

the previous sections, in the experiments we will also pro-

ceed from simpler settings to more complex ones. We opted

to focus on core measures and therefore omit some of the ex-

tensions that have been discussed in the text.

We begin with the static setting with full information, and

uncertainty (Section 2.1.2). In this setting, we consider a fixed

time horizon of one day which is assumed to be equivalent

to T = 4 × 106 page visits. The distribution of user profiles

is uniform and the budget and lifetime of advertising cam-

paigns are also sampled uniformly from fixed intervals. In or-

der to determine the starting times of advertising campaigns,

we partitioned the time horizon into M equally spaced inter-

vals (in our case 80) and set the starting time of each adver-

tisement campaign to the starting time of an interval chosen

randomly, such that the ending times do not exceed the fixed

time horizon. The base click probability is set to 10−4. We

solved the optimization problem every 104 steps.

First, we consider a setting in which there is a single user

profile (N = 1), and there are K = 40 advertising campaigns

with an average Lk =
1
10T , i.e., 1 tenth of the time horizon.

All advertising campaigns have the same budget Bk = B.

Figure 8 shows the relative performance of HLP policy with

respect to the HEV policy for different values of the click

probability generation parameter n and budgets. We can make

two observations: all other parameters being fixed, HLP is

more effective with increasing budgets, and the performance

gain depends mainly on the value of γ. For γ = 4, which is

Fig. 8 The relative performance of the HLP policy with respect to the HEV
policy for different values of the click probability generation parameter n and
budget under the static setting with one user profile and 40 advertising cam-
paigns. The value of γ is either 2 (a) or 4 (b) and the x-axis, i.e., budget B, is
in logarithmic scale

10) Also, Nicol O, Mary J, Preux P. ICML exploration & exploitation challenge: Keep it simple!, 2011, submitted.
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Fig. 9 The effect of the number of (a) user profiles N and (b) advertising
campaigns K when other parameters are kept constant and n and γ are set to
2 and 4, respectively

considered to be a realistic value by experts, and reasonable

budgets, the greedy policy would perform well. A similar

situation also arises when the number of advertising cam-

paigns (K) is low, whereas when the number of user pro-

files increases, non greedy policies taking longer terms con-

sequences are better (Fig. 9).

Then, in order to isolate and figure out the effect of the

overlapping of advertising campaigns on the performance of

the algorithms, we conducted another set of experiments in

which all advertising campaigns have high click probabili-

ties, and their budget vary depending on their lifetimes. We

set:

• n to 1 and sampled the base click probability pk from a

truncated Gaussian distribution with mean 1 and stan-

dard deviation 0.02,

• the lifetimes of advertising campaigns Lk are sampled

uniformly from 0.5% to 5% of the time horizon,

• the budget Bk of each advertising campaign is set to λ

times its lifetime,

• λ is sampled uniformly from the interval [a, b],

• a and b are the parameters of the experiment.

As in the previous case, the time horizon is assumed to be

T = 4 × 106 page visits. Figure 10 shows the relative perfor-

mances of HEV, SEV, HLP approaches, as well as the ran-

dom policy for K = 100 advertising campaigns and different

values of a and b. We can observe that when the budget to

lifetime ratios ( Bk

Lk
) of all campaigns are either low, or high,

the difference between the different approaches diminishes.

This is due to the fact that in both cases, there is no partic-

ular need for taking into account long term consequences:

when click probabilities are close to 1, the budget constraints

can be satisfied easily when ratios are small (in short, the ex-

pected clicks will be grabbed whatever the policy is: no need

to be smart), and when they are high choosing any running

campaign is likely to end up with a click (in short, whatever

the display policy is, however smart it is, budgets can not

be fulfilled). However, when the advertising campaigns have

diverse budget to lifetime ratios, the interactions between

advertising campaigns do matter, and can be exploited by

the planning-based approach, especially for low ratios (Fig.

10(a)). In this setting, similar to the toy example presented

in Section 3.1.2, the performance of the greedy policy turns

out to be inferior to that of random policy which chooses at

each time step one of the running advertising campaigns with

uniform probability (Fig.10(c)); hence, the stochastic version

of the greedy policy, SEV, performs better than HEV (Fig.

10(b)).

Next, we tried longer static settings of over one week

period with full, or partial information in which the adver-

tising campaign lifetimes and their budget are more realistic

(lifetimes ranging 2 – 5 days, budgets ranging from 500 to

4 000 clicks). The campaigns are generated on a daily basis at

the beginning of a simulation, i.e., a set of seven to nine new

advertisement are introduced every four million time steps.

We tested different values for the click probability generation

parameters. There were N = 8 user profiles with equal visit

probabilities (vi = 1/8). As presented in Fig. 11, in this set-

ting although HLP policy performs better than the greedy pol-

icy, the performance gain remains limited. While the greedy

policy quickly exploits and consumes new advertisements

as they arrive, HLP tends to keep a consistent and uniform

click rate at the beginning, and progressively becomes more

greedy towards the end of the period (Fig. 12). Figure 13

shows the effect of the planning horizon H: H tunes whether

we focus on the campaigns running in the near future (small

value of H), or also take into account campaigns that will run

in a more remote future (larger value of H). For this exper-

iment, we increased the time horizon from one week to two

weeks, and the planning horizon is varied from one day up to

the entire time horizon. Note that, the intensity of the interac-

tions between advertising campaigns, in terms of overlapping

intervals, and their propagation through time are the main fac-

tors that determine the influence of the upcoming campaigns
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Fig. 10 The relative performances of different approaches for different budget ratios. Each curve presents the case in which the budget of each
advertising campaign is set to λ times its lifetime such that λ is sampled uniformly from the interval [a, b], where a is the value that corresponds
to the curve and b is the value at the x-axis. (a) HLP vs. HEV, (b) HLP vs. SEV, and (c) HEV vs. random policy with 100 advertising campaigns;
HLP vs. HEV with (d) 200 and (e) 50 advertising campaigns

over the display allocations for the currently running cam-

paigns; in this and other experiments we observed that being

very far-sighted may not be necessary.

As discussed in Section 3.3.2, when we move to the more

realistic setting of partial information, the visits and click

probabilities are not known in advance but instead are esti-

mated online. In this setting, without sufficient exploration

there is a risk of getting stuck in a local optima; we define

local optima as a situation in which the values of some of the

options are underestimated and these estimates cannot be im-

proved because the corresponding options are not considered

in the search process due to their seemingly low values.

To deal with the exploration-exploitation trade-off, we im-

plemented two approaches: ε-greedy policy, and a UCB

based approach. We studied their behavior under various set-

tings in which:

• to increase the variance of the click probabilities, in-

stead of using a fixed value, the base click probabili-

ties pk of the advertising campaigns are sampled from

a Gaussian distribution with mean 0.001 and standard

deviation 0.0002,
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Fig. 11 The performance of the random (dark gray and lowest) and the
HLP (light gray and highest) policies with respect to the HES policy un-
der the seven days static setting for different budget (500 to 4 000), lifetime
(2 — 5 days) and generation parameter n values. The three sets of bars in
each group corresponds to the case where n is taken as to 2, 4, and 6 in that
order

Fig. 12 The moving average of click rate for different policies under the
seven day static setting; the lifetime of advertising campaigns is five days
and their budgets are either 2 000 (top) or 4 000 (bottom)

• the time horizon is set to T = 4 × 106 page visits,

• there are K = 100 advertising campaigns,

• their lifetimes Lk falls in the range 0.5% and 5% of the

time horizon,

• budget to lifetime ratios Bk

Lk
falls in the interval [0.1, 0.5],

• the multiplicative coefficient γ is set to 2.

We employed simple maximum likelihood estimates to

estimate click probabilities. Figure 14 shows the results

Fig. 13 The effect of horizon H (1, 2, 4, 7 and 14 days) in the 14 days static
setting with full information; using less information than available hinders
the performance

obtained using both approaches with HEV and HLP policies

as a function of ε and the UCB tuning coefficientC. Each sub-

figure depicts the relative performances of these policies un-

der partial information settings compared to the performance

of the HLP policy assuming that the true click probabilities

are known (i.e., full information case) for a certain value of

click probability generation parameter n, ranging from 1 to

6. The figures highlight that although the performance of ε-

greedy varies as a function of ε, for a wide range of val-

ues, it performs better than the UCB approach. The perfor-

mance of the UCB approach is observed to be less sensitive

to its tuning coefficient, especially with the HLP policy. It

may still be possible that the UCB approach performs better

than the ε-greedy approach for a particular value of the tun-

ing coefficient (or a small interval), but fine-tuning the coef-

ficient seems to be more challenging. Furthermore, although

ε-greedy has a generally consistent pattern of performance

across the full range of n for both HEV and HLP policies, in

the UCB approach the performance of the HEV policy deteri-

orates relative to the HLP policy as n increases, that is, under

conditions where the advertising campaigns end up having

a wider range of non-homogeneous click probabilities. These

results indicate that policy-modificationmay be a more viable

option for balancing the exploitation of the current estimates

and exploration.

Finally, we conducted experiments in the dynamic set-

ting with partial information where the probabilities are not

known in advance but estimated online. We employed an

ε-greedy exploration mechanism with different values of ε

and maximum a posteriori estimation with Beta priors. We

used the same set of parameters as in two weeks static set-

ting with full information, except that rather than generating

all advertising campaigns at the beginning of the simula-

tion, they are generated on a daily basis at the beginning of

each day, i.e., a set of seven to nine new advertisement are
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Fig. 14 The performances of HEV and HLP policies with ε-greedy (a) and UCB (b) selection in partial information case relative to the
performance of the HLP policy with full information for different values of ε and UCB tuning coefficient; the click probability generation
parameter n varies from 1 (top) to 6 (bottom)

introduced every 4 million time steps; the planning is done

over all known advertising campaigns. The results presented

in Fig. 15 show that HLP can perform better than HEV; how-

ever for both policies, the chosen set of hyper-parameters in-

fluences the outcome.

Fig. 15 The performance of HEV and HLP algorithms in the dynamic set-
ting with partial information using ε-greedy exploration. The numbers in
parentheses denote the values of the hyper-parameters of the Beta prior (α
and β parameters are set to be equal to each other) and ε

7 Conclusion and future work

In this paper, we considered the advertisement selection prob-

lem for display on web pages. Aiming at considering the

problem in the most realistic setting, and providing effective

and efficient algorithms to perform this selection on a produc-

tion system, we have formalized the problem by providing a

series of increasing complexity settings. This let us discuss

various algorithmic approaches, and clearly identify the is-

sues. While defining this set of problems, we provided a way

to effectively tackle this problem, and provided an experi-

mental study of some of their key features. The experimental

study is based on a realistic model, carefully designed with a

major commercial Internet portal.

We have shown that optimizing advertisement display han-

dling finite budgets and finite lifetimes in a dynamic and non

stationary setting, is feasible within realistic computational

time constraints. We have also given some insights in what

can be gained by handling this constraint, depending on the

properties of the advertisements to display. We have also ex-

hibited that lifetime of the advertisements impact the overall

performance, and so should be taken into account into the

pricing policy. Moreover our work may be seen as a part of

a decision aid tool. For instance, it can help to price the ad-

vertisements in the case in which a fraction of the advertising

campaigns are in the “cost per display” model, while the rest

is in the cost per click model. This is rather easy because the

LP solution provides an estimation of the profit for each visi-

tor profile.

Our work shows that depending on the parameters and

characteristics of the existing or prospective advertising cam-
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paigns, a simple greedy approach may perform well or one

can benefit from using a more advanced solution, such as

NOSEED, that takes into consideration the long term gains.

Figure 8 illustrates how these parameters interact. To sum-

marize, we may say that if there are few overlapping adver-

tisements, or many advertisements with long lifetimes and

good click rates, then we should be greedy. Between these

two extreme solutions, one should consider the constraints

associated to each advertising campaign.

This work calls for many further developments. A possi-

bility is to solve the problem from the perspective of the ad-

vertiser, i.e., help the advertiser to set the value of a click, and

adjust it optimally with respect to his/her expected number of

visitors. It would be equivalent to a local sensitivity analysis

of the LP problem. A more difficult issue is that of handling

multiple advertisement displays on the same page. It may be

possible to handle them by estimating the correlation between

the advertisements, and trying to update multiple click prob-

abilities at the same time. Some recent developments in the

bandit setting [23] are interesting in this regard.

We are willing to draw some theoretical results on how

far from the optimal strategy we are. Dealing with finite re-

sources, under finite time constraints, in a dynamic setting

makes that kind of study very difficult. An other work orig-

inates from the analysis of some real web server logs. We

have already been very slightly using such source of infor-

mation, but much more has to be done. We also think that it

is important to go towards learning on-line the profiles of the

visitors depending on their click behavior instead of having

pre-existing ones.
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Appendixes

Notations

Indices

t Current time

i Index of a user profile

k Index of an advertising campaign

j Index of a time interval

User profile

N # user profiles (Sec. 2)

Ui User profile i (Sec. 2)

vi Probability that a certain visitor belongs to Ui (Sec. 2)

Advertising campaign

C The set of known (running) advertising campaigns at a given time (Sec. 3.1.2)

K # of advertising campaigns (Sec. 3.1)

Adk Advertising campaign k (Sec. 2)

S k Starting time of Adk (Sec. @2)

Lk Lifetime of Adk (Sec. 2)

Bk Budget of Adk (Sec. 2)

cpk Click profit of Adk (Sec. 2)

rbk � Bk: remaining budget of Adk (Sec. 2)

Ek Ending time of Adk (Ek = S k + Lk, Sec. 3.1.3)

pi,k Probability that a visitor ∈ Ui clicks on an advertisement ∈ Adk (Sec. 2)



18 Front. Comput. Sci.

Time

T Time horizon of the problem (Sec. 2.1.1.1)

H Time horizon of the resolution (planning, Sec. 2.2.1)

M # of time intervals (Sec. 3.1.3)

I j Time interval j (Sec. 3.1.3)

AI j The set of running advertising campaigns in I j (Sec. 3.1.3)

IAk The set of time interval is which Adk is running (Sec. 3.1.3)

visiti # of visit ∈ Ui for time � t (Sec. 3.3.1)

clicki,k # of times a user ∈ Ui clicked on Adk, for time � t (Sec. 3.3.1)

displayi,k # of times an Adk has been displayed to a visitor ∈ Ui for time � t (Sec. 3.3.1)

Display allocation (Sec. 3.1.3)

ai,k, j # of advertisement displays allocated to Adk in interval I j for user profile Ui

âi,k, j = ai,k, j/
∑

Adk∈AI j
ai,k, j is the ratio of allocation of displays for Ui and Adk during I j to the total allocations for that user

profile in the same interval (forming a categorical distribution)

Exploration policy parameters (Sec. 3.3.2)

ε Parameter of the ε greedy-policy

C Parameter of the UCB policy

Miscellaneous

s A state of the MDP (Sec. 3.1.1)

ϑi Prior for the maximum likelihood estimation of vi

λ (λk, λi, j ) Parameters of the Poisson distribution (its interpretation is a risk ratio, Sec. 3.2)

Λk Risk ratio threshold (Sec. 3.2)

αi,k , βi,k Parameters of the Beta distribution (Sec. 3.3.1)

pk Base click probability for advertisements ∈ Adk (Sec. 6.1)

γ, n, [a, b] Parameters of the generative model (Sec. 6.1 and 6.2)

The NOSEED algorithm

Input: N: number of user profiles; T : time horizon; H: planning horizon; C: set of known advertising campaigns; hyper-parameters of
click and visit probability estimators, (e.g. αi,k , βi,k for the Beta distributions).

Additional variables: Clast: set of known advertising campaigns at last planning; p̂i,k: probability distribution for the estimate of pi,k (a
Beta distribution).

1: procedure CFNC

2: for all Adk ∈ C and Adk � Clast /* New campaigns */ do

3: for i = 1 to N do

4: p̂i,k = Beta(αi,k, βi,k) /* Initial click probability estimates */

5: clicki,k = displayi,k = 0

6: end for

7: end for

8: end procedure

9:

10: /*C: set of advertising campaigns; rb: remaining budgets of advertising campaigns in C, rbk denotes the remaining budget of

Adk */

11: function FA (t,C, rb)

12: boundaries = {min(t, S k)} ∪ {Ek},∀Adk ∈ C such that S k � t + H.

13: Let t0, . . . , tM is the sorted list of the elements of boundaries and define intervals I j = [t j−1, t j], 1 � j � M.

14: for j = 1 to M do
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15: l j = t j − t j−1 /*length of the interval */

16: AI j = {Adk|S k < t j � Ek} /*the set of campaigns in each interval */

17: end for

18: for all Adk ∈ C do

19: IAk = {I j|Adk ∈ AI j} /*the set of intervals that cover Adk */

20: end for

21: A = {I j|AI j � ∅} /*non-empty intervals */

22: Let ai,k, j denote the number of displays allocated to the campaign Adk in interval I j for the user profile Ui.

23: Solve the linear program maximize
∑

I j∈A
∑

Adk∈AI j
cpk pi,kai,k, j with the set of constraints

24: (a)
∑

Adk∈AI j
ai,k, j � vil j,∀ Ui, I j ∈ A

25: (b)
∑

Ui

∑
I j∈IAk

pi,kai,k, j � rbk,∀ Adk ∈ C
26: (c)

∑
Ui

∑
Adk∈AI j

ai,k, j � l j,∀I j ∈ A
27: Let intervals be the list of intervals I j and allocations be the list of display allocations ai,k, j .

28: return [intervals, allocations]

29: end function

30:

31: function DP (t)

32: Clast = C /*Save the current set of advertising campaigns */

33: if a generative model is available then

34: Generate a set of hypothetical campaigns C′. /* up to time t + H */

35: Ccurrent = C ∪ C′
36: else

37: Ccurrent = C
38: end if

39: Update click probability estimates, i.e., p̂i,k = Beta(αi,k + clicki,k , βi,k + displayi,k)

40: if using estimation-modification approach

41: Modify p̂i,k, e.g. using Gittins or UCB indices /* see Section 3.3.2 */

42: end if

43: for all Adk ∈ Ccurrent do

44: if risk factor Λk < 1 them /*Modify budget limits for dealing with uncertainty, see Section 3.2 */

45: rb′
k
= argminλ Pr(Po(λ) > rbk − 1) � Λk

46: else

47: rb′
k
= rbk

48: end if

49: end for

50: return FA (t,Ccurrent , rb
′)

51: end function

52:

53: /* Ui is the profile of a visitor. intervals and allocations are the list of intervals and display allocations in each interval as deter-

mined in the planning phase, i.e. DoPlanning function, respectively; I j denotes the jth interval, and ai, j,k denotes the number of

advertisement displays allocated to Adk ∈ I j for Ui. */

54: function CC t,Ui, intervals, allocations

55: Determine I j = [t j−1, t j] ∈ intervals such that t j−1 � t < t j /* current interval */

56: Let AI j ⊆ C be the set of running campaigns that span I j.

57: if AI j = ∅ then

58: return ∅ /* There is no running advertising campaign */

59: end if

60: āi, j =
∑

Adk∈AI j
ai,k, j /* Total allocations in this interval */
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61: if āi, j > 0 then

62: for all Adk ∈ AI j do

63: âi,k, j = ai,k, j/āi, j /* Calculate display probabilities */

64: end for

65: Choose an advertising campaign Adk based on âi,k, j /* e.g. using HLP or SLP with exploration, if any */

66: ai,k, j = ai,k, j − 1 /* Update the allocation for Adk */

67: else

68: Choose a campaign Adk from AI j (e.g. randomly). /* No allocations to display for this user profile */

69: end if

70: return k

71: end function

72:

73: /* The main loop */

74: Clast = ∅

75: for i = 1 to N do /* Initialize visit probability estimates */

76: visiti = 1, vi = 1/N /* ϑi = 1 */

77: end for

78: t = 0 /* Set time to 0 */

79: while there is a request do

80: Let Ui be the user profile of the current visitor.

81: CFNC

82: if t = 0 or planning is required /* e.g. when an advertising campaign expires or periodically */ then

83: [intervals, allocations] =DP (t)

84: end if

85: k =CC (t,Ui, intervals, allocations)

86: if Adk � ∅ then

87: displayi,k = displayi,k + 1

88: if visitor clicks on Adk then

89: clicki,k = clicki,k + 1 /* Update the click count of the user profile */

90: rbk = rbk − 1 /*Update the remaining budget of the advertising campaign */

91: end if

92: end if

93: t = t + 1

94: /* Update the visit probability estimates */

95: visiti = visiti + 1

96: for i = 1 to N do

97: vi = visiti/(t + N)

98: end for

99: end while
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Abstract
1 The problem of clustering is considered for the case where every point is a time series.
The time series are either given in batch (offline setting), or they are allowed to grow with
time and new time series can be added along the way (online setting). We propose a natural
notion of consistency for this problem, and show that there are simple, computationally
efficient algorithms that are asymptotically consistent under extremely weak assumptions
on the distributions that generate the data. The notion of consistency is as follows. A
clustering algorithm is called consistent if it places two time series into the same cluster if
and only if the distribution that generates them is the same. In the considered framework
the time series are allowed to be highly dependent, and the dependence can have arbitrary
form. For the case of a known number of clusters, the only assumption we make is that the
(marginal) distribution of each time series is stationary ergodic. No parametric, memory
or mixing assumptions are made. For the case of unknown number of clusters, stronger
assumptions are provably necessary, but it is still possible to devise non-parametric algo-
rithms that are consistent under very general conditions. The theoretical findings of this
work are illustrated with experiments on both synthetic and real data.

Keywords: clustering, time series, ergodicity, unsupervised learning

1. Introduction

Clustering is a widely studied problem in machine learning, and is key to many applications
in almost all fields of science. The goal is to partition a given dataset into a set of non-
overlapping clusters in some natural way, thus hopefully revealing an underlying structure
in the data. In particular, this problem for time series data is motivated by many research
problems from a variety of disciplines, such as marketing and finance, biological and medical
research, video/audio analysis, etc., with the common feature that the data are abundant
while little is known about the nature of the processes that generate them.

The intuitively appealing problem of clustering is notoriously difficult to formalize. An
intrinsic part of the problem is a similarity measure: the points in each cluster are supposed
to be close to each other in some sense. While it is clear that the problem of finding the
appropriate similarity measure is inseparable from the problem of achieving the clustering

1. This is an extended version of two conference papers: Ryabko (2010b) and Khaleghi et al. (2012).
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objectives, currently there are no formulations of the clustering problem that would encom-
pass this aspect. Instead, the available formulations simply assume the similarity measure
to be given: it is either some fixed metric, or just a matrix of similarities between the
points. Even with this simplification, it is still unclear how to define good clustering. Thus,
Kleinberg (2002) presents a set of fairly natural properties that a good clustering function
should have, and proceeds to demonstrate that there is no clustering function with these
properties. A common approach is therefore to fix not only the similarity measure, but also
some specific objective function — typically, along with the number of clusters — and to
construct algorithms to maximize this objective. However, even this approach has some
fundamental difficulties, albeit of a different, this time computational, nature: already in
the case where the number of clusters is known, and the distance between the points is set
to be the Euclidean distance, optimizing some fairly natural objectives (such as k-means)
turns out to be NP hard (Mahajan et al., 2009).

In this paper we consider a subset of the clustering problem, namely, clustering time
series data. That is, we consider the case where each data point is a sample drawn from some
(unknown) time-series distribution. At first glance this does not appear to be a simplification
(indeed, any data point can be considered as a time series of length 1). However, note that
time series present a different dimension of asymptotic: with respect to their length, rather
than with respect to the total number of points to be clustered. “Learning” along this
dimension turns out to be easy to define and allows for the construction of consistent
algorithms under most general assumptions. Specifically, the assumption that each time
series is generated by a stationary ergodic distribution is already sufficient to estimate any
finite-dimensional characteristic of the distribution with arbitrary precision, provided the
series is long enough. Thus, in contrast to the general clustering setup, in the time-series
case it is possible to “learn” the distribution that generates each given data point. No
assumptions on the dependence between time series are necessary for this. The assumption
that a given time series is stationary ergodic is one of the most general assumptions used in
statistics; in particular, it allows for arbitrary long-range serial dependence, and subsumes
most of the non-parametric as well as modelling assumptions used in the literature on
clustering time series, such as i.i.d., (Hidden) Markov, or mixing time series.

This allows us to define the following clustering objective: group a pair of time series
into the same cluster if and only if the distribution that generates them is the same.

Note that this intuitive objective is impossible to achieve outside the time-series frame-
work. Even in the simplest case of a known number of Gaussian distributions, there is
always a non-trivial likelihood for each point to be generated by any of the distributions.
Thus, the best one can do is to estimate the parameters of the distributions, rather than
to actually cluster the data points. The situation becomes hopeless in the non-parametric
setting. In contrast, the fully nonparametric case is tractable in the time-series case, both
in offline and online scenarios, as explained in the next section.

1.1 Problem setup

We consider two variants of the clustering problem in this setting: offline (batch) and online,
defined as follows.
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In the offline (batch) setting a finite number N of sequences x1 = (X1
1 , . . . , X

1
n1

),
. . . ,xN = (XN

1 , . . . , X
N
nN

) is given. Each sequence is generated by one of k different un-
known time-series distributions. The target clustering is the partitioning of x1, . . . ,xN into
k clusters, putting together those and only those sequences that were generated by the same
time-series distribution. We call a batch clustering algorithm asymptotically consistent if,
with probability 1, it stabilizes on the target clustering in the limit as the lengths n1, . . . , nN
of each of the N samples tend to infinity. The number k of clusters may be either known
or unknown. Note that the asymptotic is not with respect to the number of sequences, but
with respect to the individual sequence lengths.

In the online setting we have a growing body of sequences of data. Both the number
of sequences as well as the sequences themselves grow with time. The manner of this
evolution can be arbitrary; we only require that the length of each individual sequence
tends to infinity. Similarly to the batch setting, the joint distribution generating the data is
unknown. At time-step 1 initial segments of some of the first sequences are available to the
learner. At each subsequent time-step, new data are revealed, either as an extension of a
previously observed sequence, or as a new sequence. Thus, at each time-step t a total of N(t)
sequences x1, . . . ,xN(t) are to be clustered, where each sequence xi is of length ni(t) ∈ N
for i = 1..N(t). The total number of observed sequences N(t) as well as the individual
sequence lengths ni(t) grow with time. In the online setting, a clustering algorithm is called
asymptotically consistent, if almost surely for each fixed batch of sequences x1, . . . ,xN ,
the clustering restricted to this sequences coincides with the target clustering from some
time on.

At first glance it may seem that one can use the offline algorithm in the online setting
by simply applying it to the entire data observed at every time-step. However, this naive
approach does not result in a consistent algorithm. The main challenge in the online setting
can be identified with what we regard as “bad” sequences: sequences for which sufficient
information has not yet been collected, and thus cannot be distinguished based on the pro-
cess distributions that generate them. In this setting, using a batch algorithm at every time
step results in not only mis-clustering such “bad” sequences, but also in clustering incor-
rectly those for which sufficient data are already available. That is, such “bad” sequences
can render the entire batch clustering useless, leading the algorithm to incorrectly cluster
even the “good” sequences. Since new sequences may arrive in an uncontrollable (even
data-dependent, adversarial) fashion, any batch algorithm will fail in this scenario.

1.2 Results

The first result of this work is a formal definition of the problem of time series clustering
which is rather intuitive and at the same time allows for the construction of efficient algo-
rithms that are provably consistent under the most general assumptions. The second result
is the construction of such algorithms.

More specifically, we propose clustering algorithms that are shown to be strongly asymp-
totically consistent provided that the number k of clusters is known, under the only assump-
tion that the distribution that generates each sequence is stationary ergodic. No restrictions
are placed on the dependence between the sequences: this dependence may be arbitrary

3



(and can be thought of as adversarial). This consistency result is established in each of the
two settings (offline and online) introduced above.

As follows from the theoretical impossibility results of (Ryabko, 2010c) that are discussed
further in Section 1.4, under the only assumption that the distributions generating the
sequences are stationary ergodic, it is impossible to find the correct number of clusters
k, that is, the total number of different time series distributions that generate the data.
Moreover, non-asymptotic results (finite-time bounds on the probability of error) are also
provably impossible to obtain in this setting, since this is the case already for the problem
of estimating the probability of any finite-time event (Shields, 1996).

Finding the number of clusters k, as well as obtaining non-asymptotic performance
guarantees, is possible under additional conditions on the distributions. In particular, we
show that if k is unknown, it is possible to construct consistent algorithms provided that
the distributions are mixing and bounds on the mixing rates are available.

However, the main focus of this paper remains on the general framework where no
additional assumptions on the unknown process distributions are made (other than that
they are stationary ergodic). As such, the main theoretical and experimental results concern
the case of known k.

Finally, we show that our methods can be implemented efficiently: they are at most
quadratic in each of their arguments, and are linear (up to log terms) in some formulations.
To test the empirical performance of our algorithms we evaluated them on both synthetic
and real data. To reflect the generality of the suggested framework in the experimental
setup, we had our synthetic data generated by stationary ergodic process distributions that
do not belong to any “simpler” class of distributions, and in particular cannot be modelled as
hidden Markov processes with countable sets of states. In the batch setting, the error rates
of both methods go to zero with sequence length. In the online setting with new samples
arriving at every time step, the error rate of the offline algorithm remains consistently high,
whereas that of the online algorithm converges to zero. This demonstrates that unlike
the offline algorithm, the online algorithm is robust to “bad” sequences. To demonstrate
the applicability of our work to real-world scenarios, we chose the problem of clustering
motion-capture sequences of human locomotion. This application area has also been studied
by (Li and Prakash, 2011) and (Jebara et al., 2007) that (to the best of our knowledge)
constitute the state-of-the-art performance on the datasets they consider, and against which
we compare the performance of our methods. We obtained consistently better performance
on the datasets involving motion that can be considered ergodic (walking, running), and
competitive performance on those involving non-ergodic motions (single jumps).

1.3 Methodology and algorithms

A crucial point of any clustering method is the similarity measure. Since in our formulation
the objective is to cluster the time series based on the distributions that generate them, the
similarity measure must reflect the difference between the underlying distributions. Since
we aim to make as little assumptions as possible on the distributions that generate the data,
and since we make no assumptions on the nature of differences between the distributions, the
distance should take into account all possible differences between time series distributions.
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Moreover, we want to be able to construct estimates of this distance that are consistent for
arbitrary stationary ergodic distributions.

It turns out that a suitable distance for this purpose is the so-called distributional dis-
tance. The distributional distance d(ρ1, ρ2) between a pair of process distributions ρ1, ρ2
is defined (Gray, 1988) as

∑
j∈Nwj |ρ1(Bj)− ρ2(Bj)| where, wi are positive summable real

weights, e.g. wj = 1/j(j + 1), and Bk range over a countable field that generates the σ-
algebra of the underlying probability space. For example, consider finite-alphabet processes
with the binary alphabet X = {0, 1}. In this case Bi, i ∈ N would range over the set
X ∗ = ∪m∈NXm; that is, over all tuples 0, 1, 00, 01, 10, 11, 000, 001, . . . ; therefore, the dis-
tributional distance in this case is the weighted sum of the differences of the probability
values (calculated with respect to ρ1 and ρ2) of all possible tuples. In this case, the dis-
tributional distance metrizes the topology of weak convergence. In this work we consider
real-valued processes so that the sets Bk range over a suitable sequence of intervals, all pairs
of such intervals, triples, and so on (see the formal definitions in Section 2). Although this
distance involves infinite summations, we show that its empirical approximations can be
easily calculated. Asymptotically consistent estimates of this distance can be obtained by
replacing unknown probabilities with the corresponding frequencies (Ryabko and Ryabko,
2010); these estimators have proved useful in various statistical problems concerning ergodic
processes (Ryabko and Ryabko, 2010; Ryabko, 2012; Khaleghi and Ryabko, 2012).

Armed with an estimator of the distributional distance, it is relatively easy to construct
a consistent clustering algorithm for the batch setting. In particular, we show that the
following algorithm is asymptotically consistent. First a set of k cluster centres are identi-
fied using k farthest point initialization (using an empirical estimate of the distributional
distance). This means that the first sequence is assigned as the first cluster centre. Iterating
over 2..k, at every iteration a sequence is sought which has the largest minimum distance
from the already chosen cluster centres. Next, the remaining sequences are assigned to the
closest clusters.

The online algorithm is based on a weighted combination of several clusterings, each
obtained by running the offline procedure on different portions of data. The partitions are
combined with weights that depend on the batch size and on an appropriate performance
measure for each individual partition. The performance measure of each clustering is the
minimum inter-cluster distance.

1.4 Related Work

Some probabilistic formulations of the time series clustering problem can be considered
related to ours. Perhaps the closest one is mixture models (Bach and Jordan, 2004; Biernacki
et al., 2000; Kumar et al., 2002; Smyth, 1997; Zhong and Ghosh, 2003): it is assumed that
the data are generated by a mixture of k different distributions that have a particular known
form (such as Gaussian, Hidden Markov models, or graphical models). Thus, each of the
N samples is independently generated according to one of these k distributions (with some
fixed probability). Since the model of the data is specified quite well, one can use likelihood-
based distances (and then, for example, the k-means algorithm), or Bayesian inference, to
cluster the data. Another typical objective is to estimate the parameters of the distributions
in the mixture (e.g., Gaussians), rather than actually clustering the data points. Clearly,
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the main difference between this setting and ours is in that we do not assume any known
model of the data; not even between-sample independence is assumed.

Taking a different perspective, the problem of clustering in our formulations generalizes
two classical problems of mathematical statistics, namely, homogeneity testing (or the two-
sample problem) and process classification (or the three-sample problem). In the two-sample
problem, given two sequences x1 = (x11, . . . , x

1
n1

) and x2 = (x21, . . . , x
2
n2

) it is required to
test whether they are generated by the same or by different process distributions. This
corresponds to the special case of clustering only N = 2 data points where the number k
of clusters unknown: it can be either 1 or 2. In the three-sample problem, three sequences
x1,x2,x3 are given, and it is known that x1 and x2 are generated by different distributions,
while x3 is generated either by the same distribution as x1 or by the same distribution as
x2. It is required to find which one is the case. This can be seen as clustering N = 3
data points, with the number of clusters known: k = 2. The classical approach is of
course to consider Gaussian i.i.d. samples, but general non-parametric solutions exist not
only for i.i.d. data (Lehmann, 1986), but also for Markov chains (Gutman, 1989), as well
as under certain mixing-rates conditions. Observe that the two-sample problem is more
difficult to solve than the three-sample problem, as the number k of clusters is unknown in
the former while it is given in the latter. Indeed, as shown by (Ryabko, 2010c) in general
for stationary ergodic (binary-valued) processes there is no solution for the two-sample
problem, even in the weakest asymptotic sense. A solution to the three-sample problem,
for (real-valued) stationary ergodic processes was given in (Ryabko and Ryabko, 2010); it
is based on estimating the distributional distance.

More generally, the area of non-parametric statistical analysis of stationary ergodic
time series to which the main results of this paper belong, is full of both positive and
negative results, some of which are related to the problem of clustering in our formulation.
Among these we can mention change point problems (Carlstein and Lele, 1993; Khaleghi
and Ryabko, 2012, 2014) hypothesis testing (Ryabko, 2012, 2014; Morvai and Weiss, 2005)
and prediction (Ryabko, 1988; Morvai and Weiss, 2012).

1.5 Organization

The remainder of the paper is organized as follows. We start with introducing notation
and definitions in Section 2. In Section 3 we define the considered clustering protocol. Our
main theoretical results are given in Section 4, where we present our methods and prove
their consistency, as well as discuss some extensions (Section 4.4). Section 5 is devoted to
computational considerations. In Section 6 we provide some experimental evaluations on
both synthetic and real data. Finally, in Section 7 we provide some concluding remarks and
open questions.

2. Preliminaries

Let X be a measurable space (the domain); in this work we let X = R but extensions to
more general spaces are straightforward. For a sequence X1, . . . , Xn we use the abbreviation
X1..n. Consider the Borel σ-algebra B on X∞ generated by the cylinders {B × X∞ : B ∈
Bm,l,m, l ∈ N} where, the sets Bm,l,m, l ∈ N are obtained via the partitioning of Xm into
cubes of dimension m and volume 2−ml (starting at the origin). Let also Bm := ∪l∈NBm,l.
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We may choose any other means to generate the Borel σ-algebra B on X , but we need
to fix a specific choice for computational reasons. Process distributions are probability
measures on the space (X∞,B). Similarly, one can define distributions over the space
((X∞)∞,B2) of infinite matrices with the Borel σ-algebra B2 generated by the cylinders
{(X∞)k × (B × X∞)× (X∞)∞ : B ∈ Bm,l, k,m, l ∈ N}. For x = X1..n ∈ X n and B ∈ Bm

let ν(x, B) denote the frequency with which x falls in B, i.e.

ν(x, B) :=
I{n ≥ m}
n−m+ 1

n−m+1∑

i=1

I{Xi..i+m−1 ∈ B} (1)

A process ρ is stationary if for any i, j ∈ 1..n and B ∈ B, we have

ρ(X1..j ∈ B) = ρ(Xi..i+j−1 ∈ B).

A stationary process ρ is called ergodic if for all B ∈ B with probability 1 we have

lim
n→∞

ν(X1..n, B) = ρ(B).

By virtue of the ergodic theorem (e.g., Billingsley, 1961), this definition can be shown to be
equivalent to the standard definition of stationary ergodic processes (every shift-invariant
set has measure 0 or 1; see, e.g., Gray, 1988).

Definition 1 (Distributional Distance) The distributional distance between a pair of
process distributions ρ1, ρ2 is defined as follows (Gray, 1988):

d(ρ1, ρ2) =
∞∑

m,l=1

wmwl
∑

B∈Bm,l
|ρ1(B)− ρ2(B)|,

where we set wj := 1/j(j + 1), but any summable sequence of positive weights may be used.

In words, this involves partitioning the sets Xm, m ∈ N into cubes of decreasing volume
(indexed by l) and then taking a sum over the absolute differences in probabilities of all the
cubes in these partitions. The differences in probabilities are weighted: smaller weights are
given to larger m and finer partitions. We use empirical estimates of this distance defined
as follows.

Remark 2 The distributional distance is more generally defined as

d′(ρ1, ρ2) :=
∑

i∈N
wi|ρ1(Ai)− ρ2(Ai)|

where Ai ranges over a countable field that generates the σ-algebra of the underlying prob-
ability space (Gray, 1988). Definition 1 above is more suitable for implementing and testing
algorithms, while the consistency results of this paper hold for either. Note also that the
choice of sets Bi may result in a different topology on the space of time-series distributions.
The particular choice we made results in the usual topology of weak convergence (Billingsley,
1999)
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Definition 3 (Empirical estimates of d(·, ·)) Define the empirical estimate of the dis-
tributional distance between a sequence x = X1..n ∈ X n, n ∈ N and a process distribution ρ
by

d̂(x, ρ) :=

mn∑

m=1

ln∑

l=1

wmwl
∑

B∈Bm,l
|ν(x, B)− ρ(B)|, (2)

and that between a pair of sequences xi ∈ X ni ni ∈ N, i = 1, 2 by

d̂(x1,x2) :=

mn∑

m=1

ln∑

l=1

wmwl
∑

B∈Bm,l
|ν(x1, B)− ν(x2, B)| (3)

where mn and ln are any sequences that go to infinity with n, and (wj)j∈N are as in Defi-
nition 1.

Remark 4 (constants mn, ln) The sequences of constants mn, ln(n ∈ N) in the definition
of d̂ are intended to introduce some computational flexibility in the estimate: while already
the choice mn, ln ≡ ∞ is computationally feasible, other choices give better computational
complexity without sacrificing the quality of the estimate; see Section 5. For the asymptotic
consistency results this choice is irrelevant. Thus, in the proofs we tacitly assume mn, ln ≡
∞; the extension to the general case is straightforward.

Lemma 5 (d̂ is asymptotically consistent; Ryabko and Ryabko (2010)) For every
pair of sequences x1 ∈ X n1 and x2 ∈ X n2 with joint distribution ρ whose marginals
ρi, i = 1, 2 are stationary ergodic we have

lim
n1,n2→∞

d̂(x1,x2) = d(ρ1, ρ2), ρ− a.s., and (4)

lim
ni→∞

d̂(xi, ρj) = d(ρi, ρj), i, j ∈ 1, 2, ρ− a.s. (5)

The proof of this lemma can be found in (Ryabko and Ryabko, 2010); since it is important
for further development but rather short and simple we reproduce it here.

Proof The idea of the proof is simple: for each set B ∈ B, the frequency with which the
sample xi, i = 1, 2 falls into B converges to the probability ρi(B), i = 1, 2. When the
sample sizes grow, there will be more and more sets B ∈ B whose frequencies have already
converged to the probabilities, so that the cumulative weight of those sets whose frequencies
have not converged yet will tend to 0.

Fix ε > 0. We can find an index J such that

∞∑

m,l=J

wmwl ≤ ε/3.

Moreover, for each m, l ∈ 1..J we can find a finite subset Sm,l of Bm,l such that

ρi(S
m,l) ≥ 1− ε

6Jwmwl
.
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There exists some N (which depends on the realization Xi
1, . . . , X

i
ni , i = 1, 2) such that for

all ni ≥ N, i = 1, 2 we have,

sup
B∈Sm,l

|ν(xi, B)− ρi(B)| ≤ ερi(B)

6Jwmwl
, i = 1, 2. (6)

For all ni ≥ N, i = 1, 2 we have

|d̂(x1,x2)− d(ρ1, ρ2)| =

∣∣∣∣∣∣

∞∑

m,l=1

wmwl
∑

B∈Bm,l

(
|ν(x1, B)− ν(x2, B)| − |ρ1(B)− ρ2(B)|

)
∣∣∣∣∣∣

≤
∞∑

m,l=1

wmwl
∑

B∈Bm,l
|ν(x1, B)− ρ1(B)|+ |ν(x2, B)− ρ2(B)|

≤
J∑

m,l=1

wmwl
∑

B∈Sm,l

(
|ν(x1, B)− ρ1(B)|+ |ν(x2, B)− ρ2(B)|

)
+ 2ε/3

≤
J∑

m,l=1

wmwl
∑

B∈Sm,l

ρ1(B)ε

6Jwmwl
+

ρ2(B)ε

6Jwmwl
+ 2ε/3 ≤ ε,

which proves (4). The statement (5) can be proven analogously.

Remark 6 The triangle inequality holds for the distributional distance d(·, ·) and its em-
pirical estimates d̂(·, ·) so that for all distributions ρi, i = 1..3 and all sequences xi ∈
X ni ni ∈ N, i = 1..3 we have

d(ρ1, ρ2) ≤ d(ρ1, ρ3) + d(ρ2, ρ3),

d̂(x1,x2) ≤ d̂(x1,x3) + d̂(x2,x3),

d̂(x1, ρ1) ≤ d̂(x1, ρ2) + d(ρ1, ρ2).

3. Clustering settings: offline and online

We start with a common general probabilistic setup for both settings (offline and online),
which we use to formulate each of the two settings separately.

Consider the matrix X ∈ (X∞)∞ of random variables

X :=



X1

1 X1
2 X1

3 . . .
X2

1 X2
2 . . . . . .

...
...

. . .
...


 ∈ (X∞)∞ (7)

generated by some probability distribution P on ((X∞)∞,B2). Assume that the marginal
distribution of P on each row of X is one of κ unknown stationary ergodic process distri-
butions ρ1, ρ2, . . . , ρκ. Thus, the matrix X corresponds to infinitely many one-way infinite
sequences, each of which is generated by a stationary ergodic distribution. Aside from this
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assumption, we do not make any further assumptions on the distribution P that gener-
ates X. This means that the rows of X (corresponding to different time-series samples)
are allowed to be dependent, and the dependence can be arbitrary; one can even think of
the dependence between samples as “adversarial.” For notational convenience we assume
that the distributions ρk, k = 1..κ are ordered in the order of appearance of their first rows
(samples) in X.

Among the various ways a set of κ disjoint subsets of the rows of X may be produced,
the most natural partitioning in this formulation is to group together those and only those
rows of X for which the marginal distribution is the same. More precisely, we define the
ground-truth partitioning of X as follows.

Definition 7 (Ground-truth G) Let

G = {G1, . . . ,Gκ}

be a partitioning of N into κ disjoint subsets Gk, k = 1..κ, such that the marginal distribution
of xi, i ∈ N is ρk for some k ∈ 1..κ if and only if i ∈ Gk. Call G the ground-truth clustering.
We also introduce the notation G|N for the restriction of G to the first N sequences:

G|N := {Gk ∩ {1..N} : k = 1..κ}.

Offline Setting. The problem is formulated as follows. We are given a finite set S :=
{x1, . . . ,xN} of N samples, for some fixed N ∈ N. Each sample is generated by one of κ
unknown stationary ergodic process distributions ρ1, . . . , ρκ. More specifically, the set S is
obtained from X as follows. Some (arbitrary) lengths ni ∈ N, i ∈ 1..N are fixed, and xi for
each i = 1..N is defined as xi := Xi

1..ni
.

A clustering function f takes a finite set S := {x1, . . . ,xN} of samples and an optional
parameter κ (the number of target clusters) to produce a partition f(S, κ) := {C1, . . . , Cκ}
of the index-set {1..N}. The goal is to partition {1..N} so as to recover the ground-truth
clustering G|N . For consistency of notation, in the offline setting we identify G with G|N .
We call a clustering algorithm asymptotically consistent if it achieves this goal for long
enough sequences xi, i = 1..N in S:

Definition 8 (Consistency: offline setting) A clustering function f is consistent for a
set of sequences S if f(S, κ) = G. Moreover, denoting n := min{n1, . . . , nN}, f is called
strongly asymptotically consistent in the offline sense if with probability 1 from some n on
it is consistent on the set S: P (∃n′∀n > n′f(S, κ) = G) = 1. It is weakly asymptotically
consistent if limn→∞ P (f(S, κ) = G) = 1.

Note that the notion of consistency above is asymptotic with respect to the minimum sample
length n, and not with respect to the number N of samples.

When considering the offline setting with a known number of clusters κ we assume that
N is such that {1..N} ∩ Gk 6= ∅ for every k = 1..κ (that is, all κ clusters are represented);
otherwise we could just take a smaller κ.
Online Setting. The online problem is formulated as follows. Consider the infinite matrix
X given by (7). At every time-step t ∈ N, a part S(t) of X is observed corresponding to
the first N(t) ∈ N rows of X, each of length ni(t), i ∈ 1..N(t), i.e.

S(t) = {xt1, · · ·xtN(t)} where xti := Xi
1..ni(t)

.
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This setting is depicted in Figure 1. We assume that the number of samples, as well as the
individual sample-lengths grow with time. That is, the length ni(t) of each sequence xi is
non-decreasing and grows to infinity (as a function of time t). The number of sequences
N(t) also grows to infinity. Aside from these assumptions, the functions N(t) and ni(t) are
completely arbitrary.
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Figure 1: Online Protocol: solid rectangles correspond to sequences available at time t,
dashed rectangles correspond to segments arrived at time t+ 1.

An online clustering function is strongly asymptotically consistent if, with probability
1, for each N ∈ N from some time on the first N sequences are clustered correctly (with
respect to the ground-truth given by Definition 7).

Definition 9 (Asymptotic consistency: online setting) A clustering function is strongly
(weakly) asymptotically consistent in the online sense, if for every N ∈ N the cluster-
ing f(S(t), κ)|N is strongly (weakly) asymptotically consistent in the offline sense, where
f(S(t), κ)|N is the clustering f(S(t), κ) restricted to the first N sequences:

f(S(t), κ)|N := {f(S(t), κ) ∩ {1..N}, k = 1..κ}.

Remark 10 Note that even if the eventual number κ of different time series distributions
producing the sequences (that is, the number of clusters in the ground-truth clustering G)
is known, the number of observed distributions at each individual time-step is unknown.
That is, it is possible that at a given time-step t we have

∣∣G|N(t)

∣∣ < κ.

Known and unknown κ. As mentioned in the introduction, in the general framework
(for both the offline and the online problems) described above consistent clustering with
unknown number of clusters is impossible. This follows from the impossibility result of
(Ryabko, 2010c) which states that when we have only two (binary-valued) samples generated
(independently) by two stationary ergodic distributions, it is impossible to decide whether
they have been generated by the same or by different distributions, even in the sense of
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weak asymptotic consistency. (This holds even if the distributions come from a smaller
class: the set of all B-processes.) Therefore, if the number of clusters is unknown, we are
bound to make stronger assumptions. Since our main interest in this paper is to develop
consistent clustering algorithms under the general framework described above, for the most
part of this paper we assume that the correct number κ of clusters is known. However, in
Section 4.3 we also show that under certain mixing conditions on the process distributions
that generate the data it is possible to have consistent algorithms in the case of unknown
κ as well.

4. Clustering algorithms and their consistency

In this section we present our clustering methods for both the offline and the online settings.
The main results, presented in Sections 4.1 (offline) and 4.2 (online), concern the case where
the number of clusters κ is known. In Section 4.3 we show that, given the mixing rates of
the process distributions that generate the data, it is possible to find the correct number of
clusters κ and thus obtain consistent algorithms for the case of unknown κ as well. Finally,
section 4.4 considers some extensions of the proposed settings.

4.1 Offline Setting

Given that we have asymptotically consistent estimates d̂ of the distributional distance
d, it is relatively simple to construct asymptotically consistent clustering algorithms for
the offline setting. This follows from the fact that, since d̂(·, ·) converges to d(·, ·), for
large enough sequence lengths n, the points x1, . . . ,xN have the so-called strict separation
property: the points within each target cluster are closer to each other than to points in any
other cluster (on strict separation in clustering see, for example, Balcan et al., 2008). This
makes many simple algorithms, such as single or average linkage, or the k-means algorithm
with certain initializations, provably consistent.

We present below one specific algorithm that we show to be asymptotically consistent
in the general framework introduced. What makes this simple algorithm interesting is that
it requires only κN distance calculations (that is, much less than is needed to calculate the
distance between each two sequences). In short, Algorithm 1 initializes the clusters using
farthest-point initialization, and then assigns each remaining point to the nearest cluster.
More precisely, the sample x1 is assigned as the first cluster centre. Then a sample is found
that is farthest away from x1 in the empirical distributional distance d̂ and is assigned as
the second cluster centre. For each k = 2..κ the kth cluster centre is sought as the sequence
with the largest minimum distance from the already assigned cluster centres for 1..k − 1.
(This initialization was proposed for use with k-means clustering by Katsavounidis et al.,
1994.) By the last iteration we have κ cluster centres. Next the remaining samples are each
assigned to the closest cluster.

Theorem 11 Algorithm 1 is strongly asymptotically consistent (in the offline sense of Def-
inition 8), provided that the correct number κ of clusters is known, and the marginal distri-
bution of each sequence xi, i = 1..N is stationary ergodic.

Proof To prove the consistency statement we use Lemma 5 to show that if the samples
in S are long enough, the samples that are generated by the same process distribution
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Algorithm 1 Offline clustering method of (Ryabko, 2010b)

1: INPUT: sequences S := {x1, · · · ,xN}, Number κ of clusters
2: Initialize κ-farthest points as cluster-centres:
3: c1 ← 1
4: C1 ← {c1}
5: for k = 2..κ do
6: ck ← argmax

i=1..N
min

j=1..k−1
d̂(xi,xcj ), where ties are broken arbitrarily

7: Ck ← {ck}
8: end for
9: Assign the remaining points to closest centres:

10: for i = 1..N do
11: k ← argminj∈⋃κk=1 Ck

d̂(xi,xj)
12: Ck ← Ck ∪ {i}
13: end for
14: OUTPUT: clusters C1, C2, · · · , Cκ

are closer to each other than to the rest of the samples. Therefore, the samples chosen as
cluster centres are each generated by a different process distribution, and since the algorithm
assigns the rest of the samples to the closest clusters, the statement follows. More formally,
let n denote the shortest sample length in S:

nmin := min
i∈1..N

ni.

Denote by δ the minimum non-zero distance between the process distributions:

δ := min
k 6=k′∈1..κ

d̂(ρk, ρk′).

Fix ε ∈ (0, δ/4). Since there are a finite number N of samples, by Lemma 5 for all large
enough nmin we have

sup
k∈1..κ

i∈Gk∩{1..N}

d̂(xi, ρk) ≤ ε. (8)

where Gk, k = 1..κ denote the ground-truth partitions given by Definition 7. By (8) and
applying the triangle inequality we obtain

sup
k∈1..κ

i,j∈Gk∩{1..N}

d̂(xi,xj) ≤ 2ε. (9)

Thus, for all large enough nmin we have

inf
i∈Gk∩{1..N}
j∈Gk′∩{1..N}
k 6=k′∈1..κ

d̂(xi,xj) ≥ inf
i∈Gk∩{1..N}
j∈Gk′∩{1..N}
k 6=k′∈1..κ

d(ρk, ρk′)− d̂(xi, ρk)− d̂(xj , ρk′)

≥ δ − 2ε (10)
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where the first inequality follows from the triangle inequality, and the second inequality
follows from (8) and the definition of δ. In words, (9) and (10) mean that the samples in
S that are generated by the same process distribution are closer to each other than to the
rest of the samples. Finally, for all nmin large enough to have (9) and (10) we obtain

max
i=1..N

min
k=1..κ−1

d̂(xi,xck) ≥ δ − 2ε > δ/2

where as specified by Algorithm 1, c1 := 1 and ck := argmax
i=1..N

min
j=1..k−1

d̂(xi,xcj ), k = 2..κ.

Hence, the indices c1, . . . , cκ will be chosen to index sequences generated by different pro-
cess distributions. To derive the consistency statement, it remains to note that, by (9) and
(10), each remaining sequence will be assigned to the cluster centre corresponding to the
sequence generated by the same distribution.

4.2 Online setting

The online version of the problem turns out to be more complicated than the offline one. The
challenge is that, since new sequences arrive (potentially) at every time-step, we can never
rely on the distance estimates corresponding to all of the observed samples to be correct.
Thus, as mentioned in the introduction, the main challenge can be identified with what we
regard as “bad” sequences: recently-observed sequences, for which sufficient information
has not yet been collected, and for which the estimates of the distance (with respect to any
other sequence) are bound to be misleading. Thus, in particular, farthest-point initialization
would not work in this case. More generally, using any batch algorithm on all available data
at every time-step results in not only mis-clustering “bad” sequences, but also in clustering
incorrectly those for which sufficient data are already available.

The solution, realized in Algorithm 2, is based on a weighted combination of several
clusterings, each obtained by running the offline algorithm (Algorithm 1) on different por-
tions of data. The clusterings are combined with weights that depend on the batch size
and on the minimum inter-cluster distance. This last step of combining multiple clusterings
with weights may be reminiscent of prediction with expert advice (see Cesa-Bianchi and
Lugosi, 2006 for an overview), where experts are combined based on their past performance.
However, the difference here is that the performance of each clustering cannot be measured
directly.

More precisely, Algorithm 2 works as follows. Given a set S(t) of N(t) samples, the
algorithm iterates over j := κ, . . . , N(t) where at each iteration Algorithm 1 is used to
cluster the first j sequences {xt1, . . . ,xtj} into κ clusters. In each cluster the sequence with
the smallest index is assigned as the candidate cluster centre. A performance score γj is

calculated as the minimum distance d̂ between the κ candidate cluster centres obtained at
iteration j. Thus, γj is an estimate of the minimum inter-cluster distance. At this point we

have N(t)−κ+1 sets of κ cluster centres cj1, . . . , c
j
κ, j = 1..N(t)−κ+1. Next, every sample

xti, i = 1..N(t) is assigned according to the weighted combination of the distances between
xti and the candidate cluster centres obtained at each iteration on j. More precisely, for
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Algorithm 2 Online Clustering

1: INPUT: Number κ of target clusters
2: for t = 1..∞ do
3: Obtain new sequences S(t) = {xt1, · · · ,xtN(t)}
4: Initialize the normalization factor: η ← 0
5: Initialize the final clusters: Ck(t)← ∅, k = 1..κ
6: Generate N(t)− κ+ 1 candidate cluster centres:
7: for j = κ..N(t) do
8: {Cj1 , . . . , Cjκ} ← Alg1({xt1, · · · ,xtj}, κ)

9: µk ← min{i ∈ Cjk}, k = 1..κ . Set the smallest index as cluster centre.

10: (cj1, . . . , c
j
κ)← sort(µ1, . . . , µκ) . Sort the cluster centres increasingly.

11: γj ← mink 6=k′∈1..κ d̂(xt
cjk
,xt

cj
k′

) . Calculate performance score.

12: wj ← 1/j(j + 1)
13: η ← η + wjγj
14: end for
15: Assign points to clusters:
16: for i = 1..N(t) do

17: k ← argmink′∈1..κ
1
η

∑N(t)
j=1 wjγj d̂(xti,x

t
cj
k′

)

18: Ck(t)← Ck(t) ∪ {i}
19: end for
20: OUTPUT: {C1(t), · · · , Ck(t)}
21: end for

each i = 1..N(t) the sequence xti is assigned to the cluster k, where k is defined as

k := argmink=1..κ

N(t)∑

j=κ

wjγj d̂(xti,x
t
cjk

).

Theorem 12 Algorithm 2 is strongly asymptotically consistent (in the online sense of Def-
inition 9), provided the correct number of clusters κ is known, and the marginal distribution
of each sequence xi, i ∈ N is stationary ergodic.

Before giving the proof of Theorem 12, we provide an intuitive explanation as to how
Algorithm 2 works. First, consider the following simple candidate solution. Take some fixed
(reference) portion of the samples, run the batch algorithm on it, and then simply assign
every remaining sequence to the nearest cluster. Since the offline algorithm is asymptotically
consistent, this procedure would be asymptotically consistent as well, but only if we knew
that the selected reference of the sequences contains at least one sequence sampled from
each and every one of the κ distributions. However, there is no way to find a fixed (not
growing with time) portion of data that would be guaranteed to contain a representative
of each cluster (that is, of each time series distribution). Allowing such a reference set of
sequences to grow with time would guarantee that eventually it contains representatives of
all clusters, but it would break the consistency guarantee for the reference set; since the set
grows, this formulation effectively returns us back to the original online clustering problem.
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A key observation we make to circumvent this problem is the following. If, for some
j ∈ {κ, . . . , N(t)}, each sample in the batch {xt1, . . . ,xtj} is generated by at most κ − 1
process distributions, any partitioning of this batch into κ sets results in a minimum inter-
cluster distance γj that, as follows from the asymptotic consistency of d̂, converges to 0.
On the other hand, if the set of samples {xt1, . . . ,xtj} contains sequences generated by all κ
process distributions, γj converges to a non-zero constant, namely, the minimum distance
between the distinct process distributions ρ1, . . . , ρκ. In the latter case from some time on
the batch {xt1, . . . ,xtj} will be clustered correctly. Thus, instead of selecting one reference
batch of sequences and constructing a set of clusters based on those, we consider all batches
of sequences for j = κ..N(t), and combine them with weights. Two sets of weights are
involved in this step: γj and wj , where

1. γj is used to penalise for small inter-cluster distance, canceling the clustering results
produced based on sets of sequences generated by less than κ distributions;

2. wj is used to give precedence to chronologically earlier clusterings, protecting the clus-
tering decisions from the presence of the (potentially “bad”) newly formed sequences,
whose corresponding distance estimates may still be far from accurate.

As time goes on, the batches where not all clusters are represented will have their weight
γj converge to 0, while the number of batches that have all clusters represented and are
clustered correctly by the offline algorithm will go to infinity, and their total weight will
approach 1. Note that, since we are combining different clusterings, it is important to
use a consistent ordering of clusters, for otherwise we might sum up clusters generated by
different distributions. Therefore, we always order the clusters with respect to the index of
the first sequence in each cluster.
Proof [of Theorem 12] First, we show that for every k ∈ 1..κ we have

1

η

N(t)∑

j=1

wjγ
t
j d̂(xt

cjk
, ρk)→ 0 a.s. (11)

Denote by δ the minimum non-zero distance between the process distributions:

δ := min
k 6=k′∈1..κ

d̂(ρk, ρk′). (12)

Fix ε ∈ (0, δ/4). We can find an index J such that
∑∞

j=J wj ≤ ε. Let S(t)|j = {xt1, · · · ,xtj}
denote the subset of S(t) consisting of the first j sequences for j ∈ 1..N(t). For k = 1..κ let

sk := min{i ∈ Gk ∩ 1..N(t)} (13)

index the first sequence in S(t) that is generated by ρk where Gk, k = 1..κ are the ground-
truth partitions given by Definition 7. Define

m := max
k∈1..κ

sk. (14)

Recall that the sequence lengths ni(t) grow with time. Therefore, by Lemma 5 (consistency
of d̂) for every j ∈ 1..J there exists some T1(j) such that for all t ≥ T1(j) we have

sup
k∈1..κ

i∈Gk∩{1..j}

d̂(xti, ρk) ≤ ε. (15)
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Moreover, by Theorem 11 for every j ∈ m..J there exists some T2(j) such that Alg1(S(t)|j , κ)
is consistent for all t ≥ T2(j). Let

T := max
i=1,2
j∈1..J

Ti(j).

Recall that, by definition (14) of m, S(t)|m contains samples from all κ distributions. There-
fore, for all t ≥ T we have

inf
k 6=k′∈1..κ

d̂(xtcmk
,xtcm

k′
) ≥ inf

k 6=k′∈1..κ
d(ρk, ρk′)− sup

k 6=k′∈1..κ
(d̂(xtcmk

, ρk) + d̂(xtcm
k′
, ρk′))

≥ δ − 2ε ≥ δ/2, (16)

where the first inequality follows from the triangle inequality and the second inequality
follows from the consistency of Alg1(S(t)|m, κ) for t ≥ T , the definition of δ given by (12)
and the assumption that ε ∈ (0, δ/4). Recall that (as specified in Algorithm 2) we have

η :=
∑N(t)

j=1 wjγ
t
j . Hence, by (16) for all t ≥ T we have

η ≥ wmδ/2. (17)

By (17) and noting that by definition d̂(·, ·) ≤ 1, for all t ≥ T for every k ∈ 1..κ we obtain

1

η

N(t)∑

j=1

wjγ
t
j d̂(xt

cjk
, ρk) ≤

1

η

J∑

j=1

wjγ
t
j d̂(xt

cjk
, ρk) +

2ε

wmδ
. (18)

On the other hand, by the definition (14) of m, the sequences in S(t)|j for j = 1..m− 1 are
generated by at most κ− 1 out of the κ process distributions. Therefore, at every iteration
on j ∈ 1..m−1 there exists at least one pair of distinct cluster centres that are generated by
the same process distribution. Therefore, by (15) and (17), for all t ≥ T and every k ∈ 1..κ
we have,

1

η

m−1∑

j=1

wjγ
t
j d̂(xt

cjk
, ρi) ≤

1

η

m−1∑

j=1

wjγ
t
j ≤

2ε

wmδ
. (19)

Noting that the clusters are ordered in the order of appearance of the distributions, we have
xt
cjk

= xtsk for all j = m..J and k = 1..κ, where the index sk is defined by (13). Therefore,

by (15) for all t ≥ T and every k = 1..κ we have

1

η

J∑

j=m

wjγ
t
j d̂(xt

cjk
, ρk) =

1

η
d̂(xtsk , ρk)

J∑

j=m

wjγ
t
j ≤ ε. (20)

Combining (18), (19), and (20) we obtain

1

η

N(t)∑

j=1

wjγ
t
j d̂(xt

cjk
, ρk) ≤ ε(1 +

4

wmδ
). (21)

for all k = 1..κ and all t ≥ T , establishing (11).
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To finish the proof of the consistency consider an index i ∈ Gr for some r ∈ 1..κ. By
Lemma 5, increasing T if necessary, for all t ≥ T we have

sup
k∈1..κ

j∈Gk∩1..N

d̂(xtj , ρk) ≤ ε. (22)

For all t ≥ T and all k 6= r ∈ 1..κ we have,

1

η

N(t)∑

j=1

wjγ
t
j d̂(xti,x

t
cjk

) ≥ 1

η

N(t)∑

j=1

wjγ
t
j d̂(xti, ρk)−

1

η

N(t)∑

j=1

wjγ
t
j d̂(xt

cjk
, ρk)

≥ 1

η

N(t)∑

j=1

wjγ
t
j(d̂(ρk, ρr)− d̂(xti, ρr))−

1

η

N(t)∑

j=1

wjγ
t
j d̂(xt

cjk
, ρk)

≥ δ − 2ε(1 +
2

wmδ
), (23)

where the first and second inequalities follow from the triangle inequality, and the last
inequality follows from (22), (21) and the definition of δ. Since the choice of ε is arbitrary,
from (22) and (23) we obtain

argmin
k∈1..κ

1

η

N(t)∑

j=1

wjγ
t
j d̂(xti,x

t
cjk

) = r. (24)

It remains to note that for any fixed N ∈ N from some t on (24) holds for all i = 1..N , and
the consistency statement follows.

4.3 Unknown number κ of clusters

So far we have shown that when κ is known in advance, consistent clustering is possible under
the only assumption that the samples are generated by unknown stationary ergodic process
distributions. However, as follows from the theoretical impossibility results of (Ryabko,
2010c) discussed in Section 3, the correct number κ of clusters is not possible to be estimated
with no further assumptions or additional constraints. One way to overcome this obstacle
is to assume known rates of convergence of frequencies to the corresponding probabilities.
Such rates are provided by assumptions on the mixing rates of the process distributions
that generate the data.

Here we will show that under some assumptions on the mixing rates (and still without
making any modelling or independence assumptions), consistent clustering is possible when
the number of clusters is unknown.

The purpose of this section, however, is not to find the weakest assumptions under
which consistent clustering (with κ unknown) is possible, nor is it to provide sharp bounds
under assumptions considered; our only purpose here is to demonstrate that asymptotic
consistency is achievable in principle when the number of clusters is unknown, under some
mild non-parametric assumptions on the time series distributions. More refined analysis

18



could yield sharper bounds under weaker assumptions, such as those in, for example, (Bosq,
1996; Rio, 1999; Doukhan, 1994; Doukhan et al., 2010).

We introduce mixing coefficients, mainly following (Rio, 1999) in formulations. Infor-
mally, mixing coefficients of a stochastic process measure how fast the process forgets about
its past. Any one-way infinite stationary process X1, X2, . . . can be extended backwards
to make a two-way infinite process . . . , X−1, X0, X1, . . . with the same distribution. In the
definition below we assume such an extension. Define the ϕ-mixing coefficients of a process
µ as

ϕn(µ) = sup
A∈σ(X−∞..k),B∈σ(Xk+n..∞),µ(A)6=0

|µ(B|A)− µ(B)|, (25)

where σ(..) stands for the sigma-algebra generated by random variables in brackets. These
coefficients are non-increasing. Define also

θn(µ) := 2 + 8(ϕ1(µ) + · · ·+ ϕn(µ)).

A process µ is called uniformly ϕ-mixing if ϕn(µ)→ 0. Many important classes of processes
satisfy mixing conditions. For example, a stationary irreducible aperiodic Hidden Markov
process with finitely many states is uniformly ϕ-mixing with coefficients decreasing expo-
nentially fast. Other probabilistic assumptions can be used to obtain bounds on the mixing
coefficients, see, e.g., (Bradley, 2005) and references therein.

The method that we propose for clustering mixing time series in the offline setting,
namely Algorithm 3, is very simple. Its inputs are: samples S := {x1, . . . ,xN}, the threshold
level δ ∈ (0, 1) and the parameters m, l ∈ N, Bm,l,n. The algorithm assigns to the same
cluster all samples which are at most δ-far from each other, as measured by d̂ with mn =
m, ln = l and the summation over Bm,l restricted to Bm,l,n. The sets Bm,l,n have to be
chosen so that in asymptotic they cover the whole space, ∪n∈NBm,l,n = Bm,l. For example,
Bm,l,n may consist of the first bn cubes around the origin, where bn → ∞ is a parameter
sequence. We do not give a pseudo code implementation of this algorithm, since it is rather
clear.

The idea is that the threshold level δ = δn is selected according to the minimum length
n of a sample and the (known bounds on) mixing rates of the process ρ generating the
samples (see Theorem 13). As we show in Theorem 13, if the distribution of the samples
satisfies ϕn(ρ) ≤ ϕn → 0, where ϕn are known, then one can select (based on ϕn only)
the parameters of Algorithm 3 in such a way that it is weakly asymptotically consistent.
Moreover, a bound on the probability of error before asymptotic is provided.

Theorem 13 (Algorithm 3 is consistent for unknown κ) Fix sequences mn, ln, bn ∈
N, and let, for each m, l ∈ N, Bm,l,n ⊂ Bm,l be an increasing sequence of finite sets such
that ∪n∈NBm,l,n = Bm,l. Set bn := maxl≤ln,m≤mn |Bm,l,n| and n := mini=1..N ni. Let also
δn ∈ (0, 1). Let N ∈ N, and suppose that the samples x1, . . . ,xN are generated in such a
way that the (unknown marginal) distributions ρi, i = 1..κ are stationary ergodic and satisfy
ϕn(ρ) ≤ ϕn, for all n ∈ N. Then there exist constants ερ, δρ and nρ that depend only on ρ
such that for all δn < δρ, n > nρ Algorithm 3 satisfies

P (T 6= G|N ) ≤ 2N(N + 1)(mnlnbnγn/2(δn) + γn/2(ερ)), (26)
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where

γn(ε) :=
√
e exp(−nε2/θn),

T is the partition output by the algorithm and G|N is the ground-truth clustering. In partic-
ular, if ϕn = o(1), then, selecting the parameters in such a way that δn = o(1), mn, ln, bn =

o(n), mn, ln → ∞, ∪k∈NBm,l,k = Bm,l, bm,ln → ∞, for all m, l ∈ N, γn(const) = o(1), and,
finally, mnlnbnγn(δn) = o(1), as is always possible, Algorithm 3 is weakly asymptotically
consistent (with the number of clusters κ unknown).

Proof We use the following bound from (Rio, 1999, Corollary 2.1): for any zero-mean
[−1, 1]-valued random process Y1, Y2, . . . and every n ∈ N we have

P

(
|
n∑

i=1

Yi| > nε

)
≤ γn(ε). (27)

For every j = 1..N , every m < n, l ∈ N, and B ∈ Bm,l, define the [−1, 1]-valued processes
Yj := Y j

1 , Y
j
2 , . . . as

Y j
t := I{(Xj

t , . . . , X
j
t+m−1) ∈ B} − ρk(Xj

1..m ∈ B),

where ρk is the marginal distribution of Xj (that is, k is such that j ∈ Gk). It is easy to
see that ϕ-mixing coefficients for this process satisfy ϕn(Yj) ≤ ϕn−2m. Thus, from (27) we
have

P (|ν(Xj
1..nj

, B)− ρk(Xj
1..m ∈ B)| > ε/2) ≤ γn−2mn(ε/2). (28)

Then for every i, j ∈ Gk ∩ 1..N for some k ∈ 1..κ (that is, xi and xj are in the same
ground-truth cluster) we have

P (|ν(Xi
1..ni , B)− ν(Xj

1..nj
, B)| > ε) ≤ 2γn−2mn(ε/2).

Using the union bound, summing over m, l, and B, we obtain

P (d̂(xi,xj) > ε) ≤ 2mnlnbnγn−2mn(ε/2). (29)

Next, let i ∈ Gk ∩ 1..N and j ∈ Gk′ ∩ 1..N for k 6= k′ ∈ 1..κ (i.e., xi,xj are in two different
target clusters). Then, for some mi,j , li,j ∈ N there is Bi,j ∈ Bmi,j ,li,j such that for some
τi,j > 0 we have

|ρk(Xi
1..|Bi,j | ∈ Bi,j)− ρk′(X

j
1..|Bi,j | ∈ Bi,j)| > 2τi,j .

Then for every ε < τi,j/2 we have

P (|ν(Xi
1..ni , Bi,j)− ν(Xj

1..nj
, Bi,j)| < ε) ≤ 2γn−2mi,j (τi,j). (30)

Moreover, for ε < wmi,jwli,jτi,j/2 we have

ρ(d̂(xi,xj) < ε) ≤ 2γn−2mi,j (τi,j). (31)
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Define
δρ := min

k 6=k′∈1..κ
i∈Gk∩1..N
j∈Gk′∩1..N

wmi,jwli,jτi,j/2, ερ := min
k 6=k′∈1..κ
i∈Gk∩1..N
j∈Gk′∩1..N

τi,j/2

nρ := 2 max
k 6=k′∈1..κ
i∈Gk∩1..N
j∈Gk′∩1..N

mi,j .

Clearly, from this and (30), for every δ < 2δρ and n > nρ we obtain

ρ(d̂(xi,xj) < δ) ≤ 2γn/2(ερ). (32)

Algorithm 3 produces correct results if for every pair i, j we have d̂(xi,xj) < δn if and only
if i, j ∈ Gk ∩ 1..N for some k ∈ 1..κ. Therefore, taking the bounds (29) and (32) together
for each of the N(N + 1)/2 pairs of samples, we obtain (26).

For the online setting, consider the following simple extension of Algorithm 3, that we
call Algorithm 3’. It applies Algorithm 3 to the first Nt sequences, where the parameters
of Algorithm 3 and Nt are chosen in such a way that the bound (26) with N = Nt is o(1)
and Nt → ∞ as time t goes to infinity. It then assigns each of the remaining sequences
(xi, i > Nt) to the nearest cluster. Note that in this case the bound (26) with N = Nt

bounds the error of Algorithm 3’ on the first Nt sequences, as long as all of the κ clusters
are already represented among the first Nt sequences. Since Nt →∞, we can formulate the
following result.

Theorem 14 Algorithm 3’ is weakly asymptotically consistent in the online setting when
the number κ of clusters is unknown, provided that the assumptions of Theorem 13 apply to
the first N sequences x1, . . . ,xN for every N ∈ N.

4.4 Extensions

In this section we show that some simple yet rather general extensions of the main results
of this paper are possible, namely allowing for non-stationarity and for slight differences in
distributions in the same cluster.

4.4.1 AMS processes and gradual changes

Here we argue that our results can be strengthened to a more general case where the
process distributions that generate the data are Asymptotically Mean Stationary (AMS)
ergodic. Throughout the paper we have been concerned with stationary ergodic process
distributions. Recall from Section 2 that a process ρ is stationary if for any i, j ∈ 1..n
and B ∈ Bm, m ∈ N, we have ρ(X1..j ∈ B) = ρ(Xi..i+j−1 ∈ B). A stationary process
is called ergodic if the limiting frequencies converge to their corresponding probabilities,
so that for all B ∈ B with probability 1 we have limn→∞ ν(X1..n, B) = ρ(B). This latter
convergence of all frequencies is the only property of the process distributions that is used
in the proofs (via Lemma 5) which give rise to our consistency results. We observe that
this property also holds for a more general class of processes, namely those that are AMS
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ergodic. Specifically, a process ρ is called AMS if for every j ∈ 1..n and B ∈ Bm,m N the
series limn→∞

∑n−j+1
i=1

1
nρ(Xi..i+j−1 ∈ B) converges to a limit ρ̄(B), which forms a measure,

i.e. ρ̄(X1..j ∈ B) := ρ̄(B), B ∈ Bm, m ∈ N, called asymptotic mean of ρ. Moreover, if ρ is
an AMS process, then for every B ∈ Bm, m ∈ N, the frequency ν(X1..n, B) converges ρ-a.s.
to a random variable with mean ρ̄(B). Similarly to stationary processes, if the random
variable to which ν(X1..n, B) converges is a.s. constant, then ρ is called AMS ergodic.
More information on AMS processes can be found in (Gray, 1988). However, the main
characteristic pertaining to our work is that the class of all processes with AMS properties
is composed precisely of those processes for which the almost sure convergence of frequencies
to the corresponding probabilities holds. It is thus easy to check that all the asymptotic
results of Sections 4.1, 4.2 carry over to the more general setting where the unknown process
distributions that generate the data are AMS ergodic.

4.4.2 Strictly separated clusters of distributions

So far we have defined a cluster as a set of sequences generated by the same distribution.
This seems to capture rather well the notion that in the same cluster the objects can be
very different (as is the case for stochastically generated sequences), yet are intrinsically of
the same nature (they have the same law).

However, one may wish to generalize this further, and allow each sequence to be gener-
ated by a different distribution, yet requiring that in the same clusters distributions must
be close. Unlike the original formulation, such an extension would require fixing some sim-
ilarity measure between distributions. The results of the preceding sections suggest using
the distributional distance for this purpose.

Specifically, as discussed in Section 4.1, in our formulation, from some time on, the
sequences possess the so-called strict separation property in the d̂ distance: sequences in
the same target cluster are closer to each other than to those in other clusters. One possible
way to relax the considered setting is to impose the strict separation property on the
distributions that generate the data. Here the separation would be with respect to the
distributional distance d. That is, each sequence xi, i = 1..N , may be generated by its own
distribution ρi, but the distributions {ρi : i = 1..N} can be clustered in such a way that the
resulting clustering has the strict separation property with respect to d. The goal would
then be to recover this clustering based on the given samples. In fact, it can be shown that
the offline Algorithm 1 of Section 4.1 is consistent in this setting as well. How this transfers
to the online setting remains open. For the offline case, we can formulate the following
result, whose proof is analogous to that of Theorem 11.

Theorem 15 Assume that each sequence xi, i = 1..N is generated by a stationary ergodic
distribution ρi. Assume further that the set of distributions {1, . . . , N} admits a parti-
tioning G = {G1, . . . ,Gk} that has the strict separation property with respect to d: for all
i, j = 1..k, i 6= j, for all ρ1, ρ2 ∈ Gi and all ρ3 ∈ Gj we have d(ρ1, ρ2) < d(ρ1, ρ3). Then
Algorithm 1 is strongly asymptotically consistent, in the sense that almost surely from some
n = min{n1, . . . , nN} on it outputs the set G.
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5. Computational considerations

In this section we show that all the proposed methods are efficiently computable. This
claim is further illustrated by the experimental results in the next section. Note, however,
that since the results presented are asymptotic, the question of what is the best achievable
computational complexity of an algorithm that still has the same asymptotic performance
guarantees is meaningless: for example, an algorithm could throw away most of the data and
still be asymptotically consistent. This is why we do not attempt to find a resource-optimal
way of computing the methods presented.
First, we show that calculating d̂ is at most quadratic (up to log terms), and quasilinear
if we use mn = log n. Let us begin by showing that calculating d̂ is fully tractable with
mn, ln ≡ ∞. First, observe that for fixed m and l, the sum

Tm,l :=
∑

B∈Bm,l
|ν(X1

1..n1
, B)− ν(X2

1..n2
, B)| (33)

has not more than n1 +n2− 2m+ 2 non-zero terms (assuming m ≤ n1, n2; the other case is
obvious). Indeed, there are ni−m+ 1 tuples of size m in each sequence xi, i = 1, 2 namely,
Xi

1..m, X
i
2..m+1, . . . , X

i
n1−m+1..n1

. Therefore, Tm,l can be obtained by a finite number of
calculations.

Furthermore, let

s = min
X1
i 6=X2

j

i=1..n1,j=1..n2

|X1
i −X2

j |. (34)

and observe that Tm,l = 0 for all m > n and for each m, for all l > log s−1 the term Tm,l

is constant. That is, for each fixed m we have

∞∑

l=1

wmwlT
m,l = wmwlog s−1Tm,log s

−1
+

log s−1∑

l=1

wmwlT
m,l.

so that we simply double the weight of the last non-zero term. (Note also that s is bounded
above by the length of the binary precision in representing the random variables Xi

j .) Thus,

even with mn, ln ≡ ∞ one can calculate d̂ precisely. Moreover, for a fixed m ∈ 1.. log n and
l ∈ 1.. log s−1 for every sequence xi, i = 1, 2 the frequencies ν(xi, B), B ∈ Bm,l may
be calculated using suffix trees or suffix arrays, with O(n) worst case construction and
search complexity (see, e.g., Ukkonen, 1995). Searching all z := n −m + 1 occurrences of
subsequences of length m results in O(m + z) = O(n) complexity. This brings the overall
computational complexity of (3) to O(nmn log s−1); this can potentially be improved using
specialized structures, e.g., (Grossi and Vitter, 2005).

The following consideration can be used to set mn. For a fixed l the frequencies
ν(xi, B), i = 1, 2 of cells in B ∈ Bm,l corresponding to values of m > logn (in the asymptotic
sense, that is, if logn = o(m)) are, in general, not consistent estimates of their probabil-
ities (and thus only add to the estimation error). More specifically, for a subsequence
Xj..j+m with j = 1..n−m of length m the probability ρi(Xj..j+m ∈ B), i = 1, 2 is of order
2−mhi , i = 1, 2 where hi denotes the entropy rate of ρi, i = 1, 2. Moreover, under some
(general) conditions one can show that a string of length log n/hi on average repeats only
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once in a string of length n (Kontoyiannis and Suhov, 1994). Therefore, subsequences of
length m larger than log n are typically met 0 or 1 times, and thus are not consistent esti-
mates of probabilities. By the above argument, one can set mn := log n. To choose ln <∞
one can either fix some constant based on the bound on the precision in real computations,
or choose it in such a way that each cell Bm,ln contains no more than log n points for all
m = 1.. log n largest values of ln.
Complexity of the algorithms. The computational complexity of the presented al-
gorithms is dominated by the complexity of calculations of d̂ between different pairs of
sequences. Thus, it is enough to bound the number of pairwise d̂ computations.

It is easy to see that the offline algorithm for the case of known κ (Algorithm 1) re-
quires at most κN distance calculations, while for the case of unknown κ all N2 distance
calculations are necessary.

The computational complexity of the updates in the online algorithm can be computed
as follows. Assume that the pairwise distance values are stored in a database D, and that
for every sequence xt−1i , i ∈ N we have already constructed a suffix tree, using for example,
the online algorithm of (Ukkonen, 1995). At time-step t, a new symbol X is received. Let
us first calculate the required computations to update D. We have two cases, either X
forms a new sequence, so that N(t) = N(t − 1) + 1, or it is the subsequent element of a
previously received segment, say, xtj for some j ∈ 1..N(t), so that nj(t) = nj(t − 1) + 1.
In either case, let xtj denote the updated sequence. Note that for all i 6= j ∈ 1..N(t) we

have ni(t) = ni(t− 1). Recall the notation xti := X
(i)
1 , . . . X

(i)
ni(t)

for i ∈ 1..N(t). In order to

update D we need to update the distance between xtj and xti for all i 6= j ∈ N(t). Thus,
we need to search for all mn new patterns induced by the received symbol X, resulting in
complexity at most O(N(t)m2

nln). Let n(t) := max{n1(t), . . . nN(t)(t)}, t ∈ N. As discussed
previously, we let mn := log n(t); we also define ln := log s(t)−1 where

s(t) := min
i,j∈1..N(t)

u=1..ni(t),v=1..nj(t),X
(i)
u 6=X(j)

v

|X(i)
u −X(j)

v |, t ∈ N.

Thus, the per symbol complexity of updating D is at most O(N(t) log3 n(t)). However, note
that if s(t) decreases from one time-step to the next, updating D will have a complexity
of order equivalent to its complete construction, resulting in a computational complexity
of order O(N(t)n(t) log2 n(t)). Therefore, we avoid calculating s(t) at every time-step;
instead, we update s(t) at pre-specified time-steps so that for every n(t) symbols received,
D is reconstructed at most log n(t) times. (This can be done, for example, by recalculating
s(t) at time-steps where n(t) is a power of 2.) It is easy to see that with the database D of
distance values at hand, the rest of the computations are of order at most O(N(t)2). Thus,
the computational complexity of updates in Algorithm 2 is at mostO(N(t)2+N(t) log3 n(t)).

6. Experimental Results

In this section we present empirical evaluations of Algorithms 1 and 2 on both synthetically
generated and real data.
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6.1 Synthetic Data

We start with synthetic experiments. In order for the experiments to reflect the generality of
our approach we have selected time series distributions that, while being stationary ergodic,
cannot be put into any of usual smaller classes of time series, and are difficult to approximate
by finite-state models. Namely, we consider rotation processes, used, for example, by Shields
(1996) as as an example of stationary ergodic processes that are not B-processes. Such time
series cannot be modelled by a hidden Markov model with a finite or countably infinite set of
states. Moreover, while k-order Markov (or hidden Markov) approximations of this process
converge to it in distributional distance, they do not converge to it in the d̄ distance, a
stronger distance than d whose empirical approximations are often used to study general
(non-Markovian) processes (e.g., Ornstein and Weiss, 1990).

6.1.1 Time series generation

To generate a sequence x = X1..n we proceed as follows: Fix some parameter α ∈ (0, 1).
Select r0 ∈ [0, 1]; then, for each i = 1..n obtain ri by shifting ri−1 by α to the right, and
removing the integer part, i.e. ri := ri−1 + α− bri−1 + αc. The sequence x = (X1, X2, · · · )
is then obtained from ri by thresholding at 0.5, that is Xi := I{ri > 0.5}. If α is irrational
then x forms a stationary ergodic time series. (We simulate α by a longdouble with a long
mantissa.)

For the purpose of our experiments, first we fix κ := 5 difference process distributions
specified by α1 = 0.31..., α2 = 0.33..., α3 = 0.35..., α4 = 0.37..., α5 = 0.39.... The param-
eters αi are intentionally selected to be close, in order to make the process distributions
harder to distinguish. Next we generate an N ×M data matrix X, each row of which is
a sequence generated by one of the process distributions. Our task in both the online and
the batch setting is to cluster the rows of X into κ = 5 clusters.

6.1.2 Batch Setting

In this experiment we demonstrate that in the batch setting, the clustering errors corre-
sponding to both the online and the offline algorithms converge to 0 as the sequence-lengths
grow. To this end, at every time-step t we take an N×n(t) sub-matrix X|n(t) of X composed
of the rows of X terminated at length n(t), where n(t) = 5t. Then at each iteration we let
each of the algorithms, (online and offline) cluster the rows of X|n(t) into five clusters, and
calculate the clustering error-rate of each algorithm. As shown in Figure 2 (top) the error
rate of each algorithm decreases with sequence length.

6.1.3 Online Setting

In this experiment we demonstrate that, unlike the online algorithm, the offline algorithm is
consistently confused by the new sequences arriving at each time-step in an online setting.
To simulate an online setting, we proceed as follows: At every time-step t, a triangular
window is used to reveal the first 1..ni(t), i = 1..t elements of the first t rows of the data-
matrix X, with ni(t) := 5(t − i) + 1, i = 1..t. This gives a total of t sequences, each of
length ni(t), for i = 1..t, where the ith sequence for i = 1..t corresponds to the ith row
of X terminated at length ni(t). At every time-step t the online and offline algorithms
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Figure 2: Top: error-rate vs. sequence length in batch setting. Bottom: error-rate vs.
Number of observed samples in online setting. (error-rates averaged over 100
runs.)

are each used in turn to cluster the observed t sequences into five clusters. Note that the
performance of both algorithms is measured on all sequences available at a given time, not
on a fixed batch of sequences. As shown in Figure 2 (bottom), in this setting the clustering
error-rate of the offline algorithm remains consistently high, whereas that of the online
algorithm converges to zero.

6.2 Real Data

As an application we consider the problem of clustering motion capture sequences, where
groups of sequences with similar dynamics are to be identified. Data is taken from the
Motion Capture database (MOCAP) (cmu) which consists of time series data representing
human locomotion. The sequences are composed of marker positions on human body which
are tracked spatially through time for various activities.
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We compare our results to those obtained with two other methods, namely those of
(Li and Prakash, 2011) and (Jebara et al., 2007), which (to the best of our knowledge)
constitute the state-of-the-art performance on these datasets. Note that we have not imple-
mented these reference methods, rather we have taken the numerical results directly from
the corresponding articles. In order to have common grounds for each comparison we use
the same sets of sequences,2 and the same means of evaluation as those used by Li and
Prakash (2011); Jebara et al. (2007).

In the paper by (Li and Prakash, 2011) two MOCAP datasets3 are used, where the
sequences in each dataset are labelled with either running or walking as annotated in the
database. Performance is evaluated via the conditional entropy S of the true labelling
with respect to the prediction, i.e., S := −∑i,j

Mij∑
i′,j′Mi′j′

log
Mij∑
j′Mij′

where M denotes

the clustering confusion matrix. The motion sequences used by Li and Prakash (2011) are
reportedly trimmed to equal duration. However, we use the original sequences as our method
is not limited by variation in sequence lengths. Table 1 lists performance of Algorithm 1
as well as that reported for the method of Li and Prakash (2011); Algorithm 1 performs
consistently better.

In the paper (Jebara et al., 2007) four MOCAP datasets4 are used, corresponding to
four motions: run, walk, jump and forward jump. Table 2 lists performance in terms of
accuracy. The datasets in Table 2 constitute two types of motions:

1. motions that can be considered ergodic: walk, run, run/jog (displayed above the
double line), and

2. non-ergodic motions: single jumps (displayed below the double line).

As shown in Table 2, Algorithm 1 achieves consistently better performance on the first
group of datasets, while being competitive (better on one and worse on the other) on the
non-ergodic motions. The time taken to complete each task is in the order of few minutes
on a standard laptop computer.

7. Discussion

We have proposed a natural notion of consistency for clustering time series in both the online
and the offline scenarios. While in this work we have taken some first steps in investigating
the theoretical and algorithmic questions arising in the proposed framework, there are many
open problems and exciting directions for future research remaining to be explored. Some
of these are discussed in this section.

Rates, optimality. The main focus of this work is on the most general case of highly
dependent time series. On the one hand, this captures best the spirit of the unsupervised
learning problem in question: the nature of the data is completely unknown, and one tries
to find some structure in it. On the other hand, as discussed above, in this generality rates
of convergence and finite-sample performance guarantees are provably impossible to obtain,
and thus one cannot argue about optimality. While we have provided some results on a

2. marker position: the subject’s right foot.
3. subjects #16 and #35.
4. subjects #7, #9, #13, #16 and #35.
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Dataset (Li and Prakash, 2011) Algorithm 1

1. Walk vs. Run (#35) 0.1015 0
2. Walk vs.Run (#16) 0.3786 0.2109

Table 1: Comparison with (Li and Prakash, 2011): Performance in terms of entropy; data-
sets concern ergodic motion captures.

Dataset (Jebara et al., 2007) Algorithm 1

1. Run(#9) vs. Run/Jog(#35) 100% 100%
2. Walk(#7) vs. Run/Jog(#35) 95% 100%

3. Jump vs. Jump fwd.(#13) 87% 100%
4. Jump vs. Jump fwd.(#13, 16) 66% 60%

Table 2: Comparison with (Jebara et al., 2007): Performance in terms of accuracy;
Rows 1 & 2 concern ergodic, Rows 3 & 4 concern non-ergodic motion captures.

more restrictive setting (time series with mixing, Section 4.3), the question of what are the
optimal performance guarantees for different classes of time series remains open. In fact, the
first interesting question in this direction is not about time series with mixing, but about
i.i.d. series What is the minimal achievable probability of clustering error in this setting,
for finite sample sizes, and what algorithms attain it?

Online setting: bad points. In the online setting of Section 4.2 we have assumed
that the length of each sequence grows to infinity with time. While this is a good first
approximation, this assumption may not be practical. It is interesting to consider the
situation in which some sequences stop growing at some point; moreover, it can be assumed
that such sequences are not representative of the corresponding distribution. While this
clearly makes the problem much more difficult, already in the setting considered in this
work we are dealing with “bad” sequences at each time step: these are those sequences
which are as yet too short to be informative. This hints at the possibility of obtaining
consistent algorithm in the extended setting outlined.

Other metrics and non-metric-based methods. All of the methods presented in this
paper are based on the distributional distance d. The main property of this distance that
we exploit is that it can be estimated consistently. In principle, one can use other distances
with this property, in order to obtain consistent clustering algorithms. While there are not
many known distances that can be consistently estimated for arbitrary stationary ergodic
distributions, there is at least one, namely the telescope distance recently introduced in
(Ryabko and Mary, 2012). Moreover, the definition of consistency proposed does not entail
the need to use a distance between time-series distributions. As an alternative, the use
of compression-based methods can be considered. Such methods have been used to solve
various statistical problems concerning stationary ergodic time series (Ryabko and Astola,
2006; Ryabko, 2010a). Compression-based methods have also been used for clustering time
series data before, albeit without asymptotic consistency analysis, by Cilibrasi and Vitanyi
(2005). Combining our consistency framework with these compression-based methods is a
promising direction for further research.
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Abstract

A metric between time-series distributions is proposed that can be evaluated using binary classi-
fication methods, which were originally developed to work on i.i.d. data. It is shown how this
metric can be used for solving statistical problems that are seemingly unrelated to classification
and concern highly dependent time series. Specifically, the problems of time-series clustering,
homogeneity testing and the three-sample problem are addressed. Universal consistency of the re-
sulting algorithms is proven under most general assumptions. The theoretical results are illustrated
with experiments on synthetic and real-world data.

Keywords: time series, reductions, stationary ergodic, clustering, metrics between probability
distributions

1. Introduction

Binary classification is one of the most well-understood problems of machine learning and statistics:
a wealth of efficient classification algorithms has been developed and applied to a wide range of
applications. Perhaps one of the reasons for this is that binary classification is conceptually one
of the simplest statistical learning problems. It is thus natural to try and use it as a building block
for solving other, more complex, newer or just different problems; in other words, one can try to
obtain efficient algorithms for different learning problems by reducing them to binary classification.
This approach has been applied to many different problems, starting with multi-class classification,
and including regression and ranking (Balcan et al., 2007; Langford et al., 2006), to give just a few
examples. However, all of these problems are formulated in terms of independent and identically
distributed (i.i.d.) samples. This is also the assumption underlying the theoretical analysis of most
of the classification algorithms.

In this work we consider learning problems that concern time-series data for which indepen-
dence assumptions do not hold. The series can exhibit arbitrary long-range dependence, and dif-
ferent time-series samples may be interdependent as well. Moreover, the learning problems that
we consider—the three-sample problem, time-series clustering, and homogeneity testing—at first
glance seem completely unrelated to classification.

c©2013 Daniil Ryabko and Jérémie Mary.
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We show how the considered problems can be reduced to binary classification methods, via a
new metric between time-series distributions. The results include asymptotically consistent algo-
rithms, as well as finite-sample analysis. To establish the consistency of the suggested methods, for
clustering and the three-sample problem the only assumption that we make on the data is that the
distributions generating the samples are stationary ergodic; this is one of the weakest assumptions
used in statistics. For homogeneity testing we have to make some mixing assumptions in order
to obtain consistency results (this is indeed unavoidable, as shown by Ryabko, 2010b). Mixing
conditions are also used to obtain finite-sample performance guarantees for the first two problems.

The proposed approach is based on a new distance between time-series distributions (that is,
between probability distributions on the space of infinite sequences), which we call telescope dis-
tance. This distance can be evaluated using binary classification methods, and its finite-sample
estimates are shown to be asymptotically consistent. Three main building blocks are used to con-
struct the telescope distance. The first one is a distance on finite-dimensional marginal distributions.
The distance we use for this is the following well-known metric: dH (P,Q) := suph∈H |EPh−EQh|
where P,Q are distributions and H is a set of functions. This distance can be estimated using binary
classification methods, and thus can be used to reduce various statistical problems to the classifi-
cation problem. This distance was previously applied to such statistical problems as homogeneity
testing and change-point estimation (Kifer et al., 2004). However, these applications so far have
only concerned i.i.d. data, whereas we want to work with highly-dependent time series. Thus, the
second building block are the recent results of Adams and Nobel (2012), that show that empiri-
cal estimates of dH are consistent (under certain conditions on H ) for arbitrary stationary ergodic
distributions. This, however, is not enough: evaluating dH for (stationary ergodic) time-series dis-
tributions means measuring the distance between their finite-dimensional marginals, and not the
distributions themselves. Finally, the third step to construct the distance is what we call telescoping.
It consists in summing the distances for all the (infinitely many) finite-dimensional marginals with
decreasing weights. The resulting distance can “automatically” select the marginal distribution of
the right order: marginals which cannot distinguish between the distributions give distance esti-
mates that converge to zero, while marginals whose orders are too high to have converged have very
small weights. Thus, the estimate is dominated by the marginals which can distinguish between the
time-series distributions, or converges to zero if the distributions are the same. It is worth noting
that a similar telescoping trick is used in different problems, most notably, in sequence prediction
(Solomonoff, 1978; B. Ryabko, 1988; Ryabko, 2011); it is also used in the distributional distance
(Gray, 1988), see Section 8 below.

We show that the resulting distance (telescope distance) indeed can be consistently estimated
based on sampling, for arbitrary stationary ergodic distributions. Further, we show how this fact can
be used to construct consistent algorithms for the considered problems on time series. Thus we can
harness binary classification methods to solve statistical learning problems concerning time series.
A remarkable feature of the resulting methods is that the performance guarantees obtained do not
depend on the approximation error of the binary classification methods used, they only depend on
their estimation error.

Moreover, we analyse some other distances between time-series distributions, the possibility of
their use for solving the statistical problems considered, and the relation of these distances to the
telescope distance introduced in this work.

To illustrate the theoretical results in an experimental setting, we chose the problem of time-
series clustering, since it is a difficult unsupervised problem which seems most different from the
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problem of binary classification. Experiments on both synthetic and real-world data are provided.
The real-world setting concerns brain-computer interface (BCI) data, which is a notoriously chal-
lenging application, and on which the presented algorithm demonstrates competitive performance.

A related approach to address the problems considered here, as well as some related problems
about stationary ergodic time series, is based on (consistent) empirical estimates of the distributional
distance, see Ryabko and Ryabko (2010), Ryabko (2010a), Khaleghi et al. (2012), as well as Gray
(1988) about the distributional distance. The empirical distance is based on counting frequencies of
bins of decreasing sizes and “telescoping.” This distance is described in some detail in Section 8
below, where we compare it to the telescope distance. Another related approach to time-series
analysis involves a different reduction, namely, that to data compression (B. Ryabko, 2009).

1.1 Organisation

Section 2 is preliminary. In Section 3 we introduce and discuss the telescope distance. Section 4
explains how this distance can be calculated using binary classification methods. Sections 5 and 6
are devoted to the three-sample problem and clustering, respectively. In Section 7, under some
mixing conditions, we address the problems of homogeneity testing, clustering with unknown k, and
finite-sample performance guarantees. In Section 8 we take a look at other distances between time-
series distributions and their relations to the telescope distance. Section 9 presents experimental
evaluation.

2. Notation and Definitions

Let (X ,F1) be a measurable space (the domain), and denote (X k,Fk) and (X N,F ) the product
probability space over X k and the induced probability space over the one-way infinite sequences
taking values in X . Time-series (or process) distributions are probability measures on the space
(XN,F ). We use the abbreviation X1..k for X1, . . . ,Xk. A set H of functions is called separable
if there is a countable set H ′ of functions such that any function in H is a pointwise limit of a
sequence of elements of H ′.

A distribution ρ is called stationary if ρ(X1..k ∈ A) = ρ(Xn+1..n+k ∈ A) for all A ∈ Fk, k,n ∈ N.
A stationary distribution is called (stationary) ergodic if

lim
n→∞

1
n ∑

i=1..n−k+1
IXi..i+k∈A = ρ(A) ρ− a.s.

for every A ∈ Fk, k ∈ N. (This definition, which is more suited for the purposes of this work, is
equivalent to the usual one expressed in terms of invariant sets, see, e.g., Gray, 1988.)

3. A Distance between Time-Series Distributions

We start with a distance between distributions on X , and then we extend it to distributions on X N.
For two probability distributions P and Q on (X ,F1) and a set H of measurable functions on X , one
can define the distance

dH (P,Q) := sup
h∈H

|EPh−EQh|. (1)

This metric in its general form has been studied at least since the 80’s (Zolotarev, 1983); its special
cases include Kolmogorov-Smirnov (Kolmogorov, 1933), Kantorovich-Rubinstein (Kantorovich
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and Rubinstein, 1957) and Fortet-Mourier (Fortet and Mourier, 1953) metrics. Note that the dis-
tance function so defined may not be measurable; however, it is measurable under mild conditions
which we assume whenever necessary. In particular, separability of H is a sufficient condition
(separability is required in most of the results below).

We are interested in the cases where dH (P,Q) = 0 implies P = Q. Note that in this case dH is a
metric (the rest of the properties are easy to see). For reasons that will become apparent shortly (see
Remark below), we are mainly interested in the sets H that consist of indicator functions. In this
case we can identify each f ∈ H with the indicator set {x : f (x) = 1} ⊂ X and (by a slight abuse of
notation) write dH (P,Q) := suph∈H |P(h)−Q(h)|. In this case it is easy to check that the following
statement holds true.

Lemma 1 dH is a metric on the space of probability distributions over X if and only if H gener-
ates F1.

The property that H generates F1 is often easy to verify directly. First of all, it trivially holds for
the case where H is the set of halfspaces in a Euclidean X . It is also easy to check that it holds if
H is the set of halfspaces in the feature space of most commonly used kernels (provided the feature
space is of the same or higher dimension than the input space), such as polynomial and Gaussian
kernels.

Based on dH we can construct a distance between time-series probability distributions. For two
time-series distributions ρ1,ρ2 we take the dH between k-dimensional marginal distributions of ρ1
and ρ2 for each k ∈ N, and sum them all up with decreasing weights.

Definition 2 (telescope distance DH) For two time series distributions ρ1 and ρ2 on the space
(X N,F ) and a sequence of sets of functions H = (H1,H2, . . .) define the telescope distance

DH(ρ1,ρ2) :=
∞

∑
k=1

wk sup
h∈Hk

|Eρ1h(X1, . . . ,Xk)−Eρ2h(Y1, . . . ,Yk)|, (2)

where wk, k ∈ N is a sequence of positive summable real weights (e.g., wk = 1/k2 or wk = 2−k).

Lemma 3 DH is a metric if and only if dHk
is a metric for every k ∈ N.

Proof The statement follows from the fact that two process distributions are the same if and only if
all their finite-dimensional marginals coincide.

Definition 4 (empirical telescope distance D̂) For a pair of samples X1..n and Y1..m define the em-
pirical telescope distance as

D̂H(X1..n,Y1..m) :=
min{m,n}

∑
k=1

wk sup
h∈Hk

∣∣∣∣∣
1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣∣∣∣∣ . (3)

All the methods presented in this work are based on the empirical telescope distance. The key
fact is that it is an asymptotically consistent estimate of the telescope distance, that is, the latter can
be consistently estimated based on sampling.
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Theorem 5 Let H = (Hk)k∈N be a sequence of separable sets Hk of indicator functions (over X k)
of finite VC dimension such that Hk generates Fk. Then for every stationary ergodic time series
distributions ρX and ρY generating samples X1..n and Y1..m we have

lim
n,m→∞

D̂H(X1..n,Y1..m) = DH(ρX ,ρY )a.s.

Note that D̂H is a biased estimate of DH, and, unlike in the i.i.d. case, the bias may depend on the
distributions; however, the bias is o(n).

Remark. The condition that the sets Hk are sets of indicator function of finite VC dimension comes
from the results of Adams and Nobel (2012), who show that for any stationary ergodic distribution
ρ, under these conditions, suph∈Hk

1
n−k+1 ∑n−k+1

i=1 h(Xi..i+k−1) is an asymptotically consistent estimate
of suph∈Hk

Eρh(X1, . . . ,Xk). This fact implies that dHk
can be consistently estimated, from which the

theorem is derived.

Proof [of Theorem 5] As established by Adams and Nobel (2012), under the conditions of the
theorem we have

lim
n→∞

sup
h∈Hk

1
n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1) = sup
h∈Hk

EρX h(X1, . . . ,Xk) ρX -a.s. (4)

for all k ∈ N, and likewise for ρY . Fix an ε > 0. We can find a T ∈ N such that

∑
k>T

wk ≤ ε. (5)

Note that T depends only on ε. Moreover, as follows from (4), for each k = 1..T we can find an Nk
such that ∣∣∣ sup

h∈Hk

1
n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)− sup
h∈Hk

EρX h(X1..k)
∣∣∣≤ ε/T. (6)

Let Nk := maxi=1..T Ni and define analogously M for ρY . Thus, for n ≥ N, m ≥ M we have

D̂H(X1..n,Y1..m)

≤
T

∑
k=1

wk sup
h∈Hk

∣∣∣∣∣
1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣∣∣∣∣+ ε

≤
T

∑
k=1

wk sup
h∈Hk

{∣∣∣∣∣
1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−Eρ1h(X1..k)

∣∣∣∣∣
+ |Eρ1h(X1..k)−Eρ2h(Y1..k)|

+

∣∣∣∣∣Eρ2h(Y1..k)−
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣∣∣∣∣

}
+ ε

≤ 3ε+DH(ρX ,ρY ),

where the first inequality follows from the definition (3) of D̂H and from (5), and the last inequality
follows from (6). Since ε was chosen arbitrary the statement follows.
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4. Calculating D̂H Using Binary-Classification Methods

The methods for solving various statistical problems that we suggest are all based on D̂H. The main
appeal of this approach is that D̂H can be calculated using binary classification methods. Here we
explain how to do it.

The definition (3) of DH involves calculating l summands (where l := min{n,m}), that is

sup
h∈Hk

∣∣∣∣∣
1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1)

∣∣∣∣∣ (7)

for each k = 1..l. Assuming that h ∈ Hk are indicator functions, calculating each of the summands
amounts to solving the following k-dimensional binary classification problem. Consider Xi..i+k−1,
i = 1..n− k+1 as class-1 examples and Yi..i+k−1, i = 1..m− k+1 as class-0 examples. The supre-
mum (7) is attained on h ∈ Hk that minimizes the empirical risk, with examples weighted with
respect to the sample size. Indeed, we can define the weighted empirical risk of any h ∈ Hk as

1
n− k+1

n−k+1

∑
i=1

(1−h(Xi..i+k−1))+
1

m− k+1

m−k+1

∑
i=1

h(Yi..i+k−1), (8)

minimising which can be easily seen to be equivalent to (7).
Thus, as long as we have a way to find h ∈ Hk that minimizes empirical risk, we have a con-

sistent estimate of DH (ρX ,ρY ), under the mild conditions on H required by Theorem 5. Since
the dimension of the resulting classification problems grows with the length of the sequences, one
should prefer methods that work in high dimensions, such as soft-margin SVMs (Cortes and Vapnik,
1995).

A particularly remarkable feature is that the choice of Hk is much easier for the problems that we
consider than in the binary classification problem. Specifically, if (for some fixed k) the classifier
that achieves the minimal (Bayes) error for the classification problem is not in Hk, then obviously
the error of an empirical risk minimizer will not tend to zero, no matter how much data we have. In
contrast, all we need to achieve asymptotically 0 error in estimating D̂ (and therefore, in the learning
problems considered below) is that the sets Hk generate Fk and have a finite VC dimension (for each
k). This is the case already for the set of half-spaces in Rk. In other words, the approximation error
of the binary classification method (the classification error of the best f in Hk) is not important.
What is important is the estimation error; for asymptotic consistency results it has to go to 0 (hence
the requirement on the VC dimension); for non-asymptotic results, it will appear in the error bounds,
see Section 7. Thus, we have the following statement.

Claim 1 The error |DH(ρX ,ρY )− D̂H(X ,Y )|, and thus the error of the algorithms below, can be
much smaller than the error of classification algorithms used to calculate DH(X ,Y ).

We can conclude that, beyond the requirement that Hk generate Fk for each k ∈ N, the choice
of Hk (or, say, of the kernel to use in SVM) is entirely up to the needs and constraints of specific
applications.

Remark (number of summands in D̂H) Finally, we note that while in the definition of the empir-
ical distributional distance (3) the number of summands is l (the length of the shorter of the two
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samples), it can be replaced with any γl such that γl → ∞, without affecting any asymptotic consis-
tency results. In other words, Theorem 5, as well as all the consistency statements below, holds true
for l replaced with any non-decreasing function γl that tends to infinity with l. A practically viable
choice is γl = log l; in fact, there is no reason to choose faster growing γn since the estimates for
higher-order summands will not have enough data to converge. This is also the value we use in the
experiments.

Remark (relation to total variation) An illustrative example1 of the choice of the sets Hk is the
set of indicators of all measurable subsets of X k. In this case each summand in (2) is the total vari-
ation distance between the k-dimensional marginal distributions of ρ1 and ρ2. Take, for simplicity,
k = 1; denoting P and Q the corresponding single-dimensional marginals, the distance becomes
supA |P(A)−Q(A)| (cf. (1)). This supremum is reached on the set A∗ := {x ∈ X : f (x) ≥ g(x)},
where f and g are densities of P and Q with respect to some arbitrary measure that dominates both
P and Q (e.g., 1/2(P+Q)). A binary classifier corresponding to a set A declares P if x ∈ A and Q
otherwise. The optimal classification error is infA(1−P(A)+Q(A)) = 1− supA(P(A)+Q(A)) =
1−P(A∗)+Q(A∗) (cf. (8)). In general, estimating the total variation distance (and finding the best
classifier) is not possible, so using smaller sets Hk can be viewed as a regularization of this problem.

5. The Three-Sample Problem

We start with a conceptually simple problem known in statistics as the three-sample problem (some-
times also called time-series classification). We are given three samples X = (X1, . . . ,Xn), Y =
(Y1, . . . ,Ym) and Z = (Z1, . . . ,Zl). It is known that X and Y were generated by different time-series
distributions, whereas Z was generated by the same distribution as either X or Y . It is required
to find out which one is the case. Both distributions are assumed to be stationary ergodic, but no
further assumptions are made about them (no independence, mixing or memory assumptions). The
three sample-problem for dependent time series has been addressed by Gutman (1989) for Markov
processes and by Ryabko and Ryabko (2010) for stationary ergodic time series. The latter work
uses an approach based on the distributional distance.

Indeed, to solve this problem it suffices to have consistent estimates of some distance between
time series distributions. Thus, we can use the telescope distance. The following statement is a
simple corollary of Theorem 5.

Theorem 6 Let the samples X = (X1, . . . ,Xn), Y = (Y1, . . . ,Ym) and Z = (Z1, . . . ,Zl) be generated
by stationary ergodic distributions ρX ,ρY and ρZ , with ρX 6= ρY and either (i) ρZ = ρX or (ii)
ρZ = ρY . Let the sets Hk, k ∈ N be separable sets of indicator functions over X k. Assume that
each set Hk, k ∈ N has a finite VC dimension and generates Fk. A test that declares that (i) is
true if D̂H(Z,X) ≤ D̂H(Z,Y ) and that (ii) is true otherwise, makes only finitely many errors with
probability 1 as n,m, l → ∞.

It is straightforward to extend this theorem to more than two classes; in other words, instead of X
and Y one can have an arbitrary number of samples from different stationary ergodic distributions.
A further generalization of this problem is the problem of time-series clustering, considered in the
next section.

1. This example was suggested by an anonymous reviewer.
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6. Clustering Time Series

We are given N time-series samples X1 = (X1
1 , . . . ,X

1
n1
), . . . ,XN = (XN

1 , . . . ,XN
nN
), and it is required to

cluster them into K groups, where, in different settings, K may be either known or unknown. While
there may be many different approaches to define what should be considered a good clustering,
and, thus, what it means to have a consistent clustering algorithm, for the problem of clustering
time-series samples there is a natural choice, proposed by Ryabko (2010a): Assume that each of
the time-series samples X1 = (X1

1 , . . . ,X
1
n1
), . . . ,XN = (XN

1 , . . . ,XN
nN
) was generated by one out of K

different time-series distributions ρ1, . . . ,ρK . These distributions are unknown. The target clustering
is defined according to whether the samples were generated by the same or different distributions:
the samples belong to the same cluster if and only if they were generated by the same distribution.
A clustering algorithm is called asymptotically consistent if with probability 1 from some n on it
outputs the target clustering, where n is the length of the shortest sample n := mini=1..N ni ≥ n′.

Again, to solve this problem it is enough to have a metric between time-series distributions that
can be consistently estimated. Our approach here is based on the telescope distance, and thus we
use D̂.

The clustering problem is relatively simple if the target clustering has what is called the strict
separation property (Balcan et al., 2008): every two points in the same target cluster are closer
to each other than to any point from a different target cluster. The following statement is an easy
corollary of Theorem 5.

Theorem 7 Let the sets Hk, k ∈ N be separable sets of indicator functions over X k. Assume that
each set Hk, k ∈ N has a finite VC dimension and generates Fk. If the distributions ρ1, . . . ,ρK

generating the samples X1 = (X1
1 , . . . ,X

1
n1
), . . . ,XN = (XN

1 , . . . ,XN
nN
) are stationary ergodic, then with

probability 1 from some n := mini=1..N ni on the target clustering has the strict separation property
with respect to D̂H.

With the strict separation property at hand, if the number of clusters K is known, it is easy to
find asymptotically consistent algorithms. Here we give some simple examples, but the theorem
below can be extended to many other distance-based clustering algorithms.

The average linkage algorithm works as follows. The distance between clusters is defined as
the average distance between points in these clusters. First, put each point into a separate cluster.
Then, merge the two closest clusters; repeat the last step until the total number of clusters is K.
The farthest point clustering works as follows. Assign c1 := X1 to the first cluster. For i = 2..K,
find the point X j, j ∈ {1..N} that maximizes the distance mint=1..i D̂H(X j,ct) (to the points already
assigned to clusters) and assign ci := X j to the cluster i. Then assign each of the remaining points
to the nearest cluster. The following statement is a corollary of Theorem 7.

Theorem 8 Under the conditions of Theorem 7, average linkage and farthest point clusterings are
asymptotically consistent, provided the correct number of clusters K is given to the algorithm.

Note that we do not require the samples to be independent; the joint distributions of the samples may
be completely arbitrary, as long as the marginal distribution of each sample is stationary ergodic.
These results can be extended to the online setting in the spirit of Khaleghi et al. (2012).

For the case of unknown number of clusters, the situation is different: one has to make stronger
assumptions on the distributions generating the samples, since there is no algorithm that is consistent
for all stationary ergodic distributions (Ryabko, 2010b); such stronger assumptions are considered
in the next section.
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7. Speed of Convergence

The results established so far are asymptotic out of necessity: they are established under the as-
sumption that the distributions involved are stationary ergodic, which is too general to allow for any
meaningful finite-time performance guarantees. While it is interesting to be able to establish consis-
tency results under such general assumptions, it is also interesting to see what results can be obtained
under stronger assumptions. Moreover, since it is usually not known in advance whether the data
at hand satisfies given assumptions or not, it appears important to have methods that have both
asymptotic consistency in the general setting and finite-time performance guarantees under stronger
assumptions. It turns out that this is possible: for the methods based on D̂ one can establish both the
asymptotic performance guarantees for all stationary ergodic distributions and finite-sample perfor-
mance guarantees under stronger assumptions, namely the uniform mixing conditions introduced
below.

Another reason to consider stronger assumptions on the distributions generating the data is that
some statistical problems, such as homogeneity testing or clustering when the number of clusters is
unknown, are provably impossible to solve under the only assumption of stationary ergodic distri-
butions, as shown by Ryabko (2010b).

Thus, in this section we analyse the speed of convergence of D̂ under certain mixing conditions,
and use it to construct solutions for the problems of homogeneity and clustering with an unknown
number of clusters, as well as to establish finite-time performance guarantees for the methods pre-
sented in the previous sections.

A stationary distribution on the space of one-way infinite sequences (X N,F ) can be uniquely
extended to a stationary distribution on the space of two-way infinite sequences (X Z,FZ) of the
form . . . ,X−1,X0,X1, . . . .

Definition 9 (β-mixing coefficients) For a process distribution ρ define the mixing coefficients

β(ρ,k) := sup
A∈σ(X−∞..0),
B∈σ(Xk..∞)

|ρ(A∩B)−ρ(A)ρ(B)|

where σ(..) denotes the sigma-algebra of the random variables in brackets.

When β(ρ,k)→ 0 the process ρ is called uniformly β-mixing (with coefficients β(ρ,k)); this con-
dition is much stronger than ergodicity, but is much weaker than the i.i.d. assumption. For more
information on mixing see, for example, Bosq (1996).

7.1 Speed of Convergence of D̂

Assume that a sample X1..n is generated by a distribution ρ that is uniformly β-mixing with coeffi-
cients β(ρ,k). Assume further that Hk is a set of indicator functions with a finite VC dimension dk,
for each k ∈ N.

Since in this section we are after finite-time bounds, we fix a concrete choice of the weights wk
in the definition of D̂ (Definition 2),

wk := 2−k. (9)
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The general tool that we use to obtain performance guarantees in this section is the following
bound that can be obtained from the results of Karandikar and Vidyasagar (2002).

qn(ρ,Hk,ε) := ρ

(
sup
h∈Hk

∣∣∣∣∣
1

n− k+1

n−k+1

∑
i=1

h(Xi..i+k−1)−Eρh(X1..k)

∣∣∣∣∣> ε

)

≤ nβ(ρ, tn − k)+8tdk+1
n e−lnε2/8, (10)

where tn are any integers in 1..n and ln = n/tn. The parameters tn should be set according to the
values of β in order to optimize the bound.

One can use similar bounds for classes of finite Pollard dimension (Pollard, 1984) or more
general bounds expressed in terms of covering numbers, such as those given by Karandikar and
Vidyasagar (2002). Here we consider classes of finite VC dimension only for the ease of the expo-
sition and for the sake of continuity with the previous section (where it was necessary).

Furthermore, for the rest of this section we assume geometric β-mixing distributions, that is,
β(ρ, t)≤ γt for some γ < 1. Letting ln = tn =

√
n the bound (10) becomes

qn(ρ,Hk,ε)≤ nγ
√

n−k +8n(dk+1)/2e−
√

nε2/8. (11)

Lemma 10 Let two samples X1..n and Y1..m be generated by stationary distributions ρX and ρY

whose β-mixing coefficients satisfy β(ρ., t) ≤ γt for some γ < 1. Let Hk, k ∈ N be some sets of
indicator functions on X k whose VC dimension dk is finite and non-decreasing with k. Then

P(|D̂H(X1..n,Y1..m)−DH(ρX ,ρY )|> ε)≤ 2∆(ε/4,n′) (12)

where n′ := min{n,m}, the probability is with respect to ρX ×ρY and

∆(ε,n) :=− logε(nγ
√

n+log(ε)+8n(d− logε+1)/2e−
√

nε2/8). (13)

Proof From (9) we have ∑∞
k=− logε/2 wk < ε/2. Using this and the definitions 2 and 4 of DH and D̂H

we obtain

P(|D̂H(X1..n1 ,Y1..n2)−DH(ρX ,ρY )|> ε)≤
− log(ε/2)

∑
k=1

(qn(ρX ,Hk,ε/4)+qn(ρY ,Hk,ε/4)),

which, together with (11), implies the statement.

7.2 Homogeneity Testing

Given two samples X1..n and Y1..m generated by distributions ρX and ρY respectively, the problem
of homogeneity testing (or the two-sample problem) consists in deciding whether ρX = ρY . A test
is called (asymptotically) consistent if its probability of error goes to zero as n′ := min{m,n} goes
to infinity. As mentioned above, in general, for stationary ergodic time series distributions there
is no asymptotically consistent test for homogeneity (Ryabko, 2010b) (even for binary-valued time
series); thus, stronger assumptions are in order.

Homogeneity testing is one of the classical problems of mathematical statistics, and one of the
most studied ones. Vast literature exits on homogeneity testing for i.i.d. data, and for dependent
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processes as well. We do not attempt to survey this literature here. Our contribution to this line of
research is to show that this problem can be reduced (via the telescope distance) to binary classifi-
cation, in the case of strongly dependent processes satisfying some mixing conditions.

It is easy to see that under the mixing conditions of Lemma 10 a consistent test for homogeneity
exists, and finite-sample performance guarantees can be obtained. It is enough to find a sequence
εn → 0 such that ∆(εn,n)→ 0 (see (13)). Then the test can be constructed as follows: say that the
two sequences X1..n and Y1..m were generated by the same distribution if D̂H(X1..n,Y1..m)< εmin{n,m};
otherwise say that they were generated by different distributions.

Theorem 11 Under the conditions of Lemma 10 the probability of Type I error (the distributions are
the same but the test says they are different) of the described test is upper-bounded by 2∆(ε/4,n′).
The probability of Type II error (the distributions are different but the test says they are the same) is
upper-bounded by 2∆((δ− ε)/4,n′) where δ := DH(ρX ,ρY ).

Proof The statement is an immediate consequence of Lemma 10. Indeed, for the Type I error,
the two sequences are generated by the same distribution, so the probability of error of the test is
given by (12) with DH(ρX ,ρY ) = 0. The probability of Type II error is given by P(DH(ρX ,ρY )−
D̂H(X1..n1 ,Y1..n2)> δ− ε), which is upper-bounded by 2∆((δ− ε))/4,n′) as follows from (12).

The optimal choice of εn may depend on the speed at which dk (the VC dimension of Hk)
increases; however, for most natural cases (recall that Hk are also parameters of the algorithm) this
growth is polynomial, so the main term to control is e−

√
nε2/8.

For example, if Hk is the set of halfspaces in X k = Rk then dk = k + 1 and one can choose
εn := n−1/8. The resulting probability of Type I error decreases as exp(−n1/4).

7.3 Clustering with a Known or Unknown Number of Clusters

If the distributions generating the samples satisfy certain mixing conditions, then we can augment
Theorems 7 and 8 with finite-sample performance guarantees.

Theorem 12 Let the distributions ρ1, . . . ,ρk generating the samples X1 = (X1
1 , . . . ,X

1
n1
), . . . , XN =

(XN
1 , . . . ,XN

nN
) satisfy the conditions of Lemma 10. Let n := mini=1..N ni and δ :=

mini, j=1..N,i6= j DH(ρi,ρ j). Then with probability at least 1−N(N − 1)∆(δ/12,n′) the target clus-
tering of the samples has the strict separation property. In this case single linkage and farthest
point algorithms output the target clustering.

Proof Note that a sufficient condition for the strict separation property to hold is that for every pair
i, j of samples generated by the same distribution we have D̂H(X i,X j)≤ δ/3, and for every pair i, j
of samples generated by different distributions we have D̂H(X i,X j)≥ 2δ/3. Using Lemma 10, the
probability of such an even (for each pair) is upper-bounded by 2∆(δ/12,n′), which, multiplied by
the total number N(N −1)/2 of pairs gives the statement. The second statement is obvious.

As with homogeneity testing, while in the general case of stationary ergodic distributions it is
impossible to have a consistent clustering algorithm when the number of clusters k is unknown,
the situation changes if the distributions satisfy certain mixing conditions. In this case a consistent
clustering algorithm can be obtained as follows. Assign to the same cluster all samples that are at
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most εn-far from each other, where the threshold εn is selected the same way as for homogeneity
testing: εn → 0 and ∆(εn,n)→ 0. The optimal choice of this parameter depends on the choice of Hk
through the speed of growth of the VC dimension dk of these sets.

Theorem 13 Given N samples generated by k different stationary distributions ρi, i = 1..k (un-
known k) all satisfying the conditions of Lemma 10, the probability of error (misclustering at least
one sample) of the described algorithm is upper-bounded by

N(N −1)max{∆(ε/4,n′),∆((δ− ε)/4,n′)}

where δ := mini, j=1..k,i6= j DH(ρi,ρ j) and n = mini=1..N ni, with ni, i = 1..N being lengths of the
samples.

Proof The statement follows from Theorem 11.

8. Other Metrics for Time-Series Distributions

The previous sections introduce a new metric on the space of time-series distributions, and use
its empirical estimates to solve several learning problems. In this section we attempt to put the
telescope distance into a more general context, and take a broader look at metrics between time-
series distributions.

Introduce the notation µk for the k-dimensional marginal distribution of a time-series distribu-
tion µ.

8.1 sum Distances

Observe that the telescope distance DH has the form

D(µ,ν) = ∑
k∈N

wkdk(µk,νk), (14)

where wk are summable positive real weights.
It is easy to see that distances of this form can be consistently estimated, as long as dk can be

consistently estimated for each k ∈ N; this is formalized in the following statement.

Proposition 14 (estimating sum-based distances) Let C be a set of distributions over X N. Let
dk,k ∈N be a series of distances on the spaces of distributions over X k, such that dk(µk,νk)≤ a ∈R
for all µ,ν ∈ C and such that there exists a series d̂k(X1..n,Y1..n),k ∈N of their consistent estimates:
for each µ,ν ∈ C we have limn→∞ d̂k(X1..n,Y1..n) = dk(µk,νk) a.s., whenever µ,ν ∈ C are chosen to
generate the sequences. Then the distance D given by (14) can be consistently estimated using the
estimate ∑k∈N wkd̂k(X1..n,Y1..n).

Proof The proof is an easy generalization of the proof of Theorem 5, with the condition on d̂k used
instead of (4).

Clearly, DH is an example of a distance in the form (14), and it satisfies the conditions of the
proposition with C being the set of all stationary ergodic processes.
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Another example of a distance in the form (14) is given by the so-called distributional distance
(Gray, 1988; Shields, 1996), whose definition is given below. Empirical estimates of this distance
are asymptotically consistent for stationary ergodic time series, and thus can be used (Ryabko and
Ryabko, 2010; Ryabko, 2010a; Khaleghi et al., 2012; Khaleghi and Ryabko, 2012; Ryabko, 2012)
to solve various statistical problems, including those considered above.

To define the distributional distance, let, for each k, l ∈ N, the set Bk,l be some partition of
the set X k, such that the set Bk = ∪l∈NBk,l generates Fk. Let also B = ∪∞

k=1Bk. Note that the set
{B×X N : B ∈ Bk,l,k, l ∈ N} generates F .

Definition 15 (distributional distance) The distributional distance is defined for a pair of pro-
cesses ρ1,ρ2 as follows

Ddd(ρ1,ρ2) :=
∞

∑
m,l=1

wmwl ∑
B∈Bm,l

|ρ1(B)−ρ2(B)|, (15)

where wk,k ∈ N is a summable sequence of positive real weights (e.g., w j = 2− j).

Remark. A more general definition, which is not specific to time-series distributions, is to take any
sequence B j ∈ F1, j ∈N of events that generate the sigma-algebra F of a probability space (X ,F ),
and then define

D′
dd(ρ1,ρ2) :=

∞

∑
j=1

w j|ρ1(B j)−ρ2(B j)|; (16)

see Gray (1988) for a general treatment. The latter definition is sometimes more convenient for
theoretical analysis (Ryabko, 2012), while the distance (15), which makes explicit the marginal
distributions on X m, m ∈ N and the level l of discretisation Bm,l of each set X m, is more suited
for time-series, and, specifically, for implementing algorithms, see Ryabko and Ryabko (2010),
Khaleghi et al. (2012) and Khaleghi and Ryabko (2012).

In general, it is perhaps impossible to tell which distance, specifically, DH or Ddd , should be
preferred for which problem. Conceptually, one of the advantages of the telescope distance DH is
that one can use different sets H—the choice that makes it adaptable to applications. Another is that
one can reuse readily available classification methods for calculating its empirical estimates. One
formal way to compare different metrics is to compare the resulting topologies. This is done in the
end of this section.

8.2 sup Distances

A different way to construct a distance between time-series distributions based on their finite-
dimensional marginals is to use the supremum instead of summation in (14):

d(µ,ν) = sup
k∈N

dk(µk,νk). (17)

Some commonly used metrics are defined in the form (17) or have natural interpretations in this
form, as the following two examples show.

Definition 16 (total variation) For time-series distributions ν,µ the total variation distance be-
tween them is defined as Dtv(µ,ν) := supA∈F |µ(A)−ν(A)|.
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It is easy to see that Dtv(µ,ν) = supk∈N supA∈Fk
|µ(A)−ν(A)|, so that the total variation distance has

the form (17).
However, the total variation distance is not very useful for time-series distributions for the fol-

lowing two reasons. First of all, for stationary ergodic distributions it is degenerate: Dtv(µ,ν) = 1 if
and only if µ 6= ν. This follows from the fact that any two different stationary ergodic distributions
are singular. Such a distance could still be useful as a formalization of the problem of homogeneity
testing. However, the problem of homogeneity testing is impossible to solve based on sampling for
stationary ergodic distributions (and even for a smaller family of B processes, see below) (Ryabko,
2010b), so the use of this distance remains limited to more restrictive classes of distributions.

This hints at an intrinsic problem with distances defined in the form (17). The problem is in the
difficulties to estimate such metrics based on sampling. At each time step t we observe only a sample
of finite length, say nt , and based on this we want to estimate a quantity that involves k-dimensional
marginals for all k, including those with k > nt . Considering a growing (with t) number of marginals
for the estimate may be a route to take, but this turns out to be difficult to analyse, especially if no
rates of convergence can be established for the set of time-series distributions at hand. This problem
is highlighted by the example of the so-called d̄ distance, whose definition follows.

Definition 17 (d̄ distance) Assume some distance δ over X is given. For two time-series distribu-
tions µ and ν define

d̄(µ,ν) := sup
k∈N

1
k

inf
p∈P

k

∑
i=1

Epδ(xi,yi),

where P is the set of all distributions over X k ×X k generating a pair of sequences x1..k,y1..k whose
marginal distributions are µk and νk correspondingly.

A process is called a B-process (or a Bernoulli process) if it is in the d̄-closure of the set of all
aperiodic stationary ergodic k-step Markov processes, where k ∈ N. For more information on d̄-
distance and B-processes see Gray (1988) and Shields (1996). The set of B-processes is a strict
subset of the set of all stationary ergodic time-series distributions. It turns out that d̄ distance is
impossible to estimate for the latter, while it can be estimated for the former (Ornstein and Weiss,
1990).

Theorem 18 (Ornstein and Weiss, 1990) There exists an estimator d̂(X1..n,Y1..n) such that, if
X1..n,Y1..n are generated by B-processes µ and ν then d̂(X1..n,Y1..n)→ d̄(µ,ν) a.s. However, for any
estimator d̂(X1..n,Y1..n) there is a pair of stationary ergodic processes µ and ν such that
limsupn→∞ |d̂(X1..n,Y1..n)− d̄(µ,ν)|> 1/2.

8.3 Comparison with the Distributional Distance

In this section we show that the telescope distance is stronger than the distributional distance in
the topological sense. Since in fact both the telescope distance and the distributional distance are
families of distances (the telescope distance depends on the sequence H), we will fix a simple natural
choice of each of these metrics. In general, different choices of parameters produce topologically
non-equivalent metrics; it is easy to check that the analysis in this section extends to many other
natural choices.
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Thus, for the purpose of this section, let us fix X = R and let H0
k be the set of halfspaces in X k.

Denote H0 := (H 0
k : k ∈N). Clearly, these Hk satisfy all the conditions of the theorems of Sections 5

and 6.
For the distributional distance (Definition 15), set Bk,l to be the partition of the set X k into k-

dimensional cubes with volume hk
l = (1/l)k. Denote D0

dd the distributional distance Ddd with this
set of parameters.

Definition 19 A metric d1 is said to be stronger than a metric d2 if any sequence that converges in
d1 also converges in d2. If, in addition, d2 is not stronger than d1, then d1 is called strictly stronger.

Note that for the distributional distance, if we use the same sets Bk to generate the sigma algebras
X k then the distance defined by (15) is stronger than the distance defined by (16).

Theorem 20 DH0 is strictly stronger than D0
dd .

Proof Fix any ε > 0 and find a T ∈ N such that ∑m,l>T wmwl < ε. Let ρi, i ∈ N be a sequence of
process measures that converges in DH0 . Let Ak be the set of all complements to X k of cubes with
sides of length s, for all s ∈N. Note that any cube B in Bk, as well as any set A in Ak, can be obtained
by intersecting 2k halfspaces. Therefore, we have

sup
B∈Bk∪Ak

|ρi(B)−ρ j(B)| ≤ 2kdHk
(ρi,ρ j)≤ 2kw−1

k DH0(ρi,ρ j), (18)

where the second inequality follows from the definition of DH0 . Observe that for each i ∈N one can
find a set Ai ∈ Ak such that ρi(Ai)< ε/2. From this, (18) and the fact that the sequence ρi converges
in DH0 , we conclude that there is a set A ∈ Ak such that

ρi(A)< ε

for all i ≥ jk. For all k, l ∈ N one can find Mk,l ∈ N such that the complement of A (which is a cube
in X k) is contained in the union of Mk,l cubes from Bk,l . Let M := maxk,l≤T Mk,l and J := maxi≤T ji.
Using (18) and the definition of the partitions Bk,l we can derive

∑
B∈Bk,l ,B*Ak

|ρi(B)−ρ j(B)| ≤ 2MTw−1
T DH0(ρi,ρ j)

for any i, j ≥ J and all k, l ≤ T . Increasing J if necessary to have 2MTw−1
T DH0(ρi,ρ j) < ε for all

i, j ≥ J, we obtain

D0
dd(ρi,ρ j)≤

T

∑
m,l=1

wmwl ∑
B∈Bm,l ,B*Am

|ρi(B)−ρ j(B)|+2ε ≤ 3ε

for all i, j > J, which means that the sequence ρi, i ∈N converges in D0
dd . Thus, DH0 is stronger than

D0
dd .

It remains to show that D0
dd is not stronger than DH0 . To see this, consider the following se-

quence of subsets of X = R. f is the dot {0}, and fk is the interval [0,1/k], for each k ∈ N. Define
the distributions ν j for j ∈ N as uniform on f j, and let ν be concentrated on f ; since we need time-
series distributions, extend this i.i.d. for all n ∈ N. It is easy to check that limi∈N D0

dd(νi,ν0) = 0
while DH0(νi,ν0) = 1 for all i > 0.
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Figure 1: Error of two-class clustering using TSSVM; 10 time series in each target cluster, averaged
over 20 runs.

9. Experimental Evaluation

For experimental evaluation we chose the problem of time-series clustering. The average-linkage
clustering is used, with the telescope distance between samples calculated using an SVM, as de-
scribed in Section 4. In all experiments, SVM is used with radial basis kernel, with default parame-
ters of libsvm (Chang and Lin, 2011). The parameters wk in the definition of the telescope distance
(Definition 2) are set to wk := k−2.

9.1 Synthetic Data

For the artificial setting we chose highly-dependent time-series distributions which have the same
single-dimensional marginals and which cannot be well approximated by finite- or countable-state
models. Variants of this family of distributions are standard examples in ergodic theory and dy-
namical systems (see, for example, Billingsley, 1965; Gray, 1988; Shields, 1996). The distributions
ρ(α), α ∈ (0,1), are constructed as follows. Select r0 ∈ [0,1] uniformly at random; then, for each
i = 1..n obtain ri by shifting ri−1 by α to the right, and removing the integer part. The time series
(X1,X2, . . .) is then obtained from ri by drawing a point from a distribution law N1 if ri < 0.5 and
from N2 otherwise. N1 is a 3-dimensional Gaussian with mean of 0 and covariance matrix Id×1/4.
N2 is the same but with mean 1. If α is irrational2 then the distribution ρ(α) is stationary ergodic,
but does not belong to any simpler natural distribution family; in particular, it is not a B-processes
(Shields, 1996). The single-dimensional marginal is the same for all values of α. The latter two
properties make all parametric and most non-parametric methods inapplicable to this problem.

In our experiments, we use two process distributions ρ(αi), i ∈ {1,2}, with α1 = 0.31..., α2 =
0.35...,. The dependence of error rate on the length of time series is shown on Figure 1. One
clustering experiment on sequences of length 1000 takes about 5 min. on a standard laptop.

9.2 Real Data

To demonstrate the applicability of the proposed methods to realistic scenarios, we chose the brain-
computer interface data from BCI competition III (Millán, 2004). The data set consists of (pre-
processed) BCI recordings of mental imagery: a person is thinking about one of three subjects

2. In the experiments we used a longdouble with a long mantissa
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s1 s2 s3

TSSVM 84% 81% 61%
DTW 46% 41% 36%
KCpA 79% 74% 61%
SVM 76% 69% 60%

Table 1: Clustering accuracy in the BCI data set. 3 subjects (columns), 4 methods (rows). Our
method is TSSVM.

(left foot, right foot, a random letter). Originally, each time series consisted of several consecutive
sequences of different classes, and the problem was supervised: three time series for training and
one for testing. We split each of the original time series into classes, and then used our clustering
algorithm in a completely unsupervised setting. The original problem is 96-dimensional, but we
used only the first 3 dimensions (using all 96 gives worse performance). The typical sequence
length is 300. The performance is reported in Table 1, labelled TSSVM. All the computation for this
experiment takes approximately 6 minutes on a standard laptop.

The following methods were used for comparison. First, we used dynamic time wrapping
(DTW) (Sakoe and Chiba, 1978) which is a popular base-line approach for time-series clustering.
The other two methods in Table 1 are from the paper of Harchaoui et al. (2008). The comparison is
not fully relevant, since the results of Harchaoui et al. (2008) are for different settings; the method
KCpA was used in change-point estimation method (a different but also unsupervised setting), and
SVM was used in a supervised setting. The latter is of particular interest since the classification
method we used in the telescope distance is also SVM, but our setting is unsupervised (cluster-
ing). On this data set the telescope distance demonstrates better performance than the comparison
methods, which indicates that it can be useful in real-world scenarios.

10. Outlook

We have proposed a binary-classifier-based metric and shown how it can be used to solve several
problems concerning highly dependent time series. The consistency results obtained concern the
use of the empirical risk minimizer as a binary classifier. For applications this suggests using clas-
sifiers that approximate empirical risk minimizers over target sets of (indicator) functions. It is easy
to extend the definition of the metric so that any classifier can be used, including such classifiers
as nearest-neighbours rules. However, in order to extend the obtained results to such classifiers,
one would need to establish the consistency of the empirical estimates of the resulting metric be-
tween time-series distributions, which means extending the results concerning the corresponding
classifiers from the i.i.d. samples to stationary ergodic time series. Note that, while consistency of
the empirical estimates of the time-series metric used is sufficient for the analysis of the learning
problems considered in this work, it is not sufficient for some other learning problems concerning
dependent time series that rely on a metric between time-series distributions. For example, some
change-point problems for stationary ergodic time series can be solved using the distributional dis-
tance (Ryabko and Ryabko, 2010; Khaleghi and Ryabko, 2012, 2013). It remains to see whether the
same results can be obtained with the telescope distance and its generalizations.
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