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“Dans la vie, rien n’est à craindre,
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Résumé en français

Mouillage partiel de films liquides dans des tubes polymères

Les tubes polymères, de PDMS ou de PVC, sont des matériaux hydrophobes poly-
valents et peu couteux. Ils sont très largement utilisés dans l’industrie pour transférer
des fluides plus ou moins complexes tels que de l’eau potable, des émulsions (e.g lait),
des suspensions (e.g café), ou encore des solutions de molécules actives (e.g médicament).
La plupart de ces applications mettent en jeux des écoulements intermittents répétés de
liquide qui peuvent contaminer le matériau. Cette étude a pour but de mieux comprendre
comment ces écoulements de fluides complexes entraînent la contamination des tubes.

Nous étudions expérimentalement et théoriquement les régimes d’un segment de liquide
de faible viscosité s’écoulant dans un tube en conditions de mouillage partiel. Nous avons
fait varier la viscosité du liquide ainsi que l’interaction liquide/solide près de la ligne
triple. Étonnamment la géométrie cylindrique est moins étudiée expérimentalement dans
la littérature que la géométrie plane. En effet, la visualisation de l’écoulement est plus
compliquée dans des tubes bien que cette géométrie présente l’avantage de ne pas avoir
d’effet de bords. Nous avons conçu un dispositif expérimental polyvalent permettant
d’accéder à des vitesses élevées du segment liquide sur une large gamme, avec une bonne
reproductibilité et une bonne qualité de la visualisation permettant ainsi de mesurer la
cinématique du segment liquide et la morphologie du film liquide. Une méthode de mesure
d’épaisseur basée sur l’absorption de la lumière a été mise au point.

Nous montrons dans un premier temps que le nombre capillaire Ca est le paramètre
pertinent pour rendre compte de nos observations. Dans une perspective classique pour
des surfaces hydrophobes, on s’attendrait à observer des transitions dynamiques de mouil-
lage forcé à des nombres capillaires très élevés. Pour le PVC par exemple, la transition
est attendue à environ Ca = 3.5 10−3 , à savoir 26 cm.s−1 pour de l’eau pure. Expéri-
mentalement, ce n’est pas ce que l’on observe. Un film de liquide peut être entrainé à
des nombres capillaires bien plus faibles Ca = 1.8 10−4, correspondant à une vitesse de
1.4 cm.s−1. Des résultats similaires sont également observés avec le PDMS (Chapter 6).
Nous montrons qu’il y a deux raisons pour cette différence de comportements par rapport
au cas classique. La première est que l’angle de contact à la reculée pertinent θe n’est
pas l’angle de contact à la reculée en quasi-statique θ0

r . La seconde est que même si l’on
corrige l’angle de contact de référence, la transition dynamique de mouillage se produit à
des vitesses bien plus faibles d’un ordre de grandeur.
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Le comportement phénoménologique observé dans notre étude est représenté de manière
schématique dans la Figure 1 : (i) ménisque dynamique stationnaire et déstabilisation du
ménisque (Chapitre 3) ; (ii) formation d’un film épais (Chapitre 4) ; (iii) coexistence
de deux films (Chapitre 5) ; et est en accord avec les modèles numériques bien que les
transitions ne soient pas aux valeurs de nombres capillaires prédites.

Figure 1: Schéma récapitulatif des différents régimes et des morphologies de films
observés en faisant varier le nombre capillaire.

Dans le régime (i), la forme du ménisque évolue en temps pour atteindre une forme
stationnaire avec un angle de contact fini. À faibles nombres capillaires Ca, il y a une forte
dépendance de l’angle de contact à la fois en avancée et en reculée avec le nombre capillaire
(zone a dans la Figure 2). Les modèles hydrodynamiques ne rendent pas compte de cet
aspect. Cette variation inattendue peut être attribuée au couplage entre la rugosité de la
surface et le piégeage de la ligne triple. Pour des nombres capillaire plus élevés Ca (zone b),
un plateau visqueux de type Cox-Voinov est observé, mais il se termine prématurément
par rapport aux prédictions hydrodynamiques. Ce plateau se termine à Ca+ = 1.8 10−4

où l’on trouve une forte chute à environ zéro sur la gamme Ca+ et Ca∗ = 4 10−4 (zone c).
Entre ces deux nombres capillaires, Ca+ et Ca∗, la transition vers la formation d’un film
dépend de l’échelle de temps de la mesure. Il y a un ralentissement critique autour de
la transition. Tous ces aspects sont inclus dans nos simulations numériques. Ca∗ définit
la transition de mouillage dynamique instantanée, correspondant à la transition entre
régime (i) and (ii). Dans notre système expérimental la dissipation visqueuse dans le coin
de liquide est négligeable, en remplacement un mécanisme de dissipation de type friction
permet d’expliquer qualitativement à la fois la valeur de l’angle de contact à la reculée en
quasi-statique et le nombre capillaire critique Ca+ auquel on observe la transition d’un
ménisque à un film (ou Ca∗ pour la transition dynamique instantanée). Cette dernière
valeur est bien plus faible que celle obtenue dans la littérature en utilisant les modèles
hydrodynamiques classiques, couramment notée Cac (mais CaCoxc dans ce manuscrit).
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Dans ces cas, la transition est définie quand la solution stationnaire du ménisque cesse
d’exister (zcl =

√
2) [1]. Dans notre étude, Ca∗ est un ordre de grandeur plus faible que

CaCoxc . Expérimentalement la transition est non seulement décalée mais aussi élargie.
Ce résultat remarquable est une opportunité pour observer en détail la phénoménologie
autour de la transition.

Figure 2: Schéma de l’évolution de l’angle de contact dynamique θ en fonction du
nombre capillaire basé sur la vitesse de la ligne triple Cad. Les lignes de contact en
avancée correspondent à des vitesses négatives. Les valeurs sont données pour des
tubes de PVC.

Au-delà de ce nombre capillaire, on observe expérimentalement l’existence d’un film
épais sur une large gamme de nombre capillaire Ca+ < Ca < Ca∗∗ (zone d dans la
Figure 2). Ce film épais démouille à une vitesse Cad légèrement inférieure à la vitesse du
segment de fluide Ca. De plus, contrairement à la littérature (Chapitre 1), l’épaisseur du
film épais n’est pas unique et dépend de la vitesse de la ligne triple : e1 = lc

√
3Cad. La

vitesse Cad augmente avec la vitesse du segment liquide mais reste légèrement inférieure.
On observe des films épais avec une variété d’épaisseurs allant d’environ 50 à 200 µm.
La différence Ca − Cad est de plus en plus prononcée jusqu’à une certaine valeur, où la
vitesse de démouillage sature à Casatd . La saturation de la vitesse de la ligne triple a été
identifié à Ca∗∗ = 2.2 10−3 et définie la transition entre régime (ii) et (iii) et correspond
à la valeur de Ca prédite par Cox-Voinov pour la transition de mouillage forcé.

Dans le régime (iii) un film plus mince croît entre le précédent film épais et le ménisque
(zone e). Nous retrouvons une épaisseur indépendante de la vitesse esat1 = lc

√
3Casatd pour

le film épais du haut, tout comme d’autres auteurs Snoeijer et al. [2, 3] (expérimentale-
ment) et Hocking [4], Snoeijer et al. [1], Gao et al. [5] (numériquement). La transition vers
deux films liquides est associée à la saturation du flux descendant généré par le démouil-
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lage et la gravité. Ce flux devient plus faible que le flux de liquide montant éjecté par
le segment liquide par forçage visqueux, ce qui sélectionne une seconde épaisseur : deux
épaisseurs de films coexistent et sont reliées par un ressaut capillaire formé à la transition.
Le film du bas correspond à un film de Landau-Levich-Derjaguin/Bretherton, usuellement
observé pour des conditions de mouillage total, et présente une épaisseur variant en Ca2/3.
Dans les régimes (ii) et (iii), les profils de films obtenus numériquement en stationnaire
rendent compte de nos observations expérimentales en terme d’évolution de l’épaisseur
du film avec Ca, à l’exception du bourrelet observé près de la ligne triple. L’existence
du régime (iii) peut être obtenue en prenant en compte les dérivées temporelles. Ainsi,
on trouve les différents régimes obtenus par Gao et al. [5]. Ainsi, on trouve les différents
régimes obtenus par Gao et al. [5]. Néanmoins, on obtient une épaisseur du film épais
constante indépendamment de la vitesse, ce qui est en accord avec e1 = lc

√
3Ca∗ mais

pas avec notre résultat expérimental e1 = lc
√

3Cad. De plus, la différence entre Ca∗ et
Ca∗∗ est bien plus marquée expérimentalement (∆Ca = 1.8 10−3) que numériquement
(∆Ca = 10−4).

(a)

(b)

Figure 3: (a) Séquence d’images obtenue pour une expérince typique où le film
liquide se rompt (∆t = 100 ms). Une zone sèche se forme et croît laissant un
ruisselet qui se déstabilise lui-même en gouttelettes qui restent piégées à la surface.
(b) Zoom sur la zone de nucléation (∆t = 4 ms).
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Lorsque le nombre capillaire est suffisamment important, le second film devient plus
épais que le premier film. Dans le même temps, des oscillations d’épaisseurs localisées près
du ressaut capillaire apparaissent. Un dernier scenario est occasionnellement observé où
le film liquide se déstabilise soit dans la zone mince, soit au niveau des oscillations. Une
zone sèche se forme et croît laissant seulement un ruisselet connectant la partie haute du
film au segment liquide ou au nouveau film formé plus bas (Figure 3). Une fois que le
film a drainé complétement à travers le ruisselet, ce dernier se déstabilise en gouttelettes
(instabilité de Rayleigh-Plateau). Ces gouttelettes sont sujettes à l’évaporation et laissent
des résidus, générant la contamination du substrat.

Figure 4: Diagramme de phase pour de l’eau pure : énergie d’adhésion Eadh =
γ
(
1 + cos θ0

r

)
en fonction du nombre capillaire Ca. Les courbes verte et rouge corre-

spondent respectivement à la limite qualitative entre régime (i) et (ii), et régime (ii)
et (iii).

Notre étude apporte un aperçu fondamental du problème classique d’une ligne de
contact mobile en géométrie cylindrique et de la déposition d’un film sur des substrats
partiellement mouillants. En outre, ces résultats trouvent une application pratique pour
les fabricants de tubes, tel que Saint-Gobain, ou leurs clients. En effet, comme expliqué
précédemment, un point crucial est de réduire la contamination du tube causée par le
transfert de liquide. Cela nécessite d’une part la réduction du temps de contact entre le
liquide et le tube, et d’autre part la stabilisation de l’écoulement pour éviter la formation
et le piégeage de gouttes. Dans les deux cas il est préférable d’éviter le dépôt d’un film
liquide et de restreindre l’écoulement à une zone stable : régime (i). Nous montrons
que l’ajustement des paramètres (propriétés du liquide et du matériau) permettent soit
d’empêcher, soit d’induire la formation d’un film liquide. Cette vue globale du problème
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permet d’aider le fabriquant à conseiller leur clients en terme de propriétés du tube à
utiliser pour un liquide donné (η, γ, débit de l’écoulement via Ca, chimie du tube via θr).

Un diagramme de phase Eadh en fonction de Ca peut ainsi être construit, comme le
montre la Figure 4. L’énergie d’adhésion Eadh correspond aux interactions liquide/solide
à travers la chimie du tube θ0

r et à travers la tension de surface du liquide γ. En utilisant
ce diagramme de phase, la chimie du tube pour une tension de surface donnée et un débit
donné peut être ajustée afin de placer le système dans un régime stable, à savoir régime (i).
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Introduction

0.1 Industrial context

Polymer tubes, made of poly(dimethylsiloxane) (PDMS) or poly(vinyl chloride) (PVC),
are versatile, low cost, hydrophobic materials. They are heavily used for tubing in Food
& Beverage markets. The Fluid Systems division of Saint-Gobain has a strong market
share for these activities. These applications involve repeated, intermittent flows of liquid.
In addition the liquids at stake are more or less complex fluids such as drinkable water,
emulsions (e.g milk), suspensions (e.g coffee), or solution of active molecules (e.g pharma-
ceutics). However, polymer material presents some drawbacks such as large permeability,
easy adsorption/adhesion at the surface, possible heterogeneity, leading to unwanted con-
tamination, and making the cleaning difficult. In order to improve product quality and
strengthen the marketing process, the Fluid Systems division of Saint-Gobain is interested
in a better understanding of how intermittent flows of complex fluids in polymer tubes
result in contamination.

PDMS exhibits an hydrophobic surface with low surface energy (around 20 mN.m−1).
As mentioned previously, while tubes are in use, aqueous solutions are flowing and con-
taminants can accumulate at the inner wall. Moreover, because of the high contact angle
hysteresis for the couple water/PDMS, the triple line can be pinned. To solve the foul-
ing problem, it is important to properly identify and understand the mechanisms which
lead to deposition/pinning of a fraction of the liquid and to find ways to decrease the
contamination by technically viable surface modifications of the PDMS tubes.

0.2 Scientific problem

In this context, we are interested in the coupling between macroscopic flow and more local
effects at the triple line. Two main phenomena could explain tube contamination after a
fluid segment (slug) has passed through (see Figure 5): chemical interaction and liquid
deposition.

The first one is the chemical interaction between the liquid and the substrate which
may lead to chemical or physical adsorption at the tube surface while a slug is flowing
(Figure 5a). Another possibility is the deformation of the meniscus at the rear which may
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lead to triple line destabilization and, even worse, liquid deposition at the back of a slug.
This liquid deposition can either be a continuous film or droplets which can evaporate and
leave contaminants. This case is depicted in Figure 5b.

(a)

(b)

Figure 5: Contamination mechanisms: (a) chemical interaction liquid/substrate
leading to adsorption, (b) deformation of the liquid meniscus leading to film deposi-
tion and/or droplets.

To probe the relative importance of the adsorption mechanism and of the film/droplet
deposition scenario, a side experiment was carried out where we artificially contaminate
tubes. For that purpose, we flow a dilute solution of hot milk in a PDMS tube (Sanitech R©

ULTRA). Milk proteins are the contamination agent that will be characterized. In a first
case (#1), the flow is running for 55 min. In this situation, called “continuous flow”: one
single long slug will go through the tube. In a second case (#2), the flow is stopped every
20 secs, for 1.5 mins. To get the same contact time as for case #1 (55 min), 163 cycles
are run. In this situation, the flow is intermittent and multiple slugs will flow on the
surface. After flowing the liquid, we cut a length of 5 cm of the tube to extract and
quantify the milk proteins adsorbed on the surface. Protein concentrations in both cases
are gathered in Figure 6. It shows that the contamination is ten times larger in the
case of intermittent flow. Indeed, in our study, flows are gravity-driven in tubes (tens of
centimeters long), and velocities are of the order of several centimeters per second. At this
time scale (a few seconds), only elements a few micrometers away from the wall can diffuse
towards the surface and be adsorbed. Therefore, it can be concluded that diffusion and/or
adsorption from the bulk are not relevant for contamination. Instead, the precise behavior
of the contact line between liquid meniscus and tube seems to control the contamination
(Figure 5b).
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Figure 6: Artificial contamination of PDMS tube by milk.

To better understand the mechanisms of contamination for intermittent flows, we have
developed a model experiment. We consider flows in vertical cylindrical tubes under partial
wetting condition, such that two processes are in competition. On the one hand, because
of the large slug velocity, a liquid film tends to be created at the back of the rear meniscus.
On the other hand, because of the partial wetting condition, the liquid film dewets. We
will investigate how this competition controls film deposition in hydrophobic tubes and
propose theoretical approaches of the problem to explain and rationalize the experimental
observations and identify the dominant effects.





Notations

γ Surface tension of the fluid

η Viscosity of the fluid

κ Interface curvature

θ Dynamic contact angle

θe Equilibrium or static contact angle

θa Advancing contact angle

θr Receding contact angle

θ0
r Quasi-static receding contact angle measured with pure water displaced at

a velocity v = 0.3 cm.s−1

∆θ Contact angle hysteresis

ρ Density of the fluid

Ψ Dimensionless triple line friction coefficient

Ca Capillary number of the rear of the slug

Caf Capillary number of the front of the slug

Cad Capillary number of the dewetting film

Casatd Saturation capillary number of the dewetting film

Caj Capillary number of the jump

Ca∗ First threshold in capillary number describing qualitatively the transition
between regime (i) and regime (ii) (instantaneous wetting transition)

Ca+ Critical capillary number at the dynamic wetting transition delimiting the
transition between regime (i) and regime (ii)

Ca∗∗ Second threshold in capillary number of the slug delimiting the transition
between regime (ii) and regime (iii)
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CaCoxc Capillary number threshold found by the Cox-Voinov model

din Inner diameter of the tube

dout Outer diameter of the tube

e1 Thickness of the first film

esat1 Maximal thickness of the first film

e2 Thickness of the second film

g Gravitational acceleration constant

h(z)
or e

Thickness profile of the liquid/air interface along the z− direction

H Normalized meniscus profile by the capillary length lc

h̃ Normalized meniscus profile by lcCa1/2

lc Capillary length

ls Slip length

Lslug Length of the slug

Lfilm Length of the film

Lfilm1 Length of the first film

Lfilm2 Length of the second film

P Pressure

Qc Convected upward flux

Qg Gravitational downward flux

Qd Dewetting downward flux

R Radius of the tube

t Time

T Time normalized by the capillary length lc

t̃ Time normalized by lcCa1/6/v

v Velocity of the rear of the slug

vd Velocity of the dewetting film

vsatd Saturation velocity of the dewetting film
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vj Velocity of the jump

vCoxc Velocity threshold found by the Cox-Voinov model

v∗ First threshold in velocity describing qualitatively the transition between
regime (i) and regime (ii)

v∗∗ Second threshold in velocity of the slug delimiting the transition between
regime (ii) and regime (iii)

vliq Characteristic velocity of the fluid

z Vertical position

Z Vertical position normalized by the capillary length lc

z̃ Vertical position normalized by lcCa1/6

zcl Contact line elevation





Chapter 1

State of the art

1.1 Introduction

In this chapter, we provide a panorama of the state of the art on two main aspects. The
first one concerns thin liquid films entrained by moving surface. The main concern is
predicting the thickness of the film as a function of the velocity of the surfaces. The
second aspect is about moving contact lines: a liquid/solid contact line is displaced on a
horizontal surface. Authors mainly focus on the evolution of the dynamic contact angle
at the triple line as a function of the relative velocity of the contact line on the surface.
In a third part of this chapter, we will see that looking deeper into the literature very
few examples can be found where authors investigate simultaneously thin liquid films and
moving contact lines. The last part will detail the scope of the manuscript.

1.2 Flow in thin liquid films

The deposition of a liquid layer on a solid substrate is widely encountered in a variety of
industrial or natural situations involving the motion of liquid menisci on a dry solid. It
is realized by imposing a relative motion between the solid and the triple line. Common
applications are coating (e.g. dip-coating) and painting; enhanced oil recovery, or soil
remediation, where liquid foams are pushed into porous media to displace oil or pollu-
tants [6, 7]; in the bronchial tubes of the lung where surfactant lamellae are produced and
moved [8]; in the throat and the esophagus where alimentary boluses are propelled during
swallowing [9]; in microfluidics to control bubble motion in innovative setups [10].

1.2.1 Landau-Levich-Derjaguin film

One of the simplest setups for liquid film deposition is the so-called dip coating, in which
a solid surface is withdrawn from a liquid reservoir with a velocity v, giving rise to a
thin film of controlled thickness. For a Newtonian liquid with a dynamic viscosity η and
a surface tension γ, the dip-coating process, as illustrated in Figure 1.1, is governed by
the balance between the viscous and capillary forces, which is measured by the capillary



28 Chapter 1. State of the art

number Ca = ηv/γ. The capillary number can be written as a ratio of two velocities:
Ca = v/vliq, highlighting a characteristic velocity of the fluid defined as vliq = γ/η. For
water, this velocity is very large (70 m.s−1). In most cases, because of the comparatively
small value of v, the associated capillary number is small, typically Ca < 0.01.

Figure 1.1: A Landau-Levich-Derjaguin (LLD) film in a dip coating experiment
(from [11]).

Specifically, Landau, Levich and Derjaguin (LLD), motivated by the problem of the
coating of cine films, proposed a well-know relation, referred to as the LLD law in the
following [11, 12], which gives the film thickness eLLD as a function of the capillary number
Ca (Equation (1.1)).

eLLD = 0.95 lc Ca2/3 (1.1)

where lc =
√
γ/ρg is the capillary length, which compares surface tension and gravity

effects. Below the length scale lc the gravity can be neglected. For water, the capillary
length is about 2.7 mm. It sets the curvature of the connection between the film and the
liquid bath.

The LLD law corresponds to the small capillary number limit of the film deposition,
and is generally believed to be valid for Ca ≤ 0.01 according to a series of experimental
and numerical tests (see Ruschak [13] and references therein). For a bath of water and a
plate velocity v = 7 m.s−1 corresponding to a capillary number Ca = 1 10−4, the thickness
of the remaining film is eLLD = 6 µm.
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Later, Bretherton [14] developed a similar model for the case of an air bubble displaced
in a capillary tube filled with liquid. In the absence of gravitational and inertial forces,
the motion of elongated bubbles within a liquid is expected to be mainly governed by the
competition between viscous and surface tension forces, i.e by the capillary number Ca.
In this configuration the relevant length scale for the calculation of the film thickness eB
is no longer the capillary length lc but the tube radius R << lc (Equation (1.2)), and the
thickness is given by:

eB = 1.34 R Ca2/3 (1.2)

We provide in Appendix A a simple scaling approach and the complete calculation of
the Bretherton problem to obtain Equation (1.2). For an easy to follow derivation see also
Cantat [15]. For small tube radius R << lc, the thickness of the entrained film is smaller
than LLD film.

Figure 1.2: Section of a bubble in a horizontal tube where U represents the bubble
velocity [14].

Contrary to the LLD film, the Bretherton bubble has two ends. An interesting point
is the dissymmetrical shape of the bubble (Figure 1.2). The front of the bubble (on the
right side) presents an exponential profile while the back end of the bubble (on the left)
exhibits an oscillating profile.

In fact, in the reference frame of the bubble at the right of the bubble (Figure 1.2) the
wall of the tube can be considered as translating at the velocity −v (in the left direction)
compared to the static liquid reservoir. Similarly to the LLD case, where a plate is
withdrawn out of a bath, the corresponding profile of the liquid film is exponential. On
the left side of the bubble, the wall of the tube is entering the static liquid reservoir located
to the left and a soft buckling of the surface results.

Similarly to Fairbrother & Stubbs [16] in 1935, twenty five years later Taylor [17]
experimentally investigated the bubble motion for the range of Ca < 2 in glycerine and
concentrated sucrose solutions in glass tubes of diameters 2R = 1.5, 2 and 3 mm. The
sketch of the setup is given in Figure 1.3b. The tube is horizontal.

As a result, he found that the relation presented in Equation (1.2) provides a good
approximation up to Ca = 0.09. The same relation was observed to over-predict his
measurements in highly viscous liquids at Ca > 0.09. Taylor’s experimental results are
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(a) (b)

Figure 1.3: (a) Taylor’s portrait. (b) Sketch of Taylors’s apparatus [17].

well described by the following expression, which is referred to as the empirical Taylor’s
law in the literature in the range of Ca < 10−2:

eT
R

= 0.67 Ca2/3

1 + 3.35 Ca2/3 (1.3)

More recently, the effect of inertia on the motion of confined elongated bubbles was
investigated in numerical and experimental studies [18, 19, 20, 21]. In general, this effect
was found to increase the thickness of the liquid film around the gas bubbles, which caused
notable deviations from Taylor’s law for larger capillary numbers. Aussillous & Quéré [18]
performed experimental measurements with low viscosity liquids for a large range of cap-
illary numbers and reported significant under-estimation of their results by the relations
proposed by Taylor [17] and Bretherton [14]. They found a systematic deviation for capil-
lary numbers larger than Ca ∼

(
η2/γρR

)3/4. Finally, they concluded that the modification
of the film thickness can be captured by the following relation:

e

R
∼ Ca2/3

1 + Ca2/3 −We
(1.4)

where We = ρv2(R − e)/γ is the Weber number that describes the ratio of inertia to
capillary effects.

Callegari et al. [22] experimentally investigated the dewetting of liquid films using
slugs of water-glycerol solutions in PVC cylindrical tubes. Tubes of radius R = 1 mm
were placed horizontally. They noted that it was difficult to measure the thickness of the
film in a cylindrical geometry, so that they chose to measure it indirectly considering the
volume conservation and assuming a homogenous film. Doing so, they found that the
variation of the film thickness e is well fitted by the relation:

e

R
∼ 0.95 Caf 0.6 (1.5)

Here, contrary to the LLD prediction which uses the velocity of the slug rear, Calle-
gari et al. [22] define the capillary number Caf based on the velocity of the front of the
slug vf . They noticed that the two variations in Ca2/3 and Ca0.6 are quite similar.
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Despite the large number of numerical and experimental studies devoted to such flows,
most of these investigations were mainly focused on quantifying the film to mean flow
velocity ratio and the average film thickness. Other aspects of film flow such as the profile
of the free surface and the length of the film, or the onset of the transitions to axisym-
metric and time-dependent flows were usually overlooked in the literature, especially in
the experimental studies, due to the limitations in the measurement techniques. In addi-
tion, whenever a liquid/solid/gas triple line exists, the liquid is assumed to be completely
wetting and there is no relative velocity between contact line and solid wall.

1.2.2 Thick film

Looking deeper in the literature, we can find other types of liquid films (Figure 1.4), that
have only been calculated theoretically or numerically. These films are commonly named
“thick films”.

Figure 1.4: Film flowing down a plate with mean velocity U and thickness h,
connected to a liquid bath. A denotes the final wave trough, or dimple (from [23]).

Derjaguin is the first author to mention the existence of such thick film solutions,
through a theoretical derivation [12]. He considered the steady state obtained when pulling
an infinite plate oriented at an angle α with the horizontal line from a liquid at a constant
velocity v (Figure 1.1). He found that when the time is sufficiently large, the thickness of
the film at a considerable distance above the liquid bath will be constant and approximately
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equal to eD, according to:

eD ∼
√

ηv

ρg sinα (1.6)

Later, the reverse problem has been studied: a liquid film running down a vertical
plate and entering a large bath (Cook & Clarke [24], Cullen & Davidson [25]). It was
found that the free liquid surface does not simply match into the bath but exhibits several
stationary ripples near the point of entry (Figure 1.4). The explanation, in terms of the
interplay between gravity, viscosity and capillarity, was given in essence by Ruschak [26],
and has been further investigated by Wilson & Jones [23] using the method of matched
expansions. They both investigated the case of a static wall and the case of a vertical wall
moving downwards. These oscillations are similar in nature to the back side of Bretherton’s
bubble. An experimental study by Maleki et al. [27] confirms the existence of a stationary
wavy shape when plunging a coated plate with a liquid film into a bath.

Whether in the LLD or in the thick film cases, the finite vertical extent of the film is
not taken into account, so that there may actually exist a triple line at the end of the film.
All the phenomena are considered to happen close to the meniscus. On the other hand, a
large part of the literature is dedicated to the description of moving contact lines out of
the context of film deposition. This is the focus of the next section.

1.3 Moving contact line and dynamic contact angle

When a drop is deposited on a surface, the droplet interface takes an equilibrium shape.
The static or equilibrium contact angle θe is the angle, conventionally measured in the
liquid, where the liquid-vapor interface meets the solid (static conditions: v = 0 in Fig-
ure 1.5).

Figure 1.5: Schematic of a moving contact line with a dynamic contact angle.

θe quantifies the wettability of a solid surface by a liquid via the Young equation [28]:

γ cos θe = γsg − γsl (1.7)
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where γ, γsg and γsl are the liquid/gas, solid/gas and solid/liquid surface tensions respec-
tively. A given system of solid, liquid, and gas at a given temperature and pressure has a
unique equilibrium contact angle θe.

Figure 1.6: Velocity-dependence of the contact angle for a partially wetting liquid.

However, in practice solid surfaces are not perfect and often present a roughness or
chemical heterogeneity. It results in the non uniqueness of the equilibrium contact angle.
The contact angle value will depend on whether the interface has been advancing or
receding, ranging from the so-called advancing (wetting) contact angle θa to the receding
(dewetting) contact angle θr. This phenomenon is known as contact angle hysteresis
[29, 30, 31] and can be quantified by the difference between the cosines of advancing
contact angle and the receding contact angle ∆ cos θ = cos θr − cos θa, or by ∆θ = θa −
θr. On such surfaces, wetting lines tend to pin and depin in an unsteady way. Such
factors complicate both the measurement and the interpretation of contact angles. When
we consider a contact line moving at velocity v in the reference frame of the substrate
(Figure 1.5), the dynamic contact angle θ = f(v) differs from its equilibrium value θe
because of dissipation. When the contact line advances the dynamic contact angle increases
with velocity v whereas it decreases when the contact line recedes (Figure 1.6). In all
the models presented below, the contact angle hysteresis is neglected even though this
phenomenon is almost always observed experimentally.

1.3.1 Wetting dynamics - models and dissipation

Despite a huge amount of work, dissipation mechanisms close to the dynamic contact line
are still a controversial issue. The most obvious source of dissipation is the flow of the vis-
cous liquid near the triple line. Due to the decreasing liquid thickness towards the contact
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line, the shear rate increases. In fact one difficulty comes from the well-known contact
line singularity of the shear rate that arises when the Navier-Stokes equation together
with the no-slip boundary condition are used to model the problem. This singularity is
non-physical since it leads to infinite energy dissipation rate. Apart from the mathemat-
ical complication, this highlights the complex physical processes occurring in the vicinity
of the contact line. A number of researchers including Ablett [32], Huh & Scriven [33],
Dussan & Davis [34] and Dussan [35] have studied flow conditions near moving contact
lines, pointing out difficulties in avoiding singularities and suggesting ways to overcome
them. For this viscosity dominated case, standard theories were given by Cox [36] and
Voinov [37] on one side and de Gennes et al. [38, 39] and Eggers [40] on the other side.

Another approach considers the dissipation at the triple line as essentially local-
ized at the microscopic scale. Mechanisms such as molecular displacement by adsorp-
tion/desorption have been considered by Blake et al. [41, 42] or numerical techniques by
the diffuse interface method [43]. Some other models combine the two main approaches
using molecular-hydrodynamic models [44, 42, 45]. Below we detail the main models com-
monly discussed in the literature and of interest to our study. These models are established
for small capillary numbers Ca (Ca < 0.01) and small dynamic contact angles θ. Note
that although they are derived for small contact angles, these models are considered to be
valid up to angles of 135◦ [37].

Hydrodynamic theories: Cox-Voinov model

Figure 1.7: Viscous bending at the meso-scale for an advancing meniscus.

Many efforts have been dedicated to modifying the hydrodynamic model in order to
remove the triple line singularity. In most of these modified models, slip is postulated
to occur at the liquid/solid interface near the contact line. This is modeled either by
assuming that the tangential stress vanishes near the contact line [36], or by the Navier
boundary condition in which the shear stress is assumed to be proportional to the slip
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velocity [37]. In the hydrodynamic models the dynamic contact angle is calculated. As the
capillary number is assumed to be small, far from the triple line the liquid/gas interface
adopts its static shape (Figure 1.7). By matching the local dynamic solution to the static
macroscopic solution, the dynamic contact angle can be determined (asymptotic matching
[36]).

A simplified version of the Cox-Voinov calculation is presented below. We consider
a moving contact line at constant velocity v in the z−direction in the reference frame of
the substrate (Figure 1.8). The liquid is in partial wetting condition. Invariance in the
x−direction is assumed and inertial and gravitational effects are neglected. The velocity
in the z−direction is denoted vz(y), the thickness profile of the meniscus is h(z).

Figure 1.8: Moving contact drawing and notation for the the Cox-Voinov calcula-
tion.

The pressure in the liquid phase is set by the Laplace equation: P (z) = −γ∂zzh, for
small angles [46]. A small contact angle at equilibrium θe is considered, so that the liquid
wedge is nearly parallel to the wall and complies with the lubrication hypothesis. Under
these assumptions, the Stokes equation writes:

η∂yyvz = −γ∂zzzh (1.8)

where η is the fluid viscosity and γ the surface tension.
Considering a no slip condition at the liquid/solid interface vz = 0 in y = 0 and a stress

free condition at the liquid/gas interface ∂yvz|y=h = 0, Equation (1.8) can be integrated
to obtain the velocity field. The resulting flux per unit length in the x−direction is given
by

q(h) =
∫ h

0
vz(y)dy = −γ

η

h3

3 ∂zzzh (1.9)

Using the mean velocity v, the flux writes q = vh. Therefore, flux conservation implies
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∂zzzh = −3ηv
γ

1
h2 (1.10)

Exact solution to the previous equation can be expressed in terms of Airy functions
[47]. To obtain the Cox-Voinov result, a trick is to consider h(z) ' −zθ(z) where θ is
roughly constant, because θ(z) varies slowly with z. Equation (1.10) becomes

− ∂zzθ ' −
3ηv
γ

1
z2θ2 (1.11)

The previous equation is integrated as follows:

∂zθ ' −
3ηv
γ

1
zθ2 (1.12)

After variable separation and integration, the simplified resulting relation, known as
the Cox-Voinov law [36, 37], is obtained:

θ(z)3 − θe3 = 9Ca ln
(
z

a

)
(1.13)

where θe is the equilibrium contact angle and a is a lower cut-off distance of z: atomic
length, used to truncate the divergence of the logarithm at small z. This equation describes
the variation of the dynamic contact angle θ due to viscous bending of the liquid/gas
interface in terms of the capillary number Ca at the position z attached to the line end.

Equation (1.13) shows that the divergence is very slow since it is included in a loga-
rithm, confirming a posteriori the hypothesis considering liquid wedges as nearly parallel
to the wall. Moreover, this equation highlights that a measure of the contact angle is
dependent on the scale at which the measurement is done. Considering a macroscopic
contact angle, a typical macroscopic length scale of the problem like the capillary length
lc can be used for z.

The Cox-Voinov law predicts a zero value of the contact angle for a finite value of
velocity Ca. For θ = θc = 0◦, the Cox-Voinov equation (1.13) exhibits a threshold velocity
CaCoxc above which there is no longer a solution for a dynamic meniscus and a liquid film
will be entrained. This threshold formally defines a forced wetting transition and is given
by:

CaCoxc ' θe
3

9 ln (lc/a) (1.14)

For example, for water in a hydrophobic tube, taking ln(lc/a) ' 15 and θe = 45◦

the corresponding threshold velocity is CaCoxc ' 3.6 10−3. This value is supposed to
provide the maximal dewetting velocity of the triple line: vCoxc ' 25 cm.s−1 for water
(γ/η ' 70 m.s−1).
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Hydrodynamic theories: de Gennes model

In their model, de Gennes et al. [38, 39] carried out an energy balance for a liquid wedge
of height h moving at velocity v. The viscous stress 3ηv/h is balanced by the capillary
forces due to the unbalanced Young stress F given by:

F = γ (cos θ − cos θe) (1.15)

The elementary work of the capillary forces during a time δt is δWcap = Fvδt. On
the other side, the infinitesimal work of the viscous dissipation forces can be written as
follows:

δWvis =
∫ 3ηv2

h
δtδy (1.16)

The previous equation shows a divergent integral which signals the contact line singu-
larity. Similarly to the Cox-Voinov model, a macroscopic (L) and microscopic (a) length
scales are introduced to regularize the problem. Assuming the liquid/gas interface is
locally planar, we finally obtain

δWvis = 3ηv2

tan θ ln
(
L

a

)
δt (1.17)

Balancing those two works, and expanding at small θ, we finally obtain the so-called de
Gennes relation providing the variation of the dynamic contact angle θ with the capillary
number Ca:

θ
(
θ2 − θe2

)
= 6Ca ln

(
L

a

)
(1.18)

The main difference with the Cox-Voinov model can be found in the critical value of
the contact angle at which the wetting transition occurs. As seen previously, the wetting
transition occurs for a zero receding contact angle in the Cox-Voinov model. In the de
Gennes model, the critical contact angle is non-zero since the wetting transition is defined
when ∂θv = 0 corresponding to a minimum in the variations of Ca with θ. According to
Equation (1.18), the receding dynamic contact angle cannot be smaller than:

θc = θe√
3

(1.19)

Another option for the lower dimension cut-off a is to introduce Van der Waals forces
acting to maintain a finite thickness in place of the slip length [48, 30]. The van der Waals
interaction very close to the contact line leads to a precursor film. Whatever the nature
of the lower size cut-off, the physics at the larger length scales remains the same.

These modified hydrodynamic models do succeed in removing the singularity, but they
are often quite ad hoc. In particular, they assume that viscous dissipation is dominant
even at small length scales. This is probably not the case and others types of dissipation
mechanisms can take place near the triple line.
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Molecular kinetic theory

A different type of approach to describe the contact line dynamics is the molecular kinetic
theory as proposed by Blake & Haynes [41]. Similar to de Gennes’ model, it is driven by
the unbalanced Young stress given by Equation (1.15). However, instead of viscous flow,
it is an Eyring process at the triple line that gives rise to dissipation [49].

Figure 1.9: Dynamic wetting according to the molecular-kinetic theory [50].

At equilibrium, the contact line jumps back and forth from one adsorption site to
another with the same frequency (Figure 1.9). In a dynamic situation where the system is
out of equilibrium, the force F given in Equation (1.15) introduces an unbalance between
forward and backward jump frequencies from which motion results. The difference of the
two frequencies multiplied by the characteristic length between adsorptions sites gives the
contact line speed v. From Eyring’s rate theory, the contact line speed is related to the
force F by the formula:

v = 2κ0λ sinh
(
γ (cos θ − cos θe)λ2

2kbT

)
(1.20)

where κ0 and λ are molecular parameters that depend on the characteristics of the solid
surface.

Equation (1.20) is the main result of the molecular kinetic theory for contact line
dynamics; it provides a relation between the dynamic contact angle θ and the contact line
velocity v. For small angles, Equation (1.20) can be approximated by:

θ2 − θe2 = 2kbT
γκ0λ3 v (1.21)

Similarly to the Cox-Voinov model, the molecular kinetic theory predicts a zero-value
contact angle at the wetting transition (second order transition). In contrast, de Gennes’
model predicts a first order wetting transition. Note that Golestanian & Raphaël [51, 31]
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and later Eggers [40] suggest that the wetting transition is of second order at the macro-
scopic scale while the transition may be of first order when looking at the microscopic scale.
Maleki et al. [52] have shown experimentally using large tubes (compared to the capillary
length) that the macroscopic contact angle might be discontinuous at the transition to
forced wetting.

Combined models

Alternatively, other models can be found in the literature where hydrodynamic approaches
are combined with the molecular kinetic theory. The first authors to propose a combined
model were Petrov & Petrov [44]. They take advantage of the molecular kinetic theory
to get a microscopic contact angle (using Equation (1.20)) to substitute the equilibrium
contact angle θe in the Cox-Voinov equation (1.13). The resulting equation presents three
adjustable parameters to fit experimental data. It was found that this kind of models
accounts for the experimental data and results in physically acceptable values of the ad-
justable parameters. Similar results were obtain by other authors [42, 45].

A similar model developed by Brochard-Wyart & de Gennes [53] introduced a contact
line friction which accounts for additional dissipation at low velocity. This contact line
friction can be interpreted in term of molecular kinetic theory. They show that viscous dis-
sipation in bulk dominates at small angles (larger velocity). Additional work by Ruijter et
al. [54] or very recently by Perrin et al. [55] confirms the previous statement, since they
found that the wetting-line friction regime precedes the viscous regime, which becomes
dominant only as the contact angle becomes small.

An alternative approach proposed by Ren et al. [56, 57] consists in deriving continuum
models using basic principles of non-equilibrium thermodynamics. Their model combines
both the viscous dissipation in the bulk and non-hydrodynamic dissipation at the solid
surface and at the contact line. They show that the microscopic contact angle actually
deviates from its static value during the motion of the contact line. This accounts for the
energy dissipation at the contact line. The regularized hydrodynamic models all contain
more than one relevant length scale: an inner region near the contact line and an outer
region away from the contact line. This is reflected in the different contact angles one sees
at different scales as depicted in Figure 1.7.

1.3.2 Experimental investigation of the wetting dynamics

There is a fundamental difference between the hydrodynamic theory and the molecular
kinetic theory, which is the origin of the energy dissipation. The hydrodynamic theory
emphasizes energy loss in the bulk due to viscous flow while molecular kinetic theory fo-
cuses on the non-hydrodynamic dissipation near the contact line. Out of the two models
one obtains two different relations between the dynamic contact angle θ and the contact
line speed v (Equation (1.13) and (1.20)). When considering the spreading of a droplet
in the case of small contact angles, a standard experiment in the literature, these two
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relations lead to two different scaling laws for the droplet radius: R(t) ∼ t1/10 (Hoffman-
Tanner law) for the hydrodynamic theory and R(t) ∼ t1/7 for the molecular kinetic theory.
Discrepancies between these theoretical predictions and the experimental data have been
found by various authors [58, 53, 59]. For instance Davitt et al. [60] show that the re-
gion of validity of the molecular kinetic theory on mesoscopically rough surfaces typically
corresponds to velocities of less than 1 mm.s−1. Their observations suggest that neither
model is comprehensive in the description of the energy dissipation.

Figure 1.10: Photograph of the advancing liquid/gas interface in a glass capillary
tube. The liquid is left of the interface (from [61]).

Most of the experimental studies found in the literature concern planar configurations.
In particular, very few have investigated dynamic contact angle in tubes. We may cite
three studies where capillary tubes are employed.

The first one is due to Hoffman [61] who investigated the shape of an advancing inter-
face in a liquid/gas system in glass capillaries (Figure 1.10). The interface velocity was
varied from roughly 0.8 µm.s−1 to 0.6 mm.s−1 assessing the complete range of contact
angles from 0 to 180◦. Note that velocities are small compared to our own study. He
found that the apparent contact angle θ can be correlated to a function of the capillary
number Ca plus a shift factor F (θe) when interfacial and viscous forces are the dominant
effects controlling the system. The shift factor F (θe) was found to be fully determined
by the static contact angle θe between the liquid and the solid substrate, when interfacial
forces do not change during the flow. In a review paper [50] Blake shows that both the
conventional hydrodynamic theory and the molecular-kinetic theory are able to represent
the data reasonably well, with acceptable values of the fitting parameters.

The second one was carried out by Fermigier & Jenffer [62] who measured dynamic
contact angles during the displacement of silicone oil/gas interfaces in capillary glass tubes.
Their data were in good agreement with the so-called Hoffman-Tanner law (R(t) ∼ t1/10),
and with the Cox model (Equation (1.13)).
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The third example is experiments by Quéré [63] for a variety of liquids and contact
angles, with alcanes in Teflon capillaries. The velocity of the segment of liquid was varied
from 10 µm.s−1 to 10 mm.s−1. He shows that the critical speed is proportional to the cube
of the contact angle as suggested by the Cox-Voinov model and also by the hydrodynamic
model (Equation (1.14)) [36, 37], and the thickness of the liquid film is proportional to the
two-thirds power of the speed as for a LLD-Bretherton film (Equation (1.1) and (1.2)).

A last example also of interest for us, that is not with a tube but with a horizontal
plate, is an experimental study carried out by Redon et al. [64] on the viscous dewetting
process by nucleation. Their experiment consists in creating a hole in a uniform film of
liquid by blowing air. The metastable film dewets from the partially wetting surface. The
liquid accumulates into a visible rim. The width of the rim increases with time. This work
validates the scaling given by Equation (1.13): θ versus Ca. Surprisingly this law does
not include the thickness of the macroscopic film as a parameter, suggesting that there is
a limit dewetting velocity.

The different studies reported previously suggest that a coupling seems to occur be-
tween the microscopic and macroscopic scales. The necessity to combine the two scales
is crucial to predict the velocity dependance of the contact angle and the shape of the
interface. Progress was made by Eggers [65, 66], who elucidated quantitatively how the
contact line displacement depends on the withdrawal speed when coating an inclined
plate. He derived an analytical expression of the critical speed Cac, which is related to
both the microscopic behavior of the contact line and the macroscopic geometry. How-
ever, numerically the threshold is not very different from the Cox-Voinov prediction CaCoxc

(Equation (1.14)). Another limitation is that what happens above the threshold has not
been considered.

1.4 Thin films with moving contact line

The film deposition process on a partially wetting plate can exhibit much more complicated
behaviors, mostly due to the presence of moving contact lines. This time, the velocity v
of the dip coated plate, for example, has to be large enough to observe the deposition of
a liquid film.

As numerically shown by Snoeijer et al. [1], the critical behavior of the film deposition
is avoided and is associated with a saddle-point bifurcation of stable and unstable menis-
cus solutions, and the film that can be physically realized is actually one stable branch of
a wider family of solutions. Interestingly, Snoeijer et al. [1] also identified a series of bifur-
cations around a capillary number Ca∗ smaller than the critical one Cac. The behavior of
the unstable solutions was analytically interpreted by Chan et al. [67], who also presented
an explicit expression for the critical point of a vertical plate by extending the work of
Eggers [66]. Details of the bifurcation curves for inclined plate were recently studied by
Galvagno et al. [68] and Tseluiko et al. [69], who also found discontinuous transitions of
the film solutions.
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Moreover, the entrained film can present instabilities beyond another critical capillary
number. The first kind of particular feature that can be observed is that the film is not
completely distributed over the entire plate [70, 71, 2, 3]. The film admits a trapezoidal
or triangular shape, which is characterized by the presence of inclined contact lines as
illustrated in Figure 1.11.

(a) (b)

Figure 1.11: Examples of unusual film shapes. (a) Triangular film obtained by
Blake & Ruschak [70]. (b) Trapezoidal film observed by Petrov & Sedev [71].

Similar contact-line inclination was observed in the context of sliding drops [72, 73, 74].
The inclination is an effective way to reduce the normal speed of the contact line relative
to the plate, which is believed to be constrained by a maximum. Blake & Ruschak [70]
postulated that this normal speed remains a constant, irrespective of the inclination angle.
As demonstrated in a recent work by Gao et al. [75], the constant-speed assumption was
only valid up to a logarithmic correction, and a significant reduction of the contact-line
speed was predicted for large inclination angles.

The second kind of particular feature found is that the film is not of uniform thickness.
As predicted by Hocking [4], in addition to the LLD film, there exists a region close
to the contact line that displays a jump, whose thickness does not follow the LLD law
(Equation (1.1)). Hocking’s predictions were confirmed experimentally by Snoeijer et
al. [2]: the thickness of this part of the film is fully determined by the physics of the
contact line (Figure 1.12). In a later work, Snoeijer et al. [76] showed that the LLD film
may be absent at the early stages of the motion, when the capillary number is close to
the critical value for film entrainment. The plate was instead coated by a temporary thick
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film, which is again determined by the contact line. In fact this film solution is directly
connected to the bifurcations at Ca = Ca∗. The measurement of the thickness of this thick
film provides one single value, independently of the capillary number Ca and depending
only on Ca∗. The thick film is connected to the liquid bath via a dimple similar to the
Wilson thick film (Section 1.2.2). The dimple disappears when the LLD film grows. The
behavior of the dimple-LLD film transition remains to be further studied.

(a) (b)

Figure 1.12: (a) picture and (b) profile of the two films thickness coexistence
observed by Snoeijer et al. [2].

Very recently, Gao et al. [5] have solved the full Stokes equations considering a dip
coating configuration in the presence of a moving contact lines. They found very similar
results and numerically identified four different regimes corresponding to different film
morphologies, when increasing the plate velocity. The first one corresponds to a stationary
meniscus where the triple line velocity is equal to the meniscus velocity Ca, without
film (Figure 1.13). The second regime for Ca > Cac is a speed-independent thick film
connected to the liquid bath through a stationary dimple.

In Figure 1.13, we note that the triple line velocity is constant in this regime (regime II
in Gao’s notations) and defines Ca∗. In the third one, there is coexistence of a thick film
and of the classical Landau-Levich-Derjaguin (LLD) film connected by a propagating cap-
illary shock. In their regime II and III, the velocity of the triple line has one unique value
Ca∗ which is smaller than the threshold of regime II Cac: there is velocity discontinuity.
Finally, they report a regime IV where a film with a monotonically varying thickness is
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Figure 1.13: Numerical resolution of the contact line velocity with respect to the
plate (rescaled by vliq = γ/η) versus Ca. The grey bar marks the flow regimes II
(from Gao et al. [5]).

obtained (not represented in Figure 1.13). They found that the onset of film deposition
occurs at a vanishing apparent contact angle, consistent with the predictions of lubrication
theory.

1.5 Summary and scope of the manuscript

The current understanding of the problem in the literature is summarized in Figure 1.14.
On horizontal surfaces, moving contact lines can destabilize into a film when the velocity
reaches a critical capillary number Ca∗. Above the wetting transition, the entrained liquid
film is assumed to be a LLD or Bretherton film. On vertical surfaces where gravity come
into play, the phenomena are similar except that the morphology of the entrained liquid
film is more complex: there is coexistence of a thick film, with thickness independent of
the velocity and given by e = lc

√
3Ca∗, and of a classical LLD film.

As mentioned in the introduction, our work addresses the practical problem of surface
contamination due to the intermittent flow of low viscosity fluids through a polymer tube
at large flow rate. This contamination is essentially due to liquid film deposition behind
the segment of liquid. The current state of the art shows that there is no accurate picture
of the problem of film coating with moving contact lines in a partially hydrophobic tube.
The predictions of the available literature are quite clear for plates and high viscosity
liquids. Since the tube is hydrophobic, films should not form below a high threshold
velocity close to Ca∗ and given by Cox-Voinov. Above that threshold a two film regime
should be observed. The thick film should have constant thickness and dewetting velocity



1.5. Summary and scope of the manuscript 45

Ca∗ independent of slug velocities. At threshold a temporary thick film may form, with
the same thickness and dewetting velocity.

(a)

(b)

Figure 1.14: (a) Literature on the dynamics wetting on horizontal solid surface.
(b) Literature on the dynamics wetting on vertical solid surface.

In Chapter 2, we will describe the experimental and numerical tools developed to
investigate these questions. Chapter 3 will be devoted to the low velocity range using
various liquid viscosities in order to determine the characteristics of the dynamic wetting
transition. We will present experimental data and theoretical predictions on the evolution
of the receding contact angle as a function of Ca for various liquid viscosities η. In
Chapter 4 and 5, we will focus on the film aspects. We will prove experimentally and
theoretically the existence of a thick film which does not behave as expected from the
literature, in addition to the two film morphology and show that in our systems there are
two very distinct thresholds in Ca. Finally in the last chapter, we will investigate the
influence of the tube surface chemistry, and see how it impacts the meniscus instability
and film formation.
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Experimental description

To investigate liquid flow in tubes, we have developed a setup which is described in the
following. We also give details on the materials and liquids we used and on the numerical
methods we have resorted to.

2.1 Experimental setup and measurement techniques

In this work, we have built an experimental setup allowing to visualize a liquid segment
flowing in a tube at high velocity. In the following, this setup will be denoted “large
velocity setup”. We want to investigate what happens at the front and rear menisci of the
liquid slug (segment); in particular if liquid deposition occurs behind the liquid segment,
but also under which conditions and if it is as a film or as drops. We also aim at measuring
the film thickness whenever it formed.

2.1.1 Observation of the liquid film

The experimental setup developed consists in imaging the flow of a fluid segment, or slug, in
a vertical tube, as shown in Figure 2.1. To start an experiment, a slug of controlled volume
is taken to its initial position at the top of the vertical tube by means of a syringe pump.
Initially, the top part of the tube is kept closed and the slug is thus at rest. Then, the slug
is brought to the desired velocity by opening the upper part of the setup, to the ambient
atmosphere or to a pressurized chamber. The flow observed at high velocities requires
a large setup: here the tube is 1.5 m high. Slug motion is monitored in transmission
with a high speed camera and a LED backlight, at a frame rate ranging between 5 and
1000 frames per second. An example of observation is shown in Figure 2.2. The motion
of the slug can be controlled in two different manners:

• The top of the tube can be directly connected to atmospheric pressure using an
adjustable valve. In this case the flow is driven by gravity and pressure drop at
the valve, and the slug presents an accelerated motion at the early stage of the
experiment, which is non negligible. The velocity directly depends on the weight
of the liquid segment and to the size of the valve opening. Therefore, if part of
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the liquid is deposited behind the slug during the experiment, the slug velocity will
decrease. For this type of velocity control, flow observations and measurements are
restricted to a limited zone of the tube.

• Alternatively, the tube can be connected to pressurized nitrogen gas. The gas flow-
rate is controlled at the top of the setup allowing a fine control of the slug velocity.
The start of the slug motion is close to instantaneous. Small glitches are observed
but the velocity is stabilized within 0.4 s. This method provides constant speed
of the fluid segment along the whole length of the tube. Flow observations and
measurements can be achieved on the whole length of the tube.

In both configurations, the slug can reach a large range of velocities, from 1 µm.s−1 up
to 1 m.s−1, and the same phenomena are observed. The second option, with the advantage
of constant speed, is the one used in the following. In our setup gas admissions controlled
by a solenoid valve, and camera recordings are synchronized using a Labview script that
we have developed.

(a) (b)

Figure 2.1: (a) “Large velocity setup” for liquid film visualization. (b) Schematic
representation of a flowing slug with liquid film deposition.

The tube is polymer based (PVC) and quite transparent. Typical inner and outer
diameters are din = 6.4 mm, dout = 9.5 mm. The inner radius is larger than the capillary
length of water lc = 2.7 mm. Consequently, a liquid slug does not hold in the tube if not
retained by an external force. This makes the experimental manipulation harder, and we
have to close the tube to hold a slug at rest. Tube length is about Ltube = 1.5 m. Details
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on the tube materials will be given in Section 2.2 as well as a characterization of the inner
tube surfaces.

Figure 2.2: Image sequence of a typical experiment where a liquid film is deposited
at the rear of the liquid slug (light grey). The slug appears in dark grey, V = 2 mL
of dyed water. The inner diameter of the polymer tube (PVC) is din = 6.4 mm. The
images are separated by a time step of ∆t = 0.8 s.

The tube curvature and material makes the visualization of the inside of the tube
difficult. The choice of lighting, camera and optics were therefore critical. Moreover, we
wanted to assess two, a priori, incompatible elements at the same time: a wide range of
velocity requiring high frequency and a long observation window to catch a long part of
the tube. To overcome this difficulty, we have chosen a CMOS Sentech Black & White
(STC-CMB2MCL 2MP), with a 2 Megapixels rectangular sensor (2048×1088). With a
good choice of the optics, we were able to record a tube length ranging from 1 cm up to
1 m at a frequency going up to 1000 Hz on the 2048 pixels. A long LED backlight provided
a uniform and steady illumination over the observation area.

The liquid slug was first carefully injected at the top of the tube using a syringe pump,
allowing to control the initial volume from V = 0.1 mL up to V = 60 mL. In a typical
experiment, initial slug volume was V = 2 mL.

2.1.2 Velocity measurement

Thanks to dye addition, liquid/air interfaces are optically outlined and can be tracked
directly on the images recorded by the camera. Video analysis is based on the extraction
of the transmitted light intensity along the center line of the tube (line width = 1 pixel), to
build a spatio-temporal diagram. As an example, Figure 2.3 presents the spatio-temporal
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diagram extracted from the image sequence given in Figure 2.2. In the example of Fig-
ure 2.2 and Figure 2.3, a liquid film is deposited at the rear of the slug. The slug appears
in dark grey and the film in light grey. Interfaces correspond to changes in the intensity of
the recorded images. Their velocities are measured as the slopes formed by these intensity
steps in the spatio-temporal diagrams (Figure 2.3).

Figure 2.3: Spatio-temporal diagram extracted from the central zone of the tube
(Figure 2.2). Velocities of the different interfaces (v and vd) are given by the slopes
formed by intensity steps.

The different velocities are defined as v the velocity of the slug and vd for the velocity
associated to the dewetting triple line at the film end (Figure 2.1b). Note that the velocity
of the slug at the front is slightly smaller than the velocity at the rear of the slug, since
the volume ejected by the slug to form the film is small but non zero. The problem can
be considered as quasi-static, since velocities during an experiment are constant along the
tube.

2.1.3 Film thickness measurement

Film thickness measurement by mass conservation

The film thickness is usually evaluated in the literature using mass conservation under
the assumption of constant film thickness e [18, 22]. Indeed, the mass conservation of the
system slug of volume Vslug and film of volume Vfilm writes:

dVfilm
dt = −dVslug

dt (2.1)
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Here, the considered section of the slug is the disc of radius R = 3.2 mm, while the section
of the film is an annulus of external radius R and thickness e. Equation (2.1) rewrites as
follows:

π
(
R2 − (R− e)2

) dLfilm
dt = −πR2 dLslug

dt (2.2)

which leads to

e = R

(
1−

√
1− dLslug

dLfilm

)
(2.3)

This method does not provide the instantaneous film thickness profile, so that we
have developed an optical measurement method, described in the next section, to assess
the liquid film profile. We found that the optical method is also more accurate in our
experimental conditions.

Optical measurement of the film thickness

A light absorption measurement method has been implemented in order to extract the
film thickness profile. The liquid film thickness is obtained directly from the intensity I
measured by the camera, using the Beer-Lambert law:

A = − ln
(
I

I0

)
= εmlc (2.4)

where A is the absorbance, I and I0 are the transmitted intensity through the solu-
tion sample and through the reference respectively, εm the molar extinction coefficient in
L.mol−1.cm−1, l the thickness of the sample in cm and c is the solution concentration in
mol.L−1. This law relates the absorption of light to the properties of the medium through
which the light is traveling. The thickness of the sample will be two times the thickness
of the liquid film, l = 2e.

The choice of the dye was critical. We first used Rhodamine B, but this dye was
adsorbed and even absorbed at the inner wall of the tube which resulted in contamination
of the tube. As a result, the tube was darker and darker with time, and the reference I0

was therefore no longer valid. We then tried Congo Red dye, which does not diffuse into
the tube but impacts the surface tension of our aqueous solution. Finally we tested New
Coccine, which does not contaminate the tube nor change the interfacial properties of our
liquid phase. This dye, New Coccine, absorbs in the whole visible spectrum: the extinction
coefficient εm(λ) is a function of the wave length λ. As the setup is back lighted with a
white LED screen, the Beer Lambert law has to be integrated on the whole spectrum to get
the film thickness. To avoid this complication, the objective of the camera was equipped
with a bandpass green filter of narrow width (10 nm) whose wavelength was chosen to be
at the maximum of absorption of the dye λ = 508 nm, and εm was considered constant in
this narrow window.
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Figure 2.4: Calibration curve I/I0 = f(l) carried out with glass capillary tubes
with various rectangular cross section.

To ensure a quantitative measurement of film thickness versus absorbance, a calibra-
tion was carried out for each dye solution (see Section 2.2.1). Glass capillary tubes with
rectangular cross section, of inner thickness l filled with the solution containing a concen-
tration c = 4.9 10−4 mol.L−1 of the dye (M = 604.47 g.mol−1). Intensity I was measured
and normalized intensity I/I0 was computed as a function of capillary thickness l, allow-
ing to assess the constant τ = εmc (Equation (2.4)). Here, the reference is measured by
filling the capillary with pure deionized water. The results are plotted in Figure 2.4 in a
log-linear plot in which the thickness l of the capillary tube was varied between 10 and
800 µm. The data can be fitted to a line with a slope τ = 22.02± 0.02 cm−1. This gives
an effective extinction coefficient of the solution εeffm = 44945± 40 L.mol−1.cm−1.

In the case of a liquid film, the reference Ĩ0 is taken as the intensity of the transmitted
light through a pure water film in the same tube. This allows to avoid any effect of optical
diffusion from the roughness of the tube walls. The calibrated value of τ holds in this
configuration. In a tube where two films are in the light path, the film thickness e is
estimated as:

e = − 1
2τ ln

(
Ĩ

Ĩ0

)
(2.5)

where Ĩ is the transmitted intensity through the tube and the film.
Finally spatio-temporal diagrams of the thickness, as represented in Figure 2.5, are

obtained. Uncertainty on the film thickness measurement is typically ± 5 µm.
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Figure 2.5: Converted spatio-temporal diagram, giving a thickness map of the film
for a typical experiment. The corresponding spatio-temporal diagram is represented
in Figure 2.3.

2.1.4 Contact angle measurement

As we are dealing with a wetting problem, it is of interest to measure the contact angles
at the triple line. Thanks to the slug geometry it is possible to measure simultaneously
advancing contact angles at the front of the slug and receding contact angles at the rear
of the slug. It is also interesting to get access to the contact angle at the dewetting triple
line, i.e the top of the liquid film. Different methods have been implemented to measure
these angles.

Direct contact angle measurement in a tube

For low velocity displacements, typically below 5 cm.s−1, a smaller setup shown in Fig-
ure 2.6a has been designed. In the following, this setup is denoted “low velocity setup”.

To minimize the optical distortion of the meniscus shape due to the curvature of the
tube walls, the outer tube/air interface is optically erased by immersing the tube in a
rectangular cell with index matching liquid. The liquid used is dimethyl phthalate. The
fluid is now introduced from the lower part of the tube with a syringe pump, as shown
in Figure 2.6b. Then we inject the liquid and measure the advancing contact angle at a
given velocity. The velocity of the meniscus that can be achieved using the syringe pump
is typically between v = 1 µm.s−1 and v = 5 cm.s−1. To measure receding contact angles,
we pull the liquid and direct measurement is made by evaluating optically the shape of
the meniscus (Figure 2.6b). Contact angle values are given in Section 2.2.
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(a) (b)

Figure 2.6: (a) “Low velocity setup” using an index matching box to measure
contact angle. (b) Parameters measured when pushing or pulling liquid using the
“low velocity setup”: schematics and images.

This method has been compared to the classical method of drop deposition on a planar
surface. To do so, tubes are opened and maintained flat. Or alternatively, tubes are recast
as plates by molding. Similar results are obtained within the uncertainties.

Measurement from the film profile

With the previous method, we can measure the contact angles of a moving meniscus. Once
a film is entrained at the tube wall, this method is not accurate enough to evaluate the
angle at the triple line of the film. This is why another method has been used.

Figure 2.7: Measurement of the receding contact angle from the profile: the mea-
surement is achieved at the end of the film.
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In that case we use the “large velocity setup” Figure 2.1. From the spatio-temporal
diagram converted into thickness (Figure 2.3), we can extract the profile of the liquid film.
Taking the first-derivative of this profile close to the end of the film, we get an evaluation
of the contact angle at the triple line as schematically represented in Figure 2.7.

2.2 Materials

2.2.1 Liquid solutions

To study the impact of viscous dissipation, aqueous glycerol solutions with varied concen-
trations have been used to adjust the viscosity η. Solutions are prepared with distilled
water.

%wt glycerol η (mPa.s) γ (mN.m−1) vliq = γ/η (m.s−1) lc (mm)

0 0.94 70.3 75 2.66
5 1.06 70 66 2.63
10 1.26 69.5 55 2.61
15 1.32 68 51.5 2.56
20 1.66 65.8 39.6 2.52
30 2.17 64 29.5 2.45
40 3.25 61.8 19 2.37
50 6 60 10 2.34
75 30 59 2 2.25

Table 2.1: Characteristics of glycerol solutions: viscosity η, surface tension γ, liq-
uid characteristic velocity vliq and capillary length lc. Solutions are prepared with
distilled water. Viscosity and surface tension are measured at 28◦ C.

The viscosity of the aqueous glycerol solutions was characterized using a low shear
rheometer under simple shear in a Couette geometry. This kind of rheometer is well
adapted for measurements on low viscosity fluids.

Surface tension was measured with a tensiometer (TECLIS), using a pendant drop
method. This method is based on the numerical fit of the shape taken by a pendant
drop inflated at the end of a needle [77]. The shape of the drop results from a balance
between hydrostatic pressure and Laplace pressure, including surface tension. Note that
the resulting equation is similar to the one corresponding to a static meniscus in the
inside of a tube, apart from the fact that the liquid phase and the gas phase are inverted.
The liquid characteristics were measured at 28◦ C, which is the temperature of the other
experiments.

The glycerol concentration was varied in the range 0 − 75%wt, to obtain a viscosity
range η = 0.94− 30 mPa.s covering more than one decade while the surface tension does
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not vary much (γ = 59 − 70.3 mN.m−1 at 28◦ C). See Table 2.1 for more details on the
characteristics of the glycerol solutions. The capillary length lc =

√
γ/ρg is calculated

based on the fluid density ρ taken from the literature [78, 79, 80].
In situations where the effect of surface tension was studied, it was varied over a larger

range by using aqueous solutions of ethanol (see Chapter 6). The concentration of ethanol
has been varied in the range 0 − 15%wt, to obtain a viscosity range of 0.94 − 1.7 mPa.s
and a surface tension range of 37− 70.3 mN.m−1at 28◦ C. The physical properties of the
ethanol solutions are reported in Table 2.2.

%wt ethanol η (mPa.s) γ (mN.m−1) vliq = γ/η (m.s−1) lc (mm)

0 0.94 70.3 75 2.66
5 1.15 56 48.7 2.40
10 1.22 49 40.2 2.24
15 1.7 37 21.8 1.95

Table 2.2: Characteristics of ethanol solutions: viscosity η, surface tension γ, liq-
uid characteristic velocity vliq and capillary length lc. Solutions are prepared with
distilled water. Viscosity and surface tension are measured at 28◦ C.

As mentioned earlier a red dye powder, New Coccine from Sigma-Aldrich, was added
to enhance the contrast in the images and allow the measurement of film thickness. We
have ensured that the dye has no impact on the rheological properties nor on the surface
tension of the liquids at the concentration used cm = 300 mg.L−1.

2.2.2 Commercial polymer tubes

Commercial polymer tubes were plasticized polyvinyl chloride PVC Tygon S3TM E-3603
from Saint-Gobain. Typical inner and outer diameters are din = 6.4 mm, dout = 9.5 mm.
This type of tube is hydrophobic. The determination of contact angles is a simple and
direct method to characterize the hydrophobicity of surfaces. Contact angle measurements
were performed by liquid meniscus displacement at a velocity v = 0.3 cm.s−1 in the
tube, as explained in section 2.1.4. The quasi-static receding contact angle does not
present significant variations with the glycerol concentration in the range investigated and
is around θ0

r = 60◦, ensuring partial wetting condition. The measurement has not been
carried out for water-ethanol mixture, but we expect a variation due to the strong change
in the surface tension γ. The surface tension is supposed to be included in the theoretical
determination of the equilibrium contact angle (Young’s law).

The roughness of the inside of the tube is set by the industrial manufacturing process
(extrusion). Looking closer at the surface, we found that the surfaces have roughnesses
at two different scales: (1) a micrometric roughness shown on the profilometer image in
Figure 2.8a, with typical height of few microns and lateral extension of about 0.2 mm.
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(a) (b)

Figure 2.8: (a) Profilometer image from the inside of a PVC tube. (b) AFM image
from the inside of a PVC tube.

The roughness slope is low, typically within about 1/100; (2) a nanometric roughness
observed on the AFM picture in Figure 2.8b with typical height of about 100 nm and a
lateral extension in the 10 µm range. No particular orientation in the roughness was found,
meaning that the extrusion process does not create anisotropic patterns in the extrusion
direction.

To extend the hydrophobicity scales, we have also worked with Polydimethylsiloxane
PDMS Sanitech R© ULTRA 50 tubes, which is more hydrophobic than PVC. The quasi-
static receding contact angle has only been measured for water at v = 0.3 cm.s−1 and
is around θ0

r = 80◦. We can assume that as for PVC this angle should not present
significant variations with the glycerol concentration in the range investigated, but should
with the ethanol concentration. Typical inner and outer diameters are din = 6.4 mm,
dout = 9.5 mm. Other tube diameters have also been investigated (Table 2.3), and results
are discussed in Appendix C.

Commercial Name Type din (mm) dout (mm) θ0
r (◦)

Tygon S3TM E-3603 ACF00017 PVC 6.4 9.5 60
Tygon S3TM E-3603 ACF00012 PVC 4.8 7.9 60
Tygon S3TM E-3603 ACF00007 PVC 3.2 6.4 60
Sanitech R© ULTRA-C-250-2 PDMS 6.4 9.5 80
Sanitech R© ULTRA-C-125-2 PDMS 3.2 6.4 80

Table 2.3: Commercial tubes: name, type, internal diameter din, outer diameter
dout and quasi-static receding contact angle θ0

r . This angle is measured with pure
water at v = 0.3 cm.s−1.
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2.2.3 Surface modified tubes

To extend the range of surface energy even further, we have chemically modified the
inside of PDMS tubes by oxidation of the inner tube surface and adsorption of hydrophilic
polymers. Briefly, right after a plasma treatment, different functional polymer solutions
were introduced in the tube. By physical adsorption and formation of hydrogen bonds
between polymer chains and activated PDMS surface, a stable and homogeneous surface
of given hydrophilicity could be produced similarly to Papra et al. [81].

Plasma treatment

In order to create reactive sites on the silicone (PDMS) for subsequent attachment of
hydrophilic polymers, PDMS tubes were treated with a plasma of air. This activation
step produces free oxygen radicals to oxidize the first molecular layer, in particular to
change SiCH3 sites into SiOH [82]. To do so, one side of the tube was connected to a
primary vacuum. As a result, plasma could be generated inside the tube with a high
frequency generator (also named Tesla coil, by Electro-Technic Products, Inc., 50/60 Hz,
300 W). The plasma propagates along the tube length Ltube = 1.5 m. However, the plasma
generation needs to be under low pressure condition, which leads to a limit on the diameter
of the tube for a given wall thickness. Indeed, the tube collapses under vacuum as soon as
the wall thickness to inner radius ratio is below 2. For that purpose, we have used PDMS
tubes of inner diameter din = 3.2 mm to carry out the surface modification.

(a)

(b)

Figure 2.9: Schematic representation of the plasma treatment: (a) first step
vacuum, (b) second step plasma ignition. The plasma propagates along the tube
Ltube = 1.5 m.

Figure 2.9 shows the system and process of the plasma treatment for the modification
of PDMS surface. The operational conditions were 1.5 minutes to reduce air pressure in
the tube with primary vacuum pump and 15 seconds for the plasma treatment.
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Hydrophobic recovery

The hydrophilicity of PDMS surfaces treated by a plasma is reported to be unstable. These
surfaces gradually regain their hydrophobic properties upon exposure to air [83, 84]. This
phenomenon, known as hydrophobic recovery, is caused by the migration of low molecular
weight chains to the surface [85, 86, 87].

Figure 2.10: Typical hydrophobic recovery curve: variation of the quasi-static
advancing θa and receding θr contact angle (in red circle) as a function of time,
and contact angle hysteresis ∆ cos θ (in black square), where ∆ cos θ = cos θr −
cos θa. Measurement are performed with water meniscus displaced at velocity v =
0.3 cm.s−1.

Contact angle measurements were performed by meniscus displacement at a velocity
v = 0.3 cm.s−1 of water in the modified tube. For experimental convenience, the tube of
smaller diameter were used and placed horizontally in that case. Measured quasi-static
contact angles are plotted in Figure 2.10 as a function of time. The very first data points
(at negative times) corresponds to untreated tubes. After plasma treatment, contact
angles drop from 85◦± 3◦ to 25◦± 5◦ degrees. The produced surface is hydrophilic, which
shows that plasma treatment is an effective technique for the modification of the inner
surface of a tube. Nevertheless, the modified PDMS surface loses gradually its hydrophilic
properties over time.

Polymers adsorption

In order to stabilize this hydrophilic property, a series of hydrophilic polymer solutions was
introduced during 1 hour on the active surface by physical absorption. Polymers having
oxygen atoms able to engage in hydrogen bonds were chosen: poly(ethylene glycol) (PEG)
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and poly(dimethylacrylamide) (PDMA). Indeed, we found that the quasi-static contact
angle decreases, and is stable over time (several weeks). This effect was attributed to the
physical adsorption of the polymers onto the oxidized SiO groups of the silicone. We tested
a wide range of molecular weight for PEG, Mn = 1, 000− 2, 000, 000 g.mol−1, prepared at
the concentration 1%wt. The use of a large molecular weight (Mn = 2, 000, 000 g.mol−1)
was key to stabilize the polymer adsorption. As the molecular weight of polymers increases,
the hydrophobic recovery rate decreases. The global process to produce modified surfaces
is summarized in Figure 2.11.

Figure 2.11: Surface modification steps.

The choice of the adsorbed polymer can provide tubes of controlled hydrophobicity
(tube A and B), as summarized in Figure 2.12.

Figure 2.12: Hydrophobic scale. Quasi-static receding contact angles θ0
r are given

for pure water menisci displaced at a velocity v = 0.3 cm.s−1 in different tubes.
(a) modified tube A is a PDMS tube with PEG 2,000,000 chains, (b) modified tube
B is a PDMS tube with PEG 1,000,000 chains, (c) and (d) are PVC and PDMS
commercial tubes see Section 2.2.2.
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2.3 Numerical methods

In this section, we provide general equations of the lubrication approximation theory
applied to a liquid film. We also explain how we solve these equations to get the meniscus
or the liquid film profiles.

2.3.1 Governing equations

Dynamic equations

We consider a liquid segment moving at a velocity−v down a vertical tube of radiusR. The
liquid has a viscosity η, surface tension γ and density ρ and is in the gravity field g directed
downward. The problem is described in cylindrical geometry in the reference frame of the
slug centered in the tube (O, r, z) and is considered axisymmetric (Figure 2.13). We define
the normal at the interface pointing towards the center of the tube, such that the interface
curvature κ is positive.

Figure 2.13: In the reference frame of the liquid meniscus, our problem is equiv-
alent to a static meniscus with a cylindrical tube moving up at velocity +v. The
reference frame is the center of the liquid meniscus. The thickness profile is denoted
h(z, t).

The liquid is in partial wetting condition. Inertial effects are neglected but gravita-
tional effects are of importance. The velocity in the z−direction is denoted v(z), the film
thickness h(z, t) where t is the time. Considering the Navier-Stokes equation in the lubri-
cation approximation for a dynamic meniscus, mass conservation leads to the equation:

∂th+ ∂z

(
h3

3η (γ∂zκ− ρg) + vh

)
= 0 (2.6)
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where κ is the curvature, so that γ∂zκ is the capillary pressure gradient, ρg is the gravi-
tational driving force,

(
h3/3η

)−1 is the hydrodynamic impedance and vh is the convected
flux.
For a steady state, ∂th = 0, Equation (2.6) can be integrated once to get:

∂zκ = 1
lc

2 −
3Ca
h2 + 3qCa

vliqh3 (2.7)

where q is an integration constant.
This equation can also be seen as a force balance between viscosity η, surface ten-

sion γ and gravity ρg considering a flow-rate q. As already discussed in Section 1.3.1,
Equation (2.7) presents a singularity when we get closer to the triple line (h → 0). This
singularity can be regularized in different manners: in this work we have chosen the
Navier-slip condition, i.e, h2 → h(h+ 3ls) where ls is a slip length.

The problem can be reduced with appropriate dimensionless quantities:

h̃ = Ca−1/2 h

lc
(2.8)

z̃ = Ca−1/6 z

lc
(2.9)

t̃ = Ca−1/6 vt

lc
(2.10)

So that Equation (2.6) writes as:

∂t̃h̃+ ∂z̃

(
h̃3

3 (∂z̃κ̃− 1) + h̃

)
= 0 (2.11)

In a cylinder the curvature of the interface has two components, one radial and one
longitudinal:

κ = 1
R
√

1 + ∂zh2 − ∂z
(

∂zh√
1 + ∂zh2

)
(2.12)

We can define a dimensionless parameter Π = lc/(RCa1/6) = Bo−1/2Ca−1/6, to write
the reduced curvature of the interface κ̃ so that ∂zκ̃ = l2c∂z̃κ. This number depends on the
capillary number and on the Bond number. The Bond number Bo = ρgR2/γ = (R/lc)2 is
defined as the dimensionless number measuring the importance of surface tension forces
compared to gravitational forces.

κ̃ = Πκ̃r + κ̃l (2.13)

The capillary number is always lower than one. Moreover, tube radii are of the order
of few millimeters, providing a Bond number of order 1. Consequently, gravitational forces
are as important as surface tension forces. In the calculations below, we have neglected
the radial curvature. Preliminary results including the tube curvature shows that the
results are marginally affected for our large radius values, so that we effectively solve the
flat plate problem.
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Flat film

The solution for a free flat film flowing down a wall is obtained when taking ∂zκ = 0 and
q = 0 (external flux) in Equation (2.7) so that the flux is:

qg = ρg

3ηh
3 (2.14)

Static equation

The static meniscus case is obtained from Equation (2.7) taking Ca = 0 and q = 0.
Surface tension balanced by gravity imposes ∂z̃κ̃ = 1. For the planar case (very large
Bond number), an analytic expression of the static meniscus can be obtained. The exact
solution can be found in Batchelor [88]:

h̃ = acosh−1
(2
z̃

)
− acosh−1

( 2
z̃1

)
+
√

4− z̃2
1 −

√
4− z̃2 (2.15)

with z̃1 =
√

2 (1− sin θ), where θ is the triple line contact angle.
In dimensional form it gives the equation used in Appendix B to get the contact angle

out of the meniscus elevation zcl = z1. Contrary to the planar situation, there is no exact
analytical solution for the shape of the interface in a cylinder.

2.3.2 Equation solving method

In order to get the numerical meniscus or film profile for steady state configurations, we
integrate Equation (2.7) using a numerical method. A Runge-Kutta algorithm available
in the software Igor is used via the function IntegrateODE. Our third-order equation is
recast as three first order equations. The numerical solution is obtained by integrating
derivatives from this set of coupled ordinary differential equations (ODE). The algorithms
used calculate results at intervals that vary according to the characteristics of the ODE
system and the required accuracy. It is possible to either record the output h̃ at given
values of z̃ or t̃, or to run the integration in free-run mode. In the latter case, output h̃
records all steps regardless of the spacing of the z̃ or t̃ values.

To solve our third-order equation three boundary conditions are required. These con-
ditions will vary according to the situation that we want to solve, and will be detailed
where needed.

Some of the results actually reflect transient effects. To calculate these transients,
Equation (2.11) is integrated with a finite difference scheme based on Bertozzi [89].





Chapter 3

Dynamic contact angle and
wetting transition

3.1 Introduction

As already mentioned in Section 1.3, an external driving of the triple line can push the
system sufficiently far from equilibrium such that it enhances the energy dissipated by
viscous shear and undergoes a dynamical wetting transition forming a liquid film with a
moving contact line. As a result, solid objects can be coated by a partially wetting liquid
when withdrawn fast enough from a liquid bath as illustrated in Figure 3.1 [70, 63, 90].
However, the lack of understanding of the fundamental processes involved in the formation
of dynamic contact angle makes any prediction very difficult in practice.

This chapter aims at better understanding this dynamic wetting transition in a cylin-
drical geometry using a low viscosity fluid. We address the following questions: what are
the physical processes at play at the contact line and at which length scale? Are these
processes induced only by non-equilibrium contact angles (Young’s law) or by the con-
centrated friction force as assumed in the molecular kinetics theory or both or may be
something else?

The tube used throughout this chapter is a PVC tubing of inner diameter din = 6.4 mm.
For more details see Section 2.2.2. For capillary numbers Ca lower than a threshold value
Ca∗, the free surface of the fluid is steady and is raised by a finite height zcl above the level
of the fluid free surface at the center of the tube. This height depends on the capillary
number. In this regime, the contact line slips on the wall of the tube and the velocity
v at the liquid/air interface is uniform along the liquid meniscus. In this chapter, we
will investigate the evolution of the contact angle and show that this threshold is not so
easily defined, reflecting the critical nature of the dynamic wetting transition. Then a
comparison with the models available in the literature and presented in Chapter 1.3 will
be performed. Finally, we will present experimental and numerical results concerning a
time dependence of the film formation.
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Figure 3.1: Schematic of the evolution of a meniscus when increasing its velocity v,
and consequently its capillary number Ca. Two parameters are mainly of interest:
the receding contact angle θr at the contact line, and the meniscus elevation zcl.
Below Ca∗, the meniscus has a stationary shape (regime (i)). At some point a
liquid film is entrained and the parameters θr and zcl cannot be defined anymore
(regime (ii)).

3.2 Evolution of contact angle with slug velocity

We investigate in detail the contact angle evolution in the vicinity of the dynamic wetting
transition. We use here the “low velocity setup” (below 5 cm.s−1) presented in Section 2.1.4
to measure contact angles with a fine resolution. The fluid is pushed or pulled using a
syringe pump connected to the lower part of the tube to induce the motion of the meniscus.
For each experiment, both advancing and receding contact angles are measured at a given
position in the tube using the direct measurement method. Initially, the meniscus is static
and placed at a distance of z = 3.4 cm away from the measurement position in order
to be in a quasi-stationnary state at the measurement position. The meniscus velocity
v varies in the range 4.10−3 cm.s−1 to 5 cm.s−1. The duration of the measurement is
τm = 3.4 cm/v corresponding to the elapsed time after the beginning of the meniscus
motion.

A typical series of experiments is showed in Figure 3.2 for receding menisci at various
velocities v obtained with a 5wt% glycerol solution (η = 1.06 mPa.s). Each image corre-
sponds to one experiment. Receding velocity varies from v = 45 µm.s−1 to v = 3.3 cm.s−1

(from left to right). We observe that the meniscus curvature and the elevation zcl both
increase with receding velocity. In the meantime, the receding contact angle θr decreases.
Above a threshold velocity, a liquid film is entrained as observed on the last image. In
the following, the regime where the meniscus is stationary will be denoted regime (i),
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and the state with a liquid film entrained behind the slug regime (ii). The contact angle
measurements are reported in Figure 3.3: by convention, the velocity is taken as positive
for receding contact lines and negative for advancing ones.

Figure 3.2: Images of a receding meniscus for various meniscus velocity v as
indicated below each image. The tube diameter is 6.4 mm. The liquid used is
5wt% glycerol solution, η = 1.06 mPa.s. The meniscus elevation zcl and receding
contact angle θr are measured for each value of v. zcl increases and θr decreases with
increasing v. Above a threshold velocity v∗, a liquid film is entrained as observed on
the last image.

We first focus on the receding contact lines (red symbols in Figure 3.3b). We observe
that the receding contact angle decreases with increasing capillary number Ca. At very
small capillary number (zone (2)), from 0 to 5 10−5, a first strong decrease from 75◦ down
to 45◦ is observed. Then, in zone (3), the receding contact angle decreases more slowly
and is even almost constant on a significant range of capillary number (Ca = 5 10−5 to
2.8 10−4). Region (4) corresponds to a second sharp decrease of the contact angle from
45◦ to 15◦, down to the threshold value where a liquid film is entrained. This dynamic
wetting transition, from regime (i) to regime (ii), is indicated by the black vertical dashed
line at Ca∗ = 4 10−4. It corresponds to the experimental observation of a film of length
equal or larger than 6 pixels (limit of the measurement) after a time corresponding to
a displacement of 0.08 mm in our observation window in Figure 3.2 where speed are
indicated. Above Ca∗, the contact angle is measured at the end of the dewetting film
using the method explained in Section 2.1.4. This contact angle is small but remains non
zero (about 5± 2◦).

We now examine the advancing contact angle measurements (blue symbols in Fig-
ure 3.3a). At very small capillary number (below 5 10−5), in absolute value, the contact
angle slightly increases from θa = 78◦ to 90◦. Then, the advancing contact angle becomes
independent of the capillary number. Up to Ca = −2 10−2, we measure an advancing
contact angle of 90◦. The dotted-dashed lines in Figure 3.3 shows the Cox-Voinov predic-
tion (Equation (1.13)): the equilibrium contact angle θe was chosen to fit the flat portions
of the advancing and receding curves (zone (3)): θe = 45◦ for receding contact lines and
90◦ for advancing ones. From Figure 3.3b, it is clear that the sharp decrease in receding
contact angle in zone (4) cannot be described by the Cox-Voinov model. We will analyze
this point in more detail in Section 3.4.
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(a)

(b)

Figure 3.3: Advancing θa and receding θr contact angles as a function of the
capillary number Ca for a 5%wt glycerol solution (η = 1.06 mPa.s). (a) Full Ca
scale (b) zoom in. By convention, receding contact lines have a positive velocity. The
dotted-dashed curve represents the Cox-Voinov prediction for θe = 45◦ for receding
and θe = 90◦ for advancing triple line (Equation (1.13)). The black dashed vertical
line indicates our measurement of the dynamic wetting transition (Ca∗). The blue
vertical dotted line indicates Ca+ as defined in Section 3.5.
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For completeness, an additional zone must be defined at the zero velocity limit: zone
(1). As mentioned earlier in Section 1.3, this contact angle hysteresis is defined as ∆θ =
θa − θr. In Figure 3.3b, we measure experimentally ∆θ = 10◦.

In the following, we focus on the dynamic wetting transition at the receding contact
line, from a regime where the meniscus has a non zero contact angle and a steady shape,
to the regime of film entrainment, at a capillary number Ca∗.

3.3 Threshold capillary number for the dynamic wetting
transition

In order to broaden the set of data, liquids with various viscosities are used in this section.
We investigate the effect of viscosity on both θr(Ca) and Ca∗ with different glycerol
concentrations. Sets of dewetting experiments are carried out.

Figure 3.4: Receding contact angle θr as a function of slug velocity v for different
viscosities of the water-glycerol mixture. The brownish color index indicates the
glycerol percentage. The darker the index, the larger the concentration. The dashed
vertical lines indicate the dynamic wetting transition v∗ for each liquid.

The evolution of the receding contact angle θr is reported as a function of the velocity of
the slug v in Figure 3.4. Each marker corresponds to one experiment performed at a given
velocity. The same trend is observed for all mixtures. θr decreases with the velocity of the
slug v. Furthermore, the same zones as previously defined and described in Figure 3.3b
are observed when varying the viscosity of the liquid. When the viscosity increases, the
threshold velocity v∗ of the meniscus at which we observe the dynamic wetting transition
decreases, as represented by the dashed vertical lines. As a result, the range of the plateau
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regime (zone (3)), where the receding contact angle is approximately constant, decreases
and even disappears for larger viscosities (above η = 1.32 mPa.s). When a plateau is
observed (for η = 0.94, 1.06 and 1.26 mPa.s) the contact angle in the plateau regime is
independent of viscosity and equal to 45± 2◦.

(a)

(b)

Figure 3.5: θr3 as a function of the capillary number Ca for different concentra-
tions in glycerol. (a) Linear and (b) logarithmic scales. The brownish color index
indicates the glycerol percentage. The dashed curve represents the Cox-Voinov pre-
diction. The dashed vertical lines indicate the dynamic wetting transition.

The meniscus velocity v can be rescaled by the characteristic velocity vliq = γ/η for
each liquid to get the capillary number Ca = ηv/γ. Figure 3.5 presents the resulting
curves, where the receding contact angle θr3 is reported as a function of the capillary
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number of the meniscus Ca, as suggested by the Cox-Voinov law (Equation (1.13)).
We find that this scaling collapses the experimental curves partially. Indeed, for all

the liquids considered in our experiments, the dynamic wetting transition occurs around
Ca∗ = 4± 0.1 10−4. Therefore the capillary number is the appropriate quantity to define
the dynamic wetting transition. Note that the threshold capillary number Ca∗ depends
on the static contact angle θe. Other experiments with different values of static contact
angle θe will be presented in Chapter 6.

3.4 Comparison with models and discussion

In this part, we compare the experimental evolution of the receding contact angles with
existing models. We are looking for a general law for θ = f(Ca) and a prediction of the
threshold capillary number for the dynamic wetting transition Ca∗.

As shown in Section 1.3, the Cox-Voinov law reads:

θ3 = θe
3 ± 9Ca ln

(
lc
ls

)
(3.1)

where θe is the equilibrium contact angle, lc (capillary length) and ls (slip length) are a
macroscopic and microscopic cutoff length scales respectively.

Figure 3.6: Experimental contact angle for 5%wt glycerol solution (η = 1.06 mPa.s
red triangles), Cox-Voinov model (dashed lines) and model assuming a constant
microscopic contact angle θmicro (solid lines). Logarithmic scale in inset.

We first consider this model with an equilibrium contact angle θe = θexpe = 45◦ and
a ratio ls/lc = 10−5 corresponding to a slip length ls = 26 nm for the liquid considered
(5%wt glycerol solution). In Figure 3.6, we plot the Cox-Voinov model (black dashed
line) given by Equation (3.1), and we report our experimental receding contact angles
(red triangles) measured for 5%wt glycerol solution (η = 1.06 mPa.s). For the sake of
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clarity, both linear and logarithmic representations in Ca are given in Figure 3.6. We
see that the Cox-Voinov model first predicts a slight decrease of the contact angle below
Ca = 4 10−4, and then a sharp fall of the contact angle around CaCoxc = 3.5 10−3. The
model can thus account for the experimental data in the plateau region (zone (3)), but
strongly overestimates the capillary number at the dynamic wetting transition Ca∗.

In most models, the solid surface is considered as smooth and the problem is considered
as a multiscales problem. In most theoretical works (see Snoeijer et al. [1] for example) a
microscopic contact angle is introduced, providing a continuous description. As shown in
Figure 3.7, this microscopic contact angle θmicro is kept constant and independent of the
capillary number, while the macroscopic contact angle θr varies with the capillary number
of the meniscus.

Figure 3.7: Schematic of the meniscus shape exhibiting the two scales at which
a contact angle can be defined. The microscopic contact angle θmicro is defined at
micrometric length scale from the contact line. The apparent receding contact θr,
which is measured here, is a macroscopic measurement.

Following Snoeijer [1] and Eggers [40], we have carried out the numerical integration
of Equation (2.7) with q = 0 using a constant microscopic contact angle, and the full
expression of the meniscus curvature. Initial boundary conditions were a static meniscus
with macroscopic contact angle θr. In this model, we can vary the value of the microscopic
contact θmicro. Similarly to what has been done for the Cox-Voinov prediction, we take
θmicro = 45◦ and ls/lc = 10−5. In the same figure, we represent this new prediction as
solid lines (dark blue). This constant microscopic contact angle model provides a variation
similar to the Cox-Voinov law. This is not surprising, since the physical ingredients are
the same. Nevertheless, we note that the dynamic wetting transition occurs at en even
larger Ca than for the Cox-Voinov model: Ca∗θmicro=45◦ = 6.5 10−3 > CaCoxc >> Ca∗exp.

With a model with a constant θmicro = 45◦, we can try to adjust the value of the ratio
ls/lc in order to decrease the value of Ca∗. Nevertheless we end up with non physical value
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without reaching our experimental Ca∗. An example is given in Figure 3.6 for ls/lc = 10−15

(dashed dotted line). For 5%wt glycerol solution, ls/lc = 10−15 would corresponds to a
slip length ls ∼ 10−18 m which is 8 decades lower than atomic scale and therefore not
acceptable.

Alternatively, we can decrease the value of θmicro. Two examples are given Figure 3.6
for θmicro = 30◦ (middle blue) and 16.8◦ (light blue). Doing so, we reduce the value Ca∗

at the dynamic wetting transition, but we loose the match with the experimental data at
the plateau. We cannot render simultaneously the evolution of the contact angle and the
Ca∗ at the dynamic wetting transition.

None of the standard hydrodynamic contact angle theories or molecular kinetic theory
can describe our experimental trend. Experimentally, the dynamic wetting transition
occurs much earlier than predicted by hydrodynamic models. In these models, the flow
imposes the curvature of the meniscus. Consequently, the variation of the receding contact
angle cannot be explained by the hydrodynamic pressure close to the triple line. Another
option is to consider alternative sources of dissipation. Indeed, in addition to the viscous
dissipation at the triple line, another source of dissipation is induced by the friction at
the triple line for example due to surface roughness. This assumption is relevant for two
reasons. First, because we have experimentally measured the surface roughness of the
PVC tubes by AFM and profilometer and we have found a micrometric and nanometric
roughness (see Section 2.2.2). The second reason is that we found experimentally a static
contact angle hysteresis ∆θ = θa − θr at vanishing velocities of order 10◦ (zone (1) in
Figure 3.3b). This phenomenon proves that our surfaces are not perfectly smooth, and
present roughness and/or chemical heterogeneity.

Concerning the advancing contact angle we have shown that there is very limited
influence of the capillary number contrary to the Cox-Voinov model, which predicts a
small increase of the advancing contact angle in the range of capillary number studied
here, from Ca = −1 10−4 to −2 10−2 (Figure 3.3a). This observation has also been made
by Blake when coating polyester plates with water at very high velocities [91]. To the best
of our knowledge, the earliest published study of dynamic wetting by Ablett [32] shows
a similar independence of both the advancing and receding angles with Ca. Much larger
capillary numbers are needed to see a significant change. It is also likely that the rough
surface of the tubing would tend to mask more subtle effects.

The strong decrease of the receding contact angle in zone (2), shown in Figure 3.3b,
can be attributed to a thermal activation process (molecular kinetic theory), since this
mechanism was validated by Davitt et al. [60] on mesoscopically rough surfaces for low
velocity of the triple line. This explanation also holds for the strong increase observed for
the advancing contact angle θa at small velocity Ca.
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3.5 Time to film formation: transient profiles

Another important question is the role of the transients. In our experiments and in the
industrial applications, the liquid is initially at rest and subsequently moves at constant
velocity. This implies that there is a transient state in which the slug evolves into its
steady state configuration. Here we inquire into the duration of this transient.

3.5.1 Experimental observations of film formation delay

In this section, we present a set of experiments performed using the “large velocity setup”
presented in Section 2.1.1. Here, the fluid used is dyed water and the volume of the slug
is V = 4 mL. The fluid segment is initially in the camera frame and we visualize the flow
along the tube over 45 cm. In that case, τm = 45 cm/v is larger than previously, but
the spatial resolution is lower. An image sequence of a typical experiment is shown in
Figure 3.8.

Figure 3.8: Image sequence of a low velocity experiment illustrating the delay to
the dynamic wetting transition. V = 4 mL of dyed water, ∆t = 0.8 s. The height of
the image corresponds to the first 12 cm of the full visualization window. The arrow
indicates when the liquid film starts to be observed macroscopically. Initial time is
taken when the slug motion is induced.

In Figure 3.8, images are zoomed in to have a good accuracy on the back of the slug.
Time step between images is ∆t = 0.8 s. Initially the slug is at rest (first image in
the image sequence) then the motion is induced at t = 0 by applying the gas pressure
behind the fluid segment (top of the tube). The velocity of the rear of the slug v =
1.4 cm.s−1 is constant. The corresponding capillary number is Ca = ηv/γ = 1.89 10−4.
The measurement duration is τm = 32 s. In Figure 3.8, we see that a liquid film is entrained
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behind the slug after a given time, denoted τfilm. While the slug reaches constant velocity
instantaneously within our time resolution, film formation suffers a significant delay. In
the present case, this phenomenon occurs between the fourth and the fifth images. This
characteristic time for film formation is here τfilm = 2.5 s< τm.

Figure 3.9: Delay to the dynamic wetting transition: time for film formation τfilm
as a function of capillary number Ca. The dashed blue curve is given as a guide
to the eyes. The time to film formation diverges at Ca+. Above a given capillary
number Ca∗ the transition towards the film is instantaneous.

The characteristic time for film formation τfilm can be systematically measured when
varying the slug velocity v and therefore the capillary number Ca. The corresponding
results are gathered in Figure 3.9. We also find a film for Ca > Ca+ = 1.8 10−4 (vertical
blue dotted line). We observe that the time to film formation decreases with the capillary
number. The dashed blue curve is given as a guide to the eyes, but seems to follow a power
law

(
Ca− Ca+)−α. Above a threshold in capillary number Ca∗ > Ca+, denoted by the

vertical black dashed line, film formation is instantaneous within experimental resolution:
τfilm ' 0 s. We emphasize that the position in the tube at which the film is entrained
varied from one experiment to another as required by the dependance upon velocity and
time. We can therefore conclude that film entrainment is not related to a particular defect
on the inner tube surface.

In this experimental configuration, we cannot consider that the dynamic wetting tran-
sition is simply controlled by the slug velocity, because the time to film formation, and
the distances traveled, may be significant between Ca+ and Ca∗. In fact, the dynamic
wetting transition does not occur at a given capillary number, as it is always stated in the
literature [70, 63, 92, 5], and first suggested by our experiments in the previous section.
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In fact, it appears that the second decrease of the receding contact angle, as shown in
zone (4) in Figure 3.3b, corresponds to the range of capillary number from Ca = 2.8 10−4

to 4 10−4 where τfilm is smaller than the experiment duration τm. The dynamic wetting
transition is time dependent and Ca+ provides a better definition of this transition that
occurs when the time to film formation diverges.

3.5.2 Numerical investigation of the time-dependency of the film for-
mation

The existence of a possibly large “induction time” for film formation around the threshold
velocity is surprising. Here we want to investigate the origin of this phenomenon using
a numerical approach. We use the governing equation (Equation (2.11)) and a finite
difference scheme (Section 2.3). We use a constitutive relation f(v) = γ (cos θ − cos θe) =
Ψηvd where Ψ is a dimensionless friction coefficient to account for the dissipation at the
triple line [57].

Figure 3.10: Normalized contact line elevation Z = zcl/lc represented as a function
of the normalized time T = vliqt/lc obtained by numerical integration when varying
the capillary number Ca. Darker curves account for larger Ca. Initially the liquid
meniscus is at rest. At T = 0+, the motion is induced at fixed capillary number Ca.
Below a threshold in Ca, the meniscus stabilizes at an equilibrium elevation. Above
a critical capillary number Ca+ = 3.919 10−4, the contact line is entrained suddenly
to form a liquid film after a certain time Tfilm. The horizontal black dashed line at
Z =

√
2 = 1.41 corresponds to the maximal contact elevation for a static meniscus.

There are three free parameters in this model: the capillary number Ca, the friction
coefficient Ψ and the equilibrium contact angle θe. The equilibrium contact angle was
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taken constant equal to 45◦. The friction coefficient was increased to Ψ = 650 to match
an instantaneous transition at Ca = 4 10−4 and fit with our experimental value. In the
following, dimensionless quantities are used and denoted with capital letter.

Figure 3.10 presents the normalized contact line elevation Z = zcl/lc versus the nor-
malized time T = vliqt/lc. Each curve corresponds to the temporal evolution of the contact
line position at given capillary number Ca. Initially the liquid meniscus is at rest Ca = 0.
Then, at T = 0+, the motion is induced at fixed capillary number Ca. The darker the
color index, the larger the capillary number. The maximal numerical time, in the given
example, is Tnum = 5 105 and corresponds to a dimensional time τnum = 25 s (for pure
water). Below a threshold in Ca, the meniscus elevation zcl increases progressively and
then stabilizes at an equilibrium elevation (yellow curves). Above a critical capillary num-
ber, which is Ca+ = 3.919 10−4 in the numerical example, the contact line first elevates
progressively up to a quasi-stable value of zcl as previously. This value is independent of
the capillary number and is zcl ' 1.41lc. Interestingly, this value zcl =

√
2lc corresponds

to the maximal contact line elevation for a static meniscus for a perfectly wetting liquid
(see also Section 2.3.1). But after a certain characteristic time Tfilm, Z becomes larger
than

√
2 and a transition into another regime is observed: the position of the triple line

increases again and the meniscus is entrained suddenly leading to film formation. As an
example T = 2 105 for Ca = 3.921 10−4. There is a critical slowing down around the
transition.

(a) (b)

Figure 3.11: Normalized meniscus profile H(Z) as a function of time in the moving
frame of the meniscus, (a) below the dynamic wetting transition Ca = 3.9175 10−4,
(b) above the dynamic wetting transition Ca = 3.925 10−4. H = h/lc is the thickness
of the meniscus profile or of the film, and Z = z/lc the vertical position along the
tube. The time step between each profile is kept constant equal to 25 ms. In (b), the
critical slowing down around the transition is manifest.
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To obtain a better visualization of this critical transition, profile evolution of the
meniscus with time around the transition are represented in Figure 3.11. Left Z−axis
corresponds to the vertical position along the surface, and the horizontal axis is the
thickness profile H in the orthogonal direction. H = 0 corresponds to the wall posi-
tion. Each curve is a profile at a given time. The time step between each profile is
roughly constant. In Figure 3.11a, typical evolution below the transition is represented for
Ca = 3.9175 10−4 < Ca+. It corresponds to the yellow family of curves from Figure 3.10.
We can note the gradual build up of the viscous bending with time, close to the wall. The
local curvature is consequently increasing. The dynamics slows down progressively and
the meniscus takes a stationary shape (the curves agglomerate). The meniscus reaches an
equilibrium shape, and triple line elevation Z ≤

√
2 ' 1.41. Above the transition, typical

evolution for Ca = 3.925 10−4 > Ca+ is given in Figure 3.11b (orange family curves from
Figure 3.10). The meniscus first seems to reach a similar equilibrium shape and position
at Z =

√
2 but then, after an “induction time” it undergoes a transition leading to film

entrainment. As illustrated in Figure 3.11b, we notice the critical slowing down around
the transition. The profile close to the triple line then grows in both directions (length Z
and thickness H) with time and a liquid film is formed. In both graphs, the last meniscus
profile corresponds to the same time limit: Tnum = 5 105.

Figure 3.12: Same data as in Figure 3.9 with numerical time for film formation
τfilm as a function of the capillary number Ca (blue open circles).

From the simulation we can systematically extract the “induction time” (time for film
formation) τfilm. This time is taken when Z becomes larger than

√
2. In Figure 3.12

we plot this time as a function of the capillary number (blue open circles). Experimental
times for film formation already presented in the previous section is represented by the
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blue full diamonds. Experimental and numerical times are both decreasing with Ca.
In the present simulations, the adimensional time for film formation can be as large as
Tfilm = τfilm/τ0 = 1.5 105 obtained for Ca = 3.92 10−4 (τ0 = lc/vliq). The corresponding
dimensional time is τfilm = 7.5 s, which is comparable to the time we found experimentally.
However, we found numerically Ca+ = 3.919 10−4 and Ca∗ = 4.1 10−4. The width of
the transition is quite narrow: the window in capillary number is of the order of 10−5

compared to 10−4 experimentally.

3.5.3 Concluding remarks

The liquid film detection actually depends on the experimental window. A film can be
observed only if τfilm < τm. We will denote as instantaneous film formation the detection
of a liquid film (limited by our experimental resolution: film of length 6 pixels) right
after the beginning of the experiment. This instantaneous transition corresponds to a
threshold Ca∗ = 4 10−4. There is another threshold Ca+ = 1.8 10−4, for which the
velocity of the film can be very similar to the slug velocity, consequently Ca+ 6= Ca∗.
Thus the receding contact angle θr measured for Ca+ < Ca < Ca∗ corresponds to an
unstationary shape of the meniscus where the transient condition of partial wetting holds
while viscous bending builds up. We have seen that the threshold in capillary number Ca∗

was independent of the liquid characteristics. Numerical simulations prove that we have
to consider transient effects for a better definition of the transition. Finally, we note that
the calculation involves a flat surface. However, preliminary calculations with finite tube
diameter suggest no qualitative changes. In the following, the dynamic wetting transition
will be defined at the critical capillary number Ca+.

3.6 Conclusion

There is a strong dependence of both advancing and receding contact angles with velocity
at low capillary numbers (below 10−4 zone (2)). This strong dependence is unexpected in
the standard hydrodynamic model and is ascribed to the coupling with surface roughness
and pinning. Then, we observe a plateau for advancing triple lines. For receding triple
lines, a very slow decrease with velocity is found, which is reminiscent of hydrodynamic
models. However, this plateau ends rather unexpectedly, for capillary numbers much lower
than predicted by these theories. Instead we find a rather sharp decrease to about zero
over the capillary number range Ca = 3−4 10−4. Above Ca∗, a film forms instantaneously
which means that we have completed the forced wetting transition. This decrease has no
identified parallel in the literature. More precisely we find that there is a range over which
the transition occurs. As a result, in this range, the results strongly depend upon the
observation protocol. At the lower end of the range, the film can also form, but only
within seconds.

To better understand these observations, we have modeled the transition numerically
within the lubrication approximation. We have noted that compared to the standard hy-
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drodynamic models, the experimental value of the transition velocity is strongly depressed.
Therefore, we cannot simultaneously account for the contact angle plateau and the wet-
ting transition threshold. In fact, in these viscous dissipation models, the microscopic
contact angle is usually assumed constant. This perspective must clearly be abandoned
here. It is therefore fruitful to add to the model a friction like dissipation mechanism
at the triple line with which we can qualitatively render both the quasi-static receding
contact angle and the threshold capillary number consistently. We again ascribe this ad-
ditional friction to the effect of surface roughness. We also find that the complex dynamic
behavior observed experimentally is qualitatively consistent with the predictions of this
augmented hydrodynamic model. In both experiments and numerics we find that the time
to film formation diverges at the critical capillary number Ca+ and sharply decreases as
the velocity departs from the threshold. In practice, we have defined the transition Ca∗

as the velocity for which film formation is instantaneous at the measurement space resolu-
tion. Similarly, in the dynamic transition velocity range, the contact angles are measured
from transient meniscus profiles, and are therefore strongly dependent upon measurement
protocols. However, in the calculations, the velocity range over which similar dynamic
effects are found is very narrow, of the order of 1% of the transition velocity itself. This
range contrasts sharply with the 25% range found in the experiments, suggesting that the
additional dissipation does not account for the full response of the triple line.



Chapter 4

An unusual liquid film

4.1 Introduction

In the previous chapter, we have seen that above a critical capillary number Ca+, a liquid
film is entrained behind the slug. The system comes from a regime denoted regime (i)
to a regime (ii) (Figure 4.1). This chapter focuses on the second regime where a film is
deposited. It is important to keep in mind that the entrained film is not static at the
surface of the tube. Indeed, the film dewets due to partial wetting condition. This is the
particularity of the system studied here compared to LLD films.

Figure 4.1: Schematic of the evolution of a meniscus when increasing its velocity
v, and therefore capillary number Ca. Above the critical capillary number Ca+ a
liquid film of length Lfilm1, thickness e1 and dewetting velocity vd is entrained.

The objective of this chapter is to understand the physical mechanisms at the origin
of the formation of the film represented in Figure 4.1. In the continuity of Chapter 3,
we investigate the morphology of the film entrained after the dynamic wetting transition
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Ca+, and how it depends on the flow velocity and liquid viscosity. Is there a specific
thickness selected? Also an interesting point that we will raise in this chapter and further
discuss in Chapter 5 and Chapter 6, is the dynamics of the dewetting film. In particular,
what happens at the triple line once the liquid film is formed? What sets the velocity of
the triple line and what is the thickness of the film close to the contact line?

In the first part of this chapter, we study the overall properties of the liquid film:
velocity, length and morphology. Our experiments highlight the existence of an unexpected
thick liquid film in a significant range of capillary numbers. In the second part, we propose
a numerical model providing explanations on the nature of the liquid film. The last part
of this chapter is devoted to the study of unstationary films and their description using
the numerical model.

4.2 Results

4.2.1 Experimental observations

We investigate the film entrainment of solutions with a low concentration of glycerol
(0 − 40%wt) in a PVC tube of diameter din = 6.4 mm. We use the “large velocity
setup” and techniques described in Chapter 2 to visualize and measure the velocities of
the different interfaces and the film thicknesses.

Figure 4.2: Image sequence for a typical experiment in regime (ii), after the critical
transition where a thick film is formed. Experimental parameters are: 20%wt glycerol
solution η = 1.66 mPa.s, v = 7.7 cm.s−1 (Ca = 1.9 10−3), vd = 6.3 cm.s−1,
∆t = 0.2 s.
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We vary the velocity of the slug from v = 1 up to 20 cm.s−1. We also vary the liquid
viscosity, so that we assess a capillary number range Ca = 4 10−4 − 2.2 10−3. We focus
here on regime (ii), where a dewetting film is entrained behind the slug, for Ca > Ca+.
We measure two kinds of quantities: the velocities of interfaces (v and vd) corresponding
to a film length Lfilm1 and the film morphology, notably its thickness e1.

One typical image sequence obtained with 20%wt glycerol solution (η = 1.66 mPa.s)
and v = 7.7 cm.s−1 is given in Figure 4.2. The camera window captures 40 cm of the
tube. The time step between each image is ∆t = 0.2 s. Contrary to regime (i), presented
in Chapter 3, we observe a liquid film (light grey) entrained behind the slug (in dark
grey). We can note that the end of the film is not pinned at the interface and is moving.
We denote as vd the velocity at the triple line of the film in the reference frame of the
laboratory. The film has a finite length denoted Lfilm1. We observe a moderate growth
of the film length, at constant thickness and that the dewetting film and the slug seem to
move at nearly the same velocity.

Kinematics: film lengths and interface velocities

In Figure 4.3, we show the time evolution of the film and slug lengths. These lengths
are directly measured from the image sequence in Figure 4.2. The z−position of the
different interfaces are measured in time, such that Lslug = |zfront − zrear| and Lfilm1 =
|zrear − zdewetting|.

Figure 4.3: Slug (blue) and film length (red) as a function of time, measured
from the image sequence Figure 4.2. Experimental parameters are: 20%wt glycerol
solution η = 1.66 mPa.s, v = 7.7 cm.s−1, vd = 6.3 cm.s−1. The slug decreases in
length while the film grows.
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The liquid film, represented by the red symbols, is growing in time. The growth rate
is constant since the slope of the red curve is constant in time. At the same time, the slug
length decreases, but very slowly compared to the film length. This decrease is due to the
fact that the slug slowly feeds the film. Since the tube diameter is much larger than the
film thickness, it is normal to observe a stronger variation of the length for the liquid film.
Note that the film length Lfilm1 can be measured only when the two extremities of the
film are in the visualization window. This is why the film curve in Figure 4.3 does not
start from zero, and the slug curve ends earlier than the film. The growth of the film is
due to the velocity difference between the slug and the dewetting triple line. In Figure 4.3,
the slope of the film length gives v − vd = 1.32 cm.s−1.

We can also measure the interface velocities based on a spatio-temporal diagram (Fig-
ure 4.4a). This plot corresponds to the extraction from the image sequence given in
Figure 4.2, along the center line of the tube. As explained, in the Experimental descrip-
tion (Section 2.1.2), the slopes directly provide the velocities of the different interfaces
(rear of the slug v and dewetting of the film vd). Using this method, we found for the
present example that the velocity of the slug is v = 7.7 cm.s−1 and the velocity of the
dewetting film is vd = 6.3 cm.s−1. Thus, v − vd = 1.4 cm.s−1. The two methods provide
roughly the same value for the velocity difference. But the second method is more accurate
and provides independently the two interface velocities.

Film morphology

From the spatio-temporal diagram we also extract the film thickness, using the method
of Section 2.1.3 (Figure 4.4a). We observe the slug in black and the film in orange. This
measurement confirms that the thickness is homogeneous and constant with time.

In order to better describe the film morphology, we extract the profiles from the spatio-
temporal diagram (vertical dotted lines in Figure 4.4a). Figure 4.4b presents successive
typical profiles of the film in regime (ii) for 20%wt glycerol solution at Cad = 1.5 10−3

where Cad = ηvd/γ is the capillary number calculated with the dewetting velocity vd.
The blue color index stands for the elapsed time, and shows the correspondence between
spatio-temporal diagram and profiles. The time lapse between each profile is ∆t = 0.5 s.
The profiles are given in the reference frame of the rear of the slug. The film length is
about 7 cm. We observe again that the film is growing in length over time, with a flat
central part of constant thickness. We will denote as e1 the thickness of the film in this
regime (ii). In the present example we have e1 = 132 ± 5 µm. On the profile we observe
that the top part of the film where the triple line is dewetting, forms a rim. This rim is
connected to the flat film. A strong variation of the thickness is observed close to the rear
of the slug where the profile also exhibits a dimple.
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(a) (b)

Figure 4.4: (a) Spatio-temporal diagram of thickness from the image sequence
represented in Figure 4.2. (b) Successive experimental thickness profiles (∆t = 0.5
s) for 20%wt glycerol solution (η = 1.66 mPa.s), Ca = 1.9 10−3, Cad = 1.5 10−3.
The slug meniscus is linked to the homogeneous film of thickness e1 = 132 ± 5 µm
by a dimple. And the film, which is about 7 cm long, ends with a rim.

4.2.2 Kinematic evolution with slug velocity

We reproduce similar experiments with varying slug velocity v and with different concen-
trations of glycerol in water to vary the liquid viscosity. The velocities v are measured via
the spatio-temporal diagram slopes. Image sequences are similar to Figure 4.2, and we
also find that the velocities are constant along the tube.

We represent the dewetting velocity vd as a function of slug velocity v in Figure 4.5.
The brownish color index indicates the glycerol percentage: the darker, the larger the
concentration, the larger the viscosity. Each marker corresponds to one experiment of
given velocity. The typical curve vd = f(v) shows first a dewetting velocity vd equal to
the slug velocity v before the dynamic wetting transition (v < v∗, regime (i) described
in Chapter 3). Then, in regime (ii) for v > v∗, the dewetting velocity vd and the slug
velocity are very close but not equal since a film is growing: vd ' αv with α ' 0.8.
Above a second threshold denoted v∗∗, the dewetting velocity reaches a maximum value
denoted vsatd and becomes independent of the velocity of the slug v (regime (iii)). This
value of the dewetting film at saturation vsatd increases when the fluid viscosity decreases.
In the following sections of this chapter, we focus on the case where vd ' αv, before the
saturation. Regime (iii), where the dewetting velocity saturates, will be considered in
Chapter 5.
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Figure 4.5: Dewetting velocity of the film end vd as a function of the slug velocity
v for different concentrations of glycerol. The brownish color index indicates the
glycerol percentage. The grey line corresponds to vd = v. vd first increases with v,
with vd slightly lower than v. Then, vd saturates at a maximal value which increases
when decreasing the fluid viscosity.

4.2.3 Thickness of the film as a function of slug velocity

The film morphology has been systematically measured as a function of slug velocity
for different glycerol concentrations. It remains identical with a rim at the end and a
dimple close to the meniscus. Figure 4.6 gathers film thicknesses e1 averaged over the flat
part of the film as a function of the velocity of the dewetting film vd for various glycerol
concentrations. Note that in this regime v is approximately proportional to vd, so that
the variations of the thickness with vd are similar to the variations with v.

Take as an example η = 1.66 mPa.s (20%wt glycerol solution, light brown), e1 increases
with the dewetting velocity vd. We have seen in the previous section that the velocity of the
triple line vd reaches a saturation value at some point. The curve e1 = f(vd) is restricted
along the vd axis by this saturation dewetting velocity vsatd = 9.2 cm.s−1. Moreover, there
is also a maximal film thickness limiting the curve along the left axis that is reached at
the same time as vsatd . We denote this value esat1 (horizontal dotted line in Figure 4.6).
For the considered liquid series esat1 = 185 µm.
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Figure 4.6: Average film thickness e1 as a function of the velocity of the dewetting
film vd for various glycerol concentrations. e1 increases with vd, then saturates
at a maximal value independent of fluid viscosity. Predictive model considering a
gravitational drainage at constant film thickness is given by the dashed line for each
liquid without fitting parameter (Equation (4.7)).

Moreover the profile of the liquid film changes slightly at the extremities of the film.
Figure 4.7 presents the profiles obtained for η = 1.66 mPa.s (20%wt glycerol solution),
when increasing the capillary number from Ca = 9.6 10−4 to Ca = 2.3 10−3 (red color
scale). The darker the color, the larger the capillary number Ca. Alternatively, the
thickness profile e(z) can be rescaled by the average thickness in the flat region e1 and the
vertical dimension z by the capillary length lc = 2.52 mm. In order to compare the shape
of the rim and of the dimple, we superimpose the profiles at the triple line (Figure 4.7b)
or at the rear of the slug (Figure 4.7c). The dimple gets deeper and its length increases
in the z−direction for larger velocities. We note that the rim is also more pronounced for
lower capillary number Ca. But the length of the rim in the z−direction is independent of
the capillary number Ca. The receding contact angle, measured at the film end, is small,
about 5◦ and is independent of the capillary number within experimental accuracy.

The same evolution is observed for all the liquids. e1 first increases with vd and
consequently with v. But the larger the viscosity, the faster the film thickens with velocity
(Figure 4.6). At a certain velocity vd, the film thickness saturates at a maximal value
esat1 . Remarkably esat1 seems independent of the fluid viscosity, whereas we have seen
previously that the saturation dewetting value was larger for lower viscosity fluid. Also,
the saturation velocity vsatd at which the thickness saturates depends on the fluid viscosity.
This point will be discussed in the next chapter in Section 5.3.1.
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(a)

(b) (c)

Figure 4.7: (a) Experimental thickness profile e(z) for 20%wt glycerol solution
(η = 1.66 mPa.s) and capillary numbers from Ca = 9.6 10−4 to Ca = 2.3 10−3.
The color scale stands for the capillary number Ca. The darker the color, the larger
the Ca. Experimental thickness profile from (a) are normalized e/e1 = f(z/lc)
and zoomed in on the rim (b) and on the dimple (c). The vertical dimension z is
normalized by the capillary length lc = 2.52 mm, and the horizontal dimension e is
normalized by the thickness of the film in the flat region e1. The rim grows when
decreasing the capillary number Ca. The dimple gets deeper when increasing Ca.
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4.3 Comparison with theory

4.3.1 Kinematics and thickness as a function of capillary number

Figure 4.8 presents the plot of the rescaled velocities (Ca = ηv/γ = v/vliq and Cad =
vd/vliq). The data collapse on a single master curve. Three regimes are clearly identified.
The regime (i) without film for Ca < Ca+ discussed in Chapter 3. For Ca+ < Ca < Ca∗∗,
there is a regime (ii) with a single film of interest in this chapter. For Ca larger than a
second threshold denoted Ca∗∗, the dewetting capillary number saturates at Casatd and
regime (iii) represented by the grey zone is obtained. This regime will be investigated in
Chapter 5. In regime (ii), we observe that the two capillary numbers are approximately
proportional: Cad ∝ Ca, but as Ca increases, the deviation from slope 1 is more and more
pronounced, which means that the difference Ca− Cad increases when Ca increases.

Figure 4.8: Dewetting capillary number Cad versus meniscus capillary number Ca
for various glycerol concentration. Three different zones are observed: regime (i)
Ca < Ca+ below the dynamic wetting transition, meniscus state Cad = Ca. In
regime (ii) Ca+ < Ca < Ca∗∗ a film is entrained but dewets Cad ∝ Ca. In
regime (iii) Ca > Ca∗∗ dewetting capillary number saturates (grey zone).

Similarly, the film thickness e1 rescaled by the capillary length lc is shown as a function
of capillary number Ca in Figure 4.9a. The data collapse and we obtain a single master
curve with the same three regimes and especially the saturation of film thickness at esat1 is
observed at the transition between regime (ii) and (iii). As seen previously, the capillary
number Ca is a good characterization of the limit between physical regimes. In regime (ii),
the thickness of the film e1 roughly scales as Ca1/2, but then deviates from this scaling to
reach a saturation value esat1 .
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(a)

(b)

Figure 4.9: Average film thickness e1 normalized by the capillary length lc as a
function of (a) the capillary number of the slug Ca, (b) the capillary number of the
dewetting film Cad. The dashed black line is the predictive model with no adjustable
parameter considering a gravitational drainage at constant film thickness.

Alternatively, the film thickness can be plotted as a function of dewetting capillary
number Cad (Figure 4.9b). This time, the thickness of the film e1 clearly scales as Ca1/2

d

in the entire regime (ii). This relation will be described in the next section. The film
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thickness saturates at a given capillary number. This saturation value of the capillary
number is denoted Casatd and announces the beginning of regime (iii). Saturation of
film thickness and of dewetting capillary number occur simultaneously: e1 = esat1 when
Cad = Casatd .

4.3.2 Matching a film with a meniscus

In this section, we aim at understanding the problem numerically by looking at the exis-
tence of film solutions matching with the meniscus to find a prediction of the film thickness
profiles. For that purpose we use the stationary equations and the numerical methods es-
tablished in Section 2.3.

Figure 4.10: Schematic of the gravitational film, regime (ii), which makes explicit
the details of the profile. The film thickness is denoted e1 in the flat part. In the
reference frame of the meniscus, Qg denotes a gravitational downward flux entering
the slug. Qc denotes the convected upward flux. Qd is the flux due to dewetting.

In the reference frame of the meniscus, we define two fluxes of liquid which include
the essential features of the physics at stake (Figure 4.10): on the one hand Qc the flux
convected upward by the entrainment velocity v; on the other hand the downward flux
Qg caused by gravity. Qg is in the opposite direction to Qc, such that we define the flux
ejected by the slug Q = Qc −Qg where the fluxes are positives quantities.

Equation (2.7) for a flat surface is integrated starting from the flat film solution (point
D in Figure 4.11) towards the static meniscus (direction 1 in red). We look for solutions
that match the shape of the static meniscus represented by the dashed black curve. To
set the initial values, an analytical expression of the flat film solution is required.
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Figure 4.11: Schematic explaining the integration scenarios. The liquid film profile
and the static meniscus are represented in blue and in dashed black respectively. The
zone A − B corresponds to the matching between the static meniscus and the film
solution; zone B−C is a transition zone; zone C−D is the flat film part. Numerical
integration can be achieved starting from the flat film in D using the direction 1 (red),
or starting from the static meniscus in A using the direction 2 (green).

Equation (2.7) reduces to:

∂z̃κ̃l = 1− 3
h̃2 + 3q̃

h̃3 (4.1)

where the flux is not restricted to q̃ = 0: q̃ = ẽ0 − ẽ3
0/3 = q̃c − q̃g.

This equation has been analysed by Snoeijer et al. [76]. The normalized thickness of
the film far from the meniscus is E0 = e0/lc. To calculate initial values for integration, in
the limit where the film thickness is nearly constant (flat film) h̃ → ẽ0, we linearize this
equation with ε = h̃/ẽ0 − 1. Then, we have

ε′′′ = −Ωε (4.2)

with Ω = 3
(
1− ẽ2

0
)
/ẽ3

0 and ẽ0 = Ca−1/2e0/lc.

Ω can be written in terms of flux as follows:

Ω = 3
e04 (Qc − 3Qg) (4.3)
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Two asymptotic solutions for the flat film are thus obtained from Equation (4.2),
according to the sign of Ω:

ε = βe−Ω1/3z̃ (4.4)

ε = βe
(−Ω)1/3

2 z̃ cos
(√

3
2 (−Ω)1/3z̃ + φ

)
(4.5)

If Ω > 0, the solution is purely exponential and given by Equation (4.4). In terms
of flux it corresponds to Qc > 3Qg. If Ω < 0 (Qc < 3Qg), the solution is exponential
oscillatory, given by Equation (4.5). β and φ are respectively the amplitude and the phase
of the asymptotic solution. These are the two types of solutions found at the front and
back of Bretherton’s bubble [14]. The limit Ω = 0: Qc = 3Qg, implies a film thickness
e0 = lc

√
Ca.

Figure 4.12: Phase diagram of the profiles: E = e/lc versus capillary number Ca.
The asymptotic limit (Qc − 3Qg = 0) is given by the black dotted-dashed line (limit
between exponential and oscillating solutions). The numerical limit E0 is the red
line (Qc − Qg = 0). A domain of solutions exists above a minimal value given by
E0 ≥

√
3Ca. Hatched part of the diagram corresponds to a domain without thick

film solution, see profile Figure 4.13b. The experimental film thickness E1 is the
green circles. The LLD law is depicted in blue.

Figure 4.12 presents a phase diagram with the dimensionless film thickness E = e/lc

and Ca. The asymptotic limit between exponential and oscillating solutions obtained for
Ω = 0 (Qc − 3Qg = 0) is the black dotted-dashed line. It corresponds to a thickness
E =

√
Ca. Our experimental points E1 = e1/lc, depicted by the green circles, lie in

oscillatory solution region, but definitely not at the transition: the observed films are much
thicker. To better understand this observation, we integrate numerically Equation (4.1)
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from the flat film using the direction 1 (red) in Figure 4.11 and evaluate whether or not
the profile can be matched to the static meniscus. Doing so, we find a numerical limit
plotted in red in Figure 4.12 that divides the space into two regions. The first one (white
space) admits solutions: this means that there is a matching between the flat film and the
static meniscus. In the second one, there is no flat film solution (hatched zone): this is
where the matching is not possible. Of course there is the LLD solution (blue line) but
for much thinner films.

(a) (b)

Figure 4.13: (a) Typical numerical profile obtained for E0 ≥
√

3Ca (Q < 0),
when starting from the static meniscus (direction 2 in green). (b) For E0 <

√
3Ca

(Q > 0) no thick film solution is found, the numerical profile diverges from the
surface.

Alternatively, the equation can be integrated starting from the meniscus (point A in
Figure 4.11), towards point D (direction 2 in green). In this case, the integration is very
sensitive to the initial values of the input parameters. Full profiles can be obtained, as
shown in Figure 4.13a, and the same results are recovered: no flat film solution is found
for E0 <

√
3Ca (Figure 4.13b).

The numerical limit (red curve) is a factor
√

3 larger than the asymptotic limit (black
dotted-dashed line). Interestingly, this numerical limit between the two regions fits our
experimental data. At larger velocities, some experimental points are observed below
this limit possibly because we are in an unstationary state contrary to the numerical
calculations and/or because the thick film could be metastable. Altogether, we find that
matching is possible only for a sufficiently thick film i.e Qg ≥ Qc. There are solutions for
Qg > Qc, but these are not observed experimentally (yet).
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4.3.3 Matching a film with a triple line

We look here for an analytical solution of a flat liquid film matched to a triple line using
Equation (2.7). As shown in the schematic representation in Figure 4.14, for a flat film
solution, i.e ∂z̃κ̃ = 0. We define Qd the downward flux due to dewetting (Figure 4.10).

Figure 4.14: Schematic representation of a flat film solution with a triple line
moving down a cylindrical tube up at the velocity −vd in the reference frame of the
triple line. The flow is upward close to the wall and downward close to the free
surface.

Equation (2.7) can be integrated as follows:

h̃− h̃3

3 = cste (4.6)

Since the flat film ends with a triple line, the flux in the film is null, we obtain cste = 0
so that Qd = Qg which translates into:

e1 = lc
√

3Cad (4.7)

Equation (4.7) can be written differently to highlight the physical origin of the film.
e1 =

√
3ηvd/ρg presents the thickness as the square root of the ratio between viscous

resistance and gravitational drainage. This is why we will name this film a gravitational
film. This relation has been plotted in Figure 4.6. Each dashed line corresponds to
the prediction taking the viscosity of one liquid. There is good agreement between the
experiments and the prediction with no adjustable parameter.

The analytical prediction given by Equation (4.7) is represented by the dashed black
line in Figure 4.9b. We recover this prediction exactly when writing the capillary number
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as the dewetting capillary number Cad. Then, the question of the scaling with Ca arises.
We note that the 1/2 scaling is also roughly observed with Ca, but deviations appear as
Ca increases (Figure 4.9a).

We can conclude that the film thickness e1 is directly coupled to the dynamics at the
dewetting triple line Cad. As long as Cad ∼ Ca, a thick film solution exists because the
condition close to the meniscus defined in the previous section by the sign of Ω in the
asymptotic solution is fulfilled.

4.3.4 Transition from regime (i) towards regime (ii) and rim formation

As emphasized in Chapter 3, below the threshold Ca+, the slug keeps a cylindrical shape
with slight deformation of the rear meniscus due to viscous bending (Figure 4.15).

Figure 4.15: Schematic of the transition between a meniscus state and a film state.
The dynamic wetting transition occurs at null overall flux.

The contact line velocity is identical to the slug velocity, vd = v. The overall flux of
the meniscus is null Q = Qc −Qg = 0 and Qd = Qg. At the transition Ca+, the previous
statement is also fulfilled, meaning that the dynamic wetting transition occurs at an overall
flux null. Above Ca+ the liquid film develops at the rear of the slug (Figure 4.15). The
liquid film dewets from the tube wall because of the hydrophobic property of the tube.
We have shown earlier that the condition Qd = Qg was always fulfilled, therefore after the
dynamic wetting transition Q = Qc −Qg > 0 since Qd < Qc.

We now look for an explanation for the rim formation. This type of rim is not modeled
in the literature, and has not been observed by Snoeijer et al. [2, 76]. The typical numerical
profile obtained in Figure 4.13a does not present a rim at the dewetting triple line. This
is possibly due to the steady state approximation. Indeed, the rim formation may be due
to a transient regime observed at the very beginning of film formation. This may explain
also why the rim does not grow. To test this hypothesis, the temporal derivative of the
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thickness has to be taken into account, i.e ∂th 6= 0, as in Chapter 3.
We numerically investigate the temporal evolution of the thick film formation in order

to see whether or not a rim is formed. In Section 3.5.2, we have presented profiles of
the meniscus before and slightly after the dynamic wetting transition. We now report in
Figure 4.16 profiles evolution with time for a larger capillary number Ca = 4.075 10−4.
After a certain time (a few milliseconds) the triple line moves up and a liquid film is
entrained on the surface.

Figure 4.16: Normalized meniscus profile H(Z) as a function of time after the
dynamic wetting transition Ca = 4.075 10−4. A growing liquid film is entrained at
the wall. We observe the formation of a dimple between the meniscus and the film
that takes a stationary shape at long times.

At short time scales, the shape of the profile is a bump which grows both in thickness
and along the Z−direction. We could think that this bump will be at the origin of the rim
at the film end. But after some times, the thickness of the bump reaches a maximal value
and stops propagating in the vertical direction. The triple line is continuously moving up
forming a homogeneous film, both spatially and temporally. The bump becomes in fact
the dimple and there is no rim at the film end on the numerical profiles. Unstationary
state alone cannot account for the rim that we observe experimentally close to the triple
line. This phenomenon is robust in our experiments but we have no model that neither
explains the rim formation nor predicts its shape. We can assume that it may be due
to additional dissipation occurring only at an early stage of the film formation, because
for longer timescale, the rim is stationary. One possible explanation can be found in the
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surface roughness leading to a dependency of the contact angle with the capillary number
θ = f(Ca) or an effect of the axisymmetry of the tube or maybe both.

Previously, we noticed that the rim was more pronounced in thickness for lower capil-
lary number Ca whereas its length was independent of Ca. For smaller capillary number
Ca the film is thinner, so the pressure drop is larger leading to a liquid accumulation at
at the triple line and consequently to a thicker rim. Note that this rim is not the type of
rim observed by Redon et al. [64] in their dewetting film experiments. Indeed, in our case
the rim is not growing in the vertical dimension over time (it does not collect liquid), and
the velocity of the triple line depends on the film thickness.

Besides, these simulated profiles are in good agreement with our experimental results
and confirm the quasi-stationary assumption made earlier. Indeed, the dimple takes a
stationary shape even when taking into account the time-dependency. The film is homo-
geneous in time. Nevertheless the thickness selected is independent of Ca: E1 '

√
3Ca+.

This is not what we found experimentaly but this is in good agreement with Snoeijer et
al. [2] (experiments) and Hocking [4], Snoeijer et al. [1], Gao et al. [5] (numerics).

4.4 Discussion

In the previous sections we have demonstrated the existence of a flow regime (ii) where
a short thick film is generated at the rear of a liquid segment. This type of liquid film
differs from the classical film generally observed when displacing a liquid over a plate or
in a tube. Most of the experiments found in the literature consider complete wetting
conditions [11, 17, 63]. In these classical LLD-Bretherton cases, the triple line is static:
Qd = 0 (Figure 4.10). If the triple line is fixed, Qg is strongly reduced compared to the
flux convecting liquid upward Qc, leading to the deposition of the liquid film. Except at
larger Ca ∼ 1 The thick film regime cannot develop and the LLD-Bretherton film appears.
This type of film comes from a visco-capillary balance where the thickness scales as Ca2/3.
In our work, due to the partial wetting condition, dewetting occurs and the contact line
at the end of the deposited film is mobile (Qd 6= 0). This is required to generate thick film
solutions. Dewetting and gravity induce downward fluxes Qd and Qg which are equal to
the convecting flux Qc at low capillary number, and therefore selects a different, thicker
solution.

The general theory of the problem has been first presented by Derjaguin, in the planar
geometry [12]. For the case of thick films, he provides a formula without strict derivation,
showing that the thickness of the coated layer on a plate is independent of the surface
tension of the liquid. The proposed prediction, eD =

√
ηU/ρg sinα (Equation (1.6)),

where α is the plate inclination, was obtained without considering the moving contact
line. Later Wilson and Jones have pursued this problem further, considering fixed and
moving plates entering a liquid bath [93, 23]. They have shown that the solution for the
thickness of the film is not unique above a threshold capillary number. They have also
stated that, above this threshold value, larger values of the film thickness with a wavy
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shape are obtained numerically. They explained that such film solutions have not been
observed experimentally probably because of their unstable character. We prove here that
it is possible to observe the stationary thick film solution. In our case Qg is fixed by Qd.
In fact the analytical prediction (Qd = Qg) of a capillary/gravity film and our experiments
are in good agreement. The system selects the condition Qd = Qg corresponding to an
overall flux equal to zero close to the triple line. We found a very good agreement between
numerical and experimental results both for the threshold in Ca and for the film profiles,
leading to the conclusion that the film observed in regime (ii) is a gravitational thick film
with a dimple.

In addition, we have shown that the velocity of the slug Ca increasingly differs from
the dewetting velocity Cad when Ca increases. This is connected to the fact that the flux
from the slug to the film Q = Qc −Qg is not zero when Ca is sufficiently large. We have
also shown that the thickness scaling is obtained for the capillary number relative to the
dewetting velocity of the contact line and not the one relative to the slug velocity (or plate
in the case of the experiments of Snoeijer et al. [2]). Indeed, as we varied the capillary
number of the dewetting triple line, we were able to observe various thick film thicknesses.

Moreover, we note in Figure 4.12 that the numerical limit extends over the entire Ca
scale, contrary to our experiments that are concentrated between Ca+ < Ca < Ca∗∗. We
therefore expect something new to happen in the numerics when Ca reaches Ca∗∗.

Figure 4.17: Receding contact angle θr (left axis - triangles) and thick film thick-
ness e1 (right axis - squares) as a function of the capillary number of the dewetting
film for various mixtures.

Figure 4.17 gathers the main features of the results obtained in Chapter 3 and 4. The
receding contact angle, θr, and the thickness of the thick film e1 are plotted as a function
of the dewetting capillary number Cad. Before the dynamic wetting transition the only
macroscopic quantity is the receding contact angle which decreases with the capillary
number. Above the transition Ca > Ca+, the receding contact angle first decreases
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sharply, then, above Ca∗, θr becomes roughly constant and independent of the capillary
number and is equal to θr = 5 ± 2◦. The physical quantity of interest is now the film
thickness e1. In our study, we have shown the existence of thick film solutions with a
Ca

1/2
d scaling for thickness versus capillary numbers in a significant range of capillary

number (1.8 10−4 < Ca < 22 10−4). We have seen earlier that we observe a dewetting
rim close to the triple line, whose shape is stationary and modified when increasing the
capillary number Ca. The rim is more pronounced for lower capillary number Ca.

4.5 Playing with transients

To better prove our understanding of film formation, we now experimentally investigate
the transient between two well controlled steady state regimes. We start an experiment
at a given slug velocity, then we suddenly vary the velocity of the slug by applying a
step change to the gas pressure behind the slug. We observe the subsequent variations of
the interface velocities, film thickness, film and slug lengths. An example for pure water
(η = 0.94 mPa.s) is given in Figure 4.18.

In the first part of the experiment, the slug velocity is chosen as the upper limit of
regime (ii), v = 19.5 cm.s−1 and the dewetting velocity is vd = 14.7 cm.s−1 (zone A in
Figure 4.18a). As shown by Figure 4.18b, the slug length decreases while the film grows.
Then the velocity of the slug is decreased abruptly down to a value just above Ca+,
v = 2.8 cm.s−1. This velocity change corresponds to the limit between zone A and zone
B in Figure 4.18. We can observe on the spatio-temporal diagram that the dewetting
velocity remains initially unchanged after the transition A−B: vd = 14.7 cm.s−1. It takes
about 0.6 s before the dewetting velocity starts to decrease noticeably. At the arrow, the
dewetting velocity progressively decreases from vd = 14.7 cm.s−1 to vd = 2.8 cm.s−1. Zone
B is a transition zone of about 1 s, where the film length decreases to feed the slug which
increases in length. In zone C, a second stable state is obtained. The slug velocity and
the dewetting velocity are equal at 2.8 cm.s−1, with no significant change in the film and
slug lengths.

To summarize, the velocity perturbation brings the system from a state A towards a
state C, via a transition zone B.

In fact, if we get a closer look to zone B, we can see that the velocity of the rear of the
slug is even reaching values below v = 2.8 cm.s−1, the one imposed by the gas pressure.
Indeed, in zone B, the liquid film feeds the slug with a larger flux than the upward flux
from the slug into the film: Qc < Qg. As shown earlier, these solutions are perfectly valid.
Also, after the transition A−B but before the arrow (Figure 4.18a), the film thickness is
constant in time. This observation confirms the close dependence between the dewetting
velocity vd and the thickness of the film e1.

A remaining question is the mechanism that triggers the change of dewetting velocity,
since the triple line adapts its velocity once it gets close enough to the rear of the slug.
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(a)

(b)

Figure 4.18: (a) Spatio-temporal diagram of film thickness for an experiment with
water (η = 0.94 mPa.s), where we have suddenly decreased the velocity of the slug
during the flow. The velocity goes from 19.5 cm.s−1 to 2.8 cm.s−1. (b) Correspond-
ing slug and film length evolution with time.

Thanks to the phase diagram built in Section 4.3.2, we can get an understanding and a
predictive approach of the thickness of the film. For the same experimental example pro-
vided in Figure 4.18, we can place the initial state A in the phase diagram Figure 4.19. As
seen previously, at given capillary number the system selects the thickness corresponding
to Qg = Qd (numerical limit, red line in Figure 4.19).
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When perturbation of the velocity is induced, the slug velocity and thus the capillary
number Ca decreases along the horizontal arrow, from right to left in Figure 4.19. This
decrease of Ca occurs at a constant dewetting capillary number Cad (in the example
vd = 14.7 cm.s−1) and constant film thickness e1. These two quantities follow the law
e1 = lc (3Cad)1/2. Along this arrow, we temporarily have a strong flux from the film
towards the meniscus (Q = Qc − Qg < 0) and assess even thicker film solutions that
can be matched to the meniscus. The rear meniscus adapts its shape. Note that these
solutions are not accessible when starting from a zero velocity (static case).

Figure 4.19: Pathway of the experiment from Figure 4.18 represented in the phase
diagram E = e/lc and Ca.

Once the dewetting triple line reaches the z−position of the slug around the transition
A−B in Figure 4.18, the dewetting capillary number Cad starts to decrease. Consequently,
the film thickness e1 is progressively thinning (e1 = lc

√
3Cad). The liquid flux coming

from the film towards the slug decreases. It induces a progressive increase of the velocity
of the slug and a stabilization at v = 2.8 cm.s−1. The system is in state C, where
e1 = lc (3Cad)1/2.

We also studied the other case where the slug velocity is increased suddenly. However
to understand the results, we first need to investigate regime (iii) in more detail.

4.6 Conclusion

In conclusion, we are able to generate and observe thick films, first described theoretically
by Derjaguin [12] and later by Wilson [93], Hocking [4] and Snoeijer et al. [2, 76]. In our
work, we observe the existence of gravity/capillary films in partial wetting condition. Very
few experiments exhibit this type of film solution. Indeed, only one example is given in a
planar geometry by Snoeijer et al. [2, 76].

This kind of thick film is flat with a significant thickness (a few hundred microns),
typically larger than the LLD film at the same velocity. It is linked to the meniscus
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by a dimple. Typically, once entrained at the wall of the tube, this film is constantly
elongating in time, since the dewetting velocity is smaller than the slug velocity vd < v.
This velocity difference is more pronounced when the velocity of the slug becomes larger.
Then, the dewetting velocity saturates at vsatd and a transition towards a third flow regime
(regime (iii)) is observed. The film thickness scales as the triple line velocity e1 = lc

√
3Cad

rather than meniscus velocity, which shows that there is a strong connection between film
thickness and dewetting velocity. This dependency of the dewetting velocity vd with film
thickness far from the contact line e1 has been predicted analytically by Buckingham et
al. [94].

Numerically, we are able to account for our experimental observations with an approach
similar to the theory of Wilson and Jones [93, 23]. The domain of the solutions is limited
by an overall flux equal to zero (Q = Qc − Qg = 0 or e1/lc =

√
3Ca), i.e an expanding

film. This threshold is a more stringent condition than the limit between exponential and
oscillating solutions. Most of our experimental data lie on the numerical lower limit of this
solution domain. Indeed, the system selects the condition Qc = Qg. Experimentally, we
can also generate transiently thick film where Q < 0 at the meniscus (fed film). Finally,
experimental and numerical profiles are in good agreement, apart from the triple line
region where we observe experimentally an additional rim.

The rim morphology is independent of the liquid viscosity in the range used, and the
contact angle at the triple line is always very low (a few degrees). Such a rim is not
modeled in the literature, and has not been observed by Snoeijer et al. [2, 76]. We assume
that its formation may be due to additional dissipation occurring only at early stage of the
film formation. One possible explanation can be found in the surface roughness leading
to a dependency of the contact angle with the capillary number θ = f(Ca) or an effect of
the axisymmetry of the tube or maybe both.

In other words, it has been possible to experimentally observe thick film solutions
thanks to the presence of downward fluxes of liquid Qd and Qg generated by the moving
contact line and gravity. But playing with the slug velocity, their behavior has been
probed.





Chapter 5

Two films: gravitational and
viscous

5.1 Introduction

Above a second threshold capillary number Ca∗∗ of the slug, the dewetting capillary num-
ber saturates at Casatd and a new regime is obtained: regime (iii). As already mentioned
in Chapter 1, experiments in the literature demonstrated that the film thickness entrained
on a plate in a dip coating experiment may not be unique [2, 5]. In these experiments it
is found that Cad is constant and independent of Ca. The entrained film presents a so
called ridge structure that divides the film into two regions. The region close to the bath
is a LLD film while the region close to the contact line does not follow the classical LLD
law. It is stated that instead the non classical film thickness is fully determined by the
physics of the contact line, namely the velocity Cad. In their experiments, the thick film
previously described in Chapter 4 is thought to be a transient state. At the later stage of
liquid entrainment, the thick film connected to the liquid bath via a dimple disappears,
leading to the emergence of the LLD film. Several questions emerge as to the role of this
ridge structure in the transition.

In fact, when deposited on a plate under partial wetting condition, a film takes a
trapezoidal or triangular shape, which is characterized by the presence of inclined contact
lines [70, 71, 2, 3] (Chapter 1). Similar contact-line inclination was observed in the context
of sliding drops [72, 73, 74]. These shapes are typically due to edge effects and can be
avoided using a cylindrical geometry.

Taking benefit of the axisymmetric properties of the tube geometry, which stabilizes the
liquid film (no edge effect), this chapter aims at understanding the physical mechanisms
at the origin of regime (iii). We will address the question of the transition between
regime (ii) and (iii). What are the criteria to observe this transition, in particular in
term of threshold velocity? What is the film morphology in regime (iii) and what selects
the film thickness? In the first part of this chapter, we study the overall kinematic fields
(velocities and thicknesses) of the liquid film. In the second part, we propose a numerical
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model providing explanations on the nature of the film morphology. The last part of
this chapter is devoted to the study of unstationary films and their description using the
numerical model.

Figure 5.1: Schematic of the evolution of a meniscus when increasing its velocity
v, and therefore its capillary number Ca. Above a second threshold capillary number
Ca∗∗ a second liquid film of length Lfilm2 and thickness e2 is entrained. The velocity
of the jump in thickness is vj.

5.2 Results

5.2.1 Experimental observations

Similarly to experiments presented in Chapter 4 concerning regime (ii), we investigate the
film entrainment of low concentration solutions of water and glycerol (0 − 40%wt) in a
PVC tube of diameter din = 6.4 mm. We use the “large velocity setup” and techniques
presented in Chapter 2 to visualize and measure the velocities of the different interfaces
and the film thickness. In this chapter, we vary the velocity of the slug to reach a capillary
number from Ca = 2.2 10−3 up to 2 10−2 for different liquid viscosities. These capillary
numbers correspond to a wide velocity range v = 4.5−100 cm.s−1 depending on the liquid
viscosity. Two quantities are particularly of interest: the velocities of the interfaces and
the film morphology, especially its thickness.
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Figure 5.2: Image sequence for a typical experiment in regime (iii), i.e for Ca >
Ca∗∗, where two films are formed. Experimental parameters are: 20%wt glycerol
solution (η = 1.66 mPa.s), v = 15.8 cm.s−1, Ca = 4 10−3, ∆t = 0.2 s.

In this velocity range, we observe a liquid film entrained behind the slug which dewets
at a velocity vd along the tube, as in regime (ii) (Chapter 4). The film has a finite
length denoted Lfilm, which increases rapidly with time, suggesting that, in contrast to
regime (ii), the velocity of the dewetting film is significantly different from the velocity of
the slug. But in this regime, which we call regime (iii), the liquid film is subdivided into
two parts along the vertical direction. A typical example of film morphology is shown in
Figure 5.2 for 20%wt glycerol solution (η = 1.66 mPa.s) and slug velocity v = 15.8 cm.s−1.
The camera window still captures 40 cm of the tube. The time step between each frame
is ∆t = 0.2 s. The slug appears as black and right behind the slug, we can notice a short
liquid film in light grey. We will name this film the second film with Lfilm2 (Figure 5.1).
This lower part is connected to an upper part in middle grey, denoted first film with a
length Lfilm1. There is a sharp edge between the two films, named jump, with velocity
vj .

Kinematics: film lengths and interface velocities

In Figure 5.3, we show the time evolution of the total film length Lfilm and the slug length
Lslug. These lengths are directly measured by extracting the z−position of the different
interfaces from the image sequence in Figure 5.2. We see that the liquid film length
(orange) grows with time. The growth rate is constant since the slope of the orange curve
is constant in time. Simultaneously, the slug length (blue) decreases. Furthermore, as for
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regime (ii), the growth rate of the film is much faster in absolute value than the shrink
rate of the slug, since the radius of the tube is large compared to the thickness of the film.
We monitor the length of the first film (upper part) Lfilm1 and the length of the second
film (bottom part) Lfilm2 as shown in Figure 5.1. In the observation window, the first
film (red in Figure 5.3) is always longer than the second film (green), and grows in length
much faster. Moreover the length of the second film Lfilm2 seems to saturate in time.

Figure 5.3: Slug (blue) and total film length (orange) as a function of time, mea-
sured from the image sequence shown in Figure 5.2. The film is segmented in two
parts, the first film in the upper part (red) and the second film in the lower part
(green). Experimental parameters are: 20%wt glycerol solution (η = 1.66 mPa.s),
v = 15.8 cm.s−1 (Ca = 4 10−3). The slug decreases in length while the film grows.

Instead of measuring the time evolution of the length of the liquid films, we can mea-
sure the interface velocities based on a spatio-temporal diagram (Figure 5.4a). This plot
corresponds to the extraction from the image sequence given in Figure 5.2, along the center
line of the tube. As explained in the Experimental description (Section 2.1.2), the slopes
directly provide the velocity of the different interfaces: rear of the slug v, dewetting of
the film vd and in addition the jump vj . Using this method, we find that in Figure 5.3
the contact line at the film end dewets at a velocity vd = 8.8 cm.s−1 roughly twice slower
than the velocity of the slug imposed in the experiment v = 15.8 cm.s−1. This is a strong
difference with regime (ii). The velocity of the jump is constant in time and vj = 14.3
cm.s−1. The jump is only slightly slower than the slug but faster than the dewetting film.
This is why the elongation of the second film Lfilm2 ∝ v − vj is slower than that of the
first film Lfilm1 ∝ vj − vd.
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Film morphology

The greyscale spatio-temporal diagram can also be converted into thickness (Figure 5.4a).
In this representation, the slug is in black, the second film is in light orange and the first
film is in dark orange. We observe that the color of each film is homogenous which means
that each film has a uniform thickness. There is a sharp difference between these two
thicknesses.

(a) (b)

Figure 5.4: (a) Spatio-temporal diagram of thickness from the image sequence
represented in Figure 5.2. (b) Successive experimental thickness profiles (∆t = 0.3 s)
for 20%wt glycerol solution (η = 1.66 mPa.s), Ca = 4 10−3, Cad = 2.2 10−3. The
slug is linked to a second homogeneous film of thickness e2 = 52 µm, this time
without dimple (viscous film). This second film is connected to the first film of
thickness e1 = 184 µm (gravitational film). The first film is about 15 cm long and
ends with a rim.

We can extract three profiles from the spatio-temporal diagram to get a clearer view
of the film morphology. Typical successive profiles in regime (iii) are given in Figure 5.4b
for 20%wt glycerol solution at Ca = 4 10−3. The time lapse between each profile is
∆t = 0.3 s as represented by vertical dotted lines in Figure 5.4a. The profile are given in
the reference frame of the rear of the slug. The film length is about 15 cm. The profiles
confirm the presence of a thin flat film right behind the rear meniscus of the slug. We will
denote as e2 the thickness of this second film. In the example, the second film thickness
is e2 = 52 ± 5 µm. Contrary to the profile of the gravitational film in Chapter 4, there
is no dimple between the rear of the slug and the flat second film. The upper film is also
flat but thicker, in the present example e1 = 184 µm. Finally the top part of the film
forms a rim, as in regime (ii). Its shape is steady over time even though the triple line is
dewetting. These growing films maintain constant thickness over time.
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5.2.2 Kinematic evolution with slug velocity

We now focus on the velocities, and especially on the relation between the slug velocity
and the two film velocities. We iterate similar experiments as before, and vary the veloc-
ity of the slug v by imposing different gas pressures. The slug velocity v, measured using
the slopes of the position in the spatio-temporal diagram, is constant in the experimen-
tal window. Image sequences obtained in regime (iii) are similar to those presented in
Figure 5.2.

Figure 5.5: Interface velocity variations (vd and vj) as a function of slug velocity
v for 15%wt glycerol solution, η = 1.32 mPa.s. The velocity of the jump vj increases
with v. Predicted velocity of the jump vj,a (red stars), considering flux conservation
at the capillary jump (Equation (5.6)).

Typical evolution of interface velocity vd and vj as a function of slug velocity v for
15%wt glycerol solution (η = 1.32 mPa.s) are shown in Figure 5.5. As already seen in
Chapter 4, before the transition towards regime (ii), the dewetting velocity vd is initially
very close to the slug velocity, but a significant difference gradually builds up as v increases.
Here in regime (iii), for slug velocities v > v∗∗ (grey zone), the dewetting velocity vd

saturates at (vsatd here is 9.2 cm.s−1) and the two film morphology with a jump is observed.
The velocity of the jump vj (open symbols) increases with the slug velocity v and the
difference v − vj increases with v.

The same trends, vj = f(v), are observed for other viscosities. We have seen in
Chapter 4 that vsatd depends on the fluid characteristics. We will discuss this point in
Section 5.3.1. For a comprehensive description of vd with v for various viscosities, refer to
Figure 4.5.

One of the key results is that the jump starts to be observed simultaneously with the
saturation of the dewetting velocity.
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5.2.3 Thickness evolution of the liquid films with slug velocity

For each viscosity, we define the threshold velocity v∗∗ as the slug velocity above which
a second film develops over time. The film thickness e2 can be systematically measured,
for a given liquid when varying the slug velocity. The thickness of the first film has been
discussed in Chapter 4. Figure 5.6 gathers average film thicknesses e2 as a function of slug
velocity v for various glycerol concentrations and for velocities larger than the threshold
v∗∗.

Figure 5.6: Average film thickness e2 as a function of slug velocity v for various
glycerol concentrations. The model considering a visco-capillary entrainment of a
flat film is given by the dashed line for each liquid (Equation (1.1) with no fitting
parameter).

The same evolution is observed for all the liquids: e2 increases with v, but the larger the
viscosity the faster the film thickens with velocity. As shown in Section 4.3, we find that
the threshold velocity v∗∗ decreases with liquid viscosity. For the largest viscosity (η =
3.252 mPa.s) we find v∗∗ ' 5 cm.s−1, whereas for the lowest viscosity (η = 0.94 mPa.s) the
second film appears around v∗∗ ' 20 cm.s−1. We can note that at low capillary number e2

is close to the thickness of the dimple described in Figure 4.7, suggesting that the dimple
becomes the second film.

Furthermore, using the thickness profiles at the rim close to the triple line, we observe
that the rim morphology, namely its width and height, and the contact angle at the triple
line, are independent of v and vd in regime (iii). This is not surprising because vd, e1 and
θr are fixed close to the triple line in this regime (Figure 4.17).
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5.3 Discussion

5.3.1 Dewetting velocity at saturation

In regime (iii), i.e for slug velocities v > v∗∗, the dewetting velocity saturates at vd =
vsatd (Figure 4.5). In Figure 5.7, we plot this saturation value vsatd as a function of the
characteristic velocity of the liquid vliq = γ/η. We find that this velocity increases with
vliq.

Figure 5.7: Dewetting velocity at saturation vsatd as a function of the characteristic
velocity of the liquid vliq = γ/η. The black solid lines are the analytical predictions
given by Equation (5.2) (Cox-Voinov model), taking various values of the equilibrium
contact angle θe and L = 200 µm for the thickness of the film.

As already mentioned in previous chapters, the Cox-Voinov relation describes varia-
tions of the dynamic receding contact angle θr due to the viscous bending of the liquid/gas
interface as a function of the capillary number Ca:

θr
3 = θe

3 − 9Ca ln
(
L

a

)
(5.1)

where θe is the equilibrium contact angle, L and a are a macroscopic and microscopic
length scales respectively.

In Section 1.3.1, we have seen that the Cox-Voinov model predicts a threshold velocity
vCoxc for θr = 0 given by:

vCoxc ' θe
3

9 ln
(
L
a

)vliq (5.2)

This relation states that above vCoxc a liquid film should be entrained from a meniscus.
We have shown in Chapter 3 that our experimental dynamic wetting transition occurs at
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much lower v. Nevertheless, the dewetting velocity vd still increases after the dynamic
wetting transition when v increases. The velocity maximum given by Equation (5.2) can
be seen as a maximum dewetting velocity of the triple line.

In Figure 5.7, we represent this maximum velocity vCoxc by the black solid lines. We
have chosen L = esat1 = 200 µm since we already have a liquid film entrained, and
a = 10−10m for the atomic scale. We find a reasonable fit of our experimental data by
Equation (5.2) with θe = 38◦. Interestingly, this value of the equilibrium contact angle is
much smaller than the quasi-static receding contact angle θ0

r = 60◦ and is approximately
the one measured on the viscous plateau (zone (3)) in Chapter 3. Note that choosing
L = lc does not change significantly the adjusted value of the equilibrium contact angle
as the length scale is in a logarithm. The difference in θe is only of a few degrees.

In fact, in regime (iii), we recover the common statement from the literature which
is that the motion of a contact line is ultimately determined by the physico-chemical
interactions with the substrate [76], meaning that for a given liquid and substrate, namely
θe, there is a maximum velocity for the triple line [71, 64, 92]. Whereas hydrodynamic
models (Cox-Voinov) fail at describing the behavior of the triple line when connected
to a meniscus, they succeed in predicting the triple line behavior when connected to
a flat film. Therefore, while Ca+ and Ca∗ could not be accounted for by the forced
wetting transition calculated via Cox-Voinov, Ca∗∗ can be modeled within this framework
(Ca∗∗ = θe

3/9 ln (L/a)).

We will show also in Chapter 6 that this saturation value depends on the tube chemistry
and liquid surface tension via θe.

5.3.2 Film thickness as a function of capillary number

We have shown that the first film thickness is determined by e1 = lc
√

3Cad. As a result,
in this regime the first film thickness saturates, and the saturation thickness writes esat1 =
lc
√

3Casatd .

Figure 5.8 gathers the average film thicknesses e1 and e2 normalized by the capillary
length lc as a function of the slug capillary number Ca for various glycerol concentrations.

The data for various liquids collapse onto two master curves, for e1 and e2 respectively.
The second film develops above a threshold in capillary number Ca∗∗ = 2.2 10−3: thus
regime (iii) corresponds to Ca > Ca∗∗. The second film thickness e2 increases with Ca

sharply. Once the capillary number is large enough, the second film can possibly become
thicker than the first film. Nevertheless, in the meantime, oscillations of the film thickness
located close to the capillary jump appear reducing accuracy of the measurement of the
average film thickness e2. In contrast to the numerical predictions by Gao et al. [5], we
do not experimentally recover their regime IV where a film with a monotonically varying
thickness is obtained.
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Figure 5.8: Average film thickness of the first e1 and second e2 film normalized by
the capillary length lc as a function of the capillary number relative to the slug Ca.
e2 starts above Ca∗∗ at a non-zero value and increases with Ca. Predictive model
considering a gravitational drainage at constant film thickness (black dashed line).
Plot of the Bretherton (green dashed line) and Landau-Levich (blue solid line) laws.

5.3.3 Matching with a meniscus

As already mentioned in Chapter 1, Landau, Levich and Derjaguin (LLD) [11, 12] proposed
a model to predict the thickness of the entrained liquid film when withdrawing a plate out
of a bath. In this model, film thickness is given by Equation (1.1).

The same problem has been investigated by Bretherton [14] in cylindrical geometry
for the case of an air bubble traveling in a cylinder of radius R filled with a liquid (Equa-
tion (1.2)).

These two models can be plotted on our experimental measurements in Figure 5.8, in
green the Bretherton model and in blue the LLD model. The Ca2/3 power law describes
the data reasonably well and the measured film thickness e2 lies in between these models
and seems to span the range from LLD to Bretherton. In fact, in our case the radius of
the tube (3.2 mm) and the capillary length (2.6 mm) are of the same order of magnitude,
R ' lc. It is not easy to discriminate between the two models, nevertheless, the second
film is either a Bretherton or LLD-like film and, as such, is of visco-capillary origin. The
film seems to be in a transition regime between LLD at low velocity and Bretherton at
high velocity. This observation can be explained by inertial effects close to the meniscus
that is strongly deformed due to large velocities.
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5.3.4 Capillary jump velocity

In the following, we aim at describing the variations of the jump velocity vj . Considering
flux conservation at the capillary jump, we can predict the velocity of the jump vj similarly
to Hocking [4] and Snoeijer et al. [2].

Figure 5.9: Schematic representation around the thickness jump between the first
film (thickness e1) and the second film (thickness e2). The green rectangle represents
a volume of control V around the capillary jump.

We consider the thickness jump between the first film (thickness e1), and a thinner
second film (thickness e2). In the reference frame of the laboratory, we define a volume
of control V surrounding the capillary jump. This volume is represented by the green
rectangle in Figure 5.9. The volumetric increase dV during a time dt of the liquid enclosed
in the control volume V writes:

dV = (e1 − e2)vj,adt (5.3)

This volumetric increase rewrites as dV = qdt, where q is the flux difference between the
in and out fluxes through the volume of control. As shown in Chapter 2, Equation (2.14)
provides an analytical expression of the liquid flux in a flat lubricated film. In the first
film, the flux writes as e3

1ρg/3η, and e3
2ρg/3η in the second film. Therefore we can write

the flux q as follows:

qg = e3
1
ρg

3η − e
3
2
ρg

3η (5.4)

And finally the jump velocity writes:

vj,a = ρg

3η
(
e1

2 + e1e2 + e2
2
)

(5.5)
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The prediction given by Equation (5.5) is shown by the red stars in Figure 5.5 using
the experimental values of the thicknesses e1 and e2. This estimate accounts for our
experimental values of the capillary jump velocity for velocities vj smaller than 35 cm.s−1

(Ca ∼ 6 10−3) with a systematic down shift of about 3 cm.s−1 between experiments and
theory. Note that in regime (iii), e1 = esat1 is constant and that consequently vj only
depends on the velocity of the slug via the second film thickness e2: vj = f(v).

Figure 5.10: Interface capillary numbers (Cad and Caj) as a function of the cap-
illary number Ca for 15%wt glycerol solution, η = 1.32 mPa.s. Predicted capillary
number of the jump Caj,a according to Equation (5.6) (red stars) and Caj,b accord-
ing to Equation (5.7) taking into account a LLD-Bretherton model with β = 1.3 (red
line).

Alternatively, velocity can be rescaled to get the capillary number of the interfaces
Ca = ηv/γ. Equation (5.5) becomes:

Caj,a = e1
2 + e1e2 + e2

2

3l2c
(5.6)

Figure 5.10 is the counterpart of Figure 5.5 with rescaled velocity. The red stars stand
for the prediction given in Equation (5.6). Going even further, we can use the LLD-
Bretherton model e2 = βlcCa

2/3 to predict the capillary number of the jump if it existed
below Ca∗∗. We define β as the prefactor in the models: for the LLD model β = 0.95 and
for the Bretherton model β = 1.34R/lc = 1.65. The resulting equation is:

Caj,b = β2

3 Ca4/3 + β√
3
Ca

1/2
d Ca2/3 + Cad (5.7)

In Section 5.2.3, we have shown that the second film thickness was in between a LLD-
Bretherton model. For the red solid line prediction, in Figure 5.10, we have chosen a
median value for the prefactor β = 1.3.
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Thanks to this second prediction, we observe that in regime (ii) Caj > Ca. Once Ca is
larger enough to allow a LLD film to appear, the transition occurs towards regime (iii), the
capillary jump starts to propagate and we observe the appearance of the capillary jump.
This is implicitly determined by the saturation of Cad since Caj is calculated thanks to
Cad in Equation (5.7).

5.3.5 The flux point of view

From the film thickness that we assess experimentally, we can have an approximate flux
description to get the same explanation for the transition toward the capillary jump. We
now work in the slug reference frame. As already defined earlier, Qd is a downward flux
from dewetting and can be approximated by the thickness of the first film e1 times the
dewetting velocity vd. The upstream flux coming due to meniscus motion is Qc, and can
be estimated similarly as the thickness of the second film e2 times the velocity of the
slug v. Nevertheless, before the second transition (below Ca∗∗), we have no experimental
measurement for e2, because the second film does not develop. Alternatively, since we
have shown that the thickness of the second film is given by the Bretherton law, we can
build Qc on the calculated Bretherton thickness eB = 1.34 R Ca2/3 multiplied by the
velocity of the slug v.

Figure 5.11: Experimental downward flux coming from the dewetting Qd = e1vd as
a function of the upward flux ejected by the meniscus Qc = eBv. The squares corre-
sponds to the experimental observation of regime (ii) and the bow ties to regime (iii).
For Qd > Qc, the regime selected is a single gravitational film (regime (ii)). For
Qd < Qc, the regime is the two films: gravitational and viscous (regime (iii)).
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In Figure 5.11 we plot Qd = e1vd versus Qc = eBv. The squares correspond to
regime (ii) with one unique film, the bow ties correspond to the regime (iii) with the
capillary jump. The dotted line is the line of slope 1. We approximately observe a
separation of the two regimes (ii) and (iii) on both sides of the slope 1 line. Thus, as long
as the dewetting flux is close to the flux ejected by the meniscus, we are in the regime (ii)
with a single film. When the flux ejected by the meniscus becomes larger Qc > Qd, because
of the saturation of the dewetting velocity, then we get the capillary jump and the two
films.

5.3.6 Comparison with numerics

Similarly to Section 4.3.2, in this section we aim at numerically understanding the tran-
sition between regime (ii) and (iii) by looking at the existence of stationary and unsta-
tionary solutions. As seen earlier, the reduced governing equation (Equation (4.1)) can be
linearized considering a stationary state (Equation (4.2)) to provide two types of asymp-
totic solutions. A purely exponential solution given by Equation (4.4), corresponding to
Qc > 3Qg, and an exponential oscillatory solution (Equation (4.5)) for Qc < 3Qg. The
exponential solution corresponds in fact to the LLD-Bretherton solution.

Figure 5.12: Phase diagram of the profiles: E = e/lc versus capillary number Ca.
The asymptotic limit (Qc − 3Qg = 0) is given by the black dotted-dashed line (limit
between exponential and oscillating solutions). The numerical limit E0 is the red
line (Qc − Qg = 0). A domain of solutions exists above a minimal value given by
E0 ≥

√
3Ca. The hatched part of the diagram corresponds to a domain without

solution (Q > 0), see profile Figure 4.13b. The experimental first film thickness E1

is the green circles and the second film thickness E2 is the green diamonds. The
LLD law is depicted in blue.

We build a numerical phase diagram with E = e/lc and Ca in Figure 5.12. As for
Chapter 4, the space is divided into two regions. The first one (white) admits solutions
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because the matching between the flat film and the static meniscus is possible (Q < 0). In
the second one (hatched zone), there is no solution (Q > 0) apart of the LLD-Bretherton
solution. The numerical limit between the two regions (red line) and our experiments
E1 = e1/lc (green circles) are in good agreement in regime (ii). In regime (iii), the two
experimental thicknesses are shown: E1 (white circles) and E2 (white diamond). In the
same plot we depict the second limit between exponential/oscillatory asymptotic solutions
Qc − 3Qg = 0 (black dotted-dashed line) that is set by the meniscus. The region between
the numerical limit (red) and the asymptotic limit (black dotted-dashed line) corresponds
to a domain between the two flux limits where no thick film solutions are admitted but
where oscillatory solution should be possible (Qg < Qc < 3Qg). When Cad saturates, the
downward flux Qd saturates as well inducing a saturation of Qg since Qg = Qd as shown
in Section 4.3.3. This induces a change of sign of the overall flux Q = Qc −Qg leading to
numerical and experimental film profiles of LLD-Bretherton (exponential solution) when
Qc ≥ 3Qg. Our experimental data E1 cross the second limit after Ca∗∗ because of the
increasing difference between Ca and Cad. In other words, the first limit Qc − Qg = 0
is set by the dewetting, thus by Cad, while the second limit Qc − 3Qg = 0 is set by the
meniscus, and thus by Ca.

Figure 5.13: Normalized meniscus profile H(Z) as a function of time after the
dynamic wetting transition Ca = 5 10−4. The profiles prove the formation of two
uniform films of constant thicknesses in time. The capillary jump takes a stationary
shape with a capillary jump while the two films elongate.
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The stationary solutions provide explanations about the mechanism of the jump for-
mation by separating the problem into two. But we cannot obtain the full profile of the
film at once. This is why we now numerically investigate the time evolution of film forma-
tion in order to see whether or not a jump is formed. Similarly to the profiles obtained for
the thick film formation (Chapter 4), we show in Figure 5.13 profile evolution with time
for a larger capillary number Ca = 5 10−4. After a certain time the triple line elevates
and a liquid film is entrained on the surface. As for the first film formation, the shape of
the profile is a bump at short time scales. This bump grows both in thickness and along
the Z−direction. At some point we observe a shoulder. After some time, the thickness
of the bump reaches a maximal value, but contrary to regime (ii) (Chapter 4) the bump
propagates upward. A thinner uniform film lays between the thick film and the meniscus.
The bump is in fact our capillary jump and has a stationary shape. The thickness of the
first film is independent of Ca (E1 =

√
3Casatd ) as in Chapter 4. The second film thickness

is given by the LLD-Bretherton law. It illustrates the transition between the thick grav-
ity/capillary film with a dimple and the LLD film. Note also that regime (ii) corresponds
numerically to the range of capillary number from Ca = 4 10−4 to about 4.5 10−4 which
is much smaller than the experimental range Ca = 1.8 − 22 10−4.

At the beginning of the experiment, the slug is at rest, then when the motion is induced
the slug assesses the range of velocity up to the final prescribed velocity. In this transient
regime, dynamics proceeds through a succession of steady states, which can be referred to
as a quasi-steady behavior. The presence of two films show that the unsteady motion of the
interface during the very first stage of liquid deposition can lead first to the entrainment of
the thick film and then entrainment of the thinner LLD-Bretherton film. Indeed, viscous
bending builds up and the first instability is for thick film formation. Subsequently the
thin film forms and flows into the thick film which grows.

5.4 Playing with transients

In this section, we study the case of unstationary liquid films to further confirm our
understanding of the formation of the two films and the transition between regimes. We
start an experiment at a given velocity, then we suddenly vary the velocity of the slug by
varying the gas pressure behind the slug. We can adjust the amplitude of the velocity
change to either stay in the same regime or switch from one regime to another. We observe
the consequences of these velocity changes on the interface velocities, film thickness and
film and slug lengths.

5.4.1 From one to two films

To better understand the transition between one and two films we first consider the case of
an accelerated slug. An example for pure water (η = 0.94 mPa.s) is given in Figure 5.14.
In the first part of the experiment, the slug velocity is v = 12.6 cm.s−1 (smaller than
Ca∗∗) and the dewetting velocity is vd = 10.5 cm.s−1 (zone A).
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(a)

(b)

Figure 5.14: (a) Spatio-temporal diagram of film thickness for an experiment with
water (η = 0.94 mPa.s), where we have increased sharply the velocity of the slug dur-
ing the flow. The velocity goes from 12.6 cm.s−1 to 22.4 cm.s−1. (b) Corresponding
slug and film length evolution with time.

As shown in Figure 5.14b, the slug length decreases while the film grows. Then the
velocity of the slug is increased up to v = 22.4 cm.s−1, about twice the initial velocity in
state A, and above Ca∗∗. On the spatio-temporal diagram we observe that the dewetting
velocity remains unchanged for 0.4 s after the transition A−B: vd = 10.5 cm.s−1. At
the arrow, the dewetting velocity progressively increases from vd = 10.5 cm.s−1 to vd =
14.6 cm.s−1. Zone B is a transition zone of about 1.4 s, where the film length increases
mainly due to the formation of the second thinner film. In zone C, the high velocity steady
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state regime with two films is obtained.
To summarize, the velocity perturbation brings the system from a state A in regime (ii)

towards a state C in regime (iii), via a transition zone B.
In fact, looking closer at zone B, we can see that the velocity of the rear of the slug is

increasing and stabilizing quite rapidly, within 0.2 s (at the end of the white slope line).
Then 0.1 s later, the second film and the capillary jump appear macroscopically. And 0.1 s
later, the dewetting line velocity starts to increase (at the arrow).

Figure 5.15: Pathway of the experiment from Figure 5.14 represented in the phase
diagram E = e/lc and Ca.

Thanks to the phase diagram built in Figure 5.12, we can get an understanding of the
transition zone B and a predictive approach of the thickness of the film. For the same
experimental example provided in Figure 5.14, we can place the initial state A in the
phase diagram Figure 5.15. Initially, we are in regime (ii) and as seen previously, at a
given capillary number the system selects the minimal thickness (dotted line).

When the velocity perturbation is induced, the slug velocity and thus the capil-
lary number Ca increases along the horizontal arrow, from left to right in Figure 5.15.
This increase occurs at constant dewetting capillary number Cad (in the example vd =
10.5 cm.s−1) and constant film thickness e1. The two previous quantities follow the law
e1 = lc (3Cad)1/2. Along this arrow the dewetting flux in the first thick film Qg is constant
and becomes smaller than the upward flux Qc ejected by the slug (Q > 0). We go through
a domain where no solutions are admitted numerically and where the sign of Qc − Qg,
jumping from the single thick film solution to the LLD-Bretherton solution type. Once
the triple line feels the acceleration of the slug, it tends to accelerate as well. But this
phenomenon is limited by the saturation capillary number Casatd of the contact line.

The final state C corresponds to regime (iii) with two films where e1
sat = lc

(
3Cadsat

)1/2
and e2 = 0.95lcCa2/3. In other words the macroscopic observation of the first film in state
C is a footprint of state A. Transient states explain the coexistence of two films of different
physical origins.
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5.4.2 Brief incursion in the two film regime

Now we consider the case of an accelerated slug where we remain in regime (ii). Figure 5.16
shows an example for pure water (η = 0.94 mPa.s).

(a)

(b)

Figure 5.16: (a) Spatio-temporal diagram of film thickness for an experiment with
water (η = 0.94 mPa.s), where we have increased sharply the velocity of the slug
during the flow. The velocity goes from 5.4 cm.s−1 to 12 cm.s−1. (b) Corresponding
slug and film length evolution with time.

In the first part of the experiment, the slug velocity is v = 5.4 cm.s−1 and the dewetting
velocity is vd = 5.2 cm.s−1, zone A. The slug length slowly decreases in time while the
film grows, as shown by Figure 5.16b. Then, as the beginning of zone B, the velocity of
the slug is increased up to v = 12 cm.s−1, twice the initial velocity, but still below Ca∗∗.
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The dewetting velocity remains unchanged on the spatio-temporal diagram right after
the transition A−B: vd = 5.2 cm.s−1. It takes about 0.3 s before having a variation in
the dewetting velocity. At the arrow, the dewetting velocity progressively increases from
vd = 5.2 cm.s−1 to vd = 10.7 cm.s−1. Zone B is a transition zone of about 1 s, where
the film length increases. The length increases faster in zone B than in zone C, since the
velocity difference between v and vd is larger. In zone C, a second stable state is obtained
with v = 12 cm.s−1 and vd = 10.7 cm.s−1. To summarize, the velocity perturbation brings
the system from a state A in regime (ii) towards a state C in regime (ii), via a transition
zone B.

In fact, if we get a closer look at zone B, we can see that a thinner film tends to develop
behind the slug (lighter zone) while we are below the threshold velocity Ca∗∗. Indeed, the
liquid film is filling the slug faster compared to the out flux generated by the slug to feed
the liquid film. Also, after the transition A−B but before the arrow, the film thickness
is constant in time. This confirms the dependence between the dewetting velocity vd and
the thickness of the film e1.

Figure 5.17: Pathway of the experiment from Figure 5.16 represented in the phase
diagram E = e/lc and Ca.

As in the experimental example provided in Section 5.4.1, we can analyze this ex-
periment on the phase diagram shown in Figure 5.17. State A corresponds to a quasi-
stationary thick film solution, where the minimal thickness is selected at a given capillary
number. Once the slug velocity has been varied, the capillary number Ca increases along
the horizontal arrow, from left to right at constant dewetting capillary number Cad (in
the example vd = 5.2 cm.s−1) and constant film thickness e1 with e1 = lc (3Cad)1/2.

Along this arrow the dewetting fluxQg is constant and becomes smaller thanQc. We go
through a domain where no thick film solution is numerically admitted (Qg < Qc < 3Qg).
Once Qc ≥ 3Qg there is a sign change in the reduced equation (Equation4.2) leading
to exponential solutions. The system jumps in the LLD type solution (point B). This
solution is normally not accessible in regime (ii) when starting from zero velocity (static
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case). Here, because the dewetting flux was initiated at a lower velocity, it is too low right
when the slug velocity increases, and the LLD-Bretherton conditions are found. This is
why we observe a transient thinner film behind the slug in zone B, similar to the capillary
jump of regime (iii).

Once the dewetting triple line reaches the z−position of the slug around the transition
A−B in Figure 5.16, the dewetting capillary number starts to increase. Consequently, the
film thickness e1 thickens progressively. The liquid flux between the film and the slug
increases, making the thickness of the film uniform, and the thinner film disappear. The
system is finally in state C corresponding to regime (ii), where e1 = lc (3Cad)1/2.

5.5 Conclusion

In conclusion, we have observed a liquid film with a double structure in a tube: a LLD-
Bretherton film followed by a thick film. Previous works by Snoeijer et al. [2, 76] also
present such films on a plate. Both films are flat and present significantly different thick-
nesses. The junction of the two films corresponds to a rather sharp step named capillary
jump.

The formation of this capillary jump, corresponding to the lower limit of regime (iii),
is prompted by the saturation in velocity of the dewetting contact line. This value of
the dewetting velocity at saturation decreases when increasing the viscosity of the liquid,
quite in good agreement with Cox-Voinov. It corresponds to one unique value Casatd of
the reduced velocity, and is accounted for by the value of Ca for which the forced wetting
transition is predicted by Cox-Voinov relation.

In this regime (iii), the thickness of the first thick film is also saturated at esat1 =
lc
√

3Casatd as established in Chapter 4. The second lower film arises from a balance between
capillary forces and viscous forces given by the LLD-Bretherton law with a film thickness
consistent with a Ca2/3 dependency but intermediate between LLD and Bretherton [11, 12,
14]. This regime perfectly reflects the film behavior found in the literature with constant
dewetting velocity and two films [2, 76, 5].

Numerically, we are able to account for our experimental results. When the dewetting
velocity saturates, the downward flux Qg saturates as well. This induces a change of sign
of the overall flux Q leading to numerical and experimental film profiles of LLD-Bretherton
type (exponential solution). The mechanism is confirmed by transient experiments where
the formation of the second film is triggered by a well chosen increase of the slug velocity.

Finally, once the capillary number is large enough, the second film e2 can become
thicker than the first film. In the meantime oscillations, located close to the capillary
jump, appear in the film thickness.





Chapter 6

Other surface chemistries

6.1 Introduction

In the previous chapters we reported the different flow regimes obtained when varying the
velocity of the fluid segment displaced in a PVC tube. At very low velocity (regime (i)),
the rear meniscus bends due to the motion of the slug. Above a first critical capillary
number Ca+ = 1.8 10−4, a liquid film is entrained behind the slug (instantaneous wetting
transition at Ca∗ = 4 10−4). This film dewets at a velocity vd which depends on the
velocity of the slug v. In regime (ii), the thickness e1 of the liquid film is given by the
dynamics of the triple line so that e1 = lc

√
3Cad and corresponds to a thick film solution.

Above a second threshold Ca∗∗ = 2.2 10−3, the dewetting velocity of the film saturates
and a two film structure is observed. The film is divided into two parts, both having a
homogenous thickness, and separated by a sharp step. The upper part is a thick film.
The lower part, between the slug and the upper film, has a thickness consistent with the
LLD-Bretherton law and varying as Ca2/3.

To strengthen our understanding of the problem, this chapter aims at investigating
the influence on the film formation of the physico-chemical interactions at the liquid/solid
interface. We investigate how the surface chemistry of the tube impacts the dynamic
wetting transition. We will in particular characterize the transition velocities (Ca∗ and
Ca∗∗) and compare the results with our conclusions from the previous chapters.

6.2 PDMS vs PVC tubes

In this section, to vary the nature of the tube, we use commercial PDMS tubes of inner
diameter 6.4 mm whose characteristics are given in Section 2.2. These PDMS tubes,
which quasi-static contact angle is θ0

r = 80◦, are more hydrophobic than the PVC tubes
(θ0
r = 60◦) previously used in Chapter 3−5. To strongly vary the liquid viscosity and

the physico-chemical interactions at the liquid/solid interface (surface tensions), we now
use more concentrated solutions of water-glycerol (50 − 75%wt) and low concentration
solutions of water-ethanol (0− 15%wt). As already mentioned in Section 2.2.2, the quasi-
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static receding contact angle θ0
r measured at very low velocity for PVC does not present

significant variations with the glycerol or ethanol concentrations in the range investigated
and we can assume this is also the case for PDMS.

We use the “large velocity setup” and techniques developed in Chapter 2, and already
used in the previous chapters to visualize and measure the velocities of the different in-
terfaces in the two regimes (ii) and (iii). Because of the low transparency of the PDMS
tubes, we were not able to finely measure the film thickness. Contrary to PVC tubes, we
have not investigated the evolution of the dynamic contact angles with Ca for PDMS. The
dewetting velocity vd of the film as a function of the slug velocity v is plotted in Figure 6.1
for solution of 10%wt ethanol in water as an example, along with the results for PVC.
Note that the data for PVC are also new results since we have not used water-ethanol
solution in the previous chapters.

Figure 6.1: Dewetting velocity of the liquid film (or meniscus) end vd as a function
of slug velocity v for a PDMS tube of diameter din = 6.4 mm (circles) and 10%wt
ethanol solution. The data for PVC (diamonds) have been added for comparison.
PDMS is more hydrophobic than PVC.

We observe the same regimes and the same trend, vd = f(v), for the two materials but
the thresholds (v∗ and v∗∗) are shifted towards larger velocities for the more hydrophobic
surface, i.e the PDMS. As seen in Chapter 3, before the dynamic wetting transition v < v∗,
the dewetting velocity vd is equal to the slug velocity v: there is no liquid film behind
the slug. The threshold velocity v∗ is about 9 cm.s−1 for PDMS and is larger than for
PVC where v∗ ≈ 2 cm.s−1 (consistent with previous results for PVC: Ca∗ = 4 10−4

in Chapter 3). Above v∗, vd increases with v (regime (ii) of Chapter 4). Then the
dewetting velocity vd reaches a maximum value vsatd corresponding to regime (iii) detailed
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in Chapter 5. We can notice that the value of the saturation for the PDMS vsatd = 30 cm.s−1

is three times larger than for PVC (vsatd = 9 cm.s−1) and consequently v∗∗: the two film
regime appears for larger velocities for the PDMS because of its larger hydrophobicity.

(a)

(b)

Figure 6.2: (a) Dewetting velocity of the film end vd as a function of the flow
velocity v, on PDMS tube of diameter din = 6.4 mm for different concentrations
of glycerol (green color scale) and ethanol (red color scale). (b) Dewetting capillary
number Cad versus meniscus capillary number Ca.
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Figure 6.2a gathers the dewetting velocity vd as a function of the velocity of the slug v
using PDMS tubes for all the liquids investigated in this section. Pure water corresponds
to blue symbols. As already observed for PVC, the physical properties of the liquid impact
the vsatd value but not the trend vd = f(v). It impacts also the first threshold velocity v∗

but it cannot be observed in Figure 6.2a. An increase of the viscosity η or a decrease of the
surface tension γ both induce a decrease of the saturation dewetting velocity vsatd . Note
that the saturation dewetting velocity can be very large, up to 35 cm.s−1. No equivalent
dewetting velocity is found in the literature to our knowledge. The larger vsatd , the larger
the range of accessible dewetting velocity, the wider the regime (ii) in term of velocity or
capillary number. In the literature, dewetting velocities are ten to thousand times lower
because high viscosity fluids were used. This is probably why the flow regime (ii) has
never been experimentally observed and identified in the past.

Interface velocities can be rescaled by the characteristic velocity for each liquid to
get the capillary number Ca = ηv/γ. The resulting rescaled velocities are reported in
Figure 6.2b. The data mainly collapse on a single master curve. We identify the three
regimes previously discussed: regime (i) without film (Cad = Ca) for Ca < Ca∗ (Chap-
ter 3); regime (ii) with a single thick film for Ca∗ < Ca < Ca∗∗ (Chapter 4); regime (iii)
with two films and where Cad saturates (Chapter 5). The first threshold corresponds to
an unique capillary number Ca∗ = 3.4 10−3 which does not depend on the liquid viscosi-
ties or the surface tensions. We recover one of the main results of Chapter 3 for a wider
range of η and γ. This value is approximately ten times larger for PDMS than for PVC
(Ca∗ = 4 10−4). Our experiments suggest that Ca∗ only depends on the material thereby
strengthening our conclusions of Chapter 3 regarding the importance of additional dissipa-
tive effects at the triple line compared to the viscous dissipation. Furthermore, we observe
a dispersion of the values of Casatd and consequently on Ca∗∗ for the different liquids. Ca∗∗

increases when the surface tension decreases and we thus did not plot a threshold regime
in Figure 6.2b. These results differ from what we observed previously in Section 4.3.1.
Interestingly, then, Ca∗∗ is found to depend on the surface tension of the liquid, whereas
it was measured in Chapter 5 at a single value. Here, a major difference with the liquid
used in Chapter 5 is that the water-glycerol series is likely to have analogous interactions
with the PVC walls whatever concentrations, whereas the water-ethanol series is very
likely to present strong variations in the interfacial energies with air or PDMS: ethanol is
tensio-active and PDMS has a high polarity compared to PVC [95]. Altogether, within
the glycerol and ethanol series, the contact θe setting Ca∗∗ is likely to vary. For pure
water, we find Ca∗∗ = 4.6 10−3 which is two times larger than for PVC (Ca∗∗ = 2.2 10−3).
The experimental observation of regime (ii), for Ca∗ < Ca < Ca∗∗, is narrowed in the
case of pure water and PDMS. The deviation between Cad and Ca when increasing Ca,
previously observed for PVC in this regime (ii), is less obvious here for PDMS.

Alternatively, we plot vsatd as a function of the characteristic velocity of the liquid,
vliq = γ/η, for the PDMS tube and different water-glycerol mixtures in Figure 6.3, along
with the data of PVC tube from Figure 5.7. The data for the water-ethanol mixtures are
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also depicted for both surface chemistries. As already emphasized previously in Chapter 5
for the PVC tube and the water-glycerol mixtures, the Cox-Voinov model with θe = 38◦

provides an adequate fit to the experimental saturation velocity with vliq. We notice that
the results for ethanol deviate from this fit (θe = 38◦), which is consistent with Young’s
law and previous comments: we expect a variation of θe when varying the surface tension
γ and/or the interfacial tension between liquid and substrate.

vCoxc ' θe
3

9 ln
(
L
a

)vliq (6.1)

Figure 6.3: Dewetting velocity of the liquid film vd as a function of the character-
istic velocity of the liquid vliq = γ/η for a PDMS tube of diameter din = 6.4 mm
(circles) and different concentrations of glycerol (green symbols) and ethanol (red
symbols). The data for PVC and water-glycerol mixtures (green diamonds) have al-
ready been presented in Figure 5.7 and have been added for comparison. Black solid
line is the analytical prediction given by Equation (6.1) (Cox-Voinov model), taking
various values of the equilibrium contact angle θe and L = 200 µm for the thickness
of the film.

The data for the PDMS tube and the water-glycerol mixtures are also in agreement
with the Cox-Voinov model (Equation (6.1)). As seen before, for the PVC tube the
appropriate equilibrium contact angle is θe = 38◦, while this angle becomes θe = 50◦ for
PDMS. This observation is consistent with the fact that the PDMS is more hydrophobic
than the PVC. For PDMS the dynamic contact angle could not be measured systematically
as a function of Ca due to poor transparency of the material. However, the quasi-static
receding contact angles are 60◦ for PVC and 80◦ for PDMS. Therefore the difference found
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for the plateau angle seems consistent with the difference in quasi-static angles. The fact
that there are multiple values of θe for water-ethanol mixtures is more obvious for PDMS
tube than for PVC. For the lower surface tension, a better fit is obtained when increasing
θe.

This saturation dewetting velocity increases with θe at given vliq. We have seen earlier
that once the dewetting velocity at saturation is reached, the shape of the rim is fixed
and the thickness of the film is constant. We can assume that this saturation velocity
corresponds in fact to the classical maximum dewetting velocity found in the literature
and detailed in Section 1.3.1 and 1.3.2. As stated by Redon et al. [64], the spontaneous
dewetting velocity of a triple line on a horizontal plate is unique for a given liquid/substrate
combination and is independent of the film thickness (because the receding contact angle
θr is supposed to be set at low Ca).

6.3 Large hydrophobicity scale

To test other surface chemistries of the wall and extend further the hydrophobicity scale,
we have chemically modified the PDMS tubes by oxidation of the inner tube surface
followed by adsorption of hydrophilic polymers (tube A and B). Explanations on the
experimental procedure are given in Section 2.2.3. In this part, the liquid is pure water
and modified PDMS tubes of inner diameter d = 3.2 mm were used in order to be able to
carry out surface modification. Note that the influence of the tube diameter has also been
investigated (Appendix C) and no qualitative difference is found. To characterize these
surfaces in terms of wettability, we measure a quasi-static receding contact angle θ0

r by
displacing a pure water meniscus at low constant velocity v = 0.3 cm.s−1 in the tube. As
shown previously, the relevant (lower) plateau contact angle θe is obtained when fitting
the Cox-Voinov law. This can be achieved only for PVC and PDMS because we do not
have the data for tube A and B due to lack of time. For PVC, this angle corresponds
to the angle measured at the plateau in zone (3) defined in Chapter 3. The evolution of
the dynamic contact angle with Ca has not been measured for PDMS. In this section we
essentially focus on the threshold values between flow regimes for four tubes of different
chemistries:

• modified tube A is a PDMS tube with PEG 2,000,000 chains - θ0
r = 20◦

• modified tube B is a PDMS tube with PEG 1,000,000 chains - θ0
r = 40◦

• commercial PVC tube - θ0
r = 60◦ & θe = 38◦

• commercial PDMS tube - θ0
r = 80◦ & θe = 50◦

For each surface chemistry, we systematically measure the dewetting velocities at satu-
ration and the corresponding capillary number Casatd , which marks the transition between
regime (ii) and (iii). In Figure 6.4, we plot Casatd (diamonds) as a function of θ0

r
3 (Sec-

tion 2.2).
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Figure 6.4: Capillary numbers Casatd , Ca∗ and CaCoxc from the Cox-Voinov model
as a function of θ0

r
3 measured with pure water in four tubes of different surface

chemistry (d = 3.2 mm). The quasi-static receding contact angle θ0
r characterizes

the surface chemistry and is given for water menisci displaced at low velocity v =
0.3 cm.s−1. The dashed black Cox-Voinov line is calculated using Equation (1.14)
when taking θ0

r for the static contact angle. The red sharp symbols correspond to
the Cox-Voinov model when taking the relevant plateau value θe. The red line is an
extrapolation of the red sharp symbols considering ∆θCox = θ0

r − θe constant.

We observe that the value for the dynamic wetting transition agrees reasonably well
with a linear dependence on θ0

r
3. The more hydrophobic the tube, the larger the capillary

number at saturation Casatd . In the same plot, we report as dashed line the threshold
capillary number CaCoxc obtained either numerically or analytically using the Cox-Voinov
model (Equation (1.14)) taking the quasi-static receding contact angle θ0

r as suggested in
the literature [36, 37]. As already observed for the PVC tube (Section 3.4, the experimental
trend is well captured, but the calculated CaCoxc significantly overestimates the data. As
seen previously in Section 5.3.1), if we calculate CaCoxc using θe, the Cox-Voinov model
accounts fairly well for our experimental values of Casatd (red solid line in Figure 6.4).
The equivalent equilibrium contact angle θe is the appropriate parameter to describe the
saturation velocity of the dewetting contact line. For PDMS and PVC, the value of CaCoxc

calculated using θe (red sharp symbols) corresponds to a shift of ∆θCox = θ0
r − θe of the

predicted value with θ0
r . An extrapolation of this result to tube A and B accounts fairly

well with our experimental Casatd values and may provide an indirect measurement of θe.

In Figure 6.4, we also plot the first threshold capillary number Ca∗ (circle) at which a
liquid film of pure water is entrained (instantaneous dynamic wetting transition between
regime (i) and (ii)). Interestingly, the decrease of Ca∗ seems much sharper when decreasing
θ0
r , although this observation is only based on two experimental points. As mentioned



134 Chapter 6. Other surface chemistries

previously, the difference Ca∗∗ − Ca∗, corresponding to the experimental observation of
regime (ii), is narrower for PDMS than for PVC. This trend suggests the existence of a
minimal value of the contact angle θ0

r,min below which a liquid is always entrained. Indeed,
for the more hydrophilic tubes (tube A and B), a liquid film is always observed in the range
of velocities investigated (Ca∗ → 0). We have compared qualitatively the film thicknesses
in the hydrophilic tube (tube A) and in the hydrophobic tube (PVC). For a given Ca, the
thickness of the film in tube A is much thinner than the film formed in the PVC tube. In
addition, for Ca > Casatd,PV C , the second film in the hydrophobic PVC tube has the same
thickness as the single film in the hydrophilic tube A at given velocity. This suggests that
the film in the tube A is a LLD-Bretherton film.

6.4 Conclusion

The experimental results obtained with PDMS confirms the phenomenology observed with
PVC tubes in the previous Chapters. The more hydrophobic tube exhibits larger values
Ca∗ and Ca∗∗ and a lower difference Ca∗∗ − Ca∗. The evolution is roughly consistent
with the Cox-Voinov model (Figure 6.4). However, the quasi-static receding contact angle
should not be used to predict the threshold value. We suggest that a plot of the dynamic
contact angle should be measured, and the reference contact angle involved in the capillary
term at the triple line should be extracted from the plateau if any (Chapter 3). The
threshold value Ca∗ does not seem to scale with Cox-Voinov law. The stronger variation
suggests a limit contact angle below which a homogeneous LLD-Bretherton film alone
is deposited. It would be interesting to gather more data on these surfaces and also to
investigate other surface chemistries to establish whether the contact angle is the prime
parameter or whether other surface properties such as the polarity of the PDMS surface
play a role.
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We have experimentally and theoretically investigated the flow regimes of low viscosity
liquids flowing down a vertical tube under partial wetting condition. We have varied
the viscosity as well as the liquid/solid interactions at the triple line. Surprisingly, the
cylindrical geometry has been less studied experimentally in the literature compared to
the planar geometry. Perhaps because in tubes, the flow visualization is more difficult, but
we should emphasized that there is no edge effect. We have built a versatile experimental
setup allowing large velocities of the liquid slug within a wide range, with reproducible
results, and a high quality of visualization to measure the kinematics of the slug and
morphology of the liquid film. An appropriate thickness measurement method has been
implemented using light absorption.

Figure 7.1: Summary of the different flow regimes and film morphologies for vary-
ing capillary number.

We first show that the capillary number Ca is the relevant parameter to account for
our observations. When considering dynamic transitions to forced wetting in the classical
perspective with a hydrophobic surface, we expect a transition at very large capillary
number. For PVC the transition is expected at around Ca = 3.5 10−3, namely 26 cm.s−1
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for pure water. Experimentally, this is not what we observe. A film can be entrained at
much lower capillary number Ca = 1.8 10−4, corresponding to a velocity of 1.4 cm.s−1. A
similar effects is found on PDMS as well (Chapter 6). We have shown that there are two
reasons for this difference. First because the relevant receding contact angle θe is different
from the angle of reference taken in quasi-static condition θ0

r . Second because, even if
we corrected the contact angle of reference, the dynamic wetting transition occurs for a
velocity lower by one order of magnitude.

The phenomenological behavior observed in our study is reported in Figure 7.1: (i) a
stationary dynamic meniscus and destabilization of the meniscus (Chapter 3); (ii) thick
film formation (Chapter 4); (iii) coexistence of two films (Chapter 5); and is in agreement
with numerical models but the transitions are not at the predicted values of capillary
number.

Figure 7.2: Schematic of the evolution of the dynamic contact angle θ as a function
of the capillary number based on the triple line velocity Cad. Advancing contact lines
correspond to negative velocities. Values are given for PVC tubes.

In regime (i) the shape of the meniscus is evolving in time to reach a stationary
shape with a finite contact angle. At low Ca, there is a strong dependence of both
advancing and receding contact angles with Ca (zone a in Figure 7.2). Hydrodynamic
models do not account for this feature, this unexpected variation can be attributed to
the coupling between surface roughness and pinning of the triple line. For larger Ca
(zone b), a Cox-Voinov viscous plateau is observed, but it ends prematurely compared to
the hydrodynamic predictions. This plateau ends at Ca+ = 1.8 10−4 where we find a
sharp decrease to about zero over the range Ca+ and Ca∗ = 4 10−4 (zone c). Between
these two capillary numbers, Ca+ and Ca∗, the transition to film formation depends upon
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the timescale of the measurement (Figure 3.12). There is a critical slowing down around
the transition. All those aspects are included in our numerical simulations. Ca∗ defines
the instantaneous dynamic wetting transition, corresponding to the transition between
regime (i) and (ii). In our experimental system the viscous dissipation in the liquid wedge
is negligible, instead a friction like dissipation mechanism is found to account qualitatively
for both the quasi-static receding contact angle and the critical capillary number Ca+ at
which transition from a meniscus to a film occurs (or Ca∗ for instantaneous dynamic
transition). This latter value is much smaller than the one found in the literature using
classical hydrodynamic models, commonly denoted by Cac (but CaCoxc in this thesis). In
these cases, the transition is defined when the stationary solution of the meniscus ceases
to exist (zcl =

√
2) [1]. In our work, Ca∗ is one order of magnitude lower than CaCoxc .

Experimentally the transition is not only shifted but also broadened. This remarkable
result is an opportunity for observing in detail the phenomenology around the transition.

Above this critical capillary number, we observe experimentally the existence of thick
films on a much larger capillary range Ca+ < Ca < Ca∗∗ (zone d in Figure 7.2). Moreover,
in contrast to the literature (Chapter 1), the thickness of the thick film is not unique and
depends on the velocity of the triple line: e1 = lc

√
3Cad. The velocity Cad increases

with the slug velocity but is slightly smaller. We observe thick films with a variety of
thicknesses ranging roughly from 50 to 200 µm. The difference Ca − Cad is more and
more pronounced until a certain value, where the dewetting velocity saturates at Casatd .
The saturation of the triple line velocity was identified at Ca∗∗ = 2.2 10−3 and defines the
transition between regime (ii) and (iii) and is accounted for by the value of Ca for which
the forced wetting transition is predicted by Cox-Voinov relation.

In regime (iii) a thinner film grows between the previous thick film and the meniscus
(zone e). We recover a thickness independent of the velocity esat1 = lc

√
3Casatd of the upper

thick film, similarly to some authors Snoeijer et al. [2, 3] (experimentally) and Hocking [4],
Snoeijer et al. [1], Gao et al. [5] (numerically). The transition towards two liquid films
is associated to the saturation of the downward flux generated by the dewetting and the
gravity. This flux becomes smaller than the upward flux of liquid ejected by the slug by
viscous forcing, that selects a second thickness: two film thicknesses coexist and are linked
by a capillary jump formed at the transition. The lower film corresponds to a Landau-
Levich-Derjaguin/Bretherton film, usually observed for complete wetting conditions and
has a thickness varying as Ca2/3. In regime (ii) and (iii), stationary numerical profiles
account fairly well for our experimental observations in terms of thickness evolution with
Ca, apart from the rim we observe close to the triple line. The existence of regime (iii)
can be obtained when taking into account the time derivatives. Doing so, we find the
different regimes found by Gao et al. [5]. This does not predict a velocity-dependent thick
film for regime (ii), the thickness of the film is constant, consistent with e1 = lc

√
3Ca∗ and

not with our experimental result e1 = lc
√

3Cad. Moreover, the difference between Ca∗

and Ca∗∗ is much more pronounced experimentally (∆Ca = 1.8 10−3) than numerically
(∆Ca = 10−4).
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When the capillary number is large enough, the second film can become thicker than
the first film. In the meantime, oscillations located close to the capillary jump appear in the
film thickness. A last scenario is occasionally observed where the film destabilizes either
in the thin zone or in the oscillating zone. A dry zone nucleates and grows leaving only a
rivulet connecting the upper film to the slug or the new film formed below (Figure 7.3).
Once the film has completely drained through the rivulet, the rivulet itself is destabilized
into droplets (Rayleigh-Plateau instability). These droplets are subjected to evaporation
and leave pollutants, generating contamination of the substrate.

(a)

(b)

Figure 7.3: (a) Image sequence obtained for a typical experiment where the liquid
film breaks (∆t = 100 ms). A dry zone nucleates and grows leaving a rivulet which
itself destabilized into droplets that remain pinned at the surface. (b) Zoom in on
the nucleation zone (∆t = 4 ms).
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Our work provides fundamental insights on the classical problem of moving contact
lines in cylindrical geometry and film deposition on partially wetting substrates. Fur-
thermore, these results found a practical application for tube’s manufacturers, like Saint-
Gobain, or its customers. Indeed, as explained in the introduction, one crucial point is to
reduce the contamination of the tube due to the transferred liquid. This requires first the
reduction of the contact time between the liquid and the tube, and second the stabilization
of the flow in order to avoid the pinning of droplets. For both aspects, it is preferable to
avoid any film deposition and to process the flow in a stable zone: regime (i). We have
demonstrated the possibility to tune parameters (liquid and material properties) in order
to either prevent or induce liquid film formation. We have a complete view of the problem
that may help the manufacturer to advice their customers in term of tube properties for
a given liquid (η, γ, processing flow rate via Ca, chemistry of the tube via θr).

Figure 7.4: Phase diagram for pure water: adhesion energy Eadh = γ
(
1 + cos θ0

r

)
versus capillary number Ca. The green and the red curves correspond to the quali-
tative limit between regime (i) and (ii), and regime (ii) and (iii) respectively.

A phase diagram Eadh versus Ca was built in Figure 7.4. The adhesion energy Eadh
accounts for the liquid/solid interactions through the tube chemistry θ0

r and through the
liquid surface tension γ. Using this phase diagram, the tube chemistry for a given surface
tension and a given flow rate can be adjusted to place the system in a stable regime,
namely regime (i).





Appendix A

Bretherton calculation

We consider a long bubble moving steadily at constant velocity v in the z direction in a
capillary tube of radius R filled with a liquid (Figure A.1).

Figure A.1: Bretherton problem: air bubble displaced in a capillary [14].

A film of thickness e is squeezed between the bubble and the walls away from the bubble
ends. The liquid is completely wetting the tube. Invariance in the x−direction is assumed
and inertial and gravitational effects are neglected. The velocity in the z−direction is
denoted as v(z), the film thickness h(z) and the pressure in the liquid phase P . Fluid
viscosity is η and surface tension γ. Three regions within the bubble can be defined, the
first one where a film of constant thickness e is connecting front and rear meniscus (zone
C −D), the second one where the thickness is varying called the dynamic meniscus (zone
B − C of length l) and finally the static meniscus (zone A − B). The radius of the tube
is supposed smaller than the capillary length R << lc =

√
γ/ρg and the film thickness is

smaller than the tube radius e << R.

A.1 Scaling approach

Pressure in the liquid film and in the liquid reservoir where the capillary tube is fully filled
with liquid (bubble ends) can be expressed as:

Pfilm = − γ

R− e
' − γ

R
(A.1)

Preservoir = −2γ
R

(A.2)
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These two pressures are different, consequently there is a pressure gradient in the
dynamic meniscus of length l (B −C) inducing a flow from the film towards the reservoir
of liquid at both sides of the bubble. In the opposite direction (-z−axis), a viscous stress
acting on the length scale e arise from the flow. Therefore Stokes equation scales as:

ηv

e2 ∼
γ

Rl
(A.3)

Because e and l are two unknowns, a second equation is required: the pressure conti-
nuity between dynamic and static menisci:

Pstatic = Pdynamic ⇔ −2γ
R
∼ −γe

l2
−− γ

R
(A.4)

The last term corresponds to the two curvatures of the dynamic meniscus. Doing so,
l can be expressed as:

l ∼ (eR)1/2 (A.5)

Finally the Bretherton law without its prefactor is obtained:

e ∼ R
(
ηv

γ

)2/3
(A.6)

This scaling law shows that as the velocity of the meniscus or the tube radius increases,
the deposited film becomes thicker.

To obtain the exact expression of the film thickness profile, the Stokes equation has
to be written in the lubrication approximation to get the flux in the dynamic meniscus.
Matching this flux with the flux in a thin film of constant thickness e, gives a third-order
non linear differential equation. Considering the first asymptotic case, in the limit of
large film thicknesses (close to bubble ends A and F ), we can show that the curvature is
constant. After numerical integration, it gives the Bretherton law:

e

R
∼ 1.34Ca2/3 (A.7)

The second asymptotic case is the limit where the thickness of the liquid film is constant
and equal to e. It exhibits two kind of solutions according to flux direction. The thickness
profile will be purely exponential at the bubble front and exponential oscillatory at the
bubble rear. The complete calculation of the Bretherton problem is presented in next
section.
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A.2 Complete calculation

Considering the Stokes equation in the lubrication approximation for the dynamic menis-
cus, equation of motion can be written as:

η∂yyvz = ∂zP (A.8)

where the pressure is defined by the Laplace equation in the lubrication approximation
for small liquid thickness compared to tube radius h << R

P = γκ ' −γ
(
∂zzh+ 1

R

)
(A.9)

Therefore, the second derivative of the velocity is:

∂yyvz = γ

η
∂zzzh (A.10)

Considering a no slip boundary condition at the liquid/solid interface and a stress
free boundary condition at the liquid/air interface, in the moving reference frame Equa-
tion (A.10) can be integrated into

vz(y) = γ

η

(
y2

2 − hy
)
∂zzzh− v (A.11)

The resulting flux per unit length is given by

q(h) =
∫ h

0
vz(y)dy = −γ

η

h3

3 ∂zzzh− vh (A.12)

The flux per unit length in the zone (C −D), where the film thickness is constant and
equal to e, is q(h∞ = e) = ve. Writing the flux conservation, a third-order non linear
differential equation is obtained:

∂zzzh = −3Cah− e
h3 with Ca = ηv

γ
(A.13)

Defining two dimensionless parameters H = h/e and ξ = (3Ca)1/3z/e, the reduced
equation can be written as:

H ′′′ = −H − 1
H3 (A.14)

The first asymptotic case of the previous Equation (A.13), the limit of large film
thickness H →∞ is:

H ′′′ ' − 1
H2 → 0 (A.15)

In this limit, the curvature is constant and asymptotic matching with the static menis-
cus is possible, the solution is:
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H(ξ) = α
ξ2

2 + βξ + δ (A.16)

Thus,

h(z) ' α(3Ca)2/3 z
2

2e + β(3Ca)1/3z + δe (A.17)

And the curvature in this limit is:

κ ' ∂zzh+ 1
R
' (3Ca)2/3α

e
+ 1
R

(A.18)

In first approximation, the profile is considered as a spherical cap with a curvature
κ ' 2/R

∂zzh
dynamic = ∂zzh

static ⇔ (3Ca)2/3α

e
+ 1
R

= 2
R

(A.19)

e

r
' α(3Ca)2/3 (A.20)

Coefficient α is obtained numerically when H → ∞, H ′′ → 0.643 (Figure A.2). One
obtains finally the Bretherton law

e

R
' 1.34Ca2/3 (A.21)

As the velocity of the meniscus or the tube radius increases, the film deposited becomes
thicker.

Figure A.2: Numerical integration of the film thickness profile calculated with
Equation (A.14). For H →∞, H ′′ → 0.643.
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The second asymptotic case, limit where the thickness is constant and equal to e :
h→ e, reduces to the following equation

∂zzz∆h = −3Ca
e3 ∆h with ∆h = h− e (A.22)

Equation (A.22) exhibits two kind of solutions according to flux direction (sign of v):

h(z) = e−
(3Ca)1/2

e
z (A.23)

h(z) = e
(3Ca)1/2

2e
z cos

(√
3

2
(3Ca)1/3

e
z + φ

)
(A.24)

The thickness profile will be purely exponential at the front of the air bubble (v > 0,
solution A.23) and exponential oscillatory at the rear of the air bubble (v < 0, solu-
tion A.24).





Appendix B

Comparing meniscus elevation zcl
and contact angle θr

In this appendix, we propose an alternate method to measure contact angles at the triple
line : indirect measurement method. This method uses the “low velocity setup” (Fig-
ure 2.6a) to measure the meniscus elevation zcl on the same set of images as illustrated in
Figure 3.2. It is the distance between the lower point at the center of the tube and the
contact line at the tube surface.

Figure B.1: Contact line elevation zcl normalized by the capillary length lc as a
function of the capillary number Ca for 5%wt glycerol solution (η = 1.06 mPa.s).
The black dashed vertical line indicates our measurement of the dynamic wetting
transition (Ca∗). The blue vertical dotted line indicates Ca+ as defined in Sec-
tion 3.5. The red dashed-dotted horizontal line at zcl/lc =

√
2 = 1.41 corresponds to

the maximal contact elevation for a static meniscus.
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This method assumes that the shape taken by the interface is a static meniscus while
the contact line is moving and that there is no effects of the tube curvature (out of the
planar curvature). Once the liquid meniscus is moving it takes on an equilibrium shape.
We can derive the dynamic contact angle from the vertical extension zcl using :

zcl = lc

√
2 (1− sin θ) (B.1)

This relations is valid for flat surface (Section 2.3.1) and is used here as an approxi-
mation because the tube diameter is larger than lc. From Equation (B.1), we see that the
maximum height of the meniscus cannot exceed lc

√
2, which equals 3.8 mm with water.

Figure B.2: Converted contact angle calculated from the meniscus extension zcl

(blue), and contact angle from the direct measurement (red) as a function of the
capillary number Ca for 5%wt glycerol solution (η = 1.06 mPa.s). The black dashed
curve represents the Cox-Voinov prediction. The black dashed vertical line indicates
our measurement of the dynamic wetting transition (Ca∗). The blue vertical dotted
line indicates Ca+ as defined in Section 3.5.

At rest, zcl is null. When the motion is induced, the contact line raises until a certain
position where the meniscus takes a stationary shape. Normalized contact elevation zcl/lc
is given as a function of the capillary number of the meniscus Ca in Figure B.1 for 5%wt
glycerol solution (η = 1.06 mPa.s and lc = 2.63 mm). We observe the same different
zones as for Chapter 3. Zone (2) where the contact line position increases quite rapidly
at very low capillary number. Zone (3) where the contact elevation is constant at about
zcl = 0.5lc. And finally, zone (4) where the normalized quantity is increasing quite strongly
with the capillary number until film entrainment. Above Ca∗, we could still define zcl but
it would correspond to the length of the film and no more to the meniscus elevation. We
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have chosen not to depict the length of the film in Figure B.1.
As mentioned earlier, the contact angle θr can be obtained out of the contact line

elevation zcl using Equation (B.1): the result is plotted in Figure B.2 (green open symbols).
Red symbols are contact angles from the direct measurement method, already shown in
Figure 3.3b.

We can note that the two methods lead to two similar curves with an offset. This
offset is probably due to Equation (B.1) which provides a correspondence between zcl and
θr adapted for a planar geometry. For a tube, there is no analytical equation, but we can
obtain a numerical value. Note that both methods provide the same value of the capillary
numbers that separate the four above mentioned zones (zone (1), (2), (3), (4)) and in
particular, the instantaneous forced wetting transition at the end of zone (4) for which
Ca∗ = 4 10−4 for both methods (and the critical transition Ca+ = 1.8 10−4).





Appendix C

Influence of tube diameter

In this appendix we investigate briefly the influence of the tube diameter. We use PVC
tubes and we vary the inner diameter din : 3.2 mm, 4.8 mm, 6.4 mm. Characteristics
are given in the Experimental description chapter (Section 2.2). The range of available
diameters was limited by the manufacturer. The liquid used is pure water: η = 0.94 mPa.s
and lc = 2.66 mm.

C.1 On the dynamic wetting transition

Figure C.1: Receding contact angle from the direct measurement as a function
of the capillary number Ca for different tube diameters : 3.2 mm (blue), 4.8 mm
(green), 6.4 mm (red). The vertical dashed lines indicate our measurement of the
dynamic wetting transition (Ca∗) for each tube diameter.

In this section we investigate the impact of the tube diameter on the evolution of the
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contact angle and the dynamic wetting transition. Here, we measure the capillary number
Ca∗ at which film deposition develops instantaneously with experimental time accuracy,
as defined in Chapter 3. In Chapter 3, we studied the case of a diameter din = 6.4 mm
and we found a dynamic wetting transition at Ca∗ = 4 10−4.

Along the same path as in Chapter 3, we measure the receding contact angle θr as a
function of the capillary number of the slug Ca for a series of experiments with various
inner diameters and various slug velocities. Figure C.1 gathers the receding contact angles
θr versus the capillary number of the meniscus Ca for the three tube radii R investigated.
We observe that a change in the tube radius R in the range used does not modify the
evolution of the receding contact angle with the capillary number. θr decreases with Ca,
down to the dynamic wetting transition. Nevertheless, we note that the capillary number
at the dynamic wetting transition Ca∗ depends on the tube diameter. Ca∗ increases with
the tube diameter.

Figure C.2: Receding contact angle for different tube diameters : 3.2 mm (blue),
4.8 mm (green), 6.4 mm (red), as a function of the capillary number normalized
by the tube radius Ca/R. The vertical dashed lines indicate the dynamic wetting
transition ((Ca/R)∗ = 10−1) for three tube diameters.

This experimental observation suggests that there is an effect of the radial curvature.
The receding contact angle can be replotted as a function of the capillary number divided
by the tube radius Ca/R (Figure C.2). The data collapse on a single curve and provide
a critical value (Ca/R)∗ = 10−1 for the dynamic wetting transition. We have initiated
numerical simulations taking into account the full curvature expression (Equation (2.12)),
and these preliminary calculations suggest no significant difference when varying the tube
diameter. Further investigations have to be carried out. Notably, to be more accurate we
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should measure the critical value Ca+ rather than the threshold Ca∗. Besides, the same
phenomenology is observed for all tube diameters.

C.2 On the kinematics

We now report on the flow phenomenology after the dynamic wetting transition, similarly
to Chapter 4 and 5. As in the previous section, we use the same tube diameters and
pure water. For the case of a diameter din = 6.4 mm, we found a second transition at
Ca∗∗ = 2.2 10−3.

Figure C.3: Dewetting capillary number Cad versus slug capillary number Ca for
different tube diameters : 3.2 mm (blue), 4.8 mm (green), 6.4 mm (red). The grey
zone represents regime (iii).

In Figure C.3 we report Cad as a function of Ca for three tube diameters of interest :
3.2 mm (blue), 4.8 mm (green), 6.4 mm (red). The evolution Cad = f(Ca) is unchanged
when varying the tube diameter. The three regimes identified for din = 6.4 mm are
identical for the two others diameters: regime (i) without film discussed in Section C.1;
regime (ii) with a thick film where Cad ' 0.8Ca; regime (iii) with two films (grey zone)
where the dewetting capillary number saturates at Casatd . The first threshold capillary
number Ca∗ depends on R (Section C.1) and we thus did not plot a threshold regime
in Figure C.3, whereas the Ca∗∗ is independent of R. We can conclude that there is no
influence of the tube diameter, in the range investigated, on the kinematic evolution and
flow morphology.
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C.3 On the thickness of the film

Finally we examine the film thickness evolution as a function of the capillary number for
the three tube diameters. We plot in Figure C.4 the film thickness e1 rescaled by the
capillary length lc versus the dewetting capillary number Cad for the different diameters.

Figure C.4: Average film thickness e1 normalized by the capillary length lc as a
function of the capillary number of the dewetting film Cad for different tube diame-
ters : 3.2 mm (blue), 4.8 mm (green), 6.4 mm (red). Predictive model considering
a gravitational drainage at constant film thickness (black dashed line). The grey
dotted line in Ca1.33 is a fit of the data for the smaller tube.

We observe that for the diameter din = 4.8 mm, we recover the same values as for
din = 6.4 mm. The thick film thickness is given by e1 = lc

√
3Cad. The saturation of the

film thickness and of the dewetting capillary number are simultaneous and independent of
the tube diameter : e1 = esat1 when Cad = Casatd . The same statements can be attributed
to the smaller tube diameter, din = 3.2 mm, but only for Cad > 10−3. Below Cad = 10−3,
the film thickness is smaller than expected and increases more sharply with Cad. In this
capillary number range, the data for the smaller tube can be fitted to a power law and
we find e1/lc ∝ Cad

1.33 (grey dotted line). We have no explanation for this unexpected
result.

Note that we have also measured the thickness of the second film e2 in regime (iii),
and we have found that there was no dependency of e2 on the tube diameter in the range
investigated.
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Partial wetting of thin liquid films in polymer tubes

Abstract Polymer tubes, made of PDMS or PVC, are versatile, low cost, hydrophobic
materials. They are heavily used in industry for transferring more or less complex fluids
such as drinkable water, emulsions (e.g milk), suspensions (e.g coffee), or solution of active
molecules (e.g pharmaceutics). Most of these applications involve repeated, intermittent
flow of liquids which can lead to unwanted contamination. This study aims at better
understanding the mechanisms of contamination for intermittent flow. We experimentally
and theoretically investigate the flow regimes of low viscosity liquid slugs flowing down a
vertical tube under partial wetting condition. Two processes are in competition: because
of the large slug velocity, a liquid film tends to be created at the back of the slug whereas
because of the partial wetting condition, the liquid film dewets. We investigate how
this competition controls film deposition in hydrophobic tubes. We show that above the
threshold velocity for dynamic wetting which is much lower than predicted by Cox-Voinov,
a previously unknown regime is found where we observe a velocity dependent thick film
well before the classical Landau-Levich-Derjaguin regime.

Keywords: Contact angle, Dynamic wetting, Hydrophobicity, Liquid film, Polymer tube,
Surface modification

Mouillage partiel de films liquides dans des tubes polymères

Résumé Les tubes polymères, de PDMS ou de PVC, sont des matériaux hydrophobes
polyvalents et peu couteux. Ils sont très largement utilisés dans l’industrie pour transférer
des fluides plus ou moins complexes tels que de l’eau potable, des émulsions (e.g lait),
des suspensions (e.g café), ou encore des solutions de molécules actives (e.g médicament).
La plupart de ces applications mettent en jeux des écoulements intermittents répétés de
liquide qui peuvent contaminer le matériau. Cette étude a pour but de mieux comprendre
comment ces écoulements de fluides complexes entraînent la contamination des tubes.
Nous étudions expérimentalement et théoriquement les régimes d’un segment de liquide de
faible viscosité s’écoulant dans un tube en conditions de mouillage partiel. Deux processus
sont en compétition : à cause de la vitesse élevée du segment de liquide, un film de liquide
se forme à l’arrière du segment, alors qu’à cause de des conditions de mouillage partiel le
film de liquide démouille. Nous montrons qu’au-delà de la limite en vitesse correspondant à
la transition de mouillage dynamique qui est bien inférieure à la prédiction de Cox-Voinov,
un régime précédemment inconnu avec un film épais, dont l’épaisseur dépend de la vitesse,
est obtenu bien avant la formation classique d’un film de Landau-Levich-Derjaguin. Nos
simulations numériques sont en partie en accord avec nos observations.

Mots-clefs: Angle de contact, Mouillage dynamique, Hydrophobicité, Film liquide, Tube
polymère, Modification de surface
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