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Chapter 1

Introduction

Research problem statement & objectives

The purpose of thesis is to propose reliability and uncertainty estimation method dealing with the exis-
tence of rare failure events and large-scale systems. This thesis started in Oct. 2012 under the supervision
of Professor Nikolaos Limnios (LMAC) and Walter Schön (Heudiasyc) at Université de Technologie de
Compiègne (UTC), France.
The purpose of reliability assessment is to predict the probability that a system is operating during a
specified time interval. Over the last few years, the dependability and risk assessments community has
recognized that there are different sources and/or types of uncertainties that play an important role
in availability and risk evaluation [Winkler, 1996, Aven, 2011]. One of the major problems is how to
properly estimate system dependability as well as the associated uncertainty with the existence of rare
failure events. The rare failure events problem considered in this thesis is the condition that there are no
component failures observed in historical data (or only a very small number of failures). This is what we
call components with rare failure events. Then we have to raise the natural question: when a component
has no failure, how can we consider its reliability parameters? Should we consider that its reliability is
equal to one because the empirical estimator gives zero failure probability and zero variance? This is
not reasonable, given that such highly reliable components may be critical to the system. Indeed, the
rare failure events problem is mainly caused by the following situations:

• Small sample size: In many systems such as intelligent transportation systems, the sample size of
some components is very small. For example, when a component under test is totally new there
is no previous test data for reliability analysis; some of the components are very expensive or the
test cannot be carried out frequently due to some cost considerations. Using Bayesian estimates,
we should make some assumptions such as the choice of prior distributions. However, prior
distributions may introduce more uncertainty in the reliability estimation results.

• Highly reliable component (system): For a highly reliable system or component, the frequency of
failure is very low so that a large number of tests are needed to obtain the first failure observation,
which is not possible due to limited test expense and time.

In our opinion, the associated problems on dependability assessment are caused by confusion among
the following two types of uncertainties due to different conditions [Apostolakis, 1990, Helton and Bur-
master, 1996] while presenting uncertainty measures:

• Aleatory uncertainty is caused by natural variability of random phenomena whose behavior can
be different even under the same condition. It indicates an individual random phenomenon as
well as its outcome does not have a pattern and is not predictable. This type of uncertainty has
been studied for a long time using probability theory and is often quantified by dispersion mea-
sures such as variance.

• Epistemic uncertainty is caused by lack of information. This type of uncertainty has been repre-
sented under framework of uncertainty theories by set-value measures such as belief functions,
possibility theory, imprecise probabilities, etc.

Our research objective is to build frameworks which can present the two types of uncertainties based on
both probabilistic and uncertainty theory approaches to compare these methods and to find the proper
application conditions for these methods.
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The thesis also requires applying our methods on large-scale systems. Many articles have discussed
similar problems but the definition of a large-scale system remains unclear. In this thesis, we study a
large-scale system in terms of the complexity of its state probability calculation. It leads us to take into
consideration two steps: model construction and reliability assessment. Comprehensive models such as
fault trees, reliability block diagrams and Markov chains give simpler structure function representation
and are easier to construct. However, the probabilistic assessment for these models needs complicated
analysis and brings large amount of computation cost. Meanwhile, models like binary decision diagram
require complicated building procedure while the system is decomposed and analyzed at the same time
so that the cost of probabilistic assessment is reduced.
In our opinion, the complexity of both steps is impacted by the number of system components and also
by the system structure:

• A large number of components is one of the necessary conditions for large-scale systems [Kolowrocki,
2014]. As the number of components increases, the number of possible component level state com-
bination grows at least exponentially which increases the calculation needed to obtain system re-
liability function and corresponds to NP-difficult problem. For example, in a system composed of
n items which have respectively mi states for each component Ci, the number of all possible com-
binations is the product of all mi. The exact minimal component number of the large-scale system
definition indeed depends on the model in which the system is represented. In [Hwang et al.,
1981], a system containing more than 10 binary components is defined as a large system which
corresponds to 210 different states. For dynamic models like Markov process analysis [Sharma
and Bazovsky, 1993], it means that we have a 1024 × 1024 Markov kernel matrix and such sys-
tems can be defined as large-scale system. However, BDD have been applied on system with more
s-independent components [NIKOLSKAIA, 2000]. Normally in these cases, a large-scale system
requires more than 30 components.

• The system structure is also an important factor. Simple systems like parallel or series systems do
not produce large calculation complexity even with a large component number. We have chosen
the number of minimal cut-sets as measure for evaluating system structure complexity because
minimal cut-sets are distinct from prime implicants and they have a great interest from both a
computation complexity and practical viewpoint [Rauzy, 2001]. According to inclusion-exclusion
theorem, among systems of the same component size, the ones having more cut-sets cause higher
complexity. Dependent components increase the complexity too.

Finally, we have chosen component number and minimal cut-sets number as indicators to determine if
the studied system is a large-scale system.
While uncertainty propagation is also considered, the complexity becomes more complicated. Uncer-
tainty measures modeled by interval analysis [Zhang et al., 2002], belief functions [Aguirre et al., 2013],
fuzzy number [Klir, 1997], etc. decline the minimal necessary condition of our definition. In this thesis,
we apply the definition discussed previously in order to compare with other methods.
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Chapter 2

Uncertainty theories

2.1 Random set theory

Random set theory is an extension of probability theory by studying set-valued variables rather than
point-valued ones. The modern concept of random set was firstly mentioned in [Kolmogorov, 1950] (first
published in 1933) even though confidence regions which are random sets had been used on statistics
before that.
In this section, we begin with reviewing the definitions of closed random set on Rd. Then we review the
definitions of expectations and confidence intervals under random set theory framework.

2.1.1 Basic definitions

Random sets are random variables whose values are sets. In other words, the theory of random sets
includes the classical case of random variables as a special case.
Although the first random closed set is defined on subsets of a more general space by Matheron in
[Matheron, 1975], we are just interested in random closed sets on Rd.
Let F denote the family of closed subsets of Rd and K the family of all compact subsets of Rd. Similarly
as the definition of random variable in probability theory, the random closed set is defined based on the
idea that the range of a random set S is represented by the sets having common elements with S.

Definition 1. A closed random set on probability space (Ω,A, P ) is a map S : Ω → F if, for every
compact set K ⊂ Rd,

{ω : S(ω) ∩K 6= ∅} ∈ A.

The corresponding probability functional (hitting probability or capacity functional) of a random closed
set S, T : K → [0, 1], is defined as

T (K) = P{S ∩K 6= ∅} ∀K ∈ K.

Theorem 1. The capacity functional satisfies the following properties:

- T (∅) = 0 and 0 ≤ T (K) ≤ 1 for every K ∈ K

- If Kn ↓ K, i.e.
Kn+1 ⊆ Kn, K =

⋂
n≥1

Kn

then
T (Kn) ↓ T (K).

- T is monotone increasing
K1 ⊆ K2 ⇒ T (K1) ≤ T (K2)

and for n ≥ 2, and K1,K2, ...,Kn ∈ K,

T

(
n⋂
i=1

Ki

)
≤

∑
∅6=I⊆{1,2,...,n}

(−1)
|I|+1

T

(⋃
i∈I

Ki

)
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Theorem 2. f(S) is a random closed set if S is a random closed set and the map f : F → F is continuous
or semi-continuous (and therefore measurable).

Example 1. Let us consider a random closed set S with a unique element on R:

S = {X}

where X is a random variable on R. S is a (singleton) random set. For all compact K ⊂ R, the hitting
probability of S is given by

T (K) = P{K ∩ S 6= ∅} = P{X ∈ K}
which is exactly the probability of a random variable.

Example 2. Let us consider a random closed set S defined as

S = {x ∈ R|x ≤ X} = (−∞, X]

where X is a random variable. For all compact K ⊂ R, the hitting probability of S is given by

T (K) = P{K ∩ S 6= ∅}
= P{K ∩ (−∞, X] 6= ∅}
= P{∃x ∈ K|x ≤ X}

Example 3. Let X = (X1, ..., Xd) be a random variable on Rd. Then a random closed set S on Rd can be
defined as

S = (−∞, X1]× ...× (−∞, Xd]

For all compact K ⊂ Rd, the hitting probability of S is given by

T (K) = P{K ∩ S 6= ∅}
= P{K ∩ (−∞, X1]× ...× (−∞, Xd] 6= ∅}
= P{∃x = (x1, ..., xd) ∈ K|x1 ≤ X1, ..., xd ≤ Xd}

2.1.2 Expectation of random sets

This subsection introduces the selection expectation (also called the Aumann expectation) which is the
best and most used concept of expectation for random sets.

Definition 2. [Aumann, 1965] A random point ξ is said to be a selection of a random set S if P(ξ ∈ S) =
1.

A random set can be approximated by all its selections. A random variable is called integrable if its
expected value exists. The expectation of a random set is defined by grouping the expected value of all
its integrable selections.

Definition 3. [Aumann, 1965] The expectation E(S) of an random set S on Rd is the closure of the
family of all expectations for its integrable selections, i.e. E(S) = {E(ξ)|ξ ∈ T (S)}, where T (S) is the
set of all integrable selections of S.

Example 4. When considering S = {X} as defined in Example 1, there is only one selection for S given
by T (S) = {X}, so that E(S) = {E(X)}.

Example 5. When consideringX as defined in Example 2. The selections are given by S = X−a, where
a ∈ R+ is a constant. We have

T (S) = {x|x = X − a, a ∈ R+}.
Hence, the expectation of S is given by

E(S) = {E(x)|x ∈ T (S)} = (−∞, E(X)].

Then the expectation of the random closed set S′ defined in Example 3 is given by

E(S′) = (−∞, E(X1)]× ...× (−∞, E(Xd)].
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2.1.3 Random intervals

Definition 4. [Gil, 1992] A random interval X of R associated with the probability space (Ω,A, P ) is a
random set of R associated with that probability space such that it may be characterized by means of a
bi-dimensional random variable (XL, XU ). So that S(ω) = [XL(ω), XU (ω)], for all ω ∈ Ω, and it will be
denoted by S = [XL, XU ].

Let f(xL, xU ) be the joint probability density of XL and XU , the expectation of S = [XL, XU ] is given
by

E(S) = [E(XL), E(XU )] = [

∫ +∞

−∞
tfL(t)dt,

∫ +∞

−∞
tfU (t)dt] (2.1)

where fL(t) and fU (t) are respectively marginal pdf developed from the joint probability density func-
tion f(xL, xU ) (see [Matheron, 1975]).

Example 6. Let U1, U2, ..., Un be i.i.d random variables following uniform distribution U(0, 1). Let U(i)

the ith smallest value among U1, U2, ..., Un, i.e.

U(1) ≤ U(2) ≤ ... ≤ U(n).

The random set
X = [U(k), U(k+1)] ∀k = 1, ..., n− 1

is a random interval. Since we have

U(k) ∼ Beta(k, n− k + 1) ∀k = 1, ..., n

the expectation of X = [U(k), U(k+1)] is given by

E(X) = [E(U(k)), E(U(k+1))] = [
k

n+ 1
,
k + 1

n+ 1
].

2.1.4 Confidence interval

Consider a random variable X whose distribution depends on a parameter θ = (θ1, ..., θm), θ ∈ Θ ⊆ Rm
where Θ is the parameter space. Let ϕ(θ) ∈ R a parameter of the distribution of X which depends on θ.
Given a certain number of observations of X , the random set C = [c1, c2] ⊂ R which contains the true
value parameter ϕ(θ) is called a confidence set for ϕ(θ) at level 1−α (α ∈ [0, 1]) if for all possible values
of θ: P{ϕ(θ) ∈ [c1, c2]} = 1−α. Notice that here we use point estimate of ϕ(θ) to construct the confidence
interval.
Now we extend the use of confidence interval to apply on interval estimates of ϕ(θ).

Definition 5 (Confidence interval for a random interval). Let a random interval [aL, aU ] with known
cumulative distribution functions FL and FU . The confidence interval of ϕ(θ), C′ = [tL, tU ] at level 1−α
is given by

[t̂L, t̂U ] = [F−1
L (α/2), F−1

U (1− α/2)] (2.2)

where F−1
L (α) and F−1

U (α) are respectively the α-quantile functions of FL and FU (see [Matheron, 1975]).

2.2 Imprecise probabilities

2.2.1 Introduction

On the same sample space and event space as probability theory, (Ω,F), X is modeled not by a pre-
cise probability distribution but a set of probability distributions/measures M (normally closed and
convex) [Seidenfeld and Wasserman, 1993] which is called representer in [Fraassen, 1990] (by terms of
credal set normally closed convex) so that randomness (aleatory uncertainty) can be represented by (a
single) probability distribution and epistemic uncertainty/doubts is represented by the range of the set
of probability distributions.
The idea of set of probabilities is implemented as a class of sampling models in classical robustness and
as a set of prior distributions in Bayesian robustness [Seidenfeld and Wasserman, 1993]. More generally
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speaking, the set M can be summarized by its extreme points. The probability measure in M can be
bounded by the upper probability envelope P (A) and lower probability envelope P (A) such that

P (A) = inf
P∈M

P(A) (2.3)

P (A) = sup
P∈M

P(A) (2.4)

There are several formal approaches/interpretations of this idea that introduces interval measures to
present set of probabilities: Walley’s approach [Smith, 1961, Walley, 1991] under the name of imprecise
probabilities is based on a decision making situation and introduces more generally lower and upper
expectations (previsions) where lower and upper probabilities can be seen as special type; Weichsel-
berger’s approach [Weichselberger, 2000, Weichselberger, 2001] extends the definition of Kolmogorov’s
axioms in precise probability theory and presents the envelopes by interval probability; the upper and
lower probability envelopes can also be treated as examples of non-additive probabilities/measures
[Denneberg, 1994] which we will discuss in the next section.

2.2.2 Upper and lower probabilities

In imprecise probability theory firstly introduced in [Smith, 1961, Walley, 1991], a gamble g(ω) is defined
as a decision that yields different outcomes (utilities) in different states of the world. In this section,
a general presentation of upper and lower probabilities is given according to Walley’s work Statistical
reasoning with imprecise probabilities [Walley, 1991].

Definition 6. For Ω the set of possible outcomes ω, A gamble g is a bounded real-valued function on Ω,
i.e.

g : Ω→ R : ω → g(ω)

Accepting a gamble means taking a decision/action in the face of uncertainty. If you were to accept
gamble g and ω turned out to be true then you would gain g(ω) (so you would lose if g(ω) < 0) [Wilson
and Moral, 1994]. Your set of desirable gambles D contains the gambles that you accept.
Buying a gamble g for a price µ results in a new gamble g − µ.

Definition 7 ( [Walley, 1991]). The lower previsionE(g) of g is the supremum acceptable price for buying
g

E(g) = sup{µ : g − µ ∈ D}

Selling a gamble g for a price µ yields a new gamble µ− g.

Definition 8 ( [Walley, 1991]). The upper prevision E(g) of g is the infimum acceptable price for selling
g

E(g) = inf{µ : µ− g ∈ D}

Consider a special gamble case IA where A is an event A ∈ Ω such that

IA(ω) =

{
1 if ω ∈ A
0 if ω /∈ A

This indicator function like gamble normalizes the possible gain/loss.

Definition 9 ( [Walley, 1991]). The upper and lower probability of the event A ⊂ Ω, P (A) and P (A), are
defined as the the upper and lower previsions of IA, i.e.

P (A) = E(IA) P (A) = E(IA)

In this way, prevision for gambles are transfered into probability measures. The corresponding desirable
gamble set D becomes a set of probabilities P such that

P (A) = inf
P∈P

P (A) P (A) = sup
P∈P

P (A)

The lower and upper probabilities, P and P , satisfy the following properties:

- 0 ≤ P (A) ≤ P (A) ≤ 1;
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- P (A) = 1− P (Ac);

- P (∅) = P (∅) = 0 and P (Ω) = P (Ω) = 1;

- If A ⊂ B, then P (A) ≤ P (B) and P (A) ≤ P (B);

- P (A ∪B) ≥ P (A) + P (B), A ∩B = ∅.

- P (A ∪B) ≤ P (A) + P (B), A ∩B = ∅.

- P (A ∪B) ≤ P (A) + P (B) ≤ P (A ∪B), A ∩B = ∅

The epistemic uncertainty is described as the difference between the upper and lower probabilities:
∆ = P − P . When P (A) = P (A), full knowledge on the random phenomenon is available so that the
distribution set P converges to a single point (precise) probability P(A) [You and Tonon, 2012]. We can
say then (precise) probability theory is a special case of imprecise probabilities.
Given only P (A) and P (A), the exact set of probabilities bounded by them is given by

PP,P = {P |∀A ∈ A, P (A) ≤ P (A) ≤ P (A)}

and normally
P ⊂ PP,P .

The p-boxes model which represents the probability distribution by upper and lower bounds on cumu-
lative probability functions [F , F ], can be seen as a special case imprecise probabilities where .

PF,F = {P |∀x ∈ Ω, F (x) ≤ F (x) ≤ F (x)}

Example 7 ( [Utkin and Kozine, 2010]). Another most used approach is the imprecise distributions for
a certain distribution which is a set of reasonable priors (a set of distribution parameters Θ) which indi-
cates the convergence speed of the whole set. Given the group of distribution the imprecise probabilities
can also be presented as a group of parameters.

- Imprecise Dirichlet distribution [Utkin and Kozine, 2010]: a set of Dirichlet distribution Diri(s, t),
P , such that the hyper-parameters Θ are t = (t1, ..., tK) with ti ∈ (0, 1),∀i = 1, ...,K the expected
mean of the proportion of the i category and s (usually fixed and between one and two) is the
influence of the prior distribution on posterior distribution, i.e.

Θ = {(s, t) : s > 0;

n∑
i=1

ti = 1, t = (t1, ..., tK) ∈ (0, 1)
K}

Given n observations of a random variable following multinomial distribution with K categories
where ki is the number of observations of the ith category, then the estimation of the proportion
of this category pi is given by

p̂i =
ki + sti
s+ n

and varies freely between
ki

s+ n
≤ p̂i ≤

ki + s

s+ n

Uncertainty combination

Example 8 ( [Kozine and Filimonov, 2000]). Consider two different lower and upper probabilities pair-
wise for the same random phenomenon P1 and P2. Let P 1(A), P 1(A) and P 2(A), P 2(A) denote the
upper and lower probabilities respectively based on P1 and P2, i.e.

P 1(A) = inf
P∈P1

P (A) P 1(A) = sup
P∈P1

P (A)

P 2(A) = inf
P∈P2

P (A) P 2(A) = sup
P∈P2

P (A)

the combination rules for two imprecise probabilities can be:
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- Conjunction rule:

P (A) = max{P 1(A), P 2(A)}
P (A) = min{P 1(A), P 2(A)}

- Unanimity rule:

P (A) = min{P 1(A), P 2(A)}
P (A) = max{P 1(A), P 2(A)}

The conjunction rule narrows down the uncertainty range by taking the maximum of the lower prob-
abilities and the minimum of the upper probabilities. In this case, both sources are trusted and it can
be seen as an optimistic result. The unanimity rule on the contrary scarifies the precision to ensure the
range of uncertainty, which means that there is doubt on both sources. Both combination rules are based
on subjective hypothesis on information source reliability.

Example 9 ( [Kozine and Filimonov, 2000]). For events Ai, i = 1, ..., n, we have

P (

n⋂
i=1

Ai) =

{
0 if

∑n
i=1 P (Ai) ≤ n− 1∑n

i=1 P (Ai)− (n− 1) if
∑n
i=1 P (Ai) ≥ n− 1

(2.5)

P (

n⋂
i=1

Ai) = min
1≤i≤n

P (Ai) (2.6)

P (

n⋃
i=1

Ai) = max
1≤i≤n

P (Ai) (2.7)

P (

n⋃
i=1

Ai) =

{ ∑n
i=1 P (Ai) if

∑n
i=1 P (Ai) ≤ 1

1 if
∑n
i=1 P (Ai) > 1

(2.8)

which can be applied on calculating reliability of series and parallel systems directly as well as path-cut
system description.

2.2.3 Discussion

The upper and lower previsions are more general forms than upper and lower probabilities. The upper
and lower probabilities are not additive measures which means they are not real “probability” according
to probability theory definition. Uncertainty is presented by the interval between two envelops.
However, when we study the uncertainty propagation of outcome determined by a function of a set
of others with or without dependence, the maximum or minimum calculation in combination rules
(Example 8) seems to overestimate the degree of uncertainty at system level.

2.3 Theory of possibility

2.3.1 Fuzzy set theory

Fuzzy set theory is firstly introduced by Zadeh in [Zadeh, 1965] on extending the classical set theory
(crisp set) where an element x ∈ Ω can be either “in” or “not in” a certain set A ∈ A (class of subsets of
Ω). In this section we will use the definitions in [Zadeh, 1965] and in Fuzzy Sets and Systems: Theory and
Applications by D. Dubois and H. Prade
Let Ω be a space of points (objects), with a generic element of Ω denoted by ω. Thus, Ω = {ω}.

Definition 10 (Fuzzy set). A fuzzy set (class) A in Ω is characterized by a membership (characteristic) func-
tion µA(ω) which associates with each point in Ω a real number in the interval [0, 1], with the value of
µA(ω) at ω representing the “grade of membership” of ω in A. The nearer the value of µA(ω) to unity,
the higher the grade of membership of ω in A.

A is characterized by the set of pairs

A = {(ω, µA(ω)), ω ∈ Ω}
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As we have seen in the definition, comparing to classical set theory, fuzzy set theory has more space for
uncertainty thanks to the membership function.
For ω ∈ Ω

- µA(ω) = 1 signifies that ω is a full member of A;

- µA(ω) = 0 signifies that ω is not a member of A;

- 0 < µA(ω) < 1 signifies that ω is a fuzzy member of A;

Indeed, when the membership function is binary, i.e.

µA(ω) : Ω→ {0, 1}
it is equivalent to the indicator function in classical probability theory, i.e.

1A(ω) =

{
1 if ω ∈ A
0 if ω /∈ A

The equality of two fuzzy sets is defined by total equal membership functions, i.e., A = B if and only if
µA(ω) = µB(ω) for all ω in Ω.
The containment between two fuzzy sets is defined as follow: A ⊂ B if and only if µA ≤ µB . The classical
set operation union(∪) and intersection(∩) can be extended to fuzzy sets A and B in Ω as follow

∀ω ∈ Ω, µA∪B(ω) = max(µA(ω), µB(ω))

∀ω ∈ Ω, µA∩B(ω) = min(µA(ω), µB(ω))

where µA∪B and µA∩B are respectively the membership functions of A ∪ B and A ∩ B. The complement
A of a fuzzy set A is defined by the membership function

∀ω ∈ Ω, µA(ω) = 1− µA(ω)

We also have the following properties on set operations which are true for both crisp sets and fuzzy sets:

- Commutativity: A ∪B = B ∪A; A ∩B = B ∩A
- Associativity: A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C
- Idempotency: A ∪A = A, A ∩A = A

- Distributivity: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

- A ∩ ∅ = ∅, A ∪ Ω = Ω

- Identity: A ∪ ∅ = A, A ∩ Ω = A

- Absorption: A ∪ (A ∩B) = A, A ∩ (A ∪B) = A

- De Morgan’s laws: (A ∩B) = A ∪B, (A ∪B) = A ∩B

- Involution: A = A

- Equivalence formula: (A ∪B) ∩ (A ∪B) = (A ∩B) ∪ (A ∩B)

- Symmetrical difference formula: (A ∩B) ∪ (A ∩B) = (A ∪B) ∩ (A ∪B)

The excluded-middle law no longer stays true for fuzzy sets, i.e.

A ∩A 6= ∅, A ∪A 6= Ω

Definition 11. A fuzzy set A is said to be normalized if and only if ∃ω ∈ Ω such that µA(ω) = 1

Definition 12. The α-cuts of a fuzzy set A, Aα is the fuzzy subset of A such that

Aα = {x : µ(x) ≥ α}
so that

A =
⋃

α∈[0,1]

Aα

and its membership function is given by

µAα(x) = αA(x)

Definition 13. A fuzzy set A is convex iif it α-cuts are convex, i.e.

µA(λω1 + (1− λ)ω2) ≥ min(µA(ω1), µA(ω2) ∀ω1 ∈ Ω,∀ω1 ∈ Ω,∀λ ∈ [0, 1],
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Fuzzy numbers and fuzzy interval

Definition 14 (Fuzzy number [Carlsson and Fullér, 2005]). A fuzzy number X is a fuzzy set of the real
line R with a normal, fuzzy convex and continuous membership function of bounded support.

A general fuzzy number membership function can be given as follow [Carlsson and Fullér, 2005]

µX(ω) =



L

(
a− ω
α

)
if ω ∈ [a− α, a]

1 if ω ∈ [a, b], a ≤ b
R

(
ω − b
β

)
if ω ∈ [b, b+ β]

0 otherwise

where [a, b] is the peak of A and a and b are the lower and upper modal values; L and R are shape func-
tions: [0, 1] → [0, 1] with L(0) = R(0) = 1 and L(1) = R(1) = 0 which are non-increasing, continuous
mappings.
The fuzzy set is a fuzzy number if a = b; otherwise, it is called a fuzzy interval. A value x is more likely
to be included in the fuzzy set in this case as it is closer to the modal value or here the bounds of [a, b].
Among all possible membership functions, triangular/trapezoidal ones are widely used with both sides
linearly increasing or decreasing.

Example 10 (Triangular fuzzy number(TFN)).

µX(x) =


x− c
a− b , if x ∈ [b, a]

c− x
c− a , if x ∈ [a, c]

0, otherwise.

x

µX(x)

1

0
b a c

Figure 2.1: Triangular fuzzy number (TFN) membership function

We notice that the degree of uncertainty becomes higher as the size of the support space, [b, c], increases.

Example 11 (Trapezoidal fuzzy interval).

µX(x) =



x− c
a− c , if x ∈ [c, a]

1, if x ∈ [a, b]
d− x
d− b , if x ∈ [b, d]

0, otherwise.

x

µX(x)

1

0
c a b d

Figure 2.2: Trapezoidal fuzzy interval membership function
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2.3.2 Theory of possibility

Possibility and necessity functions (theories) is firstly interpreted formally under fuzzy set framework
by Zadeh [Zadeh, 1978]. The membership function defines gradual relationship between an element
and a fuzzy set. The possibility function and the necessity function evaluate the relationship between
subsets Ω and the fuzzy set. The theory is then developed by Dubois and Prade [Dubois and Prade,
1988].
In this section we recall the basic notions in [Georgescu, 2012] and [Dubois and Prade, 1988].
Let Ω be a non-empty set and 2Ω its power set.

Definition 15. A possibility measure on Ω is a function Π : 2Ω → [0, 1] such that the following conditions
are verified:

- Π(∅) = 0

- Π(Ω) = 1

- For any family {Ai}i∈I of subsets of Ω,

Π(
⋃
i∈I

Ai) = sup
i∈I

Π(Ai)

Definition 16. A possibility distribution on Ω is a function µ : Ω→ [0, 1] such that

sup
x∈Ω

µ(x) = 1

µ is said to be normalized if µ(x) = 1 for at least one x ∈ Ω.

Under the fuzzy set framework the possibility distribution can also be seen as a membership function.
Then if Ω is finite, the possibility function can be defined as

Π(A) = sup{µ(ω)|ω ∈ A}, ∀A ⊆ Ω

The condition Π(A) = 1 indicates “A is possible” which means that a subset ofA is sure. However, there
is no information about the location of the sure part inside A.
Then a conjugate measure is introduced as necessity.

Definition 17. A necessity measure on Ω is a function N : 2Ω → [0, 1] such that the following conditions
are verified:

- N(∅) = 0

- N(Ω) = 1

- For any family {Ai}i∈I of subsets of Ω,

N(
⋃
i∈I

Ai) = inf
i∈I

N(Ai)

N(A) = 1 means that A is sure or necessarily true. Thus, the possibility measure also can be defined as

Π(A) = 1−N(A), A ⊆ Ω

which means an event is necessary when its contrary is impossible. Using this relation necessity function
can be constructed by possibility distribution as follows

N(A) = inf{1− µ(ω)|ω /∈ A}
Proposition 1. Let Π be a possibility measure and N a necessity measure on Ω. For any A1, A2 ∈ 2Ω, if
A1 ⊆ A2, then Π(A1) ≤ Π(A2) and N(A1) ≤ N(A2).

The other properties are also verified

- Π(A) ≥ N(A), ∀A ⊆ Ω

- N(A) > 0⇒ Π(A) = 1

- Π(A) < 1⇒ N(A) = 0

- Π(A) + Π(A) ≥ 1, ∀A ⊆ Ω

- N(A) +N(A) ≤ 1, ∀A ⊆ Ω

16



2.4 Theory of belief functions

2.4.1 Introduction

Theory of evidence is firstly introduced in [Dempster, 1968] as Dempster’s upper and lower probabilities
and in [Shafer, 1976] as Shafer’s theory of evidence. The aim of this theory is to represent degree of belief
with ignorance such as we know the truth lies on a domainA for a certain degree of belief but there is no
information indicating where exactly the truth locates inside A. In order to achieve this goal, Dempster-
Shafer theories extend the axiom of additivity in definition of probability theory while constructing basic
probability numbers.

2.4.2 Dempster-Shafer (DS) theory of belief functions

In this section we adopt the basic concepts of belief functions formalized in Mathematical Theory of
Evidence by Glenn Shafer [Shafer, 1976].

Definition 18 (Frame of discernment). Given a question of interest, let Ω be a finite set of possible
answers to the question (frame), called a frame of discernment, and 2Ω be the set of all subsets of Ω:

2Ω = {A|A ⊆ Ω}
Definition 19 (Belief function). A real function over the subsetsBel : 2Ω → [0, 1] is called a belief function
if and only if it satisfies the following three axioms:

- Axiom 1: Bel(∅) = 0

- Axiom 2: Bel(Ω) = 1

- Axiom 3: For any whole number n and subsets A1, A2, ..., An ⊂ Ω,

Bel

(
n⋃
i=1

An

)
≥

∑
I⊂{1,2,...,n};I 6=∅

(−1)
|I|+1

Bel(
⋂
i∈I

Ai)

where |I| = card(I).

Definition 20. A function m : 2Ω → [0, 1] is called a mass function (also called basic belief assignment or
basic probability assignment) if

- m(∅) = 0

-
∑
A⊆Ωm(A) = 1

An element A ∈ Ω is called a focal element if m(A) > 0.
Belief function is not additive and is able to represent the degree of belief with ignorance. Thus, the mass
function can not be divided into single elements of Ω (limited divisibility) so that only focal elements
have their mass function different than 0. Notice that probability measure is a special case of belief
functions on limiting Axiom 3 to total equality, and a probability distribution over Ω is a special case of
mass function such that only singletons {x}, x ∈ Ω are focal elements.
However, if the mass function of empty set is not zero, m(∅) > 0, the mass function is called unnormal-
ized. In this case, the sample space is not properly defined due to lack of information which can be used
to evaluate the used model of the random phenomenon. Generally, as the hypothesis are validated, we
consider that m(∅) = 0 by default.
A mass function that has Ω as unique focal element, i.e. m(Ω) = 1 is called vacuous, which under the
closed world hypothesis, represents total ignorance.
Given mass functions m(A) the belief function is defined by

Bel(A) =
∑
B⊆A

m(B)

Definition 21 (Plausibility function). A plausibility function Pl(A) is defined as the sum of beliefs not
committed to A

Pl(A) = 1−Bel(A)

also as
Pl(A) =

∑
B∩A6=∅

m(B)
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For any A ∈ Ω, we always have
Bel(A) ≤ Pl(A)

Given a belief function or a plausibility function one may construct such a mass function for each A ∈
Ω\{∅} using Möbius transformation

m(A) =
∑

B⊆A,B 6=∅
(−1)

|A\B|
Bel(B)

=
∑

B⊆A,B 6=∅
(−1)

|A\B|
(1− Pl(B̄))

where |A \B| is the cardinality of A \B.
The belief function measures the degree of belief in a conservative point of view. On the contrary, the
plausibility function gives the largest possible field of the studied set and the degree of belief in an
optimistic point of view. Then the expectation of degree of belief for an event A is often expressed in
form of [bel(A), pl(A)] where interval itself represents the uncertainty estimated. However, at decision
level we still need a expectation with precision. From different propositions [Sudano, 2006], the pignistic
transformation is the most used and gives a pignistic probability:

BetP (B) =
∑
A⊆Ω

|A ∩B|
|A|

mΩ(A)

(1−mΩ(∅))

Consider that the focal sets of the mass function are consonant/nested, i.e.

A1 ⊂ A2 ⊂ ... ⊂ Anfocal
Then we have

pl(A ∩B) = max(pl(A), pl(B)), ∀A,B ⊆ Ω

the plausibility function is a possibility function and the belief function is equivalent to the necessity
function. Moreover, the possibility function can be seen as a contour function

µ(t) = pl({x}), t ∈ Ω

The theory of belief function generalizes theory of possibility and as result, the calculation of theory of
belief function is more complex than the one of possibility theory.

2.4.3 Belief function on R
In [Smets, 2005], the belief function is extended from finite frame of discernment to the extended set of
real numbers R = [−∞,+∞] with all focal elements closed intervals on R.

Definition 22. The set R = R∪ {−∞,+∞} obtained by adjoining the two infinity elements to the set of
real numbers R is called the set of extended real numbers.

Definition 23. Suppose α, β ∈ R, α < β. The F set is defined as the set of all intervals on R including
the empty set and [−∞, y], [x,∞] and [−∞,∞], i.e.

F = {[x, y], (x, y], [x, y), (x, y) : x, y ∈ R}

Definition 24. A basic belief density m is a non-negative function on F such that m(A) = 0 if A is not a
closed interval in F or ∅ and

κ =

∫ x=+∞

x=−∞

∫ y=+∞

y=−∞
m([x, y])dydx ≤ 1

and m(∅) = 1− κ.

The mass function is transformed into probability density function(pdf), i.e.

f(a, b) = m([a, b]), if a ≤ b (2.9)
= 0, otherwise (2.10)

The related functions (belief, plausibility, etc.) are defined on the Borel σ-algebra of closed intervals on
R.
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• Belief function:

Bel([a, b]) =

∫ x=b

x=a

∫ y=b

y=x

m([x, y])dydx Bel(∅) = 0

• Plausibility function:

Pl([a, b]) =

∫ x=b

x=−∞

∫ y=+∞

y=max(a,x)

m([x, y])dydx pl(∅) = 0

2.4.4 Uncertainty propagation: combination rules and operations

For evidence theory, the uncertainties from different random phenomena propagate as mass functions
and are combined according to different combination rules and operations: vacuous extension, marginal-
ization, conjunctive rule of combination and the Möbius Transform.
Let the mass function defined on Cartesian production space Ωi × Ωj , mΩiΩj : 2Ωi × 2Ωj → [0, 1].

Definition 25. The marginalization operator on Ωi transfersmΩiΩj into a marginal mass functionmΩiΩj↓Ωi :
Ai → [0, 1] by

mΩiΩj↓Ωi(A) =
∑

B⊆Ωi×Ωj/Proj(B↓Ωi)=A
mΩiΩj (B)

for all A ⊆ Ωi or A ∈ Ai where Proj(B ↓ Ωi) = {a ∈ Ωi|∃b ∈ Ωj , (a, b) ∈ B}.

Definition 26. Vacuous extension is the inverse operation which projects a mass functionmΩi : Ai → [0, 1]
into space Ωi × Ωj as follow

mΩi↑ΩiΩj (A) =

{
mΩi(B) if A = B × Ωj
0 otherwise

Vacuous extension is the easiest way to extend the information including uncertainty of a single ran-
dom component to a space combined of multiple random elements supposing that all components are
independent and without any other assumption.
Combination rules combine mass functions defined on the same space and describing the same random
phenomenon with different sources into a single mass function including all “useful” information. There
are several different combination rules proposed with hypothesis on degree of belief on each source.

Example 12. Conjunctive rule of combination aggregates two mass functions m1 and m2 from distinct
and reliable sources.

(m1 ∩m2)(A) =
∑

C∩B=A

m1(B)m2(C), A,B,C ⊆ Ω

Example 13. Dempster’s rule of combination is a normalized alternative of conjunctive combination
rule:

• (m1

⊕
m2)(∅) = 0

• (m1

⊕
m2)(A) = 1

κ

∑
B∩C=Am1(B)m2(C), ∀A 6= ∅

where κ =
∑
B∩C=∅m1(B)m2(C) < 1 quantifies the conflict between two mass functions.

Example 14. Disjunctive rule of combination is based on assumption that at least one of the two distinct
information sources of mass functions m1 and m2 is reliable:

(m1 ∪m2)(A) =
∑

C∪B=A

m1(B)m2(C), A,B,C ⊆ Ω

The next step is to use the structure function ϕ : Ω1 × ... × Ωn → Ωs to obtain the mass functions
at system level. In [Sallak et al., 2013] a configuration mass function is proposed which contains all
possible combination between components and system mConfig : Ω1 × ...×Ωn ×Ωs → [0, 1]. This mass
function is then combined with the mass function mΩ1...Ωn obtained by vacuous operation representing
component level information by different combination rules. Finally, the system level mass function is
calculated by marginalization operator.
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2.5 Relation between uncertainty theories

As mentioned below, there are many different theories modeling uncertainties. There are a lot of simi-
larities between them. In this section we are going to discuss the relation between these theories from
different point of views. Finally, we also talk about how to combine information modeled by different
representations.

Element functions In our opinion, starting with probability theory and set theory, the elementary
functions proposed by other uncertainties theories are expanded from the same framework but with
different constraints relaxed:

• Imprecise probabilities: Instead of using only one probability distribution to describe random
behavior of a variable, imprecise probabilities propose a set of probability distributions. Each el-
ement of imprecise probability has all properties of probability distributions and gives different
probability values for all events. Hence, the uncertainty is represented by the range of these prob-
abilities.

• Belief function: Comparing with the ones defined in probability distributions (Probability mass
function) which represents probability of singleton/atomic event, pX(x) = P({X = x}), the mass
of other events are given by additivity, the mass functions in belief function theory can be at-
tributed to all events. Probability of unions of elementary events A and B can be given by

P(A ∪B) = P(A) + P(B)− P(A ∩B)

However, if the mass function value of such union of events is not not especially attribute, the
mass function in belief theory gives 0 which indicates no certain/specific information is available
for event A ∪ B. On the contrary, if no information of a certain subset member is provided, the
corresponding mass value should be attributed to this subset from a conservative point of view.

• Fuzzy set and Possibility: Fuzzy set theory extends the binary membership indicator to a function
whose value varies from 0 to 1. Then the membership function can present how likely or probable
a certain value is a member of the studied set.

• Random set theory generalizes the studied random outputs from a certain value to a set within
similar probability space. In order to describe relation between two sets, the definition of event
are extended to whether the sets have common members, which unlike total equality presents
corresponding uncertainty.

Measure functions Next, we compare measures proposed by these theories. The lower and upper
probabilities in imprecise probabilities are not probability measures as it is not sure that they come from
the same distributions. Under the framework of measure theory, the membership function can also be
defined as a monotonic measure on Ω [Choquet, 1954, Sugeno, 1974]

Definition 27 (Fuzzy measure [Sugeno, 1974]). LetA be an σ-algebra on Ω. A fuzzy measure is µ : A →
[0, 1] if it satisfies

- µ(∅) = 0; µ(Ω) = 1.

- Monotony: if A,B ∈ A and A ⊆ B, then µ(A) ≤ µ(B)

Probability, belief function, plausibility function, membership function, necessity and possibility func-
tions, upper and lower probabilities, and random set probability are fuzzy measures [Garmendia, 2005]
over the same measurable space (Ω,A). However, the mass function in belief function theory does not
satisfy any of these above conditions so that it is not a fuzzy measure.
In a measurable space (Ω,A), theory of evidence introduces two principle fuzzy measures: belief func-
tion and plausibility function. Belief function Bel is super-additive such that

Bel(A ∪B) ≥ Bel(A) +Bel(B)

Its dual function plausibility Pl is a sub-additive measure such that

Pl(A ∪B) ≤ Pl(A) + Pl(B)
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Uncertainty Type of Difference Measure
theory uncertainties comparing with

probability theory
Probability theory Aleatory Probability

Imprecise Aleatory; A set of probability Upper and lower
probabilities epistemic distributions probabilities

Theory of belief Epistemic Need to specify Belief;
functions mass of each subset plausibility

Theory of possibility Epistemic Continue indicator Possibility;
(based on fuzzy set) function necessity
Random set theory Aleatory; Set-valued Capacity function

epistemic random variable

Table 2.1: Comparison of uncertainty theories

Since for any set I ,
Π(
⋃
i∈I

Ai) = sup
i∈I

Π(Ai)

N(
⋂
i∈I

Ai) = inf
i∈I

N(Ai)

possibility measure and necessity measure verify respectively super-additivity and sub-additivity.
As in probability theory, we also have

P(A ∪B) ≤ P(A) + P(B)

in terms of additivity, the possibility measure is a plausibility function and the necessity and probability
measures are special case of belief function.
The probability (capacity functional) measure in random set theory can be also seen as a fuzzy measure.

Random set framework Random set generalizes the probability theory. Under the random set frame-
work, several widely used uncertainty theories can be treated as various interpretations of capaci-
ties [Nguyen, 2006]. The imprecise probability (upper and lower probabilities) can be seen as con-
sonant(nested) random sets. The capacity functional is the plausibility function in term of theory of
evidence with normalization. The containment functional of a random closed set is equivalent to the
continuous belief function. The possibility and necessity function are also able to be interpreted with
random set thanks to one-point-coverage function of random set which play the same role as member-
ship function on fuzzy set theory.

2.6 Conclusion

In all the theories mentioned in previous sections, the notion of "set" is used to present epistemic un-
certainty of a certain point value. The objective of this thesis is to propose a method to present both
stochastic and epistemic uncertainties under the same framework. After comparing different uncer-
tainty theories Table 2.1, imprecise probabilities and random set theory are able to present both types of
uncertainties, and these two theories can be transferred between each other generally. In the following
chapters, we use random set to present system dependability and other performance indicators and the
associated uncertainties for the following reasons:

• Random set presents both stochastic and epistemic uncertainties. The notion of "set" is represented
in a more comprehensible and direct way.

• Random set is a general form of random variable and can be seen as imprecise probabilities so that
it is compatible with results obtained from classical probability theory imprecise probabilities.
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Chapter 3

Reliability assessment on binary
systems

3.1 Binary system modeling

In this section, we start to apply random set theory on system reliability assessment problem by study-
ing the simplest component and system model where there are a full working state (good state) and a
complete failure state (down state). Here, we use the notations and definitions from Fault Trees by N.
Limnios [Limnios, 2007].

3.1.1 Basic modeling

Consider a binary system composed of d binary components indexed by

C = {1, ..., d}.

The state of each component Ci (i = 1, ..., d) is represented by binary random variable xi such that

xi =

{
1 if component Ci is in good state
0 if component Ci is in down state

Let x = (x1, ..., xd) ∈ {0, 1}d denote the vector describing the states of all components. Then the state of
the system is determined by the states of all its components through a structure function

ϕ : {0, 1}d → {0, 1}

so that

ϕ(x) =

{
1 if the system is in good state
0 if the system is in down state

Let binary variable xs describe the system state, we have

xs = ϕ(x1, ..., xd)

Then the information concerning the system S can be represented by the couple

S = (C, ϕ).

Let 1i and 0i (i ∈ C) respectively denote the conditions xi = 1 and xi = 0, i.e.

(1i,x) = (x1, ..., xi−1, 1, xi+1, ..., xd)

(0i,x) = (x1, ..., xi−1, 0, xi+1, ..., xd)

The structure function is composed of binary operations:
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C1

C2

C3

Figure 3.1: A system shown in RBD

- Addition (u): Let xA and xB denote respectively the binary indicator of “good state” events for
component A and B. Consider that the system is in good state (xS = 1) if and only if A or B is in
good state, the relation can be described by the set union operation ∪ and binary operation u

S = A ∪B ⇔ xS = xA u xB = xA + xB − xAxB
The corresponding vector operation is defined as follows

xu y = (x1 u y1, ..., xd u yd)

- Multiplication (·) : The system state is in good state if and only if both components A and B are in
good state. The relation corresponds set event operation ∩ and binary operation ·

S = A ∩B ⇔ xS = xA · xB = xAxB

The corresponding vector operation is defined as follows

x · y = (x1 · y1, ..., xd · yd)

- Negation (x) : Negation operation gives the complement of x such that

x =

{
0 if x = 1
1 if x = 0

The corresponding vector operation is defined as follows

x = (x1, ..., xd)

3.1.2 Graphical representation of systems

Reliability Block Diagrams (RBDs)

Reliability Block Diagrams (RBDs) represent systems by a flow diagram:

- The flow cannot pass components and subsystems in down state.

- If there exists at least one path which allows the flow to pass from input to output, the system is
in good state; otherwise the system is in down state.

For example, the structure function of the system shown in Figure 3.1 is given by

ϕ(x) = (x1 u x2) · x3 (3.1)

In this thesis, we use RBD to present the simple systems for clarity.

Fault Trees (FTs)

Fault tree (FT) shows the relation between system failure or undesirable event and elementary failure
event in tree structure:

- The root (the top node in a tree) denotes the system failure (or undesirable event).

- Each leaf (node with no children) represents an exact situation, for example, a component failure.

- Internal nodes (nodes with at least one child) are called gates which represent logical relationship
between nodes, for example, logical AND/OR.

The system in Figure 3.1 can be also shown in fault tree shown (Figure 3.2) where the logical operation
u is equivalent to logical gate OR and · to logical gate AND.
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System failure

C1 fails C2 fails

C3 fails

G02

G03

Figure 3.2: Fault tree (FT) of system shown in Figure 3.1

Binary decision diagram (BDD)

Binary decision diagram (BDD) is a directed acyclic graph, where all paths through it start at the root
node and end in one of the two terminal nodes denoting system states: system good state 1s and system
down state 0s [Remenyte-Prescott and Andrews, 2008]. Except terminal nodes, all other nodes denote a
component Ci from which there are two types of arrows: 0-arrow (dashed arrow) denotes the condition
that Ci is in down state (event 0i); 1-arrow (solid arrow) represents the condition that the component
Ci is in good state (event 1i). Each path from the root to a terminal node describes a compressed corre-
spondence between component state condition (nodes and arrows) and system state (terminal nodes).
All possibles conditions which can determine the system state should be shown in BDD.
For example, Figure 3.3 illustrates the system shown in Figure 3.1. There are two paths ending with 1s:

(13, 12, 1s), (13, 02, 11, 1s)

They describe all possible conditions resulting in system good state (1s) so that we can rewrite the
structure function by translating 1i as xi and 0i as xi and then regrouping all paths using operator u.
The obtained structure function is given by

ϕ(x) = x3x2 u x3x2x1

which is equivalent to (3.1). With paths terminating in 0s:

(03, 0s), (13, 02, 01, 0s)

we can also rewrite the structure function ϕ as

ϕ(x) = x3 u x3x2x1 ϕ(x) = 1− ϕ(x)

3.1.3 Basic properties

In this section, we introduce some basic properties of binary systems.

Definition 28 (Essential variable [Limnios, 2007]). A variable xi is called to be essential if there exists a
vector x such that

ϕ(1i,x) 6= ϕ(0i,x)

On the contrary, the variable xi is said to be inessential.

Definition 29 (Equal functions [Limnios, 2007]). Two functions ϕ1(x) and ϕ2(x) are said to be equal
i.e. ϕ1(x) ≡ ϕ2(x) if one is deduced from the other or vice visa by adjunction or elimination of the
inessential variables.

Definition 30 (Dual function [Limnios, 2007]). Given the function ϕ(x), its dual function ϕ(x) is defined
as follows

ϕ(x) = 1− ϕ(x)
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03
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02

11 01

Figure 3.3: Binary decision diagram (BDD) of system shown in Figure 3.1

C1 C2 · · · Cn

Figure 3.4: Serial system

Definition 31 (Monotone structure function [Limnios, 2007]). The structure function ϕ(x) is said to be
monotone with respect to the variable xi if

ϕ(1i,x) ≥ ϕ(0i,x)

If a structure function ϕ(x) is monotone with respect to all the variables, then it will be called monotone.

Definition 32 (Coherent structure function [Limnios, 2007]). A structure function is called coherent if
the structure function is monotone and all its variables are essential.

The system is called coherent if its structure function is coherent.

Example 15 (Elementary structure systems [Limnios, 2007]). - Serial system: A series system is in
good state if and only if all its components are in good state simultaneously. All component fail-
ures can cause system failure so that its structure function is given by

ϕ(x) = x1 · ... · xd = min(x1, ..., xn) =

d∏
i=1

xi

- Parallel system: On contrary to series systems, a parallel system is in good state if at least of its
components is still in good state. The system level failure occurs only if all system components fail
so that its structure function is given by

ϕ(x) = x1 u ...u xd = max(x1, ..., xd) = 1−
d∏
i=1

(1− xi)

- k-out-of-d system: A k-out-of-d system is composed of d components. The system is in good state
if at least k (1 ≤ k ≤ d) components are in good state at the same time. The system fails if d− k+ 1
components are not in good state at the same time. Its system structure function is given by

ϕ(x) =

{
1 if

∑d
i=1 xi ≥ k

0 otherwise

When k = 1, the system becomes a parallel system; when k = d, it is a series system. The dual
system of a k-out-of-d:G system is a (d− k + 1)-out-of-d:F system.
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C1

C2

...

Cn

Figure 3.5: Parallel system

C1

C2

...

Cn

k/n

Figure 3.6: k-out-of-d system

Definition 33 (Complex system [Limnios, 2007]). A system is called a complex system or a system with
complex structure if it cannot be directly decomposed into combination of elementary structures.

In order to describe the structure function of a complex system, the definition of path and cut sets is
introduced.
The relation between component-level and system-level states can be simplified by listing only the com-
binations of good-state components resulting in system good state or the combinations of down-state
components causing system failure (down state).

Definition 34 (Path-set [Limnios, 2007]). A path-set is a sub-set of components whose simultaneous
good functioning will assure the good working of the system, which is independent of the states of the
other components. A path-set P can be presented by component index subset of C = {1, ..., d} such that

ϕ(x) = 1

for every x = (x1, ..., xd) given by

xi =

{
1 if i ∈ P
0 or 1 otherwise

Definition 35 (Cut-set [Limnios, 2007]). A cut set is defined as a sub-set of components whose simulta-
neous failure leads to the system failure, which is independent of the states of the other components. A
cut-set K can be described by a component index subset of C such that

ϕ(x) = 0

for every x = (x1, ..., xd) given by

xi =

{
0 if i ∈ K
0 or 1 otherwise

Minimal path-sets and minimal cut-sets describe minimal requirements to obtain system level good or
down states.
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C1

C2

C4

C5

C3

Figure 3.7: Bridge system

Definition 36 (Minimal path-sets [Limnios, 2007]). A minimal path-set is a path-set which does not
contain another path-set.

Definition 37 (Minimal cut-sets [Limnios, 2007]). A minimal cut-set is a cut-set that does not contain
another cut-set.

Let K and P denote respectively the minimal cut-sets composed of nK minimal cuts K1, ...,KnK and
minimal path-sets of nP minimal paths P1, ...,PnP . The structure function can be written as a function
of minimal cut-sets or path-sets, i.e.

ϕ(x) =
∏
i∈P1

xi u · · ·u
∏

i∈PnP

xi (3.2)

= 1−

∏
i∈K1

xi u · · ·u
∏

i∈KnK

xi

 (3.3)

Example 16 (Bridge structure). Bridge structure (Figure 3.7) is one of the simplest complex system struc-
tures. It cannot be decomposed into series or parallel structures without replicated components. Its
minimal cut-sets K and path-sets P are given by

K = {(1, 2), (4, 5), (1, 3, 5), (2, 3, 4)}

P = {(1, 4), (2, 5), (1, 3, 5), (2, 3, 4)}
Then using (3.2) and (3.3) its structure function becomes

ϕ(x) = x1x4 u x2x5 u x1x3x5 u x2x3x4

ϕ(x) = 1− (x1x2 u x4x5 u x1x3x5 u x2x3x4)

3.2 Probabilistic modeling and exact methods

Consider a system S = (C, ϕ) as described previously. Let Xi a binary random variable (r.v.) denote
the state of the component Ci (i ∈ C), and X = (X1, ..., Xd) ∈ {0, 1}d denote the corresponding random
vector as well as their complements Xi = 1−Xi.
The reliability of component Ci (i ∈ C), pi, is defined as follows

pi := P[Xi = 1] = E[Xi]

so that Xi follows Bernoulli distribution

Xi ∼ Bernoulli(pi)

We also define the component’s failure probability qi (i ∈ C) and the vector reliability (failure probability)
of all system components p (q) as follows

qi := P[Xi = 1] = E[Xi] = P[Xi = 0] = 1− pi
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p = (p1, ..., pd)

q = (q1, ..., qd) = (1− p1, ..., 1− pd)
p + q = 1 = (1, ..., 1)

Let Xs denote the binary random variable describing the system state xs so that

Xs = ϕ(X)

The system reliability ps (failure probability qs) is defined as

ps := P[Xs = 1] = E[Xs] = P[ϕ(X) = 1] = E[ϕ(X)]

qs := P[Xs = 0] = P[ϕ(X) = 0] = 1− E[ϕ(X)] = 1− ps
Consider that Xs follows a Bernoulli distribution

Xs ∼ Bernoulli(ps)

so as the dual variable Xs = 1−Xs

Xs ∼ Bernoulli(qs)
The system reliability (failure probability) can be also treated as a function of component reliability p
(or failure probability q)

R,Q : [0, 1]
d −→ [0, 1]

such that
ps = R(p) = R(1− q)

qs = Q(p) = Q(1− q)

Suppose that all system components are pairwise independent, we have

R(p) = E[ϕ(X)]

=
∑

x∈{0,1}d
ϕ(x)P{X = x}

=
∑

x∈{0,1}d:ϕ(x)=1

∏
i∈C

pxii (1− pi)1−xi

Q(p) = E[1− ϕ(X)]

=
∑

x∈{0,1}d
(1− ϕ(x))P{X = x}

=
∑

x∈{0,1}d:ϕ(x)=0

∏
i∈C

pxii (1− pi)1−xi

Example 17. For series system composed of d independent components C1, ..., Cd, using the expression:

R(p) =

d∏
i=1

pi

For parallel system composed of d independent components C1, ..., Cd, using the expression:

R(p) = 1−
d∏
i=1

(1− pi)
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3.2.1 Inclusion-exclusion method

Given K = {K1, ...,KnK} and P = {P1, ...,PnP } the minimal cut-sets and minimal path-sets of the
system (S, ϕ), these two functions can be written as the union of down-state events in minimal cut-sets
or good-state events in minimal path-sets

R(p) = P{eP1 ∪ ... ∪ ePnP }

Q(p) = P{eK1 ∪ ... ∪ eKnK}
where ePi and eKi denote respectively the following events

ePi =
⋂
j∈Pi

1j 1 ≤ i ≤ nP

eKi =
⋂
j∈Ki

0j 1 ≤ i ≤ nK

Using the inclusion-exclusion formula, we have the following development

R(p) = P

( ⋃
Pi∈P

ePi

)

=

nP∑
i=1

P(ePi )−
nP−1∑
i=1

nP∑
j=i+1

P(ePi ∩ ePj ) + · · ·+ (−1)
nP−1

P

(
nP⋂
i=1

ePi

)

Q(p) = P

( ⋃
Ki∈K

eKi

)

=

nK∑
i=1

P(Ki)−
nK−1∑
i=1

nK∑
j=i+1

P(eKi ∩ eKj ) + · · ·+ (−1)
nK−1

P

(
nK⋂
i=1

eKi

)

Supposing that all components are pairwise independent, we also have

R(p) =

nP∑
i=1

∏
k∈Pi

pk −
nP−1∑
i=1

nP∑
j=i+1

∏
k∈Pi∩Pj

pk + · · ·+ (−1)
nP−1

∏
k∈(

⋂nP
i=1 Pi)

pk

Q(p) =

nK∑
i=1

∏
k∈Ki

(1− pk)−
nK−1∑
i=1

nK∑
j=i+1

∏
k∈Ki∩Kj

(1− pk) + · · ·+ (−1)
nK−1

∏
k∈(

⋂nK
i=1 Ki)

(1− pk)

or

Q(q) =

nK∑
i=1

∏
k∈Ki

qk −
nK−1∑
i=1

nK∑
j=i+1

∏
k∈Ki∩Kj

qk + · · ·+ (−1)
nK−1

∏
k∈(

⋂nK
i=1 Ki)

qk

Example 18 (Bridge system). According to its minimal cut/path sets, the reliability of the bridge system
in Figure 3.7 is given by

R(p) = p1p4 + p2p5 + p1p3p5 + p2p3p4 − (p1 + p2 + p3 + p4 + p5)

or
Q(q) = q1q2 + q4q5 + q1q3q5 + q2q3q4 − (q1 + q2 + q5 + q4 + q3)

3.2.2 Disjunction-Conjunction method

Consider events E1, ..., En, for each i, j ∈ {1, ..., n} and i 6= j, we have [Limnios, 2007]

Ei ∪ Ej = Ei ∪ (Ei ∩ Ej)
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Ei ∩ Ej = Ei ∪ (Ei ∩ Ej)
The disjunction and the negation of the conjunction of these events E1, ..., En become respectively writ-
ten by

E1 ∪ E2 ∪ ... ∪ En = E1 ∪ (E1 ∩ E2) ∪ ... ∪ (E1 ∩ ... ∩ En−1 ∩ En)

E1 ∩ ... ∩ En = E1 ∪ (E1 ∩ E2) ∪ ... ∪ (E1 ∩ ... ∩ En−1 ∩ En)

so that these events can be decomposed into disjunctive events. Similarly, the sequential binary opera-
tors u and · have different forms

x1 u x2 u ...u xn = x1 + x1x2 + ...+ x1...xn−1xn

x1 · x2... · xn = x1 + x1x2 + ...+ x1x2...xn−1xn

3.3 Asymptotic normality method using bootstrap method

3.3.1 Introduction

To quantify uncertainty under probabilistic framework, confidence interval (CI) is proposed to be a
presentation of uncertainty. It gives a range of possible values where the unknown parameter is included
in a certain degree.

Definition 38 (Confidence Interval). A level 1−α confidence interval for an unknown parameter θ ∈ Θ
is an random interval [L,U ] ⊂ Θ obtained from data such that

P(θ ∈ [L,U ]) = 1− α

Variance is one of the most used probability measures which describe the dispersion due to randomness.
The variance of an estimator signifies the quantity of uncertainty of the estimation. Regarding the system
as a single component, its estimator is obtained by propagating the component reliability estimation
through the reliability function R(p) but not directly from observations. The variance of the system
reliability estimation should be then calculated similarly. In this section, we are going to propose a
method based on asymptotic normality hypothesis to calculate the variance of estimator and give the
confidence interval for system reliability with independent components.

3.3.2 Hypothesis

Supposing that for each component Ci (i = 1, · · · , d), we have ni observations of Xi. The sample size ni
can be described as ni := ni(n), n ∈ N∗, such that, as n→∞, we have

ni(n)−→∞ (3.4)

ni(n)

n
−→ mi (3.5)

where mi is a constant which indicates the relative sample size of the component Ci. Of course, mi = 1,
if all components’ sample sizes are the same.
We consider that random variable Xi follows Bernoulli distribution, i.e.

Xi ∼ Bernoulli(pi)

E(Xi) = pi

V ar(Xi) = pi(1− pi)
The first hypothesis is that the reliability estimate for each component Ci in the system, p̂i,ni , is strongly
consistent, i.e., as ni →∞,

p̂i,ni
a.s.−→ pi i = 1, · · · , d. (3.6)

The other hypothesis is that p̂i,ni satisfies asymptotic normality, i.e.

√
ni(p̂i,ni − pi)

D−→ N(0, σi
2) ni →∞ i = 1, · · · , d. (3.7)

where σi2 is the variance of Xi.
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3.3.3 Estimation

The “plug-in” estimator of system reliability is given by

p̂s,n = R(p̂n)

where
p̂n = (p̂1,n1 , · · · , p̂1,nd).

Proposition 1. p̂s,n has the following properties:
- Convergence

p̂s,n
a.s.−→ ps n→∞ (3.8)

- Asymptotic normality √
n(p̂s,n − ps) D−→ N(0, σs

2) n→∞ (3.9)

where

σs
2 =

d∑
i=1

[R(p, 1i)−R(p, 0i)]
2σi

2

mi
(3.10)

and R(p, 1i) and R(p, 0i) are the conditional system reliability given the state of the component ci, i.e.

R(p, 1i) = P(Xs = 1|Xi = 1)

= R(p1, · · · , pi−1, 1, pi+1, · · · , pd)

and

R(p, 0i) = P(Xs = 1|Xi = 0)

= R(p1, · · · , pi−1, 0, pi+1, · · · , pd).

Proof. Since Xi are independent, Shannon relation gives

R(p) = piR(p, 1i) + (1− pi)R(p, 0i) (3.11)

The partial derive of the function R(p) can be written by

∂R

∂pi
(p) = R(p, 1i)−R(p, 0i) (3.12)

We can also say that R(p) is once differentiable and continuous on (0, 1).
- Convergence
From (3.6) we have

p̂n
a.s.−→ p (3.13)

Then, as R is continuous, applying Continuous Mapping Theorem (CMT) on (3.13), we obtain the fol-
lowing result:

R(p̂n)
a.s.−→ R(p)

and
p̂s,n

a.s.−→ ps

- Asymptotic normality
From (3.4) and (3.5), we have, as n→∞,√

ni(n)(p̂i,ni − pi)
D−→ N(0, σi

2)√
ni(n)√
mi

(p̂i,ni − pi)
D−→ N(0,

σi
2

mi
)

√
n(p̂i,ni − pi)

D−→ N(0,
σi

2

mi
)

As {Xi} are independent and (3.7),

√
n(p̂n − p)

D−→ N(0,Σ)
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where

Σ =


σ1

2

m1
0

. . .

0
σd

2

md


Using delta method, we have, as n→∞,

√
n(R(p̂n)−R(p))

D−→ N(0, σs
2)

and √
n(p̂s,n − ps) D−→ N(0, σs

2)

with

σs
2 = ∇R>Σ∇R

=

d∑
i=1

[R(p, 1i)−R(p, 0i)]
2σi

2

mi

where the gradient of R(p) is given by

∇R = (
∂R

∂p1
, · · · , ∂R

∂pd
)
>

The variance of the system reliability can be estimated by

σ̂2
s,n =

d∑
i=1

[R(p̂n, 1i)−R(p̂n, 0i)]
2
σ̂2
i,ni

mi
(3.14)

We also have, for large n,

V ar(p̂s;n) ≈ σ2
s;n

n

which suggests the estimator

V̂ ar(p̂s;n) =
σ̂2
s;n

n

As p̂i,ni is a sample mean of ni observations on the random variable Xi, σ2
i /mi indicates the variance of

p̂i,ni , which is equal to σ2
i /ni. From (3.14), we observe directly how reliability uncertainty propagates

from single component to system level. The term R(p̂n, 1i) − R(p̂n, 0i), obtained by partial differen-
tiation of the system reliability with respect to pi, is called Birmbaun importance measure [Birnbaum,
1969] [van der Borst and Schoonakker, 2001], which evaluates the influence of component Ci on system
reliability from a structural and also a probabilistic point of view.
The confidence interval of our method is given by

[Lα, Uα] = [p̂s,n −
σ̂s,nz1−α/2√

n
, p̂s,n +

σ̂s,nz1−α/2√
n

]

The width of our confidence interval then becomes

Uα − Lα =
2σ̂s,nz1−α/2√

n
(3.15)

The width only depends on n since α is constant and we assume that σ̂s,n converges to σs as n→∞.

Example 19 (Application on Series/Parallel System Structures). Our method was tested on several stan-
dard structures: series system, parallel system, series-parallel system and parallel-series system.
For a parallel system with d components, we have from (3.12)

R(p) = 1−
d∏
j=1

(1− pj)
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∂R

∂pi
(p) =

d∏
j 6=i

(1− pj) =
1− ps
1− pi

(3.16)

σ2
s =

d∑
i=1

(
1− ps
1− pi

)2
σ2
i

mi
(3.17)

Based on (3.17), we get the following estimator

V̂ ar(p̂s;n) =

d∑
i=1

[
1− p̂s;n
1− p̂i;ni

]2 σ̂2
i;ni

ni
(3.18)

For a series system with d components, we also have from (3.12)

R(p) =

d∏
j=1

pj

∂R

∂pi
(p) =

d∏
j 6=i

pj =
ps
pi

(3.19)

σ2
s =

d∑
i=1

(
ps
pi

)2
σ2
i

mi
(3.20)

Then, according to (3.20), we get the following estimator

V̂ ar(p̂s;n) =

d∑
i=1

[
p̂s;n
p̂i;ni

]2 σ̂2
i;ni

ni
(3.21)

In a series-parallel system composed of ds parallel subsystems, where each subsystem g is composed of
dg components, and cg,i is the ith component in the gth subsystem with sample size ng,i, we have from
(3.12) (3.16) and (3.19)

R(p) =

ds∏
j=1

[1−
dj∏
k=1

(1− pj,k)]

∂R

∂pg,i
(p) =

ps(1−Rg)
Rg(1− pg,i)

where Rj = 1−∏dj
k=1(1− pj,k), and

σ2
s =

ds∑
j=1

dj∑
k=1

[
ps(1−Rj)
Rj(1− pj,k)

]2 σ2
j,k

mj,k
. (3.22)

V̂ ar(p̂s;n) =

ds∑
j=1

dj∑
k=1

[
p̂s,n(1− R̂j)
R̂j(1− p̂j,k)

]2
σ̂2
j,k,nj,k

nj,k
. (3.23)

In a parallel-series system with ds series subsystems in parallel, each subsystem g is composed of dg
components, and cg,i is the ith component in the gth subsystem with sample size ng,i. From (3.12) (3.16)
and (3.19), we have

R(p) =

ds∏
j=1

[1−
dj∏
k=1

pj,k]

∂R

∂pg,i
(p) =

(1− ps)Rg
(1−Rg)pg,i

where Rg =
∏dg
j=1 pg,j , and

σ2
s =

ds∑
j=1

dj∑
k=1

[
(1− ps)Rj

(1−Rj)pj,k

]2 σ2
j,k

mj,k
. (3.24)

V̂ ar(p̂s,n) =

ds∑
j=1

dj∑
k=1

[
(1− p̂s,n)R̂j

(1− R̂j)p̂j,k

]2
σ̂2
j,k,nj,k

nj,k
. (3.25)
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Then in case of large system, since Birmbaun factor is the difference of system reliability in case that a
certain component is surely in good or bad state, we can use similar algorithm as calculating system
reliability to estimate our confidence interval (CI) (Algorithm 1).

Algorithm 1 Estimate Birmbaun importance factor and system reliability with Monte Carlo simula-
tion/Bootstrap technique

Require: Component reliability estimate p̂1,n1
, ..., p̂d,nd ; number of simulation trials N

Initialize
Rp = 0 R0 = (0, ..., 0) R1 = (0, ..., 0)

for j = 1 to N do
for i = 1 to d do

Randomly sample Xi following Bernoulli(p̂i,ni)
end for
for i = 1 to d do

Count the simulation results:

Rp = Rp + ϕ(X1, ..., Xi, ..., Xd)

R0(i) = R0(i) + ϕ(X1, ..., Xi = 0, ..., Xd)

R1(i) = R1(i) + ϕ(X1, ..., Xi = 1, ..., Xd)

end for
end for
Aggregate the sampled values of R(p̂n, 1i)−R(p̂n, 0i) by average:

R(p̂n) =
Rp

N

for i = 1 to d do

R(p̂n, 1i)−R(p̂n, 0i) =
R1(i)−R0(i)

N

end for

V ar(p̂s) =

d∑
i=1

(R(p̂n, 1i)−R(p̂n, 0i))
2 p̂i(1− p̂i)

ni

CI: [R(p̂n)− zα/2
√
V ar(p̂s), R(p̂n) + zα/2

√
V ar(p̂s)]

3.3.4 Cases of small sample size or rare event

When the sample sizes are not large enough or the component has high reliability (the failure event
is rare), sometimes there is not failure state sample observed so that the consistency of the maximum
likelihood estimator which gives 1 as reliability is doubted.
In order to solve problems with small sample size (ni < 30 or ki = ni), assumptive information should
be added to the estimation procedure. Some of these assumptions simply increase the failure number
or sample size and/or add failure sample to the observation sample pool. Bayesian method assumes
that the parameter p follows a certain prior distribution. It is introduced as the subjective uncertainty on
the studied quantity before evidence (observations) are brought in. There two kinds of prior distribu-
tions: informative priors and uninformative priors. Informative priors express the subjective knowledge
on uncertainty. Uninformative priors give only general information about the quantity. The posterior
probability distribution is the conditional distribution of the studied quantity with uncertainty given
the data.

p(p|xi) = P(p = p|Xi,1 = xi,1, ..., Xi,ni = xi,ni) =
p(x|p)p(p)
p(x)

where p(x) = P(Xi,1 = xi,1, ..., Xi,ni = xi,ni) is supposed to be constant.
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Then the estimator of p and its variance are respectively given the expected value and the variance of p
given evidence x

p̂n = E(p|x)

V ar(p̂n) = V ar(p|x)

with normalized posterior probability distribution f(p|x)

f(p|x) =
p(x|p)p(p)∫ +∞

−∞ p(x|p)p(p)dp
.

In [Leemis, 2006], six different assumptions of prior distributions are considered to build Bayesian esti-
mator of p, when there is not failure observed, i.e. k = n:

Assumption 1. The observation reflects perfectly the reliability of the studied component so that we
believe the fact that there is not any failure and X ∼ Bernoulli(p̂)

p̂ =
k

n
= 1

Assumption 2. We assume that there is always a failure in the n observation so that

p̂ =
n− 1

n

This assumption changes the value of one of observations.

Assumption 3. One more failure sample is assumed to be added so that the sample size is increased
and

p̂ =
n

n+ 1

Assumption 4. Assume that p follows uniform prior on [0, 1] , i.e.

p ∼ U(0, 1)

which is equivalent to beta distribution with α = 1 and β = 1

p ∼ Beta(1, 1)

Then the posterior distribution becomes

p ∼ Beta(n+ 1, 1)

and the estimation is given by

p̂ =
n+ 1

n+ 2

Assumption 5. The Clopper-Pearson (CP) exact lower bound at confidence level 1−α satisfies [Agresti
and Coull, 1998]

n∑
i=k

(
n

i

)
piL(1− pL)n−i = α

In this assumption, the prior information is that the probability that p < pL is equal to α, i.e.

P(p ≤ pL) = α

With beta prior distribution Beta(α, β), we have∫ pL

0

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1dx = α

Let α = 1, then the prior beta distribution is given by

p ∼ Beta(1,
log(1− α)

log(1− α1/n)
)
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Then the posterior distribution becomes

p ∼ Beta(n+ 1,
log(1− α)

log(1− α1/n)
)

so as the estimation
p̂ =

n+ 1

n+ 1 +
log(1− α)

log(1− α1/n)

Assumption 6. Jeffreys prior is another non-informative prior based on the assumption that the prior
should be proportional to the square root of the determinant of the Fisher information, i.e.

p
(
~θ
)
∝
√

det I
(
~θ
)
.

In case of Bernoulli distribution X , we obtain

p ∼ Beta(
1

2
,

1

2
)

so that the posterior distribution and the estimation become

p ∼ Beta(n+
1

2
,

1

2
)

p̂ =
n+

1

2
n+ 1

Let ki be the number of good-state observations from ni samples of component Ci. In case of rare
failure event, no failure is observed so that ki = ni and our empirical variance estimation becomes zero.
Bayesian methods are proposed and use Beta priors Beta(α, β) with parameters fixed as in Assumption
1 - 6 mentioned previously. Then the posterior distribution of the component reliability pi follows beta
distribution

pi ∼ Beta(ki + α, ni − ki + β).

such that
E(pi) =

ki + α

ni + α+ β

The obtained estimate
p̂i,ni =

ki + α

ni + α+ β
,

is equivalent to the assumption that α+β imaginary samples are added to the initial sample pool. Then
the variance of this estimate is given by

V ar(p̂i,ni) =
p̂i,ni(1− p̂i,ni)
ni + α+ β

which also fits the central limit theorem (CLT)√
ni + α+ β(p̂i,ni − E(p̂i))

d−→ N(0, V ar(p̂i,ni))

Hence, we have Algorithm 2, an alternative version of Algorithm 1 which can be applied on cases with
rare event/failure.

3.4 Random set approach

3.4.1 Reliability assessment of components

Consider the observation pool O containing n independent and identically distributed (i.i.d.) samples
of a binary random variable X

O = {x1, x2, ..., xn}
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Algorithm 2 Estimate Birmbaun importance factor and system reliability with Monte Carlo simula-
tion/Bootstrap technique with Beta(α, β) prior probability

Require: Component reliability estimate p̂1,n1 , ..., p̂d,nd ; number of simulation trials N
Initialize Rp = 0 R0 = (0, ..., 0) R1 = (0, ..., 0)
for j = 1 to N do

for i = 1 to d do
if ki 6= ni then

p̂i,ni =
ki
ni

V ar(p̂i) =
p̂i(1− p̂i)

ni

else

p̂i,ni =
ki + α

ni + α+ β
V ar(p̂i,ni) =

p̂i,ni(1− p̂i,ni)
ni + α+ β

end if
Randomly sample Xi following Bernoulli(p̂i,ni)

end for
for i = 1 to d do

Count the simulation results:
Rp = Rp + ϕ(X1, ..., Xi, ..., Xd)

R0(i) = R0(i) + ϕ(X1, ..., Xi = 0, ..., Xd) R1(i) = R1(i) + ϕ(X1, ..., Xi = 1, ..., Xd)

end for
end for
Aggregate the sampled values of R(p̂n, 1i)−R(p̂n, 0i) by average:

R(p̂n) =
Rp

N

for i = 1 to d do

R(p̂n, 1i)−R(p̂n, 0i) =
R1(i)−R0(i)

N

end for

V ar(p̂s) =

d∑
i=1

(R(p̂n, 1i)−R(p̂n, 0i))2V ar(p̂i)

CI: [R(p̂n)− zα/2
√
V ar(p̂s), R(p̂n) + zα/2

√
V ar(p̂s)]
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where xi is the ith observation of X . The reliability of component C given these observations O can be
represented by a random variable P such that

P = P{X = 1|O}.

In this section, a random closed set S on [0, 1] represents P which is selection of S, i.e.

P(P ∈ S) = 1

without any additional assumption. The confidence interval of S is calculated as well.

Expected values

Let k samples be the number of observations in good state in O. According to the theorem introduced
in [David and Nagaraja, 2003], and more detailed in [Aguirre et al., 2013], these n samples ofX following
Bernoulli distribution with

P(X = 1) = p

can be generated as follows:

- Introduce n independent pivotal variables following uniform distribution U(0, 1)

U1, U2, ..., Un ∼ U(0, 1)

- Transform the pivotal variables to observation variables of X by

xi =

{
1 if Ui ≤ p
0 if Ui > p

Let PL = U(k) and PU = U(k+1) denote respectively the k and k + 1 order statistics U(k) and U(k+1)

of U1, U2, ..., Un. Then given the fact that there are k good-state observations obtained, there must be
exactly k pivotal variables smaller or equal to p so that

U(k) ≤a.s. P ≤a.s. U(k+1)

The random closed set S can be given by

S = [PL, PU ] ⊆ [0, 1]

such that
P(P ∈ S) = 1. (3.26)

Since [David and Nagaraja, 2003]

PL = U(k) ∼ Beta(k, n+ 1− k) (3.27)

PU = U(k+1) ∼ Beta(k + 1, n− k) (3.28)

the expected value of S is given by

E(S) = [E(PL), E(PU ))] = [
k

n+ 1
,
k + 1

n+ 1
] (3.29)

The epistemic uncertainty with which P is associated due to size-limited available observations is then
quantified by the length of S, i.e.

|E(PU )− E(PL)| = 1

n+ 1
.

As the sample size n converges to infinity (n→∞), the value converges to 0.
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Figure 3.8: Expected values [EPL, EPU ] and confidence intervals of the component reliability [uL, uU ]
(1− α = 0.95, n = 20, k = 0 : 20)

Confidence intervals

Using (2.2), the confidence interval at level 1− α for P is given by

[uL, uU ] = [I−1
α/2(k, n+ 1− k), I−1

1−α/2(k + 1, n− k)] (3.30)

where Ix(a, b) is the regularized incomplete beta function. The confidence interval describes the most
probably range of P and it takes both aleatory and epistemic uncertainty into account.
Since

I−1
α/2(k, n+ 1− k) < I−1

α/2(k + 1, n− k) < I−1
1−α/2(k + 1, n− k)

the difference between uU and uL becomes smaller but does not converge to 0 as n converges to infinity,
which corresponds the fact that aleatory uncertainty is not reducible,

Example 20. Let n = 20 observations be available. Using (3.29) and (3.30), we computed the expected
values and confidence intervals of the component reliability P on function of k(cf. Figure 3.8). The
value |E(PU )−E(PL)| is constant as epistemic uncertainty only depends on the amount of information
contained in O represented by the number of observations n. However, uU −uL has smaller value when
k is near 0 or 1 because the aleatory variation of P is smaller when k is near 0 or 1.

Estimation of system reliability

The common method to estimate system reliability is to

- estimate reliability and its uncertainty of each component directly from the corresponding component-
level observations with probability theory and/or uncertainty theory

- propagate the quantity of reliability and uncertainty to system level through the system reliability
function R(p1, ..., pd) or the structure function ϕ(x1, ..., xd).

However, in case of large-scale systems where both the reliability and uncertainty propagation from
component level to system level is very difficult to calculate, the complexity of the method is at-least
exponential.
Since mathematical tools to estimate single component’s reliability and the associated uncertainty are
well developed, if the system is treated as a single component, this problem will be much simpler. Then,
the problem becomes how to obtain the system-level observations which are almost impossible to be
obtained directly by tests in reality so that system-level pseudo-observation construction is proposed to
estimate system reliability.

3.4.2 Pseudo observation construction with resampling procedure

Let O1, ..., Od be respectively the observation pools of the random variables X1, ..., Xd representing
states of all system components, and ni the number of observations in Oi, i.e.
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Oi = {xi,1, ..., xi,ni} ni = |Oi|
where xi,1, ..., xi,ni are all i.i.d. observations (1 ≤ i ≤ d) and

xi,j ∼ Bernoulli(pi) 1 ≤ j ≤ ni

The basic idea is that since the system is composed of these d components and samples of each compo-
nent are available. It is possible

- to draw one sample from each component’s observation pool,

- to construct a system observation using these component observations,

- to obtain the system state corresponding to theses picked components through structure function.

This procedure is repeated to build multiples pseudo-systems. With system-level observations, the stud-
ied system can be treated as a single component. Then, the system reliability can be estimated using
random set model. Since these system observations are not exactly observed from real systems, we call
them pseudo-observations.
Let XS be the system state determined by X1, ..., Xd through structure function, i.e.

Xs = ϕ(X1, ..., Xd)

and ps denote the system reliability given all components observation pools, i.e.

ps = P{Xs = 1|O1, ..., Od}

With the pseudo-observation construction procedure mentioned above, the random pseudo-observation
pools OS is able to present information in O1, ..., Od such that

ps = P{Xs = 1|OS} ≈ P{Xs = 1|O1, ..., Od}

Consider that Os contains ns observations where ks good-state samples are observed, i.e.

ks =
∑
x∈OS

x

On applying exactly the same reliability estimation method for one component, the random set S be-
comes

S = [PLs , P
U
s ]

such that
P{ps ∈ [PLs , P

U
s ]} = 1

where

PLs ∼ Beta(ks, ns + 1− ks)
PUs ∼ Beta(ks + 1, ns − ks)

The expected value of S is then given by

E(S) = [E(PLs ), E(PUs ))]

= [
ks

ns + 1
,
ks + 1

ns + 1
] (3.31)

Hence, the confidence interval at level 1− α of the system reliability ps is given by

[uL, uU ] = [I−1
α/2(ks, ns + 1− ks), I−1

1−α/2(ks + 1, ns − ks)] (3.32)
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Notice that in this case ks is also a discrete random variable ks ∈ {0, 1, 2, ..., ns}. Then the expected value
of S and the cumulative distribution function (cdf) of PL and PU given OS become

E(S) = [E(PL), E(PU ))]

= [E(E(PL|ks)), E(E(PU |ks))]

= [

ns∑
k=0

P(ks = k)E(PL|ks = k),

ns∑
k=0

P(ks = k)E(PU |ks = k)]

= [

ns∑
k=0

P(ks = k)
k

ns + 1
,

ns∑
k=0

P(ks = k)
k + 1

ns + 1
]

= [

∑ns
k=0 P(ks = k)k

ns + 1
,

∑ns
k=0 P(ks = k)(k + 1)

ns + 1
]

= [
E(ks)

ns + 1
,
E(ks) + 1

ns + 1
] (3.33)

FL(x) = P(PL ≤ x)

=

ns∑
k=0

P(PL ≤ x, ks = k)

=

ns∑
k=0

P(PL ≤ x|ks = k)P(ks = k)

= P(ks = 0) +

ns∑
k=1

Ix(k, ns + 1− k)P(ks = k) (3.34)

FU (x) = P(PU ≤ x)

=

ns∑
k=0

P(PU ≤ x, ks = k)

=

ns∑
k=0

P(PU ≤ x|ks = k)P(ks = k)

= 1{x=1}(x)P(ks = ns) +

ns−1∑
k=0

Ix(k + 1, ns − k)P(ks = k) (3.35)

where Ix(α, β) is the regularized incomplete beta function and

P(PL ≤ x, ks = 0) = P(PL ≤ x|ks = 0)P(ks = 0)

= 1[0,1](x)P(ks = 0)

= P(ks = 0)

P(PU ≤ x, ks = ns) = P(PU ≤ x|ks = ns)P(ks = ns)

= 1{x=1}(x)P(ks = ns)

as
0 ≤ ps ≤ U(1) ks = 0

U(ns) ≤ ps ≤ 1 ks = ns.

Then on system level, ks follows binomial distribution

ks ∼ Binomial(ns, ps)

so that
P(ks = k) =

(
ns
k

)
pks(1− ps)ns−k, ∀k ∈ {0, ..., ns}
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Hence, FL(x) and FU (x) become

FL(x) = (1− ps)ns +

ns∑
k=1

Ix(k, ns + 1− k)
(
ns
k

)
pks(1− ps)ns−k (3.36)

FU (x) = 1{x=1}(x)pnss +

ns−1∑
k=0

Ix(k + 1, ns − k)
(
ns
k

)
pks(1− ps)ns−k (3.37)

Finally, the confidence interval at level 1− α of S is given by

[uL, uU ] = [F−1
L (α/2), F−1

U (1− α/2)] (3.38)

In case of highly reliable system where ps is close to 1, the variance of ks is small and close to E(ks) so
that the cdf of FL(x) and FU (x) and the confidence interval [uL, uU ] can be approximated as follows

FL(x) ≈ P(PL ≤ x|E(ks)) (3.39)

FU (x) ≈ P(PU ≤ x|E(ks)) (3.40)

[uL, uU ] ≈ [I−1
α/2(E(ks), ns + 1− E(ks)), I

−1
1−α/2(E(ks), ns − E(ks))] (3.41)

on replacing ks by E(ks). As shown in Figure 3.9, the exact method gives larger CI than approximation
method. For numerical application, Monte Carlo simulations with N iterations is proposed to construct
pseudo observations and to obtain k̂s and p̂s,k, the estimates of E(ks) and P(ks = k), as follows

k̂s =

∑N
j=1 ks,j

N
(3.42)

p̂s,k =

∑N
j=1 1k(ks,j)

N
(3.43)

where ks,j denotes the ks value obtained by the jth iteration, and 1k(x) is an indicator function giving 1
if x = k, 0 otherwise.
Then the estimate of ps is calculated on function of k̂s, i.e.

p̂s =
k̂s
ns

For small systems, the estimates of E(ks) and ps can also be given by

p̂s = R(p̂1, ..., p̂d)

k̂s = R(p̂1, ..., p̂d)ns

where p̂i is an estimator of pi.
Finally, the estimators of E(s) = [E(PL), E(PU )] becomes

[p̂L, p̂U ] = [
k̂s

n+ 1
,
k̂s + 1

n+ 1
] (3.44)

Thus, the confidence interval can be obtained by both approximation and empirical methods, i.e.

[ûL, ûU ] ≈ [I−1
α/2(k̂s, ns + 1− k̂s), I−1

1−α/2(k̂s + 1, ns − k̂s)] (3.45)

[ûL, ûU ] = [F̂−1
L (α/2), F̂−1

U (1− α/2)] (3.46)

where

F̂L(x) = (1− p̂s)ns +

ns∑
k=1

Ix(k, ns + 1− k)
(
ns
k

)
p̂ks(1− p̂s)ns−k (3.47)

F̂U (x) = 1{x=1}(x)p̂nss +

ns−1∑
k=0

Ix(k + 1, ns − k)
(
ns
k

)
p̂ks(1− p̂s)ns−k (3.48)

Here, several things need to be discussed:

- The number of pseudo-observations to be constructed (ns);

- The resampling procedure to assure that the resampled observations are independent and identi-
cally distributed (i.i.d.).

42



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ps

EpL

EpL

uL

uU

uLapprox
uUapprox

(a) Expected value and CI of ps with ns = 10

0 0.2 0.4 0.6 0.8 1
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

ps

|uL − uLapprox|
|uU − uUapprox|

(b) The difference of CI bounds of ps with ns = 10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ps

EpL

EpL

uL

uU

uLapprox
uUapprox

(c) Expected value and CI of ps with ns = 20

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

·10−2

ps

|uL − uLapprox|
|uU − uUapprox|

(d) The difference of CI bounds of ps

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ps

EpL

EpL

uL

uU

uLapprox
uUapprox

(e) Expected value and CI of ps with ns = 30
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Figure 3.9: Results given by exact method (3.38) and approximation method (3.41) as a function of p̂s
with α = 0.05
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Proposal 1 Following our basic idea, ns system samples must be available simultaneously which
means all component observations used are different ones. So the number of system samples is obvi-
ously limited by the smallest component sample size

ns ≤ min
i

(ni)

Like cross validation, after being shuffled, the observation data set Oi is splitted into two sets:

- Õi which contains the first ns observations drawn from OS and is used to construct pseudo sys-
tems;

- Õ−i which is not used to construct pseudo systems.

Õi = {xi,1, ..., xi,ns} |Õi| = ns

Õ−i = {xi,ns+1, ..., xi,ni} |Õ−i | = ni − ns

The system state pseudo-observation pool ÕS is obtained as follows

ÕS = {xs,1 = ϕ(x1,1, ..., xd,1), ..., xs,ns = ϕ(x1,ns , ..., xd,ns)}

However, since ns is the minimal sample size among all component observation pools, no component
sample in each observation pool Oi(1 ≤ i ≤ d) is used more than once while ÕS is constructed. Mean-
while, the fact that there are observations unused in each iteration indicates that information provided
in ÕS leads to overestimating the system reliability uncertainty because the system level uncertainty is
indeed determined by component level uncertainty and in most of uncertainty theories sample size is
negatively related to uncertainty quantity. In order to fully use available data, ns is extended to

min
i
ni ≤ ns ≤ max

i
ni

Replication of observations is allowed for observation pools smaller than ns. Like bootstrap resampling,
ns observations samples are randomly drawn from Oi (|Oi| < ns) with replacement which ensures all
observations to be independent and uniformly drawn. However, some component observations may be
used repeatedly to build different pseudo system samples, these system level observations can not be
available at the same time. Since the number of repeated samples picked is limited when the difference
in sample size is not very large, in my opinion, this method is close to the experiment developed directly
from our basic idea and gives i.i.d. samples.
In summary, ns, is fixed between min(n1, ..., nd) and max(n1, ..., nd). For component with sample size
smaller than ns, component samples are re-sampled with replacement; while for those with sample size
equal to or larger than ns, component level re-sampling is without replacement.

Proposal 2 A method using the idea of systematic sampling is also proposed: each observation poolOi
is firstly shuffled so that a sequence of i.i.d. observations is built; then starting with a randomly chosen
point a, ns observations are sequentially drawn xi,a, ..., xi,a+ns−1; if the end of the sequence is reached,
drawing is continued by starting with the beginning of the observation sequence X1, X2, ...Xd.

Proposal 3 Bootstrap technique is used to practice the experiment that one sample from each com-
ponent’s observation pool is randomly picked; and a system is built with these components; then the
system state is tested and noted as a system level observation; after the experiment the system is decom-
posed and the components are returned to their observation pools respectively. Then ns i.i.d. pseudo
system observations are obtained by repeating this experiment.
Let I be the set of the component indices selected in our experiments

I = {(j1,1, ..., jd,1), ..., (j1,ns , ..., jd,ns) ∈ {1, ..., n1} × ...× {1, ..., nd})}

Then the pseudo system observation pools becomes

ÕS = {ϕ(X1,j1,1 , ..., Xd,jd,1), ..., ϕ(X1,j1,ns
, ..., Xd,jd,ns

)}
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Proposal Re-sample method Number of Results iid
pseudo-systems

Proposal 1 Randomly pick component minni No
observations without replacement

Proposal 2 Randomly pick component between Yes
observations without replacement min andmaxni

Proposal 3 Randomly pick component unlimited Yes
observations with replacement

Table 3.1: Comparison of proposals

Discussion Proposal 3 uses bootstrap techniques and gives i.i.d. samples. Here, the observations are
treated as in case of a small finite population.
Someone will then ask why we cannot use Proposal 3 with a large ns in order to apply more precise
estimation. The problem is that the bootstrap method needs large amount of samples to establish reliable
results. However, in our case, we suppose that the available observations are relatively small so that
uncertainty theory must be applied and then the size of our pseudo-observation pools should be limited.
In Proposal 1 and Proposal 2 for component Ci with ns ≤ ni, the component samples are randomly
drawn without replacement. The number of good-state samples of Ci, ks,i follows hyper-geometric
distribution with parameters (ni, ki, ns) if ns ≤ ni.

P(ks,i = k) = h(x;ni, ns, ki) =

(
ki
k

)(
ni−ki
ns−k

)(
ni
ns

)
It is not a binomial experiment which requires the condition that the probability of good-state drawn
is constant for every trial. The ith selected observations shares equal likelihood of being in any trial so
that ∀m,m′ ∈ {1, ..., ns}

P(Xi,m = 1) =
ki
ni

Cov(Xi,m, Xi,m′) = −
ki
ni

(1− ki
ni

)

ni − 1

The expected value of each system pseudo observation is the same as Proposal 3

P(ϕ(X1,m, ..., Xd,m) = 1) = R(
k1

n1
, ...,

kd
nd

)

E(ϕ(X1,m, ..., Xd,m)) = P(ϕ(X1,m, ..., Xd,m) = 1)

However, these observations are not i.i.d. but interchangeable, which violates the condition mentioned
in the beginning of our random set application. Since the covariance is negative, the variances of Xs,j

(1 ≤ j ≤ ns) and ks given by Proposal 1 and 2 are much smaller than i.i.d. ones. As ns grows, the
results obtained by Proposal 1 approach the ones of Proposal 3 because more and more component
observations are resampled with replacement.
In summary, pseudo-observations provided by Proposal 1 and 2 do not fit our basic assumption on
binomial distribution so that only Proposal 3 can be applied. Proposal 1 and Proposal 2 give the same
expected value of ks and ks estimate with much smaller variance. In order to just estimate E(ks), these
two proposals can not only give the same results as Proposal 3 but also accelerate the Monte Carlo
simulation. Finally Algorithms 3-6 are built according to these proposals and our approach.

Estimation of system reliability

In order to compare the complexity of the proposed methods with classical probabilistic assessment (PA)
methods, we need to focus on the estimation of ks. Algorithm 5 with MLE uses classical assessment
function R(p) to estimate ks. This function R(p) requires minimal cut-sets whose building algorithms
as well as the inclusion-exclusion calculation have at least exponential complexity. In case of large scale
systems, without truncation on cut-sets length or ignorance of some components, it is very difficult.
Then Algorithm 3, 4 and 6 using Monte Carlo simulation are given as the function ϕ is easier to build.
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Algorithm 3 Estimate ks with Monte Carlo simulation (Proposal 2)

Require: Component observations O1, ..., Od; number of simulation trials N
for j = 1 to N do

Shuffle O1, ..., Od
Randomly select a starting point

(a1, ...., ad) ∈ {1, ..., n1} × ....× {1, ..., nd}

for m = 1 to ns do
for i = 1 to d do
bi = mod(ai, ni) + 1
ai = ai + 1

end for
Construct pseudo system lifetime observations:

xs,m = ϕ(x1,bi , ...., xd,bd)

end for
Calculate ks,j :

ks,j =

ns∑
i=1

xs,i

end for
Aggregate the sampled values of ks by average:

k̂s =

∑N
j=1 ks,j

N
p̂s =

k̂s
ns

p̂s,k =

∑N
j=1 1k(ks,j)

N
k = 0, ..., ns
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Algorithm 4 Estimate ks with Monte Carlo simulation (Proposal 1)

Require: Component observations O1, ..., Od; number of simulation trials N ;
for j = 1 to N do

Shuffle O1, ..., Od
for i = 1 to d do

if ni < ns then
Select randomly with replacement ns samples from Oi :

Õi : xi,1, ..., xi,ns

else
Select randomly without replacement ns samples from Oi :

Õi : xi,1, ..., xi,ns

end if
end for
for m = 1 to ns do

Construct pseudo system state observations from Õ1, ..., Õd:

xs,m = ϕ(x1,m, ...., xd,m)

end for
Count the number of systems in operational state:

ks,j =

ns∑
i=1

xs,i

end for
Aggregate the sampled value of ks by average:

k̂s =

∑N
j=1 ks,j

N
p̂s =

k̂s
ns

p̂s,k =

∑N
j=1 1k(ks,j)

N
k = 0, ..., ns

Algorithm 5 Estimate ks with MLE (Proposal 3)

Require: Component observations O1, ..., Od; ns;
for i = 1 to d do

Estimate component reliability:

p̂i =

∑ni
j=1 xi,j

ni

end for
Estimate the value of ks:

k̂s = R(p̂1, ..., p̂d)ns p̂s = R(p̂1, ..., p̂d)

p̂s,k =
(
ns
k

)
p̂ks(1− p̂s)ns−k k = 0, ..., ns
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Algorithm 6 Estimate ks with Monte Carlo simulation (Proposal 3)
Require: Component observations O1, ..., Od; number of simulation trials N

for j = 1 to N do
for m = 1 to ns do

Randomly draw x1,m, ...., xd,m respectively from O1, ..., Od with replacement
Construct pseudo system lifetime observations:

xs,m = ϕ(x1,m, ...., xd,m)

end for
Estimate ks,j :

ks,j =

ns∑
i=1

xs,i

end for
Aggregate the sampled values of ks by average:

k̂s =

∑N
j=1 ks,j

N
p̂s =

k̂s
ns

p̂s,k =

∑N
j=1 1k(ks,j)

N
k = 0, ..., ns

C1

C2

C3

Figure 3.10: S1: Parallel system

For example, for a fault tree composed of NG gates and d components, the complexity of its structure
function ϕ is in order of O(NG.d).
Probability methods providing system level confidence interval estimate the variance of system avail-
ability which requires either Birnbaum importance factor (BIF) of each components or system block
diagram decomposition [Coit, 1997], and then give the CI bounds on different assumptions on the dis-
tribution of system reliability. Notice that the calculation of BIF is at least as complex as R(p) and not all
systems can be decomposed into parallel/series structures without duplicated components. Avoiding
the NP-difficult minimal cut set (MCS) building procedure, our method with Monte Carlo simulation
reduces efficiently the execution cost (time and complexity) to estimate the system reliability and its
confidence interval.

Example 21. Consider a parallel system S1 (cf. Figure 3.10), with observation results presented in Ta-
ble 3.2. The estimation of ks is given by Algorithm 3, 4, 5 and 6.
Using Algorithm 5, we obtained

p̂s = (1− (1− p̂1)(1− p̂2)(1− p̂3)) = 1.000000

In system S1, we have ks = ns for all ns by all four algorithms because there is no failure observations

Oi ki ni p̂i =
ki
ni

1 20 20 1
2 28 30 0.9333
3 34 35 0.9714

Table 3.2: Component observations of C1, C2 and C3
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ns ûL(3.38) ûU (3.38) ûL(3.41) ûU (3.41)
20 0.8316 1 0.8316 1
25 0.8628 1 0.8628 1
30 0.8843 1 0.8843 1
35 0.9000 1 0.9000 1

Table 3.3: S1: Confidence interval with α = 0.05 given by (3.38) and (3.41)

C1 C2 C3

Figure 3.11: S2: Serial system

of component C1. The expected value of S is given by

E(S) = [
ns

ns + 1
,
ns + 1

ns + 1
]

In this case, the confidence intervals obtained by (3.38) and (3.41) are the same becauseE(ks) = ks = ns.

Example 22. Consider a series system (cf. Figure 3.11) with observation results presented in Table 3.2.
The estimation of ks was obtained by Algorithm 3, 4, 5 and 6. According to Algorithm 5, we obtained

p̂s = R(p̂) = p̂1p̂2p̂3 = 0.906667

It is observed that the distribution of ks in Proposal 3 has the form of a binomial distribution. The value
of ks obtained by Proposal 2 is more concentrated and the one given by Proposal 1 is between these two
proposals and becomes more and more similar to the one obtained using Proposal 3 as ns grows.
The cdf of ks obtained by (3.38) and (3.41) with parameters given by Algorithm 6 (Proposal 3) were also
compared.
There is a large difference between the two cdf because the p̂s is not close to 1 and the variance of ks is
very large which does not correspond the condition of our approximation.

Example 23. Consider a system (cf.Figure 3.14) with observation results presented in Table 3.2. The
estimation of ks was given by Algorithm 3, 4, 5 and 6. According to Algorithm 5, we obtained

p̂s = R(p̂) = ((1− p̂1)p̂2p̂3 + p̂1(1− p̂2)p̂3 + p̂1p̂2p̂3) = 0.933333

p̂s = R(p̂) = ((1− p̂1)(1− p̂2)p̂3 + (1− p̂1)p̂2p̂3 + p̂1(1− p̂2)p̂3 + p̂1p̂2(1− p̂3) + p̂1p̂2p̂3) = 0.998095

The distribution of ks of Proposal 3 has the form of a binomial distribution in S3 (cf. Figure 3.15).
It is observed that the results obtained by Proposal 1, Proposal 2 and Proposal 3 are similar even as ns
grows from 20 to 35 because the system has high reliability in S4 (Figure 3.16).
The empirical cdf obtained by (3.38) and (3.41) with ks given by Algorithm 6 (Proposal 3) are also com-
pared (Figure 3.17 and 3.18).
Since p̂s becomes closer to 1, the variance of ks decreases. The cdf obtained by (3.38) and (3.41) become
closer to each other and our approximation stands.

3.4.3 Reliability assessment with unknown data part

Reliability assessment of components with unknown data part

Consider that besides observation pool O of a random variable X with precise value, there are also n′

observations of X
O′ = {x′1, x′2, ..., x′n′}

where the value of x′i is unknown due to censored time of observation or other problems.
More observations equal to 0 there are in O′, the more underestimated the probability P = P{X =
1|O,O′} is; the more observations equal to 1 there are in O′, the more overestimated the probability
P = P{X = 1|O,O′} is.
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Figure 3.12: S2: Distribution of ks values obtained by different proposals with N = 10000

Algorithm Proposal k̂s var(k̂s) p̂s
ns = 20

3 2 18.1506 0.657385 0.90753
4 1 18.125 0.65264 0.90625
5 3 18.133333 - 0.90666665
6 3 18.1569 1.639646 0.907845

ns = 25
3 2 22.6712 0.481939 0.906848
4 1 22.666 0.477492 0.90664
5 3 22.666667 - 0.90666668
6 3 22.6923 2.063427 0.907692

ns = 30
3 2 27.2002 0.160136 0.906673333
4 1 27.1959 0.157539 0.90653
5 3 27.2 - 0.906666667
6 3 27.1977 2.522467 0.90659

ns = 35
3 2 31.7394 0.306318 0.90684
4 1 31.7388 2.140789 0.906822857
5 3 31.733333 - 0.906666657
6 3 31.7505 2.885338 0.907157143

Table 3.4: S2: Results obtained by different algorithms with N = 10000
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Figure 3.13: S2: cdf obtained by (3.38) and (3.41) with parameters given by Algorithm 6 (Proposal 3)
N = 10000
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C3

(a) S3: Parallel-series structure

C1 C2

C3

(b) S4: Series-parallel structure

Figure 3.14: Parallel-series and series-parallel systems composed of three components
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Figure 3.15: S3: Distribution of ks values obtained by different proposals with N = 10000

Algorithm Proposal k̂s var(k̂s) p̂s
ns = 20

3 2 19.4213 0.243831 0.971065
4 1 19.4295 0.245054 0.971475
5 3 18.666667 - 0.93333335
6 3 19.4391 0.538745 0.971955

ns = 25
3 2 24.2796 0.201444 0.971184
4 1 24.2892 0.205584 0.971568
5 3 23.333333 - 0.93333332
6 3 24.2964 0.691616 0.971856

ns = 30
3 2 29.1386 0.119402 0.971286667
4 1 29.1433 0.122777 0.971443333
5 3 28 - 0.933333333
6 3 29.1591 0.802067 0.97197

ns = 35
3 2 34 0 0.971428571
4 1 34 0 0.971428571
5 3 32.666667 - 0.933333343
6 3 34.0024 0.96249 0.971497143

Table 3.5: S3: Results obtained by different algorithms with N = 10000
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Figure 3.16: S4: Distribution of ks values obtained by different proposals with N = 10000

Algorithm Proposal k̂s var(k̂s) p̂s
ns = 20

3 2 19.964 0.034707 0.9982
4 1 19.9604 0.038036 0.99802
5 3 19.961905 - 0.99809525
6 3 19.962 0.03796 0.9981

ns = 25
3 2 24.9541 0.043798 0.998164
4 1 24.9553 0.042706 0.998212
5 3 24.952381 - 0.99809524
6 3 24.95 0.049705 0.998

ns = 30
3 2 29.9412 0.055348 0.99804
4 1 29.941 0.055525 0.998033333
5 3 29.942857 - 0.998095233
6 3 29.9452 0.053602 0.998173333

ns = 35
3 2 34.9343 0.06139 0.998122857
4 1 34.9328 0.06269 0.99808
5 3 34.933333 - 0.998095229
6 3 34.9308 0.069618 0.998022857

Table 3.6: S4: Results obtained by different algorithms with N = 10000
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Figure 3.17: S3: cdf obtained by (3.38) and (3.41) with parameters given by Algorithm 6 (Proposal 3)
with N = 10000
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Figure 3.18: S4: cdf obtained by (3.38) and (3.41) with parameters given by Algorithm 6 (Proposal 3)
with N = 10000
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Let
OL = {x1, x2, ..., xn, xn+1 = 0, . . . , xn+n′ = 0︸ ︷︷ ︸

n′

} (3.49)

OU = {x1, x2, ..., xn, xn+1 = 1, . . . , xn+n′ = 1︸ ︷︷ ︸
n′

} (3.50)

be the observation pools containing n + n′ observations obtained by merging O and O′ in the most
underestimated and overestimated ways, and kL and kU be respectively the number of observations
equal to 1 in OL and OU so that

kL = k kU = k + n′.

Then
P{X = 1|OL} ≤ P{X = 1|O,O′} ≤ P{X = 1|OU}

Without any assumption, the random closed set S representing P such that P is in S almost surely, i.e.

P{P ∈ S} = 1

can be seen as a random closed set containing almost surely P{X = 1|OL} and P{X = 1|OU}, i.e.

P{P{X = 1|OL} ∈ S;P{X = 1|OU} ∈ S} = 1

According to our results in the previous section, let PL be the lower random variable bound of P{X =
1|OL} and PU be the upper random variable bound of P{X = 1|OU} so that

PL ∼ Beta(k, n+ n′ + 1− k) (3.51)

PU ∼ Beta(k + 1 + n′, n− k) (3.52)

Then we have
PL ≤ P{X = 1|OL} ≤ P{X = 1|O,O′}
P{X = 1|O,O′} ≤ P{X = 1|OU} ≤ PU

The random interval [PL, PU ] satisfies the condition of S, so we can use this random interval to represent
P , i.e.

S = [PL, PU ]

The expected value of S is given by

E(S) = [E(PL), E(PU ))] = [
k

n+ n′ + 1
,
k + n′ + 1

n+ n′ + 1
] (3.53)

The confidence interval at level 1− α for P{X = 1|O,O′} is given by

[uL, uU ] = [I−1
α/2(kL, n+ n′ + 1− kL), I−1

1−α/2(kU + 1, n+ n′ − kU )] (3.54)

= [I−1
α/2(k, n+ 1 + n′ − k), I−1

1−α/2(k + n′ + 1, n− k)] (3.55)

3.4.4 System reliability assessment with unknown data part

Using the same approach that system level pseudo observations are constructed based on component
observations and structure function in previous section, ns system pseudo-observations are built ac-
cording to (3.49) or (3.50) where kLs (kUs ) is the number of pseudo observations in good state. Since
kLs , k

U
s ∈ {0, 1, 2, ..., ns} are also random variables, we have

E(S) = [E(PL), E(PU ))]

= [E(E(PL|kLs )), E(E(PU |kUs ))]

= [

ns∑
k=0

P(kLs = k)E(PL|kLs = k),

ns∑
k=0

P(kUs = k)E(PU |kUs = k)]

= [

ns∑
k=0

P(kLs = k)
k

ns + 1
,

ns∑
k=0

P(kUs = k)
k + 1

ns + 1
]

= [

∑ns
k=0 P(kLs = k)k

ns + 1
,

∑ns
k=0 P(kUs = k)(k + 1)

ns + 1
]

= [
E(kLs )

ns + 1
,
E(kUs ) + 1

ns + 1
] (3.56)
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where
ns ∈ [ min

1≤i≤d
(ni + n′i), max

1≤i≤d
(ni + n′i)]

The cdf of PL and PU are given by

FL(x) = P(PL ≤ x)

=

ns∑
k=0

P(PL ≤ x, kLs = k)

=

ns∑
k=0

P(PL ≤ x|kLs = k)P(kLs = k)

= P(kLs = 0) +

ns∑
k=1

Ix(k, ns + 1− k)P(kLs = k) (3.57)

FU (x) = P(PU ≤ x)

=

ns∑
k=0

P(PU ≤ x, kUs = k)

=

ns∑
k=0

P(PU ≤ x|kUs = k)P(kUs = k)

= 1{x=1}(x)P(kUs = ns) +

ns−1∑
k=0

Ix(k + 1, ns − k)P(kUs = k) (3.58)

where Ix(α, β) is the regularized incomplete beta function.
The number of good-state components kLs and kUs follow binomial distribution, i.e.

kLs ∼ Binomial(ns, pLs )

kUs ∼ Binomial(ns, pUs )

so that
P(kLs = k) =

(
ns
k

)
(pLs )

k
(1− pLs )ns−k

P(kUs = k) =
(
ns
k

)
(pUs )

k
(1− pUs )ns−k

The cdf of PL and PU become

FL(x) = (1− pLs )
ns

+

ns∑
k=1

Ix(k, ns + 1− k)
(
ns
k

)
(pLs )

k
(1− pLs )ns−k (3.59)

(3.60)

The confidence interval at level 1− α of S is then given by

[uL, uU ] = [F−1
L (α/2), F−1

U (1− α/2)] (3.61)

In case of highly reliable systems, on replacing kLs (kUs ) by the expected values, the cdf of PL and PU can
also be approximated by

FL(x) ≈ P(PL ≤ x|E(kLs )) (3.62)

FU (x) ≈ P(PU ≤ x|E(kUs )) (3.63)

so as the confidence interval [uL, uU ]

[uL, uU ] ≈ [I−1
α/2(E(kLs ), ns + 1− E(kLs )), I−1

1−α/2(E(kUs ), ns − E(kUs ))] (3.64)

Algorithms 7, 8, 9, 10 are then proposed to apply random set theory on cases with unknown data part.

57



Algorithm 7 Estimate ks with Monte Carlo simulation based in data with unknown part (Proposal 1)

Require: Component observations O1, ..., Od; number of simulation trials N
Composite the upper and lower observation pools of component Ci with Oi = {Xi,1, ..., Xi,ni}

OLi = {xLi,1, xLi,2, ..., xLi,ni , x
L
i,ni+1 = 0, . . . , xLi,ni+n′i = 0︸ ︷︷ ︸

n′i

}

OUi = {xUi,1, xUi,2, ..., xUi,ni , x
U
i,ni+1 = 1, . . . , xUi,ni+n′i = 1︸ ︷︷ ︸

n′i

}

for j = 1 to N do
Shuffle OL1 , ..., OLd and OU1 , ..., OUd
Randomly select starting points

(aL1 , ...., a
L
d ) ∈ {1, ..., n1 + n′

1} × ....{1, ..., nd + n′
d}

(aU1 , ...., a
U
d ) ∈ {1, ..., n1 + n′

1} × ....{1, ..., nd + n′
d}

for m = 1 to ns do
for i = 1 to d do
bLi = mod(aLi , ni + n′

i) + 1; bUi = mod(aUi , ni + n′
i) + 1

aLi = aLi + 1; aUi = aUi + 1
end for
Construct pseudo system lifetime observations:

xLs,m = ϕ(xL1,bi , ...., x
L
d,bd)

xUs,m = ϕ(xU1,bi , ...., x
U
d,bd)

end for
Estimate kLs,j and kUs,j :

kLs,j =

ns∑
i=1

xLs,i kUs,j =

ns∑
i=1

xUs,i

end for
Aggregate the sampled values of kLs and kUs by average:

k̂Ls =

∑N
j=1 k

L
s,j

N
k̂Us =

∑N
j=1 k

U
s,j

N

p̂Ls =
k̂Ls
ns

p̂Us =
k̂Us
ns

For k = 0, ..., ns,

p̂Ls,k =

∑N
j=1 1k(k

L
s,j)

N
p̂Us,k =

∑N
j=1 1k(k

U
s,j)

N
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Algorithm 8 Estimate ks with Monte Carlo simulation based in data with unknown part (Proposal 2)

Require: Component observations O1, ..., Od; number of simulation trials N
Composite the upper and lower observation pools of component Ci with Oi = {xi,1, ..., xi,ni}

OLi = {xLi,1, xLi,2, ..., xLi,ni , x
L
i,ni+1 = 0, . . . , xLi,ni+n′i = 0︸ ︷︷ ︸

n′i

}

OUi = {xUi,1, xUi,2, ..., xUi,ni , x
U
i,ni+1 = 1, . . . , xUi,ni+n′i = 1︸ ︷︷ ︸

n′i

}

for j = 1 to N do
Shuffle OL1 , ..., OLd and OU1 , ..., OUd
for m = 1 to ns do

for i = 1 to d do
if ni + n′

i < ns then
Select randomly with replacement ns samples from OLi and OUi respectively:

{xLi,1, ..., xLi,ns} {xUi,1, ..., xUi,ns}

else
Select randomly without replacement ns samples from OLi and OUi respectively:

{xLi,1, ..., xLi,ns} {xUi,1, ..., xUi,ns}

end if
end for
Construct upper and lower pseudo system lifetime observations:

xLs,m = ϕ(xL1,m, ...., x
L
d,m) xUs,m = ϕ(xU1,m, ...., x

U
d,m)

end for
Calculate the upper and lower ks,j estimates:

kLs,j =

ns∑
i=1

xLs,i kUs,j =

ns∑
i=1

xUs,i

end for
Aggregate the sampled value of kLs and ksU by average:

k̂Ls =

∑N
j=1 k

L
s,j

N
k̂Us =

∑N
j=1 k

U
s,j

N

p̂Ls =
k̂Ls
ns

p̂Us =
k̂Us
ns

For k = 0, ..., ns,

p̂Ls,k =

∑N
j=1 1k(k

L
s,j)

N
p̂Us,k =

∑N
j=1 1k(k

U
s,j)

N
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Algorithm 9 Estimate ks with MLE based in data with unknown part

Require: Component observations O1, ..., Od and O′1, ..., O′d
for i = 1 to d do

Estimate component reliability:

p̂Li =

∑ni
j=1 xi,j

ni + n′i
p̂Ui =

∑ni
j=1 xi,j + n′i
ni + n′i

end for
Calculate the probability of system failure according to components’ unavailability and Estimate the
value of ks:

k̂Ls = nsR(pL1 , ..., p
L
d ) k̂Us = nsR(pU1 , ..., p

U
d )

p̂Ls = R(p̂L1 , ..., p̂
L
d ) p̂Us = R(p̂U1 , ..., p̂

U
d )

For k = 0, ..., ns,

p̂Ls,k =
(
ns
k

)
(p̂Ls )

k
(1− p̂Ls )ns−k p̂Us,k =

(
ns
k

)
(p̂Us )

k
(1− p̂Us )ns−k

Algorithm 10 Estimate ks with Monte Carlo simulation based in data with unknown part

Require: Component observations O1, ..., Od; number of simulation trials N
Composite the upper and lower observation pools of component Ci with Oi = {xi,1, ..., xi,ni}

OLi = {xLi,1, xLi,2, ..., xLi,ni , xLi,ni+1 = 0, . . . , xLi,ni+n′i = 0︸ ︷︷ ︸
n′i

}

OUi = {xUi,1, xUi,2, ..., xUi,ni , xUi,ni+1 = 1, . . . , xUi,ni+n′i = 1︸ ︷︷ ︸
n′i

}

for j = 1 to N do
Shuffle the observation pools:OUi and OLi (1 ≤ i ≤ d)
for m = 1 to ns do

Randomly draw xL1,m, ...., x
L
d,m and xU1,m, ...., xUd,m respectively from OL1 , ..., OLd and OU1 , ..., OUd

Construct upper and lower pseudo system state observations:

xLs,m = ϕ(xL1,m, ...., x
L
d,m) xUs,m = ϕ(xU1,m, ...., x

U
d,m)

end for
Calculate the upper and lower ks,j estimates:

kLs,j =

ns∑
i=1

xLs,i kUs,j =

ns∑
i=1

xLs,i

end for
Aggregate the sampled value of ks by average:

k̂Ls =

∑N
j=1 k

L
s,j

N
k̂Us =

∑N
j=1 k

U
s,j

N

p̂Ls =
k̂Ls
ns

p̂Us =
k̂Us
ns

For k = 0, ..., ns,

p̂Ls,k =

∑N
j=1 1k(kLs,j)

N
p̂Us,k =

∑N
j=1 1k(kUs,j)

N
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3.4.5 Estimation of system reliability with time-dependent observations

Reliability assessment of components

Survival model with binary states Let T , a non-negative continuous random variable, denote the
“waiting time until an occurence of event” where an “event” represents a change of states on the studied
object such as a component failure, a patient’s death, etc.
Let X(t), a time-dependent random variable, denote the state of a binary component or system

X(t) =

{
1 if the component or system is in good state at time t
0 if the component or system is in down state at time t

A failure is defined as the event that state changes from 1 to 0 and a repair is defined as the event that
the state changes from 0 to 1. A component is repairable if repairs are possible. The availability A(t) of a
component is defined as the probability that the component is in good state at time t, i.e.

A(t) = P(X(t) = 1) = E[X(t)] t > 0

The reliability R(t) is defined as the probability that the component is in good state for all instants before
time t or the failure does not occur before time t, i.e.

R(t) = P{X(µ) = 1,∀µ ∈ [0, t]}

The maintainability M(t) is the probability that the system will be repaired within time t when failure
occurs, i.e.

M(t) = P{X(t) = 1|X(0) = 0}
Supposing that the initial state is always state 1 (in good state), then the following properties are avail-
able

R(0) = A(0) = 1

In case of unrepairable systems, the relation between T and X(t) are given by

X(t) =

{
1 if T > t

0 if T ≤ t

The survival function S(t) is the complement of cumulative distribution function (cdf) of T , i.e.

F (t) = P{T ≤ t}

S(t) = P{T > t} = 1− F (t)

so that it is equivalent to the reliability function R(t).
If the probability density function (pdf) of T , f(t), exists, we have

S(t) =

∫ ∞
t

f(µ)dµ

The expected value of T is

E(T ) =

∫ ∞
0

tf(t)dt =

∫ ∞
0

S(t)dt

In this section, we are going to explain how to obtain system (un)availability estimates from component
sample data by constructing pseudo system observations and with random set model. The following
key assumptions are taken into account:

• System and components are allowed to take only two possible states: either good state, or down
state.

• Component failures are independent: State (failure) of one component does not impact the other
components.

• The structure function is coherent. That is, improvement of component states cannot damage the
system.

• The components are not repairable so that the system reliability and availability are the same.
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Reliability assessment of components using random set Consider an observation pool O which con-
tains n independent and identically distributed (i.i.d.) samples of T for a unrepairable component C,
i.e.

O = {t1, t2, ..., tn}
where ti is the ith observation.
In this section, a random closed set S(t) as well as a confidence interval is introduced to represent the
component reliability given observations O without any additional assumption. Let xi(t) denote the
state of the ith observation at time t, i = 1, ...., n, i.e.

xi(t) =

{
1 if ti > t

0 if ti ≤ t

With fixed instant t, the observation pool O(t) of X(t) is the same as O in previous sections

O(t) = {x1(t), x2(t), ..., xn(t)}

Let P (t) a random variable denote the availability A(t) given O(t), i.e.

P (t) = P{X(t) = 1|O(t)}

According to (3.27) and (3.26), P (t) can be represented by a random closed set (random interval)

S(t) = [PL(t), PU (t)] ⊂ [0, 1]

such that P (t) is selection of S(t), i.e.
P(P (t) ∈ S(t)) = 1

Both bounds of S(t) follow beta distribution

PL(t) ∼ Beta(k(t), n− k(t) + 1)

PU (t) ∼ Beta(k(t) + 1, n− k(t))

where k(t) is the number of observations in good state in O(t).
The expectation of S(t) is then given by

E[S(t)] = [E(PL(t)), E(PU (t))] = [
k(t)

n+ 1
,
k(t) + 1

n+ 1
] = [

∑n
i=1 1(t,∞)(ti)

n+ 1
,
1(t,∞)(ti) + 1

n+ 1
]

where 1(t,∞)(x) is an indicator function giving 1 is x > t, 0 otherwise.
Hence, the confidence interval of S(t) at level 1− α becomes

[uL(t), uU (t)] = [I−1
α/2(k(t), n+ 1− k(t)), I−1

1−α/2(k(t) + 1, n− k(t))]

Estimation of system reliability

Consider a system composed of d independent components. Let Ts and T1, ...., Td denote respectively
the times to failure of the system and all components, and Xs(t) and X1(t), ...., Xd(t) denote the states
of system and all components at time t.
The system state at time t is given by

Xs(t) = ϕ(X1(t), ..., Xd(t))

Besides ϕ : {0, 1}d → {0, 1}, there exists another structure function giving system lifetime

Ts = ϕT (T1, ..., Td) (3.65)

so that

Xs(t) =

{
1 if Ts = ϕT (T1, ..., Td) > t

0 if Ts = ϕT (T1, ..., Td) ≤ t
(3.66)

The advantage of applying our method here is that the probability distribution at system level is very
complicated if we propagate the reliability distribution of each component using the structure function.
For example, if all components follows exponential distribution, only a series system has exponential
distributed reliability. Our method uses directly empirical distribution functions which always exist and
can present all possible distributions.
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Estimation of system failure probability/distribution Let

OTi = {t1,i, ..., tni,i ∈ R+}

be an observation pool which contains ni i.i.d lifetime observations of component Ci. Instead of using
failure probabilities calculated from each component observation pool and then propagating them to
system level, our proposed idea to calculate the system reliability ps(t) is to build directly pseudo-
observations of Ts

OTs = {ts,1, ..., ts,ns}.
The same procedure as in binary static systems introduced previously is carried out:

• Randomly draw one observation with or without from each component observation pool OTi

• Build a pseudo system composed of these observation combinations

• Obtain a pseudo sample of Ts through function ϕT .

The number of system pseudo-observations in good state in OTs at time t, ks(t), follows binomial distri-
bution

ks(t) ∼ Binomial(ns, ps(t))
where ps(t) denotes the system reliability.
With Monte Carlo simulation, the pseudo-observation pool OTs are supposed to represent all informa-
tion provided by OT1

, ..., OTd so that

Ps(t) = P{Xs(t) = 1|OT1
, ..., OTd} ≈ P{Xs(t) = 1|OTs}

The random set S(t) representing the system reliability such that

P{Ps(t) ∈ S(t)} = 1

is a random interval
S(t) = [PL(t), PU (t)]

where PL(t) and PU (t) are random variables following distributions with cdf given by

FL(x, t) = (1− ps(t))ns +

ns∑
k=1

Ix(k, ns + 1− k)
(
ns
k

)
(ps(t))

k
(1− ps(t))ns−k (3.67)

FU (x, t) = 1{x=1}(x)(ps(t))
ns +

ns−1∑
k=0

Ix(k + 1, ns − k)
(
ns
k

)
(ps(t))

k
(1− ps(t))ns−k (3.68)

In case of highly reliable systems, the distributions of PL(t) and PU (t) can be approximated by Beta
distribution

PL(t) ∼ Beta(E(ks(t)), ns + 1− E(ks(t)))

PU (t) ∼ Beta(E(ks(t)) + 1, ns − E(ks(t)))

The expected value of S(t) = [PL(t), PU (t)] is then given by

E(S(t)) = [E(PLs (t)), E(PUs (t))] = [
E(ks(t))

ns + 1
,
E(ks(t)) + 1

ns + 1
] (3.69)

The confidence interval at level 1− α of Ps(t) is given by

[uL(t), uU (t)] = [FL
−1
α/2(t), FU

−1
α/2(t)] (3.70)

where FL−1
α/2(t) and FU−1

α/2(t) are the inverse function of (3.67) and (3.68)
It can also be approximated by

[uL(t), uU (t)] = [I−1
α/2(E(kLs (t)), ns + 1− E(kLs (t)), I−1

1−α/2(E(kUs (t)) + 1, ns − E(kUs (t))] (3.71)

The proposed estimators of E(ks(t)), ps(t) and P(ks = k) are shown in Algorithm 11, 12, 13 and 14.
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Algorithm 11 Estimate ks(t) with MLE (Proposal 3)

Require: Component observations OT1 , ..., OTd ; instant t; sample size ns
for i = 1 to d do

Estimate component availability at instant t:

p̂i(t) =

∑ni
j=1 1(t,∞)(ti,j)

ni

end for
Calculate the system reliability according to components’ reliability:

p̂s(t) = R(p̂1(t), ..., p̂d(t))

Estimate the value of ks(t):
k̂s(t) = p̂s(t)ns

Algorithm 12 Estimate ks(t) with Monte Carlo re-sampling/simulation (Proposal 1)

Require: Component observations OT1
, ..., OTd ; number of simulation trials N ; instant t

for j = 1 to N do
Shuffle OT1 , ..., OTd
for i = 1 to d do

if ni < ns then
Select randomly with replacement ns samples from OTi :

ÕTi : ti,1, ..., ti,ns

else
Select randomly without replacement ns samples from OTi :

ÕTi : ti,1, ..., ti,ns

end if
end for
for m = 1 to ns do

Construct pseudo system lifetime observations from Õ1, ..., Õd:

ts,m = ϕT (t1,m, ...., td,m)

end for
Count the number of systems in good state:

ks,j(t) =

ns∑
i=1

1(t,∞)(ts,i)

end for
Aggregate the sampled value of ks(t) by average:

k̂s(t) =

∑N
j=1 ks,j(t)

N
p̂s(t) =

k̂s(t)

ns

For k = 0, ..., ns,

p̂s,k(t) =

∑N
j=1 1k(ks,j(t))

N
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Algorithm 13 Estimate ks(t) with Monte Carlo re-sampling/simulation (Proposal 2)

Require: Component observations OT1
, ..., OTd ; number of simulation trials N ; instant t

for j = 1 to N do
Shuffle OT1 , ..., OTd
Randomly select a starting point

(a1, ...., ad) ∈ {1, ..., n1} × ....{1, ..., nd}

for m = 1 to ns do
for i = 1 to d do
bi = mod(ai, ni) + 1
ai = ai + 1

end for
Construct pseudo system lifetime observations:

ts,m = ϕT (t1,bi , ...., td,bd)

end for
Calculate ks,j(t):

ks,j(t) =

ns∑
i=1

1(t,∞)(ts,i)

end for
Aggregate the sampled value of ks,t by average:

k̂s(t) =

∑N
j=1 ks,j(t)

N
p̂s(t) =

k̂s(t)

ns

For k = 0, ..., ns,

p̂s,k(t) =

∑N
j=1 1k(ks,j(t))

N

Algorithm 14 Estimate ks(t) with Monte Carlo re-sampling/simulation (Proposal 3)

Require: Component observations OT1 , ..., OTd ; number of simulation trials N ; instant t
for j = 1 to N do

for m = 1 to ns do
Randomly draw t1,m, ...., td,m respectively from OT1

, ..., OTd with replacement
Construct pseudo system lifetime observations:

ts,m = ϕT (t1,m, ...., td,m)

end for
Estimate ks,j(t):

ks,j(t) =

ns∑
i=1

1(t,∞)(ts,i)

end for
Aggregate the sampled value of ks(t) by average:

k̂s(t) =

∑N
j=1 ks,j(t)

N
p̂s(t) =

k̂s(t)

ns

For k = 0, ..., ns,

p̂s,k(t) =

∑N
j=1 1k(ks,j(t))

N
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Ci ni OTi
1 5 78 73 36 55 28
2 4 30 21 56 30
3 3 60 84 56

Table 3.7: Parallel/series systems: Observations of three system components
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Figure 3.19: Parallel/series systems: Empirical reliability for three system components: C1 C2 and C3

Example 24 (Parallel/series systems). Consider a system composed of three independent components,
C1, C2 and C3, whose lifetime observations are given in Table 3.7 (cf. Figure 3.19) with different possible
structures (cf. Figure 3.10, 3.11 and 3.14) using Algorithm 11 with ns = 4 and 1− α = 0.95.
A system fails when the last working component in one of the minimal cut-set fails. In the obtained
stair-step graphs (Figure 3.20), the instants where estimation and confidence interval bound values drop
correspond to one of component lifetime observations in OTi (Table 3.7): 21 , 28, 30, 30, 36, 55, 56, 60, 73,
78, 84.
For S1, the empirical reliability estimate P̂MLE(t) obtained by probabilistic structure functionR(p̂1(t), ..., p̂d(t))
with p̂i(t), the MLE estimator of pi(t), is always bounded by our upper and lower estimates.
The reliability of parallel systems mostly depends on the most reliable component which is C3 in our
case. As shown in Figure 3.20a, the reliability does not start decreasing until the instant t = 56, the
first failure time of component C3. For series systems, once one of the components fails, the system
fails. The reliability depends on the least reliable component which is C2 in our case. The curves stop
decreasing on function of time after the instant t = 56 where the last sample ofC2 fails (Figure 3.20b). All
components in the two previous examples have equal importance. The magnitude of each decrease is
only proportional to the number of samples corresponding to this instant and the weight of such samples
in their observation pool (1/ni). The two following systems S3 and S4 combine parallel and series
structures so that the instants where system reliability estimates start or stop decreasing can be traced.
Meanwhile, the component importance becomes different comparing between components and varies
on function of time and component reliability. In S3, the magnitude of decreases caused by samples of
C1 are different on function of time. The shape of obtained curves are similar to the one of C1 reliability.
According to all available observations C3 is much more reliable than parallel structure composed of the
other two components, which indicates that C1 is critical to the system reliability. In S4, the shape of all
estimates especially P̂MLE(t) is close to the one of C3 reliability. The series part according to available
observations fails much faster than C3 which is on parallel. In this specific case, C3 is critical to the
system reliability, which confirms what is observed from our results.

Case with censored component observation pools Consider that there are n′i samplesO′Ti = {t′i,1, ..., t′i,n′i}
censored with maximal observation time tmaxi of component Ci. The only information available is

t′i,j ∈ [tmaxi ,+∞), j = 1, ..., n′i, i = 1, ..., d
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ûUapprox(t)

(a) Structure 1: Parallel system
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ûU (t)
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(b) Structure 2: Serial system
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(c) Structure 3: Parallel-series system
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(d) Structure 4: Series-parallel system

Figure 3.20: Parallel/series systems: System reliability Rs(t) with ns = 4
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In order to merge the precise observations and censored ones, the upper and lower observation pools
are build without additional assumption as follows

OLTi = {ti,1, ..., ti,ni , tmaxi , . . . , tmaxi︸ ︷︷ ︸
n′i

}

OUTi = {ti,1, ..., ti,ni ,+∞, . . . ,+∞︸ ︷︷ ︸
n′i

}

System reliability ps(t) can be presented in form of a random interval S(t) = [PLs (t), PUs (t)] where PLs (t)
is the lower random variable bound of P{Ts > t|OLT1

, ..., OLTd} and PU is the upper random variable
bound of P{Ts > t|OUT1

, ..., OUTd} so that the cdf of PLs (t) and PUs (t) are given by

FL(x, t) = (1− pLs (t))ns +

ns∑
k=1

Ix(k, ns + 1− k)
(
ns
k

)
(pLs (t))

k
(1− pLs (t))ns−k (3.72)

FU (x, t) = 1{1}(x)(pUs (t))
ns

+

ns−1∑
k=0

Ix(k + 1, ns − k)
(
ns
k

)
(pUs (t))

k
(1− pUs (t))ns−k (3.73)

where pLs (t) and pUs (t) are the empirical system reliability observed before instant t in pseudo observa-
tions OLTs and OUTs which are deviated respectively from OLT1

, ..., OLTd and OUT1
, ..., OUTd . Both OLTs and OUTs

should be constructed by random re-sampling with Proposal 1, 2 and 3 respectively. The algorithms
estimating k̂Ls,t and k̂Us,t are given in Algorithms 5 and 6.
Using (2.2), the confidence interval at level 1− α for Ps(t) is given by

[uL(t), uU (t)] = [FL
−1
α/2(t), FU

−1
α/2(t), ]

where FL−1
α/2(t) and FU

−1
α/2(t) are the inverse function of (3.72) and (3.73). It can also be approximated

by
[uL(t), uU (t)] = [I−1

α/2(E(kLs (t)), ns + 1− E(kLs (t)), I−1
1−α/2(E(kUs (t)) + 1, ns − E(kUs (t))]

when the system is highly reliable.

3.5 Comparison of two approaches on binary systems

In this section, the two previous approaches, the asymptotic normality (AN) approach and random set
(RS) approach, are applied on simple elementary structures and large system fault trees and compared.

3.5.1 Comparison on elementary structures

Comparing method

For analyzing quality of interval estimates, two indices are introduced: average coverage percentage
(ACP) to evaluate the confidence interval accuracy and length of confidence interval which characterizes
how conservative and precise it is.
In statistics, coverage probability of a confidence interval is the proportion of the time that the interval
contains the true value of interest [Dodge, 2006]. While constructing a confidence interval (CI), we try
to obtain coverage probability close to the confidence level 1− α, i.e.

Pθ(θ ∈ CI) ≈ 1− α

Average coverage probability (ACP) is the empirical estimate of the actual confidence level Pθ(θ ∈ CI).
If it is greater than 1− α, the confidence interval tends to be conservative; if ACP is smaller than 1− α,
the CI should be considered less accurate. In order to obtain ACP, for each component Ci, ni samples
were generated according to Table 3.8 for each iteration. After repeating this procedure for nacp = 10000
times, the calculated ACP corresponds to the empirical probability that the actual value ps is bounded
inside the obtained confidence intervals.
For confidence interval estimation of binomial proportion p, erratic and chaotic behaviors of ACP are
observed as well as oscillation phenomenon on ACP with fixed sample size as the proportion parameter
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Figure 3.21: System structures of three-component system

Component Sample size Reliability Reliability
(ni) Configuration 1 Configuration 2

1 20 0.98 0.85
2 30 0.93 0.70
3 35 0.95 0.80

Table 3.8: Parameters for ACP test: Component Reliability

p increases from 0 to 1 [Brown et al., 2001]. It is also widely recognized that unsatisfactory coverage
appears for p close to 0 or 1. The CI results of our asymptotic normality method are based on indirectly
calculated variance of system reliability estimate. And the ones given by random set approach have
both bounds with beta distribution whose parameters are given by pseudo system level observations.
Therefore, even though both CI are not classical estimates for binomial proportion, we can still sup-
pose that the ACP behavior of both methods should be impacted by the value of system reliability and
more directly components’ reliability so that two different component reliability configurations were
introduced (Table 3.8) in this test.
Algorithm 5 based on random set (RS) approach and Algorithm 2 using asymptotic normality (AN)
approach are used to conduct this test.
In general, RS methods treat system as single component by constructing pseudo samples; AN meth-
ods are based on a bottom-up scheme where the component reliability estimate and the corresponding
variance are propagated from single component level to system level using reliability function.
RS methods provide conservative results such that the ACP are always higher than the actual confidence
1 − α = 0.95 because the upper and lower bounds variables are supposed to satisfy the following
condition

P(PL ≤ p ≤ PU ) = 1

The CI lengths are also much larger than the results using AN methods with assumption. The lengths of
interval estimates and CIs are impacted by two factors: the system reliability and the number of pseudo
system level component which is chosen according to component sample sizes and presents the quantity
of available information and its uncertainty.
With more specific information (prior distributions), AN methods gave different results: AN methods
using typical MLE had always the lowest ACP and smallest CI length as the variance of estimated
components’ reliability was small; amid the proposed assumptions, Assumptions 2-4 showed the best
performance. Indeed, with zero failure observed in some cases, these assumptions decrease the relia-
bility estimate and enlarge its variance estimate. As the variance estimates for each component are the
same for all these four systems, the results also showed the role played by Birnbaum importance fac-
tor (BIF) determined by component reliability and system structure in calculating system level variance
using AN approach.
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Figure 3.22: Distribution of generated ki value for each component Ci in Configuration 1
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Figure 3.23: Distribution of generated ki value for each component Ci in Configuration 2

Systems composed of highly reliable components

In Configuration 1, we had high component reliabilities so that the condition ni = ki where prior as-
sumptions are more likely needed to estimate pi and V ar(pi) especially for Component 1 (Figure 3.22).
The results obtained by AN methods (Assumptions 2-4) have high ACP values which shows that the
prior distributions assumptions fit our system and data conditions.
In case of S2, the AN results have larger average CI length comparing with the ones in case of S1. The
single component in series system has more influence on system reliability than in parallel system so
that its BIF increases so as the system reliability variance estimate and CI length.
The evolution of CI length between different system structures composed of the same components is
more sensitive for AN method than for RS method.

ns ACP CI Average CI Length
20 1 0.1685644
25 1 0.1373198
30 1 0.1158404
35 1 0.1001713

(a) Random set (RS) method

Assumption ACP CI Average CI Length
1 0.2476 0.0002478518
2 1 0.0007779568
3 1 0.0007515397
4 1 0.0007275831
5 0.4402 0.0002888466
6 0.9267 0.0005256422

(b) Asymptotic normality (AN) method

Table 3.9: ACP test Results on S1 Configuration 1, nacp = 10000, ps=0.99993

70



ns ACP CI Average CI Length
20 0.9972 0.3258477
25 0.9928 0.2890787
30 0.9728 0.2620569
35 0.9666 0.2411718

(a) Random set (RS) method

Assumption ACP CI Average CI Length
1 0.9015 0.2238406
2 0.9833 0.2693917
3 0.9833 0.2662084
4 0.9833 0.2633749
5 0.9231 0.2253339
6 0.9890 0.2476414

(b) Asymptotic normality (AN) method

Table 3.10: ACP test Results on S2 Configuration 1, nacp = 10000, ps=0.86583

ns ACP CI Average CI Length
20 0.9982 0.2435901
25 0.9936 0.2113461
30 0.9935 0.1884120
35 0.9910 0.1711320

(a) Random set (RS) method

Assumption ACP CI Average CI Length
1 0.8299 0.1132770
2 0.9971 0.1292080
3 0.9971 0.1286954
4 0.9971 0.1282165
5 0.8300 0.1145025
6 0.9977 0.1226694

(b) Asymptotic normality (AN) method

Table 3.11: ACP test Results on S3 Configuration 1, nacp = 10000, the theoretical value of system relia-
bility ps =0.94867

ns ACP CI Average CI Length
20 1 0.1762370
25 1 0.1451650
30 1 0.1237884
35 1 0.1081813

(a) Random set (RS) method

Assumption ACP CI Average CI Length
1 0.7162 0.01191240
2 1 0.01811855
3 1 0.01782051
4 1 0.01754955
5 0.7162 0.01219797
6 0.93 0.01503417

(b) Asymptotic normality (AN) method

Table 3.12: ACP test Results on S4 Configuration 1, nacp = 10000, ps=0.99557
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ns ACP CI Average CI Length
20 1 0.1841664
25 1 0.1532332
30 1 0.1319220
35 1 0.1163369

(a) Random set (RS) method

Assumption ACP CI Average CI Length
1 0.8309 0.02073847
2 0.8479 0.02108163
3 0.8462 0.02106560
4 0.8453 0.02105100
5 0.8309 0.02077456
6 0.8342 0.02094286

(b) Asymptotic normality (AN) method

Table 3.13: ACP test Results on S1 Configuration 2, nacp = 10000, ps=0.991

ns ACP CI Average CI Length
20 0.9969 0.4501559
25 0.9909 0.4038223
30 0.9827 0.3690131
35 0.9703 0.3416780

(a) Random set (RS) method

Assumption ACP CI Average CI Length
1 0.9354 0.3212212
2 0.9407 0.3213518
3 0.9402 0.3213107
4 0.9403 0.3212761
5 0.9357 0.3212241
6 0.9384 0.3212717

(b) Asymptotic normality (AN) method

Table 3.14: ACP test Results on S2 Configuration 2, nacp = 10000 ps = 0.476

Systems composed of non-highly reliable components

In Configuration 2, components reliabilities are not close to 1. It is more likely to use directly MLE in
AN method which fits our observation of similar results between different assumptions (Figure 3.23).
The ACP value of RS results still stayed stable near 1 and was much higher than the confidence level.
The CI has large average length. An method results give lower ACP than 1 − α. It indicates that the
system level reliability variance was underestimated.

Conclusion

In conclusion, RS methods give always conservative results while AN method gave precise results but
not always accurate. In case of highly reliable systems, all results are very close to 1 and AN method
gave smaller and more accurate CI; RS methods give larger CI with ACP equal to 1. However, in case
of less reliable systems, the accuracy of AN results dropped while RS method keep conservative with
high ACP. Given the knowledge that studied system is highly reliable, we propose AN method; if such
information is not available or conservative results are demanded, RS method should be a better choice.

3.5.2 Application on large systems

Benchmark

In order to illustrate that our proposed approach can be applied efficiently to reliability studies of large
systems, we used fault trees BAOBAB1 and BAOBAB2 (which are constituted of real-life fault trees using

ns ACP CI Average CI Length
20 0.9985 0.3923593
25 0.9947 0.3507160
30 0.9867 0.3196582
35 0.9775 0.2953970

(a) Random set (RS) method

Assumption ACP CI Average CI Length
1 0.9277 0.2630549
2 0.9289 0.2631137
3 0.9285 0.2631030
4 0.9285 0.2630940
5 0.9277 0.2630562
6 0.9277 0.2630802

(b) Asymptotic normality (AN) method

Table 3.15: ACP test Results on S3 Configuration 2, nacp = 10000 , ps = 0.764
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ns ACP CI Average CI Length
20 0.9999 0.2815794
25 0.9991 0.2479342
30 0.9981 0.2235574
35 0.9962 0.2049100

(a) Random set (RS) method

Assumption ACP CI Average CI Length
1 0.9093 0.1267270
2 0.9134 0.1270949
3 0.9127 0.1270722
4 0.9124 0.1270520
5 0.9093 0.1267378
6 0.9108 0.1269044

(b) Asymptotic normality (AN) method

Table 3.16: ACP test Results on S4 Configuration 2, nacp = 10000, ps=0.919

Fault tree BAOBAB1 BAOBAB2
Component number 61 32

Number of minimal cutsets 72 395
(max length=4)

Number of minimal cutsets 472 1025
(max length=5 )

Number of minimal cutsets 2684 4805
(max length=6)

Number of minimal cutsets 17432 4805
(max length=7)

Number of minimal cutsets 25892 4805
(max length=8)

Total number of minimal cutsets 46188 4805

Table 3.17: Complexity information about studied fault trees

various sources) from Aralia benchmark1. The coherent fault trees BAOBAB1 and BAOBAB2 contain
respectively 61 and 32 components and both have more than 4000 minimal cutsets (shown in Table 3.17)
such that the calculation of the system reliability using probabilistic assessment by propagation from
component level is very expensive. Both systems are complex so that it is not possible to decompose
them into series/parallel subsystems without repeated components.

Real-time system application

Suppose that the lifetime observations of the component Ci are

OTi = {T1,i, T2,i, · · · , Tni,i}

Our normality asymptotic method uses Kaplan-Meier estimator to estimate the component reliability at
time t, pi(t), i.e.

p̂i(t) =
∏

wj,i<t

bj,i − dj,i
bj,i

where bj,i is the number of observations in good state just before the time Tj,i and dj,i the number of
failures observed at time Tj,i.
The variance of p̂i(t) is given as

V̂ar(p̂i(t)) = p̂i(t)
2
∑
wj,i≤t

dj,i
bj,i(bj,i − dj,i)

.

p̂s(t) = R(p̂1(t), ..., p̂d(t))

V̂ar(p̂s(t)) =

d∑
i=1

(R(p̂1(t), ...p̂i(t) = 1, ..., p̂d(t))−R(p̂1(t), ...p̂i(t) = 0, ..., p̂d(t)))
2V̂ar(p̂i(t))

1Fault trees distributed by Antoine Rauzy which can be found at: http://www.itu.dk/research/cla/externals/clib/Aralia.zip
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Ci ni OWi

1 2 100,120
2 1 20
3 3 200+,200+,200+
4 5 24,12,33,134,25
5 4 4,28,3,39
6 5 20,26,41,30,24
7 3 200+,200+,200+
8 2 200+,200+
9 3 88,42,8

10 2 33,25
11 5 16,16,19,51,3
12 3 117,89,32
13 2 100,150
14 1 123
15 2 132,164
16 4 39,46,151,68
17 2 184,253
18 3 12,39,29
19 2 81,15
20 3 31,84,38
21 5 125,25,25,9,74
22 5 102,60,105,28,6

Ci ni OWi

23 3 35,42,2
24 3 200+,200+,200+
25 4 93,111,117,23
26 3 200+,200+,200+
27 2 73,35
28 4 138,5,48,30
29 2 73,94
30 2 200+,200+
31 4 41,78,15,57
32 4 26,152,1,250
33 2 145,6
34 1 61
35 2 7,59
36 2 100,90
37 2 25,91
38 1 107
39 3 9,5,4
40 3 24,170,61
41 5 1,4,13,12,27
42 1 60
43 4 143,5,35,79
44 3 42,8,9

Ci ni OWi

45 3 54,66,46
46 4 3,30,7,145
47 2 18,10
48 2 68,46
49 3 124,17,9
50 2 160,34
51 4 38,9,67,12
52 1 227
53 4 31,62,155,144
54 3 1,9,2
55 3 200+,200+,200+
56 3 200+,200+,200+
57 4 3,31,4,5
58 3 200+,200+,200+
59 1 26
60 4 27,19,16,24
61 5 24,1,14,14,53

Table 3.18: BAOBAB1: Component Ci, i = 1, ..., d = 61

Ci ni OWi

1 1 223
2 2 28,253
3 3 2,23,20
4 4 20,28,18,99
5 5 67,93,71,90,114
6 5 92,98,74,60
7 5 206,35,115,123,27
8 4 42,126,54,69
9 4 338,375,128,1823

10 5 190,104,105,42,69
11 2 208,161

Ci ni OWi

12 1 58
13 2 69,76
14 1 122
15 3 105,638,1462
16 5 95,70,136,160,97
17 5 78,122,133,52,34
18 1 19
19 1 70
20 2 100+,100+
21 4 17,3,9,1
22 1 54

Ci ni OWi

23 2 67,19
24 1 16
25 2 3,15
26 5 29,8,10,28,75
27 3 200+,200+,200+
28 2 14,17
29 5 6,32,5,23,2
30 3 200+,200+,200+
31 3 10,1,3
32 2 200+,200+

Table 3.19: BAOBAB2: Component Ci, i = 1, ..., d = 32
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Figure 3.24: BAOBAB1: reliability estimates and their CIs obtained by RS and AN methods (ps1-4,ci1-4)
(ns = 4, Assumption 1-4)
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Figure 3.25: BAOBAB1: reliability estimates and their CIs obtained by RS and AN methods (ns = 4,
Assumption 1)
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Figure 3.26: BAOBAB1: reliability estimates and their CIs obtained by RS and AN methods (ns = 4,
Assumption 2)
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Figure 3.27: BAOBAB1: reliability estimates and their CIs obtained by RS and AN methods (ns = 4,
Assumption 3)
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Figure 3.28: BAOBAB1: reliability estimates and their CIs obtained by RS and AN methods (ns = 4,
Assumption 4)

0 10 20 30 40

0.
0

0.
2

0
.4

0
.6

0
.8

1.
0

t

P
s

ps1
ps2
ps3
ps4
[EPL,EPU]
ci1
ci2
ci3
ci4
CI RS

Figure 3.29: BAOBAB2: reliability estimates and their CIs obtained by RS and AN methods (ps1-4,ci1-4)
(ns = 4, Assumption 1-4)
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Figure 3.30: BAOBAB2: reliability estimates and their CIs obtained by RS and AN methods (ns = 4,
Assumption 1)
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Figure 3.31: BAOBAB2: reliability estimates and their CIs obtained by RS and AN methods (ns = 4,
Assumption 2)
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Figure 3.32: BAOBAB2: reliability estimates and their CIs obtained by RS and AN methods (ns = 4,
Assumption 3)
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Figure 3.33: BAOBAB2: reliability estimates and their CIs obtained by RS and AN methods (ns = 4,
Assumption 4)
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We obtained reliability estimated value and confidence interval at level and 1−α = 0.95 using Algorithm
2 and Algorithm 7 with N = 105 and ns = 4 as well as reference method with 100000 simulations for
both fault trees shown in Figures 3.24 - 3.28 and Figures 3.29 - 3.33.
AN results start to drop from the beginning of our observation and gives lower system reliability ex-
pected value because at the early age of observation all components have zero failure, i.e. ki = ni, so
that Assumption 2-4 gave reduced pi estimates, which, in our case, a small ni can be very different from
the facts. For example, with ni = ki = 2, we obtain respectively pi = 1/2,pi = 2/3 and pi = 3/4 using
Assumption 2-4.
Similar to simple structures, the RS results start to drop near instant t = 100 for BAOBAB2 and t = 18
for BAOBAB2 where the first pseudo system sample failure probably appears. The instants where the
RS results values decrease correspond to one of component lifetime observations in OWi as well as AN
results. The results obtained by AN method with Assumption 1 are always bounded by the RS interval
estimate for both fault trees.
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Chapter 4

Reliability assessment on multi-state
systems

4.1 Introduction

Besides binary model which gives components and systems only two states: perfect operational and
complete failure, a component or a system can be evaluated more precisely by multiple states according
to its different levels of performance. Such system model is called multi-state system (MSS) and was
introduced in [Barlow and Wu, 1978, El-Neweihi et al., 1978].
The structure function of a MSS is extended from binary system model. It takes multi-valued input
component level states and gives multi-valued system state [Pourret et al., 1999, Ushakov, 1994]. It can
be applied with Monte Carlo simulation technique for MSS reliability assessment [Ramirez-Marquez
and Coit, 2005, Zio et al., 2007] or with Markov method for dynamic MSS performance evaluation [Xue
and Yang, 1995, Lisnianski, 2007].

4.1.1 MSS performance indices

In a system or component of mS states, the performance output of each state i is evaluated by a per-
formance rate gi. Let variable G ∈ {g1, ..., gmS} denote the system performance rate and X a random
variable represent the corresponding system or component state (index). Let variablesGs andG1, ..., Gd
denote respectively the performance rate of a system with mS states and d system components with mi

states for each. Random variables Xs ∈ ES = {1, ...,ms} and Xi ∈ Ei = {1, ...mi} , i = 1, ..d, as the
corresponding state so that

Gs = gXs Gi = gXi .

Then, the structure function of performance rate ϕG becomes a Rd → R function

Gs = ϕG(G1, ..., Gd).

In practice, we also propose the structure function of state index as in case of binary systems such that

Xs = ϕ(X1, ..., Xd).

The performance are evaluated by several linear MSS reliability indices on function of demand ω which
indicates the minimal performance rate that should be satisfied to identify the studied object as "in
functioning or good state".

• MSS availability: All states can be grouped into a working state set

U(ω) = {i : gi − ω ≥ 0, i = 1, ...,ms} (4.1)

and a failure state set
D(ω) = {i : gi − ω < 0, i = 1, ...,ms} (4.2)

The MSS availability for an arbitrary demand constant ω is the probability that the system is in
working states, i.e.

A(ω) = P{X ∈ U(ω)} =

mS∑
i=1

pi1{gi−ω≥0}

81



where pi, i ∈ ES denotes the probability of each state, i.e.

pi = P(X = i)

• MSS expected output performance: The MSS expected output performance Ed is defined as

Ed =

mS∑
i=1

piGi (4.3)

• MSS expected performance deficiency: The MSS expected performance deficiency Eu(ω) for an
arbitrary demand constant ω is defined as

Eu(ω) =

mS∑
i=1

pi max(ω −Gi, 0)

4.1.2 Universal generating function (UGF)

The universal generating function (UGF) was firstly introduced in [Ushakov, 1986] and then developed
by [Lisnianski and Levitin, 2003]. In mathematics, a generating function (also called generating series) is a
formal power series in variable(s) whose coefficients encode information about a sequence of numbers
an indexed by the natural numbers. The ordinary generation function of a sequence an is defined by

G(an;x) =

∞∑
n=0

anx
n

In probability theory and statistics, the moment generating function (mgf) of a random variable G is de-
fined as

mG(t) := E
[
etG
]
, t ∈ R,

where the expectation of etG exists.
Consider that G takes discrete values from set EG = {g1, ..., gm} and

pi = P(G = gi)

the probability generating function (pgf) of G is defined as

mG(t) = E(etG) =

m∑
i=1

etgipi

By replacing et by a variable z, we obtain the z-transform function of G

wG(z) = E(zG) =

m∑
i=1

zgipi

Consider that random variablesG1, ...,Gd denote performance rates of independent system components
such that

Gi ∈ EGi = {gi1, ..., gimi} piji = P(Gi = giji),

the z-transform function of Gi is given by

ui(z) =

mi∑
ji=1

zgijipiji .

The system universal generating function (UGF) is then defined as a function of z-transforms of component
random variables u1(z),...,ud(z), i.e.

U(z) = ⊗ϕ(u1(z), ..., ud(z))

=

m1∑
i1=0

zg1i1p1i1 ⊗ϕ ...⊗ϕ
md∑
id=0

zgdidpdid

=

m1∑
i1=1

...

md∑
id=1

d∏
j=1

pjijz
ϕ(g1i1 ,...,gdid )

where ⊗ϕ is an operator describing the system (or subsystem) level performance in terms of perfor-
mance rate of all its components.
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4.2 Random set approach

In this section, we firstly introduce how to estimate performance indices of a multi-state component us-
ing random set theory; then we give the propagation method to obtain system-level performance indices
using random set model with resampling procedure; finally, a case study is illustrated to demonstrate
the effectiveness of our approach and compares results obtained by our method with the results given by
universal generating function (UGF) method accompanied with maximum likelihood estimators (MLE).

4.2.1 Estimation of availability of multi-state components

General case

Consider a component C with m states and that the random state variable X ∈ E = {1, ...,m} follows
categorical distribution parameterized by

P(X = i|X ≥ i− 1), 1 ≤ i ≤ m− 1.

Then N observations of X are constructed

O = {x1, ..., xN}

using stick-breaking construction scheme as follows [Connor and Mosimann, 1969]:

- Initialize the number of samples to be generated in O:

n = N

- For each state i = 1 : m− 1

- Generate n pivotal samples
zi1, ..., z

i
n ∼ U [0, 1]

- Count ni the number of samples in category i:

ni =

j=n∑
j=1

1[0,P(X=i|X≥i−1)](z
i
j)

- Add ni observations in category i to the observation pool O:

xN−n+1 = ... = xN−n+ni = i

- Calculate the number of samples not affected yet:

n = n− ni

- Count the number of samples in category m and complete the observation pool O:

nm = n, xN−n+1 = ... = xN = m

Let θi denote the distribution parameter given by

θi = P(X = i|X ≥ i− 1;O)

Then we have
θi = zi(ni) ≤ θi ≤ z

i
(ni+1) = θi 1 ≤ i ≤ m− 1

where θi = zi(ni)(θi = zi(ni+1)) is the nith ((ni + 1)th) order statistic for the ith sub-sampling so that

θi ∼ Beta(ni,

m∑
j=i+1

nj + 1) (4.4)

83



θi ∼ Beta(ni + 1,

m∑
j=i+1

nj) (4.5)

Thus the probability or proportion of each category i given observations O,

Pi = P(X = i|O) 1 ≤ i ≤ m
can be written by

Pi =


θ1 if i = 1

θi
∏i−1
j=1(1− θj) if i = 2, ...,m− 1∏m−1

j=1 (1− θj) if i = m

Let F : [0, 1]
m → R be a linear function and Y a random variable given by

Y = F (p) =

m∑
i=1

ciPi (4.6)

where c1, ..., cm are distinct constant coefficients and 0 < c1 < c2 < .... < cm. Then Y can be represented
by a random interval SY = [Y , Y ] such that

P{Y ∈ [Y , Y ]} = 1

where

Y =

m∑
i=1

P ici Y =

m∑
i=1

P ici (4.7)

are two random variables; (P 1, ..., Pm) and (P 1, ..., Pm) are random vectors in [0, 1]
m with the constraint∑m

j=1 P j =
∑m
j=1 P j = 1.

To obtain (P 1, ..., Pm) describing the condition in which Y is maximized, we just need to maximize the
Pm whose coefficient is the maximum by setting

P i =


θ1 if i = 1

θi
∏i−1
j=1(1− θj) if i = 2, ...,m− 1∏m−1

j=1 (1− θj) if i = m

Using (4.5) and results in [Albert and Denis, 2012], the random vector (P 1, ..., Pm) follows a Dirichlet
distribution

(P 1, ..., Pm) ∼ Dirichlet(k1, ..., km) (4.8)

where

ki =

{
ni if i 6= m

ni + 1 if i = m
(4.9)

Similarly, to obtain (P 1, ..., Pm) describing the condition in which Y is minimized we need to maximize
the P1 while minimizing the others by setting

P i =


θ1 if i = 1

θi(1− θ1)
∏i−1
j=2(1− θj) if i = 2, ...,m− 1

(1− θ1)
∏m−1
j=2 (1− θj) if i = m

Then we obtain the distribution of (P 1, ..., Pm)

(P 1, ..., Pm) ∼ Dirichlet(k1, ..., km) (4.10)

with

ki =

{
ni if i 6= 1

ni + 1 if i = 1
(4.11)

The estimation of SY becomes

E(SY ) = [

m∑
i=1

ki
N + 1

ci,

m∑
i=1

ki
N + 1

ci] (4.12)

The corresponding confidence interval (CI) can be obtained by simulating the Dirichlet distributions. In
case that different categories have the same coefficient in (4.6), they should be merged them firstly by
adding the probabilities and the number of observations.
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MSS reliability indices calculation

In a system of mS states, the performance output of each state i is evaluated by a performance rate Gi.
Suppose that there is not two system states having the same performance rate. LetX ∈ ES = {1, ...,mS}
a random variable representing system state. GivenN observations ofX , O = {x1, x2, ..., xN}, we apply
our method on several linear MSS reliability indices on function of demand ω.

MSS availability All states can be grouped into a working state set

U(ω) = {i : Gi − ω ≥ 0} (4.13)

and a failure state set
D(ω) = {i : Gi − ω < 0} (4.14)

Given the observations O, the MSS availability for the arbitrary demand constant ω is the probability
that the system is in working states, i.e.

A(ω) = P{X ∈ U(ω)|O} =

mS∑
i=1

Pi1{Gi−ω≥0}

With (4.7) (4.8) (4.9) (4.10) and (4.11), it can be represented by the random set SA(ω) = [AL(ω), AU (ω)]
with

AL(ω) ∼ Beta(nU(ω), N − nU(ω) + 1)

AU (ω) ∼ Beta(nU(ω) + 1, N − nU(ω))

where nU(ω) is the number of observations in working states. The expected value of SA(ω) is given by

E(SA(ω)) = [
nU(ω)

N + 1
,
nU(ω) + 1

N + 1
]

MSS expected output performance The MSS expected output performance Ed is defined as

Ed =

mS∑
i=1

PiGi (4.15)

Let idmax and idmin be the states with the maximum and minimum performance rate, i.e.

Gidmax = max
1≤i≤mS

Gi Gidmin = min
1≤i≤mS

Gi

Using the procedure described in the previous section, the random interval describing Ed is given by

Sd = [Ed, Ed]

where

Ed =

mS∑
i=1

P diGi Ed =

mS∑
i=1

P
d

iGi

are two random variables on function of the random vectors

(P d1, ..., P
d
m) ∼ Dir(kd1, ..., kdm)

(P
d

1, ..., P
d

m) ∼ Dir(kd1, ..., k
d

m)

where

kdi =

{
ni if i 6= idmin
ni + 1 if i = idmin

k̄di =

{
ni if i 6= idmax
ni + 1 if i = idmax

The estimation of Sd is given by

E(Sd) = [

mS∑
i=1

kdi
N + 1

Gi,

mS∑
i=1

k
d

i

N + 1
Gi]
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MSS performance deficiency The MSS performance deficiency Eu(ω) for the arbitrary demand con-
stant ω is defined as

Eu(ω) =

mS∑
i=1

Pi max(ω −Gi, 0)

After grouping the states with the same value of the coefficient ci = max(ω − Gi, 0), we obtain m′

categories (1, ...,m′) whose coefficients are (c′1, ..., c
′
m′) and c′1 < c′2 < ... < c′m′ Then the random interval

describing Eu is given by
Su = [Eu, Eu]

where

Eu =

m′∑
i=1

Pui c
′
i Eu =

m′∑
i=1

P
u

i c
′
i

are two random variables where

(Pu1 , ..., P
u
m′) ∼ Dir(ku1 , ..., kum′)

(P
u

1 , ..., P
u

m′) ∼ Dir(k
u

1 , ..., k
u

m′)

with

kui =

{
n′i if i 6= 1

n′i + 1 if i = 1

k̄ui =

{
n′i if i 6= m′

n′i + 1 if i = m′

and
n′i =

∑
x∈O

1{max(ω−Gx,0)=c′i}(x)

the number of observation for each category i after merging.
The estimation of Su is given by

E(Su) = [

m′∑
i=1

kui
N + 1

c′i,
m′∑
i=1

k
u

i

N + 1
c′i]

4.2.2 Estimation of system availability

Resampling method is used to simulate a condition that nS systems are constructed by the available
component samples and the system-level pseudo-observations of each system-level samples are ob-
tained.
Consider a system composed of d components. Let Oj (1 ≤ j ≤ d) be the observation pool containing
independent and identically distributed (i.i.d.) state samples of component Cj . To construct a system-
level pseudo-observation yi (1 ≤ i ≤ nS), for each component Cj , a sample xji of Cj is resampled from
Oj with replacement.
Then the observation pool OS containing nS system-level pseudo-observations is given by

OS = {yi = ϕ(x1
i , ...., x

d
i ), 1 ≤ i ≤ nS}

where ϕ is the structure function of the studied system.
In order to ensure the quantity of uncertainty, the sample size nS is bounded by

min
1≤i≤d

|Oi| ≤ nS ≤ max
1≤i≤d

|Oi|

The pseudo-observations resampled with replacement can be approximately regarded as i.i.d. samples
so that the vector samples (x1

i , ...., x
d
i ), as well as yi which are obtained through the structure function ϕ

on function of (x1
i , ...., x

d
i ), are i.i.d. observations.

Then, the system performance indices can be obtained using method mentioned in the previous section
on regarding the system as a single component given nS observations in OS .
However, the resampling is also random, in case of categorical distributed X , the observation number
of each category i can be estimated by Monte Carlo simulation where the number of executions Nsim
conducts convergent results.
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System state i 1 2 3 4 5 6 7
Performance Gi 0 1 1.5 2 2.5 3 3.5

Table 4.1: Correspondence table of system states and performance

X1 X2 X3 XS = ϕ(X1, X2, X3) G
1 1 1 1 0
1 1 2 1 0
1 2 1 1 0
1 2 2 3 1.5
1 3 1 1 0
1 3 2 4 2
2 1 1 1 0
2 1 2 2 1
2 2 1 1 0
2 2 2 5 2.5
2 3 1 1 0
2 3 2 6 3
3 1 1 1 0
3 1 2 3 1.5
3 2 1 1 0
3 2 2 6 3
3 3 1 1 0
3 3 2 7 3.5

Table 4.2: Case study: Truth table

4.2.3 Case study: oil transmission system

In this section, we apply our method on an oil transmission system composed of three pipes in [Ding
and Lisnianski, 2008](See Figure 4.1) given component observation data which we generated shown in
Table 4.3.
In the studied system, the oil flow is transmitted from point C to point E. The performance for each pipe
Ci in its state j is measured by their transmission capacity (tons per minute) gij . Pipe 1 C1 and Pipe 2
C2 have three states: a total failure state 1 where the capacity falls to zero (g1

1 = g2
1 = 0); a failure state

2 where the capacity is 1 ton/min for C1 and 1.5 tons/min for C2(g1
2 = 1, g2

2 = 1.5); an operational state
3 where the capacity is 1.5 ton/min for C1 and 2 tons/min for C2(g1

3 = 1.5, g2
3 = 2). Pipe 3 C3 is binary:

state 1 indicates a total failure with zero capacity (g3
1 = 0); state 2 indicates an operational state with a

capacity of 4 tons/min(g3
2 = 4).

The system output performance Gi is defined as the maximum flow that can be transmitted from C to
E: the total flow between points C and D through the parallel Pipe 1 and Pipe 2 is equal to the sum of
the flows in the two pipes. The flow from point D to point E is limited by the transmission capacity of
Pipe 3. This flow cannot be greater than the flow between points C and D. Therefore, the flow between
points C and E (the system performance rate) is given by

Gs = min(g1
i + g2

j , g
3
k), i, j ∈ {1, 2, 3}, k ∈ {1, 2} (4.16)

where s = 1, ...,mS = 7 is the index of system states determined according to the correspondence table
(Table 4.1).
The structure function ϕ is given by combining (4.16) and the correspondence between system state
index and the performance rate Gi (shown in Table 4.1).

Reference method

The proposed reference method used on MSS reliability assessment is the universal generating func-
tion (UGF) method used by Ding and Lisianski [Ding and Lisnianski, 2008] with maximum likelihood
estimators (MLE).
Let pij the corresponding probabilities that the component Ci is in state j, the u-function for Ci, ui(z), is
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Figure 4.1: Oil transmission system [Ding and Lisnianski, 2008]

Component Ci ni1 ni2 ni3
C1 3 3 14
C2 3 3 9
C3 0 10 -

Table 4.3: Observation data

defined as

ui(z) =

mi∑
i=1

pijz
gij

The u-function of the oil transmission system is

U(z) =

m3∑
k=1

m2∑
j=1

m1∑
i=1

p1
i p

2
jp

3
kz
fg(g1i ,g

2
j ,g

3
k) (4.17)

where fg(x1, x2, x3) = min(x1 + x2, x3).
The corresponding performance indices are given by

A(ω) =

m3∑
k=1

m2∑
j=1

m1∑
i=1

p1i p
2
jp

3
k1(fg(g

1
i , g

2
j , g

3
k)− ω ≥ 0) (4.18)

Ed =

m3∑
k=1

m2∑
j=1

m1∑
i=1

p1i p
2
jp

3
kfg(g

1
i , g

2
j , g

3
k) (4.19)

Eu(ω) =

m3∑
k=1

m2∑
j=1

m1∑
i=1

p1i p
2
jp

3
kmax(ω − fg(g1i , g2j , g3k)), 0) (4.20)

where m1 = m2 = 3 and m3 = 2 are the numbers of states for Pipe 1, 2 and 3 respectively. The
estimation of the three indices can be calculated on replacing the probabilities pij by its MLE estimators

p̂ij =
nij∑mi
k=1 n

i
k

where nij is the number of observations in state j for component Ci.

Results and discussion

We set the pseudo-observation size nS = 10 which is equal to the minimal size among three compo-
nents’ observations. The value of system-level ni (the number of pseudo-observations in state i inOS) is
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E(ELd ) E(EUd ) CI(ELd ) CI(EUd ) E
UGF/MLE
d

(95%) (95%)
2.4691 2.7873 1.7219 3.2219 2.7000

Table 4.4: MSS expected output performance Ed
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Figure 4.3: MSS performance deficiency Eu(ω) for the arbitrary demand constant ω

estimated by Monte-Carlo simulation with Nsim = 4.104 executions and the confidence intervals of per-
formance indices at level 1−α = 0.95 are also obtained by Monte Carlo simulation of the corresponding
Beta or Dirichlet distribution.
We obtained the results using both methods for different demands ω = {1, 1.5, 2, 2.5, 3, 3.5} shown in
Figure 4.2, Table 4.4 and Figure 4.3.
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Figure 4.2: MSS availability A(ω) for the arbitrary demand constant ω

We observed that the results given by UGF method with MLE estimators lies inside the estimations of
our random intervals. Since the observed number of state 1 of Pipe 3 is zero because of the limited obser-
vation size, for MLE estimators the estimated probability p3

1 is zero so that the system is in state 1 only if
Pipe 1 and Pipe 2 are all in state 1, which can not reflect the all situations and causes overestimation of
A(ω) and Ed as well as underestimation of Eu(ω). The random interval estimation is conducted without
prior distribution information. Our method provides larger range estimations and confidence intervals
compatible with unobserved events and limited component-level sample sizes.

4.3 Stochastic modeling of multi-state systems

4.3.1 Introduction

Markov (renewal) or semi-Markov process gives a general and more flexible presentation for processes
having Markov properties for modeling real life problems in finance [Janssen and Manca, 2007], engi-
neering [Grabski, 2007, N. Limnios, 2001], biology [V.S. Barbu, 2008], etc.

89



Continuous time Markov process are widely used to describe system dependability in many studies [Os-
aki and Nakagawa, 1976, Osaki, 1985, Lindqvist, 1987, Gnedenko et al., 1995]. In this approach, all state
sojourn time follows exponential distribution which means that the passage rates are homogeneous so
that it is easy to be implemented. However, the exponential hypothesis does not always correspond
the fact in real world systems whose failure time and/or repair time are not always exponentially dis-
tributed.
Semi-Markov process (SMP) provides a more precise model to evaluate system reliability. The passage
rates do not have to be homogeneous. In [N. Limnios, 2001, Malefaki et al., 2014], system dependability
measure of repairable systems is modeled by a continuous time semi-Markov process (CTSMP). One
of the disadvantage of SMP is that a system composed of semi-Markov subsystems does not always fit
Markov property.
However, an important drawback in these applications is the difficulty of obtaining tractable solution
in application with a large enough number of states. Several methods were proposed in the past using
algebraic and complementary variables approaches [Cox, 2008,Limnios, 2011,Limnios, 2014,N. Limnios,
2001] to obtain transition functions of the semi-Markov process.
In section 4.3.3, we study the existence and uniqueness solution of a Markov renewal equation (MRE).
We also propose a method solving Markov renewal equations based on an iterative scheme inspired
by n-fold convolution. Theoretical and numerical applications on system reliability and availability
calculation as well as a case study on system availability and reliability assessment are also provided in
the following sections.
In section 4.3.4, the objective of this chapter is to apply the state merging and splitting scheme on discrete
state space continuous time semi-Markov describing highly reliably (repairable) system evaluation in
order to reduce state space and to approximately estimate the system reliability and availability.
The state merging and splitting scheme gives a method that transforms semi-Markov subsystems whose
state space can be divided into groups where jumps occur much more frequently between states inside
the group, than states between groups, into single states with homogeneous passage rate, instead of just
replacing non-exponential passage time distribution by exponential distribution with the same mean
passage rate. As a system (process) composed of Markov subsystems still keeps its Markov property,
we can easily simplify the space state by grouping some of states. The grouping procedure is based
on average theorem with ergodic assumptions. It is very useful for system reliability (availability) esti-
mation because in reparable systems composed of highly reliable systems, we often observe that jumps
happen at most of time inside groups of states; the jumps between the group(s) of system working state
and the one(s) of system failure states are rather rare. We just need to understand the long term process
behavior.

4.3.2 Semi-Markov model on MSS evaluation: State of the art

Stochastic multistate components/systems

The stochastic behavior of a multi-state component or a system described in previous chapter is studied
by observing the object changes of states during a period of time, for example, failure or repair of the
component.
Consider that the studied object is put into observation at time instant t = 0, the state of the component
at instant t ≥ 0 is denoted by Zt ∈ E where the state space discrete finite/countable set E = {1, ...,m}
contains m different states and E is the power set of E.
Let a chain {Si, i ∈ N} such that

0 = S0 < S1 < ... < Si < ...,

be the time of the ith jump (state change of Zt). Then the (sojourn/passage) time between the (n− 1)th
and nth jumps {Xn, n ∈ N+} is given by

Xn = Sn − Sn−1

The number of jumps during the time period (0, t], N(t), is given by

N(t) = sup{n : Sn ≤ t} t > 0

Hence, (Jn, Sn), n ∈ N is called the embedded process of Zt, so that the embedded chain of Zt, (Jn, n ∈
N) is defined as

Jn = ZSn

and
Zt = JN(t)
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Semi-Markov process

Definition 39. A process Zt is called a semi-Markov process if the embedded process (Jn, Sn),n ∈ N of
the stochastic process Zt, t ∈ R+, satisfies

P(Jn+1 = j, Sn+1 − Sn ≤ t|Jn, Jn−1, ..., J0, Sn, Sn−1, ..., S0)

= P(Jn+1 = j, Sn+1 − Sn ≤ t|Jn)

The cumulative semi-Markov (matrix) kernel associated with Zt is defined as

Q(t) = (Qij(t), i, j ∈ E, t ∈ R+)

Qij(t) = P(Jn+1 = j, Sn+1 − Sn ≤ t|Jn = i) =

∫ t

0

qij(s)ds

where
q(t) = (qij(t), i, j ∈ E, t ∈ R+)

is the transition kernel of the process which satisfies the following properties:

• 0 ≤ qij(t), i, j ∈ E, t ≥ 0

•
∫∞

0
qij(t)dt ≤ 1, i, j ∈ E

The embedded chain (Jn) is a Markov chain whose Markov transition probability is given by

P = (pij , i, j ∈ E)

where

pij = P(Jn+1 = j|Jn = i)

= Qij(∞)

We consider that jumps are all triggered by events. Let eij the event drives a jump from state i to state j
whose waiting time is represented by a random variable Tij whose cumulative distribution is denoted
by Fij(t). Fij(t) can be also considered as the conditional cumulative distribution function of sojourn
time in state i given the next visited state j, i.e.

Fij(t) := P(Sn+1 − Sn ≤ t|Jn = i, Jn+1 = j) =


Qij(t)

pij
, if pij 6= 0,

1{t=∞} if pij = 0

Suppose the current state {Zt = i}, the next state is the state k whose corresponding event eik is first
event occurs among all possible next events {eij , j ∈ E \ {i}} so that the sojourn time in state i is given
by

Ti = min
j∈E\{i}

Tij

Hence, the kernel probability Qik(t) is the probability that Tik ≤ t given that Tik is less than the other
possible jumping sojourn times, i.e.

Qik(t) = P(Tik ≤ t and Tik < Tij ,∀j ∈ E \ {i, k})

=

∫ t

0

Fik(du)
∏

j∈E\{i,k}
(1− Fij(u))

qik(t) = fik(t)
∏

j∈E\{i,k}
(1− Fij(t))

The probability that the system leaves state i by time t, Hi(t), is given by

Hi(t) := P(Sn+1 − Sn ≤ t|Jn = i)

= P(Tij ≤ t, j ∈ E \ {i})
=

∑
j∈E\{i}

Qij(t)

=

∫ t

0

hi(s)ds

=
∑
j∈E

∫ t

0

qij(s)ds
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where
hi(t) :=

∑
j∈E

qij(t)

The survival function of state i, H̄i(t) is then defined as

H̄i(t) := P(Sn+1 − Sn > t|Jn = i) = 1−Hi(t)

Hence, we can define the mean sojourn time in state i by

mi := E(S1|J0 = i) =

∫ ∞
0

H̄i(t)dt

If Jn is irreducible with stationary distribution ρ = (ρi, i ∈ E), the mean sojourn time of Zt is defined by

m :=
∑
i∈E

ρimi

The stationary distribution of Zt is defined by

πi := lim
t→∞

Pji(t), i, j ∈ E

where
Pji(t) = P(Zt = j|Z0 = i).

Application on MSS evaluation The performance of each state is quantified by its performance rate
Gi, i ∈ E. Supposing that it is demanded that the performance rate should be not less than a constant
value ω (called demand of MSS). The system is considered in functional state if its performance rate is
not less than the demand. Then using (4.13) the set of all functional states with constant demand ω is
given by

U = U(ω) = {i ∈ E|Gi ≥ ω}
Define pi(t) as the probability that the system is in a certain state i at instant t. Consider a system start
at time t = 0. The system reliability is given by

R(t) = P(Zs ∈ U,∀s ∈ [0, t])

=
∑
i∈E

αiRi(t)

where αi = P(Z0 = i) is the initial state probability for state i, and Ri(t) is the system reliability (condi-
tional reliability) given the initial state i, i.e.

Ri(t) = P(Zs ∈ U,∀s ∈ [0, t]|Z0 = i), i ∈ U

Similarly, the system availability is defined as the multi-state component/system’s availability A(t) is
given by

A(t) = P(Zt ∈ U) =
∑
i∈U

pi(t) =
∑
i∈E

αiAi(t)

where Ai(t) is the conditional system availability given the initial state i:

Ai(t) = P(Zt ∈ U |X0 = i), i ∈ E

Let P(t) = (Pij(t)) where
Pij(t) = P(Zt = j|Z0 = i),

the instantaneous probability of each state, be the solution of the Markov renewal equation (MRE)

P(t) = 1−H(t) + Q ∗P(t)

where H(t) = diag(H1(t), ...,Hm(t)) is a diagonal matrix.
We have the instantaneous probability pi(t) given by

pi(t) =
∑
j∈E

αipji(t)
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System state Component state Description
Zst (Z1

t , Z
2
t )

1 (1,1) Both components are in good state.
2 (1,0) C1 is in good state; C2 is in failure state.
3 (0,1) C1 is in failure state; C2 is in good state.
4 (0,0) Both components are in failure state.

where pji(t) denotes the conditional probability

pji(t) = P(Zt = i|Z0 = j) =

{
1−Hj(t) +

∑
k∈U

∫ t
0
Qjk(ds)pj(t− s), j = i∑

k∈U
∫ t

0
Qjk(ds)pkj(t− s), j 6= i

Then the conditional reliability and the conditional availability are given by

Ri(t) =

{
1−Hi(t) +

∑
j∈U(ω)

∫ t
0
Qij(ds)Rj(t− s), i ∈ U(ω)∑

j∈U(ω)

∫ t
0
Qij(ds)Rj(t− s), i ∈ D(ω)

Ai(t) = P(Xt ∈ U |X0 = i), i ∈ E

=

{
1−Hi(t) +

∑
j∈E

∫ t
0
Qij(ds)Aj(t− s), i ∈ U(ω)∑

j∈E
∫ t

0
Qij(ds)Aj(t− s), i ∈ D(ω)

The value of conditional probabilities can be approximated as follows

pji(t) ≈
{

1−Hi(t) +
∑
j∈E

∑n
l=1 pji(t− xl)(Qij(xl)−Qij(xl−1)), i = j∑

k∈E
∑n
l=1 pki(t− xl)(Qik(xl)−Qik(xl−1)), i 6= j

Ri(t) ≈
{

1−Hi(t) +
∑
j∈U

∑k
l=1Rj(t− xl)(Qij(xl)−Qij(xl−1)), i ∈ U∑

k∈U
∑n
l=1Rk(t− xl)(Qik(xl)−Qik(xl−1)), i ∈ D

Ai(t) ≈
{

1−Hi(t) +
∑
j∈E

∑k
l=1Aj(t− xl)(Qij(xl)−Qij(xl−1)), i ∈ U∑

k∈E
∑n
l=1Ak(t− xl)(Qik(xl)−Qik(xl−1)), i ∈ D

where 0 = x0 < x1 < ... < xn = t.

State space specification

Supposing that we have a system composed of d independent components C1, ... , Cd. For each compo-
nent Ci, its state is represented by Zit ∈ Ei = {1, ...,mi} such that

P(Zit = j) = pij(t)

One of the most used specification for system level is to start (bottom-up) from component level and list
all possible combinations of

Zt = (Z1
t , ..., Z

d
t )

so that the system state number |E| is the product of all component state numbers, i.e.

E = {1, ...,m1} × ...× {1, ...,md}

|E| =
d∏
i=1

mi ≥ mS

where mS is the number of system level states and will exponentially increase when the system has
more components.

Example 25. A system composed of two binary components C1 and C2 can be presented by Zt =
ϕ(Z1

t , Z
2
t ) The state space E = {1, 2, 3, 4} where the space size is equal to 2d in case of system com-

posed of d binary components.
If the system is a parallel system, the sets of good and failure system states are respectively given by
U = {1, 2, 3} and D = {4}; similarly, if the system is a series system, we have U = {1} and D = {2, 3, 4}.
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Another approach is that we use the reliability function or UGF to calculate the instantaneous probability
of each system state psi (t) on function of component state probabilities obtained by semi-Markov process.

psi (t) = P(Zst = i) =
∑

x=(x1,...xd)∈E
1{ϕ(x)=i}

d∏
j=1

pjxj (t)

Here instead of create state space on combination of component states, we only build model for each
single component.
We do not merge different states as in many examples because firstly we are treating component with
multiple states; secondly in order to evaluate indices such as system performance expectation and avail-
ability on function of demand it is complicated to identify two conditions with exactly the same impact
on system level.
The advantage of using semi-Markov process modeling is that it allows us to adapt more complicated
situations, for example, component with different maintenance strategies and repair results.

4.3.3 Solution of Markov renewal equation

Markov renewal function and n-fold convolution

Since Zt is regular, which means that the number of jumps in any finite time interval is finite almost
surely, we suppose that Zt is continuous on the right having left limits in any point of time t > 0.
Let φ(i, t), i ∈ E, t ≥ 0, be a real-valued measurable function, then the convolution of φ by Q is defined
as follows

Q ∗ φ(i, t) :=
∑
k∈E

∫ t

0

Qik(ds)φ(k, t− s). (4.21)

It is easy to prove the following fundamental equality

Q
(n)
ij (t) = Pi(Jn = j, Sn ≤ t). (4.22)

where Pi(·) means P(· | J0 = i) and Q(n)
ij (t), i, j ∈ E, is the n-fold convolution of Q by itself, i.e.

Q
(n)
ij (t) =


∑
k∈E

∫ t
0
Qik(ds)Q

(n−1)
kj (t− s)ds n ≥ 2

Qij(t) n = 1
δij1{t≥0} n = 0,

with δij = 1, if i = j and δij = 0, if i 6= j.
Then the Markov renewal function ψij(t), i, j ∈ E, t ≥ 0, can be defined by

ψij(t) :=

∞∑
n=0

Q
(n)
ij (t). (4.23)

Let us write the Markov renewal function (4.23) in matrix form

ψ(t) = (I(t)−Q(t))(−1) =

∞∑
n=0

Q(n)(t). (4.24)

This can also be written as

ψ(t) = I(t) +Q ∗ ψ(t), (4.25)

where I(t) = I (the identity matrix), if t ≥ 0 and I(t) = 0, if t < 0.

Markov renewal equation Equation (4.25) is a special case of what is called Markov renewal equation
(MRE) which is generally defined as

U(t) = V (t) +Q ∗ U(t), (4.26)

where U(t) = (Uij(t))i,j∈E , V (t) = (Vij(t))i,j∈E are matrix-valued measurable functions, with Uij(t) =
Vij(t) = 0 for t < 0. The function V (t) is a given matrix-valued function and U(t) is an unknown
matrix-valued function.

94



MRE solution given by iterative method

Assumption 7. Let B be the space of all locally bounded, on R+, matrix functions U(t), i.e., ||U(t)|| =
supi,j |Ui,j(t)| is bounded on sets [0, ξ], for every ξ ∈ R+.

Proposition 2. ( [Pyke, 1961,N. Limnios, 2001]). The transition function P (t) = (Pij(t), i, j ∈ E) satisfies
the following MRE

P (t) = H̄(t) +Q ∗ P (t), (4.27)

which, under Assumption 7, has the unique solution

P (t) = ψ ∗ H̄(t), (4.28)

Here H̄(t) = I(t)−H(t) with H(t) = diag(Hi(t)) is a diagonal matrix.

Let (Pnij(t), n ∈ N) a sequence of functions given by

Pnij(t) =

{
δijH̄i(t) if n = 0

δijH̄i(t) +
∑
k∈E

∫ t
0
Qik(ds)Pn−1

kj (t− s) if n ≥ 1.
(4.29)

where H̄i(t) := 1−Hi(t).

Proposition 3. 3 For any fixed t ≥ 0 and i, j ∈ E, the limit

lim
n→∞

Pnij(t)

exists and it is the smallest solution of the MRE (4.27) that we denote by P̃ij(t).

Proof. From equation (4.29) we get∑
j∈E

Pnij(t) = δijH̄i(t) +
∑
j∈E

∑
k∈E

∫ t

0

Qik(ds)Pn−1
kj (t− s)

≤ δijH̄i(t) +

∫ t

0

Hi(ds)

= 1.

On the other hand, we have Pnij(t) ≥ 0 for any n ≥ 0, i, j ∈ E and t ≥ 0.
Define

Dn
ij(t) :=

{
P 0
ij(t) if n = 0

Pnij(t)− Pn−1
ij (t) if n ≥ 1.

(4.30)

Then we get

Dn
ij(t) =

∑
k∈E

∫ t

0

Qik(ds)Dn−1
kj (t− s), n ≥ 1. (4.31)

Since D0
ij(t) ≥ 0 we have Dn

ij(t) ≥ 0 for all n ≥ 1 and then Pnij(t) ≥ Pn−1
ij (t).

Finally, from the above inequality and the inequality 0 ≤ Pnij(t) ≤ 1 we get the desired result that the
limit P̃ij(t) exists.
Let us now prove that P̃ij(t) is the smallest solution of the MRE (4.27). The fact that P̃ij(t) is a solution
of the MRE is obtained directly by considering limits in both sides of equation (4.29).
Now let us consider another solution of the MRE, say P ]ij(t). Then we have P ]ij(t) ≥ δijH̄i(t) =: P 0

ij(t)

and, suppose that P ]ij(t) ≥ Pn−1
ij (t), we get

Pnij(t) = δijH̄i(t) +
∑
k∈E

∫ t

0

Qik(ds)Pn−1
kj (t− s)

≤ δijH̄i(t) +
∑
k∈E

∫ t

0

Qik(ds)P ]kj(t− s)

= P ]ij(t),

and passing to limit when n→∞, the proof is achieved.
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Moreover, the probabilistic meaning of Pnij(t) can be given by

Pnij(t) = Pi(Zt = j, Sn+1 > t) (4.32)

It indicates that for a fixed instant t, the convergence speed of the sequence Pnij(t) depends on distribu-
tion of the jump number N(t) or Hi(t), the sojourn distribution of each state i.
As the time t increases, the minimal n needed to obtain a precise value of Pij(t) using our method
increases too.

Proof. Let us start with n = 0

P 0
ij(t) = δijH̄i(t) = Pi(Zt = j, S1 > t)

If for n ∈ N the proposition stands, then at n+ 1, we have

Pn+1
ij (t) = δijH̄i(t) +

∑
k∈E

∫ t

0

Qik(ds)Pnkj(t− s), n ≥ 1

= Pi(Zt = j, S1 > t)

+
∑
k∈E

∫ t

0

P(J1 = k, S1 ∈ ds|J0 = i)P(Zt−s = j, Sn+2 − S1 > t− s|J1 = k, S1 = s)

= Pi(Zt = j, S1 > t) +
∑
k∈E

∫ t

0

Pi(Zt = j, S1 ∈ ds, Sn+2 > t, J1 = k)

= Pi(Zt = j, S1 > t) + Pi(Zt = j, S1 ≤ t < Sn+2)

= Pi(Zt = j, Sn+2 > t)

The hypothesis also stands. Finally, we prove equality (4.32) for all n ∈ N, and we also have

Dn
ij(t) = Pi(Zt = j,N(t) = n)

Application on system reliability assessment

Besides transition functions, Proposal 3 is also valuable for other probability functions under the same
framework. In this section, the method proposed here is applied on system survival or reliability func-
tions and availability assessment.
Let us consider the survival or reliability function in the case where a subset of down states is given, i.e.,
sayD ⊂ E, and the lifetime of the system T is defined by T := inf{t ≥ 0 : Zt ∈ D}. The survival function
is then Ri(t) := Pi(T > t), i ∈ E \ D. This function satisfy the following MRE (see, e.g., [N. Limnios,
2001])

Ri(t) = H̄i(t) +
∑

k∈E\D

∫ t

0

Qik(ds)Rk(t− s).

In that case we can use also the above iterative scheme, i.e.,

Rni (t) =

{
H̄i(t) if n = 0

H̄i(t) +
∑
k∈E\D

∫ t
0
Qik(ds)Rn−1

k (t− s) if n ≥ 1.

Similarly, the availability is defined by Ai(t) := Pi(Zt ∈ E \D) and satisfy the following MRE

Ai(t) = 1{E\D}(i)H̄i(t) +
∑
k∈E

∫ t

0

Qik(ds)Ak(t− s).

with the corresponding iterative scheme

Ani (t) =

{
1{E\D}(i)H̄i(t) if n = 0

1{E\D}(i)H̄i(t) +
∑
k∈E

∫ t
0
Qik(ds)An−1

k (t− s) if n ≥ 1.

where 1E\D(i) is the indicator function gives 1 if i ∈ E \D, 0 otherwise.
In both cases, the limits R̃i(t) := limn→∞Rni (t) and Ãi(t) := limn→∞Ani (t) give the smallest solutions
of the above corresponding MREs. It can be also applied directly on Markov renewal equation of semi-
Markov chains [V.S. Barbu, 2008].
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State Description
1 Machine fails
2 Machine waits for new task
3 Operation task T1
4 Operation task T2
5 Operation task T3

Table 4.5: States and their description

2 4

3

5

1

Figure 4.4: The semi-Markov process of the case study

Case study: Multiple task machine

In this section, we apply our method discussed in the previous section on a specific case study: a multi-
task machine.

System description Consider a multi-task machine which performs three different tasks T1, T2 and T3
whose arrival times follow exponential distributions with parameter λ = 2, density function fexp(x;λ)
and cumulative distribution function Fexp(x;λ). The arrival proportion is 0.45, 0.35 and 0.20 for Task T1,
T2 and T3 respectively. The time to complete of each task follows lognormal distribution with different
parameters:

- Task T1: µ1 = 1.3550, σ1 = 0.25;

- Task T2: µ2 = 1.4728, σ2 = 0.25;

- Task T3: µ3 = 1.5782, σ3 = 0.25.

whose distribution function Flogn(x;µi, σi) and density function flogn(x;µi, σi).
We assume that at the end of each operation, the machine is maintained and failures happen only during
the operations with a failure time following Weibull distribution with scale parameter a = 56.4190 and
shape parameter b = 2: for x ≥ 0 the cumulative distribution function and the density function are
respectively given by Fwbl(x; a, b) and fwbl(x; a, b).

Fwbl(x; a, b) = 1− e−(x/a)b

fwbl(x; a, b) =
b

a

(x
a

)b−1

e−(x/a)b

Once the machine fails, it takes 20 hours to repair it which indicates the repair time follows a Dirac
distribution with parameter c = 20 whose cumulative distribution function is a unit step function.

H(x; 20) =

{
1 if x ≥ 20

0 if x < 20.

Semi-Markov modeling According to the description, the system can be presented by a five-state
semi-Markov process(Figure 4.4) where each state corresponds a specific system state (Table 4.5) and
the semi-Markov kernel (Qij(t)) are shown in Table 4.6 using method mentioned in [V.S. Korolyuk,
1966]. (The conditional reliability and availability are shown in Figure 4.8 and Figure 4.7).
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Qij(t)
Q12(t) H(t; 20)
Q23(t) 0.45Fexp(t;λ)
Q24(t) 0.35Fexp(t;λ)
Q25(t) 0.20Fexp(t;λ)

Q31(t)
∫ t

0
(1− Flogn(s;µ1, σ1))fwbl(s; a, b)ds

Q32(t)
∫ t

0
flogn(s;µ1, σ1)(1− Fwbl(s; a, b))ds

Q41(t)
∫ t

0
(1− Flogn(s;µ2, σ2))fwbl(s; a, b)ds

Q42(t)
∫ t

0
flogn(s;µ2, σ2)(1− Fwbl(s; a, b))ds

Q51(t)
∫ t

0
(1− Flogn(s;µ3, σ3))fwbl(s; a, b)ds

Q52(t)
∫ t

0
flogn(s;µ3, σ3)(1− Fwbl(s; a, b))ds

Table 4.6: Qij(t) for passage between states(for those mot mentioned Qij(t) = 0)
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Figure 4.6: Plot of Rni (tc), tc = 100 on function of n
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Figure 4.9: Plot of Ani (t), t = 0 : 100 on function of t for different number of iterations

Using our proposed method, the obtained conditional reliabilityRni (tc) and availabilityAni (tc) at instant
tc = 100 on function of iteration number n (cf. Figures 4.6, 4.5).
The curves of states 2,3,4,5 are slightly different because the sojourn time distributions Hi(t) of this
four states are similar. Except the constant sojourn time of state 1, it is observed that the obtained
system reliability and availability estimates have the same order as their expected sojourn times. The
convergence rates of all curves are almost the same as they share the same jumping count process N(t).
Figure 4.9 also shows the same convergence and verifies the probability meaning ofAni (t) corresponding
to (4.32), i.e.

Ani (t) = Pi(Zt ∈ E\D,Sn+1 > t|Z0 = i)

Conclusion

In this section, we studied the existent and unique solution for Markov renewal equation and proposed
an iterative method for solving MRE. We proved the existence and uniqueness of the obtained solution.
The advantage of this method is that there is little limitation on state space which can be extended to
infinite and its simplicity. The convergence speed of our method depends on the jump count process
which is easier to be estimated. We also applied it on calculating system reliability and availability.

4.3.4 Reliability approximation by asymptotic merging state space with perturba-
tion

State merging scheme

In this section, state merging scheme is introduced and Semi-Markov system with discrete space defined
in book section 4.2.2 in [Koroliuk and Limnios, 2005] and in [Koroliuk and Limnios, 2010] is applied on
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system reliability assessment.
For i ∈ E, y ⊆ E, t ≥ 0, we define the kernel and transition functions of semi-Markov process Xt as
follows

Q(i, y, t) =
∑
j∈y

Qi,j(t)

P (i, y) =
∑
j∈y

pi,j

so that we have
Q(i, y, t) = P (i, y)Hi(t)

Supposing theXt ∈ E0 where there is one absorbing state 0, we then separate state 0 fromE0 by defining
a non-absorption state space E such that

E0 = E ∪ {0}

The non-absorbing state space is composed of N disjoint subset Ek, 1 ≤ k ≤ N , i.e.

E =
⋃
k∈Ê

Ek

Ek ⊂ E
Ei ∩ Ej = ∅, i 6= j

where Ê = {1, ..., N}
Given a function v : E0 → Ê0 such that

v(x) :=

{
k if x ∈ Ek
0 if x = 0

where Ê0 = {0}∪ Ê = {0, 1, ..., N}, we aggregate states ofXt intoN +1 groups and the new aggregated
process is given by

v(Xt) ∈ Ê0

Theorem 3 ( [Koroliuk and Limnios, 2005] [Koroliuk and Limnios, 2010]). Under the following assump-
tions

• Assumption MA1: The transition kernel of the embedded Markov chain Xn, n ≥ 0 has the follow-
ing representation

P ε(i, y) = P 0(i, y) + εP 1(i, y) (4.33)

The stochastic kernel P (x, y) is coordinated with the split phase space as follows

P 0(i, Ek) = 1k(x) :=

{
1 if x ∈ Ek
0 if x /∈ Ek (4.34)

The split phase kernel P 0 also defines a supporting Markov chain X0
n on E which is uniformly

ergodic in every class Ek with stationary distributions ρk(x), k ∈ Ê.

The perturbing signed kernel P 1 satisfies the conservative condition∑
j∈E

P 1(i, j) = 0

because
∑
j∈E P

ε(i, j) =
∑
j∈E P

0(i, j) = 1.

• Assumption MA2: The perturbing kernel P 1(i, j) satisfies the following absorption condition.
There exists at least one k ∈ Ê, such that the absorption probability from k is positive, that is

pk0 := −
∑
x∈Ek

ρk(x)P 1(x,E) > 0
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the weak convergence
v(Z(t/ε))⇒ Ẑ(t), ε→ 0

takes place.
The limit Markov process X̂(t), t ≥ 0, on the merging phase space Ê0 is defined by the generating matrix

Q̂ = (q̂kr; 0 ≤ k, r ≤ N)

q̂kr = qkpkr pkr =
∑
x∈Ek

ρk(x)P1(x,Er) k 6= r ∈ Ê

qk =
1

mk
mk =

∑
x∈Ek

ρk(x)m(x) m(x) :=

∫ ∞
0

H̄x(t)dt

Let the component be binary, E denote all working states, 0 is the only failure state so that we have
N = 1, then the sojourn time in working state T follows the exponential distribution

P(T > t) = exp(−Λεt)

where
Λ = qp q =

∑
x∈E

π(x)q(x) q(x) := 1/m(x)

p =
∑
x∈E

ρ(x)p(x) p(x) := −P 1(x,E) = −
∑
y∈E

P 1(x, y)

Hence the component reliability is given by

R(t) = P(T > t) = exp(−Λεt) (4.35)

We can also estimate the system availability according to the following relation

A (t) = R(t) +

∫ t

0

A(t− u)q(u)du

where q(u) is the density function of repair time. In addition, the probability of a state i in E can be
written as

pi(t) = π(i)A(t) i ∈ E
where π(i) is the stationary distribution of each state i in E.

Application on reliability estimation

Consider that we have observed a path (or several independent sample paths) of the studied semi-
Markov process in an interval of time [0, tmax], and the observation is given by

H = {Hm|Hm = {Jm0 , Jm1 , ..., JmNm , Zm0 , Zm1 , ..., ZmNm},m = {1, ..., nH}}

The empirical estimator of the semi-Markov kernel is defined as

Q̂ij(t) := p̂ijF̂ij(t)

where
p̂ij :=

Nij
Ni

(4.36)

F̂ij(t) :=

nH∑
m=1

Nk(tmmax)∑
k=1

1{Jmk−1=i,Jmk =j,Zmk ≤t}/Ni (4.37)

and Nij denotes the jump count from state i to state j during the period of time [0, tmax] and Ni(tmax)
denotes the number of visits to state i

Ni =
∑
j∈E

Nij
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Nij =

nH∑
m=1

Nm
ij =

nH∑
m=1

Nk∑
k=1

1{Jmk−1=i,Jmk =j}

In case that for a certain jump from one state i to an absorbing state j we observe Nij = 0 or Nij is
too small to build model for Qij(t), the estimated transition probability becomes p̂ij = 0. However,
the system configuration gives p̂ij > 0 so that we have a similar condition like rare event discussed
previously.
In order to solve this problem of lack of information, our proposition is that the system is represented
by a series of semi-Markov process on function of the only parameter ε under the state merging scheme
in Section 4.3.4.
For a transition probability pij with the knowledge that its value it strictly positive and Nij is small,
using our random set approach, pij is bounded by a random interval

P(p
ij
≤ pij ≤ pij) = 1

where
p
ij
∼ Beta(Nij , Ni + 1−Nij)

pij ∼ Beta(Nij + 1, Ni −Nij)
so that

E(pij) ∈ [
Nij

Ni + 1
,
Nij + 1

Ni + 1
] = [nijε, nijε]

with nij =
Nij

(Ni+1)ε and nij =
Nij+1

(Ni+1)ε .
It is also possible to apply Bayesian estimator with beta distribution prior beta(α, β) (Assumptions in
Section 3.3.4). The posteriori distribution of the estimator follows then a beta distribution

p̂ij ∼ Beta(Nij + α,Ni + β)

The expected value of pij is given by

E(p̂ij) =
Nij + α

Ni + α+ β
= n̂ijε

where n̂ij =
Nij + α

(Ni + α+ β)ε
.

Hence, the perturbing kernel P 1 can be written as

p1
ij = nij

where nij ∈ [nij , n{ij}] or nij = n̂ij for both approaches.
Finally, the system is modeled by a serie of semi-Markov process with kernel

Q(t) = P>H(t) P = P0 + εP1

on function of ε where > denotes a matrix multiplication such that

Qij(t) = PijHi(t).

The lower bound of system reliability can be then estimated as the reliability of the systems with follow-
ing perturbing transition probability such that with random set method

P̂ 1
RS(i, j) = nij

or with Bayesian method
P̂ 1
B(i, j) = n̂ij

for i, j ∈ E0.
According to Theorem 3, with ε→ 0 we have

R̂B(t) = exp(−Λ̂Bεt)

R̂RS(t) = exp(−Λ̂Bεt)
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Figure 4.10: Oil transmission system [Ding and Lisnianski, 2008]

3: g1 = 1.5

2: g1 = 11: g1 = 0

Figure 4.11: States of Component 1

where
Λ̂B = q̂p̂B Λ̂RS = q̂p̂RS q̂ =

∑
x∈E

π̂(x)q̂(x) q̂(x) = 1/m̂(x)

p̂B =
∑
x∈E

ρ̂(x)p̂B(x) p̂B(x) = −P̂ 1
B(x,E) = −

∑
y∈E

P̂ 1
B(x, y)

p̂RS =
∑
x∈E

ρ̂(x)p̂RS(x) p̂RS(x) = −P̂ 1
RS(x,E) = −

∑
y∈E

P̂ 1
RS(x, y)

and π̂(x) is the stationary distribution of X0(t) and m̂(x) is the average of sojourn time in state x and
ρ̂(x) is the stationary distribution of the Markov chain defined in E.

Numerical Application: oil transport system

In this example, we take the same system as the case study in Section 4.2.3 with more details on each
component:

Component 1 and Component 2 Component 1 and Component 2 have three states: component starts
with a full working state (state 3) then jumps to degradation state (state 2) or to complete failure state
(state 1). In degradation state, the component will be maintained in order to return to state 3. During the
maintenance, there is a small chance that the component totally fails. Once it completely fails, it takes
a period of time to finish repair. After the repair, the tube functions as a new one. The state passage
observation summaries of these two components are shown in Table 4.7 and 4.8. Here we have already
enough information to model the distribution functions of sojourn time F23 and F32. There is only one
observation of jumping time from state 2 to state 1 and no observation of jump from state 3 to state 1.
However, after analyzing the transition probabilities p31 and p21 are small but not zero.
Then we introduce the representation in (4.33) and (4.34). For the jumps with number of observations
far more enough to build precise empirical distribution function and the visited state is absorping state,
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3:g2 = 2

2:g2 = 1.51:g2 = 0

Figure 4.12: States of Component 2

i\j 1 2 3
1 - 0 1
2 1 - 499
3 0 499 -

Table 4.7: Observation of Component 1, Nij , in Figure 4.11

we can estimate this probabilities as

E(pij) ∈ [
Nij

Ni + 1
,
Nij + 1

Ni + 1
] = [nijε, nijε] E(p̂ij) =

Nij + 0.5

Ni + 1

where the Bayesian estimate has prior distribution Beta(0.5, 0.5).
The perturbing transition probability with random set approach for componentsC1 andC2 is then given
by

P̂ 1
RS =

 0 0 0
n12 0 −n12

n13 −n13 0


The perturbing transition probability with Bayesian approach becomes

P̂ 1
B =

 0 0 0
N21+0.5
N2+1 0 −N21+0.5

N2+1
N31+0.5
N3+1 −N31+0.5

N3+1 0


where ε is a small value.
Given the knownledge that the repair time follows uniform distribution between 20 and 25 for compo-
nent C1 and between 15 and 20 for component C2, we have obtained the system availability using the
two approaches (Figure 4.13, Table 4.9,Figure 4.14, Table 4.10).

Component 3 Component C3 is a binary repairable component. For component C3, we observed 6
failures during a period of t = 2287.717. Suppose that we know its time to failure follows an expo-
nential distribution and the repair time follows uniform distribution from 40 to 45, we use the method
in [Aguirre et al., 2013] to estimate the upper bound of failure rate so that

λ̂RS =
N21 + 1

t
= 0.003059818

or MLE
λ̂MLE =

N21

t
= 0.002622701

We obtained the following results shown in Figure 4.16.

i\j 1 2 3
1 - 0 5
2 2 - 744
3 3 746 -

Table 4.8: Observation of Component 2, Nij , in Figure 4.12
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Figure 4.13: Lower bound of Component C1 availability
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Figure 4.14: Lower bound of Component C2 availability

x PRS(x) PB(x)
E 0.9983011 0.9987253
1 0.0016989 0.0012747
2 0.8770656 0.8774383
3 0.1237341 0.1237867

Table 4.9: State probability of Component C1

106



x PRS(x) PB(x)
E 0.999303362749677 0.999283633296796
1 0.000696637250323207 0.000716366703203741
2 0.885952572516417 0.885935080971622
3 0.120202532053764 0.120200158870324

Table 4.10: State probability of Component C2

3:g3 = 4 2:g3 = 0

Figure 4.15: States of Component 3

0 100 200 300 400 500

0.
88

0.
90

0.
92

0.
94

0.
9
6

0.
98

1.
00

t

ARS

AMLE

Figure 4.16: Lower bound of Component C3 availability
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System state State probability
1 0.0017099716
2 0.0013068991
3 0.0014912730
4 0.0001843738
5 0.6746774707
6 0.1903634026
7 0.0134279810

Table 4.11: Oil transition system: Stationary distribution of system state probabilities with lower bounds
of component availability

Using the system structure function and correspondence between system state and system output (per-
formance), we obtained the stationary output estimate gs = 2.308694 and system probability of each
state shown in Table 4.11 and Figure 4.17.
We notice that it is available only for long-term estimation. The initial state distribution is not taken into
account because in the long term instantaneous state probabilities converge to stationary distribution.
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Figure 4.17: System state probabilities pis

109



Chapter 5

Conclusions and perspectives

5.1 Conclusions

Availability of binary systems After reviewing different uncertainty theories which can be applied
for system reliability calculations, we firstly studied the simplest reliability model: binary components
and systems.
Starting with probability theory, the most studied theory among uncertainty theories, we proposed a
new method to estimate uncertainty under probabilistic approach which means measures of dispersion.
As mentioned previously, probability theory describes appropriately aleatory uncertainty but the epis-
temic uncertainty is presented by different prior distribution based on assumptions. Normality asymp-
totic hypothesis on component reliability estimates allow us to propagate normality properties from
component level to system level via reliability function. Not only system reliability can be calculated
using plug-in estimator but the corresponding estimation variance can be also estimated, which makes
it possible to build a confidence interval (CI) of the system reliability presenting uncertainty by a range
of possible values where the unknown parameter is included for a certain degree. In order to solve the
problems bought by rare failure events, Bayesian assumptions are used when there is no failure observa-
tion in available data of a certain component. In case of large-scale system, we proposed a Monte-Carlo
method to estimate the system level reliability and propagate the variance measure through structure
function.
We also proposed random set theory to model system reliability [Matheron, 1975]. Random set theory
is a mathematical theory which can handle both aleatory and epistemic uncertainties under the same
framework. It is an extension of probability theory to set-valued rather than point-value mappings.
Using this approach, we managed to present system reliability by a random interval, a special case of
random set [Gil, 1992]. We also defined its confidence interval which can be compared with the one of
point value variable. The common method estimates system reliability is to firstly estimate reliability
and uncertainty of each component directly from the corresponding component-level observations with
probability theory and/or an uncertainty theory and then propagate the reliability and uncertainty to
system level through the system reliability function or the structure function. However, the studied sys-
tems are large-scale systems where both the reliability and uncertainty propagation from components to
system is very difficult to calculate because of the at-least exponential complexity. Since the mathemat-
ical tools to estimate single component’s reliability and the associated uncertainty are well developed,
if the system can be regarded as a single component, the problem will be much more simplified. Then
the problem becomes how to obtain the system-level observations which is almost impossible to be
obtained directly by test in reality so that we proposed to construct system-level pseudo-observations
using bootstrap technique.
Then confidence intervals given by asymptotic normality (AN) method and random set (RS) method
were evaluated with respect to average coverage percentage (ACP) and their interval width on simple
elementary structures with different component reliability settings. ACP is the empirical estimator of
the confidence level which presents the accuracy of confidence interval; the interval width describes
the precision of obtained confidence interval. We observed that RS method always gives conservative
results while AN method gives precise results but not always accurate. In case of highly reliable systems,
all results are very close to 1 and AN method gave smaller and more accurate CI; RS method gave
larger CI with ACP equal to 1. However, in case of lower reliable systems, the accuracy of AN results
dropped sharply; and RS method kept conservative with high ACP. On conclusion, given the knowledge
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that studied system is highly reliable, we propose AN method; if such information is not available or
conservative results are demanded, we propose RS method. We applied both methods on large-scale
system fault trees as well and obtained similar results.

Availability of multi-state systems In the second part of our work, we extended our proposed random
set and semi-Markov approaches on multi-state components and systems in order to deal with rare
failure events.
With random set the system state probabilities and system performance indices can be presented in form
of random set bounded by random variables following Dirichlet distribution or Beta distribution. We
also applied our method on an oil transmission system and compared the obtained results with the ones
given by universal generating function method (UGF). Similar algorithms are also given for large-scale
system cases.
In addition, we studied dependability estimation of repairable dynamic multi-state systems which
means this time the observation time t is no more fixed. The system in our study is modeled by semi-
Markov process. Markov (renewal) or semi-Markov process gives a general and more flexible presen-
tation for processes having Markov properties. Semi-Markov process (SMP) provides a more precise
model to evaluate system reliability [N. Limnios, 2001, Malefaki et al., 2014]. The passage rates do
not have to be homogeneous as in case of Markov process modeling. System dependability measure
of repairable systems is modeled by a continuous time semi-Markov process (CTSMP). An important
drawback in these applications is the difficulty of obtaining traceable solution in application with a large
enough number of states. In this thesis, we firstly studied the existence and uniqueness solution of a
Markov renewal equation (MRE). A method solving Markov renewal equations based on an iterative
scheme inspired by n-fold convolution was then proposed. Theoretical and numerical applications on
system reliability and availability calculation as well as a case study on system availability and reliability
assessment are also provided.
We applied the state merging and splitting scheme on discrete state space continuous time semi-Markov
describing highly reliably (repairable) system evaluation in order to reduce state space and to approxi-
mately estimate the system reliability and availability. The state merging and splitting scheme [Koroliuk
and Limnios, 2005, Koroliuk and Limnios, 2010] gives a method that transforms semi-Markov subsys-
tems whose state space can be divided into groups where jumps occur much more frequently between
states inside the group, than states between groups, into single states with homogeneous passage rate,
instead of just replacing non-exponential passage time distribution by exponential distribution with the
same mean passage rate. As a system (process) composed of Markov subsystems still keeps its Markov
property, we can easily simplify the space state by grouping some of states. The grouping procedure
is based on average theorem with ergodic assumptions. It is very useful for system reliability (avail-
ability) estimation because in reparable systems composed of highly reliable systems, we often observe
that jumps happen at most of time inside groups of states; the jumps between the group(s) of system
working state and the one(s) of system failure states are rather rare. We just need to understand the long
term process behavior.
During the thesis, we proposed methods and algorithms to estimate system reliability and its uncer-
tainty with both probabilistic and random set theory approaches via confidence interval. Random set
method presents both aleatory and epistemic uncertainties in a flexible way and gives rather conserva-
tive result which corresponds to our demand of treating rare failure observation conditions. We also
associated the two methods with semi-Markov process while possible state passages were barely ob-
served. Pseudo-observation construction and bootstrap method are widely used to avoid exponentially
increasing computation cost in case of large-scale systems.

5.2 Perspectives

Our future work will focus on

• application of pseudo-observation construction on other uncertainty theories

• application of our random set theory method on multi-state system performance evaluation with
uncertain demand and other conditions

• adaptation of the state merging scheme on large-scale systems
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Uncertainty theories give various opinions about the origin and the presentation of uncertainty. On
applying these approaches on system reliability evaluation, one of the main disadvantages is that the
direct calculation of uncertainty propagation from component level to system level through structure
function or reliability function brings computational cost growing exponentially with the size of the
studied system.
In our research, we introduced a resampling method in order to reduce calculation complexity when
random set theory is applied. The proposed method constructs pseudo system samples and treats a sys-
tem as a single component and then studies the system reliability or other performance measures using
random set theory. The uncertainty propagation from component level to system level has then been
taken into account during the pseudo system construction. Since methods calculating the reliability of
one component/system are well developed using uncertainty theories such as belief function, imprecise
probabilities, given size ns pseudo system samples among which there are ks good-state observations,
we can apply imprecise probabilities, belief functions, fuzzy set theory or other theories using similar
algorithms under the same framework.
We have already studied random set model for evaluating binary and multi-state systems performance
with constant demand (constant availability state set). The next task is to study the possibility of ap-
plying the model on complicated cases such as systems with uncertain demand and uncertain system
structures and conditions.
Uncertain demand is not presented by a constant value, but is modeled by a range or an uncertainty
model such as interval value, membership function, mass function and probability distribution. In my
opinion, uncertainty system demand can be combined with the system level performance rate model.
For example, a system with m states and the demand can be both modeled by random set based on
Dirichlet distribution, all possible the system possible conditions can be presented in a m×m space and
then projected to R as another random set.
The system structure contains uncertain parts sometimes due to lack of information. The result of struc-
ture function can be described by a set. Then the system reliability estimation R(p̂) would be repre-
sented by a random set where p̂ denotes the component reliability estimated using probability theory
estimators and follows asymptotically a normal distribution. Finally, it is possible to give a set-valued
estimation and a corresponding confidence interval of the system reliability.
Since our random set results converges to probability theory results as more observations (information)
are available, it is possible to build algorithms adapted to incremental historical system data and study
the importance impact of each component or subsystem in terms of uncertainty measure.
Both of our estimation methods have been applied on semi-Markov system reliability assessment with
the state merging scheme in order to solve problem of rare failure events. System time to failure in long
term is described by a series of exponential distributions with parameter ε. Indeed, it is also possible to
bring more uncertainty theories under this framework.
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