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(i) L'étude de nouveaux effets sur le graphène tels que (1) le dopage avec des atomes substitutionnels tels que le bore ou de l'azote pour ouvrir une bande iterdite [START_REF] Joucken | Localized state and charge transfer in nitrogen-doped graphene[END_REF]; (2) la découpe d'un réseau périodique de trous dans les feuilles de graphène [START_REF] Bai | Graphene nanomesh[END_REF]; (3) la fonctionnalisation avec l'hydrogène, nommée graphone [START_REF] Li | Tunable anisotropic thermal conduction in graphane nanoribbons[END_REF][START_REF] Kharche | Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate[END_REF]; (4) la construction d'une logique ultra-faible puissance à mémoire non volatile à l'aide de la grande longueur de diffusion du spin dans le graphène 2D [START_REF] Su | Proposal for a graphene-based all-spin logic gate[END_REF][START_REF] Lin | Improvement of Spin Transfer Torque in Asymmetric Graphene Devices[END_REF]; (5) l'étude des effet géométrique comme la rugosité de bord, les défauts ou les torsions [START_REF] Zhang | Strain-Induced Pseudomagnetic Fields in Twisted Graphene Nanoribbons[END_REF]; (6) l'amélioration de la performance thermoélectrique en utilisant des géométries sophistiquées. [START_REF] Sevincli | Enhanced thermoelectric figure of merit in edge disordered zigzag graphene nanoribbons[END_REF][START_REF] Mazzamuto | Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons[END_REF][START_REF] Yan | Thermoelectric properties of onedimensional graphene antidot arrays[END_REF][START_REF] Sevinçli | A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons[END_REF] (ii) L'étude d'hétérostructures entre le graphène et d'autres matériaux: (1) l'ouverture de bande interdite avec des structures hybrides de graphène/BN, [START_REF] Liu | Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges[END_REF][START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Gao | Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges[END_REF][START_REF] Tran | Large on/off current ratio in hybrid graphene/BN nanoribbons by transverse electric field-induced control of bandgap[END_REF] (2) l'utilisation de substrat de haute qualité en nitrure de bore hexagonal qui est en accord de maille quasi parfait avec le graphène et qui est lisse. [START_REF] Dean | Boron nitride substrates for high-quality graphene electronics[END_REF] (iii) L'étude de nouvelles propriétés des matériaux 2D comme le graphène tels que MoS2, SiC, phosphorène et silicène. De plus ils ont l'avantage de présenter une bande interdite intrinsèque et un fort couplage spin-orbite. [START_REF] Fiori | Electronics based on two-dimensional materials[END_REF] (iv) L'étude de nouveaux allotropes de carbone: ce sont des matériaux à base de carbone mais qui ont une structure légèrement différente du graphène comme le pentagraphène (structures pentagonales) [START_REF] Zhang | Penta-graphene: A new carbon allotrope[END_REF] ou le Graphyne et le graphdiyne avec des structures circulaires. [START_REF] Sevinçli | Electronic, phononic, and thermoelectric properties of graphyne sheets[END_REF][START_REF] Kang | Modulating the bandgaps of graphdiyne nanoribbons by transverse electric fields[END_REF] En ce qui concerne la tendance de la recherche sur les hétérostructures graphène/BN, récemment des expérimentateurs ont démontré avec succès la synthèse de structures de graphène/BN sur une seule couche, [START_REF] Ci | Atomic layers of hybridized boron nitride and graphene domains[END_REF][START_REF] Sutter | Interface formation in monolayer graphene-boron nitride heterostructures[END_REF][START_REF] Liu | In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[END_REF] ce qui a motivé certaines études théoriques sur les structures de bandes électroniques [START_REF] Liu | Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges[END_REF][START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Jung | Transport properties of graphene nanoroads in boron nitride sheets[END_REF][START_REF] Tang | Tunable band gap and magnetism in C2x-(BN)y sheets and ribbons[END_REF] et aussi sur le transport [START_REF] Jung | Transport properties of graphene nanoroads in boron nitride sheets[END_REF][START_REF] Modarresi | Transport properties of an armchair boron-nitride nanoribbon embedded between two graphene electrodes[END_REF][START_REF] Yu | Transport Properties of Hybrid Zigzag Graphene and Boron Nitride Nanoribbons[END_REF][START_REF] Fiori | Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors[END_REF][START_REF] Nguyen | Resonant tunnelling diodes based on graphene/h-BN heterostructure[END_REF] 
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energy du contact gauche (droite). Ensuite, la transmission peut être calculée par l'intermédiaire de la fonction de Green par la formule de Meir-Wingreen †

L D R D T trace G G      (5) 
où Cette approche simple nous montre que la structure G/BN/G présente un net avantage par rapport à de simples rubans de graphène : l'application d'un champ électrique externe permet de moduler efficacement la largeur de la bande interdite. Ensuite, j'étudie cet effet dans la structure G/BN armchair en prenant en compte l'effet de redistribution de charge en résolvant les équations de Schrödinger-Poisson couplées: 
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Introduction

Graphene, a monolayer (two-dimensional) material made of carbon atoms arranged in a honeycomb lattice, is now well-known for its exceptional electronic properties, [1] with gapless and quasi-linear dispersion around the neutrality point and extremely high intrinsic electron mobility. [2] Among many other features, this material also offer outstanding thermal and mechanical properties with very high thermal conductivity [3] and ability to sustain large strain. [4] It is thus expected to give rise to a large number of various applications. [5] The band structure and related properties of Graphene were first studied theoretically by P. R.

Wallace since 1947. [START_REF] Wallace | The Band Theory of Graphite[END_REF] However, the limitation of experimental techniques at that time did not allow scientists to confirm these fascinating predicted properties. In 2004, Geim and his student Novoselov isolated successfully a stable form of Graphene by exfoliating a single layer of carbon from graphite. [START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF] This event demonstrated the existence of a two dimensional carbon-based material, which was later named Graphene. Then, Graphene rapidly become a hot research topic in physics from fundamental up to application viewpoints.

Besides its excellent electronic properties, Graphene has some drawbacks which makes it not directly suitable for applications. First, it is impossible to switch off completely the current in devices made of Graphene as Graphene is lacking of a bandgap. Another problem is the growth of Graphene and its deposit on insulating substrates. As an insulator stable at high temperature and easy to process, silicon dioxide (SiO2) has been frequently used as a substrate

for Graphene in experiments and devices. However, as Graphene is very thin, the rough SiO2 surface causes charge trapping on the surfaces and modifies the planar shape of Graphene, [START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF] which strongly affect the electronic transport in Graphene. Indeed, although the electron mobility in Graphene has theoretically predicted to reach around 200 000 cm 2 ⋅V -1 ⋅s -1 at room temperature, [5] such a high value has been obtained only for suspended (substrate-free) Graphene. [2] For Graphene on SiO2, the very best experimental mobility achieved is about 40 000 cm 2 ⋅V -1 ⋅s -1 , [START_REF] Chen | Electronic properties of nanographite ribbons in a spatially modulated electric field Diam[END_REF] but it is usually much below, which is far from the initial expectations. Thus, the choice of substrate is of high importance with a view to reach high performance electronic applications.

Graphene is also expected to be applied in the context of spintronics. Even if the spin orbit coupling in Graphene is very weak and unable to separate spin up and down, [START_REF] Konschuh | Tight-binding theory of the spin-orbit coupling in graphene[END_REF] in Graphene ribbons with zigzag edges, it is possible to make spin filters thanks to the separation of spin at low energy edge states. [START_REF] Dutta | Tuning charge and spin excitations in zigzag edge nanographene ribbons[END_REF][START_REF] Cao | Electronic Transport of Zigzag Graphene Nanoribbons with Edge Hydrogenation and Oxidation Open[END_REF] However, only extremely narrow zigzag Graphene ribbons are relevant, i.e. ribbons wherein edge states at two sides are close enough to be able to interact.

Regarding thermoelectric properties, Graphene suffers from intrinsic limitations though it has an excellent electron mobility. This is due in particular to the lack of energy gap in 2D

Graphene that makes it difficult to separate the opposite contributions of electrons and holes to the Seebeck effect and leads to a very small Seebeck coefficient. [START_REF] Zuev | Thermoelectric and magnetothermoelectric transport measurements of graphene[END_REF] Additionally, as mentioned above, the phonon propagation is also confirmed to be very good in Graphene, which is another limitation for thermoelectrics. [3] Indeed, the thermoelectric ability of a material is assessed by the thermoelectric figure of merit ZT which is defined via the electrical conductance e G , the Seebeck coefficient S and the thermal conductance of electron and phonon ( e K and p K ) as

  2 / e e p
ZT G S T K K  . Hence, with extremely small Seebeck coefficient and very high thermal conductance, 2D Graphene has very small ZT which in fact is less than 0.01, while an efficient thermoelectric material needs ZT~1. To make Graphene more suitable for thermoelectrics, some strategies of nanostructuring design need to be applied to enhance the Seebeck coefficient and reduce the thermal conductance.

Actually, due to the huge potential of Graphene, scientists have been continually seeking solutions to overcome its limitations. Basically, research on Graphene underwent different periods. Before 2004, just few theoretical works predicted interesting properties of Graphene.

After the experimental discovery of Graphene, from 2004 to 2010 most of works were focused on pure Graphene, essentially aiming at opening a band gap by exploiting 1D structures of Graphene (Graphene ribbons), [START_REF] Chang | Magnetoelectronic properties of nanographite ribbons[END_REF][START_REF] Chang | Electronic and optical properties of a nanographite ribbon in an electric field[END_REF][START_REF] Son | Half-metallic graphene nanoribbons[END_REF][START_REF] Son | Energy gaps in graphene nanoribbons[END_REF] on applying perpendicular electric fields in bilayer Graphene. [START_REF] Abergel D S L, Apalkov | Properties of graphene: a theoretical perspective[END_REF] Other physical properties were also investigated such as the quantum Hall effect and the spin interactions. [START_REF] Kane | Z2 topological order and the quantum spin hall effect[END_REF][START_REF] Do | Electronic transport and spin-polarization effects of relativisticlike particles in mesoscopic graphene structures[END_REF][START_REF] Pedersen | Erratum: Graphene Antidot Lattices: Designed Defects and Spin Qubits[END_REF] In recent years, research activities on Graphene were broadened towards many new directions aiming at finding novel properties for new applications. These researches can be classified into four main research trends:

(i) The study of new effects on Graphene such as (1) doping with atoms such as Boron or Nitrogen into Graphene sheet to open a mini gap [START_REF] Joucken | Localized state and charge transfer in nitrogen-doped graphene[END_REF]; (2) cutting Graphene into Graphene nanomesh with periodic holes in the sheets [START_REF] Bai | Graphene nanomesh[END_REF]; (3) Graphene with Hydrogen functionality named as Graphene and graphone [START_REF] Li | Tunable anisotropic thermal conduction in graphane nanoribbons[END_REF][START_REF] Kharche | Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate[END_REF]; (4) using the large spin diffusion length in 2D

Graphene to build up ultra-low power non-volatile logic and memory through spin current processing [START_REF] Su | Proposal for a graphene-based all-spin logic gate[END_REF][START_REF] Lin | Improvement of Spin Transfer Torque in Asymmetric Graphene Devices[END_REF]; (5) effect of geometrical shape such as edge roughness, defects, strain or twisted Graphene [START_REF] Zhang | Strain-Induced Pseudomagnetic Fields in Twisted Graphene Nanoribbons[END_REF]; (6) enhancement of thermoelectric performance by reducing phonon conductance using sophisticated designs. [START_REF] Sevincli | Enhanced thermoelectric figure of merit in edge disordered zigzag graphene nanoribbons[END_REF][START_REF] Mazzamuto | Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons[END_REF][START_REF] Yan | Thermoelectric properties of onedimensional graphene antidot arrays[END_REF][START_REF] Sevinçli | A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons[END_REF] (ii) The study of heterostructures of Graphene and other materials: (1) opening wider band gap of Graphene with hybrid structures of Graphene/BN [START_REF] Liu | Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges[END_REF][START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Gao | Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges[END_REF][START_REF] Tran | Large on/off current ratio in hybrid graphene/BN nanoribbons by transverse electric field-induced control of bandgap[END_REF], (2) high quality substrate for Graphene using hexagonal Boron Nitride thank to the perfect match in crystal structures of these two materials and the flatness of h-BN surface [START_REF] Dean | Boron nitride substrates for high-quality graphene electronics[END_REF].

(iii) The study of new properties of Graphene-like materials: some 2D materials have similar structures than Graphene such as MoS2, SiC, Phosphorene and Silicene but they exhibit intrinsic bandgap and strong spin-orbit coupling. [START_REF] Fiori | Electronics based on two-dimensional materials[END_REF] (iv) The study of new allotropes of carbon structures: these are carbon-based materials which have a slightly different structure like Graphene-like penta-Graphene (pentagonal structures) [START_REF] Zhang | Penta-graphene: A new carbon allotrope[END_REF] or Graphyne and graphdiyne with circle structures. [START_REF] Sevinçli | Electronic, phononic, and thermoelectric properties of graphyne sheets[END_REF][START_REF] Kang | Modulating the bandgaps of graphdiyne nanoribbons by transverse electric fields[END_REF] Regarding the research trend on Graphene/BN heterostructures, recently experimentalists have successfully demonstrated the synthesis of Graphene/BN structures in a single sheet [START_REF] Ci | Atomic layers of hybridized boron nitride and graphene domains[END_REF][START_REF] Sutter | Interface formation in monolayer graphene-boron nitride heterostructures[END_REF][START_REF] Liu | In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[END_REF], which has motivated some theoretical studies on electronic band structures [START_REF] Liu | Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges[END_REF][START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Jung | Transport properties of graphene nanoroads in boron nitride sheets[END_REF][START_REF] Tang | Tunable band gap and magnetism in C2x-(BN)y sheets and ribbons[END_REF] and also on transport [START_REF] Jung | Transport properties of graphene nanoroads in boron nitride sheets[END_REF][START_REF] Modarresi | Transport properties of an armchair boron-nitride nanoribbon embedded between two graphene electrodes[END_REF][START_REF] Yu | Transport Properties of Hybrid Zigzag Graphene and Boron Nitride Nanoribbons[END_REF][START_REF] Fiori | Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors[END_REF][START_REF] Nguyen | Resonant tunnelling diodes based on graphene/h-BN heterostructure[END_REF] in this new hybrid material.

In such context, this PhD project has been devoted to the properties of in-plane heterostructures of Graphene/BN with the aim at understanding and improving their electronic and thermoelectric properties with respect to pristine Graphene. It particularly focuses on bandgap opening and transport properties that can be applied in transistors or energy converters. The study is based on semi-empirical methods like Tight Binding (TB) model for electrons and Force Constant (FC) model for phonons. These methods have been widely used in condensed mater physics because of their efficiency in calculation and reasonable computation time. We also use the atomistic non-equilibrium Green's function (NEGF) approach for studying quantum transport as it can be easily combined with the semi-empirical methods mentioned above.

A guiding tour to the thesis:

This thesis manuscript is organized in five chapters and four appendices.

In Chapter 1, I present the theoretical background of my study. First, the empirical methods including Tight Binding and Force Constant models are reviewed. Then, some physical quantities which can be obtained from band structures are introduced. The following section presents atomistic Green's function method and some transport properties that can be computed using this formalism. Next, the electronic and thermal properties of some textbook cases such as the linear chain of atoms, 2D and 1D structures of pristine Graphene and hexagonal Boron Nitride are presented.

In Chapter 2, I present the bandgap opening and its modulation in in-plane Graphene/BN heterostructures. The energy band diagram and bandgap for different configurations of armchair and zigzag Graphene/BN ribbons are investigated using simple Tight Binding calculation based on a first nearest neighbor interaction model. The investigation will help us to understand which configurations of Graphene/BN with a finite bandgap could be interesting for applications.

In chapter 3, I study the effect of an in-plane electric field to energy band of an armchair G/BN structure with two Graphene ribbons separated by a BN ribbon. First, a first simple approach is applied to investigate the effect of an external electric field in different structures including the armchair G/BN and pure armchair Graphene ribbons with the assumption that electrostatic potential in each homogeneous region is linear. Next, I study this effect in the armchair G/BN structure including the effect of charge redistribution by solving selfconsistently of the coupled Schrödinger-Poisson equations. The evolution of bandgap with the applied electric field is then applied to control the current in a device made of a hybrid Graphene/BN ribbon.

In chapter 4, I investigate the emergence of states which are localized at the interface of zigzag Graphene/BN heterostructures. These states have peculiar properties which contribute to enhance significantly the electron transport in zigzag Graphene structures. Besides, the parity effect is also investigated to understand transport properties of zigzag Graphene/BN structures.

In chapter 5, I show our proposal of a Graphene/BN heterostructures that exhibit appealing thermoelectric performance. By using an efficient design, in this structure the phonon conductance is strongly reduced with respect to pure Graphene ribbons and a good electrical conductance is kept. The effects of temperature and vacancies on thermoelectric properties are also investigated.

Finally, a section is dedicated to the conclusions and perspectives. The main contributions of this thesis work are emphasized and the related possible future works are discussed. Four appendices (presenting derivations of some important formulas), the bibliography and the list of author's publications can be found at the end of the manuscript.

1 Chapter 1:

Theoretical Background

In this chapter we intend to review the main theoretical concepts and numerical methods that directly relate to this PhD work. The chapter covers the review of (i) semi-empirical methods including Tight Binding and Force Constant models, (ii) the physical quantities that can be deduced from band structure, (iii) the Green's function formalism of quantum transport for investigating nanostructures. These models and methods are finally applied to investigate some basic electronic and thermal properties of several systems such as linear chain, graphene and Boron Nitride as illustrative examples.

The semi-empirical methods

Before reviewing the main features of Tight Binding (TB) and Force Constant (FC) models widely used in this work, we would like to discuss the reasons why we chose these semiempirical methods for our study.

It is well known that ab initio methods are powerful tools to investigate material properties in condensed matter physics because they directly derive from first principles of quantum mechanics, with the highest possible level of accuracy. They usually give very good agreements with experimental results. [START_REF] Kogan | Energy bands in graphene: Comparison between the tight-binding model and ab initio calculations[END_REF] In spite of their advantage in providing reliable results, the use of these techniques is rapidly limited when dealing with devices of reasonable size as computational costs could easily exceeds the capacity of current computers. In fact, current ab initio methods can only be applied for small systems with limited number of atoms (about a few tens of atoms), while computation of larger systems still faces with many challenges. It is thus required to consider other efficient methods to be able to deal with larger systems of a few hundreds or thousands of atoms.

Tight Binding and Force Constant models are semi-empirical methods that do not require a fully self-consistent process for the computation of electron and phonon dispersions, and thus are much faster compared to ab initio calculations. However, they require the prior knowledge of some given empirical parameters which are called onsite and hopping energies in electron study and force constant parameters in phonon study. These parameters are usually adjusted so that dispersion results from Tight Binding (or Force Constant) simulation fit well with that of ab initio calculation or experiments. [START_REF] Kogan | Energy bands in graphene: Comparison between the tight-binding model and ab initio calculations[END_REF][START_REF] Son | Energy Gaps in Graphene Nanoribbons[END_REF][START_REF] Wirtz | The phonon dispersion of graphite revisited[END_REF] With good selected parameters it has been demonstrated that the semi-empirical methods may give good agreements with ab initio and experimental results, especially at low energy [START_REF] Reich | Tight-binding description of graphene[END_REF] or low frequency ranges [START_REF] Wirtz | The phonon dispersion of graphite revisited[END_REF]. Thus Tight Binding and Force Constant models are considered to be useful tools for investigation of large systems, especially in devices, with reasonable computational efforts and time. They are now widely used.

Recently, the combination of ab initio and semi-empirical calculations has led to powerful approaches to study structures and devices at a multi scale level. Within such multi scale methodology, ab initio techniques are first applied to investigate small systems and then to generate parameters for the semi-empirical models such as Tight Binding. The obtained parameters are then used for semi-empirical simulations to study energy bands for larger systems, and can be combined with other quantum methods such as Green's functions or scattering matrix for the study of transport.

[56]

Tight Binding model for electron study

The Tight Binding method is widely used by many physicists because it can not only reproduce well results from more complex and accurate methods such as ab initio, but also quickly allows scientists to predict quantitative results on the basis of a simple and physically meaningful model. Great success were evidenced from many works on many materials and devices, including graphene. [START_REF] Wallace | The Band Theory of Graphite[END_REF][START_REF] Tran | Large on/off current ratio in hybrid graphene/BN nanoribbons by transverse electric field-induced control of bandgap[END_REF][START_REF] Cresti | Electronic states and magnetotransport in unipolar and bipolar graphene ribbons[END_REF][START_REF] Cresti | Valley-valve effect and even-odd chain parity in p-n graphene junctions[END_REF][START_REF] Rainis | Andreev reflection in graphene nanoribbons[END_REF][START_REF] Grassi | Tight-binding and effective mass modeling of armchair graphene nanoribbon FETs Solid[END_REF][START_REF] Tran | Dispersive hybrid states and bandgap in zigzag graphene/BN heterostructures[END_REF] The Tight Binding (TB) method is based on the theory of atomic orbitals. The term "tight binding" means that in solids electrons are tightly bound to the atom that they belong to and thus the electrons have limited interactions with surrounding atoms in the solid. Thus the overlap of wave functions between two adjacent atoms is very limited, which makes orbitals in solids close to that in atomic orbitals of free atoms.

Though Tight Binding technique was applied very soon for the study of graphene in 1947 by

Wallace, [START_REF] Wallace | The Band Theory of Graphite[END_REF] the complete parametrized Tight Binding method was actually generalized by John Clarke Slater in 1954. [START_REF] Slater | Simplified LCAO Method for the Periodic Potential Problem[END_REF] It is also sometimes known as Linear Combination of Atomistic Orbital (LCAO) method, in particular in chemistry.

Mathematically, Tight Binding calculations can start with a basis consisting of the atomic orbitals of all atoms. In general, a system can contain N atoms and each atom has M orbitals that conduction electrons can occupy (Figure 1-1). To avoid possible confusion due to many indices notations later, we assume for simplicity that each atom contributes one orbital only. 
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The time-independent Schrödinger's equation for the system is:
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where
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is the Hamiltonian of the system which is assumed to be equal to the total Hamiltonian of isolated atoms plus the interaction potentials between atoms when they are put together within the crystal. Plugging (1-1) into (1-2) we have
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The equation (1-4) can be solved by multiplying both sides of (1-4) by

  j rR      1, jN 
and then integrating the whole equation in the real space, leading to:

            . . . . j i i j i i ii d r r R H c R r R d r r R E c R r R                         . . . . j i i j i i ii d r r R H r R c R E d r r R r R c R                          .. ii ji ji ii h c R E s c R   (1-5)
where

    . ji ji h d r r R H r R      
stands for an element of the Hamiltonian and

    . ji ji s d r r R r R     
 refers to the overlap between two atomic orbitals.

The equation (1-5) is the general equation for the energy bands of the system (no matter the system is finite or infinite). Solving it requires to know the terms can also be found from equation:

      i i i at i H R R R     . If the profile of potential between atoms  
Ur is known, one has sufficient information to calculate ji h and ji s . Now we are going to discuss more about the terms ji h which constitute the important terms in the concept of tight binding calculations and will be used frequently later on. Using the form of Hamiltonian (1-3) we have

            .. j i j p i ji at p h d r r R H r R d r r R H r R U r r R                                         .. . . . . . j p i j i ji at p j i j i p pi p i ji ji h d r r R H r R r R d r r R U r r R d r r R r R d r r R U r r R st                                 (1-6)
Here

      . ji ji t d r r R U r r R     
 is called bond energy between the orbital of the conductance by electron transport. The concept of phonon is thus directly related to the vibration modes of atoms in the solid and the thermal conduction results in fact from the transfer of internal energy due to collisions between atoms leading to changes in the vibration modes of atoms.

The vibration of atoms at lattice sites can be described by a Force Constant model in which each pair of atoms is assumed to be linked by a spring (Figure 1-2) and interactive force between atoms are dominated by Hooke's law. The theory of Force Constant model was presented in the book "Dynamical theory of crystal lattices" of Born and Huan in 1956, [START_REF] Born | Dynamical theory of crystal lattices[END_REF] and later developed by Kaplan. [START_REF] Kaplan | Remarks on Force-Constant Models for Lattice Dynamics[END_REF] Figure 1-2: Force Constant model with springs connect between atoms. [START_REF] Lombardo | Elastic wave dispersion in microstructured membranes[END_REF] In general, we can write the motion equation for any atom in the lattice as follows: [START_REF] Saito | Physical Properties of Carbon Nanotubes[END_REF]  

2 2 i ji i ij ji du M K u u dt    (1-7)
where i M and i u are the mass and the time-dependent displacement of the i-th atom, respectively, and ij K is the characteristic of the spring connecting the i-th and j-th atoms. In general, an atom can be subjected to 3D vibrations so ij K are 3×3 tensors and i u are 3×1 column matrices vectors with three spacing components x, y, z of displacements.

Vibrations are assumed to be periodic in time, so the Fourier transform can be written for a small time-dependent displacement:

. it i i u u e   (1-8)
where i u is time-independent part (space part) of the displacement i u and  is the angular frequency of the atomic vibrations. So equation (1-7) can be rewritten as

  2 i i ij j i ji M u K u u       or   2 i i ij i j ji M u K u u     (1-9)
This equation holds for any atom i  

1, iN  . Similarly to equation (1-5), equation (1)(2)(3)(4)(5)[START_REF] Wallace | The Band Theory of Graphite[END_REF][START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF][START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF] allows us to find vibration modes  for any systems. The method for solving (1)(2)(3)(4)(5) and (1)(2)(3)(4)(5)[START_REF] Wallace | The Band Theory of Graphite[END_REF][START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF][START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF] efficiently will be discussed in next section.

Matrix representation for Tight Binding and Force Constant calculations

It is well known that any system of equations like (1)(2)(3)(4)(5) The system of equations (1-5) now becomes a matrix equation: [START_REF] Reich | Tight-binding description of graphene[END_REF] .

. .

H C E S C  (1-11)
In most cases, the tight binding approach leads to the conclusion that the overlap matrix S is identical to unity matrix I due to very small overlap of atomic orbitals between two adjacent atoms, i.e. . Plugging i u into (1-9) we have

2 j ii i ij ji i i j A AA MK M M M         2 ij ij i i j i j i j i ij KK A A A M MM       (1-13) Equation (1-13) is for the single i-th atom   1, iN 
. By considering all atoms in the system and all equations can be gathered in a matrix equation as 

K K K M M M M M K K A M MM A K UD MM A K M                                      (1-15)
D refers to the Dynamical matrix which involves all couplings between atoms in the system.

Noting that in general case (3D vibration in real space),   i i uAis a 3×1 column matrix vector, ij K is a 3×3 matrix, so the full size of U is 3N×1 and D is 3N×3N. Equation (1-14) is completely solved if the matrix D is known. In fact, we still need one more step to calculate D. The coupling tensor ij K between the i-th and j-th atoms is defined by using a unitary rotation in the plane of the mono-layer material

    10 ij ij ij ij K U K U    (1-16)
where

          cos sin 0 sin cos 0 0 0 1 ij ij ij ij ij U           
is the rotation matrix [START_REF] Saito | Physical Properties of Carbon Nanotubes[END_REF] and ij  is the anticlockwise rotating angle formed between the positive direction of the x-axis and the vector joining the i-th to the j-th atoms. Finally, 0 ij K is the force constant tensor given by 0 00 00 00

i o r ij t t K          (1-17)
where , , and io r t t    are the force constant coupling parameters in the radial, in-plane and out-of-plane directions, respectively (See Figure 1-3), depending on the level of neighboring.

In Force Constant models , , and io r t t    are given so we can know 0 ij K and thus we are able to calculate ij K from equation (1-16) and then the Dynamical matrix D in (1-15). 

Advantage of matrix representations:

We have derived problems of both electron energy and vibration modes into the same problem of solving eigen values and Eigen vectors. The matrix representation thus has a strong advantage for solving these different problems. First, the matrix form of the Hamiltonians H (1-10) and D (1)(2)(3)(4)(5)[START_REF] Wallace | The Band Theory of Graphite[END_REF][START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF][START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF][START_REF] Chen | Electronic properties of nanographite ribbons in a spatially modulated electric field Diam[END_REF][START_REF] Konschuh | Tight-binding theory of the spin-orbit coupling in graphene[END_REF][START_REF] Dutta | Tuning charge and spin excitations in zigzag edge nanographene ribbons[END_REF][START_REF] Cao | Electronic Transport of Zigzag Graphene Nanoribbons with Edge Hydrogenation and Oxidation Open[END_REF][START_REF] Zuev | Thermoelectric and magnetothermoelectric transport measurements of graphene[END_REF][START_REF] Chang | Magnetoelectronic properties of nanographite ribbons[END_REF] shows clearly the physics picture of interactions between atoms in the systems. Second and most important, this representation is very convenient from the numerical point of view because we deal with discrete data instead of continuous variables as in common mathematical formulas. Each matrix element is easily managed as a discrete data in numerical calculations. Because of these advantages the matrix representation will be used in most parts of the thesis.

Operator form of Tight Binding Hamiltonian

Tight Binding Hamiltonian in the form of Ket-Bra vectors

Since Pauli introduced the notations of Ket and Bra vectors as column and row matrices in 1939, [START_REF] Dirac | A new notation for quantum mechanics Math[END_REF] 

    . ji j i ji d r r R r R            (1-18)
Here we assume that the overlap between orbitals is negligible. Any Ket vector of the general wave function (1-1) can be expanded as

. ii i c    (1-19)
and for any operator X we have

    . d r r X r X       
Thus the element ji h of the matrix form of the Hamiltonian H can be written as 

    . ji ji j i h d r r R H r R H           (1-

Tight Binding in second quantization form

In many lectures, one also uses the operator form of Tight Binding Hamiltonian within the formalism of second quantization. [1,[START_REF] Wakabayashi | Electronic states of graphene nanoribbons and analytical solutions[END_REF][START_REF] Jungthawan | Electronic structures of graphene/boron nitride sheet superlattices[END_REF][START_REF] Modarresi | Transport properties of an armchair boron-nitride nanoribbon embedded between two graphene electrodes[END_REF][START_REF] Vishkayi | Enhancement of thermoelectric efficiency by embedding hexagonal boron-nitride cells in zigzag graphene nanoribbons[END_REF] Here we do not intend to review the detail of second quantization theory but we try to make a link between Tight Binding and second quantization. In second quantization, physics of parameters of Tight Binding becomes clearer thanks to the concept of annihilation and creation of particles. The term "hoping parameter" ji t can be understood as follows: though an electron can be bounded tightly to the atom to which it belongs by potential barriers between atoms, it is still possible for the electron to tunnel through the barrier potential and hop (jump) from a lattice site to another with a none zero probability. The tunneling effect is associated with an energy changes equal to ji t . This event is equivalent to the annihilation of an electron at j th  site and the concomitant creation of an electron at i th  site. We can thus write the Hamiltonian as: † † .

i i i ji i j i j i H a a t a a     (1-22)
where † , aa are called creation and annihilation operators, respectively. This second quantization picture also allows us to predict that hoping energy tends to decrease when increasing the distance between two atoms (because hopping is harder).[55]

Eigen value problem for infinite periodic structures

It is natural to ask the question of how to deal with Eigen value problem for very large or infinite structures, because the matrix size of Hamiltonian (1)(2)(3)(4)(5)[START_REF] Wallace | The Band Theory of Graphite[END_REF][START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF][START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF][START_REF] Chen | Electronic properties of nanographite ribbons in a spatially modulated electric field Diam[END_REF] and (1)(2)(3)(4)(5)[START_REF] Wallace | The Band Theory of Graphite[END_REF][START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF][START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF][START_REF] Chen | Electronic properties of nanographite ribbons in a spatially modulated electric field Diam[END_REF][START_REF] Konschuh | Tight-binding theory of the spin-orbit coupling in graphene[END_REF][START_REF] Dutta | Tuning charge and spin excitations in zigzag edge nanographene ribbons[END_REF][START_REF] Cao | Electronic Transport of Zigzag Graphene Nanoribbons with Edge Hydrogenation and Oxidation Open[END_REF][START_REF] Zuev | Thermoelectric and magnetothermoelectric transport measurements of graphene[END_REF][START_REF] Chang | Magnetoelectronic properties of nanographite ribbons[END_REF] becomes so large that it is impossible to solve the full system. The answer is yes, we can do it if the structures are periodic. In the case of a structure consisting in the repetition of periodical unit cells, we can even reduce the Hamiltonian matrix to the size of one unit cell, which makes the problem much easier to solve. Now we assume that there is P atoms in a unit cell, we can thus divide index i (i=1, N where N is the total number of atoms in the system) in (1-1) or (1)(2)(3)(4)(5)[START_REF] Wallace | The Band Theory of Graphite[END_REF][START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF][START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF][START_REF] Chen | Electronic properties of nanographite ribbons in a spatially modulated electric field Diam[END_REF][START_REF] Konschuh | Tight-binding theory of the spin-orbit coupling in graphene[END_REF][START_REF] Dutta | Tuning charge and spin excitations in zigzag edge nanographene ribbons[END_REF][START_REF] Cao | Electronic Transport of Zigzag Graphene Nanoribbons with Edge Hydrogenation and Oxidation Open[END_REF][START_REF] Zuev | Thermoelectric and magnetothermoelectric transport measurements of graphene[END_REF][START_REF] Chang | Magnetoelectronic properties of nanographite ribbons[END_REF][START_REF] Chang | Electronic and optical properties of a nanographite ribbon in an electric field[END_REF][START_REF] Son | Half-metallic graphene nanoribbons[END_REF][START_REF] Son | Energy gaps in graphene nanoribbons[END_REF][START_REF] Abergel D S L, Apalkov | Properties of graphene: a theoretical perspective[END_REF] into two indices: small letters n(m)=1:P is the index of an atom in one cell and Greek symbols    as the index of unit cell in the system (P × (number of unit cells) = N). Since the structure is periodic, the wave function must be a Bloch wave function, i.e.

   
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where H  is the matrix of the th   unit cell and H  is the coupling matrix of unit cells th   and . .e .e

. .e

i k R i k R i k R R HE HE HE                       . 00 .e i k R R H H E             (1-24)
Thus the equation (1-12) for the whole system has been reduced to the equation (1-24) for only one unit cell (hold for an arbitrary α) with the size of matrix equal to P×P that is usually easy to solve. For phonons we can obtain a similar equation by just replacing H  by D  .

Equation is the general equation to be solved to calculate the dispersion as a function of momentum k for any periodic structures. Noting that if we do not choose the wave function of two unit cells differing by a plane wave as , but for each kind of atom as suggested in some papers [START_REF] Reich | Tight-binding description of graphene[END_REF][START_REF] Cresti | Charge transport in disordered graphene-based low dimensional materials[END_REF][START_REF] Chung | Effects of Transverse Electric Fields on Quasi-Landau Levels in Zigzag Graphene Nanoribbons[END_REF], we can not go to the equation . However the solutions of Eigen values are the same. The detailed discussion about the choice of wave form was reported in ref. [START_REF] Bena | Remarks on the tight-binding model of graphene New[END_REF].

Physical quantities that can be obtained from band structure

Solving an Eigen value problem has become a standard in condensed matter physics for understanding properties of a materials. Which physical quantities can we know from band structure (Eigen values) and wave vectors? Here, we are going to review some basic quantities that are usually deduced from solutions of an Eigen problem.

Bandgap

A bandgap is a forbidden energy region that no electron is allowed to occupy. It means there is no available state in the bandgap. The bandgap is a criterion for classifying a material as metallic, semiconducting or insulating (see Figure 1234). (1-25)

Density of states and local density of states

The density of state (DOS) is defined as the number of states per unit of energy and per unit of volume (so unit of DOS is usually 1/eV/atom or 1/eV/unit cell or 1/eV/m 3 ). [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF] While local density of state (LDOS) can be understood as DOS at a specific position in the space.

DOS and LDOS are calculated as:

(i) DOS:

      n n dN E D E E E dE      (1-26)
where   NE is the number of states between energies E and E + dE in a specific volume.

(ii) LDOS:

      2 ,. nn n D E r r E E      (1-27)
The sum is taken over all possible states in the system.

Noting that DOS and LDOS for phonons are calculated with the same formulas by taking

phonon energy nn E   and   n r
 is the vibration matrix vector.

Electron and hole distributions

If the wave function helps us to understand the distribution of each state in real space, the total number of electrons or holes distributed in real space can be calculated by [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF]:

      2 all states in valence bands n 2. 1 . h v F r f E E r         (1-28) And       2 all states in conduction band n 2. . e c F c r f E E r    (1-29) Here   , v Er   and   , cc Er 
refer to valence and conduction states, respectively.

Group velocity

The group velocity indicates how fast an electron can propagate in the channel. This kdependent velocity contributes to drift velocity of electrons. It is fully related to the shape of each energy band and can be calculated as [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF]    

1 n xy xy E v k    (1-30)
It is thus proportional to the slope of the band. We can also calculate the group velocity from the Hamiltonian and the wave functions via the group velocity operator defined by:

1 x x H v k     (1-31)
For example, if we only have couplings between nearest neighbor unit cells, we have from (
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Where ax is the periodic lattice constant along
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When we solve the equation we obtain E and 0  , then the group velocity can be

computed as † 0 0 0 0 xx x v v v       (1-32)

Effective mass

In many cases, we are only interested in low energy region and we can use an effective mass model to simplify the Hamiltonian and energy dispersion. The effective mass along x direction is calculated from the band structure as follows [80]

2 2 2 / x x E m k       (1-33)
Since an energy band is usually not exactly parabolic, effective mass is only evaluated around the bottom of valleys energy, for instant around the Gamma point k = 0. Effective mass and group velocity are in an inverse ratio relationship, which means that electrons have small group velocity if the effective mass is heavy and vice versa. From energy obtained by from

(1-24), we can apply a discrete form of the second derivative to calculate the effective mass as

  , 11 2 11 2 2 2 xi i i i i x x i i i xx k x E E E E k k E E E E kk k             , ( 1-34) 
where i E (or we can use notation  

Ei) is the energy data corresponds to the momentum  .

x ki

Coupled Schrödinger -Poisson's equations

Though Tight Binding equation does not require a self-consistent numerical scheme, however, if the system is under the effect of electric field, a charge redistribution may be generated (screening effect) and the potential energy in the system must be reconsidered. This requires to solve the coupled Poisson's and Schrödinger's equations to know exactly the potential profile and energy bands in the system, i.e.

    0 0 0 0 V H U E               (1-35)
The first equation linking charge and potential (Voltage) is the Poisson's equation in which  is the relative permittivity of the material. This parameter may be space-dependent. The

quantity eh    
is the total charge in the system, with here For simple case of 1D problems, the Poisson's equation can be written as

        . , .
    0 . x dd xV dx dx                  2 2 0 .. d x dV x d V x x x dx dx dx       (1-36)
Equation (1-36) can be solved numerically for any form of   

Green's function method 1.4.1 General definition of a Green's function

If we have a linear differential equation

    Ly x f x  (1-37)
where L is an operator, the Green's function corresponding to this operator is defined as

    , LG x x x x    (1-38) It is easy to transform (1-37) into       , . . b a y x G x x f x dx      (1-39)
Hence, to solve the differential equation (1-37), we just need to solve equation and to use the Green's function   , G x x to calculate the solution   yx. There are two advantages in using the Green's function via and (1-39) compared to equation (1-37): (i) solving the differential equation is in principle easier compared to the equation (1-37) because it does not include   yx and   fx but only depends on the form of the operator L ;

additionally, the same solution   , G x x of (1-38) can be used to solve different equations (1- 37) with different   yx and   fx; (ii) for all different equations (1-37) it is possible to use a standard method for calculating   yx by equation (1-39).

Green's function in Physics. Atomistic Green's function

The Green's functions have been widely used in physics, for instance to solve Poisson's equation or Schrödinger's equation, and it has different physical meanings depending on the context. In electrostatics, the Green's function is defined as the electrostatic potential caused by a point charge. In this present work, we will consider mainly the Green's function which relates to the Hamiltonian of Schrödinger's equation.

Starting from Schrödinger's equation, we have

  0 EH   
According to the definition of Green's function, the operator   EH  can be associated with a

Green's function defined by

      , '; ' E H G r r E r r     (1-40)
Taking advantage of the matrix representation in which the Hamiltonian is already constructed as in (1-10) and (1-15), we can definite a matrix form for the Green's function as

    E H G E I  Or     1 G E E H   (1-41)
Since H is the matrix formed from the interactions between atoms in the system, it can be called atomistic Hamiltonian and the Green's function defined by (1-41) is then called atomistic Green's function.

Green's functions for an open system

In most transport problems, we have a region called active region (device or scattering region) connected with two leads, i.e. left and right leads. The active region can be considered as an open system that exchanges energy with the two leads. To calculate exactly the amount of the energy exchanged between the active region and the other parts, let us consider a general case where we have initially an isolated system denoted X, and then a part A attached to the system X as in Figure 12345.

Figure 1-5: Exchanged energy in an open system X when it is connected to another system A.

The Hamiltonian of the whole system can be written in the matrix form

A AX XA X H H H       .
Starting with Schrödinger's equation for the whole system, we can get the Green's function of the part X as:

(see Appendix B)     11 X X XA A AX X A G E H g E H          (1-42) Where   1 AA g E H   (1-43)
is the isolated Green's function of part A, and

A XA A AX g   (1-44)
Compared to the Green's function

  1 XX g E H  
of the isolated Hamiltonian of X we can see that there is an extra part A  added into the Hamiltonian X H in . This part is called self-energy of X due to coupling with the part A. The result can be extended for the case with N external parts connected to the system X with the assumption that these attached parts do not interact together but only interact with the open system X. For example, in the case of an active region (open system X) connected with two leads, the Green's function of the active region is now

  1 D D L R G E H        (1-45)
where D H is the Hamiltonian of the active region (Device) and 

        L R DL R L R L R

Calculation of DOS by Green function

The DOS calculated by (1-26) can be calculated via the Green's function thank to the Lorentz form of delta function as

      2 2 0 1 lim . n nn n D E E E EE            (1-46)
where  is a very small number (some time it is noted as 0  ) and it has physical meaning of a broadening energy to avoid divergence when

n EE  .
If we use the Eigen vectors of the Hamiltonian H as basis, the Green's function defined by

    1 G E E i H      contains the diagonal terms   1 2 1 1 . 1 N Ei Ei GE Ei                   (1-47) Noting that   † 2 2 1 1 2 nn nn nn n i GG E i E i E                
is close to the Lorentz form of delta function, the DOS can be thus calculated from the diagonal elements nn G of the Green's function as follows:

If we define † A i G G    (1-48)
Which is called spectral function, we have

  † 2 2 2 ( ) . n n trace A i trace G G E          Comparing with (1-46) we have finally   () 2 trace A DE  
(1-49)

Physical quantities obtained from transport study

In this section we will consider the most important quantities/formulas in a quantum transport problem using Green's function formalism.

Calculation of the Transmission from Green's function

In ballistic regime, the transmission of the system can be calculated via the Green's function by Meir-Wingreen's formula [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF][START_REF] Wingreen | Landauer formula for the current through an interacting electron region[END_REF][START_REF] Lewenkopf | The recursive Green's function method for graphene[END_REF] 

† L D R D T trace G G      (1-50)
where

      † L R L R L R i        (1-51)
are the injection rates at the contacts. [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF] Though formula (1-50) is the standard one for calculation of transmission, but the use of it is not very useful in practice because the size of the matrix HD is very large and thus it is very difficult to make the inversion . The transmission can be calculated efficiently when different techniques are applied to reduce the size the left(right) Green's function and of the device Green's function to the size of the Green's function of single layers at interface of the device and of the contacts. [START_REF] Lewenkopf | The recursive Green's function method for graphene[END_REF] Then the transmission can be calculated as (see Appendix C)

    † † 11 11 11 11
Tr

ss LL T i G G G G        (1-52) Here   † ( ) ( ) ( ) s s s L R L R L R i     
is the surface injection rate at the left (right) contact, and

      0 () s LR DL R L R L R D G  
where 0 G is the surface Green's function of contacts.

Local density of states

LDOS is very important in transport because it is associated with energy levels localized in the scattering region and especially important in resonance effects where each peak of transmission is corresponding to a confined state in the scattering region that can be observed clearly via LDOS spectrum. The LDOS at the position of i-th layer in the device can also be calculated via Green's function as in , but now the Green function is the device Green's function D G (for convenience, we just simply note it as G ) and the corresponding spectral

function of i-th layer is † ii ii ii A i G G    . It is thus   () 2 ii ii trace A DE   (1-53) By noting that   † 2 Im ii ii ii ii A i G G G       with   Im ii G is the imaginary part of ii G
we can also make a direct relation between LDOS and Green's functions as below

    Im ii ii G D E trace     
(1-54)

Electron current

When a bias is applied at source and drain, an electric field is generated along the transport direction and drives carriers in the channel. A flow of current in the device can be measured.

The total current in ballistic regime can be calculated by Landauer's formula [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF] 

     2 . L L R R e I dE T E f E f E h           , (1-55) 
where  

, , 1/ 1 b E KT f E T e        
is the Fermi function giving the distribution of electrons around the chemical energy  . And , , 

RL R F R L F L L R b E U E U U U qV       
  0 if due to when 0 1 1 if due to 0 when 0 1 1 if 2 b b b E KT E KT E KT E e T f E E e T e E                               Thus,     0 if E> or E< 1 if <E< LR L L R R RL f E f E           (1-56)
And the current can be computed simply from the integral of transmission as 

  2 . L R e I dE T E h     (1-57) 0 0.2 0.4 0.6 0.8 1 E (eV) Fermi function  4K 300K 700K

Conductance

The electronic conductance is usually defined at low bias and in ballistic regime it can be calculated by Landauer's formula [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF] 

     2 0 ,, 2 , lim . . b ee V b f E T Ie G T dE T E V h E          (1-58)
Where    

p 0 .. Τ. 2 p dn K T         (1-59)
Where   p Τ  is the phonon transmission.

Thermoelectric effects

In an electronic system (and in any system), efficiency of energy conversion between power in and power out never reaches 100%. In fact, a large portion of energy is lost due to heating into the air. So it is natural to wonder how to convert some wasted heat energy into useful energy such as electrical energy. One of the first phenomenon of conversion between heat and electricity was observed by Seebeck in 1821 when he discovered deflection of a compass needle placed nearby a close lop of two different metals with different temperatures at the two junctions. Later on, in 1934 Peltier discovered an opposite phenomenon when a current goes through a junction of two different conductors it can generate or remove heat at the junction.

Since 1950s, scientists have developed techniques to convert in practice some waste heating energy into electricity and the field of energy conversion between heat and electric energy is named as thermoelectrics.

The thermoelectric efficiency of a material is assessed by a coefficient called figure of merit ZT which is defined as

2 e ep GS ZT T KK   (1-60)
where T is the absolute temperature, , , ee G S K and p K are the electrical conductance, the Seebeck coefficient, the electron thermal conductance and the phonon thermal conductance, respectively. It should be noted that e K includes the contribution of electrons to the two types of thermal transfer, i.e. convection and conduction process, while phonons carry heat only by conduction process, fully included in p K . The figure of merit ZT determines the maximum efficiency of energy conversion in a thermoelectric device [START_REF] Dollfus | Thermoelectric effects in graphene nanostructures[END_REF] max 0

11 . 1/ ch ZT ZT T T     (1-61)
where h T and c T are temperatures of hot and cold sites, respectively, and

  0 / h c h T T T  
is the Carnol efficiency for an ideal system. Though most materials are thermoelectric but there are not much materials with high efficiency for energy conversion. The most common material used in practice is Bi2Te3 with figure of merit ZT is bout 0.8-1. [START_REF] Chung | Complex bismuth chalcogenides as thermoelectrics Thermoelectrics[END_REF] In spite of very high electrical conductivity Graphene suffers from strong limitations for thermoelectric applications because of small Seebeck's coefficient and very high thermal conductance leading to small figure of merit ZT. [3,[START_REF] Zuev | Thermoelectric and magnetothermoelectric transport measurements of graphene[END_REF] Meanwhile p K can be calculated by formula (1-59), , e GS and e K can be calculated by Landauer's-Onsager's approach [START_REF] Agosta | Towards a dynamical approach to the calculation of the figure of merit of thermoelectric nanoscale devices[END_REF] via an intermediate function called Lorentz function:

        ,, 2 , n e ne f E T L T dE T E E hE         (1-62) With electron transmission   e TE obtained from Green's function method (1-50) or (1-52),   ,, e f E T  is the Fermi function. Then[86]                   2 0 1 0 2 1 2 0 ,, , 1 , , , 1 ,, 
,

e e G T e L T LT ST eT L T LT K T L T T L T                            (1-63)

Computational Techniques

In large systems with a big number of atoms, the matrix size of Hamiltonians is very large so it is very difficult to make inversion and . Some special techniques were developed to make simulations possible and more effortless. If we can divide a system into layers so that a certain layer only interacts with its nearest layers, the Hamiltonian of the system will be a tri-diagonal matrix of block layers. Then the surface Green's function of a contact can be computed by an iterative technique which was introduced first by Sancho [START_REF] Sancho | Quick iterative scheme for the calculation of transfer matrices: application to Mo (100[END_REF] and rewritten well with detail of computational steps in Ref. [START_REF] Li | Quantum conductance of graphene nanoribbons with edge defects[END_REF] Then the surface Green's function can be used to calculate self-energies. To calculate elements of device Green's function, recursive techniques [START_REF] Lewenkopf | The recursive Green's function method for graphene[END_REF] can be applied to filter useful elements Gij of device 

Examples: electrons and phonons in linear chain, graphene and Boron

Nitride (BN).

In this section we intend to apply the above models and methodologies in order to consider and review the physical properties of some basic systems. The first one is the simplest system with atoms linked together in a linear chain, this toy system is a good example for which we can implement analytical results that can be used to validate numerical results. The second system is graphene which is considered as a standard system in our study. The third one is Boron Nitride that is an insulator which consists of Boron and Nitrogen atoms in a honeycomb lattice as graphene. Because of complexity of methods, to be objective we will make some comparisons between our results and the results of published works to check our understanding in the use and control on calculation techniques. Within a first neighbor interaction model, the i-th atom only interacts with 1

i th  atoms, so from equation (1-24) we have .. , 1 , 1 0 0 .e .e i k a i k a ii i i i i H H H E         with 0 , 1 c 
,

ii i i H E H E  
. This is a scalar equation so it immediately gives   .. 00 .e .e 2 .cos . To investigate electron transport in systems formed of a chain of atoms, we consider a system as in Figure 1-11 with N atoms in the scattering region, two contacts are assumed to be semiinfinite. A potential V is also assumed to have an influence on the electronic properties of the device part. First we will examine transmission of the system using the Green's function method, then we will use Scattering method in order to compare the results of these two approaches. For the Green's function method, thanks to the simplicity of the system we will solve analytically the surface Green's function of the contacts and then make a comparison with the numerical results obtained by Sancho iterative technique.

ik a ik a c c c E E E E E E k a       . The dispersion is plotted in

Green's function method

First of all, the Hamiltonian of each part: the left contact HL, the device HD and the right contact can be written independently as We assume that the two contacts only interact with the active region (device) and do not interact together. The coupling between atoms in the contacts and in the device can also 

  0. LL E i H G I    
Or in details we have 

0 0 0 0 0 0 . . . . . . . . . . . . c c c L c R c c c c E E E E E H E E H E E E E E E E                                   0 1 2 . . r r r 0 1 2 . . r r r 2 1 0 . . l l l 2 1 0 . . l l l 0 0 0 . . .. c c c D c c c E V E E E V E H E E E E V                     1 2 . . N 1 2 . . N ' ' . . . 0 0 . 0 0 , 0 0 0 . 0 0 . . . c DL DR c E E                                     0 1 2 . . r r
l l l c l l l c c l l l c E i E E G G G E E i E E G G G E E i E G G G                                                      
Where 0  is a very small number added into energy to avoid divergence, 0 l G is the surface Green's function of the left contact that we need to find. It is easy to derive equations

    20 0 10 0 10 0 0 00 01 l l l cc ll c E G E i E G E G E G E i E G                  
The solution of these equations can be found in the form of the Bloch wave [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF] . 00 .

l l ik na n G G e 
and we can get

0 . 0 0 2 cos 1 c l ik a c E i E E ka Ge E           (1-64)
The first expression is actually the energy dispersion that we obtained in section 1.7.1.1.1, the second one is thus the analytical form of the surface Green's function of the left contact. We get an exact formula for the right contact. We use this analytical result to check the numerical outcome which can be obtained from the standard Sancho's iterative scheme [START_REF] Sancho | Quick iterative scheme for the calculation of transfer matrices: application to Mo (100[END_REF], the comparison is shown in Figure 1-12. It can be seen clearly that the two results are totally identical.

The surface Green's function in can be used to compute the self-energy (1-44) and the injection rate and it is thus possible to calculate the device Green's function and then the transmission. In Figure 1-13 we show the transmission in the system for several situations of coupling energy and potential V. In case where no potential is applied, V = 0, and Ec' = Ec we have perfect junctions between the device and the contacts and the system is homogenous so there is no scattering and transmission is perfectly equal to one as we observe from the solid blue line in Figure 1-13. In the case Ec' = 1.5Ec we observe significant transmission only in the region of energy larger than zero meanwhile electron is blocked in the lower energy region. This is because this high energy coupling at the junctions of the device and the contacts cause a barrier potential obstructing the transmission of electrons from the contacts to the device. Only high energy electrons can pass through the barrier potential and contribute to the total transmission. The transmission can also be obtained by the scattering method in which the incoming, reflection and transmission waves of a scattering region are considered using continuous condition of wave functions. We illustrate this method by considering a simple system with only two atoms in the active region as schematized in These wave functions must satisfy the continuity conditions at the junctions:
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        1 2 11 22 LD DR nn nn                    These equations lead to .. 1 2. 2 . ik a ik a ik a e r e te           (1-65)
Moreover, we have the Schrödinger equation for the whole system

    1 0 1 2 2 1 0 2 0 3 cc cc E E E EE EV E E V                      (1-66) where     0 3 3 01 3. L ika R nr n t e               (1-67)
Plugging and (1-67) into (1-66) we have a system equations of t and r. With few step of derivation we can get the final result for transmission as 
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Current: comparison with Figure in Data's book

So far we have considered transport in devices made of linear chains without any bias potential between the left and right contacts. In case where a bias is applied, we will have a current through the channel that can be calculated by . Here we assume there is a bias applied for the device in 

Phonons

In this section phonon dispersion and transmission will be considered. Similarly to the case of electrons, we can define the Green's function for the contacts using

  2 0 . LL m i K G I     
and the surface Green's function can be obtained in the form 0 .

1

l iq a cc G k k e k    (1-70)
This result is used to calculate the self-energies and then the phonon transmission. In Figure 1-20 we show the transmission spectrum of phonon for different cases of coupling stiffness k.

The results indicate that if the coupling between the contacts and the device is weak (for example, k = 0.2kc), vibration is only transmitted at low frequencies and significantly reduced at higher frequencies (blue line). In the case this coupling is strong, transmission retains at good values in a longer range of frequency. In the both cases, some resonances can be observed when phonons vibrate at proper frequencies of the atoms in the device. 

Graphene

It is now time to make a review of graphene. Here we summarize basic electronic and thermal properties of graphene with different configurations, from 2D structures to 1D with ribbons.

2D Graphene

Figure 1-21: structure of 2D graphene. In nearest neighbor interaction, the unit cell (n,m) (red) only interacts with its four nearest cells.

Graphene has a honeycomb structure in which the distance between two nearest Carbon atoms is a0 = 0.142 nm. [1] Due to the difference of geometrical positions, atoms in a graphene sheet can be sorted into two kinds of atoms: atoms sub-lattice A and sub-lattice B. In 2D graphene structure, a unit cell contains two atoms one of each sub-lattice, as we see in 

                  (1-71)
For nearest TB calculation, we can solve the Eigen value equation 00
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are Hamiltonians of the center cell (n,m) and the couplings of this cell and its neighbors. By diagonalizing h we can obtain exactly the energy dispersion as We compare our results with results obtained by two other works, i.e. ref. [START_REF] Reich | Tight-binding description of graphene[END_REF] and ref. [START_REF] Carpio | Dislocations in graphene New[END_REF]. The phonon dispersion of 2D graphene was also calculated. Due to sophistication in calculations for phonons, the detail is not shown here but we make another comparison between our calculation and results demonstrated by Wirtz el all. [START_REF] Wirtz | The phonon dispersion of graphite revisited[END_REF] for phonon dispersion of 2D graphene. It can be seen clearly from both figures that our results are identical to those of the previous works, which validates again our numerical model. Comparison of phonon dispersion between our calculation and results obtained by Wirtz el all [START_REF] Wirtz | The phonon dispersion of graphite revisited[END_REF]. FC model up to 4 th nearest neighbor interaction, using off-diagonal parameters of Wirtz.
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Ribbons

We also validate the methodologies for the case of ribbons as shown in In this section we review the electronic and thermal properties of BN. In Figure 1-28 is the illustration of the 2D structure of BN. Solving the Eigen value problem as we have made for 2D graphene we can obtain the energy dispersion for the case of 2D BN as
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In the case of BN, onsite energies of Boron and Nitrogen atoms are unequal and nonzero while onsite energy of carbon atoms in graphene is almost equal to zero which makes the dispersions (1-74) a bit different from . With TB parameters from ref. [START_REF] Zhao | Tight-binding model for the electronic structures of SiC and BN nanoribbons[END_REF] we can plot the band structure for 2D BN as in We also computed the phonon dispersion for 2D BN and show it in Figure 1-30. The parameters were taken from [START_REF] Xiao | Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes[END_REF]. Unlike electronic properties in which graphene is semimetallic and BN is insulating, frequency ranges of BN and Graphene are not so different, i.e.

vibration modes of BN is in the range [0, 1420 cm -1 ] and of Graphene is in the range [0, 1590 cm -1 ], showing that BN is also a good thermal material as graphene. It is thus very promising to integrate graphene and BN in a heterostructure so that we can modulate strongly the phonon conductance of the system, which should make it possible to enhance thermoelectric performance in graphene.

In Figure 1-31 we show the phonon conductance for armchair BN ribbons and we compare our results with that of ref. [START_REF] Ouyang | Thermal transport in hexagonal boron nitride nanoribbons[END_REF] Thus our results on thermal transport are also in excellent agreement with the results of other works. Note that we have obtained transport results by using standard procedures of Green's function formalism (Surface Green by Sancho's iterative procedure, device Green's function by recursive technique) as as shown in Figure 12345678.

Besides these results, we also have excellent agreement on many other results such as transmission, electrical conductance, Seebeck coefficient, figure of merit ZT for graphene and BN. However, it is not useful to show all of them here. 

Conclusions

In this chapter I have reviewed some basic concepts such as tight binding, force constant models and Green's formalism. Some important physical quantities in energy and transport studies were also highlighted. The modelling and methods were then applied to investigate energy band, DOS, transmission, current, conductance in some well-known systems such as linear atomic chain, graphene and Boron Nitride (BN). Many comparisons between analytical and numerical results, and between our results and others of published works were also provided to validate the reliance on methodologies used. These methods and techniques will be used to study electronic and thermoelectric properties of graphene/BN heterostructures in the next chapters.

Chapter 2:

Graphene/BN heterostructures with tunable gap and high electron velocity

In this chapter we study a wide range of possible configurations of armchair and zigzag graphene/BN hybrid nanoribbons. By using tight binding calculation, we investigate a series of different in-plane Graphene/BN ribbons and show that tunable gaps and high electron velocity can be observed in many configurations of Graphene/BN heterostructures.

Introduction

In spite of excellent transport properties, making it a material of choice for nanoelectronic applications, graphene suffers from the lack of an energy bandgap, which plays a very important role in device operation [1]. However, another 2D material called hexagonal-Boron Nitride (h-BN) with similar geometrical structure has a very large gap (~5.0 eV), as shown in Chapter 1 and in Refs. [START_REF] Zheng | Edge States of Zigzag Boron Nitride Nanoribbons[END_REF][START_REF] Ribeiro | Stability of boron nitride bilayers: Ground-state energies, interlayer distances, and tight-binding description[END_REF] as well.

It is thus natural that the idea of combining Graphene and BN has been recently raised and has suggested a new strategy to open and control bandgap in graphene. This new direction has been demonstrated experimentally in several works including the use of B (N) atoms as doping elements in graphene sheets [START_REF] Panchakarla | Synthesis, Structure, and Properties of Boronand Nitrogen-Doped Graphene[END_REF] or the growth of in-plane structures of Graphene and BN domains [START_REF] Gao | Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges[END_REF][START_REF] Ci | Atomic layers of hybridized boron nitride and graphene domains[END_REF][START_REF] Sutter | Interface formation in monolayer graphene-boron nitride heterostructures[END_REF][START_REF] Liu | In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[END_REF][START_REF] Lu | Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride[END_REF]. Regarding the synthesis of in-plane Graphene/BN hybrid structures, in Ref. [START_REF] Liu | In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[END_REF] Liu et al. reported the fabrication process with controlled domain sizes from nanometre scale to micrometre scale. The three main steps of the process are illustrated in Figure 2-1(i): First (1) ammonia borane (NH3-BH3) powder was used to grow h-BN films on copper/nickel substrates using chemical vapor deposition (CVD) method. Next, (2) a defined part of the h-BN was removed by laser-cut masks. Then, (3) few layer graphene was grown on the etched region by using a carbon source such as CH4.

Photolithography can be used to produce masks with different patterns for argon ion etching. This technique can provide graphene/BN regions with sizes of a few micrometres. To create nanoscale patterns, the focused ion beam (FIB) was used as an etching method. The fabricated patterns can be examined by different techniques such as scanning electron microscopy 69 (SEM), or optical imaging. In (c) domains were controlled using FIB technique, the width of strips, from top to bottom, are 1 mm, 500 nm, 200 nm and 100 nm, respectively. Scale bar, 1 mm. Reference: Liu et al. [START_REF] Liu | In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[END_REF] The interface between graphene and BN can be characterized by several techniques, as for instance Raman spectroscopy, atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM).

The Raman spectra can be used to identify very well the regions of pure graphene or pure BN and also their interfaces. If the Raman spectrum obtained from the h-BN regions only shows a vibration mode with the peak around 1360 cm -1 , three peaks can be observed in the spectrum of the Graphene regions, including the peaks around 1350 cm -1 , 1590 cm -1 and 2700 cm -1 . All these intrinsic modes from both graphene and BN can be observed at the interface (see Figure 2-2). The interface can be also visible with either annular dark field (ADF) (Figure 2 The fabrication method and techniques presented above were also used successfully in several works to synthesize in-plane graphene/BN with either armchair or zigzag interface. [START_REF] Gao | Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges[END_REF][START_REF] Ci | Atomic layers of hybridized boron nitride and graphene domains[END_REF] On theoretical side, the advancement of research is also very exciting with different works on bilayer Graphene/BN [START_REF] Giovannetti | Substrateinduced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations[END_REF][START_REF] Sławińska | Energy gap tuning in graphene on hexagonal boron nitride bilayer system[END_REF][START_REF] Ramasubramaniam | Tunable band gaps in bilayer graphene-BN heterostructures[END_REF][START_REF] Sakai | Electronic properties of graphene/h-BN bilayer superlattices[END_REF], B(N) doping in graphene [START_REF] Lambin | Long-range interactions between substitutional nitrogen dopants in graphene: Electronic properties calculations[END_REF][START_REF] Gebhardt | Growth and electronic structure of boron-doped graphene[END_REF] and in-plane domains of Graphene/BN [START_REF] Liu | Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges[END_REF][START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Jung | Transport properties of graphene nanoroads in boron nitride sheets[END_REF][START_REF] Tang | Tunable band gap and magnetism in C2x-(BN)y sheets and ribbons[END_REF][START_REF] Jungthawan | Electronic structures of graphene/boron nitride sheet superlattices[END_REF][START_REF] Noei | A computational study on the electronic properties of armchair graphene nanoribbons confined by boron nitride[END_REF][105][START_REF] Chanana | Performance analysis of boron nitride embedded armchair graphene nanoribbon metal-oxide-semiconductor field effect transistor with Stone Wales defects[END_REF][START_REF] Bhowmick | Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride[END_REF][108]. Most of these works have been focused on solving the gapless problem of graphene. In Ref. [START_REF] Giovannetti | Substrateinduced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations[END_REF], by using ab initio calculation, Giovannetti et al. demonstrated that a relative large bandgap about 53 meV can be open in a structure of a Graphene sheet on top of a lattice-matched BN substrate. In the case of bilayer Graphene/BN, it was also reported that bandgap is tunable from 0 to about 130 meV by using a vertical electric field. [START_REF] Sławińska | Energy gap tuning in graphene on hexagonal boron nitride bilayer system[END_REF][START_REF] Ramasubramaniam | Tunable band gaps in bilayer graphene-BN heterostructures[END_REF] In the case of in-plane Graphene/BN heterostructures bandgap can be even larger thanks to confinement effect in ribbons. In Refs. [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF]108] the authors showed that bandgap in a hybrid structure with an armchair graphene ribbon embedded between two BN armchair ribbons may range from few hundred meV to larger than 1eV for different subribbon widths. In-plane zigzag structure of a zigzag Graphene ribbon and a zigzag BN ribbon with Hydrogenated edges was also confirmed to exhibit bandgap with narrow subribbons. [START_REF] Liu | Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges[END_REF] There are thus several works that have paid attention on bandgap opening in inplane Graphene/BN hybrid structure, but a systematic study is still missing. Additionally, we know that transport properties not only depend on bandgap but also on other electrical properties of energy band such as density of states, group velocity, Fermi energy,... Moreover, almost all theoretical works have been based on ab initio calculations which are usually limited to small ribbon widths, i.e. in the range 1-2 nm.

In this work, by using Tight Binding (TB) simulation that allows us to consider a larger range of ribbon widths, two types of structures of G/BN are investigated: (i) structures with interfaces perpendicular to the transport direction and (ii) structures with interfaces parallel to the transport direction. We demonstrate that tunable bandgaps are open in these structures and we also examine further electronic properties of band structure to determine which configuration is better for electronic transport. This chapter is organized as follows: In section 2.2 we briefly describe the models and methodologies we have used for the chapter. In section 2.3, we present and discuss in details the results obtained for armchair (section 2.3.1) and zigzag ribbons (section 2.3.2). Finally, we make some concluding remarks in section 2.4.

The modeling and methodologies

We will consider many possible configurations of armchair and zigzag hybrid Graphene/BN ribbon. For each kind of edge orientation (armchair or zigzag), we can distinguish different kinds of hybrid structures:

(1) First kind of structures: interfaces perpendicular to the transport direction. These structures with alternating arrangement of graphene and BN sections forming a superlattice are called superlattice structures.

(2) Second kind of structures: interfaces parallel to the transport direction. There are basically two configurations of this type of heterostructures: (i) a system containing one graphene and one BN ribbon which is called armchair (zigzag) G/BN system, and (ii) a system containing two graphene (BN) ribbons separated by a BN (Graphene) ribbon which is called armchair

(zigzag) BN/G/BN (G/BN/G) structure.
Electronic energy bands of these structures will be first investigated on the basis of a simple tight binding model with nearest neighbor interactions with the aim of understanding the physics with qualitative results. More sophisticated calculation will be described for specific models in each chapter later. Within this simple approach, the Tight Binding Hamiltonian can be in the form of formula (1-21) in chapter 1:

, i ij i i j H i i t i j    (2-1)
Here we use the sign "-" before ij t which implicitly assumes that ij t is taken as a positive number in the calculation. Since the structures are periodic along x direction, the Schrodinger equation can be simplified into the equation of one unit cell as we demonstrated in chapter 1: 00 ..

hE   (2-2)
where , 1 , 1 H and the coupling of this unit cell to its neighboring unit cells (n-1)-th and (n+1)-th via ,1 nn H  and ,1 nn H  . Since the lattice constant difference of Graphene and BN is less than 5% making stable the in-plane interfaces of Graphene and BN, which has been confirmed by ab initio calculation with structure optimization [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF] and also by experimental observation [START_REF] Liu | In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[END_REF], in all calculations we take the distance between two nearest atoms equal to 0 0.142 nm a  and neglect the relaxation at the interfaces. The periodic constant along x is 0 3

x aa  for armchair structures and 0 3

x aa  for zigzag structures. Parameters of on-site energies and hoping parameters are taken from ref. [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF] (see Table 2-1) which were parameterized to fit to first principles calculation. 

Results and discussion

In this section we focus on examining the electronic band structures of different armchair and zigzag ribbons of Graphene/BN heterostructures, in particular in terms of bandgap and transport properties. In chapter 1 we have seen that the energy gap in armchair graphene (also in armchair BN) ribbons are sorted into three groups according to the number of dimer lines M along the width: M = 3p, 3p + 1 and 3p + 2. It is thus needed to consider the modulation of the gap with different ribbon width M. It is also noticed that the size of a super cell (NC + NBN) and the ratio between graphene and BN sections in a cell will certainly affect the electronic properties of the structure because they determine the range of electron scattering.

To analyze the influence of these factors we will look at the dependence of bandgap on the ratio r = NBN / NC for each group of width M. We will consider three possible cases of r: r = 1 for equal contributions of graphene and BN into a cell, r > 1 where BN dominates the structure and r < 1 where graphene dominates the structure. show that the bandgap in this heterostructure of graphene/BN is sensitive to the size of graphene regions and less sensitive to the length of BN regions. This result can be understood because BN is an insulator so it only has significant effect to the energy band of the heterostructure at high energy. Meanwhile in the low energy region, the energy bands come mainly from electron orbitals of Carbon atoms. Moreover, the bandgap is defined from the lowest conduction band and the highest valance band which are in the low energy region.

Hence, the bandgap must strongly depend on the graphene region. In principle, the bandgap decreases with the increase of the length NC of graphene regions as we can observe in This result is in agreement with first-principles calculation for narrow cells of the superlattice structure studied by Li et al. [START_REF] Li | Band gap engineering of graphene/h-BN hybrid superlattices nanoribbons[END_REF] The gap remains unchanged even for large BN areas (Figure 23456789). We can thus conclude that graphene dominates the bandgap size in the superlattice armchair graphene/BN structure.
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The parallel interface structures of armchair graphene/BN ribbons

We are now going to examine the bandgap in the three parallel interface structures as sketched in A similar result can also be seen in The armchair G/BN/G structure is also a good example to examine the effect of difference in the width of the two Graphene sub-ribbons. (eV)

E gap (eV) 3p, M BN =1 3p+1, M BN =1 3p+2, M BN =1 3p, M BN =10 3p+1, M BN =10 3p+2, M BN =10 ( 
M CC1 =M CC2 =15 M CC1 =M CC2 =16 M CC1 =M CC2 =17
semi-metallic (eV) First of all, we can see that DOS in both systems are not perfectly symmetric around zero energy, which means that the neutrality points EN in both systems are no longer localized at zero energy like in the case of pure armchair graphene. In fact, It was found out that EN = 0.14 eV for the superlattice structure and 0.198 eV for the G/BN/G structure. The shift of the neutrality point of the band structure is due to the fact that the coupling of B and N atoms with C atoms are different, which breaks the symmetry in energy.

M CC1 =15, M CC2 =25 M CC1 =M CC2 =15 M CC1 =M CC2 =25
In Figure 2-16 we show a comparison of group velocity in the first conduction band of these two structures with those of pure armchair graphene and BN ribbons of the same width. The embedded structure shows a good behavior for transport with high group velocity compared to very low group velocity in BN, and, to a smaller extent, in the superlattice structure. This result is not surprising because perpendicular scattering is usually stronger than that in the parallel directions. Thus the armchair G/BN/G structure and other parallel interface structures (armchair G/BN and BN/G/BN) appear as good candidates for electronic applications due to both a tunable bandgap and a high electron velocity. 

Bandgap opening in zigzag Graphene ribbons

We now focus our attention on the parallel interfaces for zigzag structures of graphene/BN. It is worth to notice that edge states are peculiar states in zigzag ribbons of Graphene. [START_REF] Wakabayashi | Electronic states of graphene nanoribbons and analytical solutions[END_REF][START_REF] Nakada | Edge state in graphene ribbons: Nanometer size effect and edge shape dependence[END_REF][START_REF] Fujita | Peculiar Localized State at Zigzag Graphite Edge[END_REF], it is thus interesting to consider this kind of states in zigzag structures of Graphene/BN. With the aim of focusing mainly on the bandgap opening in this chapter, the study of edge states is not presented here but in another chapter (chapter 4). 

Conclusions

We have investigated the bandgap in a series of in-plane graphene/BN ribbons. By using first shown that the structure where a Graphene ribbon is modified at both edges by BN ribbons has the largest gap compared to the others. In particular, for armchair hybrid ribbons, with the opening of bandgap for group 3p + 2, a new hierarchy is set up with energy gap of the groups in order 3p > 3p + 1 > 3p + 2 instead of 3p + 1 > 3p > 3p + 2 as reported for pure armchair graphene.

Chapter 3:

Modulation of bandgap and current in Graphene/BN nanoribbons by tuning the transverse electric field

In this chapter we propose a new approach to designing efficient electronic switches based on Graphene/BN heterostructures. By means of atomistic Tight Binding simulations, we investigate heterostructures made of an armchair BN nanoribbon sided by two armchair graphene ribbons where significant band gaps can be opened. More interestingly, we show that a band gap of about 0.55 eV can be strongly suppressed by applying a relatively weak transverse electric field of 10 mV/Å. Additionally, by using NEGF simulation, we show that this effect can be successfully used to control the current in electron devices even at small biases and small length. An on/off current ratio higher than 10 4 is achieved at room temperature.

Introduction

Bandgap opening in graphene is a critical issue to make this outstanding material suitable for a wide range of applications. Nanostructuring strategies, as cutting graphene into narrow strips to form graphene nanoribbons (GNRs) [START_REF] Han | Energy band-gap engineering of graphene nanoribbons[END_REF] or punching a periodic array of nanoholes into a graphene sheet to form a graphene nanomesh (GNM) [START_REF] Bai | Graphene nanomesh[END_REF] have been shown to be efficient to generate a bandgap. However, the width of GNRs and neck width of GNMs must be very small, typically smaller than 2-3 nm, for creating a significant bandgap. Such small dimensions are difficult to achieve and give rise to problems of reproducibility and edge disorder control. [START_REF] Nguyen | Disorder effects on electronic bandgap and transport in graphene-nanomesh-based structures[END_REF][START_REF] Querlioz | Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder[END_REF] It is also possible to use an external electric field to generate and/or modulate the bandgap in graphene or graphene-like structures. This technique has been first demonstrated in carbon nanotubes (CNTs) by placing a CNT in an electric field perpendicular to the tube axis. [START_REF] O'keeffe | Bandstructure modulation for carbon nanotubes in a uniform electric field[END_REF] In ribbons, a similar effect of transverse electric field applied along the width has been predicted for GNRs, [START_REF] Chang | Electronic and optical properties of a nanographite ribbon in an electric field[END_REF][START_REF] Son | Half-metallic graphene nanoribbons[END_REF][START_REF] Chung | Effects of transverse electric fields on quasi-landau levels in zigzag graphene nanoribbons[END_REF] bi-layer GNRs[117] and BN ribbons, [START_REF] Zhang | Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations[END_REF] as a consequence of field-induced symmetry breaking. In the case of GNRs, the field may open a small gap in metallic zigzag ribbons. It has a negligible effect on metallic armchair ribbons, [START_REF] Chang | Electronic and optical properties of a nanographite ribbon in an electric field[END_REF]while it reduces the gap of semiconducting ones. However, in an armchair GNR of reasonable width, e.g. with 69 dimer lines, the bandgap reduces only for electric field higher than 4 mV/Å and can be modulated in a limited range of 0.15 eV. [START_REF] Chang | Electronic and optical properties of a nanographite ribbon in an electric field[END_REF] In BN ribbons, the significant suppression of the large bandgap requires electric fields of strength higher than hundreds or even thousands of mV/Å. [START_REF] Zhang | Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations[END_REF] An external field applied perpendicularly to the sheets can also open and modulate a bandgap, as shown experimentally in bilayer graphene [START_REF] Oostinga | Gate-induced insulating state in bilayer graphene devices[END_REF] and theoretically in bilayer BN [START_REF] Yang | Modulation of electronic properties of hexagonal boron nitride bilayers by an electric field: A first principles study[END_REF] as a consequence of the difference of potential between both layers. However, using this approach, the controllable bandgap is limited to 0.25 eV in bilayer graphene [START_REF] Xia | Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature[END_REF] and the modulation of bandgap in BN bilayers is not enough to make this material suitable for carrier transport.

In chapter 2 we have shown the possibility to grow hybrid monolayers consisting of a mixture of BN and carbon nanodomains, [START_REF] Ci | Atomic layers of hybridized boron nitride and graphene domains[END_REF][START_REF] Sutter | Interface formation in monolayer graphene-boron nitride heterostructures[END_REF][START_REF] Liu | In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[END_REF] which suggested new strategies of bandgap engineering and proposal of devices. [START_REF] Liu | In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[END_REF][START_REF] Nguyen | Resonant tunnelling diodes based on graphene/h-BN heterostructure[END_REF] We also demonstrated that bandgap is open in the case of metallic Graphene making all in-plane Graphene/BN ribbons semiconducting and suitable for electronic device applications.

In this chapter we demonstrate that bandgap in graphene/BN structures can be also modulated via an external transverse electric field, making these structures more flexible for a larger range of applications. By using an atomistic Tight Binding approach, we show that an external transverse electric field applied along the width of a hybrid armchair graphene/BN ribbon can modulate the bandgap over a wide range, typically from more than 0.5 eV to less than 0.08 eV. It is worth noting that this effect is obtained for moderate electric fields, smaller than 20 mV/Å. On the basis of this effect, an electronic device where such a ribbon is connected to two graphene leads is proposed. According to our ballistic Green's functionbased quantum simulations, an on/off current ratio higher than 10 4 can be achieved due to the field-induced modulation of bandgap.

Modelling and methodology

In chapter 2 we have demonstrated that all armchair G/BN hybrid ribbons are semiconducting and armchair structures with interfaces parallel to transport direction exhibit better transport properties (higher group velocity) compared to that of superlattice structures. Among several configurations of zigzag Graphene/BN structures, a bandgap appears only in the three structures with B-C, N-C and B-C--C-N interface bonding. These structures with finite bandgap are thus very promising for switching current in electronic devices. We will see that in some of them it is possible to efficiently modulate the bandgap on a wide range using a reasonably small electric field, i.e. requiring quite small applied voltage. Refs. [START_REF] Chang | Electronic and optical properties of a nanographite ribbon in an electric field[END_REF][START_REF] Zhang | Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations[END_REF][START_REF] Ritter | Energy-gap modulations of graphene ribbons under external fields: A theoretical study[END_REF] showed indeed that the modulation of bandgap can result from the difference of applied voltage between the two edges of the ribbon. Moreover, in chapter 2 we have seen that the Based on this analysis, here we focus our study on armchair G/BN/G ribbons under the effect of a transverse electric field. The system is schematized in Figure 3-1. Using the same notations as in chapter 2, the width of each sub-ribbon is characterized by the numbers of dimer lines MCC1, MCC2, and MBN. For the band structure analysis, the ribbon is considered to be infinite and periodic along x axis. For MCC1 = MCC2 = 15, MBN = 29, i.e. for a total ribbon width W of about 7.1 nm, the calculated bandgap is about 0.55 eV. Two side gates are placed along the edges of the ribbon. At these gates, two potentials V1 and V2 equal to -V0/2 and +V0/2, respectively, are applied to generate a transverse electric field F0 (F0=V0/W) along the y axis. It should be emphasized here that F0 is the strength of electric field in free space, before we put the Graphene/BN ribbon inside the region submitted to this electric field. This field is called external field throughout this chapter.

The electronic energy band structure is investigated using a Tight-Binding model for the atomic structures limited to the first nearest neighbor interaction as in equation (2-1) in chapter 2. However, a new term is added due to the contribution from the external electric field, [START_REF] Ritter | Energy-gap modulations of graphene ribbons under external fields: A theoretical study[END_REF] i.e., using the Hamiltonian ,
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where the on-site energy i  and hoping parameter ij t have been taken from is the electrostatic potential energy at i-th site. We will first approach the problem of the effect of electric field using a linear potential with the aim of understanding the physics and making a comparison with results previously obtained for pure armchair graphene ribbons. However, unlike the case of pure graphene or BN structures, [START_REF] Chang | Electronic and optical properties of a nanographite ribbon in an electric field[END_REF][START_REF] Zhang | Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations[END_REF][START_REF] Ritter | Energy-gap modulations of graphene ribbons under external fields: A theoretical study[END_REF] in our inhomogeneous heterostructures with different regions made of different materials (graphene, BN), it is necessary to calculate the local electric field in each region. To generalize problem, we assume there are P different regions placed in an electric field generated by two side gates V-and V+ as shown in Figure 3-2. The field F0 is considered as an average field so that 0 .

Results and discussions

Modulation of bandgap under effect of by a transverse electric field: First approach

V V F d  
. The local field in each region can be found by solving the continuity conditions of dielectric vectors and scalar potentials at the interfaces, i.e. for first condition 12 ...

P D D D    (3-2)
The second condition is equivalent to the equation 12 ...

P V V V V V          (3-3)
where

1 1 1 2 2 2
. , . ,..., .

P P P V F d V F d V F d       (3-4)
Solving (3-2) and (3-3) by using (3-4) and relations 

0 i i i DF   and 0 . V V F d   we can get 0 . i i FF    (3-5) 
                             (3-6)
The electrostatic potential in the i-th region (i=1, P) can be calculated as

  1 1 1 . i i i m m V y V F y d           (3-7) where 1 1 1 . i i m m m V V F d      (3-8)
is the potential at the end of (i-1)-th region.

In the systems consisting of Graphene and BN ribbons, we assume the in-plane relative permittivity to be 1.8 in graphene [START_REF] Kaxiras | Electric-field dependence of the effective dielectric constant in graphene[END_REF] and 3 in BN [START_REF] Dean | Boron nitride substrates for high-quality graphene electronics[END_REF].

From the electrostatic potential (3-7), the energy potential U eV  is calculated for each atom position and added into the onsite energy of the atom. It is then added in the Hamiltonian (3-1) and the Eigenvalue problem (2-2) in chapter 2 can be solved to find out the band structure.

In of electric field on the permittivity in graphene has been reported. [START_REF] Kaxiras | Electric-field dependence of the effective dielectric constant in graphene[END_REF] It was shown that both in-plane and out-of-plane permittivity may vary significantly under strong field of some hundreds of mV/Å. Moreover, Refs. [START_REF] Guo | Giant Axial Electrostrictive Deformation in Carbon Nanotubes[END_REF][START_REF] Tang | Electrostrictive effect on electronic structures of carbon nanotubes[END_REF] have shown that such strong field could also induce mechanical deformation of the lattice that could dramatically change the electronic structure. Thus the primary result observed in armchair G/BN/G shows that these phenomena can be neglected in the range of field considered here, i.e. smaller than 20 mV/Å. Hence, using G/BN/G heterostructures under transverse electric field seems to be more efficient than using pure Graphene ribbons since we can modulate a wider range of bandgap by just applying a quite weak electric field. More details on this hybrid structure under the effect of field will be analyzed in the next section using self-consistent simulation.

Modulation of bandgap under effect of by a transverse electric field: Selfconsistent study 3.3.2.1 The couple of Schrödinger-Poisson equations

In some previous works [START_REF] Chang | Electronic and optical properties of a nanographite ribbon in an electric field[END_REF][START_REF] Chung | Effects of transverse electric fields on quasi-landau levels in zigzag graphene nanoribbons[END_REF] and in the previous section, the electric field-induced redistribution of charge was neglected and the electrostatic potential in Graphene ribbons was considered as a linear function of atom position along the ribbon width. In fact, this simplification may affect the accuracy of the results because the redistribution of charge inside the ribbon can make the potential profile no longer linear and to reduce the effect of field. In this work, we will perform a self-consistent simulation to compute the potential profile via a coupled Schrödinger-Poisson solver. The hole and electron densities were computed from the wave functions and Eigen-energy values using equations and in chapter 1, by just replacing F E by the neutrality point energy N E to ensure that the total charge of the system is neutral.

To calculate electron and hole distributions, we first have to determine the position of the neutrality point. Using the condition that the number of electrons and holes must be equal at this point, we can define N E by solving the equation:

    he rr n r n r   (3-9)
The results of     , he n r n r are very sensitive to the position of EN. In the case of pure graphene ribbons, the neutral point lays at zero energy. However, in the structure studied here the position is localized somewhere near the zero energy. This is due to the difference of bonding energy between B-C and N-C atoms leading to an asymmetry between conduction and valance bands. The exact position of EN was numerically determined and is shown in . [START_REF] Hashimoto | Atomic Correlation Between Adjacent Graphene Layers in Double-Wall Carbon Nanotubes[END_REF] The potential can be found from the Poisson's equation as in equation in chapter 1, i.e.:

  3 0 D V        (3-10)
In the self-consistent procedure, the new potential resulting from the Poisson equation is compared to the initial potential by a ratio which is defined by

      norm norm norm out in out in VV r VV    (3-11)
If this number is not small enough, we construct a new potential  

1 i i i i in in out in V V V V     
, where  is a small number to get convergence. We put this potential in to the Schrödinger's equation and solve again the coupled Schrodinger-Poisson equations . This procedure is repeated until r is as small as we desire. In our simulation, r and  were chosen equal to 10 -4 and 0.1, respectively. natural number. This classification of charge is similar to the energy rule demonstrated in armchair graphene. [START_REF] Zheng | Analytical study of electronic 190 structure in armchair graphene nanoribbons[END_REF] We checked that it is the same for all other honeycomb armchair structures such as pure graphene and BN ribbons (no shown). In Figure 3456, the potential profiles (with CR) are plotted for different electric fields F0 between 3 and 20 mV/Å. At external field high enough to induce significant CR effect, the local electric field in the device is no longer distributed uniformly along the width. While a high field builds up near the ribbon edges where the mobile charges induce a strong screening effect, the field remains relatively small inside the BN sub-ribbon. At external fields F0 higher than 15 mV/Å, the direction of the local field in the BN region even tends to reverse. 
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The band structure under effect of the external electric field

The band structures of the studied hetero-structure are displayed in The electron effective mass in the lowest conduction band is also computed using equation and plotted in Figure 3-8 as a function of the external field. At zero field, the calculated effective mass is relatively small and equal to 0.069m0 where m0 is the electron rest mass.

This effective mass slightly increases up to 0.077m0 at field of 9 mV/Å. At higher field, the effect of charge redistribution not only affects the energy gap but also the shape of the bands.

The saturation behavior of the gap is associated with a strong increase of the effective mass that reaches 0.174m0 at F0 = 20 mV/Å. The CR effect limits the band mixing between the lowest conduction band and highest valence band. This resistance to the mixing results in the flattening of the bands.

Tuning of current using transverse electric fields

Electrostatic gates are usually used to control the free charge density in the channel by shifting the Fermi level while the energy gap and the shape of the energy bands remain The applied voltages in the two side gates of the device are equal to V1 = -EF and V2 = V0-EF, respectively. This bias generates an external field F0 = V0/W which is used to modulate the gap in the active region. In the off-regime where F0 is nearly zero, as the side gate potential is equal to -EF, the Fermi level in the contacts is aligned to the middle of the large gap existing in the active region. Hence, a very low off-current is expected. The increase of the potential V0, applied on side gate 2, switches on the device. Indeed, the associated increase of F0 induces a reduction of the band-gap that finally increases the value of the current. Moreover, the increase of the potential V0 generates a standard field-effect, i.e., it induces an increase of the charge density in the device which reinforces the effect of the gap modulation to switch on the device. Thus, an excellent on-off current ratio is expected in this device.

The simulation of electron transport was performed within the ballistic approximation. The quantum transport was treated by means of the previous tight-binding description coupled to the non-equilibrium Green's function approach [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF][START_REF] Lewenkopf | The recursive Green's function method for graphene[END_REF] where the transmission   

F 0 = 0, V b = 0.1 V

Figure 3-12:

The current at a low bias Vb = 0.1 V and no electric field is applied. This current (OFF-current) becomes smaller when increasing the length of the active region.

Conclusions

In conclusion, we have demonstrated the effect of a moderate transverse electric field on the effective modulation and suppression of the energy bandgap in an armchair Graphene/BN structure, by considering carefully the effect of charge redistribution at high field. We have shown that the gap can be modulated from 0. parity effect is also found with none zero conductance for both even and odd number of chain lines. These specific properties suggest new ways to engineer and control the transport properties of graphene nanostructures with zigzag edges.

Introduction

Perfect GNRs with edges oriented along the zigzag direction (ZGNRs), have actually zero bandgap regardless of the GNR width. [START_REF] Wakabayashi | Electronic states of graphene nanoribbons and analytical solutions[END_REF][START_REF] Nakada | Edge state in graphene ribbons: Nanometer size effect and edge shape dependence[END_REF][START_REF] Fujita | Peculiar Localized State at Zigzag Graphite Edge[END_REF] Additionally, a remarkable feature arises in the band structure. The top of the valence band and the bottom of the conduction band are always degenerate at k = ±π/a. Actually these degenerate states correspond to states localized in the vicinity of the zigzag edges and their probability density decays exponentially into the center of the ribbon, which has been confirmed experimentally. [START_REF] Tao | Spatially resolving edge states of chiral graphene nanoribbons[END_REF] Additionally, it has been suggested that an opposite spin orientation between ferromagnetically ordered edge states on each edge is the ground-state spin configuration in ZGNRs, leading to possible applications for spintronics. [START_REF] Son | Half-metallic graphene nanoribbons[END_REF][START_REF] Fujita | Peculiar Localized State at Zigzag Graphite Edge[END_REF][START_REF] Wolf S A, Awschalom D D, Buhrman R A, Daughton | Spintronics: a spin-based electronics vision for the future[END_REF] From simple nearest-neighbor tight-binding calculation, these edge states appear in the band structure as flat bands, i.e. with zero group velocity [START_REF] Son | Half-metallic graphene nanoribbons[END_REF][START_REF] Wakabayashi | Electronic states of graphene nanoribbons and analytical solutions[END_REF][START_REF] Nakada | Edge state in graphene ribbons: Nanometer size effect and edge shape dependence[END_REF][START_REF] Fujita | Peculiar Localized State at Zigzag Graphite Edge[END_REF] as seen in Figure 4-1. Calculations from more sophisticated tightbinding models and ab initio methods have shown that the bands of these states are not perfectly flat but exhibits a very small group velocity compared to the high velocity of bulk states. [START_REF] Cresti | Electronic states and magnetotransport in unipolar and bipolar graphene ribbons[END_REF][START_REF] Cresti | Charge transport in disordered graphene-based low dimensional materials[END_REF] Hence, they cannot reasonably be used for transport applications, though ZGNR-based devices with high negative differential conductance have been proposed [START_REF] Wang | Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: A theoretical study[END_REF][START_REF] Do | Negative differential resistance in zigzag-edge graphene nanoribbon junctions[END_REF] taking advantage of peculiar symmetry properties as the parity selective rule. [START_REF] Cresti | Electronic states and magnetotransport in unipolar and bipolar graphene ribbons[END_REF] (a) (b) More recently, the strong similarity of crystallographic structure between graphene and hexagonal Boron-Nitride (h-BN) has led to explore new electronic properties in layered graphene-like materials, either in the form of vertical Van der Waals structures or as in-plane monolayer heterostructures. The electronic properties of the latter type of graphene/BN heterostructures have been explored theoretically [START_REF] Liu | Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges[END_REF][START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Jung | Transport properties of graphene nanoroads in boron nitride sheets[END_REF][START_REF] Bhowmick | Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride[END_REF][108][START_REF] Li | Band gap engineering of graphene/h-BN hybrid superlattices nanoribbons[END_REF][START_REF] Fan | Manifold electronic structure transition of BNC biribbons[END_REF][START_REF] Lam | Stability and electronic structure of two dimensional C[sub x](BN)[sub y] compound[END_REF][START_REF] Shinde | Direct band gap opening in graphene by BN doping: Ab initio calculations[END_REF] and their synthesis has been successfully demonstrated [START_REF] Gao | Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges[END_REF][START_REF] Ci | Atomic layers of hybridized boron nitride and graphene domains[END_REF][START_REF] Sutter | Interface formation in monolayer graphene-boron nitride heterostructures[END_REF][START_REF] Liu | In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[END_REF], providing additional flexibility to design new or improved devices. [START_REF] Tran | Large on/off current ratio in hybrid graphene/BN nanoribbons by transverse electric field-induced control of bandgap[END_REF][START_REF] Fiori | Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors[END_REF][START_REF] Nguyen | Resonant tunnelling diodes based on graphene/h-BN heterostructure[END_REF] Most of works were focused on the possibility of tuning the bangap, while just a few of them have paid attention to the specific electronic states at Graphene/BN interfaces. [START_REF] Jung | Transport properties of graphene nanoroads in boron nitride sheets[END_REF][START_REF] Fan | Manifold electronic structure transition of BNC biribbons[END_REF][START_REF] Drost | Electronic States at the Graphene-Hexagonal Boron Nitride Zigzag Interface[END_REF] In Ref. In this chapter, we investigate the band structure of a series of zigzag graphene/BN (G/BN) heterostructures with each sub-ribbon width larger than 5 nm. On the basis of second nearestneighbor Tight-Binding calculations we show that a bandgap of 207 meV can be opened in a zigzag BN/G/BN structure with B-C--C-N type of bonding, even with sub-ribbons as large as 5 nm. More interestingly, we evidence the emergence of interface states that look like edge states in ZGNRs but with high group velocity, as can be observed in TIs. These interface states are localized in the graphene side of G/BN structures. Their group velocity reaches 4.3×10 5 m/s at B-C interfaces and even 7.4×10 5 m/s at N-C interfaces. By using an effective model of single graphene ribbon, we also give a simple interpretation of the role of B(N) atoms on the formation of these interface hybrid states.

Methodology

To investigate the band structure properties of hybrid G/BN ribbons, second nearest-neighbor (2NN) Tight-Binding (TB) Hamiltonians have been considered, i.e. in the form [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Zheng | Analytical study of electronic 190 structure in armchair graphene nanoribbons[END_REF] , ,

dec i i j i j i i i j i ij H i i t i j t i j V i i           (4-1)
where i  is the on-site energy at site i, ij t and ij t are the hoping-parameters for nearest neighbors and second nearest neighbor interactions between sites i and j, respectively. The potential

    / i d dec i B N B N V P e    
is the decaying potential from B(N) atoms at site i of graphene, where di is the distance between B(N) interface atoms and the i-th carbon atom, PB and PN are the strength of the potential and  is the characteristic decay length. Though bandgap of zigzag Graphene/BN ribbons was studied in chapter 2 using first nearest TB calculation, to accurately describe the band structure of BN ribbons within a TB approach, it was proven that the use of a decaying potential is mandatory, in particular to remove the degeneracy at the X point. [START_REF] Zheng | Edge States of Zigzag Boron Nitride Nanoribbons[END_REF] However, in a pure graphene ribbon, this term is negligible because it is proportional to the onsite-energy of edge atoms, that is zero or very small for carbon atoms of both sub-lattices. [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Zheng | Edge States of Zigzag Boron Nitride Nanoribbons[END_REF] All TB parameters in (4-1) used in this work were taken from ref [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF] where they have been adjusted to provide results fitting very well with ab initio calculations in G/BN ribbons. These TB parameters are given in Table 4-1. For infinite ribbons the Schrödinger equation can be computed by considering Bloch wave functions in chapter 1 or can be simply written as [START_REF] Bena | Remarks on the tight-binding model of graphene New[END_REF][START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF] .
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N ik R j k j c e j         (4-2)
where j  is the pz orbital of the j-th atom in the unit cell th   and N is the number of atoms in a unit cell. The coefficients cj are chosen such that the wave function is an eigenstate of the tight-binding Hamiltonian. From one unit cell to another the wave function differs only by a plane wave function. Then, the Schrödinger equation for the whole periodic system can be reduced to the equation of a single unit cell (1-24), i.e. [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF][START_REF] Noei | A computational study on the electronic properties of armchair graphene nanoribbons confined by boron nitride[END_REF] hE   ( is the periodic constant along x direction, 0 a being the distance between two nearest neighbor atoms.

. ee x x x x T N ik a ik a n n n n n n n n c c c h H H H V              (4-4) 4-3) with   12 , 1 , , 1 , .. 
Once the eigen energies E and the coefficients of the eigen function  are solved for each wave vector kx, the group velocity can be numerically computed from equation (1-30) in chapter 1.

Results and discussion

As reported in many previous works on zigzag graphene nanoribbons [START_REF] Wakabayashi | Electronic states of graphene nanoribbons and analytical solutions[END_REF][START_REF] Nakada | Edge state in graphene ribbons: Nanometer size effect and edge shape dependence[END_REF][START_REF] Fujita | Peculiar Localized State at Zigzag Graphite Edge[END_REF], nearly flat bands appear in the dispersion relation near the neutrality point. They correspond to edge stages, i.e. states associated to electron densities strongly localized at the edges of the graphene ribbons. In contrast, in perfect armchair GNRs all states are delocalized. Although these localized states in ZGNRs are closed to the neutral point and are thus easily accessible, they do not contribute significantly to charge transport [START_REF] Cresti | Electronic states and magnetotransport in unipolar and bipolar graphene ribbons[END_REF] because their group velocity is weak. Hence, they are useless for standard electronic applications.

In this section, we investigate the particular states localized at the interface between graphene and BN zigzag nanoribbons within different kinds of in-plane G/BN heterostructures. As in chapter 2, the notation "B-C" ("N-C") refers to interfaces where only Boron (Nitrogen) atoms are bonded with Carbon atoms. The width of each graphene and BN sub-ribbon is defined by the number of zigzag lines MCC and MBN, respectively. Unless otherwise stated, each of these numbers is 50 atomic lines, corresponding to a width of about 10 nm. Such heterostructures and dimensions are achievable with current technology. [START_REF] Li | Chemically derived, ultrasmooth graphene nanoribbon semiconductors[END_REF][START_REF] Rousseau | Sub-10 nm nano-gap device for single-cluster transport measurements[END_REF] 

Hybrid states in a "one-interface" structure

We first investigate a zigzag hybrid ribbon with just a single Graphene/BN B-C interface, as schematized in Figure 4-4(a). For convenience in calculation and analysis of results, each unit cell is divided into two non-equivalent sub-layers L1 and L2, as shown in Figure 4-4(a). In Figure 4-4(b), we plot the profile of the decaying potential along the width of each of these sub-layers. It is assumed that the decaying potential associated with B or N atoms only affects the sites of carbon atoms within a single slice along the y axis and is equal to zero in BN regions. [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Zheng | Edge States of Zigzag Boron Nitride Nanoribbons[END_REF] The band structure computed for MBN = 50 and MCC = 50 is plotted in Figure 4-4(c). The band structure is particularly interesting near the neutrality point, between the lowest conduction band and the highest valence band. In the wave vector 

k x a x / E (eV) (2') (2) (1) 
(3) BN graphene  . On the purple curve, the probability density corresponding to the propagative state (3) of high group velocity, marked with a purple filled circle in Figure 4-4(c), is shown to be distributed along the full width of the graphene ribbon. This state is thus a classical "bulk" state. In contrast, the states ( 2) and (1) marked in Figure 4-4(c) with a cyan filled circle and a black filled circle, respectively, correspond to wave functions strongly localized at the edges of the graphene ribbon along the graphene/BN and graphene/vacuum interfaces, respectively. The edge state of type (1) has a nearly zero group velocity and corresponds to the edge state of an isolated zigzag graphene ribbon. [START_REF] Wakabayashi | Electronic states of graphene nanoribbons and analytical solutions[END_REF][START_REF] Nakada | Edge state in graphene ribbons: Nanometer size effect and edge shape dependence[END_REF][START_REF] Fujita | Peculiar Localized State at Zigzag Graphite Edge[END_REF] However, the edge state of type (2), though localized at the B-C interface, is strongly dispersive and exhibits a high group velocity. It should be noted that in this case the state (2') belonging to the other dispersive band at opposite wave vector 2' 2 kk  is localized at the same interface as the state (2) but with opposite group velocity. It will be further discussed later. . This primary conclusion on hybrid states contradicts the discussion in ref [START_REF] Drost | Electronic States at the Graphene-Hexagonal Boron Nitride Zigzag Interface[END_REF] wherein the whole highest valence band (or the whole lowest conduction band) was supposed to be formed by localized interface states.

V = 0 V  0 (d)

The inset of

The single-interface structure with N-C bonds has been also investigated and the results are 

Hybrid states in a "two-interface" structure

To further analyze the G/BN hybrid states, we now investigate structures with two G/BN interfaces. At the first interface the carbon atoms are bonded with Boron atoms. Two cases are considered for the second interface. In the first case the second interface is similar to the first one, which leads to the symmetric structure referred to as B-C--C-B. In the second case, the second interface is made of C-N bonds. The mirror symmetry is broken and the structure is referred to as B-C--C-N. 
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B-C--C-B structure

The B-C--C-B structure is schematized in Figure 456. Here the GNR is connected with Boron atoms at both interfaces. 2) are localized at the graphene/BN interfaces, as shown in Figure 456). They can contribute symmetrically, i.e. at both interfaces, to charge transport.

B-C--C-N structure

In the B-C--C-N structure, schematized in 
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Beyond MBN = 2, the gap is very weakly sensitive to the BN width, while bandgaps higher than 0.4 eV are achievable for MCC < 10 thanks to confinement effects. Thus, the use of zigzag graphene/BN interface not only reveals a new kind of propagative edge states but also opens an energy bandgap. This gives new opportunities for bandgap engineering of graphene and for manipulating the transport properties of graphene nanostructures and devices.

Dispersion of hybrid states: specific properties

As mentioned above, the energy gap depends strongly on the graphene ribbon width MCC. It is thus relevant to analyze in more details the MCC-dependence of the energy dispersion of hybrid states. In Figure 45678, the energy dispersions of the lowest conduction band and highest valence band in the B-C-C-N structure is plotted for MCC = 10 and MCC = 50. In each of these bands a specific value of wave vector t k separates the hybrid states (symbols) from the bulk states (dashed line). In each case the value of t k has been defined from the plot of the ratio of the probability density at the center of the graphene ribbon to the probability density at the ribbon edge, divided by the width MCC ( 

From the effective model to hybrid states: the role of B (N) atoms

We already mentioned that the behavior of hybrid states is mainly governed by the values of on-site energies for B and N atoms and the hopping energies of B-C and N-C bonds. This can be easily checked by using a simple 1NN TB model without any decaying potential, i.e. considering only interactions with the first nearest neighbors, as widely done in previous works on zigzag graphene ribbons. [START_REF] Nakada | Edge state in graphene ribbons: Nanometer size effect and edge shape dependence[END_REF][START_REF] Fujita | Peculiar Localized State at Zigzag Graphite Edge[END_REF] Actually, the results obtained are qualitatively very similar to that obtained with the 2NN model including decaying potential, from both points of view of the energy dispersion and of the localization of states at the interfaces. The resulting effect of these TB parameters applied to the edges of the graphene ribbon is to change the energies of edge states in graphene, leading to the so-called hybrid states. This effect may thus be seen as qualitatively equivalent to the effect of changing the potential on the edge atoms of graphene.

On the basis of this analysis, we propose a simple model that can generate artificially edge states with dispersive energy bands in a ZGNR, and able to mimic the emergence of hybrid states induced by B and N atoms. It consists in applying an effective potential Veff as new onsite energy to the edge atoms of the ribbon, as illustrated in Figure 4-10(a). The 1NN approach is used for this simplified approach.

In Figure 45678910), the energy band of a ZGNR is plotted for different values of the effective potential Veff varying from -0.1 to 0.5 eV, applied on a single side of the ribbon. While applying a negative potential leads to the appearance of a dispersive band toward negative energies (see In this section, we intend to check that the emergence of hybrid states at graphene/BN zigzag interface can enhance the electron transport, even in a realistic structure with non-perfectly straight interface. [START_REF] Drost | Electronic States at the Graphene-Hexagonal Boron Nitride Zigzag Interface[END_REF] We thus consider the single-step B-C interface structure schematized in 

V eff = -0.1 eV V eff = 0.1 eV V eff = 0.3 eV V eff = 0.5 eV

The parity of wave functions

In zigzag GNRs, the parity rule is a well-known effect related to the mirror symmetry between A and B carbon sub-lattices with respect to the center axis of the ribbon. [START_REF] Cresti | Valley-valve effect and even-odd chain parity in p-n graphene junctions[END_REF][START_REF] Rainis | Andreev reflection in graphene nanoribbons[END_REF][START_REF] Nakabayashi | Band-Selective Filter in a Zigzag Graphene Nanoribbon[END_REF] It may have important consequences on the transport properties in zigzag ribbon devices. [START_REF] Rainis | Andreev reflection in graphene nanoribbons[END_REF][START_REF] Do | Negative differential resistance in zigzag-edge graphene nanoribbon junctions[END_REF][START_REF] Wang | Tunneling conductance of a magnetized zigzag graphene nanoribbon/ superconductor junction[END_REF] The wave function along the width of the ribbon is either even or odd depending on (i) the even/odd number of zigzag chains MCC, (ii) the sub-band number and

(iii) the momentum. [START_REF] Wang | Tunneling conductance of a magnetized zigzag graphene nanoribbon/ superconductor junction[END_REF] In this section we are going to check this effect and its consequence on transport in zigzag graphene/BN hetertostructures which were considered above. To check the parity effect in our structures, we will replot energy bands in the range of momentum 0 ≤ kxax ≤ 2π (initially we plotted them in the range -π ≤ kxax ≤ π), to make easier the comparison with results demonstrated for pure zigzag graphene by Nakabayashi et al., [START_REF] Nakabayashi | Band-Selective Filter in a Zigzag Graphene Nanoribbon[END_REF] In Figure 4-14, we show the band structure and wave function (in the graphene section only) at some positions in the energy bands of the structure with single B-C interface. In general, wave functions are complex matrices but here we only plot the real part of wave functions.

The imaginary part of wave functions has been checked to have the same parity (or nonparity) as the real part. The wave functions of the states (1), ( 2), (3) in the valley K and (3') in the valley K' are clearly not even or odd functions of y. Thus, the parity is broken in this B-C interface structure. This result can be understood as follows: the parity in zigzag GNRs comes from the mirror symmetry between carbon sub-lattices A and B with respect to the center axis of the ribbon. In single B-C structures, only one edge is modified by bonding with Boron atoms, which leads to a violation of the mirror symmetry between Carbon sub-lattices A and B and breaks the parity. We can thus predict that there is also no parity effect in asymmetrical Though pure zigzag graphene ribbons are gapless, it was demonstrated that a conduction gap can be observed in a p-n junction system for the case of an even number of chain lines [START_REF] Cresti | Valley-valve effect and even-odd chain parity in p-n graphene junctions[END_REF] which was later expounded by Nakabayashi [START_REF] Nakabayashi | Band-Selective Filter in a Zigzag Graphene Nanoribbon[END_REF] with a theory of band selective filter. Before studying this transport effect in our zigzag graphene/BN structures, we will first reproduce the effect in zigzag graphene by applying a simple stepped potential model as sketched in we always have some states that contribute from the hybrid states bands which have the same 

Conclusions

In this chapter we have demonstrated theoretically the presence of a peculiar kind of hybrid states at the interface between zigzag graphene and BN ribbons. This states are strongly localized close to the interfaces as in pure ZGNRs, but they are able to propagate with a group velocity as high as 7.4×10 5 m/s. Besides, the properties of the hybrid states differ according to the type of bonding atom at the interface. For instance, the group velocity of the hybrid state is higher at the N-C interface than at the B-C one. Moreover, in the case of asymmetric B-C--C-N structure, a relatively wide bandgap of 207 meV can be open for a graphene width of 5 nm, with strong dependence on the graphene width. We have generalized our study to other systems using an effective model and discussed the conditions for the appearance of hybrid state with interesting properties. We have also considered electron transport in a stepped-BC interface system and shown that hybrid states and bandgap can survive in realistic structures with non-uniform ribbons. Finally, we have examined the influence of hybrid states on the parity rule and its effect on transport in our structures. Beyond the experimental evidence of these states by Drost et al, [START_REF] Drost | Electronic States at the Graphene-Hexagonal Boron Nitride Zigzag Interface[END_REF] using scanning tunneling microscopy (STM), their dispersive character and the resulting bandgap could be accurately observed by using angle-resolved photoemission spectroscopy (ARPES). [START_REF] Hsieh | A topological Dirac insulator in a quantum spin Hall phase[END_REF][START_REF] Sugawara | Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy[END_REF] The synthesis of this type of graphene/BN

interface may thus open a new way of modulating and controlling the electronic properties of graphene nanostructures and devices.

Chapter 5:

Enhancement of thermoelectric performance in Graphene/BN heterostructures by interface scattering

In this chapter we investigate the thermoelectric properties of in-plane heterostructures made of Graphene and hexagonal Boron Nitride (BN). The heterostructures consist in armchair graphene nanoribbons to the sides of which BN flakes are periodically attached. This arrangement generates a strong mismatch of phonon modes between the different sections of the ribbons, which leads to a very small phonon conductance, while the electron transmission is weakly affected. In combination with the large Seebeck coefficient resulting from the BNinduced bandgap opening or broadening, it is shown that large thermoelectric figure of merit ZT > 0.8 can be reached in perfect structures at relatively low Fermi energy, depending on the graphene nanoribbon width. The high value ZT = 1.48 may even be achieved by introducing appropriately vacancies in the channel, as a consequence of further degradation of the phonon conductance.

Introduction

Due to its exceptional electronic, optical, thermal and mechanical properties, graphene should not only replace conventional materials in some existing applications, but, above all the combination of all these unique properties is expected to inspire fully new applications [5,[START_REF] Novoselov | A roadmap for graphene[END_REF] However, one major drawback of graphene for electronic applications, at least for its use as a switching device, is its gapless character [1] that is responsible, e.g., for the low on/off current ratio in graphene transistors. [START_REF] Xia | Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature[END_REF][START_REF] Alarcon | Pseudosaturation and negative differential conductance in graphene field-effect transistors[END_REF] It is also an obstacle for thermoelectric applications because it makes difficult to separate the opposite contributions of electron and hole states to the Seebeck coefficient, which is smaller than 100 µV/K in pristine graphene. [START_REF] Zuev | Thermoelectric and magnetothermoelectric transport measurements of graphene[END_REF] Additionally, the thermal conductivity in graphene is very high, even higher than 4000 W/mK for a single layer, [3] which is a strong limitation to achieve high thermoelectric figure of merit ZT. This quantity is defined by equation in terms of electronic and thermal conductance and can be rewritten as

P ZT T K  (5-1)
where 2 e P G S  is the power factor, ep K K K  is the total thermal conductance, T is the absolute temperature, while , , ee G S K and p K are the electrical conductance, the Seebeck coefficient, the electron thermal conductance and the phonon thermal conductance, respectively.

Actually, the thermoelectric figure of merit in graphene is limited to ZT < 0.01, leading to poor thermoelectric efficiency. However, in spite of these intrinsic obstacles, many suggestions of bandgap nanostructuring have been taken up, at least at the theoretical level, to enhance the thermoelectric performance of graphene and to achieve ZT values higher than 1. [START_REF] Dollfus | Thermoelectric effects in graphene nanostructures[END_REF] Indeed, since the pioneering works of Hicks and Dresselhaus, nanostructuring materials in low-dimensional systems is strongly expected to provide higher ZT and thermoelectric efficiency than bulk materials,[154] thanks to (i) the enhancement of Seebeck coefficient resulting from size quantization and (ii) the reduction of thermal conductance due to interface effects. It has been confirmed experimentally in many systems. [START_REF] Vineis | Nanostructured thermoelectrics: Big efficiency gains from small features[END_REF] In the case of graphene, the primary expectation of nanostructuring is the bandgap opening to enhance the Seebeck coefficient. The reduction of thermal conductance is also expected, if it is not paid by a stronger reduction of electronic conductance, since all parameters entering in the expression of ZT are mutually coupled and difficult to control independently.

As the simplest form of graphene nanostructuring, graphene nanoribbons (GNRs) were first investigated. With finite-bandgap armchair-edges GNRs (AGNRs), significant improvement of thermoelectric properties has been predicted compared to 2D graphene. [START_REF] Mazzamuto | Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons[END_REF][START_REF] Ouyang | A theoretical study on thermoelectric properties of graphene nanoribbons[END_REF] However, in the best case ZT does not exceed 0.35 for the narrowest AGNR with only MCC = 3 dimer lines in the width as will be shown later. To enhance further ZT, it is necessary to design more sophisticated ribbons likely to degrade strongly the phonon contribution to the thermal conductance while retaining high electron conduction properties. Several works have suggested to use multi-junction GNRs with alternate sections of different width, different chirality, or different chirality and width. [START_REF] Mazzamuto | Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons[END_REF][START_REF] Li | Ballistic thermoelectric properties in double-bend graphene nanoribbons[END_REF][START_REF] Xie | Enhancement of thermoelectric properties in graphene nanoribbons modulated with stub structures[END_REF] Values of ZT close to one have been calculated in such structures. Promising results were also obtained in kinked (or chevron-type) GNRs [START_REF] Liang | Electronic and thermoelectric properties of assembled graphene nanoribbons with elastic strain and structural dislocation[END_REF] or even by combining chevron-type geometry with isotope cluster engineering. [START_REF] Sevinçli | A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons[END_REF] In zigzag-edge GNRs of several micron length, edge disorder and extended line defects have been shown to enhance ZT to values greater than 2 if electron-phonon scattering may remain negligible. [START_REF] Sevincli | Enhanced thermoelectric figure of merit in edge disordered zigzag graphene nanoribbons[END_REF][START_REF] Karamitaheri | Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons[END_REF] It has been also predicted that ZT can be improved by using graphene nanomesh (GNM), i.e. a graphene layer in which a periodic array of nanopores is perforated [START_REF] Chang | Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics[END_REF] or by designing vertical junctions in multilayer graphene. [START_REF] Nguyen | Enhanced thermoelectric figure of merit in vertical graphene junctions[END_REF] Figure 5-1: (a) The supper cell structures were considered by Yang et al. [START_REF] Yang | Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons[END_REF] and (b) the best result of ZT is about 0.7 at high chemical energy 1.58

  eV.
In chapter 2 and also in some theoretical works, [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Jung | Transport properties of graphene nanoroads in boron nitride sheets[END_REF]108,[START_REF] Li | Band gap engineering of graphene/h-BN hybrid superlattices nanoribbons[END_REF][START_REF] Fan | Manifold electronic structure transition of BNC biribbons[END_REF][START_REF] Tang | Tunable band gap and magnetism in C 2x-(BN) y sheets and ribbons[END_REF] it has demonstrated that Graphene/BN heterostructures made of adjacent armchair ribbons are always semiconducting, while zigzag hybrid ribbons may be either semi-metallict or semiconducting, depending on the type of bonding at graphene/BN interfaces, [START_REF] Tran | Dispersive hybrid states and bandgap in zigzag graphene/BN heterostructures[END_REF][START_REF] Li | Band gap engineering of graphene/h-BN hybrid superlattices nanoribbons[END_REF][START_REF] Fan | Manifold electronic structure transition of BNC biribbons[END_REF] which is promising for transistor application with efficient on/off current switching. [START_REF] Tran | Large on/off current ratio in hybrid graphene/BN nanoribbons by transverse electric field-induced control of bandgap[END_REF][START_REF] Fiori | Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors[END_REF] Some works also considered the thermal transport in these types of heterostructures [START_REF] Jiang | Minimum thermal conductance in graphene and boron nitride superlattice[END_REF][START_REF] Yokomizo | Giant Seebeck coefficient of the graphene/h-BN superlattices[END_REF][START_REF] Zhu | Phonon transport on two-dimensional graphene/boron nitride superlattices[END_REF] and have shown that they offer the possibility to tune and reduce strongly the phonon thermal conductance.

Hence, the large bandgap opening in Graphene/BN hybrid structures should lead to good power factor, and high ZT. However, according to our best knowledge only two works have been reported so far on the thermoelectric properties of monolayer graphene/BN structures, by Yang et al. [START_REF] Yang | Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons[END_REF] and more recently by Vishkayi et al. [START_REF] Vishkayi | Enhancement of thermoelectric efficiency by embedding hexagonal boron-nitride cells in zigzag graphene nanoribbons[END_REF]. The latter focused on hybrid zigzag ribbons with a graphene/BN junction and two leads made of square lattices (see Vishkayi et al. [START_REF] Vishkayi | Enhancement of thermoelectric efficiency by embedding hexagonal boron-nitride cells in zigzag graphene nanoribbons[END_REF] In this chapter, by means of atomistic calculation we investigate the thermoelectric performance of GNRs with parallel graphene/BN interfaces appropriately distributed. We demonstrate that by graphene/BN interface engineering it is possible to enhance the phonon scattering in armchair GNRs and thus to reduce strongly the phonon thermal conductance while the electronic conductance is weakly affected. It leads to high values of ZT at rather small chemical potential. Additionally, we show that the figure of merit may be enhanced up to 1.48 at room temperature by introducing vacancies in the graphene region.

The chapter is organized as follows. The model and methodology are presented in Sec. 5.2, while the results are discussed in Sec. 5.3, where we analyze dispersions of electrons and phonons (sub-Sec. 5.3.1) and we emphasize the role of interface phonon scattering (sub-Sec.

5.3.2) and that of vacancies (sub-Sec. 5.3.4).

Studied device and methodology

Device structure

The structure investigated in this work is schematized in are known to open or broaden the bandgap of free GNRs as we have seen in chapter 2 and also in Refs. [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF][START_REF] Tang | Tunable band gap and magnetism in C 2x-(BN) y sheets and ribbons[END_REF] and they are expected to modify strongly the phonon dispersion, with thus a strong impact on the phonon conductance. In contrast, the electronic conductance in the central graphene ribbon is expected to be weakly affected by the presence of BN flakes. We have focused our study on armchair structures that usually provide higher ZT than zigzag edge ribbons. [START_REF] Yang | Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons[END_REF] The width of each sub-region is characterized by the numbers of dimer lines MCC and MBN.

Along the transport direction, the structure is characterized by the number nBN of BN/G/BN sections and the numbers of unit cells Nvc and NBN in graphene and BN/G/BN sections, respectively. The total number of unit cells in the active region is thus

  1 A BN vc BN BN N n N n N   
. This active region is connected to BN/G/BN leads having a large bandgap. It is assumed that the system can be extended periodically along the y direction, which requires MCC + MBN to be an even number. [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF] 

Methodologies

The electronic properties were investigated using a nearest-neighbor Tight Binding (TB) approach. The corresponding atomistic Hamiltonian takes the general form (2-1) in chapter 2, i.e [START_REF] Zheng | Analytical study of electronic 190 structure in armchair graphene nanoribbons[END_REF] ,

e i ij i i j H i i t i j    (5-2)
where i  is the on-site energy at site i and ij t is the hoping energy between atoms at i-th and j- th sites. Starting from the second-nearest-neighbor TB model of Ref. [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF], we made some small changes to work with a simple nearest-neighbor model, i.e we used tNC = 2.0 eV instead of 2.5 eV as in Ref. [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF] and we checked that these parameters reproduces very well the energy band structure of armchair graphene/BN ribbons computed using first principle method. [START_REF] Seol | Bandgap opening in boron nitride confined armchair graphene nanoribbon[END_REF] The values of the parameters used are listed in Table 5-1. The phonon properties were computed using the fourth nearest-neighbor Force Constant (FC)

model. [START_REF] Saito | Physical Properties of Carbon Nanotubes[END_REF] The general form of the Hamiltonian for the vibrations of atoms was given in [START_REF] Yamamoto | Nonequilibrium green's function approach to phonon transport in defective carbon nanotubes[END_REF] and can be rewritten as
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where Mi and ui are the mass and the time-dependent displacement of the i-th atom, respectively, and ij K is the 3×3 coupling tensor between the i-th and j-th atoms. Starting with this equation we can also go to the motion equation (1-7) and then (1)(2)(3)(4)(5)[START_REF] Wallace | The Band Theory of Graphite[END_REF][START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF][START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF][START_REF] Chen | Electronic properties of nanographite ribbons in a spatially modulated electric field Diam[END_REF][START_REF] Konschuh | Tight-binding theory of the spin-orbit coupling in graphene[END_REF][START_REF] Dutta | Tuning charge and spin excitations in zigzag edge nanographene ribbons[END_REF][START_REF] Cao | Electronic Transport of Zigzag Graphene Nanoribbons with Edge Hydrogenation and Oxidation Open[END_REF][START_REF] Zuev | Thermoelectric and magnetothermoelectric transport measurements of graphene[END_REF] in chapter 1. The dynamic matrix D in equations (1)(2)(3)(4)(5)[START_REF] Wallace | The Band Theory of Graphite[END_REF][START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF][START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF][START_REF] Chen | Electronic properties of nanographite ribbons in a spatially modulated electric field Diam[END_REF][START_REF] Konschuh | Tight-binding theory of the spin-orbit coupling in graphene[END_REF][START_REF] Dutta | Tuning charge and spin excitations in zigzag edge nanographene ribbons[END_REF][START_REF] Cao | Electronic Transport of Zigzag Graphene Nanoribbons with Edge Hydrogenation and Oxidation Open[END_REF][START_REF] Zuev | Thermoelectric and magnetothermoelectric transport measurements of graphene[END_REF] and (1-15) can be simply described in the form:
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It should be noted that the term

in ni i K M 
 is a 3×3 matrix that plays the same role as the on-site energy i  in the case of electrons. However, this term is varying for each atom, depending on the number and nature of couplings with other atoms. It is in contrast with the case of electrons wherein the on-site energy depends only on the atom on this site.

The force constant coupling parameters in the radial, in-plane and out-of-plane directions , , and io r t t    in (1-17) depend on the level of neighboring. Within a fourth nearest- neighbor, we thus need twelve parameters for graphene and fifteen parameters for BN. In this work the parameters were taken from Ref. [START_REF] Wirtz | The phonon dispersion of graphite revisited[END_REF] for graphene and from Ref. [START_REF] Xiao | Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes[END_REF] for BN. These parameters are given in Table 5-2 where   n CC  refers to couplings between a Carbon (C) atom and its n-th Carbon neighbors. A similar notation in use for interactions between B-N, B-B and N-N atoms. For the coupling of C atoms with B and N atoms we have taken the average value of the force constant parameters between graphene and h-BN, [START_REF] Yang | Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons[END_REF] i.e.
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and these parameters are given in In chapter 1, by using matrix representation we went to similar forms for the TB Schrödinger equation for electrons and the FC dynamic equation for phonons, they thus can formally be solved using the same approach. The Green's function method has been used in the ballistic approximation [START_REF] Liu | Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges[END_REF]. In the case of electrons the total Hamiltonian can be separated in the 
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Here kb is the Boltzmann constant. Once Ge, S, Ke and Kp are obtained from equations and (1-63), the figure of merit ZT can be computed from equation (5-1).

Results and discussion

In the following analysis of the thermoelectric performance of the device schematized in (c)). It is thus expected that in this structure phonon scattering is stronger than electron scattering, and it allows us to predict a small phonon conductance in hybrid ribbons while a good electron conductance should be preserved, which is an ideal tendency to get high thermoelectric performance.

Phonon scattering: a key to enhance ZT

In this section, transport properties of the device are investigated in detail. The length of active region can be adjusted by changing the number nBN of BN/G/BN sections, which will be used as a parameter in what follows. Indeed, by increasing this number one may expect to reduce the phonon conductance as a consequence of enhanced phonon scattering. It is remarkable that in contrast with the phonon conductance, the electronic conductance is not severely degraded with respect to the pristine GNR, whatever the value of As a consequence of the strong reduction of phonon conductance, together with high power factor 2 e GS , good thermoelectric figures of merit are expected in these hybrid structures.

Since the phonon conductance appears to be strongly dependent on the alternating arrangement of graphene and BN/G/BN sections in the active region, the results should depend also on the width MBN and the lengths Nvc and NBN of these sections. In NN , which is in agreement with the conclusion of Yang et al. [START_REF] Yang | Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons[END_REF] in the case of a transverse superlattice of graphene and BN sections. We found also that for MCC = 5 and MCC = 6 the maximum of ZT is obtained for Nvc = NBN = 8 as seen in In principle, the maximum of ZT reduces when increasing MCC due to the increase of phonon conductance. However, the behavior is not monotonic and the value of ZT is smaller for the group of structures with MCC = 3p + 1 compared to the groups with MCC = 3p and MCC = 3p + 2. 

Effect of temperature

In Figure 5-6 the strong dependence of phonon conductance on temperature was shown. It is thus relevant to consider the effect of temperature on the thermoelectric performance of the structure. In following parts we will focus our investigations on the structure with MCC = 5 for which we can observe high ZT at relative low chemical potential.

In Figure 5-14 we plot ZT as a function of µ for different temperatures ranging from 100 K to 400 K in the case of the structure with MCC = 5. Starting from room temperature (orange curve) with ZTmax = 0.81, when the temperature decreases to 200 K and 100K, the peak value of ZT increases to ZTmax = 0.9 and ZTmax = 1.01 , respectively. When increasing the temperature to 400 K, the figure of merit reduces to ZTmax = 0.74. Thus, overall we get higher ZT at lower temperature in this system. Moreover, this reduction of ZTmax when the temperature increases is accompanied by a shift of the peak to the left, i.e. to smaller chemical potentials. This is because the functions
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Effect of vacancies: a further improvement

In this section we will discuss the effects of vacancies on the thermoelectric performance of the hybrid structure with MCC = 5.

It has been shown that edge disorder and inner vacancies may have a significant influence on the thermoelectric performance of GNRs. [START_REF] Sevincli | Enhanced thermoelectric figure of merit in edge disordered zigzag graphene nanoribbons[END_REF]172] In particular, depending on the vacancy position the figure of merit ZT can be larger than in a perfect GNR. Most of works on vacancy effects in graphene were focused on either random or periodic arrangement of vacancies. To understand better the influence of vacancies in our hybrid structure, we investigate the effect 163 of the position of a vacancy. We assume that it may be possible to control experimentally this position by using focused electron beam technique. [173,174] (a) vacancy is located in the BN region, we still observe a reduction of phonon conductance, but more limited than when it is in graphene and less sensitive to the position of the vacancy.
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In ). Hence, if there is a vacancy at this position, i.e. in configuration 1, the effect on the density and the conductance of the ribbon is negligible, which explains that the power factor is almost the same as in in the no-vacancy case, leading to an enhancement of ZT as a consequence of the reduced phonon conductance.

In contrast, if the vacancy is at any other position in the GNR, the electron density and the conductance are strongly affected, which also degrades ZT in spite of the reduction of phonon conductance. 

Conclusions

In this chapter we have demonstrated excellent thermoelectric properties of in-plane heterostructures based on armchair GNR with appropriate engineering of graphene/h-BN interfaces. By attaching periodically BN flakes to the GNR, it is indeed possible (i) to reduce strongly the phonon conductance compared to pure GNR and (ii) to open or broaden the conduction gap which enhances the Seebeck coefficient. And, (iii) the electron conductance is remarkably weakly affected. It finally results in a large enhancement of the thermoelectric figure of merit ZT. In the case of perfect ribbons, the maximum value ZTmax of 1.14 is reached for the thinnest ribbon with MCC = 3 carbon dimer lines along the width. For larger ribbons with MCC = 5 and MCC = 6 we can obtain ZTmax of 0.81 and 0.65, respectively. Interestingly, in the case MCC = 5 the peak of ZT is reached at relatively low chemical potential µ = 0.41 eV.

When reducing the temperature from 300 K to 100 K, ZTmax increases from 0.81 to 1.01. The investigation has also shown that engineering vacancies in graphene or BN regions may allow to further enhance ZT thanks to additional reduction of phonon conductance. However, the electron conductance is very sensitive to the vacancy position in graphene. The vacancy position must be chosen carefully at a lattice site where the electron density is small to avoid unacceptable degradation of the power factor. In the case MCC = 5, it is shown that by generating some vacancies in the center of the GNR, i.e. where the charge density is negligible in a perfect ribbon, the power factor is not affected and ZTmax reaches up to 1.48 at room temperature. almost suppressed under the effect of a transverse electric field. This outcome has been successfully applied to control the current in devices made of graphene/BN heterostructures.

By turning the gate voltage (i.e. the applied electric field) the current can be efficiently switched off. On/off ratios of about 10 4 have been achieved which is much better than 10, the value typically obtained in transistors made of pure 2D graphene.

3.

Robust electron states at zigzag graphene/BN interface. It was previously demonstrated that edge states in zigzag graphene has flat bands and zero group velocity which means that they are useless for charge transport. However, in zigzag graphene/BN heterostructures, I have evidenced that the interface states are localized at the edge of the graphene sub-ribbon like the common edge states but the important property to have a finite and high group velocity. This robust property leads to an improvement of the electron transmission even if the ribbon is not perfectly uniform which should be the case for experimentally fabricated structures.

Enhancement of thermoelectric properties.

The complementarity of the electronic and phononic properties of graphene and BN has been used to design graphene/BN heterostructures with appealing thermoelectric properties. A strong reduction of phonon conductance can be obtained due to the mismatch of phonon modes between graphene and BN while electron transport is just slightly modified by the presence of BN. I have observed these phenomena in a structure made of an armchair graphene ribbon with BN nanoflakes attached to the edges, leading to thermoelectric figure of merit ZT higher than one at room temperature.

Possible future works:

Though this PhD project has reached the end, there are still number of works that can be further performed. Based on the results and physics obtained from the presented works, I propose here some interesting ideas in the view of optimizing electronic and thermoelectric properties:

(i) The effective model in chapter 4 showed that the bonding between Boron (or Nitrogen) and Carbon atoms plays as negative (or positive) potential that acts directly on the Carbon

Appendices

Appendix A: Solving 1D Poisson's equation numerically

In this appendix we present the numerical method developed to solve the 1D Poisson's equation . The coordinate x is always treated as a discrete quantity as illustrated in  between two adjacent points is small. For x is expanded around an arbitrary point n x , equation (1-36) can be written as It is well know that the discrete form of first and second derivative are given by:   
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Straight forward calculation leads to
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This system of equations is easily transformed into a matrix form as   
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For convenience, we set .
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Noting that the relative permittivity   The Schrödinger's equation for the whole system is
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Here A  and X  are the wave functions in part A and X, respectively (they are not the same as the wave functions in the isolated state of A and X). 

Expanding equation (B -2) we have
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.

The full size of device Green's function (simply noted as G) .
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This equation finally contains only one non zero row  and 1N G (by recursive techniques). For computational efficiency we even can go to another equation (equation ) that is more efficient with only two block matrices required for the calculation of transmission. To obtain this equation, we need a few more steps of derivation. Now we use the spectral function which is defined by (as presented in equation (1-48))
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And noting that the full size device Green's function is
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Or in an equivalent form
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Comparing with (C -4)

we have
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First, the right hand side of (C -5) can be treated as (

N N N N NN s R G G G G G G G G G G G G G G G G G G G G G G G G    

1) Intermediate functions

The partial derivative of Fermi function with respect to Energy can be calculated as   
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The formula to calculate the intermediate functions is now as simple as Les excellentes propriétés électroniques, thermiques et mécaniques du graphène confère à ce matériau planaire (bidimensionnel) un énorme potentiel applicatif, notamment en électronique. Néanmoins, ce matériau présente de sérieux inconvénients qui pourraient limiter son champ d'applications. Par exemple, sa structure de bandes électronique sans bande interdite rend difficile le blocage du courant dans un dispositif. De plus, pour les applications thermoélectriques, sa forte conductance thermique est aussi une forte limitation. Il y a donc beaucoup de défis à relever pour rendre ce matériau vraiment utile pour des applications. Cette thèse porte sur l'étude des propriétés électroniques et thermoélectriques dans les hétérostructures planaires constituées de graphène et de nitrure de bore hexagonal (BN). Différentes configuration de ce nouveau matériau hybride permettent de moduler la bande interdite, la conductance thermique et le coefficient Seebeck. Cette étude a été menée au moyen de calculs atomistiques basés sur les approches des liaisons fortes (TB) et du modèle à constantes de force (FC). Le transport d'électrons et de phonons a été simulé dans le formalisme des fonctions de Green hors équilibre. Les résultats montrent que, grâce à la modulation de la bande interdite, des transistors à base d'hétérostructures de BN et de graphène peuvent présenter un très bon rapport courant passant/bloqué d'environ 10 4 à 10 5 . En outre, nous montrons l'existence d'états quantiques hybrides à l'interface zigzag entre le graphène et le BN donnant lieu à des propriétés de transport électronique très intéressantes. Enfin, ce travail montre qu'en agençant correctement des nano-flocons de BN sur les côtés d'un nanoruban de graphène, la conductance des phonons peut être fortement réduite alors que l'ouverture de bande interdite conduit à un accroissement important du coefficient Seebeck. Il en résulte qu'un facteur de mérite thermoélectrique ZT plus grand que l'unité peut être réalisé à température ambiante. mechanical properties. Is this expected to have a huge potential for a wide range of applications, in particular in electronics. However, this material also suffers from a strong drawback for most electronic devices due to the gapless character of its band structure, which makes it difficult to switch off the current. For thermoelectric applications, the high thermal conductance of this material is also a strong limitation. Hence, many challenges have to be taken up to make it useful for actual applications. This thesis work focuses on the theoretical investigation of a new strategy to modulate and control the properties of graphene that consists in assembling in-plane heterostructures of graphene and Boron Nitride (BN). It allows us to tune on a wide range the bandgap, the thermal conductance and the Seebeck coefficient of the resulting hybrid nanomaterial. and phonons, respectively, coupled with the Green's function formalism for transport calculation. The results show that thanks to the tunable bandgap, it is possible to design graphene/BN based transistors exhibiting high on/off current ratio in the range 10 4 -10 5 . We also predict the existence hybrid quantum states at the zigzag interface between graphene and BN with appealing electron transport. Finally this work shows that by designing properly a graphene ribbon decorated with BN nanoflakes, the phonon conductance is strongly reduced while the bandgap opening leads to significant enhancement of Seebeck coefficient. It results in a thermoelectric figure of merit ZT larger than one at room temperature.
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Chapitre 2 :

 2 sont appelés les taux d'injection au niveau des contacts. Avec la transmission obtenue par expression (5), d'autres quantités de transport, par exemple, le courant, la conductance, le coefficient Seebeck, le facteur de mérite ZT peuvent être calculés. Les principales étapes de calcul et les différentes techniques utilisées pour calculer les propriétés de transport sont indiquées dans le chapitre. Dans la dernière partie de ce chapitre, la modélisation et les méthodes ci-dessus sont appliquées pour examiner les propriétés électroniques et thermiques de certains systèmes simples comme la chaîne linéaire d'atomes ainsi que des structures 2D et 1D de graphène et de Nitrure de Bore hexagonal. Hétérostructures graphène/BN avec une bande interdite accordable et des électrons à haute vitesse Dans ce chapitre, je présente les mécanismes d'ouverture de la bande interdite et sa modulation dans des hétérostructures de graphène/BN. Les bandes interdites de différentes configurations de rubans « armchair » et « zigzag » sont étudiées en utilisant un calcul de liaisons fortes fondé sur un modèle simple d'interaction au premier voisin. L'étude permet de comprendre quelles configurations présentent une bande interdite intéressante. Elle démontre que les structures hybrides avec des interfaces parallèles à la direction du transport conservent de bonnes propriétés de transport (vitesse de groupe élevée), meilleures que dans les structures avec des interfaces perpendiculaires à la direction de transport comme on le voit dans la Figure 1. Il est également montré que toutes les hétérostructures « armchair » sont semi-conductrice avec une bande interdite. Les structures « zigzag » sont soit métalliques soit semi-conductrices, selon le type de couplage à l'interface entre le graphène et le BN.

Figure 1 :Chapitre 3 :

 13 Figure 1: Comparaison de la vitesse de groupe dans quatre structures « armchair » de même largeur M = 59.

LFigure 2 :Chapitre 4 :

 24 Figure 2: (a) Vue schématique de la structure graphène/BN/graphène armchair étudiée. Le système est placé entre deux grilles latérales qui génèrent un champ électrique transversal. La région active est connectée à deux contacts de graphène. (b) Courant en fonction de la tension de polarisation pour des champs électriques transversaux F0 = 0, 5, 10 et 20 mV/Å. La simulation a été effectuée à température ambiante T = 300 K, avec EF = 0.2 eV. La longueur de la région active est LA = 10,5 nm.

Figure 3 :Chapitre 5 :Figure 4 :

 354 Figure 3: (a) vue schématique d'un zigzag BN/G/BN avec interfaces B-C--C-N (b) la structure de bande pour MBN1 = MCC = MBN2 = 50 et le profil de la densité de probabilité pour les deux états (1) et (2). Une largeur de bande peut être clairement observée dans la figure (b).
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 11 Figure 1-1: A system consists of N atoms and in each atom M orbitals (sketched by red regions) contribute to conduction.

  principle, for a specific kind of atom the isolated Hamiltonian at H in (1-3) can be determined and thus the atomic orbitals   j rR  
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 13 Figure 1-3: Schematic view of vibration directions of each atom in a plan xoy and the rotational angle from i-th atom to j-th atom.

  of coefficients of the wave function in one unit cell, the Hamiltonian H and matrix C in (1-10) become:

th

  . Taking an arbitrary row of H and multiplying by C as in equation (1
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 14 Figure 1-4: Diagram of energy bands in a solid body for different phases.

  of electron (negative carriers) and hole (positive carriers), respectively. The resulting potential V will be used to calculate the potential energy U eV  for Schrödinger's equation. The solution of wave functions is used to calculate charge density using formulas, and put back into the Poisson's equation to solve a new potential. The process is repeated until the convergence of potential is reached.

  due to the left (right) contact. The equation (1-45) is very important and general for any open system. It can be also applied to calculate the surface Green's function the size of the Device Green's function D G by the so-called recursive technique.

FEFigure 1 - 6 :

 16 Figure 1-6: Electron current in the device under a bias.
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 17 Figure 1-7: Fermi function as a function of energy for different temperatures from very low (4 K) to room temperature (300 K) and high temperature (700 K).

  function.Unlike electrons, phonons are classified as boson particles and they are governed by the Bose-

  Green's function such as Gnn of layer n-th for computing transmission and local density of states. In Figure1-8 we show the main computational steps of Green's function techniques.These steps work for both electrons and phonons.
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 18 Figure 1-8: Flowchart of computational steps for Green's function techniques.
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 19 Figure 1-9: An infinite linear chain with 1 atom per unit cell. Onsite energy is E0 and hopping parameter is Ec.

Figure 1 -Figure 1 - 10 :Figure 1 - 11 :

 1110111 Figure 1-10: Band structure of a periodic chain line for E0 = 0, Ec = -1 eV.

  's function of the left contact is determined from the formula 

Figure 1 - 12 :

 112 Figure 1-12: Comparison of numerical Sancho iterative technique and analytical results for Surface Green function. E0 = 0, Ec = -1 eV.
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 113114 Figure 1-13: Electron Transmission for a device with N = 10 atoms and E0 = 0, Ec = -1 eV.
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 1142 The Scattering method requires the knowledge of wave functions, so we need to formulate an expression of momentum k from energy E. In regions of contacts we have from the energy dispersion (1the wave functions in the region of the left and the right contacts are . is the position of n-th atom in the whole system and r, t are reflection and transmission coefficients, respectively.In the region of the device, the wave function 1 =  at the position of atom 1st and equals at the position of the atom 2nd.

  comparison of Green's function and the scattering method is plotted in Figure1-15. One more time we see an excellent agreement between Green's function and the result obtained by another method which is the scattering method in this case.-1.5 -1 -0.5 0 0.5 1 1

Figure 1 - 15 :

 115 Figure 1-15: Comparison between Scattering method and Green's function method for a device with N = 2.

Figure 1 -

 1 [START_REF] Konschuh | Tight-binding theory of the spin-orbit coupling in graphene[END_REF] and transport in the system is ballistic. In this case we assume E0 = 2t0, Ec = -t0 with lattice constant. The initial Fermi energy in the left and right contacts are assumed to be equal to 0.1 eV. In Figure1-16 we show the comparison between the result from our performance and that which is presented in Figure9.10.5 of the famous book of Datta[START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF]. The results are mostly identical.

Figure 1 -

 1 Figure 1-16: I-V characters in the device of a linear chain. Parameters are NA = 20; EfL = 0.1 eV, EfR = 0.1 eV, E0 = 2.t0 , Ec = -t0 with   22 0 / 2 . . t m a e  , m = 0.25m0 , a = 3×10 -10 m.

1. 7 Figure 1 - 17 :Figure 1 - 18 :Figure 1 -

 71171181 Figure 1-17: Vibration in a system of an infinite linear chain with two nearest atoms coupled by a spring with stiffness kc.

Figure 1 -

 1 Figure 1-20: N = 10, kc = kd =2×10 -10 N/m, a carbon atom has m = 1.994×10 -26 kg.

Figure 1 -

 1 21. The lattice vector 1a and 2 a define repetition of carbon atoms in the structure. In the momentum space, the reciprocal lattice is determined by two vector 1 b and 2 b which can be found from relations

  constant along x and y directions, respectively. The full bands are plotted in the top right corner of Figure 1-22. Underneath this figure we see a projection of the band on kx and ky, which shows that there are six Dirac cones (green points) in the band structure of 2D graphene. In the right column, the projections on kx, ky directions are shown individually, which confirms that the bandgap is equal zero. Interestingly, the zoom of energy band around a Dirac cone (the center figure) shows that energy is almost linear with momentum. Physically, it means that electrons in this region are massless and 59 move very fast. The energy dispersion of this region is approximately is the Fermi velocity.[1] Also in many cases, band structure of 2D graphene can be plotted along high symmetrical directions instead of 3D plot as in Figure 1-22. In Figure 1-23 we replot the electronic band structure along directions MG, GK and KM and we also plot the computed DOS (blue lines).

Figure 1 - 22 :

 122 Figure 1-22: 3D plot for electronic band structure of 2D graphene. The left panels: band structure and first Brillouin zone. The right panels: projections of the band structures on kx (upper) and ky (lower) and the center figure is a Dirac cone around zero energy.
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 123 Figure 1-23: Comparison for the energy band and DOS (2D graphene) between our calculation and results obtained by Reich el all [55], Carpio el all [89]. All works were based on first nearest TB calculation with t = 2.7eV. Energy is plotted along high symmetrical directions MG-GK-KM.
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 1 Figure 1-24:Comparison of phonon dispersion between our calculation and results obtained by Wirtz el all[START_REF] Wirtz | The phonon dispersion of graphite revisited[END_REF]. FC model up to 4 th nearest neighbor interaction, using off-diagonal parameters of Wirtz.
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 125126 Figure 1-26.In Figure1-25 we compare our results with that of ref.[START_REF] Nakada | Edge state in graphene ribbons: Nanometer size effect and edge shape dependence[END_REF] for energy bands and DOS in Armchair and Zigzag graphene ribbons. The agreement is clear. Here we can observe that zigzag graphene is always metallic while armchair graphene ribbons may have a finite bandgap depending on the width of ribbon.
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 125126 Figure 1-25: Comparison of energy dispersion for armchair and zigzag Graphene ribbons.Energy is taken in unit of hopping parameter t. Reference: Nakada el al.[START_REF] Nakada | Edge state in graphene ribbons: Nanometer size effect and edge shape dependence[END_REF] 
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 126127127 Figure 1-27: Transmission for different groups of Armchair graphene (a), (b), (c) and for zigzag graphene (d).

Figure 1 - 28 :

 128 Figure 1-28: 2D structure of Boron Nitride (BN). The blue atoms are Boron and the green ones are Nitrogen atoms.
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 129 The observed bandgap is about 4.57 eV which indicates that BN is a good insulator.
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 129 Figure 1-29: Electronic band structure of 2D BN. Here tBN = 1.95 eV; EB = 0; EN = -4.57 eV; [91]
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 130131 Figure 1-30: Phonon dispersion of 2D BN. Force constant parameters are from ref.[START_REF] Xiao | Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes[END_REF] 
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 2121 photolithography technique with micrometer scale size and pattern shown in (c) were obtained using FIB technique with nanoscale size.

Figure 2 - 2 :Figure 2 - 3 :

 2223 Figure 2-2:Raman spectra collected in graphene, h-BN regions and their interface in a graphene/h-BN film. Reference: Liu et al.[START_REF] Liu | In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[END_REF] 

  -3 (a) & (b)) or bright-field STEM images (Figure 2-3 (c)) with the interface marked as a dashed line.

Figure 2 - 3

 23 Figure 2-3 (b) is the STEM image with the analysis using electron energy loss spectroscopy (EELS) showing more clearly the interface.
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 2425 Figure 2-4: Armchair G/BN superlattice structure with graphene and BN sections arranged alternatively along transport direction Ox. There are NC Carbon lines and NBN Boron Nitride lines in one unit cell.
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 3152623112426 Figure 2-6: Energy bands of different armchair ribbons: (a) pure armchair graphene with M = 8, (b) superlattice G.BN with M = 8, NC = NBN = 2, (c) Armchair G/BN with MCC = 8, MBN = 8, (d) Armchair G/BN/G with MCC1 = MCC2 =8, MBN = 8, (e) Armchair BN/G/BN with MBN1 = MBN2 =8, MCC = 8.
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 27 Figure 2-7: Bandgap for the case r = 1: (a) group M = 3n, (b) group M = 3n + 1, (c) group M = 3n + 2.
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 28 In contrast, it increases rapidly with the increase of NBN at low values of NBN (NBN < 10).
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 29 Figure 2-9: Bandgap in the superlattice armchair Graphene/BN structure in the case where BN dominates the supercell (r > 1).
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 25 In these structures, each unit cell only covers two chain lines so that the band structure only depends on two main parameters, i.e. MBN and MCC. Let us consider MBN1 = MBN2 = MBN for the armchair BN/G/BN structures and MCC1 = MCC2 = MCC for the armchair G/BN/G structures. We will later discuss for the case MCC1 ≠ MCC2. In Figure 2-10(a) we show the bandgap in the armchair G/BN structure as a function of MCC for a few values of MBN ranging from 1 to 10. It first shows that the bandgap is fluctuating with the width of graphene ribbon as previously observed in pure armchair graphene, but the bandgap always exists in this structure. The dependence of bandgap on BN ribbon width MBN is strong when MBN increase from 1 to 2 and become weaker for larger MBN. This dependence can be seen in Figure 2-10(b) where bandgap is plotted as a function of MBN. It can be recognized that for all cases of MCC, the bandgap is only effected by BN if MBN < 8, and remains unchanged for larger BN ribbons. The insensitivity of bandgap to BN is thus similar to what we have observed in the superlattice structures above. In Figure 2-10(c) and (d) we plot three groups of bandgap with respect to the graphene width MCC = 3p, 3p + 1 and 3p + 2 for two cases of MBN = 1 and 10

Figure 2 -

 2 11(a) for the armchair structure G/BN/G. Among three configurations illustrated in Figure 2-5, it seems that this armchair G/BN/G is the structure where BN has the higher influence. Indeed if MBN = 0 or is very small, the two graphene ribbons are very close and they certainly have a coherence. It is thus needed to discuss more about the effect of MBN on the bandgap in this structure. In Figure 2-11(b) we plot the bandgap as a function of MBN for different values of MCC. Interestingly, there is a phase transition from semi-metallic to semiconducting when MBN increases from 1 to larger values when MCC = 17, that means for the group 3p + 2. This results can be also seen from triangles (MBN = 1) and circles (MBN = 10) red curves in Figure 2-11(a). Additionally, if in the armchair superlattice (Figure 2-9) and the armchair G/BN structure (Figure 2-10(b)) the bandgap quickly saturates for MBN > 8, here we observe from Figure 2-11(b) that for a given MCC the bandgap is stable only for MBN > 15.
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 2210 Figure 2-10: (a) Bandgap in armchair G/BN structure is plotted as function of (a) MCC and (b) MBN. (c) and (d) three groups of bandgap as a function of graphene ribbon width with MBN = 1 and 10, respectively.
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 211 Figure 2-11: Bandgap in the armchair G/BN/G structures as a function of MCC and MBN.
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 212213 Figure 2-12: Bandgap in the armchair G/BN/G structures for the case MCC1 ≠ MCC2.
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 214 Figure 2-14: Comparison bandgap of pure armchair graphene ribbons and armchair Graphene/BN structures width different configurations. Here we fix MBN = 10 for all structures of graphene/BN.
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 2215 Figure 2-15 (a) is for the armchair superlattice structure with NC = 3, NBN = 1 and Figure 2-15 (b) is for the armchair G/BN/G structure with MCC1 = MCC2 = 15 and MBN = 29. It should be noted that the shape of band structures for the armchair G/BN and BN/G/BN structures are quite similar to that of the armchair G/BN/G structure.
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 216 Figure 2-16: Comparison of group velocity in four armchair structures of the same width M = 59 dimmer lines.
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 218 Figure 2-18: (a), (b) Bandgap in the zigzag graphene/BN with B-C connections. (c), (d) bandgap in the zigzag graphene/BN with N-C connections.
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 219 Figure 2-19: The zigzag G/BN/G ribbons have only one configuration.
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 220221222223 Figure 2-20: The zigzag BN/G/BN has three different configurations of interface connections: (a) B-C--C-B, (b) N-C--C-N, (c) B-C--C-N.

  nearest neighbor Tight Binding calculations, we have shown that bandgap is open in all armchair structures of Graphene/BN while only two zigzag ribbon structures (B-C and N-C) and the zigzag B-C--C-N have a sizeable gap. In all structures Graphene mainly dominates the bandgap properties of the system while BN has much less influence. For both armchair and zigzag structures, BN shows its strongest influence when it is embedded between two Graphene ribbons. In this case, bandgap depends on BN ribbon width up to MBN = 15. For other cases (including supper lattice), bandgap is stable for MBN (NBN) > 8. Importantly, analysis on group velocity of the super-lattice and G/BN/G structures have shown that electrons in the latter kind of structures have much higher velocity compared to those in the former one. And among three possible configurations of parallel interface structures, it is

  bandgap and the low-energy bands in G/BN heterostructures are mainly dominated by Graphene. Thus for a given electric field F0 and fixing the width of each Graphene subribbon, the effect of the transverse electric field in the armchair G/BN/G structure should be stronger than in armchair G/BN, armchair BN/G/BN, zigzag G/BN (B-C or N-C interface) and zigzag BN/G/BN (with B-C--C-N interfaces) because it contains a wider fraction of Graphene area.
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 31 Figure 3-1: Schematic view of the Armchair G/BN/G structure studied in this work with MCC1 = MCC2 = 15, MBN = 29. It is placed in between two side gates that generate a transverse electric field.
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 32 Figure 3-2: P parallel regions with different permittivity in an external field generated by two side gates V-and V+.
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 3331 a) we show the bandgap as a function of the external field F0 for the armchair G/BN/G hybrid ribbon schematized in Figure First, we can observe that the bandgap has a sharp fall from about 0.55 eV at F0 = 0 mV/Å to zero for F0 > 10 mV/Å. Recently, the effect
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 3333344 Figure 3-3: The modulation of bandgap is a function of the electric field F0 for (a) Armchair G/BN/G heterostructure for MCC1 = MCC2 = 15, MBN = 29, (b), (c), (d) Pure armchair Graphene for M = 15, 30, 59, respectively.

In Figure 3 - 5 (

 35 a) and (b), the charge distribution and potential are plotted along y axis for an external electric field F0 of 3 and 9 mV/Å, respectively. Interestingly, we found that the charge distribution along the width of the ribbon can be separated in 3 groups as a function of the atom position along the y direction. The three groups are composed with atoms which have an index position of the form 31 m  , 32 m  and 33 m  , respectively, where m is a

Figure 3 - 5 (

 35 a) also shows that under the effect of electric field, free positive and negative charges are separated and the local charge neutrality is no longer ensured. Carriers on electron states tend to move close to the high potential gate and carrier on hole states move close to the low potential gate. Additionally, it is not surprising that the charge density is strongly localized in the graphene regions while the central BN region is almost free of charges. The dielectric properties of the involved materials reinforce the weakness of the charge density in BN.
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 35353736 Figure 3-5: (a), (b) Redistribution of charge in the system under effect of the electric field. (c), (d) Potential profile along the width of the ribbon with and without effect of charge redistribution (CR). Here, the external electric field is F0 = 3 and 9 mV/Å, respectively.
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 37 Figure 3-7: Plot of energy bands for four values of the external field F0 = 0, 3, 9 and 15 mV/Å.
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 3738 Figure 3-8: Energy bangap of the hybrid ribbon and effective mass in the lowest conduction band as a function of the external field F0.

3 - 9 .

 39 unchanged. Based on the modulation of bandgap under the effect of electric field highlighted previously, we propose a new way to control the electronic current by using two side gates instead of top and/or back gates as sketched in Figure In an electronic switch based on graphene/BN ribbon with two side gates oppositely biased, the induced transverse electric field modulates the energy gap in the active region. Thus the local ambipolar free carrier density and finally the electronic resistance in the active region are controlled. In this original field-effect mechanism, at weak electric field the gap should remain large enough to cut off the current. At high electric field the gap is close to zero and the current is expected to turn on. Following this idea, the device schematized in Figure 3-9 has been simulated. The active region is made of a finite portion (10.5 nm) of the hybrid BN/graphene ribbon studied previously, connected to two graphene leads with a width of 59 dimer lines. Two gates are located at each side of the active region to generate the transverse electric field. The graphene contacts are metallic while the active region is semiconducting at zero transverse field. The simulation was performed at room temperature (T = 300 K) and the initial Fermi energy in the contact is EF = 0.2 eV. The potential profile due to electric field is taken from the selfconsistent study in section 3.3.2.
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 39 Figure 3-9: Schematic view of the Armchair Graphene/BN/Graphene structure studied in this work with MCC1 = MCC2 = 15, MBN = 29. It is placed in between two side gates that generate a transverse electric field. For the transport analysis, a portion of this hybrid ribbon is connected to two graphene contacts.
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 310 Figure 3-10: Current as a function of bias voltage for transverse electric fields F0= 0, 5, 10 and 20 mV/Å. The simulation was performed at room temperature T = 300 K, and for EF = 0.2 eV in the leads. The length of the active region is LA = 10.5 nm.
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 311 Figure 3-11:The current for the system of 17 nm in length and a bias Vb = 0.2 V is applied. The current without (F0 = 0 mV/Å) and with electric field (F0 = 20 mV/Å) are IOFF = 7.54 × 10 -6 I0, ION = 0.107I0, respectively with I0 = 2e/h . This result leads to an on/off current ratio ION/IOFF  14200.

4 Chapter 4 :

 4 [START_REF] Reich | Tight-binding description of graphene[END_REF] eV down to values lower than 0.1 eV by applying a transverse electric field of about 15 mV/Å. Beyond this value of field, the reduction of bandgap becomes limited as a consequence of the effect of charge redistribution and the effective mass increases strongly, which makes the field range 0-15 mV/Å the most relevant to control the band structure of the ribbon studied here. Taking advantage of this effect, we have proposed an efficient method for controlling the current in devices by using side gates conveniently biased. This could open a new method for controlling electron current in small graphene and graphene-like devices.Dispersive hybrid states and quantum transport in zigzag Graphene/BN heterostructures In this chapter we are going to evidence the existence and the properties of a special kind of states at zigzag interface of in-plane graphene-BN heterostructures. Using TB calculation up to 2 nd neighbor interactions, we analyze a series of structures of in-plane zigzag Graphene/BN ribbons, and we particularly pay attention on edge states in zigzag graphene part. We observe that edge states at the interface Graphene/BN are no longer flat and degenerated but dispersive with very high group velocity up to 4.3×105 m/s at the B-C interface and even 7.4×10 5 m/s at the N-C interface. These high speed edge states are similar to those in Topological Insulators, but for a given wave vector the velocities of N-C and B-C hybrid interface states have opposite signs. Additionally, the sophisticated TB calculation also confirms that bandgap is open in the case of asymmetric structure BN/Graphene/BN, reaching about 207 meV for sub-ribbon width of 5 nm. Transport study shows that bandgap and interface states can survive in realistic systems with non-uniform ribbons. A new sight of
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 4142 Figure 4-1: A zigzag graphene ribbon (a) with its band structure near zero energy (b). Energy is degenerated at k = ±π and the flat bands are edge states. Reference: Wakabayashi et al.[START_REF] Wakabayashi | Electronic states of graphene nanoribbons and analytical solutions[END_REF] 

[ 142 ]Figure 4 - 3 :

 14243 Figure 4-3: (a) A graphene layer is sandwiched between two slabs Bi2Se3, (b) illustration of the system under a pressure, (c) band structure without and with pressure. Reference: Kou et al.[START_REF] Kou | Graphene-based topological insulator with an intrinsic bulk band gap above room temperature[END_REF] 

H

  is the Hamiltonian of the n-th unit cell, ,1 nn H  is the coupling term between the n-th and n±1-th unit cells, , nn V is the matrix of the decaying potential in the n-th unit cell and

,

  we observe two relatively flat bands, while two other bands with finite group velocity extend in the negative energy region (red solid lines).
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 44 Figure 4-4. (a) Schematic view of zigzag Graphene/BN in-plane heterostructure with B-C bonds. The sub-ribbon widths are defined by the numbers of zigzag lines MCC = MBN = 50. (b) Decaying potential V dec related to B and N atoms in the layers L1 and L2 defined in (a), with BN/G boundary indicated by a vertical dashed line. Inset: magnification on the significant range of variation of V dec . (c) Band structure, with hybrid/edge states in solid red lines. Inset: schematic representation of the velocity direction of hybrid/edge states. (d) Profile of the probability density for the three states (1), (2) and (3) defined in (c). The localization of the wave functions associated with three particular states marked (1), (2) and (3) in Figure 4-4(c) is illustrated in Figure 4-4(d) where we plot the corresponding

Figure 4 -

 4 4(c) schematizes the location and the propagation properties of both the zero velocity (top black line) and high velocity (solid arrow for the left band and dashed arrow for the right band) edge states. This peculiar edge state at G/BN interface can significantly contribute to charge transport due to its finite group velocity. It results from the hybridization of carbon and BN states. For the sake of simplicity we call this kind of states "hybrid state". These localized interface states extend from the edges of the Brillouin zone to the points 23 xx ka  

plotted in Figure 4 - 5 .

 45 With this type of interface, we observe near the neutrality point that two bands extend in the positive energy region (red solid lines) which is thus in contrast with the previous case of the B-C structure where the corresponding bands are in the negative region. These two bands actually correspond to hybrid states localized at the N-C interface as shown from the wave function of state (2) plotted in Figure 4-5(d). The other two flat bands remain as edge states at one edge of a pure graphene ribbon.
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 45 Figure 4-5: (a) Sketch of one interface structure with N-C bonds. (b) Decaying potential V dec in the layers L1 and L2. (c) Band structure, with hybrid/edge states in solid red lines. (d) Profile of the probability density for the three states (1), (2) and (3) defined in (c). Here MCC = MBN = 50.

Figure 4 -

 4 6(b) shows the energy dispersion of this structure. The flat bands previously evidenced in B-C structure (see Figure 4-4(c)) are no longer present in this B-C--C-B system. It looks as if the flat band inherent in the C-vacuum interface has been curved downward by B-C bonds, leading to two doubly degenerate dispersive bands with high velocity. As previously observed in the B-C system (sub-section 4.3.1), these degenerate hybrid states (1) and (

Figure 4 -

 4 7(a), carbon atoms in graphene are now connected to N atoms at the second interface. This change induces new specific features in the band structure plotted in Figure 4-7(b). The original flat band in the B-C structure is now curved upward as in the N-C one, and belongs unambiguously to the conduction band. More interestingly, an energy gap is open and separates the first conduction band from the first valence band. The analysis of the localization of states through the probability densities plotted in Figure 4-7(c) clearly demonstrates that the state (1) of the conduction band, i.e. with a dispersive band in the positive energy region, is associated with the C-N interface and thus is a hybrid state resulting from C-N bonds as we observed in Figure 4-5(c). Actually, the upward or downward bending of the hybrid bands depends on the on-site energy of the atoms to which edge carbon atoms are attached. When they are attached to Boron atoms of positive onis bent downward, towards negative energies. In contrast, it is bent upward when Carbon atoms are connected to Nitrogen atoms with negative onfeatures can be observed separately in B-C, N-C, B-C--C-B and N-C--C-N (not shown) structures or together in the case of the mixed structure B-C--C-N. The asymmetry of the B-C and C-N hybrid states is essentially induced by the difference of the bonding energies between the two types of bond. Since the hopping energy between B and C atoms ( BC t = 2.0 eV) is smaller than between N and C atoms (
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 46 Figure 4-6: (a) Schematic view of a zigzag BN/G/BN structure with two C-B bond interfaces (B-C--C-B). (b) Energy band structure for MBN1 = MCC = MBN2 = 50. Inset: schematic representation of the velocity direction of hybrid states at both interfaces (c) Profile of the probability density for the three states (1), (2) and (3) indicated in (b).
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 47 Figure 4-7: (a) Schematic view of a zigzag BN/G/BN with B-C--C-N bond interfaces. (b) Band structure for MBN1 = MCC = MBN2 = 50. (c) Profile of the probability density for the two states (1) and (2) indicated in (b). (d) Bandgap as a function of sub-ribbon width MCC for different values of MBN.
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 48127 b)). This parameter is called here "bulk/edge ratio". As shown in Figure 4-8(b), the separation between hybrid states (left side) and bulk states (right side) is characterized by a transition region with a quasi-linear change of the bulk/edge ratio as a function of k. Consistently, the value of t k has been defined in each band as the intersection of the slope of the bulk/edge ratio in the transition region with the wave vector axis. It appears that t k is dependent on the width MCC and tends to the value 23 x a   at large width, i.e. to the position of the center of Dirac cones in graphene. It is consistent with the width-dependence of the position c k of the extrema of conduction and valence bands due to the confinement effects in GNRs,[73] together with the dependence of bandgap. Beyond this behavior of the extrema of the bands, it is remarkable that the main part of the energy dispersion of edge states, i.e. towards the Brillouin zone edge x ka   , is almost independent on MCC. Thus, the dispersion and the group velocity of hybrid states are stable and insensitive to the graphene ribbon width, except near the neutrality point. all these structures, as in topological insulators, to each edge state of positive wave vector x k  corresponds a symmetric edge state at x k  of opposite velocity. In TIs these two states are distributed on two different sides of the sample [133] as seen in Figure 4-2, while at B-C or N-C interfaces, they are both localized at the same interface. In symmetric B-C--C-B and N-C--C-N structures, the edge states are doubly degenerate and distributed on both interfaces of the graphene sub-ribbon. In the mixed asymmetric structure B-C--C-N, two different dispersive hybrid edge bands are present, one with states localized at the B-C interface, and the other with states localized at the N-C interface, which is a specific property of this system. To quantify the potential of the hybrid states in terms of transport properties, the group velocities of the upward and downward bands of edge states in structures B-C--C-B and B-C--C-N are plotted in Figure 4-9. The edge states in pure zigzag graphene ribbon (circles) have a zero group velocity while the velocity of hybrid states reaches high values at high wave vector. We can observe that the green curve (crosses) related to the lowest band in B-C--C-N is identical to the curve with black squares related to B-C--C-B, because they are associated with the same type of B-C interface. These B-C hybrid states have a maximum group velocity as high as 4.3×10 5 m/s. In the case of N-C hybrid states (red triangles), the maximum velocity even reaches 7.4×10 5 m/s.
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 48 Figure 4-8: (a) Comparison of lowest conduction and highest valence bands in the B-C--C-N structure for different graphene ribbon width MCC = 10 and 50. On each band, hybrid states are marked with symbols and bulk states are in dashed line. (b) bulk/edge ratio (see text) in the highest valence band. The intersection of the slope in dashed line with the abscissa gives the value of kt separating edge states and bulk states.
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 49 Figure 4-9: Group velocity of hybrid states as a function of the wave vector kx in different structures.

Figure 4 -

 4 10(b)), a positive potential leads to a positive energy band (see Figure 4-10(c)). Consistently, the slope of the curve is all the higher if the effective potential is stronger (see Figure 4-10(c) to (e)). The probability density associated with one typical state in the dispersive band of Figure 4-10(e) is plotted in Figure 4-10(f). This state, as all states in the band, is actually localized at one interface. Thus, the first layer of N (with negative onsite energy) atoms at B-C interface or the first layer of B atoms (with positive onsite energy) at N-C interface of G/BN systems plays a role similar to that of edge C atoms with modified onsite energy in a GNR.
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 410 Figure 4-10: (a) Model of effective potential Veff applied on the edge atoms of a zigzag graphene ribbons to mimic the effects of G/BN interface. (b-e) Energy bands for different effective potentials applied. (f) Square wave function corresponding to the state marked with a blue dot in (e). Inset: magnification of the interface region.
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 411 Figure 4-11: The new edge states in the effective potential model (symbols) compared with actual hybrid states (solid and dashed lines) in the B-C--C-N structure.

4. 3 . 5 Figure 4 - 12 :

 35412 Figure 4-12: (a) Stepped B-C interface structure. (b) Energy bands for a pure zigzag graphene with MCC = 25 (solid black line), straight B-C interface with MBN = 25, MCC = 25 (dashed blue line) and MBN = 30, MCC = 20 (dotted red line). Transmissions are plotted in the right panel for pure zigzag graphene ribbon, straight B-C interface and the stepped B-C interface (dasheddotted orange line). In the latter case we have MBN1 = 30, MCC1 = 20, MBN2 = 25, MCC2 = 25, N1 = N2 = 10.

Figure 4 -Figure 4 - 13 :

 4413 Figure 4-13: Left panel: Graphene/BN heterostructures were grown on a (111) iridium single crystal with gold intercalated under the samples. Right panel: local density of states observed by Scanning Tunneling Spectroscopy (STS) at the interfaces. Reference: Drost et al.[START_REF] Drost | Electronic States at the Graphene-Hexagonal Boron Nitride Zigzag Interface[END_REF] 
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 414 Figure 4-14: (a) The energy band of the B-C structure is plotted in the range of momentum from 0 ≤ kxax ≤ 2π. (b) Wave functions at states (1), (2), (3), (3') in (a), filled and unfilled circles present the two inequivalent sub-lattices carbon A and B. Here MCC = MBN = 50.
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 4372 -C and B-C-C-N interfaces. In contrast, the symmetrical structures B-C-C-B and N-C-C-N are highly expected to exhibit a parity effect. Preservation of parity rule in mirror symmetrical structures with non zero conductance.
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 415416 Figure 4-15: Energy bands and wave functions of a B-C-C-B structure with even MCC = 50 (and MBN2 = MBN2 = 50). Red circle with plus sign '+' and blue circle with minus sign '-' correspond to even/odd states, respectively.

Figure 4 -

 4 17(a). Since a potential U is applied to the right region, the band structure of this region shifts up or down a quantity equal to U depending on the sign of the potential. In Figure4-17 (b) and (c), Δ is called pseudo-gap[START_REF] Nakabayashi | Band-Selective Filter in a Zigzag Graphene Nanoribbon[END_REF] which is the energy separation from the Fermi level. U = 0.5Δ was used for both cases of odd and even number of chain lines. As we can observe, the conductance falls to zero in the energy range [0, U] for the case of even MCC, while no such effect can be observed in the case of odd MCC. This effect can only be explained by the parity rule as follows: an electron coming from the left side can only scatter to a state in the right side if this state has the same parity and group velocity direction as the in-coming wave (the same right or left moving waves). In Figure 4-17(b) there is always some available states with the same parity and group velocity direction in the range [0, U] in the case of odd MCC, while in Figure 4-17(c) we have two opposite parities in the two regions and thus the transmission is blocked, i.e. the conductance drops to zero in this region of energy. In general, zero conductance can be observed for even MCC if 0 ≤ U ≤ 2Δ. The range of zero conductance is [0, U] if U ≤ Δ and [U-Δ, Δ] if Δ ≤ U ≤ 2Δ.
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 41726418 Figure 4-17: (a) An infinite zigzag graphene ribbon with an applied stepped potential. (b) and (c) band structures in each region and conductance for the case of odd and even MCC, respectively. In both cases U = 0.5Δ.

Even MCC = 26 Odd MCC = 25 parity

 2625 and velocity direction as the in-coming states from the left, and thus the transmission is allowed. Interestingly, the conductance for both cases of odd MCC = 25 and even MCC = 26 are almost identical. Because non-uniform ribbons are more realistic in devices, this result suggests a new way to standardize transport properties of zigzag structures and to make them less dependent on the preciseness of the atomistic arrangement.
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 5252 Figure5-2). Though an enhancement of ZT was observed compared to pure zigzag graphene its maximum value was still limited. In the former work,[START_REF] Yang | Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons[END_REF] the authors reported a significant improvement of ZT, up to 0.7 for some configurations of superlattice armchair ribbons consisting of alternating graphene and BN sections (see Figure5-1). However, the insulating effect of BN sections induces a high electron scattering, which shifts the good ZT values to high chemical potentials of about 2 eV, i.e. a range of energy difficult to exploit in practice.
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 53 It consists in a graphene ribbon to the sides of which BN flakes are periodically attached. It is thus an alternating arrangement of graphene and BN/graphene/BN (BN/G/BN) sections. Such BN/G/BN ribbons
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 53 Figure 5-3: Schematic view of studied graphene/BN heterostructure with sub-sections made of BN flakes attached to the main AGNR channel. The two leads are made of BN/G/BN ribbons as the hybrid parts of the active device.

deviceT

  scheme.[START_REF] Sancho | Quick iterative scheme for the calculation of transfer matrices: application to Mo (100[END_REF] They are used to calculate the self-energies

Figure 5 - 3 , 5 . 3 . 1 5 - 4 .Figure 5 - 4 :Figure 5 - 5 :In Figure 5 - 5 5 - 4 ,

 535315454555554 Figure5-3, unless otherwise stated we will focus mainly on two cases of graphene ribbon width, i.e. MCC = 5 and MCC = 6, that correspond to a metallic and a semiconducting ribbon, respectively, in the case of pure AGNR. Similarly, the BN width MBN will be chosen equal to 9 and 12 for MCC = 5 and 6, respectively, that correspond to the width beyond which the transport properties are unchanged, as will be discussed later.
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 5655 Figure 5-6: Phonon conductance as a function of temperature for MCC = 5 (a), and MCC = 6 (b), for different values of the number nBN of BN/G/BN sections. Phonon conductance at the room temperature for (c) MCC = 5 (cyan circles) and (d) MCC = 6 (brown circles) as a function of nBN.
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 57858 Figure 5-7: (a) & (b) Comparison of phonon transmissions in perfect graphene ribbons (dash lines) and the studied device (cyan and brown lines). For both panels Nvc = NBN = 8, nBN = 1.
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 59 Figure 5-9: Phonon conductance is plotted as a function of the width of BN flakes. Here Nvc = NBN = 8 and nBN = 1.

Figure 5 - 9

 59 the phonon conductance is plotted as a function of the width MBN while Nvc, NBN and nBN are fixed to be equal to 8, 8, and 1, respectively. It can be seen clearly that a minimum value of about MBN = 10 is required to reach the minimum of phonon conductance. Our investigations of the dependence on Nvc and NBN lead us to the conclusion that the maximum value of ZT is reached when 1 vc BN
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 510 However, for MCC = 3 the best ZT is achieved for Nvc = 6 and NBN = 4.In both cases of MCC = 5 and MCC = 6, we plot in Figure 5-11 the maximum value of ZT as a function of the number nBN of BN/G/BN sections in the active region (Figure 5-11(a) and

Figure 5 - 32 CCMp  , the AGNR with 5 CCM 5 - 1 .[ 163 ]

 532551163 Figure 5-11(b)), and the evolution of ZT as a function of the chemical potential in the leads, for different values of nBN (Figure 5-11(c) and Figure 5-11(d). In all cases, the case of pristine GNR of same width is shown for comparison. Due to the metallic behavior of AGNRs with 32 CC Mp  , the AGNR with 5 CC M  exhibits a very small Seebeck coefficient (see Figure 5-8(c)) and a ZT of about 0.03. Thanks to the bandgap opening and the dramatic reduction of phonon conductance, the figure of merit is strongly enhanced in the hybrid structure (see Figure 5-11(a) and Figure 5-11(c)), reaching 0.6 for nBN = 1 and 0.81 for longer devices with nBN > 5. More interestingly, it should be remarked that the peak values of ZT are observed here for the quite low energy µ = 0.41 eV, which is much smaller and more accessible than in the case of the transverse graphene/BN superlattice shown in Figure 5-1.[163]
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 5113512512 Figure 5-11: (a) (b) Maximum of thermoelectric figure of merit as a function of nBN for (a) MCC = 5 and (b) MCC = 6. Thermoelectric figure of merit ZT as a function of chemical potential µ for (c) MCC = 5 and (d) MCC = 6. T = 300K.
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 5 Figure 5-13 shows the trend of ZT as a function of the width MCC of the main GNR channel.
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 513 Figure 5-13: Dependence of ZTmax on the GNR width MCC, depending on whether MCC can be written in the form 3p, 3p + 1 or 3p + 2, with p is an integer number. MBN = 10, 11 for even, odd MCC, respectively and Nvc = NBN = 5, nBN = 10.
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 514 Figure 5-14: ZT as a function of chemical potential for different temperatures T ranging from 100 K to 400 K for the heterostructure with MCC = 5. Here MCC = 5, MBN = 9, and nBN = 10.
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 515 Figure 5-15: (a) The broadening of gn functions with the increase of temperature. (b) The longest slop of Seebeck coefficient shifts to the left when temperature becomes hotter.

Figure 5 - 16 :Figure 5 - 17 :

 516517 Figure 5-16: Effect of a single vacancy on the thermoelectric properties for the structure with MCC = 5. (a) The seven vacancy configurations investigated here. (b) Phonon conductance for the different vacancy configurations.
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 5518175 Figure 5-18.[175]A similar behavior in the graphene part of the structures was observed in chapter 3 with three groups of charged density. This result indicated that starting from an edge of the GNR, i.e. m = 1 at the edge, the electron density is minimum for the positions m that are multiple of 3. In the particular case of the ribbon of width MCC = 5 studied here, the density in the center of the ribbon (m = 3) is several order of magnitude smaller than at other positions m = 1 (maximum) and m = 2 (see Figure5-19). Hence, if there is a vacancy at this

Figure 5 - 18 :Figure 5 - 19 : 168 in Figure 5 -Figure 5 - 20 :

 5185191685520 Figure 5-18: Local current in different armchair graphene ribbons. From one edge to the middle of the ribbons, in all cases we can observe that charge distribution is lowest at lattice positions 3m. Reference: Wilhelm et al.[START_REF] Wilhelm | Ab initio quantum transport through armchair graphene nanoribbons: Streamlines in the current density[END_REF] 
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 1 Figure A -1 with the distance x between two adjacent points is small. For x is expanded

Figure A - 1 :

 1 Figure A -1: The variable x is presented as a series of discrete points xn.

  the differential terms in (A -1) can be seen in the relations

  are calculated via 1 ,

 1 is defined at each node. The matrix U in (A -8) is also known since , 1 , , nn   by equation (A -5). The charge density  x  is given from electron (negative carrier) and hole (positive carrier) density which are calculated by,. The potentials 1

 7 )

 7 's functions of the isolated systems A and X, respectively. The first equation can be written as Comparing it to the definition of Green's function from and (1-41), we thus have Green's function of X in the system (X+A).Equation (B -5) or (1-42) is general for any open system X. If we compare the Green' functions before and after attaching A to X: is equivalent to that where the system X has a new Hamiltonian ' plays as a perturbation potential V in this system. By this notice we can derive another important equation from (B -5) as follows: new Green's functions of a certain system, V is the perturbation potential. next step, we multiply by g on both sides of this equation and simply get g G gVG  or is the famous Dyson's equation which describes the change in a system under a perturbation.

3 )

 3 that the trace of the full size matrix   † LR GG  is actually equal to the trace of the small block   † 11 ss L N R N GG  and the transmission (1-50) is simplified as is already good compared to equation (1-50) because the matrix size of , ss LR and 1N G are just equal to the matrix size of one layer and much smaller than the matrix size of Green's function (or Hamiltonians) of the whole system. For equation (C -3) we need to determine three block matrices , ss LR



  to see the relationship with interface blocks 11 G and NN G so others are not necessary to be shown here.In the other hand, the left hand side   † i G G  in (C -5) can be calculated by using the form of Green's function (C -2) at the junction with left contacts for calculating transmission, a similar expression can be formulated with surface blocks at the right junction using relation (C -9) with a little effort is required in derivation

6 )

 6 The advantage of (D -3) and (D -6) compared to and is that they contain the function functions and decaying very fast with the increase of Energy E or frequency  . Thanks to this property, the range of integrals (D -3) and (D -6) can be limited by examining these functions. Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Titre : Propriétés électroniques et thermoélectriques des hétérostructures planaires de graphène et de nitrure de bore Mots clés : graphène, nitrure de bore, simulation atomistique, électronique / thermoélectricité, transport quantique, Fonctions de Green Résumé :

Title:

  Electronic and thermoelectric properties of graphene/boron nitride in-plane heterostructures Keywords: graphene, boron nitride, atomistic simulation, electronics / thermoelectrics, quantum transport, Green's functions Abstract: Graphene is a fascinating 2dimensional material exhibiting outstanding electronic, thermal and The work is performed using atomistic simulations based on tight binding (TB), force constant (FC) models for electrons Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

  

  

  En effet, la capacité thermoélectrique d'un matériau est évaluée par la figure de mérite thermoélectrique

	e	2 /		e	p	

ZT G S T K K 

qui est définie par l'intermédiaire

de 

la conductance électrique e G , le coefficient Seebeck S et la conductance thermique des électrons et des phonons ( e K et p K ). Ainsi, avec un très faible coefficient Seebeck et une très haute conductance thermique, le ZT du graphène est faible, inférieur à 0.01, alors qu'un matériau thermoélectrique efficace doit avoir ZT ~ 1. Pour rendre le graphène plus propice à la thermoélectricité, certaines stratégies de conception et nanostructuration doivent être appliquées pour à la fois améliorer le coefficient Seebeck et aussi réduire la conductance thermique. En fait, en raison de l'énorme potentiel du graphène, les scientifiques ont cherché continuellement des solutions pour en surmonter ses limites. Fondamentalement, la recherche sur le graphène a connu différentes périodes. Avant 2004, seulement quelques travaux théoriques prédisaient des propriétés intéressantes du graphène. Après la découverte expérimentale de graphène, de 2004 à 2010 la plupart des travaux ont été axés sur le graphène pur, visant essentiellement à ouvrir une bande interdite dans sa structure de bandes en exploitant les structures 1D de graphène (rubans de graphène) [15-18] ou en appliquant des champs électriques perpendiculaires aux bicouches de graphène.[19] D'autres propriétés physiques ont été également étudiées comme l'effet Hall quantique et les interactions de

  'étude est basée sur des méthodes semi-empiriques comme celles des liaisons fortes pour les électrons et celles des constantes de force pour les phonons. Ces méthodes ont été largement utilisées en physique de la matière condensée en raison de leur efficacité de calcul. Nous utilisons aussi les fonctions de Green hors équilibre (NEGF) combinées avec les approches atomistiques mentionnées plus haut pour étudier le transport quantique.Ce manuscrit de thèse est organisé en cinq chapitres et quatre annexes.  est le Hamiltonien des électrons (ou la matrice dynamique des phonons) pour une cellule unitaire  et H  est la matrice de couplage entre les cellules unitaires  et  .Connaissant les bandes d'énergie (ou la dispersion des phonons) et la fonction d'onde, certaines grandeurs physiques telles que la bande interdite, la densité d'états (DOS), la densité locale d'états (LDO), la densité de charge, la vitesse de groupe, la masse effective peuvent être calculées.

	Une visite guidée de la thèse savoir, respectivement et H   .. H C E C  2 U DU     . .e i k R R H       00 E     système ouvert qui est connecté à des contacts (gauche et droite) sont introduites. Elles sont (1) (2) (3) où H Pour étudier le transport dans les systèmes hors-équilibre, les fonctions de Green d'un calculées par

dans ce nouveau matériau hybride. Dans ce contexte, ce projet de thèse a été consacré aux propriétés des hétérostructures planaires de graphène/BN dans le but de comprendre et d'améliorer leurs propriétés électroniques et thermoélectriques par rapport au graphène 2D. Il se concentre particulièrement sur l'ouverture d'une bande interdite et sur les propriétés de transport qui peuvent être utilisées pour réaliser de bons transistors ou de bons convertisseurs d'énergie. LChapitre 1 : Contexte théorique Dans ce chapitre, je présente le contexte théorique de mon étude. Tout d'abord, les méthodes empiriques, y compris les modèles « liaisons fortes » et « constantes de forces », sont examinées. L'équation de Schrödinger pour les électrons et l'équation de mouvement de Newton pour les phonons peuvent être formulées dans un problème aux valeurs propres, à Dans l'équation (1), H est le Hamiltonien électronique, E est l'énergie et C les fonctions d'ondes locales. Dans l'équation (2),  fait référence à la fréquence de vibration des phonons, U est le vecteur de déplacement dans l'espace et D est la matrice décrivant la dynamique de couplages entre les atomes. Dans le cas où le système est périodique, ces problèmes de valeur propre peuvent être réduits à l'équation pour une cellule élémentaire

1.1.2 Force Constant model for phonon study

  

	common Tight Binding models, while i  is called on-site energy at the	i th  atom. These
	two parameters are the most important terms in tight binding calculations. Though	 and
									i
	ji t can be found in principle if atomic orbital   j rR  	and potential   Ur are known,
	however, in fact the analytical solution for   j rR  	can be found only for simple atomic
	configurations such as Hydrogen. In general, it is really difficult to know exactly the form of
	atomic orbitals and in most of cases, the onsite and hopping energy are parametrized to fit
	with experimental or ab initio results. For example, in the case of graphene it was found that
		i		0,	i,i 1 t 	2.7  	  eV	.[53]
	Unlike electrons, phonons are not real particles, but pseudo-particles. They are used formally
	as quantum elements involved in lattice thermal conduction in solid as we describe electrical
					atom and the orbital of the	i th 	atom. It is also often called hopping energy in
	j th				

1.1.3.1 Eigen value problem for electron energy

  

							and (1-9) can be transformed into a
	single matrix equation which is called Secular equation and the problem of solving this matrix
	equation is addressed as the Eigen value problem. The solutions for E or 2  are called Eigen
	values and the column matrices   i cR or i u are called Eigen vectors.[67]
	If we put all terms     ,, ji ji h s	   i c c R  i 	in the matrix forms
	  Hh  ji	11 h  12 . . . h h 13 21 22 23 .. h h  h    . 	,
				
				N  N h  
	  ji S s 		11 21 .. 12 13 22 23 . . . s s s s s s  N . N s         	,	  i C c 	1 2 . . . N c c c           

.1.3.2 Eigen value problem of vibrant frequency

  

				s	ji			d r	    .0 ji r R r R     	for ji  and thus only diagonal terms are
	nonzero	s	jj			d r	    .1 jj r R r R     	. Then equation (1-11) is exactly in the form of a
	secular equation:		
									.. H C E C 	(1-12)
	We can solve this Eigen value problem to find energy dispersion E and vectors C of
	amplitudes of each state. Even in the case where overlap of orbitals are taken into account, we
	can still transform (1-11) in the form of a secular equation as: 1 . S H C E C .  		'. H C E C . 	.
	1To get a secular equation for phonons, we need a little more effort compared to the case of
	electrons. Since	i M in equation (1-9) maybe different for different atoms, to deal with a
	Hermitian matrix (leading to real Eigen values) we can set	i u		i A M	i	. This way, i u in (1-8)
	can be written as	/. it ii u A i M e  

Table 2 - 1 :

 21 Tight Binding parameters used in this chapter for the study of electron properties of in-plane Graphene/BN structures

	EC_A	EC_B	EB	EN	tCC	tBN	tBC	tNC
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
	0.015	-0.015	1.95	-1.95	2.5	2.9	2.0	2.5

  Bandgap in the superlattice armchair graphene/BN structures in the case where graphene dominates the supercell (r < 1).

	group M=3n 0.4 0.6 (4/8) r=N BN /N C (4/8) (4/8) (4/8) M=3x2+1 (4/6) (4/6) (4/6) (4/6) M=3x3+1 M=3x5+1 M=3x10+1 r<1 with N BN =4, group M=3n+1 0.2 (4/54) (4/54) (4/54) (4/54) 10 20 30 40 50 (5/1) (3/1) 0 0 0.2 0.4 0.6 0.8 1 1.2 0 2.5 2.6 2.7 2.8 2.9 (51/1) 0.8 r=N BN /N C E gap (c) E gap (eV) (eV) (3/1) (5/1) (51/1) (3/1) (5/1) (51/1) (3/1) (5/1) (51/1) M=3x2 M=3x3 M=3x5 M=3x10 r>1 with N C =1, group M=3n (c) 0 10 20 30 40 50 2.5 2.6 2.8 2.9 (3/1) (51/1) r=N BN /N C E gap Figure 2-8: (a) 2.7 (5/1) (eV)	60 60	(b) E gap (eV) (d) E gap (eV) (b) E gap 0.5 0 0 1 1.5 2 0 0 0.5 1 1.5 1.5 0 2 2.5 (eV)	0.1 0.2 0.3 0.4 0.5 0.6 0.7 (4/6) (4/8) (4/54) r=N BN /N C (4/6) (4/8) (4/54) (4/6) (4/8) (4/54) (4/6) (4/8) (4/54) M=3x2 M=3x3 M=3x5 M=3x10 r<1 with N BN =4, group M=3n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 (4/6) (4/8) (4/54) r=N BN /N C (4/6) (4/8) (4/54) (4/6) (4/8) (4/54) (4/8) (4/54) (4/6) (4/8) (4/54) (4/6) (4/8) (4/54) (4/6) (4/8) (4/54) M=3x2+2 M=3x3+2 M=3x5+2 M=3x10+2 r<1 with N BN =4, group M=3n+2 2 4 6 8 10 12 (6/4) r=N BN /N C (6/4) (6/4) (6/4) M=3x2 M=3x3 M=3x5 M=3x10 r>1 with N C =4, group M=3n	14 (54/4) (54/4) (54/4) (54/4)

  . Interestingly, if in a pure armchair graphene ribbon we have

	zero gap for group 3p + 2 and bandgap order is 3p + 1 > 3p > 3p + 2 (see section 1.7.2.2 in
	chapter 1), here we observe a bandgap opening for the group 3p + 2 and a new order of
	bandgap size 3p > 3p + 1 > 3p + 2.

Table 2 -
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Table 3 -

 3 1 as a function of external field F0.

	From the in-plane charge density	 e n n he  		D   [126] to be , the 3D charge density 3 / z
	introduced into Poisson's equation was obtained by assuming the monolayer thickness	z  to

Table 3 - 1 :

 31 Position of EN for different values of the external field F0

	F0 (mV/Å)	0	1	2	3	4	5
	EN (eV)	0.01981589	0.01977433	0.01970767	0.01964578	0.01958437	0.01951816
	F0 (mV/Å)	6	7	8	9	10	11
	EN (eV)	0.01944096	0.01934544	0.01922614	0.01908099 0.01891114 0.01871435
	F0 (mV/Å)	12	13	14	15	16	17
	EN (eV)	0.01849003	0.01823574	0.01794853	0.01762447 0.01725922 0.01684806
	F0 (mV/Å)	18	19	20	21	22	23
	EN (eV)	0.01638614	0.01586878	0.01529188	0.01465254 0.01394970 0.01318494
	F0 (mV/Å)						

Table 4 - 1 :

 41 Tight Binding parameters up to 2 nd neighbor interactions and decaying potential

	EC_A	EC_B	EB	EN	tCC	tBN	tBC	tNC
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
	0.015	-0.015	1.95	-1.95	2.5	2.9	2.0	2.5
	tBC,2	tCC,2	tBB	tNN	tNC,2	PB	PN	λ
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(Å)
	0	0	0	0.15	0.59	0.75	0.68	2.1

Table 5 - 1 :

 51 Tight Binding parameters for electron study

	EC_A	EC_B	EB	EN	tCC	tBN	tBC	tNC
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
	0.015	-0.015	1.95	-1.95	2.5	2.9	2.0	2.0

Table 5 - 3 .

 53 The masses of C, B, N atoms were taken to be equal to 1.994×10 -26 , 1.795×10-26 and 2.325×10 -26 kg, respectively.

Table 5 - 2 :

 52 Force constant parameters for interactions between C-C or B-N, B-B, N-N atoms

Table 5 -3: Force
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		4
		BN

constant parameters for interactions between B-C or N-C atoms

  nBN, at least at low energy (first step of transmission) at which most of the conduction takes place. Regarding thermoelectric performance, it is definitely a strong advantage of this type of nanostructuring design. It should be noted also that the maximum Seebeck coefficient is higher in the case MCC = 6, corresponding to a larger bandgap. This behavior is consistent to with the bandgap

analysis in BN/G/BN regions (section 5.3.1) and it is also in agreement with the general result which claims that the maximum value of S should be proportional to the bandgap,[170] which has been observed in several other cases.

[START_REF] Mazzamuto | Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons[END_REF][START_REF] Nguyen | Enhanced Seebeck effect in graphene devices by strain and doping engineering[END_REF] 

scientifiques de confirmer les fascinantes propriétés prédites théoriquement. Il a fallu attendre 2004 pour que Geim et son étudiant Novoselov réussissent à isoler une forme stable de graphène en exfoliant une seule couche de carbone à partir de graphite.[START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF] Cet avancée scientifique a démontré l'existence d'un matériau bidimensionnel à base de carbone, qui a alors été nommé graphène. Ensuite, le graphène est rapidement devenu pour les physiciens un sujet de recherche très en vogue, aussi bien d'un point de vue fondamental qu'au niveau des applications.En dépit de ses excellentes propriétés électroniques, le graphène présente des inconvénients qui en limitent certaines applications, notamment en électronique. Tout d'abord, il est impossible de bloquer complètement le courant dans des dispositifs en graphène du fait de l'absence de bande interdite dans la structure électronique. Un autre problème est la croissance du graphène et son dépôt sur des substrats isolants. Comme le graphène est très mince, la surface assez rugueuse du SiO2, souvent utilisé comme substrat, peut piéger les charges et modifier la forme plane du graphène,[START_REF] Ishigami | Atomic structure of graphene on SiO2[END_REF][START_REF] Fratini | Substrate-limited electron dynamics in graphene[END_REF] ce qui affecte fortement le transport électronique.En effet, bien que la mobilité des électrons dans le graphène doit théoriquement pouvoir atteindre environ 200 000 cm 2 ⋅V -1 ⋅s -1 à température ambiante,[5] une telle valeur n'a été obtenue que dans du graphène suspendu (sans substrat).[2] Pour le graphène sur SiO2, la meilleure mobilité expérimentale mesurée est d'environ 40 000 cm 2 ⋅V -1 ⋅s -1 ,[10] mais elle est généralement beaucoup plus basse, ce qui est loin des attentes initiales. Ainsi, le choix du substrat est d'une grande importance en vue de parvenir à des applications électroniques hautes performances.

Acknowledgements

However, physics is different in this case. Here the bonding at the two edge of graphene are In Figure 3-10, the current is plotted as a function of the bias voltage Vbias applied between the graphene leads for transverse electric fields of F0 = 0, 5, 10 and 20 mV/Å. As the energy bandgap is gradually suppressed, it is remarkable that the current increases strongly. The red curve with circles, which corresponds to F0 = 0 mV/Å, exhibits very weak current at low bias because the chemical potentials in the leads do not cross available energy states in the active region. Nevertheless, due to the finite and small size of the active region, some evanescent waves can tunnel through the active region. Once the transverse electric field is high enough, the gap is strongly suppressed and the current is widely enhanced due to the increasing contribution of propagating waves. At low F0, the rapid increase of current when F0 increases is consistent with the bandgap reduction observed in Figure 345678. For fields higher than about 10-15 mV/Å, the bandgap reduction saturates, which leads to a limited increase of current.

Actually, two effects contribute to limit the current at high transverse field: the quasisaturation of bandgap and the increase of effective mass, as shown in Figure 345678. For this particular ribbon, at Vbias = 0.2 V, the on/off current ratio ION/IOFF defined as the ratio of currents at F0 = 20 mV/Å and at F0 = 0 mV/Å reaches the nice value of 3830 and even jumps up to 14200 if the length of the active region increases to 17 nm (see Figure 34567891011). The rising of ON/OFF current ratio with the increase of the active region length is mainly due to the fact that the OFF-current (the current without electric field and at low bias) is reduced in longer devices as seen in Figure 3-12. The reduction of the OFF-current is because the transmission of evanescent waves, which is significant in OFF-state for short lengths of active region, rapidly decays when increasing this length. After decreasing, the OFF-current saturates at long length when the contribution of evanescent states becomes negligible. The ON-current being weakly affected by this length in ballistic regime, the smaller OFF-current results in an increase of the ON/OFF ratio. MCC2 = 20. This case can be compared to that of the straight interface with MBN1 = MBN2 and MCC1 = MCC2 as schematized in Figure 4-4(a). The transmission was investigated using the atomistic non-equilibrium Green's function method. [START_REF] Datta | Quantum Transport : Atom to Transistor[END_REF][START_REF] Li | Quantum conductance of graphene nanoribbons with edge defects[END_REF][START_REF] Nguyen | Giant effect of negative differential conductance in graphene nanoribbon p-n hetero-junctions[END_REF] In Figure 4-12(b) we plot the energy bands and transmission spectrum for three cases: pure zigzag graphene (without BN region, solid-black lines), perfectly straight B-C interfaces (dashed-blue or dotted-red lines) and stepped B-C interface (orange dashed-dotted line). It can be seen clearly from the solidblack and dashed-blue lines that the transmission is significantly enhanced in the energy range [-0.75 eV, 0] due to the presence of hybrid B-C states. Even in the case of the stepped interface we still observe higher transmission in the range [-0.45 eV, -0.05 eV] compared to the case of pure zigzag graphene ribbon. In the stepped interface structure, the bandgap still exists, which is evidenced by the zero transmission in the region of energy close to 0. Thus, hybrid states and bandgap can survive in realistic structures with non-uniform zigzag graphene-BN interfaces.

Experimental evidence of hybrid states

Recently, Drost and his collaborators showed interesting results of interface states in zigzag Graphene/BN heterostructures. [START_REF] Drost | Electronic States at the Graphene-Hexagonal Boron Nitride Zigzag Interface[END_REF] Thought the theoretical analysis is limited just to showing energy bands, the experimental results provided a strong evidence of the presence of the interface hybrid states.

First of all, they grew graphene on a (111) iridium (Ir) single crystal using temperatureprogrammed growth (TPG) process, then BN was deposited. Few layers of gold were also introduced between the sample and the substrate to reduce the reconstruction of graphene and BN (see the left panel of Figure 45678910111213). This technique provided high quality zigzag terminated interface. Later on, the samples were examined by low temperature scanning tunneling microscopy (STM) and spectroscopy (STS). In the right panel of 

Summary and possible future works

During the last decade graphene has emerged as an appealing material in several fields of physics due to its outstanding properties which sound promising for many future applications.

However, regarding applications in nano-electronics the lack of an energy gap makes it not directly suitable for common devices such as transistors and diodes. Additionally, theory and experiments confirm that in spite of excellent electronic conductance, this gapless character, together with the high thermal conductance, make graphene a poor thermoelectric material. It is thus a major challenge to overcome these limitations and to take fully advantage of its electronic properties, such as exceptionally high intrinsic mobility.

Besides, hexagonal Boron Nitride is known as a quasi-ideal insulating material to be used in heterostructures with graphene because it exhibits the same crystal conformation and almost the same lattice parameter. Taking advantage of the fact that hybrid structures of these two materials can be now synthesized, we proposed efficient designs using in-plane graphene/BN heterostructures to achieve both tunable bandgap and high thermoelectric performance. (ii) The analysis of atom vacancy effect in chapter 5 shows that higher ZT is obtained for vacancies at positions 3m due to small charge localization at these points compared to the others. This physics can lead to a problem of enhancement of the figure of merit ZT in armchair graphene by controlling line of defects. The defect lines at position 3m from the edges should not reduce strongly the electrical conductance while they must degrade strongly the phonon conductance. Hence, higher ZT could be obtained.

(iii) A combination of graphene and another 2D material such as Silicene which has a shorter vibrational frequency range (graphene:[0,1600 cm -1 ], Silicene:[0,600 cm -1 ]) in a heterostructure may lead to a strong reduction of phonon conductance, even more than what we have seen in the heterostructure of graphene/BN in chapter 5. It thus may be possible to achieve higher ZT in this kind of heterostructure.

(iv) At high temperatures, many body effects such as phonon-phonon and phonon-electron interactions may become important. It is thus necessary to extend the presented one electron Green's function method to include many body problems.

If we set

, 1 

Equation (A -4) can be simplified as

.

With N being the number of x points, n in (A -6) can take values from 2 to N-1. Thus we have N-2 equations from (A -6), i.e. ...

This method can also be extended to 2D and 3D Poisson's equation.

Appendix B: Green's function of an open system and Dyson's equation

In general, the Hamiltonian of a system (X+A) in 

Appendix D: Intermediate functions and Phonon conductance

In this part we present practical forms of equation and (1-62) for calculation of Phonon conductance p K and intermediate function
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