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Summary

Bayesian inference is based on procedures which describe the posterior distribution

for the parameter θ after having observed the data set y, π(θ|y), which is available in

closed form just in few cases. Therefore, computational methods have been proposed

to approximate it.

Recently, the great complexity of modern applications, for instance in genetics,

computer science, finance, climatic science etc., has led to the proposal of new models

which may realistically describe the reality. For example, the data density may have

the form

f (y; θ) =

∫
Z
f (y, z; θ) dz =

∫
Z
f (y | z, θ) f (z; θ) dz

where z plays the role of a latent nonobservable structure, then the likelihood func-

tion may be unavailable, because of a too large dimension of z. This is the case of

stochastic volatility models or genetical models (where the role of the latent vari-

able is played by the complete genealogical tree). In these cases, classical MCMC

methods fail to approximate the posterior distribution, because they are too slow

to investigate the full parameter space.

New algorithms have been proposed to handle these situations. In particular,

approximate Bayesian computation (ABC) allows to manage models where the like-

lihood function may be considered intractable. The main idea of this class of al-

gorithms is that if one simulates a proposed value for the parameter from a known

distribution (for instance, the prior distribution) and then simulates a new data

set from the model by fixing the parameter equal to the simulated value and the

simulated data set is similar in some sense to the observed one, then the proposed

value is likely to have generated the observed data and is included in the sample

which will approximate the posterior distribution. Therefore, it is only necessary

to be able to simulate from the model to provide an approximation of the posterior

vii



viii SUMMARY

distribution and no manipulation of the likelihood function is required.

The ABC methodology has been proposed in a Bayesian setting as a way to

approximate the posterior distribution. Nevertheless it can also be used in other

situations. In Chapter 1 we will propose a way to approximate the (integrated)

likelihood function of a parameter of interest when the model considers many (po-

tentially infinite) nuisance parameters, to perform inference in a classical setting

(where the prior distribution is intended as a weight function for the integration).

Chapter 1 deals with a key point in complex models: nuisance parameters, which

usually lack of physical meaning, are introduced to define flexible and realistic mod-

els, however the interest of the analysis stays in few parameters. For instance, in

multivariate analysis, the concept of dependence is crucial, but it is quite difficult

to work with models without introducing a normality assumption. Copula models

are a way to separate the information for the marginal univariate distributions from

the information on the dependence structure, which is captured by a copula func-

tion. They are flexible tools, nevertheless it is by now clear that a misspecification

of the shape of the copula function leads to not reliable results, but nonparametric

approaches are not yet fully developed in the literature. Chapter 2 proposes a way

to make inference on indexes of dependence (as the Spearman’s ρ, the Kendall’s τ

or tail dependence coefficients) without making strong assumptions on the shape of

the copula function and via the ABC methodology.

While inference for complex models is more developed, problems of model choice

have not yet general solutions. In Chapter 3 we will analyze a recent proposal to

redefine the Bayes factor, show its weaknesses and present an alternative approach

applicable in situations where the likelihood function is unavailable.

Finally, another type of problems with complicated models is the definition of a

prior distribution because of the lack of physical meaning of many parameters. Mix-

ture models are an example of complicated models which allow to describe kurtotic,

multimodal and asymmetric data by considering a composition of known distribu-

tions:

k∑
i=1

pi fi(x|θi) ,
k∑
i=1

pi = 1 .

Mixture models have an ill-defined nature (non-identifiability, multimodality, un-

bounded likelihood, etc.) and this leads to some difficulties in defining a prior dis-
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tribution, in particular if information on all the parameters is unavailable. Many

works have shown that improper priors are likely to produce improper posterior. In

Chapter 4, we will analyze the Jeffreys approach to define a noninformative prior in

this setting and propose an alternative which consists in a redefinition of the model.

Keywords: ABC, mixture models, Jeffreys prior, integrated likelihood, copula

models
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Résumé

Le paradigme bayésien a été proposé dans le 18ème siècle avec les travaux de Thomas

Bayes (1702-1761), qui a d’abord prouvé le théorème de Bayes dans un cas partic-

ulier, et Pierre-Simon Laplace (1749-1827), qui a prouvé le théorème de Bayes plus

généralement et introduit les distributions a priori conjuguées et noninformatives et

l’idée de la croyance subjective dans la définition de la probabilité d’un événement.

Dans les premières décennies du 20eme siècle, les statisticiens Ronald A. Fisher,

Jerzy Neyman et Egon Pearson, parmi d’autres, ont proposé un paradigme nou-

veau, l’approche dite fréquentiste, basée sur l’idée que les procédures statistiques

doivent être jugés par leur comportement dans les répétitions hypothétiques de

l’expérience. Alors que des grands statisticiens ont travaillé sur le développement

de l’inférence bayésienne au cours des années au milieu du 20eme siècle (comme

Harold Jeffreys, Leonard J. Savage, Dennis Lindley, parmi beaucoup d’autres), les

procédures bayésiennes sont restées un domaine de la recherche théorique, trop dif-

ficiles à appliquer.

La raison pour laquelle l’analyse bayésienne n’a pas été utilisée pour des appli-

cations réelles pendant une longue période reste dans la définition de la distribution

a posteriori d’un paramètre θ ∈ Ω sachant un ensemble de données y ∈ Y par le

théorème de Bayes:

π(θ|y) =
π(θ)L(θ; y)∫
Y π(θ)L(θ; y)dy

où π(θ) est la distribution résumant l’information préalable sur le paramètre θ et

L(θ; y) est la fonction de vraisemblance, qui fournit les informations disponibles avec

l’expérience. En théorie, après la distribution a posteriori a été définie, l’inférence

sur le paramètre θ est basé sur les descriptions de cette distribution. Dans la pra-

tique, la composition des informations disponibles avec les données et les informa-

tions disponibles a priori ne fournit pas une distribution connue, sauf dans quelques

xi
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cas (comme dans le cas des lois conjuguées) et, par conséquent, cette distribution

ne peut être gérée analytiquement.

Seulement dans les années 1980 il y a eu une croissance spectaculaire dans la

recherche et dans les applications des méthodes bayésiennes, grâce au développement

de la technologie informatique, qui a permis la mise en œuvre des méthodes Monte

Carlo (et MCMC) pour approcher la distribution a posteriori dans des cas plus

généraux et de gérer des situations plus complexes (et réalistes).

Récemment, les méthodes proposées dans ces années sont devenues obsolètes

dans nombreux cas. La grande complexité des applications modernes, comme dans

la génétique, l’informatique, la finance, la science climatique, etc., a conduit à la

proposition des nouveaux modèles qui peuvent décrire la réalité de manière plus

fidèle. Par exemple, le modèle peut avoir la forme

f (y; θ) =

∫
Z
f (y, z; θ) dz =

∫
Z
f (y | z, θ) f (z; θ) dz

où z joue le rôle d’une structure non observable latente; alors la fonction de vraisem-

blance peut être indisponible, à cause d’une trop grande dimension de z. Tel est le

cas des modèles à volatilité stochastique, où l’intégration est par rapport de tout le

temps d’observation, ou des modèles génétiques, où le rôle de la variable latente est

joué par l’arbre généalogique complet. Dans ces cas, les méthodes MCMC classiques

ne parviennent pas à approcher la distribution a posteriori, parce qu’ils sont trop

lents pour enquêter l’espace totale des paramètres. Dans d’autres cas, la fonction de

vraisemblance est indisponible, car il est impossible de travailler analytiquement avec

elle, comme dans le cas des champs de Gibbs, où la fonction de vraisemblance est

indisponible en raison d’une constante de normalisation en fonction du paramètre.

Des nouveaux algorithmes ont été proposés pour gérer ces situations. En parti-

culier, une nouvelle classe d’algorithmes est la soi-disante classe des algorithmes

likelihood-free ou calcul bayésien approché (approximate Bayesian computation,

ABC), qui permettent de gérer les modèles où la fonction de vraisemblance peut

être considérée comme insoluble. ABC a été proposé dans les dernières années 1990

dans un cadre appliqué; l’idée principale est que si une valeur proposée pour le

paramètre est générée à partir d’une distribution connue (par exemple, la distribu-

tion a priori), puis un nouvel ensemble de données est simulé à partir du modèle, en

fixant le paramètre correspondant à la valeur proposée, et les données simulées sont

similaires dans un certain sens à celles observées, c’est probable que la valeur pro-
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posée ait généré les données observées et est incluse dans l’échantillon qui approchera

la distribution a posteriori. Il y a nombreux points clés de cette méthodologie, par

exemple, la manière de définir la notion de similitude entre les ensembles de données,

quand-même c’est seulement nécessaire d’être capable de simuler des données à par-

tir du modèle pour fournir une approximation de la distribution a posteriori et

aucune manipulation de la fonction de vraisemblance est demandée.

Sachant un modèle statistique avec une densité générique p(x|θ), θ ∈ Θ ⊂ Rd, on

est souvent intéressé par une fonction de faible dimension ψ du vecteur de paramètre

θ, telle que ψ = ψ(θ) ∈ Rk, avec k < d. Les théories statistiques paramétriques

ou semi-paramétriques modernes, au moins les approches basés sur la vraisemb-

lence et les théories bayésiennes, visent à construire une fonction de vraisemblance

qui dépend seulement de ψ. Il y a beaucoup de littérature sur le problème de

l’élimination des paramètres de nuisance. Les lecteurs intéressés peuvent se référer

à Berger et al. (1999) et Liseo (2005) pour une perspective bayésienne, à Pace and

Salvan (1997), Severini (2000) ou Lancaster (2000) pour un point de vue plus clas-

sique.

Dans un cadre bayésien le problème de l’élimination des paramètres de nuisance

est, à moins en principe, trivial. Soit λ = λ(θ) la transformation complémentaire,

telle que θ = (ψ,λ) et soit

π(θ) = π(ψ,λ) = π(ψ)π(λ|ψ) (1)

la distribution a priori. Puis, en supposant que nous observons un ensemble de

données x = (x1, . . . , xn) du modèle avec fonction de vraisemblance L(ψ,λ; x) ∝
p(x;ψ,λ), la distribution a posteriori marginale de ψ est

π(ψ|x) =

∫
Λ
π(ψ,λ)L(ψ,λ; x)dλ∫

Ψ

∫
Λ
π(ψ,λ)L(ψ,λ; x)dλdψ

∝ π(ψ)

∫
Λ

π(λ|ψ)L(ψ,λ; x)dλ.

(2)

L’intégrale dans le côté droit de (2) est, par définition, la vraisemblance intégrée

du paramètre d’intérêt ψ, où pour “intégration” on entend par rapport à la distri-

bution π(λ|ψ); cette vraisemblence intégrée va être notée par L̃(ψ; x).

L’utilisation des vraisemblances intégrées est devenu populaire aussi parmi les

statisticiens non bayésiens; il y a plusieurs exemples dans lesquels son utilisation est



xiv RÉSUMÉ

nettement supérieure, ou au moins équivalente, même du point de vue frequentiste,

pour l’estimation de l’incertitude. On se voit, par exemple, Severini (2007), Severini

(2010) et Severini (2011).

Toutefois, le calcul explicite de l’intégrale ci-dessus pourrait ne pas être facile, en

particulier lorsque la dimension (d− k) est grande. Notez que la dimension d peut

également comprendre une possible structure latente qui, à partir d’un point de vue

strictement probabiliste, n’est pas différente d’un vecteur de paramètre.

Dans le Chapitre 1, nous sommes intéressés à explorer l’utilisation du ABC

comme méthode d’approximation de la fonction de vraisemblance intégrée, dans

les situations où une expression analytique de L̃(ψ; x) n’est pas disponibles, ou il

est trop coûteuse évaluer la fonction de vraisemblance “globale” L(ψ,λ; x), comme,

par exemple, dans des nombreux appllications génétiques ou dans autres situations

où les méthodes MCMC classiques ne sont pas satisfaisantes et totalement fiables.

Une autre classe de problèmes où la vraisemblence intégrée est d’intérêt est celle

des problèmes semi-paramétriques, où le paramètre d’intérêt est un scalaire - ou un

vecteur - et le paramètre de nuisance est représenté par la partie non paramétrique

du modèle; dans ces cas, l’intégration sur l’espace Λ est de dimension infinie, et c’est

très souvent infaisable d’être résolue analytiquement.

Dans le Chapitre 1, nous allons discuter, à travers plusieurs exemples de com-

plexité croissante, comment la vraisemblance intégrée produite par des algorithmes

ABC se comporte en comparaison avec les méthodes existantes. Nous explorerons

également son utilisation dans des exemples particuliers où d’autres méthodes man-

quent de produire une fonction de vraisemblance utile et facile à utiliser pour la

paramètre d’intérêt.

L’objectif principal du Chapitre 1 est d’obtenir une approximation de la vraisem-

blence intégrée L̃(ψ; x), ψ = ψ(θ) ∈ Rk.

C’est facile voir que

L̃(ψ; x) ∝ π(ψ|x)

π(ψ)
, (3)

c’est à dire que la fonction de vraisemblance intégrée peut être interprétée comme

l’évidence empirique qui transforme notre connaissance a priori sur le paramètre

d’intérêt en connaissance a posteriori : dans cette perspective, nous pouvons in-

terpréter L̃(ψ; x) comme la définition bayésienne de la fonction de vraisemblance

intégrée.
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On suppose que c’est difficile, peut-être impossible, d’obtenir L̃(ψ; x) sous une

forme connue. Par exemple, la paramètre de nuisance λ pourrait être de dimension

infinie (cas semi-paramétrique) ou il peut représenter une structure latente non-

observable associée au modèle statistique comme dans le cas des modèles de Markov

chachés ou des modèles semi-Markoviens.

Dans ces situations, si L̃(ψ; x) n’est pas disponibles, ni π(ψ|x) sera disponible.

Cependant, il est possible d’obtenir un loi a posteriori approchée π̃(ψ|x), en utilisant

un algorithme ABC; dans la Section 1.3, nous allons discuter de certaines questions

liées à la précision de cette approximation; après, nous allons décrire la mise en

œuvre pratique de la méthode.

Comme dans toutes les approches ABC pour l’estimation de la distribution a

posteriori, on doit

• sélectionner une statistique sommaire η1(x), . . . , ηh(x);

• sélectionner une distance ρ(·, ·) pour mesurer la distance entre les “vraies”

données et le données simulées, ou leurs statistiques sommaires;

• sélectionner un seuil de tolérance ε

• choisir un algorithme (MC)MC qui propose des valeurs pour le vecteur de

paramètre θ.

Une fois que la loi a posteriori est approchée par un échantillon ABC de taille M

(θ∗1,θ
∗
2, . . .θ

∗
M), on peut produire une approximation non paramétrique de la densité

en fonction de la distribution marginale a posteriori de ψ, π̃ABC(ψ|x).

Une opération similaire peut être réalisée avec la loi marginale a priori π(ψ),

en effectuant une autre - pas chère - simulation de π(ψ) pour obtenir une autre

approximation, π̃(ψ). Notez que on est obligé d’utiliser lois a priori propres pour

tous les paramètres.

Ensuite, on peut définir la vraisemblence intégrée ABC

L̃ABC(ψ; x) ∝ π̃ABC(ψ|x)

π̃(ψ)
. (4)

Le Chapitre 1 est organisé de la manière suivante. Dans la Section 1.2, nous

décrivons notre proposition en détail. La Section 1.3 discute les problèmes théoriques

liés à la précision de l’approximation ABC. La Section 1.4 compare la vraisemblence
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intégrée approchée par ABC avec les autres approches disponibles dans une série

d’exemples. La Section 1.5 se termine avec une discussion des avantages et des

inconvénients de la méthode.

Après, dans le Chapitre 2, nous allons examiner un exemple particulier de modèles

complexes: les modèles de copule. Les modèles de copule sont aujourd’hui large-

ment utilisés dans l’analyse multivariée des données. Les principaux domaines

d’application comprennent l’économétrie (Huynh et al. 2015), la géophysique (Scholzel

and Friederichs 2008), la mécanique quantique (Resconi and Licata 2015), la science

du climat, (Schefzik et al. 2013), la génétique (He et al. 2012), la science actuarielle

et la finance (Cherubini et al. (2004)), parmi les autres.

Une copule est un outil probabiliste flexible qui permet au chercheur de modéliser

la distribution conjointe d’un vecteur aléatoire en deux étapes distinctes: les distri-

butions marginales et une fonction copule qui capture la structure de dépendance

entre les composantes du vecteur.

Du point de vue statistique, alors qu’il est généralement simple produire des

estimations fiables des paramètres pour les distributions marginales, le problème

de l’estimation de la structure de dépendance est crucial et souvent complexe, en

particulier dans des situations de grande dimension.

D’autre part, la dépendance est l’une des caractéristiques les plus fondamen-

tales dans la statistique (appliquée), l’économie et la probabilité. Une énorme liste

d’applications importantes peuvent être trouvée dans la récente monographie de Joe

(2014).

Dans une approche fréquentiste aux modèles de copule, il n’y a pas de méthodes

généralement satisfaisantes pour l’estimation conjointe des paramètres marginaux

et de la copule. La mèthode la plus populaire est la soi-disante “Inference from

the margins” (IFM), où les paramètres des distributions marginales sont estimés

d’abord, puis des pseudo-données sont obtenues en branchant les estimations des

paramètres marginales. Ensuite, l’inférence sur les paramètres de la copule est

effectuée en utilisant les pseudo-données: cette approche évidemment ne tient pas

compte de l’incertitude sur l’estimation des paramètres marginaux. Les solutions

alternatives bayésiennes ne sont pas encore pleinement développées, bien que Min

and Czado (2010), Craiu and Sabeti (2012), Smith (2013), Wu et al. (2014) sont des

exceptions remarquables.

Dans le Chapitre 2, nous allons considérer le problème général de l’estimation
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des quantités spécifiques d’intérêt d’une copule générique (comme, par exemple,

les coefficients de dépendance de queue ou le ρ de Spearman) en adoptant une

approche bayésienne approchée similaire auquel de Mengersen et al. (2013). En

particulier, nous allons discuter de l’utilisation de l’algorithme BCEL, sur la base de

la vraisemblence empirique qui approche la vraisemblence marginale de la quantité

d’intérêt.

Notre approche est approchée en deux aspects:

1. l’explicitation de la distribution a priori est requise uniquement pour la quan-

tité d’intérêt. Sa distribution est combinée avec la vraisemblance empirique

afin de produire une approximation de la distribution a posteriori “vraie”.

2. nous n’utilisons pas la “vraie” fonction de risque, mais plutôt une approxima-

tion basée sur la théorie de la vraisemblence empirique (Owen 2010). Nous

espérons que cela permettra de réduire le biais potentiel des hypothéses incor-

rectes sur la distribution.

On peut noter, cependant, que le mot “vrai” dans la liste ci-dessus devrait être

mieux defini comme “vrai-sous-l’-assuntion-du-modèle”. Dans les situations où un

vrai modèle est trop difficile à préciser, ou trop complexe à traiter, la vraisemblence

empirique peut être un outil extrêmement précieux.

Notre approche peut être adaptée à la modélisation paramétrique et nonparamétrique

des distributions marginales. La méthode décrite dans le Chapitre 2 est dans

l’esprit de Hoff (2007), mais elle est basée sur un autre type d’approchement; les

résultats, bien que dans une perspective différente, peuvent aussi être interprétés à

la lumière de Schennach (2005), où une interprétation bayésienne nonparamétrique

de la vraisemblence empirique est fournie.

Un modèle de copule est une façon de représenter la distribution conjointe d’un

vecteur aléatoire X = (X1, . . . , Xm). Étant donnée une fonction cumulative m-

variate F, il est possible de montrer (Sklar 1959) qu’il existe toujours une fonction

m-variate C : [0, 1]m → [0, 1], telle que F(x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)), où

Fj est la fonction cumulative marginale de Xj.

En autres termes, la fonction copule C est une fonction de répartition avec des

marginales uniformes sur [0, 1]: elle lie ensemble les fonctions de répartition uni-

variées F1, F2, . . . , Fm afin de produire la fonction de répartition m-variate F. La
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fonction copule C ne dépend pas des distributions marginales de F, mais plutôt de

la dépendance potentielle entre les composantes du vecteur aléatoire X.

Pour chaque paire de composantes de X, on dit Xi et Xj, on suppose qu’elles

ont fonctions de répartition continues Fi et Fj. Il est bien connu que les deux

variables transformées Ui = Fi(Xi) et Uj = Fj(Xj) ont distributions marginales uni-

formes. Un modèle de copule semiparamétrique consiste d’un modèle paramétrique

pour la distribution conjointe de (Ui, Uj) et aucune hypothèse sur les distributions

marginales. Une copule nonparamétrique est introduite lorsque la distribution con-

jointe de (Ui, Uj) dépend d’un paramètre de dimension infinie. Dans le Chapitre 2,

nous allons permettre aux distributions marginales de Fj de suivre soit un modèle

paramétrique soit un modèle nonparamétrique. Pour la fonction de copule nous ne

ferons pas des hypothèses paramétriques. Au contraire, nous allons limiter nos ob-

jectifs à l’estimation d’une fonction d’intérêt de la copule C. Une discussion sur les

approches classiques de l’estimation semiparamétrique des modèles de copule peut

être trouvée dans Genest et al. (1995).

La vraisemblance empirique a été introduite par Owen: Owen (2010) est un

étudie complet et récent; il est un moyen de production d’une vraisemblence non-

paramétrique pour une quantité d’intérêt dans un modèle statistique non spécifié.

En particulier, il est utile quand une vraie fonction de risque n’est pas facilement

disponible, soit parce qu’il est trop coûteuse à évaluer soit lorsque le modèle est pas

complètement spécifié.

On suppose que l’ensemble des données se compose de n observations indépendantes

(x1, . . . , xm) d’un vecteur aléatoire X avec fonction de répartition F et densité cor-

respondante f .

Plutôt que définir la fonction de vraisemblance habituelle en termes de f , la

vraisemblence empirique est définie par rapport à une quantité d’intérêt calculée sur

les données, on dit ϕ, exprimée en fonction de F, ϕ(F), puis une sorte de vraisemb-

lence profil pour ϕ est calculée en manière nonparamétrique. Plus précisément, on

considère un ensemble de conditions sur les moments généralisés de forme

EF (h(X,ϕ)) = 0, (5)

où h(·) est une fonction connue, et ϕ est la quantité d’intérêt. La vraisemblence

empirique résultante est définie comme
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LEL(ϕ; x) = maxp

n∏
i=1

pi,

où le maximum est recherché sur l’ensemble des vecteurs p tel que 0 ≤ pi ≤ 1,∑n
i=1 pi = 1, et

n∑
i=1

h(xi, ϕ)pi = 0.

Les deux premières conditions sont évidentes et indépendante de ϕ, mais la

troisième dépend de l’information des données vers la quantité d’intérêt et peut

être définie comme une sorte de condition de non biais.

Dans le Chapitre 2, nous proposons d’adapter l’algorithme BCEL de Mengersen

et al. (2013) à une situation où le modèle statistique est partiellement spécifié et

l’objectif principal est l’estimation d’une paramètre d’intérêt de dimension finie. En

pratique, cela représente le prototype semiparamétrique, où on est principalement

intéressé par certaines caractéristiques de la population, bien que le modèle statis-

tique peut contenir des paramètres de nuisance qui sont souvent mis en place afin de

produire des modèles plus flexibles qui pourraient mieux décrire les données. Afin de

rendre l’inférence robuste pour la quantité d’intérêt, un modèle raisonnable devrait

tenir compte de l’incertitude sur les paramètres de nuisance. Même si certains de

ces paramètres supplémentaires ne sont pas particulièrement importants en termes

d’estimation - ils manquent souvent d’une signification physique précise - leurs esti-

mations peuvent considérablement affecter les inférences sur le paramètre d’intérêt.

Dans ces circonstances, il pourrait être plus raisonnable et robuste spécifier par-

tiellement le modèle et adopter une approche semiparamétrique.

La mèthode proposée dans le Chapitre 2 permet de ne pas définir des statis-

tiques sommaires dans l’analyse et ainsi d’éviter la perte d’information typique de

la méthode ABC. Cette perte est particulièrement importante dans un autre typolo-

gie de problèmes statistiques: les problèmes du choix du modèle, qui sont traités

dans le Chapitre 3.

Quand des statistiques sommaires son introduites, l’approximation de la distri-

bution a posteriori π(θ|y) est la distribution conjointe

πε(θ, z|y) =
π(θ)f(z|θ)IAε,y(z)∫

Aε,y×Θ
π(θ)f(z|θ)dzdθ

(6)
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où IAε,y est la fonction indicatrice de l’espace {z ∈ Y tel que ρ(η(z), η(y)) < ε} (ρ(·)
est une distance appropriée entre les statistiques sommaires η(·) calculées sur les

données observées et les données simulées et ε est le niveau de tolérance qui fournisse

le degré désiré de similitude). Si les statistiques sommaires η(·) sont suffisantes, la

distribution a posteriori approchée par ABC est une approximation de la vraie

distribution a posteriori π(θ|y) quand ε va à 0.

Depuis que ABC est utilisé dans des situations complexes, il est peu probable

qu’une statistique suffisante de petite dimension d existe. Fearnhead and Prangle

(2012) prouve comment le choix de η(·) et sa dimension affecte l’erreur Monte Carlo.

Dans un certain sens, le choix des statistiques sommaires à utiliser est spécifique au

problème, cependant il existe quelques travaux pour le rendre automatique (voir par

exemple Nunes and Balding (2010)).

La perte d’informations qui derive de l’utilisation des statistiques sommaires non

suffisantes est, en général, considérée acceptable dans les problèmes d’inférence,

parce qu’ABC permet de gérer des modèles complexes qui sont autrement intractable,

en particulier quand on peut trouver une statistique de synthèse informative pour

le paramètre θ.

Néanmoins, la perte d’information est, en quelque sorte, arbitraire lorsque le but

de l’expérimentateur est le choix du modèle au lieu d’estimer le paramètre d’intérêt,

comme c’est montré par Robert et al. (2011) et dans le Chapitre 3 qui présente

également notre proposition au problème du choix de modèle avec ABC.

Si on considère deux modèles, l’approximation du facteur de Bayes à partir de

l’algorithm ABC est

B̂12(y) =
π(M = 2)

∑N
i=1 Im(i)=1Iρ(η(z),η(y))<ε

π(M = 1)
∑N

i=1 Im(i)=2Iρ(η(z),η(y))<ε

(7)

qui va approcher

Bη
12(y) =

∫
Θ1
π(θ1)f η1 (η(y|θ1))dθ1∫

Θ2
π(θ2)f η2 (η(y|θ2))dθ2

. (8)

Dans ce contexte, le facteur de Bayes approché par ABC est incompatible avec le

vrai facteur de Bayes, à l’exception de très rares cas: même dans le cas d’existence

d’une statistique suffisante, fm(y|θm) = gm(y)f η(η(y)|θm), on a que
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B12(y) =
g1(y)

g2(y)
Bη

12. (9)

Il est donc impossible d’évaluer la différence entre les deux facteurs sans connâıtre

l’entité du rapport g1(y)/g2(y).

L’écart entre le facteur de Bayes approché par l’algorithme ABC et le facteur de

Bayes cible est motivé par le fait que, une fois que le modèle a été choisi dans la

première étape de l’algorithme, une acceptation ou un rejet est fait en comparant les

données observées et les données simulées sur la base d’une statistique de synthèse

définie conditionnellement à ce modèle particulier. Donc, même s’il est possible de

trouver des statistiques sommaires suffisantes pour tous les modèles de l’analyse, ces

statistiques ne seront pas suffisantes pour le problème du choix du modèle.

Notre proposition, décrite dans le Chapitre 3, est de changer la perspective et

d’envisager une statistique de synthèse qui est informative pour le problème du choix

du modèle et pas nécessairement pour les modèles considérés. Après avoir défini

notre proposition, Section 3.3.2 étudie le comportement de la mèthode proposée

dans certains exemples réels et simulés: tests d’hypothèses simples (Section 3.3.2),

test d’hypothèses composites (Section 3.3.2), test sur modèles de régression (Section

3.3.2) et test pour modèles dynamiques (Section 3.3.2).

La dernière partie de cet travail traite de la définition d’un distribution non-

informative a priori pour un type particulier de modèle complexe, les modèles de

mélange.

Définir une distribution a priori est particulièrement délicat pour les modèles

complexes, car il est difficile de définir l’influence des choix a priori sur les résultats

de l’inférence pour des paramètres qui ne sont pas directement liées aux quantités

physiques et ont structure de dépendence inconnue avec les autres paramètres.

L’inférence bayésienne dans le cas des mélanges de distributions a été étudié as-

sez largement dans la littérature. Voir, par exemple, MacLachlan and Peel (2000)

et Frühwirth-Schnatter (2006) pour des livres et Lee et al. (2009) pour un des nom-

breuses études.

Du point de vue bayésien, une des nombreuses difficultés avec ce type de distri-

bution,
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k∑
i=1

pi f(x|θi) ,
k∑
i=1

pi = 1 ,

est que sa nature mal définie (non-identifiabilité, multimodalité, vraisemblence non-

bornée, etc.) conduit à une modélisation a priori restrictive puisque la plupart

des distributions a priori impropres ne sont pas acceptables. Ceci est motivé en

particulier par le fait qu’une ou plusieurs composantes f(·|θi) peuvent contenir aucun

sous-ensemble de l’échantillon (Titterington et al. 1985). Bien que la probabilité d’un

tel événement est décroissante rapidement vers zéro lorsque la taille de l’échantillon

augmente, elle empêche néanmoins le recours à distributions a priori impropres

indépendants, à moins que tels événements sont interdits (Diebolt and Robert 1994).

De même, le caractère interchangeable des composantes induit souvent la mul-

timodalité dans la distribution a posteriori et à difficultés de convergence comme

exemplifié par le phénomène du “label-switching” qui est maintenant tout à fait

bien documenté (Celeux et al. 2000, Stephens 2000, Jasra et al. 2005, Frühwirth-

Schnatter 2006, Geweke 2007, Puolamäki and Kaski 2009). Ce trait est caractérisée

par un manque de symétrie dans le résultat d’un algorithme Monte Carlo Markov

Châıne (MCMC), en ce que la densité a posteriori est échangeable dans les com-

posantes de la mélange, mais l’échantillon MCMC ne présente pas cette symétrie.

En outre, la plupart des échantillonneurs MCMC ne se concentrent pas autour d’un

seul mode de la densité a posteriori, mais explorent plusieurs modes, ce qui rend la

construction des estimateurs de Bayes des composantes beaucoup plus difficile.

Lors de la spécification d’une loi a priori sur les paramètres du modèle de

mélange, il est donc tout à fait délicat produire une version noninformative gérable

et raisonnable et certains ont parlé contre l’utilisation des lois a priori noninfor-

matives dans ce contexte (par exemple, MacLachlan and Peel (2000) ont soutenu

qu’il est impossible obtenir une distribution a posteriori propre à partir de lois a

priori entièrement noninformatives), sur la base que les modèles de mélange sont des

objets qui nécessitaient d’information a priori pour donner un sens à la notion de

composante. Par exemple, la distance entre les deux composantes doit être bornée

dessous pour éviter de répéter la même composante, encore et encore.

En plus, les composantes doivent être toutes informées par les données, fait qui

est illustré dans Diebolt and Robert (1994) où les Authors ont imposé un régime

d’achévement (un modèle commun sur les paramètres et les variables latentes) de

telle sorte que au moins deux observations ont été répartis à toutes les composantes,



xxiii

assurant ainsi que la loi a posteriori soit bien définie. Wasserman (2000) a prouvé

dix ans aprè que cette troncature conduit à des estimateurs cohérents et en outre

que seuls ce type de loi a priori pourrait produire une loi a posteriori cohérente.

Alors que la contrainte sur les allocations n’est pas entièrement compatibles avec

la représentation i.i.d. d’un modèle de mélange, elle exprime naturellement une

exigence de modélisation que toutes les composantes aient un sens en termes de

données, que toutes les composantes véritablement contribuent à la génération d’une

partie des données. Cela se traduit par une forme d’information a priori faible sur

combien on veut croire au modèle et combien chaque composante est significative.

Dans le Chapitre 4, nous étudierons d’abord si la loi a priori de Jeffreys peut

être considérée comme une loi a priori de référence dans le contexte des mélanges,

même si pas définitive.

Dans la Section 4.2 nous allons fournir la caractérisation formelle de la distribu-

tion a posteriori pour les paramètres d’un modèle de mélange, en particulier avec

des composantes gaussiennes, quand la loi de Jeffreys est utilisée pour eux. Dans

la Section 4.3 nous allons analyser la distribution a priori et a posteriori quand la

loi de Jeffreys est utilisée: seulement lorsque les poids des composantes (qui sont

définis dans un espace compact) sont les seuls paramètres inconnus il se révèle que

la loi de Jeffreys (et donc la loi a posteriori relative) est propre; d’autre part, lorsque

les autres paramètres ne sont pas connus, la Jeffreys sera demontrée être impropre;

dans une seule situation elle fournit une distribution a posteriori propre. Dans la

Section 4.4 nous allons proposer un moyen de réaliser une analyse noninformative

des modèles de mélange et introduire des lois a priori impropres pour au moins

certains paramètres.

Le Chapitre 4 est une grande amélioration de la littérature actuelle des mélanges,

car il permet l’utilisation de lois a priori impropres sans passer par une reparametriza-

tion du modèle qui peut entrâıner des difficultés computationelles.

Nous nous sommes concentrés sur les modèles de mélange, qui démontrent bien

la difficulté de choisir une distribution a priori pour les modèles complexes. Ce

problème est souvent spécifique au modèle utilisé, mais la recherche à venir sera

concentrée sur le tentative de généraliser la méthodologie présentée.

Dans ce travail, nous avons étudié les aspects plus méthodologiques, mais les

méthodes proposées ont toujours été testé sur des données simulées et des ap-

plications réelles (sauf dans le Chapitre 4). Il y a deux applications principales:
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écologiques et financières.

Dans le Chapitre 1, nous avons utilisé des données d’une étude sur la faune

d’une région entre le Queensland et la Grande Barrière d’Australie. Nous avons

analysé comme variable de réponse un indice composite, en échelle logarithmique,

qui combine des informations entre les espèces et est considéré comme dépendant

de la latitude de manière linéaire et de la longitude de manière inconnue; pour une

description plus détaillée, voir Bowman and Azzalini (1997).

Dans les Chapitres 2 et 3 nous nous sommes concentrés sur les applications fi-

nancières, en particulier pour les données de performance (en échelle logarithmique)

de plusieurs institutes italiens. Ces types de données ont deux caractéristiques

importantes: ils présentent des queues de distribution lourdes et les structures

de dépendance sont non linéaire. Pour cettes raisons, dans le Chapitre 2 des

modèles GARCH marginaux pour des distributions t et des modèles de copules

nonparamétriques ont été proposées, tandis que dans le Chapitre 3, on introduit des

modèles marginaux en fonction des distributions quantiles. Ces distributions sont

définies sur la base de leur fonction quantile définie comme une transformation non

linéaire d’un quantile d’une loi gaussienne standard; pour cette raison, les distribu-

tions quantile sont un cas classique de distributions pour lesquelles la fonction de

vraisemblance n’est pas disponibles et sont typiques dans la littérature sur ABC.

Dans ce travail, nous allons étudier nombreux problèmes de l’approche bayésienne

pour les modèles complexes: la définition d’une fonction de vraisemblance pour les

paramètres d’intérêt quand il y a nombreux paramètres de nuisance, l’inférence pour

quelques paramètres d’intérêt lorsque le modèle est pas entièrement spécifié, des

techniques de sélection de modèles pour des situations compliquées et la définition

d’une distribution a priori dans le cas particulier des modèles de mélange. Dans

les Chapitres et les Conclusions seront présentées les points les plus délicats qui

méritent de plus amples recherches.

Pour conclure, les ordinateurs modernes permettent un développement des procédures

bayésiennes impossibles dans le passé. Dans ce travail, nous allons essayér d’utiliser

des nouvelles et anciennes méthodes pour les problèmes théoriques et appliqués

modernes, grâce à des nouveaux outils de calcul.

Dans la première partie du travail, nous allons montrer que la classe des algo-

rithmes appelée “calcul bayésien approché” peut être utilisée pour résoudre certains

problèmes complexes soit dans un cadre bayésien soit dans un cadre classique.
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Dans un cadre non-bayésienne, nous allons d’abord montrer qu’il peut être utilisé

comme un outil pour approcher la fonction de vraisemblance pour un paramètre

d’intérêt en présence de paramètres de nuisance. Le problème de l’élimination des

paramètres de nuisance est crucial dans toutes les approches: en particulier, dans

beaucoup des applications modernes nombreux paramètres sont introduits pour con-

struire des modèles flexibles et réalistes, néanmoins leur manque d’un sens physique

est un problème en termes d’inférence et en termes de construction d’une distribu-

tion a priori raisonnable.

Dans les problèmes semiparamétriques, où l’intérêt de l’analyse est en quelques

paramètres et où il est préférable de limiter les hypothèses sur la forme complète

du modèle, nous allons montrer que la mèthode ABC peut également être utilisée;

par exemple, elle permet de gérer les modèles de copule et d’étudier la structure de

dépendance des variables aléatoires multivariées sans faire des hypothèses fortes sur

les distributions univariées ou sur la fonction copule. Lignes futures de recherche

seraient axées sur la généralisation de l’approche présentée dans le Chapitre 2, par

exemple en introduisant des covariates dans l’analyse et en tenant compte d’autres

types de modèles.

Définir les moyens pour le choix du modèle dans le cas des modèles complexes est

particulièrement difficile: les approches standards ont tendance à échouer de trouver

le bon modèle. Dans le Chapitre 3, nous allons proposer un moyen de rapprocher

le facteur de Bayes lorsque la fonction de vraisemblance est indisponible, en util-

isant le calcul bayésien approché dans le cas spécifique des distributions quantile.

Les travaux futurs seront concentrés sur la comparaison des méthodes avec celles

proposées dans la littérature et l’extension de la méthode à modèles plus généraux.

Dans la dernière partie du travail nous allons essayer de construire une analyse

noninformative pour les modèles de mélange. Comme dit précédemment, décrire les

informations disponibles a priori avec loi de probabilité est difficile, en particulier

pour les modèles complexes, principalement parce que pas tous les paramètres ont

une signification physique. La définition d’une loi a priori pour les paramètres d’un

modèle de mélange a une longue histoire dans la littérature. Tout d’abord, nous

allons analysé la méthode de Jeffreys de définition d’une loi a priori noninformative

et allons montrer que cette loi ne peux pas être utilisée. Ensuite, nous allons proposer

de changer le point de vue en définissant une hiérarchie qui crée une structure de

corrélation entre les composants de la mélange et permet d’utiliser lois a priori

noninformatives impropres au plus haut niveau de la hierarchie.
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Introduction

The Bayesian paradigm was proposed in the 18th century with the work of Thomas

Bayes (1702–1761), who first proved the Bayes’ theorem in a special case, and Pierre-

Simon Laplace (1749–1827), who proved the Bayes’ theorem more generally and

introduced conjugate and noninformative prior distributions and introduced the

idea of subjective belief in defining the probability of an event. In the first decades

of the 20th century some statisticians, as Ronald A. Fisher, Jerzy Neyman and

Egon Pearson among others, proposed a new and opposite paradigm, the so-called

frequentist approach, based on the idea that the statistical procedures have to been

judged by their behavior in hypothetical repetitions of the experiment. While great

statistiticians worked on the development of Bayesian inference during the middle

years of the 20th century (as Harold Jeffreys, Leonard J. Savage, Dennis Lindley,

among many others), the Bayesian procedures remains a field of theoretical research,

too hard to be applied.

Bayesian inference is completely based on descriptions of the posterior distri-

bution: once the information available before conducting the experiment and the

information obtained after it are merged together to compose the posterior distri-

bution, the inferential part ends and the methodologies to address all the inferential

problems (point and interval estimation, hypothesis testing, model choice, etc.) are

based on description of it. One of the points of strength of Bayesian analysis is its

inner coherence: since the parameter is considered as a random variable with its

own distribution and since the inferential procedures are based on this distribution,

some of the typical paradoxes of frequentist theory are avoided (for example, the

possibility to estimate a non-negative parameter with a negative quantity).

Unfortunately, while Bayesian inference presents some clear advantages, it has

some critical points as well. In this work we will address some theoretical and

methodological issues in Bayesian analysis by evaluating and proposing new com-
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putational solutions.

Firstly, the reason why Bayesian analysis has not been used for real applications

for a long time stays in the definition of posterior distribution of a parameter θ ∈ Ω

given an observed data set y ∈ Y through the Bayes’ theorem:

π(θ|y) =
π(θ)L(θ; y)∫
Y π(θ)L(θ; y)dy

=
π(θ)L(θ; y)

m(y)

where π(θ) is the distribution summarizing the prior information on the parameter θ

and L(θ; y) is the likelihood function, which provides the information available with

the experiment. In theory, after the posterior distribution has been defined, inference

on the parameter θ is based on descriptions of it. In practice, the composition of the

information available with the data and the information available a priori does not

provide a distribution known in closed form, except in few cases (as in the case of

conjugate priors) and, therefore, this distribution can not be analytically managed.

Only in the 1980s there was a dramatic growth in research and applications of

Bayesian methods, thanks to the development of computer technology, which allowed

for the implementation of Monte Carlo (and MCMC) methods to approximate the

posterior distribution in more general cases and to manage more complicated (and

realistic) situations.

Recently, also the methods proposed in those years have become obsolete in

many cases. The great complexity of modern applications, as in genetics, computer

science, finance, climatic science etc., has led to the proposal of new models which

may realistically describe the reality. For example, the model may have the form

f (y; θ) =

∫
Z
f (y, z; θ) dz =

∫
Z
f (y | z, θ) f (z; θ) dz

where z plays the role of a latent nonobservable structure; then the likelihood func-

tion may be unavailable, because of a too large dimension of z. This is the case of

stochastic volatility models, where the integration is with respect to all the time of

observation, or genetical models, where the role of the latent variable is played by

the complete genealogical tree. In these cases, classical MCMC methods fail to ap-

proximate the posterior distribution, because they are too slow to investigate the full

parameter space. In other cases, the likelihood function is unavailable, because it is

impossible to analytically work with it, as in the case of Gibbs random fields, where

the likelihood function is unavailable because of a normalizing constant depending
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on the parameter.

New algorithms have been proposed to handle these situations. In particular,

a new class of algorihtms is the so-called likelihood-free algorithms or approximate

Bayesian computation (ABC), which allows to manage models where the likelihood

function may be considered intractable. ABC has been proposed in the last years

of the 1990s in an applied setting; the main idea is that if a proposed value for the

parameter is generated from a known distribution (for instance, the prior distribu-

tion) and then a new data set is simulated from the model by fixing the parameter

equal to the proposed value and the simulated data set is similar in some sense to

the observed one, then the proposed value is likely to have generated the observed

data and is included in the sample which will approximate the posterior distribu-

tion. There are many key points in this methodology, for example how to define the

concept of similarity between data sets, nevertheless in this way it is only necessary

to be able to simulate from the model to provide an approximation of the posterior

distribution and no manipulation of the likelihood function is required.

The ABC methodology has been proposed in a Bayesian setting as a way to

approximate the posterior distribution. Nevertheless it can also be used in other

situations. In Chapter 1 we will propose a way to approximate the (integrated)

likelihood function of a parameter of interest when the model includes many (po-

tentially infinite) nuisance parameters, to perform inference in a classical setting

(where the prior distribution is intended as a weight function for the integration).

Chapter 1 deals with a key point in complex models: in many situations, the

experimenter introduces nuisance parameters which lack of a physical meaning, but

are necessary to define flexible and realistic models. Sometimes unknown functions

(with an infinite number of parameters) are introduced in the model, to reduce

the a priori assumptions. Nevertheless, the interest remains in few parameters. For

example, in multivariate analysis, the concept of dependence is crucial, but it is very

difficult to work with complicated models (with no assumptions of normality, for

instance). In particular, the goal of copula models is to make inference on a copula

function which captures all the dependence structure among the variables. It is by

now clear that a misspecification of the shape of the copula function leads to not

reliable results, but nonparametric approaches are not yet fully developed. Chapter

2 will propose a way to make inference on indexes of dependence (as the Spearman’s

ρ, the Kendall’s τ or tail dependence coefficients) without making assumptions on

the shape of the copula function and via the ABC methodology.
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Secondly, hypothesis testing may be seen has a problem of determining posterior

odds

Pr(θ ∈ Ω0|y)

Pr(θ ∈ Ω1|y)
=

Pr(θ ∈ Ω0)

Pr(θ ∈ Ω1)

∫
Ω0
f(y; θ)π0(θ)dθ∫

Ω1
f(y; θ)π1(θ)dθ

where the last term, called Bayes factor, is the ratio between the integrated likelihood

with respect to the subset of the parameter space relative to each hypothesis (a

generalization to the problem of model choice is straightforward). Therefore, the

Bayes factor may be seen as a tool to address the problem of hypothesis testing and

can be defined as the ratio between marginal distributions

Bπ
01 =

∫
Ω0
f(y; θ)π0(θ)dθ∫

Ω1
f(y; θ)π1(θ)dθ

where Ωi for i = 0, 1 is the subspace of Ω relativi to hypothesis Hi and πi(·) is

the prior distribution under hypothesis Hi. Again, the theoretical definition of the

Bayes factor is straightforwars, nevertheless is computation may be challenging, in

particular because of the choice of the prior distribution.

While inference for complex models is more developed, problems of model choice

have not yet general solutions. In Chapter 3 we will analyze a recent proposal to

redefine the Bayes factor, show its weaknesses and present an alternative applicable

in situations where the likelihood function is unavailable.

Thirdly, one of the most delicate and controversial aspects of Bayesian inference

is how to compose the prior information in order to form a distribution. Even if prior

information is available, defining a distribution (known in closed form) summarizing

it is not obvious. Moreover, in the case that little information or no information is

available, Bayesian inference still requires to choose a distribution. Many Authors

have worked in order to define a “noninformative” prior distribution, i.e. a default

procedure to define the prior distribution when prior information is not available.

As examples, one may cite the work of Box and Tiao, who consider the Laplace case

of constant priors on the parameter, the work of Jeffreys, who considers a model-

based prior based on the expected Fisher information, and the work of Berger and

Bernardo, who propose an automatic procedure based on maximizing the informa-

tion obtained with the posterior distribution, i.e. the Kullblack-Leiber divergence

between the posterior and the prior distribution. One of the greatest disadvantages

of the proposed procedures is that they often lead to improper priors, i.e. not in-
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tegrable quantities. While some have argued against the use of improper priors,

on several grounds, one may argue in favor of them by considering the posterior

distribution as a limiting measure of the posterior function obtained by using an

improper prior. As a practical note aside, improper priors are, in general, the only

way to interpret the maximum likelihood estimators as Bayesian estimators. Even

if one accept the use of improper priors, it could be difficult to assess their influence

in the setting of complicated models, where the parameter has no physical meaning.

Mixture models are an example of complicated model which allows to describe

kurtotic, multimodal and asymmetric data by considering a composition of known

distributions:

k∑
i=1

pi fi(x|θi) ,
k∑
i=1

pi = 1 .

The literature for mixture models is huge, both for inferential problems and

for problems of model choice. Mixture models have an ill-defined nature (non-

identifiability, multimodality, unbounded likelihood, etc.) and this leads to some

difficulties in defining a prior distribution. In many cases, it is difficult to give a

meaning to all the parameters of the mixture, therefore a noninformative analysis

should be preferred. Nevertheless many works have shown that improper priors are

likely to produce improper posterior. In Chapter 4, we will analyze the Jeffreys

approach to define a noninformative prior in this setting and propose an alternative

which consists in a redefinition of the model.

While the proposal of Chapter 4 is thought for mixture models, it can be gen-

eralized to other type of complicated models, in order to use improper priors for

parameters lacking of a physical meaning.

A discussion of the results found throughout this thesis is presented in the con-

clusive Chapter.
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Chapter 1

Approximate Integrated

Likelihood via ABC methods

1.1 Introduction

Given1 a statistical model with generic density p(x|θ), with θ ∈ Θ ⊂ Rd, one is

often interested in a low dimensional function ψ of the parameter vector θ, say

ψ = ψ(θ) ∈ Rk, with k < d. Modern parametric or semi-parametric statistical

theories, at least the approaches based on likelihood and Bayesian theories, aim at

constructing a likelihood function which depends on ψ only. There is much literature

on the problem of eliminating nuisance parameters, and we do not even try to sum-

marize it. Interested readers may refer to Berger et al. (1999) and Liseo (2005) for

a Bayesian perspective, and to the comprehensive books by Pace and Salvan (1997)

and Severini (2000) or to Lancaster (2000) for a more classical point of view. In a

Bayesian framework the problem of eliminating the nuisance parameters is, at least

in principle, trivial. Let λ = λ(θ) the complementary parameter transformation,

such that θ = (ψ,λ) and let

π(θ) = π(ψ,λ) = π(ψ)π(λ|ψ) (1.1)

the prior distribution. Then, after assuming we observe a data set x = (x1, . . . , xn)

from our working model, and computed the likelihood function L(ψ,λ; x) ∝ p(x;ψ,λ),

the marginal posterior distribution of ψ is

1joint wort with Prof. Brunero Liseo, MEMOTEF, Sapienza Università di Roma
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π(ψ|x) =

∫
Λ
π(ψ,λ)L(ψ,λ; x)dλ∫

Ψ

∫
Λ
π(ψ,λ)L(ψ,λ; x)dλdψ

∝ π(ψ)

∫
Λ

π(λ|ψ)L(ψ,λ; x)dλ.

(1.2)

The integral in the right-hand side of (1.2) is, by definition, the integrated likeli-

hood for the parameter of interest ψ, where “integration” is meant with respect to

the conditional prior distribution π(λ|ψ); it will be denoted by L̃(ψ; x). The use

of integrated likelihoods has become popular also among non Bayesian statisticians;

there are several examples in which its use is clearly superior, or at least equiva-

lent, even from a repeated sampling perspective, in reporting the actual uncertainty

associated to the estimates. See for example, Severini (2007), Severini (2010) and

Severini (2011).

However the explicit calculation of the above integral might not be so easy, es-

pecially when the dimension d − k is large. Notice that the dimension d may also

include a possible latent structure which, from a strictly probabilistic perspective, is

not different from a parameter vector. In this Chapter we are interested to explore

the use of approximate Bayesian computation (ABC, henceforth) methods in pro-

ducing an approximate integrated likelihood function, in situations where a closed

form expression of L̃(ψ; x) is not available, or it is too costly even to evaluate the

“global” likelihood function L(ψ,λ; x), like, for example, in many genetic applica-

tions or in the hidden (semi)-Markov literature. These are situations where MCMC

methods may not be satisfactory and completely reliable.

Another class of problems where an integrated likelihood would be of primary

interest is that of semi-parametric problems, where the parameter of interest is a

scalar - or a vector - quantity and the nuisance parameter is represented by the

nonparametric part of the model; in such cases the integration step over the Λ space

would be infinite dimensional, and very often infeasible to be solved in a closed form;

we will discuss this issue in Section 1.4.

Approximate Bayesian computation has now become an essential tool for the

analysis of complex stochastic models when the likelihood function is unavailable.

It can be considered as a (class of) popular algorithms that achieves posterior simu-

lation by avoiding the computation of the likelihood function (see Beaumont (2010)

for a recent survey). A crucial condition for the use of ABC algorithms is that

it must be relatively easy to generate new pseudo-observations from the working
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model, for a fixed value of the parameter vector. In its simplest form, the ABC

algorithm is as follows (Algorithm 1 in Marin et al. (2012))

Algorithm 1 Likelihood-free Rejection algorithm

for i = 1 to N do

repeat

Generate θ from the prior distribution π(·)
Generate z from the likelihood function f(· | θ)
until z = y (or some statistics η is such that η(z) ≈ η(y))

set θi = θ

end for

In this Chapter we will argue, through several examples of increasing complexity,

how the approximate integrated likelihood produced by ABC algorithms performs

when compared with the existing methods. We will also explore its use in particular

examples where other methods simply fail to produce a useful and easy-to-use like-

lihood function for the parameter of interest. The Chapter is organized as follows.

In the next section we describe our proposal in detail. Section 1.3 discusses some

theoretical issues related to the precision of the ABC approximation. Section 1.4

compares the ABC integrated likelihood with other available approaches in a series

of examples. Section 1.5 concludes with a final discussion of pros and cons of the

method.

1.2 The proposed method

The main goal of this Chapter is to obtain an approximation of the integrated

likelihood L̃(ψ; x), for ψ = ψ(θ) ∈ Rk. From expression (1.2) it is easy to see that

L̃(ψ; x) ∝ π(ψ|x)

π(ψ)
, (1.3)

that is the integrated likelihood function may be interpreted as the amount of ex-

perimental evidence which transforms our prior knowledge into posterior knowledge

about the parameter of interest: from this perspective, we can interpret (1.3) as the

Bayesian definition of the integrated likelihood function.

Suppose that L̃(ψ; x) is hard or impossible to obtain in a closed form. For

example the nuisance parameter λ might be infinite dimensional (see Example 4.4)
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or it may represent the non observable latent structure associated to the statistical

model as in Hidden Markov or semi-Markov set-ups.

In these situations one can exploit the alternative expression (1.3) of L̃(ψ; x). Of

course, if L̃(ψ; x) is not available, neither π(ψ|x) will be. However it is possible to

obtain an approximate posterior distribution π̃(ψ|x), by using some standard ABC

algorithm; in Section 1.3 we will discuss some issues related to the precision of this

approximation; for now, we describe the practical implementation of the method.

As in any ABC approach for the estimation of the posterior distribution, one has to

• select a number of summary statistics η1(x), . . . , ηh(x);

• select a distance ρ(·, ·) to measure the distance between “true” and proposed

data, or their summary statistics;

• select a tolerance threshold ε

• choose a (MC)MC algorithm which proposes values for the parameter vector

θ.

Once the posterior is approximated by a sizeM ABC posterior sample (θ∗1,θ
∗
2, . . .θ

∗
M),

one can produce a non parametric kernel based density approximation of the marginal

posterior distribution of ψ, say π̃ABC(ψ|x). A similar operation can be done with

the marginal prior π(ψ), by performing another - cheap - simulation from π(ψ)

to get another density approximation, say π̃(ψ). Notice that one is bound to use

proper priors for all the involved parameters.

Then one can define the ABC integrated likelihood

L̃ABC(ψ; x) ∝ π̃ABC(ψ|x)

π̃(ψ)
. (1.4)

1.3 The quality of approximation

The gist of this note is to propose an approximate method for producing a likelihood

function for a quantity of interest when the usual road of integrating with respect

to the nuisance parameters cannot be followed. There are two sources of error in

(1.4). The first type of approximate error is introduced by the ABC approximation

in the numerator so the level of accuracy of (1.4) is of the same order of any ABC-

type approximation. We believe that the main difficulty with ABC methods is the
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choice of summary statistics. However, while generic ABC methods have the goal of

producing a “global” approximation to the posterior distribution, our particular use

of the ABC approximation may suggest some alternative strategies for the choice

of summary statistics. Classical statistical theory on the elimination of nuisance

parameters can be in fact of some guidance in the selection of summary statistics

which are partially or conditionally sufficient for the parameter of interest. Basu

(1977) represents an excellent reading on these topics. In particular, his Definition

5 of “Specific Sufficiency” can be used in semi-parametric set-ups, like Example 4.4

below, where the selected summary statistics are oriented towards the preservation

of information about the parameter of interest. In our notation a statistic T is

specific sufficient for ψ if, for each fixed value of the nuisance parameter λ, T is

sufficient for the restricted statistical model in which λ is held fixed and known.

Another source of error in ABC is given by the tolerance threshold ε. As stressed

in Marin et al. (2012), the choice of the tolerance level is mostly a matter of com-

putational power: smaller ε’s are associated with higher computational costs and

more precision. It is enough to reproduce the argument in Section 1.2 of Sisson and

Fan (2011) to see that for ε → 0, the error in (1.4), which is due to the tolerance,

vanishes.

Then, there is a balance between the fact that ε has to be small and the fact that

the simulation has to be practicable. It could be useful to choose ε in a recursive

way, by realizing a first simulation with a high tolerance level and then by choosing

it in the left tail of the thresholds related to the accepted values. However, it is

always recommended to compare different levels.

The second main source of error is due to the kernel approximation step. A

second order expansion for a Gaussian kernel estimator provides that

E
[
π̃ABC (ψ|x)

]
= π (ψ|x) +

1

2

∂2

∂ψ2
π (ψ|x)h2

xk2 +O
(
h4
x

)
(1.5)

where hx is the bandwidth and k2 = 1 in the case of Gaussian kernel.

A similar approximation holds for the prior distribution. Then, using general

results on a first order approximation for the ratio of functions of random variables

(Kendall et al. (1987), pag. 351), one has
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E
[
π̃ABC (ψ|x)

π̃ (ψ)

]
=
π (ψ|x) + 1

2
∂2

∂ψ2π (ψ|x)h2
x +O (h4

x)

π (ψ) + 1
2
∂2

∂ψ2π (ψ)h2
π +O (h4

π)
(1.6)

where hx is the bandwidth chosen for the approximation of the posterior distribution

and hπ is the one chosen for the approximation of the prior. The prior distribution

is often known in closed form or may be easily approximated with a higher accuracy

than the posterior distribution.

The previous formula ensures that our estimator will be consistent provided that

a sample size dependent bandwidth hn, converging to 0, is adopted.

It is a matter of calculation to show that the variance of the estimator is

V
[
π̃ABC (ψ|x)

π̃ (ψ)

]
(1.7)

=

[
π (ψ|x) + Cx

π (ψ) + C

]2

×

[
π(ψ|x)

2nhx
√
π

+O (n−1)

[π (ψ|x) + Cx]2
+

π(ψ)
2nhπ

√
π

+O (n−1)

[π (ψ) + C]2

]

where

Cx =
h2
x

2

∂2

∂ψ2
π (ψ|x) +O

(
h4
x

)
and

C =
h2
π

2

∂2

∂ψ2
π (ψ) +O

(
h4
π

)
.

Again, using a bandwidth hn, such that hn → 0, as n→∞, one can see that the

first factor of the variance is asymptotically equal to the square of the true unknown

value, while the second factor vanishes like n−1.

In conclusion, the ABC approximation of the integrated likelihood function mainly

depends on the ABC approximation and the kernel density estimate of the posterior

distribution, whereas the prior distribution may be considered known, in general.

Blum (2010) shows that the asymptotic variance of the kernel density estimator of

the posterior distribution inversely depends on the number of simulations n and on

the kernel bandwidth, while the bias is proportional to the bandwidth. The mean

squared error is minimized by
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hn = O
(
n−

1
d+5

)
(1.8)

where d is the dimension of the summary statistics. Then the minimal MSE is

MSE∗ = O
(
n−

4
d+5

)
(1.9)

which shows that the accuracy in the approximation decreases as the dimension of

the summary statistics increases. This result may be used to define the number of

simulations (and the burn-in) needed to reach the desired level of accuracy.

1.4 Examples

In this Section we illustrate our proposal throughout several examples of increasing

complexity. The first one is a toy example and it is included only to show - in a

very simple situation - which are the crucial steps of the algorithm.

Example 4.1. [Poisson means]. Suppose we observe a sample of size n from X ∼
Poi(θ1) and, independently of it, another sample of size n from Y ∼ Poi(θ2). The

parameter of interest is ψ = θ1/θ2. This is considered a benchmark example in par-

tial likelihood literature since the conditional likelihood (see Kalbfleisch and Sprott

(1970)), the profile likelihood and the integrated likelihood obtained using the con-

ditional reference prior (Berger et al. (1999)) are all proportional to

L̃(ψ; x,y) ∝ ψnx̄

(1 + ψ)n(x̄+ȳ)
,

with the obvious meaning of the symbols above. Without loss of generality, set

λ = θ2 as the nuisance parameter.

In this situation, the ABC approximation of the integrated likelihood is, in some

sense, not comparable with the “correct” integrated likelihood because the latter

is obtained through the use of an improper conditional reference prior on λ given

ψ, and, as already stressed, it is not possible to use improper priors in the ABC

approach. A solution may be using a prior which mimics the reference prior: we

have taken θ1, θ2
iid∼ Ga (0.1, 0.1). Notice that, in the economy of the method, only

the prior on λ, not on ψ is important. The ABC algorithm has been implemented

to obtain approximations for the posterior distributions of θ1 and θ2. The distance

ρ has been taken as the Euclidean distance, different tolerance levels have been
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Figure 1.1:
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The integrated likelihood of ψ (solid line) and its approximations for different tolerance levels:

ε = 0.001 (dashed), ε = 0.01 (dotted), ε = 0.1 (dotdashed) and ε = 0.5 (longdashed).

compared - ε = (0.001, 0.01, 0.1, 0.5) - and the sample means of the two samples

have been taken as summary (sufficient) statistics. Samples of 1, 000 simulations

have been obtained to approximate the posterior distributions. The approximation

to the posterior distribution of ψ is then simply obtained as the ratio between the

accepted values for θ1 and θ2 via ABC. Given a sample from the prior distribution

of ψ, the approximation of its integrated likelihood is obtained through the ratio

between the kernel density estimates of both the prior and the posterior distribution.

Figure 1.1 shows the approximations with different choices of the tolerance level:

the approximations are close together and they are all close to the integrated likeli-

hood; the choice for the tolerance level does not seem to have a strong influence; it is

mostly a matter of computational power: the acceptance rate is generally very low

(often under 1%), nevertheless it grows with the tolerance level. As the threshold

goes to zero, the approximation is closer to the integrated likelihood, although the

computational time increases.

Simulations have been repeated for different scenarios, by changing the sample

size and the number of simulations, however the results do not seem to change in

a significant way. In particular, as expected, the algorithm does not depend on the

(induced) prior on ψ.

Example 4.2. [Neyman and Scott’s class of problems]. This is a famous class
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of problems, where the number of parameters increases with the sample size (Ney-

man and Scott 1948, Lancaster 2000). Here we consider a specific example, already

discussed in Davison (2003) and Liseo (2005), namely matched pairs of Bernoulli

observations: every subject is assigned to treatment or control group and the ran-

domization occurs separately within each pair, i.e. each data point in one data set is

related to one and only one data point in the other data set. Let Yij’s be Bernoulli

random variables, where i = 1, . . . , k represents the stratum and j = 0, 1 indicates

the observation within the pair. The probability of success pij follows a logit model:

logit pij = λi + ψj (1.10)

For identifiability reasons, ψ0 is set equal to 0, while ψ1 = ψ is considered constant

across the k strata; ψ is the parameter of interest. To formalize the problem, assume

(Ri0, Ri1) are k independent matched pairs such that, for each i:

Ri0 ∼ Be

(
eλi

1 + eλi

)
, Ri1 ∼ Be

(
eλi+ψ

1 + eλi+ψ

)
. (1.11)

The complete likelihood for λ = (λ1, . . . , λk) and ψ is

L (ψ, λ) =
e
∑k
i=1 λiSi+ψT∏k

i=1 (1 + eλi) (1 + eλi+ψ)
(1.12)

where Si = Ri0 + Ri1 for i = 1, . . . , k and T =
∑k

i=1Ri1 is the number of successes

among the cases. It is easy to show that the conditional maximum likelihood esti-

mate of λi is infinite when Si = 0 or Si = 2. The classical solution to this problem

is to eliminate the pairs where Si = 0 or Si = 2 from the analysis. Nevertheless this

is certainly a loss of information, because the fact that a pair gives the same result

under both treatments may suggest a “not-so-big” difference between groups.

It is easy to show that the conditional maximum likelihood estimator is[
λ̂i,ψ | (Si = 1)

]
= −ψ

2
;

also, let b be the number of pairs with Si = 1. The profile likelihood of ψ is

L̃ (ψ | Si = 1) =
eψT(

1 + e
ψ
2

)2b
(1.13)
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This likelihood function is not useful, since the maximum likelihood estimate for

ψ is inconsistent (see Davison (2003), Example 12.13): as b increases, ψ̂ → 2ψ. The

modified version of the profile likelihood, proposed by Barndorff-Nielsen (1983) uses

a multiplying factor:

M (ψ) =
∣∣∣Jλλ (ψ, λ̂ψ)∣∣∣− 1

2

∣∣∣∣∣ ∂λ̂∂λ̂ψ
∣∣∣∣∣ =

e
bψ
4(

1 + e
ψ
2

)b (1.14)

where Jλλ

(
ψ, λ̂ψ

)
is the lower right corner of the observed Fisher information ma-

trix.

The conditional distribution of T given S1 = S2 = · · · = Sb = 1 is Binomial and

depends on ψ only. That is T | [S1 = S2 = · · · = Sb = 1, ψ] ∼ Bin
(
b, eψ

1+eψ

)
; we

can use it to get a conditional likelihood function:

LC (ψ) ∝
(
b
T

) eψT

(1 + eψ)b
(1.15)

which leads to a consistent maximum conditional likelihood estimator.

A Bayesian approach has the advantage that it does not need to discard the pairs

with Si = 0 or 2. The likelihood contribution for the i-th pair is simply

L (ψ, λi) =
eλiSi+ψRi1

(1 + eλi) (1 + eλi+ψ)
. (1.16)

With a change of parametrization ωi = eλi/(1 + eλi) and using a (proper) Jeffreys’

prior for ωi|ψ (namely a Beta
(

1
2
, 1

2

)
), the integrated likelihood is

L̃i (ψ) = eψRi1
∫ 1

0

ω
Si− 1

2
i (1− ωi)

3
2
−Si

1− ωi (1− eψ)
dωi (1.17)

where the integral is one of the possible representation of the Hypergeometric or

Gauss series, as shown in Abramowitz and Stegun (1964) (formula 15.3.1, pag.

558). Therefore, the integrated likelihood is proportional to

L̃i (ψ) ∝ 2F1

(
1, Si +

1

2
, 3, 1− eψ

)
eψRi1 . (1.18)

Define L̃jl (ψ) as the integrated likelihood function associated with the i-th pair
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for which (Ri0, Ri1) = (j, l) and njl the number of pairs for which (Ri0, Ri1) = (j, l),

then the integrated likelihood function for ψ is

L̃ (ψ) ∝
∏
j,l=0,1

L̃jl (ψ)njl . (1.19)

It is worthwhile to notice that this likelihood is not, in some sense, comparable

with profile and conditional likelihoods, because it also considers the pairs discarded

by non-Bayesian methods.

The ABC approach has been used with simulated data, with a sample size n

equal to 30. Simulations were performed by setting ψ = 1, a value which is quite

frequent in applications, when similar treatments are compared. The values of

λ = (λ1, . . . , λn) have been generated by setting ξi = λi/(1 + λi) and drawing the

ξ′s from a U(0, 1) distribution. Again, we have used the Euclidean distance between

summary statistics and different tolerance levels ε = (0.001, 0.01, 0.1, 0.5). The

summary statistics are the sample means for R0 and R1. We have also assumed a

normal prior for ψ with zero mean and standard deviation equal to 10. The proposed

values for λi’s have been generated from a Beta
(

1
2
, 1

2

)
distribution for the above

defined transformations ξi’s.

With a sample from the posterior distribution of ψ for each tolerance level and

a sample from its prior distribution, we have obtained an approximation of the

likelihood of ψ via density kernel estimation. The results are shown in Figure 1.2:

the approximations are quite good for tolerance levels below 0.1; on the other hand,

when the threshold grows to 0.5 the approximate likelihood function is very flat

and multi-modal, i.e. too many proposed values, even very different from the true

value of ψ, are misleadingly accepted; for example, a value of ψ around 43 has been

accepted in one of our simulations.

Once again, a fair comparison between Bayesian and non-Bayesian approaches is

not strictly possible, nevertheless the various proposals are shown in Figure 1.3: all

the proposed solutions are concentrated relatively close to the true value, although

the profile likelihood seems to be biased towards large values of ψ: this behavior is

also present, although to a minor extent in the modified profile and the integrated

likelihood solutions. The ABC approximation closely mimics the integrated likeli-

hood, obtained via a saddle-point approximation of the Hypergeometric series (see

Butler and Wood (2002)).
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Figure 1.2:
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ABC approximations of the integrated likelihood for ψ with different tolerance levels: ε = 0.001

(solid line), ε = 0.01 (dashed), ε = 0.1 (dotted), ε = 0.5 (dotdashed).

Figure 1.3:
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Likelihood functions for ψ based on different solutions (n = 30): the profile likelihood (dashed line),

the conditional likelihood (dotdashed line), the modified profile likelihood (with the Barndorff-

Nielsen correction, longdashed line), the integrated likelihood (solid line, drawn by using the

Laplace approximation of 2F1 by Butler and Wood (2002) and the ABC approximation (nsim =

1000, prior ψ ∼ N (1, 10) and tolerance level ε = 0.001, dotted line).
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Similar conclusions are valid for different choices of the prior distribution, differ-

ent sample sizes, and different numbers of simulations. Just like in Example 4.1, the

acceptance rates are typically very low (always under 1% for tolerance levels under

0.01 and about 5% for a tolerance level of 0.1). Acceptance rates dramatically in-

crease to about 60%, for ε = 0.5; however in these cases, approximations get much

worse.

Example 4.3 [Likelihood function for the quantiles of a g-and-k distribution].

Quantile distributions are, in general, defined by the inverse of their cumulative

distribution function. They are characterized by a great flexibility of shapes ob-

tained by varying parameters values. They may easily model kurtotic or skewed

data with the great advantage that they typically have a small number of parame-

ters, unlike mixture models which are usually adopted to describe this kind of data.

An advantage of quantile distributions is that it is extremely easy to simulate from

them by means of a simple inversion. However, there are no free lunches, and the

above advantages are paid with the fact that their probability density functions (and

therefore, the implied likelihood functions) are often not available in a closed form

expression.

One of the most interesting examples of quantile class of distributions is the

so-called g-and-k distribution, described in Haynes et al. (1997), whose quantile

function Q is given by

Q (u; A, B, g, k) = A+B

[
1 + c

1− exp {−g z (u)}
1 + exp {−g z (u)}

]
·{

1 + z (u)2}k z (u)

(1.20)

where z (u) is the u-th quantile of the standard normal distribution; parameters

A, B, g and k represent location, scale, skewness and kurtosis respectively; c is an

additional parameter which measures the overall asymmetry and it is generally fixed

at 0.8, following Rayner and MacGillivray (2002a). The class of normal distributions

is a proper subset of this class; it is obtained by setting g = k = 0. Suppose we

are interested in one or more quantiles using this model. There is no easy solution

to the problem of constructing a partial likelihood for these quantiles. The fact

that the likelihood function is not available makes any classical approach practically

impossible to implement. Rayner and MacGillivray (2002b) propose a numerical
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maximum likelihood approach; however they also explain that very large sample

sizes are necessary to obtain reliable estimates of the parameters. On the other hand,

even though the quantile distributions have no explicit likelihood, simulation from

these models is easy, and an approximate Bayesian computation approach, also for

producing an integrated likelihood of the parameters of interest, seems reasonable.

For this specific problem, two types of ABC algorithms have been compared: the

former is the usual ABC algorithm based on simulations from the prior distributions

(with 103 iterations); the latter is an ABC-MCMC algorithm (106 iterations, with

a burn-in of 105 simulations). Two versions of ABC-MCMC have been used, the

former described in Marin et al. (2012) (see Algorithm 2) and the latter described

in Allingham et al. (2009) (see Algorithm 3). The main difference between these

two versions of ABC-MCMC algorithm is that, in the first case, there is no rejection

step; at each iteration a value is accepted (either the new proposed value or the

value accepted in the previous iteration); in the second case, instead, it is possible

to discard the current value and to propose a new one, so the chain always “moves”.

Data have been simulated from a g-and-k distribution with parameters A = 3,

B = 1, g = 2 and k = 0.5. As previously said, c is considered known and set equal

to 0.8. The sample size, has been set equal to n = 1000. The empirical cumulative

distribution function and the histogram of the simulated data are shown in Figure

1.4.

The transition kernel of the ABC-MCMC algorithm needs to be chosen having

in mind two conflicting objectives: on one hand, full exploration of the parameter

space, and, on the other hand, a reasonably high acceptance rate, which increases

for proposals mostly concentrated where the posterior mass is present. As described

in Allingham et al. (2009) uniform priors with bounds (0, 10) have been chosen

for each parameter and a random walk-normal kernel with variance 0.1 has been

used together with a large number of iterations (106) so that the parameter space

is likely to be fully investigated. The vector of summary statistics consists of the

sample mean, the standard deviation, and the sample skewness and kurtosis indexes.

The Euclidean distance has been used to compare summary statistics.

The tolerance level ε has been chosen in a recursive way: first, a very large

value has been selected, and a histogram of all the distances has been drawn. A

reasonable value has been taken from the 5% left tail of this histogram. Then, the

chosen threshold has been compared with smaller values. In particular, a threshold
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Figure 1.4:
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Empirical cumulative distribution function (left) and histogram (right) of the simulated data from

a g-and-k distribution (with A = 3, B = 1, g = 2, k = 0.5).

equal to 3 corresponds to 3.9% left tail. This has been compared with tolerance

levels equal to 2 and 0.5.

Algorithm 2 Likelihood-free MCMC sampling

Initialization

A1) Generate θ′ from the prior distribution π (·)
A2) Generate a data set z′ ∼ f (· | θ′), where f is the model of the data

A3) If ρ {η (y) , η (z′)} ≤ ε, set
(
θ(0), z(0)

)
= (θ′, z′), otherwise return to A1)

MCMC-step

for t = 1, . . . , T {
1) Generate θprop from the Markov kernel q

(· | θ(t−1)
)

2) Generate z′ from the model f (· | θprop)
3) Calculate h

(
θ(t−1), θprop

)
= min(1,

π(θprop) q(θ(t−1)|θprop)
π(θ(t−1)) q(θprop|θ(t−1))

)

4) if ρ {η (y) , η (z′)} ≤ ε, set
(
θ(t), z(t)

)
= (θprop, z′) with probability h,

else
(
θ(t), z(t)

)
=
(
θ(t−1), z(t−1)

)
}

The analysis of the approximate posterior distributions shows that three out of

four parameters (A, B and k) are well identified, while the posterior distribution

of g is rather flat. In general, as the tolerance level decreases, results improve and
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Algorithm 3 Likelihood-free MCMC sampling

Initialization

A1) Generate θ′ from the prior distribution π (·)
A2) Generate a data set z′ ∼ f (· | θ′), where f is the model of the data

A3) If ρ {η (y) , η (z′)} ≤ ε, set
(
θ(0), z(0)

)
= (θ′, z′), otherwise return to A1)

MCMC-step

for t = 1, . . . , T {
1) Generate θprop from the Markov kernel q

(
· | θ(t−1)

)
2) Generate z′ from the model f (· | θprop)
3) Calculate h

(
θ(t−1), θprop

)
= min(1,

π(θprop) q(θ(t−1)|θprop)
π(θ(t−1)) q(θprop|θ(t−1))

)

4) if ρ {η (y) , η (z′)} ≤ ε, set
(
θ(t), z(t)

)
= (θprop, z′) with probability h,

else return to 1)

}

posterior distributions tend to be more concentrated. Nevertheless, even using the

lowest tolerance level the posterior distribution of g does not seem to concentrate

around any value. This suggests that the algorithm needs an even smaller value

of the threshold. A simulation with tolerance level equal to 0.25 has been then

performed using Algorithm 2: the approximation of the posterior distribution of

g is still not centered around its true value, even if there is a mode around it;

nevertheless the problem with this so low tolerance level and this type of algorithm

is that the acceptance rate of new proposed values is very low and the chain does

not move too much. This tolerance level is also so low to make the application of

the other algorithms prohibitive in terms of computational time.

Our main goal of the analysis was to find an approximation of the integrated

likelihood function for a given quantile: in particular, we have considered the per-

centiles of order 0.05, 0.10, 0.25 and 0.50. Notice that, in the g-and-k distribution

model, the median is always equal to A.

The results are shown in Figure 1.5, 1.6 and 1.7. The performance is in general

very good: the approximations are always concentrated around the true values.

The ABC algorithm with simulations from the prior distribution has some ap-

parent problems of multi-modality, which are however absent using Algorithm 2.

However, in this case, the obtained approximations are not very smooth, and they

show more irregularities as the tolerance level decreases: as we have already re-
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marked, a too low threshold leads to very low acceptance rates and this means that

the chains do not move too much.

In this example, Algorithm 3 has the best overall performance: the approxi-

mations are smooth and all concentrated around the true quantile values. As the

tolerance level decreases, the likelihood approximations are more concentrated; ob-

viously the computational time gets larger.

The acceptance rates of these algorithms are in general very low:

• the basic ABC algorithm has an acceptance rate of 0.138% when the threshold

is equal to 3, and it goes down to 0.041% and 0.007% with tolerance levels of

2 and 0.5 respectively;

• the ABC-MCMC Algorithm 2 needs, respectively, 187, 1487, about 500K and

more than 3 millions of simulations for the initialization step for the different

tolerance levels 3, 2, 0.5 and 0.25.The acceptance rates of the proposed values

are also very low: 18.41%, 9.90%, 0.47% and 0.046% respectively; it is clear

that the acceptance rates relative to the smaller thresholds cannot lead to

smooth approximations;

• the ABC-MCMC Algorithm 3 needs 1104, 4383 and about 400K simulations

for the initialization step for tolerance levels 3, 2 and 0.5 respectively; in this

case every accepted value is a “new” value, and this solves the problems in

Algorithm 2.

In conclusion, ABC-MCMC seems to perform better, although the versions we have

implemented present some cons: the algorithm in Marin et al. (2012) is faster but

it must be calibrated in terms of the tolerance level, which has to be low in order

to achieve good approximations, and the MCMC acceptance rate, which has to be

sufficiently high in order to allow the chains to move.

Example 4.4 [Semiparametric regression]. Consider the following model

Y = Xβ + γ (z) + ε, (1.21)

where Y = (Y1, Y2, ..., Yn)′ is a vector of n real-valued variables, and x = (x1, x2, . . . , , xn)′

and z = (z1, z2, . . . , zn)′ are observed constants respectively taking values in Rp and

Z, ε is the usual random component that we assume having multivariate normal
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Figure 1.5:
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Likelihood approximations of the quantiles of a g-and-k distribution parameters for simulated data,

obtained with an ABC algorithm which simulates proposal values from the prior distributions

(U (0, 10) for each parameter): tolerance levels equal to 3 (solid line), 2 (dashed line) and 0.5

(dotted line).

Figure 1.6:
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Likelihood approximations of the quantiles of a g-and-k distribution parameters for simulated data,

obtained with an ABC-MCMC Algorithm 2 with Gaussian kernel: tolerance levels equal to 3 (solid

line), 2 (dashed line) and 0.5 (dotted line) and 0.25 (dotdashed line).

distribution with mean 0 and covariance matrix Ωφ which depends on some param-
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Figure 1.7:
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Likelihood approximations of the quantiles of a g-and-k distribution parameters for simulated data,

obtained with an ABC-MCMC Algorithm 3 with Gaussian kernel: tolerance levels equal to 3 (solid

line), 2 (dashed line) and 0.5 (dotted line).

eters φ, β is a vector of unknown parameters taking values in R
p and γ : Z → R is

an unknown function.

If the analysis is focused on β or Ωφ, γ may be considered a nuisance parameter

and a method to remove it from the analysis is needed. In particular, if a weight

function for γ based on a zero-mean Gaussian stochastic process with covariance

function Kλ (·, ·) with parameter λ is used, the vector (γ (z1) , ..., γ (zn)) has a mul-

tivariate normal distribution with mean 0 and covariance Σλ and the integrated

likelihood function of β is

|Ωφ +Σλ|−
1
2 exp

{
−1

2
(Y −Xβ)′ (Ωφ +Σλ)

−1 (Y −Xβ)

}
(1.22)

where Σλ is the n × n matrix with Kλ (zi, zj) in the (i, j) element. This form may

be obtained because of the assumption on the normal distribution of the errors and

the use of a Gaussian process weight function for γ; more general cases are not so

straightforward to handle outside the normal set-up.

In He and Severini (2013) the Authors show that, for a given choice of Kλ (·, ·),
when the dispersion parameter, say η = (φ, λ), is known, β can be estimated by the

generalized least-squares estimator: β̂ = XT
(
XTV−1X

)−1
XTV−1Y where V =
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Ωφ + Σλ; if the dispersion parameter is unknown, β can be estimated as a function

of an estimator of η, β̂ (η̂).

The method has been used with data from a survey of the fauna on the sea

bed lying between the Queensland coast and the Great Barrier Reef; the response

variable analysed is a score, on a log weight scale, which combines information across

the captured species; this score value is considered dependent on the latitude x in

a linear way and on the longitude z in an unknown way; see Bowman and Azzalini

(1997) for more details. The model is

Yj = β0 + xjβ1 + γ (zj) + εj, j = 1, ..., n (1.23)

where ε1, ..., εj are independent normal errors with mean 0 and constant variance

σ2
ε . Using the integrated likelihood approach, a Gaussian covariance function

K (z, z̃) = τ 2 exp

(
−1

2

|z − z̃|2

α

)
(1.24)

and a restricted maximum likelihood estimate REML (Harville 1977) for the nui-

sance parameters, the estimates of β1 is 1.020, with a standard error of 0.356 (see

He and Severini (2013)).

We have used our ABC approximation in order to find an integrated likelihood

for β. It is then necessary to define proper prior distributions for all the parameters

of the model, i.e. β, σ2
ε and the parameter of the covariance function of the Gaussian

process, α and τ 2.

For β a g-prior has been chosen such that β ∼ N2

(
0, gσ2

ε

(
XTX

)−1
)

, where

g ∼ U (0, 2n) and σ2
ε ∼ IG (a, b) with a, and b suitably small (as an approximation of

the Jeffreys prior). A Gaussian process with squared exponential covariance function

has been used as prior process for the function γ (·). The hyper-parameters of the

Gaussian process have the following prior distributions: τ 2 ∼ IG (a, b), with a =

b = 0.01 and α ∼ IG (2, ν) with ν = ρ0/ (−2 log(0.05)) and ρ0 = maxi,j=1...n |zi−zj|;
see Schmidt and Gelfand (2003) and Banerjee et al. (2004) for more details.

The choice of the summary statistics is not straightforward, because it is neces-

sary to find statistics that take into account both the parametric and the nonpara-

metric parts of the model, nevertheless sufficiency is not guaranteed. A function

of z has been considered and the maximum likelihood estimates of the coefficients

of the new model have been used as summary statistics. In particular, two choices
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of function has been considered: g (zj) = zj and h (zj) = z2
j for j = 1, ..., n. An

analysis of the maximum likelihood estimates has shown that the estimate of the

constant β0 is particularly unstable, therefore only the estimates for the predictor

variables’ coefficients contribute to the approximation as summary statistics.

In the MCMC step, normal transitional kernels have been used for all the param-

eters of the model, centered at the values accepted on the previous step and with

small variance.

The results are shown in Figure 1.8: the ABC approximation with 106 simula-

tions are concentrated around the estimates obtained by maximizing the integrated

likelihood of the model. In this case, the ABC approach may be seen as a way to

properly account for the uncertainty on the nuisance parameters that is not con-

sidered when REML estimates are used. Figure 1.8 compares different choices of

summary statistics and prior distributions for the variance σ2
ε : on the left a U (0, 10)

is used and on the right a proper approximation of the Jeffreys prior is used (Ga (a, b)

with a, b small). All the approximations are smooth and concentrated around the

maximum likelihood estimate. Moreover, Figure 1.8 shows that using the summary

statistics based on a quadratic approximation of γ (·) leads to better results, because

they are all smooth. On the other hand the approximations obtained by considering

a linear model with respect to z present slight multimodality problems.

The number of simulations for the initialization step depends on the choice of

the tolerance level: the approximation of the likelihood of β1 by using a Uniform

prior for σ2
ε needs 368, 2053 and 10945 simulations to accept the first value for

tolerance levels of 1, 0.5 and 0.25 respectively; the approximation with Gamma

prior with small parameters for σ2
ε needs 40, 34 and 81 simulations to accept the

first value. These results refer to the summary statistics obtained with the quadratic

approximation of γ (·), the other choice of summary statistics considered has shown

similar values.

The acceptance rates of ABC-MCMC algorithm are in general low, in particular

with the lowest tolerance levels; they are around 25% for the highest thresholds

considered.
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Figure 1.8:

ABC approximation of the integrated likelihood of β1 in the semiparametric model. The approx-

imations are obtained by using a Uniform prior (left) and an approximation of the Jeffreys prior

(right) for σ2
ε . Two different choices of summary statistics are compared: the maximum likelihood

estimates of the model, with linear (solid lines) and quadratic (dashed lines) approximations of

γ (·).

1.5 Discussion

We have explored the use of the ABC methodology, relatively new computational

tools for Bayesian inference in complex models, in a rather classical inferential prob-

lem, namely the elimination of nuisance parameters. We stress the fact that there

are many situations where it is practically impossible to obtain a likelihood function

for the parameter of interest in a closed form: in those cases the proposed method

can be a competitive alternative to numerical methods.

As a technical aside one should note that, in many situations the prior π(ψ)

might be available in a closed form, so the kernel approximation of the prior is

not necessary, and the accuracy of our method is even better. However, we have

preferred to present the method in its generality.

Another issue related to this last point is the approximation of the marginal

posterior density of some components of the parameter. Also in this case, the

problem is made simpler by the fact that no approximation is needed for the prior

and standard asymptotic arguments for kernel estimators hold for the approximation
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obtained from the posterior sample. The main drawback of the present approach is

that it requires the use of proper prior densities. This can be a problem, especially

when the nuisance parameter is high-dimensional and the elicitation process would

be difficult. A practical solution in these case is to adopt proper priors which

approximate the appropriate improper noninformative prior for that model.





Chapter 2

Approximate Bayesian

Computation for Copula

Estimation

2.1 Introduction

Copula1 models are nowadays widely used in multivariate data analysis. Major ar-

eas of application include econometrics Huynh et al. (2015), geophysics Scholzel and

Friederichs (2008), quantum mechanics Resconi and Licata (2015) climate predic-

tion Schefzik et al. (2013) genetics He et al. (2012), actuarial science and finance

(Cherubini et al. (2004), among the others). A copula is a flexible probabilistic tool

that allows the researcher to model the joint distribution of a random vector in two

separate steps: the marginal distributions and a copula function which captures the

dependence structure among the vector components.

From a statistical perspective, whereas it is generally simple to produce reliable

estimates of the parameters of the marginal distributions of the data, the problem

of estimating the dependence structure, however it is modelled, is crucial and often

complex, especially in high dimensional situations. On the other hand, dependence

is one of the most fundamental features in (applied) statistics, economics and prob-

ability. A huge list of important applications can be found in the recent monograph

by Joe (2014).

1joint wort with Prof. Brunero Liseo, MEMOTEF, Sapienza Università di Roma
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In a frequentist approach to copula models, there are no broadly satisfactory

methods for the joint estimation of marginal and copula parameters. The most

popular method is the so called Inference From the Margin (IFM) method, where

the parameters of the marginal distributions are estimated first, and then pseudo

data are obtained by plugging in the estimates of the marginal parameters. Then in-

ference on the copula parameters is performed using the pseudo-data: this approach

obviously does not account for the uncertainty on the estimation of the marginal pa-

rameters. Bayesian alternative are not yet fully developed, although Min and Czado

(2010), Craiu and Sabeti (2012), Smith (2013) and Wu et al. (2014) are remarkable

exceptions.

In this work we consider the general problem of estimating some specific quan-

tities of interest of a generic copula (such as, for example, tail dependence index

or Spearman’s ρ) by adopting an approximate Bayesian approach along the lines of

Mengersen et al. (2013). In particular, we discuss the use of the BCel algorithm,

based on the empirical likelihood approximation of the marginal likelihood of the

quantity of interest. Our approach is approximate in two aspects:

i. elicitation of the prior distribution is required only on the quantity of inter-

est. Its prior distribution is combined with the empirical likelihood in order to

produce an approximation to the “true” posterior distribution.

ii. we do not use the “true” likelihood function, but rather an approximation based

on empirical likelihood theory Owen (2010). Hopefully, this will reduce the

potential bias for incorrect distributional assumptions.

Note, however, that the word “true” in the above list should be better spelled as

“true-under-the-assumed-model”. In situations where a true model is too hard to

specify, or too complex to deal with, the empirical likelihood can be an extremely

valuable tool.

Our approach can be adapted both to parametric and nonparametric modelling

of the marginal distributions. The method described in this paper is in the spirit of

Hoff (2007), but it is based on a different kind of approximation; the results, although

from a different perspective, can be also interpreted in the light of Schennach (2005),

where a Bayesian nonparametric interpretation of a tilted version of the empirical

likelihood is provided.
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2.2 Preliminaries: Copulae and Empirical Likeli-

hood

A copula model is a way of representing the joint distribution of a random vector

X = (X1, . . . , Xm). Given an m-variate cumulative distribution function (CDF) F,

it is possible to show Sklar (1959) that there always exists an m-variate function

C : [0, 1]m → [0, 1], such that F(x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)), where Fj

is the marginal CDF of Xj. In other terms, the copula function C is a CDF with

uniform margins on [0, 1]: it binds together the univariate CDF’s F1, F2, . . . , Fm in

order to produce the m-variate CDF F. The copula function C does not depend

on the marginal distributions of F, but rather it accounts for potential dependence

among the components of the random vector X.

For each pair of components of X, say Xi and Xj, let us assume that they

have continuous CDF’s Fi and Fj. It is well known that both the transformed

variables Ui = Fi(Xi) and Uj = Fj(Xj) have uniform marginal distributions. A

semiparametric copula model consists of a parametric model for the joint distribution

of (Ui, Uj) and no assumptions on the marginal CDF’s. A nonparametric copula is

assumed when the joint distribution of (Ui, Uj) depends on an infinite dimensional

parameter. In this paper we will allow the marginal distributions Fj’s to follow

either a parametric or a non parametric model. For the copula function we will not

make any parametric assumption. Rather, we will limit our goal to the estimation

of a particular function of interest of the copula C. A discussion on the classical

approaches to semiparametric estimation of copula models can be found in Genest

et al. (1995).

Empirical likelihood has been introduced by Owen: Owen (2010) is a complete

and recent survey; it is a way of producing a nonparametric likelihood for a quantity

of interest in an otherwise unspecified statistical model. It is particularly useful when

a true likelihood is not readily available either because it is too expensive to evaluate

or when the model is not completely specified. Assume that our dataset is composed

of n independent replicates (x1, . . . , xm) of some random vector X with distribution

F and corresponding density f . Rather than defining the usual likelihood function

in terms of f , the empirical likelihood is constructed with respect to a given quantity

of interest, say ϕ, expressed as a functional of F, i.e. ϕ(F), and then a sort of profile

likelihood of ϕ is computed in a nonparametric way. More precisely, consider a given
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set of generalized moment conditions of the form

EF (h(X,ϕ)) = 0, (2.1)

where h(·) is a known function, and ϕ is the quantity of interest. The resulting

empirical likelihood is defined as

LEL(ϕ; x) = maxp

n∏
i=1

pi,

where the maximum is searched over the set of vectors p such that 0 ≤ pi ≤ 1,∑n
i=1 pi = 1, and

n∑
i=1

h(xi, ϕ)pi = 0.

Whereas the first two conditions are obvious and independent of ϕ, the third one

induces a profiling of the information towards the quantity of interest, through a

sort of unbiasedness condition. This representation of the empirical likelihood has

no probabilistic interpretation so far; however, a modification exists in the literature

(Schennach 2005) which naturally arises from a nonparametric Bayesian procedure

which places a noninformative prior on the space of distributions. The resulting

Bayesian exponentially tilted empirical likelihood is defined as

LBEL(ϕ; x) = max
(p1,...,pn)

n∑
i=1

(−pi log pi) ,

under the constraints 0 ≤ pi ≤ 1,
∑n

i=1 pi = 1, and
∑n

i=1 h(xi, ϕ)pi = 0.

2.3 ABC and EL

Approximate Bayesian computation has now become an essential tool for the anal-

ysis of complex stochastic models, in the case where the likelihood function is un-

available in closed form or it is too expensive to be repeatedly evaluated Marin et al.

(2012). It can be considered as a class of popular algorithms that achieves posterior

simulation by avoiding the computation of the likelihood function. A crucial con-

dition for the use of ABC algorithms is that it must be relatively easy to generate

new pseudo-observations from the working model, for a fixed value of the parameter

vector. In its simplest form, the ABC algorithm “proposes” a (pseudo)-randomly

drawn parameter value θ∗ from the prior distribution and a new data set is gener-

ated, conditionally on θ∗; then the value is accepted only if the new data are “similar
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enough” to the actual observed data. It can be proved that the set of accepted val-

ues represents a sample from an approximation of the posterior distribution of θ

Sisson and Fan (2011). However, it is often highly inefficient to propose values from

the prior distribution, since it is generally much more diffuse than the posterior

distribution. Many more sophisticated computational strategies are available in or-

der to avoid generating values from the prior distribution, see Marin et al. (2012)

for example; here we will not discuss these issues and we rather concentrate on a

different ABC approach, which can avoid the most expensive step in computational

time, that is the proposal of new data sets. This method has been proposed by

Mengersen et al. (2013) and it represents a re-sampling scheme where the proposed

values are re-sampled with weights proportional to their empirical likelihood. In

practice, the algorithm belongs to the family of “sampling importance re-sampling”

- SIR, Rubin (1988) - methods for models in which the “true likelihood” evaluation

is out of reach and the “true” weights are approximated by their empirical likelihood.

Algorithm 4 BCEL algorithm Mengersen et al. (2013)

for i = 1 to M do

repeat

Generate θi from the prior distribution π(θ)

Set the weight for θi as ωi = LEL(θi; data).

end for

for i = 1 to M do

Draw, with replacement, a value θi from the previous set of M values using

weights ωi, i = 1, . . . ,M .

end for

2.4 The proposed approach

In this Chapter we propose to adapt the BCEL algorithm of Mengersen et al. (2013)

to a situation where the statistical model is only partially specified and the main

goal is the estimation of a finite dimensional quantity of interest. In practice this

represents the prototypical semiparametric set-up, where one is mainly interested
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in some meaningful characteristic of the population, although the statistical model

may contain nuisance parameters which are often introduced in order to produce

more flexible models that might better fit the data at hand. In order to make

robust inference on the quantity of interest, a reasonable model should account for

the uncertainty on the nuisance parameters, in some way. Even if some of these

additional parameters are not particularly important in terms of estimation - they

often lack of a precise physical meaning - their estimates can dramatically affect

inferences on the parameter of interest. In these circumstances it might be more

reasonable and robust to partially specify the model and adopt a semiparametric

approach.

Oh and Patton (2013) consider, in a frequentist perspective, a Simulated Method

of Moments estimation for copula models. Their paper is very close in spirit to

what we are proposing, although their main goal is the analysis of partially specified

models rather than models with an intractable likelihood.

2.4.1 The algorithm in full detail

We assume that a data set is available in the form of a size n×m matrix X, where

n is the sample size and m is the number of variables, that is

X =


x11 x12 . . . x1m

x21 x22 . . . x2m

. . . . . . xij . . .

xn1 xn2 . . . xnm

 .

In the following, X[·,j] will denote the j-th column (variable) and X[i,·] the i-th

row of X, respectively. For each j = 1, . . . ,m, we consider the available data

information in X[·,j] to produce an estimate of the marginal CDF of X[·,j]. Let

λj = (λ
(1)
j , λ

(2)
j , . . . λ

(S)
j )′, j = 1, 2, . . .m be the posterior sample obtained from some

Bayesian inference method for the distribution of X[·,j]. Notice that the vector λj

can be either a sample from the posterior distribution of the parameters of the model

we have adopted for X[·,j] or a posterior sample of CDF ’s in a nonparametric set-

up. Then we use a copula representation for estimating the multivariate dependence

structure of the random vector X,

F(x1, . . . , xm) = Cθ
(
F1(x1), F2(x2), . . . , Fm(xm)

)
,



37 Approximate Bayesian Computation for Copula Estimation

where θ is the parameter related to the copula function. Since we are assuming

that one has already estimated the marginal Fj(xj)’s, j = 1, . . . ,m, one now needs

to consider the copula Cθ(·) only. This step can be managed either using some

parametric model for the copula (such as Clayton, Gaussian, Skew-t, Gumbel, etc.)

or using a nonparametric approach.

Parametric copulae in Bayesian inference have been already investigated in sev-

eral papers. Here we shoud mention Hoff (2007), Silva and Lopes (2008), Min and

Czado (2010), Smith et al. (2012) and Craiu and Sabeti (2012). In this paper, we

take a nonparametric route and we concentrate on some specific function of Cθ(·),
say ϕ = T (Cθ). This is particularly useful and meaningful in those situations where

there is no theoretical or empirical evidence that a given copula should be preferred

and we are mainly interested in some specific synthetic measure of the multivariate

dependence, like for example, the upper tail dependence index between two compo-

nents of X, that is

χ = lim
u→1

P (Uj > u|Uh > u) ≈ lim
u→1

[
2− logP (Uj < u,Uh < u)

logP (Uh < u)

]
where Ui = Fi(xi), i = j, h. Another popular quantity, which we will consider in the

final section is the Spearman’s measure of association ρ between two components

of X, say Xh and Xj, which is defined as the correlation coefficient among the

transformed values Ui = Fi(xi), i = j, h or, in a copula language, as

ρ = 12

∫ 1

0

∫ 1

0

(
C(uj, uh)− uhuj

)
dujduh

= 12

∫ 1

0

∫ 1

0

C(uj, uh)dujduh − 3. (2.2)

We now describe the algorithm in a pseudo-language:

The final output of the above algorithm is then a posterior sample drawn from an

approximation of the posterior distribution of the quantity of interest ϕ. There

are several critical issues both in the practical implementation of the method and

in its theoretical properties. First, the empirical likelihood is based on moment

conditions of the form (2.1). In practical applications these conditions might hold

only asymptotically. This is the case, for example, of the Spearman’s ρ, which we

discuss in the next session. Its sample counterpart ρn is only an asymptotically

unbiased estimator of ρ so the moment condition is strictly valid only for large

samples. Also, prior information is only provided for the marginal distributions and

for ϕ: this, of course, has advantages and, on the other hand, poses theoretical issues.
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Algorithm 5 ABCOP algorithm

[1:] For s = 1, . . . , S, use the s-th row of the posterior simulation λ
(s)
1 , λ

(s)
2 , . . . , λ

(s)
m

to create a matrix of uniformly distributed pseudo-data

mu(s) =


u

(s)
11 u

(s)
12 . . . u

(s)
1m

u
(s)
21 u

(s)
22 . . . u

(s)
2m

. . . . . . u
(s)
ij . . .

u
(s)
n1 u

(s)
n2 . . . u

(s)
nm


with u

(s)
ij = Fj

(
xij;λ

(s)
j

)
.

[2:] Given a prior distribution π(ϕ) for the quantity of interest ϕ,

for b = 1, . . . , B,

1. draw ϕ(b) ∼ π(ϕ);

2. compute EL
(
ϕ(b); mu(s)

)
= ωbs; s = 1, . . . , S.

3. take the average weight ωb = S−1
∑S

s=1 ωbs

end for

[3:] re-sample - with replacement - from {
(
ϕ(b),ωb

)
, b = 1, . . . , B}.

The main advantage is the ease of elicitation: one need not to elicit unnecessary

aspects of the prior distribution. This is mainly in the spirit of the partially specified

models, quite popular in the econometric literature. Another obvious advantage of

the proposed approach is the implied robustness of the method, with respect to

different prior opinions about non-essential aspects of the dependence structure.

The most important disadvantage of the method is its inefficiency when compared

to a parametric copula, under the assumption that the parametric copula is the true

model. The practical implementation of the algorithm is quite simple in R ; it use

some functions contained in the suite gmm: see for example Chauss (2010).

From a computational perspective the above algorithm is quite demanding, since

one needs to run a BCEL algorithm for each row of the posterior sample from

the marginals. Even though the estimation of the marginal densities of the X[·,j]’s

might not require a huge values of iterations S, still it might be very expensive to
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run S different BCEL algorithms. To avoid this computational burden, we propose

to modify the above algorithm by simply performing a single run of the BCEL

algorithm, where, for each iteration b = 1, . . . , B, a randomly selected (among the S

rows) row λs is used to transform the actual data into pseudo-data lying in [0, 1]m.

With this modification the above algorithm gets transformed into Algorithm 6.

Algorithm 6 Modified ABCOP algorithm

[1:] For j = 1, . . . ,m, produce a posterior sample for the parameters of the

marginal distributions of the X[·,j]’s, say λj = λ
(1)
j , λ

(2)
j , . . . , λ

(S)
j , j = 1, . . . ,m.

Store them into a S × k matrix λ = (λ1, . . . ,λj, . . . ,λm) where k is the sum of the

dimensions of the parameter spaces of the marginal distributions.

[2:] Given a prior distribution π(ϕ) for the quantity of interest ϕ,

for b = 1, . . . , B,

1. draw a random uniform integer t(b) in {1, 2, . . . , S}.

2. use the t(b)-th row of λ to create a matrix of uniformly distributed

pseudo-data

mu(t(b)) =


u

(t(b))
11 u

(t(b))
12 . . . u

(t(b))
1m

u
(t(b))
21 u

(t(b))
22 . . . u

(t(b))
2m

. . . . . . u
(t(b))
ij . . .

u
(t(b))
n1 u

(t(b))
n2 . . . u

(t(b))
nm


with u

(t(b))
ij = Fj

(
xij;λ

(t(b))
j

)
.

3. draw ϕ(b) ∼ π(ϕ);

4. compute

EL
(
ϕ(b); mu(t(b))

)
= ωb;

end for

[3.] store the values
(
ϕ(b), ωb

)
, b = 1, . . . , B.

[4.] re-sample - with replacement - from {
(
ϕ(b), ωb

)
, b = 1, . . . , B}.
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2.5 Asymptotics

A possible criticism about the proposed method is that the inferential step has been

split into two parts: first, the marginal distributions of the multivariate random

variable are estimated; then, pseudo-data are created in order to provide a semi-

parametric estimate of the dependence quantity of interest. The “two-step” issue

is at the core of the often unsatisfactory behaviour of estimation procedures based

on the Inference from the Margins methods proposed in Joe (2014) (section 10.1):

the main drawback of that approach is that it fails to properly account for the un-

certainty on the estimates of the parameters of the marginal distributions. However

this problem is much less serious in our setting; in fact, we produce, for each sin-

gle coordinate of the multivariate distribution, a sample from the joint posterior

distribution of the parameters which appear in that marginal distribution. So the

actual degree of information on those parameters is completely transferred to the

second step of the procedure, which creates, for each run of the posterior simulation,

a different set of pseudo-data and then takes averages on them. Provided that the

estimation procedure for the marginals is consistent, we are consistently creating

“pseudo-data”.

These arguments can be made more precise in the following way. The infinite

dimensional parameter space for a copula model is (C,F1, · · · , Fd). The parameter

of interest is a function ϕ = T (C). Then the copula is defined as C = (ϕ,C∗), with

ϕ ∈ Rk for some k ≥ 1 and C∗ ∈ H where (H, dH) is an infinite-dimensional metric

space.

We can consider a Bayesian nonparametric approach for the estimation of (F1, · · · , Fd)
which is asymptotically based on the marginal empirical CDF’s; for example, one

can use a Dirichlet process mixture. Theorems 5 and 10 in Fermanian et al. (2004)

guarantee that an inferential procedure based on the empirical copula Cn is such

that (Cn − C) is weakly convergent to a Gaussian process in `∞[0, 1].

Then, the use of the exponentially tilted empirical likelihood for the pseudo-data

is justified by the results in Schennach (2005), where, in addition, a computation-

ally convenient reformulation of the problem in semiparametrric Bayesian terms is

provided.

However, for finite sample sizes, there may still be a problem: the objects cre-

ated by the estimated cumulative distributions function (the ones which produce
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the pseudo-data) may have a dependence structure which can be potentially very

different from the true cumulative distribution function transforms. In other terms,

if we are using a wrong model on the marginals, the entire posterior sample we use

may be misleading and the subsequent step might be biased. This problem is of

course common to any parametric statistical procedure and we strongly suggest, in

absence of specific information on the marginals, to adopt a nonparametric approach

for their estimation.

2.6 A simple illustration: Spearman’s ρ

We first illustrate the method in a simple situation, wehn m = 2, and assuming that

the two marginal distributions of the data are known: without loss of generality

we can then assume that they are both uniform in [0, 1]; in this case there are no

practical differences between Algorithm 5 and Algorithm 6.

The Spearman’s ρ measure of dependence has been defined in (2.2). Starting

from a sample of size n from a bivariate distribution, say (xi, yi), i = 1, . . . , n, the

sampling counterpart of ρ, say ρn, is the correlation among ranks and it can be

written as

ρn =
1

n

n∑
i=1

(
12

n2 − 1
RiQi − 3

n+ 1

n− 1

)
, (2.3)

where

Ri = rank(xi) =
n∑
k=1

I(xk ≤ xi), Qi = rank(yi) =
n∑
k=1

I(yk ≤ yi), i = 1, . . . , n.

We consider the ranks (Ri, Qi) of the original values and compute ρn. Also we

are able to evaluate the empirical likelihood of ρ for a given value of ρn as

max
pi

EL(ρ; ρn) =
n∏
i=1

npi(ρ)

under the constraints
∑n

i=1 pi = 1, 0 ≤ pi ≤ 1, i = 1, . . . , n and

n∑
i=1

pi
(12RiQi

n2 − 1
− 3

n+ 1

n− 1
− ρ
)

= 0.

From general results on empirical likelihood Owen (2010), one has

EL(ρ; ρn) =
n∏
i=1

(
1 + ηg(Ri, Qi; ρ)

)−1



2.6 A simple illustration: Spearman’s ρ 42

where η is the Lagrange multiplier which can be explicitly obtained from

n∑
i=1

g(Ri, Qi; ρ)

1 + ηg(Ri, Si; ρ)
= 0,

where

g(Ri, Si; ρ) =
12RiQi

n2 − 1
− 3

n+ 1

n− 1
− ρ.

We can then use Algorithm 5, with S = 1, to produce a posterior sample for the

quantity of interest ρ.

The frequentist properties of the estimator (2.3) have been considered in Borkowf

(2002), where the Authors show taht the asymptotic variance of ρn is

σ2(ρn) = 144(−9θ2
1 + θ2 + 2 ∗ θ3 + 2 ∗ θ4 + 2 ∗ θ5), (2.4)

where the θi’s are term linked with the moments of the marginal and joint distri-

butions of (X1, Y1) and (X2, Y2) i.i.d random variables with distribution F (x, y). In

particular

θ1 = E[F1(X1)F2(Y1)]

θ2 = E[(1− F1(X1))2(1− F2(Y1))2]

θ3 = E[(1− F (X1, Y2))(1− F (X2))(1− F (Y1))]

θ4 = E[(1− F1(max{X1, X2}))(1− F2(Y1))(1− F2(Y2))]

θ5 = E[(1− F1(X1))(1− F1(X2))(1− F2(max{Y1, Y2}))].

Natural estimates of these quantities are given by Genest and Favre (2007), where
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θ1n =
1

n

n∑
i=1

Ri

n+ 1

Si
n+ 1

θ2n =
1

n

n∑
i=1

(
Ri

n+ 1

)2(
Si

n+ 1

)2

θ3n =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

Ri

n+ 1

Si
n+ 1

I{Rk ≤ Ri, Sk ≤ Sj}+
1

4
− θ1n

θ4n =
1

n2

n∑
i=1

n∑
j=1

Si
n+ 1

Sj
n+ 1

max
{ Ri

n+ 1
,
Rj

n+ 1

}
θ5n =

1

n2

n∑
i=1

n∑
j=1

Ri

n+ 1

Rj

n+ 1
max

{ Si
n+ 1

,
Sj

n+ 1

}

However, it is important to notice that, in the case of perfect rank agreement,

by plugging the above θjn, j = 1, · · · , 5 into expression (2.4), one obtains a nega-

tive number. This phenomenon also appeared in our simulations when data were

generated from values of ρ close to 1.

2.6.1 Simulated non uniform data

Here we show an example of bivariate data with non uniform marginal distribution.

Data were generated from a Clayton copula with θ = 1.076, and the two marginal

distributions were transformed into an exponential distribution with mean 1/3 (for

X1) and a Gaussian distribution with mean 3 and variance 1 (for X2). Figure

2.1 shows the scatterplot of raw and transformed data. In this particular case the

observed value for ρn was 0.568.

Figure 2.2 shows the histogram of the BCEL posterior sample for ρ obtained from

Algorithm 5. One can notice that the posterior mass is practically entirely on the

right of zero, and the posterior mean is 0.56, very close to the observed ρn.

2.6.2 An alternative estimator

From a purely pragmatic perspective, it might be tempting to follow an unconven-

tional and “hybrid” route, which we now describe. For each s = 1, . . . , S,
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Figure 2.1: Scatterplot of the simulated data and pseudo-data: X1 ∼ Exp(3); X2 ∼
N(3, 1)

Figure 2.2: Histogram of the posterior sample of values of ρ, using Algorithm 5.
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1. Provide an estimate of ϕ, using ϕ̂(s) from the plugged-in model

p
(
x; marginals, ϕ, λ

(s)
1 , . . . , λ(s)

m

)
(2.5)

In particular, one could use a sort of maximum likelihood estimate of ϕ, assuming

that the sampling distribution is given by (2.5).

2. Use the distribution of the ϕ̂(s)’s as a surrogate of the posterior distribution of ϕ.

This approach is a further approximation in many ways. First, the distribution

of ϕ̂(s)’s in step 2 of the above procedure could not properly be treated as a posterior

distribution, since we have not introduced any prior distribution on ϕ. Second, the

distribution in step 2 is not a distribution on ϕ: rather, it can be interpreted as the

posterior distribution of the following quantity

ϕ̂(Λ) = argmax ϕp (x| marginals, ϕ,Λ) . (2.6)

Notice that

EΛ (ϕ̂(Λ)) 6= argmax ϕ EΛ (p(x| marginals, ϕ,Λ)

= argmax ϕIL(ϕ; x) = ϕ̂(IL),

where the above expectation is taken with respect to the posterior distribution of

the marginal parameters Λ, based on the “marginal” samples and suitable prior

information, and IL represents the “correct” integrated likelihood,

IL(ϕ; x) =

∫
Λ

p(x;λ, ϕ)π(λ|ϕ)dλ.

Also, Var (ϕ̂(Λ)) under-reports the variability of the estimator, since

MSE = Var (ϕ̂(Λ)) +
(

EΛ (ϕ̂(Λ))− ϕ̂(IL)
)2
.

However, in practical applications this method works better than the IFM approach,

described in Section 2.1. Figure 2.3 shows the behavior of this method with the data

used in Figure 2. One can notice a slight bias towards larger values of ρ and an

incorrect report of uncertainty.

2.6.3 A small scale simulation

As an illustration we have simulated 500 samples of size n = 1000 from some bivari-

ate copulas, in particular from a Clayton copula (with ρ = 0.50), a Frank copula
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Figure 2.3: Hybrid method: “posterior” distribution of ϕ̂(λ)

(with true ρ = 0.50), a Gumbel copula (with true ρ = 0.688) and a Gaussian copula

with normal marginals (with true ρ = 0.80).

For comparative purposes we have also implemented the nonparametric frequen-

tist procedure described in Genest and Favre (2007), where a confidence interval

for the Spearman’s ρ is constructed based on the asymptotic sampling distribution

of ρn. Figure 2.4 and 2.5 compare the frequentist behavior of confidence procedure

and our proposal, for different choices of copula density and level of dependence.

The Figures show the sampling (over the 500 generated samples) distribution of

i) the lower limit of the equal-tail confidence interval with nominal coverage set at

0.95, ii) the point estimate ρn, and iii) the upper limit of the equal-tail confidence

interval with nominal coverage set at 0.95 and the sampling distribution of some

specific quantiles (namely the 2.5th, the median and the 97.5th percentiles) of the

approximated posterior distribution. The prior distribution for ρ has been taken

uniform in (−1, 1). Computations were done in R , using libraries copula and gmm.

One can see that our procedure produces more precise estimates in terms of

intervals. The empirical estimate and the posterior median behave very similarly

in all the cases. The average length of the confidence interval and of the Bayesian

intervals are shown in Table 2.1: the average length of the frequentist intervals is

larger than the length of the corresponding Bayesian intervals when the frequentist

procedure is valid, i.e. it has the expected coverage, in particular for simulations

from the Clayton and the Frank copulas with ρ = 0.5. On the other hand, when
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Figure 2.4: 20 out of 500 simulations from a Clayton copula and Frank copula:

sample size is 1, 000; the true value of ρ is equal to 0.5 in both cases (red line),

comparison between frequentist approach (blue line) and Bayesian approach (green

line).
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Figure 2.5: 20 out of 500 simulations from a Gumbel copula with ρ = 0.683 and a

Gaussian copula with ρ = 0.8: sample size is 1, 000, comparison between frequentist

approach (blue line) and Bayesian approach (green line). The frequestist estimates

of the variance are, in these cases, negative, then the frequentist intervals can not

be computed.
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Table 2.1: Simulations from different copulas: average length and empirical coverage

based of the intervals obtained both via frequentist and Bayesian methods, based

on 500 repetitions of the experiment

Ave. Length Coverage

Clayton (ρ = 0.5) Freq. 0.2664 0.998

Bayes. 0.2597 1.000

Frank (ρ = 0.5) Freq. 0.3172 1.000

Bayes. 0.2735 1.000

Gumbel (ρ = 0.68) Freq. - -

Bayes. 0.2966 1.000

Gaussian (ρ = 0.8) Freq. - -

Bayes. 0.2931 1.000

the true Sperman’s ρ increases, the estimate of the variance tends to be negative

(98.4% of the experiments for the Gumbel copula with ρ = 0.68 and 100% of the

experiments for the Gaussian copula with ρ = 0.80), then the estimate are not

reliable, while the ABC procedure to approximate the Bayesian intervals does not

show a different behavior in these situations, the intervals are just slightly larger.

The proportion of frequentist intervals with larger length than the correponding

Bayesian intervals is 0.564 for the Clayton copula (with ρ = 0.5) and 0.892 for the

Frank copula (with ρ = 0.5), while the coverage in the other two cases cannot be

evaluated because of the negative estimate of the variance.

2.7 Multivariate Analysis

The extension of the proposed procedure to the multivariate case is straightforward,

and no further theoretical issues arise. On the other hand, a broadly satisfactory

solution in the frequentist approach has not yet been fully developed.

Formula (2.2) provides one of the possible way to express the Spearman’s ρ

and it suggests its interpretation as a measure of expected distance between the

actual copula and the independence copula Π(u, v) = uv. From this perspective, its

extension to the general d-dimensional setting is straightforward: the multivariate

ρ becomes
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ρ1 =

∫
[0,1]d

C(u)du−
∫

[0,1]d
Π(u)du∫

[0,1]d
M(u)du−

∫
[0,1]d

Π(u)du

=
d+ 1

2d − (d+ 1)

{
2d
∫

[0,1]d
C(u)du− 1

}
, (2.7)

where M(mu) = min(u1, u2, . . . , ud) is the upper Fréchet- Hoeffding bound.

Other definitions of the Spearman’s ρ exist in the literature (see Schmid and Schmidt

(2007)), for instance:

ρ2 =
d+ 1

2d − (d+ 1)

{
2d
∫

[0,1]d
Π(u)dC(u)− 1

}
(2.8)

where Π(u) =
∏d

j=1 uj is the independent copula. Finally, a third generalization of

ρ is possible as the arithmetic mean of the bivariate ρ’s. In particular, one has

ρ3 = 12

(
d

2

)−1∑
k<l

∫
[0,1]2

Ckl(u, v)dudv − 3, (2.9)

where Ckl(u, v) is the bivariate marginal copula of C corresponding to the k-th and

l-th marginals. This expression appears as ν in Joe (1990); its rationale is different

from the one of (2.7) and (2.8), and we will no longer consider it.

If d = 2, then ρ1 = ρ2, but this relation need not to hold in the general d > 2

case.

The natural multivariate extension of the empirical copula can be expressed as

Ĉn(u) =
1

n

n∑
j=1

d∏
i=1

I{Ûijn≤ui}, u = (u1, u2, · · · , un) ∈ [0, 1]d

where Ûijn = F̂i(Xij) for i = 1, . . . , d and j = 1, . . . , n and F̂i(·) is the empir-

ical marginal distribution function for the i-th component. Consequently, non-

parametric estimators of the multivariate ρi for i = 1, 2, 3 are

ρ̂1n = h(d)

{
2d
∫

[0,1]d
Ĉn(u)du− 1

}
= h(d)

{
2d

n

n∑
j=1

d∏
i=1

(1− Ûijn)− 1

}

ρ̂2n = h(d)

{
2d
∫

[0,1]d
Π(u)dĈn(u)− 1

}
= h(d)

{
2d

n

n∑
j=1

d∏
i=1

Ûij,n − 1

}

where h(d) = (d+ 1)/(2d − d− 1).



51 Approximate Bayesian Computation for Copula Estimation

Asymptotic properties of these estimators are explored and assessed in Schmid and Schmidt

(2007). In particular it is known that

√
n(ρi,n − ρi)

·∼ N (0, σ2
i ), i = 1, 2.

The expressions for σ2
i , i = 1, 2 are given in Schmid and Schmidt (2007). The

variances of the above estimators can be analytically computed only in very few

cases. In general they will depend on unknown quantities which must be estimated,

for example via bootstrap methods Schmid and Schmidt (2006).

Bootstrap estimators of ρ1 and ρ2 have been proved to be consistent: on the other

hand the bootstrap estimators of the variances tend to dramatically underestimate

the variability of ρ̂in, i = 1, 2. We have performed several simulation experiments

and our results always indicate that the coverage of the resulting confidence intervals

for both ρ1 and ρ2 may be quite far from the nominal value, and that the severity

of the problem will in typically depend on the specific copula seat we sampled from.

On our approximate Bayesian side, once an estimator of the multivariate version

of ρ is available, it is possible to apply the procedure presented in Section 2.4, with

no particular modifications.

Figure 2.6, 2.7, 2.8 and 2.9 show the results of a simulation study from a Clayton

(ρ = 0.5), Frank (ρ = 0.5), Gumbel (ρ = 0.7) and Gaussian (ρ = 0.8) copula

respectively.

The frequentist intervals obtained via a boostrap estimate of the variance of the

ρ̂i, i = 1, 2 are always too narrow to produce reliable estimates; in the case of Clayton

copula the estimated coverage is about 5.8% and it tends to further decrease as the

degree of dependence increases. The case of other copula is even worse, since the

coverage is invariably close to 0%.

The problem of estimating the standard error of the estimates in the frequentist

approach does not seem to be dependent on the dimensionality of the problem, as one

may see from Table 2.2, which shows the average length of the estimated confidence

intervals for ρ̂1 and ρ̂2 and the average length of the corresponding (approximated)

Bayesian credible intervals: while the average length is always very low, even for

high dimensions, the Bayesian intervals show a length decreasing with the dimension

d.

We conclude this section with the natural comment that what we have presented

here of the Spearman’s ρ can be applied, in principle, to any other summary of the
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Figure 2.6: 20 out of 500 simulations from a Clayton copula: sample size is 1000;

the true value of ρ is equal to 0.5 (red line). The results for frequentist (blue) and

Bayesian (green) procedures. The solid lines represent the point estimates of ρ1

(left) and ρ2 (right), the dotted lines represent the corresponding intervals of level

0.95. The red line represents the true value
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Figure 2.7: As in Figure 2.6, simulations from a Frank copula with true values of ρ1

(left) and ρ2 (right) in red.

5 10 15 20

0.
0

0.
4

0.
8

Gumbel 1

Experiment

1

5 10 15 20

0.
0

0.
4

0.
8

Gumbel 2

Experiment

2

Figure 2.8: As in Figure 2.6, simulations from a Gumbel copula with true values of

ρ1 (left) and ρ2 (right) in red.
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Figure 2.9: As in Figure 2.6, simulations from a Gaussian copula with true values

of ρ1 (left) and ρ2 (right) in red.

Table 2.2: Average lengths of the confidence intervals (based on a bootstrap esti-

mator of the variance of the estimates) and of the corresponding Bayesian credible

intervals obtained in 50 repetitions of each experiment of dimension d by simulating

data from a Clayton copula with θ = 1.076.

ρ̂1
freq ρ̂2

freq ρ̂1
Bayes ρ̂2

Bayes

d = 2 0.0032 0.0032 1.1933 1.1801

d = 3 0.0026 0.00260 1.0844 1.0853

d = 4 0.0026 0.0026 0.9495 0.9594

d = 5 0.0027 0.0027 0.8728 0.8914

d = 6 0.0027 0.0027 0.8211 0.8224

d = 7 0.0030 0.0030 0.8022 0.7882

d = 8 0.0031 0.0031 0.7828 0.7541

d = 9 0.0032 0.0032 0.7680 0.7492

d = 10 0.0035 0.0035 0.7558 0.7439

d = 25 0.0047 0.0047 0.7462 0.7480

d = 50 0.0073 0.0073 0.7299 0.7634
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multivariate copula, such as the Kendall’s τ , or, as illustraed in the next section,

some measure of tail dependence.

2.8 Tail Dependence

Measures of dependence as the Spearman’s ρ or the Kendall’s τ are not always suited

to explain the dependence structure. In particular, dependencies between extreme

events such as extreme negative stock returns or large portfolio losses are better

explained by alternative dependence measures.

For example, tail dependence coefficients (see, for example, Sibuya (1960)) have

been proposed to better capture dependence among extreme values. The upper and

lower tail dependence coefficients have a definition based on the survival function:

given a two-dimensional vector X = (X1, X2) with marginal distribution functions

F1 and F2 respectively, the upper tail dependence coefficient is defined as

λU = lim
v→1

Pr{X1 > F−1
1 (v)|X2 > F−1

2 (v)} (2.10)

and the lower tail dependence coefficients is defined as

λL = lim
v→0

Pr{X1 < F−1
1 (v)|X2 < F−1

2 (v)} (2.11)

Tail dependence coefficients can also be represented in terms of the underlying cop-

ula, in the following way

λU = lim
v→1

1− 2v − C(v, v)

1− v

λL = lim
v→0

C(v, v)

v

For definitions and properties one may refers to Schmid and Stadtmüller (2006).

A review of the parametric and non-parametric estimators for the tail dependence

coefficients is given in Frahm et al. (2005). Among the various proposal we consider

the one proposed by Joe et al. (1992):

λ̂U = 2−
1− Ĉn

(
n−k
n
, n−k

n

)
1− n−k

n

. (2.12)

where Ĉn is the empirical copula, and 0 < k ≤ n is a parameter tuned by the ex-

perimenter. A typical choice, suggested in Joe et al. (1992) is k =
√
n. A similar
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estimator is proposed for λL. Schmid and Stadtmüller (2006) proves strong con-

sistency and asymptotic normality for these estimators. The same Authors have

also derived the asymptotic variance of λ̂L and λ̂U . However these expression are

of limited use since they depend on unknown quantities. They propose to use the

variance of the tail dependence coefficient of a copula for which the same quantities

are easy to compute. Nevertheless this method does not provide any quantification

of the potential error.

A peculiar problem of the analysis of the extreme dependence is that it is based

on few data, and this result in non reliable standard errors. In contrast, within the

BCEL approach, we are able to provide an approximation of the entire posterior

distribution of the index, which can be summarized in various ways. Figures 2.10,

2.11 and 2.12 show the approximated intervals for the frequentist (obtained via a

bootstrap estimation of the variance) and the Bayesian procedure; Bayesian intervals

are always wider than the corresponding frequentist ones. Nevertheless, the coverage

of the frequentist intervals is, on average, around 0.10, far from the nominal 0.95,

which is reached by the Bayesian estimates, the length of frequentist intervals is too

small to be observed in the Figures.

Multivariate extensions of tail dependence coefficients are not fully developed. An

interesting proposal is discussed in Di Bernardino and Rullière (2015). They con-

sider a random vector X := (X1, X2, · · · , Xd) and denote by I the set {1, 2, . . . , d}.
For a given subset of indices Ih ⊂ I, and its corresponding complement set Īh a

multivariate version of the tail dependence coefficients can be expressed as

λIhU (v,v) = lim
v→1

Pr{Xi > F−1
i (v), i ∈ Ih|Xj > F−1

j (v), j ∈ Īh} (2.13)

λIhL (v,v) = lim
v→1

Pr{Xi ≤ F−1
i (v), i ∈ Ih|Xj ≤ F−1

j (v), j ∈ Īh} (2.14)

or, in copula notation

λIhU (v) = lim
v→1

Pr

{
X ∈

∏d
i=1(v, 1)

X ∈
∏

i∈Īh(v, 1)

}
(2.15)

λIhL (v) = lim
v→1

Pr

{
X ∈

∏d
i=1(0,v)

X ∈
∏

i∈Īh(0,v)

}
(2.16)

In this situation, theory is not fully developed to evaluate the performance of

the relative estimators; Di Bernardino and Rullière (2015) proposes to estimate the
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Figure 2.10: 20 out of 500 simulations from a Clayton copula with θ = 1.076:

sample size is 1000; comparison between the frequentist intervals (blue) and the

approximated Bayesian credible intervals (green) of level 0.95 for the upper tail

coefficient λU (above) and the lower tail dependence coefficient λL (below); for the

Clayton copula, λtrue
U = 0 and λtrue

L = 2−
1
θ .
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Figure 2.11: 20 out of 500 simulations from a Frank copula with θ = 3.45: sample size

is 1000; comparison between the frequentist intervals (blue) and the approximated

Bayesian credible intervals (green) of level 0.95 for the upper tail coefficient λU

(above) and the lower tail dependence coefficient λL (below); for the Frank copula,

λtrue
U = 0 and λtrue

L = 0.
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Figure 2.12: 20 out of 500 simulations from a Gumbel copula with θ = 2.00: sample

size is 1000; comparison between the frequentist intervals (blue) and the approxi-

mated Bayesian credible intervals (green) of level 0.95 for the upper tail coefficient

λU (above) and the lower tail dependence coefficient λL (below); for the Gumbel

copula, λtrue
U = 2− 2

1
theta and λtrue

L = 0.
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multivariate tail dependence coefficients through estimation of the generator of the

generator, however if we assume to have no information about the shape of the

copula function, it is difficul to assess the estimation error in this way.

On the other hand, our approach may be easily extended to the multivariate

setting.

2.9 Conditional measures of dependence

In some cases the analysis may be focused on measures of dependence as functions

of conditioning variables. In the case of two response variables X1 and X2, both de-

pending on the same covariate Z, the observations (x1i, x2i, zi) follow a distribution

FX1,X2|Z(·|z). Gijbels et al. (2011) and Acar et al. (2011) have proposed classical

procedure based on local smoothing techniques, to handle this kind of problems.

In particular, Acar et al. (2011) proposes a nonparametric approach based on local

likelihood to estimate the relationship between the copula parameter and the co-

variate; in this case, the choice of the parametric copula function is crucial, then the

method may not be considered completely nonparametric and, moreover, even if the

Authors propose a method to select the copula function based on cross-validation,

the results still deeply depend on the choice of the copula function with a high error

in case of wrong choice.

On the other hand, Gijbels et al. (2011) proposes nonparametric estimators of

the conditional copula. After having defined the conditional copula as:

Cz(u1, u2) = Hz(F
−1
X1|Z(u1|z), F−1

X2|Z(u2|z))

where F−1
X1|Z(·|z) and F−1

X2|Z(·|z) represent the conditional marginal quantile function

of X1 and X2 respectively, and estimator of Hz(·|x) is provided by

Hzh(x1, x2) =
n∑
i=1

wni(z, hn)I(X1i ≤ x1, X2i ≤ x2) (2.17)

where {wni(z, hn)} is a sequence of weights which smooth over the covariate space

with a degree of smoothing depending on the bandwidth hn going to zero as the

sample size increases, i.e. the weigths go to zero as the observed point zi is far from

the point z and the speed depends on the bandwidth hn which is O(n−1/5). Example
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of kernel-based weigths may be found in Nadaraya (1964) or Watson (1964) or in

Fan and Gijbels (1996):

wni(z) =

1
nhn

K(Zi−z
hn

)
(
S2n − Zi−z

hn
S1n

)
)

S0nS2n − S2
1n

where Sjn = 1
nhn

∑n
i=1

(
Zi−z
hn

)j
K
(
Zi−z
hn

)
for j = {0, 1, 2}. The function K(·) is a

kernel density integrating to one, for instance

K(y) =
35

32
(1− y2)I[−1,1](y)

Unfortunately, estimator 2.17 and his modified version available in Gijbels et al.

(2011) are biased (even if, the second version is able to reduce the bias, while fixing

the variance at the same level of estimator 2.17).

Algorithm 5 produces an approximation of the posterior distribution of any sum-

mary of the multivariate dependence, once a multivariate estimator is available, as

in the case of the Spearman’s ρ. In some cases the analysis may be focused on mea-

sures of dependence as functions of some available conditioning variables. In the

case of two response variables X1 and X2, both depending on the same covariate Z,

the observations (x1i, x2i, zi) follow a distribution FX1,X2|Z(·|z). Gijbels et al. (2011)

proposes the following estimator for the Spearman’s ρ.

ρ̂n(x) = 12
n∑
i=1

wni(x, hn)(1− Ûi1)(1− Ûi2) (2.18)

where Ûi,j =
∑n

i′=1wi′(x, hn)I(Ui′j ≤ uij) for j = 1, 2, Uij = Fj(xij) and wij(x, hn)

are appropriately chosen weights depending on xij and a bandwidth hn, for example

kernel-based weights as the Nadaraya-Watson. Unfortunately, estimator (2.18) is

based on an estimator of the conditional copula, given in Gijbels et al. (2011),

which is biased. A first simulation study implemented for 10, 000 simulations of

the function ρ(x) (see Figure 2.13) shows that, while the estimator 2.18 is not able

to capture the true function (it underestimates the dependence among values), the

Bayesian estimate obtained via Algorithm 5 can recover it, even if the variance

increases as the value of the covariate increases. Further research will be focused on

trying to understand why this happens and on producing more stable estimates.
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Figure 2.13: Simulations from the conditional Clayton copula based on 10, 000 ABC

simulations of ρ(x) and 100 data points: true function ρ(x) in black, Bayesian

estimates in red (median, 0.05 and 0.95 credible bands), frequentist estimate in

blue.
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2.10 Example: Spearman’s ρ for Student-t log-

returns

We now analyze a real data-set containing the log-returns FTSE-MIB of two Italian

banks, Monte dei Paschi di Siena (BMPS) and Banco Popolare (BP), by assuming

that the log-returns for each bank may be described by a GARCH(1,1) model with

Student-t innovations for the log-returns {yt} from 01/07/2013 to 30/06/2014 (only

weekdays) available on the web page https://it.finance.yahoo.com.

The GARCH(1,1) model for Student-t innovation may be rewritten via data

augmentation, following Geweke (1993):

yt = εt

√
ν − 2

ν
ωtht t = 1, · · · , T

εt ∼ N (0, 1)

ωt ∼ IG
(ν

2
,
ν

2

)
ht = α0 + α1y

2
t−1 + βht−1 t = 1, · · · , T

where α0 > 0, α1, β >= 0 and ν > 2, N (0, 1) denotes the standard normal distri-

bution and IG(a, b) denotes the inverted gamma distribution with shape parameter

a and scale parameter b. Figure 5 shows the scatterplot of the log-returns and the

transformed version of them, using, as a point estimate, the posterior mean of each

parameter.

For each bank, the posterior distribution of the model parameters (α0, α1, β, ν)

may be approximated by using the R package bayesGARCH Ardia and Hooherheide

(2010). Once a sample from the approximated distribution is simulated for each

parameter and for each bank, Algorithm 6 is applied as follows as in Algorithm 7.

The output of Algorithm 6 relative to the log-returns of Monte dei Paschi di

Siena and Banco Popolare are shown in Figure 2.15: the estimated posterior mean

of ρ is 0.614.

Moving to a multidimensional setting and consider a number k of investments,

where k > 2 is straightforward in a Bayesian setting, while a frequentist approach

to the problem is not fully developed yet.

Figure 2.16 shows the results of the Bayesian procedure based on Algorithm 6 and
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Figure 2.14: Scatterplot of the log-returns of the investments of Monte dei Paschi

di Siena (BMPS) and Banco Popolare (BP) on the left and of the transformed data

on the right.

Figure 2.15: Approximation of the posterior distribution of the Spearman’s ρ for the

log-returns of the investments of two Italian institutes based on 10, 000 simulations.
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Algorithm 7 ABCOP algorithm: Application

for m = 1, · · · ,M

1: Simulate a value ρ(m) ∼ Unif(−1, 1).

2: Sample two integer values b
(m)
j (j = 1, 2) in {1, · · · , S}, where S is the

number of posterior simulations.

3: Consider the b
(m)
j -th row of the MCMC output for the parameters of the j-th

marginal (i.e. α0j, α1j, βj, νj), for j = 1, 2).

4: Compute pseudo-data u
(m)
ij for i = 1, · · · , T and j = 1, 2 as

u
(m)
ij = Fνj

(
yi;

ν
(m)
j − 2

ν
(m)
j

h
(m)
ij

)

where Fν(x, d) is the CDF of a Student-t distribution with ν degrees of

freedom and scale parameter d.

5: Compute the estimated sample Spearman’s ρ
(m)
n as in (2.3) and the weight

relative to the simulated ρ(m) as ω(m) = EL(ρ
(m)
n ; u

(m)
1 ,u

(m)
2 ) as in Owen

(2010).

three different estimators chosen in the empirical likelihood step (see Section 2.7 for

details). While in a frequentist approach, the three estimators have different proper-

ties and may lead to different estimates, the Bayesian procedure based on Algorithm

6 provide similar approximations of the posterior distribution of the Spearman’s ρ,

no matter what estimator has been used to define the empirical likelihood.
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Figure 2.16: Approximation of the posterior distribution of the Spearman’s ρ for the

log-returns of the investments of five Italian institutes (Monte dei Paschi di Siena,

Banco Popolare, Unicredit, Intesa-Sanpaolo and Mediobanca) during the same pe-

riod as Figure 2.15 based on 10, 000 simulations.



Chapter 3

New approaches in Bayesian

Model Choice

3.1 On proper scoring rules for Bayesian model

selection

The Bayesian approach to model choice presents some difficulties, in particular when

using improper noninformative priors (for which the Bayes factor in not computable)

and in terms of computational approximation. Dawid and Musio (2015) is an at-

tempt to replace the traditional log-score by a proper local scoring rule, with the

purpose of finding a general method to avoid these difficulties.

LetM be a finite class of statistical models for the same observable Y ∈ Y ⊆ Rn;

each M ∈ M is a parametric family, with parameter θM ∈ ΘM . Let PθM be the

distribution of Y under model M , with density pM(y|θM). Within each model M ,

the parameter θM is given a prior distribution ΠM , with density function π(θM) with

respect to Lebesgue measure dθM over ΘM . The predictive density function of Y

under model M is

pM(y) =

∫
ΘM

pM(y|θM)πM(θM)dθM

and it is equivalent to the marginal likelihood for model M , p(y|M). Using the

Bayes’ theorem, the posterior probability π(M |y) for model M is given by

π(M |y) ∝ π(M)× p(y|M)

where π(M) is the prior probability that the true model is M ∈M, and the missing
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constant is to ensure that
∑

M∈M π(M |y) = 1. Then, the posterior odds ratio in

favor of one model M1 against another model M2 is equal to

π(M1|y)

π(M2|y)
=
π(M1)

π(M2)

p(y|M1)

p(y|M2)
=
π(M1)

π(M2)
B12(y).

The Bayes factor is the coefficient by which it is needed to multiply the prior

odds ratio in order to obtain the posterior odds ratio, given Y = y. It depends on

the prior densities πM1 , πM2 and this may lead to problems when using, for example,

improper priors.

The log score is defined as

SL(y, Q) = −logq(y) (3.1)

for any distribution Q with density function q(·) over Y , and y ∈ Y . Then, the

log-Bayes factor for model M1 against model M2

logp(y|M1)− logp(y|M2)

can be seen as a comparison of the log scores of the two marginal densities, given

Y = y (Good 1952).

Let

S(P,Q) =

∫
S(y, Q)p(y)dy

be defined as the expected score when Y has distribution P , with density function

p; a scoring rule S has the property of being proper if S(P,Q) is minimized, for any

given P , by the choice Q = P .

A scoring rule S(y, Q) is called local (of order m) if it can be express as a function

of y, q(y), and derivatives of q(·), up to the mth order, evaluated at y. For example,

the log-score SL(y, Q) in (3.1) is local of order 0.

When the sample space Y is an interval on the real line, Parry et al. (2012)

showed that all proper local scoring rules can be expressed as a linear combination

of the log-score and a “key local” scoring rule. The “key local” is a proper local

scoring rule which is homogeneous, which means that its value does not change if q

and all its derivatives are multiplied by some constant c > 0.

Therefore, the usual log-Bayes factor can be replaced by some key local scoring

rule, so that the dependence on the normalizing constant will disappear and the

problems with the normalizing constant in a Bayesian analysis will be avoided.
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For the observed data Y = y, where Y ∈ Y ⊆ Rn, the key local scoring order-2

rule of Hyvärinen (2005) is:

SH(y, Q) = 2∆`nq(y) + ‖∇`nq(y)‖2 (3.2)

for any n > 1, where ∆ is the Laplacian operator
∑n

i=1 ∂
2/(∂yi)

2, ∇ is the gradient,

and q(y) is a continuous function of y (the factor 2 is added for convenience).

Note that, in order to apply this scoring rule, the function of y must be con-

tinuous, which means that the proposed approach cannot be applied to discrete

distributions.

3.1.1 Linear model

The method will be applied to the case of the normal linear model for a data vector

Y = (Y1, ..., Yn)T , assuming to be

Y ∼ N(Xθ, σ2In) (3.3)

where X is a known (n×p) design matrix of rank p, θ ∈ Rp is an unknown parameter

vector, In is the identity matrix of size n and σ2 is assumed to be known.

Let

θ ∼ N(m, V ) (3.4)

be a normal prior distribution on θ; then, the marginal distribution Q of Y is

Y ∼ N(Xm, XV XT + σ2In)

with precision matrix derived from applying the matrix lemma in equation (10) of

Lyndley and Smith (1972):

Φ = (XVXT + σ2In)−1

= σ−2
{
In −X(XTX + σ2V −1)−1XT

}
. (3.5)
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Since we are interested on using improper priors, one of these can be generated

by letting V −1 → 0. This will lead to Φ = σ−2Π, where

Π = In −X(XTX)−1XT

is the projection matrix onto the space of residuals, so that trΦ = σ−2(n− p).

When a normal case is considered, it is easy to show that

∇`nq(y) = −Φ(y − µ)

∆`nq(y) = −trΦ,

then by applying these formulas to the linear model, we have:

SH(y, Q) = −2σ−2(n− p) +
RSS

σ4

=
1

σ4
{RSS − 2νσ2}

(3.6)

where RSS is the residual sum of squares for model (3.3), on ν = n− p degrees of

freedom. It is important to notice that, because of the homogeneity of the Hyvärinen

score (3.2), there is no need to specify the normalizing constant for the improper

prior density.

Furthermore, if rank(X) < p, the integral defining the marginal density of Y is

not finite at each y, so that no marginal joint density can be defined. Then, the

above analysis is not applicable when n < p. On the contrary, when X is of rank p,

this integral is finite for each y, even if the resulting density is improper.

Finally, using the criterion (3.6) means comparing different normal linear models

in terms of their penalized scaled residual sum of squares, which is equivalent to the

Akaike’s Information Criterion (Akaike 1974), for the known variance case. However,

here the known residual variance σ2 is the same across all models, if it varies the

criterion (3.6) and AIC are no longer equivalent.
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3.2 A discussion of “Bayesian model selection based

on proper scoring rules” by A.P. Dawid and

M. Musio

The1 frustrating issue of Bayesian model selection preventing improper priors (DeG-

root 1982) and hence most objective Bayes approaches has been a major impediment

to the development of Bayesian statistics in practice (Marin and Robert 2007), as

the failure to provide a “reference” answer is an easy entry for critics who point

out the strong dependence of posterior probabilities on prior assumptions. This was

presumably not forecasted by the originator of the Bayes factor, Harold Jeffreys,

who customarily and informaly used improper priors on nuisance parameters in his

construction of Bayes factors (Robert et al. 2009). It is therefore a very welcome

item of news that a truly Bayesian approach can allow for improper priors.

As also pointed out in the paper, there exist a wide range of “objective Bayes”

solutions in the literature (Robert 2001), all provided with validating arguments of

sorts, but this range by itself implies that such solutions are doomed in that they

cannot agree for a given dataset and a given prior.

Finding a criterion that does not depend on the normalising constant of the pre-

dictive possibly is the unravelling key to handle improper priors and we congratulate

the Authors for this finding of the Hyvärinen score and related proper scoring rules.

Some difficulties deriving from the use of improper prior distributions in model

choice may be solved by applying the approach proposed in the paper. There are

nonetheless some issues with this solution:

• calibration difficulties: once the score value is computed, the calibration of its

strength very loosely relates to a loss function, hence makes decision in favour

of a model difficult;

• a clear dependence on parameterisation: changing y into the tranform h(y)

produces a different score;

• a dependence on the dominating measure: as exhibited in the case of expo-

nential families, changing the dominating measure modifies the score function;

1This work is based on a Master research thesis written by Ilaria Masiani under the supervision

of the candidate and Christian P. Robert, at Université Paris-Dauphine. A reply to this discussion

is not publicly available
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• the arbitrariness of the Hyvärinen score, which is indeed independent of the

normalising constant, but offers limited arguments in favour of this particular

combination of derivatives. Since there exists a immense range of possible

score functions, a stronger connection with inferential properties is a clear

requirement;

• as noted above, consistency is not a highly compelling argument for the layper-

son, as it does not help in the calibration and selection of the score. Having

the multivariate score being inconsistent, is highlighting this difficulty.

Furthermore, the only application of the method presented in the paper is within

the setting of the normal linear model and we worry that the approach may not be

easily extended to other types of models. In particular, the representation of the

precision matrix of the marginal distribution in equation 3.5, based on the Woodbury

matrix inversion lemma, is essential to easily apply the proper scoring rule approach

to model choice with an improper prior, given that an improper prior may then be

seen as a limiting version of a conjugate prior and its influence disappears in the

following computations. However, the approach overcomes the singularity of the

precision matrix of the marginal distribution.

We first performed some simulation studies when applying the proposed method

to models that differ from the normal linear model. When choosing between two

different models with no covariates, we observed that the proposed approach can

perform well as for instance when a Gamma model is opposed to a normal model

(well in the sense of comparing with a standard Bayes factor). However, when the

comparison is operated between a Pareto distribution and a normal distribution, the

approach does not often select the right model when data are generated from the

Pareto distribution, while the Bayes factor always leads the right model. In addition,

we came to the realisation that the method based on the Hyvärinen scoring rule

may not be applied to some models, for example when data come from a Laplace

distribution, which is not differentiable in 0, or for discrete models.

Our simulation studies have also coverered linear models, whether nested or not

nested. The details of the simulation models are given in the captions of Figure 3.1–

3.3. The performance of the multivariate Hyvärinen score when comparing normal

linear models is excellent, as shown in Figure 3.1, even when using an improper

prior, provided the sample size is larger than the number of parameters in the

model: following repeated simulations, we observed that the method is always able
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to choose the right model. We however noticed that, when the true model does

not involve covariates, the ability of the method to discriminate between models

is reduced. Although this approach shows a consistent behavior and chooses the

right model with higher and higher certainty when the sample size increases, our

simulations have also shown that the log proper scoring rule tends to infinity more

slowly than the Bayes factor or than the likelihood ratio. It is approximately four

times slower, all priors being equal, as shown in Figures 3.2 and 3.3, which represent

the comparison between the approach based on the log-Bayes factor and the one

based on the difference between the score functions for the case of linear models,

both nested (Figure 3.3) and non-nested (Figure 3.2).

As a final remark, we would like to point out the alternative and recent proposal of

Kamary et al. (2014) for correctly handling partly improper priors in testing settings

through the tool of mixture modelling, each model under comparison corresponding

to a component of the mixture distribution. Testing is then handled as an estimation

problem in an encompassing model. Therein, the Authors show consistency in a

wide range of situations. We currently appreciate the approach through mixture

estimation as the most compelling for the many reasons advanced in Kamary et al.

(2014), in particular because the posterior distribution of the weight of a model is

easily interpretable and scalable towards selecting this very model or an alternative

one. Furthermore, it returns posterior probabilities for the models under comparison

without the need to resort to specific prior probability weights.

3.3 Model Choice with approximate Bayesian Com-

putation

For inferential problems approximate Bayesian computation has been used in many

fields, like genetics (Tavaré et al. 1997, Pritchard et al. 1999), finance (Creel and

Kristensen 2015), signal processing (Kervrann et al. 2014), etc. thanks to their

property to give inferential results for models for which the likelihood function is

intractable.

The basic version of the algorithm is available in Section 1.1 (see Algorithm 1).

The approximation of the posterior distribution π(θ|y) is the joint distribution
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πε(θ, z|y) =
π(θ)f(z|θ)IAε,y(z)∫

Aε,y×Θ
π(θ)f(z|θ)dzdθ

(3.7)

where IAε,y is the indicator function for the space {z ∈ Y s.t. ρ(η(z), η(y)) < ε} (ρ(·)
is an appropriate distance between summary statistics η(·) computed on both the

observed and the simulated data and ε is the tolerance level which provides the

desired degree of similarity). If the summary statistics η(·) is sufficient, the posterior

distribution approximated via ABC can be proved to be an approximation of the

true posterior distribution π(θ|y) as ε goes to 0.

Since ABC is used in complex situations, it is unlikely that a sufficient statistics

of small dimension d exists. Fearnhead and Prangle (2012) prove how the choice of

η(·) and its dimension affect the Monte Carlo error. In some sense, the choice of

the summary statistics to use is problem-specific, nevertheless some works exist to

make it automatic; see for example Nunes and Balding (2010).

The loss of information due to the use of non-sufficient summary statistics is,

in general, considered acceptable in inferential problems because ABC allows to

manage complex models which are otherwise intractable, in particular when one can

find an informative summary statistics for the parameter θ. Nevertheless, the loss

of information is in some way arbitrary when the aim of the experimenter is model

choice instead of estimating the parameter value, as shown in Robert et al. (2011)

and in Section 3.3.1, which also presents our proposal to the problem of model choice

with ABC. Section 3.3.2 studies the behavior of the proposed method in some real

and simulated examples: simple hypothesis testing, composite hypothesis testing,

regression and dynamic models. The Chapter ends with a discussion.

3.3.1 Some difficulties with ABC for model choice

When moving the interest in problems of model choice, the basic Algorithm 1 may

be simply modified as in Algorithm 8 (Robert et al. 2011).
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Algorithm 8 ABC-MC

Consider a set of possible models and a data set y from

fm(·|θm)

for i = 1 to N do

repeat

Generate m from the prior π(M = m)

Generate θm from πm (·)
Simulate z from the model fm (· | θm)

until ρ(η(z), η(y)) < ε

Set m(i) = m and θ(i) = θm

end for

The output of Algorithm 8 provides the absolute frequencies of the possible models,

which are approximation of their posterior probabilities. Some modifications exists

of this basic idea: see, for example, Beaumont et al. (2002) and Cornuet et al. (2008).

The need to choose a summary statistic, that is acceptable in inferential problems

even if it is not sufficient, leads to some arbitrariness in the setting of model choice.

When considering two models, the approximation of the Bayes factor deriving from

Algorithm 8 is

B̂12(y) =
π(M = 2)

∑N
i=1 Im(i)=1Iρ(η(z),η(y))<ε

π(M = 1)
∑N

i=1 Im(i)=2Iρ(η(z),η(y))<ε

(3.8)

which approximates

Bη
12(y) =

∫
Θ1
π(θ1)f η1 (η(y|θ1))dθ1∫

Θ2
π(θ2)f η2 (η(y|θ2))dθ2

. (3.9)

In this setting, the Bayes factor approximated by ABC is inconsistent with the

target Bayes factor, except for very few cases: even in the fortunate case of existence

of a sufficient statistics for each model m, fm(y|θm) = gm(y)f η(η(y)|θm) and then

B12(y) =
g1(y)

g2(y)
Bη

12; (3.10)

therefore it is impossible to evaluate the difference between these two quantities

without knowing the entity of the ratio g1(y)/g2(y).
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A solution for ABC in model choice

The discrepancy between the Bayes factor approximated by Algorithm 8 and the

target Bayes factor is due to the fact that, once the model has been chosen in the

first step of the Algorithm, an acceptance or a rejection is done by comparing the

observed and the simulated data sets via a summary statistics defined conditionally

on that particular model. Along these lines, even if it is possible to find sufficient

summary statistics for all the models in the analysis, these statistics will not be

“sufficient” for the problem of model choice.

Our proposal is to change the perspective and consider a summary statistic that

is informative for the problem of model choice and not necessarily for the considered

model.

Suppose there are two possible models in the analysis, m1 and m2 (the generaliza-

tion to k models is straightforward), described by f1(y|θ1) and f2(y|θ2) respectively,

where θ1 and θ2 may be scalars or vectors. Suppose also that it is possible to have

an approximation of the possible models, for example via expansion or linearization,

say h1(y|θ1) and h2(y|θ2). In this case, the Bayes factor to compare the simplified

versions of m1 and m2

Bh
12(y) =

∫
Θ1
π(θ1)h1(y|θ1)dθ1∫

Θ2
π(θ2)h2(y|θ2)dθ2

(3.11)

is informative with respect to the comparison between the actual models. Algorithm

9 follows.
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Algorithm 9 ABC-MC with BF

Consider two possible models for which simpler approximations exist. Consider a

data set y from fm(·|θm). Define the Bayes factor for the approximated models

BF h
12(y) as in 3.11.

for i = 1 to N do

repeat

Generate m from the prior π(M = m)

Generate θm from πm (·)
Simulate z from the model fm (· | θm)

Compute the Bayes factor BF h
12(z) by considering the approximated models

until ρ(BF h
12(y), BF h

12(z)) < ε

Set m(i) = m and θ(i) = θm

end for

Algorithm 9 is not thought to be used for inference, even if the output includes a

sample of parameter values, because the summary statistics used is certainly infor-

mative for the parameters values, nevertheless more informative statistics may be

chosen.

3.3.2 Applications

Quantile distributions

Quantile distributions are an useful and flexible tool used to model data moving

away from the normal target, like kurtotic or asymmetric data, and which are char-

acterized by a small number of parameters, unlike mixture models usually used to

model this type of data. Even if they are very flexible, they are not widespread in

applications because they are defined by their quantile function which is a non-linear

transformation of the quantiles of a normal distribution; therefore the probability

density function (and so the likelihood function) is not available, that means that

any approach but ABC is difficult to apply (Allingham et al. 2009), even if some

attempts exist: for example, Rayner and MacGillivray (2002b) and Su (2007) pro-

pose a numerical likelihood approach while Haynes and Mengersen (2005) propose

a Bayesian estimation via MCMC.

Tukey (1977) is usually considered the inventor of the g-and-h family of distri-

butions, generalized by MacGillivray (1992) for a more interpretable version. An



3.3 Model Choice with approximate Bayesian Computation 78

example of quantile distribution is the g-and-k distribution, whose quantile function

is defined as follows:

Qgk(p;A,B, g, k) = A+B

(
1 + c

1− e−gz(p)

1 + e−gz(p)

)
· (1 + z(p)2)kz(p) (3.12)

where z(p) is the quantile of level p of a standard normal distribution and θ =

(A,B, g, k) are the unknown parameters (c is assumed fixed and equal to 0.8, see

Rayner and MacGillivray (2002b) for a justification). It is easy to see that the

normal distribution is a special case of the g-and-k distribution, with g = 0 and

k = 0. In general, quantile distributions are very flexible and may describe many

known distributions, both exactly (as in the case of the g-and-k distribution and

the normal distribution) and approximately.

When the goal of the analysis is inference, some choices of summary statistics

have alreaby been proposed in the literature: for example, the sample moments or

the complete set of the order statistics S(y) = (y(1), · · · , y(n)) as in Allingham et al.

(2009) or robust estimates of location, scale, skewness and kurtosis as in Drovandi

and Pettitt (2011). Nevertheless, these summary statistics do not take into account

the relationship between possible models, therefore they are not appropriate when

the goal of the analysis is model choice, as explained in Section 3.3.1.

The setting of quantile distributions is an ideal case to apply the method pre-

sented in Section 3.3.1.

Simple Hypothesis Testing

Consider two simple hypotheses

H0 : A = A0

H1 : A = A1 (3.13)

where A is the location parameter of a g-and-k distribution and every other param-

eter is known. Computing the Bayes factor for the system of hypotheses (3.13) is

complicated, nevertheless it is straightforward if the hypotheses could be related to

normal models with location parameters (e.g. mean values) A0 and A1 respectively,

that is
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H0 : µ = A0

H1 : µ = A1 (3.14)

where µ is the unknown mean parameter of a normal distribution with σ = B

known. In this situation, suppose for simplicity µ0 < µ1; the Bayes factor is then

BN01(y) = exp

{
−n(µ0 − µ1)

σ2

(
ȳ − µ0 + µ1

2

)}
. (3.15)

In applying Algorithm 9 the experimenter may use (3.15) to compare the hy-

potheses and then keep only those values of proposed parameters A which lead to a

Bayes factor close to the one computed for normal hypotheses.

Figure 3.4 shows the comparison between two g-and-k distributions which differ

for the location parameters only.

The distance has been selected as the Euclidean distance between the Bayes

factor for normal approximated model for the observed and the simulated data sets:

ρ(BFNij (y), BFNij (z)) =
√

(BFNij (y)−BFNij (z))2. (3.16)

The tolerance level is chosen after a pilot run of the algorithm with a high

value of ε, which allows to construct the approximated distribution of the values

of ρ(η(y), η(z)); the value of ε corresponding to the left-hand tail of this distribu-

tion at a desired level of accuracy is then selected (see Allingham et al. (2009) for

details). After fixing the tolerance level, the results will be compared with smaller

values. Figure 3.5 shows the output of the pilot run for the models described in

Figure 3.4 for a target tolerance level ε = 100. The quantile of level 0.05 of the

distribution of ρ in pilot run has been found to be 1.95. This tolerance level has

been compared to smaller ones, in particular 0.97 and 0.5.

Table 3.1 shows the mean values of the probabilities of choosing the right and the

wrong models in 103 repetitions of the experiment. The proposed procedure always

chooses the right model both when the null hypothesis is true and when it is wrong,

conditionally on the selected tolerance levels.

Table 3.1 shows the results when B is fixed and equal to 1, nevertheless the scale

of the distribution (parameter B) has an influence on the performance of the algo-

rithm. Table 3.2 shows the approximated probabilities of correctly choosing when



3.3 Model Choice with approximate Bayesian Computation 80

Table 3.1: Simple Hypotheses

ε 1.95 0.97 0.50

Pr(M = m0|m0) 1.0000 1.0000 1.0000

Pr(M = m1|m0) 0.0000 0.0000 0.0000

Pr(M = m1|m1) 0.9967 0.9977 0.9977

Pr(M = m0|m1) 0.0033 0.0023 0.0023

the true model is the one under H0 and when it is the one under H1 for un increas-

ing scale parameter (and 103 repetitions of the experiment). The method proposed

in Section 3.3.1 seems to have a good behavior under H0: even if the frequency

of choosing the right model is decreasing when the scale parameter increases, the

method still produces a higher approximated probability for the true model. When

the alternative hypothesis represents the true model, there is a substantial indif-

ference between the two models, with a slight preference for H0. Since the prior

distribution for the hypothesis was build to describe a priori indifference between

the two hypothesis and the model are very close when B = 10, as shown in Figure

3.4 by the dashed lines, this behavior could be exaplained by the Lindley’s paradox

(see Lindley (1957), Jeffreys (1939)).

Table 3.2: Simple Hypotheses: influence of the variance

H0 true Pr(M = m0|m0) Pr(M = m1|m0)

B= 1.00 1.000 0.000

B= 3.25 0.999 0.001

B= 5.50 0.878 0.123

B= 7.75 0.724 0.276

B=10.00 0.641 0.358

H1 true Pr(M = m1|m1) Pr(M = m0|m1)

B= 1.00 0.992 0.008

B= 3.25 0.552 0.448

B= 5.50 0.460 0.540

B= 7.75 0.443 0.557

B=10.00 0.444 0.556

Similar results are obtained when the tolerance level is decreased. The choice

of the parameters of asymmetry and kurtosis seems to have a smaller effect on the
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behavior of the method.

Composite Hypothesis Testing

When the hypotheses are simple, the parameter space is constituted by two points,

one for each hypothesis. In real applications, this situation is hard to occur. It is

more usual to have a system of hypotheses which divides the parameter space into

subspaces made of a finite or an infinite set of points. For a g-and-k distribution

H0 : A ∈ Θ0

H1 : A ∈ Θ1 (3.17)

where Θ = {Θ0 ∪ Θ1} = R. In a Bayesian setting, each hypothesis has its own

prior probability, say π0 = Pr(A ∈ Θ0) and π1 = Pr(A ∈ Θ1). The Bayes factor for

composite hypotheses is then the ratio between marginal distributions:

B01(y) =

∫
A∈Θ0

f0(y|A,B, g, k)π0(A)dA∫
A∈Θ1

f1(y|A,B, g, k)π1(A)dA
(3.18)

where f0(·) and f1(·) are the joint distributions of the data conditional on the hy-

pothesis.

The Bayes factor in (3.18) is difficult to compute, because f0(·) and f1(·) are

unavailable, nevertheless it is possible to compute the Bayes factor for two normal

models. Suppose, therefore, the data follow a normal model, e.g. yi
iid∼ N (µ, σ2)

with σ known and µ unknown, define the system of hypotheses

HN0 : µ = 0

HN1 : µ 6= 0 (3.19)

and consider a prior distribution conditionally on H1 π(µ) = N(0, hσ2). Then the

Bayes factor for the hypotheses in (3.19) can be demonstrate to be

BFN01 = (nh+ 1)
1
2 exp

{
− 1

2σ2

n2ȳ

n+ h−1

}
(3.20)



3.3 Model Choice with approximate Bayesian Computation 82

where ȳ is the sample mean. When comparing H0 and H1 in (3.17) via ABC, one

could use the Bayes factor in (3.20) as summary statitic for model choice.

Figure 3.6 shows the histogram for the distance ρ of the accepted values for the

pilot run described in Section 3.3.2. In this setting a tolerance level equal to 0.80

has been selected as the quatile of level 0.05 and the results have been compared

with smaller tolerance levels, equal to 0.50 and 0.25.

Table 3.3 shows the average posterior probabilities of the possible models for 103

repetitions of the experiment, in the case the true model is the one under the null

hypothesis and it is the one under the alternative hypothesis. In both the cases, it

is evident that the procedure described in 3.3.1 has a good behavior in choosing the

right model. Moreover, the results seem to be stable with respect to the tolerance

level and they seem to be more confident when the true model is the one under the

alternative hypothesis.

Table 3.3: Composite Hypotheses

ε 0.80 0.50 0.25

Pr(M = m0|m0) 0.7820 0.7817 0.7826

Pr(M = m1|m0) 0.2180 0.2183 0.2174

Pr(M = m1|m1) 0.9999 0.9999 0.9999

Pr(M = m0|m1) 0.0001 0.0001 0.0001

Table 3.4 shows how the results are affected by increasing the variance of the

data or the variance of the prior (under the alternative hypothesis): there is a

substantial stability of the approximated probabilities of the models under analysis;

in particular, when the true model is the one under the alternative hypothesis the

method always chooses the true model. A similar behavior has been found when

the parameters of asymmetry or kurtosis have been changed.

Regression

In some situations, the models under analysis differ in something more than the

values of the parameters, for example they may differ in the dimension of the pa-

rameters or in the form of the probability distribution of the model. In this case,

the Bayes factor may still be used to compare the available models, with a straight-

forward modification of Equation (3.20).
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Table 3.4: Composite Hypotheses - Incresing variances

Pr(M = m0|m0) h=3.25 h=5.50 h=7.75 h=10.00

B= 1.00 0.701 0.788 0.851 0.861

B= 3.25 0.730 0.802 0.840 0.873

B= 5.50 0.712 0.792 0.840 0.885

B= 7.75 0.722 0.829 0.840 0.897

B=10.00 0.711 0.793 0.852 0.850

Pr(M = m1|m1) h=3.25 h=5.50 h=7.75 h=10.00

B= 1.00 1.000 1.000 1.000 1.000

B= 3.25 1.000 1.000 1.000 1.000

B= 5.50 1.000 1.000 1.000 1.000

B= 7.75 1.000 1.000 1.000 1.000

B=10.00 1.000 1.000 1.000 0.556

For general models the Bayes factor is

B12(y) =

∫
Θ1
f1(y|θ1)π1(θ1)dθ∫

Θ2
f2(y|θ2)π2(θ2)dθ

. (3.21)

By applying a Taylor expansion of the log-likelihood around the maximum like-

lihood estimator θ̂i for the i-model, the log-Bayes factor may be approximated by

− 2 log(BF12) ∼= −2 log l − (p2 − p1) log n+ A (3.22)

where l = f1(y|θ̂1)

f2(y|θ̂2)
is the ratio between maximised likelihood functions, p1 and p2 are

the dimensions of model m1 and m2 respectively and A = O(1) is a part, depending

on the prior and on the observed Fisher information matrix, which does not depend

on n. From Equation (3.22) the asymptotic consistency of the Bayes factor and its

asymptotic equivalence with the BIC criterion (Schwarz 1978) derive.

Suppose the aim of the analysis is to compare two (or more) models which depend

on different sets of covariates (the models can be nested) and which can be described

by quantile distributions which take into account a certain grade of asymmetry or

kurtosis. In this case, the method described in 3.3.1 may be used to compare the

available models, by using the Bayes factor or some other model selection criterior

(as the BIC) computed for linear approximations of the models as summary statistic.

Data have been simulated by fixing the scale, kurtosis and asymmetry parameters
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Table 3.5: Regression

ε 0.25 0.10 0.05

Pr(M = m1|m1) 0.5917 0.5931 0.851

ε 2.5 1.5 0.50

Pr(M = m2|m2) 0.9938 0.9960 0.9961

and defining the location parameter as depending on some covariates. First, two

models have been considered: a model without dependence on covariates and a

model where the location parameter linearly depends on a variable X simulated as

follows: X ∼ Unif(2, 5). Then, the choice is between models

M1 : A = β0

M2 : A = β0 + β1 × x (3.23)

with all the other parameters considered as unknown nuisance parameters.

Again, the tolerance level has been fixed via a first pilot run which defines the

distribution of the distance ρ(·). Then the parameters have been simulated in the

ABC step by fixing flat priors: a g-prior for β ∼ N (β0, hB(XTX)−1), with h = 0.1,

and flat uniform priors in (0, 10) for B, g and k, following Allingham et al. (2009).

The pilot simulation, in this case, has suggested to use two different thresh-

olds when the true model is M1 and when it is M2, then we have used ε1 =

(0.25, 0.10, 0.05) when M1 is the true model and ε2 = (2.5, 1.0, 0.50) when the true

model is M2.

The results for 102 repetitions of the experiment are shown in Table 3.5. Again,

the method seems to always find the true model, in particular it is very confident

when the true model is the one which considers covariates, nevertheless it still has

a good behavior when the model is the one which considers only the intercept.

One problem in applying ABC to model choice is the fact the Bayes factor ap-

proximated by ABC by using a statistic summarizing the data does not necessarily

converge to the correct limit as n goes to infinity as explained in Section 3.3.1 and

in Robert et al. (2011). A check of the validity of the method is, therefore, study-

ing the behavior of the procedure presented in Section 3.3.1 when the sample size

increases, as in Table 3.6, which shows that as n goes to infinity the probability of

choosing the right model goes to 1 (the results in Table 3.6 are based on simulations
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Table 3.6: Model choice in regression as the sample size increases

n Pr(M = m1|m1) Pr(M = m2|m1)

10 0.711 0.775

20 0.756 0.779

30 0.731 0.778

40 0.843 0.999

50 0.759 1.000

60 0.756 1.000

70 0.933 0.999

80 0.922 1.000

90 0.930 1.000

100 0.915 1.000

200 0.965 1.000

300 0.918 1.000

400 0.989 1.000

500 0.988 1.000

600 0.988 1.000

700 0.978 1.000

800 0.992 1.000

900 0.980 1.000

1000 0.984 1.000

from both the models M1 : A = β0 + β1x1 and M2 : A = β0 + β1x1 + β2x2 + β3x3

where the covariates have been generated in the following way: x1 ∼ Unif(2, 5),

x2 ∼ Unif(−1, 1) and x3 ∼ Unif(0, 5)).

Quantile distribution for log-returns

The method is now applied to a real data set, containing the log-returns of the

Italian bank Monte dei Paschi di Siena (MPS) daily collected from 1 July 2013 to 30

June 2015 (only weekdays) available on the web page https://it.finance.yahoo.com.

Data are shown in Figure 3.7.

We model the data using a g-and-k distribution, assuming that the data may

be time-correlated and considering a MA(1)-type or a MA(2)-type autocorrelation

structure. Other models can be considered. This means that the zi(pi) follows a
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Table 3.7: Log-returns: MA(1) vs MA(2)

ε 0.050 0.025 0.010

Pr(M = MA(1)|q(z)) 0.531 0.535 0.536

MA(1) or a MA(2) model, i.e.

M1 : zi = θi + αθi−1 for i = 1, · · · , n

M2 : zi = θi + α1θi−1 + α2θi−2 for i = 1, · · · , n

where n is the number of observations and θj ∼ N (0, 1) for j = 1, · · · , n. Each zi

is then divided by
√

1 + α2 under M1 and by
√

1 + α2
1 + α2

2 under M2 to ensure it

is marginally distributed as a N (0, 1). Then each zi is used to derive the respective

quantile qi(zi) of the corresponding quantile distribution as in (3.12).

The parameters have been simulated from their prior distibutions chosen as in

Section 3.3.2 and the comparison between log-likelihoods has been chosen as sum-

mary statistic and computed via the arima function of the “e1071” R package.

Table 3.7 shows the resulting posterior probabilities that the model for the data

is a MA(1). We can see that there is a slight preference for the MA(1), confirmed

for all the three tolerance levels considered.

3.3.3 Conclusion

The Chapter has proposed a new method to solve problems of model choice when

the considered models have a complicated structure. This method is based on the

approximate Bayesian methodology which implies the choice of statistics (sufficient

or not) summarizing the data. The key point in model choice with ABC is that

both models have to be compatible with the summary statistics in the sense of

Marin et al. (2014).

Our proposal is to consider as summary statistic the Bayes factor or other quan-

tities traditionally used to compare models (as AIC, BIC, log-likelihoods, etc.) for

approximated and simplified versions of the available models; for example, if the

data may be modeled by a normal distribution in first approximation, one can com-

pute the Bayes factor for normal hypotheses on the observed data and then compare

it with the Bayes factor for normal hypotheses computed on the data simulated by
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using the model under analysis. Even if the Bayes factor computed in such a way

is not correct, it could be informative for the problem of model choice.

We have shown through simulations that the proposed method has a good be-

havior in choosing the right model, with more and more accuracy as the sample size

increases. We have also applied the method on a financial data set and compared

moving average models. In this case, it is possible to use an approximated Bayes

factor as in Koop and Potter (1999) or to use some other quantities informative for

model choice, as the log-likelihood values for moving average models, available in

many R packages.

Every result based on simulations in the Chapter is obtained via repetitions of

the experiments and shows a substantial stability (the standard errors, not shown

throughout the Chapter, are always below 0.01 and the approximated confidence

intervals never contain the value of indifference 0.5).

In this work, we have worked on quantile distributions, because it is easy to

simulate from them and they are a classical example where methods other than

ABC are difficult or even impossible to use. Nevertheless, other situations are still

possible and may be investigated.

Moreover, the simulation from the prior distributions makes the method compu-

tationally demanding and other types of ABC algorithms, for example the ABC-

MCMC described in Marjoram et al. (2014) may be investigated to reduce the

computational time.



Figure 3.1: Boxplots over 1,000 simulations of the sample distributions of the scores

of seven models under analysis, depending on the true model. Model selection is

performed in the case of nested linear models. The data was simulated from one of

seven nested linear models with up to six covariates. The design matrix is denoted by

X. While M0 is the model that uses zero covariate, M1 to M6 use the first, the first

two, up to all of the covariates. The values of the covariates were simulated from

normal proposals. The data y = (y1, ..., yn) have distribution y|θ ∼ N(Xθ, σ2), with

n = 100 and σ2 = 10. In (a) the true model used for the generations is M2 (which

considers two regressors), in (b) it is M3 which considers the first three regressors,

in (c) it is M1 which considers the first regressor while in (d) the correct model is

M0 which considers only the constant.
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Figure 3.2: Linear model: log-Bayes factor (red) and difference of the scores (blue)

as a function of an increasing sample size n = 1, ..., 1000, and of the prior variance

on θ, V = cσ2, where σ2 = 10 is known. Given simulated data y = (y1, ..., yn) with

conditional distribution y|θ ∼ N(Xθ, σ2) we consider one regressor and two possible

models for generating the data: M0 : θ = 0 and M1 : θ = 1 when the true model is

M1.
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Figure 3.3: Nested models: log-Bayes factor (red) and difference of the scores (blue)

as a function of an increasing sample size n = 1, ..., 1000, and of the prior variance

on θ, V = cσ2, where σ2 = 10. The setting is the same as Figure 3.1, where we

consider six possible regressors and we compare model M3 which considers the first

three regressors against model M6 which considers all the regressors (M3 is the true

model in our simulations).
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Figure 3.4: Comparison between two g-and-k densities with fixed B = 1 (solid lines)

and B = 10 (dashed lines), g = 2 and k = 0.5 and A1 = 0 (in black) and A2 = 3 (in

green).

Figure 3.5: Distance ρ as in equation (3.16) for Algorithm 9 with a tolerance level

ε = 100 and the system of hypotheses in (3.13).
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Figure 3.6: Distance ρ as in equation 3.16 for Algorithm 9 with a tolerance level

ε = 100 and the system of hypotheses in (3.17).

Figure 3.7: Daily log-returns of Monte dei Paschi di Siena between 1 July 2013 and

30 June 2015.



Chapter 4

Jeffreys prior for mixture

estimation

4.1 Introduction

Bayesian inference in mixtures of distributions1 has been studied quite extensively

in the literature. See, e.g., MacLachlan and Peel (2000) and Frühwirth-Schnatter

(2006) for book-long references and Lee et al. (2009) for one among many surveys.

From a Bayesian perspective, one of the several difficulties with this type of distri-

bution,
k∑
i=1

pi f(x|θi) ,
k∑
i=1

pi = 1 , (4.1)

is that its ill-defined nature (non-identifiability, multimodality, unbounded likeli-

hood, etc.) leads to restrictive prior modelling since most improper priors are not

acceptable. This is due in particular to the feature that a sample from (4.1) may

contain no subset from one of the k components f(·|θi) (see. e.g., Titterington

et al. 1985). Albeit the probability of such an event is decreasing quickly to zero

as the sample size grows, it nonetheless prevents the use of independent improper

priors, unless such events are prohibited (Diebolt and Robert 1994). Similarly, the

exchangeable nature of the components often induces both multimodality in the

posterior distribution and convergence difficulties as exemplified by the label switch-

ing phenomenon that is now quite well-documented (Celeux et al. 2000, Stephens

1joint wort with Prof. Christian Robert, CEREMADE, Université Paris-Dauphine, CREST

and University of Warwick



4.1 Introduction 94

2000, Jasra et al. 2005, Frühwirth-Schnatter 2006, Geweke 2007, Puolamäki and

Kaski 2009). This feature is characterized by a lack of symmetry in the outcome of

a Monte Carlo Markov chain (MCMC) algorithm, in that the posterior density is

exchangeable in the components of the mixture but the MCMC sample does not ex-

hibit this symmetry. In addition, most MCMC samplers do not concentrate around

a single mode of the posterior density, partly exploring several modes, which makes

the construction of Bayes estimators of the components much harder.

When specifying a prior over the parameters of (4.1), it is therefore quite delicate

to produce a manageable and sensible non-informative version and some have ar-

gued against using non-informative priors in this setting (for example, MacLachlan

and Peel (2000) argue that it is impossible to obtain proper posterior distribution

from fully noninformative priors), on the basis that mixture models were ill-defined

objects that required informative priors to give a meaning to the notion of a com-

ponent of (4.1). For instance, the distance between two components needs to be

bounded from below to avoid repeating the same component over and over again.

Alternatively, the components all need to be informed by the data, as exempli-

fied in Diebolt and Robert (1994) who imposed a completion scheme (i.e., a joint

model on both parameters and latent variables) such that all components were al-

located at least two observations, thereby ensuring that the (truncated) posterior

was well-defined. Wasserman (2000) proved ten years later that this truncation led

to consistent estimators and moreover that only this type of priors could produce

consistency. While the constraint on the allocations is not fully compatible with

the i.i.d. representation of a mixture model, it naturally expresses a modelling re-

quirement that all components have a meaning in terms of the data, namely that

all components genuinely contributed to generating a part of the data. This trans-

lates as a form of weak prior information on how much one trusts the model and

how meaningful each component is on its own (by opposition with the possibility of

adding meaningless artificial extra-components with almost zero weights or almost

identical parameters).

While we do not seek Jeffreys priors as the ultimate prior modelling for non-

informative settings, being altogether convinced of the lack of unique reference priors

(Robert 2001, Robert et al. 2009), we think it is nonetheless worthwile to study the

performances of those priors in the setting of mixtures in order to determine if indeed

they can provide a form of reference priors and if they are at least well-defined in

such settings. We will show that only in very specific situations the Jeffreys prior
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provides reasonable inference.

In Section 4.2 we provide a formal characterisation of properness of the poste-

rior distribution for the parameters of a mixture model, in particular with Gaussian

components, when a Jeffreys prior is used for them. In Section 4.3 we will analyze

the properness of the Jeffreys prior and of the related posterior distribution: only

when the weights of the components (which are defined in a compact space) are the

only unknown parameters it turns out that the Jeffreys prior (and so the relative

posterior) is proper; on the other hand, when the other parameters are unknown,

the Jeffreys prior will be proved to be improper and in only one situation it provides

a proper posterior distribution. In Section 4.4 we propose a way to realize a non-

informative analysis of mixture models and introduce improper priors for at least

some parameters. Section 4.6 concludes the Chapter.

4.2 Jeffreys priors for mixture models

We recall that the Jeffreys prior was introduced by Jeffreys (1939) as a default prior

based on the Fisher information matrix

πJ(θ) ∝ |I(θ)|1/2 ,

whenever the later is well-defined; I(·) stand for the expected Fisher information

matrix and the symbol | · | denotes the determinant. Although the prior is endowed

with some frequentist properties like matching and asymptotic minimal information

(Robert 2001, Chapter 3), it does not constitute the ultimate answer to the selection

of prior distributions in non-informative settings and there exist many alternative

such as reference priors (Berger et al. 2009), maximum entropy priors (Rissanen

2012), matching priors (Ghosh et al. 1995), and other proposals (Kass and Wasser-

man 1996). In most settings Jeffreys priors are improper, which may explain for

their conspicuous absence in the domain of mixture estimation, since the latter pro-

hibits the use of most improper priors by allowing any subset of components to

go “empty” with positive probability. That is, the likelihood of a mixture model

can always be decomposed as a sum over all possible partitions of the data into k

groups at most, where k is the number of components of the mixture. This means

that there are terms in this sum where no observation from the sample brings any

amount of information about the parameters of a specific component.
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Approximations of the Jeffreys prior in the setting of mixtures can be found, e.g.,

in Figueiredo and Jain (2002), where the Authors revert to independent Jeffreys

priors on the components of the mixture. This induces the same negative side-effect

as with other independent priors, namely an impossibility to handle improper priors.

Rubio and Steel (2014) provide a closed-form expression for the Jeffreys prior

for a location-scale mixture with two components. The family of distributions they

consider is
2ε

σ1

f

(
x− µ
σ1

)
Ix<µ +

2(1− ε)
σ2

f

(
x− µ
σ2

)
Ix>µ

(which thus hardly qualifies as a mixture, due to the orthogonality in the supports of

both components that allows to identify which component each observation is issued

from). The factor 2 in the fraction is due to the assumption of symmetry around zero

for the density f . For this specific model, if we impose that the weight ε is a function

of the variance parameters, ε = σ1/σ1+σ2, the Jeffreys prior is given by π(µ, σ1, σ2) ∝
1/σ1σ2{σ1+σ2}. However, in this setting, Rubio and Steel (2014) demonstrate that the

posterior associated with the (regular) Jeffreys prior is improper, hence not relevant

for conducting inference. (One may wonder at the pertinence of a Fisher information

in this model, given that the likelihood is not differentiable in µ.) Rubio and Steel

(2014) also consider alternatives to the genuine Jeffreys prior, either by reducing

the range or even the number of parameters, or by building a product of conditional

priors. They further consider so-called non-objective priors that are only relevant

to the specific case of the above mixture.

Another obvious explanation for the absence of Jeffreys priors is computational,

namely the closed-form derivation of the Fisher information matrix is almost in-

evitably impossible. The reason is that integrals of the form

−
∫
X

∂2 log
[∑k

h=1 ph f(x|θh)
]

∂θi∂θj

[
k∑

h=1

ph f(x|θh)

]−1

dx

(in the special case of component densities with a single parameter) cannot be

computed analytically. We derive an approximation of the elements of the Fisher

information matrix based on Riemann sums. The resulting computational expense

is of order O(d2) if d is the total number of (independent) parameters. Since the ele-

ments of the information matrix usually are ratios between the component densities

and the mixture density, there may be difficulties with non-probabilistic methods

of integration. Here, we use Riemann sums (with 550 points) when the component
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standard deviations are sufficiently large, as they produce stable results, and Monte

Carlo integration (with sample sizes of 1500) when they are small. In the latter

case, the variability of MCMC results seems to decrease as σi approaches 0.

4.3 Properness for prior and posterior distribu-

tions

Unsurprisingly, most Jeffreys priors associated with mixture models are improper,

the exception being when only the weights of the mixture are unknown, as already

demonstrated in Bernardo and Giròn (1988).

We will characterize properness and improperness of Jeffreys priors and derived

posteriors, when some or all of the parameters of distributions from location-scale

families are unknown. These results are established both analytically and via sim-

ulations, with sufficiently large Monte Carlo experiments checking the behavior of

the approximated posterior distribution.

4.3.1 Characterization of Jeffreys priors

Weights of mixture unknown

A representation of the Jeffreys prior and the derived posterior distribution for

the weights of a three-component mixture model is given in Figure 4.1: the prior

distribution is much more concentrated around extreme values in the support, i.e.,

it is a prior distribution conservative in the number of important components.

Lemma 4.3.1. When the weights pi are the only unknown parameters in (4.1), the

corresponding Jeffreys prior is proper.

Figure 4.2 shows the boxplots for the means of the approximated posterior dis-

tribution for the weights of a three-component Gaussian mixture model.

Proof. The generic element of the Fisher information matrix is (for i, j = {1, . . . , k−
1})

∫
X

(fi(x)− fk(x))(fj(x)− fk(x))∑k
l=1 plfl(x)

dx (4.2)
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Figure 4.1: Approximations (on a grid of values) of the Jeffreys prior (on the log-

scale) when only the weights of a Gaussian mixture model with three-components

are unknown (on the top) and of the derived posterior distribution (with known

means equal to -1, 0 and 2 respectively and known standard devitations equal to 1,

5 and 0.5 respectively). The red cross represents the true values.

Figure 4.2: Boxplots of the estimated means of the three-component mixture model

0.25N (−10, 1) + 0.65N (0, 5) + 0.10N (15, 0.5) for 50 simulated samples of size 100,

obtained via MCMC with 105 simulations. The red crosses represent the true values

of the weights.
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when we consider the parametrization in (p1, . . . , pk−1), with

pk = 1− p1 − · · · − pk−1 .

We remind that, since the Fisher information matrix is a positive semi-definite,

its determinant is bounded by the product of the terms in the diagonal, thanks to

the Hadamard’s inequality. Therefore, we may consider the diagonal term,∫
X

(fi(x)− fk(x))2

k∑
l=1

plfl(x)

dx =

∫
fi(x)≥fk(x)

(fi(x)− fk(x))2

k∑
l=1

plfl(x)

dx

+

∫
fi(x)≤fk(x)

|(fi(x)− fk(x))2|
k∑
l=1

plfl(x)

dx

=

∫
fi(x)≥fk(x)

fi(x)− fk(x)
k∑
l=1

plfl(x)

{fi(x)− fk(x)}dx

+

∫
fi(x)≤fk(x)

∣∣∣fi(x)− fk(x)
k∑
l=1

plfl(x)

∣∣∣|fi(x)− fk(x)|dx

=
1

pi

∫
fi≥fk

pi{fi(x)− fk(x)}
pi{fi(x)− fk(x)}+

∑
l 6=i,k

pl{fl(x)− fk(x)}+ fk(x)

{fi(x)− fk(x)}dx

+
1

pi

∫
fi≤fk

∣∣∣ pi{fi(x)− fk(x)}
pi{fi(x)− fk(x)}+

∑
l 6=i,k

pl{fl(x)− fk(x)}+ fk(x)

∣∣∣
|fi(x)− fk(x)|dx

≤ 1

pi

∫
fi(x)≥fk(x)

{fi(x)− fk(x)}dx+
1

pi

∫
fi(x)≤fk(x)

|fi(x)− fk(x)|dx

=
2

pi

∫
fi(x)≥fk(x)

{fi(x)− fk(x)}dx

where the last row is motivated by the fact that both integrals are equal.

Therefore, the Jeffreys prior will be bounded by the square root of the product

of the terms in the diagonal of the Fisher information matrix

πJ(p) ∝
k∏
i=1

p
− 1

2
i

which is a generalization to k components of the prior provided in Bernardo and

Giròn (1988) for k = 2 (however, Bernardo and Giròn (1988) find the reference
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prior for the limiting case when all the components have pairwise disjoint supports,

while for the opposite limiting case where all the components converge to the same

distribution, the Jeffreys prior is the uniform distribution on the k-dimensional

simplex).

This reasoning leads Bernardo and Giròn (1988) to conclude that the usual

D(λ1, . . . , λk) Dirichlet prior with λi ∈ [1/2, 1] for ∀ i = 1, · · · , k seems to be a

reasonable approximation. They also prove that the Jeffreys prior for the weights

pi is convex, with an argument based on the sign of the second derivative.

As a remark, the configuration shown in proof of Lemma 4.3.1 is compatible

with the Dirichlet configuration of the prior proposed by Rousseau and Mengersen

(2011).

The shape of the Jeffreys prior for the weights of a mixture model depends on the

type of the components. Figure 4.3, 4.4 and 4.5 show the form of the Jeffreys prior

for a two-component mixture model for different choices of components. It is always

concentrated around the extreme values of the support, however the amount of

concentration around 0 or 1 depends on the information brought by each component.

In particular, Figure 4.3 shows that the prior is much more symmetric as there is

symmetry between the variances of the distribution components, while Figure 4.4

shows that the prior is much more concentrated around 1 for the weight relative to

the normal component if the second component is a Student t distribution.

Finally Figure 4.5 shows the behavior of the Jeffreys prior when the first compo-

nent is Gaussian and the second is a Student t and the number of degrees of freedom

is increasing. As expected, as the Student t is approaching a normal distribution,

the Jeffreys prior becomes more and more symmetric.

Location and scale parameters of a mixture model unknown

If the components of the mixture model (4.1) are distributions from a location-scale

family and the location or scale parameters of the mixture components are unknown,

this turns the mixture itself into a location-scale model. As a result, model (4.1)

may be reparametrized by following Mengersen and Robert (1996), in the case of

Gaussian components

pN (µ, τ 2) + (1− p)N (µ+ τδ, τ 2σ2) (4.3)
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Figure 4.3: Approximations of the marginal prior distributions for the first weight

of a two-component Gaussian mixture model, pN (−10, 1)+(1−p)N (10, 1) (black),

pN (−1, 1) + (1− p)N (1, 1) (red) and pN (−10, 1) + (1− p)N (10, 10) (blue).

Figure 4.4: Approximations of the marginal prior distributions for the first weight

of a two-component mixture model where the first component is Gaussian and the

second is Student t, pN (−10, 1) + (1− p) t(df = 1, 10, 1) (black), pN (−1, 1) + (1−
p) t(df = 1, 1, 1) (red) and pN (−10, 1) + (1− p) t(df = 1, 10, 10) (blue).



4.3 Properness for prior and posterior distributions 102

Figure 4.5: Approximations of the marginal prior distributions for the first weight

of a two-component mixture model where the first component is Gaussian and the

second is Student t with an increasing number of degrees of freedom.

namely using a reference location µ and a reference scale τ (which may be, for

instance, the location and scale of a specific component). Equation (4.3) may be

generalized to the case of k components as

pN (µ, τ 2) +
k−2∑
i=1

(1− p)(1− q1) · · · (1− qi−1)qiN (µ+ τθ1 + · · ·+ τ · · · σi−1θi, τ
2σ2

1 · · ·σ2
i )

+ (1− p)(1− q1) · · · (1− qk−2)N (µ+ τθ1 + · · ·+ τ · · ·σk−2θk−1, τ
2σ2

1 · · ·σ2
k−1)

(4.4)

In this way, the mixture model is more clearly a location-scale model, which

implies that the Jeffreys prior is flat in the location and powered as τ−d/2 if d is the

total number of parameters of the components, respectively (Robert 2001, Chapter

3), as we will see in the following.

Lemma 4.3.2. If the parameters of the components of a mixture model are either

location or scale parameters, the corresponding Jeffreys prior is improper.

In the proof of Lemma 4.3.2, we will consider a Gaussian mixture model and

then extend the results to the general situation of components from a location-scale

family.
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Unknown location parameters

Proof. We first consider the case where the means are the only unknown parameters

of a Gaussian mixture model

gX(x) =
k∑
l=1

plN (x|µl, σ2
l )

The generic elements of the expected Fisher information matrix are, in the case

of diagonal and off-diagonal terms respectively:

E
[
−∂

2 log gX(X)

∂µ2
i

]
=
p2
i

σ4
i

∫ ∞

−∞

[(x− µi)N (x|µi, σ2
i )]

2∑k
l=1 plN (x|µl, σ2

l )
dx

E
[
−∂

2 log gX(X)

∂µi∂µj

]
=

pipj
σ2
i σ

2
j

∫ ∞

−∞

(x− µi)N (x|µi, σ2
i )(x− µj)N (x|µj, σ2

j )∑k
l=1 plN (x|µl, σ2

l )
dx

Now, consider the change of variable t = x − µi in the above integrals, where

µi is thus the mean of the i-th Gaussian component (i ∈ {1, · · · , k}). The above

integrals are then equal to

E
[
−∂

2 log gX(X)

∂µ2
j

]
=
p2
j

σ4
j

∫ ∞

−∞

[(t− µj + µi)N (t|µj − µi, σ2
i )]

2∑k
l=1 plN (t|µl − µi, σ2

l )
dx

E
[
−∂

2 log gX(X)

∂µj∂µm

]
=
pjpm
σ2
jσ

2
m

∫ ∞

−∞

(t− µj + µi)N (x|µj, σ2
j )(t− µm + µi)N (t|µm − µi, σ2

m)∑k
l=1 plN (t|µl − µi, σ2

l )
dx

Therefore, the terms in the Fisher information only depend on the differences δj =

µi − µj for j ∈ {1, · · · , k}. This implies that the Jeffreys prior is improper since a

reparametrization in (µi, δ) shows the prior does not depend on µi.

This feature will reappear whenever the location parameters are unknown.

When considering the general case of components from a location-scale family,

this feature of improperness of the Jeffreys prior distribution is still valid, because,

once reference location-scale parameters are chosen, the mixture model may be

rewritten as
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p1f1(x|µ, τ) +
k∑
i=2

pifi(
ai + x

bi
|µ, τ, ai, bi). (4.5)

Then the second derivatives of the logarithm of model (4.5) behave as the ones we

have derived for the Gaussian case, i.e. they will depend on the differences between

each location parameter and the reference one, but not on the reference location

itself. Then the Jeffreys prior will be constant with respect to the global location

parameter.

When considering the reparametrization (4.3), the Jeffreys prior for δ for a fix µ

has the form:

πJ(δ|µ) ∝

∫
X

[
(1− p)x exp{−x2

2
}
]2

pσ exp{−σ2(x+ δ
στ

)2

2
}+ (1− p) exp{−x2

2
}
dx


1
2

and the following result may be demonstrated.

Lemma 4.3.3. The Jeffreys prior of δ conditional on µ when only the location

parameters are unknown is improper.

Proof. The improperness of the conditional Jeffreys prior on δ depends (up to a

constant) on the double integral

∫
∆

∫
X

c

[
(1− p)x exp{−x2

2
}
]2

pσ exp{−σ2(x+ δ
στ

)2

2
}+ (1− p) exp{−x2

2
}
dxdδ.

The order of the integrals is allowed to be changed, then

∫
X

x2

∫
∆

[
(1− p) exp{−x2

2
}
]2

pσ exp{−σ2(x+ δ
στ

)2

2
}+ (1− p) exp{−x2

2
}
dδdx.

Define f(x) = (1− p)e−x
2

2 = 1
d
. Then
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∫
X
x2

∫
∆

1

d2pσ exp{−σ2(x+ δ
στ

)2

2
}+ d

dδdx.

Since the behavior of
[
d2pσ exp{−σ2(x+ δ

στ
)2

2
}+ d

]
depends on exp{−δ2} as δ goes

to ∞, we have that

∫ +∞

−∞

1

exp{−δ2}+ d
dδ >

∫ +∞

A

1

exp{−δ2}+ d
dδ

because the integrand function is positive. Therefore

∫ +∞

A

1

exp{−δ2}+ d
dδ >

∫ +∞

A

1

ε+ d
dδ = +∞

i.e. the conditional Jeffreys prior on δ is improper.

Figure 4.6 compares the behavior of the prior and the resulting posterior distri-

bution for the difference between the means of a two-component Gaussian mixture

model: the prior distribution is symmetric and it has different behaviors depending

on the value of the other parameters, but it always stabilizes for large enough values;

the posterior distribution appears to always concentrate around the true value.

Unknown scale parameters

Consider now the second case of the scale parameters being the only unknown pa-

rameters.

Proof. First, consider a Gaussian mixture model and suppose the mixture model

is composed by only two components; the Jeffreys prior for the scale parameters is

defined as
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Figure 4.6: Approximations (on a grid of values) of the Jeffreys prior (on the natural

scale) of the difference between the means of a Gaussian mixture model with only

the means unknown (left) and of the derived posterior distribution (on the right,

the red line represents the true value), with known weights equal to (0.5, 0.5) (black

lines), (0.25, 0.75) (green and blue lines) and known standard deviations equal to

(5, 5) (black lines), (1, 1) (green lines) and (7, 1) (blue lines).

πJ(σ1, σ2) ∝

 p2
1

σ2
1

∫ ∞

−∞

[(
(x−µ1)2

σ2
1
− 1
)
N (x|µ1, σ

2
1)
]2

∑2
l=1 plN (x|µl, σ2

l )
dx

· p
2
2

σ2
2

∫ ∞

−∞

[(
(x−µ2)2

σ2
2
− 1
)
N (x|µ2, σ

2
2)
]2

∑2
l=1 plN (x|µl, σ2

l )
dx

−

 p1p2

σ1σ2

∫ ∞

−∞

(
(x−µ1)2

σ2
1
− 1
)(

(x−µ2)2

σ2
2
− 1
)
N (x|µ1, σ

2
1)N (x|µ2, σ

2
2)∑2

l=1 plN (x|µl, σ2
l )

dx

2


1
2

Since the Fisher information matrix is positive definite, it is bounded by the

product on the diagonal, then we can write:
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πJ(σ1, σ2) ≤ c
p1p2

σ1σ2


∫ ∞

−∞

(
(x−µ1)2

σ2
1
− 1
)2

1
σ2
1

exp
{
− (x−µ1)2

σ2
1

}
p1
σ1

exp
{
− (x−µ1)2

2σ2
1

}
+ p2

σ2
exp

{
− (x−µ2)2

2σ2
2

}dx

·

∫ ∞

−∞

(
(x−µ2)2

σ2
2
− 1
)2

1
σ2
2

exp
{
− (x−µ2)2

σ2
2

}
p1
σ1

exp
{
− (x−µ1)2

2σ2
1

}
+ p2

σ2
exp

{
− (x−µ2)2

2σ2
2

}dx


1
2

.

In particular, if we reparametrize the model by introducing σ1 = τ and σ2 = τσ and

study the behavior of the following integral

∫ ∞

0

∫ ∞

0

c
p1p2

τσ


∫ ∞

−∞

(z2 − 1)
2

exp {−z2}

p1 exp
{
− z2

2

}
+ p2

σ
exp

{
− (zτ+µ1−µ2)2

2τ2σ2

}dz
·


∫ ∞

−∞

(u2 − 1)
2

exp {−u2}

p1σ exp
{
− (uτσ+µ2−µ1)2

2τ2

}
+ p2 exp

{
−u2

2

}
 du


1
2

dτdσ (4.6)

where the internal integrals with respect to z and u converge with respect to σ and

τ , then the behavior of the external integrals only depends on 1
τσ

. Therefore they

do not converge.

This proof can be easily extended to the case of k components: the behavior

of the prior depends on the inverse of the product of the scale parameters, which

implies that the prior is improper.

Moreover this proof may be easily extended to the general case of mixtures of

location-scale distributions (4.5), because the second derivatives of the logarithm

of the model will depend on factors b−2
i for i ∈ 1, · · · , k. When the square root is

considered, it is evident that the integral will not converge.

All the parameters unknown

When considering all the parameters unknown, the form of the Jeffreys prior may

be partly defined by considering the mixture model as a location-scale model, for

which a general solution exists; see Robert (2001).

Lemma 4.3.4. When all the parameters of a Gaussian mixture model are unknown,

the Jeffreys prior is constant in µ and powered as τ−d/2, where d is the total number

of components parameters.
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Proof. We have already proved the Jeffreys prior is constant on the global mean

(first proof of Lemma 4.3.2).

Consider a two-component mixture model and the reparametrization (4.3). With

some computations, it is straightforward to derive the Fisher information matrix for

this model, partly shown in Table 4.1, where each term is multiplied for a term

which does not depend on τ .

Table 4.1: Factors depending on τ of the Fisher information matrix for the

reparametrized model (4.3)

.

σ δ p µ τ

σ 1 1 1 τ−1 τ−1

δ 1 1 1 τ−1 τ−1

p 1 1 1 τ−1 τ−1

µ τ−1 τ−1 τ−1 τ−2 τ−2

τ τ−1 τ−1 τ−1 τ−2 τ−2

Therefore, the Fisher information matrix considered as a function of τ is a block

matrix. From well-known results in linear algebra, if we consider a block matrix

M =

[
A B

C D

]

then its determinant is given by det(M) = det(A − BD−1C) det(D). In the case

of a two-component mixture model, det(D) ∝ τ−4, while det(A − BD−1C) ∝ 1

(always seen as functions of τ only). Then the Jeffreys prior for a two-component

location-scale mixture model is proportional to τ−2 and, then, not convergent.

This result may be easily generalized to the case of k components.

4.3.2 Posterior distributions of Jeffreys priors

We now derive analytical and computational characterizations of the posterior dis-

tributions associated with Jeffreys priors for mixture models. Simulated examples

are used to support the analytical results.
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For this purpose, we have repeated simulations from the models

0.50N (µ1, 1) + 0.50N (µ2, 0.5) (4.7)

and

0.25N (µ1, 1) + 0.65N (µ0, 0.5) + 0.10N (µ2, 5) (4.8)

where µ1 and µ2 are chosen to be either close (µ1 = −1, µ2 = 2) or well separated

(µ1 = −10, µ2 = 15) and µ0 = 0.

The Tables shown in the following will analyze the behavior of simulated Markov

chains with the goal to approximate the posterior distribution. Even if the output of

an MCMC method is not conclusive to assess the properness of the target distribu-

tion, it may give a hint on improperness: if the target is improper, an MCMC chain

cannot be positive recurrent but instead either null-recurrent or transient (Robert

and Casella 2004), then it should show convergence problems, as trends or difficulties

to move from a particular region. Therefore, simulation studies will be used to sup-

port analytical results on properness or improperness of the posterior distribution.

In the following, we will say that the results are stable if they show a convergent

behavior, i.e. they move around the true values which have generated the data. In

particular, an approximation is stable if the proportion of experiments for which the

chains show no trend and acceptance rates around the expected values (20%-40%,

which means that there are not regions where the chain have difficulties to move

from) is 0.

The following results are based on Gaussian mixture models, anyway, the Jeffreys

prior has a behavior common to all the location-scale families, as shown in Section

4.3.1, as well as the likelihood function; therefore the results may be generalized to

any location-scale family.

Location parameters unknown

A first numerical study where the Jeffreys prior and its posterior are computed on a

grid of parameter values confirms that, provided the means only are unknown, the

prior is constant on the difference between the means and takes higher and higher

values as the difference between them increases. However, the posterior distribution

is correctly concentrated around the true values for a sufficiently high sample size

and it exhibits the classical bimodal nature of such posteriors (Celeux et al. 2000).
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Figure 4.7: Approximations (on a grid of values) of the Jeffreys prior (on the log-

scale) when only the means of a Gaussian mixture model with two components are

unknown (on the top) and of the derived posterior distribution (with known weights

both equal to 0.5 and known standard deviations both equal to 5).

In Figure 4.7, the posterior distribution appears to be perfectly symmetric because

the other parameters (weights and standard deviations) have been fixed as identical.

Tables 4.2 and 4.3 show that, when considering a two-component Gaussian mix-

ture model, the results are stabilizing for a sample size equal to 10 if the components

are close and they are always stable if the means are far enough; on the other hand,

huge sample sizes (around 100 observations) are needed to have always converging

chains for a three-component mixture model (even if, when the components are

well-separated a sample size equal to 10 seems to be enough to have stable results).

Lemma 4.3.5. When k = 2, the posterior distribution derived from the Jeffreys

prior when only the means are unknown is proper.

Proof. The conditional Jeffreys prior for the means of a Gaussian mixture model is

πJ(µ|p, σ) ∝ p1p2

σ2
1σ

2
2

{∫ +∞

−∞

[tN (0, σ1)]2

p1N (0, σ1) + p2N (δ, σ2)
dt

×
∫ +∞

−∞

[uN (0, σ2)]2

p1N (−δ, σ1) + p2N (0, σ2)
du

−
(∫ +∞

−∞

tN (0, σ1)(t− δ)N (δ, σ2)

p1N (0, σ1) + p2N (δ, σ2)
dt

)2
} 1

2
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where δ = µ2 − µ1.

The posterior distribution is then defined as

n∏
j=1

[p1N (µ1, σ1) + p2N (µ2, σ2)] πJ(µ1, µ2|p, σ)

The likelihood may be rewritten (without loss of generality, by considering σ1 =

σ2 = 1, since they are known) as

L(θ) =
n∏
j=1

[p1N (µ1, 1) + p2N (µ2, 1)]

=
1

(2π)
n
2

[
pn1e

− 1
2

∑n
i=1(xi−µ1)2 +

n∑
j=1

pn−1
1 p2e

− 1
2

∑
i6=j(xi−µ1)2− 1

2
(xj−µ2)2

+
n∑
j=1

∑
k 6=j

pn−2
1 p2

2e
− 1

2

∑
i6=j,k(xi−µ1)2− 1

2 [(xj−µ2)2+(xk−µ2)2]

+ · · ·+ pn2e
− 1

2

∑n
j=1(xj−µ2)2

]
(4.9)

Then, for |µ1| → ∞, L(θ) tends to the term pn2e
− 1

2

∑n
j=1(xj−µ2)2 that is constant for

µ1. Therefore we can study the behavior of the posterior distribution for this part

of the likelihood to assess its properness.

This explains why we want the following integral to converge:∫
R×R

pn2e
− 1

2

∑n
j=1(xj−µ2)2πJ(µ1, µ2)dµ1dµ2

which is equal to (by the change of variable µ2 − µ1 = δ)∫
R×R

pn2e
− 1

2

∑n
j=1(xj−µ1−δ)2πJ(µ1, δ)dµ1dδ

We have seen that the prior distribution only depends on the difference between the

means δ: ∫
R
pn2

∫
R
e−

1
2

∑n
j=1(xj−µ1−δ)2dµ1π

J(δ)dδ

∝
∫
R

∫
R
e−

1
2

∑n
j=1(xj−δ)2+µ1

∑n
j=1(xj−δ)− 1

2
nµ21dµ1π

J(δ)dδ

=

∫
R

[∫
R
eµ1

∑n
j=1(xj−δ)− 1

2
nµ21dµ1

]
e−

1
2

∑n
j=1(xj−δ)2πJ(δ)dδ

=

∫
R
e−

1
2

∑n
j=1(xj−δ)2+

∑n
j=1

(xj−δ)
2n πJ(δ)dδ

≈
∫
R
e−

n−1
2
δ2πJ(δ)dδ. (4.10)
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The prior on δ depends on the determinant of the corresponding Fisher informa-

tion matrix that is positive definite, then it is bounded by the product of the Fisher

information matrix diagonal entries:

π(δ) ≤ p1p2
σ1σ2


∫

+∞

−∞

[
tN (0, σ2

1)
]2

p1N (0, σ2
1) + p2N (δ, σ2

2)
dt×

∫
+∞

−∞

[
uN (0, σ2

2)
]2

p1N (−δ, σ2
1) + p2N (0, σ2

2)
du


1
2

(4.11)

where we have used the proof of lemma 4.3.2 and a change of variable (t − δ) = u

in the second integral. As δ → ±∞, this quantity is constant with respect to δ.

Therefore the integral (4.10) is convergent for n ≥ 2.

Unfortunately this result cannot be extended to the general case of k components.

Lemma 4.3.6. When k > 2, the posterior distribution derived from the Jeffreys

prior when only the means are unknown is improper.

Proof. In the case of k 6= 2 components, the Jeffreys prior for the location parameters

is still constant with respect to a reference mean (for example, µ1). Therefore it

depends on the difference parameters (δ2 = µ2−µ1, δ3 = µ3−µ1, · · · , δk = µk−µ1).

The Jeffreys prior will be bounded by the product on the diagonal, which is an

extension of (4.11):

πJ(δ2, · · · , δk) ≤ c


∫ ∞

−∞

[tN (0, σ2
1)]2

p1N (0, σ2
1) + · · ·+ pkN (δk, σ2

k)
dt

· · ·

∫ ∞

−∞

[uN (0, σ2
k)]

2

p1N (−δk, σ2
1) + · · ·+ pkN (0, σ2

k)
du


1
2

.

If we consider the case as in Lemma 4.3.5, where only the part of the likelihood

depending on e.g. µ2 may be considered, the convergence of the following integral

has to be studied:

∫
R
· · ·
∫
R
e−

n−1
2
δ22πJ(δ2, · · · , δk)dδ2 · · · dδk



113 Jeffreys prior for mixture estimation

In this case, however, the integral with respect to δ2 may converge, nevertheless

the integrals with respect to δj with j 6= 2 will diverge, since the prior tends to be

constant for each δj as |δj| → ∞.

This results confirms the idea that each part of the likelihood gives information

about at most the difference between the location of the respective components and

the reference locations, but not on the locations of the other components.

Scale parameters unknown

Lemma 4.3.7. The posterior distribution derived from the Jeffreys prior when only

the standard deviations are unknown is improper.

Proof. Consider equation (4.9) generalized to the case of σ1 and σ2 unknown: then

when we integrate the posterior distribution with respect to σ1 and σ2, the complete

integral may be split into several integrals then summed up. In particular, if we

consider the first part of the likelihood (which only depends on the first component

of the mixture) and use the change of variable used in (4.6), we have:

∫ ∞

0

∫ ∞

0

c
pn1
τn
p1p2

τσ
exp

{
− 1

2τ 2

n∑
i=1

(xi − µ1)2

}

×


∫ ∞

−∞

(z2 − 1)
2

exp {−z2}

p1 exp
{
− z2

2

}
+ p2

σ
exp

{
− (zτ+µ1−µ2)2

2τ2σ2

}dz
×

∫ ∞

−∞

(u2 − 1)
2

exp {−u2}

p1σ exp
{
− (uτσ+µ2−µ1)2

2τ2

}
+ p2 exp

{
−u2

2

}du


1
2

dτdσ.

The integral with respect to τ in the previous equation converges, nevertheless

the likelihood does not provide information for σ, then the integral with respect to

σ diverges and the posterior will be improper.

This results may be easily extented to the case of k components: there is a

part of the likelihood which only depends on the global scale parameter and is not

informative for any other component; the form of the integral will remain the same,

with integrations with respect to σ1, σ2, · · · , σk−1 which do not converge.
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Figure 4.8: Approximations (on a grid of values) of the Jeffreys prior (on the log-

scale) when only the standard deviations of a Gaussian mixture model with two

components are unknown (on the top) and of the derived posterior distribution

(with known weights both equal to 0.5 and known means equal to (−5, 5)). The

blue cross represents the maximum likelihood estimates.

When only the standard deviations are unknown, the Jeffreys prior is concen-

trated around 0. The posterior distribution shown in Figures 4.8 turns out to be

concentrated around the true values of the parameters only for a sufficient high

sample size (in the figures, n is always equal to 100).

Figures 4.9 and 4.10 show the prior and the posterior distributions of the scale

parameters of a two-component mixture model for some situations with different

weights and different means.

Repeated simulations show that, for a Gaussian mixture model with two compo-

nents, a sample size equal to 10 is necessary to have convergent results, while for a

three-component Gaussian mixture model with a sample size equal to 50 it is still

possible to have chains stuck to values of standard deviations close to 0.

Table 4.4 and 4.5 show results for repeated simulations in the cases of two-

component and three-component Gaussian mixture models with unknown standard

deviations, respectively, where the means that generate the data may be close or far

from one another. In Table 4.4 it seems that the chains tend to be convergent for
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Figure 4.9: Same as Figure 4.8 but with known weights equal to (0.25, 0.75) and

known means equal to (−1, 1).

Figure 4.10: Same as Figure 4.8 but with known weights equal to (0.25, 0.75) and

known means equal to (−2, 7).
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Figure 4.11: Boxplots of posterior means of the weigths and the means of the three-

component mixture model 0.25N (−1, 1) + 0.65N (0, 0.5) + 0.10N (2, 5) for 50 repli-

cations of the experiment, obtained via MCMC with 105 simulations. The red cross

represents the true value.

sample sizes smaller than 10, but in Table 4.5 one may see that even with a high

sample size (equal to 50) it may happens, for k = 3, that the chains are stuck to

very small values of standard deviations and this fact confirms what we have proved

in Lemma 4.3.7.

Location and weight parameters unknown.

Figure 4.11 shows the boxplots of repeated simulations when both the weights and

the means are unknown. It is evident that the posterior chains are concentrated

around the true values, neverthless some chains (the 14% of the replications) show a

drift to very high values (in absolute value) and this behavior suggests improperness

of the posterior distribution.

All the parameters unknown

Improperness of the prior does not imply improperness of the posterior, obviously,

but requires a careful checking of whether or not the posterior is proper, however

the proof of Lemma 4.3.7 gives an hint about the actual properness of the posterior

distribution when all the parameters are unknown.
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Theorem 4.3.1. The posterior distribution derived from the Jeffreys prior when all

the parameters are unknown is improper.

Proof. Consider the elements on the diagonal of the Fisher information matrix;

again, since the Fisher information matrix is positive definite, the determinant is

bounded by the product of the terms in the diagonal.

Consider a reparametrization into τ = σ1 and τσ = σ2. Then it is straightforward

to see that the integral of this part of the prior distribution will depend on a term

(τ)−(d+1)(σ)−d. Again, as in the proof of Lemma 4.3.7, when composing the prior

with the part of the likelihood which only depends on the first component, this part

does not provide information about the parameters σ and the integral will diverge.

In particular, the integral of the first part of the posterior distribution relative

to the part of the likelihood dependent on the first component only and on the

product of the diagonal terms of the Fisher information matrix for the prior when

considering a two-component mixture model is

∫ 1

0

∫ +∞

−∞

∫ +∞

−∞

∫ ∞
0

∫ ∞
0

c
pn1
τn

p2
1p

2
2

τ 3σ2
exp

{
− 1

2τ 2

n∑
i=1

(xi − µ1)2

}

×


∫ ∞
−∞

[
σ exp

{
− (τσy+δ)2

2τ2

}
− exp

{
−y2

2

}]2

p1σ exp
{
− (τσy+δ)2

2τ2

}
+ p2 exp

{
−y2

2

}dy
×
∫ ∞
−∞

z2 exp(−z2)

p1 exp
{
− z2

2

}
+ p2

σ
exp

{
− (zτ−δ)2

2τ2σ2

}dz
×
∫ ∞
−∞

w2 exp {−w2}

p1σ exp
{
− (τσw+δ)2

2τ2σ2

}
+ p2 exp

{
−w2

2

}dw
×
∫ ∞
−∞

(z2 − 1)
2

exp {−z2}

p1 exp
{
− z2

2

}
+ p2

σ
exp

{
− (zτ+µ1−µ2)2

2τ2σ2

}dz
×
∫ ∞
−∞

(u2 − 1)
2

exp {−u2}

p1σ exp
{
− (uτσ+µ2−µ1)2

2τ2

}
+ p2 exp

{
−u2

2

}du


1
2

dτdσdµ1dµ2dp1.

When considering the integrals relative to the Jeffreys prior, they do not represent

an issue for convergence with respect to the scale parameters, because exponential

terms going to 0 as the scale parameters tend to 0 are present. However, when

considering the part out of the previous integrals, a factor σ−2 whose behavior is
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not convergent is present. Then this particular part of the posterior distribution is

not integrating.

When considering the case of k components, the integral will always inversily

depends on σ1, σ2, · · · , σk−1 and then the posterior will always be improper.

As a note aside, it is worth noting that the usual separation between parameters

proposed by Jeffreys himself in multidimensional problems does not change the be-

havior of the posterior, because even if the Fisher information matrix is decomposed

as

I(θ) =

(
I1(θ1) 0

0 I2(θ2)

)

for any possible combination of the parameters θ = (p, µ1, µ2, σ1, σ2) (note that θ1

and θ2 are vectors and I(θ1) and I(θ2) are diagonal or non-diagonal matrices), the

product of the elements in the diagonal (considered in the proof) will be the same.

For small sample sizes, the chains tend to get stuck when very small values of

standard deviations are accepted. Table 4.6 and 4.7 show the results for different

sample sizes and different scenarios (in particular, the situations when the means

are close or far from each other are considered) for a mixture model with two and

three components respectively. The second and the third columns show the reason

why the chain goes into trouble: sometimes the chains do not converge and tend

towards very high values of means, sometimes the chains get stuck to very small

values of standard deviations.

Since the improperness of the posterior distribution is mainly due to the scale

parameters, we may use a reparametrization of the problem as in (4.3) and use a

proper prior on the parameter σ, for example, by following Robert and Mengersen

(1999)

p(σ) =
1

2
U[0,1](σ) +

1

2

1

U[0,1](σ)

and the Jeffreys prior for all the other parameters (p, µ, δ, τ) conditionally on σ.

Actually, using a proper prior on σ does not avoid convergence trouble, as demon-

strated by Table 4.8, which shows that, even if the chains with respect to the stan-
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dard deviations are not stuck around 0 when using a proper prior for σ in the

reparametrization proposed by Robert and Mengersen (1999), the chains with re-

spect to the locations parameters demonstrate a divergent behavior.

4.4 A noninformative alternative to Jeffreys prior

The information brought by the Jeffreys prior does not seem to be enough to conduct

inference in the case of mixture models. The computation of the determinant creates

a dependence between the elements of the Fisher information matrix in the definition

of the prior distribution which makes it difficult to find slight modifications of this

prior that would lead to a proper posterior distribution. For example, using a proper

prior for part of the scale parameters and the Jeffreys prior conditionally on them

does not avoid impropriety, as we have demonstrated in Section 4.3.2.

The literature covers attempts to define priors which add a small amount of in-

formation that is sufficient to conduct the statistical analysis without overwhelming

the information contained in the data. Some of these are related to the computa-

tional issues in estimating the parameters of mixture models, as in the approach of

Casella et al. (2002), who find a way to use perfect slice sampler by focusing on com-

ponents in the exponential family and conjugate priors. A characteristic example

is given by Richardson and Green (1997), who propose weakly informative priors,

which are data-dependent (or empirical Bayes) and are represented by flat normal

priors over an interval corresponding to the range of the data. Nevertheless, since

mixture models belong to the class of ill-posed problems, the influence of a proper

prior over the resulting inference is difficult to assess.

Another solution found in Mengersen and Robert (1996) proceeds through the

reparametrization (4.3) and introduces a reference component that allows for im-

proper priors. This approach then envisions the other parameters as departures

from the reference and ties them together by considering each parameter θi as a

perturbation of the parameter of the previous component θi−1. This perspective is

justified by the fact that the (i− 1)-th component is not informative enough to ab-

sorb all the variability in the data. For instance, a three-component mixture model
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gets rewritten as

pN (µ, τ 2) + (1− p)qN (µ+ τθ, τ 2σ2
1)

+ (1− p)(1− q)N (µ+ τθ + τσε, τ 2σ2
1σ

2
2)

where one can impose the constraint 1 ≥ σ1 ≥ σ2 for identifiability reasons. Under

this representation, it is possible to use an improper prior on the global location-scale

parameter (µ, τ), while proper priors must be applied to the remaining parameters.

This reparametrization has been used also for exponential components by Gruet

et al. (1999) and Poisson components by Robert and Titterington (1998). More-

over, Roeder and Wasserman (1997) propose a Markov prior which follows the same

resoning of dependence between the parameters for Gaussian components, where

each parameter is again a perturbation of the parameter of the previous component

θi−1.

This representation suggests to define a global location-scale parameter in a more

implicit way, via a hierarchical model that considers more levels in the analysis and

choose noninformative priors at the last level in the hierarchy.

More precisely, consider the Gaussian mixture model (4.1)

g(x|θ) =
K∑
i=1

piN (x|µi, σi). (4.12)

The parameters of each component may be considered as related in some way; for

example, the observations have a reasonable range, which makes it highly improb-

able to face very different means in the above Gaussian mixture model. A similar

argument may be used for the standard deviations.

Therefore, at the second level of the hierarchical model, we may write

µi
iid∼ N (µ0, ζ0)

σi
iid∼ 1

2
U(0, ζ0) +

1

2

1

U(0, ζ0)

p ∼ Dir

(
1

2
, · · · , 1

2

)
(4.13)

which indicates that the location parameters vary between components, but are

likely to be close, and that the scale parameters may be lower or bigger than ζ0, but
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not exactly equal to ζ0. The weights are given a Dirichlet prior (or in the case of just

two components, a Beta prior) independently from the components’ parameters.

At the third level of the hierarchical model, the prior may be noninformative:

π(µ0, ζ0) ∝ 1

ζ0

. (4.14)

As in Mengersen and Robert (1996) the parameters in the mixture model are

considered tied together; on the other hand, this feature is not obtained via a rep-

resentation of the mixture model itself, but via a hierarchy in the definition of the

model and the parameters.

Theorem 4.4.1. The posterior distribution derived from the hierarchical represen-

tation of the Gaussian mixture model associated with (4.12), (4.13) and (4.14) is

proper.

Proof. Consider the composition of the three levels of the hierarchical model de-

scribed in equations (4.12), (4.13) and (4.14):

π(µ,σ, µ0, ζ0; x) ∝ L(µ1, µ2, σ1, σ2; x)p−1/2(1− p)−1/2

× 1

ζ0

1

2πζ2
0

exp

{
−(µ1 − µ0)2(µ2 − µ0)2

2ζ2
0

}
×
[

1

2

1

ζ0

I[σ1∈(0,ζ0)](σ1) +
1

2

ζ0

σ2
1

I[σ1∈(ζ0,+∞)](σ1)

]
×
[

1

2

1

ζ0

I[σ2∈(0,ζ0)](σ2) +
1

2

ζ0

σ2
2

I[σ2∈(ζ0,+∞)](σ2)

]
(4.15)

where L(·; x) is given by equation (4.9).

Once again, we can initialize the proof by considering only the first term in the

sum composing the likelihood function for the mixture model. Then the product in

(4.15) may be split into four terms corresponding to the different terms in the scale

parameters’ prior. For instance, the first term is
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∫ ∞
0

∫ ∞
−∞

∫
R

∫
R

∫
R+

∫
R+

∫ 1

0

1

σn1
pn1 exp

{
−
∑n

i=1(xi − µ1)2

2σ2
1

}
× 1

ζ3
0

exp

{
−(µ1 − µ0)2(µ2 − µ0)2

2ζ2
0

}
× 1

4

1

ζ0

1

ζ0

I[σ1∈(0,ζ0)](σ1)I[σ2∈(0,ζ0)](σ2)dpdσ1dσ2dµ1dµ2dµ0dζ0

and the second one

∫ ∞
0

∫ ∞
−∞

∫
R

∫
R

∫
R+

∫
R+

∫ 1

0

1

σn1
pn1 exp

{
−
∑n

i=1(xi − µ1)2

2σ2
1

}
× 1

ζ3
0

exp

{
−(µ1 − µ0)2(µ2 − µ0)2

2ζ2
0

}
× 1

4

1

ζ0

ζ0

σ2
2

I[σ1∈(0,ζ0)](σ1)I[σ2∈(ζ0,∞)](σ2)dpdσ1dσ2dµ1dµ2dµ0dζ0.

The integrals with respect to µ1, µ2 and µ0 converge, since the data are carrying

information about µ0 through µ1. The integral with respect to σ1 converges as well,

because, as σ1 → 0, the exponential function goes to 0 faster than 1
σn1

goes to ∞
(integrals where σ1 > ζ0 are not considered here because this reasoning may easily

extend to those cases). The integrals with respect to σ2 converge, because they

provide a factor proportional to ζ0 and 1/ζ0 respectively which simplifies with the

normalizing constant of the reference distribution (the uniform in the first case and

the Pareto in second one). Finally, the term 1/ζ4
0 resulting from the previous oper-

ations has its counterpart in the integrals relative to the location priors. Therefore,

the integral with respect to ζ0 converges.

The part of the posterior distribution relative to the weights is not an issue, since

the weights belong to the corresponding simplex.

Table 4.9 shows the results given by simulation from the posterior distribution

of the hierarchical mixture model and confirms that the chains always converge.

Figures 4.12–4.19 show the reslts of a simulation study to approximate the poste-

rior distribution of the means of a two or three-component mixture model, compared

to the true values (red vertical lines) and for different sample sizes, from n = 3 to

n = 1000.
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Figure 4.12: Distribution of the posterior means for the hierarchical mixture model

with two components, global mean µ0 = 0 and global variance ζ0 = 5, based on 50

replications of the experiment with different sample sizes, black and blue lines for

the marginal posterior distribution of µ1 and µ2 respectively.
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Figure 4.13: Same caption as in Figure 4.12.

Figure 4.14: Same caption as in Figure 4.12.
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Figure 4.15: Same caption as in Figure 4.12.

4.5 Implementation features

The computing expense due to derive the Jeffreys prior for a set of parameter values

is in O(d2) if d is the total number of (independent) parameters.

Each element of the Fisher information matrix is an integral of the form

−
∫
X

∂2 log
[∑k

h=1 ph f(x|θh)
]

∂θi∂θj

[
k∑

h=1

ph f(x|θh)

]−1

dx

which has to be approximated. We have applied both numerical integration and

Monte Carlo integration and simulations show that, in general, numerical integration

obtained via Gauss-Kronrod quadrature (see Piessens et al. (1983) for details), has

more stable results. Neverthless, when one or more proposed values for the standard

deviations or the weights is too small, the approximations tend to be very dependent

on the bounds used for numerical integration (usually chosen to omit a negligible

part of the density) or the numerical approximation may not be even applicable. In

this case, Monte Carlo integration seems to have more stable, where the stability of

the results depends on the Monte Carlo sample size.
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Figure 4.16: Distribution of the posterior means for the hierarchical mixture model

with three components, global mean µ0 = 0 and global variance ζ0 = 5, based on 50

replications of the experiment with different sample sizes (the red lines stands for

the true values, black, green and blue lines for the marginal posterior distributions

of µ1, µ2 and µ3 respectively).
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Figure 4.17: Same caption as in Figure 4.16.

Figure 4.18: Same caption as in Figure 4.16.
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Figure 4.19: Same caption as in Figure 4.16.

Figure 4.20 shows the value of the Jeffreys prior obtained via Monte Carlo inte-

gration of the elements of the Fisher information matrix for an increasing number

of Monte Carlo simulations both in the case where the Jeffreys prior is concentrated

(where the standard deviations are small) and where it assumes low values. The

value obtained via Monte Carlo integration is then compared with the value ob-

tained via numerical integration. The sample size relative to the point where the

graph stabilizes may be chosen to perform the approximation.

A similar analysis is shown in Figures 4.21 and 4.22 which provide the boxplots

of 100 replications of the Monte Carlo approximations for different numbers of sim-

ulations (on the x -axis); one can choose to use the number of simulations which lead

to a reasonable or acceptable variability of the results.

Since the approximation problem is one-dimensional, another numerical solution

could be based on the sums of Riemann; Figure 4.23 shows the comparison between

the results of the Gauss-Kronrod quadrature procedure and a procedure based on

sums of Riemann for an increasing number of points considered in a region which

contain the 99.999% of the data density. Moreover, Figure 4.24 shows the com-

parison between the approximation to the Jeffreys prior obtained via Monte Carlo

integration and via the sums of Riemann: it is clear that the sums of Riemann lead
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Figure 4.20: Jeffreys prior obtained via Monte Carlo integration (and numerical

integration, in red) for the model 0.25N (−10, 1)+0.10N (0, 5)+0.65N (15, 7) (above)

and for the model 1
3
N (−1, 0.2) + 1

3
N (0, 0.2) + 1

3
N (1, 0.2) (below).

Figure 4.21: Boxplots of 100 replications of the procedure which approximates the

Fisher information matrix via Monte Carlo integration to obtain the Jeffreys prior

for the model 0.25N (−10, 1) + 0.10N (0, 5) + 0.65N (15, 7) for sample sizes from 500

to 3000. The value obtained via numerical integration is represented by the red line.
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Figure 4.22: Same caption as in Figure 4.21 for the model 1
3
N (−1, 0.2)+ 1

3
N (0, 0.2)+

1
3
N (1, 0.2).

to more stable results in comparison with Monte Carlo integration. On the other

hand, they can be applied in more situations than the Gauss-Kromrod quadrature,

in particular, in cases where the standard deviations are very small (of order 10−2).

Nevertheless, when the standard deviations are smaller than this, one has to pay

attention on the features of the function to integrate. In fact, the mixture density

tends to concentrate around the modes, with regions of density close to 0 between

them. The elements of the Fisher informtation matrix are, in general, ratios be-

tween the components’ densities and the mixture density, then in those regions an

indeterminate form of type 0
0

is obtained; Figure 4.25 represents the behavior of one

of these elements when σi → 0 for i = 1, 2.

Thus, we have decided to use the sums of Riemann (with a number of points

equal to 550) to approximate the Jeffreys prior when the standard deviations are

sufficiently large and Monte Carlo integration (with sample sizes of 1500) when

they are too small. In this case, the variability of the results seems to decrease as

σi approaches 0, as shown in Figure 4.26.

We have chosen to consider Monte Carlo samples of size equal to 1500 because

both the value of the approximation and its standard deviations are stabilizing.

An adaptive MCMC algorithm has been used to define the variability of the kernel

density functions used to propose the moves. During the burnin, the variability of
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Figure 4.23: Comparison between the Jeffreys prior density obtained via integra-

tion in the Fisher information matrix via Gauss-Kronrod quadrature and sums of

Riemann for the model 0.25N (−10, 1) + 0.10N (0, 5) + 0.65N (15, 7) (above) and
1
3
N (−1, 0.2) + 1

3
N (0, 0.2) + 1

3
N (1, 0.2) (below).

the kernel distributions has been reduced or increased depending on the acceptance

rate, in a way such that the acceptance rate stay between 20% and 40%. The

transitional kernel used have been truncated normals for the weights, normals for

the means and log-normals for the standard deviations (all centered on the values

accepted in the previous iteration).

4.6 Conclusion

This thorough analysis of the Jeffreys priors in the setting of Gaussian mixtures

shows that mixture distributions can also be considered as an ill-posed problem with

regards to the production of noninformative priors. Indeed, we have shown that most

configurations for Bayesian inference in this framework do not allow for the standard

Jeffreys prior to be taken as a reference. While this is not the first occurrence where

Jeffreys priors cannot be used as reference priors, the wide range of applications

of mixture distributions weights upon this discovery and calls for a new paradigm

in the construction of noninformative Bayesian procedures for mixture inference.

Our proposal in Section 4.4 could constitute such a reference, as it simplifies the
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Figure 4.24: Boxplots of 100 replications of the procedure based on Monte Carlo

integration (above) and sums of Riemann (below) which approximates the Fisher

information matrix of the model 0.25N (−10, 1) + 0.10N (0, 5) + 0.65N (15, 7) for

sample sizes from 500 to 1700. The value obtained via numerical integration is

represented by the red line (in the graph below, all the approximations obtained

with more than 550 knots give the same result, exactly equal to the one obtained

via Gauss-Kronrod quadrature).

Figure 4.25: The first element on the diagonal of the Fisher information ma-

trix relative to the first weight of the two-component Gaussian mixture model

0.5N (−1, 0.01) + 0.5N (2, 0.01).
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Figure 4.26: Approximation of the Jeffreys prior (in log-scale) for the two-component

Gaussian mixture model 0.5N (−1, σ) + 0.5N (2, σ), where σ is taken equal for both

components and decreasing.

representation of Mengersen and Robert (1996).



Table 4.2: µ unknown, k=2: results of 50 replications of the experiment for both

close and far means with a Monte Carlo approximation of the posterior distribution

based on 105 simulations and a burn-in of 104 simulations. The table shows the

average acceptance rate, the proportion of chains diverging towards higher values

and the average ratio between the log-likelihood of the last accepted values and the

true values in the 50 replications when using the Jeffreys prior (on the left) and a

prior constant on the means (on the right).

k=2 Jeffreys prior (Close Means) Constant prior

Sample

Size

Ave.

Accept.

Rate

Chains towards

high values

Ave.

lik(θfin)

/

lik(θtrue)

Ave.

Accept.

Rate

Chains towards

high values

Ave.

lik(θfin)

/

lik(θtrue)

2 0.2505 0.88 1.8182 0.2709 0.72 1.9968

3 0.2656 0.94 1.6804 0.2782 0.58 1.9613

4 0.2986 0.56 1.3097 0.2812 0.18 1.9824

5 0.2879 0.48 1.2918 0.2830 0.14 1.8358

6 0.3066 0.16 1.1251 0.3090 0.00 1.9363

7 0.3052 0.24 1.1205 0.3103 0.02 1.7994

8 0.3181 0.02 1.0149 0.3521 0.00 1.3923

9 0.3101 0.02 1.0244 0.3369 0.00 1.5219

10 0.3460 0.00 0.9914 0.3627 0.00 1.2933

15 0.3418 0.00 1.0097 0.3913 0.00 1.1970

20 0.3881 0.00 0.9948 0.4097 0.00 1.1032

50 0.4556 0.00 1.0005 0.4515 0.00 1.0303

100 0.5090 0.00 1.0008 0.5090 0.00 1.0007

500 0.5603 0.00 1.0006 0.5305 0.00 1.0002

1000 0.4915 0.00 1.0006 0.2327 0.00 1.0042

k=2 (Far means) Constant prior

2 0.2752 0.00 1.0838 0.2736 0.00 1.0474

3 0.2692 0.00 1.0313 0.2546 0.00 1.0313

4 0.2969 0.00 1.1385 0.3152 0.00 1.0167

5 0.2938 0.00 1.0138 0.2920 0.00 0.9968

6 0.3066 0.00 1.2207 0.3470 0.00 0.9975

7 0.3350 0.00 1.1055 0.3473 0.00 0.9920

8 0.3154 0.00 1.1374 0.3583 0.00 1.0092

9 0.3309 0.00 1.1566 0.3512 0.00 0.9893

10 0.3338 0.00 1.1820 0.3601 0.00 1.0112

15 0.3579 0.00 1.1796 0.3840 0.00 1.0136

20 0.3950 0.00 1.1615 0.4190 0.00 1.0096

50 0.4879 0.00 1.1682 0.4659 0.00 1.0059

100 0.5083 0.00 1.2123 0.4957 0.00 1.0017

500 0.5570 0.00 1.1996 0.4777 0.00 0.9976

1000 0.3463 0.00 1.2161 0.1792 0.00 1.0010
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Table 4.3: µ unknown, k=3: as in Table 4.2 for two three-component Gaussian

mixture models, with close and far means, only for the Jeffreys prior.

k=3 Jeffreys prior (Close Means)

Sample

Size

Ave.

Accept.

Rate

Chains towards

high values

Ave.

lik(θfin)

/

lik(θtrue)

2 0.2366 1.00 2.5175

3 0.2608 1.00 2.8447

4 0.2455 0.98 1.3749

5 0.2446 1.00 1.3807

6 0.2330 1.00 1.4062

7 0.2480 0.98 1.2411

8 0.2684 0.94 1.2535

9 0.2784 0.98 1.2744

10 0.2904 0.68 1.1168

15 0.3214 0.74 1.1217

20 0.3819 0.32 1.0616

30 0.3774 0.10 1.0383

50 0.4407 0.04 1.0108

100 0.4935 0.00 1.0018

500 0.5577 0.00 1.0068

1000 0.5511 0.00 1.0006

k=3 (Far means)

2 0.2641 1.00 2.1786

3 0.2804 1.00 2.1039

4 0.2813 0.82 1.1173

5 0.2840 0.84 1.0412

6 0.2887 0.84 1.1050

7 0.2865 0.82 1.0840

8 0.3248 0.66 1.0982

9 0.3277 0.76 1.1177

10 0.2998 0.00 1.2604

15 0.3038 0.00 1.3149

20 0.2869 0.00 1.3533

30 0.3762 0.00 1.2479

50 0.4283 0.00 1.3791

100 0.5251 0.00 1.2585

500 0.5762 0.00 1.4779

1000 0.4751 0.00 1.2161
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Table 4.4: σ unknown, k = 2: results of 50 replications of the experiment for both

close and far means with a Monte Carlo approximation of the posterior distribution

based on 105 simulations and a burn-in of 104 simulations. The table shows the

average acceptance rate, the proportion of chains stuck at values of standard devia-

tions close to 0 and the average ratio between the log-likelihood of the last accepted

values and the true values in the 50 replications when using the Jeffreys prior.
k=2 Jeffreys prior (Close Means)

Sample

Size

Ave.

Accept.

Rate

Chains stuck

at small values

of σ

Ave.

lik(θfin)

/

lik(θtrue)

2 0.2414 0.02 1.2245

3 0.1875 0.02 1.1976

4 0.2403 0.00 1.0720

5 0.2233 0.02 1.1269

6 0.2475 0.00 1.0553

7 0.2494 0.02 1.0324

8 0.2465 0.00 1.0093

9 0.2449 0.00 1.0026

10 0.2476 0.00 0.9960

15 0.2541 0.00 0.9959

20 0.2480 0.00 0.9946

30 0.2364 0.00 1.0052

50 0.2510 0.00 0.9981

100 0.3033 0.00 0.9994

500 0.4314 0.00 0.9999

1000 0.4353 0.00 1.0001

k=2 (Far means)

2 0.2262 0.14 1.09202

3 0.2384 0.10 1.0536

4 0.2542 0.02 1.0281

5 0.2502 0.04 0.9932

6 0.2550 0.00 0.9981

7 0.2554 0.00 0.9569

8 0.2473 0.00 0.9929

9 0.2481 0.00 0.9888

10 0.2402 0.00 0.9969

15 0.2431 0.00 0.9988

20 0.2416 0.00 0.9998

30 0.2453 0.04 1.0016

50 0.2550 0.00 0.9992

100 0.2359 0.00 0.9999

500 0.3000 0.00 1.0001

1000 0.3345 0.00 1.0000
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Table 4.5: σ unknown, k = 3: as in table 4.4 for two three-components Gaussian

mixture models, with close and far means.

k=3 Jeffreys prior (Close Means)

Sample

Size

Ave.

Accept.

Rate

Chains stuck

at small values

of σ

Ave.

lik(θfin)

/

lik(θtrue)

2 0.0441 0.88 0.1206

5 0.0659 0.72 1.0638

6 0.0621 0.70 1.1061

7 0.1013 0.54 1.0655

8 0.0781 0.52 1.0880

9 0.0729 0.60 1.1003

10 0.1506 0.26 1.0516

15 0.1689 0.18 1.0493

20 0.2322 0.10 1.0478

30 0.2366 0.00 1.0125

50 0.4407 0.02 1.0061

100 0.2666 0.00 1.0021

500 0.3871 0.00 1.0003

1000 0.4353 0.00 1.0001

k=3 (Far means)

2 0.0222 0.78 1.0045

5 0.0610 0.44 1.0427

6 0.0567 0.52 1.0317

7 0.0779 0.46 1.0147

8 0.0862 0.32 1.0244

9 0.1312 0.26 1.0027

10 0.1472 0.18 1.0350

15 0.15884 0.14 1.0170

20 0.2331 0.06 1.0092

30 0.2464 0.04 1.0062

50 0.2498 0.00 1.0017

100 0.2567 0.00 1.0008

500 0.2594 0.00 0.9999

1000 0.3073 0.00 1.2161
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Table 4.6: k=2, (p, µ, σ) unknown: results of 50 replications of the experiment

for both close and far means with a Monte Carlo approximation of the posterior

distribution based on 105 simulations and a burn-in of 104 simulations. The table

shows the average acceptance rate, the proportion of chains diverging towards higher

values, the proportion of chains stuck at values of standard deviations close to 0 and

the average ratio between the log-likelihood of the last accepted values and the true

values in the 50 replications when using the Jeffreys prior.

k=2 Jeffreys prior (Close Means)

Sample

Size

Ave.

Accept.

Rate

Chains stuck

at small values

of σ

Chains towards

high values of

µ

Ave.

lik(θfin)

/

lik(θtrue)

5 0.1119 0.54 0.74 3.5280

6 0.1241 0.56 0.74 3.6402

7 0.0927 0.56 0.70 3.2180

8 0.0693 0.54 0.70 3.1380

9 0.1236 0.42 0.72 3.3281

10 0.1081 0.44 0.84 2.8173

11 0.1172 0.40 0.78 2.1455

12 0.1107 0.40 0.70 1.8998

13 0.1273 0.44 0.74 1.8269

14 0.1253 0.42 0.76 1.2876

15 0.1218 0.36 0.82 1.2949

20 0.1278 0.38 0.66 1.2587

k=2 (Far means)

5 0.1650 0.18 0.30 3.7712

6 0.2218 0.12 0.20 3.1400

7 0.1836 0.12 0.36 3.1461

8 0.2313 0.08 0.08 3.5102

9 0.1942 0.14 0.12 3.5585

10 0.2290 0.04 0.02 3.0718

11 0.2320 0.04 0.02 2.9825

12 0.2305 0.08 0.02 2.9122

13 0.2264 0.06 0.00 2.9571

14 0.2292 0.08 0.04 1.0612

15 0.2005 0.12 0.04 1.0804

20 0.2343 0.00 0.02 1.0146
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Table 4.7: k=3, (p, µ, σ) unknown: as in table 4.6 for two three-component Gaussian

mixture models with close and far means.
k=3 Jeffreys prior (Close Means)

Sample

Size

Ave.

Accept.

Rate

Chains stuck

at small values

of σ

Chains towards

high values of

µ

Ave.

lik(θfin)

/

lik(θtrue)

5 0.0302 0.76 0.44 2.9095

6 0.0368 0.76 0.48 3.2507

7 0.0290 0.80 0.30 3.1318

8 0.0578 0.62 0.54 3.0043

9 0.0488 0.74 0.52 2.5798

10 0.0426 0.70 0.44 2.3023

11 0.0572 0.66 0.38 1.7497

12 0.0464 0.66 0.48 1.4032

13 0.0706 0.52 0.44 1.9303

14 0.0556 0.66 0.36 1.3588

15 0.0610 0.74 0.44 1.3588

20 0.0654 0.48 0.46 1.2161

k=3 (Far means)

5 0.0644 0.60 0.10 5.9707

6 0.0631 0.64 0.18 2.0557

7 0.0726 0.54 0.08 2.9351

8 0.1745 0.22 0.12 2.9193

9 0.1809 0.32 0.04 95.793

10 0.1724 0.28 0.14 2.5938

11 0.1948 0.24 0.14 3.1566

12 0.1718 0.26 0.08 2.8595

13 0.2110 0.16 0.06 1.8595

14 0.1880 0.24 0.10 1.2165

15 0.1895 0.20 0.12 1.2133

20 0.2468 0.08 0.02 1.0146
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Table 4.8: k=2, (p, µ, δ, τ ,σ) unknown, proper prior on σ: results of 50 replications

of the experiment by using a proper prior on σ and the Jeffreys prior for the other

parameters conditionally on it for both close and far means with a Monte Carlo

approximation of the posterior distribution based on 105 simulations and a burn-in

of 104 simulations. The table shows the average acceptance rate, the proportion of

chains diverging towards higher values, the proportion of chains stuck at values of

standard deviations close to 0 and the average ratio between the log-likelihood of

the last accepted values and the true values in the 50 replications when using the

Jeffreys prior.

K=2 Jeffreys prior (Close Means)

Sample

Size

Ave.

Accept.

Rate

Chains stuck

at small values

of σ

Chains towards

high values of

µ

Ave.

lik(θfin)

/

lik(θtrue)

5 0.2094 0.02 0.92 1.4440

6 0.2152 0.00 0.98 1.3486

7 0.2253 0.00 0.92 1.3290

8 0.2021 0.00 0.94 1.2258

9 0.1828 0.00 0.84 1.2666

10 0.2087 0.00 0.88 1.1770

11 0.1854 0.00 0.94 1.2088

12 0.1829 0.00 0.86 1.2153

13 0.1658 0.00 0.92 1.1682

14 0.2017 0.00 0.86 1.2043

15 0.1991 0.00 0.88 1.2002

20 0.1851 0.00 0.76 1.1688

K=2 (Far means)

5 0.2071 0.00 0.70 1.5741

6 0.2021 0.00 0.68 1.4384

7 0.1947 0.00 0.60 1.3597

8 0.2054 0.00 0.44 1.2869

9 0.2093 0.00 0.46 1.3064

10 0.2271 0.00 0.20 1.1618

11 0.2030 0.00 0.32 1.1996

12 0.2178 0.00 0.24 1.1494

13 0.2812 0.00 0.18 1.1215

14 0.1880 0.00 0.08 1.0717

15 0.2511 0.00 0.06 1.0594

20 0.2359 0.00 0.00 1.0166
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Table 4.9: Hierarchical Mixture model: results of 50 replications of the experiment

for a two and a three-component Gaussian mixture model with a Monte Carlo

approximation of the posterior distribution based on 105 simulations and a burn-in

of 104 simulations. The table shows the average acceptance rate, the proportion

of chains diverging towards higher values, the proportion of chains stuck at values

of standard deviations close to 0, the mean and the median log-likelihood of the

last accepted values and the mean and the median maximum log-likelihood of the

accepted values.
k=2

Sample

Size

Ave.

Accept.

Rate

Chains stuck

at small values

of σ

Chains towards

high values of

µ

Mean

l(θfin)/

l(θtrue)

Median

l(θfin)/

l(θtrue)

Mean

max(l(θ))/

l(θtrue)

Median

max(l(θ))/

l(θtrue)

3 0.1947 0.00 0.00 1.1034 0.9825 0.0838 0.5778

4 0.2295 0.00 0.00 1.0318 1.0300 0.4678 0.5685

5 0.2230 0.00 0.00 0.9572 0.9924 0.8464 0.7456

6 0.2275 0.00 0.00 0.9870 0.9641 0.6614 0.6696

7 0.2112 0.00 0.00 1.0658 1.0043 0.8406 0.7848

8 0.2833 0.00 0.00 1.0077 1.0284 0.8268 0.8495

9 0.2696 0.00 0.00 1.0741 1.0179 0.8854 0.8613

10 0.2266 0.00 0.00 1.1446 0.9968 0.9589 0.8508

15 0.1982 0.00 0.00 1.0201 0.9959 0.9409 0.9280

20 0.2258 0.00 0.00 1.2023 1.0145 0.9172 0.9400

30 0.2073 0.00 0.00 0.9888 1.0022 1.0424 0.9656

50 0.2724 0.00 0.00 1.0493 1.0043 1.0281 0.9859

100 0.2739 0.00 0.00 1.0932 1.0025 1.0805 0.9932

200 0.3031 0.00 0.00 1.1610 1.0036 1.1519 0.9964

500 0.2753 0.00 0.00 1.1729 1.0023 1.1694 0.9989

1000 0.2317 0.00 0.00 1.1800 1.0021 1.1772 0.9994

k=3

3 0.2840 0.00 0.00 1.1316 1.0503 0.3432 0.2950

4 0.2217 0.00 0.00 1.0326 0.9452 0.6699 0.6624

5 0.2144 0.00 0.00 1.0610 1.0421 0.6858 0.6838

6 0.2258 0.00 0.00 1.0908 0.9683 0.6472 0.6355

7 0.1843 0.00 0.00 1.0436 0.9915 0.7878 0.8008

8 0.2760 0.00 0.00 1.0276 1.0077 0.7996 0.7958

9 0.2028 0.00 0.00 1.0025 1.0145 0.7830 0.8016

10 0.2116 0.00 0.00 1.0426 1.0015 0.8752 0.8591

15 0.2023 0.00 0.00 1.0247 1.0063 0.8810 0.8871

20 0.2211 0.00 0.00 1.0281 1.0104 0.9290 0.9268

30 0.2242 0.00 0.00 1.1978 1.0123 1.0841 0.9508

50 0.2513 0.00 0.00 1.0543 1.0142 1.0148 0.9775

100 0.2768 0.00 0.00 1.0563 1.0206 1.0324 0.9955

200 0.2910 0.00 0.00 1.0325 1.0118 1.0200 0.9993

500 0.2329 0.00 0.00 1.0943 1.0079 1.0882 1.0002

1000 0.2189 0.00 0.00 1.1068 1.0105 1.1212 1.0110
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Conclusions

Modern computers allow for a development of Bayesian procedures impossible in

the past. In this work we have tried to use some new and old methodologies for

modern theoretical and applied problems, thanks to new computational tools.

In the first part of the work, we have shown that the class of algorithms called “ap-

proximate Bayesian computation” may be used to solve some complicated problems

both in a Bayesian and in a classical setting. In a non-Bayesian setting (Chapter

1), we have first shown that it can be used as a tool to approximate the likelihood

function for a parameter of interest in the presence of nuisance parameters. One

of the most interesting open problem of the work is that the proposed approach

requires the use of proper priors, unless the marginalisation of the prior can be done

analytically. It has also been pointed out that in some cases a simple numerical

method based on Gaussian quadrature may be used. However, when the dimension

of the parameter of interest increases or when the nuisance parameter is highly di-

mensional the Gaussian quadrature is unlikely to produce good approximations; so

there may be cases where this is the “only” possible approach. A Bayesian method

(based on the computation of a posterior distribution) to produce non-Bayesian es-

timates may also be criticized. In particular, simpler algorithms may be used if only

the mode of the likelihood function is of interest. Nevertheless we believe that de-

riving and approximating the complete form of the likelihood function is actually of

interest, for any inference based on the likelihood. This work has been presented at

the ISBA World meeting 2014 (Cancun, Mexico, invited talk), at the Bayes in Paris

seminar at ENSAE (Paris, France, invited talk), at the Lunch Seminar of Università

degli Studi di Torino (Torino, Italy, invited talk) and at BAYSM, BAyesian Young

Statistician Meeting, 2013 (Milan, Italy, contributed talk) in various forms. It will

be also presented at the 48th Italian Statistical Society (S.I.S.) meeting (Salerno,

Italy, 8-10 June 2016) in an invited Specialized session on the interplay between

frequentist and Bayesian methods.
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The problem of eliminating the nuisance parameters is crucial in all the ap-

proaches: in particular, in modern applications many parameters are introduced to

construct flexible and realistic models, nevertheless their lack of a physical meaning

is a problem both in terms of making inference on them and of constructing rea-

sonable prior distributions. In semiparametric problems, where the interest of the

analysis is in few parameters, while it is preferred to limit the assumptions on the

complete shape of the model, we have shown that the ABC methodology may also

be used to deal with semiparametric problems; for instance, it allows to manage cop-

ula models and to study the dependence structure of multivariate random variables

without making strong assumptions on the univariate distributions or on the copula

function. Future lines of research would be focused on generalizing the approach

presented in Chapter 2, for instance, by introducing covariates in the analysis and

by considering other type of models. This work represents an important contribu-

tion in multivariate analysis, firstly because it allows to work with non-Gaussian

distributions and secondly because it provides a way to handle multivariate distri-

butions of arbitrary dimension (while classical proposals have been focused mainly

on bivariate distributions). We have analyzed the log-returns from several Italian

institutes and created a method to analyze the relationships between institutes, in

particular, during crisis periods. The work will be presented at the next ISBA World

meeting 2016 (Sardinia, Italy, invited talk) and has been presented at Sixth IMS-

ISBA Joint Meeting (Lenzerheide, Switzerland, 4-7 January 2016). A generalization

of the method proposed in Chapter 2 is needed: the introduction of covariates in

the analysis, even if important for real applications and a realistical modeling, may

hide computational and theoretical problems, as exemplified by Craiu and Sabeti

(2012). Therefore, further research may be focused on the development of method-

ologies which consider the introduction of covariates. It has been noted that the

choice of the moment equations identifying the parameter of interest (for example,

the Spearman’s ρ) is quite delicate: it is clearly necessary to choose an estimator

which has good asymptotic properties, in order to approximate the true quantity

of interest without any bias. However, the generalization to dimension d 6= 2 in

Section 2.7 shows that this is not always possible. Further research will be focused

on studying other types of pseudo-likelihoods to use in the analysis, in order to avoid

the moments constraints typical in the empirical likelihood methodology.

It has been also pointed out that, while the practical gain in analyzing each

component separately is clear, the object created by the estimated cumulative dis-
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tribution function transforms may have a very different correlation structure from

the true cumulative distribution function transforms. A further validation of the

method is, therefore, needed, maybe based on some consistency conditions on the

estimated cumulative distribution functions.

Defining ways for model choice in the case of complex models is particularly chal-

lenging: standard approaches tend to fail in choosing the right model. In Chapter 3

we have first analyzed the proposal by Dawid and Musio (2015) and stressed some

of its limits, in particular its difficulty to handle non-normal models. We have then

proposed a way to approximate the Bayes factor when the likelihood function is

unavailable via approximate Bayesian computation. The method has been empir-

ically tested in an example typical in the ABC literature: quantile distributions.

The method has been proved to have a good behavior in terms of approximating

properties (both in finite sample and asymptotically), however a deeper theoretical

treatment is needed to better study its theoretical properties and propose it as a

benchmark. The final example of Section 3.3.2 is useful to understand the computa-

tional difficulties and to study the behavior of the method in a financial application,

however more complicated situations, for example not involving quantile distribu-

tions, have to be studied in order to generalize it. Moreover, a deeper comparison

with other existing methods is needed. This work has already been presented at

CMStatistics 2015 (London, U.K., 12-14 December 2015, contributed talk).

In the last part of the work we have tried to construct a noninformative analysis

for mixture models. As said before, describing the information available a priori

with a distribution is difficult for complex models, mainly because not all the pa-

rameters have a physical meaning. The definition of a noninformative prior for the

parameters of a mixture models has a long history in the literature. First, we have

analyzed a classical approach for defining a noninformative prior, namely the Jef-

freys’ procedure, thanks to computational methods to approximate the prior which

is not available in closed form. Then, we have proposed to change the point of view

by defining a hierarchy which creates correlation between the components of the

mixture and allows for a noninformative and improper prior at the highest level.

This proposal may be seen as a generalization of the classical attempts to use im-

proper priors for reparametrized models (Mengersen and Robert 1996, Wasserman

2000, Robert and Titterington 1998) and is more general. It allows for the use of

improper priors at the highest level of the hierarchy, by introducing the implicit

information that the components are related: since the distributions composing the
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mixture model are used together to represent the data, it seems reasonable that a

form of dependence exists among them. This work has been presented at the “Sem-

inaire des Jeunes Chercheurs” (Paris, France, invited talk) and at the 2nd BAYSM

2014 meeting (Vienna, Austria, contributed talk). In this case, a natural extension

of the work could be considering an unknown number of components and generilize

the hierarchical representation for the parameters of any (complex) model to study

if it may be used as a general answer on how to choose a noninformative prior for

parameter without a physical meaning.
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Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ.

Inst. Statist. Univ. Paris , 8: 229–231. xvii, 33

Smith, M. S. (2013). Bayesian Approaches to Copula Modelling. In Hierarchi-

cal Models and MCMC: A Tribute to Adrian Smith, P. Damien, P. Dellaportas,

N. Polson, and D. Stephens (Eds), Bayesian Statistics, pages 395–402. Oxford

University Press, Oxford (UK). xvi, 32

Smith, M. S., Gan, Q., and Kohn, R. J. (2012). Modelling dependence using skew-t

copulas: Bayesian inference and applications. Journal of Applied Econometrics ,

3(27): 500–522. 37

Stephens, M. (2000). Dealing with label switching in mixture models. J. Royal

Statist. Society Series B, 62(4) 795–809. xxii, 93

Su, S. (2007). Numerical maximum log likelihood estimation for generalized lambda

distributions. Computational Statistics and Data Analysis , 51(8):3983-3998. 77
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