Ellon Mendes

Elena Stumm

Michelangelo Fiore

Artur Maligo

Gregoire Milliez

Wuwei He

Didier Devaur

Renaud Viry

Alexandre Ravet

Alexandre Boeuf

Pierrick Koch

Nicolas Staub

So On Finally

Raja Chatila

Michel Beetz

A.1 le temps de calcul moyen pour chaque

LAAS-CNRS

Abstract

Institut National des Sciences Appliquees de Toulouse

Doctor of Philosophy in Robotics

Geometric reasoning and planning in the context of human robot interaction by Mamoun Gharbi

In the last few years, the Human Robot Interaction (HRI) field has been in the spotlight of the robotics community. One aspect of this field is making robots act in the presence of humans, while keeping them safe and comfortable. In order to achieve this, a robot needs to plan its actions while explicitly taking into account the humans and adapt its plans to their needs, capacities and preferences.

The first part of this thesis is about human-robot handover: where, when and how to perform them? Depending on the human preferences, it may be better, or not, to share the handover effort between him and the robot, while in other cases, a unique handover might not be enough to achieve the goal (bringing the object to a target agent) and a sequence of handovers might be needed. In any case, during the handover, a number of cues should be used by both protagonists involved in one handover. One of the most used cue is the gaze. When the giver reaches out with his arm, he should look at the object, and when the motion is finished, he should look at the receiver's face to facilitate the transfer.

The handover can be considered as a basic action in a bigger plan. The second part of this thesis reports about a formalization of these kind of "basic actions" and more complex ones by the use of conditions, search spaces and final constraints. It also reports about a framework and different algorithms used to solve and compute these actions based on their description and their interdependencies.

The last part of the thesis shows how the previously cited framework can fit in with a higher level planner (such as a task planner) and a method to combine a symbolic and geometric planner. The task planner uses external calls to the geometric planner to assess the feasibility of the current task, and in case of success, retrieves the state of the world provided by the geometric reasoner and uses it to continue the planning. This part also shows different extensions enabling a faster search. Some of these extensions are "Geometric checks" where we test the infeasibility of multiple actions at once, "constraints" where adding constraints at the symbolic level can drive the geometric search, and "cost driven search" where the symbolic planner uses information form the geometric one to prune out costly plans.

Version française

Au cours des dernières années, la communauté robotique s'est largement intéressée au domaine de l'interaction homme-robot (HRI). Un des aspects de ce domaine est de faire agir les robots en présence de l'homme, tout en respectant sa sécurité ainsi que son confort. Pour atteindre cet objectif, un robot doit planifier ses actions tout en prenant explicitement en compte les humains afin d'adapter le plan à leurs besoins, leurs capacités et leurs préférences.

La première partie de cette thèse concerne les transferts d'objets entre humains et robots : où, quand et comment les effectuer? Selon les préférences de l'Homme, il est parfois préférable, ou pas, partager l'effort du transfert d'objet entre lui et le robot. A certains moments, un seul transfert d'objet n'est pas suffisant pour atteindre l'objectif (amener l'objet à un agent cible), le robot doit alors planifier une séquence de transferts d'objet entre plusieurs agents afin d'arriver à ses fins. Quel que soit le cas, pendant le transfert d'objet, un certain nombre de signaux doivent être échangés par les deux protagonistes afin de réussir l'action. Un des signaux les plus utilisés est le regard. Lorsque le donneur tend le bras afin de transférer l'objet, il doit regarder successivement le receveur puis l'objet afin de faciliter le transfert.

Le transfert d'objet peut être considéré comme une action de base dans un plan plus vaste, nous amenant à la seconde partie de cette thèse qui présente une formalisation de ce type d'"actions de base" et d'actions plus complexes utilisant des conditions, des espaces de recherche et des contraintes. Cette partie rend aussi compte de l'architecture et des différents algorithmes utilisés pour résoudre et calculer ces actions en fonction de leur description.

La dernière partie de la thèse montre comment cette architecture peut s'adapter à un planificateur de plus haut niveau (un planificateur de tâches par exemple) et une méthode pour combiner la planification symbolique et géométrique. Le planificateur de tâches utilise des appels à des fonctions externes lui permettant de vérifier la faisabilité de la tâche courante, et en cas de succès, de récupérer l'état du monde fourni par le raisonneur géométrique et de l'utiliser afin de poursuivre la planification. Cette partie montre également différentes extensions de cet algorithme, tels que les "validations géométriques" où nous testons l'infaisabilité de plusieurs actions à la fois ou "les contraintes" qui permettent au niveau symbolique de diriger la recherche géométrique ou encore "recherche dirigée par coût" où le planificateur symbolique utilise les informations fournies par la partie géométrique afin d'éviter le calcul de plans trop coûteux.

List of Figures 2.5 The human cannot be handed directly the object, the robot needs to plan a path for both of them in order to achieve the task . 2.6 A young person who is in a hurry to get his drink will express more comfort getting a glass above the counter (a & b) while an older person may be more comfortable while waiting for the robot to navigate to him even if the task will take more time (c & d). The blue path is the robot navigation path, and the green one is the human walking path. 2.7 A collision free solution and a state that is not part of Cspace f ree 2.16 The preselected configurations of a robot relative to a human standing and sitting. 2.17 The human and the robot lie in separated part of a workspace, parted in two by a table.

The accessible space of the giver (a The first three pictures depict the resulting trajectories while the three bottom pictures show the final handover configuration that accounts for the 3D obstacles. 2.20 Unique convergence curve, with two settings of mobility, using the three pre-processing variants yielding three sampling strategies over the scenario depicted in Figure 2.19 . . . 2.29 (a) An example where, to bring the object from R1 to H1, the agents R2, R3 and R4 perform a sequence of handovers. In this example every agent is in a separated zone. (b) An example in an environment where agents are separated into two navigable zones linked by windows and counters. The blue human is in possession of an object needed by the red one. The solution found by the algorithm is: robot 0 navigates to the blue human, takes the object through a handover over the counter, and then navigates to the red human and gives it to him. 2.30 An example of the graph G. 2.31 Pink is the actual object path, the grey is the cells to be extended (from the lazy part of LWA*) and the coloured cells are the explored ones. The two indentations of the pink path are due to the sub-optimality of the weighted variant of A*, it is close to the heuristic 2.32 Examples of the handover tests. (a) Shows a distance test: if the two circles (one for the robot one for the human) intersect, the distance test is validated. (b) Shows a collision test for the grey book: there is a direct path from an agent to the other one. (c) Shows an inverse kinematic test, where the whole body positions of the agents are tested. 2.33 This is an example of a schedule computed for the example in Figure 2.36(b): nav means navigation, HO means handover and back, returning to initial position. H1 and H2 are humans, and R2, R4 and R6 are robots. We specified a longer duration for a robot-robot handover compared to a human-robot one: this is a reasonable assumption as humans adapt themselves easily, while between robots, a longer time is needed to achieve the mandatory synchronization. 2.34 An example where the robot plan for a third agent (not involved in the handover) to move in order to avoid collision and let him access the target agent 2.35 The maze example, with a possible path for the object shown by the black arrow. In this example, the object is successively held by R0, H2, H3, R3, and H0. The use of multiple agents saves time for the delivery while asking more work to humans. Their use is still limited as most of the navigation is done by robots. Under other settings, the whole navigation could be done by the robot R0, which is slower but does not disturb humans at all. Or the same path for the object could be done while being held mainly by R1, but it would cause the humans H2 and H3 to leave their place for the robot to go across. . . . 2.36 The big rooms example, with the object path of two solutions represented by the black arrow. In 2.36(a) the time is prioritized, while in 2.36(b) the agent comfort is. Note that in 2.36(b) the solution chosen only involve the starting and target human, no other human is involved in the task. 2.37 The real robot example. The right picture is the 3D model, with the object path as a white arrow. The solution involves successively R1, H1, R2, H2, and the object is handed over through the windows, minimizing H1 efforts, and brought directly to H2 so he doesn't have to move. . change, but the cost does: it is low when the human is far away 3.3(a), it gets higher when the human comes closer 3.3(b), and if he is not facing the path 3.3(c), it goes even higher. 3.4 Different alternatives for the Pick action . 3.5 This is the PR2 robot, a two-arm (r and l) mobile manipulator, the green and blue points are respectively the WMJs of r and l end effectors. 3.6 Different grasps for the grey book (this is just a sample from the available grasps). 3.7 The supports of the tables are represented in green, each table has one support, which is a rectangle covering its top face. The objects on the tables are not support objects, hence, they don't have any supports. . 4.1 A method decomposition can be only operators (a), only methods (c), or a mix between them (b), and it can also be recursive (c). In (a) Operator 2 cannot be applied unless Operator 1 is applied successfully. In (b) to decompose Method 1, either we apply Operator 1 if PreCond 1 holds (pre-condition for this decomposition) or we apply Method 2 if PreCond 2 holds, but not both at the same time even if the two pre-conditions holds at the same time. In (c) the decomposition is asynchronous: all the methods in the decomposition are applied, but are not ordered. 4.2 An example plan generated by HATP: it contains two streams, for agent 1 and agent 2, connected through causal links .

4.3

An example plan generated by SGAP: it contains the symbolic part of the plan, composed in two streams and linked to the geometric part (thick lines) which contains a geometric plan. Note that AS 4 and AS 6 are purely symbolic and have no geometric counterpart. Once a GAS is computed, the geometric planner sends to the symbolic one the shared predicate computed in the final world state of the GAS. . Shows the resulting plan alongside with the failed geometric alternatives that correspond to (e), (f), and (g). (c) And (d) shows respectively the initial and final computed world states. (a) shows also the order the backtracks happened: after failing to compute the first Place(R,B3,S), the algorithm backtracks to Back 1, and tries an alternative of Pick(R,B3) before failing again to place the object. Then it backtracks to Back 2 where it computes an alternative to Place(R,B2,S). The process continues, and fails two more times before finding a solution (backtracking first to Back 3 then to Back 4). 4.6 In this example, the robot can reach the three objects (the red cube, the grey book and the orange box) and needs to place them on the table in front of it, reachable by the human.

A is an initial geometric situation, B is a step of the planning process where the robot already placed the red cube and the grey book reachable to the human. In C, the robot places the orange box reachable to the human, and by doing so, obstructs the human reach to the red cube. Finally, D shows the result of a plan found after backtracking on number of actions. This illustrates the ramification problem. 4.7 Examples of scenarios where the geometric requests enable an enhancement in speed. . . . 4.8 The same states as in Figure 4.7 with a placed virtual object. The virtual object is drawn in yellow and does not fit in any of the tables. 4.9 The symbolic domain used to assess the enhancement geometric requests 4.10 The resulting plan of the algorithm when called for the example depicted in Subsection 4.4.1133 4.11 The domain, and the initial and final world states of an environment where using the enhancement related to high level action and constraints is useful. 4.12 The implementation of the SGAP framework on a PR2 robot. The task is to place the three objects in front of the human, in order to let him choose one of them. The with a branching factor of 3 and the first plan found mode. The advantage of using the geometric requests (with) is clear when the table is cluttered (Figure 4.7(a)). In Figure 4.7(b) the geometric request fails as there is not enough space to place the virtual object on the table even if there is enough space to place the three books, which can be seen in the results. The examples in 4.6 The differences between the HATP and SGAP algorithms This thesis enters into the so-called human-robot interaction (HRI) field. As defined by [START_REF] Goodrich | Human-Robot Interaction: A Survey[END_REF], HRI tries to understand and shape the interactions between one or multiple humans and one or multiple robots. In other words, how exactly an autonomous robot (or multiple autonomous robots) needs to behave when brought in the vicinity of humans, and more specifically when they need to cooperate or help one (or more) of these humans.

List of Tables

One interesting part of this field is to provide robots with enough autonomy to let them perform and execute tasks and actions in this human environment. In order to achieve this, they need to "think" and infer from the geometric properties of the real world. The main focus of this thesis is to equip robots with geometric reasoning enabling them to plan their actions. This planning is done while taking into account the environment properties but also the human preferences and social rules.

In the beginning of this thesis we propose an approach to let a mobile manipulation robot (such as the PR2 from Willow Garage (2008)) handover small objects to a human, which is extended to a multiple agent case, and where the interaction cues at the exchange moment are studied. A generalisation of this kind of geometric reasoning is also proposed and then coupled with higher level planning in order to provide the robot with even more autonomy.

Human-Robot Interaction

Bringing autonomous robots into our houses and work places rises a number of challenges that need to be tackled in order to achieve this integration. Among these challenges two categories can be isolated: hardware and software challenges. The hardware challenges cover the design of the robot shapes, such as the skin, the face, or the eyes. Specific actuators and sensors also belongs to this category.

The software challenges, this work belongs to, cover a number of fields such as task planning, supervision, belief management, human-aware motion planning, situation assessment and so on. Among these challenges, the one interesting us concerns planning the geometric actions needed by the robot to perform tasks in a human environment. In other words, we want to endow the robot with actions enabling it to interact with its environment in general and with the humans in particular.

Integrating autonomous robots in human environments can serve multiple purposes. For example, a service robot can assist and help elderly people in their houses for everyday life. A guiding robot, can detect and find lost people and help them reach their destination. Another example is the robot coworker, as depicted in one of the SAPHARI project (http://www.saphari.eu/) use cases. The humans interacting with this kind of robot are "experts", which means they should be accustomed to work with the robot in contradiction with the previous examples where the users are more likely naive ones (not accustomed to the robot). The robot co-worker can be used for multiple tasks such as helping tidying a workspace, delivering objects, lifting heavy objects or performing precision tasks.

Geometric planning

Planning the motions of a robot in a human environment brings a number of issues: the first one concerns the security of the human. When the robot plans its motions close to the human, it needs to take into account the possibility of the human moving in an unexpected or expected way. For example, when walking, a human will most likely continue walking. Taking this motion into account helps to ensure his safety. Another important issue concerns the comfort of the human, even when insuring this safety, some motions can create uncomfort or lead to a misunderstanding of the robots behaviour. Planning while taking this, and other social rules that humans use in a daily basis, into account, is called Human-Aware Planning.

The supervision asks geometric plans following the plan provided by the task planner which (should) deals with symbolic knowledge. A number of researches, such as [START_REF] Ghallab | Automated Planning: Theory and Practice[END_REF], focus on this task planning while in others, such as LaValle (2006), the main interest lies in the motion planning area.

Between these two research topics, there is a gap where the symbolic knowledge should be transformed into information usable by the motion planner. This is especially important in human-robot interaction, as the information about the humans are both symbolic and geometric and need to be dealt with at both level successfully. This work tries to bridge the gap between the high level symbolic planning and the low level motion planning.

The first milestone in this path was to design and improve a unique task which is the handover (Chapter 2). A second contribution consisted in proposing a global framework able to communicate with both symbolic reasoning and motion planning where multiple actions such as pick, place and navigate where implemented (Chapter 3). The last part consists on a tighter interleaving between the symbolic layer and this framework (Chapter 4).

Contributions

The main contribution of my thesis are:

-Giving the robot the ability to choose where and how to perform a handover with a human while taking into account his safety, comfort, capabilities and preferences. When planning this handover, the robot computes both its path and the human path in order to assess the feasibility of the task using a combination of grid-based and sampling-based methods. This work is presented in Section 2.3.

-Extending the previous work to a multi-agent task where the goal is to bring an object from an agent to another one (agents can be either robots or humans) through a sequence of handovers.

This approach also takes into account the HRI constraint related to the possible humans in the environments, and is graph-based using a Lazy Weighted A*. This work is presented in Section 2.4.

-Studying the gaze behaviour of both givers and receivers during a handover (or assimilated tasks), in order to define gaze pattern allowing a more understandable and human-aware task execution.

This work is presented in Section 2.5.

-Proposing a framework (and its formalization) in order to create and plan actions at geometric level. This framework, called Geometric Reasoner and Planner (GRP), is able to compute, based on symbolic information (such as the agent performing the task, the object to manipulate or the support table), complex actions such as pick, place or navigate. This work is presented in Chapter 3.

-Developing the Symbolic Geometric Action Planner (SGAP) which interleaves task and geometric planning and produces plans that contains, in addition to the classical symbolic plan, the geometric information, such as the trajectories, relative placements, grasps, and postures, needed to execute the plan in the real word. This framework, by using facts computed at geometric level and backtracks, is able to tackle the ramification problem. This work is presented in Section 4.3.

-Adding a number of powerful heuristics enabling SGAP to decrease the combinatorial explosion resulting from the complexity of the geometric world, or the symbolic models. This heuristics use constraints, different level of actions, cost computation and specific request to the GRP framework to enhance the search efficiency. This work is presented in Section 4.4.

List of published papers

The different handover phases and their main contributions

Figure 2.1 shows the four different handover phases: taking the decision, approaching the agent1 while preparing the handover, giving/taking the object, and disengaging. These phases are composed of two parts, a timeline of the different actions the agents need to perform, and a sequence of communication cues to make the handover as fluent as possible, the next subsections present in more details these four phases and their components.

Taking the decision

Three different reasons might support the decision of a robot to perform a handover:

• The other agent (a human or a robot) asks for an object, and the robot performs a handover to give it to him.

• As a proactive behaviour, the other agent needs a handover and the robot proposes it to him.

• The robot needs an object and asks the other agent to give it to him. This phase is related to the more generic field of task planning (analysed in [START_REF] Ghallab | Automated Planning: Theory and Practice[END_REF] which is more detailed in Chapter 4.

Approaching the other agent while preparing the handover

In this phase, the agent needs to perform three actions:

Getting the object Optional for the giver as he may already have the object in hand, and doesn't exist for the receiver. This action is about fetching the object, and the most important part here, is the grasp: it may have a direct impact on the future handover. Various studies have been done in the field of grasping with robots, part of them depicted by [START_REF] Bicchi | Robotic grasping and contact: a review[END_REF] and some of them, detailed in the next paragraph, focused on the particular problem of grasping in order to handover the object.

Numerous contributions concern this particular topic, among them, [START_REF] Berenson | An optimization approach to planning for mobile manipulation[END_REF], where the authors choose the grasps for the objects accounting for the future actions, for example, when placing a glass in a dishwasher, some grasps will not work while others will. [START_REF] Pandey | Towards planning Human-Robot Interactive manipulation tasks: Task dependent and human oriented autonomous selection of grasp and placement[END_REF] extended this idea to the handover, where a grasp is chosen in order to leave enough space to allow another grasp. [START_REF] Aleotti | Comfortable robot to human object hand-over[END_REF] and [START_REF] Aleotti | An Affordance Sensitive System for Robot to Human Object Handover[END_REF] also choose the grasps accounting for the receiver: they segment the object, find the "handles" of this object (a hammer handle for example), and perform the handover while presenting this part to the receiver. [START_REF] Kim | Advanced Grasp Planning for Handover Operation Between Human and Robot: Three Handover Methods in Esteem Etiquettes Using Dual Arms and Hands of Home-Service Robot[END_REF] have a similar approach but introduce the notion of dangerous features concerning objects such as a knife sharp edge, and plan a change of grasp, in case the robot needs to grasp the object with the first hand, take it with the other hand and then give it to a human while presenting the non-dangerous part.

While these papers focus on finding an algorithmic solution to this problem, Chan et al. (2013a) and [START_REF] Chan | Determining proper grasp configurations for handovers through observation of object movement patterns and inter-object interactions during usage[END_REF] propose a learning approach where the robot learns how to grasp the objects that are exchanged by the surrounding humans.

Choosing a handover posture We believe that this choice should be made while taking explicitly the human and the environment in general into account. The position should favour the human comfort while enabling a great latitude (for example, handovers above a counter or through a window should be possible). In this phase, the choice concerns the general posture if the agent is a human, but the complete configuration if it is a robot. [START_REF] Walters | Robotic etiquette[END_REF] show that humans with no prior interaction with a robot will prefer to receive an object from the sides if they are sitting or standing against a wall, but will prefer a frontal approach when standing in the middle of a room (the reason given is that while sitting, a robot might be intimidating and standing against a wall might restrain movements inducing an uncomfortable situation). [START_REF] Koay | Exploratory Study of a Robot Approaching a Person in the Context of Handing Over an Object[END_REF] argue that the intimidation feeling disappears when the human gets used to the robot, thus making the frontal approach the most preferred one in all the cases. Sisbot et al. (2007a) and [START_REF] Sisbot | Synthesizing robot motions adapted to human presence: A planning and control framework for safe and socially acceptable robot motions[END_REF] base the robot placement on a list of parameters such as the distances between the robot and the human (proxemics theory, [START_REF] Hall | The Hidden Dimension[END_REF]), the visibility of the robot by the human (not going behind him or behind an obstacle) but also the human arm comfort and the robot navigation distance.

On a slightly different direction, [START_REF] Shi | A Model of Distributional Handing Interaction for a Mobile Robot[END_REF] propose an approach where the robot performs a handover with an already walking pedestrian, handing them flyers. They propose a model based on analysing humans distributing flyers and implement this model to perform a user study on a real robot.

Navigating to the handover position Human aware navigation is a widely studied field and complex as shown by the survey of [START_REF] Kruse | Human-aware robot navigation: A survey[END_REF]. When navigating among humans, a robot needs to take into account various parameters such as the humans' comfort and safety, the dynamics of the environment such as the humans' future movements and so on. At the end of this action, the agents need to be at the handover position (or in a close enough location) to be ready to perform the handover.

Communication cues

The communication cues (CC) for this phase (Approaching the other agent while preparing the handover) are depicted in Figure 2.2, it consists in the joint action signals. One of the agents signals to the other one his intention of performing a handover with him. If the other agent gets the signal, his attention will focus on the agent and both of them should agree on this intention. If the other agent does not get the signal or does not agree to perform the handover, the first agent will try again until it seems clear that no handover is possible, then he aborts the task. In the other case, both agents establish the intention [START_REF] Yamane | Synthesizing object receiving motions of humanoid robots with human motion database[END_REF] adopt a different approach where they learn from a human motion database how to perform a handover (either the final position of the arms or the timing or the motion legibility.)

The timing of the action Each agent needs to execute his motion at the right timing. [START_REF] Huber | Human-robot interaction in handing-over tasks[END_REF] differentiate between three time phases: the reaction time (the time the receiver takes to begin its motion after the giver started his) the manipulation time (while both agents manipulate the object) and the post-handover time (the disengagement phase). They find that a handover mean time is less than 2 seconds, the reaction time is around 0.35 seconds and the manipulation time is around 1.2 seconds. [START_REF] Koene | Relative importance of spatial and temporal precision for user satisfaction in human-robot object handover interactions[END_REF] show through a user study the importance of respecting the temporal precision over the spatial one: if the robot is too fast, the human may think the robot is upset, while if it is too slow he may feel bored or frustrated.

The motion legibility As shown in a number of researches, such as [START_REF] Dragan | Effects of Robot Motion on Human-Robot Collaboration[END_REF], a legible motion brings more comfort and safety feeling for the human, and the human-robot handover also follows this rule. Both [START_REF] Micelli | Perception and control challenges for effective human-robot handoffs[END_REF][START_REF] Huber | Human-robot interaction in handing-over tasks[END_REF] show that a motion where the end effector executes straight lines is preferred over a motion in the joint space. Moreover, [START_REF] Dehais | Physiological and subjective evaluation of a human-robot object hand-over task[END_REF] and [START_REF] Mainprice | Planning safe and legible hand-over motions for human-robot interaction[END_REF] assert that straight lines need to be combined with a higher level motion planner taking into account the human comfort and safety. [START_REF] Palinko | Weight-Aware Robot Motion Planning for Lift-to-Pass Action[END_REF] go as far as adapting the arm trajectory to the object weight in order to give to the receiver more information about the object weight.

The arm control also plays an important role in human-robot interactions, the usage of motions with limited jerk such as the one proposed by [START_REF] Broquère | Soft motion trajectory planner for service manipulator robot[END_REF] enables for a better comfort while extending the arm. Different control strategies have been tested by different teams : Prada et al. (2014) formalised and implemented a Dynamic Movement Primitives control strategy on a robotic arm, [START_REF] Kajikawa | Receiver robot's motion for handing-over with a human[END_REF] use the human-human handover analysis done by [START_REF] Shibata | Experimental analysis of handing over[END_REF] to define a control strategy and [START_REF] Erden | Multi-Agent System-Based Fuzzy Controller Design with Genetic Tuning for a Mobile Manipulator Robot in the Hand Over Task[END_REF] use a fuzzy controller to execute the motion.

The second action during the giving object phase is to release the object at a good timing. [START_REF] Mason | Grip forces when passing an object to a partner[END_REF], [START_REF] Endo | Haptics in between-person object transfer[END_REF], Chan et al. (2013b), [START_REF] Jindai | Hand-over Motion Model Based on Timing between Voice Utterances and Release Motions of Humans[END_REF] and [START_REF] He | Synchronization of grasp-release by online force classification for interactive object exchange[END_REF] developed a force detection object in order to record data from human-human handovers and apply it to a controller when performing a human-robot handover. [START_REF] Cabibihan | Tactile sensing in an object passing task[END_REF] achieve the same detection with a glove like sensor worn by both participants. The purpose of all these approaches is to make the robot release the object at the moment it detects the particular forces, applied to the object, corresponding to a firm grasp from both agents. This moment triggers the object release which is an issue: it is often ambiguous (even for humans) and it can be done during the agents motions.

Communication cues

During this phase, a number of signals need to be exchanged and the first one is the starting signal for reaching out with the arm. [START_REF] Cakmak | Using spatial and temporal contrast for fluent robot-human hand-overs[END_REF] claim that the robot reaching out with the arm (moving the arm from a rest position to the handover position) is in itself the starting signal. Micelli work which incorporate the CC to the timeline. Inside a phase, the CC are not linked to the timeline, but each phase needs its own signals to be achieved before its end. This chapter contributions can be categorized following the different phases illustrated in the figure with the dark coloured parts. Some contributions tackle the problem of executing handovers while taking into account all or part of these phases, for example [START_REF] Sisbot | Supervision and motion planning for a mobile manipulator interacting with humans[END_REF] propose a state machine approach where they handle interruptions and suspension when the robot already start reaching out with the arm. In [START_REF] Fiore | On planning and task achievement modalities for humanrobot collaboration[END_REF] and in [START_REF] Karami | Modeles Decisionnels d'Interaction Romme-Robot[END_REF], they use a Partially observable Markov decision process (POMDP) to choose which action to perform and when to perform it (for example, when reaching out with the arm, if the human attention is driven away from the robot, this one should enter in a stand by phase).

Sharing the effort with the human

The focus of this section is the particular problem of finding good object handover configurations, which is formulated as a special instance of the motion planning problem [START_REF] Choset | Robot motion planning[END_REF], [START_REF] Choset | Principles of Robot Motion: Theory, Algorithms, and Implementation[END_REF][START_REF] Lavalle | Planning Algorithms[END_REF]). We will consider mobile manipulators such as the PR2, exchanging object with a human and introduce the notion of "shared effort" in the handover plan. This work has been done in cooperation with Jim Mainprice and presented by [START_REF] Mainprice | Sharing effort in planning human-robot handover tasks[END_REF].

In this work, both agents (involved in the handover, robots or humans) are considered, and both their motions are computed, in a possibly cluttered workspace. Computing the human motion might seem meaningless, as the human will not follow the computed trajectory, but the reason behind this computation is to enable the system to find solutions to problems where the human cannot be reached by the robot. Figure 2.5 illustrates this problem: the human is in a workspace not reachable by the robot who still wants to hand him over an object. By computing the human motions, the algorithm can find solutions to this problem and choose among them one compatible with the human preferences. For example, in Figure 2.5(b), the robot proposes pro-actively a solution to the human which reduces his displacement. The human preferences may vary depending on the context: he may prefer not standing up, or not moving from his actual location (as he may be buzzy) or, in contrast, he may be eager and in a hurry to get the object and prefers moving toward the robot than waiting for it to come closer. One of the criteria introduced and used here is the mobility, which is a representation of this contrast (between the least movements possible for the handover and the fastest possible handover) and enables the system to balance between "shared effort" and comfort. We propose a formulation of the underlying planning problem and an efficient algorithmic solution. This section is organized as follows: Subsection 2.

The human-robot handover planning problem

In this subsection, a formal definition of the handover planning problem is proposed. First, inputs and outputs are presented, then the search space is defined along with the feasibility and interaction constraints to be taken into account.

Inputs and outputs

The inputs of the problem can be summarized into: the initial configurations of the giver q init g and the receiver q init r (q refer to the configuration), the kinematic model of both agents, and the environment (and the position of every object in it).

In the rest of this section, as the robot and the human can both be either the giver or the receiver (It is also possible to consider two robots or two humans), we will refer to the two handover protagonists as the giver (noted g) and the receiver (noted r). The human needs to be taken into account explicitly, two paths (noted τ) will be computed: the first one, τ g , the path taking the giver from its initial position to the final handover position, and the second one, τ r , that brings the receiver to his final handover position.

Those paths are represented as parametric curves in their respective configuration space.

The handover search space

Let's consider the configuration space Cspace formed by the Cartesian product between the giver configuration space Cspace g and the receiver configuration space Cspace r :

Cspace = Cspace g × Cspace r
The configuration space of an agent consists on all the configurations allowed by the kinematic of said agent (more details are available in Section 3.2). Thus Cspace contains all configurations allowed for both agents involved in the handover. Finding the solution for this kind of problems implies to find a handover configuration q hand = (q hand g , q hand r) ∈ C (q hand g is the giver configuration and q hand r the receiver one) which belongs to a subspace Cspace f easible ⊂ Cspace restricted by the constraints listed below:

Collision free both agents configurations, at the handover configuration q hand , must be collision free regarding self-collision, collision with obstacles and with each other. This subspace is named

Cspace f ree and is illustrated in Figure 2.7

Reachability both agents, at the handover configuration q hand , must be able to reach the exchanged object i.e. the gripper of the robot and the hand of the human must grasp the object at the same time. This subspace is named Cspace reach and is illustrated in Figure 2.8.

Stability both agents, at the handover configuration q hand , have to be stable regarding newton law of mechanics. This subspace is named Cspace stab and is illustrated in Figure 2.9. Finally, the efficiency constraint that limits the total duration of the handover and favours efficient plans. This cost, c len , is computed based on the maximum value of the time taken by either agents to reach the handover configuration q hand . Some of these desired constraints such as the human displacement and the action duration may contradict one another (if both agents share the work load, the task will be done faster but if we minimize the human displacement, the task will take longer as the robot must do most of the work). To balance the impact of the different properties on the output plan, we use the mobility parameter reflecting the human's physical capabilities and his eagerness to obtain the object.

Indeed, the handover duration may generate discomfort if it does not match with the human possible eagerness or urgency to get the object. High mobility values will balance motion and comfort constraints to favour quicker plans, resulting in the final cost defined as: Where mobility ∈ [0, 1]. As explained in next section, these interaction constraints and their corresponding cost functions are evaluated during the planning process and are combined together according to the human preferences modelled by the mobility parameter.

The proposed algorithm

This section presents the handover planner that was developed to compute human-robot handovers while accounting for the interaction constraints introduced earlier. The approach relies on a combination of grid-based and sampling-based algorithms that consider the workspace obstacles and the kinematics models of both agents. After some grid based pre-processing, the method consists of iteratively sampling feasible handover configurations, evaluating their cost and finally returning the minimal cost plan obtained.

The main steps of the handover planner are sketched in Algorithm 1. The initialization phase, called initGrids, consists on computing a planar grid where each cell contains information about the agents accessibility (if they can reach it or not) and the navigation distances from each agent initial position to this cell (Figure 2.15). In this phase, a set of preselected handover configurations between the two agents is loaded (in some cases, multiple sets are loaded Figure 2.14)

After the initialization, the algorithm enters a loop (from line 4 to 23), where each iteration consists on finding a feasible handover configuration q hand ∈ Cspace f easible , where the exact values of both agents degrees of freedom are encoded. After the loop, the algorithm chooses the best q hand according to the cost presented in Section 2.3.1.3.

In order to find a q hand , the algorithm goes through 6 steps:

• Sampling a random position, p = (x, y, θ), in the receiver accessible space (line 5)

• Computing the navigation path τ r of the receiver from his initial position to this sampled position (using a standard technique, [START_REF] Choset | Robot motion planning[END_REF], consisting of descending the distance gradient in the pre-processed receiver grid) (line 6)

• Transforming p into a fully specified q hand by iterating through the set of preselected handing over configuration and choosing a collision free configuration. (line 7)

• Extracting the givers position from q hand (line 11)

• Computing the navigation path τ g of the giver from his initial position to this position (same technique as τ r) (line 12)

• Computing q hand cost, as explained in the previous subsection. (line 16)

If one of the steps fails (such as failing to find a collision free configuration or a path) the algorithm loops over the steps until a stopping criterion is satisfied (Line 17 to Line 21). When all the steps succeed, the computed cost is compared to the stored handover configuration cost. If it is lower, the new q hand is stored and the loop continues. In the current implementation the stopping conditions combine two criteria, and break out of the loop as soon as one of them is reached:

Maximum time Set by the user, and checked after each loop, it stops once the maximum time is reached.

A minimal improvement of the best current solution The user sets a threshold: if after a fixed number of iterations (also set by the user) the algorithm does not improve the cost with a difference bigger than the threshold, it breaks out of the loop.

The final paths τ g and τ r consist of a set of way points corresponding to the traversed cells centres interpolated by straight lines. The orientation θ along these paths is selected implicitly by facing the agent to the next way point.

The next subsections describe in further details the processing done during the initialization phase and the main steps of the algorithm. Some additional pre-processing that can be done to speed-up the sampling of constrained handover solutions are also described.

Distance propagation and initialization

In order to speed up the computation of feasible handover configurations and the cost evaluation of those solutions, the method integrates a precomputing phase in which 2D grids are constructed and processed.

Two grids, depicted on Figure 2.15, one for the giver (referred to as the giver grid) and one for the receiver (referred to as the receiver grid), provide an approximation of the free-space and the navigation distance to the initial position. This enables to find, at a very low computational cost, the regions of the workplace accessible for each agent.

The free-space grids are computed using bounding cylinders of the agents in resting postures. The resting postures, also depicted in Figure 2.15, correspond to navigation configuration of the arms. A cell is marked as free if when placed at its centre, the corresponding bounding cylinder is not in collision with the environment.

The accessible space and the navigation distance to the initial position of a cell are simultaneously computed with a standard wave propagation technique: for each cell, a collision free test is done with return (q hand ,τ g ,τ r)

⊲ agents handover configuration and their navigation path 25: end function the bounding cylinder, then its distance to the initial positions is computed (not the Euclidean, the navigation distance). Figure 2.15 shows the free space and the propagated distance of a robot and a human from their initial position, where green cells are close to the initial position and red cells are far.

As mentioned earlier, during the initialization phase, this method loads a set of predefined handing configurations as illustrated in Figure 2.16. These handover configurations are named Q HR in the rest of the chapter. They are selected offline and do not depend on the workspace nor on the absolute position of the agents. Thus, each configuration is defined relatively to the receiver position and consists of the receiver and the giver arm Degrees of freedom.

Sampling the receiver positions

The first step of each iteration consists of sampling the receiver position and orientation p = (x, y, θ) inside the accessible space stored in the pre-processed grid (receiver and giver grid). In order to sample this triplet a cell is selected then a point is sampled inside the cell and finally an orientation is randomly sampled.

For each position p chosen, we find only one handover plan, that we consider as the best given our criteria, thus, it is important to sample the positions that yield better solutions. Subsection 2.3.3 provides two enhancements of the pre-processing phase to bias both the selection of the cell and the orientation of the receiver. The preselected configurations of a robot relative to a human standing and sitting.

Returning the best feasible configuration

The configurations Q HR illustrated in Figure 2.16 are sorted according to the c comf cost (see Subsection 2.3.1.3). Here, this cost is computed independently from the environment and is used as a heuristic.

Later, during the real cost computation, the obstacles are considered for a better estimation of the cost.

When searching for the best feasible handover configuration at the receiver position p, the first feasible configuration is selected (i.e. collision free and accessible to the giver).

This process enables the method to find solutions in constrained environment (e.g. a handover through a small windows connecting separated workspaces) while saving the computation time as the cost does not need to be recomputed (due to the sorting). In order to bias the human direction sampling, the valid cell that minimizes the robot motion from its initial position to the ring region (in red in Figure 2.18) is stored in the combined grid. When sampling θ, directions facing this cell are favoured.

Next section provides simulation results of this algorithm with different settings of the mobility parameter.

Results

This section reports the algorithm ability to find handover plans between a robot giver and a human receiver in workspaces containing sparse obstacles, and the strategies it produces using different values of mobility, with it convergence rate when using different pre-processing variants and their sampling schemes.

In order to assess its performance, the algorithm has been implemented, along with test environments, in Move3D Siméon et al. (2001) and simulations were performed on a computer equipped with a 2.26GHz

INTEL processor running on one core only. The first three pictures depict the resulting trajectories while the three bottom pictures show the final handover configuration that accounts for the 3D obstacles.

The mobility parameter

• mobility = 0 : Generates a long path for the robot to reach the handover position but the human does not move.

• mobility = 0.35 : A shorter robot path to a feasible handover position over the table is allowed by a small displacement of the human.

• mobility = 1 : Evenly shared effort between the robot and the human enables a constrained handover position through the shelves.

Note that depending on mobility the solution proposed by the planner can be radically different. The resulting plan accounts for the feasibility of the handover position and motion using the 3D models of both agents even though planning of navigation motion is performed in 2D Cartesian space. The simplest case (mobility=0) is not shown in the figure since all variants converge to the displayed solution after a couple of iterations. However, for the two more complex cases, the basic pre-processing shows difficulty to find handover above the table (mobility=0.35) or through shelves (mobility=1). In

Performance of pre-processing variants

The user study

We ran a human-robot interaction experiment confronting the participants to choices of hand-over configurations provided by our planner: the shortest-time feasible plan at the cost of substantial effort asked from the human, or the plan that minimizes the human effort, at the cost of low global time performance.

Objective and subjective measures are discussed to validate our hypothesis.

Hypothesis

• The mobility of the human receiver depends on the task and intrinsic parameters associated to the receiver such as physical capacities or involvement in another task.

• Accounting for the receiver mobility leads to more efficient hand-overs, especially when it matches the context.

Experiment Design

We have designed an experiment consisting of collecting objective and subjective data on human-robot eager to get the object while the second task should force the participant to pay less attention to the handover.

Four types of interactions are then possible, referred to in the rest of this section as:

A

Evaluation

In order to evaluate the fluency and the efficiency of the interaction, two measures were extracted from the videos recordings: the reaction time (time between the participant first motion and the robot releasing the ball) and the total time (between the robot starting motion, and the ball entering the tube). The quality of the interaction is evaluated with a set of subjective criteria collected by compiling the survey's answers.

The survey

The form combines three types of questions; open, closed and evaluation. Eight multiple choice questions were asked, five of which enable the participants to evaluate one of the interaction criteria with a five-point Likert scale. The evaluation questions concern: the comfort of the handover, the distance appropriateness, the scariness of the robot, the surprising factor, the eagerness of the participant to get the object and the timing appropriateness. The closed questions aim to determine if the participants understood the Finally, participants were asked if they would have preferred to be handed the object in one of the alternative solution as depicted in Figure 2.24.

Results and discussion

In this part we compare the times measured on the video recordings and the answers of the survey to study the validity of our hypothesis. The results are reported in Figure 2.27 and Figure 2.28.

Times

The total times of the task reported in it is shorter for the participants given a time constraint and longer when they are given a game (for both kinds of priority). This suggests that participants were more aware and prompt to accomplish the handover when given a time constraint. We believe this particular observation of the subjects' behaviour corroborates the second part of our hypothesis that postulates that the current task modulates the mobility of the human receiver.

Subjective measures

Concerning the subjective measures, they are summarized in Figure 2.28. The scariness of the robot affects the users only in type D interaction, which is quite normal as they are focused on the Sudoku and suddenly the robot reaches out near them with the object. The distances are felt less appropriate in case A and B, the cases where the robot stand behind the wall. This can be explained by the fact that we couldn't give the subjects the eagerness feeling (also in the figure, the difference between the cases is not significantly interesting) and thus, they did not understand why the robot was so far. For the same reason, the comfort was better appreciated in the two last cases. However, nearly all the subjects from case B would have preferred the other path for the robot, and while the subjects from D liked unanimously the path, some in C would have preferred the other one. This shows that when the context did not correspond to the robot actions, the subjects did not like it, which corroborates the first part of our hypothesis.

Conclusion on the user study

The user study confirms partially our hypothesis, but another one is needed where the eagerness parameter is handled more carefully. The videos of this user study are available at https://www.youtube.

com/playlist?list=PLJeAfn0C8Ci3DMyLG3Q1KzXgeCMIBg1fW

This section was about how an agent can handover an object to another agent, in the next section, we address a more global problem of where and how to do a sequence of handovers in order to bring an object from an agent (robot or human) to another one.

Multiple agent handover problem

This section presents the work done, in cooperation with Jules Waldhart, concerning the computation of a handover sequence, where multiple agents (humans and robots) are involved in a task with a predefined goal which is to bring an object from a starting agent to a target one. This work extends the human-robot handover approach presented in the previous section, as it generalizes it to multiple humans and multiple robots exchanging an object to achieve a goal. Figure 2.29 illustrates this problem: different agents are distributed into various zones, separated by walls, where counters allow them to exchange objects in order to fulfil the given goal. As the previous section, this one falls in the handover part concerning the choice of the handover position and the reach out with the arm (Figure 2.4), and it is presented by [START_REF] Waldhart | Planning handovers involving humans and robots in constrained environment[END_REF].

This work was done in the context of the SAPHARI project (http://www.saphari.eu/) where one of the use cases is linked to the robot co-worker. For example, in a workshop, one or multiple robots might be asked to help and support the human workers by bringing them the tools and objects they need. To achieve such a task, we developed a kernel algorithm for task allocation taking into account various criteria such as the humans' comfort and preferences, and the agents general availabilities.

The multiple agent handover problem involves computing which agents sequence to use and where handovers should be performed, ensuring the plan is feasible while preserving humans' comfort. Various criteria are taken into account such as the human efforts, the time, the energy and so on. In Figure 2.29(b) even if a handover is possible between initial and target agents (both humans), the algorithm chooses to use a robot to do most of the navigation, in order to reduce their effort.

This kind of problem can be solved using a combination of symbolic and geometric planning, Dornhege et al. (2012), Kaelbling and Lozano-Perez (2011a), [START_REF] Karlsson | Combining Task and Path Planning for a Humanoid Two-arm Robotic System[END_REF]: these approaches will solve the problem, but does not enable to find, efficiently, an optimal solution based on the parameters cited earlier (note that using a task planner alone will be under efficient as the problem is geometrically complex as demonstrated by [START_REF] Lagriffoul | Combining Task and Motion Planning is Not Always a Good Idea[END_REF]). The problem is tightly linked to the more general pick-up and delivery problem (PDP). [START_REF] Savelsbergh | The General Pickup and Delivery Problem[END_REF] present a survey of the PDP with its different types, and solution methods. More recently the link between PDP and handovers has been stressed out by [START_REF] Coltin | Online pickup and delivery planning with Transfers for mobile robots[END_REF] where they present an algorithm where robots transfer objects to optimize a PDP plan. For [START_REF] Cohen | Planning Single-arm Manipulations with N-Arm Robots[END_REF] the problem is to find needed handovers between manipulators arms (no base motion) to bring the object from a position to another one. They find a path for the object and compute for each position of the object on the path, the inverse kinematic of at least one arm which is grasping it and then deduce the trajectory of every arm involved. Their resolution is search-based in a discretized environment, using a lazy variant of weighted A*.

The main contribution of this section is the elaboration of a planner able to solve a multiple agent handover problem by finding an optimal solution based on social rules and humans' comfort. This planner is based on a graph using various models, from geometric computation to more abstract high level reasoning. It has been implemented in simulation and in two PR2 robots from Willow Garage (2008).

Problem definition and formalization

The problem tackled here, is to bring an object, held by a starting agent, to a target agent, by making agents carry the object or hand it over to other agents. Note that more than the start and target agent can be involved in the task and the object can be carried by one agent at a time.

The problem inputs are the agent list, the starting and target agents, the initial state, consisting of all agents and objects positions, and agents specific information about speed and availability. The last input is a parameter to balance between the task urgency and care given to the humans' comfort. This parameter is inspired from the mobility parameter of the previous section.

A solution to the problem is a scheduled sequence of actions (navigation and handovers), that brings the object from the starting agent to the target agent.

The search space is the full configuration space, as described by LaValle (2006), of the whole problem.

As it involves several agents, it can be written as the cross-product of the configuration spaces of each agent:

Cspace = Cspace 0 × Cspace 1 × • • • × Cspace n .
We assume the object is sufficiently small to not influence the problem (otherwise, its configuration space should be added to the full one). The problem high dimensionality results in an extremely high computational cost while using classical solutions and algorithms: Figure 2.29(b) shows an example with 5 humans and 5 robots, which results in roughly card(C) ≃ 300 degrees of freedom (37 for each human3 and 22 for each robot4) to plan for, which is not suitable for on-line solution search.

Global approach and simplifications

The problem is decomposed into two distinct subsets of lower dimensionality: the navigation between the handovers positions and the handovers themselves.

The navigation phase is based on a path finding in a discrete 2D grid built using the input environment, the agents, the objects geometries and the agents initial positions. The grid is computed off-line in order to not affect running-time.

Based on the assumption of a large environment with sparse obstacles and few narrow passages, inter-agent collisions are ignored during this phase. Following this statement, the model considers only one agent at a time for the navigation (Section 2.4.2.3 explains how the system deals with these collisions when they occur).

A Handover involves two agents. The full dimensionality of their models and their positions is needed to ensure the feasibility of the task (for example, to test if a handover through a window or above a counter is feasible or not). As the computational cost of this test is high, fast specific tools are used to prune out candidate solution with no chance of success.

The search algorithm relies on other tools, at different steps of the process: high level representation, 2D model for navigation, full geometric representation for handover posture search and check, collision checking and motion planning. These models descriptions are presented here bellow, in a top down order.

High-level representation

The problem is represented at the highest level of this model as a graph able to guide the search through all possible handovers. It is referred to, in the rest of this section, as agent graph G A (different from graph G). In this graph, the nodes represent the agents and the edges, the handovers between them. At the initialisation, all the edges are created, with the supposition that any handover is possible, and each edge is weighted with an optimistic estimation of the cost (based on the time needed to perform the handover and the optimal human-related cost expected), independently of the environment. During the search, the costs will be adjusted with the real ones, and if a handover is proven not feasible, the edge is removed. Note that during the search, this graph is used as a heuristic to guide the search, and it does not allow an agent to get the object twice. We chose to not consider this possibility as the cases where this might be pertinent is when big objects that change the topology of the world are handled, which does not fall into the scope of this work.

2D navigation grid To plan the navigation tasks, the environment is discretized and projected in a two dimensions grid. This grid can be transformed into a navigation graph G n (a node is a cell and each cell is linked by edges to its neighbours) and used to find agents paths from a position to another one using classical graph search algorithm such as A*. Some nodes in this navigation graph are obstructed with obstacles making them unreachable by the agents, and some of these obstacles surround some areas, disconnecting them from the rest of the navigation graph which creates multiple connected components.

This graph is used as the base for the graph G but the various connected components might be linked together using the handover edges.

Geometric environment model Geometric algorithms (e.g. collision checking, inverse-kinematics, motion planning) are used to find valid handover positions and to compute their costs, by taking into account social rules, the humans' comfort, the motions legibility and so on. If the handover is feasible, the computed cost is used to update the agent graph G A , otherwise the edge corresponding to this handover is removed from G A . A handover is considered valid if a collision free position where both agents can grasp the object at the same time exists and a motion linking the starting position of both agents to the handover configuration also exists (more details available in Subsection 2.3.1.2). All the process of finding and evaluating a handover will be referred to as the handover search tool.

The cost function defined to evaluate a solution considers three weighted parameters:

The agents involvement duration is the time each agent is involved during the task (let A be all the agents in the environment), weighted with its level of availability (f av (a ∈ A)). It can be expressed as:

Inv = a∈A t inv (a) • f av (a).
The global execution time is the total time T ot between the moments when the first agent starts moving until the one when the last agent stops its motion.

The human comfort is related to the human-robot distances, the visibility of the robots by the humans and the postures of the humans during the handovers (more details available in Section 2. 3.1.3).

These parameters enable us to compute the comfort cost c HO (i) of the agents involved in the i th handover of the plan (a plan with n handovers). The comfort cost can be expressed as:

Conf o = F (c HO (0), ..., c HO (n))
where F is either a Maximum or a Sum function.

A solution cost can be expressed as follows:

cost = w inv * Inv + w time * T ot + w HRI * Conf o
Where w mob , w time and w HRI are the weight of the different parts, and by increasing or decreasing them, the priority can be given either to the global time execution or the humans' comfort or humans' involvement during the task (Those are the parameters replacing the mobility parameter from the previous section).

Resolution

The most time-consuming search the planner needs to perform, in order to find a solution in these models, concerns the graph G which represents a simplified form of the problem. The search time is directly related to the connectivity of this graph which is itself related to the number of neighbours a node can have. In the rooms environment (Figure 2.29(b)) this value reaches 3000. This number can be approximated as follows:

1 d 2 p∈N π • R(a, p) 2 -π • r(a, p) 2
Where the elements are:

• d: the discretization step of the 2D navigation grid.

• a: the agent holding the object in a node of G.

• p: a node of G A (p represents also the agent this node is linked to).

• N : the neighbours in G A of the node linked to the agent a.

• R(X, Y): the maximal distance for a handover between agents X and Y

• r(X, Y): the minimal distance for a handover between agents X and Y

The rooms environment has multiple agents in the same zones, making the number of possible actions for each cell in this zone very high, and thus increasing the connectivity of G.

The algorithm implemented in order to perform the search in this graph is a Lazy weighted A* (LWA*) introduced by [START_REF] Cohen | Planning Single-arm Manipulations with N-Arm Robots[END_REF] as it is able to postpone the most time consuming searches (the handover feasibility) to the moment these handovers seem relevant. This algorithm has proven bounds of sub-optimality inherited of Weighted A*, [START_REF] Likhachev | ARA•: Anytime A• with provable bounds on suboptimality[END_REF], and can perform faster when it involves computationally expensive evaluations.

LWA* algorithm is based on A* algorithm, which searches for the shortest path using a heuristic to guide the search. When a node is expanded, three values are given to children nodes: the g value is the distance (cost) between the origin and the child node, the h value is the heuristic, i.e. the estimation of the distance remaining to reach the target, and the f value is the sum g + h. In the next iteration, the unexpanded node with the smaller f value will be expanded, until the target node is reached.

In the weighted variant, the h value is increased by a factor, f becomes g + ǫ.h with ǫ ≥ 1, thus adding a depth-first flavour to the search, but decreasing the quality of the solution of at most ǫ (the path found is at most ǫ times as long (expensive) as the optimal path).

The lazy variant uses a temporary g value attributed to expanded node children. This temporary cost is optimistic and is faster to compute than the real cost. The real cost is computed only when the node is selected to be expanded, i.e. is the one with the smaller f value. Its g and f values are updated and it is put back in the list of nodes to be expanded. that can bring the object to the target agent. This search is made in the agent graph and takes into account minimal handover costs with no navigation (line 2). Then, based on this sequence, it searches the minimal cost related to the navigation. In this model, it is using the cheapest agent for the whole distance (in Euclidean sense, line 4). At this step, it is not known yet if the handover is possible or not, but it guarantees that the heuristic is admissible. It then adds the estimation of handover costs, which must be computed with an admissible heuristic too (line 7).

Algorithm 2 Heuristic function for the main search algorithm 1: function Heuristic(N ,N goal) ⊲ current and goal nodes

2: path ← ShortestPath(G A ,N ,N goal) ⊲ G A is the agent graph (task level) 3:
for each agent a of path do for each handover HO in path do Object collision test testing if a path exists for the object to go from an agent to the other one (just the object) Figure 2.32(b) shows a test example where a straight path exists.

Inverse-kinematics test testing if the agents can both reach the object when this one is in between them, Figure 2.32(c).

The inverse-kinematics test uses the same pre-defined configuration and their costs as in Section 2.3.2.1 and update the edge cost in G. Optionally, the full motion can be computed, but unless the environment is highly cluttered, it is preferable to avoid it, as it is even more time-consuming and in most cases the inverse-kinematics test is enough to ensure the feasibility of the handover (when not computed during the search, the motion plan can be computed later, just before the execution). Synthesis: 18 × 16m 2 , 10 agents, 64000 nodes, efficient heuristic. Synthesis: 18 × 16m 2 , 8 agents, 102400 nodes, inefficient heuristic.

Example 2maze

Example 3big rooms

The environment in Figure 2.36 is the largest example environment (25 × 25m 2) where the 16 agents are in rooms connected by doors or windows. In this example all (or nearly all) agents are in separated areas (average of 1.5 agent per cell), causing the connectivity of the graph G to drop with the node number (41500 nodes). The A* heuristic does not get trapped as in the maze, but solutions are usually not straight lines.

Synthesis: 25 × 25m 2 , 16 agents, 41500 nodes, normal efficiency for heuristic. ratio of computation time for one true cost evaluation versus the one for the temporary cost estimation is almost of 200, with 67ms for the former and 0.334ms for the latter. Statistically, without lazy variant, evaluating explored nodes would be more than 100 times longer. That factor reaches 400 in the rooms environments, while still providing exactly the same solutions. This enforces the relevance of the lazy A* variant use in our case. The connectivity of the environment does play a role in the computation time, but the most relevant factor (as in any A* search) is the accuracy of the heuristic: as depicted in Table 2.2, even though the connectivity of the rooms environment is very high, the heuristic is efficient; hence, the computation time is small. rooms maze big rooms apartment mean time (s)(ǫ = 1) 11.2 17.9 40.7 13.4 Adaptability This approach can find a solution for any kind of scenario, but the computation time will grow exponentially with the environment size and the agents number. Even though, if the connectivity of the graph G is low or the heuristic efficient, the approach would perform better. In larger and more complex scenarios (than those presented in this section) the algorithm will still find a solution, but the computational time would not allow on-line use for such situations. Though, such complex cases are supposed to be rare and do not enter under the scope of this work.

experimental context, results that could have been already exhibited, and the results tend to do so. In addition, what could be credited to this work is the study of gaze behaviour for both the giver (Human or Robot) and the receiver during a give action. The closest studies in the field to our knowledge are [START_REF] Boucher | I reach faster when i see you look: Gaze effects in human-human and human-robot face-to-face cooperation[END_REF] and [START_REF] Moon | Meet me where i'm gazing: how shared attention gaze affects human-robot handover timing[END_REF]. In the first one, the authors do a similar study over a different action, while the second does not study the receiver gaze.

The user study presented in this work tries to confirm these hypotheses:

The giver gaze cues are important In order to achieve an understandable and efficient handover, the giver gaze cues should not only change (a static gaze is not good) but follows a specific pattern.

The receiver gaze cues should not change when the giver changes When changing the giver (human or robot), the receiver gaze cues should be similar.

The gesture speed is important A conventional speed should be preferred over a slower or a faster one.

Related work

Gaze analysis allows the receiver to make hypothesis on the cognitive activity handled by the giver, and a number of researchers tried to codify and implement these cues on robots. [START_REF] Mutlu | Designing gaze behavior for humanlike robots[END_REF] studies gaze cues communication on several robotics platforms, and showed its importance in HRI and how well-defined gaze patterns can enhance human-robot communication experience. [START_REF] Boucher | I reach faster when i see you look: Gaze effects in human-human and human-robot face-to-face cooperation[END_REF] observe that one of the current roadblocks in the elaboration of smooth and natural human-robot cooperation is the coordination of robot gaze with the ongoing interaction and tried to identify pertinent gaze cues in human-robot cooperation. When the gaze cues are well defined, the cooperating human can reliably exploit it and anticipate actions in the cooperative task.

Interestingly, in a study oriented toward gaze cues in human-human interaction, Furlanetto et al.

(2013) show that eliminating gaze cues by blurring the actor's face did not reduce perspective-taking, suggesting that in the absence of gaze information, observers rely entirely on the action. Intriguingly, perspective-taking was higher when gaze and action did not signal the same intention, suggesting that in presence of ambiguous behavioural intention, people are more likely to take the other's perspective to try to understand the action. [START_REF] Moon | Meet me where i'm gazing: how shared attention gaze affects human-robot handover timing[END_REF] exploited human-like gaze cues during human-robot handovers and found that the subjects' reaction time is faster with the appropriate cue (looking toward the handover position) but also that those subjects judge the handover more natural when accompanied with this cue.

These researches show the importance of gaze during human-robot interaction, the robot would be able to achieve the task without the gaze, but the cooperation would suffer from it. In order to have a better grasp on the importance of the gaze, let's situate this work in the global frame of joint action. [START_REF] Vesper | A minimal architecture for joint action[END_REF] established that a minimal architecture for joint action should be able to handle, next to a goal, tasks representation (possibly shared), monitoring and prediction processes, and what they call coordination smoothers. They argued that "where joint action requires precise coordination in time or space, there are often limits on how well X's actions can be predicted. One way to facilitate coordination is for an agent to modify its own behaviour in such a way as to make it easier for others to predict upcoming actions."

We suggest that gaze cues could hold the role of coordination smoother in helping the human in front of the robot to better understand the robot behaviour and help it to achieve its movement in a more natural way.

Devices and methods

In order to confirm or deny the hypothesis, a user study has been designed where volunteers watched videos of a human or a robot (Figure 2.38) setting down an object in front of them, and were asked to judge the naturalness of the task. Different gaze cues were available in the videos. This subsection presents the participant and experimental set-up used to evaluate the task.

Participants

Thirty three volunteers participated in the experiment (age range 22-38 with mean value of 27 and a standard deviation of 3.5; 21 males, 12 females), among them, fifteen watched human videos and eighteen watched robot videos. All participants had normal uncorrected vision but two volunteers had to be excluded from subsequent analyses due to a technical problem that damaged eye-tracking data (unreliable calibration)

Experimental Set-up

The experimental situation implies watching a video where a giver (Human or Robot), seated behind a table, takes the object with his right hand, and puts it on the table so that the receiver, behind the video camera, can reach it. The choice of using videos instead of a real interaction is supported by the need of isolating gaze cues and motions velocity to find some hints about the use of these factors in handovers.

Moreover, it has been proposed by [START_REF] Kiesler | Anthropomorphic Interactions with a Robot and Robot-like Agent[END_REF] and [START_REF] Woods | Comparing human robot interaction scenarios using live and video based methods: towards a novel methodological approach[END_REF] that video-based scenario can enable us to infer such valuable results

The experiment took place in a room where temperature and luminosity (19 lux) were kept constant and the participants faced a computer screen where the video was presented. Eye movements were recorded using an EyeLink 1000 remote eye tracker (SR Research Ltd., Mississauga, Ontario, Canada) which possesses a spatial accuracy greater than 0.5 • and a 0.01 • spatial resolution with a sampling rate of 1000 Hz. The camera was placed at a distance of 20 cm from the screen (DELL 19 ′′ , refresh rate of 75 Hz, resolution of 1024x768 pixels) and the eye-camera distance was 60 cm maintained by a forehead rest. All eye tracking data were extracted using the SR Research default centroid algorithm.

In the experiment, we manipulated 3 variables: (1) the type of giver (Human or Robot), (2) the speed of the movement (normal, fast, and slow) and (3) the gaze behaviour. The Robot was a PR2

and the Human was a white man (65 years old). The videos were shot to be as similar as possible (see Figure 2.38) and were accelerated and decelerated to obtain different speeds while keeping the same (gaze), presented in a randomized order. In a trial, the participant pressed a button to begin the video and immediately after the video is finished, he/she was asked to rate the perceived naturalness of the movement on a 5 points Likert scale (5 for "perfectly natural", 1 for "not natural at all") presented on the screen. Between each trial, participants had to complete a digital logical suite, to break the dullness of the task. The session (18 trials) was repeated one time making each participant watching and judging 36 videos, in the rest of the section we will refer to each session as a video block.

Before the session started, the participants were told that their objective is to rate the naturalness of the videos they are going to watch. For methodological reason, the instructions and questions were very neutral (even though in the participant mother tongue -French-) in order not to influence the judgement of the subject. The judgement method is the same as one of the three that have been used by [START_REF] Moon | Meet me where i'm gazing: how shared attention gaze affects human-robot handover timing[END_REF], whereas [START_REF] Boucher | I reach faster when i see you look: Gaze effects in human-human and human-robot face-to-face cooperation[END_REF] do not look for subjective evaluation.

Results

We performed a mixed-design analysis of variance to examine the effects of (1) the gaze behaviour, (2) the speed movement, and (3) the type of giver on our subjective and oculometric dependent variables.

Subjective and eye tracking data have been analysed with the software package Statistica 8.0 (Statsoft, Tulsa, Ok, USA).

Subjective measurements

Gaze Behaviour

Results indicated a main effect of the gaze behaviour on the naturalness ratings, F(5 are judged more natural than the slow one (highest p-value in the post-hoc table equal to .004). No significant difference was found between the normal and the fast motion speed conditions (p=.16).

Type of giver (Human vs. Robot)

Interestingly, there was no significant difference in the results between the two types of givers (F(1, 29)=1.988, p=.16). Moreover, no interaction was found between the three main manipulated factors.

This result suggests that the effects of movement speed and gaze behaviour described above are not influenced by the type of giver.

Eye tracking measurements

Two main interesting behaviours has been noticed thanks to the eye tracker: a difference in the pupil size between human and robot giver, and a different distribution of the attention between them.

Distribution of the visual attention between the face of the giver and the object

Overall, results indicated a significant difference between the mean percentage of dwell time spent on the face of the giver and the mean percentage of dwell time spent on the object (F(1, 29)=59.848, p<.001): the participants tended to focus mainly their visual attention on the face of the giver (the dwell time spent on something means the time during which the eye focused solely on this something, and is obtained thanks to the eye tracker).

However, the detailed analysis displayed in Figure 2.42 shows an interesting correlation between the type of giver and the gaze behaviour:

Human giver: There is no effect of the giver gaze behaviour on the mean percentage of dwell time spent on the face of the giver (F(5, 65)=0.807, p=.54), nor on the mean percentage of dwell time spent on the object (F(5, 65)=1.004, p=.42).

Robot giver: Results indicated a main effect of the gaze behaviour on the mean percentage of dwell time spent on the face of the giver (F(5, 80)=12,82, p=.001), and on the mean percentage of dwell time spent on the object (F(5, 80)=6.264, p=.001).

When the giver is a human, the main conclusion is that participants focus mainly their visual attention on the face of the giver to provide a judgement concerning the naturalness of the task, independently of the giver gaze behaviour.

When the giver is a robot, Fishers LSD post-hoc comparisons shows that participants focus more on the robot face for the three types of gaze behaviour ORO, OR and ROR than for the three other conditions R, O, RO (highest p-value in the post-hoc table equal to .04). On the other hand, participants focus less on the object for the same three types of gaze behaviour ORO, OR and ROR than for the two other conditions R, O (highest p-value in the post-hoc table equal to .05). However, gaze behaviours OR and ROR are not significantly different from the condition RO (lowest p-value equal to 0.26).

If we take the human giver as a reference, the occulometric pattern with a robot giver is identical to the one of a human giver only for the ORO, OR and ROR conditions.

Finally, no effect of the movement speed was found (F(2, 58)=1.798, p=.43), and the reader may find useful to know that there was no difference between the two blocks of video presentation (F(1, 29)=0.947, p=.33). Results also revealed a main effect of the gaze behaviour (F(5, 145)=3.050, p<.001), however, posthoc paired comparisons showed only one significant difference, with smaller pupil size in the OR gaze behaviour condition (highest p-value equal to .03 in the post-hoc table).

No effect of the motion speed was found on the pupil size (F(2, 58)=1.798, p=.17).

Finally, results indicated a significant difference between the two blocks of video presentation (F(1, 29)=26.155, p<.001), with smaller pupil size during the last block, what could be reasonably considered as a training effect.

Discussion

The first hypothesis (the giver gaze cues are important) is confirmed by the results: subjective measurement clearly shows the subjects did not like videos with static giver gaze/head. Moreover, the head patterns are not to be neglected: the head final pattern OR9 seems to be preferred over the rest of the patterns, the subjective measurement shows that the subjects preferred the patterns OR 9 and ROR 9 over the others. This final head pattern could be an acknowledgement/turn-taking signal from the giver to the receiver.

Note that the variable "type of giver (human or robot)" does not affect the subjective naturalness rating.

Concerning the distribution of visual attention between the giver face and the object, results are different according to the type of giver. When the giver is a human, there is no effect of the giver gaze behaviour on the distribution of the visual attention. The receiver focuses mainly its visual attention on the face of the human. We believe this behaviour is normal for humans as the face is the most expressive part of the body and humans are used to focus on the face to determine a number of features.

When the giver is a robot, we can distinguish two cases:

• O 9 , R 9 and RO 9 cases: The receiver visual attention is shared between the face and the object.

That means, receiver will not focus either on the face or on the object but may go from one to the other. We interpret this as the receiver being lost in this kind of situations. Further analysis of eye tracking data is needed to validate this interpretation.

• ORO 9 , OR 9 and ROR 9 cases: The visual attention is mainly focused on the head of the robot.

In those cases, we found the same pattern of visual attention as in the human giver.

Taken together, the results on the perceived naturalness of the movement and the ones on the oculometric pattern of the receiver seem to put forward two main conditions: OR and ROR. Those two conditions are not only perceived as more natural than the others (with a robot or a human giver) but they present a similar occulometric pattern of the receiver (with a human or a robot giver). It seems that the final OR is an important pattern. When the giver, at the end of the movement, moves the gaze from the object to the receiver, it may mark the end of the exchange. The fact that the receiver looks mainly at the face also in the ORO condition may be interpreted in the same sense: when the robot ends its movement on the object, the receiver seeks an acknowledgement on the robot head (our first look at more detailed eye-tracking results seems to corroborate this thought). These results partially corroborate the second hypothesis: the receiver gaze are similar between the robot and the human giver only when the perceived naturalness is high.

This study is more about the movement itself rather than its initiation, however, the preferred patterns meet the ones found by Strabala et al. (2012a). That is at the beginning of the action, the robot is looking at the object or at the receiver. We have also shown that the gaze pattern at the end of the exchange seems also to be important. Some patterns are considered as more natural than others, whereas [START_REF] Moon | Meet me where i'm gazing: how shared attention gaze affects human-robot handover timing[END_REF] did not find any difference on that aspect which was confirmed by objective measurements.

These patterns tend to confirm the first intuition and findings about handover conditions: Moon et al. The difference in the pupil size between the two types of givers (human or robot) might have different explanations: more curiosity or cognitive load induced by the observation of non-familiar, unknown machine. In the general eye-tracking literature, pupil diameters have been found to increase along with cognitive demands [START_REF] Kahneman | Pupil diameter and load on memory[END_REF] and emotional load [START_REF] Bradley | The pupil as a measure of emotional arousal and automatic activation[END_REF]. In this context, the difference in the pupil size between the two types of givers (human or robot) might have different explanations: more curiosity or cognitive load induced by the observation of non-familiar, unknown machine.

The objective results did not show any difference between the different speeds, although the subjective measurements show that the normal and fast speed is preferred over the slow one. Again, this partially confirms the third hypothesis.

Future work

Several contributions have been presented in this chapter. We see potential improvements and perspectives (they are categorized following the section they belong to):

Extending to multiple actions (Section 2.3) For now sharing the effort with the human is only about handing over objects. The approach can be extended to different actions such as taking a picture, or talking.

Planning with the object (Section 2.

3) It can also be more accurate if the real object form is considered for both manipulation and navigation (navigating with a big object will cause different problems).

Real time adaptation (Section 2.

3) The fast convergence times of the results for a handover indicates that the algorithm can be used to dynamically adapt the solution to the human while he is moving.

Relaxed synchronisation constraint (Section 2.4) using a place then a pick (by different agents)

sequence instead of a handover.

Agents involvement (Section 2.4) The planner, using STN knows the involvement duration of each agent, the rest of the time, those agents can be used to perform other tasks, but in order to do that, the task planner using the algorithms presented here must explicitly take the time into account [START_REF] Dvorak | Planning and Acting with Temporal and Hierarchical Decomposition Models[END_REF].

2D grid discretization (Section 2.4) This grid can be replaced by another kind of grid such as a quad-tree structure, [START_REF] Finkel | Quad trees a data structure for retrieval on composite keys[END_REF], to reduce the number of nodes.

Further analyse the results (Section 2.5) More information are still available on the eye tracker data, and they need to be retrieved and analysed.

Integrating the results on the robot (Section 2.5) The pattern found can be implemented as the normal behaviour of the robot while doing a handover.

A real robot user study (Section 2.5) In order to compare the results with the first one and to ensure their validity.

Contribution to the human-robot handover in a nutshell

In this chapter three main contributions were presented for the human-robot handover problems:

Sharing the effort with the human for a handover An algorithm computing handover configurations for both the giver and the receiver (humans or robots) while taking into account the human comfort and preferences. We also presented a user-study concerning the sharing part where we proved that a mobility parameter (either the human wants or not to share the effort with robot)

is relevant in the context.

Multi-agent handover An algorithm that computes an optimal sequence of handover to bring an object from an agent (human or robot) source to an agent target. This algorithm is able to compute, in addition to every motion plan, the exact schedule of every agent involved in the task. Geometric reasoning and planning

The handover gaze cues

Introduction

The goal of this chapter is to create a link and fill the gap between task planning and motion planning. In the context of autonomous robots, task planning is used to take decisions about what action to perform and when to perform it (as shown in the architecture presented by [START_REF] Alami | An Architecture for Autonomy[END_REF]). Usually, task planning manipulates symbols and concepts, and tries to find symbolic plans able to achieve a given goal.

In the same context, motion planning is used to compute the robot trajectories executable in the real world, trajectories that enable it to achieve tasks. As explained in LaValle (2006 The main goal of the GRP is to compute actions: based on symbols, the GRP should compute trajectories that will achieve the goals specified with the symbols. In other words, it should be possible to plan for actions while specifying only the desired information: the desired property to achieve at a level of abstraction sufficiently high to be usable by the task planner. For example, "giving an object to this person" or "putting an additional object on the table". This is even more important when other (human oriented) constraints have to be taken into account. The GRP can have another usage which is to compute Facts, based on the world geometric model, it is able to compute symbols describing the actual world state. We call these symbols facts. For example, it should be able to compute facts such as an object is in another one, an object is on another one, or more human related ones such as an object is reachable by an agent. These links between agents and objects are called affordances.

The affordances were first introduced by [START_REF] Gibson | The Theory of Affordances[END_REF] to explain how agents directly perceive the inherent "values" and "meanings" of things, and how they can use this information to infer the possible actions offered by the environment. [START_REF] Sahin | To Afford or Not to Afford: A New Formalization of Affordances Toward Affordance-Based Robot Control[END_REF] propose various formalizations of these affordances in the domain of autonomous robotics. One of these formalizations, which will be used in this chapter, is: "Affordances, are relations between the abilities of organisms and features of the environment". In order to compute these affordances we base ourselves on previous work such as [START_REF] Marin-Urias | Geometric tools for perspective taking for human-robot interaction[END_REF] where they use perspective-taking to compute them.

A geometric reasoner and planner endow the robot with a number of abilities (such as pick, put, show...). This is very close to the "task-level" planning problem, as defined in Lozano-Perez et al.

(1987), as it extends it to more possible actions and includes the multiple agents (humans or robots) possibility. It is also close to the manipulation planning problem which was a focus on various work, such as [START_REF] Simeon | Manipulation Planning with Probabilistic Roadmaps[END_REF], but lately more and more researchers began to work on the GRP problem. [START_REF] Fedrizzi | Transformational planning for mobile manipulation based on action-related places[END_REF], for example, worked on finding a placement for the robot base, where it is able to grasp an object with an uncertain position. [START_REF] Cosgun | Push planning for object placement on cluttered table surfaces[END_REF] plan for placing an object on a cluttered table by pushing the objects already on the table. [START_REF] Fraisse | Towards Socially Intelligent Robots in Human Centered Environment Beetz[END_REF] developed a framework based on the "mightabilities maps" which are maps in the 3d model of the world where affordances for every agent are computed for each cell in these maps. Based on this, the framework computes where an object can be placed, and where it will be visible and reachable by a specific agent.

In this chapter, we define a framework for specifying actions in a sufficiently formal and flexible manner enabling us to plan and compute their different steps but also to build geometric plans: a sequence of actions where there is interferences and interdependences between the several actions and steps that compose this plan. For example, pick then place: the choices made during the pick might interfere with the place or navigate to an object then pick it up: the position of the robot needs to be close enough to pick the object, but far enough to enable the robot motions (no collisions) Section 3.2, introduces the problem formalisation whereas, Section 3.3, presents the framework designed to handle this formalization with the simplification done. Section 3.4 addresses the possible future work while, the last section of this chapter, Section 3.5, synthesizes its contents.

Formalization

The Geometric reasoning and planning problem can be described with the 2-uplet {D g , E} where:

• D g is the domain that contains all the available actions, and

• E is the set of entities known to the robot.

The problem consists on solving queries where the goal of each one of it is to make an agent (or multiple agents) perform an action. The next subsections will present in details the actions, the entities, and other models used to formalize the problem.

Entities

Each entity e is defined by an identifier, a type and a description {id e , t e , g e }. t e refers to the entity type, which can be one (or more) of the followings: a human, a robot, a manipulable object, a support object, or a virtual object. The agents (robot and human) are considered in order to compute their motions, and, when needed, some social rules. The objects can be from different types, such as manipulable and support at the same time, and as their type indicates, manipulable object can be moved around by the agents, and can be placed on the support objects. The virtual objects are special objects for which the collision can be ignored in certain occasions.

The description g e follows the classical one in motion planning (see, for instance, LaValle (2006)), a kinematic graph, where the nodes are the entity joints and the edges the links. In this context, the links are the entity rigid bodies, which are defined by a frame and a representation of the geometric model in this frame. The joints are defined by a parametrized transformation matrix, where the independent parameters that characterize this transformation are the degree of freedoms (DoFs). Each DoF value belongs to a set S e ⊂ R, which can be infinite, or bounded by the entity geometry or by the world. If the robot has n DoFs, the set of transformations is usually a manifold of dimension n. This manifold is called the configuration space Cspace e , and an instance of this Cspace e is called a configuration q e ; in other words, q e is the value of every degree of freedom of every joint in the entity kinematic graph.

In addition to this Cspace e , the kinematic graph is used to compute the entity forward kinematic, which consists on computing the relative (to the entity) and the absolute position of every entity rigid body. It is also used to compute the entity inverse kinematic: computing the DoFs values based on the position of one of the entity end effectors. Finally, it is also used to compute trajectories, using motion planners, which consists on computing a collision free path between a starting and a stopping configuration.

Let Cspace refer to the configuration space of all the entities and Cspace e1 the configuration space of the entity e1. In an environment where the entities are {e1, e2, ..., em}, the Cspace is the Cartesian product of all the Cspace ei :

Cspace = Cspace e1 × Cspace e2 × Cspace e3 × ... × Cspace em

World States

A world state (ws) is the state of each entity from E at a given time t i . The state of an entity e is defined by {q e , t e , pos} where:

• q e is the entity configuration at time t i . This configuration can be fully known, or partially known (in case of uncertainties) or not known at all (no information regarding the entity position).

• t e is the entity trajectory at time t i . In other words, in addition to the position, it contains the future and previous configurations of the entity, in addition to its dynamic. The trajectory can also be fully known, partially known or completely unknown.

• pos represents the position of q e on the trajectory t e at time t i .

Actions

An action a ∈ D g is defined by {aId, des, IN }:

• aId is the action identifier which is unique. It can be Pick, Place, Give and so on.

• des is the action description, explained later in this subsection.

• IN is the list of required inputs, which varies from an action to the other. We can consider the example of the Pick action: the aId is Pick, the des will be defined later, and

IN contains the agent performing the task, the object which needs to be picked, and the initial world state ws init . Note that among the various possible inputs an action can have, it will always need an initial world state.

D g contains every action description mapped with its identifier aId, and when a query is made to such a system, only the aId and the IN are needed to solve the query. The result of a query links this initial world state to a final one ws f inal corresponding to the end configuration of every entity in the world. Note that the link between these two world states is actually one or multiple trajectories, and, as for any trajectory, we can retrieve every entity configuration at any point of it, and by extension a corresponding world state.

In order to explain the action description des we first explain the expected result. The computation of an action consists on finding a geometric action solution (GAS) which is composed by a set of geometric sub-action solutions (GSAS) and a cost c. A GSAS is defined by e, t, gsasN exts where:

• e is an entity.

• t is the trajectory that should be performed by the entity.

• gsasN exts is the list of all the GSAS that need this GSAS to be finished in order to begin (we are going to refer to it as geometric causal link).

To synthesise, an action description is built by smaller sub-action descriptions, linked between them by temporal operators, and each one of these sub-action descriptions is formulated using a logical linked geometric pre-conditions, search spaces, and final constraints.

Example

Let's take as an example the action "Pick". In this action, the agent needs to grab an object then disengage itself from the support object 1 . As some definitions are still missing, this example is not complete, its complete version is available in Subsection 3.3.2.1.

The Geometric pre-conditions used for a Pick are:

• HF ree h : no object in arm h end effector.

• Reach h (o): target object o is reachable by arm h.

• HF ull h (o): target object o is in arm h end effector.

The Search spaces are:

• F ix h (): the subset of Cspace where all entities are fixed, apart from the DoFs corresponding to the arm h of the agent.

• F ix h (o): the subset of Cspace where all entities are fixed, apart from the DoFs corresponding to the arm h of the agent, and the object o.

The Final constraints are:

• HApp h : arm h end effector in approach position 2 .

• HGrasp h : arm h end effector grasping the object.

• F ree(o): object o disengaged from its support.

The description of the action "Pick object O" is:

Pick(o) = ∃h ∈ {r, l}, (HF ree h &Reach h (o), F ix h (), HApp h) • (∅, F ix h (), HGrasp h), • (HF ull h (o), F ix h (o), F ree(o)) (3.1)
Where r is for right arm and l for left arm. In this example we consider that there is only one agent (with two arms) who will perform the action. The list of inputs of this action contains only the object O and the initial world state ws init .

This action solution is a GAS where there are three GSAS: approach, grasp, and disengage.

The rest of this section presents a number of definitions that complement the formalization.

1 the support is the object or obstacle the target object is placed on or attached to at wsinit 2 An approach position for an end effector is a position from where the end effector can reach a grasping position through a direct, straight line in the Cartesian space with a short motion.

Language discussion

The set of rules needed to write an action description can be considered as a language. This language, although very simple, can be used to describe more and more complex actions.

The advantage of such a language is the simplicity of describing new actions: the pre-conditions are symbolic facts that are intuitively understood with basic three dimensional logic. The search space and final constraints are subsets of the agents C space that defines how the action should be done and what is its goal: the search space defines globally what is going to move during the action, while the final configuration needs to define a subset of this space where a number of properties should be true (such as having the object in the hand or on the table).

The disadvantage of using such a language concerns the implementation: as each action has different pre-conditions, search spaces, and final constraints, each action will need a different set of functions to test, compute, and validate each part of the description. Although, as we work in a manipulation/navigation domains, the functions used are quite close and can be reused (as seen later in this chapter) for other actions too.

Facts & affordances

As seen in Subsection 3.2.2 a world state is a precise geometric description of the model of the world at a given time. In order to qualify this information and give it a symbolic meaning, to make it human readable, and usable by other models, facts are computed in these world states. A fact is a link between two entities: for example, "object A is on object B" or "Object A is in Agent's X hand". A fact can also be defined as the relative configuration between two entities: if the polygon formed by the bottom of object A is included in the polygon formed by the top of object B, then "object A is on object B". This relative configuration can enable us to define a space, related to a specific world state, where a fact is always valued to true.

A fact can be represented under the form: {e1, type, e2, v} where type is the type and (if relevant) the sub-type of the fact, e1 and e2 are the entities involved in the fact (in this order) and v can be either a Boolean or a scalar, depending on the type, for example {Obj1, is in, Obj2, true} means that Obj1 is located inside Obj2. The affordances are considered as facts here, as they are, following the definition of [START_REF] Sahin | To Afford or Not to Afford: A New Formalization of Affordances Toward Affordance-Based Robot Control[END_REF] (cited in Section 3.1), links between an agent (an entity) and an object (another entity). For example, "object o is reachable by agent X" or "object o is visible by agent X" are example of affordances that can be useful in a HRI context. Figure 3.2 shows examples of these affordances, in addition to two other facts (is on and is next to)

Additional definitions

In this subsection, a number of additional definitions linked to the previous formalization are presented.

Costs

The function f cost computes the cost of a GSAS based on its trajectories and its initial and final world states. This computation can be related to the geometry only (such as the trajectory length) or to a more complex notions such as human-aware considerations. Figure 3.3 shows an implemented example were the cost changes depending on the human position (in this example, the robot navigates to the table). It is computed based on the costs presented by Sisbot et al. (2007b), and taking into account the human-robot distance and the robot visibility by the human (going behind and close to the human is to be avoided).

Alternatives

The space defined by the Final constraints for the final world state in each sub-action description is usually not a singleton, therefore multiple solutions for the same sub-action description (and by transition, the same GAS) may exist and are called alternatives. If the final constraints define a singleton, there is only one alternative, the one corresponding to the unique solution. In other words, alternatives are unique, and cannot have the same final world state.

A geometric plan

A geometric plan is a set of GAS linked between themselves through geometric causal links. These links are created based on the initial and final world state of each action: if the final world state of a GAS g1

is the initial world state of a GAS g2, then, in the geometric plan, g1 is the previous of g2.

The geometric plan can be a simple sequence of GAS or a set of GAS assembled as Directed Acyclic

Graph (for example in the case of multiple robot acting in parallel).

The GRP stores all the actions and their alternatives, and arrange them in a tree, where a path from the root to the leave is a geometric plan.

Additional constraints

Constraints can be considered as spaces limiting the search spaces of an action. To be more precise, in our case, constraints will be applied to a sub-action description, either to the search space or to the final constraints. In other terms, to add a constraint we can simply add to the targeted search space or final constraints an intersection with the constraint space.

For example, the Pick action can be constrained by: Hatop h the approach position should be strictly above the object, which can be incorporated in the action description as:

Pick(o) = ∃h ∈ {r, l}, (HF ree h &Reach h (O), F ix h (), HApp h ∩ Hatop h)) • (∅, F ix h (), HGrasp h), • (HF ull h , F ix h (o), F ree(o)) (3.2)
As they define spaces in specific world states, facts can also be used as constraints, by using the intersection operator again. For example, for an action where the agent ar needs to place object o on the table s, a constraint can be set as {o, is reachable by, ar, true}. This constraint reduces the space defined by the final constraints of the action description to itself intersecting the space reachable by the human.

Framework

In order to put in practice this formalization, a framework was developed, able to compute GASs, while maintaining a plan and computing human-aware costs for each action. This section defines in details this framework by first presenting the choices and the simplifications made (Subsection 3.

Simplifications and choices

We assume that in this framework the entities states are fully known (the configurations and the trajectories are fully known and defined at every moment). The second assumption concerns the sequentiality:

only sequential actions are possible (no parallel actions) causing the plan to be a sequence and not a Directed Acyclic Graph.

Some simplifications were also done to facilitate the computations: they add to the models presented in the previous section a number of parts on which reasoning at symbolic level is easier than reasoning on the basic models.

Wrist manipulation joint (WMJ) Every agent is equipped with a WMJ. It is a virtual point fixed -with a transformation matrix-to the agent end effectors (the hands or the grippers) and is considered roughly at its centre when it is closed as shown in Attachments An attachment is a transformation matrix between the WMJ and an object. It enables the system to keep track of the objects grasped by the agents and is stored in the world states. In the rest of this manuscript, an object attached to the end effector of an agent arm means that this transformation matrix is known.

Arms We consider that each agent is equipped with at least one arm, and at most two. When there are two arms they are noted r and l for right and left. Let H ag be the set of agent ag arms. This is not a limitation of the system, adding robots with more arms is feasible, but for now, the implementation handles only up to two arms.

In addition to these simplifications, the framework needs a number of additional information. This information such as the possible grasps can be computed on-line using off-the-shelf methods such as [START_REF] Miller | Automatic grasp planning using shape primitives[END_REF] for the grasps, but in this work, we have made the choice to pre-compute the following information in order to speed up the on-line computation time:

Grasps The grasps used in the framework are precomputed for each different end effector, in the form of a transformation matrix between the object and the WMJ, in addition to a direction from where the grasp is feasible. Supports An object support is a geometrical form attached to an object face (by a transformation matrix) where other objects can be placed. An object can have multiple supports (such as a shelf)

and when an object does not have any supports, it is not considered as a support object. Figure 3.7

shows different supports on various tables. Let S o be the set of precomputed supports of object o.

Stable configurations These are rotations of a manipulable object that enable a stable placement when the object is on a horizontal support. An object without Stable configurations cannot be placed in any ways (but can, for example, be handed over). Figure 3.8 illustrate these configurations on the grey book. Let P o be the set of precomputed Stable configurations of the object o. In addition to this, the definition of a GAS was extended to include a unique GAS identifier (gasN um)

that differentiates GASs from each other, and a unique alternative identifier (gasAltN um) that differentiates, within the same GAS, alternatives from each other. The GAS definition now contains the list of all the GSAS linked together through geometric causal link, its cost, the gasN um, and the gasAltN um.

Actions description and examples

We have developed in this framework a number of actions. Some examples are described in details in this subsection. Some descriptions used in the following are common for different actions (in the rest of this chapter, ag refers to the agent, h refers to one of its arms, and h.ee refer to arm h end effector).

Geometric pre-conditions

• HF ree h (ag): no object in h.ee.

• HF ull h (ag, o): o is in h.ee.

• OReach h (ag, o): object o reachable by arm h of ag while the robot base is fixed.

• EEOpen h (ag): h.ee is open.

• EEC lose h (ag): h.ee is closed.

Search spaces

• F ix h (ag): the subset of Cspace where all entities DoFs are fixed, apart from the DoFs of the arm h of ag.

• U pF ix(ag): the subset of Cspace where only ag displacement DoFs are not fixed.

• OF ix h (ag, o): the subset of Cspace where all entities DoFs are fixed, apart from DoFs of the arm h, and the DoFs of object o which is attached to h.ee. • EEF ix h (ag): the subset of Cspace where all entities DoFs are fixed, apart from the DoFs of h.ee.

Final constraints

• EEC h (ag): the subset of Cspace where h.ee is closed (This subset contains also the cases when the end effector is not completely closed because it is grasping an object).

• EEO h (ag): the subset of Cspace where h.ee is open.

The inputs are expressed between the parentheses while the non-defined variables (such as the arm to use) are noted as subscripts. In the following descriptions, the inputs might be omitted when no ambiguity is possible.

Pick

The Pick action description presented in Subsection 3.2.3.1 was lacking some details defined in this section and is fully redefined here. The final constraints needed are:

• HApp h-g (ag, o): the subset of Cspace where WMJ of h.ee is at a given distance3 from the position defined by grasp g ∈ G o-h.ee in the direction defined by g. This position is an approach position in order to grasp the object.

• HGrasp h-g (ag, o): the subset of Cspace where WMJ of h.ee is at the position defined by g (this grasp must be the same as the one in HApp h-g (ag, o)).

• OF ree(o): the subset of Cspace where the object o is at a given distance 3 above its initial support.

This position allows to disengage the object o from the contact it has with its support.

The description of the action Pick is now:

Pick(ag, o) = ∃h ∈ H ag , ∃g ∈ G o-a.ee , (HF ree h (ag)&OReach h (ag, o), F ix h (ag), HApp h-g (ag, o)) • (∅, F ix h (ag), HGrasp h-g (ag, o)) • (∅, EEF ix h (ag), EEC h (ag)) • (HF ull h (ag, o), OF ix h (ag, o), OF ree(o)) (3.3)
The input list of a Pick contains also the initial world state (as this input is mandatory for every action, it will be omitted in the rest of the action descriptions), the manipulable object o and the agent ag performing the action. The different parts of the description are explained in the followings and illustrated in Figure 3.9:

• ∃h ∈ H ag , ∃g ∈ G o-a.ee means that at least one pair (arm, grasp) exists where the next parts of the description are fulfilled.

• (HF ree h (ag)&OReach h (ag, o), F ix h (ag), HApp h-g (ag, o)) is the approaching sub-action description. The corresponding trajectory, should bring a free end effector from its initial position to a position where the object can be reached easily (a given distance 3 away from the object), Fig- where closing it will result on grasping the object, Figure 3.9(b).

• (∅, EEF ix h (ag), EEC h (ag)) is the grasping sub-action description. The corresponding trajectory closes the end effector to grasp the object, Figure 3.9(c).

• (HF ull h (ag, o), OF ix h (ag, o), OF ree(o)) is the disengaging sub-action description. The corresponding trajectory disengage the object from the contact it has with its support, Figure 3.9(d).

Place

In the Place action, the agent needs to approach the support with the object To describe the Place action, one more pre-condition is needed: SReach h (ag, so), support so is reachable by h, and some more final constraints:

• HAppr (x,y)-p (ag, o, so): the subset of Cspace where o is at a given distance 3 above the support so at coordinate (x,y) -relative to the support-with a stable configuration p ∈ P o .

• HRel (x,y)-p (ag, o, so): the subset of Cspace where o is on the support so at coordinate (x,y) with a stable configuration p ∈ P o .

• EEF ree h (ag, o): the subset of Cspace where WMJ of h.ee is at a given distance 3 away from o.

The description of the action Place is then:

Place(ag, o, so) = ∃h ∈ H ag , ∃s ∈ S so , ∃(x, y) ∈ s, ∃p ∈ P o , (HF ull h (ag, o)&SReach h (ag, so), OF ix h (ag, o), HAppr (x,y)-p (ag, o, so))

• (∅, OF ix h (ag, o), HRel (x,y)-p (ag, o, so)) • (∅, EEF ix h (ag), EEO h (ag))

• (HF ree h (ag), F ix h (ag), EEF ree h (ag, o)) (3.4)
The inputs for the Place are the agent ag, the manipulable object o, and the support object so. The framework chooses which support to use in the support object (in the case of more than one support),

where exactly (x, y) to Place the manipulable object and which stable configuration p to use.

Stack

The Stack action is very close to the Place action, the only difference is that in the Stack action the exact position where to place the object is given as input (under the form of the support, with the position at its centre (c x , c y)):

Stack(ag, o, so) = ∃h ∈ H ag , ∃p ∈ P o ,
(HF ull h (ag, o)&SReach h (ag, so), OF ix h (ag, o), HAppr (cx,cy)-p (ag, o, so))

• (∅, OF ix h (ag, o), HRel (cx,cy)-p (ag, o, so)) • (∅, EEF ix h (ag), EEO h (ag))

• (HF ree h (ag), F ix h (ag), EEF ree h (ag, o)) (3.5)

NavigateTo

In the NavigateTo action, the agent needs to go into a navigation configuration then navigates to the target. One specific search space is needed: U pperBody(ag): the subset of Cspace where all entities are fixed apart from the agent upper body 5 and the object attached to his end effectors. The specific final constraints of this action are: N avP os(ag), the subset of Cspace where the agent is in a navigation configuration, and OnT arget(ag, e): the subset of Cspace where the robot reached the target entity e.

Reaching a target entity depends on the entity type, if it is an agent, the agents should be able to reach each other extended arms, if the entity is an object or a support, it should be reachable by the agent.

Its description is:

NavigateTo(ag, e) = (∅, U pperBody(ag), N avP os(ag)) • (∅, U pF ix(ag), OnT arget(ag, e)) (3.6) The input is a 2d zone, which can be specified by providing an entity: the zone will be the one immediately around this entity.

Handover

The Handover as defined in the previous chapter is complex, as it involves two agents. We are going to differentiate between them as ar for the receiver and ag for the giver. Two specific final constraints for this action are: DistT arget h-i (ar, ag) the subset of Cspace where the distance between the two agents is smaller than the sum of ar arm h length and ag arm i length, and AgentReach h-i (ar, ag): the subset of Cspace where h.ee can reach b.ee. The action description is:

Handover(ag, ar, o) = ∃(x r , y r , θ r) ∈ (R, R, [-π, π]), ∃(x g , y g , θ g) ∈ (R, R, [-π, π])∃h ∈ H ar , ∃i ∈ H ag
((HF ree h (ar), U pperBody(ar), N avP os(ar)) (HF ull i (ag), U pperBody(ag), N avP os(ag)))

• (∅, U pF ix(ar) ∪ U pF ix(ag), DistT arget h-i (ar, ag))

• (∅, F ix h (ar) ∪ OF ix i (ag, o), AgentReach h-i (ar, ag)) (3.7)

The inputs are the agents and the object to exchange. This description is the one used in Section 2.3 to find handover positions, even if it was done outside of this framework, it is still covered by the description.

The first part, ∃(x r , y r , θ r) ∈ (R, R, [-π, π]), ∃(x g , y g , θ g) ∈ (R, R, [-π, π])∃H ∈ H ar , ∃i ∈ H ag means that at least one pair (giver position, receiver position) exists where the agents, after moving to a navigation position ((HF ree h (ar), U pperBody(ar), N avP os(ar)) (HF ull i (ag), U pperBody(ag), N avP os(ag))), can navigate to (∅, U pF ix(ar) ∪ U pF ix(ag), DistT arget h-i (ar, ag)), and that at least one pair (giver arm, receiver arm) exists where in these positions, the agents arms can reach each others one (∅, F ix h (ar) ∪ OF ix i (ag), AgentReach h-i (ar, ag)).

PlaceReachable

Following the formalization, we can add human-aware actions, for example, PlaceReachable is an action where the agent ag holding the object place the object in a place which is reachable by a target agent ara.

Let's consider the final constraints AReachO(at, o), based on the fact {o, is reachable by, ar, true}, it defines the subset of Cspace where the object o is reachable by agent ar. The action description is then:

PlaceReachable(ag, ar, o, so) = ∃h ∈ H ag , ∃s ∈ S so , ∃(x, y) ∈ s, ∃p ∈ P o , (HF ull h (ag, o)&SReach h (ag, so), OF ix h (ag, o), HAppr (x,y)-p (ag, o, so) ∪ AReachO(ar, o))

• (∅, OF ix h (ag, o), HRel (x,y)-p (ag, o, so)) • (∅, EEF ix h (ag), EEO h (ag))

• (HF ree h (ag), F ix h (ag), EEF ree h (ag, o)) (3.8) This description is the same as the Description 3.4 with the additional AReachO(ar) as well as the inputs with an additional target agent ar. to account for the stability constraint (if a humanoid robot moves his arm only, and extends it too much, there is a risk of falling). The work concerning the humanoid robots was done in cooperation with Renaud Viry. In some cases, the inputs list can also be changed, without changing the description of the action: for example, for a Place, one can specify the object to place, an arm (retrieving the object thanks to the attachments), or both (checking if the attached object is the same as the one specified).

The support, the stable configuration, or even the exact position on the support can also be given as inputs to a Place action. When additional inputs are given to the actions, the framework replaces the search it would do when nothing is specified by the direct selection of the inputs. Some inputs can also be omitted, in which case the system needs to consider them as additional variable to look for: in the Place, omitting the support object will result on checking the nearest support object to the agent and use it.

The proposed Algorithms

This subsection presents different algorithms able to find solutions for these actions. The general idea of these algorithms is to find the initial and final world states of the GSAS and then to compute the corresponding trajectories. In order to find these world states, the simplifications and information described in 3.3.1 are used in addition to the inverse kinematic (IK) computation. For example, when computing a

Pick, a number of grasps are tested to find a feasible one (collision free). Then, the agent configuration is computed (IK) resulting on a final world state. For the Place, a number of placements on the table are tested with various stable configurations, as shown in Figure 3.15. When one of them is collision free, the final configuration is computed based on the grasp used to attach the object to the end effector in the initial world state of the action. The most basic algorithm is to find a solution for each sub-action description separately, and then to combine them with the geometric causal links (Subsection 3.3.3.1). The second algorithm consists on finding the final world state of every sub-action description (using inverse kinematics for example), and then computing the motion plans between the computed world states (Subsection 3.3.3.2). The last algorithm consists on finding all the possible final world states and then choose between them the best one (based on human aware costs) and compute the motion plan for it (Subsection 3.3.3.3).

Separated sub-action descriptions algorithm

In this version, the Algorithm 3 processes the sub-action descriptions one by one until finding a solution for all of them. The first lines of the algorithm initialize the different variables needed later, such as CST D (Line 3) which is the current sub-action description, initialized to the first sub-action described in the action. Then, the algorithm enters a loop (from Line 8 to Line 30) where it first retrieves the performing agent7 then, it checks if the conditions specified by CST D are respected in the current world state currW S (Line 10). In the case where the conditions are not met, the algorithm sets the current variable to the one from the previous sub-action description (Line 11) and if no previous subaction description is found, it breaks out of the loop and fails to find a GAS for this action. When the conditions are met, the algorithm enters another loop (Line 14 to Line 20) where it searches the prevST ← ∅

6:

Clear(ST List) ⊲ ST List is the GAS 7:

solLef t ← true 8:

while CST D = ∅ do 9:

a ← getAgent(CST D) ⊲ This is the performing agent (needed in every GSAS) 10:

if not checkCond(CST D.conditions, currW S) then 11:

(CST D, prevST , currW S) ← GoToPreviousST(CST D,descr,ST List) return (ST List, ComputeCost(ST List), CreateNewGasNum, CreateNewGasAltNum) 32: end function solution for this sub-action description: it tries to find the agents and objects configurations (Line 15 with F indW S function which will be detailed later in this subsection) and by extension the GSAS final world state ws tmp . Then, it computes a trajectory to link currW S and ws tmp . If this trajectory is found, the algorithm breaks out of the deepest loop, and continues by creating the new GSAS related to this trajectory (Line 25), then adding the geometric causal link between this GSAS and its predecessor in descr (Line 26) and finally store it in the GSAS list (Line 27). Before the end of the loop, the current sub-action description CST D is updated with the next one in descr (Line 29). The algorithm escapes the loop when there is no more sub-action descriptions and returns the GAS, represented by the GSAS list, its cost and the unique identifiers for the GAS and the alternative -those are computed at the end of the algorithm only if a solution was found, otherwise their value is nan-.

The F indW S function in Line 15 of Algorithm 3 is a function computing, based on the search space and the final constraints of a sub-action description, the final world state ws tmp for said description. It uses inverse kinematic coupled with the WMJ of the arms to find configurations corresponding to the CST D ← getPreviousSubActionDescr(descr,CST D)

3:

RemoveLast(ST List)

4:

prevST ← LastST(ST List)

5:

currW S ← GetEndWS(prevST)

6:
return (CST D, prevST , currW S) 7: end function description. This function, as it is action dependent usually needs to be implemented separately for each action. As said before in Subsection 3.2.5.2, the possible solutions available in the search space and the final constraints are not unique, but can be false solutions: even if a solution is found, the trajectory might not be feasible. F indW S returns in addition to the final configurations it found (under the form of a world state) an integer solLef t indicating the number of solution left in the space defined by the search space and the final constraints. Note that this exploration is stored and each time F indW S is called for the same sub-action description, the already tested solutions are removed from this space. This is true even when an alternative is computed, the information stored in this function are retrieved from all the previous alternatives already computed. The number of possible solution in the search spaces can be infinite (continuous spaces), in which cases, we set a numerical limit for the possible number of solutions (e.g. 200 for the Place action).

Configurations first algorithm

The difference between this algorithm and the previous one is about when to compute the motion plan: in the previous one, it was computed for each sub-action description, in this one, the motion plan is left to the end, until all the world states are found.

These differences are shown in Algorithm 5. Its main loop (Line 3 to Line 31) consists of two main steps:

Computing the world state list (Line 7 to Line 18) this step consists on looping over the sequence of sub-action descriptions, and for each one, checking the conditions (Line 8) and, if respected, computing the corresponding world state (Line 10). This world state is then used to check the pre-conditions for computing the next GSAS and to compute the next world state, and so on, until all the start and final world states of every GSAS is computed and stored in W SList (Line 16)

Computing the motion plans (Line 20 to 30) As all the world states are computed and the corresponding conditions checked, the second step consists on linking them by computing the trajectories.

For each start and final world state computed in the previous step and stored in W SList the algorithm will compute the trajectory (Line 22) and will create the corresponding GSAS and add it to the result. As soon as one trajectory cannot be computed (Line 23), the solution cannot be found, and the algorithm loops back to the first step.

The algorithm breaks out of the main loop on two conditions: (1) a solution is found, (2) no more solutions are available in at least one F indW S (Line 10). descr ← GetActionDescription(aId)

3:

while SolutionNotFound and solLef t > 0 do 4:

Clear(ST List) ; Clear(W SList)

5:

CST D ← GetFirstSubActionDescr(descr) ; currW S ← IN.ws init 6:

AddToList(W SList, currW S) 7:

while CST D = ∅ do 8:

if checkCond(CST D.conditions, currW S) then 9:

(ws tmp , solLef t) ← if not checkCond(CST D.conditions, currW S) or ws tmp = ∅ then 13:

(CST D, prevST , currW S) ← GoToPreviousST(CST D,descr,ST List) prevST ← ∅ 20:

for i ← 0; i < Size(W SList); i + + do 21: a ← getAgent(W SList[i][2]) 22: traj ← ComputeTraj(W SList[i][0], W SList[i][1], W SList[i][2]) 23: if traj = ∅ then 24:
break 25:

end if

26:

tmpST ← (a, traj, ∅)

27:

SetNextSubAction(prevST , tmpST)

28:

AddToList(ST List, tmpST)

29:

prevST ← tmpST 30:

end for 31:

end while 32:

return (ST List, ComputeCost(ST List), CreateNewGasNum, CreateNewGasAltNum) 33: end function

Integration of Human aware constraint

This third algorithm differs from the two previous ones by taking explicitly into account the human: in order to achieve this, the algorithm computes, as the previous one, the sequence of world states, then compute the trajectories. The difference lies in the following, the algorithm computes all the world states corresponding to every available solution in F indW S and then, sorts them according to a human-aware costs, and, finally, computes the trajectories for the best one (if it fails, it computes the trajectories for the second best one, and so on) This algorithm can be divided into three main parts:

Computing the world states (Line 3 to Line 20) In this part, the algorithm computes all the possible sequences of world states. The limit is the one fixed by solLef t computed by F indW S (Line 10). descr ← GetActionDescription(aId)

3:

while solLef t > 0 do 4:

Clear(W SList)

5:

CST D ← GetFirstSubActionDescr(descr) ; currW S ← IN.ws init 6:

AddToList(W SList, currW S) 7:

while CST D = ∅ and solLef t > 0 do 8:

if checkCond(CST D.conditions, currW S) then 9:

(ws tmp , solLef t) ← if not checkCond(CST D.conditions, currW S) or ws tmp = ∅ then 13:

(CST D, prevST , currW S) ← GoToPreviousST(CST D,descr,ST List) return (ST List, ComputeCost(ST List), CreateNewGasNum, CreateNewGasAltNum) 41: end function Sorting the sequences of world states (Line 21) Once all the sequences of world states computed, the algorithm sort them according to a cost. This cost is computed based on various parameters related to the human safety and comfort depicted in the next subsection.

Computing the trajectories (Line 23 to Line 39) In this part, the algorithm tries to find the trajectories for the first sequence in the sorted list of possible sequences GlobalW SList, and if it fails, it tests the second best sequence, then the third, and so on, until finding a solution or testing all the sequences.

Additional implementations

In addition to the main algorithm. Some other implementations has been done:

Facts

The function GetFacts(ws) can be called upon a world state (ws) and computes the facts that hold in it. The available facts are as follows:

Is On first object is over the second object Is In first object is inside the second object Is Next To both objects are next to each other Is bigger than first object is bigger than the second one (Is smaller is also available)

Is reachable by object can be reached by the agent

Is visible by object is in the field of vision of the agent

This implementation is based on previous works on this domain, such as [START_REF] Warnier | When the robot puts itself in your shoes. Managing and exploiting human and robot beliefs[END_REF] and [START_REF] Sisbot | Situation assessment for human-robot interactive object manipulation[END_REF].

Cost

The cost function used to sort the world state sequence list is relevant only when the performing agent is a robot and there are humans in the environment. It is linked, as in Subsection 2.3.1.3, to three parameters: the distance (this part of the cost is inversely related to the smallest distance between the robot and every human in the environment) the visibility of the robot by the humans where we test if some part of the robot is not hidden to the humans, and the musculoskeletal effort (when needed) related to the Euclidean distance between the initial and final configurations during a GSAS, and the potential energy in the final world state [START_REF] Marler | A New Discomfort Function for Optimization-Based Posture Prediction[END_REF]. These three parameters enable us to compute the human-aware GSAS and by extension human-aware GAS.

Alternatives

The framework also proposes the possibility of calling the function FindAlternative(gasN um) which retrieves, from the stored GASs, the corresponding one (with the same gasN um), the action aId and the inputs IN , and call again the search algorithm. As said before, the function FindWS stores the different failed and succeeded final world states it computed for each GSAS and proposes a new one each time it is called again.

Additional Constraints

As the constraints can be directly added in the action definition (as presented in Subsection 3.2.5.4), they are actually solved by the algorithms as it is. They are included in the inputs IN of the action under the form of facts (as said before, facts define search spaces that can be used in an action descriptions) in addition to their position in the action description. For example, when using a PlaceReachable(ag,ar,o,so) action, we can add as a constraint the fact: {o, is visible by, ar, true} when finding the object placement. This constraint will force the algorithm to find only objects positions that are visible by the agent ar.

Geometric plan

The input world state in the search algorithms can be replaced by a reference to a previously computed GAS (the reference must contain both gasN um and gasAltN um), in which case, ws init can be retrieved from the corresponding GAS as it final world state, and a geometric causal link is created between the referenced GAS and the computed one (in this order). This is how the geometric plans are stored.

In order to compute geometric plans, we developed an algorithm able to compute them based on a list of actions and an initial world state. This algorithm is very simple: for each action in the list, it computes the GAS. If the computation succeeds, it computes the next action GAS based on the computed final world state, otherwise, it backtracks to the previous action it computed, finds an alternative for this action and proceeds to compute the failed action GAS again with the new world state obtained. If, during a backtrack, there is no more alternatives to the action, the algorithm backtracks one more step.

It repeats these steps until it finds a geometric plan or until all the alternatives have been tried and have failed. Figure 3.16 shows a plan where the robot performs three successive Pick and Place on three objects. This plan was written under the form represented in Algorithm 7 as a set of actions to perform.

Results and discussion

This subsection presents, through Table 3.1, the results obtained when running the second algorithm (Subsection 3.3.3.2) on the action Pick, Place and PlaceReachable as described in Subsection 3.3.2.

These results have been evaluated in a scenario where a PR2 robot needs to Pick (or Place, or Plac-eReachable to a human in the other side of the table) a green bottle, with one of its two 7 DoFs arms, on a table in front of him. Some initial world states are depicted in Figure 3.17 The framework can also handle multiple agents at the same time, performing different actions (in sequence) using different motion planners. Figure 3.18 shows an environment where a PR2 robot and an unmanned aerial vehicle (UAV) cooperate to bring an object to its final position: in the initial scenario, the UAV cannot Pick the bar as there is an object obstructing it path, the PR2 removes that object in order to let the UAV perform a Pick. One additional feature available in this framework is the possibility to use different motion planners and/or different type of motions depending on the tasks. Here, The PR2 uses classical linear motion primitives defined in its Cspace while the UAV uses kinodynamic motion primitives defined in its state space (i.e. integrating speed and acceleration) [START_REF] Boeuf | Planning agile motions for quadrotors in constrained environments[END_REF].

In addition to that, it is also able to handle geometric plans (Subsection 3.3.4.5), to compute actions alternatives (Subsection 3.2.5.2) and facts (Subsection 3.2.4), and to add these facts as constraints to any action (Subsection 3.2.5.4).

This framework has been implemented on the PR2 robot using the architecture explained in obtains a plan (which is computed based on the information available in the knowledge base). This plan is then used to ask, step by step, the human-aware motion and manipulation planners module to compute the actions. In order to compute these actions, this module uses the world state provided by SPARK (the situation assessment module [START_REF] Sisbot | Situation assessment for human-robot interactive object manipulation[END_REF]) and the framework we developed to compute a GAS. The trajectories computed in this GAS are then sent to the sensorimotor layer to execute them.

The robot can now Pick, Place, PlaceReachable and Stack with real objects. Figure 3.19 shows it during a session of Pick and PlaceReachable (the video is available here: https://youtu.be/ 85KiC35qkPE).

This framework enables us to solve a number of problems but is still limited, for example, it cannot compute anything else then the action (or sequence of action) it has been commanded to compute: which can be problematic in some cases, for instance, if the object g obstructs the access to the object o the agent needs to Pick, the framework will fail to find a solution as it would need first to remove or push the object g to access o. This limitation in particular is a choice: as we are going to see in the next chapter the choice of action is let to the task planner, which can take into account more parameters.

Future work

This work can be enhanced in a number of ways, here are some of them:

Graph reuse each query to the motion planner (ComputeT raj in the algorithms) is done in the framework as an RRT query (LaValle (1998)). One way to enhance the motion planning search is to reuse the RRT graph (or any other motion planning graph). Some approaches [START_REF] Ferguson | Replanning with RRTs[END_REF], [START_REF] Phillips | Anytime incremental planning with E-Graphs[END_REF] use one graph and make it evolve with time and queries but it does not exactly match our needs as they usually replan in the same or nearly the same environments as the previous queries. In this framework, we might need to replan in the nearly (or exactly) the same scenarios, but it also might happen for two consecutive action computation to be in totally different environment. The idea of reusing graphs here is to first store each computed graph and link it to an action, and then, when computing the motion plan for a new action, try to find -based on information provided by the framework, such as the performing agent, the object manipulated, the action type, and so on-the closest action to the new one, and use the stored graph(s) linked to this closest action.

Search space exploration

The exploration in the search space is done randomly but can be enhanced to take the geometry into account: for example, when placing an object on a table, if an object placement fails because there is no inverse kinematic possible in that case then testing an object position close to this one will probably fail too. The idea is to explore the space in the most efficient way to cover it as fast as possible.

Combining actions based on the formalism, it is possible to concatenate actions and solve them with the same (or nearly) algorithms as the one presented in Subsection 3.3.3

Multi-robot & parallelism as presented before, the framework can handle only one robot moving at the time, although the formalism enables us to have multi-robot and parallelism by using the geometric causal links. The framework can be extended to take this into account.

Contribution to the geometric planning and reasoning in a nutshell

This chapter contains two main contributions:

Geometric actions formalization The actions are described as a sequence of sub-action descriptions, linked to each other with geometric causal links. The actions can have alternatives and can be linked between themselves to form a geometric plan.

A framework using this formalization The framework proposes different algorithms enabling the use of the previous formalization, while integrating a human-aware parameter. It shows also the results obtained by implementing one of these algorithms on a simulation and a real robot.

Introduction

In the previous chapter, a geometric planner able to plan fetch and carry actions for an autonomous robot was presented. The scope of this planner enables it to find solutions for simple problems such as to pick an object or to place it on a table. For more complex scenarios where the robot would need to perform a number of actions, which order is not known in advance, this planner is clearly not enough. On another hand, task planning methods enable a system to plan ahead for multiple actions and sequence of actions. The idea of this chapter is to combine these two planning methods into one by using both planners strengths: geometric planning strength lies in its capability of handling the continuous 3D space where humans and robots coexist, while taking into account their respective positions and preferences, the objects, and the environment in general, but it uses very specialized algorithms to find solutions in specific cases. Task planning strength lies on its ability to handle large discrete domains with a great semantic variety and to find an optimal way to achieve a given goal in these domains, but it lacks the specific knowledge to deal with the geometric description of the world.

The usual approach consisted on first computing a symbolic plan, and then, testing its feasibility at geometric level. This approach rises various issues, such as the ramification, the computation time, or the completeness. The ramification problem occurs when the effects of an action are unknown or only partially known, which is the case when performing actions in the real world: for example, moving an object might result in a chain of actions (removing an object from a pile of objects might result on the whole pile to collapse) which was not expected. This ramification leads the geometric level computation to often fail, leading to a higher computation time (the ramification problem is more detailed in Subsection 4.3.5).

It also affects the completeness, as some geometric choices might not be tested, before switching to a different symbolic plan. In the rest of this chapter, we will be referring to the geometric level as the geometric reasoner, or the geometric planner, as it reasons about the geometric space and is able to refine the symbolic plan into trajectories.

This work was held in cooperation with Lavindra De Silva and Raphaël Lallement, and was based on previous work, such as De [START_REF] Silva | Towards Combining HTN Planning and Geometric Task Planning[END_REF]. Part of this work was published in De Silva et al.

(2014) and the other part is published in Gharbi et al. (2015a). This chapter is structured as follows:

State of the art

Combining task and motion planning has been of great interest in a number of studies during the few last decades. One of the first works concerning this particular topic was done in aSyMov by [START_REF] Cambon | Overview of aSyMov: Integrating motion, manipulation and task planning[END_REF] and extended later in [START_REF] Gravot | aSyMov: A Planner that Deals with Intricate Symbolic and Geometric Problems[END_REF], where the authors essentially propose a principled way to link the two planners thanks to a geometric level able to tackle the so-called "manipulation planning problem" [START_REF] Choset | Robot motion planning[END_REF] and that allows to explicitly take into account the topological changes occurring in the configuration space, when a robot grabs or releases an object. aSyMov provided a well-founded translation of pick and place actions (and similar actions) into 'transit' and 'transfer' motion planning requests even in multi-object and multi-robot contexts.

In this section, we first identify the various names given to this problem and then we propose a categorisation of the work done in this field, using and extending the analysis presented by [START_REF] Erdem | A Systematic Analysis of Levels of Integration between Low-Level Reasoning and Task Planning[END_REF].

The problem was given various names and appellations, such as hybrid planning [START_REF] Guitton | Towards a Hybridization of Task and Motion Planning for Robotic Architectures[END_REF], CPMP Choi and Amir (2009) for combining planning and motion planning or TAMP Lozano-Perez and Kaelbling (2014) for Task And Motion Planning and its variants: ITMP in Nedunuri et al.

(2014) and [START_REF] Hauser | Integrating task and prm motion planning: Dealing with many infeasible motion planning queries[END_REF] for Integrated TAMP, STAMP in S ¸ucan and [START_REF] S ¸ucan | Accounting for uncertainty in simultaneous task and motion planning using task motion multigraphs[END_REF] for

Simultaneous TAMP or CTAMP in [START_REF] Lagriffoul | Efficiently combining task and motion planning using geometric constraints[END_REF] for Combined TAMP. In this chapter, we will refer to this problem as the Symbolic Geometric Planning (SGP) problem.

Different approaches were proposed, [START_REF] Erdem | A Systematic Analysis of Levels of Integration between Low-Level Reasoning and Task Planning[END_REF] distinguish four different strategies among them: "(i) low-level checks are done for all possible cases in advance and then this information is used during plan generation, (ii) low-level checks are done exactly when they are needed during the search for a plan, (iii) first all plans are computed and then infeasible ones are filtered, and (iv) by means of replanning, after finding a plan, low-level checks identify whether the plan is infeasible or not; if it is infeasible, a new plan is computed considering the results of previous low-level checks". We propose another categorisation which keeps the same differences as these ones, but add some other categories and sub-categories:

Symbolic calls geometric reasoner In this case, the symbolic planner performs the plan search as usual, but verifies the feasibility of the plans produced at geometric level. This category groups (ii), (iii) and (iv) as sub-categories.

Geometric reasoner uses symbolic level In this case, the geometric planner knows all the possible solutions and uses the symbolic planner to determine which ones to explore and choose. It corresponds to (i).

Search in both levels simultaneously The search space is a compound space between the geometric and the symbolic spaces, the search is done in this compound space with no distinctions between the levels. This category does not exist in [START_REF] Erdem | A Systematic Analysis of Levels of Integration between Low-Level Reasoning and Task Planning[END_REF].

The next subsections, propose a state of the art categorisation following these points.

Symbolic calls geometric reasoner

This category can be divided into three sub-categories: compute all symbolic plans then computing the geometric plan (Subsection 4.2.1.1), find one symbolic plan then the geometric plan (Subsection 4.2.1.2), and compute the geometric plan during the symbolic plan search (Subsection 4.2.1.3).

Compute all symbolic plans then computing the geometric plan

In this sub-category the symbolic planner computes all the possible task plans, and knowing this, the geometric planner tries to find one plan among them that is geometrically feasible. S ¸ucan and Kavraki (2011) present an approach where, provided a list of possible plans (which can be interleaved), they are able to find a feasible set of motions that fulfil the given symbolic goal. S ¸ucan and [START_REF] S ¸ucan | Accounting for uncertainty in simultaneous task and motion planning using task motion multigraphs[END_REF] extend this approach by introducing uncertainties, and using a Markov Decision Process to guide the search. [START_REF] Lagriffoul | Delegating Geometric Reasoning to the Task Planner[END_REF] proposes a different way to solve the problem: they argue that part of the geometric reasoning may be endowed to the task planning level. They use a Hierarchical Task Network (HTN, explained in more details in Subsection 4.3.2), where they broke the geometric actions into basic primitives, to find all the possible plans, then, they use a geometric reasoner to test the geometric feasibility of the plan, using what is called geometric backtrack.

We have seen in the previous chapter that a geometric action might have multiple alternatives (Subsection 3.2.5.2). A geometric backtrack occurs when the geometric reasoner fails to find a solution for an action, and tries, without notifying the symbolic planner, different alternatives of previously succeeded actions, until it finds a feasible set of actions (including the current one) or it reaches a limit. This limit can be the maximum number of geometric alternatives for a specific action or the branching factor which is the maximum number of alternatives allowed by the symbolic planner.

Find one symbolic plan then the geometric plan

Approaches in this sub-category are the closest to the classical approach, as they first compute the whole symbolic plan, and then test it at geometric level. The difference is that here, the geometric level is taken into account directly by the symbolic planner, and they interact together to find a feasible plan.

The idea is to prune out impossible symbolic plans right from the start of the planning process. In this sub-category, some approaches are also based on a geometric backtrack. Srivastava et al.

(2014) and Srivastava et al. (2013a) present an interface between a task planner and a geometric planner where, once a symbolic plan is computed, they use geometric backtrack to test it feasibility. If no collision free trajectory is found, the geometric reasoner informs the symbolic planner about the infeasible action and the reason for its failure, information used by the task planner to change the part of the plan coming after the last feasible action. [START_REF] Lagriffoul | Constraint propagation on interval bounds for dealing with geometric backtracking[END_REF] also use geometric backtrack on a complete plan, but they introduce the notion of constraints on interval bounds to speed up the search. Once they get the symbolic plan, they use it to define constraints on the robot configurations, at each step, starting from the last step. These constraints reduce the search space of each action making the number of geometric backtracks drops. [START_REF] Lagriffoul | Efficiently combining task and motion planning using geometric constraints[END_REF] extend this approach by adding constraints concerning more degree of freedom at once and expose a study of the time complexity of their algorithm. Dearden and Burbridge (2013) also compute the complete symbolic plan before computing the geometry, then they map the symbolic states with geometric ones, starting from the final states, and finally they try to find trajectories between the states. If a trajectory does not exist, the geometric backtrack is triggered in order to change the symbolic geometric state mapping. This mapping is learnt through a set of training data in the form of geometric states labelled with the predicates which are true in them.

Compute the geometric plan during the symbolic plan search

This sub-category contains approaches where the geometric reasoner is called each time a feasibility test is needed, during the symbolic plan search. The idea is to not explore infeasible symbolic plans if we already test their infeasibility at geometric level. where the task description is written in an easy object like form (such as C++ or java), and which can handle semantic attachments. The latest extension added by [START_REF] Dornhege | Lazy Evaluation and Subsumption Caching for Search-Based Integrated Task and Motion Planning[END_REF] to this work consists on caching the external procedures return values and states in order to use them later, in case of the same or similar request to the external procedure is needed. They also use relaxed external procedures as heuristics to prune out part of the infeasible solutions before computing the complete external procedure.

Other approaches are also based on calls to external procedures, such as [START_REF] Ferrer-Mestres | Planning with State Constraints and its Application to Combined Task and Motion Planning[END_REF] who worked on adapting a first order planning language named Functional STRIPS by adding requests to external function (geometric tests for feasibility) as a component of a symbolic action. Guitton and Farges (2009a) also modify the symbolic action description: they add geometric constraints to the action pre-conditions, which are passed to the geometric reasoner who uses them to compute a new geometric state, and then, finds a path from the previous geometric state to the new computed one. Gaschler et al. (2013a) and [START_REF] Gaschler | Robot Task and Motion Planning with Sets of Convex Polyhedra[END_REF] also uses external calls at symbolic level combined with a detailed symbolic state of the world -they are able to represent the state of a variable (known, unknown, incomplete, or will be known at run time)-to compute feasible plans. [START_REF] Gaschler | Extending the Knowledge of Volumes approach to robot task planning with efficient geometric predicates[END_REF] extend this approach by adding specific geometric predicates to their actions, enabling a search speed enhancement.

Kaelbling and Lozano-Perez (2011a) use an aggressively hierarchical planner which embed in the action description primitives to compute and execute the action. They use fluents to transform the geometric state to symbolic states and assess if the pre-conditions of the next actions holds or not. [START_REF] Kaelbling | Hierarchical task and motion planning in the now[END_REF] extend this approach by adding uncertainties, the planning is done in a hierarchical belief-space: the world is not known but is observable. When performing an action, a previously unknown parameter might become known or partially known (looking inside a cupboard might end with knowing the position of a certain object or knowing that said object is not in the cupboard). [START_REF] Kaelbling | Integrated task and motion planning in belief space[END_REF] extend even more the approach by adding domain models used as heuristics to guide and speed up the search in the robot's belief-space. [START_REF] Wolfe | Combined task and motion planning for mobile manipulation[END_REF] present an approach where they use high level action primitives as actions in a Hierarchical Task Network (HTN) planner. These actions can be refined to primitives such as navigate to somewhere, move arm to grasp, or close gripper. [START_REF] Shivashankar | Towards Integrating Hierarchical Goal Networks and Motion Planners to Support Planning for Human-Robot Teams[END_REF] propose a formalism which is goal directed and based on HTN, and they link it with the geometric reasoning. They achieve this by computing, at each step of the symbolic search, a symbolic state used to find a corresponding geometric state. Then, they compute the trajectories linking these geometric states. In case of failure, a new geometric state is produced, until the branching factor is reached (maximum number of allowed geometric states corresponding to the same symbolic state), in which case, the planner backtracks to the previous action. Once a trajectory is found, they compute its cost in order to let it aside if its quality is not satisfying compared to the rest of the plan (it is not removed, the computation of the corresponding plan is just postponed).

Some researchers also propose approaches including a geometric backtrack. [START_REF] Alili | Interleaving Symbolic and Geometric Reasoning for a Robotic Assistant[END_REF] propose a combination of an HTN planner with a geometric reasoner, where the symbolic actions and descriptions embed a call to a geometric refinement of the actions. Before the geometric reasoner informs the symbolic planner about the infeasibility of an action, it triggers a geometric backtrack. They also keep the symbolic state updated by computing facts after each geometric computation and handing them to the symbolic level. De [START_REF] Silva | Towards Combining HTN Planning and Geometric Task Planning[END_REF] extend this work by adding the ground literal protection: in the previous work, geometric backtrack did not check if the newly created plan respects the symbolic pre-conditions set before each action. In this one, the ground literals (which are facts passed to the symbolic level to assess some pre-conditions) are cached by the system for each task and protected when an action alternative is computed. [START_REF] Karlsson | Combining Task and Path Planning for a Humanoid Two-arm Robotic System[END_REF] depict a solution where, by using geometric backtrack with external calls and geometric predicates (predicates computed at geometric level and used at the symbolic level), they find feasible plans for a two-arm humanoid robot. [START_REF] Bidot | Geometric backtracking for combined task and motion planning in robotic systems[END_REF] extend this approach, by first proposing a formal definition of the problem and then by adding geometric constraints able to guide the geometric backtrack in order to stress out the most interesting/constrained actions.

Geometric reasoner uses symbolic level

This category corresponds to the approaches where a geometric search is held and uses the symbolic level to guide this search in order to reach the desired goal. [START_REF] Zickler | Efficient physics-based planning: sampling search via non-deterministic tactics and skills[END_REF] for example perform their search in the geometric state space of the agents, where they compute, for each state, symbolic information enabling the search to be guided toward the goal. [START_REF] Choi | Combining planning and motion planning[END_REF] propose to explore the model of the world with a motion planner algorithm (such as RRT) and use the generated graph to automatically create feasible actions: if the motion generated by an edge (or a group of edges) of the graph, changes the state of an object, then it is considered as an action. Then a symbolic planner is used to find a plan using these actions. [START_REF] Nedunuri | SMT-based synthesis of integrated task and motion plans from plan outlines[END_REF] base their work on an extended version of a manipulation graph (LaValle (2006)) which contains information about the robot base placement and arm placement to manipulate objects. They use a given plan outline to guide the search through the possible sequence of actions available in the graph. Garrett et al. (2014a) and [START_REF] Garrett | Heuristic Search for Task and Motion Planning. 2nd ICAPS Work[END_REF] also use a graph capturing the possible manipulation actions in the environment and use a Fast Forward [START_REF] Hoffmann | the Ff Planning System[END_REF]) task planner to find the best plan based on these actions. The graph is constructed by sampling the objects positions and computing one or multiple robots inverse kinematic for each one, and then linking this configurations between themselves through trajectories. [START_REF] Plaku | Sampling-based motion and symbolic action planning with geometric and differential constraints[END_REF] have a different approach where they sample the continuous space guided by the symbolic level, until reaching a state which satisfies the goal (this state is given to the geometric planner). In order to achieve this, they create a tree, and at each iteration of a loop, expand it by choosing the more relevant node (based on a utility function) and explore the space from there. [START_REF] Plaku | Planning Robot Motions to Satisfy Linear Temporal Logic, Geometric, and Differential Constraints[END_REF] and Plaku (2012a) extend this approach by replacing the symbolic planner by an automata described by a Linear Temporal logic (LTL).

Search in both levels simultaneously

In this last category, the search for plans is done at the same time at geometric and symbolic levels. [START_REF] Hauser | Integrating task and prm motion planning: Dealing with many infeasible motion planning queries[END_REF] consider that the robots can move inside a feasible space only, and can switch between "feasible spaces" through transitions: inside a "feasible space" the robot cannot change his contacts with the outside world (if he is moving an object for example) but can do it through a "transition space" (for example placing the object on a table). They create a Probabilistic Road Map (PRM) [START_REF] Kavraki | Probabilistic roadmaps for path planning in high-dimensional configuration spaces[END_REF]) in each "feasible space" and aggregate them through milestones in the "transition spaces". During the search for a solution (specified as a goal state) they are able to begin the search in a direction, stop it, and postpone it (in case it is taking too long, to explore other directions).

Hauser (2010) extend this work by creating a symbolic language able to make requests to their previous system and by doing so, obtain a larger range of possible actions. This last paper enters in the subcategory of Subsection 4.2.1.3, as it makes requests to the geometric planner during the symbolic search. [START_REF] Ficuciello | Experimental Robotics[END_REF] and [START_REF] Barry | A hierarchical approach to manipulation with diverse actions[END_REF] use a similar method (as Hauser and Latombe (2009))

but using a RRT algorithm in place of the PRM. [START_REF] Cambon | A Robot Task Planner that Merges Symbolic and Geometric Reasoning[END_REF] and [START_REF] Cambon | A Hybrid Approach to Intricate Motion, Manipulation and Task Planning[END_REF] describe the aSyMov planner presented in the beginning of this section and which is also part of this category.

Synthesis, discussion, and contributions

Table 4.2 shows the different works cited in this section organised by authors, with some characteristics stressed out. Interestingly, [START_REF] Lagriffoul | Combining Task and Motion Planning is Not Always a Good Idea[END_REF] argue that, as it is the case in some of these approaches, completely combining task and motion planning might not be efficient all the time: they are efficient to solve geometrically complex problems but their performance might be less interesting than the classical approach when the problem is geometrically simple.

Our contribution with their specificities are noted at the end of

Discussion

Each one of the different approaches described in this section has some advantages and disadvantages.

We have tried to find some of them, but the list is not exhaustive and it is based on the analyses of these approaches.

The advantages of computing all the symbolic plans first and then to compute the geometric plan (Subsection 4.2.1.1) are the possibility to rule out the plan parts which will not achieve a complete plan and the possibility to choose among all the plans the "best" one. When computing the symbolic plans, the algorithms might find the beginning of a plan which has no chance to achieve a complete plan because of a not respected symbolic pre-condition. In this approach, we do not refine geometrically this plan part which might take some time. In order to choose the "best" plan, heuristics might be used (such as the shortest plan). One disadvantage of using this method is that we might lose time computing all the plans and choosing among them.

One advantage of first finding one symbolic plan and then refine it, (Subsection 4.2.1.2) is, as for the previous approach, the ability to rule out the plan parts which will not achieve a complete plan. This approach also contains geometric backtrack, which has the advantage of being easily enhanced and tuned for the domains used. The disadvantage of using this approach is the inability to change the symbolic choices once they are taken: the algorithm needs to exhaust all the geometric possibilities before changing the symbolic plan (and it can be time consuming as the spaces can be big). Concerning the geometric backtrack, the algorithm needs to take into account the pre-conditions, which might introduce some undesirable latencies.

The advantage of computing the geometric plan during the symbolic search (Subsection 4.2.1.3) is the ability to change the symbolic choices based on geometric problems. Also, this approach does not need to handle explicitly the action pre-conditions. The disadvantage of this approach is the possibility to compute some geometric actions (with their motion plans) that might not be needed because the plan part is infeasible due to a symbolic pre-condition not holding.

The advantage of having a geometric reasoner that uses the symbolic level (Subsection 4.2.2) is the possibility to use the motion planning state of the art algorithms (which are now very efficient) to solve the problems. The disadvantage of such an approach is the scope of the problem it might solve: it is usually limited to simple problems (with low number of DoFs and/or small environments) and the algorithms are usually very domain specific.

The advantages of the last approach where the search is held at both levels at the same time (Subsection 4.2.3) are the completeness of the approach and the ability to optimize the plans depending on the needs. The disadvantages are the huge search space generated by the combination of both spaces and the difficulty to implement such approaches in a generic way.

Formalism and algorithms

The SGP problem consists in computing a valid symbolic plan while ensuring its feasibility at the geometric level. Assessing the plan validity implies to take into account the action direct and indirect effects (the indirect effects that the geometry can compute).

In order to tackle this problem, we propose a method combining an extended version of a Hierarchical Task Network (HTN) planner and the GRP framework presented in the previous chapter. In this section, we first present a brief description of the HTN planner, then we present our extended version, named Hierarchical Agent-based Task Planner (HATP) and finally, we present the Symbolic and geometric action planner (SGAP) that combines both levels of planning.

HTN Planning

An HTN planner (as presented in [START_REF] Ghallab | Automated Planning: Theory and Practice[END_REF]) is a task planner able to transform a domain, an initial situation, and a goal (provided under the form of a task 1 to achieve) into a series of actions bringing the system from this initial situation to the requested goal.

The planning process consists in two different activities: (1) decomposing the goal task down to operator level, (2) binding the tasks parameters left free (e.g. choose actors). The planning process iteratively builds a tree by decomposing the tasks, starting with the goal task, following the rules: if the task is a method, a decomposition is explored and the other possible decompositions are added as backtrack points. If the task is an operator its pre-conditions are tested, then the instantiated operator is added to the current plan, otherwise the planner goes back to the last backtrack point and tries another decomposition. When an instantiated operator is added to the current plan, its effects are applied to the current state to obtain the next state, and its cost is added to the current plan cost. If a decomposition of the goal allows to reach down to the operator level, then a plan is found. If one wants to keep the completeness or find the best plan, it is possible to explore all decompositions. In the case where all the decompositions are explored but no plan was found, the planning stops with a failure, the goal cannot be achieved from the initial state. This is a very succinct explanation of the algorithm. In the next section we present HATP, which is an implementation of the HTN algorithm and in Subsection 4.3.2.6 we highlight the differences between this implementation and the classical algorithm.

Hierarchical Agent-based Task Planner

Hierarchical Agent-based Task Planner or HATP is an implementation of the HTN algorithm which integrates some enhancements, as presented in [START_REF] Lallement | HATP: An HTN Planner for Robotics[END_REF]. HATP is based on SHOP Nau et al. (1999) and is designed to be used by roboticist: the domain representation is user-friendly and the agents (humans and robots) are considered as "first order" entities in the language. Also, HATP uses a total order representation: all the actions in the current (partial) plan are ordered, enabling it to 1 as presented later, a task can be either a method or an operator. compute, at any given time, the complete context of the world. HATP is based on a number of basic notions, some of them contained in the following list and the rest presented later in this subsection.

Predicates: Boolean-valued function which capture the symbolic state of a parameter in the world, such as object X is reachable by agent A. It is written under the form: X.isReachable = A.

Context: A context is a set of predicates that captures the whole state of the world at a specific moment.

It is under the closed-world assumption (if the predicates does not appear in the list, it is supposed to be false).

Entity An element from the environment, for instance, a robot, a table, or a book.

Entity description: Contains the entity id, and the predicates that can be applied to them. For example a manipulable object X accepts the predicate: isReachable, isOn, isIn, and so on.

Operators:2 An operator is a parametrized executable primitive. It is represented by a 2-uplet pre, eff where pre is the list of pre-conditions and eff the list of effects. Both of them are a set of predicates, the pre-conditions are the predicates that should hold in the context where the operators needs to be applied, and applying an operator means instantiating it and adding its effects to the context it was applied to. It can take parameters such as an entity, or a set of entities as inputs. A cost function can be linked to an operator, enabling the planner to assess its quality.

Methods: A method can also be applied to a context, but cannot be directly executed, it needs to be "decomposed" into other methods and/or operators. Decomposing a method means trying to apply its components following the order it specifies.

Tasks: A task is a denomination that refers to either an operator or a method.

A method can be decomposed into other tasks (methods and operators) combined through one of three different links, depicted in Figure 4.1. The first link Figure 4.1(a), is where all the tasks composing the method needs to be applied, in the specified order (in the figure the order is given by the thick arrow)

we call this case the causal link. The second link, Figure 4.1(b), is the Exclusive disjunction, which mean that one and only one task of the decomposition needs to be applied. The last link, Figure 4.1(c), is

Asynchronous, where all the tasks needs to be applied but no connexion exists between them.

It is possible to define a number of operators, here is some of them which are going to be used in the rest of this chapter:

Pick(A,O)3 : A is an agent -omitted when obvious-and O an object (those holds the same meaning for all the operators). The pre-conditions are A.hasInHand = NULL and O.isReachable = A. The effect is A.hasInHand = O.

The next step of the algorithm is to retrieve the applicable methods and operators in the current world state: the T variable stores all the not explored operators and methods and a loop (from Line 9 to Line 13) checks if they are applicable or not in the current context. If they are applicable, they are added to the applicable task list App. Otherwise, they stay in T until they become applicable, as the current context change. For an operator to be applicable, it needs its predecessors (following the causal links) to be already applied and its pre-conditions to be valid in the current context. For a method, having all its predecessors applied is enough to add it to the list. One last check, is the task locking: when a task is locked, it cannot be applied to any context, unless it gets unlocked: this system is used to tackle the asynchronous tasks problem, as explained later in this subsection.

The last part of the algorithm (Line 14 to Line 27) uses the previous lists to choose and apply tasks, depending on different variables:

No applicable task in App and no task in T , Line 14 This means that a plan was found then the algorithm backtracks to the last cached BP.

No applicable task in App, tasks exist in T and all tasks in T are locked, Line 17 In this case the algorithm create BPs for each one of the locked task: in each BP, only one task is unlocked, the rest stay locked.

No applicable task in App, tasks exist in T and some task in T are not locked, Line 20 This means that, within the rest of the actions still not explored, no one is applicable in the current context, forcing the algorithm to backtrack to the previous BP.

There is one and only one applicable task in App, Line 22 In this case, the task is directly applied, through the Algorithm 10.

There is more than one applicable task in App, Line 25 This case arise when faced with the asynchronous decomposition, the algorithm creates as many BPs as there are applicable tasks, where only one task is not locked. When the unlocked task is applied, the algorithm goes back to the second case of this enumeration (all tasks locked).

A backtrack point (BP) is composed by the current states of the main variables in the algorithm: the list of yet to be explored tasks T (and if they are locked or not), the current context c curr and the current plan plan curr . The creation of such a point, as done in Line 19 and Line 26 is depicted in Algorithm 9.

When a backtrack is triggered, it retrieves the last BP saved (and removes it from the saved list of backtrack points, this is a stack: last in, first out) and instantiate it as the current state of the algorithm.

If no BP is left in the list, all the decompositions have been tested and no more plan will be found.

The case of the asynchronous tasks is tricky: in order to test all the possible task orders, the algorithm uses the locking process. Locking an action means that the action is not applicable yet, later it will be unlocked to allow the search to continue. The process consists on creating as many BPs as there are tasks. In each BP all the tasks are locked but one, which is the first task to be tried. If the task can be applied, then all the current tasks (in T) are locked which correspond to the second case of the list above. In this case, we create as many BPs as there are tasks left, with one unlocked task in each one of the BPs (as we just did). This process goes on until there is only one task left. At each step of this process, we unlock only one task, making the algorithm tries all the possible orders. if GetCost(plan curr) > GetBestPlanCost then 5:

(T, plan curr , c curr) ← BacktrackToLast(backtrackList) if App = ∅ and T = ∅ then 15:

P ← plan curr 16:

(T, plan curr , c curr) ← BacktrackToLast(backtrackList)

17:

else if App = ∅ and T = ∅ and ∀t ∈ T , IsLocked(t) then 18:

V | V ⊂ T, ∀t ∈ V , IsLocked (t) 19:
CreateBacktrackPoints(V , T , plan curr , c curr , backtrackList) 20:

else if App = ∅ and T = ∅ and ∃t ∈ T , IsUnlocked(t) then 21:

(T, plan curr , c curr) ← BacktrackToLast(backtrackList) return P 30: end function Algorithm 9 depicts how to create backtrack points out of a subset V of the yet to explore task list T . For each task in V it creates a backtrack point where every other task in V is locked. end for 10: end function Algorithm 10 shows the way a task is applied. Whatever the kind of the task, as it is going to be applied, it is removed from T . When the task is an operator (Line 24) its effects are added to the current context to create a new one, and the operator is added at the end of the current plan. When adding an operator to the plan, its causal links are also updated, from the domain, but also using logic: if a tested predicate of this operator has been changed by the effect of another operator, the algorithm links them through a causal link. If the task is a method (Line 3), first we check the applicable decompositions by testing their pre-conditions (in case of an exclusive disjunction). Once we retrieved the list of all applicable decompositions validD three cases arise: no applicable decomposition, (Line 10), in which case, the algorithm triggers a backtrack, only one decomposition is applicable (Line 13), the algorithm adds its corresponding tasks to T , and the last case is when multiple decompositions are possible (Line 16). This last case arise only when the decomposition is an exclusive disjunction, and more than one decomposition has valid pre-conditions in the current context. In this case, for each valid decomposition a BP is created, and one among them is chosen to continue the algorithm. T ← T \ a ⊲ remove a from T

3:

if IsMethod(a) then plan curr ← a ⊲ adding the operator and its causal links to the plan.

27:

end if 28: end function These algorithms are not included in the contributions of this thesis, but are needed to understand the combination between the symbolic and the geometric layers which is part of the contributions.

User-friendly language: as seen in the previous section, the description language is easy to learn and use. It is based on a close world assumption which ease the domain design.

Control over variable binding: in classical HTN, the choices (for variable binding) are made randomly, in HATP these choices can be made following rules (or directly set by the domain expert).

Totally ordered: in HATP, all the actions are ordered by the causal links, as opposed to the HTN algorithm where the actions are partially ordered.

Agents based: HATP considers the agents as "first order" entities, for which actions are computed. It computes for each agent a stream of actions, linked between themselves through causal links.

Real robot use: HATP was implemented in the robot and used with a complete architecture to plan and execute its plans. Even if slower than SHOP2, HATP still enables real time use.

Cost based: HATP aborts plans with a cost that exceeds the current best plan.

C++ structures: HATP is coded in C++ which enables an easy integration with other C++ modules, as seen in the next section.

Symbolic Geometric Action Planner

The Symbolic Geometric Action Planner or SGAP is the framework we devolved to tackle the SGP problem. In this framework, we use HATP for the symbolic layer and GRP for the geometric layer (presented in the previous chapter).

This framework can use any kind of forward task planner, but using an HTN planner brings some benefits: as different level of actions are available in the GRP, having a hierarchical domain enables the programmer to choose which level of operators he needs/wants to use. For example, if an operator PickThenPlace is available in addition to the operators Pick and Place, using the first one might speed up the search, while using the decomposed version might enable the system to choose another operator after Pick (such as Give or Throw depending on the context). Moreover, an HTN planner enables its programmer to add constraints to the lower level operator, for example, he can use the operator PlaceR but if it is not available, he can use the operator Place with a reachability constraint.

In our particular case, we chose to use HATP because of its ability to manage multiple agent plans (let us remember that this framework was developed in the context of human-robot interaction), its simple domain language, and also its ability to use external C++ calls. These calls can be of different kinds, such as cost computation, geometric tests, and so on. In the rest of this chapter, we will discuss a number of these external calls.

The approach we are going to explain in more details in this section is based on the following: HATP begins the search in the given symbolic domain, and when an operator needs to be applied, if the operator has a geometric counterpart (such as Pick or Place) an external call is made to the GRP with the aId of the geometric action corresponding to the current operator in order to test its feasibility in the current world state. This call is named Projection or Geometric refinement and is about finding the geometric action solution (GAS) of said action. When the GRP computes this GAS, meaning that the action is feasible, the current world state is updated with the new information, then, the relevant facts are computed and sent back to HATP.

When GRP sends back these facts, they are transformed into predicates and used to update the symbolic context of HATP. We call these predicates Shared predicates as they are computed in the geometry but used in the symbolic search as the usual predicates (to test the tasks pre-conditions).

As shown in the previous chapter, facts are computed by GRP (Subsection 3.2.4) under the form of {X, is reachable by, A, true}. When HATP receives these facts, a mapping enables it to transform them from this form to the one used in the algorithm: X.isReachable = A. These shared predicates are used to tackle a number of problems such as the ramification, as explained in Subsection 4.3.5.

As shown in the previous chapter, the GRP framework is able to find multiple alternatives for the same action, starting from the same initial world state. GRP is also able to compute, in any world state, shared predicates. Using these properties, we combined HATP and GRP into the SGAP framework, giving it the ability to assess actions feasibility at geometric level, to request actions alternatives when needed, and to integrate the shared predicate into the planning process.

In the next subsection, we are going to present the differences between SGAP and HATP.

The basic notions

For the formalization, some additional information were added to the basic elements:

Predicates: The predicates can have two sources: purely symbolic predicates, and shared predicates.

Context:

In addition to all the predicates it contains, each context is linked to a geometric world state (Subsection 3.2.2) from where the shared predicates can be computed.

Entity description: It is the same as for the HATP algorithm, with the constraint that the entities id should be the same at symbolic and geometric level (Subsection 3.2.1).

Operators:

The operator description is transformed to pre, act, eff where pre and eff are the same as before, and act is the action identifier, in the GRP framework. act can be empty, in which case the action is purely symbolic and does not need a geometric counterpart. Once this operator is "projected" into the geometric level, the action is recognized through a number act.gasN um ∈ N at the GRP framework level.

Methods:

The methods and their possible decompositions are the same as for the HATP algorithm.

Tasks: The tasks are the same as for the HATP algorithm either Operators or Methods.

The previously defined operators can now be redefined within the SGAP framework, but as the preconditions and the effects does not change (although some of them would be computed directly from the geometric level as shared predicates) the main link to be added is the geometric action aIds as it was defined in Subsection 3. The other parts of the HATP definition also go under the following transformations.

SGAP Domain

A SGAP domain D sgp can be defined by the 5-uplet M, Op, D g , E, E where:

• M is all the available methods in the domain with their decomposition, as before,

• Op is all the available operators with their representation (pre-conditions, action aIds and effects),

• D g is the domain that contains all the available geometric actions with their aIds, and their descriptions,

• E contains the available entities with their ids and symbolic description, and

• E contains the available entities with their ids and geometric information, the ids are the same as for E.

SGAP Problem

A SGAP Problem is defined by D sgp , c 0 , ws init , m(p) where:

• D sgp is the domain,

• c 0 the initial context,

• ws init the initial world state, and • m(p) the method or operator to apply to this initial context and world state.

Note that c 0 initially contains only symbolic predicates, the initial shared predicates are computed from ws init .

Solution plan

The solution computed by SGAP is a sequenced list of Action Solutions (AS) called a plan. An Action Solution is defined by o, gas, tN exts where o is the operator, gas the corresponding Geometric Action Solution (GAS) and tN exts the causal links. An Action solution is a combination of a SAS and a GAS! In parallel to the plan, the GRP framework build at the same time a geometric plan linked to this plan as depicted in Figure 4 if gas = N ull then 13:

SetGas(t,gas)

14:

return T rue return F alse 17: end function new BPs as their branching factor 6 allows and in each BP a decomposition with the same operator is added. If the algorithm backtracks to this BP, as the operator has already been projected, an alternative will be requested (Algorithm 11). The second added step is about retrieving the geometric part of the current context c curr (Line 36 and Line 37): as said before, part of the context is retrieved from the corresponding world state under the form of shared predicates.

Enhancing the search efficiency

The examples presented in the previous sections show that SGAP can compute interleaved symbolic and geometric plans in the context of human-robot interaction. Although, these plans are short (10-15 actions) with a small number of objects, in a not too constrained environment, but the use of wellinformed motion planning and geometric reasoning allow us to deal with not so trivial problems.

However, when confronted with more constrained challenges (with greater number of objects or longer plans), a combinatorial explosion occurs, making the planning process very long. In order to enhance the search efficiency, we propose a number of features able to better inform both planners with relevant information and heuristics to guide the search even if we might lose completeness.

Geometric requests

A geometric request is made by the symbolic planner to the geometric one in order to test a property in the geometric world. This request is usually very fast (less than 50ms) and is used as a pre-condition of a task. The only function that changes in the algorithm is V alidP reconditions() (in Algorithm 8 and Algorithm 10) which takes as additional parameter the current world state, and, when faced to a geometric requests, computes it on that world state.

The geometric parameter tested can be of various types such as testing if there is enough space for the robot to stand near the human in a constrained area, or if there is enough space to use a hammer on a particular object in a cluttered space. These requests are generally domain specific, which works well with the HTN algorithm where they are used as heuristics to guide the search toward the most promising plans. In order to test the pertinence of these requests, we have developed a "virtualPlace(O,S)" which tests if there is enough space on the support S to place the object O with no collision with any other object. One more addition to this test is the virtual objects: these objects are tools used to test collisions only within the virtualPlace request, otherwise, the geometry ignores them.

In order to use these virtual objects, we formulate an assumption:

Assumption. If the virtual object V can contain object O1, O2, and O3, and it can be placed on the table T, then the objects can also be placed on the table. It can be considered as a heuristic.

Note that if the virtual object cannot be placed on a table, it does not mean that the objects cannot.

The virtual objects are given to the system as independent entities with the same properties as the other ones, in addition to the virtual part. In this implementation they are tuned by hand for every environment, but it is possible to design algorithms to compute them on-line depending on the number and geometry of the objects they should contain.

The virtualPlace request is used as follows: it tests if a valid placement (collision free) for a virtual object, which can contain smaller objects, on a support exists. If it does exist, the small objects can be placed on this support. table. Note that in the state shown in Figure 4.7(b) and Figure 4.8(b) the virtual object does not fit on the table, however, there is enough room to place the small objects. In this particular case the heuristic fails and the solution plan is not the best one as shown later in the results.

The domain used to illustrate this enhancement, is depicted in Figure 4.9. The main method given to the SGP problem is TestAndMove in Figure 4.9(d). This method has two possible decompositions: in the first one it tries directly to place the objects on the target table (Figure 4.9(a) and Figure 4.9(b)),

and in the second one it first tries to remove obstacles from the target table, by placing them on another surface, before placing the objects on the target table. Removing the obstacles can be performed by either the robot or the human, depending on the feasibility of the task. For example in Figure 4.7(a)

even if the robot has enough space to place the object on the table at his right, it cannot grasp the object, in Figure 4.7(d) it can Pick the objects but does not have enough space to Place it anywhere. The choice of which decomposition to apply is done by testing the geometric request virtualPlace(VirtualO) on the starting world state, with VirtualO a virtual object that can contain the three books O1, O2, and O3.

In this example, the robot and the human can only manipulate the objects, they cannot navigate. 4.7(b) there is enough space to place the three books, but not enough to place the virtual object (Figure 4.8(b)). In this case, the heuristic misguide the search as it indicates that an object should be removed before placing the three books while directly placing them would succeed. A slight performance drop can be noticed, but is still acceptable for this kind of tasks.

High level actions and Constraints

As seen in Subsection 3.3.5, the most computationally expensive step is motion planning. The idea of these enhancements is to avoid the calls to the motion planner as much as possible. The motion planner calls occur when an action needs to be projected, or an alternative to an already projected action is needed. Requesting an action alternative means that a backtrack has been triggered. One way to reduce the number of motion planner calls is to reduce the number of backtracks. In order to achieve this, we propose to "protect" some predicates -or, more precisely, shared predicates-that the domain expert knows might be broken by some future actions. with a branching factor of 3 and the first plan found mode. The advantage of using the geometric requests (with) is clear when the table is cluttered (Figure 4.7(a)). In Figure 4.7(b) the geometric request fails as there is not enough space to place the virtual object on the table even if there is enough space to place the three books, which can be seen in the results. The examples in constraints to the action linked to a specific operator. In order to achieve this, we need to transform the operator definition to: pre, act, const, eff where const is a list of constraints under the form defined in Subsection 3.3.4.4, and adding the following line between Line 4 and Line 5 of Algorithm 11:

IN ← GetConstraints(t)
If no constraints are specified (const = ∅), the above line does not add anything to the inputs.

In order to illustrate and assess this enhancement, we used the environment depicted in TestReach(O,Ap): has only a pre-condition: O.isReachable = Ap (no action, constraints, nor effects).

TestGoal : has only a pre-condition: ∀O ∈ AlreadyP laced O.isReachable = Ap where AlreadyP laced is the group of object that has already been placed reachable to the human.

In the figures, the "operator" PlaceX appears. It is not really an operator as it is replaced by one of the three operators Place, PlaceR or PlaceRC : by doing so, we create three different domains, one where no enhancement is used, one where a higher level action is used (PlaceR) and finally one with a high level action and a constraint specified (PlaceRC). The method MoveObjs is recursive, and, when decomposed, tries to apply the method MoveObj(O) with one of the objects available on the storing table. When no more object is on this table, the method goes out of the recursive behaviour. In this domain, the robot needs to place the three objects next to him (the red cube, the grey book, and the orange box, in that order) reachable for the human, all at the same time. The difficulty here is that when placing the orange box, it can hide and make unreachable one or both objects already placed on the table as seen the possible plans (and returning the best one). In these scenarios, the interesting operator is Navigate as the cost computation in its linked action, navigateTo, is based on the work of Sisbot et al. (2007b) as it maximizes the cost when the robot navigates out of the human's field of vision (behind the human for example) or too close to him. 4.4.3.1 The "Book scenario"

In this scenario, a human asks the robot to bring him a book, but two copies of this book are available in the environment. In order to choose the best book to bring to the human, the robot uses the costs computed by the geometric reasoner. With no information from the geometric level, the symbolic level would make a random choice on which decomposition to apply. Adding these costs computation enable the symbolic planner to make informed choices during its search for the best plan.

The "Paint scenario"

This second scenario is more complex than the first one as it involves more actions and agents: to bring to the client two green cubes. In the environment, there is one green cube, and two red cubes that need to be painted (Figure 4.16 shows the starting world state). The blue agent can paint the objects in green if needed. The client is the green human (A) and the red human is a co-worker occupied in another task.

The main difficulty in this example is to choose which object to bring to the client: the green cube is easily accessible and does not need to be painted, the first red cube (top right) is also easily accessible but makes the robot navigate behind the red human, and finally the last cube (bottom right) is hard to access, the robot needs to first remove the box obstructing his path and then he becomes able to take the object. This last possibility (removing the box) is depicted by the method PickObj (where the robot check if the object is reachable. If it is not reachable, it tries to move any reachable object (O") which in this case is the orange box.

The plan produced by our algorithm chooses to go fetch first the green cube (O1), then the red cube (O3) at the bottom of the environment: even if more tasks are needed to get this object (moving the orange box OB), it does not disturb the red human (by passing and manipulating behind him). These examples and some others are shown and explained in the video available here: https://youtu.be/

Future work

As seen in the state of the art, this work falls into the category of a "Symbolic planner calling the geometric reasoner", and more specifically in the sub-category of "in search calls". We proposed three main enhancements of this algorithm linked to the features provided by the GRP framework presented in Chapter 3. Even if these enhancements enable a faster computation in some domains, the main problem remains, the exponential growth of the backtracking number when the branching factor is big. In order to tackle this problem we propose some possible line of works:

Choosing the backtrack point For now, when the backtrack is triggered, the last saved backtrack point (BP) is loaded and the search continues from there. The idea is to change this behaviour by introducing a weight on the BPs, and prioritizing the more promising ones. A criterion to determine those interesting BPs can be provided by the geometry: for the BP created from a geometric action projection, the size and shape of this action search space might be a good indicator: a small convex search space may not give as many opportunities as a large one.

The branching factor For now, it is set by the SGAP domain expert, but can be also provided by the geometry or computed on-line. It can be computed based on the search space sizes, or the current needs of the algorithm, by extending some of them if no solution was found.

Postponing the motion planning [START_REF] Lagriffoul | Combining Task and Motion Planning is Not Always a Good Idea[END_REF] argue that systematically computing the geometric part alongside the symbolic part may not be always efficient. A possible approach may be to partially link the planners by enabling the geometric level to compute partially the actions (just the world states, without the trajectories) and calling the motion plan at the end. The GRP framework already enables computing actions without motion plans, the challenge is to choose when to call the motion plan or not, and the behaviour in case a postponed motion plan call fails.

Conclusion

Planning in the vicinity of humans rises a number of challenges and one of them concerns the geometric planning and reasoning problems. These problems relate to the link between the high level reasoning, usually represented by the task planner but also by the supervision system, and the low level motion planning, which computes actual trajectories that the robot can execute.

The idea behind the work of this thesis is to incorporate some symbolic knowledge into the geometric reasoning in order to give both symbolic and geometric levels more leeway in their interactions. The first example depicted in this dissertation is about a specific action, that requires symbolic knowledge at geometric level, the handover (Chapter 2). The knowledge acquired while designing this task helped to build a framework generalizing the geometric reasoning and planning while providing different actions besides the handover (Chapter 3). The last part concerns how this framework has been interleaved with the higher level task planning (Chapter 4). These contributions are depicted in the followings:

Sharing the effort with the human for a handover, Section 2.3 This part presents an algorithm that computes a handover configuration (the position and arm placement of both the giver and the receiver during a handover) using a grid based approach, where the position of the receiver is sampled and the position of the giver inferred from it. The algorithm samples a large variety of possible handover configurations and chooses the best one based on a human aware cost including the human comfort (such as posture and displacement), the distance between the giver and the receiver, the visibility of the giver by the receiver, and the mobility parameter, which is an expression of the task urgency. A user study was also held to determine the interest of this last parameter.

Multi-agent handover, Section 2.4 As one handover did not seem enough in some occasions, an algorithm able to compute a solution where multiple agents are involved into a sequence of handovers was designed. The algorithm is based on a lazy weighted A * , searching a path in a graph where each node represents an agent holding the object and the edges represent the possible transitions: either a navigation action, or a handover action. After a solution is found a post process is triggered in order to optimize the schedule and avoid all possible collisions.

The handover gaze cues, Section 2.5 We propose a user study where the gaze cues during the object exchange are considered in details. In the user study, the subjects were asked to assess the naturalness of videos while equipped with an eye tracker enabling us to track their eye pattern during the action. In the videos, the giver (which was, for half of the subjects, a human and for the other half, a robot) placed an object in front of the subject while following one of the patterns: Geometric actions formalization, Section 3.2 In this section, a proper formalization of an action, as defined at the geometric level is given. An action can be characterized as a sequence (or a parallelized sequence) of sub-actions which can be described by pre-conditions, search spaces, and final constraints. An action needs a world state (a snapshot of the current state of every entity) to be defined. In order to compute an action, its pre-conditions need to be true in this world state, and a trajectory must be found in its search spaces between this world state and a final world state computed based on its final constraints. The result is a geometric task which is a sequence (or a parallelized sequence) of trajectories coupled with geometric causal links (ensuring the precedence of each trajectory).

A framework using this formalization, Section 3.3 The formalization described in the previous contribution was used to design a framework able to compute a number of basic actions such as pick, place, placeReachable, navigateTo. Three algorithms are proposed, where the first one goes over all the sub-actions one by one and tries to find a solution for each one. The second algorithm, the one implemented, finds all the transition world states between all the sub-actions of an action and then computes the trajectories between them. The third algorithm computes all the possible sequences of world states and, based on a human aware cost, computes the trajectories for the best feasible one.

A symbolic geometric planning algorithm, Section 4.3 An algorithm which combines a Hierarchical Task Network planner with the previously defined framework is depicted. The planner defines its basic operators as pre-conditions and effects. In order to apply an operator, the preconditions are tested in the current context and the effects are added to it in order to obtain the new context where the next operator can be applied. In order to achieve the combination, we added an action to the operator description, which is evaluated at the same time as the pre-conditions.

To evaluate it, an external call to the geometric framework is done. Once an operator's action is computed, the resulting world state is used to retrieve the shared predicates (predicates computed at geometric level and used by the symbolic level) which are added to the resulting context alongside the operator's effects. These additions enable a combination between the two levels and enable us to tackle partially the ramification problem.

Enhancement of the SGP algorithm, Section 4.4 We also proposed some specific enhancements based on a tighter communication between the symbolic and the geometric layers. The first enhancement consisted on providing the symbolic planner with possible requests to the geometric reasoner enabling it to validate the feasibility of an action/operator. The second one was about providing the geometry with more information to avoid future backtracks by using higher level actions such as placeReachable rather than place and using constraints to limit the search space and final constraint of specific action's operator. The last one consisted on making the geometric level give to the symbolic planner the exact cost of an action based on social rules taking explicitly the human into account to choose the best possible plan among all the feasible ones.

A.2.3 Faits

Le planificateur et raisonneur géométrique est aussi capable de calculer différents faits tel que "un objet est sur un autre objet", ou "un objet est dans un autre objet". Ces capacités de raisonnement englobent aussi certaines capacités des agents tels qu'"un agent peut atteindre tel objet" ou "peut voir tel autre objet". La figure A.14 montre différents types de faits. Une deuxième altération de l'algorithme de base de HATP, consiste à rajouter ce que nous appelons des instances géométriques: quand une action avec une contrepartie géométrique doit être appliquée, un nombre défini par avance (pour des raisons de temps de calcul) d'instances géométriques est créé sous forme de points de backtrack. A chaque fois que l'algorithme revient sur un de ces points de backtrack, il n'essaye pas une nouvelle tâche, mais essaye d'appliquer le même opérateur que précédemment mais avec un choix géométrique différent, proposé par le planificateur géométrique sous forme d'alternative.

La figure A.17 montre des exemples où des alternatives étaient nécessaires pour trouver une solution au problème.

A.3.3 Le problème de la ramification géométrique

La dernière modification importante de l'algorithme de HATP est la prise en compte des effets indirects des actions géométriques: le problème de la ramification est ainsi partiellement traité. Afin d'arriver à ce résultat, après que l'algorithme de HATP ait testé la faisabilité d'une action géométrique, il applique les effets de l'opérateur (comme précédemment) mais en plus de cela, rajoute les faits que le planificateur est capable de calculer. Comme ce dernier maintient un état du monde géométrique, il est capable de calculer après chaque action divers faits, et les remonter au niveau du planificateur symbolique. La figure

A.17 montre en vert les mises à jour renvoyées au planificateur symbolique.

Le problème n'est que partiellement traité car les effets indirects qui ne sont pas traduits en fait par le planificateur géométrique ne sont pas pris en compte par le système.

A.4 Conclusion

Nous pouvons résumer les contributions principales de cette thèse en trois points:

Le transfert d'objet d'un robot à un humain ou vice versa, étendu au transfert d'objet entre plusieurs agents avec une étude détaillée du comportement du regard durant le transfert.

Le planificateur et raisonneur géométrique qui permet de calculer les trajectoires, prises, positions et rotations de tous les agents et objets impliqués dans une tâche en prenant en entrée seulement des symboles.

La combinaison des planificateurs symbolique et géométrique en utilisant un planificateur symbolique existant (HATP) et en le liant au planificateur géométrique, nous arrivons à obtenir des résultats satisfaisants et originaux.

2 . 8

 28 One configuration in Cspace reach and two not in it. In (b) the agents are too far from each other and in (c) a wall separates them. 2.9 A situation with both agents in stable configuration (a) and a situation where the human is in an unstable position. 2.10 For the initial situation shown in (a), if one of the agents cross the tables, the position is not accessible (c and d): each agent needs to stay in his side (b) 2.11 The Proxemics areas around a human. 2.12 Two social uncomfortable positions where the robot is partially hidden to the human . . . 2.13 The musculoskeletal comfort for a human in a handover configuration (as shown in Marler et al. (2005)) . 2.14 Some handover configurations for human-robot handovers and robot-robot handovers (these are just informative, more positions are available). 2.15 The distance propagation (a) is human centred and (b) is robot centred. The green cells correspond to nearest positions, and the red the farthest.

) and the receiver (b) and the combined grid (c) are computed. 2.18 The estimated handover positions of the robot, feasible (in blue) and closest feasible cell min (in red) for a given human position according to the reaching capabilities of the human and the robot. 2.19 Three values of the mobility parameters are used to generate three handover strategies.

xi 2 .

 2 21 Averaged convergence curve over 300 runs, with the same settings as shown in Figure 2.20 (mobility=0.35 right, mobility=1 left) . 2.22 Averaged convergence over 300 runs on the scenario of Figure 2.19 with m=1. Three distinct grid sizes 10, 15 and 20 cm are superposed . 2.23 The robot executes a handover of a can to the human, all these situations have been tested with success. 2.24 Two handover solutions: In the first case the robot (R) proposes the object between the walls. The motion is shorter but requires the human (H) to stand up to grasp the object. In the second case the robot comes closer to the human with a large detour. 2.25 Type B scenario: the robot hands-over an object through the walls 2.26 Type D scenario: the robot handover the object with a large detour 2.27 The total time and the human reaction time to fulfil the goal 2.28 .

 . 2.38 Snapshots of the videos used to evaluate the movement naturalness.

xii 2 .

 2 39 The timing of the different gaze behaviours according to were the givers looks. 2.40 The AOIs used in the occulometric measurement . 2.41 Naturalness ratings as a function of the gaze behaviour and the speed movement 2.42 Distribution of the visual attention between AOIs as a function of the gaze behaviour and the type of giver . 3.1 An example of a GAS. The four GSAS composing it links intermediate world state (ws1, ws2, and ws3) together to form the link between the initial world state ws init and the final one ws f inal . 3.2 Various types of facts and affordances in different situations. 3.3 Three scenarios where the robot navigate in a human environment. The path doesn't

 . 3.8 (a), (b) and (c) are different stable configurations for the grey book (this is just a sample from the available stable configurations). (d) is not a stable configuration. 3.9 Caption for LOF . 3.10 The different GSAS of the Place action, a trace of the trajectories is shown. 3.11 The different GSAS of the Place action, a trace of the trajectories is shown. 3.12 The different steps of the NavigateTo action, the initial and final world state of each GSAS is shown (the blue line is the robot navigation path). 3.13 The initial and final world state is shown for a PlaceReachable action. Note that the object is reachable to the human in the second figure. 3.14 The different GSAS of the Pick action, performed by a humanoid robot. Note that all the upper body is moving when performing the action to keep the robot stability. 3.15 Various placements using different stable configuration of the object Grey book. Some of those (c and d) are in collision. 3.16 The different steps of a geometric plan, including the unused alternatives. In the plan, the robot performs three successive Pick and Place on three objects. 3.17 Various initial world state where the Pick has been evaluated 3.18 A geometric plan where the PR2 and the drone cooperate to bring the bar to its final location (it is planned in sequence) . 3.19 An example of the framework running on the PR2 robot and executing a Pick and Place sequence. .

 4.4 The domain for an example where the robot needs to place three books in front of the human. 4.5 An example where the robot needs to place three books in front of the human. (a)

Figure 4 . 5 ,

 45 starting a branching factor of 3. These values are averaged on 30 runs. 4.4 The results are averaged on 30 runs on both the examples in Figure 4.7(a) and Figure 4.7(b)

Figure 4 .

 4 7(c) and Figure 4.7(d) give very similar results to Figure 4.7(a) results. 4.5 For a plan which length is 6 actions, the use of high level actions in addition to specific constraints enables a great computation time improvement. These values are averaged on 30 runs and the branching factor was 5. .

-

 Jim Mainprice, Mamoun Gharbi, Thierry Siméon, and Rachid Alami. "Sharing effort in planning human-robot handover tasks." In the International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 764-770. IEEE, 2012. Mainprice et al. (2012) -Lemaignan Séverin, Mamoun Gharbi, Jim Mainprice, Matthieu Herrb, and Rachid Alami. "Roboscopie: a theatre performance for a human and a robot." In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction (HRI Video), pp. 427-428. 2012. Lemaignan et al. (2012a) -Lavindra de Silva, Amit Kumar Pandey, Mamoun Gharbi, and Rachid Alami. "Towards combining HTN planning and geometric task planning." In Workshop on Combined Robot Motion Planning and AI Planning for Practical Applications, Robotics Science and System (RSS Workshop). 2013. De Silva et al. (2013) -Mamoun Gharbi, Séverin Lemaignan, Jim Mainprice, and Rachid Alami. "Natural interaction for object hand-over." In Proceedings of the 8th ACM/IEEE international conference on Humanrobot interaction (HRI Video), pp. 401-402. IEEE Press, 2013. Gharbi et al. (2013) -Lavindra de Silva, Mamoun Gharbi, Amit Kumar Pandey, and Rachid Alami. "A new approach to combined symbolic-geometric backtracking in the context of human-robot interaction." In International Conference on Robotics and Automation (ICRA), pp. 3757-3763. IEEE, 2014. De Silva et al. (2014) -Rachid Alami, Mamoun Gharbi, Benjamin Vadant, Raphaël Lallement, and Adolfo Suarez. "On human-aware task and motion planning abilities for a teammate robot." In Workshop on Human-Robot Collaboration for Industrial Manufacturing, Robotics Science and System (RSS Workshop).2014.[START_REF] Alami | On human-aware task and motion planning abilities for a teammate robot[END_REF]

Figure 2 . 5 :

 25 Figure 2.5: The human cannot be handed directly the object, the robot needs to plan a path for both of them in order to achieve the task

Figure 2 . 6 :

 26 Figure 2.6:A young person who is in a hurry to get his drink will express more comfort getting a glass above the counter (a & b) while an older person may be more comfortable while waiting for the robot to navigate to him even if the task will take more time (c & d). The blue path is the robot navigation path, and the green one is the human walking path.

Figure 2 .

 2 Figure 2.6 presents an example of a handover task solved by our planner with different settings of the mobility parameter.

 (a) Behind an obstacle (b) Behind the human

Figure 2 . 12 :

 212 Figure 2.12: Two social uncomfortable positions where the robot is partially hidden to the human

Figure 2 . 14 :

 214 Figure 2.14: Some handover configurations for human-robot handovers and robot-robot handovers (these are just informative, more positions are available).

 (a) Human distance grid (receiver grid) (b) Robot distance grid (giver grid)

Figure 2 . 15 :

 215 Figure 2.15: The distance propagation (a) is human centred and (b) is robot centred. The green cells correspond to nearest positions, and the red the farthest.

Figure 2 .

 2 Figure 2.16: The preselected configurations of a robot relative to a human standing and sitting.

Figure 2 .

 2 Figure 2.18: The estimated handover positions of the robot, feasible (in blue) and closest feasible cell min (in red) for a given human position according to the reaching capabilities of the human and the robot.

Figure 2 .

 2 Figure 2.19 shows three handover strategies that have been computed for the same problem using three values of mobility. For low values of mobility, the human (receiver) is supposedly less involved, asked as little effort as possible, on the contrary high values of mobility require more effort and participation from him, resulting in faster handover strategies. This time enhancement results from the parallelisation of the navigation (both agents navigate at the same time, making the global time needed to achieve the task smaller) and from the human navigation speed, which is higher than the one of the robot.

Figure 2 . 19 :

 219 Figure 2.19: Three values of the mobility parameters are used to generate three handover strategies. The first three pictures depict the resulting trajectories while the three bottom pictures show the final handover configuration that accounts for the 3D obstacles.

Figure 2 .

 2 Figure 2.20 shows the cost improvement over two seconds on a single run corresponding to approximately one thousand sampled positions and five hundred fully tested handover strategies on the example of Figure 2.19. The graphs illustrate the interest of the proposed combined grids and bias variants.

Figure 2 .

 2 Figure 2.23: The robot executes a handover of a can to the human, all these situations have been tested with success.

:Figure 2 .

 2 Figure 2.25 and Figure 2.26 illustrate type B and D scenarios.

Figure 2 .

 2 Figure 2.25: Type B scenario: the robot hands-over an object through the walls

Figure 2 .

 2 Figure 2.26: Type D scenario: the robot handover the object with a large detour

Figure 2 .

 2 27(a) indicate that the handover was realized faster with motions of type A and B, which is normal as the handover chosen here prioritizes the handover global time. It is actually faster in A than in B because of the reaction times reported in Figure2.27(b):

Figure 2 . 27 :

 227 Figure 2.27: The total time and the human reaction time to fulfil the goal

Figure 2

 2 Figure 2.28

 Figure 2.31 shows an exploration example were there are unexplored nodes, expanded ones, and a solution. The choice of the search algorithm is open, any other graph search algorithm would work, but the specificities of LWA* makes it a good candidate for this problem.

Figure 2 .

 2 Figure 2.31: Pink is the actual object path, the grey is the cells to be extended (from the lazy part of LWA*) and the coloured cells are the explored ones. The two indentations of the pink path are due to the sub-optimality of the weighted variant of A*, it is close to the heuristic

4 :d

 4 ← min(d, DistanceCost(a)) ⊲ cost for a to go from N to N goal (Euclidean distance)

 tests In order to further reduce the computation time, the system can postpone the usage of the handover search tool (highly time consuming) and use simpler process to detect infeasible handover as early as possible: Distances test checking if the agents are within reach of each other (based on arm length) Figure 2.32(a).

Figure 2 .

 2 Figure 2.34: An example where the robot plan for a third agent (not involved in the handover) to move in order to avoid collision and let him access the target agent

Figure 2 .

 2 Figure 2.35 is a maze where there is always a simple solution where the starting and target agents can meet to perform a single handover. But windows allow faster delivery if the object is handed over through them between intermediary agents. The A* heuristic gets trapped in this environment as a solution is rarely close to the straight line. There are 102400 nodes (8 possible agents per cell).

Figure 2 .

 2 31 shows an example of a resolution in the rooms environment, where most of the cells are explored but the true cost is computed just for a small part of them.

 2.5.1.4 Occulometric measurement Classical dependent variables in eye-tracking studies include the number and duration of fixations on areas of interest. In this study, the areas of interest (AOIs) were (1) the giver face and (2) the object. Those AOIs were fix, as depicted in figure 2.40. As video duration changed between experimental conditions, we computed the percentage of dwell time spent on AOIs to study the distribution of the visual attention.

Figure 2 .

 2 Figure 2.40: The AOIs used in the occulometric measurement

 , 145)=15.034, p<.001 8 (Figure 2.41). Post-hoc paired comparisons showed that OR and ROR gaze behaviour are significantly judged more natural than the four other conditions R, O, RO, ORO (highest p-value in the post-hoc table equal to .003). No difference was found between (1) the two conditions OR and ROR (p=. 70) and (2) the three conditions R, O and RO (lowest p-value equal to 0.48). Finally, the condition ORO is significantly judged more natural than the two gaze behaviours R and O (highest p-value equal to .03).

Figure 2 .

 2 Figure 2.41: Naturalness ratings as a function of the gaze behaviour and the speed movement

Figure 2 .

 2 Figure 2.42: Distribution of the visual attention between AOIs as a function of the gaze behaviour and the type of giver

(

 2014),Strabala et al. (2012a) or[START_REF] Boucher | I reach faster when i see you look: Gaze effects in human-human and human-robot face-to-face cooperation[END_REF] (a cooperative task) stated that a human exploit the gaze of the robot when it is present.

 A user study where we have shown the importance of gaze cues during a handover, and have shown the importance of the used pattern: the subjects preferred the two patterns OR (the giver looks at the Object then at the Receiver) and ROR (the giver looks at the Receiver then at the Object and then at the Receiver again) Chapter 3

), motion planning is based on a geometric model of the world, and needs a full description of the initial and final position of the robot model. This full description is usually expressed with the numerical values related to the position of every part of the robot in the model.To synthesize, task planning deals with symbols while motion planning requires specific numerical values to compute the trajectories. The gap between these two planners is the problem we are trying to solve in the context of manipulation and navigation planning, using fetch and carry examples in the presence and in interaction with humans. Let's refer to this problem as the Geometric Reasoning and Planning (GRP) problem.

 (a) {RedCube, is on, GreyBook, true} The polygon forming the bottom of RedCube is inside the polygon forming the top surface of GreyBook (b) {RedCube1, is next to, RedCube2, true} The minimal distance between RedCube1 and RedCube2 is smaller than a given threshold (c) {RedCube, is reachable by, Human, true} The inverse kinematics of the Human model enables him to touch the RedCube (d) {RedCube, is visible by, Human, true} The RedCube is in the field of view of the Human

Figure 3 . 2 :

 32 Figure 3.2: Various types of facts and affordances in different situations.

 Figure 3.4 shows various alternatives for the Pick action, where the final constraints HGrasp h and HApp h have multiple solutions.

Figure 3 . 3 :

 33 Figure 3.3: Three scenarios where the robot navigate in a human environment. The path doesn't change, but the cost does: it is low when the human is far away 3.3(a), it gets higher when the human comes closer 3.3(b), and if he is not facing the path 3.3(c), it goes even higher.

Figure 3 . 4 :

 34 Figure 3.4: Different alternatives for the Pick action

 3.1) then it presents some examples of formal definitions available in the framework (Subsection 3.3.2). Next it shows three different algorithms able to find GASs based on the action description (Subsection 3.3.3), later it shows the results of this framework concerning one of these algorithms and finally, it states some possible future works concerning the framework.

Figure 3 . 5 .Figure 3 . 5 :

 3535 Figure 3.5: This is the PR2 robot, a two-arm (r and l) mobile manipulator, the green and blue points are respectively the WMJs of r and l end effectors.

Figure 3 .

 3 6 shows 3 different grasps for the grey book. If an object does not have grasps, it is not considered as a manipulable object. Let G o-ee be the set of precomputed grasps of object o by end effector ee.

Figure 3 . 6 :

 36 Figure 3.6: Different grasps for the grey book (this is just a sample from the available grasps).

Figure 3 . 7 :

 37 Figure 3.7: The supports of the tables are represented in green, each table has one support, which is a rectangle covering its top face. The objects on the tables are not support objects, hence, they don't have any supports.

Figure 3

 3 Figure 3.8: (a), (b) and (c) are different stable configurations for the grey book (this is just a sample from the available stable configurations). (d) is not a stable configuration.

ure 3 .

 3 9(a)4 .• (∅, F ix h (ag), HGrasp h-g (ag, o)) is the engaging sub-action description. The corresponding trajectory should be a simple straight line of the end effector from the previous position to a position

Figure 3 . 9 :

 39 Figure 3.9: The different GSAS of Pick, a trace of the trajectories is shown.

Figure 3 .

 3 Figure 3.10(b), release it Figure 3.10(c), and then extracts its arm Figure 3.10(d). To describe the Place

Figure 3 . 10 :

 310 Figure 3.10: The different GSAS of the Place action, a trace of the trajectories is shown.

Figure 3 .

 3 Figure 3.11 shows an example of a Stack action.

Figure 3 .

 3 Figure 3.11: The different GSAS of the Place action, a trace of the trajectories is shown.

Figure 3 .

 3 12 shows an example of a NavigateTo action where a robot goes to a table.

Figure 3 . 12 :

 312 Figure 3.12: The different steps of the NavigateTo action, the initial and final world state of each GSAS is shown (the blue line is the robot navigation path).

Figure 3 .

 3 13 shows an example of this action.

Figure 3 . 13 :

 313 Figure 3.13: The initial and final world state is shown for a PlaceReachable action. Note that the object is reachable to the human in the second figure.

3. 3 . 2 . 7

 327 More possibilitiesThese actions are examples of what the framework offers, but do not show all its possibilities. For example, the Pick and Place actions are designed for a mobile manipulator using one arm. It is possible to extend it to multiple arms manipulation or to other kinds of robots such as humanoids robots (Figure3.14 shows an example of a humanoid robot ROMEO (http://projetromeo.com/en) performing a Pick). In this particular context, one of the transformations we have made was switching from F ix h to U pperBody6

Figure 3 . 14 :

 314 Figure 3.14: The different GSAS of the Pick action, performed by a humanoid robot. Note that all the upper body is moving when performing the action to keep the robot stability.

Figure 3 . 15 :

 315 Figure 3.15: Various placements using different stable configuration of the object Grey book. Some of those (c and d) are in collision.

Algorithm 3 2 : 3 :

 323 Resolving an action based on the algorithm separated sub-action descriptions 1: function ComputeAction(aId,IN) descr ← GetActionDescription(aId) ⊲ retrieving the action description from D g CST D ← GetFirstSubActionDescr(descr) ⊲ CSTD is the current sub-action description 4: currW S ← IN.ws init 5:

 ← ComputeTraj(currW S, ws tmp , CST D.searchSpaces) , prevST , currW S) ← GoToPreviousST(CST D,descr,ST List)

Algorithm 4

 4 The procedure to apply before looping in Algorithm 3 1: function GoToPreviousST(CST D,descr,ST List) 2:

Algorithm 5

 5 Resolving an action based on the algorithm with configuration first 1: function ComputeActionConfs(aId,IN) 2:

10 :

 10 FindWS(currW S, CST D.searchSpaces ∩ CST D.f inalConstraints, IN)

Algorithm 6

 6 Resolving an action based on the algorithm computing costs 1: function ComputeActionCosts(aId,IN) 2:

10 :

 10 FindWS(currW S, CST D.searchSpaces ∩ CST D.f inalConstraints, IN)

 (the robot arm and the bottles initial configuration have been randomized, the figure shows only some examples of this initial in the right side and the mean calls number to the motion planner is ≈ 2 with a variance ≈ 2. During the motion planning, most of the examples were very fast to compute (as shown by the low averages of the computation times) but in very few examples, the motion planning took a long time, making the variance and the standard deviation very high. One particular number to look for in the table is the variance of the number of solutions explored in the case of a Place: this high number can be explained by the number of variable the Place action needs to instantiate in order to find a solution.

Figure 3 . 17 :

 317 Figure 3.17: Various initial world state where the Pick has been evaluated

 Figure 3.18: A geometric plan where the PR2 and the drone cooperate to bring the bar to its final location (it is planned in sequence)

Section 4 .

 4 2 presents the actual state of the art in this field, Section 4.3 depicts a formalization of the problem alongside an algorithm to solve it, Section 4.4 shows different possible enhancements enabling a computation time speed up, Section 4.5 discusses our solutions and enhancements and proposes clues on the future possibilities, and finally, Section 4.6 summarizes the contributions of this chapter.

 Lozano-Perez andKaelbling (2014) build a plan skeleton based on task planning, containing geometrical constraints and formulate the problem as a Constraint Satisfaction Problem then they use a general solver to test the plan geometrical feasibility. In[START_REF] Srivastava | Using Classical Planners for Tasks with Continuous Operators in Robotics[END_REF] case, once they found a task plan, they try to plan the geometric actions, and if they fail, an error is returned to update the symbolic state, and a new task plan is created.Caldiran et al. (2009a) and[START_REF] Caldiran | From Discrete Task Plans to Continuous Trajectories[END_REF] present a different approach where they use an action description language C+ to provide a robot with high-level reasoner able to find complete symbolic plan, and, based on this plan, they extract the collision free trajectories. In case of problem -collisions-they report it to the reasoner, and a new plan is computed where they try to extract trajectories again. They provide an example of two robots moving object in a 2D grid, and propose another example in[START_REF] Haspalamutgil | A tight integration of task planning and motion planning in an execution monitoring framework[END_REF]: the tower of Hanoi problem.[START_REF] Erdem | Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation[END_REF] keeps nearly the same framework but uses in place of the action description language, a Causal Reasoner to find the symbolic plans, and if the geometric resolution fails, it changes the planning problem, by adding constraints to the causal reasoner in order to take the cause of failure into account. As before, they used a two robot moving object as an example and[START_REF] Havur | A case study on the Tower of Hanoi challenge: Representation, reasoning and execution[END_REF] add another example: the tower of Hanoi.

 [START_REF] Dornhege | Integrating symbolic and geometric planning for mobile manipulation[END_REF] introduce the notion of semantic attachments, in the context of SGP, which are external procedures able either to evaluate if a condition is true or false, or compute the numerical value of a state variable. The condition validation is used as action predicate, and computes if a motion plan is feasible or not. The state variable computation is used to retrieve the new world state from the geometry.[START_REF] Dornhege | Integrating Task and Motion Planning Using Semantic Attachments[END_REF] present a soundness and completeness study on this approach in addition to multiple examples and relevant results using this method.[START_REF] Dornhege | Semantic attachments for domain-independent planning systems[END_REF] introduce the possibility of using heuristics during the search by enabling the semantic attachments to only return an evaluation of their computation and propose the use of different off-the-shelf task planner able to use these heuristics such as Fast Forward[START_REF] Hoffmann | the Ff Planning System[END_REF] Nebel (2001) or Temporal Fast Downward Eyerich et al. (2012).[START_REF] Hertle | Planning with semantic attachments: An object-oriented view[END_REF] propose a new planning language: Object-oriented Planning Language,

Algorithm 8 3 :

 83 HATP implementation of the Classical HTN algorithm 1: function SolveHTN(D, c 0 , m(p), StopAtF irstP lan, M axT ime) 2: T ← m(p) ; c curr ← c 0 while (¬FirstPlanFound or ¬StopAtF irstP lan) and ¬Reach(M axT ime) and T = ∅ do 4:

Algorithm 9

 9 The function to create the backtrack points 1: function CreateBacktrackPoints(V , T , plan curr , c curr , backtrackList) backtrackP oint ← (T, plan curr , c curr) 8: backtrackList ← backtrackP oint 9:

Algorithm 10

 10 Implementation of the apply function 1: function Apply(a, backtrackList, T , plan curr , c curr) 2:

 plan curr , c curr) ← BacktrackToLast(backtrackList)for d | d ∈ V alidD do 18: T tmp ← T ∪ GetsAllTasks(d) 19: backtrackP oint ← (T tmp , plan curr , c curr) plan curr , c curr) ← BacktrackToLast(backtrackList)

3 . 2 :

 32 Pick(A,O): geometric action: Pick. Place(A,O,S): geometric action: Place. PlaceR(A,O,S,AT): geometric action: PlaceReachable. Navigate(A,E): geometric action: NavigateTo. PaintGreen(A,O): geometric action: ∅ (purely symbolic action).

Figure 4 .

 4 Figure 4.7 shows an environment with different world states that illustrates when this request might be useful, and Figure4.8 shows the same world states with the virtual object that does not fit on the

Figure 4 . 7 :

 47 Figure 4.7: Examples of scenarios where the geometric requests enable an enhancement in speed.

Figure 4 .

 4 Figure 4.10 shows a solution plan found for the example inFigure 4.7(a) where, first, the human cleans the table by moving out the obstacle, Ob, then the robot places the three books. In order to assess the interest of this enhancement, we built a similar domain where the decomposition of TestAndMove tries first to place the three object on the table, and only if it fails tries to empty the table. This

Figure 4 . 8 :

 48 Figure 4.8:The same states as in Figure4.7 with a placed virtual object. The virtual object is drawn in yellow and does not fit in any of the tables.

Figure 4 .

 4 7(a) andFigure 4.7(b)

Figure 4 .

 4 7(c) and Figure 4.7(d) give very similar results to Figure 4.7(a) results.

Figure 4 .

 4 11(d), and designed a domain, described in Figure 4.11(a), Figure 4.11(b), and Figure 4.11(c). In this domain, there are three new operators: PlaceRC(R, O, S, Ap, AlreadyPlace): pre-condition, action and effects are the same as for PlaceR(R,O,S,Ap)and it has one additional constraint, placed in the final constraint of the first sub-action description in the Place action: ∀Oi ∈ AlreadyP lace{Oi, is reachable by, Ap, true}. AlreadyPlace is the list of object that are already placed on the destination table.

Figure 4 .

 4 13(a) andFigure 4.13(b) show the domain for this environment, the higher method BringObj needs to choose either the book O1 or O2 to bring to the green human.

Figure 4 .

 4 13(c) andFigure 4.13(d) depict two world states where this domain has been used. In the first one, the robot fetches the closest book, where the navigation distance is the smallest. In the second one the algorithm chooses the other book as, by taking the same path as the previous example, the robot would pass close and behind the blue human which increases the cost (without human = 7.9, with human = 15.5).

Figure 4 . 14 and

 414 Figure 4.15 show the symbolic domain used, where the top method is BringAll, and the robot needs

Figure 4 .

 4 15(b))

Figure 4 . 17 :

 417 Figure4.17: The different plan steps for the "paint scenario"

 looking only at the Object (O), looking only at the Receiver (R), looking first at the Object, then at the Receiver (OR), looking first at the Receiver, then at the Object (RO), looking first at the Object, then at the Receiver, and finally back to the Object (ORO), looking first at the Receiver, then at the Object, and finally back to the Receiver (ROR). Two patterns emerge from both the subjective and objective measurements: OR and ROR.

Figure A. 2 :

 2 Figure A.2: Une personne pressée de récupérer sa boisson, se sentira plus à l'aise d'aller chercher sa boisson au bar, mais une personne un peu moins mobile, ou un peu moins impatiente, préférera attendre que le serveur (le robot) ramène la boisson à sa table.

 collision et, finalement, les deux agents doivent pouvoir atteindre la position d'échange à partir de leur positions initiales respectives. La qualité : afin d'évaluer la qualité d'un transfert d'objet, nous allons nous baser sur les critères suivants :-la notion de"proxémie"[START_REF] Hall | The Hidden Dimension[END_REF] -la visibilité du donneur par le receveur -le confort de la position de transfert basé sur un coût "musculo-squelettique" -l'effort de déplacement fourni par l'humain En plus de ces critères, nous voulons réaliser la tâche en un minimum de temps, et pour faire cela, la méthode supposée la plus rapide est de partager la navigation entre les deux agents. Ceci dit, ce partage est antagoniste à l'idée de minimiser l'effort de déplacement que l'humain doit fournir. Dans le but d'équilibrer ces deux critères, nous utilisons un paramètre nommé "mobilité". La mobilité est élevée pour l'exemple A.2(a), A.2(b) et elle est basse pour l'exemple A.2(c), A.2(d).

Figure A. 11 :

 11 Figure A.11: La distribution visuelle de l'attention entre les centres d'intérêt par rapport aux différents "patterns" et au type du donneur.

A. 2 . 2 Alternatives

 22 Figure A.13: Différentes alternatives pour l'action Pick

 (a) {CubeRouge, est sur, LivreGris, true} le polygone qui forme le bas du CubeRouge est dans le polygone qui forme le haut du LivreGris (b) {CubeRouge1, à coté de RedCube2, true} la distance entre CubeRouge1 et CubeRouge2 est plus petite qu'un certain seuil (c) {CubeRouge, est atteignable par, Humain, true} La cinématique inverse de l'Humain lui permet d'atteindre le CubeRouge (d) {CubeRouge, est visible par, Humain, true} Le CubeRouge Est dans le champs de vision de l'Humain

Figure A. 14 :

 14 Figure A.14: Différents type de fait.

 Figure A.18: Dans cet exemple, le robot doit rapporter à l'humain en vert un des deux manuels disponibles (les deux sont similaires, la seule différence est leur position de départ). On peut voir en bleu la trajectoire (et donc le choix) empruntée par le robot.

 2.1 During a handover, the agents 1 go through four phases, with, in each one, a number of actions to perform. This time-line concern both agents. 2.2 During the phase "Approaching the agent while preparing the handover", a number of communication cues are exchanged, depicted as a sequence in this figure 2.3 During the phase "giving the object", a number of communication cues are exchanged, depicted as a sequence in this figure . 2.4 A synthesis of all the handover phases. The dark colours indicate where our contributions belong to. .

 table is cluttered and need first to be emptied. 4.13 The domain, and two different world states depicting the interest of using cost computation at geometric level. 4.14 In this domain A is the agent requesting two green objects, and Ap an agent who can paint in green the objects. In this domain, the top function BringAll can choose between bringing two of the three available objects (a). Bringing an object consists on checking if it is green or not, if it is, brings it directly to the client, if not, brings it to Ap, in order to let him paint it, and then brings it to the client. Note that if an object is not reachable after navigating next to it, the domain asks the robot to move any other object around it until the target object is reachable. O" is an object of the environment for which the predicate: O ′′ .isN extT o = O is true. The rest of the domain is shown inFigure 4.15 . . 4.15 The rest of the domain of Figure 4.14 . 4.16 An environment where the green human (A) asked the robot to bring him two green cubes. The blue human (Ap) is able to paint red cubes. There are three cubes in the environment, a green one (middle left) and two red ones (top and bottom right). 4.17 The different plan steps for the "paint scenario" . Une personne pressée de récupérer sa boisson, se sentira plus à l'aise d'aller chercher sa boisson au bar, mais une personne un peu moins mobile, ou un peu moins impatiente, préférera attendre que le serveur (le robot) ramène la boisson à sa table. A.3 Trois valeurs de la mobilité utilisées pour générer trois différentes stratégies de transfert d'objet. Les trois images du haut montrent les trajectoires, alors que les trois du bas montrent la position finale. A.4 Résultats concernant les temps de recherche moyennés sur 300 tests de l'algorithme. La mobilité est à 0.35 à gauche et 1 à droite. A.5 (a) Un exemple où, afin d'amener l'objet de R1 à H1, l'agent R2, R3 et R4 performe une série de transferts d'objets. Dans cet exemple chaque agent est dans une zone séparée. (b) Un exemple dans un environnement où les agents sont séparés dans deux zones où ils peuvent se déplacer, et à partir desquels ils peuvent s'échanger des objets à travers une fenêtre ou au-dessus du comptoir. L'humain en bleu est en possession de l'objet désiré par l'humain en rouge. La solution trouvée par l'algorithme consiste à demander au robot 0 de naviguer jusqu'à l'humain en bleu pour attraper l'objet qu'il lui tend au-dessus du comptoir, et ensuite le ramener à l'humain en rouge. A.6 Le labyrinthe . A.7 La grande salle . A.8 L'implémentation sur les robots réels. A.9 Capture d'écran de deux vidéos utilisées durant l'expérience. A.10 Evaluation de la naturalité par rapport aux patterns et à la vitesse du mouvement12 Différents états initiaux où l'action Pick a été testée . A.13 Différentes alternatives pour l'action Pick . A.14 Différents type de fait. .16 Les différentes décompositions d'une méthode. A.17 Un exemple de fonctionnement combiné entre HATP et le planificateur géométrique. . . .

A.1 Le robot ne peut pas atteindre l'humain directement, mais il lui propose une solution acceptable pour effectuer le transfert d'objet. A.2 A.11 La distribution visuelle de l'attention entre les centres d'intérêt par rapport aux différents "patterns" et au type du donneur. AA.15 Les différentes étapes d'un plan géométrique incluant les alternatives non utilisées. Dans ce plan, le robot a réussi à planifier trois Pick puis Place successifs de trois différents objets. AA.18 Dans cet exemple, le robot doit rapporter à l'humain en vert un des deux manuels disponibles (les deux sont similaires, la seule différence est leur position de départ). On peut voir en bleu la trajectoire (et donc le choix) empruntée par le robot.

 2.1 The mean times computed over 160 run, in the four examples, with random starting and target agents, using two different cost priority (agent and time) 2.2 The mean computation time for each example for ǫ = 1 2.3 This table contains the main components used to compute the cost of a solution: the complete execution time and the number of humans (resp. agents) involved in the task,

excluding the starting and target agents. 3.1 Time means the computation time, Sol Tests means the number of solutions explored (by how much solLef t decreased), Inverse kinematic means the number of inverse kinematic called, and Motion plan means the number of calls to the motion planner. These averages, variance and standard deviation (stand dev) are computed in over 150 successful action computation . 4.2 a synthetic reorganisation of the state of the art, coupled with some characteristics, where works are regrouped by authors. Our recent contributions are in the last rows of the table. 4.3 For a plan length of 6 actions, the system is able to compute with a success rate approaching the 100% a solution for the example in

Table 2 .

 2 1: The mean times computed over 160 run, in the four examples, with random starting and target agents, using two different cost priority (agent and time)

Table 2 .

 2

	Priority		Agent	Time	
	Environment time (s) nb humans / nb agents time (s) nb humans / nb agents
	Rooms	28.7	0 / 1	22.5	2 / 2
	Maze	32.1	0 / 0	15.1	2 / 2
	Big rooms	63.9	0 / 3	44.6	2 / 4
	Apartment	17.6	0 / 0	8.4	1 / 1

2:

The mean computation time for each example for ǫ = 1

2.4.4.2 Solution quality

Table

2

.3 presents the values of the main cost components (the execution time, the number of involved agents and the number of involved humans) for some algorithm solutions, running on Section 2.4.3 examples, with ǫ = 1. The results show that when the priority is set to agent, no human is involved in the task (whatever the number of involved agents) but this results on a loss of efficiency as shown by the execution times: when the priority is set to time, even though humans are involved in the task, the execution time is faster than the agent priority execution time (up to 2 times faster).

Table 2 . 3 :

 23 This table contains the main components used to compute the cost of a solution: the complete execution time and the number of humans (resp. agents) involved in the task, excluding the starting and target agents.

 Algorithm 7 Resolving an action based on the algorithm computing costs

1: SetInitialWorldState 2: Pick(r, RED CU BE) 3: Place(r, RED CU BE) 4: Pick(r, GREY BOOK) 5: Place(r, GREY BOOK) 6: Pick(r, ORAN GE BOX) 7: Place(r, ORAN GE BOX)

Table 3 . 1 :

 31 Time means the computation time, Sol Tests means the number of solutions explored (by how much solLef t decreased), Inverse kinematic means the number of inverse kinematic called, and Motion plan means the number of calls to the motion planner. These averages, variance and standard deviation (stand dev) are computed in over 150 successful action computation

Table 4

 4

	.2 and it belongs to the sub

 CreateBacktrackPoints(App, T , plan curr , c curr , backtrackList)

	22:	else if |App| = 1 then	⊲ size of App is 1
	23:	a | a ∈ App	
	24:	Apply(a, backtrackList, T , plan curr , c curr)	
	25:	else if |App| > 1 then	
	26:		
	27:	end if	
	28:	end while	
	29:		

 .3. Algorithm 11 Implementation of the project action function 1: function ProjectAction(t, plan curr)

	2:	if IsNotProjected then
	3:	predessessor ← GetPredessessor(t,plan curr)
	4:	IN ← GetParameters(t)
	5:	IN ← GetWorldState(predessessor)
	6:	aId ← GetActionId(t)
	7:	gas ← ComputeActionConfs(aId,IN)
	8:	else
	9:	gasN um ← getGasNum(t)
	10:	gas ← FindAlternative(gasN um)
	11:	end if
	12:	

 Algorithm 12 Implementation of the apply function concerning the SGAP framework 1: function Apply(t, backtrackList, T , plan curr , c curr) (T tmp , plan curr , c curr)

	2:	T ← T \ t	⊲ remove t from T
	3:	if IsMethod(t) then	
		...	⊲ Omitted, the same as Algorithm 10
	24:	else	⊲ t is an operator
	25:	if HasActionId(t) then	
	26:	SetProjected(t)	
	27:	b ← GetBranchingFactor(t)	
	29:	T tmp ← T ← t	
	30: backtrackP oint ← 31: backtrackList ← backtrackP oint	
	32:	end for	
	33:	end if	
	34:	c curr ← ApplyOperatorEffects(c curr , t)	
	35:	if HasActionId(t) then	
	36:	ws ← GetEndingWorldState(t)	
	37:	c curr ← GetFacts(ws)	⊲ adding the shared predicates to the state
	38:	end if	
	39:	plan curr ← t	
	40:	end if	
	41: end function	

28:

for i | i ∈ N, i ∈ [0, b] do

Table 4 .

 4

4 shows the results of this experiment. The left side of the table shows clearly the interest of having this heuristic when the table is cluttered: the computation time is nearly divided by 10. When the table is empty, as the request is not time consuming, both domains have similar results. The second half of the table shows an interesting behaviour: in Figure

Table 4 . 4 :

 44 The results are averaged on 30 runs on both the examples in

	example	Figure 4.7(a) example Figure 4.7(b) example
	type	without	with	without	with
	plan length	8	8	6	8
	Computation time	191.2	21.7	16.9	20.2
	→ standard deviation	8.6	1.45	1.64	1.34
	Nb alternatives	62.9	0.3	0.2	0.2
	Nb actions computed	162.6	12.6	6.4	8.6

Table 4 . 6 :

 46 The differences between the HATP and SGAP algorithms

	Type	HATP	SGAP
	Predicates	Entirely given by the domain Partially computed from the
			geometry
	Operators	pre, eff	pre, act, const, eff
	Methods	Similar	Similar
	Entity description	Symbolic	Same identifier as symbolic
	Domain M, Op, D Action Solution M, Op, E o, stN exts o, gas, tN exts
	Cost	Entirely given by the domain Computed by the geometry
	Constraints	None	Possible to add
	Ramification problem Not handled	Partially handled
	Applying operators	Adds the effects to the current	Adds the effects to the cur-
		context	rent context and computes
			the shared predicates from the
			world state
	Pre-condition check	Checks pre-conditions in con-	Checks pre-conditions in con-
		text	text and test actions feasibil-
			ity in world states
	Projecting actions	None	Tests the feasibility and create
			backtrack points for future al-
			ternatives

g , E, E Problem D, c 0 , m(p) D sgp , c 0 , ws init , m

(p)

 Table A.2: Temps signifie le temps de calcul, Nb Sol testé signifie le nombre de solution testées. Cinématique inverse et planification de mouvement réfère au nombre d'appels respectifs aux algorithmes correspondant. Ces chiffres sont calculés sur 150 actions réussies.

	pour une action	sans planification	avec planification
	Pick	moyenne variance écart type moyenne variance écart type
	Temps	0.026	0.0001	0.0108	2.8553	17.1426	4.1403
	Nb Sol testé	2.525	3.6193	1.9024	8.2130	124.558	11.1606
	Cinématique inverse	4.61	4.5379	2.1302	11.4556	128.899	11.3534
	Planification de mouvement	-	-	-	2.0532	2.1687	1.4726
	Place						
	Temps	0.0201	0.0007	0.0270	2.7153	22.8922	4.7845
	Nb Sol testé	4.4522	19.7352	4.4424	18.5033	1166.78	34.1582
	Cinématique inverse	4.9296	7.3216	2.7058	11.7219	217.101	14.7344
	Planification de mouvement	-	-	-	2.0463	2.4548	1.5667
	Place Reachable						
	Temps	0.0477	0.0016	0.0403	3.0798	47.1862	6.8692
	Nb Sol testé	5.5577	78.4879	8.8593	12.2692	236.735	15.3862
	Cinématique inverse	5.1658	10.5303	3.2450	9.4359	57.8741	7.6075
	Planification de mouvement	-	-	-	1.8846	1.8969	1.3773

An agent is someone or something able to act and change its environment, it can be a human or a robot.

Each human has 2 arms and 2 legs with 7 degree of freedom each (DoFs) in addition to 3 DoFs for the head, 3 Dofs for the torso and 3 navigation DoFs

Each robot has 2 arms with 7 DoFs each, in addition to 2 DoFs for the head, 1 DoF for the torso and 3 Navigation DoFs

F is the Fisher variable and combined with the p-value enable to establish the significance of a difference between two variables: the difference is significant when p < 0.05 and is not otherwise.

refers to the type of patterns explained in Section 2.5.1.2

In our implementation and for the scenarios we are using, this distance is set to 10 cm.

The figures (and the ones after) are generated in simulation within the environment provided by move3d[START_REF] Siméon | Move3D: A generic platform for path planning[END_REF].

Reminder: U pperBody means that all entities are fixed apart from the agent DoFs which are not needed for the navigation.

In the current framework, as specified above, there is only one performing agent per GSAS, selected in the description (Line 9)

2 3 4 5 6 7 8 9 10 11 12 13 14S ¸ucan and[START_REF] S ¸ucan | Mobile manipulation: Encoding motion planning options using task motion multigraphs[END_REF] X X S ¸ucan and Kavraki (2012) X X X Nedunuri et al. (2014) X X X Lagriffoul et al. (2012) X X X X X Karlsson et al. (2012) X X X X X Lagriffoul (2013) X X Lagriffoul et al. (2014) X X X X X Bidot et al. (2015) X X X X X X X Kaelbling and Lozano-Perez (2011a) X X X Kaelbling and Lozano-Perez (2011b) X X X X Kaelbling and Lozano-Perez (2013) X X X X Ficuciello et al. (2013) X X X Barry et al. (2013) X X X Lozano-Perez and Kaelbling (2014) X X X Garrett et al. (2014a) X X X X Garrett et al. (2014b) X X X X Srivastava et al. (2013a) X X X X X X Srivastava et al. (2013b) X X X Srivastava et al. (2014) X X X X X XCaldiran et al. (2009a) X X X Caldiran et al. (2009b) X X X Haspalamutgil et al. (2010) X X X Erdem et al. (2011) X X X X

Gaschler et al. (2015) X X X X Dornhege et al. (2009) X X X X Eyerich et al. (2009) X X X X Dornhege et al. (2010) X X X X Dornhege et al. (2012) X X X X Dornhege et al. (2013) X X X X Plaku and Hager(2010) X X X X X Plaku (2012b) X X X X X Plaku (2012a) X X X X XGuitton and Farges (2009a) X X X XZickler and Veloso (2009) X X X Choi and Amir (2009) X X X X Wolfe et al. (2010) X X X Shivashankar et al. (2014) X X X Dearden and Burbridge (2013) X X X X X Ferrer-mestres et al. (2015) X X X X Hauser and Latombe (2009) X X X X Hauser (2010) X X X X Cambon et al. (2003) X X X X Cambon et al.(2004) X X X X Gravot et al. (2005) X X X X Cambon et al. (2009) X X X X Alili et al. (2009) X X X X X X De Silva et al. (2013) X X X X X X Silva et al. (2013) X X X X De Silva et al. (2014) X X X X Gharbi et al. (2015a) X X X X XTable 4.2: a synthetic reorganisation of the state of the art, coupled with some characteristics, where works are regrouped by authors. Our recent contributions are in the last rows of the table.

In order to avoid confusions, operator will be used for the symbolic actions (in an HTN planner, both action and operator can usually be used), while the geometric actions will keep the name actions.

In order to differentiate between task level symbols and geometric level symbols, task level symbols will be written in italic in the rest of this thesis

The runs on this section were all made on a computer with an i7-3720QM CPU @ 2.60GHz processors an a memory of

8Go

Acknowledgements

A place the object O on the support S reachable by the agent AT. It has as a pre-condition: the object should be in the robot hand, and the effects are: the object is not in the agent hand anymore, it is on the support S and is reachable by AT . It is the same description as the one presented in the beginning of this section. The example also contains the cost of the operator computed by an external procedure (costF ct) which take all the operator parameters as inputs. It also contains the duration of the solution (here from 3 to 5 seconds).

The second part of the example shows the method MoveR which can be decomposed into two operators Pick and PlaceR in this order. Its pre-conditions are that A is a robot, AT a human and the object O is on the support F rom.

This example shows the simplicity of creating domains with HATP, one of its main features as presented in [START_REF] De Silva | The HATP Hierarchical Planner : Formalisation and an Initial Study of its Usability and Practicality[END_REF].

HTN-HATP differences

The principal differences between HATP and the most known HTN planners (such as SHOP2 Batista (2011)

Results

We run the algorithm on this example 7 and Table 4.3 represents the results obtained over 30 runs for each branching factor. The plan length is 6 actions, consisting on 3 successive Pick and Place. The success rate is nearly perfect starting from a branching factor of 3 but the Computation time also grows accordingly. Note that the success rate of the algorithm when the branching factor is 5 drops. Failing with this many possible alternative is possible as the search space is not complete: for completeness, the branching factor should be infinite. 4 14.5 24.7 32.7 36.6 Nb actions computed 5.6 31.6 41 62.8 78.7 85.8 Table 4.3: For a plan length of 6 actions, the system is able to compute with a success rate approaching the 100% a solution for the example in Figure 4.5, starting a branching factor of 3. These values are averaged on 30 runs.

The ramification problem

The ramification problem is the problem of characterizing the indirect effects of an action (more details are available in [START_REF] Mcilraith | Integrating actions and state constraints: a closed-form solution to the ramification problem (sometimes)[END_REF]). In other words, it means computing the consequences of an action in addition to its direct effects (are the effects described in the action model).

Usually, in task planning, the problems are simplified to handle the direct effects only, and the ramification problem is not addressed. One way to compute indirect effects is to use Truth Maintenance systems [START_REF] Doyle | A truth maintenance system[END_REF] which use inferences and assumptions to compute them. Nowadays, in robotics, these inferences and assumptions are made by the Ontologies systems, such as [START_REF] Tenorth | KNOWROB -Knowledge processing for autonomous personal robots[END_REF], but it is not used to tackle the ramification problem.

When addressing the problem of symbolic geometric planning, it is possible to compute at geometric level a number of properties that correspond to facts (the shared predicates), and, therefore compute in a more valid way the actions consequences. This is even more important when humans are present, as the action consequences (shared predicate and cost) can allow the planner to find better or preferred plans. Figure 4.6 shows an example of this problem: the robot needs to place three objects on the table in front of it in order for the human to be able to reach the three of them at the same time (The same as the previous example, with different objects and environment). In Figure 4.6-C the robot places the third object reachable, but the first object is no longer reachable (this example is further detailed in Subsection 4.4.2).

In order to (partially) tackle this problem, we use the shared predicates: after a geometric action is planned, we compute those predicates for the new context based on the final world state found at geometric level. If some predicates prevent a further action pre-conditions to apply, a backtrack is triggered and an alternative geometric solution is requested. This process goes on until a valid plan is found, the branching factor (for now this number is given by the domain expert) is reached, or no other geometric solution is available.

The problem is only partially tackled due to the discrete set of shared predicates the system is able to compute: if a shared predicate does not exist, the problem will not be tackled.

Real robot implementation

The SGAP Framework and its enhancements were implemented on the PR2 robot. Figure 4.12 shows a scenario where the robot needed to place three objects on the table in front of the human, and the human, once he saw all the objects, needed to choose one of them and take it. In order to achieve this, the three objects needed to be reachable at the same time. The table was cluttered with two boxes that the robot is not able to move, the human needs to participate in the tasks in order to achieve the goal. The corresponding video combined with different simulation cases is available here: https://youtu.be/KUF4Gdhc2Do The implementation of the SGAP framework on a PR2 robot. The task is to place the three objects in front of the human, in order to let him choose one of them. The table is cluttered and need first to be emptied.

Cost driven search

The algorithm presented in Subsection 4.3.2 enables HATP to prune out plans when the cost of their first part is greater than the best plan already found (Line 4 to Line 7 of Algorithm 8). The cost used in this algorithm is provided by the domain expert as input of the problem, the idea of this enhancement is to compute the cost automatically at geometric level. The GRP framework computes this cost at the same time as computing the GAS and return it alongside, it is then stored in the Action Solution (AS)

until the function GetCost(plan curr) is used (it can be a sum or a maximum of all the tasks the current plan contains).

Computing the cost at geometric level, where social rules can be taken into account, enables the system to explicitly take into account the human preferences. In order to illustrate this, we implemented two scenarios depicted in the followings where we run the SGAP framework with the option of finding all

Contributions to the symbolic geometric planning in a nutshell

In this chapter, we propose two main contributions:

A symbolic geometric planning algorithm named Symbolic Geometric Action Planner (SGAP) which combines HATP with the GRP framework from the previous chapter, by linking symbolic operators to geometric actions and computing the shared predicates from the resulting world states. This enables the planner to tackle challenges such as the ramification problem. A.1. A. trouve près de la table, même si la première solution reste faisable, l'aller-retour jusqu'à l'autre manuel reste préférable, pour ne pas passer trop proche de lui (ou même derrière).

Enhancement of search in SGAP