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Développement d’un schéma aux Volumes Finis
centré Lagrangien pour la résolution 3D des

équations de l’hydrodynamique et de
l’hyperélasticité

Résumé :

La Physique des Hautes Densités d’Énergies (HEDP) est caractérisée par des
écoulements multi-matériaux fortement compressibles. Le domaine contenant l’écou-
lement subit de grandes variations de taille et est le siège d’ondes de chocs et de
détente intenses. La représentation Lagrangienne est bien adaptée à la descrip-
tion de ce type d’écoulements. Elle permet en effet une très bonne description des
chocs ainsi qu’un suivit naturel des interfaces multi-matériaux et des surfaces libres.
En particulier, les schémas Volumes Finis centrés Lagrangiens GLACE (Godunov-
type LAgrangian scheme Conservative for total Energy) et EUCCLHYD (Explicit
Unstructured Cell-Centered Lagrangian HYDrodynamics) ont prouvé leur efficacité
pour la modélisation des équations de la dynamique des gaz ainsi que de l’élasto-
plasticité. Le travail de cette thèse s’inscrit dans la continuité des travaux de Maire
et Nkonga [JCP, 2009] pour la modélisation de l’hydrodynamique et des travaux
de Kluth et Després [JCP, 2010] pour l’hyperelasticité. Plus précisément, cette
thèse propose le développement de méthodes robustes et précises pour l’extension
3D du schéma EUCCLHYD avec une extension d’ordre deux basée sur les méthodes
MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) et GRP
(Generalized Riemann Problem). Une attention particulière est portée sur la préser-
vation des symétries et la monotonie des solutions. La robustesse et la précision du
schéma seront validées sur de nombreux cas tests Lagrangiens dont l’extension 3D
est particulièrement difficile.

Mots clés :

Méthodes aux Volumes Finis - Formalisme Lagrangien - Hydrodynamique - Hyper-
élasticité - Schémas centrés (colocalisé) - Méthodes de Godunov - Méthode MUSCL
- Limiteurs de pente - Problème de Riemann Généralisé (GRP) - Multi-dimensionel
- Maillages non-structurés
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Development of a 3D cell-centered Lagrangian
scheme for the numerical modeling of the gas

dynamics and hyperelasticity systems

Abstract:

High Energy Density Physics (HEDP) flows are multi-material flows character-
ized by strong shock waves and large changes in the domain shape due to rarefaction
waves. Numerical schemes based on the Lagrangian formalism are good candidates
to model this kind of flows since the computational grid follows the fluid motion.
This provides accurate results around the shocks as well as a natural tracking of
multi-material interfaces and free-surfaces. In particular, cell-centered Finite Vol-
ume Lagrangian schemes such as GLACE (Godunov-type LAgrangian scheme Con-
servative for total Energy) and EUCCLHYD (Explicit Unstructured Cell-Centered
Lagrangian HYDrodynamics) provide good results on both the modeling of gas dy-
namics and elastic-plastic equations. The work produced during this PhD thesis
is in continuity with the work of Maire and Nkonga [JCP, 2009] for the hydrody-
namic part and the work of Kluth and Després [JCP, 2010] for the hyperelasticity
part. More precisely, the aim of this thesis is to develop robust and accurate meth-
ods for the 3D extension of the EUCCLHYD scheme with a second-order extension
based on MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws)
and GRP (Generalized Riemann Problem) procedures. A particular care is taken on
the preservation of symmetries and the monotonicity of the solutions. The scheme
robustness and accuracy are assessed on numerous Lagrangian test cases for which
the 3D extensions are very challenging.

Keywords :

Finite Volume methods - Lagrangian formalism - Hydrodynamics - Hyperelasticity
- Cell-centered schemes - Godunov methods - MUSCL procedure - Slope limiting -
Generalized Riemann Problem - Multi-dimensional - Unstructured meshes
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Développement d’un schéma aux Volumes Finis
centré Lagrangien pour la résolution 3D des

équations de l’hydrodynamique et de
l’hyperélasticité

Résumé substantiel en français:

Cette thèse s’est déroulée au Laboratoire CELIA (CEntre des Lasers Intenses et
Applications) sous la direction de Pierre-Henri Maire et Jérôme Breil.

Le CELIA est une Unité Mixte de Recherche sous la tutelle du CEA (Commis-
sariat à l’Energie Atomique), l’Université de Bordeaux et le CNRS (Centre National
de la Recherche Scientifique). Au sein de ce laboratoire, le groupe IFCIA (Inter-
action - Fusion par Confinement Inertiel - Astrophysique) étudie la Physique des
Hautes Densités d’Énergie (HEDP) comprenant, par exemple, les écoulements de
type Fusion par Confinement Inertiel (ICF) et l’astrophysique de laboratoire. Ce
groupe est notamment impliqué dans le projet du Laser Méga Joule (LMJ) con-
sistant à produire de l’énergie à partir de réactions de fusion nucléaire. Pour ce
faire, la matière est très fortement comprimée par des lasers. Ce procédé est qualifié
d’attaque direct (direct drive ICF). Les expériences nécessaires à la compréhension
de tous les phénomènes physiques intervenant lors d’un écoulement HEDP et leur
interaction sont complexes et onéreuses. C’est pourquoi la simulation numérique est
un outil très important, permettant de concevoir et interpréter ces expériences.

La Physique HEDP est caractérisée par des écoulements multi-matériaux forte-
ment compressibles. Le domaine contenant l’écoulement subit de grandes variations
de taille et est le siège d’ondes de chocs et de détente intenses. La représentation
Lagrangienne est bien adaptée à la description de ce type d’écoulements. Elle per-
met en effet une très bonne description des chocs ainsi qu’un suivit naturel des
interfaces multi-matériaux et des surfaces libres. Depuis 2003, Guy Schurtz, Pierre-
Henri Maire et Jérôme Breil ont développé le code CHIC (Code d’Hydrodynamique
et d’Implosion du Celia) pour résoudre l’hydrodynamique Lagrangienne combinée
à de nombreux modules physiques, tels que le transport d’énergie et le ray-tracing
par exemple, afin de modéliser des expériences de type ICF [17, 92].

Dans le code CHIC, l’hydrodynamique Lagrangienne est modélisée numérique-
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ment par un schéma aux Volumes Finis centré Lagrangien. Pendant de nom-
breuses années, ce type de schéma a souffert d’une incompatibilité entre la vitesse
de l’écoulement et le déplacement des nœuds du maillage. Ce problème a été résolu
par Després et Mazeran dans [34] où ils proposent un solveur nodal permettant le
calcul d’une vitesse de nœud respectant la GCL (Geometric Conservation Law) et
assurant la conservation du volume lors de l’écoulement. Le schéma de Després a
été nommé GLACE pour Godunov-type LAgrangian scheme Conservative for total
Energy. Dans leur papier [93] Maire et al. ont proposé une variante de ce schéma
permettant de supprimer la dépendance du schéma GLACE au rapport d’aspect
des mailles. Ce dernier a été nommé EUCCLHYD pour Explicit Unstructured Cell-
Centered Lagrangian HYDrodynamics et est actuellement implémenté dans le code
CHIC. Dans sa version actuelle, le code CHIC modélise des écoulements à géométrie
plane et axi-symétrique. Cependant, si les expériences tentent de reproduire une
symétrie axiale, les écoulements 3D sont impossibles à éviter. Par exemple, des
instabilités hydrodynamiques apparaissent à la surface de la cible ICF à cause des
imperfections de la cible et de la distribution surfacique des lasers. Ces instabilités
sont des phénomènes purement 3D qu’il n’est pas possible de modéliser avec un code
2D axi-symétrique et il y a une réelle nécessité de développer des schémas 3D [130].
L’extension 3D des schémas GLACE et EUCCLHYD a donc été proposée respec-
tivement dans [28] et [95], ce dernier papier étant le point de départ de cette thèse.
Plus particulièrement, le travail de cette thèse consiste à développer des méthodes
précises et robustes pour le schéma EUCCLHYD 3D et son extension à l’ordre deux
pour la résolution des systèmes de l’hydrodynamique et de l’hyperelasticité.

Le Chapitre 1 de cette thèse se concentre sur le développement, à l’ordre un, du
solveur EUCCLHYD en 3D. Sous formalisme Lagrangien, le maillage suis l’écoulement
du fluide et il se déforme donc au cours du temps. Une principale difficulté lors du
développement d’un schéma Lagrangien est donc la compatibilité avec la GCL. En
effet, il existe deux façons de calculer la variation de volume : un calcul explicite
du volume de la maille à chaque instant à partir des coordonnées de ses nœuds
ou la résolution discrète de la GCL. Le schéma sera dit compatible avec la GCL
si les deux méthodes sont complètement équivalentes. Dans ce premier chapitre,
une méthode est développée afin d’assurer la compatibilité du schéma EUCCLHYD
avec la GCL pour un maillage polyédrique quelconque. Cette procédure est basée
sur un principe de découpage des faces polygonales en triangles et est faite de façon
à n’introduire aucune nouvelle inconnue. Le schéma EUCCLHYD est ensuite dérivé
de façon classique [95]. En particulier, le solveur nodal est construit à partir des
deux hypothèses d’inégalité entropique et de conservation du moment autour de
chaque nœud. Le traitement des conditions aux limites est détaillé dans les cas
des conditions de pression imposée, vitesse imposée et symétrie. Enfin, étendant au
contexte 3D le travail fait par Vilar et al. [126, 127], le pas de temps est calculé de
façon à garantir la positivité de l’énergie interne au cours du calcul. Ce critère per-
met, entre autre, de définir un critère CFL pour un maillage polyédrique quelconque.

Le Chapitre 2 présente l’extension à l’ordre deux de ce schéma en temps et en
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espace. L’ordre deux en espace est obtenu par une méthode de type MUSCL (Mono-
tonic upstream-centered Scheme for Conservation Laws) qui est entièrement détail-
lée. Cette procédure consiste à reconstruire linéairement les champs de pression et
vitesse afin d’améliorer la précision du solveur nodal. Cependant, le contexte 3D de
cette étude fait que certaines étapes de la méthode MUSCL peuvent être effectuées
de différentes façon. Ainsi, les gradients de la reconstruction linéaire peuvent être
approchés par une méthode de moindres carrés ou encore par la formule de Green.
De plus, il n’y a pas unicité du critère de monotonie et deux variantes sont étudiées
ici. Au final, ce sont trois limiteurs qui sont proposés dans ce chapitre : l’extension
classique de la méthode MUSCL en multi-dimension, soit une limitation composante
par composante des champs reconstruits (CW-limiter pour Component-Wise lim-
iter), une limitation des champs de vitesses permettant de préserver la symétrie de
la reconstruction (SP-limiter pour Symmetry Preserving limiter) et un limiteur basé
sur l’extension multi-dimensionnelle du limiteur minmod (MM-limiter pour Multi-
dimensional Minmod limiter). En particulier, le SP-limiteur est construit de façon
à éviter les problèmes liés à la limitation des champs de vitesse. En effet, tel qu’il
est proposé dans [90] avec le limiteur VIP, il faut utiliser l’enveloppe convexe d’un
groupe de vecteurs pour pouvoir définir un critère de monotonie. Or les enveloppes
convexes sont très complexes à construire en 3D et très difficilement utilisable dans
le cas de tenseurs. De son côté, le MM-limiteur est construit de façon à stabiliser les
écoulements à symétrie sphérique et à réduire l’effet de mesh printing. Concernant
l’ordre deux en temps, les méthodes Prédicteur-Correcteur et Generalized Riemann
Problem (GRP) sont toutes les deux détaillées. En particulier, la procédure GRP
détaillée dans cette thèse est très similaire à celle proposée par Maire et al. dans
[96] à la différence près que la variation temporelle du maillage est prise en compte
ici. Les algorithmes correspondants à chacune de ces méthodes sont détaillés au fil
du chapitre.

Dans le Chapitre 3, le schéma EUCCLHYD 3D est validé sur de nombreux cas
test classiques au formalisme Lagrangien. En particulier, ce sont des cas tests dif-
ficiles qui permettent de valider et comparer les différentes méthodes proposées au
Chapitre 2. Le cas test de Sod permet de voir l’impact de la méthode de recon-
struction des gradients et du stencil de monotonie sur la stabilité de la solution.
Ainsi, il apparaît que des gradients obtenus à partir d’une méthode de moindres
carrés mènent à une solution présentant de forts overshoots au niveau du choc alors
que la solution est beaucoup plus régulière en utilisant la formule de Green. De
la même façon, le stencil de monotonie étendu permet d’améliorer la qualité de la
solution autour des ondes de choc et de détente. L’ordre de convergence du schéma
est évalué sur le cas test du Vortex de Taylor-Green. Un ordre de 1.97 est obtenu en
utilisant une intégration en temps de type Prédicteur-Correcteur combinée aux lim-
iteurs CW ou SP. Cependant, lorsqu’une méthode GRP est activée, des différences
apparaissent. L’ordre de convergence est légèrement détérioré avec le CW-limiteur
alors qu’il reste inchangé avec le SP-limiteur. Cette dernière perte de précision est
probablement dû au fait que la méthode GRP nécessite elle aussi l’utilisation des
gradients approchés. Les erreurs sont ainsi cumulées avec la méthode MUSCL. Le
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problème de Saltzmann permet d’évaluer l’impact du maillage sur la solution finale.
Dans cette étude, des résultats tout à fait comparables avec ceux de la littérature
sont obtenus. Les limiteurs sont mis à défaut sur le cas test de Noh. En effet, sur
ce problème à géométrie sphérique présentant un fort taux de compression, les deux
limiteurs CW et SP échouent à l’obtention d’une solution monotone et de très fort
overshoots apparaissent au niveau du choc. Des pertes de symétrie sont également
notable dans le cas du CW-limiteur à cause des changements de base. Seul le MM-
limiteur permet d’obtenir des résultats acceptables sur le maillage le plus fin. De la
même façon, les limiteurs CW et SP sont mis à défaut sur le cas test de Sedov où
une perte de symétrie sphérique ainsi que des mailles non convexes sont observables.
Le MM-limiteur permet de palier à ces deux problèmes sur ce cas test également.
Finalement, le schéma est évalué sur le cas très difficile de Kidder. Cette implosion
de coquille en 3D est un problème instable en soi car le maillage ne respecte pas
la symétrie sphérique et que ce problème présente une croissance exponentielle des
défauts. Sur ce cas test encore, seul le MM-limiteur permet d’obtenir une solution
qui n’est pas complètement détériorée par le mesh printing.

Le Chapitre 4 propose d’étudier le développement d’instabilités de type Rayleigh-
Taylor (RTI) dans les restes d’une supernova soufflés par un pulsar interne. C’est
une étude qui a été menée en collaboration avec d’autre chercheurs du laboratoire
Celia. En particulier dans cette étude, la supernova est modélisée par une coquille
de gaz soufflée par une loi de pression interne. Le cas test est d’abord validé sans
perturbation grâce à la solution analytique du problème. Des perturbation en har-
moniques sphériques sont ensuite introduite. Le schéma 3D est d’abord comparé au
code CHIC sur une perturbation 2D-axisymétrique pour s’assurer que les résultats
sont identiques. Plusieurs modes de perturbation sont ensuite étudiés de façon à
valider numériquement l’hypothèse supposant que le mode azimutal n’impacte pas
le taux de croissance des défauts.

Enfin, le Chapitre 5 étend le schéma EUCCLHYD 3D à la modélisation de
l’hyper-élasticité. La loi constitutive du matériau est construite en utilisant la
procédure de Coleman-Noll qui assure la consistance thermodynamique ainsi que
l’indifférence matérielle. Cette dernière propriété est primordiale et assure notam-
ment que les propriétés du solide ne varient pas lors d’un changement de référentiel.
Plus précisément, les matériaux sont décrits par une loi de type Néo-Hookéenne. Le
solveur nodal EUCCLHYD est ensuite utilisé pour discrétiser ce système d’équations
en se basant sur les mêmes propriétés de consistance thermodynamique et de con-
servation des moments autour des nœuds. Ce schéma est étendu à l’ordre deux en
utilisant les méthodes MUSCL et GRP proposées au Chapitre 2. En particulier,
le SP-limiteur est modifié de façon à pouvoir limiter des champs de tenseurs. Le
schéma est finalement validé sur différents cas test présentant des déformations in-
finitésimales ou des déformation importantes afin de valider le comportement du
schéma dans différents régimes.
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Introduction

My PhD thesis took place at the CELIA Laboratory (CEntre des Lasers Intenses
et Applications) under the co-supervision of Pierre-Henri Maire and Jérome Breil.

The CELIA Laboratory is a Mixed Research Unit shared by the CEA (Commis-
sariat à l’Energie Atomique), the University of Bordeaux and the CNRS (Centre
National de la Recherche Scientifique). Within this laboratory, the group IFCIA
(Interaction-Inertial Confinement Fusion-Astrophysics) aims at studying High En-
ergy Density Physics (HEDP) flows such as Inertial Confinement Fusion (ICF) and
laboratory astrophysics. In particular, this group works on the LMJ (Laser Mega
Joule) program aiming at producing energy from nuclear fusion by heating a target
with lasers also referred to as direct drive ICF. The experiments required to under-
stand all the physical phenomena and their interactions during HEDP experiments
are very challenging from a technological point of view and are very expensive. In
this sense, the numerical simulation is a key tool for designing and interpreting such
experiments.

HEDP flows are compressible multi-material fluid flows presenting strong shocks
and strong changes in the domain shape due to rarefaction waves. The Lagrangian
formalism is well suited to the modeling of such flows since the computational grid
follows the fluid motion. In this way, a Lagrangian scheme provides a natural track-
ing of multi-material interfaces, free-surfaces and an accurate resolution of shocks.
Since 2003, Guy Schurtz, Pierre-Henri Maire and Jérôme Breil have developed the
CHIC code (Code d’Hydrodynamique et d’Implosion du Celia) for solving the La-
grangian hydrodynamics in combination of multiple physical modules such as energy
transport modeling and laser ray tracing in order to model ICF experiments [17, 92].

In the CHIC code, the Lagrangian hydrodynamics is solved using a cell-centered
Finite Volume Lagrangian scheme. For decades, this type of schemes were subject to
an incompatibility between the grid displacement and the fluid motion. This prob-
lem has been solved by Després and Mazeran in [34] who proposed a nodal solver
leading to the respect of the Geometric Conservation Law (GCL). This scheme is
referred to as GLACE for Godunov-type LAgrangian scheme Conservative for total
Energy. A variant of this scheme has then been developed by Maire et al. in [93] in
order to remove the scheme dependency to the cell aspect ratio. This second scheme
is called EUCCLHYD for Explicit Unstructured Cell-Centered Lagrangian HYDro-
dynamics and is the scheme implemented in the CHIC code. In its actual version,
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the EUCCLHYD scheme can handle 2D and 2D-axisymmetric flows. However, in
real experiments, a perfect symmetry is impossible and 3D effects are unavoidable.
For example, one can mention the hydrodynamics instabilities appearing at the sur-
face of the ICF target due to manufacturing imperfections and laser imprint. In
particular, these 3D effects cannot be modeled by 2D or 2D-axisymmetric codes
and there is a real necessity for developing 3D schemes [130]. The 3D extensions of
the GLACE and EUCCLHYD schemes were respectively proposed in [28] and [95],
the latter being the starting point of this PhD thesis. The aim of this thesis is to
develop robust and accurate methods to improve the 3D scheme and its extension
to second order using a MUSCL procedure (Monotonic Upstream-centered Scheme
for Conservation Laws) which is a complex task in the 3D context. The extension of
the scheme to the hyperelasticity system is also investigated to allow the modeling
of solids under large stress. This work is structured as follows:

In Chapter 1, the complete derivation of the 3D EUCCLHYD scheme is detailed.
The discretization of the Lagrangian gas dynamics equations on a moving grid is
complex, especially in 3D. In particular, an important requirement is to ensure that
the volume computed from the mesh is equivalent to the volume computed from the
Geometric Conservation Law (GCL) which is referred to as GCL compatibility. In
this first Chapter, a systematic and symmetric discretization of the cells is proposed
in order to ensure the GCL compatibility on any unstructured polyhedral mesh. The
velocity of the grid nodes, required to move the computational grid with respect to
the fluid motion, is computed thanks to a nodal solver based on two assumptions.
First, a momentum conservation condition around the nodes and second, an entropy
inequality. The treatment of the boundary conditions as well as the computation of
the time step are detailed for the sake of completeness. In particular, the latter is
computed in such a way that the positivity of the internal energy is ensured at each
time step following the work of Vilar et al. [126, 127].

The Chapter 2 studies the second order extension of this scheme using a MUSCL
procedure. This procedure consists in linearly reconstructing the flow variables in
order to improve the accuracy of the nodal solver. The reconstructed fields must
be limited in order to respect a monotonicity criterion which prevents spurious os-
cillations. This limiting step is easy to perform in the case of scalar fields but is
more difficult in the case of vector fields for which the definition of extrema becomes
unclear. This Chapter recalls the classic 3D extension of the MUSCL procedure
and proposes two new limiting procedures in order to improve the monotonicity
and preserve the symmetry of the numerical solution. In the second part of this
Chapter, second order time discretization procedures are presented. In particular, a
classic Predictor-Corrector scheme is compared to a Generalized Riemann Problem
(GRP) approach. Algorithms are detailed throughout the chapter to summarize the
different procedures.

In Chapter 3, the scheme is validated on classic Lagrangian test cases. For ex-
ample, the smooth and stationary problem of the Taylor-Green Vortex is used to
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compute the order of accuracy of the scheme. Moreover, the scheme robustness
and symmetry are assessed on the difficult problems of Noh, Sedov and Kidder that
are particularly challenging in 3D. In this sense, they are a good tool to compare
the advantages and the limits of the second-order procedures proposed in Chapter 2.

In Chapter 4, the study of Rayleigh-Taylor Instability (RTI) in supernova rem-
nants blown up by a central pulsar is proposed. In this study, performed in collabo-
ration with researchers of the CELIA Laboratory, the inner face of the supernova is
perturbed by use of the spherical harmonics function. In particular, the 3D scheme
is compared to the CHIC Code on a 2D-axisymmetric problem to ensure that the
same results are found. Then a 3D problem is proposed: investigate the impact of
the azimuthal mode on the perturbation growth.

Finally, the Chapter 5 presents the extension of the scheme to the modeling
of hyperelasticity. As proposed in [76, 80, 96, 111], the Finite Volume Lagrangian
schemes are an interesting alternative to the Finite Element formalism classically
used for studying deforming solids. In this PhD thesis, the solids are described by
the hyperelastic model which ensures the frame-indifference as well as the thermo-
dynamic consistency by construction. With such a formalism, the constitutive law
defines the Cauchy stress tensor as the derivative of the free-energy with respect
to the deformation gradient which enables, for example, the use of Neo-Hookean
materials. The nodal solver proposed in the EUCCLHYD scheme is extended to
this problem using the same assumptions of momentum conservation and entropy
criterion. The MUSCL and GRP procedures are used for the second-order extension
of this hyperelasticity system. Finally, the scheme is validated on several test cases
presenting both small and large deformations.
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scheme for solving gas dynamics equations, Journal of Computational Physics,
305 (2016) 921-941.

◦ G.Georges, J.Breil, X.Ribeyre, E. Le Bel. A 3D cell-centered Lagrangian
scheme applied to the simulation of 3D non-stationary Rayleigh-Taylor Insta-
bility in supernova remnants, High Energy Density Physics, 17 (2015) 151-156.
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Chapter 1

Cell-centered Lagrangian scheme for
multi-dimensional hydrodynamics

1.1 Introduction

There are two ways of representing the kinematics of a fluid, namely the Eulerian
and the Lagrangian formalims. Under the Eulerian formalism, the computational
grid is fixed and one can observe the fluid moving through the cells. This is possible
thanks to mass fluxes at the cell faces which enable mass, momentum and total
energy exchanges between two neighboring cells. Roughly speaking, this formalism
enables to model any kind of flow on any kind of mesh. However, it also introduces
strong numerical diffusion due to the discretization of the convection terms. Natu-
rally, the second possible formalism, the Lagrangian formalism, is the one enabling
the computational grid to follow the fluid motion. In this way, there is no mass
flux through the cell faces and thus no diffusion due to the advection of the fluid.
In particular, this property enables an exact tracking of multi-material interfaces
and free-surface flows. However, since the quality of a numerical approximation
is inherent to the quality of the computational grid, it is easily understood that
such a formalism is limited to certain type of flows. For example, the Lagrangian
formalism is particularly effective to compute compression problems but is quickly
disadvantageous if the flow presents vorticity since it leads to mesh entanglement.
In particular, the Lagrangian formalism is well suited to the simulation of High En-
ergy Density Physics (HEDP) flows such as Inertial Confinement Fusion (ICF) and
laboratory astrophysics since these flows are characterized by large changes in the
domain shape due to strong shocks and rarefaction waves. Moreover, the absence of
mass flux makes the Lagrangian formalism a very good candidate for multi-material
interface tracking. Numerous works can be found in the literature on Lagrangian
schemes nowadays. The interested reader is referred to the review of Benson [11],
the introduction of [14] and the work of Maire [92] for more information.

The first Lagrangian scheme was proposed by Von Neumann and Richtmyer in
1950 for the numerical treatment of problems involving shocks [128]. This 1D scheme
is staggered in the sense that the velocity is defined at the mesh nodes, whereas the
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1.1. Introduction

thermodynamic quantities, such as internal energy, pressure and density, are defined
at the cell centers. This formalism is natural since it directly provides the velocity
of the grid nodes which is required to move the grid. In their paper, Von Neumann
and Richtmyer proposed the concept of artificial viscosity in order to transform ki-
netic energy into internal energy through shock waves which renders the scheme
consistent with the Second Law of thermodynamics and enables a robust treatment
of shock waves. The 2D extension of this scheme was proposed by Wilkins in his
seminal work [132] devoted to the simulation of elastic-plastic flows. In particu-
lar, the 2D context highlighted two main drawbacks of the staggered methods: the
non-conservation of total energy (referred to as compatibility) and the presence of
spurious numerical modes (known as hourglass motion and spurious vorticity). In-
novative cures have been introduced by Caramana et al. respectively in [19, 25] and
[24, 27]. In these papers, they introduced the concept of subcell forces to remove the
hourglass motion and used the method of support operators to perform a compat-
ible discretization of both momentum and internal energy conservation equations
which enables to recover the conservation of total energy. There is numerous ways
of defining the artificial viscosity. In particular, one can refer to [23, 85, 131] for
the construction of artificial viscosity using mimetic methods, to [87, 88, 101] for an
artificial viscosity based on approximate Riemann solvers and [79] for a high-order
Finite Element artificial viscosity. More recently, numerous work have been done in
order to extend the good properties of compatibility and symmetry preservation in
the 2D-axisymmetric context [6, 121, 122], and in the 3D context [26, 88].

The Lagrangian formalism has also been studied using the Finite Element for-
malism. In their work [115, 116], Scovazzi et al. proposed a variational multi-scale
(VMS) approach to stabilize a piecewise linear approximation of the variables. In
particular, this work extends the computation of Lagrangian hydrodynamics to tri-
angular meshes. The 3D extension of the VMS procedure was performed in [113] and
provides impressive results on tetrahedral meshes. In [5], Barlow showed the natu-
ral compatibility of Finite Element Lagrangian schemes using the adjointness of the
discrete operators under an Arbitrary Lagrangian-Eulerian (ALE) formalism in the
same way as in [25]. High-order extensions are quite natural under a Finite Element
formalism thanks to the use of high-order interpolation basis. In this way, Dobrev
et al. proposed in successive works [36, 37, 38] a high-order approximation of 2D
and 2D axi-symmetric Lagrangian hydrodynamics using curvilinear finite elements
and quadrangular meshes. The 3D extension of their scheme was also proposed in
ALE [35, 39].

The cell-centered schemes, or collocated schemes, are different from the stag-
gered schemes in the fact that they consider all the variables located at the cell
centers. They were first studied by Godunov [56, 60] who proposed to compute the
interface fluxes by mean of approximate Riemann solvers. In particular, the natural
dissipation of approximate Riemann solvers simplifies the treatment of shock waves
making the artificial viscosity unnecessary. Another difference with the staggered
schemes is that cell-centered schemes solve the Euler equations under its conserva-

2 Gabriel GEORGES



1. Cell-centered Lagrangian scheme for multi-dimensional hydrodynamics

tive form leading to naturally conservative schemes. The main difficulty when using
such schemes in the multi-dimensional context lies in the computation of the grid
velocity. In [2] the attempt was made to design an algorithm computing the node
velocity from the interface velocity fluxes using a weighted least squares procedure.
However, this procedure leads to an artificial grid motion not in accordance with the
flow due to the fact that the Geometric Conservation Law (GCL) is not respect. The
GCL compatibility criterion means that volume variation due to the mesh motion
is strictly identical to the volume variation expected by the GCL. In their semi-
nal work [33, 34], Després and Mazeran developed a nodal solver providing a grid
velocity compatible with the GCL leading to a scheme conservative in momentum
and total energy and which respects an entropy inequality. It was called GLACE
for Godunov-type LAgrangian scheme Conservative for total Energy. In particular,
this nodal solver can be interpreted as the extension to cell-centered schemes of
the notion of subcell forces introduced by Caramana et al. [24] in the context of
staggered schemes. In [93, 94], Maire et al. proposed an alternative version of the
GLACE scheme by introducing multiple pressure fluxes at the grid nodes. In partic-
ular, this feature enables to remove the scheme dependency to the cell aspect ratio.
This scheme was called EUCCLHYD for Explicit Unstructured Cell-Centered La-
grangian HYDrodynamics. Both GLACE and EUCCLHYD schemes are based on a
Lagrangian Finite Volume approach. Recently, their 3D extension were respectively
proposed in [28] and [95]. Let mention the works [7, 129] where the authors propose
alternative Godunov-type cell-centered schemes. The Discontinuous Galerkin (DG)
formalism is also well suited to the cell-centered Lagrangian formalism as can be
seen in the works [1, 84, 86, 89, 124, 125]. Let also mention the recent work [49]
aiming at reducing the mesh printing effects in cell-centered schemes by working on
the nodal solver.

As previously said, since the mesh follows the flow motion, if the flow presents
shearing or vorticity then the mesh will tangle. Moreover, the quality of the nu-
merical solution is directly impacted by the quality of the mesh since the latter
depends on the numerical solution at the previous time. This flaw is referred to
as mesh printing. It is inherent to Lagrangian schemes and is very strong in the
3D context due to the incapacity of designing meshes perfectly aligned with the
flow under any circumstance. This is why most of the actual literature deals with
Arbitrary Lagrangian Eulerian (ALE) procedures. Such a procedure takes advan-
tage of both Eulerian and Lagrangian formalisms by authorizing the grid velocity
to be different from the fluid velocity. As 3D ALE Lagrangian schemes, one can cite
[14, 16, 18, 43, 50] for schemes under the Finite Volume formalism, [5, 35, 102] for
the Finite Element formalism and [14] under the DG formalism.

The work produced during this PhD thesis consisted in the development of a
purely Lagrangian cell-centered scheme in 3D. In particular this study is in con-
tinuity with the work of Maire and Nkonga [95]. This first Chapter is structured
as follows: the Section 1.2 presents the compressible Euler equations under their
Lagrangian form. The spatial discretization is then described in Section 1.3. In
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particular, a procedure is proposed to ensure the GCL compatibility on any unstruc-
tured polyhedral mesh. Then, the cell-centered Lagrangian scheme EUCCLHYD is
derived in Section 1.4. Finally, the Section 1.5 presents the different criteria used
for computing the time step. In particular, the work of Vilar et al. [126, 127] on the
time step monitoring is extended to the 3D context in order to ensure the positivity
of the internal energy.

1.2 The compressible Euler equations under the La-
grangian formalism

In this section, we introduce the compressible Euler equations written under
their Lagrangian form. This system of conservation laws is the basis of any La-
grangian scheme and is thus used to derive our scheme. In particular, this system
expresses the conservation of mass, momentum and total energy of a convecting
moving volume of fluid. The complete description of the Lagrangian formalism can
be complex, especially if one wants to make the distinction between the updated and
total Lagrangian formalisms. In this Chapter, only the updated Lagrangian form
of the Euler system is described. Complete derivations of the total and updated
Lagrangian formalisms can be found in [61, 86, 92, 98, 124, 125].

1.2.1 From the Eulerian to the Lagrangian forms

Let ω(t) be a domain of fluid moving with time in the R3 space. The time
and spatial dependencies of the variables are not written explicitly for the sake of
simplicity. For example, the fluid velocity at point x and time t, V (x, t), is simply
written V . Then, if ρ denotes the fluid density, P its pressure and E its specific
total energy, the compressible Euler equations, also called gas dynamics equations,
are written

∂ρ

∂t
+∇ · (ρV ) = 0,

∂(ρV )

∂t
+∇ · (ρV ⊗ V ) +∇P = 0,

∂(ρE)

∂t
+∇ · (ρEV ) +∇ · (PV ) = 0.

(1.1)

These three conservation laws respectively state for the conservation of mass, mo-
mentum and total energy of the fluid during its motion.

Let the scalar ϕ = ϕ(x, t) and the vector ψ = ψ(x, t) be fluid variables. Defining
the fluid velocity as V = dx/dt and using the chain rule enables to define the
material derivatives of these variables as

dϕ

dt
=
∂ϕ

∂t
+ V · ∇ϕ,

dψ

dt
=
∂ψ

∂t
+ (∇ψ)V ,

(1.2)
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1. Cell-centered Lagrangian scheme for multi-dimensional hydrodynamics

where ∇ϕ and ∇ψ are the spatial gradients of the variables and ∂/∂t = ∂/∂t|x the
time derivative holding x fixed. Let mention that in this multi-dimensional context,
∇ϕ is a vector and ∇ψ is a tensor.

Assuming the flow variables are sufficiently smooth, we develop the divergence
terms and using the definition of the material derivative (1.2), system (1.1) becomes

dρ

dt
+ ρ∇ · V = 0,

d(ρV )

dt
+ (ρV )∇ · V +∇P = 0,

d(ρE)

dt
+ (ρE)∇ · V +∇ · (PV ) = 0.

(1.3)

Developing now the material derivatives by use of the chain rule and using the mass
conservation equation, the system of compressible Euler equations is finally written
under the compact form

ρ
d

dt

(
1

ρ

)
−∇ · V = 0,

ρ
dV

dt
+∇P = 0,

ρ
dE

dt
+∇ · (PV ) = 0.

(1.4)

The total energy writes E = ε+ 1
2
V 2 where ε is the internal energy. This system is

closed by linking the thermodynamic variables through the equation of state (EOS)
ε = ε(ρ, η) where η is the specific entropy. The temperature and pressure of the
fluid are respectively defined as

θ =

(
∂ε

∂η

)
ρ

and P = ρ2
(
∂ε

∂ρ

)
η

, (1.5)

leading to the Gibbs relation

ρθ
dη

dt
= ρ

dε

dt
+ ρP

d

dt

(
1

ρ

)
. (1.6)

The EOS can also be written as P = P (ρ, ε) and one can define the speed of sound
as a2 = (∂P/∂ρ)η > 0. The EOS is left under this general form to preserve the
generality of the procedure. In practice, the fluids considered are perfect gas ruled
by the gamma gas law (refer to Chapter 3).

It is well known that the system of gas dynamics might admit discontinuous
solutions such as shock waves. The selection of physically relevant shock waves is
ensured by enforcing the thermodynamic consistency dη/dt ≥ 0.
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1.2. The compressible Euler equations under the Lagrangian formalism

Finally, using the definition of the internal energy and the Euler system, one can
write the conservation equation for the internal energy as

ρ
dε

dt
+ P∇ · V = 0, (1.7)

which is equivalent to ρθdη/dt = 0 for a smooth flow.

The system (1.4) is written under its local form. In the next section, we introduce
the integral form of (1.4) more suited to the development of a Finite Volume scheme.

1.2.2 Integral form of the Euler equations

In order to facilitate the introduction of a Finite Volume discretization, let write
the integral form of the system (1.4). Indeed, this system is true for any point x in
ω(t) thus it is true over the whole domain ω(t) and it can be integrated over ω(t).
However, since the domain ω(t) evolves in time with respect to the fluid motion,
the integration of the time derivatives is not straightforward. In particular, it is
not possible to simply switch the spatial integration with the time differentiation
and one needs to use the Reynolds transport formula [61]. For an arbitrary scalar
variable ϕ and a domain ω(t) moving with the velocity V , this formula writes

d

dt

∫
ω(t)

ϕ dv =

∫
ω(t)

dϕ

dt
+ ϕ∇ · V dv. (1.8)

In particular, substituting ϕ by ρϕ enables to write

d

dt

∫
ω(t)

ρϕ dv =

∫
ω(t)

ρ
dϕ

dt
+ ϕ

(
dρ

dt
+ ρ∇ · V

)
dv. (1.9)

One recognizes the mass conservation equation between brackets, thus the relation
becomes ∫

ω(t)

ρ
dϕ

dt
dv =

d

dt

∫
ω(t)

ρϕ dv. (1.10)

In the same manner, for an arbitrary vector variable ψ, one gets∫
ω(t)

ρ
dψ

dt
dv =

d

dt

∫
ω(t)

ρψ dv. (1.11)

Substituting ϕ = ρ in (1.8) leads to the conservation of mass

d

dt

∫
ω(t)

ρ dv = 0. (1.12)

This result is the one expected since, under the Lagrangian formalism, the domain
ω(t) follows the fluid motion and there is no mass flux through the boundary ∂ω(t).
In other words, the mass of fluid in ω(t) is constant with respect to time.
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1. Cell-centered Lagrangian scheme for multi-dimensional hydrodynamics

Then, integrating the system (1.4) over ω(t) and using the formulas (1.10)-(1.11),
one obtains the integral form of the compressible Euler equations under their La-
grangian form as

d

dt

∫
ω(t)

dv −
∫
ω(t)

∇ · V dv = 0,

d

dt

∫
ω(t)

ρV dv +

∫
ω(t)

∇P dv = 0,

d

dt

∫
ω(t)

ρE dv +

∫
ω(t)

∇ · (PV ) dv = 0.

(1.13)

Let mention that substituting ϕ = 1 in the Reynolds transport formulas (1.8), one
recovers the first equation of this system. This equation states for the conservation
of volume through the motion of ω(t) and is called the Geometric Conservation Law
(GCL). Using the divergence theorem, the GCL is written

d

dt

∫
ω(t)

dv −
∫
∂ω(t)

V · n ds = 0. (1.14)

Finally, applying the divergence theorem to the two last equations of system (1.13),
one can write the momentum and total energy conservation equations as

d

dt

∫
ω(t)

ρV dv +

∫
∂ω(t)

Pn ds = 0,

d

dt

∫
ω(t)

ρE dv +

∫
∂ω(t)

PV · n ds = 0.

(1.15)

A last equation is needed to fully describe the motion of a volume of fluid with the
Lagrangian formalism. Indeed, we have derived the compressible Euler equations
under their Lagrangian form which enables to determine the volume, momentum
and total energy of the moving domain ω(t) at each time t. However, the missing
information is the shape of this domain with respect to time, namely its position in
the R3 space. That is why we add to the system (1.14)-(1.12)-(1.15) the following
trajectory equation which provides the position of a node x ∈ ∂ω(t) with respect to
time 

dx

dt
= V ,

x(t = 0) = X.
(1.16)

In this equation, X is the position of point x(t) at initial time t = 0. X is called
the Lagrangian coordinate whereas x is the Eulerian coordinate.

In this section we have derived a system of equations that fully describes the
motion and the thermodynamic state of a volume of fluid ω(t) moving in the R3
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space. Since we aim at describing complex flows in the 3D context, a numerical
approximation is necessary. In the next section we show how to discretize this
system of equations using a Finite Volume approach. A particular care is taken
for the discretization of the GCL equation (1.14) in order to define the discrete
divergence and gradient operators.

1.3 Finite Volume discretization

In this section, we aim at discretizing the space using a Finite Volume formalism.
In particular, any Lagrangian scheme is confronted to the difficulty of the face
definition which is not unique in 3D. The present study follows the work of Maire
and Nkonga [95] where a triangularization of the faces is proposed but one can also
refer to [28] where the faces are parametrized. Here, a particular care is taken in
order to make the spatial discretization compatible with any polyhedral unstructured
mesh, symmetry preserving and compatible with the GCL (1.14).

1.3.1 Discretization of the spatial domain

The continuous domain ω(t) is divided into a set of cells denoted ωc and defined
such that neither overlap nor void is created between them. In this way one can write
ω(t) =

⋃
c ωc. In the present study, each cell is supposed to be a polyhedron, which

means that it is a volume delimited by polygonal faces. This simple assumption
is already source of discussion since, in the 3D space, four or more points are not
necessarily coplanar. This means that the cell faces are for the moment not well
defined in the sense that there is non-unique definition of their normal and area.
This is a non trivial difficulty since we have to define numerical methods compatible
with a moving mesh and one has to define properly the cell geometry before going
any further.

No general rule can be imposed for the definition of a polygonal face in the
3D space. In particular, it is dependent on the desired accuracy and complexity
of the geometry. The only logical requirement is to define the faces in such a way
that neither void nor overlapping is created between two neighboring cells. In other
words, the definition of the face geometry must be unique and invariant if consid-
ered from one or the other of its neighboring cells. It is possible to derive high order
approximations of the face geometry (curved faces) such as in [36]. This track is not
followed in this study since it can lead to cumbersome geometrical constructions in
the 3D context. Moreover, we are interested in second order approximations of the
flow which do not require high order approximation of the geometry.

Simple methods exist to uniquely define a face in 3D, namely parametrizing the
polygonal faces or splitting them into triangles.

The parametrization is not considered here since it is restricted to triangle or
quadrangle faces only, for which reference elements can be defined. For example one
can refer to [28] where the hexahedral cells are mapped onto the reference unit cube
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1. Cell-centered Lagrangian scheme for multi-dimensional hydrodynamics
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Figure 1.1 – Result of the splitting of the cell faces into triangles using the face
barycenter p∗f . Simple case of a hexahedral cell with square faces.

by an isoparametric transformation. This mapping is also detailed in [41].

The splitting of polygonal faces into triangles enables to define a unique area
and outward normal for each resulting triangle. In [95], it is proposed to split the
quadrangular faces into two triangles by using one of the diagonals. This methods
was chosen for its simplicity since it does not introduce supplementary unknown (all
the nodes of the triangle belong to the initial mesh). However, this procedure is not
satisfactory since it is not symmetric and implies to choose between the two diagonals
of the quadrangle. Moreover, this splitting is almost impossible to extend to the case
of faces with more than four points. In [20], Burton introduced a splitting which is
symmetric and systematic for any polyhedral cell. It is based on the face barycenter
and the edges midpoint. This is cumbersome since it requires the construction of
numerous points (one point per face and per edge of the mesh). This can quickly
be disadvantageous when confronted to a 3D mesh with a large number of cells.

In this work, we propose a splitting halfway between the two splitting presented
previously. As a matter of fact, the face barycenter p∗f is a sufficient information to
perform a symmetric and systematic splitting of any polygonal face. As shown in
Figure 1.1, a triangle can be constructed with two points of the face and the new
point p∗f . The example is shown for a simple hexahedral cell with quadrangular faces
but the procedure is identical for any polyhedral cell. This splitting still introduces
a new point per face that requires to be dealt with. In the next section we will see
how to limit the impact of this new unknown with a simple assumption.

An implicit difficulty of the spatial discretization in the 3D framework is the
number of unknowns created. When the 3D mesh is refined, the number of unknowns
drastically increases and some procedures can be numerically too costly. Keeping
this in mind justifies to seek for simple methods, introducing few unknowns while
keeping good properties.
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1.3. Finite Volume discretization

Definition of the topological sets

We are interested in methods able to handle unstructured meshes, in the sense
that it is not possible to find the neighbor of a cell simply from its global index. In
particular, it is necessary to define the topology of the mesh, namely the neighboring
relations between the different entities of the mesh (cells, faces, nodes, ...). Let us
mention that even regular Cartesian meshes are considered to be unstructured in
this study. In the sequel, the index c refers to the cell ωc, f refers to a face and p
to a node. The triangles created by the the face splitting are denoted tr. Then, the
following topological sets are defined:

- P∗(c) is the set of nodes p of cell c including the nodes p∗f ,
- P(c) is the set of nodes p of cell c without the nodes p∗f ,
- P(f) is the set of nodes p of face f without the node p∗f ,
- P∗(tr) is the set of the three points of the triangle tr (contains p∗f ),
- F(c, p) is the set of faces f of cell c and sharing point p,
- C(p) is the set of cells c holding node p,
- T (c) is the set of triangles tr resulting from the splitting of all the faces of cell
c,

- T (c, p) is the set of triangles tr resulting from the splitting of the faces holding
the node p on cell c,

- T (c, f) is the set of triangles tr resulting from the splitting of face f on the
cell c,

- T (c, f, p) is the set of triangles tr resulting from the splitting of face f that
holds node p on the cell c.

These sets are used throughout this manuscript and a special care has to be taken
with them. For example, it is important to notice the difference between the sets
P∗(c) and P(c).

Now that the methodology for discretizing the space and the topology of the
mesh are defined, we are able to discretize the first equation of the system, namely
the GCL (1.14).

1.3.2 GCL compatibility

The key feature of a Lagrangian scheme is the GCL compatibility. Let recall
that under the Lagrangian formalism the mesh follows the fluid motion and there
is two ways of computing the volume variation: an explicit computation from the
coordinates of the cell nodes and the discretization of the GCL (1.14). The GCL
compatibility then states that both methods are completely equivalent. Let denote
by v̇c the variation of cell volume due to the grid displacement during the time
interval dt and by dvc/dt the time rate of change of the cell volume imposed by the
GCL. These notations are introduced to help differentiate the quantities evaluated
geometrically from the one obtained by discretizing the GCL. In the sequel, it is
shown that v̇c ≡ dvc/dt.
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1. Cell-centered Lagrangian scheme for multi-dimensional hydrodynamics

Computation of the cell volume variation v̇c from geometry

Starting from the previous face splitting, the polyhedral cell ωc can be decom-
posed into tetrahedrons. Let Ttr be the tetrahedron such that its basis is the triangle
tr and its remaining vertex is the space origin O (refer to Figure 1.2). The cell vol-
ume vc is then computed geometrically as the sum of the tetrahedrons volume vTtr

as follows
vc =

∑
tr∈T (c)

vTtr . (1.17)

Denoting now by p, p+ and p++ the three points of the triangle tr, and by O the
space origin, all the tetrahedrons can be represented by the set Ttr = {O, p, p+, p++}.
This supplementary node denomination (refer to Figure 1.3) is introduced in order
to highlight cyclic simplifications in the calculations but one has to keep in mind
that one of these node is p∗f . Moreover, this denomination is chosen such that the
triangle tr has the same orientation than the face f it is related to where the orien-
tation of f is chosen relatively to one of its neighboring cells.

Let xp denote the position vector of node p, then the tetrahedron volume vTtr

writes
vTtr =

1

6
xp · (xp+ × xp++) . (1.18)

The volume variation v̇Ttr is computed by time differentiating this last relation. In
particular, using the chain rule, one has

v̇Ttr =
1

6

[
Vp · (xp+ × xp++) + xp · (Vp+ × xp++) + xp · (xp+ × Vp++)

]
, (1.19)

where Vp = dxp/dt is the velocity of node p. Using a circular shift, this relation can
be simplified into

v̇Ttr =
1

6

∑
p∈P∗(tr)

Vp · (xp+ × xp++) . (1.20)

Finally, using relation (1.17) and the linearity of the time derivative, the time rate
of change of the cell volume v̇c is written as

v̇c =
1

6

∑
tr∈T (c)

∑
p∈P∗(tr)

Vp · (xp+ × xp++) . (1.21)

This last relation can be rearranged into

v̇c =
∑

p∈P∗(c)

Vp ·

1

6

∑
tr∈T (c,p)

(xp+ × xp++)

 , (1.22)

where the term between brackets stands for the corner normal related to node p
introduced by Caramana et al. in [25]. In the sequel, the GCL is discretized to
show that the same result is obtained. In this way, the volume flux is completely
determined by the GCL compatibility condition.

3D cell-centered Lagrangian scheme 11



1.3. Finite Volume discretization

t1r

Tt1rt2r

Tt2r ×
O

�

p∗f1
�

p∗f2

Figure 1.2 – Splitting of the cell into tetrahedrons Ttr . The basis of Tt1r
in blue

(respectively Tt2r
in red) is the triangle t1r (respectively t2r) and its remaining vertex

is the space origin O. Tt1r
has a negative volume and Tt2r

has a positive one.

+

tr

•
p1 = p

•
p2 = p+

�p∗f = p++

•
p3•

p4

+

Figure 1.3 – Decomposition of the face f into triangle tr. The nodes p, p+ and p++

are indexed relatively to the counter clockwise ordering of the face f . Simple case
of square face where p∗f = p++.

Computation of dvc/dt from discretization of the GCL

Defining the cell volume in a Finite Volume way as vc =
∫
ωc

dv and using the
divergence theorem, the GCL (1.14) writes

dvc
dt
−
∫
∂ωc

V · n ds = 0, (1.23)

where n is the unit outward normal of ∂ωc, the boundary of ωc. The splitting
proposed previously consists in decomposing the cell boundary into triangles, thus
one has ∂ωc =

⋃
tr and the GCL becomes

dvc
dt
−
∑

tr∈T (c)

(∫
tr

V · n ds

)
= 0. (1.24)

A triangle is supposed to remain a triangle during its motion which corresponds
to suppose a linear mapping of the geometry between times t and t + dt. Hence,
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1. Cell-centered Lagrangian scheme for multi-dimensional hydrodynamics

the unit outward normal n is constant on the triangle tr. It is denoted ntr and
computed as

ntr =
1

2str
(xp+ − xp)× (xp++ − xp) , (1.25)

where str = 1
2
‖(xp+ − xp)× (xp++ − xp)‖ is the area and {p, p+, p++} the nodes of

the triangle as shown in Figure 1.3. Moreover, using again the linearity assumption,
the mean velocity of the triangle is defined as its barycentric velocity. One writes

1

str

(∫
tr

V · n ds

)
=

1

3

∑
p∈P∗(tr)

Vp, (1.26)

and the relation (1.24) becomes

dvc
dt
− 1

3

∑
tr∈T (c)

∑
p∈P∗(tr)

Vp · strntr = 0. (1.27)

Let show that this last form of the GCL is completely equivalent to (1.22).
Expanding the relation (1.25) provides

strntr =
1

2

[ (
xp+ × xp++

)
−
(
xp+ × xp

)
− (xp × xp++) + (xp × xp)

]
. (1.28)

Then using the cyclic notation, it is simplified into

strntr =
1

2

∑
p∈P∗(tr)

(xp × xp+) . (1.29)

Substituting this oriented area into (1.27) enables to write

dvc
dt

=
1

6

∑
tr∈T (c)

 ∑
p∈P∗(tr)

Vp

 ·
 ∑
p∈P∗(tr)

(xp × xp+)

 . (1.30)

Let expand and denote by Π1 the product between brackets. One has

Π1 =

 ∑
p∈P∗(tr)

Vp

 ·
 ∑
p∈P∗(tr)

(xp × xp+)

 ,
= Vp ·

[
(xp+ × xp++) + (xp × xp+)− (xp × xp++)

]
+ Vp+ ·

[
(xp++ × xp) + (xp+ × xp++)− (xp+ × xp)

]
+ Vp++ ·

[
(xp × xp+) + (xp++ × xp)− (xp++ × xp+)

]
.

(1.31)

Now, the cyclic notation leads to

Π1 =
∑

p∈P∗(tr)

Vp ·
[

(xp+ × xp++) +
(
xp × (xp+ − xp++)

)]
, (1.32)
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1.3. Finite Volume discretization

and relation (1.30) becomes

dvc
dt

=
1

6

∑
tr∈T (c)

∑
p∈P∗(tr)

Vp ·
[

(xp+ × xp++) +
(
xp × (xp+ − xp++)

)]
. (1.33)

Finally, the double sum is rearranged as

dvc
dt

=
1

6

∑
p∈P∗(c)

∑
tr∈T (c,p)

Vp ·
[

(xp+ × xp++) +
(
xp × (xp+ − xp++)

)]
. (1.34)

Briefly, we have replaced a sum over the triangles of the cell and then a sum over
the triangle nodes by a sum over the cell nodes and then a sum over the triangles
impinging on this node. In particular, since the index p is independent on the triangle
tr (on the contrary, tr depends on p), the previous relation can be decomposed into

dvc
dt

=
1

6

∑
p∈P∗(c)

Vp ·

 ∑
tr∈T (c,p)

(xp+ × xp++)


+

1

6

∑
p∈P∗(c)

Vp ·

xp × ∑
tr∈T (c,p)

(xp+ − xp++)

 .
(1.35)

Now, noticing that the sum

Σ1 =
∑

tr∈T (c,p)

(xp+ − xp++) , (1.36)

defines a closed contour (refer to Figure 1.4), one has Σ1 = 0 and

dvc
dt

=
∑

p∈P∗(c)

Vp ·

1

6

∑
tr∈T (c,p)

(xp+ × xp++)

 . (1.37)

This last relation is completely equivalent to (1.22), thus one has v̇c ≡ dvc/dt and the
discretization is GCL compatible. In particular, this result ensures that computing
the cell volume geometrically, from relation (1.17), is strictly equivalent to solve
the semi-discrete GCL equation. In the sequel, we show how to deal with the
supplementary node p∗f introduced by the face splitting.

Definition of the face area vectors

Computing the semi-discrete form (1.22) of the GCL requires to know the posi-
tion and velocity of all the nodes p ∈ P∗(c). As said previously, the cell ωc moves
with the fluid motion. It is thus intended to derive a solver for computing the veloc-
ity of the mesh nodes. However, the nodes p∗f , which belongs to the set P∗(c), are
supplementary unknowns and it would be valuable not to derive a supplementary
solver for computing their velocity Vp∗f .
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1. Cell-centered Lagrangian scheme for multi-dimensional hydrodynamics
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Figure 1.4 – Representation of the set T (c, p) in the two possible cases: p ∈ P(c)
(1.4a) and p = p∗f (1.4b). One can observe that the contour Σ1 (red) is closed in
both cases.

Let us recall that the node p∗f is defined as the barycenter of face f . Moreover,
the mapping linking the geometry between times t and t + dt is supposed to be
linear. This enables to preserve the simplex in the sense that a tetrahedron stays
a tetrahedron after transformation. In this way, the barycenter of a triangular face
moves with the barycentric velocity defined as

Vp∗f =
1

Np,f

∑
q∈P(f)

Vq, (1.38)

where Np,f is the number of nodes on the face f (without p∗f ). Let us rewrite relation
(1.27) as

dvc
dt

=
1

3

∑
tr∈T (c)

(
Vp + Vp+ + Vp++

)
· strntr . (1.39)

Recalling that the indexes p, p+ and p++ are introduced in order to highlight cyclic
simplifications, the index p can refer to any point of the triangle tr. Let fix p++ = p∗f
and substitute the velocity (1.38) in this last relation. One gets

dvc
dt

=
1

3

∑
tr∈T (c)

Vp + Vp+ +
1

Np,f

∑
q∈P(f)

Vq

 · strntr . (1.40)

To facilitate a forthcoming sum rearrangement, let us rewrite this relation as

dvc
dt

=
1

3

∑
tr∈T (c)

 ∑
q∈P∗(tr),q 6=p∗f

Vq +
1

Np,f

∑
q∈P(f)

Vq

 · strntr . (1.41)

Then, recalling that each triangle belongs to a face f of the cell, the first sum of
this relation is split into a sum over the cell faces and then a sum over the triangles
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1.3. Finite Volume discretization

related to this face, which leads to

dvc
dt

=
1

3

∑
f∈F(c)

∑
tr∈T (c,f)

 ∑
q∈P∗(tr),q 6=p∗f

Vq +
1

Np,f

∑
q∈P(f)

Vq

 · strntr , (1.42)

where F(c) is the set of faces f of cell c. The sums are then rearranged, starting by
summing over the cell nodes. The previous relation is then written as

dvc
dt

=
1

3

( ∑
p∈P(c)

∑
f∈F(c,p)

∑
tr∈T (c,f,p)

Vp · strntr

+
1

Np,f

∑
p∈P(c)

∑
f∈F(c,p)

∑
tr∈T (c,f)

Vp · strntr

)
.

(1.43)

Now, noticing that the index p is independent on the triangle tr, the previous relation
is factorized into

dvc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

Vp ·
1

3

 ∑
tr∈T (c,f,p)

strntr +
1

Np,f

∑
tr∈T (c,f)

strntr

 . (1.44)

For convenience, this relation is written under the compact form

dvc
dt

=
∑
p∈P(c)

Vp ·

 ∑
f∈F(c,p)

spfnpf

 . (1.45)

The term between brackets is the corner vector attached to node p. It is sum of
terms relative to the faces around the node. These spfnpf are called face area vectors
and are defined as

spfnpf =
1

3

 ∑
tr∈T (c,f,p)

strntr +
∑

tr∈T (c,f)

1

Np,f

strntr

 . (1.46)

One can remark that the face area vector is a linear combination of the oriented ar-
eas strntr on the face f . This is a consequence of the linear mapping which induces
a linear velocity field over the face f . The geometric representation of the face area
vector is almost impossible for general case. However, it is possible to draw it for
simple cases.

Case of a triangular face:
The face is necessarily planar and its barycenter p∗f defines three triangles tr of equal
areas as shown in Figure 1.5a. In this way, ntr = nf and str = 1

3
sf . Now, noticing

that the set T (c, f, p) contains two elements and T (c, f) three, the relation (1.46)
provides (refer to Figure 1.5b)

spfnpf =
1

3
sfnf . (1.47)
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Figure 1.5 – Representation of the splitting (1.5a) and the corresponding face area
vectors (1.5b) in the simple case of a triangular face. Only the areas are drawn since
all the normal are identical.
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Figure 1.6 – Representation of the splitting (1.6a) and the corresponding face area
vectors (1.6b) in the simple case of a planar square face. Only the areas are drawn
since all the normal’s are identical.

Case of a planar square face:
The barycenter of a planar square defines four triangles of equal area (refer to Figure
1.6a), thus one has ntr = nf and str = 1

4
sf . Now, noticing that the set T (c, f, p)

contains two elements and T (c, f) four, relation (1.46) provides (refer to Figure
1.6b)

spfnpf =
1

4
sfnf . (1.48)

The face area vectors are the cornerstone of this study. Using the cell splitting
presented at the beginning of this section, they are the geometric quantity on which
to construct the numerical scheme in order to preserve the symmetry and respect
the GCL. In the sequel, we show that the face area vectors lead to the definition
of discrete operators which enable the discretization of the Euler equations in a
compatible way with the discretization of the GCL.
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1.4. Scheme construction

Discrete divergence and gradient operators

The comparison between the integral form of the GCL (1.14) and its semi-discrete
form (1.45) enables the identification of a discrete divergence operator. Indeed,
defining the discrete divergence of the velocity in the cell ωc as

DIVc(V ) =
1

vc

dvc
dt

=
1

vc

∫
∂ωc

V · n ds, (1.49)

the following identification is made

DIVc(V ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

spfVp · npf . (1.50)

Now, extending this definition to an arbitrary vector ψ, the discrete divergence
operator of ψ is defined by

DIVc(ψ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

spfψp · npf , (1.51)

where ψp is the value of ψ at node p. The discrete gradient operator of a scalar ϕ
in the cell ωc can be defined in different ways. In particular, this is one difference
between the GLACE [34] and the EUCCLHYD [93] schemes. The GLACE scheme
uses the discrete gradient

GRADGc (ϕ) =
1

vc

∑
p∈P(c)

ϕcpnp, (1.52)

where ϕcp is the value of ϕ at node p relative to cell c and np =
∑

f∈F(c,p) spfnpf is
the corner normal, whereas the EUCCLHYD scheme uses

GRADc(ϕ) = GRADEc (ϕ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

ϕcfpspfnpf , (1.53)

where ϕcfp is the value of the variable ϕ at node p on the face f relative to cell c. This
difference comes from the number of quadrature points chosen for approximating the
integral

∫
∂ωc

Pn ds. In this sense, the GLACE scheme uses one pressure flux Pcp
per node whereas the EUCCLHYD scheme requires as many pressure flux Pcfp as
the number of faces f impinging on node p. This is illustrated in Figure 1.7 in the
2D case for simplicity. In particular, it is shown in Appendix A that these discrete
operators preserve linear fields.

1.4 Scheme construction
In this section we use the discrete operators (1.51) and (1.53) to perform the

discretization of the Euler equations in their Lagrangian form (1.12)-(1.15)-(1.16).
The nodal fluxes introduced by this discretization are then computed by use of the
nodal solver taken from EUCCLHYD [93] and its 3D extension [95]. The treatment
of the boundary conditions is also detailed for the sake of completeness.
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Figure 1.7 – Representation of the pressure flux localization in the case of the
GLACE scheme (1.7a) and the EUCCLHYD scheme (1.7b). Portion of a 2D cell
with two faces f− and f+ impinging on node p.

1.4.1 Discretization of the Euler equations

The mass conservation equation (1.12) is easily discretized. Denoting by mc the
mass of fluid present in the cell ωc, this mass writes

mc =

∫
ωc

ρ dv, (1.54)

and equation (1.12) becomes dmc/dt = 0. The mass mc is thus constant over time,
there is no mass flux a the cell interfaces.

Using a cell-centered Finite Volume formalism, all the variables are located at
the center of the cells. Let define the mass averaged value ϕc of the physical variable
ϕ over the cell ωc as

ϕc =
1

mc

∫
ωc

ρϕ dv. (1.55)

In particular, using this last formula to define the velocity Vc and specific total
energy Ec in the cell c enables to write the system (1.15) as

mc
dVc
dt

+

∫
∂ωc

Pn ds = 0,

mc
dEc
dt

+

∫
∂ωc

PV · n ds = 0.

(1.56)

Now, using the definition of the discrete operators (1.51)-(1.53), one writes

GRADc(P ) =
1

vc

∫
∂ωc

Pn ds,

DIVc(PV ) =
1

vc

∫
∂ωc

PV · n ds.

(1.57)
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and the semi-discrete system writes

mc
dVc
dt

+
∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpnpf = 0,

mc
dEc
dt

+
∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpVp · npf = 0.

(1.58)

The system (1.58) is referred to as the semi-discrete form of the Euler equations since
the discretization has only been performed in space whereas the time derivatives are
still continuous. In the same way as at the continuous level, this semi-discrete
system is closed using the EOS linking the pressure to the other variables. One
writes Pc = P (ρc, εc), where the specific internal energy of the cell εc is computed
as

εc = Ec −
1

2
V 2
c , (1.59)

and the cell density is equal to ρc = mc/vc. Finally, the trajectory equation, which
enables to move the mesh nodes, is discretized as follows

dxp
dt

= Vp. (1.60)

In the sequel, the nodal solver used for computing the nodal fluxes Pcfp and Vp
is described. This solver is composed of two steps, an entropy criterion and a
momentum conservation condition.

1.4.2 Entropy inequality

In order to describe flows with shock waves, it is proposed in this section to
derive the semi-discrete Gibbs relation. Denoting by ηc and θc the entropy and the
temperature in cell c respectively, the Gibbs relation writes

mcθc
dηc
dt

= mc
dεc
dt

+mcPc
d

dt

(
1

ρc

)
. (1.61)

Differentiating equation (1.59), the time rate of change of internal energy writes as

mc
dεc
dt

= mc

(
dEc
dt
− Vc ·

dVc
dt

)
. (1.62)

Substituting dE/dt and dV /dt by the relations of system (1.58), this relation be-
comes

mc
dεc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

spfPcfp (Vc − Vp) · npf . (1.63)

Now, writing the semi-discrete GCL equation (1.45) as

mc
d

dt

(
1

ρc

)
=
dvc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

spfVp · npf , (1.64)
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and using the fact that the contour of the cell ωc is closed, i.e.∑
p∈P(c)

∑
f∈F(c,p)

spfnpf = 0, (1.65)

one writes
mcPc

d

dt

(
1

ρc

)
=
∑
p∈P(c)

∑
f∈F(c,p)

spfPc (Vc − Vp) · npf . (1.66)

Finally, the semi-discrete entropy production is written

mcθc
dηc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

spf (Pcfp − Pc) (Vc − Vp) · npf . (1.67)

The Second Law of thermodynamics ensures that the entropy production is positive
or null, that is to say dηc/dt ≥ 0. A sufficient condition to respect this at the semi-
discrete level is to link the pressure jump across the face f to the velocity jump by
the relation

Pcfp − Pc = Zc (Vc − Vp) · npf , (1.68)

where Zc = ρcac is the acoustic impedance and ac the isentropic speed of sound in
cell c. This relation can also be interpreted as the conservation of the half Riemann
invariant P + ZV · n along the direction npf .

As a conclusion, the relation (1.68) expresses the nodal pressure Pcfp as a function
of the nodal velocity Vp. In this way, the semi-discrete scheme for the entropy
variation can be written as

mcθc
dηc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

spfZc [(Vc − Vp) · npf ]2 , (1.69)

which ensures that the entropy production is positive or null. In particular, the
entropy production is proportional to the square of the velocity jump between the
cell and the node. In this way, strong discontinuities in the velocity field lead to a
strong production of entropy which is the case for example in shocks. Moreover, one
observes that entropy is not conserved in smooth regions of the flow unless the flow
is constant.

1.4.3 Local momentum balance and nodal velocity

The second step of the nodal solver consists in invoking the total momentum
conservation. Following the work [95], the nodal velocity Vp is computed by imposing
the momentum balance around the node p. The mathematical steps are completely
detailed in [95] and are thus not recalled here for the sake of conciseness. As shown in
Figure 1.8, represented in the 2D context for simplicity, numerous pressure fluxes are
acting around the node p. More precisely, there is two pressures per face impinging
on the node. Imposing the momentum balance around node p corresponds in fact
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Figure 1.8 – Representation, in the 2D case, of the pressure fluxes acting around a
node p.

to balance all the pressure fluxes in competition around this node. Mathematically,
this condition writes ∑

c∈C(p)

∑
f∈F(c,p)

spfPcfpnpf = 0. (1.70)

Now, substituting Pcfp by the relation (1.68) gives∑
c∈C(p)

∑
f∈F(c,p)

spf

(
Pc + Zc (Vc − Vp) · npf

)
npf = 0. (1.71)

Using formula (D.1), this relation can be written under the compact form

MpVp = Bp, (1.72)

where

Mp =
∑
c∈C(p)

∑
f∈F(c,p)

spfZc (npf ⊗ npf ) ,

Bp =
∑
c∈C(p)

∑
f∈F(c,p)

spf

[
Pcnpf + ZcVc (npf ⊗ npf )

]
.

(1.73)

The relation (1.72) is sufficient to determine the nodal velocity since the matrix Mp

is symmetric positive definite thus invertible (refer to Appendix D.3). The nodal
velocity is thus given by Vp = M−1p Bp and the pressure flux Pcfp is easily computed
by substituting Vp into relation (1.68).

1.4.4 Global momentum and total energy conservation

Here we show that condition (1.70) enables to recover the global conservation
of momentum and total energy. The complete proof can also be found in [92, 95].
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Recalling the semi-discrete momentum conservation equation in the cell ωc is

mc
dVc
dt

+
∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpnpf = 0, (1.74)

the global momentum variation δ (mV )ω(t) is defined as

δ (mV )ω(t) =
∑
c

(
mc

dVc
dt

)
,

= −
∑
c

∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpnpf .
(1.75)

Now, rearranging the sums, this last relation is written

δ (mV )ω(t) = −
∑
p

∑
c∈C(p)

∑
f∈F(c,p)

spfPcfpnpf

 . (1.76)

The term between parenthesis is nothing but the relation (1.70) which ensures the
balance of momentum around node p. In this way, the momentum is globally con-
served, i.e. δ (mV )ω(t) = 0, provided that relation (1.70) is respected for every node
of the domain. In particular, work has to be done in order to respect this relation
at the boundary nodes. This is detailed in the next section.

A very similar proof can be written for the global conservation of total energy.
Starting from the semi-discrete total energy conservation equation

mc
dEc
dt

+
∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpVp · npf = 0, (1.77)

and summing over all the cells of the domain leads to

δ (mE)ω(t) =
∑
c

(
mc

dEc
dt

)
,

= −
∑
c

∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpVp · npf .
(1.78)

Then, performing the same sum rearrangement enables to factorize the nodal veloc-
ity as

δ (mE)ω(t) = −
∑
p

Vp ·

∑
c∈C(p)

∑
f∈F(c,p)

spfPcfpnpf

 . (1.79)

Using once again the relation (1.70), the global conservation of total energy is
straightforward and one writes

δ (mE)ω(t) = 0. (1.80)

In the next section we show how to take into account the boundary conditions in a
consistent manner with (1.70).
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1.4.5 Boundary condition treatment

The treatment of boundary conditions is crucial for implementing a numerical
scheme. Looking at the integrated equations (1.14)-(1.15) one understands that the
boundary of the domain ∂ω(t) can only be constrained by a pressure or a normal
velocity. In this way, the treatment of pressure, velocity and symmetry boundary
conditions is presented. In the sequel, F b(p) is the set of boundary faces f around
node p.

Pressure boundary condition

The pressure boundary conditions are easily implemented. Indeed, since the
nodal solver consists in balancing the pressure forces acting around a node p, one
has to add the pressure force resulting from the pressure boundary condition in the
relation (1.72). Let P b be the pressure prescribed at the boundary face f ∈ F b(p),
then the momentum balance at the boundary node becomes

MpVp = Bp −
∑

f∈Fb(p)

spfP
bnpf . (1.81)

Velocity boundary condition

The velocity boundary conditions are more complex to handle and have to be
taken into account properly in the momentum balance condition (1.72). In the
present study, we always consider a single velocity boundary condition V b applied
to a set of boundary faces f ∈ F b(p) defining a plane around node p. Such a
configuration corresponds, for example, to a moving flat wall. This configuration is
geometrically simple, but not trivial from a mathematical point of view. Indeed, one
has to compute the pressure force equivalent to the prescribed velocity boundary
condition and add its contribution to the momentum balance (1.72) as proposed in
[92]. Let write this pressure force Πb

pdp, where dp is the corner normal at node p

dp =
∑

f∈Fb(p)

spfnpf , (1.82)

and Πb
p an unknown scalar. Then, the momentum balance at node p writes

MpVp = Bp − Πb
pdp. (1.83)

Since all the boundary faces are coplanar, the projection of the node velocity along
the normal direction dp gives

Vp.dp =
∑

f∈Fb(p)

spfV
b. (1.84)

Performing the same projection on the relation (1.83) enables to compute the scalar
Πb
p as

Πb
p =

M−1p Bp · dp −
∑

f∈Fb(p) spfV
b

M−1p dp · dp
. (1.85)
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This relation always has a solution since M−1p is symmetric positive definite and thus
M−1p dp · dp > 0. Finally, Vp is computed by substituting this expression of Πb

p into
relation (1.83).

Symmetry boundary conditions

The symmetry boundary conditions are computed by making geometric consid-
erations on the node velocity Vp. Three types of symmetry boundary conditions can
be observed in 3D as sketched in Figure 1.9. The three cases are:

• Symmetry plane of orthonormal basis (τ1, τ2) (refer to Figure 1.9a). The
node is constrained to evolve in the symmetry plane and its velocity writes

Vp = α1τ1 + α2τ2. (1.86)

The unknowns to be computed are now the two scalars α1 and α2. This is done by
substituting (1.86) into (1.72) which gives

Mp (α1τ1 + α2τ2) = Bp. (1.87)

Then, performing successive projections on τ1 and τ2 leads to a 2× 2 system which
writes as follows

α1M1 + α2M2 = B1,

α1M2 + α2M3 = B2,
(1.88)

where
M1 = Mpτ1 · τ1,
M2 = Mpτ1 · τ2 = Mpτ2 · τ1,
M3 = Mpτ2 · τ2,
B1 = B · τ1,
B2 = B · τ2.

(1.89)

• Symmetry line of director vector τ1 also defined as the intersection of two
symmetry planes (refer to Figure 1.9b). The node is constrained to evolve along
this line, its velocity becomes Vp = α1τ1, and the relation (1.72) becomes

α1Mpτ1 = Bp. (1.90)

The scalar α1 is then easily determined by projecting this last relation on τ1. One
finds

α1Mpτ1 · τ1 = Bp · τ1, (1.91)
and finally

α1 = Bp · τ1 (Mpτ1 · τ1)−1 . (1.92)

• Symmetry point which is the intersection of three symmetry planes (refer
to Figure 1.9c). The node stays fixed, that is to say Vp = 0.
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•
p τ1

τ2
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Figure 1.9 – Representation of the three possible symmetry boundary conditions.
Symmetry plane (1.9a), symmetry line (1.9b) and symmetry point (1.9c).

1.5 Time step monitoring

In this section, we consider the time discretization of the numerical scheme using
a first order Explicit Euler integration. The semi discrete system (1.45)-(1.58) is
written under the general form

dUc
dt

= F(t,Uc(t)), (1.93)

where Uc = (vc,Vc, Ec) is the vector of unknowns and F(t,Uc(t)) is the flux function
such that

F(t,Uc(t)) =
∑
p∈P(c)

∑
f∈F(c,p)

(
spfVp · npf , spfPcfpnpf , spfPcfpVp · npf

)t

. (1.94)

Then, a classic Explicit Euler time integration writes as

Un+1
c = Unc + ∆tF (tn,Un) ,

tn+1 = tn + ∆t,
(1.95)

where the superscript n indicates that the approximation is made at time tn and
∆t is the time step of the scheme. The different criteria imposed for computing the
time step ∆t are detailed in the sequel.

1.5.1 Volume variation criterion

A first constraint is applied to the time step in order to control the variation of
the cell volume [93, 95]. Approximating (vn+1

c − vnc ) by ∆tc(dvc/dt)
n thanks to the

GCL equation (1.45), one can impose the volume variation to be less than a fixed
value Cv ∈ [0, 1]. This criterion writes

∆t
|(dvc/dt)n|

vnc
≤ Cv, (1.96)
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hence
∆t ≤ Cv

vnc
|(dvc/dt)n|

. (1.97)

In this way, introducing the time step

∆tv = min
c

{
vnc

|(dvc/dt)n|

}
, (1.98)

the condition ∆t ≤ Cv∆tv ensures that the volume variation is lower than Cv for
each cell.

1.5.2 Positivity of the internal energy

A second constraint is imposed on the time step to ensure that the new internal
energy, εn+1

c , is positive in every cell. Here we follow the procedure proposed in
[126, 127]. Starting from the discrete system

mc

(
1

ρn+1
c

− 1

ρnc

)
−∆t

∑
p∈P(c)

∑
f∈F(c,p)

spfVp · npf = 0,

mc

(
V n+1
c − V n

c

)
+ ∆t

∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpnpf = 0,

mc

(
En+1
c − En

c

)
+ ∆t

∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpVp · npf = 0,

(1.99)

let write the discrete Gibbs relation. The discrete kinetic energy variation is com-
puted as

mc

(
(V n+1

c )2

2
− (V n

c )2

2

)
=
mc

2

(
V n+1
c − V n

c

) (
V n+1
c + V n

c

)
. (1.100)

Using then the discrete momentum equation of system (1.99), one writes the half-
time velocity V n+ 1

2
c as

V
n+ 1

2
c =

1

2

(
V n+1
c + V n

c

)
= V n

c −
∆t

2mc

∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpnpf . (1.101)

Multiplying this velocity by the discrete momentum equation of system (1.99), the
relation (1.100) becomes

mc

(
(V n+1

c )2

2
− (V n

c )2

2

)
= mc

(
V n+1
c − V n

c

)
V

n+ 1
2

c ,

= −∆t
∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpV
n
c · npf

+
∆t2

2mc

 ∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpnpf

2

.

(1.102)
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Subtracting this relation into the discrete total energy conservation relation of sys-
tem (1.99) leads to the following relation for the discrete internal energy

mc

(
εn+1
c − εnc

)
= −∆t

∑
p∈P(c)

∑
f∈F(c,p)

spfPcfp(V
n
p − V n

c ) · npf

− ∆t2

2mc

 ∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpnpf

2

.

(1.103)

In this way, one can write

mc

(
εn+1
c − εnc

)
+ mcP

n
c

(
1

ρn+1
c

− 1

ρnc

)
=

− ∆t
∑
p∈P(c)

∑
f∈F(c,p)

spf (Pcfp − Pc)(V n
p − V n

c ) · npf

− ∆t2

2mc

 ∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpnpf

2

,

(1.104)

which states for the discrete form of the Gibbs relation (1.61). Using now the
definition of the nodal pressure flux (1.68), the previous relation writes equivalently

εn+1
c = εnc − P n

c

(
1

ρn+1
c

− 1

ρnc

)
+

∆t

mc

∑
p∈P(c)

∑
f∈F(c,p)

spfZc

[
(V n

p − V n
c ) · npf

]2

− ∆t2

2m2
c

 ∑
p∈P(c)

∑
f∈F(c,p)

spfZc

[
(V n

p − V n
c ) · npf

]
npf

2

.

(1.105)

Let write this relation under the compact form

εn+1
c = Ac +

∆tZc
mc

Bc, (1.106)

where

Ac = εnc − P n
c

(
1

ρn+1
c

− 1

ρnc

)
,

Bc =
∑
p∈P(c)

∑
f∈F(c,p)

spf

[
(V n

p − V n
c ) · npf

]2

− ∆tZc
2mc

 ∑
p∈P(c)

∑
f∈F(c,p)

spf

[
(V n

p − V n
c ) · npf

]
npf

2

.

(1.107)

Then, the positivity of εn+1
c is ensured if both Ac and Bc are positive.
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Positivity of Ac

The positivity of Ac is straightforwardly ensured if

εnc ≥ P n
c

(
1

ρn+1
c

− 1

ρnc

)
, (1.108)

which is equivalent to (
1

ρn+1
c

− 1

ρnc

)
≤ εnc
P n
c

, (1.109)

since Pc > 0. In particular, multiplied by mc, this relation can be written as

|vn+1
c − vnc |
vnc

≤ εnc ρ
n
c

P n
c

=
1

γ − 1
, (1.110)

in the particular case of a fluid defined by a gamma gas law (refer to Chapter 3).
One recognizes the criterion controlling the volume variation defined previously. In
this way,

if Cv ≤
1

γ − 1
then Ac ≥ 0. (1.111)

In particular, if γ = 5
3
(monoatomic gas) or γ = 7

5
(diatomic gas) one obtains

respectively
Cv ≤ 1.5 and Cv ≤ 2.5, (1.112)

which are not severe constraints.

Positivity of Bc

The positivity of Bc is more complex to control. Let introduce the variable
δVcfp = (V n

p − V n
c ) · npf and let use the change of variable

(p, f)

P(c)×F(c, p)
7→

k

K(c) = P(c)×F(c, p).
(1.113)

In this way, Bc can be simplified into

Bc =
∑
k∈K(c)

sk(δVck)
2 − ∆tZc

2mc

 ∑
k∈K(c)

skδVcknk

2

. (1.114)

Developing this expression leads to

Bc =
∑
k∈K(c)

sk(δVck)
2

(
1− ∆tZc

2mc

sk

)
− ∆tZc

2mc

∑
k∈K(c)

∑
l 6=k

skslδVckδVclnk · nl. (1.115)

Now, this expression can be written under the following quadratic form

Bc = KcδVc · δVc, (1.116)
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where (δVc)k = δVck and the matrix Kc is such that

(Kc)k,l =


sk

(
1− ∆tZc

2mc

sk

)
, if k = l,

− ∆tZc
2mc

skslnk · nl, if k 6= l.

(1.117)

A sufficient condition for Bc to be positive is that the matrix Kc is symmetric
diagonally dominant with non-negative diagonal terms which makes Kc positive
semi-definite. The symmetry is trivial. Now, the term (Kc)k,k is positive under the
condition

∆t ≤ 2mc

skZc
. (1.118)

Finally, it can be proved that the matrix is diagonally dominant, ie (Kc)k,k ≥∑
l 6=k(Kc)k,l, under the condition

∆t ≤ 2mc

Zc
∑

l 6=k sl|nk · nl|
. (1.119)

Since |nk · nl| ≤ 1, both conditions (1.118) and (1.119) are respected if the time
step is chosen, for example, such as

∆t ≤ mc

Zc
∑

k sk
=

vc
ac
∑

k sk
. (1.120)

In this way, the condition

∆t ≤ ∆tCFL = min
c

{
vc

ac
∑

k sk

}
, (1.121)

ensures that the internal energy at time tn+1 is positive in every cells. One can
remark that its form is equivalent to a CFL criterion [30].

1.5.3 Final time step

The final time step is chosen as

∆tn = min(Cv∆tv, Ce∆tCFL, Cm∆tn−1), (1.122)

where Ce = 0.45, Cv = 0.1, Cm = 1.1 and ∆tn−1 is the time step of the previous
iteration. This last criterion is here to ensure that the increase or decrease of the
time step is not to steep. Moreover, one can easily verify that for the perfect gas
considered in this study, the condition Cv ≤ 1/(γ − 1) is respected when Cv = 0.1.
This value corresponds to a maximum variation of 10% of the cell volume over a
time step as proposed in [93, 95].
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First order algorithm:

◦ The state Un is completely known.
◦ Computation of the nodal fluxes P n

cfp and V n
p from (1.68) and (1.72).

◦ Computation of the time step ∆t (1.122).
◦ Mesh update from the discrete trajectory equation:

xn+1 = xn + ∆tV n
p . (1.123)

◦ Computation of the new velocity V n+1
c and total energy En+1

c from (1.58):

V n+1
c = V n

c −
∆t

mc

∑
p∈P(c)

∑
f∈F(c,p)

snpfP
n
cfpn

n
pf ,

En+1
c = En

c −
∆t

mc

∑
p∈P(c)

∑
f∈F(c,p)

snpfP
n
cfpV

n
p · nnpf .

(1.124)

◦ Determination of the complete final state Un+1:

ρn+1
c = mc/v

n+1
c ,

εn+1
c = En+1

c − 1

2

(
V n+1
c

)2
,

P n+1
c = P (ρn+1

c , εn+1
c ) (EOS),

an+1
c = a(ρn+1

c , P n+1) (EOS).

(1.125)

Conclusion
In this Chapter, the first order 3D extension of the cell-centered Lagrangian scheme
EUCCLHYD [93] is proposed. The Finite Volume spatial discretization is based
on discrete operators that preserve symmetry and enable to solve exactly the GCL
on any polyhedral unstructured mesh. The complete derivation of the scheme is
detailed. It conserves globally the momentum and total energy and respects a local
entropy inequality ensuring a positive entropy production through shock waves.
The treatment of boundary conditions is also detailed for the sake of completeness.
Finally, the different criteria imposed on the time step are detailed. One finds the
classical volume variation criterion already proposed in [93]. Besides, the criterion
proposed in [126, 127] ensuring the positivity of the internal energy is extended to
this 3D scheme. In Chapter 2, the second order extension of this Finite Volume
scheme is investigated in the 3D context using a MUSCL procedure.
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Chapter 2

Second order extension in space and
time

2.1 Introduction

First order schemes such as the one presented in Chapter 1 are quite diffusive.
Their extension to second order accuracy is crucial to improve the accuracy of the
numerical solution. Let mention however that accuracy can be improved in smooth
regions only. Around a discontinuity, such as a shock wave, the numerical solution
cannot be better than first order. Let also mention that the time accuracy of a
scheme must be consistent with its spatial accuracy. In this way, work has to be
done on both space and time approximations to improve the global accuracy of the
scheme. This Chapter is dedicated to the second order extension since it introduces
numerous difficulties linked to the Lagrangian formalism and the multi-dimensional
context.

To improve the spatial accuracy of a scheme, one has to improve the order of
approximation of the variables in the cells. Under a Finite Element (FE) or a
Discontinuous-Galerkin (DG) formalism, the physical variables are projected on a
basis of polynomial functions. The order of accuracy of the scheme is then linked
to the order of the polynomials constituting this basis. In the particular case of
Lagrangian schemes, one can refer to [38, 113] and to [89, 124, 125] for examples of
second (or higher) order schemes under the FE and DG formalisms respectively. In
the case of Finite Volume (FV) schemes, the physical variables are integrated over
the cells which corresponds to a piecewise constant approximation of the unknowns.
To improve the accuracy of the scheme, one has to reconstruct the variable fields.
The order of accuracy is then linked to the order of the reconstruction. For example,
a piecewise linear approximation of the variables leads to a second order accurate
method. High order procedures (greater than 2) are not considered in this study
since they require a high order approximation of the geometry (curved meshes) in
addition to a high order approximation of the variables and curved geometries are
particularly complex to compute in the 3D context.
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In this study, the second order extension in space is performed using a MUSCL
procedure (Monotonic Upstream-centered Scheme for Conservation Laws). This
procedure was proposed by Van Leer in his seminal work [81, 82] and is very natural
for Finite Volumes schemes. It consists in a piecewise linear reconstruction of the
variables and a monotonicity criterion. This criterion ensures that a reconstructed
value lies within the range of the neighbouring cell values in order to prevent os-
cillations and ensure the stability of the solution. In particular, the monotonicity
is imposed by limiting the gradients of the linear reconstruction using slope lim-
iters. Reviews of classic 1D slope limiters can be found in [12, 83]. The MUSCL
procedure is complex to perform in the multi-dimensional context. For example,
one can refer to [68, 105, 119] in the Eulerian context. However, in the case of
Lagrangian schemes, since the mesh is moving with the flow, the approximations
made during the MUSCL procedure impact immediately the mesh quality. In par-
ticular, spurious oscillations, overshoots and symmetry loss can be observed when
using a Lagrangian scheme combined with limiting procedures that behave well on
Eulerian simulations. Principally, the computation of accurate gradients on unstruc-
tured polyhedral meshes and the limiting of vector (or tensor) fields are the main
difficulties of a multi-dimensional MUSCL procedure. The second one comes from
the definition of extrema which is unclear for vector and tensor fields. In [65, 90], it
is proposed to limit the vector fields using convex hulls. Indeed, if a reconstructed
vector lies within the convex hull of the neighbouring vector values then one can
show that the monotonicity is respected in every directions. This procedure has been
successfully used in 2D studies. However, its extension to the 3D context is com-
plex, especially due to the construction of convex hulls, and is thus not investigated
here. In this study, simple modifications of the limiting procedure are proposed to
improve the monotonicity of the solution and preserve the flow symmetries. Besides,
a second limiter, based on the multi-dimensional extension of the minmod limiter, is
proposed to provide a very strong limiting in the case of 1D radial flows. Concern-
ing the second order extension in space, both the two-step Predictor-Corrector (PC)
and the one-step Generalized Riemann Problem (GRP) integration procedures are
detailed.

The Chapter is structured as follows. In Section 2.2, the multi-dimensional
extension of the MUSCL procedure is described. In particular, it consists in a
component-wise limiting of the fields. In Section 2.3, the SP-limiter (for Symmetry
Preserving limiter) is presented. Then, the Section 2.4 presents the MM-limiter
(for Multi-dimensional Minmod limiter) specially designed for spherical problems.
Finally the Section 2.6 presents the second order time discretization of the scheme.

2.2 The MUSCL procedure

In this section we detail the classic multi-dimensional extension of the MUSCL
procedure to the Lagrangian scheme presented in Chapter 1. In particular, the
accuracy of the scheme is improved by using nodal extrapolated values in the nodal
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solver (1.68)-(1.72) instead of cell-centered values. It is sufficient to reconstruct
the pressure and velocity fields only, the cell impedance Zc is supposed to remain
constant for the sake of simplicity. Besides, let mention that the use of extrapolated
values in the nodal solver has the good property of decreasing the entropy production
by reducing the velocity jump in relation (1.69).

2.2.1 Piecewise linear reconstruction

The first step of the MUSCL procedure is to linearly reconstruct the variable
fields within each cell. Let consider an arbitrary scalar field ϕ and a vector field ψ.
The linear reconstruction of these fields over the cell c writes

ϕ̃c(x) = ϕc +∇ϕc · (x− xc),
ψ̃c(x) = ψc +∇ψc(x− xc),

(2.1)

where ϕ̃c(x) (respectively ψ̃c(x)) is the extrapolated value at point x ∈ ωc and ∇ϕc
(respectively ∇ψc) is the gradient of ϕ (respectively ψ) in the cell. In particular,
∇ϕc is a vector and ∇ψc is a tensor. Finally, the point xc is the point of reference
of the cell ωc. It can be defined as the cell centroid

xc =
1

vc

∫
ωc

x dv, (2.2)

or the cell barycenter

xc =
1

Np,c

∑
p∈P(c)

xp, (2.3)

where Np,c is the number of nodes composing cell c. The integral (2.2) can be nu-
merically approximated, for example using the procedure proposed in [100] which
is valid for any polyhedral cell. However, this procedure introduces round-off errors
that are disadvantageous for the global accuracy of the scheme. In the sequel, xc is
defined as the cell barycenter since it is easily computed for any arbitrary polyhedron.

Remark:
Here, one can observe that the reconstruction step is not conservative. By definition,
the reconstruction is said to be conservative if the mean value ϕc is recovered when
integrating ϕ̃c(x) over the cell c. In particular, this is easily proved to be true if
and only if xc is the cell centroid. For the Lagrangian scheme used in this study,
the conservation of momentum and total energy are imposed by construction of the
nodal solver through the use of relation (1.70) (refer to Section 1.4.3). In this way,
the conservativity of the scheme is ensured regardless the definition of point xc. In
particular, this property allows to define xc as the cell barycenter. Moreover, let
recall that the mass conservation is imposed by construction.
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Figure 2.1 – Representation of the two possible stencils Cf (c) (left) and Cp(c) (right)
for a 2D Cartesian mesh. The neighboring cells c′ are represented by black dots.

2.2.2 Gradient computation

Least squares (LS) procedure

The gradients introduced in relation (2.1) can be computed by a classical LS
procedure [8]. This procedure is interesting since it enables to recover the analytic
gradient in the case of linear fields and this independently of the mesh. It is detailed
here for the sake of completeness. The first step is to impose the following condition
on the linear fields ϕ̃c and ψ̃c

ϕ̃c(xc′) = ϕc′ ,

ψ̃c(xc′) = ψc′ ,
(2.4)

which means that they must recover the mean values ϕc′ and ψc′ in the neighboring
cells c′. There is two possible neighborhoods, the face-based neighboring Cf (c) which
contains all the cells c′ sharing a face with cell c, and the node-based neighboring
Cp(c) which contains all the cells c′ sharing a node with cell c. These two stencils
are sketched in Figure 2.1 in the simple case of a 2D Cartesian grid. There is no
particular rule enabling to choose between these two stencils. In the foregoing com-
putations, the stencil is arbitrarily denoted Cf (c).

The linear system resulting from (2.4) is over-determined thus we solve it in
the least squares sense, seeking for the gradient minimizing the difference between
the extrapolated value ϕ̃c(xc′) and the mean value ϕc′ (respectively ψ̃c(xc′) and
ψc′) for all the cells c′ ∈ Cf (c). Let detail the scalar case: introducing the residual
Rcc′ = ϕ̃c(xc′)− ϕc′ , the functional is defined as

F(∇ϕc) =
∑

c′∈Cf (c)

R2
cc′ =

∑
c′∈Cf (c)

1

2

(
ϕ̃c(xc′)− ϕc′

)2
, (2.5)

and the minimizing condition
dF
d∇ϕc

= 0. (2.6)
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Substituting relation (2.1) into (2.5), the minimizing condition becomes

dF
d∇ϕc

=
d

d∇ϕc

∑
c′∈Cf (c)

1

2

(
ϕc +∇ϕc · (xc′ − xc)− ϕc′

)2
, (2.7)

then using the chain rule and the formula (D.1), one gets

0 =
∑

c′∈Cf (c)

(
ϕc − ϕc′

)(
xc′ − xc

)
+
∑

c′∈Cf (c)

∇ϕc
(
xc′ − xc

)
⊗
(
xc′ − xc

)
. (2.8)

This minimizing condition can then be written

Mc∇ϕc =
∑

c′∈Cf (c)

(
ϕc′ − ϕc

)(
xc′ − xc

)
, (2.9)

where Mc is the symmetric definite positive matrix

Mc =
∑

c′∈Cf (c)

(
xc′ − xc

)
⊗
(
xc′ − xc

)
. (2.10)

This matrix is always invertible (refer to Appendix D.3) and the gradient finally
writes

∇ϕc = M−1c

 ∑
c′∈Cf (c)

(
ϕc′ − ϕc

)(
xc′ − xc

) . (2.11)

In the case of a vector field, the same minimizing procedure leads to

∇ψcMc =
∑

c′∈Cf (c)

(
ψc′ −ψc

)
⊗
(
xc′ − xc

)
, (2.12)

and finally, using relation (D.9),

∇ψc =

 ∑
c′∈Cf (c)

(
ψc′ −ψc

)
⊗
(
xc′ − xc

)M−1c . (2.13)

One has to take care that M−1c is right multiplied this time since the matrix between
brackets is not symmetric.

The relations (2.11) and (2.13) suppose that the variables ϕc′ and ψc′ are known
in all the neighboring cells c′. However, this is not true at the boundaries of the
domain. In particular, the main drawback of the LS procedure is that it is not
possible to properly take into account the pressure and velocity boundary condi-
tions. In the case of symmetry boundary conditions, it it possible to reconstruct
the vector field in the neighboring ghost cells. However, the task quickly becomes
complex when dealing with the node-based stencil Cp(c) as sketched in Figure 2.2.
This Figure shows a 2D Cartesian mesh for simplicity, however we are interested in
3D unstructured meshes for which the problem is more complex. This problem is
well known and in general the stencil Cf (c) is chosen for the sake of simplicity.
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Sym1

(a)

Sym1

Sym2

?
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Figure 2.2 – Symmetrization of a vector field at the boundaries of the domain -
Simple example of a 2D Cartesian mesh. Case of one symmetry boundary condition
(left) and two symmetry boundary conditions (right).

Green formula

The LS procedure proposed previously presents two main drawbacks. First, the
resulting gradients are dependent on the stencil chosen (refer to Figure 2.1). Second,
information is missing to properly take into account the boundary conditions. This
is why it is proposed to use the Green formula to compute the gradients ∇Pc and
∇Vc. Indeed, the discrete gradient operator introduced in Chapter 1 provides, by
definition, a first order accurate approximation of the gradient in cell c. In this way,
the cell gradients are computed as

∇Pc ≈ GRADc(P ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

spfPcfpnpf , (2.14)

and
∇Vc ≈ GRADc(V ) =

1

vc

∑
p∈P(c)

∑
f∈F(c,p)

spfVp ⊗ npf . (2.15)

These gradients provide the analytic solution in the case of linear fields as shown
in Appendix A.2. Moreover, they are more interesting than the LS gradients in
some points. They are compatible with the spatial discretization in the sense that
they approximate the cell gradient with the same accuracy that the scheme does.
They do not depend on one of the stencils introduced in Figure 2.1. Finally, they
naturally take the boundary conditions into account since they use the nodal fluxes
Pcfp and Vp. In particular, since these gradients depend on the first order solver,
different results will be found depending on the studied scheme. One can refer to
[28, 124] where discrete operators are also used.

2.2.3 Monotonicity criterion

The gradients in relation (2.1) are numerically approximated. If these gradients
are too steep, the linear reconstruction can create non physical extrema leading to

38 Gabriel GEORGES



2. Second order extension in space and time

numerical oscillations. In particular, such oscillations are known to appear at the
discontinuities such as the ones encountered in shocks. To avoid these non-physical
oscillations and preserve the scheme stability, it is necessary to limit the gradients
using a monotonicity criterion as first proposed in [31, 48]. In this study, we are
interested in the discrete maximum principle defining the minimum and maximum
values of the linear reconstructed field in the neighborhood of the cell.

Let detail the scalar case. The classic limiting procedure consists in applying a
scalar αc ∈ [0, 1] to the gradient ∇ϕc in order that the limited reconstructed value
ϕ̃limc (x) lies within the range of the neighboring cell averaged values. Mathemati-
cally, for a point x in cell c, one writes

ϕ̃limc (x) = ϕc + αc∇ϕc · (x− xc), (2.16)

and
ϕminc ≤ ϕ̃limc (x) ≤ ϕmaxc , x ∈ ωc. (2.17)

where ϕminc and ϕmaxc are respectively the minimum and maximum values of the
scalar field ϕ in the neighboring of cell c. This neighboring can be defined by both
the face-based Cf (c) or the node-based Cp(c) stencils presented in Figure 2.1. The
face-based stencil is classically chosen for simplicity for the same reasons as for the
LS procedure. In this case the extrema are computed as

ϕminc = min

{
min

c′∈Cf (c)
(ϕc′), ϕc

}
and ϕmaxc = max

{
max
c′∈Cf (c)

(ϕc′), ϕc

}
. (2.18)

The criterion (2.17) can be simplified since the extremum values of a linear field are
reached at the boundary of the polyhedral cells, i.e. at the cell nodes. One thus
writes

ϕminc ≤ ϕ̃limc (xp) ≤ ϕmaxc , p ∈ P(c). (2.19)

The next subsection shows how to compute the limiting scalar αc.

The notion of extrema is intuitive and easy to manipulate for a scalar fields, even
in the 3D space. It is however more complex in the case of vector (or tensor) fields.
A vector can be compared to its neighbors thanks to the convex hull defined by the
resulting set of vectors as proposed in [90]. Indeed, if a reconstructed vector ψc(x)
lies in the convex hull of its neighbour vectors then it writes as a convex combination

ψc(x) =
∑

d∈Cf (c)

λdψd, where
∑

d∈Cf (c)

λd = 1 and λd ≥ 0. (2.20)

Then, for any direction n, one can write the following monotonicity criterion

min
(
ψd · n

)
≤ ψc(x) · n ≤ max

(
ψd · n

)
. (2.21)

However, the construction of convex hulls in 3D is complex and its extension to the
case of tensor fields is not clear. This is why convex hulls are not investigated in this
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work. To simplify this problem, it is proposed to apply the monotonicity criterion
to the components of the vector field expressed in a certain basis as done in [88, 92].
This basis must then be representative of the flow direction as detailed in the next
subsection.

2.2.4 Slope limiters

Scalar case

The direct application of the monotonicity criterion (2.19) to a reconstructed
scalar field leads to the Barth-Jespersen limiter [9]. This limiter consists in defining
the limiting factor αc in relation (2.16) as

αc = min
p∈P(c)

(αc,p), (2.22)

where

αc,p =



min

(
ϕmaxc − ϕc
ϕ̃c(xp)− ϕc

, 1

)
if ϕ̃c(xp) > ϕc,

min

(
ϕminc − ϕc
ϕ̃c(xp)− ϕc

, 1

)
if ϕ̃c(xp) < ϕc,

1 if ϕ̃c(xp) = ϕc.

(2.23)

The proof of the Barth-Jespersen limiter is easily computed by substituting (2.16)
into (2.19). The great advantage of this limiter is that it writes under the exact same
form independently on the space dimension. Many others slope limiters have been
developed for MUSCL-type procedures. A review of these limiters can be found in
[12, 83].

Vector case

Here it is proposed to extend to the 3D context a well-tried procedure in 2D con-
sisting in limiting the velocity field along directions computed from the flow. These
directions are chosen in order to constitute a basis and thus this procedure can be
assimilated to a component-wise limiting after the change of basis [88, 92, 95, 124].
The difficulty lies in the definition of this basis, denoted Bcξ = (ξc1, ξ

c
2, ξ

c
3), which has

to preserve the flow symmetries in cell c. In particular, the basis has to be frame-
invariant in the sense that it must be dependent on the flow and not on the frame of
reference (refer to Chapter 5 for the mathematical definition of frame-indifference).

In [88, 92], the attempt is made to reconstruct the basis from the flow direction
ξc1 = Vc/‖Vc‖. The difficulty then lies in the computation of the second basis vector
since the third one is naturally computed as ξc3 = ξc1× ξc2. Such a procedure fails to
preserve the flow symmetries in every cases since the second basis vector cannot be
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computed properly. For example, if the flow is 1D radial, there is infinite solutions
to construct ξ2. Moreover, the direction ξc1 = Vc/‖Vc‖ is not Galilean invariant
which is not satisfactory. Such a procedure is thus not considered here.

During this thesis, the attempt has been made to use the basis constructed upon
the eigenvectors of two matrices

◦ the deformation gradient Dc =
1

2

[
GRADc(V ) +

(
GRADc(V )

)t]
◦ and the matrix Nc =

∑
p∈P(c)

(xp − xc)⊗ (xp − xc).
(2.24)

In particular, the second matrix represents the deformation of the cell and is similar
to the matrix Mc appearing in the Least Squares procedure (2.10).

For an arbitrary basis Bcξ, the limited vector field is written

ψ̃lim
c (x) = ψc + (Bξ,cAcBtξ,c)∇ψc(x− xc), x ∈ ωc, (2.25)

where Bξ,c = (ξc1|ξc2|ξc3) is the change of basis and the limiting matrix Ac writes

Ac =

αξ1 0 0
0 αξ2 0
0 0 αξ3

 . (2.26)

The limiting scalars αξ1 , αξ2 and αξ3 are computed using the Barth-Jespersen lim-
iter (2.22) component-wise in the Bcξ basis. In the particular case where Bcξ is the
Cartesian basis, one has Bξ,c = Id.

Unfortunately, none of these basis provide convincing results on 1D radial flows
(refer to Chapter 3). This is linked to the difficulty of defining a frame-invariant
basis and its effective numerical computation in the 3D space. Let mention that the
accuracy of the procedures used, in particular when computing the eigenvectors of
a matrix, is a supplementary difficulty. Here the eigenvectors are computed using a
Numerical Recipe routine based on the Jacobi method [107].

In this section, we have detailed the classic multi-dimensional extension of the
MUSCL procedure. Its algorithm is summarized in Section 2.5. It is shown in Chap-
ter 3 that this limiting procedure leads to spurious oscillations, strong overshoots
and symmetry loss on classic Lagrangian test cases. An additional limiting factor
is classically added to the gradients in order to reduce these flaws. However such a
scalar is user-defined and problem dependent which is not satisfactory.

2.3 The Symmetry Preserving limiter (SP-limiter)
This section proposes a new limiting procedure to drastically reduce the spurious

oscillations and overshoots observable with the classic MUSCL procedure (refer to
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×
ϕc

×
ϕc′

(∇ϕlimc )Cf
(∇ϕlimc )Cp

Figure 2.3 – Impact of the monotonicity stencil - Cell gradient limited on the face-
based stencil (∇ϕlimc )Cf and cell gradient limited on the node-based stencil (∇ϕlimc )Cp
- Schematic drawing in the 1D case.

Chapter 3). It seems indeed that the limited second order extension of a purely
Lagrangian scheme is more difficult to control than in the case of ALE or Eulerian
ones. This is due to the fact that the mesh motion is directly computed from the
numerical solution of the gas dynamics equations. The main design principle of this
limiter is the preservation of the flow symmetries. In this sense, it is referred to as
SP-limiter for Symmetry Preserving limiter.

2.3.1 A different monotonicity stencil

To improve the monotonicity of the second order extension, it is proposed to
modify the stencil used for the definition of the monotonicity criterion. Classically,
the monotonicity is verified at the cell nodes thanks to relation (2.19). This criterion
ensures that the monotonicity is respected everywhere in the cell since the field is
linear, the maximum values are thus reached at the cell nodes. In this study it is
proposed to extend the monotonicity stencil to the centers of the neighbouring cells
such as

ϕminc ≤ ϕ̃limc (xc′) ≤ ϕmaxc , c′ ∈ Cp(c). (2.27)

This modification is justifiable by the following arguments. First, the criterion
(2.27) is completely equivalent to the criterion (2.19) for linear fields. Second, it en-
sures that the reconstructed field, extrapolated at the cells containing an extremum,
respects this extremum which is not the case with criterion (2.19). This last argu-
ment is easily understood in 1D thanks to Figure 2.3. Moreover, this monotonicity
stencil uses the node-based stencil Cp(c) since there is no reason why the extrema
should have a face-based distribution as suggested by the stencil Cf (c). However,
the boundary condition problem remains open: the pressure and velocity boundary
conditions cannot be taken into account properly in the monotonicity criterion and
the symmetry boundary conditions are taken into account by constructing the ghost
cells in the Cf (c) neighbouring. However, nothing is done for ghost cells symmetric
by one edge or one point.

42 Gabriel GEORGES



2. Second order extension in space and time

2.3.2 Monotonicity criterion for a vector field

As explained previously, the change of basis classically proposed to limit the
vector field component by component can lead to symmetry loss. In particular, it
is worthwhile to seek for a scalar criterion representing the vector field in order to
extend the scalar limiting procedure to the vector case. Few scalars can be repre-
sentative of an arbitrary vector field. For example, one can consider the norm of the
vector or its projection along a certain direction. All information about the vector
direction is then lost.

Here, it is proposed to represent a vector field by its projection along a unique
direction. This direction ξc is defined as the direction of the pressure gradient
in the cell ωc since it is colinear to the flow acceleration (thanks to the momentum
conservation equation). Moreover, it is Galilean invariant, i.e. invariant by a uniform
translation, whereas Vc/‖Vc‖ is not. One writes

ξc =


(∇P )c
‖(∇P )c‖

, if ‖(∇P )c‖ 6= 0,

ex, otherwise.
(2.28)

In practice, the pressure gradient is approximated by relation (2.14). The corre-
sponding monotonicity criterion then writes

ψξ,minc ≤ ψ̃lim
c (xc′) · ξc ≤ ψξ,maxc , c′ ∈ Cp(c), (2.29)

where the extrema are defined as

ψξ,minc = min

{
min

c′∈Cp(c)
(ψc′ · ξc), ψc · ξc

}
,

ψξ,maxc = max

{
max
c′∈Cp(c)

(ψc′ · ξc), ψc · ξc
}
.

(2.30)

It is possible to apply the classic Barth-Jespersen limiter (2.22) to the scalar criterion
(2.29). The resulting limiting factor αc is then applied to the whole tensor gradient
∇ψc in order to preserve its inherent symmetries. Finally, the limited reconstructed
field writes

ψ̃lim
c (x) = ψc + αc∇ψc(x− xc), ∀x ∈ ωc. (2.31)

Let mention that this limiting procedure is completely equivalent to the componen-
twise limiting in the case of 1D flows.

It is shown in Chapter 3 that the SP-limiter enables to remove the spurious oscil-
lations and overshoots introduced by the classic componentwise limiting procedure.
Nonetheless, the SP-limiter reaches its limits when confronted to spherical problems
on strongly refined meshes. To deal with such flows, an other limiter is proposed in
the following section.

3D cell-centered Lagrangian scheme 43



2.4. Multi-dimensional Minmod limiter (MM-limiter)

2.4 Multi-dimensional Minmod limiter (MM-limiter)

The limiter proposed in this section is meant to deal with 1D radial symmet-
ric problems involving strong shocks and mesh printing such as the Noh and Kid-
der problems (refer to Chapter 3). This limiter can be interpreted as the multi-
dimensional extension of the classic 1D minmod limiter since it proposes to con-
struct a cell gradient from nodal gradients, computed around each nodes of the cell,
and the minmod function. The version presented in this section is very close to the
limiter proposed in [53] with the difference that no change of basis is made here
in order to preserve the flow symmetries. On the contrary, the nodal gradients are
projected along a cell-relative direction. The cell gradient is then defined as the
minmod value of the scalars resulting from these projections. The underlying idea
is to filter the reconstructions that are not aligned with the flow in the cell. In this
sense, this limiter is also well suited to 1D flows.

Considering a cell c, the first step of the MM-limiter consists in computing the
nodal gradients with the Green formula. These gradients are denoted∇ϕp and∇ψp,
p ∈ P(c) and are computed on the dual-cell ωp around node p as sketched in Figure
2.4. In particular, one writes

∇ϕp = − 1

vp

∑
c′∈C(p)

∑
f∈F(c′,p)

spfϕc′npf , (2.32)

and

∇ψp = − 1

vp

∑
c′∈C(p)

∑
f∈F(c′,p)

spfψc′ ⊗ npf , (2.33)

where C(p) is the set of cells c′ around node p. The volume vp of the dual-cell ωp is
computed as

vp =
∑
c′∈C(p)

∑
f∈F(c′,p)

vpf , (2.34)

where vpf is the volume impinging on the face area vector spfnpf . By analogy with
the construction of these face area vectors (refer to Section 1.3.2), this volume is
computed as

vp =
1

3

 ∑
tr∈T (c,f,p)

vTtr +
∑

tr∈T (c,f)

1

Np,f

vTtr

 , (2.35)

where vTtr is the volume of the tetrahedron Ttr introduced in Section 1.3.2. For
dual-cells on the boundary of the domain, it is possible to replace the values ψc′ and
ϕc′ in the ghost cell c′ by the nodal fluxes on the face area vector.

The second step of the MM-limiter consists in defining a cell-relative direction
ξc on which to perform the projections. In this study, ξc is defined as the direction
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Figure 2.4 – Example of primal (solid lines) and dual meshes (dashed lines) in 2D
- The dual-cell around the boundary node pbound is denoted ωpbound (red) and the
dual-cell around the inner node pinn is denoted ωpinn (blue).

of the pressure gradient in the cell

ξc =


(∇P )c
‖(∇P )c‖

, if ‖(∇P )c‖ 6= 0,

er, otherwise,
(2.36)

where er = xc/‖xc‖ is the radial direction in the cell and (∇P )c is approximated
thanks to the relation (2.14). Let mention that in practice, setting er or ex leads to
equivalent results. Then the nodal gradients are projected along the ξc direction as
follows

∇ϕξp = ∇ϕp · ξc,
∇ψξp = (∇ψpξc) · ξc.

(2.37)

Finally, the limited cell gradients are constructed from the previous scalars as follows

∇ϕc = minmod
p∈P(c)

(
∇ϕξp

)
ξc,

∇ψc = minmod
p∈P(c)

(
∇ψξp

)
(ξc ⊗ ξc),

(2.38)

where the minmod function is defined as: let (αp)p∈{1,N} be a set of N scalar values,
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then

minmod
p

(αp) =

{
0, if there exists i and j such that sign(αi) 6= sign(αj),
sign(αi) min

i∈{1,N}
|αi|, otherwise. (2.39)

This limiter provides very satisfying results on 1D radial problems such as the
Noh test case (refer to Chapter 3). In particular, it has the good property of not
requiring an additive monotonicity criterion. This is due to the minmod function
that automatically limits the gradient. It is well known that in the 1D case, the
minmod limiter provides a monotonic second order solution. The proof is complex to
derive in the 3D case, however, the results obtained on the Noh problem show that
the reconstructed solution is monotonic. This good behavior is due to the symmetry
of the spherical flows which are almost 1D around a cell. Another good property of
this limiter is that it degenerates onto the classic minmod limiter in the 1D case.

2.5 Summary and algorithms
This section summaries the limiting procedures presented above and presents

their respective algorithms.

A MUSCL procedure is proposed to improve the spatial accuracy of the La-
grangian scheme. To linearly reconstruct the pressure and velocity fields, the cell
gradients can be computed with two methods: the LS procedure or the Green for-
mula. Then, these gradients can be limiting in different ways. First, it is proposed
to limit the fields component-wise in a certain basis. This limiting procedure is
referred to as CW-limiter for Component-Wise limiter.

CW-limiter algorithm:

◦ Limit the pressure field with the Barth-Jespersen limiter (2.22) on the
monotonicity stencil (2.19)
◦ Construct the basis Bcξ
◦ Limit the velocity field component-wise (2.25)

Second, a limiter is proposed to preserve the flow symmetries without resorting
to a particular basis. The velocity field is projected along a cell-relative direction
computed from the flow and a scalar limiter is computed from the resulting scalar
field. This limiter is applied to the whole velocity gradient. Moreover, the stencil of
the monotonicity criterion is extended to the centers of the neighboring cells. This
new limiter is referred to as SP-limiter for Symmetry-Preserving limiter.
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SP-limiter algorithm:

◦ Limit the pressure field with the Barth-Jespersen limiter (2.22) on the
monotonicity stencil (2.27)
◦ Project the velocity field on the direction ξc (2.36)
◦ Limit the velocity field using a single scalar (2.31)

Third, a limiter is constructed for dealing with 1D and 1D-radial flows. This lim-
iter is based on the multi-dimensional extension of the minmod limiter and nodal
gradients computed with the Green formula on the dual mesh. It is referred to as
MM-limiter for Multi-dimensional Minmod limiter.

MM-limiter algorithm:

◦ Compute the nodal pressure and velocity gradients from relations (2.32)
and (2.33).
◦ Project these gradients along the ξc direction defined as the director
vector of the pressure gradient in the cell (2.37).
◦ Construct the limited cell gradients ∇Pc and ∇Vc from the gradient
projections and the minmod function (2.38).

2.6 Second order extension in time
This section presents the second order extension in time of the scheme. Two

different methods are presented here, the classic Predictor-Corrector (PC) scheme
and the Generalized Riemann Problem (GRP) approach proposed by Ben-Artzi and
Falcovitz [10].

2.6.1 Predictor-Corrector scheme (PC)

The PC scheme (as well as the second order Runge-Kutta (RK2) scheme) is
widely used for reaching second order in time accuracy. It belongs to the family
of two-steps time integration methods. Starting from a scheme written under the
general semi-discrete form

dU
dt

= F(t,U), (2.40)

the time integration is performed as

U (1)
c = Unc + α∆tF (tn,Un) ,

Un+1
c = U (1)

c + ∆t

[(
1− 1

2α

)
F (tn,Un) +

1

2α
F
(
tn+1,U (1)

)]
,

tn+1 = tn + ∆t,

α ∈ [0, 1].

(2.41)
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In particular, one recovers the PC scheme for α = 1 and the RK2 scheme for α = 1/2.
The PC scheme is thus written

U (1)
i = Uni + ∆tF (tn,Un) ,

Un+1
i = U (1)

i +
1

2
∆t
[
F (tn,Un) + F

(
tn+1,U (1)

)]
,

tn+1 = tn + ∆t.

(2.42)

The algorithm of the PC scheme is detailed in the sequel in the particular case
of our Lagrangian scheme. The first step of this procedure, the predictor step, is
nothing but an explicit Euler time integration such as the one presented at the end
of Chapter 1. Starting from state Un, it computes an intermediate step U (1). The
new state Un+1 is then determined by the corrector step. This second step is less
detailed since the stages are redundant.

Predictor step:

◦ The state Un is completely known.
◦ If the flow is radial:

- Call the MM-limiter algorithm
Else:
- Compute the pressure and velocity cell gradients
- Call the SP-limiter algorithm

EndIf
◦ Second order nodal solver:

- computation of the nodal velocity V n
p = M−1p B from relation (1.72)

and the following right hand-side:

B =
∑
c∈C(p)

∑
f∈F(c,p)

snpf

[
P̃c(x

n
p )nnpf + Zn

c Ṽc(x
n
p )
(
nnpf ⊗ nnpf

) ]
, (2.43)

- computation of the nodal pressure Pcfp from the second order Rie-
mann problem:

P n
cfp = P̃c(x

n
p ) + Zn

c

(
Ṽc(x

n
p )− V n

p

)
· nnpf . (2.44)

◦ Computation of the time step ∆t (refer to Section 1.5).
◦ Mesh update from the discrete trajectory equation:

x(1)
p = xnp + ∆tV n

p . (2.45)

◦ Computation of the intermediate velocity V (1)
c and total energy E(1)

c from
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the time discretization of (1.58):

V (1)
c = V n

c −
∆t

mc

∑
p∈P(c)

∑
f∈F(c,p)

snpfP
n
cfpn

n
pf ,

E(1)
c = En

c −
∆t

mc

∑
p∈P(c)

∑
f∈F(c,p)

snpfP
n
cfpV

n
p · nnpf .

(2.46)

◦ Determination of the complete intermediate state U (1) from relations
(1.125) (EOS).

Corrector step:

◦ The state U (1) is completely known.
◦ If the flow is radial:

- Call the MM-limiter algorithm
Else:
- Compute the pressure and velocity cell gradients
- Call the SP-limiter algorithm

EndIf
◦ Second order nodal solver.
◦ Mesh update from the discrete trajectory equation and the mean nodal
velocity

xn+1
p = xnp +

∆t

2

(
V n
p + V (1)

p

)
. (2.47)

◦ Computation of the new velocity V n+1
c and total energy En+1

c using mean
predicted fluxes:

V n+1
c = V n

c −
∆t

2mc

∑
p∈P(c)

∑
f∈F(c,p)

[
snpfP

n
cfpn

n
pf + s

(1)
pf P

(1)
cfpn

(1)
pf

]
, (2.48)

En+1
c = En

c −
∆t

2mc

∑
p∈P(c)

∑
f∈F(c,p)

[
snpfP

n
cfpV

n
p · nnpf + s

(1)
pf P

(1)
cfpV

(1)
p · n(1)

pf

]
.

(2.49)
◦ Determination of the complete final state Un+1 from relation (1.125)
(EOS).

The PC scheme can introduce a supplementary dissipation since it consists in
solving the spatial discretization twice. The dissipation of the scheme is thus accu-
mulated and the improvement of accuracy in time can be insufficient to compensate
the loss of accuracy in space. The strength of this procedure remains its ease of
implementation, however, it literally doubles the computation time. In the next
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section, the one-step GRP integration procedure is described. This procedure is
more complex to implement but is faster and less dissipative.

2.6.2 The Generalized Riemann Problem (GRP) approach

This section details the GRP procedure [10] used for the second order extension
in time of the cell-centered Lagrangian scheme proposed throughout Chapters 1 and
2. Let mention that other efficient approaches exist such as the ADER approach
used in [14]. The complete derivation of the GRP procedure can be found in [92]
in the two-dimensional case. Here it is detailed in the 3D context. This procedure
consists in performing a one-step time integration of the semi-discrete scheme

dxp
dt

= Vp,

dvc
dt
−
∑
p∈P(c)

∑
f∈F(c,p)

Vp · spfnpf = 0,

mc
dVc
dt

+
∑
p∈P(c)

∑
f∈F(c,p)

Pcfpspfnpf = 0,

mc
dEc
dt

+
∑
p∈P(c)

∑
f∈F(c,p)

PcfpVp · spfnpf = 0,

(2.50)

where Vp is the second order node velocity computed from (1.72)-(2.43) and the
second order pressure flux Pcfp (2.44). The integration of this system between times
tn and tn+1 is written

xn+1
p − xnp =

∫ tn+1

tn
Vp(t) dt,

vn+1
c − vnc −

∑
p∈P(c)

∑
f∈F(c,p)

∫ tn+1

tn
Vp(t) ·

(
spfnpf

)
(t) dt = 0,

mc(V
n+1
c − V n

c ) +
∑
p∈P(c)

∑
f∈F(c,p)

∫ tn+1

tn
Pcfp(t)

(
spfnpf

)
(t) dt = 0,

mc(E
n+1
c − En

c ) +
∑
p∈P(c)

∑
f∈F(c,p)

∫ tn+1

tn
Pcfp(t)Vp(t) ·

(
spfnpf

)
(t) dt = 0.

(2.51)

At first order, these time integrals are approximated by a one-step integration pro-
cedure using the integrands at time tn. To gain one order of accuracy in time, the
GRP procedure consists in computing these integrals using a midpoint quadrature
formula. The task is then to determine the integrands at the intermediate time

tn+
1
2 = tn +

∆t

2
. (2.52)
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In the sequel, the quantities evaluated at this intermediate time are written

ϕn+
1
2 = ϕ

(
tn+

1
2

)
= ϕ

(
tn +

∆t

2

)
. (2.53)

Time discretization of the trajectory equation

Considering the trajectory equation

xn+1
p − xnp =

∫ tn+1

tn
Vp(t) dt, (2.54)

the midpoint quadrature formula leads to

xn+1
p − xnp = ∆tV

n+ 1
2

p , (2.55)

where the intermediate node velocity is defined thanks to relation (2.53). In this
way, the node position at the new time step xn+1

p is second order accurate in time
if and only if the node velocity is itself second order accurate. Let perform a Taylor
expansion of the node velocity. One writes

V
n+ 1

2
p = Vp(t

n) +
∆t

2

(
dVp
dt

)
(tn) +O

((
∆t

2

)2
)
, (2.56)

by definition of the intermediate quantities (2.53). This last relation is simplified
into

V
n+ 1

2
p = V n

p +
∆t

2

(
dVp
dt

)n
+O(∆t2), (2.57)

and the node position at the end of the time step is approximated by

xn+1
p = xnp + ∆t

[
V n
p +

∆t

2

(
dVp
dt

)n]
. (2.58)

The time derivative of the nodal velocity
(
dVp/dt

)n, introduced in this relation, is a
new unknown. Before investigating its computation, let discretize the rest of system
(2.51).

Time discretization of the GCL

The GCL equation is recalled to be of the form

vn+1
c − vnc =

∑
p∈P(c)

∑
f∈F(c,p)

∫ tn+1

tn
Vp(t) · (spfnpf )(t) dt. (2.59)

Since the nodal velocity V n+ 1
2

p is fixed during the time step ∆t, x(t) is linear with
respect to time and (spfnpf )(t) is thus quadratic. In this way, it would be possible to
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perform an exact integration of the GCL using, for example, the Simpson quadrature
rule. In the present study, the GCL is approximated at second order by the relation

vn+1
c − vnc = ∆t

∑
p∈P(c)

∑
f∈F(c,p)

V
n+ 1

2
p · (spfnpf )n+

1
2 , (2.60)

where the intermediate node velocity V n+ 1
2

p is given by relation (2.57). In the same
way as for the trajectory equation, one requires a second order in time approximation
of the face area vector (spfnpf )

n+ 1
2 . This geometric quantity is recalled to be of the

form (refer to Section 1.3.2)

(
spfnpf

)n+ 1
2 =

1

3

 ∑
tr∈T (c,f,p)

(
strntr

)n+ 1
2 +

∑
tr∈T (c,f)

1

Np,f

(
strntr

)n+ 1
2

 , (2.61)

with
(strntr)

n+ 1
2 =

1

2

(
x
n+ 1

2

p+ − xn+
1
2

p

)
×
(
x
n+ 1

2

p++ − x
n+ 1

2
p

)
. (2.62)

Performing a Taylor expansion of the intermediate node position, defined by relation
(2.53), one writes

x
n+ 1

2
p = xnp +

∆t

2
V n
p +O(∆t2). (2.63)

Hence,

(strntr)
n+ 1

2 =
1

2

(
xnp+ − xnp

)
×
(
xnp++ − xnp

)
+

∆t

4

[ (
xnp+ − xnp

)
×
(
V n
p++ − V n

p

) ]
+

∆t

4

[ (
V n
p+ − V n

p

)
×
(
xnp++ − xnp

) ]
+ O(∆t2),

(2.64)

which can be simplified into

(strntr)
n+ 1

2 = sntrn
n
tr +

∆t

2

d

dt

(
strntr

)n
+O(∆t2), (2.65)

by introducing the time derivative

d

dt

(
strntr

)n
=

1

2

[ (
xnp+ − xnp

)
×
(
V n
p++ − V n

p

)
+
(
V n
p+ − V n

p

)
×
(
xnp++ − xnp

) ]
. (2.66)

Then, by linearity of the time derivative, the face area vectors (spfnpf )
n+ 1

2 are
straightforwardly written

(spfnpf )
n+ 1

2 = snpfn
n
pf +

∆t

2

d

dt

(
spfnpf

)n
+O(∆t2), (2.67)
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with

d

dt

(
spfnpf

)n
=

1

3

 ∑
tr∈T (c,f,p)

d

dt

(
strntr

)n
+

∑
tr∈T (c,f)

1

Np,f

d

dt

(
strntr

)n . (2.68)

Finally, the dot product between relations (2.57) and (2.67) can be written under
the compact form

V
n+ 1

2
p · (spfnpf )n+

1
2 = V n

p · snpfnnpf +
∆t

2

d

dt

(
Vp · spfnpf

)n
+O(∆t2), (2.69)

by introducing the time derivative

d

dt

(
Vp · spfnpf

)n
= V n

p ·
d

dt

(
spfnpf

)n
+

(
dVp
dt

)n
· snpfnnpf . (2.70)

The second order in time discretization of the GCL is thus written

vn+1
c − vnc = ∆t

∑
p∈P(c)

∑
f∈F(c,p)

[
V n
p · snpfnnpf +

∆t

2

d

dt

(
Vp · spfnpf

)n]
. (2.71)

Second order in time discrete operators

By analogy with the Section 1.3.2, a second order in time discrete divergence op-
erator can be extracted from relation (2.71). For an arbitrary linearly reconstructed
vector field ψ̃, this operator writes

DIVO2
c (ψ̃) =

∑
p∈P(c)

∑
f∈F(c,p)

[
ψ̃p(x

n
p ) · snpfnnpf +

∆t

2

d

dt

(
ψ̃p(xp) · spfnpf

)n]
. (2.72)

Similarly, the second order in time discrete gradient operator of the scalar field ϕ̃ is
defined as

GRADO2
c (ϕ̃) =

∑
p∈P(c)

∑
f∈F(c,p)

[
ϕ̃p(x

n
p )snpfn

n
pf +

∆t

2

d

dt

(
ϕ̃p(xp)spfnpf

)n]
. (2.73)

Discrete scheme

Using the discrete operators introduced previously, the discrete momentum and
total energy conservation equations are written as

V n+1
c = V n

c −
∆t

mc

∑
p∈P(c)

∑
f∈F(c,p)

[
P n
cfps

n
pfn

n
pf +

∆t

2

d

dt

(
Pcfpspfnpf

)n]
, (2.74)

En+1
c = En

c −
∆t

mc

∑
p∈P(c)

∑
f∈F(c,p)

[
P n
cfpV

n
p · snpfnnpf +

∆t

2

d

dt

(
PcfpVp · spfnpf

)n]
,

(2.75)
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where the time derivatives of the fluxes are naturally given by

d

dt

(
Pcfpspfnpf

)n
= P n

cfp

d

dt

(
spfnpf

)n
+

(
dPcfp
dt

)n
snpfn

n
pf , (2.76)

and

d

dt

(
PcfpVp · spfnpf

)n
= P n

cfpV
n
p ·

d

dt

(
spfnpf

)n
+

[(
dPcfp
dt

)n
V n
p + P n

cfp

(
dVp
dt

)n]
· snpfnnpf .

(2.77)

Since the time derivative of the face area vector is known thanks to relation (2.68),
only two new unknowns are introduced by this GRP procedure: the time deriva-
tive of the nodal velocity (dVp/dt)

n (also required in relation (2.58)) and the time
derivative of the nodal pressure (dPcfp/dt)

n. It is thus necessary to design a solver
to compute these new unknowns. In the same way as in Chapter 1, let invoke the
momentum conservation condition.

Momentum conservation

The semi-discrete scheme (2.50) is proved to conserve globally the momentum
and total energy in Section 1.4.3. It is now necessary that the fully discrete scheme
preserves this property. Defining the total momentum in the domain at time tn as
(mV )n =

∑
cmcV

n
c , the global variation of momentum during the time step writes

δ(mV ) = (mV )n+1 − (mV )n. (2.78)

Then, substituting (2.74) in the previous relation leads to

δ(mV ) = −∆t
∑
c

∑
p∈P(c)

∑
f∈F(c,p)

[
P n
cfps

n
pfn

n
pf +

∆t

2

d

dt

(
Pcfpspfnpf

)n]
. (2.79)

Now, imposing the scheme to be globally conservative in momentum, i.e. δ(mV ) =
0, enables to write the condition

0 =
∑
c

∑
p∈P(c)

∑
f∈F(c,p)

P n
cfps

n
pfn

n
pf

+
∆t

2

∑
c

∑
p∈P(c)

∑
f∈F(c,p)

d

dt

(
Pcfpspfnpf

)n
.

(2.80)

The first sum is null by construction of the pressure flux P n
cfp (refer to Section 1.4.3).

In this way, the previous condition simplifies into∑
c

∑
p∈P(c)

∑
f∈F(c,p)

d

dt

(
Pcfpspfnpf

)n
= 0. (2.81)
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Rearranging the sums, one can write

∑
p

 ∑
c∈C(p)

∑
f∈F(c,p)

d

dt

(
Pcfpspfnpf

)n = 0, (2.82)

which provides a condition similar to (1.70). This condition writes

∑
c∈C(p)

∑
f∈F(c,p)

d

dt

(
Pcfpspfnpf

)n
= 0, (2.83)

and imposes the time derivatives of the pressure forces acting around a node to
balance themselves. Now, developing the time derivative thanks to relation (2.76),
one gets ∑

c∈C(p)

∑
f∈F(c,p)

[(
dPcfp
dt

)n
snpfn

n
pf + P n

cfp

d

dt

(
spfnpf

)n]
= 0. (2.84)

This relation is a sufficient condition for the GRP procedure to globally preserve
momentum and total energy. However, it introduces the new unknown (dPcfp/dt)

n.
Following the works [92, 96], it is proposed to time differentiate the relation (2.44)
in order to write a nodal solver linking the two new unknowns (dPcfp/dt)

n and
(dVp/dt)

n.

Time derivative of the pressure flux

Let write the linearly reconstructed Riemann problem (2.44) as

P n
cfp = P̃c(x

n
p ) +

Zn
c

snpf

(
Ṽc(x

n
p )− V n

p

)
· snpfnnpf , (2.85)

where Zn
c /s

n
pf can be interpreted as the surface impedance of face fpf and is consid-

ered to be constant over the time step. Using the chain rule, the time derivation of
this relation leads to(

dPcfp
dt

)n
=

(
dP̃c(xp)

dt

)n

+
Zn
c

snpf

[(
dṼc(xp)

dt

)n

−
(
dVp
dt

)n]
· snpfnnpf

+
Zn
c

snpf

(
Ṽc(x

n
p )− V n

p

)
· d
dt

(
spfnpf

)n
.

(2.86)

This last expression provides the time derivative of the second order pressure flux
P n
cfp. However, it introduces two new unknowns in addition to the expected (dVp/dt)

n,

namely
(
dP̃c(xp)/dt

)n
and

(
dṼc(xp)/dt

)n
. These two derivatives will be computed

latter. For the moment, let concentrate on the time derivative of the node velocity.
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Time derivative of the node velocity

Let substitute relation (2.86) into the balance condition (2.84). Using the formula
(D.1), one writes

0 =
∑
c∈C(p)

∑
f∈F(c,p)

(
dP̃c(xp)

dt

)n

snpfn
n
pf

+
∑
c∈C(p)

∑
f∈F(c,p)

Zn
c

snpf

(
snpfn

n
pf ⊗ snpfnnpf

) [(dṼc(xp)
dt

)n

−
(
dVp
dt

)n]

+
∑
c∈C(p)

∑
f∈F(c,p)

Zn
c

snpf

[
d

dt

(
spfnpf

)n ⊗ snpfnnpf](Ṽc(xnp )− V n
p

)
+

∑
c∈C(p)

∑
f∈F(c,p)

P n
cfp

d

dt

(
spfnpf

)n
.

(2.87)

This relation is equivalently written

Mp

(
dVp
dt

)n
=

∑
c∈C(p)

∑
f∈F(c,p)

(
dP̃c(xp)

dt

)n

snpfn
n
pf

+
∑
c∈C(p)

∑
f∈F(c,p)

Zn
c

snpf

(
snpfn

n
pf ⊗ snpfnnpf

)(dṼc(xp)
dt

)n

+
∑
c∈C(p)

∑
f∈F(c,p)

Zn
c

snpf

(
Ṽc(x

n
p )− V n

p

)[ d
dt

(
spfnpf

)n ⊗ snpfnnpf]
+

∑
c∈C(p)

∑
f∈F(c,p)

P n
cfp

d

dt

(
spfnpf

)n
,

(2.88)

where

Mn
p =

∑
c∈C(p)

∑
f∈F(c,p)

Zn
c

snpf
snpfn

n
pf ⊗ snpfnnpf . (2.89)

One recognizes the matrix Mp used in relation (1.72). This matrix is symmetric
positive definite thus invertible, and the time derivative of the nodal velocity is
always computable.

Computation of the pressure and velocity time derivatives

To conclude the derivation of this GRP procedure, let compute the time deriva-
tives

(
dP̃c(xp)/dt

)n
and

(
dṼc(xp)/dt

)n
. First, the time derivatives of the recon-
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structed pressure and velocity writes as(
dP̃c(xp)

dt

)n

=

(
dPc
dt

)n
,(

dṼc(xp)

dt

)n

=

(
dVc
dt

)n
,

(2.90)

since the other terms introduced by relation (2.1) are of order O(∆t3). Then, as
done in [92, 96], the derivatives (dVc/dt)

n and (dPc/dt)
n are found by writing the

gas dynamic equations under their non-conservative form, i.e. expressed with the
variables (P,V , η). This system writes

dP

dt
= −ρa2(∇ · V ),

dV

dt
= −1

ρ
(∇P ),

dη

dt
= 0,

(2.91)

and leads to the following approximations(
dPc
dt

)n
= −ρnc (anc )2DIVnc (V ),(

dVc
dt

)n
= − 1

ρnc
GRADnc (P ),

(2.92)

where the divergence DIVnc (V ) and the gradient GRADnc (P ) are the discrete oper-
ators (1.51) and (1.53) respectively.

Remark:
In the case where a source term is present in the total energy conservation equation,
the time derivative of the pressure is modified. See for example the Taylor-Green
vortex test case (refer to Chapter 3). The proof is made in Appendix B.

GRP algorithm:

◦ The complete state Un is known.
◦ If the flow is radial:

- Call the MM-limiter algorithm
Else:
- Compute the pressure and velocity cell gradients
- Call the SP-limiter algorithm

EndIf
◦ Computation of the second order fluxes: V n

p from (1.72)-(2.43) and P n
cfp

from (2.44).
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◦ Computation of the time step ∆t (refer to Section 1.5).
◦ Time derivatives:

- determination of the cell derivatives
(
dP̃c(xp)/dt

)n
and

(
dṼc(xp)/dt

)n
from (2.90),

- determination of the geometry derivative d(spfnpf )
n/dt from (2.68),

- determination of the nodal velocity derivative (dVp/dt)
n from (2.88),

- determination of the nodal pressure derivative (dPcfp/dt)
n from (2.86).

◦ Mesh update from to the trajectory equation (2.58).
◦ Computation of the new velocity V n+1

c (2.74) and total energy En+1
c

(2.75) in the cells.
◦ Determination of the complete final state Un+1 from relations (1.125)
(EOS).

Conclusion
This Chapter details the second order extension in space and time of the cell-centered
Lagrangian scheme presented in Chapter 1. The classic MUSCL procedure, consist-
ing in a linear reconstruction and a limiting step, is proposed. Moreover, the gra-
dients needed for the reconstruction step can be computed in multiple way. In this
study, both the Least Squares (LS) gradients and the Green formula are compared.
Concerning the limiting step, a particular care has to be taken for the limiting of
vector fields. The more natural limiting procedure would be the use of convex hulls,
as proposed in [90] with the VIP limiter. However, the computation of convex hulls
in 3D is a complex task which is not investigated here. Instead, it is proposed to
limit the vector fields componentwise in a basis representing the flow directions (re-
ferred to as CW-limiter). Three different basis are studied in Chapter 3, however,
none of them lead to completely satisfactory results. This is why two new limiters
are proposed:

◦ the SP-limiter based on an extended monotonicity criterion (monotonicity ver-
ified at the centers of the neighboring cells) and which limits the vector fields
using a single scalar. Change of basis are thus avoided, however, one has to
compute a frame-invariant direction of the flow. In particular, this limiter
enables to preserve the flow symmetries.

◦ the MM-limiter defined as the multi-dimensional extension of the 1D-minmod
limiter. It is based on nodal gradients and the minmod function and is well
suited to spherical flows.

Concerning the time discretization of the scheme, the classic PC scheme is pre-
sented. However, since this method is computationally costly, especially in 3D, the
one-step GRP procedure is proposed and completely detailed. Algorithms are de-
tailed throughout the Chapter to summarize the different procedures.
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In Chapter 3, the different limiters are tested against numerous classic La-
grangian test cases. Moreover, the MM-limiter is used to study the development
of Rayleigh-Taylor instabilities in supernova remnants in Chapter 4.
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Chapter 3

Validation on classic Lagrangian test
cases

This Chapter presents the results obtained with the second order cell-centered
Lagrangian scheme presented throughout Chapters 1 and 2. The test cases used are
classic in Lagrangian studies and help validate the methods. They are 1D, 2D or
1D spherical problems for which the analytic solution is known. In particular, they
enable to evaluate the robustness and accuracy of the scheme. For example, the
smooth problem of the Taylor-Green vortex enables to compute the order of conver-
gence of the scheme (refer to Section 3.2). All the test cases are run on 3D meshes
in order to verify that the symmetry of the flow is respected. For example, all the
1D problems are run on 3D Cartesian meshes to show that no spurious motion is
created in the y and z directions. Moreover, the three limiting procedures presented
in Chapter 2, namely the CW-limiter, the SP-limiter and the MM-limiter, are com-
pared on these test cases in order to highlight their drawbacks and advantages. The
second order time discretization of the scheme is performed by a GRP procedure.
Finally, unless stated, the spatial reconstruction is based on LS gradient in the case
of the CW-limiter and with the Green formula for the SP-limiter.

All the test cases presented in this Chapter consider a perfect gas ruled by the
gamma gas law

P = (γ − 1)ρε, (3.1)

where γ is the polytropic index of the gas. One has γ = 5
3
if the gas is monoatomic

and γ = 7
5
if the gas is diatomic. In this way, the isentropic sound speed in the cell

ωc becomes

ac =

√
γcPc
ρc

. (3.2)

The Chapter is organized as follows. The Section 3.1 presents the Sod test case.
The order of convergence of the scheme is then evaluated on the Taylor-Green vortex
in Section 3.2, and the 3D Saltzmann problem is presented in Section 3.3. Finally,
the limiting procedures are compared on spherical problems such as the Noh problem
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in Section 3.4, the Sedov problem in Section 3.5 and the Kidder problem in Section
3.6.

3.1 Sod shock tube
The Sod test case [117] considers a domain (x, y, z) ∈ [0; 1]3 split in its middle

x = 0.5 into two sub-regions filled with diatomic gas. The left region has higher
pressure and density than the right one such that

(ρl, Pl, Vl) = (1.0, 1.0, 0), x ≤ 0.5,

(ρr, Pr, Vr) = (0.125, 0.1, 0), x ≥ 0.5.
(3.3)

At time t = 0, the interface separating the two sub-regions is removed, creating a
shock wave that propagates in the direction x > 0. The contact discontinuity (initial
jump in density) also propagates in this direction and a rarefaction wave propagates
in the opposite direction. This test case is very interesting for this feature: the three
type of waves are present and one can thus observe the scheme behavior on each of
these waves. Symmetry boundary conditions are imposed on all the boundaries of
the domain. In particular, the physical variables are observed at final time t = 0.2
in order that the shock has not yet reached the wall x = 1.

The first order solution for density, pressure, x-velocity and internal energy are
plotted along the x-axis in Figure 3.1 in dashed lines. In particular, one can observe
some wall heating effect at the contact discontinuity resulting in an overshoot in
internal energy. One can refer to [109] for a study on the wall heating phenomenon.
The computations are made on a 200 × 5 × 5 cells mesh in order to prove that a
1D problem remains 1D on a 3D mesh. In this way, each Figure shows in fact 5× 5
overlapped 1D plots. The second order results plotted in this Figures were obtained
using the SP-limiters in combination with discrete gradients. In particular, one can
observe a good improvement of the accuracy.

To study the second order procedures, let concentrate on the solution behind
the shock. The corresponding zooming box is shown in Figure 3.1a. Let recall that
on this 1D problem, the CW- and SP-limiters are completely equivalent in their
approach to the velocity limiting. The difference appear thus in the gradient com-
putation and the monotonicity stencil. Let recall that there is two possible gradients,
the gradients obtained using the Least Squares (LS) procedure and the gradients
obtained with the Green formula (discrete gradients). There is also two possible
monotonicity stencils, the classic monotonicity stencil, i.e. monotonicity imposed
at the cell nodes (used in the CW-limiter), and the new monotonicity stencil, i.e.
monotonicity imposed in the neighbouring cells, (used in the SP-limiter).

The Figure (3.2a) compares the solutions obtained using the LS gradients and
the discrete gradients on the classic monotonicity stencil (CW-limiter). One can
observe that the LS gradients lead to spurious oscillations with the CW-limiter

62 Gabriel GEORGES



3. Validation on classic Lagrangian test cases

(a) (b)

(c) (d)

Figure 3.1 – Sod test case - First and second order solution using the SP-limiter
with discrete gradients - Scatter plots of the density (3.1a), velocity (3.1b), pressure
(3.1c) and internal energy (3.1d) at time t = 0.2 along the x axis on a 200 × 5 × 5
cells mesh.

whereas the solution is smooth with discrete gradients. Using the new monotonicity
stencil (SP-limiter) enables to remove these oscillations as shown in Figure (3.2b).
The solution obtained with the MM-limiter is also shown in this last Figure since
this limiting procedure computes its own gradients. In particular, one can observe
that the resulting solution is very similar to the one obtained with LS gradients on
the extended monotonicity stencil. Finally, the second order solution obtained with
discrete gradients and the SP-limiter is compared to the first order one in Figure
3.1. One can observe a good gain of accuracy around the shock as well as in the
rarefaction fan.
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(a) (b)

Figure 3.2 – Sod test case - Second order solution - Comparison between the Least
Squares Gradient (blue) and the Discrete Gradients (green) (3.2a) - Solutions using
the new monotonicity stencil (3.2b) - Density at time t = 0.2 along the x axis on a
200× 5× 5 cells mesh - Zoom behind the shock.

3.2 Taylor-Green vortex
The Taylor-Green Vortex is classically used for evaluating the order of conver-

gence of a Lagrangian method. It has been proposed by Dobrev et al. in [38] and con-
sists in simulating a 2D stationary vortex flow applied to a domain (x, y, z) ∈ [0; 1]3

filled with a perfect diatomic gas. Symmetry boundary conditions are applied to all
boundaries of the domain. The vortex is modelled by a divergence free velocity field
V 0 such as

V 0(x, y) = C1

(
sin(πx) cos(πy)

− cos(πx) sin(πy)

)
, (3.4)

where C1 is a user-defined constant. As shown in Appendix B, the following pressure
field has to be imposed

P 0(x, y) =
1

4
ρ0C2

1

[
cos(2πx) + cos(2πy)

]
+ C2, (3.5)

where C2 is an integration constant. Moreover, the following source term has to be
added to the total energy conservation equation at each time step

S(x, y) =
π

4

ρ0C3
1

γ − 1

[
cos(3πx) cos(πy)− cos(3πy) cos(πx)

]
. (3.6)

In the case where a GRP procedure is used, one has to adapt the scheme as shown in
Appendix B to properly take into account the source term. Initially, the constants
are chosen such that (ρ0, C1, C2) = (1, 1, 1).

This test case enables to compute the order of accuracy of the scheme since there
is no shock and the analytic solution is known thanks to its stationarity. This test
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(a) (b) (c)

Figure 3.3 – Taylor-Green vortex - Pressure field and mesh shape at initial time
(3.3a), time t = 0.5 (3.3b) and time t = 0.7 (3.3c) on a 20× 20× 1 cells mesh.

case is very difficult for a Lagrangian scheme since the cells are highly distorted,
especially at the corners of the domain as shown in Figure 3.3. This Figure shows
the pressure field at initial time and at times t = 0.5 and t = 0.7 in order to evaluate
the mesh deformation. In particular, the final time chosen is t = 0.5 in order that
the mesh is not too deformed and still has a good quality for computing an order
of convergence. Indeed, one can see at time t = 0.7 that the quality of the solution
decreases at the corners of the domain.

The order of convergence is evaluated on the pressure field at time t = 0.5 us-
ing an unlimited second order procedure. This is possible since the Taylor-Green
Vortex is a smooth problem, there is thus no discontinuity which could introduce
oscillations. In this way, one can compare the accuracy of both the LS and discrete
gradients. The results are shown in Table 3.1. In particular, one can observe a sec-
ond order accuracy with an order of 1.97 on the finest grid for both gradients with
a PC time integration. The GRP procedure introduces some discrepancy between
the two possible reconstructions since one can observe a loss of accuracy using LS
gradients. This is probably due to the fact that the LS gradients can lose accuracy
on highly stretched meshes [97], which is the case for the Taylor-Green vortex at
the corners of the domain (see Figure 3.3), and to the fact that these gradients are
used to construct the second order in time terms introduced by the GRP procedure.
Let however mention that, if the LS gradients do not present the best converging
behavior, they produce the lowest errors.

The impact of the limiting procedures is evaluated in Figure 3.4 representing
the logarithmic plot of the L2 error with respect to 1/∆x. The upper straight line
of this Figure corresponds to a first order convergence and the lower straight line
corresponds to a second order convergence. The CW-limiter is applied to the LS
gradients whereas the SP-limiter is applied the Discrete gradients. In particular,
one can observe on this plot that the limiting procedure reduces the accuracy of the
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Figure 3.4 – Taylor-Green vortex - L2 error computed on the pressure field at time
t = 0.5 with respect to 1/∆x - Results obtained using a GRP approach - Logarithmic
plot (x axis inverted).

solution but does not impact the converging behavior.

The MM-limiter is not studied on this problem since it is designed for 1D radial
flows and has no particular reasons to perform well on this 2D problem.

In these Tables, the meshes used are denoted n × n for reducing the Table size
but are in fact n×n× 1 cells meshes. Moreover, ELp and OLp , p ∈ {1, 2,∞} denote
respectively the global error and order of convergence in Lp norm. These errors are
computed as

EL1 =
1

vω

∑
c

vc|∆Pc|, EL2 =

√
1

vω

∑
c

vc|∆Pc|2, and EL∞ = max
c
|∆Pc|, (3.7)

where vω =
∑

c vc is the total volume of the domain and vc the volume of cell ωc.
Moreover, ∆Pc = P num

c − P exact
c is the difference in cell c between the numerical

approximation (computed by the scheme) and the exact value of pressure (obtained
from relation (3.5)) in cell ωc. The corresponding order of convergence OLp is then
computed as

OLp =
log(EaLp)− log(EbLp)

log(∆xa)− log(∆xb)
, (3.8)

where EaLp and E
b
Lp

are the Lp-errors computed on two meshes of characteristic length
∆xa and ∆xb. Here the meshes are Cartesian thus ∆xa = ∆ya.
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Predictor-Corrector - Least Squares gradients

Mesh EL1 OL1 EL2 OL2 EL∞ OL∞
10× 10 2.34× 10−2 - 3.02× 10−2 - 6.91× 10−2 -
20× 20 6.22× 10−3 1.91 9.50× 10−3 1.67 3.08× 10−2 1.16
40× 40 2.17× 10−3 1.52 3.22× 10−3 1.56 1.24× 10−2 1.30
80× 80 6.48× 10−4 1.74 9.05× 10−4 1.83 3.62× 10−3 1.78

160× 160 1.72× 10−4 1.91 2.35× 10−4 1.95 9.46× 10−4 1.94
320× 320 4.39× 10−5 1.97 5.94× 10−5 1.98 2.40× 10−4 1.98

(a)
Predictor-Corrector - Discrete gradients

Mesh EL1 OL1 EL2 OL2 EL∞ OL∞
10× 10 3.72× 10−2 - 4.96× 10−2 - 1.17× 10−1 -
20× 20 2.11× 10−3 0.82 2.37× 10−3 1.06 4.64× 10−2 1.33
40× 40 8.29× 10−3 1.35 9.61× 10−3 1.30 1.99× 10−2 1.22
80× 80 2.39× 10−3 1.79 2.83× 10−3 1.76 7.46× 10−3 1.42

160× 160 6.21× 10−4 1.94 7.45× 10−4 1.92 2.19× 10−3 1.76
320× 320 1.57× 10−4 1.98 1.89× 10−4 1.98 5.69× 10−4 1.95

(b)
GRP - Least Squares gradients

Mesh EL1 OL1 EL2 OL2 EL∞ OL∞
10× 10 2.32× 10−2 - 3.04× 10−2 - 6.73× 10−2 -
20× 20 6.05× 10−3 1.94 9.29× 10−3 1.70 2.83× 10−2 1.25
40× 40 2.10× 10−3 1.52 3.06× 10−3 1.60 1.23× 10−2 1.20
80× 80 6.88× 10−4 1.61 9.16× 10−4 1.74 3.64× 10−3 1.76

160× 160 2.48× 10−4 1.47 3.21× 10−4 1.51 9.65× 10−4 1.91
320× 320 1.17× 10−4 1.08 1.43× 10−4 1.16 4.03× 10−4 1.26

(c)
GRP - Discrete gradients

Mesh EL1 OL1 EL2 OL2 EL∞ OL∞
10× 10 3.63× 10−2 - 4.87× 10−2 - 1.15× 10−1 -
20× 20 2.06× 10−2 0.82 2.32× 10−2 1.07 4.56× 10−2 1.34
40× 40 7.86× 10−3 1.39 9.14× 10−3 1.34 1.99× 10−2 1.19
80× 80 2.19× 10−3 1.84 2.60× 10−3 1.81 7.41× 10−3 1.43

160× 160 5.57× 10−4 1.97 6.74× 10−4 1.95 2.18× 10−3 1.76
320× 320 1.50× 10−4 1.88 1.88× 10−4 1.84 5.64× 10−4 1.93

(d)

Table 3.1 – Taylor-Green vortex - Table of convergence of the pressure field at final
time t = 0.5 - Unlimited LS gradients with a PC time integration (3.1a), unlim-
ited discrete gradients with a PC time integration (3.1b) - Unlimited LS gradients
with a GRP time integration (3.1c), unlimited discrete gradients with a GRP time
integration (3.1d).
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3.3 Saltzmann test case
The Saltzmann test case (see [42] for the original 2D test case and [26] for

its extension to 3D) is used to evaluate the sensitivity of the Lagrangian scheme
to the mesh. It simulates the propagation of a piston driven shock wave in the
computational domain (x, y, z) ∈ [0; 1] × [0; 0.1] × [0; 0.1] distorted as proposed in
[26] (refer to Figure 3.5)

x̃ = x+ (0.1− z)(1− 20y) sin(xπ), if 0 ≤ y ≤ 0.05,

x̃ = x+ z(20y − 1) sin(xπ), if 0.05 ≤ y ≤ 0.1,

ỹ = y,

z̃ = z.

(3.9)

This domain is filled with a monoatomic gas such that (ρ0, P 0,V 0) = (1, 10−6,0).
The compression is ensured by a velocity condition V b = 1ex imposed on the plane
initially at the position x = 0. All the other boundaries of the domain are symme-
try boundary conditions. The solution is plotted at time t = 0.7, before the shock
reaches the wall x = 1.

(a)

(b)

Figure 3.5 – Saltzmann problem - Initial perturbed mesh in the (O, z) plane (3.5a)
and (O,y) plane (3.5b).

The second order results are shown in Figures 3.6 and 3.7 using the SP-limiter.
The results obtained with the CW-limiter are not shown since they are very similar
on this test case. In particular, one can observe that the shock is almost planar and
that the density field behind the shock presents a good uniformity. Classically, 3D
computations of this problem stop around time t = 0.75 due to the strong mesh
deformations [28, 88, 95]. In the present study, we show that the problem can be
computed at latter times since the mesh remains rather well aligned with the x
direction. In particular, the solution at time t = 0.9 is shown in Figure 3.7 and a
zoom on the mesh is shown in Figure 3.8. At his time, the shock has bounced twice
against the wall. The results are still satisfactory at this late time. However, the
mesh deformation prevents from going further in the computations, particularly due
to the pinched cells at the corners of the domain. Similar results are observed in
[22].
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(a)

(b)

(c)

Figure 3.6 – Saltzmann problem - Second order solution obtained with the SP-limiter
- Scatter plot of the x-density (3.6a), density field in the (O, z) plane (3.6b) and in
the (O,y) plane (3.6c) at time t = 0.7 on a 100× 10× 10 cells mesh.

(a)

(b)

(c)

Figure 3.7 – Saltzmann problem - Second order solution obtained with the SP-limiter
- Scatter plot of the x-density (3.7a), density field in the (O, z) plane (3.7b) and in
the (O,y) plane (3.7c) at time t = 0.9 on a 100× 10× 10 cells mesh.

3.4 Noh problem

The Noh problem [104] models the implosion of a unit cube (x, y, z) ∈ [0; 1]3

filled with a monoatomic gas which has a centripetal velocity. More precisely, the
gas is such that (ρ0, P 0,V 0) = (1, 10−6,−er) where er is the radial vector. This
flow creates a spherical shock of infinite strength at the space origin that propagates
in the radial direction. In particular, the solutions are plotted at final time t = 0.6
when the shock is at radius r = 0.2. Symmetry boundary conditions are applied
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Figure 3.8 – Saltzmann problem - Second order solution obtained with the SP-limiter
- Zoom of the mesh at time t = 0.9.

to the boundaries holding the origin O whereas the other boundaries are pressure
boundary conditions with P b = 1× 10−6. This test case is difficult for a Lagrangian
scheme since it is a 3D radial problem run on a Cartesian grid. This problem is thus
subject to a strong mesh printing.

The first order solution of this problem is shown in Figure 3.9 for a 20× 20× 20
cells mesh. The density, the velocity norm, the pressure and the internal energy
are plotted with respect to the radius of the cell center. One can observe the wall
heating phenomenon which is responsible for the low density and strong internal
energy at the origin. A review of this phenomenon can be found in [109]. The first
order problem is already difficult since a hourglass mode appears at 45◦ in the three
Cartesian planes when the mesh is refined (refer to Figures 3.9e and 3.9f). This
instability is due to the nodal solver itself and has also been observed in [127]. In
particular, it is shown in this paper that using the Dukowicz solver [40] enables to
remove these oscillations. The Dukowicz solver is not used in this study since the
oscillations disappear when the scheme is extended to second order. However, there
is no clear explanation why the first order scheme presents this flaw and not the
second order one.

The CW-limiter (refer to the Algorithm in Section 2.5) does not provide satis-
factory results on this problem. The Figure 3.10 shows the solutions obtained by
limiting the velocity field in three different basis: the Cartesian basis, denoted BC ,
the basis of eigenvectors of tensor Dc, denoted BD, and the basis of eigenvectors of
tensor Nc, denoted BN (refer to Section 2.2). In particular, one can observe over-
shoots appearing behind the shock. These overshoots are lethal for the numerical
solution since they are amplified when the mesh is refined. Moreover, the defor-
mation of the mesh behind the shock is not in accordance with the radial flow.
Nonetheless, the density fields are identical in the three planes (O,x), (O,y) and
(O, z) and have a symmetry at 45◦.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9 – Noh test case - First order solution - Scatter plots of the radial density
(3.9a), velocity norm (3.9b), pressure (3.9c) and internal energy (3.9d) at time t =
0.6 on a 20×20×20 cells mesh - Scatter plot of the radial density (3.9e) and density
field (3.9f) at time t = 0.6 on a 80× 80× 80 cells mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10 – Noh test case - Second order solution obtained with the CW-limiter -
Scatter plot of the radial density and density field at time t = 0.6 on a 20× 20× 20
cells mesh - Component-wise limiting in the basis BC (3.10a, 3.10b), the basis BD
(3.10c, 3.10d) and the basis BN (3.10e, 3.10f).
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The SP-limiter enables to completely remove the overshoots on the 20× 20× 20
cells mesh (refer to Figures 3.11a and 3.11b). In fact, the solution obtained with
this limiter is very similar to the first order one with a higher maximum density (58
against 52 at first order). It is now possible to perform a convergence analysis (refer
to Figure 3.11). However, this analysis also shows that the SP-limiter reaches its
limits when the mesh is strongly refined. Indeed, one can observe strong overshoots
behind the shock for a 80× 80× 80 cells mesh (refer to Figure 3.11e).

The MM-limiter shows its strength on this radial problem (refer to Figure 3.12).
The solution obtained on the 20 × 20 × 20 cells mesh (refer to Figures 3.12a) is
similar to the one provided by the SP-limiter. The behavior of the MM-limiter is
however better when the mesh is refined. Indeed, the solution on the 80 × 80 × 80
cells mesh (refer to Figures 3.12e) presents no overshoot with a maximum density of
63.6 against 64 for the expected value. Moreover the symmetry of the flow behind
the shock is very well preserved, even on this refined mesh. Finally, one can remark
that the hourglass mode observable at first order (refer to Figure 3.9f) is no longer
present at second order on the same mesh.

3.5 Sedov problem

The Sedov test case [73] simulates the propagation of a spherical shock wave
within the computational domain (x, y, z) ∈ [0; 1.2]3. This domain is filled with a
diatomic gas such that (ρ0, P 0,V 0) = (1, 10−6,0). The shock wave is initialized by
imposing the pressure Po = (γ − 1)ε0/v0 in the cells containing the space origin,
where v0 is the cell volume and ε0 = 0.106384 is the initial specific internal energy.
Symmetry boundary conditions are applied on all the boundaries of the domain.
With this initialization, the diverging spherical shock is characterized by a shock lo-
cated at radius R = 1 at time t = 1 with a maximum density of ρshock = 6, as in [95].

The first order density solution is shown in Figure 3.13 on a 20×20×20 cells mesh.
In particular one can notice node crossing along the Cartesian axis and non-convex
cells at 45◦ (refer to Figure 3.13b). As for the Noh problem, only the (O,x) plane
is shown here but the mesh shape is identical in the two others Cartesian planes.
The solution presents nonetheless a good shock timing and a good symmetry (refer
to Figure 3.13a). In particular, the symmetry preservation on this test case can be
evaluated by the width of the scatter plot around the analytic solution. Let mention
that the two aforementioned flaws do not appear with the 2D EUCCLHYD scheme
[92, 93] and seem thus to be characteristic of the 3D configuration.

At second order, the solutions obtained with the CW- or SP-limiter present
the same node crossing. Only the solution obtained with the SP-limiter is shown
in Figure 3.14 since both limiters provide similar results. In particular, one can
observe that the solution is very similar to the first order one with a higher shock
density. As for the previous test case, the MM-limiter provides very good results on
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11 – Noh problem - Second order solution using the SP-limiter - Scatter
plot of the radial density and density field at time t = 0.6 on 20 × 20 × 20 (3.11a,
3.11b), 40× 40× 40 (3.11c, 3.11d) and 80× 80× 80 (3.11e, 3.11f) cells meshes.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12 – Noh problem - Second order solution using the MM-limiter - Scatter
plot of the radial density and density field at time t = 0.6 on 20 × 20 × 20 (3.12a,
3.12b), 40× 40× 40 (3.12c, 3.12d) and 80× 80× 80 (3.12e, 3.12f) cells meshes.
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(a) (b)

Figure 3.13 – Sedov problem - First order solution - Scatter plot of the radial density
(3.13a) and 3D mesh (3.13b) in the (O,x) plane at time t = 1 on a 20 × 20 × 20
cells mesh.

(a) (b)

Figure 3.14 – Sedov problem - SP-limiter - Scatter plot of the radial density and 3D
mesh in the (O,x) plane at time t = 1 on 20× 20× 20 (3.14a, 3.14b) cells meshes.

this radial problem (refer to Figure 3.15). The node crossing along the Cartesian
axis is removed and the solution shows a good converging behavior. Moreover, one
can notice that the cells in the Cartesian plane are all convex when using this limiter
whereas a bowtie-shaped hourglass mode appears with the CW- and SP-limiters.

3.6 Kidder implosion

The Kidder test case [75] simulates the isentropic compression of a spherical
shell of inner radius rinn = 0.9 and outer radius rout = 1. Here, we use the set-up
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15 – Sedov problem - MM-limiter - Scatter plot of the radial density and
3D mesh in the (O,x) plane at time t = 1 on 20×20×20 (3.15a, 3.15b), 40×40×40
(3.15c, 3.15d) and 80× 80× 80 (3.15e, 3.15f) cells meshes.
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proposed in [93]. The shell is filled with a perfect monoatomic gas such as

ρ0(r) =

(
r2out − r2

r2out − r2inn
ργ−1inn +

r2 − r2inn
r2out − r2inn

ργ−1out

) 1
γ−1

,

P 0(r) =
(
ρ0(r)

)γ
,

V 0(r) = 0,

(3.10)

where the initial density at the inner interface of the shell is set to ρinn = 1 and at
the outer interface ρout = 2. This flow is an isentropic compression since one has
η = P/ργ = 1. In particular, a node initially at radius r is known to be at position
R(r, t) = h(t)r at time t, where

h(t) =

√
1−

(
t

tfoc

)2

, (3.11)

is the homothety rate. Moreover, tfoc is the focalisation time computed as

tfoc =

√(
γ − 1

2

)
r2out − r2inn
a2out − a2inn

. (3.12)

In this last relation ainn and aout are the initial speed of sound at the inner and
outer radii as defined in relation (3.2). In particular, one finds tfoc ' 0.254345.
This focalisation time is the time when the shell is reduced to a single point, it is
thus not possible to use it as the final time for the computations. In the sequel, the
times τ1 =

√
3
2
tfoc(' 0.220263) and τ2 = 0.99tfoc(' 0.251801) are considered, where

τ1 corresponds to a compression of the shell by a factor 1/2 as proposed in [28]. In
particular, it is much more difficult to obtain the solution at time τ2 because of the
mesh printing. Indeed, this compression test case presents an exponential growth
rate of the mesh defects as shown in [93]. It is possible, in the 2D framework, to have
perfectly equi-angular zoning of the cylindrical shell and thus to study the growth
of small mesh defects. The task is almost impossible in 3D since such perfectly
equi-angular meshes cannot exist. The mesh necessarily presents defects, such as
the triple point observable in Figure 3.16, that are amplified by the compression and
lead to jets as shown in Figures 3.17a-3.17b.

The domain studied is a eighth of spherical shell meshed as shown in Figure 3.16.
One can remark that this mesh is composed by three identically deformed cubes.
In particular, the node at the center of this shell, i.e. the node shared by the three
cubes, is called triple point since it has only three neighboring cells. In this study,
such a mesh is referred to as the number of cells along the radius times the number
of cells between θ = 0 and θ = π. For example, in Figure 3.16, one can observe
a 10 × 40 cells mesh. Moreover, symmetry boundary conditions are applied to the
three planar faces of the eighth of shell and the analytic pressure solution is used to
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Figure 3.16 – Kidder test case - Example of mesh used for the computation - Eighth
of spherical shell - Case of a 10× 40 cells mesh.

define the pressure boundary conditions applied to the inner and outer faces. One
writes

P b
inn = P 0(rinn)h(t)−

2γ
γ−1 , (3.13)

P b
out = P 0(rout)h(t)−

2γ
γ−1 . (3.14)

Let emphasize the difficulty of this test case. First, the mesh is not symmetric
because of the triple point. This leads to mesh printing which breaks the radial
symmetry of the flow. Second, the Kidder problem is known to present an exponen-
tial growth of the perturbation at the outer face of the shell [93]. In this way, the
stability of the solution at late times is not ensured.

The first order solution is shown in Figure 3.17 on a 10× 40 cells mesh at initial
time, time τ1 and time τ2. One can observe in Figures 3.17a-3.17b the jet appearing
at the outer face of the shell at time τ2. This jet appears at the triple point because
of the mesh printing since the mesh is not perfectly equi-angular symmetric. This
problem is well known and this is why the final time is set to time τ1 when the
mesh printing is still low and not visible on the mesh. The scatter plot of the radial
density at time τ1 is rarely shown [14, 22, 28, 125] but is interesting for evaluating
the ability of the scheme to preserve spherical symmetry. In particular, one can
observe in Figure 3.17c that the solution has a good spherical symmetry with points
slightly spread around the analytic solution. Finally, the inner and outer radii of
the shell are plotted in Figure 3.17d. Only the points on the Cartesian axis and
the triple points are used for this Figure. In particular, one can observe that the
numerical solution is in good accordance with the analytic one and that the jet is
not yet observable.
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(a) (b)

(c) (d)

Figure 3.17 – Kidder test case - First order solution - Meshes at initial time, at time
τ1 =

√
3
2
tfoc and time τ2 = 0.99tfoc (from right to left) (3.17a-3.17b) - Scatter plot

of the radial density at time τ1 (3.17c) on a 10 × 40 cells mesh - Plot of the inner
and outer radius of the shell with respect to time (3.17d) - One can observe the
formation of jet at the triple point.

The second order solution of this problem is difficult to obtained since the scheme
presents less dissipation than at first order. Using the CW- or SP-limiter amplifies
the mesh printing leading to an early jet on the outer face or oscillations at the
inner face respectively (refer to Figure 3.18). The solution is thus studied using the
MM-limiter. One can refer to Figure 3.19c for the scatter plot of the radial density
and to Figure 3.19d for plot of the inner and outer radii with respect to time. In
particular, one can observe in Figure 3.19c that the mesh printing is stronger than
at first order. Indeed, the group of points are more spread than at first order. How-
ever the density in the cells is closer to the analytic solution. One can also observe
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(a) (b)

Figure 3.18 – Kidder test case - Second order solution at time τ1 =
√
3
2
tfoc on a

10×40 cells mesh - Early jet appearing at the outer face when using the CW-limiter
(3.18a) - Oscillations at the inner face when using the SP-limiter (3.18b).

that the positions of the inner and outer radii of the shell are improved at second
order since the numerical and analytic solution match perfectly. Finally, one can
also observe in this Figure that the jet has not yet appeared.

Conclusion
In this Chapter we have studied the behavior of the second order cell-centered La-
grangian scheme developed in Chapters 1 and 2. The results obtained on classic
Lagrangian test cases enable to validate and highlight the good properties of the
limiting procedures introduced in Chapter 2. First, the Sod problem enables to
isolate the impact of the gradient reconstruction as well as the monotonicity stencil
on the solution stability. In particular, it appears that the extended monotonicity
stencil leads to a smooth solution with both the LS and discrete gradients whereas
the LS gradients leads to spurious oscillations when the monotonicity is verified at
the cell nodes. Then, the second order accuracy of the scheme is validated on the
Taylor-Green Vortex. In particular, both the LS and the discrete gradients lead to
an order of 1.97 using a PC time integration. This order is reduced when the LS
gradients are combined with the GRP procedure but is preserved when the GRP
procedure is combined with discrete gradients. The Saltzmann problem presents no
particular difficulties. The results are shown with the SP-limiter and the solution
is evaluated at time 0.9 after two bounce of the shock against the walls. The solu-
tion at this late time is still acceptable, however it is difficult to go further because
of pinched cells. The Noh problem introduces severe defaults in the solutions. A
loss of symmetry and strong overshoots are observable with the CW-limiter using
three different basis. The SP-limiter enables to recover the symmetry as well as the
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(a) (b)

(c) (d)

Figure 3.19 – Kidder test case - Second order solution using the MM-limiter - Mesh
at initial time and time τ1 =

√
3
2
tfoc (from right to left) (3.19a-3.19b) - Scatter plot

of the radial density at time τ1 (3.19c) on a 10 × 40 cells mesh - Plot of the inner
and outer radius of the shell with respect to time (3.19d).

monotonicity on coarse meshes, however, overshoots reappear on strongly refined
meshes. The MM-limiter enables to remove the overshoots appearing on this diffi-
cult problem and to finish the convergence study. The CW- and SP-limiter fail to
give a good solution on the Sedov problem since they preserve the node crossing and
the bowtie-shaped hourglass mode appearing at first order. The MM-limiter enables
to remove these two flaws and leads to a good convergence of the solution towards
the analytic solution. Finally, the difficult problem of the Kidder compression is
presented. Only the MM-limiter presents a solution which is not degraded by the
mesh printing. In particular, the shell inner and outer radii are better tracked with
this limiter. As shown by Vilar and Maire in [124], a high order approximation of
the geometry could help reducing this mesh printing but this track is not followed
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in this study. As a conclusion on the different limiter tested in this Chapter, one
can summarize as follows:

- the SP-limiter is shown to be a good improvement of the CW-limiter. In
particular, its extended monotonicity stencil and its velocity limiting procedure
enable to improve the monotonicity and the symmetry of the solution on 3D
problems.

- the MM-limiter is a good candidate to compute the solution of flows charac-
terized by a spherical symmetry. In particular, it enables to deal with the
difficult mesh printing problem without resorting to a high order geometry.

In the next Chapter, the MM-limiter is used to study the development of Rayleigh-
Taylor Instability (RTI) in supernova remnants. In Chapter 4, the scheme presented
so far is extended to the modeling of the Hyperelasticity system.
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Chapter 4

Application to astrophysics

The Celia Laboratory is interested in High Energy Density Physics (HEDP)
problems such as Inertial Confinement Fusion (ICF) and laboratory astrophysics.
Hydrodynamic instabilities are common in such flows since the fluids (or solids) are
subject to high mechanical and temperature constraints. For example, one can ob-
serve Rayleigh-Taylor Instability (RTI) when a light fluid pushes a heavier fluid, or
a Kelvin-Helmholtz instability in the case of a shearing flow between two fluids of
different density. In this Chapter, it is proposed to study the development of RTI in
a plerion (supernova remnants blown-up by a central pulsar) as done in [54]. This
test case corresponds to a shell of gas expanded by an internal pressure (the pulsar
wind) which can lead to RTI if the inner interface of the shell is not regular [63, 74].
In particular, the RTI is responsible for the Rayleigh-Taylor fingers observable in the
Crab nebula (refer to Figure 4.1). In the case of an ICF experiment, RTI appears
at the interface between the shell of the ICF target and the inner fluid because of
manufacturing defaults in the target or asymmetry in the irradiation. This instabil-
ity degrades the compression and prevents the nuclear fusion reactions to happen.
In this sense, it is important to understand how this instability grows with respect
to space and time in order to better control ICF experiments. Analytic studies,
based on self-similar solutions, have been carried out on the RTI phenomenon to
provide accurate models [13, 71, 108]. The Chapter is structured as follows. The
expansion of the plerion is first studied without perturbation to verify that the ana-
lytic solution is recovered. Then, perturbations of the inner interface are introduced
by use of spherical harmonics functions. The 3D scheme is first compared to the
2D-axisymmetric CHIC Code [18] in order to validate it on a 2D-axisymmetric flow
before proceeding with 3D studies. In particular, the impact of the azimuthal mode
m on the perturbation growth is studied at the end of this Chapter.

4.1 Plerion test case

The following plerion test case models the blown-up of a spherical shell by a
central pressure as proposed in [108]. The shell, of inner radius rinn = 0.9 and outer
radius rout = 1, is filled with a perfect monoatomic gas. The initial state of the shell
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4.1. Plerion test case

Figure 4.1 – Photo of the Crab nebula taken by the Hubble telescope (2005).

is very similar to the Kidder problem and is given by

ρ0(r) =

(
r2out − r2

r2out − r2inn
ργ−1inn

) 1
γ−1

,

P 0(r) = Kρ0(r)γ,

V 0(r) =
βr

τ
er.

(4.1)

In this system, ρinn = 1 is the initial density at the inner interface of the shell, β is
a constant defining the initial radial velocity magnitude. Finally, the constant K is
defined as

K =

(
γ − 1

γ

)
r2out − r2inn

2τ 2
, (4.2)

where τ = 1 is a characteristic time. In the present study, β = 0. The pressure
boundary condition applied to the inner interface and modelling the central pulsar
wind is defined by

P b(t) = P 0(rinn)h(t)−
2γ
γ−1 , (4.3)

where h(t) is the scaling function defined as

h(t) =

√(
1 + β

t

τ

)2

+

(
t

τ

)2

. (4.4)

This scaling function also enables to express the position R(r, t) at time t of a point
initially at radius r as

R(r, t) = h(t)r. (4.5)
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(a) (b)

(c) (d)

Figure 4.2 – Plerion test case - Second order solution using the MM-limiter - Scatter
plot of the radial density (4.2a), velocity (4.2b) and pressure (4.2c). Inner and outer
radii with respect to time (4.2d). Solutions at time t = 2τ on a 20× 40 cells mesh.

The analytic solution at time t of this problem is given by

ρ(r, t) = h(t)−
2

γ−1

(
r2out − r2

r2out − r2inn
ργ−1inn

) 1
γ−1

,

P (r, t) = Kρ(r, t)γ,

V (r, t) =
r

h(t)2τ

(
β + (β2 + 1)

t

τ

)
er.

(4.6)

The eighth of shell is discretized with meshes as the one presented in Figure 3.16.

The Figure 4.2 presents the second order solution obtained with the MM-limiter.
More precisely, this Figure presents the scatter plots of the radial density (Figure
4.2a), the velocity norm (Figure 4.2b) and the pressure (Figure 4.2c) at final time
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t = 2τ . One can observe a good accordance between the analytic and the numerical
solutions. The mesh printing is however visible on the radial plots since the points
are spread around the analytic solutions. The inner and outer radii are also plotted
with respect to time and compared to the formula (4.5) in Figure 4.2d. All the
nodes of the inner and outer faces are not plotted in this last Figure. The nodes on
the Cartesian axis and the triple point are sufficient to understand the behavior of
the interface. In particular, one can observe that the blue line begins to split into
two lines. This is due to the triple point which does not move at the same speed
than the nodes on the Cartesian axis due to mesh printing.

4.2 Perturbation of the inner interface
Even if mesh printing is already present in the unperturbed plerion test case

this section proposes to introduce a spherical harmonics perturbation of the inner
interface. This perturbation has indeed a strong amplitude which makes it more pre-
ponderant than the mesh printing. Moreover, it enables to study the development
of RTI in the case where a light fluid pushes a heavier fluid. Let start with an axi-
symmetric perturbation in order to compare the results with the 2D-axisymmetric
CHIC Code [18]. The theoretical solution describing the amplification factor of this
perturbation is taken from [108].

Here, the inner interface of the shell is deformed at initial time by moving the
nodes along the radial direction er such that

rpert0 (θ, ϕ) = r0

[
1 + a0 D(r0) Re

{
Yl,m (θ, ϕ)

}]
, (4.7)

where r0 and rpert0 (θ, ϕ) are the node radii respectively before and after the perturba-
tion, a0 is the perturbation amplitude, D(r0) is a damping function and Yl,m (θ, ϕ) is
the spherical harmonics function of modes l and m. The damping function enables
to locate the perturbation at the inner interface. Here the damping is linear thus
D(r) writes

D(r0) =
r0 − rout
rinn − rout

. (4.8)

Moreover, the spherical harmonics function writes

Yl,m(θ, ϕ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pl,m

(
cos(ϕ)

)
eimθ, (4.9)

where
Pl,m(x) = (−1)m

[
1− x2

]m
2
dmPl(x)

dxm
, (4.10)

and Pl(x) is the lth Legendre polynomial. These last polynomials are evaluated
thanks to a Numerical Recipes routine [107].
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Remark:
The mesh perturbation is incompressible which means that the cell volume varies due
to the mesh deformation, however, the cell density must be invariant.

With such a perturbation, the analytic study [108] predicts a perturbation growth
of the form

ξ(θ, ϕ, t) = a0Yl,m(θ, ϕ)h(t)
4∑
j=1

Λje
λjg(t), (4.11)

where (λj)j=1,4 are the four roots of the dispersion equation linking the perturbation
growth rate λ to the mode l. In this study, λ is supposed to be independent on the
mode m as supposed in [108]. This hypothesis will be discussed in the next section.
In particular, for the plerion test case one finds: λ1,2 = ±

√
l + 1 and λ3,4 = ±i

√
l,

where i is the imaginary unit.

The constants (Λj)j=1,4 in relation (4.11) are the amplitude of the excited modes
corresponding to each root λi. These factors are computed as

Λ1,2 =
−1

b1 − b2

[
b2D0 −D1 ±

τ√
l + 1

(b2V0 − V1)
]
,

Λ3,4 =
1

b1 − b2

[
b1D0 −D1 ± i

τ√
l
(b1V0 − V1)

]
.

(4.12)

For a geometric perturbation on the inner interface only, these constants are chosen
such as: D0 = 1, D1 = 0 and V0 = V1 = 0. This leads to

Λ1,2 =
−b2
b1 − b2

= ΛI ,

Λ3,4 =
b1

b1 − b2
= ΛII ,

(4.13)

where the constants b1 ' 0.098477 and b2 ' 7.402737 are numerical approximated
from the eigenmodes displacement equation taken from [108]. Finally, imposing

g(t) = atan

(
β + (β2 + 1)

t

τ

)
− atan(β), (4.14)

and using the coefficients (4.13), equation (4.11) is simplified into

ξ(θ, ϕ, t) = a0Yl,m(θ, ϕ)h(t)
[
ΛI cosh

(
g(t)
√
l + 1

)
+ ΛII cos

(
g(t)
√
l
)]
. (4.15)

Numerically, the amplification factor of the perturbation is evaluated as follows

ξnum(θ, ϕ, t) =
rpert(θ, ϕ, t)− r(θ, ϕ, t)
rpert0 (θ, ϕ)− r0(θ, ϕ)

. (4.16)
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(a) (b)

Figure 4.3 – Plerion test case - Axi-symmetric perturbation with a0 = 4 × 10−3,
l = 20 and m = 0 - Comparison between the 2D-axisymmetric CHIC Code (4.3a)
and the 3D scheme (4.3b) - Slice in the plane (O,y) for a 20× 80 cells mesh.

This result is comparable to the normalized analytic solution

ξ(θ, ϕ, t)

a0Yl,m(θ, ϕ)
= h(t)

[
ΛI cosh

(
g(t)
√
l + 1

)
+ ΛII cos

(
g(t)
√
l
)]
. (4.17)

This last expression is independent on (θ, ϕ) thus ξnum(θ, ϕ, t) can be evaluated at
any point of the inner face. However, there exists (θ, ϕ) such that ξ(θ, ϕ, t) = 0 thus
the amplification factor cannot be measured at any point. For an axi-symmetric
perturbation as the one presented in Figures 4.3 and 4.4, the perturbation is mea-
sured at the point of the z-axis that also belongs to the inner face.

The results shown in Figure 4.3 are obtained using the MM-limiter on a 20× 40
cells mesh. The perturbation magnitude is set to a0 = 4× 10−3 and the modes are
chosen such that l = 20 and m = 0. In particular, the perturbation amplitude is
strong in order to have qualitatively comparable results. The slices made in the plane
(O,y) show a good accordance for both the density field and the mesh shape at final
time t = 2τ . Moreover, the 3D scheme shows a very good accordance with the CHIC
Code with respect to the amplification factor of the perturbation. One can indeed
observe that the curves overlap in Figure 4.4. These two Figures completely validate
the 3D scheme since the same results than a 2D-axisymmetric code are found. The
numerical results are quite far from the analytic one for two main reasons. First, the
mesh is quite coarse and the solution is thus not converged. Second, the perturbation
magnitude is strong. The RTI is thus in its non-linear regime where the perturbation
growth starts to saturate whereas the analytic solution supposes a linear regime.
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Figure 4.4 – Plerion test case - Amplification factor of the perturbation with respect
to time with a0 = 4 × 10−3, l = 20 and m = 0 (Logarithmic plot) - Comparison
between the 3D scheme (dashed line) and the CHIC code (crosses) on a 20×80 cells
mesh.

4.3 Impact of the azimuthal mode m on the pertur-
bation growth

The 3D scheme has proven its ability to handle plerion flows as well as 2D axi-
symmetric perturbations. Consequently it is now used to perform 3D perturbations.
In particular, this study aims at numerically verify the hypothesis stating that the
azimuthal mode m has no impact on the perturbation growth. The following (l,m)
modes are considered: (20, 0), (20, 1), (20, 2), (20, 3), (20, 4), (20, 5), (20, 10), (20, 15)
and (20, 20). The perturbation is now evaluated from the inner face area of the shell.
Indeed, as previously said, there exists some points on the inner interface for which
the perturbation is null. In this way it is difficult to fix a point and modify the
perturbation modes, hoping that this node will always be perturbed. Moreover, the
inner face area seems to be a good candidate for evaluating the perturbation growth
since it gives a global overview of the perturbation. Strong perturbations with an
initial amplitude a0 = 4× 10−3 are applied to a 20× 40 cells mesh to help visualize
the spherical harmonics patterns (refer to Figure 4.7). The analytic computation
of the inner face area is cumbersome and complex [78]. A simplifying assumption
is thus made to approximate its growth with respect to time. Since the area of
a sphere of radius R is AR = 4πR2 and the perturbation growth at one point of
the face evolves as ξ(t), the perturbation growth of the whole face is supposed to
evolve as ξ2(t). This is a rough approximation but it is in good accordance with the
numerical results shown in Figure 4.5. One can also observe in this Figure that all
the modes provide very similar amplification factors. Numerically, the perturbation
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growth is evaluated as

(ξ2)num =
Apert(t)−A(t)

Apert(0)−A(0)
, (4.18)

where Apert(t) is the perturbed area measured at time t and A(t) the unperturbed
area at the same time. In this way, the hypothesis stating that the amplification
factor does not depend on the m mode is numerically validated.

One can go further in the analysis. The Figure 4.6 shows the internal face area
with respect to the perturbation modes. One can notice that introducing a l mode
increases the inner face area (blue line) compared to the unperturbed case (red
line). Introducing the azimuthal mode m gives an area between the two previous
one. However, changing this mode has no impact on the resulting area (green lines).

Conclusion
This study enables to numerically validate the hypothesis stating that the azimuthal
mode m has no impact on the growth rate of an RTI perturbation based on spher-
ical harmonics functions. Besides, it is also shown that the area of the perturbed
inner face is independent of the mode m and always lower than the area of the
axi-symmetric perturbation. Let recall, that the analytic solutions came from the
linear theory. In this way, these results are valid only for the early stages of the RTI
development since more complex non-linear behavior appear later on.

As a future work on the plerion test case, a spectral decomposition of the inner
face on the spherical harmonics functions would be interesting in order to study
the evolution of multi-modal perturbations during the RTI development. Moreover,
additional physics could be studied such as the magnetic field in order to describe
more realistic plerion flows, see for example the recent work in [106].
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Figure 4.5 – Perturbed plerion test case - Amplification factor of the inner face
area with respect to time (Logarithmic plot) - Impact of the azimuthal mode m
- Perturbations with a0 = 4 × 10−3, l = 20 and m = 0, 1, 2, 3, 4, 5, 10, 15, 20 on a
20× 80 cells mesh

Figure 4.6 – Perturbed plerion test case - Inner face area with respect to time
(Logarithmic plot) - Impact of the azimuthal mode m - Perturbations with a0 =
4× 10−3, l = 20 and m = 0, 1, 2, 3, 4, 5, 10, 15, 20 on a 20× 80 cells mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7 – Perturbed plerion test case - Density field and shape of the eighth shell
for spherical harmonic perturbations with the following (l,m) modes: (20, 0) (4.7a),
(20, 1) (4.7b), (20, 3) (4.7c), (20, 5) (4.7d), (20, 10) (4.7e), (20, 20) (4.7f) - Slices in
the (O, z) plane at final time t = 2τ on a 10× 120 cells mesh.
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Chapter 5

Lagrangian hyperelasticity

5.1 Introduction

In this Chapter, the cell-centered Lagrangian scheme developed in Chapters 1
and 2 is extended to the hyperelasticity system. The simulation of the elastic and
elastic-plastic response of a solid material is of great interest for mechanical applica-
tions such as impact problems, metal forging, geophysics, biology, etc. Historically,
the simulation of solid motion has been principally performed using the Finite El-
ement formalism. However, from the seminal works of Wilkins [132] and Godunov
[57] Finite Volume Lagrangian schemes have been designed to model solids. The
Lagrangian formalism is natural for the simulation of deforming solids since the
computational grid follows the solid motion. This enables, for example, the natu-
ral tracking of free-surface boundaries and multi-material interfaces. Two principal
models are used for the description of elastic materials under large deformations,
namely the hypoelastic and hyperelastic models.

In the hypoelastic approach proposed by Wilkins in [132], the spherical part
of the Cauchy stress tensor, which corresponds to the hydrodynamic pressure, is
described by an equation of state whereas the deviatoric part is described by an
evolution equation. This equation introduces the Jaumann derivative of the devi-
atoric part in order to ensure the frame-indifference of the scheme. This property,
also called objectivity, ensures that the constitutive law does not depend on the
frame of reference. In this sense, a change of observer must not impact the behavior
of the solid. Numerical schemes have been successfully applied to the hypoelastic
model, see for example [39, 67, 120]. However, this model is known to have inher-
ent drawbacks. First, the choice of the objective derivative is not restricted to the
Jaumann rate and the deviatoric part of the stress tensor can be computed differ-
ently. Besides, the Jaumann rate introduces non-conservative terms which renders
questionable the mathematical derivation of numerical schemes [51]. Finally, the
hypoelastic model produces entropy even on reversible process. Despite these theo-
retical drawbacks, the hypoelastic approach is successfully used in numerous studies.
In [21, 96, 111, 112], it is proposed to solve the hypoelastic model using cell-centered
Finite Volume Lagrangian schemes. As detailed in the introduction of Chapter 1,
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these schemes locate all the variables at the cell centers and propose a nodal solver,
based on approximate Riemann solver, to compute the nodes velocity and move the
computational grid. In particular, the nodal solvers proposed by Després et al. [34]
and Maire et al. [93] enable the computation of a nodal velocity which guarantees
the global conservation of total energy and momentum as well as the respect of the
Second Law of thermodynamics.

The hyperelastic approach was proposed by Godunov [57, 58, 59]. In this model,
the constitutive law derives from the Coleman-Noll procedure [61] which ensures the
frame-indifference and the thermodynamic consistency by construction. This proce-
dure enables to define the Cauchy stress tensor as the derivative of the free energy
with respect to the deformation. In particular, the hyperelastic model is not subject
to the theoretical drawbacks of the hypoelastic model which provides a strong math-
ematical basis for designing numerical schemes. In particular, Ndanou et al. proved
the hyperbolicity of the system [103]. One can refer to [44, 51, 64, 99] for studies
using Eulerian schemes and [3, 4, 62, 76, 77, 80, 114] for studies involving Lagrangian
schemes. In [76, 77], it is proposed to extend the GLACE scheme to the hyperelastic-
ity system at first order in two-dimensions. In a series of papers [3, 4, 62, 80], Bonet
et al. proposed different Finite Volume schemes: a vertex-centered scheme using
the Jameson-Schmidt-Turkel (JST) algorithm and an upwind cell-centered scheme
based on a mixed approach. An important work is also devoted to enforce the con-
servation of angular momentum. Both procedures are tested in 3D on numerous
test cases and show very good results.

Going back to the Finite Element formalism, let mention the recent work of
Scovazzi [114], proposing to solve a mixed form of the hyperelasticity equations
tetrahedral meshes using a Variational MultiScale (VMS) procedure for stabiliza-
tion. Let also mention the recent work of Favrie and Gavrilyuk [45] in which it is
proposed to derive a hypoelastic model from a hyperelastic one in order to remove
the classical theoretical drawbacks. Finally, let mention the work of Boscheri et al.
[15] proposing a cell-centered high-order Discontinuous Galerkin (DG) scheme for
modelling the Godunov-Peshkov-Romenski (GPR) approach.

The current study is the 3D extension of the work of Kluth et al. [76, 77] using
the EUCCLHYD scheme proposed by Maire et al. [93]. Some differences can be
noted since in [77], the authors propose to evaluate the deformation gradient be-
tween times tn and tn+1 in order to obtain a scheme compatible with an Arbitrary
Lagrangian-Eulerian (ALE) procedure. In the current study, the deformations are
evaluated in the actual framework using the left Cauchy-Green tensor leading to an
updated Lagrangian formalism. The second order extension of the scheme is pro-
posed by mean of a Generalized Riemann Problem (GRP) [10] and the SP-limiter
introduced in Chapter 2.

The Chapter is structured as follows: the hyperelastic approach is detailed in
Section 5.2. In particular, the complete Coleman-Noll procedure is detailed in order
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to construct the constitutive law in such a way that the frame-indifference as well as
the Second Law of thermodynamics are respected. Then, the Section 5.3 shows the
system discretization using a cell-centered Finite Volume Lagrangian scheme. The
second order extension of this scheme is proposed in Section 5.4. Finally, the scheme
is validated on several test cases in Section 5.5. Both problems with infinitesimal
displacements and large deformations are considered.

5.2 The hyperelastic model
This first section presents the complete derivation of the hyperelasticity model.

The interested reader is referred to [61] for more details. In particular, we concen-
trate on hyperelastic isotropic materials which enable the use of simplifying assump-
tions.

5.2.1 Kinematics of the solid

Let ω(t) be a domain of an elastic solid deforming with time in the R3 space. It
represents the position, at time t ∈ R+, of a solid initially contained in Ω at t = 0. In
this way, one has Ω = ω(0). The spatial domain ω(t) is called the actual, or current,
configuration of the solid whereas Ω is called the reference or initial configuration.
Let define the function φ(X, t) mapping the reference configuration onto the current
configuration as

X 7→ φ(X, t) = x, x ∈ ω(t),X ∈ Ω,

φ(X, 0) = X.
(5.1)

This mapping represents the motion of the solid with respect to time. In particular,
it is supposed to be bijective in order that the solid does not penetrate itself. In this
last relation, the points x are called spatial points and X are the material points.
They are also respectively called Eulerian and Lagrangian coordinates.

The mapping φ enables to follow the deformation of the solid during its motion.
In particular, one has to differentiate an entity in the reference configuration from
its counterpart in the current configuration. For this purpose, let use a capital letter
to represent this entity in the reference configuration and a small letter to represent
its counterpart. See for example the unit outward normal N of the boundary ∂Ω
in Figure 5.1.

The Jacobian of the mapping φ is referred to as the deformation gradient. This
tensor is denoted F and represents the deformation of the solid during its motion.
This tensor writes as

F = ∇Xx =
∂x

∂X
. (5.2)

The determinant of F is denoted J = det(F). It represents the variation of volume
during the motion thanks to the relation

dv = JdV, (5.3)
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Ω N

ω(t)

n

φ

Figure 5.1 – Representation of the solid Ω in the reference configuration and its
counterpart ω(t) in the current configuration. The motion of the solid is represented
by the mapping φ. The unit outward normal of the boundary ∂Ω is denoted N
whereas the unit outward normal of the boundary ∂ω(t) is denoted n.

where dv is an infinitesimal volume in ω(t) and dV its counterpart in Ω. In particular,
the bijectivity of the mapping φ ensures that J > 0 and thus the volumes are always
positive. Finally, time differentiating the relation (5.2), one gets

dF
dt

=
∂

∂X

dx

dt
=
∂V

∂X
=
∂V

∂x

∂x

∂X
,

= (∇xV )F,
(5.4)

where V = dx/dt is the velocity. Classically, the deformation gradient is used to
express the hyperelasticity system under the total Lagrangian form as in [76]. In
particular, it is possible to express the divergence and gradient operators with re-
spect to the Lagrangian coordinates, i.e. replace ∇x by ∇X . For example, one
has the relation ∇x · (TV ) = ∇X · (PV ) where P is the first Piola-Kirchhoff tensor
P = JTF−t. In this study, only the updated Lagrangian formalism is considered
which means that all the differentiation are made with respect to the Eulerian co-
ordinates x. In this way, it is possible to simplify the notations and replace ∇x by
∇. In particular, this notation simplification is possible thanks to the use of the
left Cauchy-Green tensor B instead of the deformation gradient F. This tensor is
defined as

B = FFt, (5.5)

and represents the deformation of an infinitesimal length. Indeed, considering an
infinitesimal length dx in the current configuration and its counterpart dX in the
reference configuration, one has

dX = F−1dx, (5.6)

hence
dX · dX = F−tF−1dx · dx = B−1dx · dx. (5.7)

In particular, the scalar J becomes

J =
√

det(B), (5.8)
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and the time derivative of B is computed as

dB
dt

=
dF
dt

Ft + F
(
dF
dt

)t
,

= (∇V )FFt + FFt(∇V )t,

= (∇V )B + B(∇V )t.

(5.9)

This particular form of dB/dt is called the Oldroyd rate which is frame-indifferent
[61].

5.2.2 Conservation laws

The system of conservation laws describing an elastic material is the system of
Euler equations (1.1) with the Cauchy stress tensor T instead of the scalar pressure
P . In particular, this tensor is symmetric, i.e. T = Tt which ensures the conservation
of angular momentum [61]. Denoting by ρ the solid density, V its velocity and E
its total energy, the Eulerian form of this system writes as

∂ρ

∂t
+∇ ·

(
ρV
)

= 0,

∂(ρV )

∂t
+∇ ·

(
ρV ⊗ V + T

)
= 0,

∂(ρE)

∂t
+∇ ·

(
(ρE + T)V

)
= 0.

(5.10)

These equations respectively represent the conservation of mass, momentum and
total energy. In the same way as in Chapter 1, the updated Lagrangian form of this
system is written

ρ
d

dt

(
1

ρ

)
−∇ · V = 0,

ρ
dV

dt
−∇ · T = 0,

ρ
dE

dt
−∇ · (TV ) = 0,

(5.11)

and the internal energy writes ε = E− 1
2
V 2. Finally, the following equation is added

to the system
dB
dt

= (∇V )B + B(∇V )t. (5.12)

In order to close the system, the thermodynamic variables and the Cauchy stress
tensor have to be related. This is achieved by use of the Coleman-Noll procedure
described in the next section.

5.2.3 Constitutive law modeling

The constitutive law dictates the behavior of the solid by linking the stress to the
strain. Here it is proposed to define the stress T as a function of the deformations.
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An important prerequisite is to impose the constitutive law to be frame-indifferent
in such a way that the solid behavior is not impacted under a change of observer.
This condition is also called the objectivity condition. In combination with a ther-
modynamic consistency criterion, the constitutive law modeling is referred to as the
Coleman-Noll procedure [61].

Frame-indifference - Definitions and properties

◦ A change of frame is generally composed of a translation y and a rotation Q
and transforms the coordinate x into x∗ such as

x∗ = y + Qx. (5.13)

◦ An arbitrary vector field ψ is said to be frame-indifferent if it simply rotates
with the frame-rotation Q

ψ∗ = ψQ. (5.14)

◦ An arbitrary tensor field M is said to be frame-independent if for an arbitrary
frame-rotation Q

M∗ = QMQt. (5.15)

◦ A scalar field ϕ is frame-invariant i.e. ϕ∗ = ϕ.

It is easily proved that the deformation gradient F is not frame-indifferent. For
an arbitrary change of frame (5.13), One has

F∗ =
∂x∗

∂X
=

∂y

∂X
+ Q

∂x

∂X
= QF. (5.16)

On the other hand, B is frame-indifferent since

B∗ = F∗(F∗)t = QFFtQt = QBQt. (5.17)

This is why B is used as a relevant measure of deformation in the constitutive law,
i.e. one writes ε = ε(B, η) and T = T(B, η).

Thermodynamic consistency

The first step of the system closure consists in imposing the Second Law of
thermodynamics which enables to express the Cauchy stress tensor as a function of
the internal energy. In particular, the Clausius-Duhem inequality [61] writes

ρ
dε

dt
− ρθdη

dt
− T : ∇V ≤ 0, (5.18)

where θ > 0 is the solid temperature and η its entropy. Recalling that a frame-
indifferent expression of the internal energy is ε = ε(B, η), its material derivative
writes

dε

dt
=

(
∂ε

∂B

)
η

:
dB
dt

+

(
∂ε

∂η

)
B

dη

dt
, (5.19)
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where (∂ε/∂B)η is a second order tensor such that (∂ε/∂B)i,j = ∂ε/∂Bi,j. In par-
ticular, this tensor is symmetric since B is symmetric. Substituting relation (5.12)
into this equality leads to

dε

dt
=

(
∂ε

∂B

)
η

: (∇V )B +

(
∂ε

∂B

)
η

: B(∇V ) +

(
∂ε

∂η

)
B

dη

dt
. (5.20)

Using the symmetry of B and the formulas (D.5)-(D.6), one can simplify this relation
into

dε

dt
= 2

(
∂ε

∂B

)
η

B : ∇V +

(
∂ε

∂η

)
B

dη

dt
. (5.21)

Then, substituting this last relation into (5.18) leads to[
2ρ

(
∂ε

∂B

)
η

B− T

]
: ∇V + ρ

[(
∂ε

∂η

)
B
− θ
]
dη

dt
≤ 0. (5.22)

This relation is satisfied for any deformation tensor B if and only if

θ =

(
∂ε

∂η

)
B
, and T = 2ρ

(
∂ε

∂B

)
η

B. (5.23)

In particular, one can observe that T depends only on B and that it is symmetric
by symmetry of B. This is the advantage of using the left Cauchy-Green tensor B
instead of the right Cauchy-Green tensor C which is also frame-invariant and for
which one finds T = 2ρF(∂ε/∂C)ηFt.

Remark:
An alternative approach consists in using the free energy ψ = ε−θη = ψ(B, θ) [61].

Internal energy

Let recall that the internal energy is an isotropic scalar function of the symmetric
tensor B. Using the theorem of representation of isotropic functions [61], ε is thus
function of the three invariants of B. That is to say

ε = ε
(
i1(B), i2(B), i3(B), η

)
(5.24)

where the three invariants of a square matrix write as
i1(B) = tr(B),

i2(B) =
1

2

(
tr(B)2 − tr(B2)

)
,

i3(B) = det(B).

(5.25)

In particular, from relation (5.8) it comes i3(B) = J2.
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One can go further and separate the isochoric (shearing) part from the volumic
part of the deformation. A deformation is isochoric if it lets the volume unchanged.
As said previously, the determinant of the deformation gradient J represents the
volume variation. In this way, let define the isochoric part F̄ of the deformation
gradient as F = J

1
3 F̄ in order that det(F̄) = 1. As a consequence, the isochoric part

B̄ of B writes as B = J
2
3 B̄ such that det(B̄) = 1.

The internal energy can now be split into a volumic, εv, and a shearing part, εs,
by use of the invariants of B̄. One writes

ε
(
J, B̄, η

)
= εv

(
J, η
)

+ εs
(
i1(B̄), i2(B̄), η

)
, (5.26)

where the invariants of B̄ write in function of the invariants of B as
i1(B̄) = J−

2
3 i1(B),

i2(B̄) = J−
4
3 i2(B),

i3(B̄) = J−2i3(B) = 1.

(5.27)

In this way, one can write(
∂ε

∂B

)
η

=

(
∂εv
∂J

)
η

∂J

∂B
+

(
∂εs

∂i1(B̄)

)
η

∂i1(B̄)

∂B
+

(
∂εs

∂i2(B̄)

)
η

∂i2(B̄)

∂B
, (5.28)

where the derivatives of the invariants J , i1(B̄) and i2(B̄) with respect to B express
as

∂J

∂B
=

1

2
JB−1,

∂i1(B̄)

∂B
= B̄0B−1,

∂i2(B̄)

∂B
= −(B̄−1)0B−1.

(5.29)

The proof of these formulas are detailed in Appendix C.1. The interested reader is
also referred to [61, 76]. In this last relation, B̄0 is the deviatoric part of B̄ defined
as B̄0 = B̄− 1

3
tr(B̄) Id. Finally, the Cauchy stress tensor (5.23) becomes

T = Jρ

(
∂εv
∂J

)
η

Id +2ρ

[(
∂εs

∂i1(B̄)

)
η

B̄0 −
(

∂εs
∂i2(B̄)

)
η

(B̄−1)0

]
. (5.30)

Remark:
Writing the Cauchy stress tensor as T = −P Id +T0, where T0 is its deviatoric part,
and knowing that Jρ = ρ0 (where ρ0 is the density in the reference configuration)
enables to recover the classic hydrodynamic pressure P as

P = Jρ

(
∂εv
∂J

)
η

= ρ2
(
∂εv
∂ρ

)
η

. (5.31)
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In this study, the hyperelastic materials are represented by the compressible
Neo-Hookean model [66] which defines the internal energy as

εv
(
J, η
)

=
κ

4Jρ

[
(J − 1)2 + log2(J)

]
,

εs
(
i1(B̄), i2(B̄), η

)
=

µ

2Jρ

[
i1(B̄)− 3

]
,

(5.32)

where λ and µ are the Lamé coefficients (µ is also called shear modulus) and κ =
λ + 2

3
µ is the bulk modulus of the solid. In particular, this last relation (5.32) is

used to compute the derivatives of εv and εs in (5.30).

5.3 Scheme construction

5.3.1 Integral form of the system

In the same way as in Chapter 1, the system (5.11) is written under its integral
form to facilitate the development of a Finite Volume scheme. One writes

d

dt

∫
ω(t)

dv −
∫
∂ω(t)

V · n ds = 0,

d

dt

∫
ω(t)

ρV dv −
∫
∂ω(t)

Tn ds = 0,

d

dt

∫
ω(t)

ρE dv −
∫
∂ω(t)

TV · n ds = 0,

d

dt

∫
ω(t)

ρB dv =

∫
ω(t)

ρ
[
(∇V )B + B(∇V )t

]
dv,

(5.33)

where the first equation of this system is nothing but the Geometric Conservation
Law (GCL). Moreover, using the Reynolds transport formula presented in Chapter
1, one recovers the mass conservation condition

d

dt

∫
ω(t)

ρ dv = 0. (5.34)

Finally, the following trajectory equation is added to move the grid nodes
dx

dt
= V ,

x(t = 0) = X.
(5.35)

5.3.2 Spatial discretization

The system (5.33) is discretized using the Finite Volume cell-centered Lagrangian
scheme proposed in Chapter 1. Let briefly recall the main steps of this discretiza-
tion. The spatial domain ω(t) is paved with a set of non-overlapping polyhedrons
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denoted ωc such that ω(t) =
⋃
c ωc. The faces f of each cell are split into triangles

tr using their barycenter p∗f as shown in Figure 1.1.

The GCL compatibility, stating that the volume computed geometrically is iden-
tical to the volume computed from the discretized GCL equation (5.33), is ensured
by using the discrete divergence operator proposed in Section 1.3.2. In particular,
the discrete divergence operator of a vector field is written

DIVc(V ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Vp · spfnpf , (5.36)

the discrete divergence of a tensor field is written

DIVc(T) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

spfTcfpnpf , (5.37)

and, finally, the discrete gradient of a vector field is written

GRADc(V ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

spfVp ⊗ npf . (5.38)

In these last relations, vc is the cell volume, Vp is the velocity of node p and Tcfp is
the Cauchy stress tensor at node p on face f relatively to cell c. Finally, the face
area vectors spfnpf are defined by relation (1.46). These face area vectors provide
a consistent discretization of the cell boundary ∂ωc in the sense that∑

p∈P(c)

∑
f∈F(c,p)

spfnpf = 0. (5.39)

5.3.3 Semi-discrete system

Defining mass averaged quantities as in Chapter 1 and using the discrete opera-
tors (5.36)-(5.37)-(5.38), the semi-discrete scheme is written

mc
dVc
dt

= vcDIVc(T),

mc
dEc
dt

= vcDIVc(TV ),

dBc
dt

= GRADc(V )Bc + BcGRADc(V )t,

(5.40)

where the mass mc is constant in cell c and the mean left Cauchy-Green tensor is
written

Bc =
1

mc

∫
ωc

ρB dv. (5.41)
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In particular, by definition of the discrete operators, this system can be equivalently
written

mc
dVc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

spfTcfpnpf ,

mc
dEc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

spfTcfpVp · npf ,

dBc
dt

=
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

spf
[
(Vp ⊗ npf )Bc + Bc(Vp ⊗ npf )t

]
.

(5.42)

Moreover, the semi-discrete trajectory equation writes

dxp
dt

= Vp. (5.43)

The last unknowns to be computed are thus the nodal fluxes Tcfp and Vp. In
the same way as in Chapter 1, a nodal solver is derived from an entropy condition
and a momentum conservation condition.

5.3.4 Nodal solver

The nodal fluxes are computed by imposing two criteria: the consistency with
the Second Law of thermodynamics and the global conservation of momentum.

Second Law of thermodynamics

Starting from the assumption ε = ε(η,B), one can easily derive the Gibbs relation

ρθ
dη

dt
= ρ

dε

dt
− 1

2
TB−1 :

dB
dt
, (5.44)

from the chain rule and the relation (5.23). After integration over the cell c, the
Gibbs equation is approximated by

mcθc
dηc
dt

= mc
dεc
dt
− vc

2
TcB−1c :

dBc
dt

. (5.45)

By definition of the internal energy, εc = Ec − 1
2
V 2
c , one gets from the two first

equations of system (5.42)

mc
dεc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

spfTcfpnpf · (Vp − Vc). (5.46)

Then, from the third equation of system (5.42), it comes straightforwardly

vcTcB−1c :
dBc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

spfTcB−1c :
[
(Vp ⊗ npf )Bc + Bc(Vp ⊗ npf )t

]
, (5.47)
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which can be simplified into

vcTcB−1c :
dBc
dt

= 2
∑
p∈P(c)

∑
f∈F(c,p)

spfTcnpf · Vp, (5.48)

by use of relation (D.6) and the symmetry of Bc and Tc. Finally, the Gibbs relation
can be written as

mcθc
dηc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

spf (Tcfp − Tc)npf · (Vp − Vc). (5.49)

The Second Law of thermodynamics imposes the entropy variation to be positive.
A sufficient condition to respect this criterion at the semi-discrete level is to choose
the nodal fluxes in such a way that the right-hand side term in (5.49) sums only
positive terms. This is easily achieved by defining the nodal flux Tcfp as

Tcfp = Tc + [Qcfp(Vp − Vc)]⊗ npf , (5.50)

where Qcfp is a definite positive tensor. In this way, using the formula (D.8), one
has

(Tcfp − Tc)npf = Qcfp(Vp − Vc), (5.51)

and
mcθc

dηc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

spfQcfp(Vp − Vc) · (Vp − Vc) ≥ 0, (5.52)

since Qcfp is definite positive. In this study, Qcfp is defined as the square root of
the acoustic tensor [96]. It writes as

Qcfp = ρc
[
aLc (npf ⊗ npf ) + aTc (Id−npf ⊗ npf )

]
, (5.53)

where aLc and aTc are the velocities of the longitudinal and transverse waves such as

aLc =

√
κc + 4

3
µc

ρc
, and aTc =

√
µc
ρc
. (5.54)

This definition of the matrix Qcfp can also be found in [76, 77]. In particular, the
acoustic tensor can be found by performing a progressive wave study of the Euler
system (5.10) (refer to Appendix C.2).

Momentum conservation and nodal velocity

The last step of the nodal solver consists in imposing a momentum balance
condition around each node (refer to Chapter 1). Balancing all the forces acting
around a node writes as ∑

c∈C(p)

∑
f∈F(c,p)

spfTcfpnpf = 0. (5.55)
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Then, substituting the relation (5.50) in this last relation leads to∑
c∈C(p)

∑
f∈F(c,p)

spf [Tcnpf + Qcfp(Vp − Vc)] = 0. (5.56)

One can then compute the nodal velocity as

Vp = M−1p Bp, (5.57)

where

Mp =
∑
c∈C(p)

∑
f∈F(c,p)

spfQcfp,

Bp =
∑
c∈C(p)

∑
f∈F(c,p)

spf [QcfpVc − Tcnpf ] .
(5.58)

In particular, M−1p always exists since the Qcfp are symmetric definite positive ma-
trices thus the nodal velocity is always computable. Finally, Tcfp is computed from
Vp and relation (5.50).

5.3.5 Time step monitoring

The first-order time discretization and the time step monitoring of the hyperelas-
ticity system is very similar to the work done in Chapter 1 and the reader is referred
to the Section (refer to Section 1.5). In particular, the first-order time discretization
is performed using a classic Explicit Euler integration and the time step is computed
from the relation

∆tn = min(Cv∆tv, Ce∆tCFL, Cm∆tn−1). (5.59)

In this last relation, one recovers Cv∆tv as the criterion controlling the volume
variation with Cv = 0.1 and Cm∆tn−1 as the criterion controlling the growth of the
time step with Cm = 1.1. The only difference comes in the CFL criterion Ce∆tCFL.
Indeed, for the hyperelasticity system, two type of waves appear at the interface
between two cells: the longitudinal and transverse waves. The CFL criterion is then
adapted as

∆tCFL = min
c

{
Lc

aLc + aTc

}
, (5.60)

where Ce is the CFL number chosen as Ce = 0.4 in practice, Lc is the minimum edge
length in cell c and aLc and aTc are the bulk and shear speed of sound introduced in
relation (5.54).

At this point, all the ingredients are present to solve the hyperelasticity system
at first order. The complete algorithm is detailed below in the case where an Ex-
plicit Euler time discretization is used. The next sections investigate the second
order extension in space and time of this cell-centered Lagrangian scheme.
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First order algorithm:

◦ The complete state Un is known.
◦ Computation of the nodal fluxes V n

p and Tncfp from relations (5.57) and
(5.50) respectively.
◦ Computation of the time step ∆t from relation (5.60).
◦ Mesh update from the trajectory equation (5.73).
◦ Computation of the new velocity V n+1

c and total energy En+1
c in the cells

from

V n+1
c = V n

c +
∆t

mc

∑
p∈P(c)

∑
f∈F(c,p)

snpfTncfpnnpf ,

En+1
c = En

c +
∆t

mc

∑
p∈P(c)

∑
f∈F(c,p)

snpfTncfpV n
p · nnpf .

(5.61)

◦ Computation of the new left Cauchy-Green tensor

Bn+1
c = Bnc −

∆t

vnc

∑
p∈P(c)

∑
f∈F(c,p)

snpf
[
(V n

p ⊗ nnpf )Bnc + Bnc (V n
p ⊗ nnpf )t

]
.

(5.62)
◦ Determination of the complete final state Un+1:

ρn+1
c = mc/v

n+1
c ,

εn+1
c = En+1

c − 1

2

(
V n+1
c

)2
,

T n+1
c from (5.30),

(aLc )n+1 and (aTc )n+1 from (5.54).

(5.63)

5.4 Second order extension
For the second order extension in space of the scheme presented so far, it is

proposed to perform a MUSCL procedure as done in Chapter 2 for hydrodynamics.

5.4.1 Linear reconstruction

The velocity and stress field are linearly reconstructed in order to improve the
accuracy of the Riemann problem (5.50). These reconstructions write

T̃c(x) = Tc +∇Tc(x− xc),
Ṽc(x) = Vc +∇Vc(x− xc).

(5.64)

In particular, the gradient of stress is a third order tensor. These gradients are
approximated by using the discrete operator introduced previously. In particular,
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in the case of the velocity field, the gradient writes as

∇Vc ' GRADc(V ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

spfVp ⊗ npf . (5.65)

In the case of the Cauchy stress tensor, the gradient is expressed as

∇Tc ' GRADc(T) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

spfTcfp ⊗ npf , (5.66)

where the tensorial product between a vector and a second order tensor is recalled
in formula (D.7).

5.4.2 The SP-limiter extended to tensors

In the same way as in Chapter 2, the linearly reconstructed velocity field (5.64) is
limited using the SP-limiter in order to avoid spurious oscillations. Concerning the
reconstructed tensor field, a classic MUSCL procedure based on the Barth-Jespersen
limiter is used. In order to respect the symmetries of the tensor field, a single limiting
scalar αT is applied to the gradient ∇T such that

T̃c(x)lim = Tc + αT∇Tc(x− xc). (5.67)

This scalar is computed as the minimal scalar resulting from the component-wise
limiting of the tensor field. Let mention that it is also possible to decompose the
stress field as T = −P Id +D and to limit the pressure and shearing contribution
separately. This is done for example in [110]. In this study, the scalar αT it is
computed as

αT = min
i,j

(αT,i,j), (5.68)

where
αT,i,j = min

p
(αT,i,j,p). (5.69)

The final value αT,i,j,p is then obtained by using the Barth-Jespersen limiter (2.22)
on the (i, j)th component of the Cauchy stress tensor as

αT,i,j,p =



min

(
(Tc)maxi,j − (Tc)i,j

(T̃c(xp))i,j − (Tc)i,j
, 1

)
if (T̃c(xp))i,j > (Tc)i,j,

min

(
(Tc)mini,j − (Tc)i,j

(T̃c(xp))i,j − (Tc)i,j
, 1

)
if (T̃c(xp))i,j < (Tc)i,j,

1 if (T̃c(xp))i,j = (Tc)i,j.

(5.70)

In this last relation, the values (Tc)mini,j and (Tc)maxi,j are respectively the minimum
and maximum values of the (i, j)th component of the Cauchy stress tensor defined
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as

(Tc)mini,j = min

(
min

c′∈Cp(c)
((Tc′)i,j), (Tc)i,j

)
,

(Tc)maxi,j = max

(
max
c′∈Cp(c)

((Tc′)i,j), (Tc)i,j
)
,

(5.71)

where Cp(c) is the node-based stencil introduced in Figure 2.1.

Remark:
This limiting procedure is the straightforward extension of the SP-limiter to the case
of a tensor field. As a future work, more sophisticated procedure could be investi-
gated.

5.4.3 Second order GRP extension

The second order in time discretization is performed using the Generalized Rie-
mann Problem (GRP) proposed in Chapter 2. Let start from the second-order
semi-discrete hyperelasticity system

dxp
dt

= Vp,

mc
dVc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

Tcfpspfnpf ,

mc
dEc
dt

=
∑
p∈P(c)

∑
f∈F(c,p)

TcfpVp · spfnpf .

(5.72)

Replacing the double sums by
∑

p

∑
f and performing the same steps as in Chapter

2, one gets

xn+1
p = xnp + ∆t

[
V n
p +

∆t

2

(
dVp
dt

)n]
, (5.73)

for the discrete trajectory equation,

V n+1
c = V n

c +
∆t

mc

∑
p

∑
f

[
Tcfpsnpfnnpf +

∆t

2

d

dt
(Tcfpspfnpf )n

]
, (5.74)

for the discrete momentum conservation equation, and

En+1
c = En

c +
∆t

mc

∑
p

∑
f

[
TcfpV n

p · snpfnnpf +
∆t

2

d

dt
(TcfpVp · spfnpf )n

]
, (5.75)

for the discrete total energy conservation equation. In these equations Tcfp is the
second order in space approximation of the nodal stress tensor computed as

Tcfp = T̃c(xnp ) +
[
Qcfp

(
Vp − Ṽc(xnp )

)]
⊗ npf , (5.76)
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and Vp is the corresponding second order in space node velocity computed from
(5.57). Using the chain rule, the time derivatives in the right hand-side terms of
relations (5.74) and (5.75) can be developed into

d

dt
(Tcfpspfnpf )n = Tcfp

d

dt
(spfnpf )

n +

(
dTcfp
dt

)n
snpfn

n
pf , (5.77)

and
d

dt
(TcfpVp · spfnpf )n = TcfpV n

p ·
d

dt
(spfnpf )

n

+

[(
dTcfp
dt

)n
V n
p + Tcfp

(
dVp
dt

)n]
· snpfnnpf .

(5.78)

These expressions introduce the time derivative of the face area vectors snpfnnpf which
is computed from relation (2.68). They also introduce the time derivatives of the
nodal fluxes Tcfp and Vp which require to be dealt with.

Time derivative of the nodal fluxes

The time derivative of the stress flux is obtained by time differentiating the
relation (5.76). One gets(

dTcfp
dt

)n
=

(
dT̃c(xp)
dt

)n

+

[
Qn
cfp

snpf

((
dVp
dt

)n
−

(
dṼc(xp)

dt

)n)]
⊗ snpfnnpf

+

[
Qn
cfp

snpf

(
V n
p − Ṽc(xnp )

)]
⊗ d

dt
(spfnpf )

n .

(5.79)

In the same way as in Chapter 2, one can prove that it is required to balance the time
derivatives of the stress fluxes around each node to globally conserve the momentum.
This condition writes as∑

c∈C(p)

∑
f∈F(c,p)

[(
dTcfp
dt

)n
snpfn

n
pf + Tcfp

d

dt
(spfnpf )

n

]
= 0. (5.80)

Let replace the double sum
∑

c∈C(p)
∑

f∈F(c,p) by
∑

c

∑
f to simplify the notation.

Substituting relation (5.79) into (5.80), the time derivative of the node velocity can
be written as

Mp

(
dVp
dt

)n
= −

∑
c

∑
f

(
dT̃c(xp)
dt

)n

snpfn
n
pf

+
∑
c

∑
f

([
Qn
cfp

snpf

(
dṼc(xp)

dt

)n]
⊗ snpfnnpf

)
snpfn

n
pf

−
∑
c

∑
f

([
Qn
cfp

snpf

(
V n
p − Ṽc(xnp )

)]
⊗ d

dt
(spfnpf )

n

)
snpfn

n
pf

−
∑
c

∑
f

Tcfp
d

dt
(spfnpf )

n ,

(5.81)
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where
Mp =

∑
c

∑
f

spfQcfp. (5.82)

Finally, one has to compute the time derivatives of the cell Cauchy stress tensor
T̃c(xp) and velocity Ṽc(xnp ).

Time derivatives of the cell stress and cell velocity

Starting from the linear reconstructions (5.64) the time derivatives of the cell
stress and velocity write as(

dT̃c(xp)
dt

)n

=

(
dTc
dt

)n
,(

dṼc(xp)

dt

)n

=

(
dVc
dt

)n
.

(5.83)

Then, from the momentum conservation equation, the time derivative of the cell
velocity comes straightforwardly as(

dVc
dt

)n
=

1

ρn
DIVc(T)n. (5.84)

In particular, the divergence of the Cauchy stress tensor can be computed from
its gradient and the formula (D.12) or from relation (5.37). To compute the time
derivative of the Cauchy stress tensor, let start from the constitutive law (5.30)
recalled here

Tc = Jρ

(
∂εv
∂J

)
η

Id +2ρ

[(
∂εs

∂i1(B̄)

)
η

B̄0 −
(

∂εs
∂i2(B̄)

)
η

(B̄−1)0

]
. (5.85)

In the case of a Neo-Hookean solid, one has(
∂εv
∂J

)
η

=
κ

2ρJ

[
J − 1 +

log J

J

]
,(

∂εs
∂i1(B̄)

)
η

=
µ

2ρJ
,(

∂εs
∂i2(B̄)

)
η

= 0.

(5.86)

One can remark that in fact Tc = T(Bc) since εc = ε(Bc) and J =
√

det(B). In this
way, the time derivative of the Cauchy stress tensor can be computed as(

dTc
dt

)n
=

(
∂Tc
∂B

)n(
dBc
dt

)n
, (5.87)

112 Gabriel GEORGES



5. Lagrangian hyperelasticity

where (dBc/dt)n is computed from relation (5.42). The fourth-order order tensor
(∂Tc/∂B)n requires some more steps. First, using the relations (5.86), the tensor Tc
can be rewritten as

Tc =
κ

2

[
J − 1 +

log J

J

]
Id +µJ−

5
3B0. (5.88)

Then, differentiating with respect to B leads to

∂T
∂B

=
κ

2

[(
∂J

∂B

)
+

∂

∂B

(
log J

J

)]
⊗ Id +µ

(
∂J−

5
3

∂B

)
⊗ B0 + µJ−

5
3

(
∂B0

∂B

)
. (5.89)

Using now the relation (5.29) and the chain rule, one gets(
∂J

∂B

)
=

1

2
JB−1,

∂

∂B

(
log J

J

)
=

(1− log J)B−1

2J
,(

∂J−
5
3

∂B

)
= − 5

6
J−

5
3B−1.

(5.90)

Finally, by definition of B0 it comes [61](
∂B0

∂B

)
=

2

3
II, (5.91)

where II is the fourth order identity tensor. Gathering all these terms into (5.89)
leads finally to(

∂Tc
∂B

)n
=

κ

4J

[
1 + J2 − log J

]
B−1 ⊗ Id +µJ−

5
3

[
2

3
II−5

6
B−1 ⊗ B0

]
. (5.92)

Manipulating fourth order tensors is not convenient, by use of the relation (D.11),
one can write the more simple form(

∂Tc
dt

)n
=

κ

4J

[
1 + J2 − log J

]
tr

(
dB
dt

)n
B−1

+
2µ

3
J−

5
3

(
dB
dt

)n
− 5µ

6
J−

5
3 tr

(
Bt0
(
dB
dt

)n)
B−1.

(5.93)

Now that dTc/dt and dVc/dt are known, one can compute relation (5.79). Finally,
using then relation (5.81), it is possible to compute (5.74) and (5.75).
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Time integration of the left Cauchy-Green tensor

Finally, let investigate the time integration of relation (5.12) recalled as

dBc
dt

=
1

vc

∑
p

∑
f

spf
[
(Vp ⊗ npf )Bc + Bc(Vp ⊗ npf )t

]
. (5.94)

The GRP procedure leads to

Bn+1
c − Bnc =

∆t

vc

∑
p

∑
f

snpf
[
(V n

p ⊗ nnpf )Bnc + Bnc (V n
p ⊗ nnpf )t

]
+

∆t2

2vc

∑
p

∑
f

d

dt

([
V n
p ⊗ (snpfn

n
pf )
]
Bnc + Bnc

[
V n
p ⊗ (snpfn

n
pf )
]t)n

.

(5.95)

Using the chain rule, the time derivative of the flux can be developed as

d

dt

([
V n
p ⊗ (snpfn

n
pf )
]
Bnc + Bnc

[
V n
p ⊗ (snpfn

n
pf )
]t)n

=

[
V n
p ⊗ (snpfn

n
pf )
] dBnc
dt

+
dBnc
dt

[
V n
p ⊗ (snpfn

n
pf )
]t

+

([
dV n

p

dt
⊗ (snpfn

n
pf )

]
+

[
V n
p ⊗

dsnpfn
n
pf

dt

])
Bnc

+ Bnc

([
dV n

p

dt
⊗ (snpfn

n
pf )

]t
+

[
V n
p ⊗

dsnpfn
n
pf

dt

]t)
(5.96)

where dBnc /dt is evaluated thanks to relation (5.12). In this way, all the unknown
can be computed and the GRP procedure is complete.

Second order GRP algorithm:

◦ The complete state Un is known.
◦ Spatial reconstruction using the SP-limiter:

- Computation of the cell gradients using the discrete operators (5.65)-
(5.66),

- Gradients limiting using the SP-limiter extended to tensors intro-
duced in Section 5.4.2.

◦ Second order in time nodal solver:
- determination of the second order fluxes: V n

p and T̃cfp(xnp ) from
(5.57)-(5.50) and the linearly reconstructed fields T̃c and Ṽc,

- determination of Bnc and dBnc /dt at second order using (5.12),

- determination of the cell derivatives
(
dT̃c(xp)/dt

)n
and

(
dṼc(xp)/dt

)n
from (5.83),

- determination of the geometry derivative (dspfnpf/dt)
n from (2.68),

114 Gabriel GEORGES



5. Lagrangian hyperelasticity

- determination of the nodal velocity derivative (dVp/dt)
n from (5.81),

- determination of the nodal pressure derivative (dPcfp/dt)
n from (5.79).

◦ Computation of the time step ∆t from relation (5.60).
◦ Mesh update from the trajectory equation (5.73).
◦ Computation of the new velocity V n+1

c (5.74) and total energy En+1
c

(5.75) in the cells.
◦ Determination of the complete final state Un+1 from the relations in
(5.63).

5.5 Validation on test cases

The robustness of the proposed scheme is assessed against three numerical test
cases. The hyperelastic model is known to degenerate onto the linear elastic model
in the case of infinitesimal displacements. This property is verified with the two
first test cases, namely the 1D pile driving and the Blake problem. Moreover, the
good behavior of the scheme is tested on elastic problems with large deformations,
namely the Elastic vibration of a Beryllium plate and the twisting column.

5.5.1 1D pile driving

This test case is taken from [80] and simulates the propagation of a shock wave
in a 1D steel pile. The pile geometry is parallelepipedic of length L = 10 m and
unit square cross section: (x, y, z) ∈ [0; 10]× [−0.5; 0.5]× [−0.5; 0.5]. The face x = 0
is embedded in a wall modeled by a zero-velocity boundary condition. The shock
is initialized by a stress boundary condition Tb applied at x = L and such that
Tb = Tbx,x = −5 × 107 Pa. All the other faces of the pile are free-surface boundary
conditions such that Tbn = 0. The Young’s modulus of the solid is E = 200×109 Pa,
its Poisson’s ratio ν = 0 and its initial density ρ0 = 8000 kg.m−3. The stress at the
wall is plotted with respect to time until final time tf = 8× 10−3 s. As explained in
[80], the shock reaches the wall at time t = 2× 10−3 s where its strength is doubled
up to Tmaxx,x = −1× 108 Pa.

Figure 5.2 shows the stress Tx,x at the wall provided by the second order scheme
on (100× 4× 4), (200× 4× 4) and (400× 4× 4) cells meshes. These solutions are
compared to the first order solution on a (100×4×4) cells mesh and to the analytic
solution. In particular, a good accordance is observed between the analytic solution
and the numerical approximations for both shock timing and shock strength. One
can observe the natural diffusion of the scheme with a shock more diffused at time
t = 6 × 10−3 s than at time t = 2 × 10−3 s. Moreover, the numerical solution is
shown to converge towards the analytic one as the mesh is refined. In the same way
as in Chapter 3, this 1D problem is run on a 3D mesh in order to prove that no 3D
motion is created by the scheme.
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(a) (b)

Figure 5.2 – 1D pile driving - Stress Tx,x at the wall x = 0 with respect to time
until final time tf = 8× 10−3 s (5.2a) - Zoom between t = 4× 10−3 s and tf (5.2b) -
Second order solutions on (100×4×4), (200×4×4) and (400×4×4) cells meshes.

5.5.2 Blake problem

The Blake Problem is a spherical problem derived from the small strain linear
elasticity theory [72]. In particular, the domain considered is a shell of inner ra-
dius rinn = 0.1 m and outer radius rout = 1 m. The shell material is isotropic and
has the following parameters: initial density ρ0 = 3000 kg.m−3, Young’s modulus
E = 62.5× 109 Pa, Poisson’s ratio ν = 0.25. A driving pressure is applied to the in-
ner face of the shell such that Tbr,r = −106 Pa whereas the outer face is a free-surface
boundary condition i.e. Tbn = 0. In practice, for computational time reasons, the
domain is not a complete shell as the one shown in Figure 5.3a but a needle-like do-
main of 1◦ aperture angle (refer to Figure 5.3b). All the boundary faces introduced
by this geometrical simplification are then symmetry boundary conditions.

The radial pressure (5.31) and the radial stress are plotted at final time tf =
1.6×10−4 s in Figures 5.4a and 5.4b for (1000×3×3), (2000×3×3) and (4000×3×3)
cells meshes. These solutions are compared to the analytic solution as well as the
first order solution on a (1000×3×3) cells mesh. In particular, the numerical solution
is shown to converge towards the analytic solution as the mesh is refined. The radial
stress is also plotted in Figures 5.4c and 5.4d for the same meshes. One can observe
on Figure 5.4c that the radial stress is well approximated by the numerical solution
with a good shock timing. However, a zoom around the shock (refer to Figure 5.4d)
shows an underestimated stress behind the shock.

5.5.3 Elastic vibration of a Beryllium plate

This test case, also studied in [3, 111], simulates the oscillations of a 3D (x, y, z) ∈
[−0.03; 0.03]×[−0.005; 0.005]×[−0.005; 0.005] plate centered at the space origin and
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(a) (b)

Figure 5.3 – Blake Problem - Mesh of a 8th of shell with 100 cells along the radius
and 40 between θ = [0, π

2
] (5.3a) - Mesh of a needle, used in practice, with 500 cells

along the radius and 3 between θ = [0, 1◦] (5.3b).

initially perturbed by the velocity field V0 = (0, Vy, 0), where

Vy(x) = Aω
[
g1
[

sinh(kx) + sin(kx)
]

+ g2
[

cosh(kx) + cos(kx)
]]
. (5.97)

Denoting the plate length L = 0.06 m and its square section l = 0.01 m, one has
kx = Ω(x+ L/2) with Ω = 78.834 m−1. The other constants are defined as

A = 4.3369× 10−5 m, ω = 2.3597× 105 s−1, g1 = 56.6368, g2 = 57.6455. (5.98)

The plate is made of Beryllium which admits the following constants: initial den-
sity ρ0 = 1845 kg.m−3, Young’s modulus E = 3.1827× 1011 Pa and Poisson’s ratio
ν = 0.0539. Symmetry boundary conditions are applied on the plate faces of normal
ez. All the other faces are free boundary conditions. The oscillations of the plate
are modeled until final time tf = 3× 10−5 s. The numerical solution is compared to
an approximation of the analytic solution. This approximation is the first bending
mode of a 2D beam with no boundary condition. In particular, the theory supposes
that the beam is infinite in the y direction which is not the case here since sym-
metry boundary condition are used. The numerical results are thus expected to be
different from the approximation.

This test case highlights the strong dissipation of the first order scheme since the
oscillation amplitude quickly decrease with time. However, one can prove that a non
negligible part of this dissipation is linked to the shearing part of the acoustic tensor
(5.53), namely the part holding the aTc velocity which drastically changes the results
if present (refer to Figure 5.5). This phenomenon was also noticed by Kluth et al.
in [77] and was controlled by reducing the magnitude of the shearing contribution.
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(a) (b)

(c) (d)

Figure 5.4 – Blake Problem - Convergence of the second order solution towards
the analytic solution - Radial pressure (5.4a) and radial stress (5.4c) at time tf =
1.6× 10−4 s on (1000× 3× 3), (2000× 3× 3) and (4000× 3× 3) cells meshes - Zoom
around the shock (5.4b) and (5.4d) respectively.
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Figure 5.5 – Oscillating plate - First order scheme - Impact of the shearing part of
the acoustic tensor - Vertical displacement of the z-axis with respect to time until
final time tf = 3× 10−5 s on a (100× 24× 2) cells mesh.

In [111], the shearing contribution is also neglected. In the sequel, the complete
acoustic tensor is considered.

The convergence of the second order solution is studied in Figure 5.6. In this
Figure, the vertical displacement of the z-axis is plotted with respect to time on
(100 × 24 × 2), (200 × 48 × 2) and (400 × 96 × 2) cells meshes and is compared to
the 2D approximation. This displacement corresponds to the y-position over time
of the nodes on the z-axis. One can observe that the second order extension of
the scheme is significantly less dissipative than the first order one. Moreover, the
results show a good accordance with the 2D approximation in terms of oscillation
amplitude. One can however observe that the oscillation period is longer for the 3D
numerical solution than for the 2D approximation. This is probably due to the 3D
effects, such as the shearing part of the acoustic tensor as shown in Figure 5.5, that
are not taken into account in the 2D theory. Let mention that a similar period of
about 3 × 10−5 s can be found in [3, 111]. Finally, as noticed by Aguirre et al. [3]
and also observable in [111], higher oscillation modes appear around t = 0.5×10−5 s
as the mesh is refined. The mesh is plotted in Figure 5.7 at different instants to
show the deformation of the beam during the motion.

5.5.4 Twisting column

The twisting column test case simulates the twisting of an elastic rubber-like
material [3, 55, 114]. The column is parallelepipedic such that (x, y, z) ∈ [−0.5; 0.5]×
[−0.5; 0.5] × [0; 6]. The rubber-like material is characterized by an initial density
ρ0 = 1100 kg.m−3, Young’s modulus E = 1.7× 107 Pa and Poisson’s ratio ν = 0.45.
The face z = 0 of the beam is embedded in a wall which corresponds to a null-velocity
boundary condition. All the other faces of the beam hold stress-free boundary
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Figure 5.6 – Oscillating plate - Convergence of the second order solution towards
the 2D analytic solution - Vertical displacement of the z-axis with respect to time
until final time tf = 3× 10−5 s on (100× 24× 2), (200× 48× 2) and (400× 96× 2)
cells meshes.

conditions. To initialize the torsion, the following velocity field is applied to the
beam

V (x, 0) = 100 sin
(πy

2L

) (
y,−x, 0

)t
, z ∈ [0, 6], (5.99)

where L = 6 m is the beam height.

The expected motion of the beam can be roughly described as follows: the beam
turns counter-clockwise until t = 0.1 s approximately. Then the elasticity stops the
rotation and the beam returns to its initial configuration around t = 0.2 s. Finally,
the beam, driven by its inertia, turns clockwise until time t = 0.3 s. The period of
the resulting twisting oscillation depends on the material property, of course, but
also on the scheme dissipation. In particular, one can show that the first order
cell-centered Lagrangian scheme is so dissipative that the beam cannot twist and is
almost returned to its initial configuration at time t = 0.1 s (refer to Figure 5.8a).
The second order extension helps reducing the dissipation and leads to better results
(refer to Figure 5.8b). Let mention that the limiting is deactivated for this test case
since there is no shock. To show the improvement of the solution due to the mesh
refinement, the solutions are studied on (6×6×36), (12×12×72) and (24×24×144)
cells meshes. In particular, on can observe in Figure 5.9 that the beam makes three
turns at time t = 0.1 s on the more refined mesh which makes the results compara-
ble to the solutions obtained in [3, 55, 114]. However, the scheme dissipation is still
important and the solution at time t = 0.3 s for the same mesh presents less turns
that in the aforementioned works (refer to Figure 5.10 that describes the history of
the rotation).

Conclusion
In this Chapter, we have extended the cell-centered Lagrangian scheme developed
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(a)

(b)

(c)

(d)

Figure 5.7 – Oscillating plate - Shape of the beam at different instants: initial time
(5.7a), t = 0.1 (5.7b), t = 0.2 (5.7c) and final time t = 0.3 (5.7d) - Mesh colored
with the pressure field.
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throughout Chapters 1 and 2 to the hyperelasticity system. This system is closed by
a constitutive law constructed by mean of a Coleman-Noll procedure ensuring the
thermodynamic consistency and the frame-indifference. In particular, the Second
Law of thermodynamics is imposed by the Gibbs relation which expresses the Cauchy
stress tensor as the derivative of the internal energy with respect to the left Cauchy-
Green stress tensor B. Concerning the frame-indifference, it is ensured by expressing
the internal energy as a function of the invariants of B. This particular form of
the internal energy enables then the use of the compressible Neo-Hookean model.
The system of equations is discretized using the discrete operators introduced in
Chapter 1. The nodal solver is build on a momentum conservation condition in
the dual cells as well as an entropy criterion. The second order extension in space
of this scheme is performed using a MUSCL procedure. The reconstruction step
uses the discrete gradients introduced by the spatial discretization and the limiting
step is ensured by the SP-limiter (refer to Chapter 2) extended to tensor fields in
a component-wise manner. The second order in time discretization is performed by
a GRP procedure which is fully detailed in the particular case of a Neo-Hookean
solid. The scheme is finally validated on different test cases introducing small as
well as large deformations. In the small deformations regime, the hyperelasticity
system degenerates onto the elasticity system. The scheme is proved to behave in
the same way since good shock timing and amplitude are found on the 1D steel pile
and the 3D spherical Blake problems. On large deformation problems, the first order
scheme is proved to be strongly dissipative due to the shearing introduced by the
square root of the acoustic tensor used in the nodal solver. Hopefully, the second
order extension enables to drastically reduce this flaw. In particular, the scheme is
assessed against the difficult problems of oscillating and twisting beams for which
results are comparable to the literature.
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(a) (b)

Figure 5.8 – Twisting column - First (5.8a) and Second order (5.8b) solutions - Beam
shape and pressure field at time t = 0.1 s on a (6× 6× 36) cells meshes.

(a) (b)

Figure 5.9 – Twisting column - Second order solutions - Beam shape and pressure
field at time t = 0.1 s on (12×12×72) (5.9a) and (24×24×144) (5.9b) cells meshes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.10 – Twisting column - Second order solutions - Beam shape and pressure
field at times t = 0.0375 s (5.10a), t = 0.075 s (5.10b), t = 0.1125 s (5.10c), t = 0.15 s
(5.10d), t = 0.1875 s (5.10e), t = 0.225 s (5.10f), t = 0.2625 s (5.10g) and t = 0.3 s
(5.10h) on a (24×24×144) cells meshes - Comparison with the shape of a (6×6×36)
cells meshes to see the deformation with respect to the initial configuration.
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Conclusion

The motivation of this thesis was to develop robust and accurate methods for
the 3D extension of the EUCCLHYD scheme and to propose its extension to the
modeling of hyperelasticity. The starting point of this thesis was the work [95] in
which Maire et Nkonga proposed the 3D extension of the EUCCLHYD scheme, first
introduced in [93].

In Chapter 1, a systematic and symmetric discretization of unstructured poly-
hedral meshes is proposed in order to ensure the important GCL compatibility
condition. This discretization decomposes the boundary of the cell into face area
vectors that enable the definition of discrete operators which provide a first order
approximation of the divergence and gradient operators in the cells. Moreover, the
procedure proposed in [126, 127], enabling to compute the time step in such a way
that the internal energy remains positive, has been extended to the 3D context.

In chapter 3, the classic 3D extension of the MUSCL procedure, consisting in a
component-wise limiting of the fields, is proved to be insufficient. Spurious oscilla-
tions are observed on the Sod test case and strong overshoots on the Noh problem.
The difficulty comes principally from our incapacity in defining and constructing
frame-invariant basis in the 3D space. This is why two new limiting procedures
are proposed in Chapter 2. The SP-limiter avoid changes of basis by limiting the
velocity gradient with a single scalar which enables to preserve the flow symme-
tries. Moreover, this limiter uses an extended monotonicity stencil which is proved
to remove the spurious oscillations on the Sod problem. For dealing with flows pre-
senting a spherical symmetry, the MM-limiter is proposed. This limiter can be seen
as the multi-dimensional extension of the minmod limiter since it computes a lim-
ited cell gradient from nodal gradients and the minmod function. In particular, this
limiter leads to very stable results on difficult problems with a spherical symmetry
and strong mesh printing such as the Noh and Kidder problems. It also enables to
remove the non convex cells appearing in the Sedov problem. Finally in Chapter
2, the GRP procedure is detailed for the second order in time discretization. In
particular, the terms introduced by the time derivatives of the geometry are taken
into account which is not the case in [96].

In Chapter 4, the MM-limiter is used to perform the study of Rayleigh-Taylor
Instability (RTI) in supernova remnants blown up by a central pulsar. In this study,
the supernova is modeled by a spherical shell and the central pulsar by an inner
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pressure boundary condition. The perturbation of the inner face is performed by
use of the spherical harmonics function and the numerical results are compared to
analytic solutions taken from [108]. The results on a 2D-axisymmetric problem are
also compared to the results obtained with the CHIC Code to verify that the 3D and
2D-axisymmetric schemes provide the same results. Finally, full 3D perturbations
are implemented in order to numerically validate the assumption stating that the
azimuthal mode has no impact on the perturbation growth.

In the last Chapter of this thesis, the extension of the cell-centered Finite Volume
scheme to the hyperelasticity system is proposed. This study is the 3D extension of
the work [77] with the difference that we are working with the left Cauchy-Green
tensor B instead of the deformation gradient F which enables to work in a fully
updated Lagrangian formalism. The second order extension of this scheme is pro-
posed using a MUSCL procedure combined with a GRP approach. In particular,
the SP-limiter is extended to tensor fields in a component-wise manner. Moreover,
the complete GRP procedure is detailed in the case of Neo-Hookean compressible
solids. The scheme is validated on four test cases introducing small as well as large
deformations. In particular, good results are found on the non trivial problems of
oscillating and twisting beams.

As a future work, further improvements of the Lagrangian scheme have to be
done, especially concerning its robustness. For example, the erratic behavior of the
order of convergence on the Taylor-Green vortex when combining the LS gradients
with a GRP procedure remains unexplained. One can also refer to the wall heating
and mesh printing flaws that are strong in 3D, for example on the Noh and Kid-
der problems. Moreover, it has been shown that the limiting procedures are often
restricted to certain type of flows and reach quickly their limits. It could be interest-
ing to investigate new approaches for the second order extension, maybe procedures
alternative to the MUSCL one.

A high order extension of the scheme would also be valuable. In particular for the
treatment of spherical problems such as the Kidder implosion. It is indeed shown in
[124] that a high order approximation of the flow and the geometry enables to reduce
the mesh printing on spherical flows. However, the Finite Volume formalism is not
interesting for high-order extensions and it would be more interesting to consider
for example a DG formalism as in [14].

The implementation of an Arbitrary Lagrangian-Eulerian (ALE) method would
be valuable for treating highly compressible flows such as the Noh problem. Indeed,
the natural diffusion introduced by this formalism could help stabilizing the results
by reducing the impact of the mesh. Moreover, such a procedure would improve
the scheme ability to treat flows with strong vorticity and shearing such as the
Kelvin-Helmholtz instability or the triple point problem [50].

An Adaptive Mesh Refinement (AMR) method would also be interesting in order
to improve the accuracy of the scheme in certain zones. In fact, the work done on
the GCL compatibility in Chapter 1 enables to define discrete operators that can
be computed on arbitrary meshes and in particular, on non-conformal meshes. In
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this sense, the scheme has already been used at second order on AMR meshes. The
next work would then be to verify that the scheme preserves all its good properties
on such meshes and to derive a dynamic refinement procedure, based for example
on an entropy criterion.

One could also investigate the coupling of this 3D hydrodynamics scheme with
the 3D diffusion scheme proposed in [69, 70] to deal with real life applications.

Concerning the modeling of hyperelasticity, the treatment of plasticity effects
would be interesting in order to study solids under strong deformations such as high
velocity impacts. The same work as in [126, 127] could also be extended to the
hyperelasticity system in order to design a time step ensuring the positivity of the
internal energy.

Finally, combining all these methods, this Lagrangian scheme would be an inter-
esting starting point for the study of Fluid Structure Interactions (FSI) [46, 47, 118]
under a Finite Volume ALE-AMR formalism.
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Appendix A

Properties of the discrete operators

The consistency analysis of the GLACE scheme was performed by Després in
[32] and is completely valid for the EUCCLHYD scheme. In this Appendix, we aim
at showing that the discrete operators (1.51)-(1.53) are exact for linear fields.

A.1 Divergence operator

Let consider the linear vector field ψ = Ax+ b in cell c where A is an arbitrary
matrix and b an arbitrary vector. The analytic formula gives ∇ ·ψ = tr(A).

At the discrete level, the value of this linear field at node p is written ψp =
Axp +B. Then, using the discrete divergence operator (1.51), the approximation
of the divergence of this field is

DIVc(ψ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spf (Axp + b) · npf . (A.1)

Expanding the term between brackets, one gets

DIVc(ψ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spf (Axp) ·npf + b ·

 1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spfnpf

 . (A.2)

Since the cell has a closed contour, then∑
p∈P(c)

∑
f∈F(c,p)

Spfnpf = 0. (A.3)

Now, using the formula (D.3), the discrete divergence becomes

DIVc(ψ) = A :

 1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spfxp ⊗ npf

 . (A.4)
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A.2. Gradient operator

With straightforward but cumbersome calculations, it is possible to prove that, for
an arbitrary tetrahedron, one has

1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spfxp ⊗ npf = Id . (A.5)

An elegant proof is also proposed in [32]. In particular, if it is true for an arbitrary
tetrahedron, it is also true for an arbitrary polyhedron by linearity of the tensorial
product. Finally, the discrete divergence writes

DIVc(ψ) = A : Id = tr(A). (A.6)

A.2 Gradient operator
The same proof can be derived for the discrete gradient operator. Considering

a linear scalar field ϕ = a · x+ b, where a is an arbitrary vector and b an arbitrary
scalar, denoting by ϕp = a · xp + b the value of this field at node p, the discrete
gradient operator on cell c writes

GRADc(ϕ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spf (a · xp + b)npf ,

= a

 1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spfxp ⊗ npf

+ b

 1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spfnpf

 .

(A.7)

Using once again the relations (A.3) and (A.5), one finds the analytic solution

GRADc(ψ) = a. (A.8)

Finally, for a vector linear field ψ = Ax + b as defined previously, the analytic
gradient is ∇ψ = A and the discrete gradient operator provides

GRADc(ψ) =
1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spf (Axp + b)⊗ npf ,

= A

 1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spfxp ⊗ npf


+ b⊗

 1

vc

∑
p∈P(c)

∑
f∈F(c,p)

Spfnpf

 ,

= A.

(A.9)
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Appendix B

Source term for the Taylor-Green
vortex

B.1 Modification of the total energy conservation
equation

This Appendix shows the computation of the pressure and energy source term
needed for the initialization of the Taylor-Green vortex. Starting from the Euler
equations

∂ρ

∂t
+∇ · (ρV ) = 0,

∂(ρV )

∂t
+∇ · (ρV ⊗ V ) +∇P = 0,

∂(ρE)

∂t
+∇ · (ρEV ) +∇ · (PV ) = 0,

(B.1)

we search the steady solution of the following velocity perturbation

V 0(x, y) = C1

(
sin(πx) cos(πy)

− cos(πx) sin(πy)

)
, (B.2)

where C1 is a constant to be chosen. Now, supposing the initial density ρ0 is constant,
the stationary system writes

ρ0∇ · V 0 = 0,

ρ0∇ · (V 0 ⊗ V 0) +∇P 0 = 0,

ρ0∇ · (E0V 0) +∇ · (P 0V 0) = 0.

(B.3)

It is easily shown that the divergence-free condition imposed by the continuity equa-
tion is respected by the velocity field (B.2). Now, substituting this field into the
momentum conservation equation leads to

∇P 0 = −ρ0∇ · (V 0 ⊗ V 0)

= −ρ0C2
1

(
sin2(πx) cos2(πy)− 1

4
sin(2πx) sin(2πy)

−1
4

sin(2πx) sin(2πy) + cos2(πx) sin2(πy)

)
,

(B.4)
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which can be simplified into

∇P 0 = −π
2
ρ0C2

1

(
sin(2πx)

sin(2πy)

)
. (B.5)

Integrating the first equation relatively to x gives

P 0(x, y) =
1

4
ρ0C2

1 cos(2πx) + f(y). (B.6)

Then, differentiating this result with respect to y enables to identify f ′(y) with
relation (B.5). One writes

f ′(y) = −π
2
ρ0C2

1 sin(2πy), (B.7)

and finally the stationary pressure field writes as

P 0(x, y) =
1

4
ρ0C2

1

(
cos(2πx) + cos(2πy)

)
+ C2, (B.8)

where C2 is an integration constant.

One has to verify that the total energy conservation equation is respected by a
stationary flow with velocity and pressure fields as (B.2) and (B.8). Thanks to the
definition of the internal energy ε = E − 1

2
V 2 and the Euler equations (B.1), the

conservation equation for internal energy expresses as

d(ρε)

dt
+ P∇ · V = 0. (B.9)

In the particular case of the Taylor-Green vortex, we are considering a perfect gas
ruled by a gamma gas law, thus ρε = 1

γ−1P and

d(ρε)

dt
=

1

γ − 1

dP

dt
,

=
1

γ − 1

(
∂P

∂t
+ V · ∇P

)
,

=
1

γ − 1
V · ∇P,

(B.10)

since the flow is stationary. The flow is also divergence-free, thus ∇ · V = 0, and
one can write the equivalence

d(ρε)

dt
+ P∇ · V =

1

γ − 1
V · ∇P. (B.11)

One can remark that a source term appears in the internal energy conservation
equation. Now, adding the conservation equation of kinetic energy 1

2
d(ρV 2)/dt+V ·
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∇P = 0 to the previous relation leads to the following expression of the conservation
of total energy

d(ρE)

dt
+∇ · (PV ) =

1

γ − 1
V · ∇P. (B.12)

Finally, writing this relation for the stationary flow (ρ0,V 0, P 0, E0) and substituting
(B.2) and (B.8) provides

ρ0∇ · (EV 0) +∇ · (PV 0) =
π

4

ρ0C3
1

γ − 1

[
cos(3πx) cos(πy)− cos(3πy) cos(πx)

]
. (B.13)

The right hand-side term of this last equation is thus the quantity to remove at each
time step from the total energy conservation equation in order to respect the Euler
equations. This source term writes

Snc = −π
4

1

γ − 1

[
cos(3πxc) cos(πyc)− cos(3πyc) cos(πxc)

]
, (B.14)

in the case where ρ0 = 1 and C1 = 1.

B.2 Impact of the source term on the pressure time
derivative

The presence of a source term in the total energy conservation equation modifies
the expression of dP/dt. Let consider the following form of the Euler system

ρ
d

dt

(
1

ρ

)
−∇ · V = 0,

ρ
dV

dt
+∇P = 0,

ρ
dE

dt
+∇ · (PV ) = S,

(B.15)

where S is a source term. One can classically write the kinetic and internal energy
conservation equations as

ρ
d

dt

(
V 2

2

)
+ V · ∇P = 0, (B.16)

and

ρ
dε

dt
+ ρ∇ · V = S. (B.17)

In particular, using the continuity equation, this last relation can be rewritten as

ρ
dε

dt
= P

dρ

dt
+ S. (B.18)
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B.2. Impact of the source term on the pressure time derivative

Now, using the chain rule the time derivative of the pressure writes

dP

dt
=

∂P

∂ρ

dρ

dt
+
∂P

∂ε

dε

dt
,

=

(
∂P

∂ρ
+
P

ρ

∂P

∂ε

)
dρ

dt
+
S
ρ

∂P

∂ε
,

= − ρa2∇ · V +
S
ρ

∂P

∂ε
,

(B.19)

where a is the isentropic speed of sound. In the particular case of a perfect gas ruled
by the gamma gas law, one can simplify this last relation as

dP

dt
= −ρa2∇ · V + (γ − 1)S. (B.20)
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Appendix C

Proof relative to the hyperelasticity

C.1 Derivative of the invariants of B̄

This section computes the derivatives of the three invariants of the tensor B̄ with
respect to B. These proof can be found in [61, 76]. The invariants of B̄ are recalled
to write as  i1(B̄) = tr(B̄),

i2(B̄) =
1

2

(
tr(B̄)2 − tr(B̄2)

)
,

(C.1)

where B = J
2
3 B̄ and J =

√
det(B). Using the property

∂ tr(B)

∂B
= Id, (C.2)

one can firstly write

∂i1(B̄)

∂B̄
= Id and

∂i2(B̄)

∂B̄
= i1(B̄) Id−B̄. (C.3)

• Let compute ∂J/∂B: by definition, one has

∂J

∂B
=

∂
√

det(B)

∂B

=
1

2

1√
det(B)

∂ det(B)

∂B
(using the chain rule)

=
1

2

det(B)√
det(B)

B−t

=
1

2
JB−1 (by symmetry of B) �

(C.4)
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C.1. Derivative of the invariants of B̄

• Let compute ∂B̄/∂B:

∂B̄
∂B

=
∂J−

2
3B

∂B
(by definition)

= J−
2
3
∂B
∂B
− 2

3
J−

5
3
∂J

∂B
⊗ B (using the chain rule)

= J−
2
3

(
II−1

3
B−1 ⊗ B

)
(by definition of ∂J/∂B) �

(C.5)

• Let compute ∂i1(B̄)/∂B:

∂i1(B̄)

∂B
=

∂i1(B̄)

∂B̄
∂B̄
∂B

= J−
2
3

(
II−1

3
B−1 ⊗ B

)
Id (using the previous result)

= J−
2
3

(
Id−1

3
tr(B)B−1

)
(using relation (D.10))

= B̄0B−1 �

(C.6)

• Let compute ∂i2(B̄)/∂B:

∂i2(B̄)

∂B
=

∂i2(B̄)

∂B̄
∂B̄
∂B

=
[
i1(B̄) Id−B̄

] [
J−

2
3

(
II−1

3
B−1 ⊗ B

)]
(using the previous result)

= i1(B̄)B̄0B−1 − J−
2
3 B̄ +

1

3
(B−1 ⊗ B̄)B̄

= i1(B̄)B̄0B−1 − B̄2B−1 +
1

3
tr(B̄2)B−1

=
[
i1(B̄)B̄0 −

(
B̄2
)
0

]
B−1

(C.7)

Using the Cayley Hamilton theorem, one can prove that B satisfies

B−1 = B̄2 − i1(B̄)B̄ + i2(B̄) Id, (C.8)

which leads to
(B−1)0 = i1(B̄)B̄0 −

(
B̄2
)
0
. (C.9)

Finally, one gets
∂i2(B̄)

∂B
= −(B̄−1)0B−1. � (C.10)
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C. Proof relative to the hyperelasticity

C.2 Progressive wave study
Considering an isotropic elastic material under the small deformations hypothe-

sis, the Cauchy stress tensor writes as

T = 2µE + λ tr(E) Id, (C.11)

where E is the deformation tensor, defined as

E =
1

2

[
∇U + (∇U)t

]
, (C.12)

andU = x−X is the displacement between the reference and current configurations.
In this way, the Cauchy stress tensor can be written equivalently as

T = µ
[
∇U + (∇U)t

]
+ λ(∇ ·U) Id . (C.13)

Substituting this expression of T into the momentum conservation equation

ρ
∂V

∂t
−∇ · T = 0, (C.14)

and knowing that ∂U/∂t = V leads to

ρ
∂2U

∂t2
− µ

[
∇ · (∇U) +∇ · (∇U)t)

]
+ λ∇ · (∇ ·U) Id = 0. (C.15)

Using now the formulas

∇ · (∇U) = ∆U , and ∇ · ((∇U)t) = ∇ · ((∇ ·U ) Id) = ∇(∇ ·U), (C.16)

this equation becomes

ρ
∂2U

∂t2
− µ∆U + (λ+ µ)∇(∇ ·U) = 0. (C.17)

Let suppose that the solution U of (C.17) is a progressive wave. This solution
writes

U = U(x · ζ − ct) = U(ξ), (C.18)

where ζ is the propagation direction of the wave, c its velocity and ξ is introduced
to simplify the notations. In particular, using the change of variable ξ 7→ x · ζ − ct,
the equation (C.17) becomes

ρc2U ′′ − µU ′′ − (λ+ µ)(ζ ⊗ ζ)U ′′ = 0. (C.19)

Adding now 0 = µ(ζ ⊗ ζ)U ′′ − µ(ζ ⊗ ζ)U ′′, this relation can finally be written as[
ρc2 − µ(Id−(ζ ⊗ ζ)) + (λ+ 2µ)(ζ ⊗ ζ)

]
U ′′ = 0. (C.20)

This last relation is in fact an eigenvalue problem written as[
c2 −K(ζ)

]
U ′′ = 0, (C.21)
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C.2. Progressive wave study

with
K(ζ) =

(
µ

ρ

)
[Id−(ζ ⊗ ζ)] +

(
λ+ 2µ

ρ

)
(ζ ⊗ ζ). (C.22)

K(ζ) is called the acoustic tensor. In this way, one can define Qcfp the square root
of the acoustic tensor such that

Q2
cfp = K(npf ). (C.23)

In particular, it is easily shown that α1 = (λ+ 2µ)/ρ is an eigenvalue of this tensor
of associated eigenvector ζ. Moreover, α2 = µ/ρ is the other eigenvalue, of multi-
plicity two and its associated eigenvectors are two orthogonal vectors in the plane
orthogonal to ζ.
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Appendix D

Algebraic form

D.1 Useful algebraic relations

This Appendix gathers some useful algebraic relations that are used throughout
the manuscript. One can also refer to [61]. Let M, N and K be second order tensors,
a = (a1, a2, a3), b = (b1, b2, b3) and c vectors in the R3 space, II the fourth-order
identity tensor, then one has the following formula:

(a · b)c = (c⊗ a)b (D.1)

a⊗ b =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 (D.2)

(Ma) · b = M : (b⊗ a) (D.3)

M : N = tr(MtN) (D.4)

M : (a⊗ b) = Mb · a = Mta · b (D.5)

tr(KMK−1) = tr(M), since tr(MN) = tr(NM) (D.6)

(M⊗ a)i,j,k = Mi,jak (D.7)

(M⊗ a)b = M(a · b), thus (M⊗ a)a = M if a2 = 1 (D.8)

M(a⊗ b) = (Ma)⊗ b (D.9)

(M⊗ N) II = tr(N)M (D.10)
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D.2. Change of basis

(M⊗ N)K = (N : K)M = tr(NtK)M (D.11)

(∇ ·M) =
∂Mi,j

∂xi
ej (D.12)

D.2 Change of basis
Let Bξ = (ξ1|ξ2|ξ3) be the change of basis from the Cartesian basis to the basis

Bξ = (ξ1, ξ2, ξ3). Then for an arbitrary vector a and an arbitrary tensorM expressed
in the Cartesian basis, their counterparts aξ and Mξ in the Bξ basis write

aξ = Btξa, and Mξ = BtξMBξ. (D.13)

D.3 Symmetric positive definite matrix
Let prove that a second order tensor M under the from

M = n⊗ n, (D.14)

with n an arbitrary vector, is necessarily symmetric positive definite (SPD).

Proof: The symmetry is obvious by definition of the tensorial product (D.2).
Moreover, a matrix is said positive definite if for any vector x, one has

xtMx ≥ 0. (D.15)

By definition of M and use of formula (D.1), one has

xtMx = xt(n⊗ n)x,

= [(n · x)n] · x,
= (n · x)2 ≥ 0. �

(D.16)

Moreover, the sum of two SDP matrices is itself a SDP matrix.
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