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Introduction

Intention
This manuscript is a contribution to the modelling and numerical methods for the
transport of charged particles in dense plasmas. We are interested in hot plasmas
created by lasers and the general context is the understanding of the processes lead-
ing to ignition of the fusion reactions. This issue constitutes the main motivation
of this work and is followed as a general research direction. However, many other
research areas are closely related to this work since they present a similar physics.
They extend to hypersonic �ows [5], radiotherapy [11, 12, 13], magnetic con�nement
fusion (MCF) [145, 146], astrophysics [59], studies of lighting and �ames, engines
for space propulsion [103] or plasma remediation processes.

Context
Nowadays, everybody knows the emergency to tackle the issues related to energetic
resources exhaustion and global warming. Several research axes are dealing with
measures permitting signi�cant energy savings. Other approaches consider new
energy production methods based on nuclear fusion reactions. Stars are powered
by nuclear fusion in their cores and the control of such processes on earth repre-
sents a great perspective for abondant energy production. A nearly inexhaustible
combustible in addition to a small quantity of long-life time radioactive waste and
greenhouse gas make this approach very attractive.
Nuclear fusion reactions are based on the fusion of light atomic nuclei, which re-
leases large quantities of energic particles or radiation. In the case of the fusion
of deuterium and tritium (D-T), an alpha particle and a neutron are produced. A
large kinetic energy is carried out by these two reaction products (3.5 MeV for the
alpha particle and 14.1 Mev for the neutron). The use of deuterium and tritium
(D-T) nuclei is currently the nominal way chosen to achieve fusion with a minimum
of energy provided to the system. The cross section of D-T reaction fusion is indeed
several times larger compared to the other fusion reactions (D-3He, D-Dp, D-Dn,
etc). The D-T reaction, producing the 14 MeV neutrons, is the following

D + T → 4He (3.52 MeV) + n (14.06 MeV).

The main di�culty in the initiation of the fusion reaction lies in the fact that
both parent nuclei have the same positive charge and repulse each other. In order
to achieve the fusion of two nuclei one has to overcome the Coulomb repulsive forces
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between them. The amount of energy released and the number of reactions in the
volume of plasma depend on the density of particles and their temperature. The
reaction gain becomes higher than one when the energy released by fusion reactions
becomes greater than the one invested in the plasma heating and con�nement. This
condition can be expressed in terms of the density n, temperature T of the plasma
and its con�nement time τ through the Lawson criterion [153]. For a Deuterium-
Tritium plasma heated to the temperature of 10 keV or 108K, this criteria writes
as

nτ > 1020m−3s.

There exist di�erent ways to satisfy this criterion. An enormous mass insures
through the gravitation forces a very large con�nement time in stars. The con�ne-
ment time is the major factor of success. On Earth, two approaches are considered to
achieve a large gain in fusion reactions: the magnetic and inertial con�nement. The
�rst method consists in using strong magnetic �elds to maintain the combustible at
a very high temperature. The plasma can be stabilised and con�ned away from the
walls by the magnetic �eld, to obtain a continuous production of the fusion energy:
this is the process of magnetic con�nement fusion [145, 146]. The devices considered
to study the feasibility of magnetic con�nement fusion are the tokamaks, stellarators
and other magnetic traps, which con�ne a plasma mixture of hydrogen isotopes in
a magnetic �eld produced by supra-conducting coils. The con�nement is achieved
by choosing a toroidal geometry for the magnetic fusion reactor.
The second approach consists in bringing to very high density and temperature a
small volume of fuel within an extremely short time by the use of very powerful
lasers. In this case the con�nement is achieved by the inertia of imploding mass:
this is the process of inertial con�nement fusion [89, 152, 163]. The idea of inertial
con�nement appeared in 1960 with the invention of the laser. This new source of ra-
diation brought new attractive perspectives for fusion since high energy �uxes could
be reached (of the order of 1014-1015 W/cm2). One of the �rst ideas was to transfer
the laser beams energy to a small spherical target, in order to heat it su�ciently
and to ignite a thermonuclear �ame. In this context, Russian, American and French
laboratories started to study laser-matter interactions in the sixties. However, the
idea to directly use the laser energy to ignite the target was quickly given up and
in 1972 an "ablative" implosion scheme was proposed. This scheme, based on the
action-reaction principle, consists in the irradiation of a deuterium-tritium spherical
shell by the use of powerful laser beam carefully set to obtain a symmetric illumi-
nation. Under the e�ect of the laser-radiation, the external face of a spherical shell
is vaporised and the plasma produced expands toward the exterior: this is called
the ablation process. By action-reaction, the external plasma expansion thrusts the
internal part of the shell toward the center. The ablative pressure compresses and
heats the shell while the gas contained inside the shell creates the hot spot in the cen-
ter where the ignition conditions can be created. In that case, a nuclear combustion
ignited in the hot spot propagates radially and consumes the fuel in the compressed
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Introduction

shell. To access such a laser energy, two facilities were built: the Laser Mégajoule
(LMJ) in Bordeaux and the National Ignition Facility (NIF) in Livermore (USA).
The NIF is operational since 2009. The ignition process described here supposes a
perfectly isotropic irradiation with a high number of laser beams perfectly balanced
and synchronised, which makes the direct drive approach particularly challenging.
Also, in order to overcome the contradictory conditions of heating and compressing
the target at the same time, another ignition scheme called the fast ignition scheme
was proposed in 1994. The idea is to separate the fuel compression and heating. One
starts by compressing the target by using the direct drive scheme, then launches a
short highly energetic beam of particles to ignite the compressed fuel.
Another way to ensure an isotropic illumination is to use the indirect drive approach.
It consists in the irradiation, of a hollow cylindrical metallic cavity (usually made of
gold) of a few millimetres in diameter and one centimer long called "hohlraum" from
inside by using many intense laser beams. The energy deposited in the holraum is
converted in X-rays and creates an isotropic illumination of the target inside the
cavity.

Figure 1: Irradiation scheme of a target by intense laser light in the case of the
direct drive approach (left) and the indirect drive approach (right).

The understanding of the processes involved in inertial con�nement fusion re-
quires a deep and challenging study of the collisional kinetic transport of multi-
ple species of charged particles. In addition, a rigorous mastering of the coupling
with other phenomena involved in the ignition process such as radiative transfer
[18, 104, 174], neutron production [78] or laser-plasma absorption processes [190]
is also required. The present document mainly focuses on the modelling and the
numerical study of the transport of charged particles created in the zone of laser
plasma interaction at the outer part of the target [67].
In order to take into account di�erent aspects of the particle transport numerous
contributions have been made. We refer here to [198] for a review of Vlasov-Fokker-
Planck numerical modelling for inertial con�nement fusion plasmas. We mention
here, the work of N. Crouseilles and F. Filbet [65] who developed in 2004 a Maxwell-
Fokker-Planck-Landau numerical code integrating important developments dealing
with the discretisation of collisional operators [39, 40, 48, 72, 73]. We also mention
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Figure 2: �International Thermonuclear Experiment Reactor� project (ITER -
Cadarache) for the magnetic con�nement fusion (left) and the laser installation
�Laser MegaJoule� (LMJ - Bordeaux) for Inertial Con�nement Fusion (right).

[41, 93, 156, 157]. These work were largely pursued in [86, 168] permitting to include
the contribution of magnetic �elds and explore relativistic regimes.

Research directions and objectives
Kinetic descriptions are known to be very accurate to describe the transport of
charged particles in a plasma. However, they are also known to be computation-
ally expensive to describe most realistic physical applications. An alternative way
consists in considering �uid descriptions based on averaged physical quantities. How-
ever, such a macroscopic description is not su�ciently accurate. For example, in
the context of inertial con�nement fusion, the plasma particles may have an energy
distribution far from the thermodynamic equilibrium so that the �uid description
is not adapted. Moreover kinetic e�ects like the non local transport [33, 170], wave
damping or the development of instabilities [82] can be important over time scales
shorter than the collisional time so that �uid simulations are insu�cient and kinetic
codes have to be considered to capture the physical processes. Kinetic approaches
are usually limited to times and lengths much shorter than those studied with �uid
simulations. It is therefore an important challenge to describe kinetic e�ects using
reduced kinetic codes operating on �uid time scales [94, 122].
The angular moments models represent an alternative method situated in between
the kinetic and the �uid models. They require computational times shorter than
kinetic models and provide results with a higher accuracy than �uid models. They
originate from an angular moments average [175, 182] of the kinetic equations. The
idea is to keep the velocity modulus (denoted ζ in this work) as a variable. That
allows to consider the particle distributions in energy far from equilibrium, while
using a simpli�ed description of particle angular distribution. Such models are
obtained by integration of the kinetic equation in angle (integration on the unit
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sphere). Thus a hierarchy of moments equations can be obtained. There exist
several moment models whose di�erences come from the choice of the closure re-
lation. In this document we consider the angular moments models [83] based on
an entropy minimisation principle. The entropy minimisation problems have been
widely studied in [4, 160, 175, 177, 195]. The underlying distribution function is
given by an exponential of a polynomial function depending on the particle energy
and it is therefore non negative. Moreover, these closures verify the fundamental
mathematical properties [112, 160, 172] such as hyperbolicity and entropy dissipa-
tion. However, their solutions could be rather di�erent from the solution of the full
kinetic equation. Moreover, from the numerical point of view, even if the closure is
well de�ned, computational challenges remain. In particular, the resolution of the
entropy minimisation problem can be very computationally costly and we refer to
[4] for a speci�c treatment.
The angular M1 model is largely used in the context of radiative transfer [20, 57,
84, 186, 187, 201, 202], however it is relatively new in applications to the transport
of charged particles in plasma [83]. Therefore the �rst objective of this work is to
provide a better understanding of the advantages and the limits of these reduced
models for plasma physics modelling. Since angular moments models can be seen as
a compromise between kinetic and �uid descriptions, they represent attractive nat-
ural candidates for capturing kinetic e�ects on large time scale. Therefore, another
important objective is to propose appropriate numerical methods for computing the
numerical solutions of angular moments models in long time regimes. Indeed, in
the case where the characteristic quantities of the problem become large compared
to the plasma parameters or the collisional parameters, sti�nesses appear in the
considered set of equations and the model degenerates. In general, classical numer-
ical schemes used for angular moments models are not able to correctly capture the
asymptotic limit under suitable conditions on the time and space step. Also, in
addition to correctly behaving in asymptotic regimes, the numerical methods also
should preserve the fundamental properties of the angular moments models such
as the preservation of the admissible sets for instance. This point is investigated in
details in this document. Another objective concerns the simulation of multi-species
particle transport. The electronic transport studies are often performed considering
immobile ions [86, 168]. Indeed, because of their large mass compared to electrons,
the ion motion is often neglected considering small time intervals. However, working
on long time scales requires to take the ion motion into account. This will give ac-
cess to a more general and interesting physics related to inertial con�nement fusion
applications. A signi�cant work is then required for the use of the angular moments
models to the multi-species particle transport studies.

Structure of the manuscript
This work is situated in between the plasmas physics modelling, applied mathemat-
ics and numerical analysis. This manuscript is organised in three parts. The �rst
part is a contribution to plasma modelling through the scope of angular moments
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models. The second part of this document deals with the derivation of numerical
methods for the description of the long time particle transport. Common schemes
usually used for angular moments models preserve the admissibility of the numeri-
cal solutions. However, such schemes are in general not able to capture the correct
solution when considering asymptotic regimes. The aim is to propose numerical
schemes which handle the asymptotic limit under resonable constraints on the space
and time steps. The third part is a contribution to multi-species modelling. The
�nal goal is the study of the electron and ion dynamics with an accurate model
which is also numerically a�ordable for applications. In this work a simpler problem
is investigated considering non-charged particles. The angular model is derived in
a moving framework where the mean velocity is de�ned by the rare�ed gas dynamics.

Chapter 1. In this �rst chapter we introduce the basic concepts essential for
plasma physics modelling. These elements are used in the following chapters.

Chapter 2. In this chapter, we start recalling the principle of the angular mo-
ments closures. Angular moments models are widely used in numerical solutions of
kinetic equations. While in the strongly collisional limit they are providing a good
approximation of the full kinetic equation, their validity domain in the weakly col-
lisional limit is unknown. The work of this chapter is devoted to de�ne the validity
domain of the M1 model and its extensions, the two populations M1 and the M2

angular moments models for the collisionless kinetic physics applications. Three
typical kinetic plasmas e�ects are considered, which are the charged particle beams
interaction, the Landau damping and the electromagnetic wave absorption in an
overdense semi-in�nite plasma. For each case, a perturbative analysis is performed
and the dispersion relation is established using the moments models. These rela-
tions are compared with those computed by considering the Vlasov equation. The
validity limits of each model are demonstrated.

Chapter 3. In this chapter, the electronic M1 model introduced in chapter 1
is applied here for electron transport studies in a hot collisional plasma. The mo-
ment extraction of the electron-electron collision operator from the kinetic collision
operator, for this angular moments model, is challenging and some approximations
are required. Firstly, we recall the collisional operators used for the electronic M1

model proposed in [166, 167]. Then, a characterisation of the electron-electron and
electron-ion collision operators is given and following [32] the electron plasma trans-
port coe�cients are derived. It is shown that in the high Z limit the electronic
M1 model and the Fokker-Planck-Landau equation coincide near equilibrium. Also,
in general, the electron-electron collision operator proposed for the electronic M1

model recovers accurate electron transport plasma coe�cients.

Chapter 4. Angular moments models are nonlinear hyperbolic systems. For
this purpose, in this chapter, some concepts of numerical methods for nonlinear sys-
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tems are recalled following the ideas introduced in [52, 101, 102, 118, 159]. These
methods directly apply to angular moments model and are used in the next chapters.

Chapter 5. This section deals with the numerical resolution of theM1-Maxwell
system in the quasi-neutral regime [63, 74]. In this regime the sti�ness of the sta-
bility constraints of classical schemes implies long calculation times. That is why
we introduce a stable numerical scheme consistent with the transitional and limit
models. This scheme is able to handle the quasi-neutrality limit regime without
any restrictions on time and space steps. This approach can be easily applied to
angular moment models by using a moments extraction. Finally, two physically
relevant numerical test cases are presented for the asymptotic-preserving scheme
in di�erent regimes. The �rst one corresponds to a regime where electromagnetic
e�ects are predominant. The second one on the contrary shows the e�ciency of
the asymptotic-preserving scheme in the quasi-neutral regime. In the latter case
the illustrative simulations are compared with kinetic and hydrodynamic numerical
results.

Chapter 6. This chapter is devoted to the derivation of an asymptotic-preserving
scheme for the electronic M1 model in the di�usive regime. In the �rst part of this
section, the case without electric �eld and the homogeneous case are studied. The
derivation of the scheme is based on an approximate Riemann solver where the in-
termediate states are chosen consistent with the integral form of the approximate
Riemann solver. This choice can be modi�ed to enable the derivation of a numerical
scheme which also satis�es the admissible conditions and is well-suited for capturing
steady states. Moreover, it enjoys asymptotic-preserving properties and handles the
di�usive limit recovering the correct di�usion equation. Numerical tests cases are
presented, in each case, the asymptotic-preserving scheme is compared to the classi-
cal HLL [118] scheme usually used for the electronic M1 model. It is shown that the
new scheme gives comparable results with respect to the HLL scheme in the classical
regime. On the contrary, in the di�usive regime, the asymptotic-preserving scheme
coincides with the expected di�usion equation, while the HLL scheme su�ers from
a severe lack of accuracy because of its unphysical numerical viscosity. The second
part of this section is devoted to the extension of the proposed numerical scheme
proposed to the general case. The goal is to deal with the mixed derivatives which
arise in the di�usive limit leading to an anisotropic di�usion. The derived numerical
scheme preserves the realisibility domain and enjoys asymptotic-preserving proper-
ties correctly handling the di�usive limit recovering the relevant limit equation. In
addition, the cases with electric �eld and varying collisional parameter are naturally
taken into account with the present approach. Numerical test cases validate the
considered scheme in the non-collisional and di�usive limits.

Chapter 7. This study is a �rst step towards the multi-species charged par-
ticles modelling. Before considering complex con�gurations dealing with charged
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particles interactions, in the present chapter, we only consider non-charged particles
and apply the angular M1 model in a moving frame to rare�ed gas dynamics. In
the present work, the velocity framework is centered on the particle mean velocity.
First of all, the derivation of the angular M1 moments model in the mean velocity
frame is introduced. The choice of the mean velocity framework in order to enforce
the Galilean invariance property of the model is highlighted. In addition, it is shown
that the model rewritten in terms of the entropic variables is Friedrichs-symmetric.
Also, the derivation of the associated conservation laws and the zero mean velocity
condition are detailed. Secondly, a suitable numerical scheme, preserving the re-
alisable requirement of the numerical solution for the angular M1 moments model
in the mean velocity frame is proposed. Thirdly, some numerical results obtained
considering several test cases in di�erent collisional regimes are displayed.

Conclusion We present our conclusions and some short and long time perspec-
tives.
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Résumé en français
Ce manuscrit est une contribution à la modélisation et aux méthodes numériques
pour l'étude du transport de particules dans un plasma dense. Nous sommes in-
téressés par des plasmas chauds crées par lasers et le contexte général est la com-
préhension des processus conduisant à l'allumage des réactions de fusion. Cette
thématique constitue la principale motivation de ce travail et est suivie comme di-
rection de recherche générale. Cependant, de nombreux thèmes de recherche sont
étroitement reliés à ce travail puisqu'ils présentent une physique similaire. Nous pou-
vons citer par exemple l'étude des écoulements hypersoniques [5], la radiothérapie
[11, 12, 13], la fusion par con�nement magnétique [145, 146], l'astrophysique [59],
l'étude des éclairs et des �ammes, la propulsion pour engin spatiaux [103] ou les
processus de décontamination plasma.

Directions de recherches et objectifs
Les descriptions cinétiques sont connues pour être très précisent pour décrire le trans-
port de particules chargées dans un plasma. Cependant, elles sont aussi connues pour
êtres particulièrement coûteuse en terme de ressources informatiques lorsqu'elles sont
utilisées pour décrire la plupart des applications physiques. Une approche alterna-
tive consiste à considérer une description basée sur des quantités physique moyen-
nées. Cependant ce type de description macroscopique peut ne pas être su�sam-
ment précise. Par exemple, dans le contexte de la fusion par con�nement inertielle,
les particules constituant le plasma peuvent posséder une distribution énergétique
éloignée d'une distribution énergétique à l'équilibre thermodynamique telle qu'une
description �uide n'est pas adaptée. De plus, les e�ets cinétiques comme le trans-
port non-local [33, 170], l'amortissement d'ondes ou le développement d'instabilités
[82] peuvent être important sur des échelles de temps plus courtes que les péri-
odes de collisions. Ainsi les simulations �uides sont insu�samment précisent et des
codes cinétiques doivent êtres considérés pour capturer correctement le processus
physique. Les approches cinétiques sont souvent limitées à des échelles de temps et
de longueurs bien plus petites que celles étudiées avec des simulations �uides. La
description d'e�ets cinétiques par l'utilisation de modèles réduits opérant sur des
échelles �uides constitue un dé� considérable [94, 122].
Les modèles aux moments angulaires représentent une méthode alternative située
entres les modèles cinétiques et les modèles �uides. Ils nécessitent un coût infor-
matique moins important que les modèles cinétiques et fournissent des résultats de
plus grande précision que les modèles �uides. Ils sont basés sur une moyenne angu-
laire [175, 182] des équations cinétiques tout en conservant le module de la vitesse
(noté ζ dans ce travail) comme variable. Ceci permet de considérer des distributions
énergétiques de particules éloignés de l'équilibre tout en travaillant avec une descrip-
tion réduite. De tels modèles sont obtenus par l'intégration angulaire de l'équation
cinétique (intégration sur la sphère unité). Ainsi une hiérarchie d'équations aux
moments peut être obtenue. Il existe plusieurs modèles aux moments dont les dif-
férences proviennent de choix de la relation de fermeture. Dans ce document nous
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considérons les modèles aux moments angulaires basés sur un principe de minimi-
sation d'entropie [83]. Les problèmes de minimisations d'entropie ont été largement
étudiés [4, 160, 175, 177, 195]. La fonction de distribution sous-jacente est donnée
par l'exponentielle d'une fonction polynomiale dépendant du module de vitesse et
est ainsi non négative. De plus les modèles aux moments basés sur des fermetures
entropiques satisfont des propriétés mathématiques fondamentales [112, 160, 172]
comme l'hyperbolicité et la dissipation d'entropie. Cependant, d'un point de vue
numérique, même si la fermeture est bien dé�nie, des di�cultés numériques de-
meurent. En particulier, la résolution de problèmes de minimisation d'entropie sous
contraintes peuvent êtres particulièrement complexes et nous renvoyons à [4] pour
un traitement spéci�que.
Le modèle aux moments angulaires M1 est largement utilisé dans le contexte du
transfert radiatif [20, 57, 84, 186, 187, 201, 202], cependant, il est relativement nou-
veau de l'utiliser pour des applications en physiques des plasmas [83]. Ainsi, le pre-
mier objectif de ce travail est de fournir une meilleure compréhension des avantages
et des limites de ce modèle réduit pour la modélisation en physique des plasmas.
Puisque les modèles aux moments angulaires peuvent êtres considérés comme un
compromis entres les descriptions �uides et cinétiques, ils représentent des candi-
dats naturels pour capturer des e�ets cinétiques sur de longues échelles de temps.
Ainsi, un autre objectif important est de proposer des méthodes numériques appro-
priées pour calculer des solutions numériques de modèles aux moments angulaires
pour l'étude de régimes en temps longs. En e�et, dans le cas où les grandeurs carac-
téristiques du problème considéré deviennent grandes devant les paramètres plasmas
ou les paramètres collisionnels, des raideurs apparaissent dans le système d'équation
étudié et le modèle dégénère. En général, les schémas numériques classiques utilisés
pour les modèles aux moments angulaires ne sont pas capables de correctement cap-
turer les bonnes limites asymptotiques sous des conditions acceptables sur les pas
de temps et d'espace. Aussi, en plus de se comporter correctement dans les régimes
asymptotiques, les méthodes numériques doivent êtres capables de préserver les pro-
priétés fondamentales des modèles aux moments angulaires comme la préservation
des ensembles admissibles. Ce point est étudié en détail dans ce document. Un autre
objectif concerne la simulation du transport multi-espèce. Les études portant sur
le transport électronique sont souvent e�ectuées en considérant les ions immobiles
[86, 168]. En e�et, en raison de leur masse importante comparée aux électrons, le
mouvement des ions est souvent négligé car de petits intervalles de temps sont con-
sidérés. Cependant, lors des études sur de longues échelles, le mouvement ionique
doit être considéré. Ceci donnerait accès à une physique plus générale et plus riche
pour des applications en fusion par con�nement inertiel. Un travail important est
donc requis pour l'utilisation des modèles aux moments angulaires pour l'étude de
transport de particules multi-espèces.

Structure du manuscrit
Ce travail se situe entre la modélisation en physique des plasmas, les mathématiques
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appliquées et l'analyse numérique. Ce manuscrit est organisé en trois parties. La
première partie est une contribution à la modélisation en physique des plasmas à
travers les modèles aux moments angulaires. La deuxième partie de ce document
traite de la dérivation de méthodes numériques pour l'étude du transport de partic-
ules en temps long. Les schémas classiques utilisés pour les modèles aux moments
angulaires préservent l'admissibilité de la solutions numérique. Cependant, de tels
schémas ne sont, en général, pas capables de capturer la bonne solution numérique
lorsque l'on considère des régimes asymptotiques. Le but est de proposer des sché-
mas numériques qui capturent la bonne limite asymptotique sous des contraintes
raisonnables sur le pas de temps et d'espace. La troisième partie est une contri-
bution à la modélisation multi-espèce. L'objectif �nal est d'étudier les dynamiques
électronique et ionique avec un modèle précis qui est aussi numériquement peu coû-
teux pour les applications. Dans ce travail un problème plus simple est étudié
considérant des particules non-chargées.

Chapitre 1. Dans ce premier chapitre nous introduisons les concepts de bases
essentiels en modélisation pour la physique des plasmas. Ces éléments sont utilisés
dans les chapitres suivants.

Chapitre 2. Dans ce chapitre, nous commençons par rappeler le principe de
construction des modèles aux moments basés sur une fermeture par minimisation
d'entropie. Alors qu'en limite fortement collisionnelle les modèles aux moments an-
gulaires fournissent une bonne approximation d'une équation cinétique complète,
leur domaine de validité en limite non-collisionnelle est inconnu. Le travail ce
chapitre est dévoué à l'étude du domaine de validité du modèle M1 et de ces ex-
tensions, le modèle M1 double population et le modèle M2 pour des applications
cinétiques non-collisionnelle. Trois e�ets sont étudiés, l'interaction de faisceaux de
particules chargées, l'amortissement Landau et l'absorption d'une onde électromag-
nétique dans un plasma semi-in�ni très dense. Pour chaque phénomène une analyse
perturbative est conduite et une relation de dispersion est établie en utilisant les
modèles aux moments angulaires. Ces relations sont comparées avec celles obtenues
en considérant l'équation de Vlasov. Les domaines de validité de chaque modèle
sont étudiés.

Chapitre 3. Dans ce chapitre, le modèleM1 électronique est utilisé pour l'étude
du transport électronique dans un plasma collisionnel. La prise aux moments de
l'opérateur de collision électron-électron de Landau est di�cile et des approxima-
tions sont nécessaires. Premièrement, les opérateurs de collisions utilisés pour le
modèle M1 électronique sont détaillés [166, 167]. Les propriétés de ces opérateurs
sont données puis suivant [32] les coe�cients de transport plasma sont dérivés. Il
est montré que dans la limite Z élevé (degré d'ionisation élevé), le modèle M1 élec-
tronique et l'équation de Fokker-Planck-Landau coïncide proche équilibre. Il est
aussi montré que l'opérateur de collision électron-électron proposé pour le modèle
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M1 électronique permet de retrouver des coe�cients de transport plasma proches
de ceux obtenus avec l'équation Fokker-Planck-Landau.

Chapitre 4. Les modèles aux moments angulaires sont des systèmes hyper-
boliques. Dans ce chapitre, quelques concepts pour la résolution numérique de
systèmes non linéaires sont rappelés en suivant les idées présentées dans [52, 101,
102, 118, 159]. Ces méthodes s'appliquent directement aux modèles aux moments
angulaires et sont utilisées dans les prochains chapitres.

Chapitre 5. Cette partie traite de la résolution numérique du système M1-
Maxwell dans le régime quasi-neutre [63, 74]. Dans ce régime les équations perme-
ttant de calculer le champ électrique deviennent singulières. Une reformulation de
l'équation de Maxwell-Ampère est alors considérée puis un schéma numérique est
proposé. Ce schéma est consistent avec le modèle intermédiaire et le modèle limite.
Ce schéma se comporte correctement en régime quasi-neutre sans restrictions sur le
pas de temps ni d'espace. Deux cas tests numériques sont en�n présentés.

Chapitre 6. Ce chapitre est dédié à la dérivation d'un schéma préservant
l'asymptotique pour le modèle M1 électronique en régime de di�usion. Dans la
première partie de cette section, le cas sans champ électrique puis le cas homogène
avec champ électrique sont étudiés. La construction du schéma est basée sur un
solveur de Riemann approché dont les états intermédiaires sont choisis consistent
avec la forme intégrale du modèleM1. Le schéma proposé préserve l'admissibilité de
la solution numérique et capture la bonne limite asymptotique. Di�érents cas test
numériques sont présentés. La deuxième partie de ce travail concerne l'extension de
la méthode proposée au modèle général. Dans ce cas, des dérivés croisées apparais-
sent en limites de di�usion et une modi�cation du schéma est nécessaire. Di�érents
cas tests numériques sont en�n présentés dans le cas général.

Chapitre 7. Cette étude représente un premier important vers la modélisa-
tion de particules chargées multi-espèces. Avant de considérer des con�gurations
complexes traitant de l'intéraction de particules chargées, dans ce chapitre, nous
considérons seulement des particules non-chargées et présentons le modèle aux mo-
ments angulaires M1 pour l'étude de la dynamique des gaz raré�és. Dans ce travail,
l'origine du repère en vitesse est centrée sur la vitesse moyenne des particules. Pre-
mièrement, la dérivation du modèle au moment M1 dans le référentiel de vitesse
moyenne est présentée. Il est montré que le choix de ce référentiel permet d'assurer
la propriété d'invariance galiléenne du modèle. Il est aussi montré que le modèle
écrit en fonctions des variables entropiques est symétrique au sens de Friedrichs. La
dérivation de lois des conservations associées est aussi détaillée. Deuxièmement, un
schéma numérique préservant l'admissibilité de la solution numérique est proposé.
Finalement, plusieurs cas tests numériques menés en considérant di�érents régimes
collisionnels sont présentés.
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Conclusion. Nous présentons nos conclusions et plusieurs perspectives à ces
travaux.
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Chapter 1

Basic concepts for plasma physics
modelling

In this �rst chapter, we introduce some basics concepts necessary for plasma
physics modelling. These notions will be used in the next chapters.

1.1 Kinetic description of a plasma

The rigorous derivation of kinetic models to describe the transport of particles
is particularly challenging and is still an active �eld of research. Indeed, two main
problems remain opens in kinetic theory. The �rst one deals with the rigorous
derivation of the Boltzmann equation [26] starting from a set of particles evolving
according to Newton's laws. This important problem has been partially solved (only
for short times) by Lanford [124] considering the Boltzmann-Grad limit [109] for hard
spheres. Important related results have been obtained in [51, 99, 125, 126, 137, 183].
The second problem deals with the rigorous derivation of the Vlasov-Poisson system
starting from a set of charged particles interacting through a Coulombian potential.
This issue has been solved in the case of a regular potential by Braun and Hep [34]
and Dobrushin [81] and for singular potentials by Hauray and Jabin [121] but the
case of Coulombian potentials remains open.

In combination with the Vlasov equation, the Landau kinetic equation [149] is
the most important kinetic model in the theory of collisional plasma physics. This
equation is often called the Fokker-Planck-Landau equation because the Landau
equation was derived in the Fokker-Planck form [188] in 1957. The �rst formal
derivation of the Landau equation from the BBGKY hierarchy was performed by
Bogolyubov in 1946 [25]. The Landau collisional term can be seen as an approxi-
mation of the Boltzmann collision integral or the Balescu-Lenard collision integral
[8, 158]. Therefore, it is reasonable to consider the Vlasov or the Fokker-Planck-
Landau equation to describe the transport of charged particles in a plasma.

In this chapter following [178] a formal derivation of a kinetic equation is pre-
sented. This approach enables the derivation of the Klimontovich equation and the
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1.1. Kinetic description of a plasma

kinetic equation thereafter. Connections can be made between this approach and the
Liouville approach [178, 196]. We refer to [204] for a review of Mathematical topics
in collisional kinetic theory and the references therein for more rigorous derivations
of kinetic equations.

The most complete microscopic description of a gas, considering a system of
N particles in a volume V , is to describe the coordinates ~ri(t) and the momenta
~pi(t) of the N th particles over time. One can introduce a microscopic distribution
function fmicro(t, ~r, ~p) characterising the number of particles at the time t, in the
phase volume d3~rd3~p

dN = fmicro(t, ~r, ~p)d
3~rd3~p. (1.1)

When the positions and velocities of each particle are known, the microscopic dis-
tribution function is completely de�ned by an exact expression. The microscopic
distribution can be seen as a product of Dirac functions of all particles coordinates

fmicro(t, ~r, ~p) =
N∑
i=1

δ(~r − ~ri(t))δ(~p− ~pi(t)), (1.2)

with δ(~r) = δ(~x)δ(~y)δ(~z) the Dirac function in three dimensions. Here in the phase
space the distribution function is singular, it represents the coordinates of all parti-
cles in the phase space.
In order to derive a more employable model one introduces a continuous description
considering a spatial average of the microscopic distribution function. The following
continuous distribution is de�ned

f(t, ~r, ~p) = 〈fmicro(t, ~r, ~p)〉Va , (1.3)

where the operation 〈〉Va represents the spatial average on a volume Va. Obviously,
the volume Va must be su�ciently large compared to mean volume attributed to each
particle Va >> V/N . According to the statistical theory, the �uctuation amplitudes
of the average value is of order N−1/2

a , where Na is the number of particles in the
volume Va. However, the volume Va must also be small compared to the total volume
V, Va << V , in order to describe the system with su�cient accuracy. In practice,
the volume Va is de�ned by the spatial resolution of the measurement techniques
and numerical simulations. The temporal evolution equation of the distribution
function is now derived. According to the de�nition (1.2), the temporal evolution
of the distribution function is due to the motion of all the particles. Therefore, the
temporal derivative of the microscopic distribution function writes

∂tfmicro = dt

N∑
i=1

δ(~r − ~ri(t))δ(~p− ~pi(t)),
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where ∂t = ∂/∂t is the temporal partial derivative and dt = d/dt the temporal total
derivative. The previous equation rewrites

∂tfmicro = −
N∑
i=1

dt~ri.~∇δ(~r−~ri(t))δ(~p−~pi(t))−
N∑
i=1

dt~pi.∂~pδ(~p−~pi(t))δ(~r−~ri(t)), (1.4)

where ~∇ = ∂/∂~r is the spatial gradient and ∂~p = ∂/∂~p is the partial derivative in
term of the momentum. The derivative of dt~ri is by de�nition the velocity of the
particle ~vi = pi/m and the derivative of ~pi satis�es the Newton law

∂t~pi = ~Fi,

where ~Fi is the force applied on the particle i. Here we can drop the indexes of
the velocity ~vi and the force ~Fi in equation (1.4) using the property of the Dirac
function aδ(x− a) = xδ(x− a). From equation (1.4), it follows that

∂tfmicro + ~v.~∇fmicro + ~Fmicro.∂~pfmicro = 0. (1.5)

This kinetic equation is known as the Klimontovich kinetic equation [142]. This
equation is microscopic, describing a set a discrete particles and enables to derive
an equation for the mean distribution function. In order to derive a continuous de-
scription for the mean distribution function (1.3), the Klimontovich equation (1.5) is
averaged over a spatial volume Va as prescribed above. The average of the Klimon-
tovich equation (1.5) reads

∂tf + ~v.~∇f + 〈~Fmicro.∂~pfmicro〉 = 0. (1.6)

One can remark a problem arising with the average of the last term of the previous
equation because of its nonlinearity. In order to develop this term a hypothesis is
made called the weak particle correlation. It is supposed that the distance between
particles is su�ciently large compared to the characteristic interaction distance, so
that they are almost free. Their trajectories are almost regular, de�ned by mean
forces with perturbations induced by the chaotic motion of others particles, which
are of an inferior order. Here, the quantities are developed as an average quantity
and a �uctuation

fmicro = f + δfmicro, ~Fmicro = ~F + δ ~Fmicro, (1.7)

where the �uctuations are small δfmicro << f , with a zero mean value
< δfmicro >= 0. These de�nitions enable to expand the last nonlinear term of (1.6).
In a plasma, several species of particles are present. The minimum number is two:
the ions and the electrons. Considering the distribution function of the species α
and retaining only the term of �rst order one obtains the following classical kinetic
equation

∂tfα + ~v.~∇fα + ~Fα.∂~pfα = 0. (1.8)
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In a plasma, Fα is called the Lorentz force which is induced by self-consistent electric
and magnetic �elds

~Fα = qα( ~E + ~v ∧ ~B). (1.9)

This kinetic equation with Lorentz self-consistent force is called the Vlasov equa-
tion and was proposed by Anatoly Vlasov in 1945. This kinetic model describes
particles interacting by long range forces: electromagnetic and gravitational. The
Vlasov equation describes the distribution function on large scales, greater than the
Debye length and applies to low density plasmas. This equation does not take into
account the �uctuations which become important when particles are close to each
other therefore the Vlasov equation applies to non-collisional plasmas.
Considering the contribution of the correlation term δfmicro in the microscopic dis-
tribution function (1.7) it comes that

∂tfα + ~v.~∇fα + ~Fα.∂~pfα = −
〈
δ ~Fmicro α.∂~p

∑
β

δfmicro β

〉
=
∑
β

Cαβ. (1.10)

The new term in the right side of the equation is called the collision integral. The
form of this integral will be investigated in section 1.4.

1.2 Maxwell's equations and macroscopic quantities

The kinetic equation (1.10) must be completed with equations for the mean �elds,
~E =< ~Emicro > and ~B =< ~Bmicro >. The microscopic �elds satisfy the Maxwell's
equations [171]

~∇∧ ~Emicro = −∂t ~Bmicro, (1.11)

~∇. ~Emicro = ε−1
0 ρmicro, (1.12)

~∇∧ ~Bmicro = µ0
~jmicro + c−2∂t ~Emicro, (1.13)

~∇. ~Bmicro = 0. (1.14)

These �elds are generated by the charged particles in the plasma. The microscopic
charge density and the current density read

ρmicro(t, ~r) =
∑
α

qα

∫
fmicro α(t, ~r, ~p)d~p, jmicro(t, ~r) =

∑
α

qα

∫
fmicro α(t, ~r, ~p)~vd~p.

The previous microscopic Maxwell's equations can be averaged directly to obtain
the following set of equations

~∇∧ ~E = −∂t ~B, (1.15)

~∇. ~E = ε−1
0 (ρ+ ρext), (1.16)

~∇∧ ~B = µ0(~j +~jext) + c−2∂t ~Emicro, (1.17)

~∇. ~B = 0. (1.18)
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where ρext and ~jext are the external charge and current density. The charge density
and the current density are also obtained from the distribution functions of particles

ρ(t, ~r) =
∑
α

qα

∫
fα(t, ~r, ~p)d~p, ~j(t, ~r) =

∑
α

qα

∫
fα(t, ~r, ~p)~vd~p.

Electromagnetic forces are long range interactions, each particle follows a collective
electromagnetic �eld created by many others particles. This collective behaviour is
the main di�erence between plasmas and neutral gas. As for the charge and current
density, average quantities can be de�ned. For each particles species we de�ne

- the particle density

nα(t, ~r) =

∫
fα(t, ~r, ~p)d~p,

- the mean velocity

~uα(t, ~r) =
1

nα(t, ~r)

∫
fα(t, ~r, ~p)~vd~p,

- the mean energy

Eα(t, ~r) =
1

nα(t, ~r)

∫
fα(t, ~r, ~p)

mαv
2

2
d~p,

- the heat �ux

~qα(t, ~r) =

∫
fα(t, ~r, ~p)mα

(~v − ~uα)2

2
(~v − ~uα)d~p. (1.19)

1.3 Fluid Models

The kinetic description is particularly accurate. However, this description can
be di�cult to use and numerical calculations are only possible considering small
plasma volumes and short time scales. Therefore, in many applications, one prefers
to use reduced models considering that the distribution functions of particles remain
close to Maxwellian distribution functions. In this case, the plasma is described with
macroscopic quantities: the density, the mean velocity and the mean energy (or the
temperature). This hypothesis is not always valid but can apply on very collisional
plasmas. In this section, following [58, 144] the development of hydrodynamic mod-
els is introduced.
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The �rst macroscopic equation is the particles conservation equation. This equa-
tion is derived integrating in velocity the kinetic equation and using the de�nitions
of the density and the mean velocity, it comes that

∂nα
∂t

+ ~∇.(nα~uα) = 0. (1.20)

This equation is valid only considering elastic collisions. In the case of ionisation
or recombination, the right side of the equation can become non-zero. The trans-
port equation on the momentum is derived multiplying the kinetic equation by the
momentum ~p = mα~v and integrating on the momentum. This equation reads

∂nαmα~uα
∂t

+ ~∇.( ¯̄Pα)− qαnα( ~E + ~uα ∧ ~B) =
∑
β

~Rαβ. (1.21)

The term in the right side comes from the integration of the collisions and is called
the friction force

~Rαβ =

∫
~pαCαβd~pα.

In the case of a collision between particles of the same species, the conservation
of momentum implies that ~Rαα = ~0. In addition the conservation of the total
momentum implies that

∑
α,β

~Rαβ = ~0. Therefore, it follows that

~Rαβ = −~Rβα.

In general, the friction force ~Rαβ is proportional to the di�erence of mean velocities
of particles α and β and is de�ned using the collision frequency ναβ such that

~Rαβ = −ναβmαnα(~uα − ~uβ).

The tensor pressure is split in three parts. First, we consider the pressure of the
�uid �ow and the part linked with the thermal agitation

Pαij = nαmαuiuj +mα

∫
wiwjfα(t, ~r, ~w)d~w.

Then the kinetic part is split into a diagonal part and a symmetric part without
trace

Pαij = nαmαuiuj + δijpα + Παij,

where δij is the Kronecker symbol and pα the scalar pressure de�ned by

pα =
1

3
mα

∫
(~v − ~uα)2fαd~v.

The term Πα is called the stress tensor and is de�ned by

Παij = mα

∫
(wiwj −

1

3
w2δij)fα(t, ~r, ~w)d~w.
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In the case of an isotropic plasma in the centre of mass framework, the stress tensor
is zero and the pressure is a scalar quantity. A more detailed analysis shows that the
stress tensor comes from the internal friction of the �uid and leads to the viscosity
phenomenon. In the case of a plasma without magnetic �eld, the stress tensor reads

Παij = −ηα
(
∇iuαj +∇juαi −

2

3
δij ~∇.~uα

)
, (1.22)

where ηα is coe�cient of viscosity. In the case where the distribution function are
close to a Maxwellian distribution function, one has the following relation between
pressure and temperature pα = nαkBTα. Therefore, an additional equation is re-
quired to obtain the temperature.

The equation on the temperature is derived by multiplying the kinetic equation

by the particle energy
1

2
mαv

2 and integrating over the momentum. One obtains

∂t

(1

2
nαmαu

2
α +

3

2
nαkbTα

)
+ ~∇.(1

2
nαmαu

2
α~uα +

5

2
nαkbTα~uα + ~qα) = ~jα. ~E +

∑
β

Wαβ.

(1.23)
The �rst term in the right hand side describes the energy deposition due to the
Ohmic heating. The second term is due to the exchange of energy due to collisions
between particles

Wαβ =

∫
mα

v2
α

2
Cαβd~pα. (1.24)

The conservation of the energy in elastic collisions implies the reciprocity condition
Wαβ = −Wβα and Wαα = 0. The second term in the left side of the equation
describes the convective energy transport (terms proportional to ~uα) and di�usive
energy transport due to the heat �ux (1.19). Similarly to the stress tensor, the
heat �ux exists only in an inhomogeneous plasma. In the case of collisional plasma
without magnetic �eld and for small deviations from equilibrium one can show the
heat �ux is de�ned by the Fourier law [194]

~qα = −κα~∇Tα, (1.25)

where κα is the thermal conductivity. One remarks that in each equation a superior
order moment appears: in (1.20) the density is linked with the velocity. Equation
(1.21) links the velocity and the pressure tensor. Finally, equation (1.23) links the
energy to the heat �ux. One must cut somewhere this in�nite chain expressing the
highest order moment as a function of inferior order ones. This procedure is called
the closure of the �uid equations. In this case ~qα and ¯̄Πα must be determined. The
formulae (1.25) and (1.22) are examples of closure for ~qα and ¯̄Πα. However, this
choice is not unique and other closure can be considered.
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1.4 Collisions between particles: the Landau colli-

sional operator

1.4.1 Form of the collisional operators

As explained in the introduction of this chapter, a fundamental equation to
describe a collisional plasma is the Fokker-Planck-Landau equation [149]. It is de-
rived from the Boltzmann collisional integral which can be simpli�ed in the case of
Coulombian interactions [3]. Using the Rutherford cross section formulae for the
charged particle collisions and considering that small angle collisions are dominant
[73], one can neglect the large angle collisions and perform an expansion of terms
in the Boltzmann collisional integral. Very often, in the classical kinetic theory, a
Fokker-Planck-Landau equation coupled with the Maxwell's equation are used to
describe the transport of particles in a collisional plasma [58, 75, 76, 77, 161]. It is
admitted that the Fokker-Planck-Landau equation is one of the most accomplished
model to describe collisional plasmas. In this section, the Landau collisional opera-
tor is brie�y introduced with some of its properties. Finally, we recall the property
of the system to conserve the total energy.

The Landau collisional operator was �rst derived by Lev Landau in 1936 and
this form is the most used in the collisional plasma physics. This collision integral
for charged particles reads

Cαβ(fα, fβ) =
q2
αq

2
β ln Λ

8πε2
0

∂

∂pαi

∫
(|~u|2δij − uiuj)

|~u|3
(
∂fα
∂pαj

fβ − fα
∂fβ
∂pβj

)d~vβ, (1.26)

where ~u = ~vα−~vβ is the relative velocity. The conservative form (1.26) is called the
Landau form. Another equivalent form of this operator can be derived called the
Rosenbluth form [188]. It is derived by developing (1.26) as a non-linear combina-
tion of a di�usive operator and a friction operator.

Even if the Landau collision operator is simpler than the Boltzmann integral,
it is still challenging to use it. Therefore, one often uses less accurate but simpler
formulations. In the case of electron-ion collisions one can take advantage of the
large di�erence of mass to simplify the Landau collision operator and perform the
integral over the ion velocity to obtain

Cei(fe) =
Z2nie

4 ln Λ

8πε2
0m

2
e

∂

∂vj

v2δjs − vsvs
v3

∂fe
∂vs

,

where ni is the ion density.

1.4.2 Conservation laws and entropy dissipation property

Some fundamental properties of the Landau collision integral (1.26) [39, 72, 123]
are presented in this section. The Landau collision integral (1.26), leads to additional
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terms into the hydrodynamic equation (1.20),(1.21) and (1.23). Firstly, integrating
the kinetic equation in velocity one recovers the continuity equation (1.20). The
integral of the collisional operator is zero∫

Cαβ(f, f)d~vα = 0,

because (1.26) is a divergence in the velocity space. Multiplying the kinetic equa-
tion by the momentum mα~vα leads to equation (1.21) where the last term is the
friction force ~R, which is the loss rate of momentum of the particles α colliding the

particles β. Multiplying the kinetic equation by
1

2
mα~v

2
α and integrating in velocity

leads to energy equation (1.23). The termWαβ given by (1.24) represents the energy
exchange due to collisions. Finally, the kinetic equation (1.10) satis�es the Boltz-
mann H-theorem: the entropy of a closed system decreases over time. The entropy
is de�ned by

H(fα) =
∑
α

∫
(fα ln fα − fα)d~vα.

We multiply the kinetic equation (1.10) by ln fα, and integrate in velocity. The �rst
term rewrites ∫

ln fα∂tfαd~vα = ∂t

∫
(fα ln fα − fα)d~vα.

The right collisional term is integrated by part, and one obtains

−
∑
αβ

q2
αq

2
β ln Λ

8πε2
0

∫ ∫
∂ ln fα
∂~pα

¯̄Kαβ
~Gαβfαfβd~vαd~vβ,

where the vector ~G is given by

~Gαβ =
∂ ln fα
∂~pα

− ∂ ln fβ
∂~pβ

,

and the tensor
¯̄K = (u2Id− ~u⊗ ~u)/u3, (1.27)

is the integral kernel of the Landau collision operator (1.26). One remarks, this
operator is symmetric therefore this property enables to switch the indices α and β
in this formula and to rewrite it under the following form∑

αβ

q2
αq

2
β ln Λ

8πε2
0

∫ ∫
∂ ln fβ
∂~pβ

¯̄Kαβ
~Gαβfαfβd~vαd~vβ,

where we used the fact that ~G is anti-symmetric. These two forms are equivalent
and summing the two expressions one obtains

∂tH(fα) + div~x(F (fα)) = −1

2

∑
αβ

q2
αq

2
β ln Λ

8πε2
0

∫ ∫
~Gαβ

¯̄Kαβ
~Gαβfαfβd~vαd~vβ,
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where the term ~G ¯̄K ~G = (u2G2 − (~u. ~G)2)/u3 is positive and the entropy �ux is
de�ned by

F (fα) =

∫
(fα ln fα − fα)~vαd~vα.

Therefore, the integral is negative and the total entropy decreases in time.

1.4.3 Conservation of the total energy

An important feature of the Maxwell-Fokker-Planck-Landau system is the con-
servation of the total energy [123]. More precisely, under conditions at the bound-
aries of the domain the sum of the electromagnetic energy and the plasma energy is
conserved over time. The demonstration is given if only electrons are considered.

The total energy Etot is de�ned by

Etot = ε0
( ~E)2 + (c ~B)2

2
+

∫
m

2
~v2fd~v.

Proposition 1.1. The Maxwell-Fokker-Planck system conserves the total energy
under the following conditions on the frontier ∂Ω of ~Ω

ε0c
2( ~E ∧ ~B).~n+

∫
m

2
|~v|2(~v.~n)fd~v = 0.

This property is derived multiplying the Maxwell equations (1.17) and (1.15) by
~E and ~B. The sum of the two obtained equations leads to

1

2

∂

∂t

( ~E2

c2
+ ~B2

)
+ ~∇x( ~E ∧ ~B) = − 1

c2ε0

~j. ~E. (1.28)

Now, multiplying the electron kinetic equation by m
v2

2
and integrating in velocity

one obtains

∂

∂t

(∫
m
~v2

2
f
)
d~v + ~∇~x

(∫
m
~v2

2
f~vd~v

)
+ q

∫
~∇~v(( ~E + ~v ∧ ~B)f)

~v2

2
d~v = 0. (1.29)

The third term of the right side of this equation rewrites

~∇~v.(( ~E + ~v ∧ ~B)f)
~v2

2
= ~∇~v.(( ~E + ~v ∧ ~B)f

~v2

2
)− f( ~E + ~v ∧ ~B).~∇~v

(~v2

2

)
.

Therefore, equation (1.29) simpli�es into

∂

∂t

(∫
m
~v2

2
f
)
d~v + ~∇~x

(∫
m
~v2

2
f~vd~v

)
−~j. ~E = 0. (1.30)
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Finally, the total energy equation is obtained summing equations (1.30) and (1.28)

1

2

∂

∂t

(
ε0( ~E2 + (c ~B)2) +

∫
m~v2fd~v

)
+ ~∇~x.

(
ε0c

2.( ~E ∧ ~B) +

∫
m~v2f~vd~v

)
= 0. (1.31)

The �rst and second terms in the temporal derivative correspond to the electro-
magnetic energy and the plasma energy. The �rst and second term in the spatial
derivative are the electromagnetic energy �ux (the term ε0c

2( ~E ∧ ~B) is called the
Poynting vector) and the plasma energy �ux. Then integrating over the space do-
main, equation (1.31) gives

1

2

∂

∂t

∫
Ω

(
ε0( ~E2+(c ~B)2)+

∫
m~v2fd~v

)
d~Ω+

∫
∂Ω

(
ε0c

2.( ~E∧ ~B).~n+

∫
m~v2(~v.~n)fd~v

)
dσ = 0,

which gives proposition (1.1).
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Chapter 2

Angular moments models

The study introduced in this chapter has been published. The reference is:
S. Guisset, R. Nuter, J. Moreau, S. Brull, E. d'Humières, B. Dubroca, V. Tikhonchuk.
Limits of the M1 and M2 angular moments models for kinetic plasma physics studies.
J. Phys. A: Math. Theor. 48, 335501 (2015).

2.1 Introduction

The aim of this chapter is to introduce the principle of the angular moment clo-
sure and to de�ne the validity domain of the M1, the two populations M1 and the
M2 angular moments models for kinetic plasma physics applications. The purpose
is to investigate if these three moments models are able to capture and describe cor-
rectly the basic phenomena occurring in a collisionless plasma. It has been shown
in [83] that the M1 model is very accurate in the case of isotropic con�gurations
or with con�gurations where one direction is dominant. However the model loses
precision in the case of an anisotropic con�guration and in the limit where the mean
free path is larger than the characteristic length of the problem. The accuracy can
be improved by considering the two populations M1 model or the M2 model [83].
However, their respective domains of validity are not de�ned either.
We consider here three classical kinetic e�ects, which are the interaction of charged
particle beams, the Landau damping of a Langmuir plasma wave and the absorp-
tion of a electromagnetic wave incident normally on the boundary of an overdense
plasma. Historically, the two beams instability was one of the �rst studied plasma
physics problems [47, 143]. A beam of charged particles propagates in a plasma
generating an oscillating electric �eld exponentially increasing in time, and reduc-
ing the beam kinetic energy. The collisionless damping of plasma waves was �rst
discovered theoretically by Landau [148] then demonstrated in laboratory [58, 169].
The latter physical phenomenon corresponds to the collisionless absorption of an
electromagnetic wave incident on an overcritical plasma. A part of the wave energy
is absorbed and transferred to the plasma while the other part is re�ected [190].
For these three phenomena, a perturbative analysis is performed and the dispersion
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relation is established using the moments models. These relations are compared
in this paper with those obtained directly from the Vlasov equation, providing the
accuracy degree of the moments models.

This chapter is organised as follows: �rstly in Section 2.2 we introduce the
principle of the angular moment closure with the derivation of the M1 model. Then
in Section 2.3 the two populations M1 and the M2 moments models are brie�y
presented. Section 2.4 is devoted to the electron beams interaction. A dispersion
relation computed with the M1 model is compared with the one obtained with the
Vlasov equation. We highlight that the M1 model exactly captures the interaction
phenomenon. The Landau damping is presented in Section 2.5. In this case the M1

model captures the damping qualitatively, but is not able to describe it correctly. On
the contrary, the two M1 populations model and the M2 model display results with
a good accuracy. Finally, the collisionless skin e�ect is studied in Section 2.6. We
show that the M1 model is not able to describe the absorption phenomenon, while
the two populationsM1 model and theM2 model capture it qualitatively. In order to
perform an explicit calculation of the absorption rate, the two limiting cases of a cold
and hot electron plasma are studied corresponding to the low and high frequency
skin e�ect [162]. We show that in the cold plasma limit the two populations M1

and theM2 moments models give inaccurate absorption coe�cients. In the opposite
limit the two populations M1 model fails in describing correctly the phenomenon
while the M2 model provides an accurate result. Some conclusions are given in
Section 2.7.

2.2 Principle of the angular moment closure

The purpose of angular moment models is to reduce the computational cost of the
kinetic descriptions as introduced in Chapter 1. The electronicM1 model [83, 166] is
derived performing an angular moment extraction from the Fokker-Planck-Landau
equation. For the sake of clarity, we omit in the following, the ~x and t dependence of
the distribution function. If S2 is the unit sphere ~Ω = ~v/|~v| represents the direction
of propagation of the particle. By setting ζ = |~v|, the distribution function f writes
in the spherical coordinates in the phase space f(~Ω, ζ). The �rst three angular
moments of the distribution function are de�ned by

f0(ζ) = ζ2

∫
S2

f(~Ω, ζ)d~Ω, ~f1(ζ) = ζ2

∫
S2

f(~Ω, ζ)~Ωd~Ω, ¯̄f2(ζ) = ζ2

∫
S2

f(~Ω, ζ)~Ω⊗ ~Ωd~Ω.

(2.1)
The complete angular integration of the Fokker-Planck-Landau equation, as per-
formed in [83, 166, 200] is detailed in Appendix A. In this Section we directly give
the result of this angular moment extraction and detail the closure procedure. The
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angular integration of the Fokker-Planck-Landau equation reads
∂tf0 +∇~x.(ζ ~f1) +

q

m
∂ζ(~f1. ~E) = Q0(f0),

∂t ~f1 +∇~x.(ζ ¯̄f2) +
q

m
∂ζ(

¯̄f2
~E)− q

mζ
(f0

~E − ¯̄f2
~E)− q

m
(~f1 ∧ ~B) = ~Q1(~f1),

(2.2)

where the collisional operators Q0 and Q1 are given by

Q0(f0) =
2αee

3
∂ζ

(
ζ2A(ζ)∂ζ(

f0

ζ2
)− ζB(ζ)f0

)
, (2.3)

~Q1(~f1) = −2αei
ζ3

~f1. (2.4)

The coe�cients A(ζ) and B(ζ) write

A(ζ) =

∫ ∞
0

min(
1

ζ3
,

1

ω3
)ω2f0(ω)dω, (2.5)

B(ζ) =

∫ ∞
0

min(
1

ζ3
,

1

ω3
)ω3∂ω(

f0(ω)

ω2
)dω. (2.6)

The fundamental point of the moments models is the de�nition of a closure, which
writes the highest moment as a function of the lower ones. This closure relation
corresponds to an approximation of the underlying distribution function, which the
moments system is constructed from. In theM1 model (2.2), we need to de�ne ¯̄f2 as
a function of f0 and ~f1. The closure relation originates from an entropy minimisation
principle [160, 175]. The underlying distribution function f is obtained as a solution
of the following minimisation problem

min
f≥0
{ H(f) / ∀ζ ∈ R+, ζ2

∫
S2

f(~Ω, ζ)d~Ω = f0(ζ), ζ2

∫
S2

f(~Ω, ζ)~Ωd~Ω = ~f1(ζ) },

(2.7)
where H(f) is the angular entropy de�ned by

H(f) = ζ2

∫
S2

(f ln f − f)d~Ω. (2.8)

The solution of (2.7) writes [85, 167]

f(~Ω, ζ) = exp( a0(ζ) + ~a1(ζ) . ~Ω ), (2.9)

where a0(ζ) is a scalar and ~a1(ζ) a real valued vector. An important parameter is
the anisotropy parameter ~α de�ned by

~α =
~f1

f0

, (2.10)
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2.2. Principle of the angular moment closure

which is by construction less or equal than one in norm |~α| ≤ 1. If we compute the
angular moments of the distribution function given by (2.9) one obtains

f0 = 4π exp(a0)
sinh(|a1|)
|a1|

, f1 = 4π exp(a0)
sinh(|a1|)(1− |a1| coth(|a1|))

|a1|3
a1.

These relations can be combined to give

α =
1− |a1| coth(|a1|)

|a1|2
a1,

then by taking the modulus of the previous expression

|α| = |a1| coth(|a1| − 1)

|a1|
. (2.11)

The relation (2.11) cannot be inverted explicitly by hand. However, this relation
determines a unique solution which can be computed numerically. Then the moment
¯̄f2 can be computed assuming we know ~a1

¯̄f2 = f0

(1− χ
2

¯̄Id +
3χ− 1

2

~f1

|~f1|
⊗

~f1

|~f1|

)
, (2.12)

where

χ =
|a1|2 − 2|a1| coth(|~a1|) + 2

|~a1|2
.

The χ factor can be computed as a function of the anisotropy parameter ~α

χ(~α) ≈ 1 + ~α2 + ~α4

3
. (2.13)

The de�nition (2.12) enables to close the problem (2.2). We note here that the
choice

χ(~α) ≈ 1

3
. (2.14)

corresponds to the P1 closure largely used in the context of radiative transfer [97].
Using the de�nitions of the angular moments (2.1), one remarks that f0 is non-
negative as the integral of a non-negative distribution function. Similarly, taking
the absolute value of f1 with the de�nition (2.1), one shows that |f1| ≤ f0. Therefore
we consider the following set of admissible states [83] de�ned by

A =
(

(f0, f1) ∈ R2, f0 ≥ 0, |f1| ≤ f0

)
. (2.15)
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2. Angular moments models

2.3 Two populations M1 and M2 angular moments

models

The M1 model is well adapted (2.2)-(2.12)-(2.13) to the case of a near-isotropic
con�guration, where |f1| << f0 (|~α| << 1). In this case it is equivalent to the P1

model (2.2)-(2.12)-(2.14). It provides also a good approximation in the case of one
dominant direction (|~α| ≈ 1) [83]. However, for the other values of α, the M1 model
may be not su�ciently accurate [83]. In order to improve the accuracy of the model
in intermediate cases one can consider the two populations M1 model [83, 202] and
the M2 model [4, 120]. This section provides a description of the two populations
M1 model and the M2 model.

2.3.1 Two populations M1 model

In [83, 202], it was suggested to decompose the distribution function into two
parts. One part for particles with positive velocities and another one for particles
with negative velocities. The total distribution function writes

f = f− + f+,

where f− = f |vx<0 describes the particle with negative velocities and f+ = f |vx>0

the particles with positive velocities. We can now de�ne the zeroth order angular
moments f−0 and f+

0 .

vy

vz

vx

~v

θ

ϕ

Figure 2.1: The coordinates system used for the calculation of angular moments of
the electron distribution function.

According to (2.1), the expressions for angular moments write

f+
0 (ζ) = ζ2

∫ 2π

0

∫ π/2

0

f(ζ, ~Ω) sin(θ) dθdϕ,
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2.3. Two populations M1 and M2 angular moments models

and

f−0 (ζ) = ζ2

∫ 2π

0

∫ π

π/2

f(ζ, ~Ω) sin(θ) dθdϕ.

Similarly the �rst angular moments are de�ned as

~f1

+
(ζ) = ζ2

∫ 2π

0

∫ π/2

0

f(ζ, ~Ω) ~Ω sin(θ) dθdϕ, (2.16)

~f1

−
(ζ) = ζ2

∫ 2π

0

∫ π

π/2

f(ζ, ~Ω) ~Ω sin(θ) dθdϕ, (2.17)

where ~Ω = (cos θ, sin θ cosφ, sin θ sinφ), see Fig.2.1. Equations (2.2) are solved
for each population distribution. The sum of the two population distributions is
considered to compute the electron current ~j

~j = q

∫ +∞

0

(~f1

−
+ ~f1

+
)ζdζ. (2.18)

This source term is considered to solve the Maxwell's equations (1.15-1.18).

2.3.2 M2 model

The M2 model, similarly to the M1 model (2.2)-(2.12)-(2.13) is also based on an
entropy minimisation principle. The di�erence lies in the fact that an additional
angular moment is considered making this model more accurate than theM1 model.
Let us introduce the tensor of order three ¯̄̄

f3

¯̄̄
f3(ζ) = ζ2

∫
S2

f(~Ω, ζ) ~Ω⊗ ~Ω⊗ ~Ω d~Ω.

The entropy minimisation principle for the M2 model [4, 120] implies that the un-
derlying distribution function writes

f(~Ω, ζ) = exp( a0(ζ) + ~a1(ζ) . ~Ω + ¯̄a2(ζ) : ~Ω⊗ ~Ω ), (2.19)

where a0(ζ) is a scalar, ~a1(ζ) a real valued vector and ¯̄a2(ζ) a real valued tensor
of order two. The notation ⊗ represents the tensor product and : is the two times
contracted product. The equations of the M2 model write

∂tf0 +∇~x.(ζ ~f1) + q
m
∂ζ(~f1. ~E) = 0,

∂t ~f1 +∇~x.(ζ ¯̄f2) + q
m
∂ζ(

¯̄f2
~E)− q

mζ
(f0

~E − ¯̄f2
~E) = 0,

∂t
¯̄f2 +∇~x.(ζ ¯̄̄

f3) + q
m
∂ζ(

¯̄̄
f3
~E)− q

mζ
(~f1 ⊗ ~E + 2

¯̄̄
f3
~E + ~E ⊗ ~f1) = 0.

(2.20)
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2. Angular moments models

For clarity, the contribution of the magnetic �eld has been removed. The self-
consistent magnetic �eld leads to superior order terms in the perturbative analysis
performed in the next sections and can be neglected because the unperturbed dis-
tribution function is isotropic.
The aim of the next sections is to de�ne the validity domain of theM1, the two popu-
lationsM1 and theM2 moments models. The purpose is to investigate if these three
moments models are able to capture and describe correctly the basic phenomena
occurring in a collisionless plasma.

2.4 Particle beam interaction

In this section we study the interaction of electron beams using the M1 model.
We demonstrate that the dispersion relation obtained from the M1 model agrees
exactly with the one obtained from the Vlasov equation.

2.4.1 Dispersion relation for theM1 model in the one-dimensional

electrostatic case

In the electrostatic case, only one component of the electric �eld is considered
(Ex). The system of equations (2.2) and the Poisson equation read as follows

∂tf0 + ∂x(ζf1x)− ∂ζ(Exf1x) = 0,

∂tf1x + ∂x(ζf2xx)− ∂ζ(Exf2xx) + (f0−f2xx)Ex
ζ

= 0,

∂xEx = 1−
∫∞

0
f0(ζ)dζ,

(2.21)

where the time is normalised to the inverse of the electron plasma frequency ωpe =√
e2n0/mε0, the velocity is normalised to the thermal velocity vth =

√
T/m, the

length to the Debye length λD = vth/ωpe, the electric �eld is normalised to Ep =
mvthωpe/e and ε0 is the vacuum dielectric permittivity. Only one component of the
closure relation (2.12) is non zero. According to equation (2.10)

f2xx = χ(αx)f0.

Let us consider a perturbation of the electric �eld δEx and the corresponding per-
turbation of the zeroth and �rst moment δf0 and δf1x

E(t, x) = 0 + δEx(t, x),
f0(t, x, ζ) = F0(ζ) + δf0(t, x, ζ),
f1x(t, x, ζ) = F1x(ζ) + δf1x(t, x, ζ),

where F0, F1x correspond to the homogeneous stationary solution of system (2.21).
For the sake of clarity, we omit in the following the arguments t, x and ζ in the
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2.4. Particle beam interaction

equations. The linearised system (2.21) reads
∂tδf0 + ∂x(ζδf1x)− ∂ζ(F1xδEx) = 0,

∂tδf1x + ∂x ((χ(F)− χ′(F)F)ζ δf0 + χ′(F)ζ δf1x)− ∂ζ(F2xxδEx) + (F0−F2xx)δEx
ζ

= 0,

∂xδEx = −
∫∞

0
δf0(ζ)dζ,

(2.22)
where F2xx = χ(F)F0 and F = F1x/F0. We de�ne the Fourier transform f̂ of a
function f as

f̂(ω, k) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
f(t, x)ei(ωt−kx)dxdt.

The Fourier transform of the �rst and second equations of (2.22) results in

−iωδf̂0 + ikζδf̂1x = ∂ζ(F1xδÊx), (2.23)

−iωδf̂1x + ikζ(χ(F)− χ′(F)F)δf̂0 + ikζχ′(F)δf̂1x = (2.24)

∂ζ(χ(F)F0δÊx)−
(1− χ(F))F0δÊ

ζ
.

For the sake of simplicity, in the following the quantities δf̂ are replaced by δf .
Inserting (2.23) into (2.24) gives

δf0 = − 1

iD
[(ω − kζχ′(F))∂ζF1 + kζ∂ζ(χ(F)F0)− k(1− χ(F))F0] δE, (2.25)

with
D = ω2 − ωkζχ′(F)− k2ζ2[χ(F)− χ′(F)F ].

The Fourier transform of the third equation of (2.21) gives ikδE = −
∫∞

0
δf0(ζ)dζ.

Then the integration of (2.25) leads to

1 +

∫ ∞
0

1

Dk
[(ω − kζχ′(F))∂ζF1 + kζ∂ζ(χ(F)F0)− k(1− χ(F))F0] dζ = 0. (2.26)

This equation is the general formulation of the dispersion relation for the M1 model
in the one dimensional electrostatic case. It is applied to the electron beams in the
next subsection and to the Landau damping in the next section.

2.4.2 Electron beams

Let us consider the electron distribution function as a sum of n beams of particles
aligned along the x-axis. The distribution function writes

f(x, v) =
1

n

n∑
l=1

δ(v − vl),
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2. Angular moments models

where vl = εl|vl| = εlζl, with εl = ±1 depending on the direction of propagation of
electrons. Now, the corresponding zeroth and �rst moments F0, F1 are given by,

F0(x, ζ) = ζ2 1

n

n∑
l=1

δ(ζ − ζl), F1(x, ζ) = ζ2 1

n

n∑
l=1

εlδ(ζ − ζl).

After a simple computation using (2.13) and the de�nition of F , we obtain that
F = εl, χ(F) = 1 and χ′(F) = 2εl for ζ = ζl. Using the previous values in (2.26), we
obtain that D = (ω − kεlζl)2 = (ω − kvl)2, for ζ = ζl, and the value of the integral
in (2.26) becomes − 1

n

∑n
l=1 v

2
l /(ω − kvl)

2. We can rewrite the dispersion relation
(2.26) as,

1− 1

n

n∑
l=1

v2
l

(ω − kvl)2
= 0,

which agrees exactly with the dispersion relation obtained from the Vlasov equation
[58].

In this part we have shown that the M1 model (2.2)-(2.12)-(2.13) correctly de-
scribes the particle beams interaction. In the case of di�erent energy beams, the
dispersion relation obtained using the M1 model coincides exactly with the one ob-
tained from the Vlasov equation. It is then evident that more accurate models such
as the two populations M1 model or the M2 model give the same dispersion equa-
tion.
We study in the next part, the Landau damping. It is shown that even if the M1

model captures qualitatively the phenomenon, it is not accurate enough to describe
it quantitatively.

2.5 Dispersion of an electron plasma wave

Landau damping is a well-known process in plasma physics, which also presents
a large interest in some other �elds such as galaxy dynamics [165]. The aim of
this part is to study if the M1 model (2.2)-(2.12)-(2.13) is able to describe electron
plasma waves including the Landau damping e�ect. We suppose that the equilibrium
solution to the Vlasov equation is given by a Maxwellian function

f(ζ) = (2π)−3/2 exp(−ζ2/2). (2.27)

The dispersion relation is established from the Vlasov equation in [58]

ω =
√

1 + 3k2 − i

k3

√
π

8
exp(− 1

2k2
), (2.28)

for small k << 1. The negative imaginary part corresponds to the Landau wave
damping. In the following, we perform the dispersion analysis of the Landau wave
damping using the three moments models.
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2.5. Dispersion of an electron plasma wave

2.5.1 M1 model applied to an electron plasma wave

In this case, the two �rst moments are given by,

F0(ζ) = ζ2

(
2

π

) 1
2

exp(−ζ
2

2
), F1x(ζ) = 0, (2.29)

with F = 0, χ(F) = 1/3 and χ′(F) = 0. Using the previous values in (2.26) we
obtain that D = ω2 − k2ζ2/3 and the dispersion relation (2.26) writes as follows,

1 +

∫ ∞
0

ζ∂ζF0(ζ)− 2F0(ζ)

3ω2 − k2ζ2
dζ = 1−

(
2

π

) 1
2
∫ ∞

0

ζ4 exp(− ζ2

2
)

3ω2 − k2ζ2
dζ = 0.

Using the Landau theory [58] we obtain an approximate dispersion relation assuming
a large phase velocity ω/k >> 1 and a weak damping Im(ω) << Re(ω) ≈ 1. The
pole ω/k lies near the real ζ axis, and by using a contour prescribed by Landau with
a small semicircle around the pole, the residue formula makes the previous equation
equal to

1 = −
√

2√
πk2

P ∫ ∞
0

ζ4 exp(− ζ2

2
)(

ζ −
√

3ω
k

)(
ζ +

√
3ω
k

)dζ + iπ
ζ4 exp(− ζ2

2
)

ζ +
√

3ω
k

∣∣∣∣∣
ζ=
√
3ω
k

 , (2.30)

where P stands for the Cauchy principal value. As in the case of plasma waves, the
main contribution to the integral comes from velocities ζ << ω/k, we perform a
Taylor expansion for the rational fraction in

1

ζ2 −
(√

3ω
k

)2 = −
(

k√
3ω

)2
1

1− ζ2(√
3ω
k

)2

≈ −
(

k√
3ω

)2

1 +
ζ2(√
3ω
k

)2

 .

Equation (2.30) then reads

1 =
1

ω2
+

5

3

k2

ω4
− i
√

2 π

k2

ζ4 exp(− ζ2

2
)

ζ +
√

3ω
k

∣∣∣∣∣
ζ=
√
3ω
k

. (2.31)

We consider the imaginary part of ω as a small perturbation and write

ω = ω0 + iδω, (2.32)

with δω << ω0. Inserting (2.32) into (2.31), neglecting the terms of order (δω)2

leads to

ω2
0 + 2iδωω0 = 1 +

5k2

3ω2
0

(1− 2iδω

ω0

)− if(ω0 + iδω, k), (2.33)

50 Sébastien GUISSET



2. Angular moments models

where

f(ω0 + iδω, k) =
3
√

6π(ω0 + iδω)5

k5
exp(
−3ω2

0

k2
) exp(−6iδωω0

k2
).

Considering the following linearisation

f(ω0 + iδω, k) = f(ω0, k) + iδωf ′(ω0, k)

into (2.33) and using the fact δω << ω0 gives

ω2
0 = 1 + 5k2/3,

and

δω = −3
√

6π

4k5
exp(−5

2
) exp(− 3

2k2
) ≈ −0.267

k5
exp(− 3

2k2
). (2.34)

The dissipation found by the M1 model (2.34) is signi�cantly di�erent from the
Landau dissipation term (2.28) computed with the Vlasov equation. Indeed the
pre-exponential factor varies in 0.267/k5 instead of 0.1398/k3 and the coe�cient in
the exponential is 1/2k2 instead of 3/2k2. Figure 2 displays the Landau dissipation
coe�cient as a function of k for theM1 model (dotted curve) and the Vlasov equation
(solid curve). The M1 model clearly underestimates the Landau dissipation. This
�gure highlights the impossibility for theM1 model to accurately model the Landau
damping.

2.5.2 Two populations M1 model: plasma wave dispersion

We propose here to study the possibility to model the Landau damping with the
two populations M1 model (2.2)-(2.18). The stationary solution for the two parts of
the distribution function reads

f±(v) =
1

(2π)
3
2

exp(−v
2

2
)H(± cos(θ)),

whereH is the Heaviside function. The corresponding reduced distribution functions
are given by,

F±0 (ζ) = ζ2

(
1

2π

) 1
2

exp(−ζ
2

2
), F±1x(ζ) = ±1

2
F±0 (ζ). (2.35)

The anisotropic coe�cients are calculated using (2.13), χ(F−) = χ(F+) = 7/16 and
χ′(F−) = −χ′(F+) = −1/2. The dispersion relation (2.26) writes as,

0 = 1 +

∫ ∞
0

1

β+k

[
(ω − kζχ′(F+))∂ζF

+
1 + kζ∂ζ(χ(F+)F+

0 )− k(1− χ(F+))F+
0

]
dζ

+

∫ ∞
0

1

β−k

[
(ω − kζχ′(F−))∂ζF

−
1 + kζ∂ζ(χ(F−)F−0 )− k(1− χ(F−))F−0

]
dζ,

= 1 +

∫ ∞
0

1

k

[
0.661ω2ζ2 + 0.079 ζ6k2 + 0.063 k2ζ4 − 0.887 ζ4ω2

(ω2 − ω2
1k

2ζ2)(ω2 − ω2
2k

2ζ2)

]
F+

0 dζ,

Study of particle transport in plasmas 51



2.5. Dispersion of an electron plasma wave

where β± ≈ ω2 − 0.199k2ζ2 ∓ 0.488 ωkζ ≈ (ω ± ω1kζ)(ω ∓ ω2kζ) with ω1 = 0.265
and ω2 = 0.753.
As the phase velocity ω/k >> ζ, we perform a Taylor expansion of the previous
expression to obtain the dispersion relation as for the M1 model

ω =
√

1 + 2.916k2 − i
(

0.19

k3
+

0.085

k5

)
exp(−0.88

k2
),

which is close to the dispersion relation (2.28) obtained from the Vlasov equation.
The real part of the dispersion relation is almost exact. Considering the imaginary
part, the pre-exponential factor varies in (0.19/k3 + 0.085/k5) instead of 0.1398/k3

and the coe�cient in the exponential is 0.88/2k2 instead of 3/2k2. The represen-
tation of the dissipation coe�cient in Fig.2.2 shows that the two populations M1

model gives a more accurate result than the previous model for k < 0.6. The two
populations M1 model is then a good candidate to model the Landau damping.

2.5.3 M2 model

In this part the dispersion relation is established using the M2 model (2.20) and
compared to the one obtained with the Vlasov equation. It is shown that the M2

model gives more accurate results than the two populations M1 model.

In the one dimensional electrostatic case, after normalisation theM2 model (2.20)
writes 

∂f0 + ζ∂x(f1x)− Ex∂ζ(f1x) = 0,
∂tf1x + ζ∂x(f2xx)− Ex∂ζ(f2xx) + Ex

ζ
(f0 − f2xx) = 0,

∂tf2xx + ζ∂x(f3xxx)− Ex∂ζ(f3xxx) + Ex
ζ

(2f1x + 2f3xxx) = 0.
(2.36)

The derivation is similar to the one performed for the M1 model with an additional
equation. The term f2xx needs to be developed with the perturbative analysis

f2xx = F2xx + δf2xx. (2.37)

In this case F2xx can be calculated by using the equilibrium state (2.27)

F2xx = F0/3,

with F0 de�ned in equation (2.29). The term f3xxx must be expressed as a function
of the other terms. As opposed to theM1 model closure (2.12), theM2 model closure
cannot be given explicitly. Nevertheless, using [4, 112, 160] and the equilibrium state
(2.27), the �rst terms of the development of f3 are determined. The linearisation of
f3xxx results in

f3xxx = 0 +
3

5
δf1x.
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2. Angular moments models

Then the linearisation of (2.36) gives
∂tδf0 + ζ∂x(δf1x),
∂tδf1x + ζ∂x(δf2xx)− 1

3
∂ζ(δExF0) + 2

3ζ
δExF0 = 0,

∂tδf2xx + 3
5
ζ∂x(δf1x) = 0.

(2.38)

Following a development similar to the one performed for the M1 model, the disper-
sion relation for the M2 model writes

1 =
1

3

√
2

π

∫ +∞

0

ζ4

ω2 − k2ζ2λ
exp(−ζ

2

2
) dζ,

where the coe�cient λ = 3/5.
Using a contour prescribed by Landau with a small semicircle around the pole, the
residue formula applied to the previous equation leads to,

1 =
1

3

√
2

π

[
P

∫ ∞
0

ζ4 exp(− ζ2

2
)

ω2 − k2ζ2λ
dζ − iπ

2ωkλ
ζ4 exp(−ζ

2

2
)

∣∣∣∣
ω

k
√
λ

]
. (2.39)

As the phase velocity ω/k >> ζ, the rational fraction is expanded with a Taylor
series

1

ω2 − k2ζ2λ
=

1

ω2

[
1 +

k2ζ2λ

ω2

]
. (2.40)

Then the dispersion relation for the M2 model reads.

ω =
√

1 + 3k2 − i0.123

k5
exp(−1.667

2k2
).

The real part of the dispersion relation is the same as the one obtained with the
Vlasov equation. The imaginary part is di�erent, the pre-exponential factor varies in
0.123/k5 instead of 0.1398/k3 and the coe�cient in the exponential is 1.667/2k2 in-
stead of 3/2k2 but its representation in Fig. 2.2 shows a good accuracy of the model.

In conclusion, the dispersion and dissipation of the plasma wave found by using
the M1 model are shown to be inaccurate. One notices in Fig. 2.2 a di�erence of
behaviour between the M1 model and the Vlasov equation. On the contrary, the
two populations M1 model gives much better results with the dissipation term close
to the Vlasov dissipation. The M2 model gives the exact real part of the dispersion
relation and it reproduces more accurately than the two populations M1 model the
dissipation.
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Figure 2.2: Representation of the dissipation coe�cient as a function of k for the
Vlasov equation and for the M1, two populations M1 and M2 models.

2.6 Collisionless skin e�ect

In contrast to the electrostatic plasma waves, the electromagnetic waves are not
damped in a homogeneous collisionless plasma. However, the dissipation appears if
the plasma is inhomogeneous. We consider here the case of a plane electromagnetic
wave, which is normally incident on a semi-in�nite, overcritical plasma. Here the
wave absorption is due to the electrons re�ecting from the plasma boundary in a
skin layer. The aim of this part is to study how the moments models are able to
model such a more complicated situation with an electromagnetic �eld. The con-
ductivity and absorption coe�cient obtained with the M1, two populations M1 and
M2 models are compared to the conductivity and absorption coe�cient obtained
with the Vlasov equation. We consider a low amplitude electromagnetic wave of a
frequency ω assuming the linear approach.

Consider a semi-in�nite plasma with an electronic density n0 higher than the
critical density nc = mε0ω

2/e2. The electromagnetic wave is re�ected at the vacuum
plasma interface. We propose here to compute the fraction of wave energy absorbed
in the plasma [190]. There are two components of the electromagnetic �elds Ey and
Bz. We suppose the Debye length λDe much smaller than the penetration depth and
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then the electrons are re�ected specularly at x = 0. In order to apply the Fourier
transform we extend the plasma to the whole space by assuming that an electron
coming from x > 0, which is re�ected in x = 0, comes from the �ctive region x < 0.
The study is then extended to the entire space. The electrostatic �eld Ey is extended
as an even function

Ey(x) = Ey(−x).

The Faraday equation gives
∂Bz

∂t
= −∂Ey

∂x
,

the magnetic �eld is then to be extended as an odd function

Bz(x) = −Bz(−x).

In this model the electric �eld is continuous at the surface x = 0 but not its �rst
derivative nor the magnetic �eld. As introduced in [190], the ratio of the electric and
magnetic �elds at the plasma boundary is characterised by the surface impedance
E(0)/B(0) = Z

Z =
iω

cπ

∫ +∞

−∞

dk
ω2

c2
− k2 + iωµ0σyy

, (2.41)

where σ is the plasma conductivity. Knowing the impedance one can calculate the
absorption coe�cient

A =
4Re(Z)

|1 + Z|2
, (2.42)

which is related to the real part of the impedance. We suppose that the equilibrium
solution is given by the Maxwellian function (2.27).

2.6.1 M1 model for the plasma skin e�ect

In this part, the conductivity σ and the absorption coe�cient A are computed
with the M1 model (2.2)-(2.12)-(2.13). We show in this section that the M1 model
is not able to capture the absorption phenomenon.

There is no electromagnetic �eld and no electron current in the unperturbed
plasma. We consider solutions with the perturbation theory. The angular moments
are expanded

f0(t, x, ζ) = F0(ζ) + δf0(t, x, ζ), (2.43)

f1x(t, x, ζ) = F1x(ζ) + δf1x(t, x, ζ), (2.44)

f1y(t, x, ζ) = F1y(ζ) + δf1y(t, x, ζ). (2.45)
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where F0 and F1x are given in (2.29) and F1y = 0. The following system corresponds
to the M1 linearised equations

∂δf0

∂t
+ ζ

∂δf1x

∂x
= 0,

∂δf1x

∂t
+
ζ

3

∂δf0

∂x
= 0,

∂δf1y

∂t
+
qδEy
3m

∂F0

∂ζ
− 2qδEyF0

3mζ
= 0.

The Fourier transform of the last equation of (2.6.1) results in an explicit solution
for f1y

δf1y =
iq

mω

[2F0

3ζ
− 1

3

∂F0

∂ζ

]
δEy. (2.46)

Considering (2.18) and (2.46), the electric current is calculated

jy =
iq2

mω

∫
R+

[2F0

3
− ζ

3

∂F0

∂ζ

]
dζ δEy. (2.47)

Introducing the conductivity tensor σ such that jy = σyyδEy, the integration by
part in equation (2.47) provides

σyy =
ie2n0

mω
. (2.48)

Inserting this expression into equation (2.41) one obtains the impedance without
any real part. Correspondingly there is no absorption,

A = 0. (2.49)

Therefore, the M1 model (2.2)-(2.12)-(2.13) is not able to correctly model the ab-
sorption phenomenon. After linearisation of the M1 model, we note there is no
contribution of the space derivative in the third equation of (2.6.1). Then the con-
ductivity (2.48) does not depend on the wave number k and there is no absorption.
This is an important result showing a limitation in the M1 model for collisionless
plasma physics applications. More accurate models need to be used for studies of
the electromagnetic wave absorption. The aim of the next section is to make a
calculation using the two populations M1 model.

2.6.2 Two populations M1 model

Here, the conductivity and the absorption coe�cient are calculated using the
two populations M1 model (2.2)-(2.18). We show that this model is able to model
the absorption phenomenon but does not capture it quantitatively. In this case
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the �rst order moments in the perturbative development are given by (2.35) and
F+

1y = F−1y = 0.

σyy = i
q2

2m

∫
R+

[ (1+χ)F0

ζ
− (1− χ)∂F0

∂ζ
− F0k

ω

ω + ζ(3χ− 1)k
+

(1+χ)F0

ζ
− (1− χ)∂F0

∂ζ
+ F0k

ω

ω − ζ(3χ− 1)k

]
ζdζ.

(2.50)
The calculation of the previous equation leads to

σyy =
iω2

peε0√
2πv3

th

∫
R

−1
2

+ 3
2
χ+ kζ

2ω
+ ζ2(1−χ)

2v2th

ω − ζ(3χ− 1)k
ζ2 exp(− ζ2

2v2
th

)dζ. (2.51)

The conductivity (2.51) cannot be evaluated analytically. We consider the two lim-
iting cases ω/k << vth and ω/k >> vth.

5.2.1 Hot electron case

Following the method introduced in the previous section for the calculation of
the integral in expression (2.51) in the limit ω/k << vth one obtains the following
expression for the plasma conductivity

σyy =
iω2

peε0√
2πv3

thk
3

[
− 4v2

thk
2

(3χ− 1)4
− iπω2[(3χ− 1)2 + 1]

2(3χ− 1)4

]
. (2.52)

It has to be compared to the one obtained with the Vlasov equation [190] σV lasovyy

σV lasovyy =
iω2

peε0√
2πvthk

[ω√2π

kvth
− iπ

]
. (2.53)

In contrast to the M1 model case, the conductivity in this case depends on the wave
number k. The conductivity obtained with the two populationsM1 model is di�erent
from the one obtained with the Vlasov equation. Indeed, ignoring the constant
values, the real part of the conductivity varies in ω2

pe/vthk instead of ω2
peω/v

2
thk

2

for the Vlasov equation and the imaginary part varies in ω2
peω

2/v3
thk

3 instead of
ω2
pe/vthk for the Vlasov equation. Using the fact that ω << kvth the calculation of

the impedance Z leads to

Z = −2iω

cπ

∫ +∞

0

dk

k2 − i K̃
k3

, (2.54)

with

K̃ =
πω3ω2

pe[(3χ− 1)2 + 1]

2
√

2πv3
thc

2(3χ− 1)4
.

The impedance computation results in

Z =
2ωe−i

2π
5

5 sin(π
5
)c

5
√
K̃
. (2.55)
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Inserting equation (2.55) into the de�nition of the absorption coe�cient equation
(2.42) leads to

A =

K1

( ω

ωpe

) 2
5
(vth
c

) 3
5

[
1 +

K1

4

( ω

ωpe

) 2
5
(vth
c

) 3
5
]2

+
[K1

4

( ω

ωpe

) 2
5
(vth
c

) 3
5
]2
,

with

K1 =
8 cos(2π

5
)

5 sin(π
5
)

(2
√

2π(3χ− 1)4

π(3χ− 1)2 + 1

) 1
5 ≈ 0.434.

This absorption coe�cient has to be compared to the one obtained with the Vlasov
equation [190]

AV lasov =

K2

( ω

ωpe

) 2
3
(vth
c

) 1
3

[
1 +

K2

4

( ω

ωpe

) 2
3
(vth
c

) 1
3
]2

+
[K2

4

( ω

ωpe

) 2
3
(vth
c

) 1
3
]2
, (2.56)

with

K2 =
16
√

3

9

( 2

π

) 1
6

cos(
π

3
) ≈ 1.428.

The coe�cient ω/ωpe varies as the power 2/5 instead of 2/3 for the Vlasov equation
and vth/c varies as the power 3/5 instead of 1/3 for the Vlasov equation.

5.2.2 Cold electron case

We now explore the limit ω >> kvth, where the conductivity equation (2.51)
gives

σyy =
iω2

peε0√
2πv3

thk
3

[(3χ+ 1)
√

2πk3v3
th

2ω
− iπω4(1− χ)

(3χ− 1)4v2
thk

2
exp

(
− ω2

2v2
thk

2(3χ− 1)2

)]
.

(2.57)
This expression has to be compared with the one obtained with the Vlasov equation

σV lasovyy =
iω2

peε0

vthk
√

2π

[√2πkvth
ω

− iπ exp
(
− ω2

2v2
thk

2

)]
. (2.58)

Here, the real part of the conductivity varies as ω2
pe/ω similarly to the Vlasov equa-

tion but the imaginary part varies as ω2
peω

4/v5
thk

5 instead of ω2
pe/vthk for the Vlasov

equation. We also observe for the two populationsM1 model, a presence of the term
(3χ − 1)2 in the exponential factor instead of 1. Inserting equation (2.57) into the
impedance equation (2.41) results in

Z =
6ω6ω2

peβ

c3v5
th

√
2π

(√2vth(3χ− 1)

ω

)8

− iω√
ω2
peα
′ − ω2

.
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Using the de�nition (2.42), the absorption coe�cient is

AM1 =
K3

(vth
c

)3(ωpe
ω

)2

[
1 +

K3

4

(vth
c

)3(ωpe
ω

)2]2

+
[ω2

pe

ω2
0

α′ − 1
]− 1

2

, (2.59)

where K3 and α′ are given by

K3 =
384(3χ− 1)4(1− χ)√

2π
≈ 0.822,

α′ =
(3χ− 1)

2
≈ 0.156.

This expression has to be compared with the one obtained with the Vlasov equation
[190]

AV lasov =
K4

(vth
c

)3(ωpe
ω

)2

[
1 +

K4

4

(vth
c

)3(ωpe
ω

)2]2

+
[ω2

pe

ω2
0

− 1
]− 1

2

, (2.60)

with

K4 =
16√
2π
≈ 6.383.

The two expressions of the absorption coe�cient are similar but the major di�er-
ence originates from the parameter α′ in the denominator of (2.59). The coe�cient
ω/ωpe varies as the power 2 and vth/c varies as the power 3 exactly like in the Vlasov
absorption coe�cient. The parameter α′ in the denominator of the two populations
M1 model coe�cient absorption makes a signi�cant di�erence with the Vlasov equa-
tion absorption coe�cient. While a pole is reached for ω/ωpe = 1 for the Vlasov
equation, the pole is reached when ωα′/ωpe = 1 for the two populations M1 model.
Even if in both limits the absorption phenomenon is captured qualitatively, the re-
sults are not satisfactory. This shows the limits of using the two populations M1

model for studying laser plasma absorption. The aim of the next part is to see if
these results can be improved using the M2 model (2.20).

2.6.3 M2 model

In this part the conductivity and the absorption coe�cient are calculated with
the M2 model (2.20). In this case the �rst order moments in the perturbative
development F1x, F1y, F2xx, F2xy and F2yy are calculated using (2.1)

F1x = F1y = 0,
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F2xx =
F0

3
, F2xy = 0, F2yy =

F0

3
,

where F0 is given by equation (2.29). On the contrary to the M1 model closure
(2.12), the M2 model closure cannot be given explicitly [4]. Nevertheless, only the
component f3xyx of the tensor f3 is required in this study. Using [4, 112, 160], one
can show that the linearisation of f3xyx around the equilibrium state (2.27) gives

f3xyx = 0 +
δf1y

5
. (2.61)

The linearisation of the M2 model (2.20) leads to

∂tδf1y + ∂x(ζδf2xy) +
q

3m
∂ζ(F0δEy)−

2qδEyF0

3mζ
= 0.

Performing a Fourier transform of the previous equation one �nds

δf1y = −iqδEy
3m

∂F0

∂ζ
− 2

F0

ζ

ω − ζ2k2

5ω

.

Following the method introduced in the two populations M1 model section, one
obtains the conductivity

σyy =
iω2

peε0ω

3v5
th

√
2

π

P ∫ ∞
0

ζ4 exp(− ζ2

2v2th
)

ω2 − k2ζ2λ1

dζ − iπω3

2k5 3
√
λ1

exp (
−ω2

2k2λ1v2
th

)

 , (2.62)

where λ1 = 1/5. The integral in this expression cannot be calculated analytically.
In order to perform the complete calculation, two limiting cases are considered:
ω/k << vth and ω/k >> vth.

5.3.1 Hot electron case

Following the method introduced for the two populations M1 model, the con-
ductivity is

σyy =
iω2

peε0ω

3v5
th

√
π

[
− v3

th

k2
− iπω3

λ
√

2λk5

]
. (2.63)

This expression has to be compared with the one obtained with the Vlasov equation
σV lasovyy (2.53). Ignoring the constant values, the real part of the conductivity varies
in ω2

peω/v
2
thk

2 exactly like for the Vlasov equation and the imaginary part varies in
ω2
peω

4/v5
thk

5 instead of ω2
pe/vthk for the Vlasov equation. The expression for the M2

model absorption coe�cient reads

A =

K5

( ω

ωpe

) 2
7
(vth
c

) 5
7

[
1 +

K5

4

( ω

ωpe

) 2
7
(vth
c

) 5
7
]2

+
[K5

4

( ω

ωpe

) 2
7
(vth
c

) 5
7
]2
,

60 Sébastien GUISSET



2. Angular moments models

with

K5 =
49.651λ2

√
λ cos(3π

7
)

π
√

2π
≈ 0.025.

The coe�cient ω/ωpe varies as the power 2/7 instead of 2/3 for the Vlasov equation
and vth/c varies as the power 5/7 instead of 1/3 for the Vlasov equation.

5.3.2 Cold electron case

In the limit ω >> kvth, the conductivity (2.62) reads

σyy =
iω2

peε0

v5
th

[v5
th

ω
− iω4

√
π

k53λ2
√

2λ
exp(− ω2

2k2λv2
th

)
]
. (2.64)

This expression has to be compared with the one obtained with the Vlasov equation
(2.58). In this case the real part of the conductivity varies in ω2

pe/ω like for the Vlasov
equation. This good behavior was already obtained with the two populations M1

model. The imaginary part varies as ω2
peω

4/v5
thk

5 like for the two populations M1

model, instead of ω2
pe/vthk for the Vlasov equation but the exponential factor is

obtained using the M2 model contrarily to the two populations M1 model. The
expression for the M2 model absorption coe�cient reads

A =
K6

(vth
c

)3(ωpe
ω

)2

[
1 +

K6

4

(vth
c

)3(ωpe
ω

)2]2

+
[ω2

pe

ω2
− 1
]− 1

2

,

with

K6 =
128

5
√

10π
≈ 4.567.

This expression is compared with the one obtained from the Vlasov equation (2.60).
The coe�cient ω/ωpe varies as the power 2 and vth/c varies as the power 3 exactly
like the Vlasov equation absorption coe�cient. As opposed to the two populations
M1 model, the pole is reached at ω/ωpe = 1 like for the Vlasov equation. In this
limit, one observes the advantage in using the M2 model compared to the two pop-
ulations M1 model.

The calculation of the impedance Z, has been performed using the conductivity
expressions established in the hot and cold electron limits ω/k << vth and ω/k >>
vth. However, equation (2.41), implies the integration over all k from minus in�nity
to in�nity. We can consider that the calculation of the impedance, using equation
(2.41), holds if the main contribution of the integral comes from a set of wave
numbers k where the limiting expressions for the conductivity are valid. In order to
check this assumption, the parameters ω/ωpe and vth/c are �xed and the expression
in the integral (2.41) is analysed as a function of k.
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We present here an example with ω/ωpe = 0.1 and vth/c = 0.8 to illustrate how
one can validate our approach for these parameters. The same steps can be used
for any choice of parameters in order to verify if the calculated absorption is valid.
The modulus integrand of the impedance for the Vlasov equation, the M2 and M1

two populations models are displayed in Fig.2.3, using the expressions derived in
the limit ω/k << vth. In this case the dimensionless wave number kc/ωpe must
be larger than (ω/ωpe)/(vth/c) = 0.125. Indeed, according to Fig.2.3 the main
contribution to the integral comes from a set of wave numbers where the conductivity
expressions are valid. Moreover, the position and the shape of integrand in the case
of M2 model agrees well with the Vlasov result. A second example is displayed in

Figure 2.3: Representation of the modulus integrand of the impedance (2.41) as a
function of k in the limit ω/k << vth in the case ω/ωpe = 0.1 and vth/c = 0.8. The
modulus integrand has been multiplied by a factor 0.1 for the M2 model and by
0.0025 for the M1 two populations model.

Fig.2.4, with ω/ωpe = 0.3 and vth/c = 0.1 using the expressions established in the
limit ω/k >> vth. In this case, the dimensionless wave number kc/ωpe must be
smaller than (ω/ωpe)/(vth/c) = 3. Indeed, one can verify in Fig.2.4 that the main
contribution to the integral comes from a set of wave numbers where the conductivity
expressions are valid.

In conclusion, it has been shown that the M1 model (2.2)-(2.12)-(2.13) is not
able to model the skin e�ect of an electromagnetic wave in an overdense plasma.
In the limit ω/k << vth, the two populations M1 (2.2)-(2.18) and the M2 (2.20)
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Figure 2.4: Representation of the modulus integrand of the impedance coe�cient
as a function of wave number in the limit ω/k >> vth in the case ω/ωpe = 0.3 and
vth/c = 0.1.

moments models both capture the absorption phenomenon qualitatively, but do not
describe it correctly. In the opposite limit ω/k >> vth, the absorption phenomenon
is not captured correctly by the two populations M1 model. The M2 model, on the
contrary, correctly captures the phenomenon and the absorption expression obtained
is very close to the one followed from the Vlasov equation. This study shows the
limits of these three models for studies of laser plasma absorption. Higher moments
models must therefore be used to correctly describe this phenomenon. In the hot
electron limit, theM3 model could be tested but the calculation is beyond the scope
of this study.

2.7 Conclusion

Particle beams interaction, Landau damping and collisionless skin e�ect have
been studied using the M1, the two populations M1 and M2 moments models. By
analytically deriving the dispersion relations, we have demonstrated that the particle
beams interaction is correctly captured by the moments models. Landau damping
is also captured by the three models, but the M1 model is inaccurate while the two
populations M1 and M2 moments models describe it accurately. The electromag-
netic wave absorption coe�cients in the case of collisionless skin e�ect have been
calculated with the three models. We have shown that the M1 model is not able
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to model the absorption phenomenon. Two limit cases have been considered. In
the case ω/k << vth, the two populations M1 and the M2 moments models both
capture the absorption phenomena results but they are inaccurate. In the second
case, ω/k >> vth, the two populationsM1 model does not describe correctly the ab-
sorption e�ect while the M2 model is su�ciently accurate. Higher moments models
such as the M3 moments or full kinetic models can be used to correctly describe the
absorption phenomenon in both limits. This work demonstrates through the Lan-
dau damping and the laser-plasma absorption that angular moments models have
to be used carefully. These models do not always behave as a full kinetic model and
can su�er from a severe lack of accuracy depending on the phenomenon studied.
This study can be extended to other plasma e�ects and also to take into account
collisional processes. In this direction, the next chapter is dedicated to the study of
collisional operators for the electronic M1 model.
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Chapter 3

Classical transport theory for the
collisional electronic M1 model

The study introduced in this chapter has been published. The reference is:
S. Guisset, S. Brull, E. d'Humières, B. Dubroca, V. Tikhonchuk. Classical transport
theory for the collisional electronic M1 model. Physica A: Statistical Mechanics and
its Applications, Volume 446, Pages 182-194 (2016).

3.1 Introduction

It was proposed to use laser pulses in order to compress a deuterium-tritium tar-
get and ignite nuclear fusion reactions. In this process the laser energy is deposited
near the critical surface and than it is transported to denser parts of the plasma
by electrons. This process plays a key role in the understanding of plasma phe-
nomena such as, parametric [91, 173] and hydrodynamic [82, 191, 203] instabilities,
laser-plasma absorption [117, 190], wave damping [58, 148], energy redistribution
and hot spot formation [33, 170]. High energy, long pulse lasers produce a colli-
sional ionised hot plasma, where the electron-ion mean free path is small compared
to the plasma characteristic spatial size and the distribution function is close to the
isotropic Maxwellian function. The physics of laser plasma interaction is described
within the hydrodynamic plasma model. However, the moment extraction of the
electron kinetic equation leads to an unclosed hydrodynamic set of equations. The
closure of the system requires to express the �uxes in terms of the hydrodynamic
variables and electron plasma transport coe�cients. Spitzer and Härm �rst derived
the electron plasma transport coe�cients solving numerically the kinetic Fokker-
Planck-Landau equation using the expansion of the electron mean free path over
the temperature scale length. Their results have been reproduced in other works
[9, 32, 192] using the early works of Chapman [55, 56] and Enskog [90] for neu-
tral gases. However, the Spitzer-Härm theory is valid in the local regime where
the electron �ux is proportional to the temperature gradient. Indeed the electron
transport plasma coe�cients were derived in the case where the electron distribu-
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tion function remains close to the isotropic Maxwellian function. However, in the
context of inertial con�nement fusion, the plasma particles may have the mean free
path comparable with the temperature scale length so that the classical transport
description is not adapted [179]. Moreover kinetic e�ects like the non local transport
[33, 170], wave damping or the development of instabilities [82] can be important
over time scales shorter than the collisional time so that the �uid description is
insu�cient. Therefore, a kinetic description is more appropriate for the study of
inertial con�nement fusion plasmas. However such a kinetic description is computa-
tionally expensive for describing real physical applications. Kinetic codes are limited
to the time and length much shorter than those studied with �uid simulations. It is
therefore an essential issue to describe kinetic e�ects by using reduced kinetic codes
operating on �uid time scales.

It has been seen in Chapter 1, that angular moments models can be seen as a
compromise between kinetic and �uid models. The collisional electronic M1 model
is derived by integrating with respect to the velocity direction the Fokker-Planck-
Landau equation. However, since the electron-electron collision operator is nonlin-
ear, the moments extraction is complex. A possibility could be to approximate the
electron-electron collision operator assuming that the main contribution of the dis-
tribution function comes from its isotropic part [16]. However, as mentioned in [167],
the collisional electronic M1 model obtained by angular integration does not ensure
the preservation of the admissibility states, that is, the angular moments derive from
a positive underlying distribution function. Therefore, a new electron-electron colli-
sion operator was proposed in [167]. In this model, the angular integration leads to
an electron-electron collision operator for the electronic M1 model which preserves
the admissible states. In this work, we start to recall the main results established
in [166, 167] and complete them with an important result characterising the equi-
librium states of the collision operators. Such fundamental properties make the
model interesting for practical applications. In addition, to complete the validation
of the considered collisional electronic M1 model, we derive the electron transport
coe�cients. It is shown that in the high ion charge (Z >> 1) limit the electronic
M1 model and the Fokker-Planck-Landau equation coincide in the close-equilibrium
case. The electron transport coe�cients derived from the electron-electron collision
operator used for the electronicM1 model are compared with the ones obtained using
the electron-electron collision operator for the Fokker-Planck-Landau equation.

This chapter is organised as follows: �rstly the collisional operators for the elec-
tronicM1 model are introduced. Then, their properties are presented and completed
by the characterisation of the equilibrium state. In Section 3, the electron transport
coe�cients are derived using the collisional electronic M1 model and compared with
the ones obtained from the Fokker-Planck-Landau equation. The strategy proposed,
based on an expansion on the Laguerre polynomials [32, 56], is particularly e�cient
since the sti�ness in 1/ζ3 in the electron-ion collision operator is removed. It is
shown that accurate electron plasma transport coe�cients are obtained. Finally,
Section 4 presents our conclusions.
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3. Classical transport theory for the collisional electronic M1 model

3.2 Collisional operators for the electronicM1 model

This section provides a detailed description of the collisional operators used for
the electronic M1 model [83, 166].

3.2.1 Collisional electronic M1 model

The derivation of the collisional operators, from the Fokker-Planck-Landau equa-
tion (1.10)-(1.26), for the electronic M1 model is detailed in Annexe 1. However,
the moment extraction of the electron-electron Landau collision operator (1.26) is
complex because of its non-linearity [58] and some approximations are required. It
has been pointed out in [166, 167] that the electron-electron collisional operator de-
rived in Annexe 1, does not preserve the admissible states. Consequently, in order
to overcome this major drawback the following collisional electronic M1 model has
been proposed [166, 167]
∂tf0(ζ) +∇~x.(ζ ~f1(ζ)) +

q

m
∂ζ(~f1(ζ). ~E) = Q0(f0),

∂t ~f1(ζ) +∇~x.(ζ ¯̄f2(ζ)) +
q

m
∂ζ(

¯̄f2(ζ) ~E)− q

mζ
(f0(ζ) ~E − ¯̄f2(ζ) ~E) = ~Q1(~f1) + ~Q0(~f1),

(3.1)
where the collisional operators Q0 and Q1 are given by

Q0(f0) =
2αee

3
∂ζ

(
ζ2A(ζ)∂ζ(

f0

ζ2
)− ζB(ζ)f0

)
, (3.2)

~Q0(~f1) =
2αee

3
∂ζ

(
ζ2A(ζ)∂ζ(

~f1

ζ2
)− ζB(ζ)~f1

)
, (3.3)

~Q1(~f1) = −2αei
ζ3

~f1. (3.4)

The coe�cients A(ζ) and B(ζ) write

A(ζ) =

∫ ∞
0

min(
1

ζ3
,

1

ω3
)ω2f0(ω)dω, (3.5)

B(ζ) =

∫ ∞
0

min(
1

ζ3
,

1

ω3
)ω3∂ω(

f0(ω)

ω2
)dω. (3.6)

Remark 3.1. One remarks that contrarily to theM1 collisional model derived in An-
nexe 1, the contribution of the electron-electron collisional operator appears in both
equations of (3.1). This modi�cation enables to obtain the admissibility requirement.

Next we set,

F0(ζ) =
f0(ζ)

ζ2
, F1(ζ) =

f1(ζ)

ζ2
. (3.7)
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As remarked in [166], inserting expressions (3.5) and (3.6) into (3.2) and (3.4) gives
the following equivalent expressions for Q0(f0) and ~Q0(~f1)

Q0(f0) = ∂ζ

(
ζ

∫ ∞
0

J(ζ, ζ ′)
[F0(ζ ′)

ζ
∂ζF0(ζ)− F0(ζ)

ζ ′
∂ζ′F0(ζ ′)

]
ζ ′2dζ ′

)
,

~Q0(~f1) = ∂ζ

(
ζ

∫ ∞
0

J(ζ, ζ ′)
[F0(ζ ′)

ζ
∂ζ ~F1(ζ)−

~F1(ζ)

ζ ′
∂ζ′F0(ζ ′)

]
ζ ′2dζ ′

)
,

(3.8)

with

J(ζ, ζ ′) =
2αee

3
min(

1

ζ3
,

1

ζ ′3
)ζ ′2ζ2.

In this work, both equivalent forms (3.5)-(3.6) and (3.8) are used. In [167], instead
of using (1.26) the following electron-electron collision operator was proposed

Qee(f) =
1

ζ2
∂ζ

(
ζ

∫ ∞
0

J(ζ, ζ ′)
[F0(ζ ′)

ζ
∂ζf(ζ)− f(ζ)

ζ ′
∂ζ′F0(ζ ′)

]
ζ ′2dζ ′

)
.

This operator satis�es mass and energy conservation properties and an entropy
dissipation property. Also it preserves the realisability domain [167]. The angular
integration of this operator leads to the de�nitions (3.8).

3.2.2 Properties of the collisional operators

In this part, we brie�y recall important results established in [166, 167], then
we characterise the equilibrium state of the collisional operators (3.2)-(3.4) which
is given by an isotropic Maxwellian, similarly to the Landau collision operator. It
is pointed out that this property is an important new result for the model. Firstly,
it was demonstrated in [166, 167] that the realisability domain A is conserved by
the collisional operators (3.2)-(3.4). Secondly, the quantity E = α0f0 + ~α1. ~f1 is an
entropy for the system in the case without electric �eld. More precisely, from system
(3.1), in the case without electric �eld we can derive the following inequality

∂tE +∇~x. ~F ≤ 0,

where ~F is the entropy �ux given by ~F = α0
~f1 + ¯̄f2~α1.

Thirdly, the collisional operators (3.2)-(3.4) satisfy mass and energy conservation
properties. Here, we complete these results characterising the equilibrium state of
the collisional operators (3.2)-(3.4) which corresponds to an isotropic Maxwellian
function.

Theorem 3.2. The solution (f0, ~f1) of the following system{
Q0(f0) = 0,

~Q0(~f1) + ~Q1(~f1) = ~0,
(3.9)

68 Sébastien GUISSET



3. Classical transport theory for the collisional electronic M1 model

is given by f0 = ζ2K1 exp(−K2ζ
2) and ~f1 = ~0 where K1 and K2 are two positive

real constants.

Proof. We �rst start to prove the following intermediate results∫ +∞

0

α0Q0(f0)dζ +

∫ +∞

0

~α1. ~Q0(~f1)dζ ≤ 0, (3.10)

and ∫ +∞

0

~α1. ~Q1(~f1)dζ ≤ 0. (3.11)

The de�nition of ~Q1(~f1) and the fact that ~α1. ~f1 ≥ 0, (see [166]), directly lead
to (3.11). Next, to prove (3.10) we use a Green formula in the expression of∫ +∞

0
α0Q0(f0)dζ to obtain∫ +∞

0

∂ζ

[
ζ

∫ +∞

0

J(ζ, ζ ′)

(
f 0(ζ ′)

ζ ′2
1

ζ
∂ζ(

f 0(ζ)

ζ2
)− f 0(ζ)

ζ2

1

ζ ′
∂ζ′(

f 0(ζ ′)

ζ ′2
)

)
(ζ ′)2 dζ ′

]
α0dζ

= −
∫ +∞

0

∫ +∞

0

J(ζ, ζ ′)

(
1

ζ
F 0(ζ ′)∂ζF

0(ζ)− 1

ζ ′
F 0(ζ)∂ζ′F

0(ζ ′)

)
∂ζα0

ζ (ζ ′)2 dζdζ ′.

(3.12)

Next we compute
1

ζ
F 0(ζ ′)∂ζF

0(ζ)− 1

ζ ′
F 0(ζ)∂ζ′F

0(ζ ′). From (3.7) and (2.1), we get

the relation

∂ζF
0(ζ) =

∫
S2

∂ζα0(ζ) exp(α0(ζ) + ~α1(ζ).~Ωd~Ω (3.13)

+

∫
S2

~Ω.∂ζ~α1(ζ) exp(α0(ζ) + ~α1(ζ).~Ω)d~Ω.

The expressions of F 0 and ∂ζF 0 give

1

ζ
F 0(ζ ′)∂ζF

0(ζ)− 1

ζ ′
F 0(ζ)∂ζ′F

0(ζ ′) =

∫
S2

∫
S2

exp(α0(ζ) + ~α1(ζ).~Ω)

exp(α0(ζ ′) + ~α1(ζ ′).~Ω′)

(
∂ζα0(ζ)

ζ
+
~Ω

ζ
.∂ζ~α1(ζ)− ∂ζ′α0(ζ ′)

ζ ′
−
~Ω′

ζ ′
.∂ζ′~α1(ζ ′)

)
d~Ωd~Ω′.

Next by setting

K(ζ, ζ ′, ~Ω, ~Ω′) = J(ζ, ζ ′) ζ2ζ ′2 exp(α0(ζ) + ~α1(ζ).~Ω) exp(α0(ζ ′) + ~α1(ζ ′).~Ω′), (3.14)

δ(ζ) =
∂ζα0(ζ)

ζ
, ~β(ζ) =

∂ζ~α1(ζ)

ζ
. (3.15)
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and by using equality (3.14) in (3.12) we get

−
∫ +∞

0

ζ2

∫ +∞

0

ζ ′2J(ζ, ζ ′)(
1

ζ
F 0(ζ ′)∂ζF

0(ζ)− 1

ζ ′
F 0(ζ)∂ζ′F

0(ζ ′))
∂ζα0(ζ)

ζ
dζdζ ′

= −
∫ +∞

0

∫ +∞

0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′) (δ(ζ)− δ(ζ ′))δ(ζ)dζdζ ′d~Ωd~Ω′

+

∫ +∞

0

∫ +∞

0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
~Ω.~β(ζ)− ~Ω′.~β(ζ ′)

)
δ(ζ)dζdζ ′d~Ωd~Ω′.

The change of variables (ζ, ζ ′) 7→ (ζ ′, ζ) leads to

−
∫ +∞

0

ζ2

∫ +∞

0

ζ ′2J(ζ, ζ ′)(
1

ζ
F 0(ζ ′)∂ζF

0(ζ)− 1

ζ ′
F 0(ζ)∂ζ′F

0(ζ ′))
∂ζα0(ζ)

ζ
dζdζ ′

=− 1

2

∫ +∞

0

∫ +∞

0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′) (δ(ζ)− δ(ζ ′))2
dζdζ ′d~Ωd~Ω′

+
1

2

∫ +∞

0

∫ +∞

0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
~Ω.~β(ζ)− ~Ω′.~β(ζ ′)

)
(δ(ζ)− δ(ζ ′)) dζdζ ′d~Ωd~Ω′.

(3.16)

Next, for the remaining term∫ +∞

0

~Q0(~f1).~α1(ζ)dζ = −
∫ +∞

0

ζ2

∫ +∞

0

J(ζ, ζ ′)(
1

ζ
F 0(ζ ′)∂ζ ~F

1(ζ)− 1

ζ ′
~F 1(ζ)∂ζ′F

0(ζ ′))

.
∂ζ(~α1)

ζ
(ζ ′)2 dζdζ ′ ,

we proceed as previously. The expression of ~F 1 given in (3.7) leads to

∂ζ ~F
1(ζ) =

∫
S2

~Ω∂ζ exp(α0(ζ) + ~α1(ζ).~Ω)d~Ω (3.17)

+

∫
S2

~Ω2∂ζ~α1(ζ) exp(α0(ζ) + ~α1(ζ).~Ω)d~Ω.

Therefore by using expressions (3.13) and (3.17), we get

−
∫ +∞

0

∫ ∞
0

J(ζ, ζ ′) ζ2ζ ′2
(
F 0(ζ ′)

1

ζ
∂ζ ~F

1(ζ)− ~F 1(ζ)
1

ζ ′
∂ζ′F

0(ζ ′)

)
.
∂ζ(~α1)

ζ
dζdζ ′

=

∫ +∞

0

∫ ∞
0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′) (δ(ζ)− δ(ζ ′)) ~Ω.~β(ζ) dζdζ ′d~Ωd~Ω′

+

∫ +∞

0

∫ ∞
0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
~β(ζ ′).~Ω′ − ~β(ζ).~Ω

)
~Ω.~β(ζ) dζdζ ′d~Ωd~Ω′.
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Then the change of variables (ζ, ζ ′) 7→ (ζ ′, ζ) gives

−
∫ +∞

0

∫ ∞
0

J(ζ, ζ ′) ζ2ζ ′2
(
F 0(ζ ′)

1

ζ
∂ζ ~F

1(ζ)− ~F 1(ζ)
1

ζ ′
∂ζ′F

0(ζ ′)

)
.
∂ζ(~α1)

ζ
dζdζ ′

=
1

2

∫ +∞

0

∫ ∞
0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′) (δ(ζ)− δ(ζ ′))
(
~Ω.~β(ζ)− ~Ω′.~β(ζ ′)

)
dζdζ ′d~Ωd~Ω′

−1

2

∫ +∞

0

∫ ∞
0

∫
S2

∫
S2

K(ζ, ζ ′, ~Ω, ~Ω′)
(
~β(ζ ′).~Ω′ − ~β(ζ).~Ω

)2

dζdζ ′d~Ωd~Ω′. (3.18)

Finally, we add the right-hand sides of (3.16) and (3.18) and by using the inequality

(δ(ζ)− δ(ζ ′))(~β(ζ).~Ω− ~β(ζ ′).~Ω′) ≤ 1

2
((δ(ζ)− δ(ζ ′))2 + (~β(ζ).~Ω− ~β(ζ ′).~Ω′)2), (3.19)

we obtain (3.10).
Next, multiplying the �rst equation of (3.9) by α0 and projecting the second on ~α1,
adding the two equalities and integrating over ζ gives∫ +∞

0

α0Q0(f0)dζ +

∫ +∞

0

~α1. ~Q0(~f1)dζ +

∫ +∞

0

~α1. ~Q1(~f1)dζ = 0.

Since, we proved (3.10) and (3.11), it comes

~α1. ~Q1(~f1) = 0.

It follows that ~f1 = 0.
Multiplying the �rst equation of (3.9) by ln(F0) and integrating over ζ gives∫ +∞

0

∂ζ(ζ

∫ +∞

0

J(ζ, ζ ′)
[∂ζF0(ζ)

F0(ζ)ζ
− ∂ζ′F0(ζ ′)

F0(ζ ′)ζ ′

]
ζ ′2F0(ζ)F0(ζ ′)dζ ′ ln(F0(ζ))dζ = 0.

By integration by part, it comes

−
∫ +∞

0

∫ +∞

0

K(ζ, ζ ′)
[∂ζF0(ζ)

F0(ζ)ζ
− ∂ζ′F0(ζ ′)

F0(ζ ′)ζ ′

]∂ζF0(ζ)

F0(ζ)ζ
dζ ′dζ = 0.

with K(ζ, ζ ′) = ζ2ζ ′2F0(ζ)F0(ζ ′).
The change of variables (ζ, ζ ′) 7→ (ζ ′, ζ) leads to

−
∫ +∞

0

∫ +∞

0

K(ζ, ζ ′)
[∂ζF0(ζ ′)

F0(ζ ′)ζ ′
− ∂ζF0(ζ)

F0(ζ)ζ

]∂ζ′F0(ζ ′)

F0(ζ ′)ζ ′
dζ ′dζ = 0.

Summing the two previous equations gives∫ +∞

0

∫ +∞

0

K(ζ, ζ ′)
[∂ζF0(ζ ′)

F0(ζ ′)ζ ′
− ∂ζF0(ζ)

F0(ζ)ζ

]2

dζ ′dζ = 0.

It follows that

F0(ζ) = K1 exp(−K2ζ
2), and so f0(ζ) = ζ2K1 exp(−K2ζ

2).

Since the integral of f0 in ζ must be positive and �nite, K1 and K2 are positive real
constants.
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These results demonstrate that the electron-electron collisional operator used for
the electronic M1 model satis�es fundamental properties. In the next section, the
derivation of the plasma transport coe�cients using this operator is investigated in
the framework of the classical transport theory.

3.3 Derivation of the electronic transport coe�cients

3.3.1 Electron collisional hydrodynamics

It has been shown that the equilibrium state of system (3.9) is given by an
isotropic Maxwellian distribution function. Therefore, in this analytical derivation
we consider a distribution function close to the equilibrium

f(t, ~x, ζ, ~Ω) = Mf (ζ, Te(t, ~x), ne(t, ~x)) + εF (t, ~x, ζ, ~Ω), (3.20)

where the Maxwellian distribution function reads

Mf (ζ, Te(t, ~x), ne(t, ~x)) = ne(t, ~x)
( me

2πTe(t, ~x)

)3/2

exp
(
− meζ

2

2Te(t, ~x)

)
, (3.21)

and the Knudsen number ε = λei/L is a small parameter which corresponds to
the ratio between the mean free path λei and the macroscopic scale length L. The
perturbation F is seeked under the form

F (t, ~x, ζ, ~Ω) = F0(t, ~x, ζ) + ~F1(t, ~x, ζ).~Ω, (3.22)

According to the Chapman-Enskog approach, the density and temperature macro-
scopic quantities are de�ned as

ne(t, ~x) = 4π

∫ +∞

0

f(t, ~x, ζ, ~Ω)ζ2dζ, (3.23)

Te(t, ~x) =
4πme

3nekB

∫ +∞

0

f(t, ~x, ζ, ~Ω)ζ4dζ. (3.24)

Therefore the isotropic part of the perturbation veri�es the following relations∫ +∞

0

F0(t, ~x, ζ)ζ2dζ = 0 and
∫ +∞

0

F0(t, ~x, ζ)ζ4dζ = 0.

Equations for the density and temperature are following from the integration over
ζ of the electronic M1 model (3.1) and de�nitions (3.23-3.24)

∂ne
∂t

+∇~x.(ne~ue) = 0,

∂Te
∂t

+ ~ue.∇~x(Te) +
2

3
Te∇~x.(~ue) +

2

3ne
∇~x.(~q) =

2

3ne
~j. ~E

(3.25)
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where we retained only linear terms in the Knudsen number ε. The temporal evo-
lution of ne and Te in these equations is driven by the �uxes of the particles and
energy that are expressed through the electric current density and the electron heat
�ux de�ned by

~j = −ene~ue = −4πeε

3

∫ +∞

0

~F1ζ
3dζ, ~q =

2πmeε

3

∫ +∞

0

~F1ζ
5dζ. (3.26)

In order to close the hydrodynamic system (3.25), one needs to express the electric
current and the heat �ux (3.26) in terms of the macroscopic variables ne, Te. More
precisely, the term ~F1 should be derived explicitly in terms of the gradients of ne
and Te, then de�nitions (3.26) give the electric current and the heat �ux. In the
quasi-stationary case (∂/∂t << νei) the second equation of the electronic M1 model
(3.1) reads

∇~x.(ζ ¯̄f2) +
q

m
∂ζ(

¯̄f2
~E)− q

mζ
(f0

~E − ¯̄f2
~E) = ~Q1(~f1) + ~Q0(~f1).

Using the fact that ¯̄f2 = f0/3
¯̄Id according to equation (3.22), the previous equation

leads to
ζ

3
∇~x(f0)− e ~E

3me

∂f0

∂ζ
+

2e ~E

3mζ
f0 = ~Q1(~f1) + ~Q0(~f1),

which also rewrites

ζ

3
∇~xf0 −

e ~Eζ2

3me

∂

∂ζ

(f0

ζ2

)
= ~Q1(~f1) + ~Q0(~f1).

Then using in the place of f0 the Maxwellian distribution (3.21), the previous equa-
tion gives

Mfζ
[e ~E∗
Te

+
1

2Te
∇~x(Te)(

meζ
2

Te
− 5)

]
= −2αeiε

ζ3
~F1 +

ε

ζ2
~Q0(ζ2 ~F1), (3.27)

with ~E∗ = ~E + (1/ene)∇~x(neTe). In the following we note αei and αee instead of
αeiε and αeeε. In the dimensionless case a parameter 1/ε appears in front of the
collisional operators, therefore considering the development (3.20), the parameter ε
vanishes.
In order to obtain ~F1, one should solve the integro-di�erential equation (3.27). The
resolution of this equation is challenging, however it is a linear equation in ~F1 and the
form of the left hand side indicates that the solution is a linear combination of terms
proportional to the generalised forces ~E∗ and ∇(Te)/Te which can be represented as
follows

~F1 = ζ
(e ~E∗
Te

φE +∇~x(lnTe)φQ
)
Mf , (3.28)
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where φE and φQ are de�ned below. Inserting this expression into (3.26) one obtains
the following relations [9]

~j = σ ~E∗ + α∇~xTe, (3.29)

~q = −αTe ~E∗ − χ∇~xTe, (3.30)

where α, σ and χ are called the plasma transport coe�cients de�ned by

σ = −4πe2

3Te

∫ ∞
0

ζ4φEMfdζ, χ =
2π

3

∫ ∞
0

ζ4(5− meζ
2

Te
)φQMfdζ, (3.31)

α = −4πe

3Te

∫ ∞
0

ζ4φQMfdζ =
2πe

3Te

∫ ∞
0

ζ4(5− meζ
2

Te
)φEMfdζ. (3.32)

The coe�cients σ, α and χ are respectively called the electrical conductivity, the
thermoelectric coe�cient and the thermal conductivity. In the case of a homoge-
neous plasma (with no density nor temperature gradients) relation (3.29) simpli�es
into the Ohm's law ~j = σ ~E and equation (3.30) leads to ~q = −αTe ~E. One can
de�ne the heat conductivity coe�cient κ, which is a combination of the other three
coe�cients

κ = χ− α2Te/σ. (3.33)

Equation (3.27) has been established from the collisional electronic M1 model (3.1).
This equation is identical to the one obtained using the full Fokker-Planck-Landau
equation (1.26), (see [9]) with the exception of the electron-electron collisional opera-
tor. Therefore, the possible di�erences in the plasma transport coe�cients between
the collisional electronic M1 model (3.1) and the Fokker-Planck-Landau equation
(1.10)-(1.26) are due to the electron-electron collisional operator. More precisely, the
approximations made to derive the electron-electron collisional operator (3.2)-(3.3)
for the electronicM1 model (3.1) may lead to di�erent plasma transport coe�cients.
The aim of the following subsections, is to derive the plasma transport coe�cients
using the collisional electronic M1 model (3.1) and to compare them to the ones
obtained using the Fokker-Planck-Landau equation (1.10)-(1.26).

3.3.2 Transport theory in Lorentzian plasma

In the case of a Lorentzian plasma the ions are highly charged therefore one can
neglect the electron-electron collision operator in equation (3.27). As explained in
the previous section, in this case (Z >> 1), the plasma transport coe�cients are the
same in the collisional electronic M1 model (3.1) and in the Fokker-Planck-Landau
equation (1.10)-(1.26). An explicit expression of ~F1 and the basic functions φE and
φQ are easily derived

~F1 = ζMf

[e ~E∗
Te

(
− ζ3

2αei

)
+∇~x(ln(Te))

ζ3

4αei

(
5− meζ

2

v2
Te

)]
, (3.34)
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and

φE = − ζ3

2αei
, φQ =

ζ3

4αei

(
5− meζ

2

v2
Te

)
. (3.35)

Inserting (3.35) into expressions (3.31) and (3.32) gives the transport coe�cients for
a high Z plasma [9]

σ0 =
32

3π

e2ne
meνei

, α0 =
16

π

ene
meνei

, χ0 =
200

3π
nevTeλei.

Here the subscript 0 corresponds to the high Z limit. In Figure 3.1, the electric
current and heat �ux are displayed in terms of y = v/vTe using the de�nition (3.34).

Figure 3.1: Representation of the velocity-dependent (y = v/vTe) particle �ux, ~jV =

−ζ3 ~f1 in red and the electron energy �ux ~qV = me
~f1ζ

5 − 5Te ~f1ζ
3 in green in the

case Z >> 1 (Lorentzian approximation).

3.3.3 Transport theory with electron-electron collisions

In the case of low Z plasmas the calculation presented in the previous section
overestimates the transport coe�cients because the electron-electron collision oper-
ator is not taken into account. In this case, one should solve the full equation (3.27).
Spitzer and Härm [194] solved it numerically in the case of the Fokker-Planck-Landau
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equation (1.10)-(1.26). Braginskii [32] derived an approximate analytical solution
by expanding ~F1 onto a series of the Laguerre polynomials following ideas used in
the kinetic theory of neutral gases [56]. In the present work, we apply the latter
method for the case of the electronic M1 model (3.1). Following (3.28), using a
decomposition of ~f1 with the two functions φE and φQ in equation (3.27) reads

1

ζ2
~Q0(ζ2ζMf

~φA)− 2αei
ζ2

Mf
~φA = ζMf

~SA, (3.36)

where

~SA =
[e ~E∗
Te

SE −∇~x ln(Te)S
Q
]
,

with

SE = 1, SQ =
1

2

( ζ2

v2
Te

− 5
)
.

Following Chapman [56] and Braginskii [32], we expand ~F1 over the Laguerre poly-
nomials [2] L(3/2)

n (x), with x = ζ2/2v2
Te
. Indeed, the source term in the right hand

side of (3.36) is a combination of the two �rst Laguerre polynomials SE = L
3/2
0 (x)

and SQ = −L3/2
1 (x). We represent the basic function φA as

~φA(ζ) =
+∞∑
m=0

~φAmL
(3/2)
m (ζ2/2v2

Te),

multiply (3.36) by ζ3L
(3/2)
n (ζ2/2v2

Te
) and integrate over ζ. The electron-ion collision

term gives∫ +∞

0

−2αei
ζ2

Mf
~φAζ3L(3/2)

n (ζ2/2v2
Te)dζ = −2αei

+∞∑
m=0

~φAm

∫ +∞

0

Mfv
2
TeL

(3/2)
m (x)L(3/2)

n (x)dx.

Using the de�nition (3.21), it comes∫ +∞

0

−2αei
ζ2

Mf
~φAζ3L(3/2)

n (ζ2/2v2
Te)dζ =

−2αei
ne

vTe(2π)3/2

+∞∑
m=0

~φAm

∫ +∞

0

L(3/2)
m (x)L(3/2)

n (x)e−xdx.

The computation for the source term reads∫ +∞

0

ζMf
~SAζ3L(3/2)

n

( ζ2

2v2
Te

)
dζ =

nev
2
Te

π
√
π

∫ ∞
0

x
√
xe−x

(e ~E∗
Te

+
1

Te
∇~x(Te)(x−

5

2
)
)
L(3/2)
n (x)dx,

76 Sébastien GUISSET



3. Classical transport theory for the collisional electronic M1 model

and using the orthogonality of the Laguerre polynomials, the previous equation reads∫ +∞

0

ζMf
~SAζ3L(3/2)

n

( ζ2

2v2
Te

)
dζ =

nev
2
Te

π

(3

4

e ~E∗

Te
δ0n −

15

8

1

Te
∇~x(Te)δ1n

)
L(3/2)
n (x)dx.

A similar derivation applies to the electron-electron collision operator∫ +∞

0

1

ζ2
~Q0(ζ2ζMf

~φA)ζ3L(3/2)
n

( ζ2

2v2
Te

)
dζ =

nev
2
Te

π
√
π

+∞∑
m=0

~φAm

∫ +∞

0

L(3/2)
n (x)Q0(x

√
xe−xL(3/2)

m (x))dx.

A direct calculation �nally gives the following set of equations

Z−1

+∞∑
m=0

cenm~φ
A
m −

+∞∑
m=0

cinm~φ
A
m = ν−1

ei
~SAn . (3.37)

Here, cenm and cinm are the matrices of the integrals of the electron-electron and
electron-ion collision operators. They are de�ned by

cinm =

∫ +∞

0

L(3/2)
n (x)L(3/2)

m (x)e−xdx, (3.38)

cenm =
2(3/2)v3

Te

Yee

∫ +∞

0

L(3/2)
n (x)Q0(x

√
xe−xL(3/2)

m (x))dx, (3.39)

with Yee = Z−1Yei and Yei = (3π/2)νeiv
3
Te
.

The term ~SAn reads

~SAn =
e ~E∗

Te
δ0n −

5

2

1

Te
∇~x(Te)δ1n.

The vector SAn has only two non-zero components. Therefore, only two �rst expan-
sion coe�cients φA0 and φA1 contribute to the transport coe�cients (3.31)-(3.32)

σ = −e
2ne
me

φE0 , α = −ene
me

φQ0 =
5

2

ene
me

φE1 ,

χ =
5

2
nev

2
Teφ

Q
1 , κ =

5

2
nev

2
Te(φ

Q
1 − φ

Q
0 φ

E
1 /φ

E
0 ).

In the limit Z >> 1, the �rst term in (3.37) vanishes and the model simpli�es into
the case of a Lorentzian plasma. In this case the �rst expansion coe�cients read
φE0 = −32/3πνei, φE1 = 32/5πνei, φE2 = −32/35πνei, φ

Q
0 = φQ2 = −16/πνei and

φQ1 = 80/3πνei.
Multiplying (3.27) by ζ3 one obtains an equation more suitable for numerical in-
tegration. Indeed, the term 1/ζ3 in the electron-ion collision operator makes the
equation (3.27) very sti� when ζ becomes close to zero.
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The computation of cinm using (3.38) is straightforward. However, the derivation
of cenm using (3.39) is more challenging. The coe�cients A(ζ) and B(ζ) in (3.5)
and (3.6) are involved in the de�nition of the electron-electron collision operator Q0.
Using the variable x = ζ2/2v2

Te
a straight calculation gives

A(x) =
ne

2
√
πx
√
xvTe

[3
√
π√
2
erf(
√
x)− e−x(3

√
2x+ 2

√
2x
√
x)
]

+

√
2

π

ne
vTe

e−x,

(3.40)

B(x) = − 3ne
4
√
πv3

Te
x
√
x

[√
2πerf(

√
x)− 2

√
2xe−x

]
−
√

2

π

ne
v3
Te

e−x, (3.41)

where erf is the error function. Next, inserting the de�nition of Q0 (3.2) and
expressions (3.40) and (3.41) into (3.39) a long but straight calculation leads to the
following expression for cenm

cenm =

∫ +∞

0

L(3/2)
n (x)

√
x∂x

((
2erf(

√
x)− 4

√
x√
π
e−x
)
∂xg(x) (3.42)

+
(

2erf(
√
x)− e−x√

π
[4
√
x− 8

3
x
√
x ]
)
g(x)

)
dx,

where g(x) =
√
xe−xL

(3/2)
m (x). Using de�nitions (3.38) and (3.42), each component

of the matrices cinm and cenm can be computed numerically and the set of equations
(3.37) can be solved.
The accuracy of the solution of (3.37) increases with the number of coe�cients φAn
chosen. The minimum number is two since the �rst two coe�cients φ0 and φ1

contribute to the transport coe�cients. Such a two polynomial approximation was
considered by Braginskii [32] for the Fokker-Planck-Landau equation (1.26). The
four-polynomial approximation provides results beyond the need of experimental
plasma physics. Kaneko [134] used 6 Laguerre polynomials and the high accuracy of
transport coe�cients he obtained was con�rmed in [135] and [136] with 50 Laguerre
polynomials. In this work, 6 Laguerre polynomials were used to ensure a high
accuracy of the transport coe�cients. The sixth polynomial expansion leads to the
following approximations

φE0 ≈ −ν−1
ei

670.42Z + 4467.79Z2 + 3306.34Z3 + 851.07Z4 + 90.44Z5 + 3.39Z6

173.69 + 2826.28Z + 3603.55Z2 + 1604.84Z3 + 320.28Z4 + 29.31Z5 + Z6
,

φQ0 ≈ −
5

2νei

29.38Z + 1611.93Z2 + 1595.33Z3 + 462.03Z4 + 52.26Z5 + 2.03Z6

173.69 + 2826.28Z + 3603.55Z2 + 1604.84Z3 + 320.28Z4 + 29.31Z5 + Z6
,

φE1 ≈ ν−1
ei

−86.09Z + 1177.61Z2 + 1414.61Z3 + 437.38Z4 + 51.18Z5 + 2.03Z6

173.69 + 2826.28Z + 3603.55Z2 + 1604.84Z3 + 320.28Z4 + 29.31Z5 + Z6
,

φQ1 ≈
5

2νei

163.98Z + 2155.57Z2 + 2263.58Z3 + 702.46Z4 + 83.77Z5 + 3.39Z6

173.69 + 2826.28Z + 3603.55Z2 + 1604.84Z3 + 320.28Z4 + 29.31Z5 + Z6
.
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The velocity-dependent �ux functions presented in Figure 3.2 shows that the electron-
electron contribution decreases as Z increases. We introduce the following dimen-
sionless coe�cients γσ, γα, γχ, γκ de�ned by

γσ = σ/σ0, γα = α/α0, γχ = χ/χ0, γκ = κ/κ0,

where the index 0 denotes the case of the Lorentzian approximation (Z >> 1).
The computation of these coe�cients shows that all of them are inferior to 1, that
is, the Lorentzian approximation (Z >> 1) overestimates the electron transport
coe�cients for low-Z plasmas. The coe�cients γσ, γα, γχ, γκ are displayed in Figures
3.3 and 3.4 as a function of Z for the electron-electron Landau collision operator Cee
given in (1.27) and for the electron-electron M1 collision operator (3.2)-(3.3) using
six Laguerre polynomials.

Figure 3.2: Representation of the velocity-dependent particle �ux, ~jV = −ζ3 ~f1, in
the case Z = 1 (blue), Z = 4 (yellow), Z = 16 (green) and Z >> 1 (Lorentzian
approximation) in red.

According to Figure 3.3, the electron-electron collision operator (3.2)-(3.3) used
for the electronic M1 model underestimates the electric conductivity σ. In the
large Z limit (Lorentzian approximation), the collisional M1 model and the Fokker-
Planck-Landau equation coincide. However, despite the correct tendency, the curve
obtained using the M1 collisional model underestimates the electric conductivity σ
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with a largest error of 43% in the case Z = 1. Also, the two curves of γα, obtained
with the M1 model and the Fokker-Planck-Landau equation, as a function of Z are
very close. In Figure 3.4, one observes that the curves representing the coe�cients
γχ and γκ overlap. The electron-electron collisional operator (3.2)-(3.3) recovers the
correct χ and κ plasma transport coe�cients.

In conclusion, the electron-electron collisional operator (3.2)-(3.3) used for the
electronic M1 model recovers the correct χ and κ plasma transport coe�cients and
is very accurate for the coe�cient α. The main error is made with the coe�cient
σ with a maximum error of 43% in the case Z = 1. These results demonstrate the
correct behaviour of the electron-electron collision operator (3.2)-(3.3) which can be
used for practical applications.

Figure 3.3: Representation of γσ (left) and γα (right) as a function of Z for the
Landau (red) and theM1 (green) collision operators using six Laguerre polynomials.

3.4 Conclusion

In this work, the fundamental properties of the electron-electron and electron-
ion collision operators used for the electronic M1 model have been studied. It is
shown that their equilibrium states is given by an isotropic Maxwellian distribution
function. In addition, in the Lorentzian approximation, the electronic M1 model
and the Fokker-Planck-Landau equation coincide. The electron transport coe�cients
are derived using the electron-electron collision operators proposed for the electronic
M1 model. Despite, the approximations used, accurate plasma transport coe�cients
have been obtained. The correct χ and κ plasma transport coe�cients are recovered
and the coe�cient α is very close to the one obtained with the Fokker-Planck-Landau
equation. The main error is made with the electric conductivity σ in the case Z = 1.
In spite of this error, these results show that the electron-electron collision operator
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3. Classical transport theory for the collisional electronic M1 model

Figure 3.4: Representation of γχ (left) and γκ (right) as a function of Z for the
Landau (red) and theM1 (green) collision operators using six Laguerre polynomials.

is a good candidate for physical applications. It may be possible to improve this
operator in order to obtain a more accurate σ coe�cient. However, since the angular
extraction of the kinetic electron-electron collision operator is complex, such an issue
seems challenging.
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Chapter 4

Some basic concepts of numerical
methods for nonlinear systems

The next chapters are devoted to the numerical resolution of the Maxwell-M1

system introduced in the previous chapters. In particular, we are interested in the
long time behaviour of the solutions of this system. More precisely, when the charac-
teristic quantities of the problem become large compared to the plasma parameters,
the studied model degenerates into a limit system. However, in general, the methods
designed for the numerical resolution of the initial model are not able to correctly
capture the limit problem. This point will be developed in detail in the next chap-
ters.
The angularM1 studied model is a nonlinear system. For this purpose, in this chap-
ter, some concepts of numerical methods for nonlinear systems are given following
the ideas of [52, 101, 102, 118, 159]. These methods are applied to the M1 model.
These elements will be used in the next chapters.

4.1 Godunov-type methods

In [102], Godunov proposed a numerical method for solving the Euler equations.
The method is based on the fact that, even for nonlinear systems, the Riemann
problem with piecewise constant initial data can be solved and the solution consists
of a �nite set of waves travelling at constant speeds. The Godunov method represents
a major breakthrough for computational �uid dynamics. The wave structure is
determined by the solution of the Riemann problem and shock waves can be correctly
handled. In this section, we recall the derivation of Godunov-type methods.
We consider a given set of hyperbolic equations

∂tu+ ∂xf(u) = 0, (4.1)
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4.1. Godunov-type methods

where u ∈ U ∈ Rl and f : Rl → Rl, C1 with l > 1. We suppose there exists a strictly
convex entropy-entropy �ux pair (η, q) for (4.1)

∀u ∈ U , η′(u).f ′(u) = q′(u).

We look for a weak entropy solution of (4.1), that is a weak solution of (4.1) such
that

∂tη(u) + ∂xq(u) ≤ 0. (4.2)

The eigenvalues of this system are written λk(u) and we consider the associated
initial condition u0. We de�ne a constant space step ∆x and a constant time step
∆t, the cell center coordinates xi = (i− 1

2
)∆x and the mesh interfaces coordinates

xi+1/2 = i∆x for i ∈ Z. At each time tn, in the ith cell interval [xi−1/2, xi+1/2], j ∈ Z,
we compute unj a numerical approximation of the solution of (4.1). Consequently,
we de�ne a piecewise constant approximate solution

uh(x, tn) = uni for all x ∈ [xi−1/2, xi+1/2[, i ∈ Z, n ∈ N. (4.3)

At the initial time, in the ith cell, we de�ne

u0
i =

1

∆x

∫ xi+1/2

xi−1/2

u0(x)dx for all i ∈ Z.

Now, assuming a known numerical solution at time tn we will detail the Godunov
method to compute the numerical solution at time tn+1.
Firstly, we solve the following Cauchy problem{

∂tw + ∂xf(w) = 0, x ∈ R
w(x, 0) = uh(tn, x),

(4.4)

where uh is de�ned by (4.3). Considering the classical CFL condition

∆t ≤ ∆x

2 max
k,u

(|λ(k)(u)|)
,

it is known that the solution of (4.4) is given by

w(t, x) = u(
x− xi+1/2

t− tn
, uni , u

n
i+1) for all (x, t) ∈ [xi, xi+1]×]tn, tn+1], (4.5)

where (t, x)→ u(x/t, uL, uR) is the unique weak entropic self-similar solution of the
Riemann problem 

∂tu+ ∂xf(u) = 0, x ∈ R

u(0, x) =

{
uL if x < 0,

uR if x > 0.

(4.6)
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Then in order to compute a piecewise approximate solution on each cell at time
tn+1, we average the solution of (4.4) in each cell

un+1
i =

1

∆x

∫ xi+1/2

xi−1/2

w(∆t, x)dx for all i ∈ Z. (4.7)

Using (4.4) and (4.7) by Green's formula we obtain

un+1
i = uni −

∆t

∆x
(fni+1/2 − fni−1/2) for all i ∈ Z,

where the numerical �uxes are given by

fni+1/2 = f(u(0, unj , u
n
j+1)) for all i ∈ Z.

It is said that the Godunov method is exact since we consider an exact resolu-
tion of the Riemann problem (4.6). However, such a resolution can be challenging
and one often prefers to use an approximate Riemann solver. In order to derive
approximate Godunov-type method the exact solution of the Riemann problems
considered at each interface (4.6) is replaced by an approximate solution. Following
[28, 52, 101, 118] we detail the notion of consistency in the integral sense of an
approximate Riemann solver.
Instead of solving exactly the Riemann problem (4.6) we consider the following an
approximate Riemann solver made of l + 1 constant states separated by l disconti-
nuities which propagate at speed λk

w̄(t, x) = u(x/t, ul, uR) =



u0 = uL if x/t < λ1,

...

uk if λk < x/t < λk+1,

...

ul = uR if x/t > λl.

(4.8)

We associate the usual CFL condition

max
1≤k≤l

|λk(uL, uR)|∆t
∆x
≤ 1

2
.

The approximate Riemann solver (4.8) is said to be consistent with the integral form
of (4.1) if the integral of w(.,∆t) is equal to the integral of the exact solution on the
space interval [−∆x

2
, ∆x

2
]. There the approximate Riemann solver (4.8) satis�es

f(uR)− f(uL) =
l∑

k=1

λk(uL, uR)(uk − uk−1). (4.9)
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Then, the approximate Godunov method readsun+1
i = uni −

∆t

∆x
(fni+1/2 − fni−1/2)

fni+1/2 = f(unj , u
n
j+1),

(4.10)

with

f(uL, uR) =
1

2

(
f(uL) + f(uR)−

l∑
k=1

|λk(uL, uR)|(uk − uk−1)
)
.

Similarly, applying the same procedure with the entropy inequality (4.2), the ap-
proximate Riemann solver is said to be consistent with the integral form of (4.2)
if

q(uR)− q(uL) ≤
l∑

k=1

λk(uL, uR)(η(uk)− η(uk−1)).

Then, the numerical scheme (4.10) veri�es a discrete entropy inequality η(un+1
i ) = η(uni )− ∆t

∆x
(qni+1/2 − qni−1/2)

qni+1/2 = q(unj , u
n
j+1),

(4.11)

with

q(uL, uR) =
1

2

(
q(uL) + q(uR)−

l∑
k=1

|λk(uL, uR)|(η(uk)− η(uk−1))
)
.

4.2 Application to angular moment models

In this section, we give an example of approximate Riemann solver, the Harten
Lax van Leer's one (HLL) [118]. Then, we apply it to angular moment models and
show that this approach enables to preserve the admissible sets.

4.2.1 HLL approximate Riemann solver

Here, we introduce the HLL scheme [118]. This approximate Riemann solver is
obtained considering only one constant intermediate state. It writes

u(x/t, ul, uR) =


uL if x/t < λ1,

u∗ if λ1 < x/t < λ2,

uR if x/t > λ2.

(4.12)

The consistency relation (4.9) gives

u∗ =
λ2uR − λ1uL
λ2 − λ1

− f(uR)− f(uL)

λ2 − λ1

. (4.13)
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The structure of the approximate Riemann solver is displayed in Figure 4.1. This
approximate Riemann solver is the simplest consistent with the integral form of (4.8).
The wavespeeds λ1 and λ2 are chosen to satisfy the sub-characteristic condition [159]

λ1 ≤ λk ≤ λ2 for all k. (4.14)

λ1 λ2

t

x

uRuL

u∗

Figure 4.1: Structure of the HLL approximate Riemann solver.

4.2.2 Angular moment models

The HLL approximate Riemann solver is particularly interesting considering an-
gular moment models. Indeed, this solver enables the preservation of the admissible
sets. More precisely, considering an admissible numerical solution at time tn, one
can show that the numerical solution computed at time tn+1 remains admissible. In
this section we detail this fundamental property. We note also that this solver is
entropic [28]. These two properties are considered as nonlinear stability properties
[28].
In the case of angular moments model, in a one dimensional framework, the moment
vector u and the �ux function f(u) write

u =< fm >, f(u) =< fmµ >, (4.15)

where m = (1, µ, µ2, ..., µk, ...) is the vector of basis functions used to de�ned the
angular moments. The notation < > represents the angular integration in µ de�ned
by

< f >=

∫ 1

−1

f(µ)dµ.
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Equation (4.13) rewrites

u∗ =
1

λ2 − λ1

(λ2uR − f(uR)) +
1

λ2 − λ1

(−λ1uL + f(uL)).

We remark that the terms λ2uR− f(uR) and −λ1uL + f(uL) are admissible. Indeed
using the de�nitions (4.15) it follows that

λ2uR − f(uR) =< mf(λ2 − µ) > and − λ1uL − f(uL) =< mf(−λ1 + µ) > .

It will be shown that the eigenvalues of angular moment models based on an entropy
minimisation principle are in the interval [−1, 1]. Therefore the condition (4.14)
implies that

λ1 ≤ −1 and λ2 ≥ 1.

Then it follows that the two moments vectors λ2uR− f(uR) and −λ1uL− f(uL) are
moments vectors of two positive distribution functions f(λ2 − µ) and f(−λ1 + µ).
Therefore by de�nition there are admissible. Then since λ2 is greater than λ1 it
follows that u∗ is admissible. Finally using the Godunov approach detailed in the
previous section, equation (4.7) gives the admissibility property for the numerical
solution at time tn+1.
To complete this explanation, we show that the eigenvalues of angular moment
models based on an entropy minimisation principle are in absolute value smaller
than 1. It has been seen in the �rst part of this manuscript, that in the case of
angular moment models based on an entropy minimisation principle the form of
the distribution function is given by a exponential of a polynomial function of µ.
Therefore, using the de�nitions (4.15) it comes that

u =< exp(α.m)m >, f(u) =< exp(α.m)mµ > .

Then it follows that

∂αu =< exp(α.m)m⊗m >, ∂αf(u) =< exp(α.m)m⊗mµ > .

Here, we are interested in the eigenvalues of the jacobian matrix J(u) of (4.1) de�ned
by

J(u) = ∂uf(u).

This equation rewrites
J(u) = B(u)A(u)−1, (4.16)

where A(u) and B(u) are l × l matrices de�ned by

B(u) = ∂αf(u), A(u) = ∂αu.

We remark here, that A(u) is regular since it is a positive de�nite symmetric matrix.
By de�nition the eigenvalues of J(u) verify

J(u)X = λ(u)X,
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with X ∈ Rl. Now, setting Y = A−1(u)X and using (4.16) it comes

B(u)Y = λ(u)A(u)Y.

Then
B(u)Y.Y = λ(u)A(u)Y.Y.

Finally it comes

λ(u) =
B(u)Y.Y

A(u)Y.Y
.

We recover the Rayleigh quotients

λmin(u) = min
Y ∈Rl

B(u)Y.Y

A(u)Y.Y
,

λmax(u) = max
Y ∈Rl

B(u)Y.Y

A(u)Y.Y
.

Using the de�nitions (4.15) leads to

λ(u) =
< exp(α.m)(m.Y )2µ >

< exp(α.m)(m.Y )2 >
,

which is in absolute value smaller than 1.
In the next sections appropriate numerical schemes are designed for the M1 angular
moments model. In particular, one is interested in computing long time regimes.
Therefore, the framework of asymptotic-preserving schemes is detailed.
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Chapter 5

Asymptotic-Preserving scheme for
the M1-Maxwell system in the
quasi-neutral regime

The study introduced in this chapter has been published. The reference is:
S. Guisset, S. Brull, E. d'Humières, B. Dubroca, S. Karpov, I. Potapenko. Asymptotic-
Preserving scheme for the M1-Maxwell system in the quasi-neutral regime. Commu-
nications in Computational Physics, volume 19, issue 02, pp. 301-328 (2016).

5.1 Introduction

In this work we assume that the plasma consists of electrons and one ion species
considered as immobile. This approximation is relevant due to the large mass of
ions compared to the electron mass. This means the model studied is valid on time
scales when the ion motion can be neglected.
For the study of collisional processes, the two important physical scales are the mean
free path and the electron-ion collision frequency. The mean free path represents
the average distance travelled by an electron between two collisions with an ion.
The electron-ion collision frequency represents the number of electron-ion collisions
per unit of time. When the electron plasma period is very small compared to the
electron-ion collisional time and the Debye length is very small compared to the
mean free path, the plasma is considered as quasi-neutral and the Maxwell-Gauss
(also called Maxwell-Poisson) and Maxwell-Ampere equations degenerate into alge-
bric equations on collisional time scales. Therefore to handle this type of situation
a new class of methods, called Asymptotic-Preserving (AP) methods has been de-
veloped. Asymptotic-preserving schemes in the sense of Jin-Levermore [35, 36] are
designed to handle multi-scale situations and behave correctly in the asymptotic
limit considered. The literature on Asymptotic-preserving schemes is extensive and
in this part we only consider the works dealing with the quasi-neutral limit. Consider
a system (Sα) depending on a parameter α, and (S0) being the corresponding limit
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system when α tends to zero. In our case α is the ratio between the Debye length
and the mean free path. A numerical scheme with time step ∆t and space step ∆x
is called Asymptotic-Preserving in the limit α tends to zero for the system (Sα) if
the scheme is stable independently of the values taken by α and if the limit scheme
obtained for α = 0 is consistent with the limit problem (S0). In this work the sys-
tem (Sα) corresponds to the Fokker-Planck-Landau-Maxwell (or the M1-Maxwell)
system and (S0) corresponds to the Fokker-Planck-Landau-Maxwell system in the
quasi-neutral limit.

This regime has been already studied in the context of �uid models [61, 63, 70].
For example in [63], the authors considered a two �uid isentropic Euler system
coupled with the Poisson equation. It is shown that the Maxwell-Poisson equation
can be reformulated into an elliptic equation which does not degenerate at the quasi-
neutral limit. In [62], this approach is generalised to the Euler-Maxwell model with
a strong magnetic �eld. A kinetic model consisting in a two �uid Vlasov-Poisson
system has also been investigated in [68]. In [74], an Asymptotic-Preserving scheme
is proposed for the Euler-Maxwell system in the quasi-neutral regime. The Maxwell
equations are reformulated to enable the computation of the electrostatic �eld even
in the limit regime. The development followed the approach for calculation of the
electric �eld well known in the plasma physics [32, 58].

The present work deals with the construction of an Asymptotic-Preserving scheme
or the M1-Maxwell system in the quasi-neutral limit. The strategy adopted is sim-
ilar to the one in [74], nevertheless to our knowledge, it is the �rst time that such
schemes are considered for kinetic models with true collision operators. This fact
is very important to deal with collisional plasma because the collision frequency
ν must follow the Coulombian interaction law (ν ≈ 1/|v|3). To perform realistic
simulations in plasma physics, Coulombian interactions must be used. Therefore,
relaxation operators are not relevant from the physical point of view. Moreover
up to now, Asymptotic-Preserving schemes for the quasi-neutral limit have been
developed either for �uid description of plasma or for collisionless plasmas.

The chapter is organised as follows. Section 5.2 introduces the Fokker-Planck-
Landau-Maxwell system and its quasi-neutral limit. A reformulation of the Fokker-
Planck-Landau-Maxwell system is presented in the case of one dimension in space
and one dimension in velocity. The model is considered with electric �elds and
collision operators. Then, the method is generalised for full multi-dimensions prob-
lems with electromagnetic �elds and collision operators. Section 5.3 introduces in
detail the numerical construction of an Asymptotic-Preserving scheme for the re-
formulated system of section 5.2. Section 5.4 deals with the construction of an
Asymptotic-Preserving scheme for the M1 moments model from the kinetic one.
Finally, section 5.5 presents two physically relevant numerical test cases for the M1-
Asymptotic-Preserving scheme for di�erent regimes. The �rst one corresponds to
a regime where electromagnetic e�ects are predominant whereas the second one on
the contrary shows the e�ciency of the Asymptotic-Preserving scheme in the colli-
sional quasi-neutral regime. The numerical results are compared with kinetic and
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hydrodynamic limits.

5.2 Fokker-Planck-Landau-Maxwell system in the

quasi-neutral limit

In this section the Fokker-Planck-Landau-Maxwell system in the quasi-neutral
limit is introduced. We consider a plasma constituted of electrons and of one �xed
ion species. The description is performed with a non-negative distribution function
for electrons fe(x, v, t), x ∈ Rn represents the space variable, v ∈ Rn is the velocity
variable, n = 1, 2 or 3 and t is the time.

5.2.1 Scaling for the analysis of collisional processes.

For the analysis of collisional processes three important parameters are intro-
duced: the mean free path λei which represents the average distance travelled by
an electron between two collisions, the thermal velocity vth and the electron-ion
collision frequency νei. They satisfy the relations

vth =

√
kBT

me

, νe,i =
vth
λe,i

.

These parameters enable us to scale time, space and speed

t̃ = νe,it, x̃ = x/λe,i, ṽ = v/vth.

In the same way, we scale the electric �eld, the magnetic �eld and the distribution
function

Ẽ =
eE

mevthνe,i
, B̃ =

eB

meνe,i
, f̃ = fe

v3
th

n0

.

n0 is the initial electronic density.
With these dimensionless quantities the Fokker-Planck-Landau-Maxwell system (1.10-
1.26-1.15-1.18) becomes the following system where we have omitted the tildes

∂f

∂t
+ v.∇xf − (E + v ×B).∇vf =

1

Z
Cee(f, f) + Cei(f) ,

∂E

∂t
− 1

β2
∇x ×B = − j

α2
,

∂B

∂t
+∇x × E = 0,

∇x.E =
1

α2
(1− n),

∇x.B = 0,

(5.1)
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where α =
νe,i
ωpe

, ωpe represents the electronic plasma frequency, β = vth/c,
n = ne/n0 and Z the charge of the ions. In this work Z is taken equal to 1.

5.2.2 Electrostatic case

In the electrostatic case with only one dimension for space (x ∈ R) and one for
velocity (v ∈ R), the system (5.1) can be written in the following form

∂f

∂t
+ v∂xf − E∂vf = Cee(f, f) + Cei(f),

∂E

∂t
= − j

α2
,

(5.2)

where Maxwell-Poisson has to be satis�ed at the initial time.

Remark 1. Notice that the fourth equation of system (5.1), called Maxwell-
Gauss equation (or Poisson equation) is not used. Indeed, the second equation of
(5.1), called Maxwell-Ampere equation and Poisson equation are equivalent if the
Poisson equation is veri�ed at the initial time. The limit system (S0) is obtained
when the parameter α tends to 0 and corresponds to the quasi-neutral limit. It can
be written in the form

∂f

∂t
+ v∂xf − E∂vf = Cee(f, f) + Cei(f),

j = 0,

with n = 1 at initial time. When α tends to zero the Maxwell-Poisson equation
degenerates into the algebraic equation n = 1. This condition has to be satis�ed at
initial time. When α is equal to zero we lose the possibility to obtain the electric
�eld from the Maxwell-Ampere equation on the collisional time scale. This limit
is singular, because the Maxwell-Ampere equation degenerates into an algebraic
equation.

5.2.3 Reformulation of the Maxwell-Ampere equation in the

simpli�ed case

The aim of this part is to provide a reformulation of the Maxwell-Ampere equa-
tion that is equivalent and contains explicitly the quasi-neutral limit as a particular
case when α = 0 for the electrostatic case with only one dimension for space and
one for the velocity.
Multiplying the �rst equation of (5.2) by v, integrating in velocity and using the
de�nition of the dimensionless current

j = −
∫
R
fvdv, (5.3)
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we obtain

− ∂j

∂t
+ ∂x(

∫
R
v2fdv)− E

∫
R
v∂vfdv =

∫
R
Ceivdv. (5.4)

Here we use the fact that ∫
R
vCee(f, f)dv = 0.

Here, it is important to notice that the integral in velocity against v of the electron-
ion collision operator Ce,i does not vanish. The derivation in time of the Maxwell-
Ampere equation in the electrostatic case leads to

∂j

∂t
= −α2∂

2E

∂t2
.

By using (5.4), we get

α2∂
2E

∂t2
− E

∫
R
v∂vfdv = −∂x(

∫
R
v2fdv) +

∫
R
Ceivdv. (5.5)

As

E

∫
R
v∂vf dv = −nE,

the equation (5.5) becomes

α2∂
2E

∂t2
+ nE = −∂x(

∫
R
v2f)dv +

∫
R
Ceivdv.

When the parameter α tends to 0, we �nd the limit problem

nE = −∂x(
∫
R
v2fdv) +

∫
R
Ceivdv.

So the electrostatic �eld writes

E =
−∂x(

∫
R v

2fdv) +
∫
RCeivdv

n
. (5.6)

In this part we have shown that the Fokker-Planck-Landau-Maxwell system (5.2) is
equivalent to the Fokker-Planck-Landau-Maxwell reformulated system

∂f

∂t
+ ∂x(vf)− ∂v(Ef) = Cee(f, f) + Cei(f) ,

α2∂
2E

∂t2
+ nE = −∂x(

∫
R
v2f)dv +

∫
R
Ceivdv,

(5.7)

where Maxwell-Poisson has to be satis�ed at initial time. The limit system when
α→ 0 is the following one

∂f

∂t
+ ∂x(vf)− ∂v(Ef) = Cee(f, f) + Cei(f) ,

E =
−∂x(

∫
R v

2fdv) +
∫
RCeivdv

n
,
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where n = 1 and j = 0 at initial time.
The second equation of (5.2) imposes j = 0 when α = 0. This condition has to be
satis�ed at initial time.

5.2.4 Reformulation of the Maxwell-Ampere equation in the

general case

In this section, we generalise previous method to a non-homogeneous collisional
plasma with magnetic �eld in multiple dimensions.

Multiplying this �rst equation of (5.1) by −v, integrating in velocity and using
the de�nition of the dimensionless current (5.3) we get

−∂j
∂t

+ divx(

∫
Rn
v ⊗ vfdv)−

∫
Rn
v(E + v ×B).∇vfdv =

∫
Rn

Cei(f)vdv.

As ∫
Rn

(v ×B).∇vf v dv = j ×B,

the same development as in the electrostatic case is performed.

The derivation in time of the Maxwell-Ampere equation in the general case leads
to

∂j

∂t
= −α2∂

2E

∂t2
+
α2

β2

[
∇x ×

∂B

∂t

]
.

Finally the following form is obtained

α2∂
2E

∂t2
+neE−j×B = −divx(

∫
Rn
v⊗vfdv)+

α2

β2

[
∇x×

∂B

∂t

]
+

∫
Rn
Cei(f)vdv. (5.8)

When α tends to 0 in (5.8) we �nd the limit problem

neE = −divx(
∫
Rn
v ⊗ vfdv) +

∫
Rn
Cei(f)vdv + j ×B.

So the electrostatic �eld writes

E =
−divx(

∫
Rn v ⊗ vfdv) +

∫
Rn Cei(f)vdv + j ×B

ne
.

In this part we have shown that the Fokker-Planck-Landau-Maxwell system (5.1)
is equivalent to the Fokker-Planck-Landau-Maxwell reformulated system
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∂f

∂t
+ v.∇xf − (E + v ×B).∇vf = Cee(f, f) + Cei(f) ,

α2∂
2E

∂t2
+ neE − j ×B = −divx(

∫
Rn
v ⊗ vfdv) +

α2

β2

[
∇x ×

∂B

∂t

]
+

∫
Rn
Cei(f)vdv,

∂B

∂t
+∇x × E = 0,

(5.9)

where the Maxwell-Poisson and Maxwell-Thomson equations have to be satis�ed
at the initial time.

Remark 2. The �fth equation of the system (5.1) called the Maxwell-Thomson
equation is not used. Indeed the third and �fth equations (5.1) called the Maxwell-
Faraday and Maxwell-Thomson equations are equivalent if the Maxwell-Thomson
equation is veri�ed at the initial time.

The limit system of (5.9) when α→ 0 is the following one
∂f

∂t
+ v.∇xf − (E + v ×B).∇vf = Cee(f, f) + Cei(f) ,

neE − j ×B = −divx(
∫
Rn
v ⊗ vfdv) +

∫
Rn
Ceivdv ,

∂B

∂t
+∇x × E = 0 ,

(5.10)

where n = 1 and j = 0 have to be satis�ed at initial time.The second equation of
(5.10) is called the Generalised Ohm's law.
In this part, a reformulation of the Maxwell-Ampere equation containing the limit
case α = 0 has been performed. This derivation enables us to construct an Asymptotic-
Preserving numerical scheme for the quasi-neutral regime.

5.3 Discrete model

5.3.1 Limitation of the classical numerical scheme

A classical numerical scheme for the Maxwell-Ampere equation in the collisional
regime writes

En+1
l = En

l −
jnl ∆t

α2
. (5.11)
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The stability of this scheme depends directly on the parameter α. So, when α tends
to 0, (5.11) can not be used to calculate the new electric �eld En+1

i .
The aim of the following part is to establish a numerical scheme which contains
explicitly the quasi-neutral case when α = 0. In this way, a new numerical scheme
is developed for the reformulated Maxwell-Ampere equation.

5.3.2 Construction of an Asymptotic-Preserving Maxwell-

Ampere numerical scheme

In this part the construction of an Asymptotic-Preserving scheme for the Maxwell-
Ampere reformulated equation is explained. In this �rst part the numerical scheme
is derived in the case of a non-homogeneous collisional plasma without magnetic
�eld. The next part extends the method to the non-homogeneous collisional case
with electromagnetic �elds.

Case of a non-homogeneous collisional plasma without magnetic �eld.

In this part an Asymptotic-Preserving scheme is constructed for the second equa-
tion of (5.7). Let us de�ne the primary meshM for the velocity variable v, decom-
posed into a family of rectanglesMp+ 1

2
=]vp, vp+1[ ∀p ∈ {−pf ; pf} where vp = p∆v

and p ∈ N represents the number of points which discretize the velocity domain. ∆v
represents the energy discretisation step, which is �xed. Denote by D its associated
dual mesh consisting of cells Dp =]vp− 1

2
, vp+ 1

2
[ where vp− 1

2
= (p− 1

2
)∆v. In the same

way, a primary mesh N is de�ned for the space variable x, decomposed into a family
of rectangles Nl+ 1

2
=]xl, xl+1[ ∀l ∈ {1; lf} where xl = l∆x and l ∈ N represents the

number of points which discretize the space domain. ∆x represents the space dis-
cretisation step, which is �xed. We denote by E its associated dual mesh consisting
of cells El =]xl− 1

2
, xl+ 1

2
[ where xl− 1

2
= (l − 1

2
)∆x. Let hl,p (resp. hl+ 1

2
,p+ 1

2
) be an

approximation of h(xl, vp) (resp h(xl+ 1
2
, vp+ 1

2
)) for all distribution functions h. The

velocity grid is chosen large enough to have fl,pf = fl,−pf = 0 ∀l ∈ {1; lf} which
means that there are no particles with such velocities.

By using a conservative discretisation for the Fokker-Planck-Landau equation we
obtain

fn+1
l,p − fnl,p

∆t
+

(vfn)l+ 1
2
,p − (vfn)l− 1

2
,p

∆x
−

(En+1fn)l,p+ 1
2
− (En+1fn)l,p− 1

2

∆v
(5.12)

= Cn
ee,l,p + Cn

ei,l,p,

where the computation of the numerical �uxes is given by

(vfn)l+ 1
2
,p = vp(

fnl,p + fnl+1,p

2
)− |vp|

2
(fnl+1,p − fnl,p), (5.13)
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(En+1fn)l,p+ 1
2

= En+1
l (

fnl,p + fnl,p+1

2
)− |E

n+1
l |
2

(fnl,p+1 − fnl,p), (5.14)

and

Cn
ei,l,p =

1

∆v

[
Sp+ 1

2

fnl,p+1 − fnl,p
∆v

− Sp− 1
2

fnl,p − fnl,p−1

∆v

]
,

with
Sp+ 1

2
= K(

vp + vp+1

∆v
).

The expression of K is given by (1.27). The numerical scheme for the operator
Cee,l,p is not given, because this term cancels in the calculation. It is important to
notice that the electrostatic �eld is calculated implicitly. It will be shown that this
choice enables the calculation of the electrostatic �eld when α→ 0. Using the above
numerical �uxes, (5.12) reads

fn+1
l,p − fnl,p

∆t
+
vp

[
fnl+1,p − fnl−1,p

]
− |vp|

[
fnl+1,p − 2fnl,p + fnl−1,p

]
2∆x

−
En+1
l

[
fnl,p+1 − fnl,p−1

]
− |En+1

l |
[
fnl,p+1 − 2fnl,p + fnl,p−1

]
2∆v

= Cn
ee,l,p + Cn

ei,l,p.

Multiplying the previous equation by −vp∆v and summing in p leads to

−
∑

p vpf
n+1
l,p ∆v +

∑
p vpf

n
l,p∆v

∆t

− ∆v

2∆x

∑
p

[
v2
p

(
fnl+1,p − fnl−1,p

)
− vp|vp|

(
fnl+1,p − 2fnl,p + fnl−1,p

)]
+

1

2

∑
p

[
vpE

n+1
l

(
fnl,p+1 − fnl,p−1

)
− |En+1

l |vp
(
fnl,p+1 − 2fnl,p + fnl,p−1

)]
= −

∑
p

Cn
ei,l,pvp∆v.

Then using the discrete de�nition of the current

jl = −
∑
p

vpfl,p∆v, (5.15)

the computation of the previous equation leads to

jn+1
l − jnl

∆t
− ∆v

2∆x

∑
p

[
v2
p

(
fnl+1,p − fnl−1,p

)
− vp|vp|

(
fnl+1,p − 2fnl,p + fnl−1,p

)]
+

1

2

∑
p

[
vpE

n+1
l

(
fnl,p+1 − fnl,p−1

)
− |En+1

l |vp
(
fnl,p+1 − 2fn1,l,p + fnl,p−1

)]
= −

∑
p

Cn
ei,l,pvp∆v.
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The following scheme for the Maxwell-Ampere equation is used

En+1
l − En

l

∆t
= −j

n+1
l

α2
. (5.16)

Contrarily to the classical scheme (5.11) the current j in (5.16) is chosen implicit.
By using (5.16), we get

−α2E
n+1
l − 2En

l + En−1
l

∆t2

− ∆v

2∆x

∑
p

[
v2
p

(
fnl+1,p − fnl−1,p

)
− vp|vp|

(
fnl+1,p − 2fnl,p + fnl−1,p

)]
+

1

2

∑
p

[
vpE

n+1
l

(
fnl,p+1 − fnl,p−1

)
− |En+1

l |vp
(
fnl,p+1 − 2fn1,l,p + fnl,p−1

)]
= −

∑
p

Cn
ei,l,pvp∆v.

Remark 3. It is important to notice that

|En+1
l |

∑
p

vp

(
fnl,p+1 − 2fnl,p + fnl,p−1

)
= 0.

Indeed a discrete integration by part gives

|En+1
l |

∑
p

vp

(
fnl,p+1 − 2fnl,p + fnl,p−1

)
= |En+1

l |
[∑

p

vp(f
n
l,p+1 − fnl,p)−

∑
p

vp+1(fnl,p+1 − fnl,p)
]
,

= |En+1
l |

[∑
p

(vp − vp+1)(fnl,p+1 − fnl,p)
]
,

= −|En+1
l |∆v

[∑
p

(fnl,p+1 − fnl,p)
]
,

= 0,

because of boundary condition fnl,pf = fnl,−pf = 0. Therefore, no linearisation nor
approximation is required to compute En+1

l .
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Finally, the Asymptotic-Preserving scheme for the second equation of (5.7) writes

−α2E
n+1
l − 2En

l + En−1
l

∆t2

− ∆v

2∆x

∑
p

[
v2
p

(
fnl+1,p − fnl−1,p

)
− vp|vp|

(
fnl+1,p − 2fnl,p + fnl−1,p

)]
+
En+1
l

2

∑
p

vp

(
fnl,p+1 − fnl,p−1

)
= −

∑
p

Cn
ei,l,pvp∆v,

which is the numerical scheme for the reformulated Maxwell-Ampere equation in
the case of a inhomogeneous collisional plasma. In the limit case when α tends to
zero, the scheme becomes

En+1
l =

∆v
∆x

∑
p

[
v2
p

(
fnl+1,p − fnl−1,p

)
− vp|vp|

(
fnl+1,p − 2fnl,p + fnl−1,p

)]
− 2

∑
p

Cn
ei,l,pvp∆v∑

p

vp

(
fnl,p+1 − fnl,p−1

) .

In the case the expression obtained is well consistent with the limit equation (5.6),
this is a key point to obtain the asymptotic preserving property.

Generalisation to a non-homogeneous collisional plasma with electromag-
netic �elds.

In this part we derive the numerical scheme for the reformulated Maxwell-
Ampere equation in the simpli�ed case of 1 dimension in space and 3 dimensions
in velocity. The scheme can be extended to the case of 3 dimensions in space. We
consider a cartesian case with an electric and a magnetic �eld of the form

E = (Ex(t, x, y), Ey(t, x, y), 0), B = (0, 0, Bz(t, x, y)).

Following the same method as for the electrostatic case, we derive the following
numerical scheme for the reformulated Maxwell-Ampere equation

−α2
En+1
x,l − 2En

x,l + En−1
x,l

∆t2
−∆vx∆vy∆vz

∑
i,j,k

(
En+1
x,l + j∆vyB

n+1
z,l

)
fnl,i,j,p

−∆v2
x∆vz

∑
i,j,k

vx,i

(
En+1
y,l − i∆vxB

n+1
z,l

)
fnl,i,j,p

= −
∑
i,j,k

Cn
ei,l,i,j,kvx,i∆vx∆vy∆vz +

∆vx∆vy∆vz
2∆x

∑
i,j,k

[
v2
x,i

(
fnl+1,i,j,k − fnl−1,i,j,k

)
−vx,i|vx,i|

(
fnl+1,j,k,p − 2fnl,i,j,k + fnl−1,i,j,k

)]
,
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−α2
En+1
y,l − 2En

y,l + En−1
y,l

∆t2
−∆v2

y∆vz
∑
i,j,k

(
En+1
x,l + j∆vyB

n+1
z,l

)
fnl,i,j,p

−∆vx∆vy∆vz
∑
i,j,k

vx,i

(
En+1
y,l − i∆vxB

n+1
z,l

)
fnl,i,j,p

= −
∑
i,j,k

Cn
ei,l,i,j,kvy,i∆vx∆vy∆vz +

α2

β2∆t

[Bn+1
z,l+1 −B

n+1
z,l−1

2∆x
−
Bn
z,l+1 −Bn

z,l−1

2∆x

]
+

∆vx∆vy∆vz
2∆x

∑
i,j,k

[
vy,ivx,i

(
fnl+1,i,j,k − fnl−1,i,j,k

)
−vy,i|vx,i|

(
fnl+1,i,j,k − 2fnl,i,j,k + fnl−1,i,j,k

)]
,

where l is the index for space, i the index for the �rst coordinate in speed, j for the
second and k for the third. Also ∆t, ∆x, ∆vx, ∆vy, ∆vz are respectively the time
step, the space step, the velocity step in the �rst, second and third dimension. In
this case there are two equations, we notice they are coupled.

5.3.3 Stability property

The asymptotic-preserving property also requires that the scheme is uniformly
stable with respect to the parameter α. The rigorous proof of the asymptotic sta-
bility property is challenging and in general, the few results presented describe sim-
pli�ed linearised models where a linear stability study is conducted [70, 74]. In the
present case, because of the dependence of the space and velocity variables in ad-
dition to the collisional operators such a property cannot be easily derived and a
rigorous stability analysis of the method seems beyond the scope of this work. How-
ever, we can give some elements of the proof in a simpli�ed linearised collisionless
homogeneous case with one velocity dimension (v ∈ R) without magnetic �eld. The
model reads 

∂f

∂t
− E∂f

∂v
= 0,

α2∂E

∂t
= −j.

We consider the following linearisation around the equilibrium state given by a
Maxwellian distribution function with no electric �eld

f = fm + f 1, E = 0 + E1,

104 Sébastien GUISSET



5. Asymptotic-Preserving scheme for the M1-Maxwell system in the

quasi-neutral regime

with fm a Maxwellian distribution function. The linearised system reads
∂f 1

∂t
+ 2E1vfm = 0,

α2∂E
1

∂t
= −j1.

(5.17)

In the numerical method proposed, the electric �eld is chosen implicit as well as the
electronic current. Then omitting the index 1 for simplicity, the numerical scheme
reads 

fn+1
p − fnp

∆t
+ 2En+1vpf

m
p = 0,

α2E
n+1 − En

∆t
= −jn+1 =

pf∑
p=−pf

fn+1
p vp∆v.

(5.18)

The previous system can also be written in the following linear system form

E
f−pf
f−pf+1

...
fpf−1

fpf



n+1

= Mα



E
f−pf
f−pf+1

...
fpf−1

fpf



n

,

where the matrix Mα is given by

Mα =


Aαα2

∆t
Aα∆vv−pf · · · Aα∆vvpf

−
Bα−pf

α2

∆t
1−Bα

−pf∆vv−pf · · · −B
α
−pf∆vvpf

...
...

. . .
...

−
Bαpf

α2

∆t
−Bα

pf
∆vv−pf · · · 1−Bα

pf∆vvpf

 ,

with

Aα =
∆t

α2 + 2∆t2
pf∑

p=−pf
fmp v

2
p∆v

, Bα
p =

2∆t2fmp vp

α2 + 2∆t2
pf∑

p=−pf
fmp v

2
p∆v

.

The eigenvalues of the matrix Mα are given by

1, 1, ..., 1︸ ︷︷ ︸
2pf−1

, K + i
√
K −K2, K − i

√
K −K2,
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with K =
α2

(α2 + 2∆t2
pf∑

p=−pf
fmp v

2
p∆v)

.

As α ∈ [0, 1] one remarks that K ∈ [0, 1]. It follows that the eigenvalues of Mα

are in modulus less or equal than 1. The numerical scheme (5.18) for the simpli�ed
model (5.17) is then stable for all α. One remarks that in spite of the simplicity of
the model (5.17), the form of the matrix Mα is not trivial and an extension to the
general model seems challenging. However, in a more general case, the numerical
tests for the wide range of input parameters, witness of the stability of the method.
Kinetic codes are usually numerically expensive and limited to short time scales.
Angular moments models can be seen as a compromise between kinetic and �uid
models.

5.4 Asymptotic-Preserving scheme for theM1-Maxwell

moments model

This part presents an Asymptotic-Preserving scheme for theM1 model associated
to the system (5.1). The derivation of the M1 model has been detailed in chapter 2
and chapter 3. Therefore, we directly give the system we use for the derivation of
the scheme.

5.4.1 M1 moment model

As detailed in the previous chapter, the M1 moment model without electric �eld
reads  ∂tf0 +∇x.(ζf1)− ∂ζ(Ef1) = Q0(f0),

∂tf1 +∇x.(ζf2)− ∂ζ(Ef2) + E
(f0 − f2)

ζ
= Q1(f1) +Q0(f1),

(5.19)

where the collisional operators Q0 and Q1 are given by

Q0(f0) =
2

3
∂ζ

(
ζ2A(ζ)∂ζ(

f0

ζ2
)− ζB(ζ)f0

)
,

Q1(f1) = −2f1

ζ3
.

The coe�cients A(ζ) and B(ζ) write

A(ζ) =

∫ ∞
0

min(
1

ζ3
,

1

ω3
)ω2f0(ω)dω,

B(ζ) =

∫ ∞
0

min(
1

ζ3
,

1

ω3
)ω3∂ω(

f0(ω)

ω2
)dω.
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5.4.2 Numerical scheme for the M1 model

In this part the reformulation of the Maxwell-Ampere equation for theM1 model
is detailed. Considering a conservative scheme for the system (5.19) we write

fn+1
0,l,p − fn0,l,p

∆t
+

(ζfn1 )l+ 1
2
,p − (ζfn1 )l− 1

2
,p

∆x
−

(En+1fn1 )l,p+ 1
2
− (En+1fn1 )l,p− 1

2

∆ζ
= 0, (5.20)

fn+1
1,l,p − fn1,l,p

∆t
+

(ζfn2 )l+ 1
2
,p − (ζfn2 )l− 1

2
,p

∆x
−

(En+1fn2 )l,p+ 1
2
− (En+1fn2 )l,p− 1

2

∆ζ
(5.21)

+
En+1

ζp
(fn0,l,p − fn2,l,p) = Qn

1,l,p +Qn
0,l,p.

The discrete collision operators involved in (5.21) are respectively given by

Qn
1,l,p = −

2fn1,l,p
ζ3
p

,

Qn
0,l,p =

2

3∆ζp

[
(ζ2
p+ 1

2
A(ζp+ 1

2
)

1

∆ζp+ 1
2

(fn1,l,p+1

ζ2
p+1

−
fn1,l,p
ζ2
p

)
− ζp+ 1

2
B(ζp+ 1

2
)fn

1,l,p+ 1
2
)

−(ζ2
p− 1

2
A(ζp− 1

2
)

1

∆ζp− 1
2

(fn1,l,p
ζ2
p

−
fn1,l,p−1

ζ2
p−1

)
− ζp− 1

2
B(ζp− 1

2
)fn

1,l,p− 1
2
)
]
.

Using HLL numerical �uxes in (5.20) and (5.21), it holds that

fn+1
0,l,p − fn0,l,p

∆t
+
ζp

[
fn1,l+1,p − fn1,l−1,p

]
− |ζp|

[
fn0,l+1,p − 2fn0,l,p + fn0,l−1,p

]
2∆x

−
En+1
l

[
fn1,l,p+1 − fn1,l,p−1

]
− |En+1

l |
[
fn0,l,p+1 − 2fn0,l,p + fn0,l,p−1

]
2∆ζ

= 0,

and

fn+1
1,l,p − fn1,l,p

∆t
+
ζp

[
fn2,l+1,p − fn2,l−1,p

]
− |ζp|

[
fn1,l+1,p − 2fn1,l,p + fn1,l−1,p

]
2∆x

−
En+1
l

[
fn2,l,p+1 − fn2,l,p−1

]
− |En+1

l |
[
fn1,l,p+1 − 2fn1,l,p + fn1,l,p−1

]
2∆ζ

(5.22)

+
En+1
l

ζp
(fn0,l,p − fn2,l,p) = Qn

1,l,p +Qn
0,l,p.
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Multiplying the previous equation (5.22) by −ζp∆ζ and summing in p leads to

−
∑

p ζpf
n+1
1,l ∆ζ +

∑
p ζpf

n
1,l∆ζ

∆t

− ∆ζ

2∆x

∑
p

[
ζ2
p

(
fn2,l+1,p − fn2,l−1,p

)
− ζ2

p

(
fn1,l+1,p − 2fn1,l,p + fn1,l−1,p

)]
(5.23)

+
1

2

∑
p

[
ζpE

n+1
l

(
fn2,l,p+1 − fn2,l,p−1

)
− |En+1

l |ζp
(
fn1,l,p+1 − 2fn1,l,p + fn1,l,p−1

)]
−
∑
p

En+1
l (fn0,l,p − fn2,l,p)∆ζ = −

∑
p

ζpQ
n
1,l,p∆ζ.

Here again, the term containing the electron-electron collision operator cancels. We
use the de�nition of the dimensionless current j

j = −
∫
R+

f1ζdζ,

which can be written on the discrete form

jnl = −
∑
p

fn1,l,pζp∆ζ.

Therefore the scheme (5.23) becomes

jn+1
l − jnl

∆t
− ∆ζ

2∆x

∑
p

[
ζ2
p

(
fn2,l+1,p − fn2,l−1,p

)
− ζ2

p

(
fn1,l+1,p − 2fn1,l,p + fn1,l−1,p

)]
(5.24)

+
1

2

∑
p

[
ζpE

n+1
l

(
fn2,l,p+1 − fn2,l,p−1

)
− |En+1

l |ζp
(
fn1,l,p+1 − 2fn1,l,p + fn1,l,p−1

)]
−

∑
p

En+1
l (fn0,l,p − fn2,l,p)∆ζ = −

∑
p

ζpQ
n
1,l,p∆ζ.

Using the scheme (5.16), expression (5.24) becomes

−α2E
n+1
l − 2En

l + En−1
l

∆t2

− ∆ζ

2∆x

∑
p

[
ζ2
p

(
fn2,l+1,p − fn2,l−1,p

)
− ζ2

p

(
fn1,l+1,p − 2fn1,l,p + fn1,l−1,p

)]
+

1

2

∑
p

[
ζpE

n+1
l

(
fn2,l,p+1 − fn2,l,p−1

)
− |En+1

l |ζp
(
fn1,l,p+1 − 2fn1,l,p + fn1,l,p−1

)]
−En+1

l

∑
p

(fn0,l,p − fn2,l,p)∆ζ = −
∑
p

ζpQ
n
1,l,p∆ζ.
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Like for the kinetic scheme in (5.3.2), it holds that∑
p

|En+1
l |ζp

(
fn1,l,p+1 − 2fn1,l,p + fn1,l,p−1

)
= 0.

Therefore the �nal scheme obtained reads

En+1
l =

−α2 (2En
l − En−1

l )

∆t2
+ β1(fn0,l, f

n
1,l)

− α2

∆t2
+ β2(fn0,l, f

n
1,l)

,

where the coe�cients β1 and β2 are given by

β1 =
∆ζ

2∆x

∑
p

[
ζ2
p

(
fn2,l+1,p−fn2,l−1,p

)
−ζ2

p

(
fn1,l+1,p−2fn1,l,p+fn1,l−1,p

)]
−
∑
p

ζpQ
n
1,l,p∆ζ,

β2 =
1

2

∑
p

[
ζp

(
fn2,l,p+1 − fn2,l,p−1

)]
−
∑
p

(fn0,p,l − fn2,p,l)∆ζ.

Remark 4. The stability of this new scheme does not depend on the parameter
α. So, the electrostatic �eld can be obtained even if α becomes equal to zero.

Remark 5. Following the same procedure as for the Fokker-Planck-Maxwell
system, this reformulation can be generalised for multi-dimension problems with
magnetic �elds.

5.5 Numerical test cases

This section presents two physically relevant numerical experiments where oppo-
site regimes are considered. The �rst one consider two counter-propagating beams
of electrons where the collective electrostatic e�ects are predominant. The second
one deals with the relaxation of a localised temperature pro�le in the quasi-neutral
regime. In this regime collisions between particles dominate.

5.5.1 Two electron beams interaction

In this part we study the interaction between two electron beams. This col-
lisionless test case enables us to study the regime where electrostatic e�ects are
predominant. Therefore for this test case we have Cee = Cei = 0.
Consider two electron beams propagating at velocity v0 and v1. The dispersion
relation is given by

1− 1

(ω − kv0)2
− 1

(ω − kv1)2
= 0,
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where v0 and v1 denote the beams velocities.
This con�guration can lead to electrostatic instabilities. Indeed, the solutions of the
form Ae−iωt+ikx are unstable when ωI the imaginary part of ω is strictly positive.
In the case v0 = −v1 we can show that the solution is stable if kv0 ≥

√
2.

This test is problematic for the M1 model. Indeed, if we consider two electron
beams propagating with equal but opposite velocities the distribution function is
well de�ned. Nevertheless, the M1 model considers only the angular moments f0

and f1. For the calculation of f1 the contribution of two populations cancel out
and we get f1 = 0. The M1 model sees an isotropic con�guration which is not the
reality. To overcome this problem we use the superposition principle that is valid
because the model is linear. Two particle populations (one per beam) are considered.
For each time step the M1 problem is solved for the �rst population then for the
second one. Hence the Maxwell equations are solved taking into account the two
distribution functions.
In the case of two streams propagating with opposite velocities vd and −vd, the
initial conditions are

f(t = 0, x, v) = 0.5[(1 + Acos(kx))Mvd(v) + (1− Acos(kx))M−vd(v)],

with

M±vd(v) = ne(
me

2πkBTe
)3/2exp

(−me(v ∓ vd)2

2kBTe

)
.

The parameter A is introduced to perturb the initial condition in order to enable
the development of the electrostatic instability. The velocity modulus goes from 0
to 12 vth and the space scale from 0 to 25 λDe. With 100 points for the space grid
and 128 points for the velocity modulus grid the results are converged. In Figure
5.1 the distribution function is represented in the phase space for the initial time
and the �nal time t = 30 plasma periods. In this example vd = 4, A = 0.001 and
periodical boundary conditions are used. In the second plot the interaction between
the two streams is observed.

Our results have been compared with a kinetic code [87]. In Figure 5.2, the
evolution of the electrostatic energy is represented as a function of time for the (M1-
AP) code in green and for a kinetic code in red. The �rst plot shows the results
for A=0.001 and the second one for A=0.1. In the case of small perturbations
(A=0.001), the M1 model and the kinetic code give analogous results. In the case
of strong perturbations (A=0.1), the (M1-AP) code and the kinetic code show some
di�erences after a long time. In the case of a strong perturbation, a non-linear
regime is obtained and it is well-known that the M1 model is not accurate enough
[83].

This numerical experiment shows the good behaviour of the (M1-AP) scheme in
a regime where electrostatic e�ects are predominant.
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v/vth

x/λDe x/λDe

Figure 5.1: Distribution function as a function of space and velocity at initial time
(left) and after 30 plasma periods (right).
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Figure 5.2: Temporal evolution of the electrostatic energy (dimensionless units) in
the linear regime (top) and in the non-linear regime (bottom).

5.5.2 Hot spot relaxation

We now study the relaxation of a localised temperature perturbation gener-
ated, for example, by a short laser pulse. Suppose that the laser impulse duration
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is shorter than the relaxation time. This phenomenon investigated in references
[10],[33] corresponds physically to the heating of a plasma during a short time and
to the relaxation phenomenon which follows. Steep temperature gradients due to the
localised heating induce a non-local heat transport. Here, we consider the collisional
regime. This con�guration is particularly interesting because it enables to study the
coupling of theM1 model with the Maxwell-Ampere Asymptotic-Preserving scheme.

Initially the distribution function for electrons is a Maxwellian with a Gaussian
temperature pro�le

Te(x, t = 0) = T0 + T1 exp(− x
2

D2
),

where the hot spot size D is a characteristic scale of inhomogeneity. First we make

a few remarks on the formulation of the problem related to the ambipolar electric
�eld. In the case of a smooth temperature gradient, the following formula for the
electric �eld is obtained [179]

eE

me

= −
∇x

∫
R3 F0v

7dv

6
∫
R3 F0v5dv

,

where F0 is the isotropic part of the electron distribution function. For a Maxwellian
distribution function, this �eld is expressed through the classical formula

eE = −Te
(∇xne

ne
+

5

2

∇xTe
Te

)
.

The local heat �ux is given by the Spitzer-Harm formula [194]

qSH = −κSH∇xTe,

with conductivity
κSH =

128

3π

Z + 0.24

Z + 4.2
nevthλei.

Note that already for D−1λei > 0.06/
√
Z, the classical transport theory is not ap-

plicable.
In a �rst simulation presented here, we choose typical parameters for ICF studies
T0 = 1KeV, T1 = 4KeV and D = 8, 44λei. There is no electric �eld at the initial
time. We choose the specular re�ection as the boundary conditions. The space scale
goes from −80λei to 80λei. The velocity modulus scale goes from 0 to 50vth.

Figure 5.3 shows the evolution of the temperature and electric �eld pro�les until
30 τei. Then at t = 2 τei, we observe that the temperature pro�le starts to relax to
a colder temperature and the electric �eld, which is proportional to the gradient of
temperature, also decreases. The numerical scheme reproduces a good behaviour of
the hot spot relaxation phenomenon.
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Figure 5.3: Representation of the temperature and electric �eld as function of space
for di�erent times.

The results of our M1-Asymptotic-Preserving scheme (M1-AP) have been com-
pared with the ones obtained by a kinetic code [170]. In Figure 5.4, the temperature
and the electrostatic �eld pro�les are represented as a function of space for di�erent
times. The (M1-AP) results are given in green while the kinetic results are in red.
Both results show a good agreement. Small di�erences are observed concerning the
amplitude of the temperature and the electric �eld. The relaxation phenomenon
observed with the (M1-AP) code is faster than the one with the kinetic code.
It is interesting to notice that there is a large di�erence of calculation time. The
simulation with the kinetic code requires the use of 50 processes during several days
while the (M1-AP) code only needs few minutes with one processor. Moreover,
thanks to the rapidity of the M1 Asymptotic-Preserving code a mesh convergence
study has been performed. With 500 points for the space grid and 80 points for the
energy grid the results are converged. The time step used is ∆t = 10−3 τei in order
to respect classical stability conditions.

Remark 6. In this case the parameter α which represents the ratio between the
electron-ion collision frequency and the electron plasma frequency is equal to 4.10−4.
In order to avoid a severe constraint on the time step we use the newM1-Asymptotic-
Preserving scheme. With the same CFL conditions, the classic Maxwell-Ampere
numerical scheme breaks down from the very �rst iterations.

Remark 7. It is important to notice that the Asymptotic-Preserving scheme is
stable even in the case α = 0.

In a second stage, a new simulation was performed in order to compare the
results obtained using the (M1-AP) scheme with the ones obtained using another
kinetic code [24] and a hydrodynamic code based on the classical transport theory
[179]-[194]. For the simulation presented, we choose the parameters T0 = 1KeV,
T1 = 2KeV, Z = 80 and D = 100λei. The results are given at time t = 120τei. The
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Figure 5.4: Comparison of the temperature (left) and electric �eld (right) for a
kinetic code [170] and the M1 Asymptotic-Preserving scheme.

space scale goes from −2500λei to 2500λei. In Figure 5.5, the temperature and the
heat �ux are represented for the three codes. Dimensionless quantities are used here.
It appears that the three temperature pro�les are very close. The hydrodynamic
temperature is slightly smaller than the two others while the (M1-AP) scheme and
the kinetic scheme are in very good agreement. Di�erent heat �ux pro�les are also
compared in Figure 5.5. The (M1-AP) �ux and the kinetic �ux are close and it
appears that the (M1-AP) �ux is slightly more spread out. The hydrodynamic �ux
on the contrary is much larger than the two others and is also more localised. In
this regime, one can again observe the good behaviour of the (M1-AP) scheme. This
scheme gives close results with the kinetic code while the hydrodynamic approach
overestimates the heat �ux.
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Figure 5.5: Comparison of the temperature (left) and heat �ux (right) for a kinetic
code [24], a hydrodynamic code and the M1 Asymptotic-Preserving scheme.
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5.6 Conclusion

In this chapter, we have constructed an Asymptotic-Preserving scheme for the
full Fokker-Planck-Landau-Maxwell system, which handles the quasi-neutral limit
without any contraction of time and space steps. We have �rst established a re-
formulated Fokker-Planck-Landau-Maxwell system then used it to construct the
Asymptotic-Preserving scheme. The method has been extended to the general case
of collisional plasmas in electromagnetic �elds for multi-dimensions problems. An
M1-Asymptotic-Preserving scheme has been derived. Next, the M1-Asymptotic-
Preserving scheme has been implemented and two numerical test cases have been
performed. The �rst one corresponds to a regime where electromagnetic e�ects
are predominant. The second one on the contrary shows the e�ciency of the
Asymptotic-Preserving scheme in the quasi-neutral regime. The scheme, accurate
and fast, works in both regimes. In this chapter, we have scaled the system studied
with the collisional parameter to study the quasi-neutral regime. In the next chapter
the electronic M1 model is studied in the di�usive limit.
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Chapter 6

Asymptotic-preserving scheme for
the electronic M1 model in the
di�usive limit

The study introduced in this chapter has been submitted for publication.

6.1 Introduction

In inertial con�nement fusion, nanosecond laser pulses are used to ignite a
deuterium-tritium target. An accurate description of this process is necessary for
understanding of laser-matter interactions and for the target design. Numerous
physical phenomena such as, parametric [91, 173] and hydrodynamic [82, 191, 203]
instabilities, laser-plasma absorption [190], wave damping [148], energy redistribu-
tion [180] inside the plasma and hot spots formation [33, 170] from which the ther-
monuclear reactions propagates depend on the electron heat transport. The most
popular electron heat transport theory was developed by Spitzer and Härm [194]
who �rst solved the electron kinetic equation by using the expansion of the electron
mean free path to the temperature scale length (denoted ε in this work). Consid-
ering the distribution function of particles close to equilibrium, its deviation from
the Maxwellian distribution function can be computed and the electron transport
coe�cients in a fully ionised plasma without magnetic �eld are derived. However,
even if the electron heat transport is essential, it is not correctly described in large
inertial con�nement fusion tools. Indeed, when the electron mean free path exceeds
about 2.10−3 times the temperature gradient length, the local electron transport
model of Spitzer and Härm fails. The transport coe�cients were derived in the case
where the isotropic part of the electron distribution function remains close to the
Maxwellian function. The results of Spitzer and Härm have been reproduced in
several approaches [9, 32, 192] which develop another technique of solution to the
integral equation for the electron distribution function introduced many years before
by Chapman and Enskog [56] for neutral gases. Therefore, kinetic approaches seem
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necessary in the context of inertial con�nement fusion. In such multiscale issues,
kinetic solvers are often very computationally expensive and usually limited to time
and length much shorter than those studied with hydrodynamic simulations. It is
then a challenge to describe kinetic e�ects using reduced kinetic code on �uid time
scales.

In chapter 2, it has been seen that the angular moments models represent an
alternative method situated between kinetic and �uid models. The M1 model is
largely used in various applications such as the radiative transfer [20, 57, 84, 186,
187, 201, 202] or electronic transport [83, 166]. The M1 model is known to satisfy
fundamental properties such as the positivity of the �rst angular moment, the �ux
limitation and conservation of total energy. Also, it correctly recovers the asymp-
totic di�usion equation in the limit of long time behaviour with important collisions
[85]. One challenging issue is to derive numerical schemes satisfying fundamental
properties. For example, the classical HLL scheme [118] ensures the positivity of the
�rst angular moment and the �ux limitation property. However, this scheme fails in
recovering the correct limit di�usion equation in the asymptotic regime [7]. As ex-
plained in chapter 4, overcoming this major drawback a class of numerical schemes
has emerged over the years called asymptotic-preserving schemes (AP). Asymptotic-
preserving schemes in the sense of Jin-Levermore [128, 129] are designed to handle
multi-scale situations and behave correctly in the asymptotic limit considered. In
this context many works have been performed following di�erent approaches in a
one dimensional framework [6, 27, 30, 80, 92, 147, 155]. In particular, one of the
most productive approach from the work of Gosse-Toscani [107] and which has been
largely extended [20, 22, 38, 44, 53], is based on the modi�cation of approximate
Riemann solvers. Some works also deal with the two dimensional case [21, 45, 46].
In [20], an HLLC scheme is proposed to solve the M1 model of radiative transfer in
two space dimensions. The HLLC approximate Riemann solver is considered and a
relevant numerical approximations of the extreme wavespeeds give the asymptotic-
preserving property. Close ideas were also developed in [19], where a relaxation
scheme is exhibited. In order to derive suitable schemes pertinent for transport
and di�usion regimes, it was proposed to use the modi�ed Godunov-type schemes
in order to include sources terms [110]. The numerical viscosity is modi�ed in
[43, 44, 106, 107] to correctly recover the expected di�usion regimes but extensions
seem to be challenging. In [22], the approximate HLL Riemann solver is modi�ed
to include collisional source term. The resulting numerical scheme satis�es all the
fundamental properties and a clever correction enables to recover the good di�usion
equation in the asymptotic limit.

In this work, we consider the M1 model for the electron transport [83, 166, 167]
in a Lorentzian plasma where ions are �xed. Omitting the x and t dependency, the
�rst three angular moments f0, f1 and f2 of the electron distribution function f are

118 Sébastien GUISSET



6. Asymptotic-preserving scheme for the electronic M1 model in the

di�usive limit

de�ned by

f0(ζ) = ζ2

∫ 1

−1

f(µ, ζ)dµ, f1(ζ) = ζ2

∫ 1

−1

f(µ, ζ)µdµ, f2(ζ) = ζ2

∫ −1

−1

f(µ, ζ)µ2dµ.

(6.1)
The moment system studied writes

∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) + E(x)∂ζf1(t, x, ζ) = 0,

∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) + E(x)∂ζf2(t, x, ζ)

− E(x)

ζ
(f0(t, x, ζ)− f2(t, x, ζ)) = −2αei(x)f1(t, x, ζ)

ζ3
,

(6.2)

The coe�cient αei is a positive function which may depend of x, E represents the
electrostatic �eld as function of x and ζ is the velocity modulus. The fundamental
point of the moments models is the de�nition of the closure which writes the highest
moment as a function of the lower ones. This closure relation corresponds to an
approximation of the underlying distribution function, which the moments system
is constructed from. In the M1 problem we need to de�ne f2 as a function of f0

and f1. As explained in chapter 2, the closure relation originates from an entropy
minimisation principle [160, 175] and the moment f2 can be computed [83, 84] as a
function of f0 and f1

f2(t, x, ζ) = χ
(f1(t, x, ζ)

f0(t, x, ζ)

)
f0(t, x, ζ), with χ(α) ≈ 1 + α2 + α4

3
. (6.3)

The set of admissible states [83] is de�ned by

A =
(

(f0, f1) ∈ R2, f0 ≥ 0, |f1| ≤ f0

)
. (6.4)

A challenging issue is to derive a numerical scheme for the electron M1 model (6.2)
satisfying all the fundamental properties and which handles correctly the di�usive
limit recovering the good di�usion equation. Such a scheme could then have a direct
access to all the nonlocal regimes and their related physical e�ects described above
while the others numerical schemes fail in such regimes. Complications arise when
considering such an issue. Firstly, the electronM1 model (6.2) is nonlinear. Because,
of the entropic closure, the angular moment f2 is a nonlinear function of f0 and f1.
Secondly, the approach undertaken must be su�ciently general to correctly take into
account the source term −E(x)(f0(t, x, ζ)−f2(t, x, ζ))/ζ. One must notice, that this
term is closely related to the term E∂ζf2(t, x, ζ), it plays an important role for low
energies and cannot be treated as a collisional source term. Thirdly, for the purpose
of realistic physical applications, one may require to correctly capture stationary
states. In the case of near-equilibrium con�gurations a well-balancing property is
then desired. Also, the physical parameter αei is a function of x and cannot be
treated as a constant. Finally, the space and velocity modulus dependence of the
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angular moments, leads to a very complex di�usion equation in the asymptotic limit
with mixed derivatives.

In the �rst part of this chapter, the case without electric �eld and the homoge-
neous case with electric �eld are studied. The generalisation to the general problem
requires a deep understanding of the two con�gurations studied here. An exten-
sion to the general model is proposed in a second part. The approach retained is
noticeably di�erent with [19, 20, 118]. The derivation of the numerical scheme is
based on an approximate Riemann solver where the intermediate states are chosen
consistent with the integral form of the approximate Riemann solver. This choice
can be modi�ed to enable the derivation of a scheme which also satis�es the admis-
sibility conditions (6.4) and is well-suited for capturing stationary states. Moreover,
it enjoys asymptotic-preserving properties and correctly handles the di�usive limit
recovering the good di�usion equation.

In the �rst part of this work we introduce the M1 model without electrostatic
�eld and a homogeneous case with electric �eld. The classical HLL scheme [118] in
the di�usive limit is brie�y recalled before introducing the new numerical scheme.
The asymptotic-preserving property is exhibited. In Section 6.3 for the homogeneous
case with electric �eld, we point out di�culties encountered when using a relaxation
approach in order to include the source term −E(x)(f0(t, x, ζ)−f2(t, x, ζ))/ζ. Then,
the derivation of an asymptotic-preserving scheme following the method introduced
in the previous section is detailed and the well-balanced and asymptotic-preserving
properties are analysed. In Section 6.4, di�erent numerical tests are presented to
highlight the e�ciency of the present method.

The second part is extending these ideas and introduce a numerical scheme for
the general electronic M1 model. In section 6.6, the scheme is modi�ed to ensure
the admissibility conditions (6.4) and to capture the non isotropic di�usion then
the asymptotic-preserving property is exhibited. The term −E(x)(f0 − f2)/ζ is
�nally included in the scheme. In Section 6.7, numerical examples are presented to
demonstrate of the e�ciency of the method. A conclusion is given in Section 6.8.

6.2 Case without electrostatic �eld

The �rst simpli�ed case we consider is given by system (6.2) without electrostatic
�eld E. In this case the M1 model (6.2) writes

∂tf0 + ζ∂xf1 = 0,

∂tf1 + ζ∂xf2 = −2αei
ζ3

f1.
(6.5)

A very similar system was considered in [19] in the frame of radiative transfer and a
relaxation scheme was proposed. The same procedure could be applied in this case,
however we introduce a di�erent approach based on approximate Riemann solvers.
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6.2.1 Model and di�usive limit

We consider the following di�usion scaling

t̃ = t/t∗, x̃ = x/x∗, ζ̃ = ζ/vth, Ẽ = Ex∗/vth. (6.6)

The parameters t∗ and x∗ are chosen such that τei/t∗ = ε2, λei/x∗ = ε, where τei is
the electron-ion collisional period , λei the electron-ion mean free path and vth the
thermal velocity de�ned by vth = λei/τei. The positive parameter ε is devoted to
tend to zero. In that case, omitting the tilde notation, system (6.5) rewrites

ε∂tf
ε
0 + ζ∂xf

ε
1 = 0,

ε∂tf
ε
1 + ζ∂xf

ε
2 = −2σ

ζ3

f ε1
ε
,

(6.7)

where the coe�cient σ represents a positive function of x de�ned as

σ(x) =
τeiαei(x)

v3
th

.

Inserting the following Hilbert expansion of f ε0 and f ε1{
f ε0 = f 0

0 + εf 1
0 +O(ε2),

f ε1 = f 0
1 + εf 1

1 +O(ε2),
(6.8)

into the second equation of (6.7) leads to

f 0
1 = 0. (6.9)

Using the de�nition (6.3), it follows that

f 0
2 = f 0

0 /3.

So, the second equation of (6.7) gives

f 1
1 = − ζ

4

6σ
∂xf

0
0 . (6.10)

Using the previous equation and the �rst equation of (6.7) �nally leads to the di�u-
sion equation for f 0

0

∂tf
0
0 (t, x)− ∂x

( ζ5

6σ(x)
∂xf

0
0 (t, x)

)
= 0. (6.11)

Here we have omitted the tilde notation, writing this di�usion equation in non-
rescaled (dimensional) variables we obtain

∂tf
0
0 (t, x)− ∂x

( ζ5

6αei(x)
∂xf

0
0 (t, x)

)
= 0. (6.12)
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6.2.2 Numerical method

In this part, we �rst recall the limit of the HLL scheme, usually used for the
electronic M1 model, for the di�usive limit.

Limit of the HLL scheme

Introduce a uniform mesh with constant space step ∆x = xi+1/2 − xi−1/2, i ∈
Z and a time step ∆t. We consider a piecewise constant approximate solution
Uh(x, tn) ∈ R2 at time tn

Uh(x, tn) = Un
i if x ∈ [xi−1/2, xi+1/2],

with Un
i = t(fn0i, f

n
1i).

The classical HLL scheme [118] for the system (6.11), in the case where the minimum
and maximum velocity waves involved in the approximate Riemann solver are chosen
equal to −ζ and ζ, writes

ε
fn+1,ε

0i − fn,ε0i

∆t
+ ζ

fn,ε1i+1 − f
n,ε
1i−1

2∆x
− ζ∆x

fn,ε0i+1 − 2fn,ε0i + fn,ε0i−1

2∆x2
= 0,

ε
fn+1,ε

1i − fn,ε1i

∆t
+ ζ

fn,ε2i+1 − f
n,ε
2i−1

2∆x
− ζ∆x

fn,ε1i+1 − 2fn,ε1i + fn,ε1i−1

2∆x2
= −2σi

ζ3

fn,ε1i

ε
.

(6.13)

We introduce the discrete Hilbert expansions{
f ε0i = fn,00i + εfn,10i +O(ε2),

fn,ε1i = fn,01i + εfn,11i +O(ε2).
(6.14)

At the order ε−1, the second equation of (6.13) gives

fn,01i = 0,

and using the de�nition (6.3), it follows that

fn,02i = fn,00i /3.

At the order ε0, the second equation of (6.13) gives

fn,11i = − ζ3

3σi

fn,00i+1 − f
n,0
0i−1

2∆x
.

However, because of the di�usive part of the HLL scheme, the �rst equation of
(6.13) also leads to

fn,00i+1 − 2fn,00i + fn,00i−1

∆x2
= 0,

which is not the di�usion equation expected for f 0
0 . The di�usive part of the HLL

scheme gives an unphysical numerical viscosity and leads to the wrong asymptotic
behaviour.
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Derivation of the scheme

The ideas introduced in [19, 22, 28, 110] in order to include the contribution of
source terms, urge to consider approximate Riemann solvers which own a station-
ary discontinuity (0-contact discontinuity). Therefore, we introduce the following
approximate Riemann solvers at each cell interface, denoted by UR(x/t, UL, UR),
de�ned by

UR(x/t, UL, UR) =


UL if x/t < −ax,
UL∗ if − ax < x/t < 0,

UR∗ if 0 < x/t < ax,

UR if ax < x/t,

(6.15)

where UL∗ = t(fL∗0 , f ∗1 ), UR∗ = t(fR∗0 , f ∗1 ) and the minimum and maximum
velocity waves −ax and ax. Note, we choose the two velocity waves to be opposite.
The structure solution of the approximate Riemann problem is displayed in Figure
6.1. At the interface xi+ 1

2
, the quantities UL and UR stand for Ui = t(f0i, f1i) and

Ui+1 = t(f0i+1, f1i+1). Contrarily to the classical HLL scheme [199] two intermediate
states UL∗ and UR∗ are introduced. The second components of the two intermediate
states are chosen equal, ie fL∗1 = fR∗1 = f ∗1 . The approximate solution at time

Figure 6.1: Structure solution of the approximate Riemann problem.

tn + ∆t is chosen as

Uh(x, tn + ∆t) = UR

(x− xi+1/2

tn + ∆t
, Ui, Ui+1

)
if x ∈ [xi, xi+1].

As the following CFL condition is respected

∆t ≤ ∆x

2ax
,
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the piecewise constant approximate solution is then obtained

Un+1
i =

1

∆x

∫ xi+1/2

xi−1/2

Uh(x, tn+1)dx. (6.16)

The intermediate states fL∗0 , fR∗0 and f ∗1 must be de�ned. Integrating the �rst equa-
tion of (6.5) on [−ax∆t, ax∆t]× [0,∆t] and multiplying by 1

2ax∆t
, gives the following

consistency condition

fL∗0 + fR∗0

2
=
fL0 + fR0

2
− 1

2ax
[ζfR1 − ζfL1 ]. (6.17)

The unknowns fL∗0 and fR∗0 will be chosen in order to satisfy this consistency con-
dition (6.17). The same procedure using the second equation of (6.5) gives

f ∗1 =
fL1 + fR1

2
− 1

2ax
(ζfR2 − ζfL2 )− 2

ζ3

1

2ax∆t

∫ ax∆t

−ax∆t

∫ ∆t

0

αei(x)f1(x, t)dtdx. (6.18)

The following approximation is made

1

2ax∆t

∫ ax∆t

−ax∆t

∫ ∆t

0

αei(x)f1(x, t)dtdx = ᾱei∆tf
∗
1 , (6.19)

with ᾱei = α(0). Using (6.19) in (6.18), it follows that

f ∗1 =
ζ3

ζ3 + 2ᾱei∆t

[fL1 + fR1
2

− 1

2ax
(ζfR2 − ζfL2 )

]
.

Finally the following de�nition of f ∗1 is chosen

f ∗1 =
2axζ

3

2axζ3 + 2ᾱei∆x

[fL1 + fR1
2

− 1

2ax
(ζfR2 − ζfL2 )

]
. (6.20)

It will be shown in the next part, that this choice enables to obtain the good
asymptotic-preserving property. Also, this de�nition recovers the formalism intro-
duced in [20, 22]. In order to respect the consistency relation (6.17), the unknowns
fL∗0 and fR∗0 are de�ned by {

fL∗0 = f̃0 − Γ,

fR∗0 = f̃0 + Γ,

with

f̃0 =
fL0 + fR0

2
− 1

2ax
(ζfR1 − ζfL1 ),

and the coe�cient Γ is calculated using the classical Rankine-Hugoniot conditions
fL∗0 = fL0 −

ζ

ax
(f ∗1 − fL1 ),

fR∗0 = fR0 −
ζ

ax
(fR1 − f ∗1 ).

(6.21)
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It follows that

Γ =
1

2
[fR0 − fL0 −

ζ

ax
(fL1 − 2f ∗1 + fR1 )]. (6.22)

In order to satisfy the admissibility conditions (6.4), we propose to modify the states
fL∗0 and fR∗0 such that {

fL∗0 = f̃0 − Γθ,

fR∗0 = f̃0 + Γθ,
(6.23)

where θ ∈ [0, 1] is �xed to ensure the admissibility conditions.

Remark 6.1. In the case θ = 0, the admissibility requirements (6.4) are ful�lled.

Indeed, in this case system (6.23) gives fR∗0 = fL∗0 = f̃0 and f ∗1 is given by (6.20).
Since 2axζ

3/(2axζ
3 +σ∆x) ≤ 1 it follows that f ∗1 ≤ fR∗0 = fL∗0 . Then the parameter

θ is computed as the largest possible such that
fR∗0 − |f ∗1 | ≥ 0,

fL∗0 − |f ∗1 | ≥ 0,

fR∗0 ≥ 0 and fL∗0 ≥ 0.

(6.24)

Equations (6.22), (6.23) and (6.24) lead to the following condition

θ̃ =
f̃0 − |f ∗1 |
|Γ|

≥ 0. (6.25)

Finally, θ is chosen as θ = min(θ̃, 1).
Therefore the unknowns fn+1

0i and fn+1
1i are computed using (6.16)

fn+1
0i =

ax∆t

∆x
fR∗0i−1/2 + (1− 2ax∆t

∆x
)fn0i +

ax∆t

∆x
fL∗0i+1/2,

fn+1
1i =

ax∆t

∆x
f ∗1i−1/2 + (1− 2ax∆t

∆x
)fn1i +

ax∆t

∆x
f ∗1i+1/2.

(6.26)

The wavespeed ax is �xed using the ideas introduced in [19]. It is known that the
electronic M1 model without electric �eld is hyperbolic symmetrizable [160] and the
eigenvalues of the Jacobian matrix always belong in the interval [−ζ, ζ]. Therefore,
we set ax = ζ.

6.2.3 Asymptotic-preserving properties

In this part we prove the asymptotic-preserving property of the scheme (6.20)-
(6.23)-(6.26). It is shown that when ε tends to zero, the scheme (6.20)-(6.23)-(6.26)
is consistent with the limit di�usion equation (6.11).
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Theorem 6.2. When ε tends to zero, the unknown fn+1,0
0i given by the numerical

scheme (6.26)-(6.23)-(6.20) satis�es the following discrete equation

fn+1,0
0i − fn,00i

∆t
− ζ

∆x

[ ζ3

6σ̄i+1/2∆x

[
(ζfn,00i+1−ζf

n,0
0i )
]
− ζ3

6σ̄i−1/2∆x

[
(ζfn,00i −ζf

n,0
0i−1)

]]
= 0.

(6.27)

Proof. Following the same approach as in [20, 22], using the di�usive scaling and
equation (6.26) leads to

ε
fn+1

0i − fn0i
∆t

=
ax
∆x

fL∗0i+1/2 −
2ax
∆x

fn0i +
ax
∆x

fR∗0i−1/2,

ε
fn+1

1i − fn1i
∆t

=
ax
∆x

f ∗1i+1/2 −
2ax
∆x

fn1i +
ax
∆x

f ∗1i−1/2,

(6.28)

where the intermediate states fL∗0 and fR∗0 are given by (6.23) and (6.20) rewrites

f ∗1 =
2axζ

3

2axζ3 + 2σ̄∆x/ε

[fL1 + fR1
2

− 1

2ax
(ζfR2 − ζfL2 )

]
. (6.29)

As soon as ε tends to zero, we obtain f ∗1 = 0. We now suppose that fn1i = 0 in the
limit ε tends to zero. In this case, the de�nition (6.25) leads to

θ̃ =
fL0 + fR0
|fL0 − fR0 |

≥ 1.

Then the parameter θ is equal to 1.

Remark 6.3. In the di�usive regime when ε tends to zero, no limitation on the
intermediates states (6.23) is required.

Using the de�nition (6.23), it follows that the intermediate states fL∗0 and fR∗0

are given by 
fL∗0 = fL0 −

ζ

ax
(f ∗1 − fL1 ),

fR∗0 = fR0 −
ζ

ax
(fR1 − f ∗1 ).

(6.30)

The discrete Hilbert expansions (6.14) are now used. Inserting the previous expres-
sions in the �rst equation of (6.28), considered at the order ε0, gives no information
since the terms cancel each other out. However, at the order ε1, the expressions
(6.30), (6.29) and the �rst equation of (6.28) lead to

fL∗,10 = fL,10 − ζ

ax
(f ∗,11 − f

L,1
1 ),

fR∗,10 = fR,10 − ζ

ax
(fR,11 − f ∗,11 ),

(6.31)

126 Sébastien GUISSET



6. Asymptotic-preserving scheme for the electronic M1 model in the

di�usive limit

with

f ∗,11 = − ζ3

6σ̄∆x

(
ζfR,n,00 − ζfL,n,00

)
, (6.32)

and
fn+1,0

0i − fn,00i

∆t
=

ax
∆x

f ∗,10i+1/2 −
2ax
∆x

fn,10i +
ax
∆x

f ∗,10i−1/2. (6.33)

Inserting expressions (6.31) into (6.33) leads to equation (6.27) which is consistent
with the limit di�usion equation (6.11).
To complete the proof, it is necessary to show that fn1 tends to zero, when ε tends
to zero. Equation (6.16) gives

∆xUn+1
i =

∫ xi

xi−1/2

URdx+

∫ xi+1/2

xi

URdx,

where UR is computed with the approximate Riemann problem (6.15). Then∫ xi

xi−1/2

f1(x,∆t)dx = ax∆tf
∗
1i−1/2 + (

∆x

2
− ax∆t)fn1i,

and ∫ xi+1/2

xi

f1(x,∆t)dx = (
∆x

2
− ax∆t)fn1i + ax∆tf

∗
1i+1/2.

A long but classical calculation [22] leads to

fn+1
1i − fn1i

∆t
+

1

∆x

[ 2ax
2ax + σ̄i+1/2∆x

Fi+1/2 −
2ax

2ax + σ̄i−1/2∆x
Fi−1/2

]
(6.34)

+
1

∆x

[ ∆xσ̄i+1/2

2ax + σ̄i+1/2∆x
(−axfn1i − ζfn2i) +

∆xσ̄i−1/2

2ax + σ̄i−1/2∆x
(−axfn1i + ζfn2i)

]
= 0,

with

Fi+1/2 =
1

2

[
ζfn2i+1 + ζfn2i − ax(fn1i+1 + fn1i)

]
.

Using the di�usive scaling we obtain that fn1i tends to zero when ε tends to zero.

6.2.4 Stability property

The asymptotic-preserving property requires that the scheme should be uni-
formly stable with respect to the small parameter ε. In the case of an uniform
stable scheme the CFL stability condition in di�usive regime should be that of a
di�usion scheme ∆t ≤ 3αei∆x

2/ζ5 (see Eq. 6.12). Also, in the case of a small col-
lisional parameter αei, the time step should be chosen according to the hyperbolic
CFL condition ∆t ≤ ∆x/ζ. An uniform stability property is proved in [141] or [164]
in the framework of linear scalar equations. However, the model considered in this
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work is a nonlinear system and the derivation of such a property is very challenging.
Therefore, for the numerical test cases we consider the CFL condition

∆t ≤ max(∆x/ax, 3αei∆x
2/ζ5). (6.35)

In practice, it has been observed that in the case of a very large collisional parameter
αei the CFL stability condition is that of a di�usion scheme ∆t ≤ 3αei∆x

2/ζ5 and
the proposed AP scheme is not stable. More precisely, in a very di�usive regime
when considering a parabolic CFL condition, it is observed that the quantity fn1i
does not behave in O(ε) in the long time regime as expected (see condition Eq. 6.9).
To overcome this drawback, instead of using the second equation of (6.26), we pro-
pose to consider the classical following scheme to compute fn1i at each time step

fn+1
1i − fn1i

∆t
+ ζ

fn2i+1 − fn2i−1

2∆x
− ax

fn1i+1 − 2fn1i + fn1i−1

2∆x
= −2αei

ζ3
fn+1

1i .

This scheme rewrites

fn+1
1i =

ζ3

ζ3 + 2αei∆t

[
fn1i −∆t

(
ζ
fn2i+1 − fn2i−1

2∆x
− ax

fn1i+1 − 2fn1i + fn1i−1

2∆x

)]
. (6.36)

Obviously this scheme is consistent with the second equation of (6.5) and captures
the correct asymptotic limits (6.9) and (6.10). Here, it is important to notice that
we still consider the �rst equation of (6.26) with the de�nitions (6.23)-(6.22)-(6.25)
to compute fn0i at each time step. This choice enables to correctly capture the
asymptotic limit and the use of the parabolic CFL condition in the di�usive regime.
In addition, the numerical solution needs to satisfy the admissibility requirements
(6.4). Indeed, the correction parameter θ de�ned in (6.25) was proposed considering
the second equation of (6.26) which is now replaced by (6.36). However, it can
be shown that the condition (6.25) also enables the admissibility of the numerical
solution using (6.36).

Proposition 6.4. The numerical scheme (6.22)-(6.23)-(6.25)-(6.26)-(6.36) pre-
serves the admissibility of the numerical solutions.

Proof. We remark that equation (6.36) rewrites

fn+1
1i = α

ax∆t

∆x
f̃1i−1/2 + α(1− 2ax∆t

∆x
)fn1i + α

ax∆t

∆x
f̃1i+1/2, (6.37)

with α = ζ3/(ζ3 + 2αei∆t) ∈ [0, 1] and

f̃1i+1/2 =
fn1i + fn1i+1

2
− 1

2ax
(ζfn2i+1 − ζfn2i).

Using the �rst equation of (6.26) and (6.37) a direct calculation shows that the
condition (6.25) ensure the admissibility of the numerical solution. Also, it can
be seen geometrically since the admissible set is a convex cone and α belongs to
[0, 1].
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6.3 Homogeneous case with electric �eld

The second simpli�ed model studied, is given by (6.2) which is homogeneous in
space but considering an electric �eld. In this section, the di�culties encountered
when using a relaxation-type method to include the source term −E

ζ
(f0 − f2) are

highlighted. Following the same procedure as in the case without electric �eld,
a numerical scheme is proposed and the source term −E

ζ
(f0 − f2) is taken into

account. The scheme presented, satis�es a well-balanced property and is asymptotic-
preserving. The collision coe�cient αei is a function of x and is then constant in the
present case. However, the method proposed here, is able to handle the case where
αei depends on ζ. Without spatial dependence, the model (6.2) simpli�es into

∂tf0 + E∂ζf1 = 0,

∂tf1 + E∂ζf2 −
E

ζ
(f0 − f2) = −2αeif1

ζ3
.

(6.38)

Using the Hilbert expansions (6.8) as in the previous case, the following di�usion
equation is obtained

∂tf
0
0 (t, ζ)− E∂ζ

(Eζ3

6αei
∂ζf

0
0 (t, ζ)− Eζ2

3αei
f 0

0 (t, ζ)
)

= 0. (6.39)

6.3.1 Limit of the relaxation approach

Using the ideas introduced in [19], one can think of deriving a relaxation scheme
for system (6.38). Even if the approach is similar, the relaxation scheme involved
would be signi�cantly di�erent from the one proposed in [19] since the source term
−E

ζ
(f0 − f2) should be added. To assess such an issue, we �rst consider the colli-

sionless case 
∂tf0 + E∂ζf1 = 0,

∂tf1 + E∂ζf2 −
E

ζ
(f0 − f2) = 0.

(6.40)

Setting ∂ζz(ζ) = 1/ζ, we propose the following relaxation model

∂tf0 + E∂ζφ− E(f1 − φ)z′(ζ) = 0,

∂tφ+ E∂ζf0 − 2Ef0z
′(ζ) = µ(f1 − φ),

∂tf1 + E∂ζπ − E(f0 − π)z′(ζ) = 0,

∂tπ + E∂ζf1 − 2Ef1z
′(ζ) = µ(f2 − π),

∂tz = 0,

(6.41)

where φ and π are relaxation variables. In the case µ = 0, the previous system is
hyperbolic, the eigenvalues are −E, 0, E and are associated with linearly degenerate
�elds. Hence, the Riemann problem can be solved.
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Eigenvalue Multiplicity Riemann Invariants Eigenvectors
E 2 f0 + φ, f1 + π, z t(0, 0, 1, 1, 0), t(1, 1, 0, 0, 0)
−E 2 −f0 + φ, −f1 + π, z t(0, 0,−1, 1, 0), t(−1, 1, 0, 0, 0)

0 1 f1
ζ2
, f0

ζ2
, ζ(π − f0/3), ζ(φ− f1/3) t(2f0, f1 − φ, 2f1, f0 − π, 1)

Table 6.1: Features of the Riemann problem

In order to be consistent with the notations [19], we introduce

w = t(f0, φ, f1, π, z), U = t(f0, f1), F(U) = t
(
Ef1, Ef2(f0, f1)

)
,

Lemme 6.5. Let wL,R be equilibrium constant states with φL,R = fL,R1 and πL,R =

fL,R2 . De�ning the initial condition of (6.41) by w0(x) = wL if x < 0 and w0(x) = wR
if x > 0 for µ = 0, the solution of (6.41) writes

w(x, t) =


wL if x/t < −E,
wL∗ if − E < x/t < 0,

wR∗ if 0 < x/t < E,

wR if E < x/t,

(6.42)

with

fL∗,R∗0 =
3(ζL,R)2

4(2(ζR)6 + 2(ζL)6 + 5(ζR)3(ζL)3)

(
(−fR2 − 2fR1 + 3fR0 )(ζR)4

+(−fL2 + 2fL1 + 3fL0 )(ζL)4 + (fL2 + 4fL1 + 3fL0 )(ζR)3(ζL)

+ (fR2 − 4fR1 + 3fR0 )(ζR)(ζL)3
)
,

fL∗,R∗1 =
3(ζL,R)2

4(2(ζR)6 + 2(ζL)6 + 5(ζR)3(ζL)3)

(
(3fR2 − 2fR1 − fR0 )(ζR)4

+(−3fL2 − 2fL1 + fL0 )(ζL)4 + (−3fL2 − 4fL1 − fL0 )(ζR)3(ζL)

+ (3fR2 − 4fR1 + fR0 )(ζR)(ζL)3
)
,

zL∗,R∗ = zL,R,

φL∗ = fL0 + fL1 − fL∗0 , φR∗ = −fR0 + fR1 + fR∗0 ,

πL∗ = fL1 + fL2 − fL∗1 , πR∗ = −fR1 + fR2 + fR∗1 ,

and UL∗,R∗ = t(fL∗,R∗0 , fL∗,R∗1 ) satisfy the admissibility conditions (6.4).
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The computation of the intermediate states UL∗,R∗ is straightforward using the
Riemann invariants given in Table 6.1. A long but easy calculation, using the ex-
pressions gives the admissibility conditions (6.4).
The relaxation model (6.41) enables the computation of a numerical scheme [17, 28,
132] for the model (6.40). However, one notices the complexity of the intermediate
states UL∗,R∗ and an extension including the collisional term −2αeif1/ζ

3 is very chal-
lenging. Di�erent relaxation models were tested in order to include the collisional
source term, but, because of their complexity, they lead to con�gurations where a
Riemann invariant is missing and the problem remains unclosed. In a recent work
[79], the same issue is encountered and an additional relation is arbitrarily imposed.
In the present situation, this strategy leads to particularly inconvenient solutions
and the admissibility conditions are lost.

6.3.2 Numerical method

The numerical approach presented in the case without electric �eld is now con-
sidered. Contrarily to the relaxation-type procedure, this method enables to include
the source term −E

ζ
(f0 − f2) naturally.

Integrating the second equation of (6.38) by
∫ aζ∆t

−aζ∆t

∫ ∆t

0

and multiplying by

1

2aζ∆t
gives the following expression

f ∗1 =
2aζζ

3

2aζζ3 + 2αei∆ζ

[fL1 + fR1
2

− 1

2aζ
(EfR2 − EfL2 ) +

∆ζ

2aζ
SL,R

]
, (6.43)

with

SL,R =
1

2

[E
ζR

(fR0 − fR2 ) +
E

ζL
(fL0 − fL2 )

]
.

The unknowns fL∗0 , fR∗0 , fn+1
0 and fn+1

1 are computed following the same approach
as in the �rst part

fn+1
0i =

aζ∆t

∆ζ
fR∗0i−1/2 + (1− 2aζ∆t

∆ζ
)fn0i +

aζ∆t

∆ζ
fL∗0i+1/2,

fn+1
1i =

aζ∆t

∆ζ
f ∗1i−1/2 + (1− 2aζ∆t

∆ζ
)fn1i +

aζ∆t

∆ζ
f ∗1i+1/2,

(6.44)

where the unknowns fR∗0 and fL∗0 are given by{
fL∗0 = f̃0 − Γθ,

fR∗0 = f̃0 + Γθ,
(6.45)

with

Γ =
1

2
[fR0 − fL0 −

ζ

aζ
(fL1 − 2f ∗1 + fR1 )],
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and

f̃0 =
fL0 + fR0

2
− 1

2aζ
[ζfR1 − ζfL1 ].

Using, the same arguments as in the case without electric �eld, we set aζ = |E|.

6.3.3 Properties

In this part, we are interested in the equilibrium solution of system (6.38). It
is shown that the scheme (6.43)-(6.44)-(6.45) preserves this solution. Then, the
asymptotic-preserving feature of the scheme is exhibited.

A stationary solution of system (6.38) satis�es
E
∂f1

∂ζ
= 0,

E
∂f2

∂ζ
− E

ζ
(f0 − f2) = −2αeif1

ζ3
.

(6.46)

The �rst equation of (6.46) implies that f1 is independent of ζ. Using the de�nitions
of the angular moments (2.1) and the de�nition (6.3), it follows that f1 = 0 and
f2 = f0/3. Indeed the de�nitions (2.1) imply f1 = 0 in ζ = 0. The second equation
of the previous system is solved and gives the equilibrium solution of the model
(6.38) {

f0 = Kζ2,

f1 = 0,
(6.47)

where K is a scalar constant.

Theorem 6.6. The numerical scheme given by (6.43)-(6.44)-(6.45) is well-balanced
in the sense that the stationary states (6.47) are exactly preserved by the scheme.

Proof. Using the stationary states (6.47) into the de�nition (6.43) leads to

f ∗1 =
2aζζ

3

aζζ3 + 2αei∆ζ

[
− 1

3aζ
(EKζ2

R − EKζ2
L) +

∆ζEK

3aζ
(ζR + ζL)

]
.

Since (ζ2
R − ζ2

L) = (ζR + ζL)(ζR − ζL) = (ζR + ζL)∆ζ, the calculation of the previous
equation gives

f ∗1 = 0.

Using the second equation of (6.44) leads to

fn+1
1 = 0.
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With the de�nition (6.23) it follows that
fR∗0 =

1

2
[f0L − θf0L + f0R + θf0R],

fL∗0 =
1

2
[f0R − θf0R + f0L + θf0L].

(6.48)

The initial conditions (6.47) imply that θ = 1 and inserting (6.48) into the �rst
equation of (6.44) give

fn+1
0i =

a∆t

∆ζ
Kζ2

i + (1− 2a∆t

∆ζ
)Kζ2

i +
a∆t

∆ζ
Kζ2

i .

Finally, the previous equation simpli�es to give

fn+1
0i = Kζ2

i .

The stationary solution (6.47) is then preserved by the scheme.

Using the ideas introduced in the �rst section, we obtain that the scheme (6.43)-
(6.44)-(6.45) is consistent with the limit di�usion equation (6.39) in the di�usive
limit.

Theorem 6.7. When ε tends to zero, the unknown fn+1
0 given by the numerical

scheme (6.43)-(6.44)-(6.45) satis�es the following discrete equation

fn+1,0
0i − fn,00i

∆t
− E

∆ζ

[ ζ3
i+1/2

6σ∆ζ

[
(Efn,00i+1 − Ef

n,0
0i )
]
−
ζ3
i−1/2

6σ∆ζ

[
(Efn,00i − Ef

n,0
0i−1)

]
+
ζ3
i+1/2S

n,0
i+1/2

2σ
−
ζ3
i−1/2S

n,0
i−1/2

2σ

]
= 0,

with

Sn,0i+1/2 =
E

3

[fn,00i+1

ζi+1

+
fn,00i

ζi

]
.

Proof. The proof is the same as in the case without electric �eld.

As in the inhomogeneous case without electric �eld, in practice the following
stability CFL condition is used

∆t ≤ max(∆ζ/aζ , 3αei∆ζ
2/E2ζ3

max). (6.49)

Similarly, using the ideas of the �rst part we consider the following scheme to com-
pute fn1i at each time step

fn+1
1i =

ζ3
i

ζ3
i + 2αei∆t

[
fn1i−∆t

(
E
fn2i+1 − fn2i−1

2∆ζ
−aζ

fn1i+1 − 2fn1i + fn1i−1

2∆ζ
+
Sni+1/2 + Sni−1/2

2

)]
,

(6.50)
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where

Sni+1/2 =
1

2

[ E
ζi+1

(fn0i+1 − fn2i+1) +
E

ζi
(fn0i − fn2i)

]
.

This scheme enables the use of the parabolic CFL condition (6.49) in the case of a
large collisional parameter αei. In addition, the well-balanced property is ensured
since the stationary state (6.47) is still preserved by this scheme.

6.4 Numerical examples

In this section we compare the asymptotic-preserving scheme to the standard
HLL scheme [118] and to an explicit discretisation of the di�usion equation in
di�erent regimes. For all the numerical test cases the time step considered for the
asymptotic-preserving scheme is taken as the maximum of the hyperbolic time step
and the di�usion time step (see CFL condition Eq. 6.35). The numerical scheme is
able to work with the di�usion time step when it becomes larger than the hyperbolic
time step.

6.4.1 Free transport without electric �eld

We �rst consider system (6.5), without collisions, to validate the numerical
scheme proposed in (6.20)-(6.23)-(6.26) on a simple advection of an initial pro�le.
The solution is compared with the exact solution. Consider the initial conditions

f0(x, 0) =

√
2

π
exp(−(x+ 5)2

2
),

f1(x, 0) =

√
2

π
exp(−(x+ 5)2

2
),

with periodical boundary conditions. In this case we have �xed ζ = 5. In Figure
6.2, we compare the numerical solution obtained with the scheme (6.20)-(6.23)-
(6.26) displayed in dashed blue with the exact solution in red at time t=6 using
∆x = 4 · 10−3. In Table 6.2 the results of a convergence study are given. The
scheme is �rst order accurate.

6.4.2 Temperature gradient with collisions without electric

�eld

We now consider the system equation (6.5) with collisions to validate the numeri-
cal scheme (6.20)-(6.23)-(6.26) taking into account the collisional part. The solution
obtained with the scheme presented in this paper is compared with the classical
HLL scheme.
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Figure 6.2: Free transport: comparison of the numerical solution for ∆x = 4 · 10−3

and the exact solution (red) at time t=6.

∆x L1 error L1 order L2 error L2 order L∞ error L∞ order
4 · 10−2 0.63 - 0.27 - 0.22 -
2 · 10−2 0.36 0.77 0.17 0.7 0.14 0.65
1 · 10−2 0.20 0.88 0.09 0.83 0.08 0.84

6.66 · 10−2 0.14 0.88 0.06 0.9 0.06 0.87
5 · 10−3 0.11 0.84 0.05 0.92 0.04 0.91
4 · 10−3 0.08 1.09 0.04 0.95 0.03 0.93

Table 6.2: Convergence study of the method. The order of the method is given for
the L1, L2 and L∞ norms.

Consider the initial conditions f0(x, ζ, 0) =

√
2

π

ζ2

Tini(x)3/2
exp

(
− ζ2

2Tini(x)

)
,

f1(x, ζ, 0) = 0,

with
Tini(x) = 2− arctan(x),

and αei = 1. On the right and left boundaries, we use a Neumann boundary con-
dition: the values of f0 and f1 in the boundary ghost cells are set to the values in
the corresponding real boundary cells. The energy range chosen is [0, 12] with an
energy step ∆ζ = 0.1 and the space range is [−40, 40] with a space step ∆x = 0.2.
In Figure 6.3, we compare the numerical solution obtained with the AP scheme
(6.20)-(6.23)-(6.26). The solution obtained with the Asymptotic-preserving scheme
is displayed in continuous lines with the solution given by HLL scheme in dashed
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lines at time 0.25 and 0.5. The Asymptotic-preserving numerical scheme and the
HLL scheme gives comparable results.
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HLL t = 0.25
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Figure 6.3: Temperature gradient: comparison of the temperature pro�le for the
numerical solution (AP) and for the HLL scheme (HLL) at time 0.25 and 0.5.

6.4.3 Temperature gradient in the di�usive regime without

electric �eld

In this numerical test, the same initial and boundary conditions that in the test
case 3.2 are chosen. However, we consider a large collisional parameter and take
αei = 104. The scheme (6.20)-(6.23)-(6.26) is veri�ed in the di�usive regime. The
results are compared with the di�usion solution and with the one obtained with the
HLL scheme.

In Figure 6.4, the numerical solution obtained with the scheme (6.20)-(6.23)-
(6.26) is displayed. The results obtained with the asymptotic-preserving scheme
are displayed in continuous green lines with the solution given by HLL scheme in
continuous purple lines and the di�usion solution in dashed blue lines at time t=50,
t=100, 500 and 1000. The AP numerical scheme and the di�usion solution match
perfectly while we remark for time t = 50 and t = 100 that the HLL scheme gives
very inaccurate results. The results obtained with the HLL scheme at time t = 500
and t = 1000 are completely wrong and are not displayed, however we notice that
in the long time regime the AP numerical scheme and the di�usion solution still
match.
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Figure 6.4: Temperature gradient in the di�usive limit: comparison of the tempera-
ture pro�le of the asymptotic-preserving scheme (AP), the HLL scheme (HLL) and
the di�usion solution at time t=50, 100, 500 and 1000.
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6.4.4 Discontinuous initial condition in the di�usive regime

without electric �eld

In this case, a discontinuous initial condition in the di�usive regime without
electric �eld is considered. The results are compared with the di�usion equation
solution and the HLL scheme. The energy range chosen is [0, 6] with an energy step
∆ζ = 0.1 and the space range L=[−10, 10] with a space step ∆x = 5 · 10−2.

Consider the initial conditions
f0(x, ζ, 0) =


1 if x ≤ L/3,

0 if L/3 ≤ x ≤ 2L/3,

1 if L/3 ≤ x,

f1(x, ζ, 0) = 0,

with periodical boundary conditions and αei = 104. In Figure 6.5, we compare the
numerical solution obtained with the Asymptotic-preserving scheme displayed in red
with the di�usion solution in dashed blue and the HLL scheme in green at time
t=200. The AP and di�usion solutions match perfectly while the HLL scheme is
very inaccurate. In Figure 6.6, the long time behaviour of the numerical solutions is
considered. The AP scheme and the di�usion solution are compared at time t=500,
the results match.
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Figure 6.5: Comparison of the f0 pro�le for the asymptotic-preserving scheme (AP),
for the HLL scheme (HLL) and the di�usion solution at time t=200.
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Figure 6.6: Comparison of the f0 pro�le for the Asymptotic-preserving scheme (AP),
and the di�usion solution at time t=500.

6.4.5 Relaxation of a Gaussian pro�le, in the homogeneous

case in the di�usive regime with electric �eld

We consider system (6.38) with collisions and the source term E
ζ

(f0 − f2) to
validate the numerical scheme (6.43)-(6.44)-(6.45) in the di�usive limit. On the
left and right boundaries, we use Neumann boundary conditions: the values of f0

and f1 in the boundary ghost cells are set to the values in the corresponding real
boundary cells. Here αei = 104 and the energy range chosen is [0, 20] with an energy
step ∆ζ = 10−2. Here we have chosen E = 1 and considered the following initial
conditions  f0(ζ, 0) =

√
2

π
exp(−ζ

2

2
),

f1(ζ, 0) = 0.

In Figure 6.7, we compare the numerical solution obtained with the scheme
(6.43)-(6.44)-(6.45) displayed in red with the di�usion solution in dashed blue and
the HLL scheme at time t=20. The asymptotic-preserving and di�usion solutions
match perfectly while the HLL scheme is very di�usive. In Figure 6.8, the results
obtained with the AP scheme and the di�usion solution are compared in the long
time regime at time t=80.
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Figure 6.7: Relaxation of a Gaussian pro�le: comparison of the f0 pro�le for the
asymptotic-preserving scheme (AP), for the HLL scheme (HLL) and the di�usion
solution at time t=20.
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Figure 6.8: Relaxation of a Gaussian pro�le: comparison of the f0 pro�le for the
asymptotic-preserving scheme (AP) and the di�usion solution at time t=80.

6.4.6 Relaxation of a Gaussian pro�le in the di�usive regime

without electric �eld in the case of a non-constant col-

lisional parameter

In this example, the numerical scheme (6.20)-(6.23)-(6.26) is veri�ed in the dif-
fusive regime without electric �eld in a inhomogeneous collisional plasma. In this
case the coe�cient αei is not constant and follows the linear pro�le

αei(x) = (5x/8 + 15/2) · 103.

Then αei(−4) = 5 · 103 and αei(4) = 104. On the left and right boundaries, we use
Neumann boundary conditions: the values of f0 and f1 in the boundary ghost cells
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are set to the values in the corresponding real boundary cells. The energy range
chosen is [0, 8] with an energy step ∆ζ = 0.1 and the space range [−4, 4] with a
space step ∆x = 5 · 10−2. The initial conditions are the following f0(x, ζ, 0) = ζ2 exp(−x

2

2
),

f1(x, ζ, 0) = 0.

In Figure 6.9, we compare the numerical solution obtained with the asymptotic-
preserving scheme displayed in red with the di�usion solution in dashed blue at
time t=150. In this case, the asymptotic-preserving and di�usion solutions also
match perfectly. The HLL scheme results are not given in Figure 6.9, since the �nal
time t=150 is important the HLL results are completely wrong.
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Figure 6.9: Relaxation of a Gaussian pro�le in the case of a linear collisional param-
eter: comparison of the f0 pro�le for the asymptotic-preserving scheme (AP) and
the di�usion solution at time t=150.

6.5 General model and di�usive limit

In the �rst part of this work, a numerical scheme was proposed for the electron
M1 model in a particular case without electric �eld and in the homogeneous case.
The scheme derived using the consistency with the integral form of the approximate
Riemann solver ensures the admissibility conditions (6.4) and correctly captures the
limit di�usion equation. The method proposed naturally takes into account the
source term −E(x)(f0− f2)/ζ, the non linearity of the model which comes from the
M1 model closure and the spatial dependencies of the electric �eld and the collisional
parameter. However, the general model considering the x and ζ dependences has not
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been considered. In such a general case, mixed derivatives arise in the di�usion limit
leading to complex di�usion equation. In addition, the source term −E(x)(f0−f2)/ζ
also contributes in the limit equation. In this part, the general electronic M1 model
(6.2) is considered. The aim is to propose a numerical scheme, extending the ideas
of the �rst part, in order to take into account the mixed derivatives in the di�usive
limit. Such a scheme must ensure the admissibility conditions (6.4) and include the
contribution of the source term in the di�usion −E(x)(f0 − f2)/ζ limit.
After using the di�usive scaling (6.6), the general model (6.2) writes

ε∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) + E(x)∂ζf1(t, x, ζ) = 0,

ε∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) + E(x)∂ζf2(t, x, ζ)

− E(x)

ζ
(f0(t, x, ζ)− f2(t, x, ζ)) = −2σ(x)

ζ3

f1(t, x, ζ)

ε
.

(6.51)

Inserting the Hilbert expansion (6.8) into the second equation of (6.51) gives at
order ε0

f 1
1 = − ζ

4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0 +

Eζ2

3σ
f 0

0 . (6.52)

Finally, using the previous equation in the �rst equation of (6.2) at order ε1, the
following limit equation is obtained

∂tf
0
0 +ζ∂x

(
− ζ

4

6σ
∂xf

0
0−

Eζ3

6σ
∂ζf

0
0 +

Eζ2

3σ
f 0

0

)
+E∂ζ

(
− ζ

4

6σ
∂xf

0
0−

Eζ3

6σ
∂ζf

0
0 +

Eζ2

3σ
f 0

0

)
= 0.

(6.53)
In the case E = 0, one recognises a classical di�usion equation involving a second
order space derivative with a di�usion coe�cient of −ζ5/6σ. However, in the general
case this limit equation involves mixed x and ζ derivatives leading to a non isotropic
di�usion. In addition, the source term E(f0− f2)/ζ also contributes in the di�usive
limit adding the term (Eζ2/(3σ))f 0

0 in the right side of (6.52) and in the x and ζ
derivatives of (6.53). Such an asymptotic limit is unusual compared to what has
been studied in radiative transfer for example [19, 20]. The di�erence lies in the fact
that here charged particles are considered. Then, the contribution of the electric
�eld must be taken into account leading to these unexpected limit involving mixed
derivatives.

6.6 Numerical scheme

The aim of this part is to propose a numerical scheme, generalising the ideas
introduced in the �rst part, for the general model (6.2) and consistent, in the limit
ε tends to zero, with equation (6.53). The main di�culty comes from the derivation
of a numerical scheme consistent in the di�usive limit with equation (6.53) and in
particular with the mixed-derivatives. The numerical scheme proposed must also be
able to deal with the contribution of the source term E(f0 − f2)/ζ.
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6.6.1 Case without the source term E
ζ (f0 − f2)

We �rst consider the case without the source term E
ζ

(f0− f2). With the present
approach, it will be seen in part 6.6.1 that this term can be naturally taken into
account, therefore, for clarity, we start without considering it. The electronic M1

model then reads
∂tf0(t, x, ζ) + ζ∂xf1(t, x, ζ) + E(x)∂ζf1(t, x, ζ) = 0,

∂tf1(t, x, ζ) + ζ∂xf2(t, x, ζ) + E(x)∂ζf2(t, x, ζ) = −2σ(x)f1(t, x, ζ)

ζ3
,

(6.54)

and its di�usive limit equation

∂tf
0
0 + ζ∂x

(
− ζ4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0

)
+ E∂ζ

(
− ζ4

6σ
∂xf

0
0 −

Eζ3

6σ
∂ζf

0
0

)
= 0. (6.55)

Derivation of the scheme

In this part the derivation of an numerical scheme for the model (6.54) is detailed.
Let us consider an uniform mesh with a constant space step ∆x = xi+1/2− xi−1/2, a
constant energy step ∆ζ = ζi+1/2 − ζi−1/2 and a time step ∆t. Extending the ideas
introduced in the �rst part, we propose to consider the following numerical scheme

Un+1
ij − Un

ij

∆t
=
ax
∆x

UR∗
i−1/2j +

2ax
∆x

Un
ij +

ax
∆x

UL∗
i+1/2j (6.56)

+
aζ
∆ζ

UR∗
ij−1/2 +

2aζ
∆ζ

Un
ij +

aζ
∆ζ

UL∗
ij+1/2,

where the intermediate states of the approximated Riemann solver (see Figure 6.10)
UL∗
i+1/2j, U

R∗
i−1/2j, U

L∗
ij+1/2 and UR∗

ij−1/2 are de�ned by

UR∗
i−1/2j =

(
fR∗0i−1/2j

f ∗1i−1/2j

)
, UL∗

i+1/2j =

(
fL∗0i+1/2j

f ∗1i+1/2j

)
, UR∗

ij−1/2 =

(
fR∗0ij−1/2

f ∗1ij−1/2j

)
, UL∗

ij+1/2 =

(
fL∗0ij+1/2

f ∗1ij+1/2

)
.

The second components of the intermediate states at each interface are chosen equal,
ie fL∗1i+1/2j = fR∗1i+1/2j = f ∗1i+1/2j and f

L∗
1ij+1/2 = fR∗1ij+1/2 = f ∗1ij+1/2.

Following [19], the velocity waves ax and aζ are �xed such that

ax = ζj, aζ = |Ei|.

For clarity, in the following, we omit the dependency of the speed ax in energy and aζ
in space. However, the results presented hold in the general case. If the intermediate
states are de�ned following the �rst part the numerical scheme (6.56) recovers only
the second order space and energy derivatives in the di�usive limit. Therefore, in
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−ax ax

t

x

URUL

U ∗RU ∗L

Figure 6.10: Structure of the approximate Riemann solver.

order to take into account the mixed-derivative terms in the di�usive limit leading
to an anisotropic di�usion, we propose to modify the numerical viscosity of the
intermediate state f ∗1 used in equation (6.20) in the following way

f ∗1i+1/2j = αi+1/2j

[f1i+1j + f1ij

2
− 1

2ax
(ζjf2i+1j−ζjf2ij)−ci+1/2j(

∂f0

∂ζ
)i+1/2j(1−αi+1/2j)

]
,

(6.57)

f ∗1ij+1/2 = βij+1/2

[f1ij+1 + f1ij

2
− 1

2aζ
(Eif2ij+1−Eif2ij)−c̄ij+1/2(

∂f0

∂x
)ij+1/2(1−βij+1/2)

]
.

(6.58)
with

αi+1/2j =
2axζ

3
j

2axζ3
j + σi+1/2∆x

, βij+1/2 =
2aζζ

3
j+1/2

2aζζ3
j+1/2 + σi∆ζ

. (6.59)

In this case, the numerical viscosity contributes in the x and ζ directions. The terms
(∂f0
∂ζ

)i+1/2j, (∂f0
∂x

)ij+1/2 and the coe�cients c and c̄ are �xed in order to obtained the
relevant limit equation (6.53) in the di�usion regime. We set

ci+1/2j =
Ei+1/2∆x

3ax
, c̄ij+1/2 =

ζj+1/2∆ζ

3aζ
. (6.60)

We use an upwind scheme for the discretisation of the terms (∂f0
∂ζ

)i+1/2j and (∂f0
∂x

)ij+1/2.
The coe�cient c̄ is always positive then

c̄ij+1/2(
∂f0

∂x
)ij+1/2 ≈ c̄ij+1/2

f0i+1j+1 − f0ij+1 + f0i+1j − f0ij

2∆x
,

ci+1/2j(
∂f0

∂ζ
)i+1/2j ≈


ci+1/2j

f0i+1j − f0i+1j−1 + f0ij − f0ij−1

2∆ζ
if ci+1/2j < 0,

ci+1/2j
f0i+1j+1 − f0i+1j + f0ij+1 − f0ij

2∆ζ
if ci+1/2j > 0.
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The previous two conditions rewrite

ci+1/2j(
∂f0

∂ζ
)i+1/2j ≈ c−i+1/2j

f0i+1j − f0i+1j−1 + f0ij − f0ij−1

2∆ζ

+ c+
i+1/2j

f0i+1j+1 − f0i+1j + f0ij+1 − f0ij

2∆ζ
,

with (c)+ = max(c, 0) and (c)− = min(c, 0). We introduce the following notations

f̃0i+1/2j =
f1i+1j + f1ij

2
− (ζjf2i+1j − ζjf2ij)

2ax(2− αi+1/2j)
,

f̃1i+1/2j =
f1ij+1 + f1ij

2
− (Eif2ij+1 − Eif2ij)

2aζ(2− βij+1/2)
.

(6.61)

In the �rst part of this work, the intermediate states of the considered approximate
Riemann solvers were de�ned using consistency relations and a corrective coe�cient
to ensure the admissibility conditions. Extending these ideas, the intermediates
states fR∗0i+1/2j and f

L∗
0i+1/2j are de�ned by{

fL∗0i+1/2j = f̃0i+1/2j − Γi+1/2jθ1i+1/2j,

fR∗0i+1/2j = f̃0i+1/2j + Γi+1/2jθ1i+1/2j,
(6.62)

with

Γi+1/2j =
1

2
[f0i+1j − f0ij −

ζj
ax

(f1ij − 2f ∗1i+1/2j + f1i+1j)],

and the coe�cient θ1i+1/2j is �xed in order to ensure the admissibility conditions
(6.4). Similarly, the de�nitions of fR∗0ij+1/2 and fL∗0ij−1/2 read{

fL∗0ij+1/2 = f̃0ij+1/2 − Γij+1/2θ2ij+1/2,

fR∗0ij+1/2j = f̃0ij+1/2 + Γij+1/2θ2ij+1/2,
(6.63)

with

Γij+1/2 =
1

2
[f0ij+1 − f0ij −

ζj
aζ

(f1ij − 2f ∗1ij+1/2 + f1ij+1)].

In order to ensure the admissibility conditions (6.4), the de�nitions of the interme-
diate states f ∗1i+1/2j and f

∗
1ij+1/2 given in (6.57) and (6.58) are modi�ed such that

f ∗1i+1/2j = αi+1/2j

[
f̃1i+1/2j − θ1i+1/2jci+1/2j(

∂f0

∂ζ
)i+1/2j(1− αi+1/2j)

]
, (6.64)

f ∗1ij+1/2 = βij+1/2

[
f̃1ij+1/2 − θ2ij+1/2c̄ij+1/2(

∂f0

∂x
)ij+1/2(1− βij+1/2)

]
. (6.65)

Remark 6.8. In the case θ1i+1/2j = 0 and θ2ij+1/2 = 0, the admissibility require-
ments (6.4) are ful�lled.
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Then θ1i+1/2j and θ2ij+1/2 are �xed in the interval [0, 1], the larger possible such
that the admissibility requirements (6.4) are ful�lled. A simple calculation gives the
following conditions

θ̃1i+1/2j =
f̃0i+1/2j − αi+1/2j|f̃1i+1/2j|

|Γi+1/2j|+ |αi+1/2j(
∂f0
∂ζ

)i+1/2jci+1/2j|
, (6.66)

and

θ̃2ij+1/2 =
f̃0ij+1/2 − βij+1/2|f̃1ij+1/2|

|Γij+1/2|+ |βij+1/2(∂f0
∂ζ

)ij+1/2c̄ij+1/2|
. (6.67)

Finally, θ1i+1/2j = min(θ̃1i+1/2j, 1) and θ2ij+1/2 = min(θ̃2ij+1/2, 1).

Theorem 6.9. (Admissibility) If for all (i, j) ∈ N2, Un
i,j ∈ A, then for all (i, j) ∈ N2,

Un+1
i,j ∈ A as soon as the following CFL condition holds

∆t ≤ ∆ζ∆x

(2ax∆ζ + 2aζ∆x)
.

Proof. The numerical scheme (6.56) also writes as a convex combination of vectors
of A

Un+1
ij =(1− 2ax∆t

∆x
− 2aζ∆t

∆ζ
)Un

ij +
ax∆t

∆x
UR∗
i−1/2j +

ax∆t

∆x
UL∗
i+1/2j

+
aζ∆t

∆ζ
UR∗
ij−1/2 +

aζ∆t

∆ζ
UL∗
ij+1/2,

Using the de�nitions of θ1 and θ2 given in (6.66) and (6.67) the intermediate states
UR∗
i−1/2j, U

L∗
i+1/2j, U

R∗
ij−1/2 and U

L∗
ij+1/2 belong to A. Since A is a convex space it follows

that the updated states Un+1
i belongs to A.

Asymptotic-preserving properties

In this part, the consistency in the classical regime and the asymptotic-preserving
property of the scheme in the di�usive regime are exhibited.

Theorem 6.10. (Consistency in the classical regime) The numerical scheme (6.56)
is consistent, when ∆t and ∆x tend to zero, with the set of equation (6.54).
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Proof. Using the de�nitions (6.57) and (6.58), the second component of (6.56) reads

fn+1
1ij − fn1ij

∆t
=
ax
∆x

[
αi+1/2j

(
f̃1i+1/2j − θ1i+1/2jci+1/2j(

∂f0

∂ζ
)i+1/2j(1− αi+1/2j)

)]
−2ax

∆x
fn1ij

+
ax
∆x

[
αi−1/2j

(
f̃1i−1/2j − θ1i−1/2jci−1/2j(

∂f0

∂ζ
)i−1/2j(1− αi−1/2j)

)]
(6.68)

+
aζ
∆ζ

[
βij+1/2

(
f̃1ij+1/2 − θ2ij+1/2c̄ij+1/2(

∂f0

∂x
)ij+1/2(1− βij+1/2)

)]
−2aζ

∆ζ
fn1ij

+
aζ
∆ζ

[
βij−1/2

(
f̃1ij−1/2 − θ2ij−1/2c̄ij−1/2(

∂f0

∂x
)ij−1/2(1− βij−1/2)

)]
.

Inserting the de�nitions (6.61) into (6.68) and using the following expressions for
αi+1/2j and βij+1/2

αi+1/2j =
2axζ

3
j

2axζ3
j + σi+1/2∆x

= 1−
σi+1/2∆x

2axζ3
j + σi+1/2∆x

,

and

βij+1/2 =
2aζζ

3
j+1/2

2aζζ3
j+1/2 + σi∆ζ

= 1− σi∆ζ

2aζζ3
j+1/2 + σi∆ζ

,

lead to the consistency with the second equation of (6.54) as ∆x and ∆t tend to zero.
A similar calculation gives the consistency with the �rst equation of (6.54).

Theorem 6.11. (Consistency in the di�usive regime)

In the di�usive limit, the numerical scheme (6.56) degenerates into

fn+1,0
0ij − fn,00ij

∆t
=

ζj
∆x

[ ζ4
j

6σi+1/2∆x
(fn,00i+1j − f

n,0
0ij )−

ζ4
j

6σi−1/2∆x
(fn,00i1j − f

n,0
0i−1j)

+
ζ3
jEi+1/2

6σi+1/2

(
∂fn,00

∂ζ
)i+1/2j −

ζ3
jEi−1/2

6σi−1/2

(
∂fn,00

∂ζ
)i−1/2j

]
+
Ei
∆ζ

[Eiζ3
j+1/2

6σi∆ζ
(fn,00ij+1 − f

n,0
0ij )−

Eiζ
3
j−1/2

6σi∆ζ
(fn,00i1j − f

n,0
0ij−1)

+
ζ4
j+1/2

6σi
(
∂fn,00

∂x
)ij+1/2 −

ζ4
j−1/2

6σi
(
∂fn,00

∂x
)ij−1/2

]
.

(6.69)
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Proof. Following the same approach as in [20, 22, 113], using the di�usive scaling
and equation (6.56) leads to

ε
Un+1,ε
ij − Un,ε

ij

∆t
=
ax
∆x

UR∗,ε
i−1/2j −

2ax
∆x

Un,ε
ij +

ax
∆x

UL∗,ε
i+1/2j (6.70)

+
aζ
∆ζ

UR∗,ε
ij−1/2 −

2aζ
∆ζ

Un,ε
ij +

aζ
∆ζ

UL∗,ε
ij+1/2,

and equations (6.64) and (6.65) gives

f ∗,ε1i+1/2j = αεi+1/2j

[
f̃ ε1i+1/2j − θ1i+1/2jci+1/2j(

∂f ε0
∂ζ

)i+1/2j(1− αεi+1/2j)
]
,

f ∗,ε1ij+1/2 = βεij+1/2

[
f̃ ε1ij+1/2 − θ2ij+1/2c̄ij+1/2(

∂f ε0
∂x

)ij+1/2(1− βεij+1/2)
]
.

(6.71)

with

αεi+1/2j =
2axζ

3
j

2axζ3
j + σi+1/2∆x/ε

, βεij+1/2 =
2aζζ

3
j+1/2

2aζζ3
j+1/2 + σi∆ζ/ε

. (6.72)

Then it follows that

f ∗,01i+1/2j = 0 and f ∗,01ij+1/2 = 0. (6.73)

The second component of (6.70) reads

ε
fn+1,ε

1ij − fn,ε1ij

∆t
=
ax
∆x

f ∗,ε1i−1/2j −
2ax
∆x

fn,ε1ij +
ax
∆x

f ∗,ε1i+1/2j

+
aζ
∆ζ

f ∗,ε1ij−1/2 −
2aζ
∆ζ

fn,ε1ij +
aζ
∆ζ

f ∗,ε1ij+1/2.

At order ε0 the previous equation leads to

fn,01ij = 0. (6.74)

In the limit ε tends to zero, the results (6.73) and (6.74) give

θ1i+1/2j = 1, θ2ij+1/2 = 1. (6.75)

Indeed, when ε tends to zero, the de�nitions (6.66) and (6.67) lead to

θ̃1i+1/2j =
fn,00i+1j + fn,00ij

|fn,00i+1j − f
n,0
0ij |
≥ 1, θ̃2ij+1/2 =

fn,00ij+1 + fn,00ij

|fn,00ij+1 − f
n,0
0ij |
≥ 1.

The �rst component of (6.70) reads

ε
fn+1,ε

0ij − fn,ε0ij

∆t
=
ax
∆x

fR∗,ε0i−1/2j −
2ax
∆x

fn,ε0ij +
ax
∆x

fL∗,ε0i+1/2j

+
aζ
∆ζ

fR∗,ε0ij−1/2 −
2aζ
∆ζ

fn,ε0ij +
aζ
∆ζ

fL∗,ε0ij+1/2.

Using the de�nitions (6.62) and (6.63), the result (6.75) and the previous equation
considered at order ε1 gives the numerical scheme (6.69).
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6.6.2 General case with the term E
ζ (f0 − f2)

As speci�ed in part 3.1, in order to take into account the contribution of the
source term E

ζ
(f0−f2), we simply propose to modify the intermediate states f ∗1i+1/2j

and f ∗1ij+1/2 given in (6.64) and (6.65) such that

f ∗1i+1/2j = αi+1/2j

[
f̃1i+1/2j − θ1i+1/2jci+1/2j

(
(
∂f0

∂ζ
)i+1/2j −

S̃i+1/2j

2

)
(1− αi+1/2j)

]
,

(6.76)

f ∗1ij+1/2 = βij+1/2

[
f̃1ij+1/2 +

∆ζ

2aζ
Sij+1/2 − θ2ij+1/2c̄ij+1/2(

∂f0

∂x
)ij+1/2(1− βij+1/2)

]
,

with

S̃i+1/2j =
ζ2
j

3σi

f0i+1j + f0ij

2
and Sij+1/2 =

Ei
2

(f0ij+1 − f2ij+1

ζj+1

+
f0ij − f2ij

ζj

)
.

In this case, as in the previous part the coe�cients θ1 and θ2 are also �xed to ensure
the admissibility requirements.

Theorem 6.12. In the di�usive limit, the numerical scheme given by (6.56)-(6.62)-
(6.63)-(6.76) is consistent with the limit equation (6.53).

Proof. The proof is the same than for Theorem 3, considering the intermediate states
f ∗1i+1/2j and f

∗
1ij+1/2 given in (6.76). A direct calculation using the Hilbert expansions

leads to the result. The terms Sij+1/2 are consistent with the term E
ζ

(f0− f2) while

the terms S̃i+1/2j enable to correctly recover the contribution of the two terms Eζ2

3σ
f0

in the x and ζ derivatives of the limit equation.

6.7 Numerical examples

In this section, the asymptotic-preserving scheme (6.56) is compared with the
HLL scheme and an explicit discretisation of the di�usion equation (6.53) in the
di�usive regime.

6.7.1 Relaxation of a Gaussian pro�le in the di�usive regime

In this example, the numerical scheme (6.56)-(6.62)-(6.63)-(6.76) is validated in
the di�usive regime considering a inhomogeneous plasma with electric �eld. In this
case, the initial conditions are the following{

f0(t = 0, x, ζ) = ζ2 exp(−x2) exp(2(ζ − 3)2),

f1(t = 0, x, ζ) = 0.
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The pro�le of f0 at initial time as a function of x and ζ is displayed in Figure 6.11.
For this test we have set E = 1, αei = 104, the space range chosen is [-10,10] and
the energy range [0,6]. In Figure 6.12, the solution obtained with the numerical
scheme (6.56)-(6.62)-(6.63)-(6.76) is compared with the solution obtained with the
HLL scheme and with an explicit discretisation of the limit di�usion equation (6.53)
at di�erent times. At time t = 1, one remark that the f0 pro�le obtained with the
HLL scheme is already seriously spread out while the pro�les obtained with the
AP scheme and the di�usion equation do not have changed. At time t = 50, the
AP scheme and di�usion equation discretisation f0 pro�les are spread out while the
pro�le obtained with the HLL scheme has vanished. As observed at time t=100, in
the long time regime, the AP scheme and the discretisation of the di�usion equation
behave identically.

x

ζ

 

 

−5 0 5

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

Figure 6.11: f0 pro�le at the initial time.

6.7.2 Relaxation of a temperature pro�le in the di�usive regime

with a self-consistent electric �eld

In this example, we consider the relaxation of a temperature pro�le in the dif-
fusive regime considering a self-consistent electric �eld. The space range is [-40,40]
and the energy range [0,6]. The initial conditions are the following f0(t = 0, x, ζ) =

√
2

π

ζ2

T ini(x)3/2
exp(− ζ2

2T ini(x)
),

f1 = 0,

(6.77)

with T ini(x) = 2− arctan(x).
In this case the electric �eld is self-consistent meaning that at each time step it

is calculated from the plasma pro�le. In this case we consider a Spitzer type model
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Figure 6.12: Representation of the f0 pro�le as function of x and ζ at time t=1 (top),
t=50 (middle), t=100 (bottom), for the HLL scheme (left), AP scheme (middle) and
the di�usion equation.

[32, 194], to evaluate the electric �eld

E(x) = −dT (x)

dx
, (6.78)

where

T (x) =
1

3ne

(∫ +∞

0

ζ2f0dζ − u2ne

)
,

with

ne =

∫ +∞

0

f0dζ, and u =
1

ne

∫ +∞

0

f1ζdζ.

In Figure 6.13, the temperature pro�le is displayed at the initial time and at time
t=80. The temperature pro�les obtained with the HLL scheme, the AP scheme
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and a discretisation of the di�usion equation (6.53) are compared at time t=80.
On one hand, one remark that the HLL temperature pro�le is excessively spread
out compared to the AP and di�usion pro�les while on the other hand the AP
and di�usion pro�les match exactly at time t=80. This example demonstrates the
inability of the HLL scheme in capturing the correct temperature pro�le while the
AP scheme presented handle perfectly the di�usive limit regime.

-40 -20 0 20 40
0

1
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3

4

Initial condition
HLL
AP
diffusion

Figure 6.13: Temperature pro�le at time t=80.

6.7.3 Two electron beams interaction.

In this example the interaction between two electron beams is considered. This
collisionless test case enables us to validate the AP scheme (6.56)-(6.62)-(6.63)-(6.76)
in a regime where electrostatic e�ects are predominant compared to the collisional
e�ects, therefore we set αei = 0.
In the case of two streams propagating with opposite velocities vd and −vd, the
initial electron distribution function is the following

f(t = 0, x, v) = 0.5[(1 + A cos(kx))Mvd(v) + (1− A cos(kx))M−vd(v)],

with

M±vd(v) = exp
(
− (v ∓ vd)2

2

)
.

The �rst corresponding angular moments f 1
0 and f 2

0 of the �rst and second popula-
tion read

f 1
0 (t = 0, x, ζ) = 0.5(1 + A cos(kx))

ζ

vd

(
exp(−(ζ − vd)2

2
)− exp(−(ζ + vd)

2

2
)
)
,

f 2
0 (t = 0, x, ζ) = 0.5(1− A cos(kx))

ζ

vd

(
exp(−(ζ − vd)2

2
)− exp(−(ζ + vd)

2

2
)
)
.
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The second angular moments f 1
1 and f 2

1 of the �rst and second population read
f 1

1 (t = 0, x, ζ) = 0.5(1 + A cos(kx))
1− ζvd
v2
d

(
exp(−(ζ − vd)2

2
)− exp(−(ζ + vd)

2

2
)
)
,

f 2
1 (t = 0, x, ζ) = −0.5(1− A cos(kx))

1− ζvd
v2
d

(
exp(−(ζ − vd)2

2
)− exp(−(ζ + vd)

2

2
)
)
.

At each time step, the electrostatic �eld is computed using the Maxwell-Ampere
equation considering the contribution of the two population of particles

dE

dt
=

∫ +∞

0

f 1
1 ζdζ +

∫ +∞

0

f 2
1 ζdζ.

The parameter A is introduced to perturb the initial condition in order to enable the
development of the electrostatic instability. The energy range chosen is [0,12] and
the space range is [0,25]. In this example we set vd = 4, A = 0.001 and periodical
boundary conditions are used. The results have been compared with a kinetic code
[87]. In Figure 6.14, the evolution of the electrostatic energy is displayed as a
function of time using the AP scheme in red and the kinetic code in dashed blue. The
AP scheme and the kinetic code give analogous results. This numerical experiment
shows the good behaviour of the AP scheme in a regime where electrostatic e�ects
are predominant.

0 10 20 30
-20

-10

0

lo
g
(E
)

AP
kinetic

Figure 6.14: Temporal evolution of the electrostatic energy.

6.7.4 Relaxation of a temperature pro�le in the di�usive regime

with a self-consistent electric �eld and non-constant

collisional parameter

In this example, the initial conditions are the same than for the previous exam-
ple where the initial temperature pro�le is given by (6.77) and the electric �eld is
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computed using (6.78). In this case the collisional parameter αei is not constant and
follows the linear pro�le

σ(x) = ax+ b,

with αei(xmin = −40) = 5.103 and αei(xmax = 40) = 105. It follows that the
coe�cients a and b reads

a =
105 − 5.103

xmax − xmin
, b = 5.103 − axmin.

The space range is [-40,40] and the energy range [0,6]. In Figure 6.15, the temper-
ature pro�le is displayed at the initial time and at time t=5000 for the AP scheme
and an explicit discretisation of the di�usion equation (6.53). After a long time
(t=5000) and despite the strong spatial variation of the function αei the AP and
di�usion pro�les give very close result. One remark on the space interval [-40,0] the
AP curve in red is slightly di�erent to the di�usion curve in dashed blue while on the
interval [0,40] the results match perfectly. This could be explained as the collisional
parameter αei becomes larger for important x, therefore, the limit di�usive regime
is fully reach for large x where the comparison with the di�usion equation is valid.
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Diffusion

Figure 6.15: Temperature pro�le at time t=5000.

6.7.5 Case variable self-consistent collisional parameter

In the con�gurations occurring in plasma physics, the collisional parameter de-
pends of the state of the plasma. The knowledge of the ion and electron distribution
function is required to compute the collisional parameter. Therefore in this test case,
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we choose to consider a nonlinear collisional parameter which depends of the solution
itself

αei(t, x, ζ) = exp(f0(t, x, ζ) + f1(t, x, ζ)).

In this case, E = 1, the space range chosen is [-10,10] and the energy range [0,6].
The initial condition is given by{

f0(t = 0, x, ζ) = ζ2 exp(−(ζ − 3)2)) exp(−x2/10),

f1 = 0.

We consider periodical boundary conditions. In Figure 6.16, the initial pro�le of
f0 is displayed at the initial time and at time t=3.
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Figure 6.16: Representation of the f0 pro�le as function of x and ζ at the initial
time (left) and t=3 (right).

6.8 Conclusion

In the �rst part of this work, a numerical scheme has been proposed for the
electron M1 model in the case without electric �eld and in the homogeneous case
with electric �eld. We have exhibited an approximate Riemann solver that satis�es
the admissibility conditions. Contrarily to the HLL scheme, the proposed numerical
scheme is asymptotic-preserving and recovers the correct di�usion equation in the
di�usive limit. It has been shown, in the homogeneous case, that the method pre-
sented, enables to include the source term −E(f0 − f2)/ζ, while a relaxation type
method seems inconvenient. In addition, the scheme is well-balanced, capturing the
steady state considered. Several numerical tests have been performed, it has been
shown that the presented scheme behaves correctly in the classical regime and in
the di�usive limit. Indeed, while, the HLL scheme is very inaccurate in the di�u-
sive regime, the asymptotic-preserving scheme matches perfectly with the expected
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di�usion solution. Also, the method correctly handles the case where the collisional
parameter is not constant.

In the second part of this work, the approach has been extended to the general
electronic M1 model (6.2). In order to deal with the mixed derivatives which arise
in the di�usive limit an anisotropic numerical viscosity has been considered. The
numerical scheme preserves the realisibility domain and captures the correct limit
equation. The contribution of the source term E(f0 − f2)/ζ is integrated and the
cases of non constant electric �eld and collisional parameter are naturally included.
Numerical examples have been performed in non-collisional and di�usive regimes.
It has been observed that the present scheme behaves correctly in both regimes. A
possible perspective could be to consider an electron-electron collisional operator or
the study of the coupling with the Maxwell's equations.
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Chapter 7

Angular M1 model in a moving
reference frame

7.1 Introduction

This chapter is a �rst step towards the modelling and simulation of the multi-
species particles transport. Previously, the electron transport studies were per-
formed considering immobile ions [86, 168]. Indeed, because of their large mass
compared to electrons, the ion motion could be neglected when considering small
time intervals. However, if long time studies are considered, the ions motion needs
to be taken into account. This would give access to a general and interesting physics
relevant to the inertial con�nement fusion applications. A signi�cant work is then
required in order to consider angular moments models for the multi-species particles
transport studies. The long time perspective is to be able to work with charged
particles of di�erent species such as electrons and ions. In order to simplify the form
of the electron-ion collisional operator and in order to ensure the galilean invariance
property of angular moments models we will work in the framework of ions. This
is signi�cantly di�erent with the previous studies, since the M1 model [85, 115, 117]
has always been considered in the framework of immobile ions.

However, before considering complex con�gurations dealing with charged par-
ticles interactions, in the present chapter, we only consider the case on species of
non-charged particles and work in the frame of the mean velocity. Here, the velocity
framework is centred on the particle mean velocity. Therefore, this study can be
seen as a �rst step towards multi-species modelling since the problem investigated
here contains some of the main di�culties encountered in the case of multi-species
charged particles. Also, even if the long time perspective is the study of multi-species
charged particles, the present approach is already relevant when considering neutral
gas dynamics applications. Indeed, at our knowledge it is the �rst time that the M1

angular moments model is used for the rare�ed gas dynamic.
In order to derive the M1 angular moments model in the mean velocity frame,

a velocity change is considered to derived the kinetic equation in a moving frame.
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Note, that rescaled velocity approaches are largely used in di�erent context see
[23, 96, 176] for example. However, the numerical treatment of the additional terms
which appear when considering such a procedure on the kinetic equation can be
challenging. In [95], in the context of granular �ows, a numerical algorithm based
on a relative energy scaling is proposed. Then, a clever de-coupling with the hydro-
dynamics equation is used to avoid the problems related to the change of scales in
velocity variables. In this work the velocity framework is chosen centred on the mean
velocity of the particles and enables the reduction of the velocity modulus grid. The
Galilean invariance property for maximum entropy moments systems is discussed
in details in [133]. It is shown that the choice of non-polynomial weight function
leads to moments systems incompatible with the Galilean invariance property. In
the present case, angular moments models are investigated, it is pointed out that
working in the mean velocity enables to ensure the Galilean invariance property of
the model.

The plan of this chapter is the following. First of all, the derivation of the
angular M1 moments model in the mean velocity frame is introduced. The choice
of the mean velocity framework in order to enforce the Galilean invariance property
of the model is highlighted. In addition, it is shown that the model rewritten
in terms of the entropic variables is Friedrichs-symmetric. Also, the derivation of
the associated conservation laws and the zero mean velocity condition are detailed.
Secondly, a suitable numerical scheme, preserving the realisability requirement of
the numerical solution for the angular M1 moments model in the mean velocity
frame is proposed. In order to enforce the correct discrete energy conservation
and the zero mean velocity condition, a correction of the numerical solution is also
presented. Thirdly, some numerical results obtained considering several test cases in
di�erent collisional regimes are displayed. Finally, some conclusion and perspectives
are given.

7.2 Derivation of the model

Velocity change of variables procedures are used in various contexts (see [23,
95, 96, 176] for example) and can enable the simpli�cation of a collisional operator
form or the reduction of the velocity grid size used for numerical applications. In
the context of angular moments models [83], it will be seen in the next section
that moving frame formulations play an important role in enforcing the Galilean
invariance property. In order to explain in details this point, in this section we
introduce the kinetic formulation in a moving frame from which the M1 angular
moments model studied is derived.
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7.2.1 Kinetic equation in a moving frame

We start considering the following kinetic equation written in the laboratory
framework

∂f(α)

∂t
+ divx(vf(α)) = C(f(α)), (7.1)

where f represents the particle distribution function and α = (t, x, v) ∈ R+
t ×R3

x×R3
v.

The form of the collisional operator C is not detailed here but only the properties
used in this study will be detailed.

We consider the vector F (α) ∈ R+
t × R3

x × R3
v de�ned as

F (α) =

 f(α)
vf(α)

0

 ,

then the kinetic equation (7.1) rewrites under the following form

divα(F (α)) = C(f(α)).

Introducing φ ∈ C∞c (R+
t ×R3

x×R3
v;R), we consider the associated weak formulation∫

α∈R+
t ×R3

x×R3
v

(
divα(F (α))− C(f(α))

)
φ(α)dα = 0,

which rewrites ∫
α∈R+

t ×R3
x×R3

v

∂αφ(α)F (α) + C(f(α))φ(α)dα = 0. (7.2)

In order to derive the kinetic equation in a moving velocity frame the following set
of coordinates is considered

tβ = (τ, y, c) = (t, x, v − u(t, x)),

where u is a relative velocity which depends of time and space. In particular, we
de�ne the C1-di�eomorphism Φ as

β = Φ(α).

We remark here that only the velocity coordinates are transformed while time and
space coordinates are kept unchanged. Eq. (7.2) considered in the new set of
variables rewrites∫
β∈R+

t ×R3
y×R3

c

[
∂αφ(Φ−1(β))F (Φ−1(β)) + C(f(Φ−1(β)))φ(Φ−1(β))

]
| det JΦ−1|dβ = 0,

(7.3)
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where det JΦ−1 is the determinant of the Jacobian matrix of the transformation. For
this transformation det JΦ−1 = 1, indeed the Jacobian matrix JΦ reads

JΦ =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

−∂tu1 −∂x1u1 −∂x2u1 −∂x3u1 1 0 0
−∂tu2 −∂x1u2 −∂x2u2 −∂x3u2 0 1 0
−∂tu3 −∂x1u3 −∂x2u3 −∂x3u3 0 0 1


.

The following quantities expressed in the mobile framework are introduced

G(β) = F (Φ−1(β)), g(β) = f(Φ−1(β)) and Ψ(β) = φ(Φ−1(β)).

In order to express ∂αφ(Φ−1(β)), one remarks that

∂βΨ(β) = ∂αφ(Φ−1(β))∂β(Φ−1)(β).

Then by derivation of a reciprocal function

∂βΦ−1(β) = (∂αΦ(Φ−1(β)))−1,

it follows that
∂αφ(Φ−1(β)) = ∂βΨ(β)(∂αΦ(Φ−1(β))).

Using the two previous equations, equation (7.3) rewrites∫
β∈R+

t ×R3
y×R3

c

∂βΨ(β)∂αΦ(Φ−1(β))G(β)) + C(g(β))Ψ(β)dβ.

Finally for all Ψ(β) ∈ C∞c (R+
τ × R3

y × R3
c ;R)∫

β∈R+
t ×R3

y×R3
c

[
divβ(∂αΦ(Φ−1(β))G(β))− C(g(β))

]
Ψ(β)dβ = 0,

it follows that
divβ(∂βΦ(Φ−1(β))G(β)) = C(g(β)).

In the case of the present change of variables

∂βΦ(Φ−1(β))G(β) =

 g(β)
vg(β)

−(
∂u

∂t
+
∂u

∂x
v)g(β)

 .

Finally, using the fact that v = c + u(x, t), one obtains the kinetic equation in a
moving velocity frame

∂τg(β) + divy((c+ u)g(β))− divc
[
(∂τu+ ∂yu(c+ u))g(β)

]
= C(g)(β).
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Since time and space are unchanged by the change of variable

∂tg(t, x, c) + divx((c+ u)g(t, x, c))− divc
[
(∂tu+ ∂xu(c+ u))g(t, x, c)

]
(7.4)

= C(g(t, x, c)).

This equation is used in the next sections to derive the angular M1 moments model
in a moving reference frame. Of course, an additional evolution equation is required
to compute the velocity u. In this work, the velocity u is chosen as the particles
mean velocity in the �xed frame (laboratory frame). In order to derive the evolution
equation for u, the kinetic equation (7.1) is integrated in velocity. This leads to the
following conservation laws

∂n

∂t
+ divx(nu) = 0, (7.5)

∂(nu)

∂t
+ divx(

∫
v

fv ⊗ vdv) = 0.

Injecting the following expansion into (7.5)

v ⊗ v = (v − u)⊗ (v − u) + (v − u)⊗ u+ u⊗ (v − u) + u⊗ u,

and by using the following identities∫
v

u⊗ ufdv = nu⊗ u,∫
v

u⊗ (v − u)fdv = u⊗
∫
v

(v − u)fdv = 0,∫
v

(v − u)⊗ ufdv =

∫
v

(v − u)fdv ⊗ u = 0,

one obtains the evolution equation for u expressed in the new frame quantities

∂(nu)

∂t
+ divx(nu⊗ u) + divx(

∫
v

g(c)c⊗ cdc) = 0, (7.6)

where

n =

∫
c

g(c)dc.

7.2.2 M1 angular moments model in a moving frame

The M1 angular moments model in a moving frame is derived by performing an
angular moments extraction of the kinetic equation (7.4). One de�nes the following
three �rst angular moments of the distribution function g

g0(ζ) = ζ2

∫
S2

g(Ω, ζ)dΩ, g1(ζ) = ζ2

∫
S2

g(Ω, ζ)ΩdΩ, g2(ζ) = ζ2

∫
S2

g(Ω, ζ)Ω⊗ΩdΩ,
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where S2 is the unit sphere.
The complete derivation of the M1 angular moments model in a moving frame is
given in Appendix B. Removing the collisional operators contribution, the studied
model reads

∂tg0 + divx(ζg1 + ug0)− ∂ζ
(du
dt
.g1 + ζ∂xu : g2

)
= 0,

∂tg1 + divx(ζg2 + u⊗ g1)− ∂ζ
(
g2
du

dt
+ ζg3

∂u

∂x

)
+
g0Id− g2

ζ

du

dt
+ (

∂u

∂x
g1 − g3

∂u

∂x

)
= 0,

(7.7)

where
du

dt
is de�ned as

du

dt
=
∂u

∂t
+
∂u

∂x
u,

and the third order moments g3 as

g3(ζ) = ζ2

∫
S2

g(Ω, ζ)Ω⊗ Ω⊗ ΩdΩ. (7.8)

The evolution law (7.6), expressed in terms of the angular moments rewrites

∂(nu)

∂t
+ divx(nu⊗ u) + divx(

∫ +∞

0

g2(ζ)ζ2dζ) = 0. (7.9)

As explained in Chapter 2, one needs to close the set (7.7) by expressing the higher
order moments g2 and g3 as function of g0 and g1. Using the M1 minimisation
problem introduced in Chapter 2, we recall that the distribution function from
which the angular moments are derived writes

g(t, x, ζ,Ω) = exp(a0(t, x, ζ) + a1(t, x, ζ).Ω), (7.10)

where a0 is a scalar function and a1 a vector valued function. Then extending the
ideas of [83, 85, 160] one can show that the closure relation for g2 is given by

g2 = g0

(3χ(α)− 1

2

g1

|g1|
⊗ g1

|g1|
+

1− χ(α)

2
Id
)
, (7.11)

where

χ(α) =
1 + |α|2 + |α|4

3
, α = g1/g0. (7.12)

Similarly the higher order moment g3 reads

g3 =
(3|g1| − χ2g0

2

) g1

|g1|
⊗ g1

|g1|
⊗ g1

|g1|
+
χ2g0 − |g1|

2

( g1

|g1|
∨ Id

)
, (7.13)

164 Sébastien GUISSET



7. Angular M1 model in a moving reference frame

with

χ2(α) =
3|α| − |α|3 + 3|α|5

5
,

and

g1

|g1|
∨ Id =

g1

|g1|
⊗ e1 ⊗ e1 + e1 ⊗

g1

|g1|
⊗ e1 + e1 ⊗ e1 ⊗

g1

|g1|
+
g1

|g1|
⊗ e2 ⊗ e2 + e2 ⊗

g1

|g1|
⊗ e2 + e2 ⊗ e2 ⊗

g1

|g1|
+
g1

|g1|
⊗ e3 ⊗ e3 + e3 ⊗

g1

|g1|
⊗ e3 + e3 ⊗ e3 ⊗

g1

|g1|
.

Before studying the models properties, the realisability conditions associated to the
model (7.7) are introduced

A =
(

(g0, g1) ∈ R2, g0 ≥ 0, |g1| ≤ g0

)
. (7.14)

Since the distribution function g is a nonnegative quantity the realisability conditions
(7.14) naturally needs to be satis�ed. In addition, these conditions are related to the
existence of a nonnegative distribution function from which the angular moments
can be derived [182].

7.3 Model properties

In this section the main properties of the angular M1 model in a moving frame
(7.7-7.9) are presented. It is �rst proved that the choice of working in the mean
velocity frame enables to ensure the Galilean invariance property of the model.
Secondly it is shown that this model, rewritten in terms of entropic variables, is
Friedrichs-symmetric. Finally, the derivation of the conservation laws is detailed.

7.3.1 Galilean invariance property

Galilean invariance is a fundamental feature of the Boltzmann equation. Follow-
ing [133], we start de�ning translational and rotational transformations. For any
vector s ∈ Rd and any rotation matrix R ∈ SO(d)

(Tsf)(v) = f(v − s), (TRf)(v) = f(Rv), v ∈ Rd.

The following translational and rotational invariance properties of the collisional
operator C are considered

TsC(f) = C(Ts(f)), TRC(f) = C(TR(f)). (7.15)

Note that the Boltzmann collision operator or the BGK collision operator satisfy
such properties. Using equation (7.15) the Galilean invariance property of the kinetic
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equation (7.1) can be shown. Indeed, the reference coordinates system (t, x, v) and
a new set of coordinates (t, x̃, ṽ) can be linked by the following relations

x̃ = Rx− st, ṽ = Rv − s, (7.16)

for any constant vector s ∈ Rd. Distribution function f̃ in the moving frame is
de�ned as

f̃(t, x̃, ṽ) = f(t, x, v).

Consequently the following relations can be derived

∂tf(t, x, v) = ∂tf̃(t, x̃, ṽ)− s.∂xf̃(t, x̃, ṽ), ∂xf(t, x, v) = R∂x̃f̃(t, x̃, ṽ).

Therefore using (7.1), it follows that f̃ satis�es

∂tf̃(t, x̃, c̃) + divx̃(ṽf̃(t, x̃, c̃)) = C(f̃(t, x̃, c̃)), (7.17)

which shows the Galilean invariance of (7.1).

The same property cannot be directly obtained when considering angular mo-
ments models. Indeed, when integrating (7.1) on the unit sphere and applying the
change of variables (7.16) on the resulting M1 angular moments model gives non-
linear terms and one observes that the form of the M1 model is not invariant. In
order to overcome this drawback, in this study, we propose to not derive the M1 an-
gular moments model from the kinetic equation (7.1) but from the kinetic equation
(7.4) which is expressed in a mobile reference frame. In particular, in this work the
velocity u used in (7.4) is chosen as the particles mean velocity de�ned by

u =
1

n

∫
R3

f(v)vdv. (7.18)

In order to show the advantage in deriving theM1 angular moments model from the
kinetic equation (7.4), the kinetic equation (7.17) is rewritten in its mean velocity
frame. This second kinetic equation expressed in a mobile frame reads

∂tg̃(t, x̃, c̃) + divx̃((c̃+ ũ)g̃(t, x̃, c̃))− divc̃
[
(∂tũ+ ∂x̃ũ(c̃+ ũ))g̃(t, x̃, x̃)

]
(7.19)

= C(g̃(t, x̃, c̃)),

where

ũ =
1

n

∫
R3

f̃(ṽ)ṽdṽ. (7.20)

The key point which will be useful when considering angular moments models is the
relation between the two kinetic equations (7.4) and (7.19). Indeed, the two relative
velocities u and ũ are linked through the following relation

ũ = Ru− s. (7.21)
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Therefore, we propose to consider the following change of variable

x̃ = Rx− st, c̃ = Rc, ũ = Ru− s. (7.22)

Indeed, by injecting the change of variable (7.21-7.22) into (7.4) and using the fol-
lowing relations

∂tu = tR(∂tũ− (∂x̃ũ)s),

∂xu = tR(∂x̃ũ)R,
(7.23)

and
∂tg = ∂tg̃ − (∂x̃g̃)s,

∂xg = (∂x̃g̃)R,

∂cg = (∂c̃g̃)R,

(7.24)

a direct calculation enables to recover equation (7.19). The relationships between
the di�erent studied framework are summarised on Fig 7.1. The starting point
is the kinetic equation (7.1) expressed in the �xed frame, denoted A0. Since this
kinetic equation is Galilean invariant, one obtains (7.17) denoted B0, by using (7.16).
Secondly, the kinetic equation in a mobile frame (7.4) denoted A has been derived.
In the present case u is the particles mean velocity de�ned in (7.18). The same
procedure can be applied on (7.17) to obtain (7.19), denoted B. Finally, one remarks
that (7.4) and (7.19), denoted A and B are linked by the change of variable (7.22).
The change of variables (7.22) makes the link between equations (7.4) and (7.19)

x̃ = Rx− st
ṽ = Rv − s

x̃ = Rx− st
c̃ = Rc
ũ = Ru− s

A0 : �xed frame

∂tf + divx(vf) = C(f)

A : Mobile frame

∂tg + divx((c+ u)g)

−divc
[
(∂tu+ ∂xu(c+ u))g

]
= C(g)

B0 : Uniform translation frame

∂tf̃ + divx̃(ṽf̃) = C(f̃)

B : Uniform translation
mobile frame

∂tg̃ + divx̃((c̃+ ũ)g̃)

−divc̃
[
(∂tũ+ ∂x̃ũ(c+ ũ))g̃

]
= C(g̃)

c = v − u(t, x)

nu(t, x) =
∫
v
fvdv

c̃ = ṽ − ũ(t, x̃)

nũ(t, x̃) =
∫
ṽ
f̃ ṽdṽ

Figure 7.1: Diagram relation between the di�erent frames

relevant when considering angular moments models. Indeed, this change of variable
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also enables to link the angular M1 model derived from the kinetic equation (7.4)
to the angular M1 model derived from the kinetic equation (7.19). This point is
detailed in the following result.

Theorem 7.1. (Galilean invariance property)
The form of the M1 angular moments model (7.7-7.9) expressed in the mean velocity
frame is invariant by rotational and translational transformations.

Proof. Before showing the Galilean invariance property of the M1 angular moments
model (7.7-7.9), we de�ne the quantities in the new frame. Consider the velocity
modulus ζ̃ and Ω̃ the angular direction in the mobile frame

ζ̃ = |c̃|, c̃ = ζ̃Ω̃,

we de�ne the two �rst angular moments g̃0 and g̃1 in the mobile frame

g̃0 = ζ̃2

∫
S̃2

g̃(t, x̃, c̃)dΩ̃, g̃1 = ζ̃2

∫
S̃2

g̃(t, x̃, c̃)Ω̃dΩ̃.

Using the fact that
ζ̃ = ζ, Ω̃ = RΩ, (7.25)

and the equations (7.24), the following relations can be derived

g̃0 = g0,

∂tg0 = ∂tg̃0 − ∂x̃g̃0s,

∂xg0 = ∂x̃g̃0R,

∂ζg0 = ∂ζ̃ g̃0,

(7.26)

and
g1 = Rg̃1,

∂tg1 = tR(∂tg̃1 − ∂x̃g̃1s),

∂xg1 = tR∂x̃g̃1R,

∂ζg1 = tR∂ζ̃ g̃1.

(7.27)

Using the de�nition of g̃2, we remark that

g̃2 = ζ̃2

∫
S̃2

g̃(t, x̃, c̃)Ω̃⊗ Ω̃dΩ̃

= ζ2

∫
S̃2

g̃(t, x̃, c̃)R Ω̃⊗ Ω̃ tRdΩ̃. (7.28)

Then injecting (7.26-7.27) into the �rst equation of (7.7) and using (7.28) and (7.23)
a direct calculation gives

∂tg̃0 + divx(ζ̃ g̃1 + ũg̃0)− ∂ζ̃
(dũ
dt
.g̃1 + ζ̃∂x̃ũ : g̃2

)
= 0.
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In order to deal with the second equation of (7.7), we remark that using (7.25) the
ijkth component of the higher order moments g3 de�ned in (7.8) rewrites

g3ijk =
∑
l,m,n

ζ̃2

∫
S̃2

tRil
tRjm

tRkn(Ω̃⊗ Ω̃⊗ Ω̃)lmndΩ̃. (7.29)

Therefore, using (7.28) and (7.29) a direct calculation gives

divxg2 = tRdivx̃g̃2, (7.30)

and

g3
∂u

∂x
= tRg̃3

∂ũ

∂x̃
. (7.31)

Consequently injecting (7.26-7.27) into the second equation of (7.7) and using the
relations (7.23,7.30) and (7.31), one obtains

∂tg̃1 + divx̃(ζ̃ g̃2 + ũ⊗ g̃1)− ∂ζ̃
(
g̃2
dũ

dt
+ ζ̃ g̃3

∂ũ

∂x̃

)
+
g̃0Id− g̃2

ζ̃

dũ

dt
+ (

∂ũ

∂x̃
g̃1 − g̃3

∂ũ

∂x̃

)
= 0.

7.3.2 Symmetrization property

In this section it is shown that theM1 model in a moving frame (7.7-7.9) written
in terms of the entropic variables is Friedrichs symmetric. Following [160], the M1

model in a moving frame (7.7) can be rewritten in terms of the entropic variables
a0 and a1. This procedure is sometimes called a Godunov's symmetrisation [108].

Theorem 7.2. The M1 model in a moving frame (7.7-7.9) written in terms of the
variables a0 and a1 is Friedrichs symmetric.

Proof. Setting
tm = (1,Ω), tα = (α0, α1),

the distribution function (7.10) reads

g(t, x, ζ,Ω) = exp(α.m),

and the solution of (7.7)-(7.11)-(7.13) writes

t(g0, g1) = 〈ζ2 exp(α.m)m〉,
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where the notation 〈.〉 refers to the angular integration on the unit sphere. Con-
sequently, after a direct calculation, the M1 angular moments model in a moving
frame (7.7) rewrites

A0(α)∂t

(
α0

α1

)
+
∑
j

Aj(α)∂xj

(
α0

α1

)
+B(α)∂ζ

(
α0

α1

)
+ S(x, ζ, α) =

(
0
0

)
, (7.32)

where

A0(α) =< exp(α.m)

(
1 tΩ
Ω Ω⊗ Ω

)
>,

Aj(α) =< (ζΩj + uj) exp(α.m)

(
1 tΩ
Ω Ω⊗ Ω

)
>,

B(α) =< −(ζ2du

dt
.Ω + ζ3∂u

∂x
: Ω⊗ Ω) exp(α.m)

(
1 tΩ
Ω Ω⊗ Ω

)
>,

and

S(x, ζ, α) =

 (divxu)g0 −
2

ζ

du

dt
.g1 − 3

∂u

∂x
: g2

∂u

∂x
g1 −

2

ζ
g2
du

dt
− 3g3

∂u

∂x
+
g0Id− g2

ζ

du

dt
+ (

∂u

∂x
g1 − g3

∂u

∂x
)

 .

Since A0(α) is a positive-de�nite symmetric matrix and Aj(α) and B(α) are symmet-
ric matrices, one obtains that the system (7.32) is Friedrichs-symmetric [15, 98].

7.3.3 Conservation laws

In this section the derivation of the conservation laws derived from the angular
M1 model in a moving frame (7.7) is detailed.
Before deriving the mass and energy conservation equations, we point out that in
this work the velocity u is chosen as the particles mean velocity. Therefore, in the
considered framework the mean velocity is equal to zero. This point is expressed by
the following condition ∫ +∞

0

g1(t, x, ζ)ζdζ = 0. (7.33)

Multiplying the second equation of (7.7) by ζ and integrating in ζ, one shows using
Green's formula that all the terms vanish two by two and that condition (7.33) is
preserved over times.
The derivation of the mass conservation equation can be directly obtained by direct
integration in ζ. Indeed, integrating the �rst equation of (7.7) in ζ, one obtains

∂tn+ divx(nu) = 0, (7.34)

where condition (7.33) has been used.
In order to derive the energy conservation equation, one starts multiplying the �rst
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equation of (7.7) by
m

2
ζ2 and integrate in ζ to obtain the following internal energy

equation

∂t(
1

2

∫ +∞

0

g0ζ
2dζ) + divx(

1

2

∫ +∞

0

g1ζ
3dζ + u

1

2

∫ +∞

0

g0ζ
2dζ) (7.35)

+ (∂xu :

∫ +∞

0

g2ζ
2dζ) = 0.

One notices that since the mean velocity frame is considered, only an equation on
the internal energy is obtained. The kinetic energy equation is derived from the
evolution equation (7.9) and writes

∂t(nu
2) + divx(

nu2

2
u) + u.divx(

∫ +∞

0

g2ζ
2dζ) = 0. (7.36)

The energy conservation equation is directly obtained by summing equation (7.35)
with equation (7.36).

7.4 Numerical scheme

In this part an appropriate numerical scheme is proposed for the M1 model in a
moving framework in an one dimensional spatial geometry considering a standard
BGK collision operator [111]. In this case, the collisional operator C(f) used in
(7.1) is speci�ed

C(f) =
1

τ
(Mf − f),

with

Mf (v) =
n

(2πT )3/2
exp(−(v − u)2

2T
),

and τ is a collisional parameter which is �xed depending of the collisional regime
studied. In this case the M1 model in a moving framework (7.7) writes

∂tg0 + ∂x(ζg1 + ug0)− ∂ζ
(du
dt
g1 + ζ

∂u

∂x
g2

)
=

1

τ
(Mg0 − g0),

∂tg1 + ∂x(ζg2 + ug1)− ∂ζ
(du
dt
g2 + ζ

∂u

∂x
g3

)
+
du

dt

g0 − g2

ζ

+
∂u

∂x
(g1 − g3) = −1

τ
g1,

(7.37)

where

Mg0 = 4πζ2 n

(2πT )3/2
exp(− ζ

2

2T
).
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7.4.1 Derivation of the numerical scheme

In order to derive a suitable numerical scheme for the model (7.37) which pre-
serves the admissibility of the solution, the di�erent terms of (7.37) are studied
separately. Then the admissibility requirement of the complete scheme is shown
under a reduced CFL condition.

Step 1: the �rst intermediate state is the following{
∂tg0 + ∂x(ζg1 + ug0) = 0,

∂tg1 + ∂x(ζg2 + ug1) = 0.
(7.38)

In order to derive a numerical scheme preserving the realisability of the numerical
solution, we consider an underlying kinetic model from which the system (7.38) can
be derived by direct angular moments extraction

∂tF (t, x) + ∂x(a(x)F (t, x)) = 0, (7.39)

with F = ζ2f , a(x) = ζµ+u(x) and µ ∈ [−1, 1]. Note that µ is the angular variable
in the case of one space dimension.

A natural conservative numerical scheme is proposed for the kinetic equation
(7.39)

F n+1
i − F n

i

∆t
+
hni+1/2 − hni−1/2

∆x
= 0, (7.40)

with
hni+1/2 = a−i+1/2F

n
i+1 + a+

i+1/2F
n
i ,

and a± =
1

2
(a± |a|).

Rewriting equation (7.40) as a convex combination

F n+1
i = F n

i

(
1− ∆t

2∆x
(ai+1/2 − ai−1/2)−∆t

|ai+1/2|+ |ai−1/2|
2∆x

)
+ F n

i+1

2∆t

∆x

(
|ai+1/2| − ai+1/2

)
(7.41)

+ F n
i−1

2∆t

∆x

(
|ai−1/2| − ai−1/2

)
,

it follows that the positivity of the numerical distribution function is ensured under
the following CFL condition

∆t1 ≤
∆x

2||u||∞ + ζ
. (7.42)
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The numerical scheme (7.41) rewrites on the following viscous form

F n+1
i − F n

i

∆t
+
ai+1/2F

n
i+1 + (ai+1/2 − ai−1/2)F n

i − ai−1/2F
n
i−1

2∆x
(7.43)

−
|ai+1/2|F n

i+1 − (|ai+1/2|+ |ai−1/2|)F n
i + |ai−1/2|F n

i−1

2∆x
= 0.

The angular integration can not be directly performed on the scheme (7.43) because
of the angular variable µ which appears in the term |a| in the numerical viscosity.
Therefore we modify (7.43) and consider the following scheme which is suitable for
the angular integration.

F n+1
i − F n

i

∆t
+
ai+1/2F

n
i+1 + (ai+1/2 − ai−1/2)F n

i − ai−1/2F
n
i−1

2∆x
(7.44)

− ||a||∞
F n
i+1 − 2F n

i + F n
i−1

2∆x
= 0.

Remark 7.3. Considering (7.44), one observes that the numerical viscosity of the
scheme is increased in order to enable the angular integration.Therefore the numer-
ical scheme still preserves the nonnegativity of the numerical solution under CFL
condition (7.42).

The angular integration of the scheme (7.44) leads to a natural discretisation for
the intermediate state (7.38)

gn+1
0i − gn0i

∆t
(7.45)

+
(ζgn1i+1 + ui+1/2g

n
0i+1) + ((ζgn1i + ui+1/2g

n
0i)− (ζgn1i + ui−1/2g

n
0i))− (ζgn1i + ui−1/2g

n
0i−1)

2∆x

− (ζ + ||u||∞)
gn0i+1 − 2gn0i + gn0i−1

2∆x
= 0,

gn+1
1i − gn1i

∆t
(7.46)

+
(ζgn2i+1 + ui+1/2g

n
1i+1) + ((ζgn2i + ui+1/2g

n
1i)− (ζgn2i + ui−1/2g

n
1i))− (ζgn2i + ui−1/2g

n
1i−1)

2∆x

− (ζ + ||u||∞)
gn1i+1 − 2gn1i + gn1i−1

2∆x
= 0.

Remark 7.4. Computing gn+1
0 + gn+1

1 and gn+1
0 − gn+1

1 , one can show the scheme
(7.45-7.46) preserves the realisability requirement of the numerical solution under
the CFL condition (7.42).

Step 2: the second intermediate step we consider writes
∂tg0 − ∂ζ(

du

dt
g1 + ζ∂xug2) = 0,

∂tg1 − ∂ζ(g2
du

dt
+ ζg3∂xu) = 0.

(7.47)
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Following the same procedure than for the �rst intermediate state, the following
underlying kinetic model is proposed

∂tF (ζ)− ∂ζ((
du

dt
µ+ ζ∂xuµ

2)F (ζ)) = 0,

with the following corresponding scheme

F n+1
j − F n

j

∆t
+
bj+1/2F

n
j+1 + (bj+1/2 − bj−1/2)F n

j − bj−1/2F
n
j−1

2∆ζ
(7.48)

− ||b||∞
F n
j+1 − 2F n

j + F n
j−1

2∆ζ
= 0,

with b =
du

dt
µ+ ζ∂xuµ

2. The CFL condition associated reads

∆t2 ≤
∆ζ

2(||du
dt
||∞ + ζ||∂xu||∞)

. (7.49)

The angular integration of (7.48) leads to the following discretisation for the inter-
mediate state (7.47)

gn+1
0j − gn0j

∆t
(7.50)

+
(
du

dt
gn1i+1 − ζj+1/2∂xug

n
2j+1) + ((

du

dt
gn1j − ζj+1/2∂xug

n
2j)− (

du

dt
gn1j − ζj−1/2∂xug

n
2j))

2∆ζ

−
(
du

dt
gn1j−1 − ζj−1/2∂xug

n
2j−1)

2∆ζ
− (|du

dt
|+ ||ζ||∞|∂xu|)

gn0j+1 − 2gn0j + gn0j−1

2∆ζ
= 0,

gn+1
1j − gn1j

∆t
(7.51)

+
(
du

dt
gn2j+1 − ζj+1/2∂xug

n
3j+1) + ((

du

dt
gn2j − ζj+1/2∂xug

n
3j)− (

du

dt
gn2j − ζj−1/2∂xug

n
3j))

2∆ζ

−
(
du

dt
gn2j−1 − ζj−1/2∂xug

n
3j−1)

2∆ζ
− (|du

dt
|+ ||ζ||∞|∂xu|)

gn1j+1 − 2gn1j + gn1j−1

2∆ζ
= 0.

Remark 7.5. The scheme (7.50-7.51) preserves the realisability domain under the
CFL condition (7.49).

Step 3: the third state we consider is the following
∂tg0 = 0,

∂tg1 +
g0 − g2

ζ

du

dt
= 0.
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We choose the following classical scheme for this �rst model
gn+1

0ij = gn0ij,

gn+1
1ij = gn1ij −∆t

g0ij − g2ij

ζj
(
du

dt
)i.

Remark 7.6. This scheme preserves the realisability conditions under CFL condi-
tions

∆t3 ≤
ζ

|du
dt
|

1 + α

1− χ(α)
,

where α is de�ned by (7.12).

Proof. This result is directly obtained by computing gn+1
0i ± gn+1

1i .

Remark 7.7. One remarks that the term
1 + α

1− χ(α)
does not tend to zero as α tends

to −1. Indeed, using the de�nition of χ given in (7.12), one can show that
1 + α

1− χ(α)
tends to 1/2 as α tends to −1.

Step 4: the fourth intermediate step we consider writes{
∂tg0 = 0,

∂tg1 + ∂xu(g1 − g3) = 0.

Following the third step we propose{
gn+1

0i = gn0i,

gn+1
1i = gn1i + ∆t(∂xu)i(g1i − g3i).

Remark 7.8. This scheme preserves the realisability conditions under CFL condi-
tions

∆t4 ≤
1

|∂xu|
1 + α

α− χ2(α)
.

Using the de�nition of χ2, we remark that
1 + α

α− χ2(α)
tends to −1/2 as α tends

to −1.
In order to derive a admissible numerical scheme for the complete model (7.37), we
propose to consider the following time semi-discretisation

Un+1 = Un + ∆t
N∑
k=1

Fk(U
n), (7.52)

where

Un+1 =

(
gn+1

0

gn+1
1

)
,
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Fk represents the discretisation proposed for the kth intermediate step and N is the
number of intermediate step considered. Equation (7.52) rewrites under the form of
a convex combination

Un+1 =
N∑
k=1

1

N
[Un + (N∆t)Fk(U

n)]. (7.53)

Setting ∆̃t = N∆t, one shows that if each intermediate step

Ũn+1 = Un + ∆̃tFk(U
n),

preserves the realisability conditions of the numerical solution under CFL condition

∆̃t ≤ Ck.

Therefore the general scheme (7.52) preserves the realisability conditions of the
numerical solution under the following CFL condition

∆t ≤ min
k

(
Ck
N

).

The following result is then obtained

Theorem 7.9. The general scheme (7.52) preserves the realisability conditions un-
der the following CFL condition

∆t ≤ 1

4
min(∆t1,∆t2,∆t3,∆t4). (7.54)

Proof. Each step preserves the realisability conditions under CFL condition. There-
fore, by convexity of the admissible set, considering the convex combination (7.53)
and using the condition (7.4.1), we directly obtain that the general scheme (7.52)
preserves the realisability conditions under the CFL condition (7.54).

The discretisation of the collision operator is performed by using a standard
implicit scheme. For the numerical test presented in the next section, an usual
second order Van Leer's slope limiter [154] is used.

7.4.2 Enforcement of the discrete energy conservation and

zero mean velocity condition

In this section, the enforcement of the discrete energy conservation and zero
mean velocity condition is discussed. In a recent work [185], a numerical scheme
has been proposed to enforce the discrete zero mean velocity condition considering a
kinetic equation. However, this strategy does not directly apply in the present case
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since a nonlinear set of equations (7.37) is considered associated to the realisabil-
ity conditions (7.14). The enforcement of the discrete energy conservation and the
zero mean velocity condition while preserving realisability conditions (7.14) of the
numerical solution is particularly challenging and beyond the scope of the present
study. However, in order to be able to present numerical results, in this section a
correction of the numerical solution is proposed.

In order to enforce the correct energy conservation, we start considering the
following conservation laws associated to (7.37)

∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx(ρu⊗ u+ p− s) = 0,

∂tE + divx((E + p− s)u+ q) = 0,

(7.55)

where E is the total energy. The pressure tensor p, the stress tensor s and the heat
�ux q expressed in terms of the angular moments read

p− s =
m

2

∫ +∞

0

g2ζ
2dζ, q =

m

2

∫ +∞

0

g1ζ
3dζ.

At each time time step, the set of conservation laws (7.55) is numerically solved.
Then the numerical solution is corrected by using

g0p = α exp(βζp
2)ḡ0p, ∀p ∈ {1; ...; pf},

where g0 is the corrected solution and ḡ0 the solution which requires a correction
computed with the scheme (7.52). The coe�cients α and β are numerically com-
puted such that

m

pf∑
p=1

g0p∆ζ = ρ,
m

2

pf∑
p=1

g0pζ
2
p∆ζ = E − ρu2

2
,

where the quantities E, ρu2

2
and ρ are known at each time step since the set (7.55)

has been numerically solved. This procedure enables the enforcement of the correct
energy conservation. As it will be shown in the next section this correction is impor-
tant for the numerical results, in particular in order to numerically capture shock
waves.

In order to enforce the zero mean velocity condition (7.33) at the discrete level,
one could think in proposing an adapted discretisation for the source terms which
appears in the second equation of (7.37). However, this procedure leads to an
unsuitable CFL condition when considering the realisability requirements (7.14) for
the numerical solution. Therefore the following correction is proposed based on the
resolution of the convex optimisation problem

min
g1∈Rpf

1

2
||g1 − ḡ1||2L2 = 0,
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under equality constraint
pf∑
p=1

g1pζp∆ζ = 0,

where g1 is the corrected solution and ḡ1 the solution before correction given by the
scheme (7.52). One observes that this procedure does not enforce the realisable con-
ditions of the numerical solutions. In such unfortunate case, g1 is simply projected
on the realisable set.

7.5 Numerical results

In this section, several test cases are presented. Depending on the regime con-
sidered, the numerical results obtained with the scheme introduced in the previous
part for the angular M1 moments model in a moving frame, denoted M1 mobile,
are compared either with an exact solution or with a kinetic reference solution. The
results are given with and without the correction procedure. In the following, the
kinetic solution has been obtained considering a standard kinetic 1D3V BGK model
using an usual Lax-Friedrichs scheme with the second order Van Leer's slope limiter
[154]. The results obtained with this scheme are denoted BGK 1D3V. In addition,
the results obtained considering a second order HLL scheme for the Euler equations
using the second order Van Leer's slope limiter are also given. These results ob-
tained using this scheme are denoted Euler.

Test 1: Temperature gradient test case in di�erent collisional regimes.

The �rst test case we study consists in considering a strong temperature gradient
at initial time and studying the temporal evolution of density, velocity and temper-
ature. The initial distribution function is supposed to be a Maxwellian distribution
function de�ned by

fini(x, v) =
nini(x)

(2πTini(x))3/2
exp

(
− (v − uini(x))2

2Tini(x)

)
,

with
nini(x) = 1, uini(x) = 0, Tini(x) = 2− arctan(x).

The space range chosen is [−40, 40], and the velocity range [−15, 15]3. For the
present test case, 400 cells in space and 2003 cells in velocity have been considered
for the 1D3V BGK kinetic approach. Also, 400 cells in space and 200 cells in velocity
modulus have been considered for the M1 mobile scheme. Finally, 400 cells in space
have been considered for the Euler description.
Neumann boundary conditions are considered, the values in the boundary ghost
cells set to the values in the corresponding real boundary cells.
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7. Angular M1 model in a moving reference frame

1.a Fluid regime.
The �rst regime we consider is the �uid regime, then the collisional parameter τ
is set equal to zero. In Figure 7.2, the density, velocity and temperature pro�les
are displayed at time t = 10 for the kinetic BGK 1D3V scheme in continuous blue,
the M1 mobile scheme in dashed green, the M1 mobile scheme with correction in
dashed blue and for the Euler scheme in dashed-point pink. It is observed that all
the schemes converge towards the same solution. This behaviour is expected since
working in �uid regime the distribution remains a Maxwellian distribution function
and the three descriptions give the same solution.
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Figure 7.2: Test 1a - Solution pro�les obtained for the temperature gradient test case

with τ = 0 at time t = 10.

1.b Rare�ed regime.
The second regime we consider is a rare�ed regime where the collisional parameter
τ is set equal to 1. In Figure 7.3, the density, velocity, temperature and heat �ux
pro�les are displayed at time t = 10 for the kinetic BGK 1D3V scheme in continuous
blue, theM1 mobile scheme in dashed green, theM1 mobile scheme with correction in
dashed blue and for the Euler scheme in dashed-point pink. The Euler scheme gives
the same results than in the previous case 1a. This is expected since the description
is not able to see the di�erent regimes. In this case the heat �ux is equal to zero.
One observes that M1 mobile scheme gives close results to the ones obtained with
the kinetic BGK 1D3V scheme. When looking at the heat �ux pro�les, one observes
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that the general trends are qualitatively similar with some notable di�erences in
the amplitude reached. Since the heat �ux is a high order velocity moment, the
di�erences between the models are particularly visible. The M1 model is accurate
in collisional regimes, however as seen in Chapter 1 or in [117], it can be inaccurate
in collisionless regimes. The di�erences observed here, are due to the inaccuracy to
the M1 model in rare�ed regime.

-40 -20 0 20 40
x

0,6

0,8

1

1,2

1,4

1,6

1,8

2

2,2

d
en

si
ty

Initial conditions
BGK 1D3V
Euler
M1 mobile
M1 mobile corrected

-40 -20 0 20 40
x

0

0,2

0,4

0,6

0,8

v
el

o
ci

ty

BGK 1D3V
Euler
M1 mobile
M1 mobile corrected

-40 -20 0 20 40
x

0

1

2

3

4

T
em

p
er

at
u

re

Initial condition
BGK 1D3V
Euler
M1 mobile
M1 mobile corrected

-40 -20 0 20 40
x

0

0,1

0,2

0,3

0,4

0,5

H
e
a
t 

fl
u

x

BGK 1D3V
M1 mobile
M1 mobile corrected

Figure 7.3: Test 1b - Solution pro�les obtained for the temperature gradient test case

with τ = 1 at time t = 10.

1.c Non-homogeneous collisional parameter.
When considering realistic physical applications, the collisional parameter varies ac-
cording to the gas conditions. Therefore, in the third case we consider the collisional
parameter τ is variable in space and is de�ned by

τ(x) =
1

2
(arctan(1 + 0.1x) + arctan(1− 0.1x)).

In Figure 7.4, the density, velocity, temperature and heat �ux pro�les are dis-
played at time t = 10 for the kinetic BGK 1D3V scheme in continuous blue, the M1

mobile scheme in dashed green and for the Euler scheme in dashed-point pink. It is
observed that the pro�les obtained using the M1 mobile sheme and the BGK 1D3V
scheme are very close. One also observes that even the heat �ux pro�les are very
similar. These results show the interest in using an angular moment model.
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Figure 7.4: Test 1c - Solution pro�les obtained for the temperature gradient test
case with variable collisional parameter at time t = 10.

Test 2: Sod tube test case in �uid regime

The second test case we study is the Sod tube test case in �uid regime. The
initial distribution function is supposed to be a Maxwellian distribution function
de�ned by

fini(x, v) =
nini(x)

(2πTini(x))3/2
exp

(
− (v − uini(x))2

2Tini(x)

)
,

with

(nini(x), uini(x), Tini(x)) =

{
(1.00 · 10−4, 0, 4.80 · 10−3) if x < 0,

(1.25 · 10−5, 0, 3.84 · 10−3) if x > 0.

The space range chosen is [0, 0.6], and the velocity range [−20, 20]3. For the
present test case, 200 cells in space and 2003 cells in velocity have been considered
for the 1D3V BGK kinetic approach. Also, 200 cells in space and 200 cells in ve-
locity modulus have been considered for the M1 mobile scheme. Finally, 200 cells
in space have been considered for the Euler description. Neumann boundary con-
ditions are considered, the values in the boundary ghost cells are set to the values
in the corresponding real boundary cells. For this test case, we consider the �uid
regime therefore the collisional parameter τ is set equal to 0. For this test case an
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Figure 7.5: Test 2 - Sod tube test case with τ = 0 at time t = 7.34 · 10−2.

exact solution is known, a rarefaction wave, a contact discontinuity and a shock
wave appear. In Figure 7.5, the mass density, velocity and temperature solution
pro�les are displayed at time t = 7.34 · 10−2. It is observed that the rarefaction
wave (left side) is correctly captured by the M1 mobile scheme (solution displayed
in dashed green). However, one remarks that the shock amplitude is not correctly
captured. It has been observed that this incorrect behaviour is due to the wrong
discrete energy conservation. Indeed, by using the correction procedure introduced
in the previous part the results in dashed blue are obtained, in this case the correct
amplitude is recovered. We notice, the importance of the correct discrete energy
conservation for capturing shock waves. This point is highlighted in the next test
case.

Test 3: Double shock wave test case

The third test case we study is the double shock wave test case in �uid regime.
The initial distribution function is supposed to be a Maxwellian distribution function
de�ned by

fini(x, v) =
nini(x)

(2πTini(x))3/2
exp

(
− (v − uini(x))2

2Tini(x)

)
,
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Figure 7.6: Test 3 - Double shock wave test case with τ = 0 at time t = 0.15.

with

(ρ(x), u(x), T (x)) =

{
(1, 2, 0.4) if x < 0,

(1,−2, 0.4) if x > 0.

The space range chosen is [0, 1], and the velocity range [−15, 15]3. For the present
test case, 200 cells in space and 2003 cells in velocity have been considered for the
1D3V BGK kinetic approach. Also, 200 cells in space and 200 cells in velocity
modulus have been considered for the M1 mobile scheme. Finally, 200 cells in
space have been considered for the Euler description. Neumann boundary conditions
are considered, the values in the boundary ghost cells are set to the values in the
corresponding real boundary cells. For this test case, we consider the �uid regime
therefore the collisional parameter τ is set equal to 0. For this test case an exact
solution is known, two shock waves are created. In Figure 7.6, the mass density,
velocity and temperature solution pro�les are displayed at time t = 0.15. Similarly
as remarked in the previous test case, it is observed that the M1 scheme does not
capture the correct amplitude pro�le nor the correct shock positions (results in
dashed green). The results displayed in dashed blue are obtained using the corrected
scheme. It is observed that the correction enables to correctly captures the shock
pro�les. This example con�rms the importance of the discrete energy conservation.
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7.6 Conclusion

In this work, theM1 angular moments model in a moving frame has been derived.
Several fundamental properties of the model have been presented. In particular, the
importance of working in the mean velocity frame has been highlighted. Indeed, this
choice of framework is relevant when considering the Galilean invariance property
of angular moments models. The derivation of the associated conservation laws has
been detailed in addition to the zero mean velocity condition. A numerical scheme
preserving the realisable sets has been proposed and validated with numerical test
cases in di�erent collisional regimes. Also, the importance of the correct discrete
energy conservation has been emphasized.

As a short term perspective, one needs to derive a numerical scheme enforcing
the discrete energy conservation and the zero mean velocity condition. Such an
issue is challenging since it should be done preserving the realisable property of
the numerical solution. As long term perspective, it would be interesting to study
the electronic particle transport working in the ion mean velocity framework. This
choice would enable a great simpli�cation of the electron-ion collisional operator
and an important step toward the multispecies particle transport for plasma physics
applications.
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The present work aimed at the development of models and numerical methods
for the study of the charged particles transport in a hot plasma. In this context
angular moments models based on an entropy minimisation principle have been in-
troduced.

Questions addressed
First of all, one needs to understand the limits of angular moments models when con-
sidering plasmas physics or neutral gas dynamics applications. Indeed, the angular
integration performed leads to reduced models which can be inaccurate depending on
the physical phenomenon studied. The objective is to obtain a better understanding
of the validity regimes of angular moments models.

A second issue deals with the design and validation of collisional operators for
angular moments models. Indeed, relevant kinetic physical collisional operators
such as the Landau collisional operator or the Boltzmann collisional operator are
nonlinear. Therefore the angular moments extraction is not straightforward and
some approximations are required. Of course, the collisional operators proposed need
to satisfy fundamental properties such as the entropy dissipation or the realisability
preservation of the angular moments.

A third issue concerns the derivation of appropriate numerical methods for an-
gular moments models. Since angular moments models can be seen as intermedi-
ate models between kinetic and hydrodynamics descriptions, one can hope to cap-
ture more accurately physical processes studied compared to hydrodynamics models
while keeping a computational cost more a�ordable compared to the ones required
for kinetic models. This makes these models naturally attractive to study the ki-
netic e�ects on long time scales. Therefore, suitable numerical schemes with correct
asymptotic behaviour are required to access such regimes. The design of these
adapted methods needs to be done in the framework of the asymptotic-preserving
schemes and ensuring the fundamental properties of the model such as the preser-
vation of the realisable sets.

The last question we address deals with the development of models and numerical
methods for the study of the transport of multiple particle species. When studying
the electrons transport, the motion of ions is generally neglected because of their
large mass compared to the one of electrons. However, when considering long time
regimes this approximation may not be valid and the study of the transport of both
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particle species is required. In addition, the study of the transport of electrons and
ions would give access to a large variety of physical phenomena.

Our contribution
When investigating the validity limits of angular moments models, it has been shown
that the M1 model can be very inaccurate in collisionless regimes. Also, it has been
seen that the M2 angular moments model is much more accurate but remains un-
adapted when dealing with complex phenomena such as the laser-plasma absorption
for example. However, the numerical experiments presented in this manuscript al-
low us to demonstrate the interest of using angular moments models in collisional
regimes in order to capture kinetic e�ects.
In general it is then di�cult to clearly de�ne a validity domain for the use of angular
moments models. It is observed that the results depend on the physical phenomenon
and the collisionnality level considered.

In [166], collisional operators have been proposed for angular moments models.
In this thesis, a work has been performed in order to validate them. After the study
of the fundamental properties of the collisional operators proposed for theM1 model,
it has been shown that accurate transport plasma coe�cients are recovered. This is
an important result since it provides at our disposal a reliable model for the study of
the collisional electronic transport. Therefore, this model represents a competitive
tool which can be used for practical physical applications.

In this thesis a large amount of work has been devoted to the design and imple-
mentation of numerical schemes for the M1 angular moments model. It has been
shown that numerical schemes commonly used for angular moments models are
not able to correctly capture some asymptotic regimes. Consequently, asymptotic-
preserving schemes have been designed for the study of long time behaviours. The
�rst regime studied corresponds to a quasi-neutral plasma. At this scale the char-
acteristic quantities are large compared to the plasma parameters. In order to
work without any restriction on the time step an appropriate reformulation of the
Maxwell-Ampere equation has been considered. A natural discretisation of the
scheme has been proposed and several test cases have been performed showing the
interest of the method.

In order to be able to perform numerical simulations on larger time scales the
di�usive limit has been studied. At this scale, the charateristic quantities are large
compared to the collisional parameters. An asymptotic-preserving scheme has been
proposed for the M1 angular moments models in the di�usive regime. It has been
shown that, since charged particles are considered, mixed derivatives arise in that
limit leading to an anisotropic di�usion. The properties of the scheme have been
studied and several test cases have been performed to show the interest of the
method. Even if further details still need to be considered, this work represents an
important step in the development of numerical methods for the study of long time
regimes at an a�ordable numerical cost.

In the last part of this manuscript, the M1 angular moments model in a mov-
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ing non-inertial reference frame has been introduced. Before considering complex
electron-ion interactions, the case of a single neutral particles specie has been con-
sidered. The equations are written in the mean velocity frame. This case applies
to neutral gas dynamics studies. It represents an intermediate indispensable step
before investigating multispecies con�gurations. This case allows to readily evaluate
the mean di�culties that appear in the general case. The model properties have
been studied and an appropriate numerical scheme proposed. Then, several test
cases in di�erent collisional regimes have been presented to show the major proper-
ties of the method. This work represents a �rst signi�cant step towards the study
of the multispecies particle transport and numerous perspectives can be considered.

Short and long time perspectives
Several perspectives can be considered following the results obtained in this thesis.
First of all, other plasma instabilities can be studied within the formalism of angular
moments models. In addition to the work performed in this thesis, collisional regimes
may be considered since it has been shown that the M1 and M2 angular moments
models are better adapted for collisionnal and weakly collisionnal regimes. This
would further clarify the validity domain of angular moments models.

Secondly, following [31] the transport plasma coe�cients need to be derived
by taking into account the external and self-consistent electric and a magnetic
�elds. This study would be in the direct continuity of the work performed in this
manuscript. It has been shown that, without an external electric �eld and in regimes
close to the equilibrium regimes, accurate transport plasma coe�cients are recov-
ered by the collisional M1 moments model. This provides a basis for extension of
the present study to regimes with magnetic �elds.

Concerning the numerical part of this manuscript, several directions can be con-
sidered. In the continuity of the work achieved in the di�usive regime, one can
account for the contribution of the electron-electron collisional operator which was
removed for simplicity. This is a challenging issue because of the complex form of
this operator. Di�erent approaches can be pursued by adapting the ideas introduced
in [92] for example.

Also, a numerical study of the complete systemM1-Maxwell in the quasi-neutral
and di�usive regime may be conducted. This work would be a direct extension of the
studies presented in this thesis. This would lead to a complete and computationally
cheap numerical tool for the electronic transport studies in long time regimes.
The last part of this manuscript opens interesting perspectives for physical applica-
tions levels. On a short time scale the design of appropriate numerical methods is
needed for solving the M1 angular moments model in a moving frame. As a long
term perspective one could include the electromagnetic coupling terms in order to
study the electron transport within the M1 model while describing the ion motion
with an usual hydrodynamic description. This would provide a performant hybrid
tool for the multispecies transport studies in a plasma.
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Appendix A

Derivation of the electron M1 model

A.1 Derivation of the model for the angular mo-

ments f0 and f1

In this section we proove that in the case without collisional operators, the
angular M1 model writes under the following form

∂tf0 +∇~x.(ζ ~f1) +
q

m
∂ζ(~f1. ~E) = 0,

∂t ~f1 +∇~x.(ζ ¯̄f2) +
q

m
∂ζ(

¯̄f2
~E)− q

mζ
(f0

~E − ¯̄f2
~E)− q

m
(~f1 ∧ ~B) = 0.

(A.1)

Before beginning the proof, we can compute the divergence of the magnetic part of
the Lorentz force,

∇p.(v(p) ∧B) = B · ∇p ∧ v(p)− v(p) · ∇p ∧B = 0 , (A.2)

because ∇p ∧ v(p) = 0.
To proof these equalities, we can use duality approach. If we set ζ = |p| =
m|v(p)|γ(|p|) = mv(ζ)γ(ζ), and we denote by ϕ some test function. Here, we sup-
pose that the test function ϕ depends only of ζ. Therefore, multiplying the kinetic
equation by ϕ and integrating in p gives
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A.1. Derivation of the model for the angular moments f0 and f1

0 =

∫
p∈R3

(∂tf + v(p) · ∇xf + q (E + v(p) ∧B) · ∇pf)ϕ(ζ)dp,

=

∫
p∈R3

(∂tf + v(p) · ∇xf)ϕ(ζ)dp−
∫
p∈R3

∇pϕ(ζ) · (q (E + v(p) ∧B) f) dp, from (A.2),

=

∫ ∞
0

∂t

(
ζ2

∫
S2

fdΩ

)
ϕ(ζ)dζ +

∫ ∞
0

∇x ·
(
v(ζ)ζ2

∫
S2

ΩfdΩ

)
ϕ(ζ)dζ

−
∫
p∈R3

ϕ′(ζ)
p

ζ
· (q (E + v(p) ∧B) f) dp, as p = ζΩ and dp = ζ2dζdΩ,

=

∫ ∞
0

(∂tf0 +∇x · (v(ζ)f1))ϕ(ζ)dζ −
∫
p∈R3

ϕ′(ζ)Ω · (qEf) dp, as p · (v(p) ∧B) = 0,

=

∫ ∞
0

(∂tf0 +∇x · (v(ζ)f1))ϕ(ζ)dζ −
∫ ∞

0

ϕ′(ζ)qE ·
(
ζ2

∫
S2

ΩfdΩ

)
dζ,

=

∫ ∞
0

(∂tf0 +∇x · (v(ζ)f1))ϕ(ζ)dζ +

∫ ∞
0

∂ζ (qE · f1)ϕ(ζ)dζ,

=

∫ ∞
0

(∂tf0 +∇x · (v(ζ)f1) + ∂ζ (qE · f1))ϕ(ζ)dζ,

which is veri�ed for all test functions ϕ, hence the �rst equation of (A.1) is veri�ed.
Now if we consider the case of the vector f1, we need to compute ∇pΩ,

∇pΩ = ∇p

(
p

|p|

)
=

1

|p|
I − 1

|p|2
∇p|p| ⊗ p =

1

|p|
I − 1

|p|2

(
1

|p|
p

)
⊗ p,

=
1

|p|3
(
|p|2I − p⊗ p)

)
=

1

ζ
(I − Ω⊗ Ω)) , (A.3)

where I is the identity matrix. Now, we can consider the proof of the second equation
of (A.1). Multiplying the kinetic equation by ϕ(ζ)Ω, and integrating leads to
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A. Derivation of the electron M1 model

0 =

∫
p∈R3

(∂tf + v(p) · ∇xf + q (E + v(p) ∧B) · ∇pf) Ωϕ(ζ)dp,

=

∫
p∈R3

(∂tf + v(p) · ∇xf) Ωϕ(ζ)dp−
∫
p∈R3

∇pϕ(ζ) · (q (E + v(p) ∧B) f) Ωdp

−
∫
p∈R3

ϕ(ζ)∇pΩ (q (E + v(p) ∧B) f) dp, from (A.2),

=

∫ ∞
0

∂t

(
ζ2

∫
S2

ΩdΩ

)
ϕ(ζ)dζ +

∫ ∞
0

∇x ·
(
v(ζ)ζ2

∫
S2

Ω⊗ ΩfdΩ

)
ϕ(ζ)dζ

−
∫
p∈R3

ϕ′(ζ)
p

ζ
· (q (E + v(p) ∧B) f) Ωdp−

∫
p∈R3

1

ζ
ϕ(ζ)q (E + v(p) ∧B) fdp

+

∫
p∈R3

1

ζ
ϕ(ζ)Ω⊗ Ω (q (E + v(p) ∧B) f) dp, from (A.3),

=

∫ ∞
0

(∂tf1 +∇x · (v(ζ)f2))ϕ(ζ)dζ −
∫
p∈R3

ϕ′(ζ)Ω · (qEf) Ωdp

−
∫ ∞

0

q

ζ
ϕ(ζ)

(
ζ2

∫
S2

fdΩE + v(ζ)ζ2

∫
S2

ΩfdΩ ∧B
)
dζ

+

∫ ∞
0

q

ζ
ϕ(ζ)

(
ζ2

∫
S2

Ω⊗ ΩfdΩE

)
dζ , because Ω⊗ Ω (v ∧B) = 0,

=

∫ ∞
0

(∂tf1 +∇x · (v(ζ)f2))ϕ(ζ)dζ −
∫ ∞

0

qϕ′(ζ)

(
ζ2

∫
S2

Ω⊗ ΩfdΩ

)
Edζ

−
∫ ∞

0

q

ζ
ϕ(ζ) (f0E + v(ζ)f1 ∧B) dζ +

∫ ∞
0

q

ζ
ϕ(ζ) (f2E) dζ,

=

∫ ∞
0

(∂tf1 +∇x · (v(ζ)f2))ϕ(ζ)dζ +

∫ ∞
0

∂ζ (qf2E)ϕ(ζ)dζ

−
∫ ∞

0

q

ζ
ϕ(ζ) (f0E + v(ζ)f1 ∧B) dζ +

∫ ∞
0

q

ζ
ϕ(ζ) (f2E) dζ,

=

∫ ∞
0

(
∂tf1 +∇x · (v(ζ)f2) + q

(
∂ζ (f2E)− 1

ζ
(f0E + v(ζ)f1 ∧B − f2E)

))
ϕ(ζ)dζ,

which is veri�ed for all test functions ϕ, hence the second equation of (A.1) is
veri�ed.

A.2 Angular moment extraction for the collision op-

erators Cee and Cei

In this section the angular integration of the collision operators is performed.
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A.2. Angular moment extraction for the collision operators Cee and Cei

A.2.1 Angular integration for the electron-ion collision oper-

ator

Firstly, we start computing the electron-ion collision Cei which is much simpler
to compute. To establish this derivation we consider only the homogeneous case
with the collision operator Cei,

∂tf = Cei[f ] = αei∇v ·
[
|v|2I − v ⊗ v
|v|3

∇vf(v)

]
= αei∇v · [S(v)∇vf(v)] , (A.4)

where we have introduced S(v) as,

S(v) =
|v|2I − v ⊗ v
|v|3

=
1

ζ
(I − Ω⊗ Ω)) · (A.5)

The operator S(v) is the projection operator on the orhogonal plane to the vector
v and we have S(v)v = 0.

Now if we want to consider the in�uence of the Cei operator for the equation
about f0, we can use duality approach. If we set ζ = |v|, and we denote by ϕ some
test function,

0 =

∫
v∈R3

(∂tf − αei∇v · [S(v)∇vf ])ϕ(ζ)dv,

=

∫ ∞
0

∂t

(
ζ2

∫
S2

fdΩ

)
ϕ(ζ)dζ + αei

∫
v∈R3

∇vϕ(ζ) · [S(v)∇vf ] dv,

=

∫ ∞
0

∂tf0ϕ(ζ)dζ + αei

∫
v∈R3

ϕ′(ζ)
v

ζ
· [S(v)∇vf ] dv,

=

∫ ∞
0

∂tf0ϕ(ζ)dζ + αei

∫
v∈R3

ϕ′(ζ)

[
S(v)

v

ζ

]
· ∇vfdv, as S(v) is symmetric,

=

∫ ∞
0

∂tf0ϕ(ζ)dζ, as S(v)v = 0,

which is veri�ed for all test functions ϕ, hence,

∂tf0 = 0,

and the Cei operator has no in�uence on the equation for f0.
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A. Derivation of the electron M1 model

Now, we consider the in�uence of the Cei operator for the equation about f1,

0 =

∫
v∈R3

(∂tf − αei∇v · [S(v)∇vf ]) Ωϕ(ζ)dv,

=

∫ ∞
0

∂t

(
ζ2

∫
S2

ΩfdΩ

)
ϕ(ζ)dζ + αei

∫
v∈R3

∇vϕ(ζ) · [S(v)∇vf ] Ωdv

+ αei

∫
v∈R3

ϕ(ζ)∇vΩ [S(v)∇vf ] dv,

=

∫ ∞
0

∂tf1ϕ(ζ)dζ + αei

∫
v∈R3

ϕ′(ζ)
v

ζ
· [S(v)∇vf ] Ωdv

+ αei

∫
v∈R3

ϕ(ζ)
1

ζ
S(v) [S(v)∇vf ] dv, from (A.3),

=

∫ ∞
0

∂tf1ϕ(ζ)dζ − αei
∫
v∈R3

ϕ(ζ)∇v ·
(

1

ζ
S(v)

)
fdv,

as S(v) is symmetric, S(v)S(v) =
1

ζ
S(v) and S(v)v = 0,

=

∫ ∞
0

∂tf1ϕ(ζ)dζ − αei
∫
v∈R3

ϕ(ζ)

ζ4
∇v · [ζ2I − v ⊗ v]fdv, as S(v)v = 0,

=

∫ ∞
0

∂tf1ϕ(ζ)dζ + αei

∫
v∈R3

ϕ(ζ)

ζ4
2vfdv, as ∇v · [|v|2I − v ⊗ v] = −2v,

=

∫ ∞
0

∂tf1ϕ(ζ)dζ + αei

∫ ∞
0

2

ζ3

(
ζ2

∫
S2

Ωfdω

)
ϕ(ζ)dζ, as dv = ζ2dζdΩ,

=

∫ ∞
0

(
∂tf1 +

2αei
ζ3

f1

)
ϕ(ζ)dζ,

which is again veri�ed for all test functions ϕ, hence,

∂tf1 = −2αei
ζ3

f1,

and in fact this gives exactly the operator Q1. The electron-ion collisions are only
relevant for the f1 behavior, not the f0.

A.2.2 Moment closure for the electron-electron collisions

To establish this closure we consider only the homogeneous case with the collision
operator Cee,

∂tf = Cee[f, f ] = αee∇v ·
∫
v′∈R3

S(u) [f(v′)∇vf(v)− f(v)∇v′f(v′)] dv′, (A.6)

where S(u) is given by (A.5) and u = v′−v. The moments of this operator is rather
complicated, we will assume that the main contribution from this operator comes
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from the isotropic part of f . In the remainder of this subsection, we will assume
that f is isotropic, f = f(|v|) = f(ζ). This is a classical hypothesis useful in plasma
physics.

We need introduce the notation Γ(v) which is the term into the divergence in v,

Γ(v) =

∫
v′∈R3

S(u) [f(v′)∇vf(v)− f(v)∇v′f(v′)] dv′.

The Γ(v) term satis�es Cee[f, f ] = αee∇v · Γ(v). Moreover if f is isotropic as we
assume, Γ(v)v is isotropic. In fact, in this case Γ(v)v = g(|v|) doesnt depend on the
direction of vector v. If we set ζ = |v|, and we denote by ϕ some test function, then,

0 =

∫
v∈R3

(∂tf − αee∇v · Γ(v))ϕ(ζ)dv,

=

∫
v∈R3

∂tfϕ(ζ)dv + αee

∫
v∈R3

∇vϕ(ζ) · Γ(v)dv,

=

∫ ∞
0

∂t

(
ζ2

∫
S2

fdΩ

)
ϕ(ζ)dζ + αee

∫ ∞
0

1

ζ
ϕ′(ζ)

∫
S2

Γ(v) · vdΩζ2dζ,

=

∫ ∞
0

∂tf0ϕ(ζ)dζ + αee

∫ ∞
0

1

ζ
ϕ′(ζ)4πΓ(v) · vζ2dζ, as Γ(v) · v is isotropic,

=

∫ ∞
0

(∂tf0 − 4παee∂ζ (ζΓ(v) · v))ϕ(ζ)dζ,

which imply that
∂tf0 = 4παee∂ζ (ζΓ(v) · v) . (A.7)

Now to compute Γ(v) · v, we introduce the notation ζ ′ = |v′|, v′ = ζ ′Ω′, and we
consider all the terms in Γ(v),

[f(v′)∇vf(v)− f(v)∇v′f(v′)] dv′ =

[
f(ζ ′)

v

ζ
∂ζf(ζ)− f(ζ)Ω′∂ζ′f(ζ ′)

]
dΩ′ζ ′2dζ ′,

(A.8)
and

S(u) =
(v − Ω′ζ ′)I − (v − Ω′ζ ′)⊗ (v − Ω′ζ ′)

(v − Ω′ζ ′)3
, (A.9)

=
(ζ2 + ζ ′2 − 2ζ ′v · Ω′)I − (v ⊗ v + ζ ′2Ω′ ⊗ Ω′ − ζ ′(Ω′ ⊗ v + v ⊗ Ω′))

(ζ2 + ζ ′2 − 2ζ ′v · Ω′) 3
2

·

Or Γ(v) · v involves the S(u)v matrix-vector product, from (A.9) we can obtain,

S(u)v =
(ζ2 + ζ ′2 − 2ζ ′v · Ω′)v − (ζ2v + ζ ′2(Ω′ · v)Ω′ − ζ2ζ ′Ω′ − ζ ′(Ω′ · v)v)

(ζ2 + ζ ′2 − 2ζ ′v · Ω′) 3
2

,

=
(ζ ′2 − ζ ′v · Ω′)v − (ζ ′2(Ω′ · v)− ζ2ζ ′)Ω′

(ζ2 + ζ ′2 − 2ζ ′v · Ω′) 3
2

·
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A. Derivation of the electron M1 model

To achieve the computation of Γ(v) · v we need to know some scalar product,
Av = S(u)v ·v and AΩ′ = S(u)v ·Ω′. We introduce µ the cosine of that angle between
of the vector Ω′ and v, such that Ω′ · v = ζµ, and we obtain,

Av = S(u)v · v =
(ζ ′2 − ζ ′v · Ω′)ζ2 + ζ ′(ζ2 − ζ ′(Ω′ · v))(Ω′ · v)

(ζ2 + ζ ′2 − 2ζ ′v · Ω′) 3
2

,

=
ζ ′(ζ ′ − ζµ)ζ2 + ζζ ′µ(ζ2 − ζζ ′µ)

(ζ2 + ζ ′2 − 2ζζ ′µ)
3
2

,

=
ζ2ζ ′2(1− µ2)

(ζ2 + ζ ′2 − 2ζζ ′µ)
3
2

, (A.10)

AΩ′ = S(u)v · Ω′ = ζ ′(ζ ′ − v · Ω′)(Ω′ · v) + ζ ′(ζ2 − ζ ′(Ω′ · v))

(ζ2 + ζ ′2 − 2ζ ′v · Ω′) 3
2

,

=
ζ ′(ζ ′ − ζµ)ζµ+ ζ ′(ζ2 − ζζ ′µ)

(ζ2 + ζ ′2 − 2ζζ ′µ)
3
2

,

=
ζ2ζ ′(1− µ2)

(ζ2 + ζ ′2 − 2ζζ ′µ)
3
2

· (A.11)

The comutation of the Γ(v) · v term can now be completed,

Γ(v) · v =

∫
v′∈R3

S(u) [f(v′)∇vf(v)− f(v)∇v′f(v′)] dv′ · v,

=

∫
v′∈R3

S(u)v · [f(v′)∇vf(v)− f(v)∇v′f(v′)] dv′, by symmetry of S(u),

=

∫ ∞
0

∫
Ω′∈S2

S(u)v ·
[
f(ζ ′)

v

ζ
∂ζf(ζ)− f(ζ)Ω′∂ζ′f(ζ ′)

]
dΩ′ζ ′2dζ ′, from (A.8),

=

∫ ∞
0

∫
Ω′∈S2

[
f(ζ ′)

1

ζ
∂ζf(ζ)Av − f(ζ)∂ζ′f(ζ ′)AΩ′

]
dΩ′ζ ′2dζ ′,

=

∫ ∞
0

∫ +1

−1

ζ2ζ ′2(1− µ2)

(ζ2 + ζ ′2 − 2ζζ ′µ)
3
2

[
f(ζ ′)

1

ζ
∂ζf(ζ)− f(ζ)

1

ζ ′
∂ζ′f(ζ ′)

]
2πdµζ ′2dζ ′,

from (A.10), (A.11) and dΩ′ = 2πdµ. Or, as the integral in mu variable is very
simple, ∫ +1

−1

ζ2ζ ′2(1− µ2)

(ζ2 + ζ ′2 − 2ζζ ′µ)
3
2

dµ =
4

3
inf

(
1

ζ3
,

1

ζ ′3

)
,

We can rewrite Γ(v) · v under the following form,

Γ(v) · v =

∫ ∞
0

8π

3
inf

(
1

ζ3
,

1

ζ ′3

)
ζ2ζ ′2

[
f(ζ ′)

1

ζ
∂ζf(ζ)− f(ζ)

1

ζ ′
∂ζ′f(ζ ′)

]
ζ ′2dζ ′.

(A.12)
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In this case, as we have assumed that f is isotropic, we have
f0(ζ) = ζ2

∫
S2
f(ζ) dΩ = 4πζ2f(ζ), we can conclude from (A.7) and (A.12) that,

∂tf0 = αee∂ζ

(
ζ

∫ ∞
0

2

3
inf

(
1

ζ3
,

1

ζ ′3

)
ζ2ζ ′2

[
f0(ζ ′)

ζ ′2
1

ζ
∂ζ

(
f0(ζ)

ζ2

)
− f0(ζ)

ζ2

1

ζ ′
∂ζ′

(
f0(ζ ′)

ζ ′2

)]
ζ ′2dζ ′

)
,

=
2αee

3
∂ζ

[
ζ2

(∫ ∞
0

inf

(
1

ζ3
,

1

ζ ′3

)
ζ ′2f0(ζ ′)dζ ′

)
∂ζ

(
f0(ζ)

ζ2

)
− ζ

(∫ ∞
0

inf

(
1

ζ3
,

1

ζ ′3

)
ζ ′3∂ζ′

(
f0(ζ ′)

ζ ′2

)
dζ ′
)
f0(ζ)

]
,

=
2αee

3
∂ζ

(
ζ2A(ζ)∂ζ

(
f0(ζ)

ζ2

)
− ζB(ζ)f0(ζ)

)
,

=
2αee

3
∂ζ

(
A(ζ)∂ζf0(ζ)−

(
ζB(ζ) +

2A(ζ)

ζ

)
f0(ζ)

)
,

where

A(ζ) =

∫ ∞
0

inf

(
1

ζ3
,

1

ζ ′3

)
ζ ′2f0(ζ ′)dζ ′

We �nish computing the B coe�cient

B(ζ) =

∫ ∞
0

min(
1

ζ3
,

1

w3
)w3∂w

(
f0(w)

w2

)
dw,

=

∫ ζ

0

w3

ζ3
∂w

(
f0(w)

w2

)
dw +

∫ ∞
ζ

∂w

(
f0(w)

w2

)
dw,

=

[
w3

ζ3

f0(w)

w2

]ζ
0

−
∫ ζ

0

3w2

ζ3

f0(w)

w2
dw +

[
f0(w)

w2

]∞
ζ

,

= − 3

ζ3

∫ ζ

0

f0(w)dw.

We retrieve exactly the formula (3.2) for the collision operators involved by the
equation on f0. We neglect the operator Qee for the equation on f1 because we
retain only the isotropic part of this operator and f1 represent the anisotropic part
of the distribution function.
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Appendix B

Derivation of the angular M1 model
in a moving frame

In this part, the derivation of the angular M1 model in a moving frame is de-
tailed. The following kinetic equation will be considered for the angular moments
integration

∂tg + divx((c+ u)g)− divc
(
(
du

dt
+
∂u

∂x
c)g
)

= 0,

where
du

dt
= ∂tu+ (∂xu)u.

Introduce a test function φ, we consider the integral∫
c

(
∂tg + divx((c+ u)g)− divc(

du

dt
g +

∂u

∂x
cg
)
φ(ζ)dc = 0.

By using the Green formulae and c = ζΩ∫
c

(∂tg + divx((c+ u)g))φ(ζ)dc+

∫
c

(
du

dt
g +

∂u

∂x
: Ω⊗ Ωζgζ)φ′(ζ)dc = 0.

In spherical coordinates the previous equation leads to∫
ζ

∫
S2

(∂tg+divx((c+u)g))φ(ζ)ζ2dΩdζ+

∫
ζ

∫
S2

(
du

dt
.gΩ+

∂u

∂x
: Ω⊗Ωζg)φ′(ζ)ζ2dΩdζ = 0.

With the de�nitions of the angular moments∫
ζ

(∂tg0 + divx(ζg1 + ug0))φ(ζ)dζ +

∫
ζ

(
du

dt
.g1 +

∂u

∂x
: ζg2)φ′(ζ)dζ = 0.

Finally by integration by part,∫
ζ

(
∂tg0 + divx(ζg1 + ug0)− ∂

∂ζ

[du
dt
.g1 +

∂u

∂x
: ζg2

])
φ(ζ)dζ = 0.
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This holds true for all test function φ then one obtains the �rst equation for the
M1 model in a moving frame

∂tg0 + divx(ζg1 + ug0)− ∂

∂ζ

[du
dt
.g1 +

∂u

∂x
: ζg2

]
= 0.

Introduce a test function φΩ, we consider the integral∫
c

(
∂tg + divx((c+ u)g)− divc(

du

dt
g +

∂u

∂x
cg)
)
φ(ζ)Ωdc = 0.

By using the Green formulae∫
c

(
∂tg + divx((c+ u)g)

)
φ(ζ)Ωdc+

∫
c

∂φ(ζ)Ω

∂c
(
du

dt
g +

∂u

∂x
cg)dc = 0.

Using that
∂φ(ζ)Ω

∂c
= φ′(ζ)Ω⊗ Ω + φ(ζ)

Id− Ω⊗ Ω

ζ
.

Then the second term of the left side of the equation gives∫
c

∂φ(ζ)Ω

∂c
(
du

dt
g +

∂u

∂x
cg)dc =

∫
c

Id− Ω⊗ Ω

ζ

du

dt
gφ(ζ)dc+

∫
c

Id− Ω⊗ Ω

ζ

∂u

∂x
cgφ(ζ)dc

+

∫
c

Ω⊗ Ω
du

dt
φ′(ζ)g(c)dc+

∫
c

Ω⊗ Ω
∂u

∂x
cg(c)φ′(ζ)dc

The �rst term of the right side reads∫
c

Id− Ω⊗ Ω

ζ

du

dt
gφ(ζ)dc =

∫
ζ

g0Id− g2

ζ

du

dt
φ(ζ)dζ.

The second term of the right side reads∫
c

Id− Ω⊗ Ω

ζ

∂u

∂x
cgφ(ζ)dc =

∫
ζ

(
∂u

∂x
g1 − g3

∂u

∂x
)φ(ζ)dζ.

The third term of the right side gives∫
c

Ω⊗ Ω
du

dt
φ′(ζ)g(c)dc = −

∫
ζ

∂g2

∂ζ

du

dt
φ(ζ)dζ.

The fourth term of the right side gives∫
c

Ω⊗ Ω
∂u

∂x
cg(c)φ′(ζ)dc = −

∫
ζ

∂ζg3

∂ζ

∂u

∂x
φ(ζ)dζ

Finally one obtains the second equation for the M1 model in a moving frame

∂tg1 + divx(ζg2 +u⊗ g1)− ∂ζ
(
g2
du

dt
+ ζg3

∂u

∂x

)
+
f0Id− f2

ζ

du

dt
+ (

∂u

∂x
g1− g3

∂u

∂x

)
= 0.
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B. Derivation of the angular M1 model in a moving frame

The angular M1 model in a moving frame reads
∂tg0 + divx(ζg1 + ug0)− ∂ζ

(du
dt
.g1 + ζ∂xu : g2

)
= 0,

∂tg1 + divx(ζg2 + u⊗ g1)− ∂ζ
(
g2
du

dt
+ ζg3

∂u

∂x

)
+
f0Id− f2

ζ

du

dt
+ (

∂u

∂x
g1 − g3

∂u

∂x

)
= 0.

(B.1)
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