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Résumé

Comment les systèmes vivants acquièrent leur forme et fonctions est une question

fondamentale en biologie du développement. L’ordre spatial et spatiotemporel dans

les systèmes biologiques résulte de réseaux de réaction biochimiques complexes

qui interagissent au sein de la cellule. Les deux idées les plus influentes dans la

biologie du développement utilisés pour expliquer la formation de motifs sont : (1)

l’information positionnelle par Lewis Wolpert et (2) les systèmes de réaction-diffusion

par Alan Turing. Dans l’information positionnelle, aussi connu comme le modèle du

drapeau français, un gradient de morphogène préexistant à travers l’espace fournit

des valeurs de position comme dans un système de coordonnées, ce qui est interprété

en plusieurs zones chimiquement distinctes avec des frontières nettes. Pour expliquer

l’apparition de motifs le célèbre mathématicien Alan Turing a proposé un processus

physicochimique dans lequel l’espèce chimique réagit et se diffuse. Deux espèces

chimiques principales sont impliquées dans cette diffusion de réaction (RD). L’une

des espèces agit comme un activateur et l’autre comme un inhibiteur. Ces deux

espèces sont interdépendantes et assemblées dans un réseau de réaction. L’activateur

est capable de s’autoreproduire, mais produit en même temps un inhibiteur qui

réprime la croissance de l’activateur. En outre, comme noté par Turing, le coefficient

de diffusion de l’inhibiteur est plus grand que celui de l’activateur ; l’inhibiteur se

propage donc plus rapidement d’une région spatiale riche en activateur. Les motifs

apparaissent alors de cette différence entre activation à courte portée et inhibition à

longue portée. Les mécanismes de diffusion de réaction, comme le modèle de Turing,

sont essentiels pour comprendre comment la forme apparaît dans le monde du vivant ;

cependant, ils restent en grande partie inexplorés en chimie.
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Bien que des simulations numériques et l’analyse mathématique corroborent le po-

tentiel incroyable de mécanismes de RD pour produire des motifs, la mise en œuvre de

leurs contreparties expérimentales n’est pas facile. La raison principale à la difficulté

de synthétiser des modèles chimiques arbitraires à partir de zéro est l’absence de

système de RD entièrement programmable. La résolution de ce problème nécessite

des approches ascendantes dans lesquel la cinétique et la diffusion peuvent être

mises au point individuellement. De plus, ces systèmes dissipatifs hors-équilibre

chimiques doivent être capables de s’auto-organiser dans des structures spatiotempo-

relles, comme des ondes qui se propagent ou des structures de Turing. Trois exigences

principales sont nécessaires pour créer un motif chimique via le modèle de Turing : (i)

contrôle de la topologie du réseau de réaction, (ii) contrôle de la diffusion de l’espèce

activatrice et (iii) définition des conditions initiales et aux frontières dans lesquelles

les réactions ont lieu. Afin d’obtenir une meilleure compréhension de la formation de

motifs via la diffusion de réaction nous avons examiné chacune de ces trois exigences.

Dans le cas de la topologie de réseau nous utilisons l’acide désoxyribonucléique

(l’ADN) comme espèce réactive chimique. L’ADN est une molécule fondamentale qui

porte des informations génétiques pour des systèmes vivants, mais nous utilisons de

l’ADN court oligos comme des blocs de construction pour assembler des réseaux de

réaction de façon ascendante. La réactivité prévisible de l’ADN en raison des règles de

paires de Watson-Crick (c’est-à-dire les paires A / T et C / G via le lien d’hydrogène)

font de l’ADN un substrat chimique de choix pour des réseaux de réaction d’ingénierie.

Autre avantage à l’utilisation de l’ADN : cette molécule peut être chimiquement modi-

fiée pour interagir avec des billes ou des surfaces fonctionnalisées. En l’utilisant, nous

proposons dans ce travail plusieurs stratégies qui offrent la possibilité de contrôler

précisément et indépendamment le coefficient de diffusion de chaque espèce d’ADN

individuelle aux nœuds de la réaction. Pour aborder la troisième exigence, nous avons

exploité les avantages de la microfluidique (haute résolution spatiale et temporelle

dans le traitement de liquide) pour précisément définir des conditions initiales et des

frontières. Ainsi, ce travail est composé de trois chapitres expérimentaux, en plus des

chapitres d’introduction.
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Chapitre 1 – Dans ce chapitre, nous avons testé un réseau de réaction avec une topo-

logie activateur-inhibiteur, comme requis par le mécanisme de Turing. D’abord, nous

nous sommes concentrés sur le test d’un système de réaction à base d’ADN qui peut

être assemblé dans des réseaux de réaction. Ces machines de reproduction d’ADN

in-vitro sont surnommées : « PEN-DNA toolbox » pour : Polymérase/Exonucléase/Ni-

ckase, boîte à outils d’Assemblage de Réseau Dynamique. La boîte PEN-DNA toolbox

emploie 3 enzymes : polymérase, exonucléase et nickase. Cette technologie permet

de concevoir la topologie de réseau en utilisant des fonctionnalités analogues à celles

trouvées dans des réseaux biologiques. Les nœuds de réaction sont connectés par

une espèce d’ADN de reliure courte, simple brin, intercalée entre des motifs d’ADN

plus longs. Donc, un réseau de réaction est réalisé en définissant un type de fonc-

tion de nœud, c’est-à-dire l’activateur ou l’inhibiteur, et en liant ce nœud à un autre.

Dans ce chapitre nous avons utilisé un réseau avec une boucle de rétroaction néga-

tive capable de montrer un comportement oscillant. Nous nous sommes concentrés

sur la recherche des conditions expérimentales qui assurent des oscillations tempo-

relles. Pendant les expériences systématiques nous avons démontré que des fonctions

d’opérateur logique de l’algèbre de Boole telle que la fonction NOT peuvent être implé-

mentées en utilisant un nœud d’inhibition. Bien que, les conditions expérimentales

pour des oscillations n’aient pas été trouvées, ce travail m’a permis de comprendre

l’essentiel de notre système de réaction biochimique à base d’ADN.

Chapitre 2 – Les structures de Turing apparaissent à partir d’un réseau de réaction

d’inhibiteur-activateur, dans lequel le coefficient de diffusion de l’activateur doit être

beaucoup plus petit que celui de l’inhibiteur. Dans ce chapitre nous nous concentrons

sur le défi de respecter la condition de diffusion de Turing en essayant de réduire le

coefficient de diffusion effectif de l’activateur (α). Nous avons employé un réseau

autocatalytique, dans lequel une espèce d’activateur d’ADN s’auto-reproduit sur un

motif (de l’ADN matrice).

Un nœud autocatalytique est utilisé comme modèle de procuration de l’activateur.

Ceci forme une partie du réseau de réaction inhibiteur/activateur pour des motifs de

Turing. Le nœud autocatalytique est composé d’une espèce d’activateur d’ADN (α) qui
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s’autoreproduit sur un modèle. L’objectif de ce travail est de réduire le coefficient de

diffusion de l’espèce α. Pour cela nous travaillons sur la partie efficace du coefficient

de diffusion α en immobilisant le motif dans des billes d’agarose réticulées. Nous

avons étudié des ondes de propagation de l’espèce α dues à des processus de diffu-

sion de réaction afin de démontrer notre stratégie. Nous avons divisé le coefficient de

diffusion efficace par 4-4.7. Une deuxième stratégie a été testée : les motifs sont ici

attachés à des billes magnétiques. La propagation du front d’onde et les expériences

de cinétique ont montrés que nous avons divisé le coefficient de diffusion efficace par

2.4 par cette méthode.

Chapitre 3 – Cependant, nous avons trouvé une application pour les billes dans la

morphogenèse de matériaux. Nous avons démontré que les réactions d’ADN peuvent

être interfacées avec les billes magnétiques : un front de billes agrégées a été produit

par un front de α. Nous avons aussi observé un motif stationnaire de α transféré en

un motif de billes agrégées.

Chapitre 4– Après s’être intéressé au contrôle de la topologie de réseau et à la diffu-

sion dans le Chapitre 1 et le Chapitre 2, ici nous abordons le problème des conditions

aux frontières sur un système de réaction-diffusion à base d’ADN. Plus précisément,

nous développons une technique microfluidique pour étudier la propagation d’ondes

d’ADN dans des microréacteurs à la géométrie contrôlée. Nous examinons la dyna-

mique de propagation d’un réseau de type proie-prédateur en guise d’application.

Ce réseau consiste en la reproduction autocatalytique d’une espèce proie par la suite

consommée par une espèce prédatrice autocatalytique. Dans un réacteur bien mé-

langé, le réseau génère une impulsion de concentration de proies suivies par une

croissance sigmoïdale de prédateurs. Nous avons quantifié sa cinétique comme une

fonction de la concentration en polymérase (pol), en enzyme de restriction (nick)

et en prédateur. Ces réactions s’effectuant à 44°C, l’intégration dans des systèmes

microfluidiques nécessite donc une technologie adaptée au risque d’évaporation.

Nous avons testé trois technologies : PDMS, autocollants et bas-coût. Les dispositifs

PDMS sont compatibles avec notre réaction, cependant, l’évaporation demeure trop
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importante malgré nos ajustements. Les dispositifs par autocollants constitués de

colle photocurable sont, de manière analogue aux précédents, optiquement trans-

parents et capables de reproduire des géométries de taille submicrométrique, mais

présentent en plus l’avantage d’être moins poreux. L’évaporation est ainsi fortement

réduite. Nous avons aussi exploré une méthode de fabrication bas-coût : des canaux

prédécoupés dans du parafilm insérés entre deux lames de polystyrène ou de verre.

Finalement, nous avons étudié la propagation des ondes dans ces dispositifs. Dans

des canaux rectilignes, nous avons observé que la vitesse relative de la vague poursui-

vante de prédateurs associée à la vague de proie dépendait de l’état de la propagation

dynamique et des matériaux du canal. Pour caractériser les capacités de notre tech-

nique microfluidique à étudier l’impacte de la géométrie, nous avons étudié deux

cas : la propagation du frond d’onde pour un canal coudé (avec un virage à 90°) et

le calcul du chemin optimal dans un labyrinthe. De plus, pendant ce travail, une

méthode microfluidique alternative pour étudier les conditions initiales de l’onde a

été développé à l’aide de valves PDMS. En résumé, nous avons exploré des outils mi-

crofluidiques adaptés à l’étude de systèmes de réaction / diffusion à base d’ADN. Bien

que l’évaporation demeure un défi, nous pensons que ce travail permet le contrôle de

la géométrie de ces systèmes.

Conclusion – Cette thèse porte sur la mise en place et le développement d’une ap-

proche expérimentale pour l’étude de réseaux de réactions à base d’ADN. Nos résultats

démontrent la capacité des réseaux d’ADN à se spatialiser sous la forme d’ondes pro-

gressives. Nous avons également pu obtenir des motifs stationnaires à base d’ADN et

d’assemblages de billes. Ce travail contribue donc à la conception de motifs spatio-

temporels de réactions chimiques et de matériaux par le biais de réseaux réactionnels

biochimiques programmables. Nous apportons également de nouvelles données

sur l’émergence d’ordre spatio-temporel à partir de processus de réaction-diffusion.

De ce fait, cette étude contribue à une meilleure compréhension des principes fon-

damentaux qui régissent l’apparition d’une organisation moléculaire. De plus, la

combinaison de réseaux synthétiques d’ADN, du contrôle du coefficient de diffusion

de plusieurs espèces d’ADN et de la micro-fluidique peut donner lieu à des motifs
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spatiaux stables, comme par exemple, les fameuses structures de Turing, ce qui tend à

confirmer le rôle de celles-ci dans la morphogénèse.

Mots clefs : Réaction-diffusion, réseaux de réaction de synthèse à base d’ADN, la forma-

tion de motif, microfluidique.
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Introduction

The emergence of order in living systems is a longstanding fundamental question

that is perhaps comparable to the enigma of the origin of life. There are at least

two ways to organize matter in living systems: a chemical and a mechanical [1]. A

particularly fascinating problem in the emergence of form in living systems happens

during embryo development, which starts with a fertilized embryo that is composed of

identical cells. We distinguish three sequential phases driving the development of the

embryo: pattern formation, cell differentiation and gastrulation. Pattern formation

refers to the organization of the concentration of morphogenic molecules (e.g. gene

regulators) in time and space, thus acting as a blueprint of the overall body plan so that

well-ordered structures develop within the embryo [2]. This pattern of morphogens

directs differentiation of cells. According to where the cells are located in the embryo

they will become distinct cell types that are functionally and structurally different

from each other [1, 2]. Finally during gastrulation dynamic cell movements lead to

the formation of the three-layered body plan [3].

The two most influential ideas in developmental biology used to explain pattern for-

mation are Wolpert’s positional information (PI) [4–6] and Turing’s reaction-diffusion

self-organization1 [7–9]. In the framework of positional information, also known

as the French flag problem, a pre-existing morphogen gradient across space pro-

vides positional values as in a coordinate system, which is interpreted into several

chemically-distinct zones with sharp borders (Fig. 1A). The Turing mechanism relies

on self-organization by driving a system of an initially homogeneous distribution of

1In this context self-organization is defined as an out-of-equilibrium organization maintained by
constantly consuming chemical energy.
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chemicals into an inhomogeneous pattern of concentration by a process that involves

solely reaction and diffusion (Fig. 1B). As opposed to the PI mechanism the Turing

patterning does not rely on pre-existing heterogeneities to create more complex pat-

terns downstream, but rather on self-organization which breaks the symmetry of the

system by the intrinsic reaction-diffusion dynamics [10].

Figure 1 – Principles of positional information (French flag) and Turing patterning.
(A) Chemical species A, B and C interpret a morphogen gradient as a positional
coordinate system, thus generating three-chemically distinct zones with sharp borders.
(B) A system containing a homogeneous distribution of chemical species A and B can
break spontaneously the symmetry and self-organize into a periodic spatial pattern
driven by an out-of-equilibrium, reaction-diffusion process.

Mechanical forces are key to structure the embryo during gastrulation [11]. On the

contrary, diverse evidence indicate that pattern formation can be explained with

reaction-diffusion mechanisms [12], where diffusion could be standard Brownian

motion or result from a complicated process of cell-to-cell chemical communication.

Although we do not ambition to explain the emergence of shape in biological sys-

tems, we exploit the valuable lessons learned from reaction-diffusion mechanisms in

these systems to gain insights on how to control and generate chemical and material

patterns. However, pattern formation in biological systems is highly complex and
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difficult to characterize [13]. This PhD work is devoted to develop an experimental

framework to investigate chemical spatiotemporal organization through mechanisms

that could be at play during pattern formation in development. Our experimental

framework is based on DNA hybridization and enzymatic reactions that can be main-

tained out of equilibrium in a closed system for long periods of time. These reactions

self-organize through a reaction-diffusion mechanism. In this work we introduce new

tools to increase the versatility of DNA-based networks as pattern-forming systems.

We suggest that the good mechanistic description of this simpler system and a precise

measurement of its kinetic rates and spatiotemporal dynamics allow to quantitatively

investigate and characterize reaction-diffusion pattern formation mechanisms.

Reaction-diffusion Turing patterns

As a simplified model to explain how spatial symmetry could be broken in an initially

homogeneous embryo the famous mathematician Alan Turing proposed in 1952 a

physico-chemical mechanism in which chemical species react and diffuse [8]. In

this reaction-diffusion (RD) model two main chemical species are involved. One of

the species acts as an activator and the other as an inhibitor. These two species are

interdependent and assembled into a reaction network with a negative feedback loop

topology (Fig. 2). The activator is capable of autoreplication, but at the same time it

produces an inhibitor, which then represses the growth of the activator (Fig. 2A-B). If

the diffusion coefficient of the inhibitor is considerably larger than that of the activator

(Fig. 2C) well-defined stationary concentration patterns emerge such as stripes and

dots (Fig. 2D-E). For this reason, Gierer and Meinhardt [14] named independently this

mechanism: short-range activation and long-range inhibition. The two requirements

to generate chemical patterns via the Turing mechanism can be summarized as

follows: (i) the topology of the reaction network must be composed of an inhibitor

and an activator and (ii) the diffusivity of the activator species must be significantly

smaller than that of the inhibitor.
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Figure 2 – A periodic Turing pattern emerges from an activator-inhibitor model. (A)
Small fluctuations in an apparently homogeneous concentration of molecules across
space are enhanced by a self-activator, which also (B) produces an inhibitor. (C) Then,
the inhibitor moves out the activator rich zone due to its larger diffusivity, this results
in the creation of inhibitor rich zones around the activator. (D) New activator and
inhibitor peaks emerge until (E) a well-defined periodic pattern emerges across space.
This figure was taken from [10].
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Although numerical simulations and mathematical analysis corroborate the incredible

potential of reaction-diffusion mechanisms to generate patterns, their experimental

implementation is not trivial. This has motivated to search nonlinear chemical sys-

tems that may be capable of pattern formation. The most utilized chemical systems

to investigate the emergence of spatiotemporal order are the Belousov-Zhabotinsky

(BZ) reaction and its relatives [15]. The BZ systems involve mostly small inorganic

molecules and sometimes organic [16] ones that undergo redox reactions. Unfortu-

nately, most of these reactions occur at strongly acidic conditions and are thus not

biocompatible [17].

The first experimental observation of chemical Turing patterns in 1990 [18, 19] and

the experimental verification of Turing’s predictions in 2014 [20] were made with BZ-

related systems. Indeed, these chemical systems display rich nonlinear phenomena,

both temporal, such as oscillations, multistability and chaos, as well as spatiotemporal

such as stationary, i.e. Turing, spatial patterns and several types of traveling and

standing waves [13].

Statement of the problem

Despite of the exceptional achievements in pattern formation with BZ-related sys-

tems, these are difficult to engineer, thus limiting their experimental implementation

to few available mechanisms. Engineering reaction-diffusion systems that display

spatiotemporal dynamics is done by controlling three key elements: (i) the topology

of the network (how reactions are linked to each other, i.e. in a positive or negative

feedback manner), (ii) the reaction rates and (iii) the diffusion coefficients.

In the early 2000s, bottom-up approaches in the emerging field of synthetic biology

have demonstrated that it is possible to assemble reaction networks of gene regulators

with controlled dynamical behaviors [21]. For example, the oscillatory behavior of the

repressilator system emerged from three repressor–promoter pairs assembled into

sequential negative-feedback loops [22].
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This was possible because we knew from 30 years of biotechnology the engineering

rules of activation and repression of genes by transcription factors. They are governed

by the DNA sequence. The idea that DNA sequences could be used as an engineering

building block was put together by Seeman in 1981 and founded the field of DNA

nanotechnology. The versatility and the predictable reactivity of nucleic acids has

demonstrated extraordinary capabilities to build nanostructures with arbitrary shapes

[23, 24] and design computational elements [25]. More recently, using nucleic acids as

a substrate to make programmable dynamic chemical systems with the lessons from

synthetic biology and DNA nanotechnology has appeared as an attractive approach

due to the simplicity to control reaction rates and network topology by the sequence.

The two most notable systems involve oligonucleotides (short single strands of DNA or

RNA) and enzymes: the PEN-DNA toolbox developed by Rondelez and collaborators

in Tokyo [26] and the genelets developed by Winfree and collaborators in Caltech [27].

They were the first to engineer chemical oscillators from the bottom up in closed reac-

tors. In 2013 our group, in collaboration with Rondelez’s, reported the firs observation

of chemical waves in a DNA-based system engineered from the bottom up [28] using

the PEN-DNA toolbox. The programmability and biocompatibility of the PEN-DNA

toolbox open new perspectives for the engineering of the reaction-diffusion chem-

ical synthesis, in particular in two directions. Firstly to study biologically-inspired

pattern-forming mechanisms in simplified, yet relevant, experimental conditions.

Secondly to build new materials that would self-build by a process inspired from

embryo morphogenesis. My PhD work makes part of this effort.

Thesis structure

We worked towards the goal of meeting the two requirements of Turing patterning,

transferring chemical spatiotemporal behavior into material patterns, and imposing

boundary conditions to spatiotemporal patterns. Therefore, the structure of this

document is divided into four specific objectives resulting in four chapters. In chapter

1 we worked on testing a DNA-based reaction network with an inhibitor-activator

topology. In chapter 2 we focused on developing a strategy to tune the diffusion
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coefficient of activator DNA strands. In chapter 3 we explored how chemical patterns

determine the shape of a material. Finally in chapter 4 we addressed the issue of

controlling the geometry over a DNA-based reaction-diffusion system. Additionally,

the appendix is composed of two articles obtained during this PhD work. The first

article entitled "Synthesis and materialization of a reaction-diffusion French flag

pattern" has been submitted and is related to Chapter 3 (Appendix B). The second

article entitled "Pursuit-and-evasion reaction-diffusion waves in micro-reactors with

tailored geometry" is published in J. Phys. Chem. B and is related to Chapter 4

(Appendix C). We have limited ourselves from referencing any text or figures to a

minimum such that reading these two publications is not required to understand the

four chapters of this manuscript. However, we encourage the reader to read them

through if interested.

Chapter 1

In this chapter, we analyzed our in-vitro DNA-based reaction system by characterizing

the temporal dynamics of a network with an inhibitor-activator topology. This reaction

network, called the Oligator, operates in pseudo out-of-equilibrium conditions by

consuming deoxynucleotides (dNTPs) as energy in a closed system. The Oligator was

first engineered to display oscillatory dynamics by connecting three DNA species into

a negative feedback loop by Montagne et al. [26]. The reactive core of the oligator

is composed of an autocatalyst species that produces its own inhibitor and both

species can be degraded by an exonuclease. We did an important modification to

the Oligator system by replacing the original exonuclease that is not thermostable

by a thermostable one. We tested the dynamics of each node of the Oligator’s loop

incrementally. Among these experiments we demonstrated that a logic function

such as a NOT gate can be implemented using the inhibitor and inhibition node to

deactivate the autocatalytic node. In these conditions we obtained forced oscillations

by repeated injection of the inhibitor. Once the Oligator was fully connected, however,

the oscillations were extremely damped and a correct range of parameters to produce

sustained oscillations was not found. Our results suggest that the autocatalytic node
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was too strong to produce oscillations. This chapter serves as an introduction to the

DNA-enzyme reactions that appear in the rest of the chapters.

Chapter 2

In this chapter, we developed an approach to tune the diffusivity of single-stranded

DNA in an autocatalytic reaction. Our strategy consisted of linking the template to

microparticles, and since the activator binds to the template the diffusivity of the

activator species should be reduced. The mobility of the activators depends on the

time they are free and bound to the template, so we called this diffusivity the effective

diffusion coefficient (De f f ). We tested our strategy by studying traveling fronts of

activator species. We quantified how the diffusivity was tuned by relating the front

velocity (v) to the effective diffusion coefficient and the rate growth kinetics (k): v2 =

kDe f f . Thereby, we studied the growth kinetics and the front propagation dynamics

for three cases in which the templates were attached: to 30 µm diameter agarose beads

that were closely packed (case 1) or diluted (case 2), and to 200 nm diameter magnetic

beads that were diluted (case 3). Our preliminary results indicate that the reduction

in diffusion of the activation species were: 1.5, 4.3 and 2.4 fold for the cases 1, 2 and 3

respectively. Importantly, the work in this chapter also allowed us to determine the

compatibility of a variety of material supports with the PEN-DNA toolbox.

Chapter 3

Our work in Chapter 2 allowed us to master the coupling of DNA-enzyme reactors

with microparticles. Here instead of using the particles to influence the properties

of the DNA patterns we did the opposite. The work presented in this chapter was

done in collaboration with Vadim Dilhas, a master student in our group. We utilized

DNA-decorated microparticles that aggregate in the presence of a linker DNA strand.

We transfered two types of DNA patterns into aggregation of microparticles in two

situations: (i) a traveling front of activator species that directs a front of aggregating

beads and (ii) a stationary front of activator species that induces the assembly of a
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stationary pattern of aggregated beads. In this study chemical patterns determine

the shape of a material, thus leading to what is to the best of our knowledge the first

demonstration of a primitive morphogenic material.

Chapter 4

In this chapter, we explored the issue of setting boundary conditions to a DNA-based

reaction-diffusion system. To do so, we developed a microfluidic technique to cre-

ate micro-reactors with tailored geometry to study the propagation dynamics of a

chemical Predator-Prey network. These reactions occurred at 44°C, thus causing

evaporation problems in classical polydimethylsiloxane (PDMS) microfluidic devices.

For such reason, we tested several microfabrication technologies using nonporous

materials to reduce evaporation in these devices: (i) microfluidic stickers made of

photocurable glue and (ii) a low-cost fabrication method that consisted in embedding

pre-cut parafilm channels between two polystyrene (or glass) slides. We brought our

reactions into straight microfluidic channels and characterized the prey and predator

wavefront velocities. Then, to investigate geometry-related phenomena we analyzed

two cases: front propagation along a 90° turn and computing the optimal path in a

maze.

Contributions of this work

Due to the constraints inherent to a 3-year PhD program, chapters 1 and 2 introduce

topics that are still work in progress. Although it was not possible to obtain sustained

oscillations in the oligator network with a thermostable exonuclease (Chapter 1), I

have thoroughly characterized the kinetics of this network. In particular, in the future

the autocatalyst will need to be weakened to get a functional oscillator. Although

the PEN-DNA toolbox is programmable is not plug and play and it calls for more

efforts in developing computer-assisted design tools. I studied three novel strategies

seeking to control the diffusion of single-stranded DNA (Chapter 2). Surprisingly the

diluted dispersion of agarose beads containing templates worked best reaching a
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4-fold decrease twice better than previous work [29]. Our inability to strongly reduce

diffusion indicates however that many open questions remain. Instead, this work

provided the foundation for controlling colloidal aggregation with DNA patterns re-

sulting in entirely new type of materials: morphogenetic materials (Chapter 3). To the

best of our knowledge this constitutes the first demonstration of a morphogenetic

material. Finally I have developed microfluidic devices to study the effect of geo-

metrical confinement and the computational capabilities of DNA-based traveling

fronts (Chapter 4). Overall, we have expanded the number of available tools to study

chemical and material pattern formation and advance towards Turing patterns with

DNA.
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1 Testing DNA-enzyme reaction

networks

As we have discussed in the Introduction, a spatial Turing pattern emerges from

an activator-inhibitor reaction network that operates out-of-equilibrium, however

such type of network topologies are not naturally abundant in chemistry. This has

led to research on synthetic systems to engineer reaction networks. In this chap-

ter we will present one of such systems that is called the PEN-DNA toolbox. The

Polymerase/Exonuclease/Nickase Dynamic Network Assembly toolbox (PEN-DNA

toolbox) is a bottom-up approach to build reaction networks with programmable

topology based on an in-vitro DNA replication machinery. It uses DNA as a chemical

substrate due to its predictable reactivity and the possibility to interconnect short

single strand species through longer strands. This, together with a DNA replication

system based on three enzymatic reactions, can be used to link single nodes into

dynamic reaction networks. Hence, engineering a reaction network (RN) topology

is done by defining a type of node behavior, i.e. either as activator or inhibitor, and

linking this node to another by sequence complementary.

In this chapter we focus on testing a network based on the PEN-DNA toolbox with

an activator-inhibitor topology, which is a candidate reactive system for Turing pat-

terning. This network, which we refer to as the Oligator, is designed to display an

oscillatory behavior when set at the right experimental conditions. The Oligator is

composed of three nodes connected in a negative feedback loop manner. The first

node corresponds to the autocatalytic production of species α, which also activates
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the linear growth of species β. This latter species triggers the production of species γ

which inhibits the autocatalytic growth of α. We test systematically node by node till

the network is fully connected. Subsequently, we search the experimental conditions

at which the fully connected network displays an oscillatory behavior.

1.1 Introduction to the PEN-DNA toolbox

In this section we will cover the principles of the PEN-DNA toolbox. We will explain the

basics of DNA as a chemical substrate for designing reaction networks. Subsequently,

we will briefly describe the monitoring of DNA concentration by fluorescence.

1.1.1 The PEN-DNA toolbox for engineering reaction networks

The PEN-DNA toolbox is somewhat analogous to gene regulatory networks, which

rely mostly on three basic actions: activation, inhibition and degradation [26]. In a

gene regulatory network the transcription of a gene into RNA leads subsequently to

the translation of RNA into a protein, which regulates the transcription of a second

gene (Fig. 1.1A). The transcription and translation steps are activation steps, while

the regulation can be either an activation or inhibition event. Furthermore, RNA

and proteins can be degraded. In a similar manner, the PEN-DNA toolbox uses

a DNA template (22-27 nucleotide long) for the replication of DNA strands (11-12

nucleotide long), which either activates or inhibits the production of a second DNA

strand (Fig. 1.1B). Of course gene regulatory networks involve large molecules of

1000s of base pairs, whereas in the PEN-DNA toolbox the molecules are much smaller

(10s base pairs). Thus, the PEN-DNA toolbox uses these three basic components

(activation, inhibition and degradation), but without the complex gene expression

machinery, to assemble dynamical reaction networks.

Before we describe how activation, inhibition and degradation work in the PEN-DNA

toolbox it is important to note that this system uses DNA as a chemical substrate. DNA

predictable reactivity due to Watson-Crick paring rules (i.e. A pairs to T, and C to G
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Figure 1.1 – Schematic description of (A) a gene regulatory network and (B) the
PEN-DNA toolbox. The symbol (® L99) indicates degradation, the solid arrows rep-
resent an activation step, and the dashed lines are either regulatory events, whose
nature may be either activating and inhibitory. This figure was taken from [26].

via hydrogen bonding) makes DNA a chemical substrate of choice for engineering

reaction networks. In double-stranded DNA (dsDNA), two complementary sequences

are hybridized anti-parallel to each other, one strand goes from 5’ to 3’ while the other

is positioned 3’ to 5’ (Fig. 1.2). From now on we will be portraying DNA strands as

arrows with a harpoon shape (+).

The PEN-DNA toolbox employs replication of encoded information through elonga-

tion, i.e. polymerization of nucleotides, of an input (11-12 nucleotide long) hybridized

to a template (22-27-mer long) by Bst DNA polymerase, large fragment (pol) (Fig. 1.3).

Subsequently, Nt.BstNBI, site specific endonuclease (nick), cleaves only the upper

strand on the newly formed double-stranded DNA substrate at a precise location.

Finally, the input and output species are released from the template. Templates are

degradation resistant, but the rest of the species are destroyed by a single-stranded

specific exonuclease such as ttRecJ or RecJ f (exo), a thermophilic ortholog isolated

from Thermus Thermophilus HB8 [30]. Double-stranded species (Ti n , Text , Tboth and

Ti nhi b) are not degraded. Production inhibition of an output DNA species is achieved

when an inhibitor strand partially hybridizes to the template, and since pol can only

add nucleotides to the 3’-end on a fully hybridized dsDNA, the hanging end of the

inhibitor prevents elongation.
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Figure 1.2 – DNA composition. DNA is composed of a phosphate group, a deoxyribose
sugar moiety and four different nucleobases. DNA pairing is based on Watson and
Crick rules. Complementary single-stranded sequences are hybridized anti-parallel
into a double-stranded DNA.

Figure 1.3 – Basic reactions in the PEN-DNA toolbox. The production of an output
strand and its degradation involves three enzymatic reactions: (i) extension of input
over a template by pol enzyme; (ii) cutting of the newly extended strand by nick
enzyme; (iii) degradation of single strands by exo enzyme. Reaction (i) can be blocked
by an inhibitor partially (3’-end hanging) hybridized to the temple.
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In the PEN-DNA toolbox, the short strands are the dynamic species of interest while

the template strands (which are longer) set the topology of the reaction network

and their total concentration does not change. In other words, the nodes of the

network are given by the short, degradable, strands (inputs and outputs) while the

activation arrows are set by the longer, non-degradable, template strands. Bottom-up

construction of reaction networks is achieved by designing the input and the output

sequences and connecting them through activating or inhibitor species. The system

is programmable because the connectivity (or topology) of the network is entirely

defined by Watson-Crick pairing rules.

The robustness of the PEN-DNA toolbox and its variations has been demonstrated

already by the engineering of several network topologies. An oscillator was designed

with a positive feedback loop with a delay of a negative feedback loop [26]. Also a

bistable switch was created by coupling two mutually inhibitory positive feeback

loops [31]. The PEN-DNA toolbox has even allowed the designed of dynamical molec-

ular behaviors that resemble collective relationships in animal populations such as

Predator-Prey oscillations, competition-induced chaos, and symbiotic synchroniza-

tion [32].

1.1.2 DNA hybridization reactions in the PEN-DNA toolbox

One can design a short DNA strand (ζi nput ) to bind from the first base on the 3’-

side to the middle of a template strand (T), as seen in Fig. 1.4. The template T has

a second binding site, where an output species (ζout put ) can bind from the middle

ending on the 5’-side. Both the input and output species may bind simultaneously to

T at their respective positions forming complex Tboth . An inhibitor species (inhib) is

constructed to partially bind to T such that a hanging end is not bound. And when the

inhibitor binds to T to form Ti nhi b it blocks the binding of the input species.

We can consider a two-state model for the hybridization of DNA strands that are less

than 20 base-pair long. Thus, the equilibrium constant of dissociation, Kd , between a
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Figure 1.4 – DNA hybridization reactions. Short strands (in, out, inhib) bind reversely
to template (T), consequently constructing complexes: Ti n ,Tout , Tboth and Ti nhi b .

template T and species ζ can be written as follows,

ζ+T
ka


kd

Tζ (1.1)

Kd = kd

ka
= (ζ0 −Tζ)(T0 −Tζ)

Tζ
, (1.2)

where ζ0 and T0 are the initial concentrations of the corresponding species, and Tζ is

the complex concentration reached at equilibrium. The association rate constant (ka)

can be considered fixed with a typical value around 0.06 nM−1 min−1, since it depends

mainly on the salt concentration but not on the sequence. While the dissociation rate

constant (kd ) strongly depends on the sequence and can thus be tuned individually.

Indeed, kd determines the stability of dsDNA complexes (Tζ = Ti n ,Ti nhi b , etc.) and

it is in function of the number of complementary bases and its type of base-pair, i.e.

either TA or GC.

Hence, the main parameters to design active species and templates are: (i) determin-
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ing their sequence and (ii) the number of pairing bases. This allows us to generate

distinct chemicals species with predictable ka and kd .

1.1.3 Detection of DNA concentration

The concentration of DNA strands during reactions involving DNA-DNA hybridiza-

tion can be probed conveniently through fluorescence. In the PEN-DNA toolbox, two

methods to detect chemical species are generally used: (i) a non-specific using Eva-

Green (EG), an intercalator dye with preferential binding to dsDNA and, (ii) a species

specific one, called N-quenching, that uses a template labeled with a fluorophore

modification on its 3’ or 5’ end.

The first technique consists in the increase of EvaGreen fluorescence as the concen-

tration of dsDNA accumulates (Fig. 1.5A). Generally, the template concentration is

fixed while the concentration of ζ species changes, so we monitor the formation of

complexes Tζ. The second one, N-quenching relies on the quenching of fluorescence

when a base binds near the fluorophore due to the hybridization of a DNA strand

(Fig. 1.5B).

EvaGreen allows us to monitor the overall dynamics with little influence on the kinetics

of interest. And, N-quenching allows us to detect specific species. For example a dye

on the 3’-side of a template will report the concentration of input species by quenching

the fluorescence intensity as the concentration of input increases. In a similar manner,

a dye on the 5’ can monitor the output concentration.

For both techniques, using the two-state model in Eq.1.1 the relation between fluores-

cence signal and the concentration of dsDNA is given by

F =φT(T0 −Tζ)+φTζTζ+Θb , (1.3)

where φT and φTζ are proportional to the florescence quantum yields of species T

and Tζ respectively, and Θb is a background contribution. Assembling constant terms

(φTT0 +Θb = Θ) and (φTζ −φT = φ ) returns a simple equation of fluorescence as a
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Figure 1.5 – Detection of DNA species, ζ, upon hybridization to template, T, by in-
tercalator EvaGreen and fluorophore modification, N-quenching, to the template.
(A) Fluorescence of EvaGreen increases in the presence of dsDNA during a hybridiza-
tion reaction. (B) Hybridization of an input species to the template bases nearby a
dye quenches its fluorescence. (C) DNA hybridization reactions at 42°C is monitored
by EvaGreen and a dye on a template in buffer O. The template is titrated as function
of the total concentration of ζ, ζ0.

function of complex Tζ,

F =φTζ+Θ. (1.4)

Then, solving for Tζ in Eq.1.2 and substituting this term into Eq.1.4 yields a relation of

fluorescence and known concentrations of species T0 and ζ0,

F =
φ

(
Kd +T0 +ζ−

√
ζ2 + (2Kd −2T0)ζ0 +T0

2 +2KdT0 +Kd
2
)

2
+Θ. (1.5)
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Kd can be extracted experimentally by titrating a fixed template concentration with

a range of ζ concentration. In Fig. 1.5 C, a hybridization reaction between species ζ

and its complementary template is monitored using both techniques, then the data

is fitted to Eq.1.5. The average Kd using EvaGreen (74 nM) was twice as large as the

value obtained via N-quenching (36 nM), however, the values overlap within two

standard deviations (Table 1.1). This is expected since we used the same template

sequence. The parameter φ must be different since it is related to the quantum

yield of the fluorophore. The absorption and emission wavelengths of EvaGreen and

dye530 are different, λabs/λem = 500/530 and 539/561 nm respectively. Therefore,

the fluorescence can be measured in two separate channels in a real-time PCR with

excitation detection wavelength, λex/λde = 470±10/510±5 and 530±5/555±5 nm.

Table 1.1 – Dissociation constant and quantum yield parameters for EvaGreen and
N-quenching. The parameter values were obtained by fitting the data in Fig. 1.5 to
Eq. (1.5). Average values are displayed within two standard deviations.

Parameter EvaGreen N-Quenching
Kd (nM), 42°C 73.8± 50.3 36.3±18.2
φ, 42°C 0.10± 0.02 0.37± 0.03

1.1.4 Analysis of the autocatalytic and linear growth

To give the reader an insight of the type of kinetics our reaction system posses we

briefly analyze the basic reactions in the PEN-DNA toolbox with simple Michaelis-

Menten equations. One can say that the single node is the simplest circuit in the

PEN-DNA toolbox consisting of an input and its template along with the required

enzymes. Two different functions are expected from such configuration: (i) a sig-

moidal autoreplication, in which the product is identical to the input, and (ii) a linear

production initiated by the input.

In Fig. 1.6A we have sketched these two networks with and without degradation. The

template is represented with a solid arrow pointing to the direction of activation. In

the case of autocatalysis the arrow is curved pointing back to α since the input and

output species are identical. In linear production the template requires α to produce

19



Chapter 1. Testing DNA-enzyme reaction
networks

β. The degradation of the species is indicated with the dashed arrow.

In Fig. 1.6B we use numerical simulations using DACCAD [33] to display how the

temporal evolution of the output concentration is different from linear and nonlinear

production. DACCAD solves for a PEN-DNA toolbox network a system of ordinary

differential equations. It integrates all the DNA hybridization reactions as 2-state

model (see Fig. 1.4) and the three enzymatic reactions as Michaelis-Menten processes.

The rate constants are extracted from [31]. Autocatalysis displays its characteristic

sigmoidal growth. The addition of degradation to autocatalysis allows the system

to reach a steady state. In the absence of degradation we also see the initial sig-

moidal growth, then the growth saturates. Linear production of β is stable without

exo, whereas addition of degradation consumes the input α, thus, decreasing the

production of β and eventually its complete elimination. We will discuss a simple

model to understand the initial growth kinetics, i.e. when α or β are approximately

to their initial values at time zero in Fig. 1.6B. We make clear that our analysis below

does not capture the kinetics above the initial values of α or β.

The autocatalytic growth of α may be performed with or without degradation, but

to simplify the analysis we will consider production without degradation only. The

complex Tαα
i n first forms whenα hybridizes on the input side of template Tαα (Fig. 1.3).

Then, the pol and nick step follow giving an overall reaction: α−→2α. The enzymatic

reactions to replicate α can be described by Michaelis–Menten (MM) kinetics:

Tααi n +pol
k

pol
1



k
pol
−1

Tααi n pol
k

pol
2−→Tααext +pol (1.6)

Tααext +ni ck
kni ck

1



kni ck
−1

Tααext ni ck
kni ck

2−→Tααboth +ni ck

In our conditions polymerization is the limiting reaction compared to nick. From

Eq. (1.6) we have,

dα

d t
= kpol

2 polTαα
i n

Tαα
i n +KM

(1.7)
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Figure 1.6 – Autocatalytic and linear growth with and without degradation. (A) Au-
tocatalysis: A positive feedback loop is formed when α autoreplicates exponentially
over a template (solid arrow) with or without degradation (dash arrow). Linear produc-
tion: α initiates growth of β and species remain in solution, or they may be degraded.
Degradation: Speciesα andβ are degraded by enzyme exo. (B) Numerical simulations,
using DACCAD [33], of: (i) autocatalytic growth of α with and without degradation,
respectively, black and green line and (ii) linear production of β with and without
degradation, respectively, dark gray and light lines.

where pol is the concentration of pol, k2 is an enzymatic rate constant and KM is

the Michaelis–Menten constant. If KM ≈ KM +Tαα
i n , which is the case during initial

growth when the concentration of α is low, then k2, KM and pol can be grouped into

a constant, κ. Therefore, the solution to this simplified case is an exponential form

that resembles first order non-reversible kinetics, α
κ−→2α,

dα

d t
= κα (1.8)

αt =α0eκt ,
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where α0 is the initial concentration of α. In the case of a linear network, β requires

template Tαβ to initiate its production so in Eq. (1.6), β is the output instead of α, and

a similar equation can be written:

dβ

d t
= k2polTαβ

i n

Tαβ

i n +KM

(1.9)

Contrary to Eq. 1.7, Tαβ

i n is constant and thus grouped intoκ, therefore a linear solution

is displayed by this analogy of zero order kinetics, α
κ−→α+β:

βt =β0 +κt . (1.10)

Degradation of the species can be taken as a linear processα
k−→®, where ® represents

α chopped into nucleotide monophosphates (Fig. 1.6). For an autocatalytic network, a

degradation term adds the ability to reach a steady state at full activation. This steady

state is attained when the growth rate equals degradation,

dαg r ow th

d t
= dαdeg r ad ati on

d t
(1.11)

This steady state is distinguished as a horizontal line in the plot in Fig. 1.6B (green

line). Linear and autocatalytic production have distinct functionalities in a network. A

linear function will be used as a delay line in a network.

1.2 Three-node network with negative feedback design

In this section we present the Oligator, which is a three node network that was de-

signed by Montagne et al. [26] to display an oscillatory behavior. We will first explain

the network topology. Subsequently, the experimental conditions at which it was

originally created are listed, as well as the modified conditions at which the work of

this chapter will be carried out.
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1.2.1 Reaction network topology of the Oligator system

The Oligator has a negative feedback topology, which consists of three DNA species, α,

β and γ, with connected chemistry and constant degradation (Fig. 1.7 A). In this loop,

α autoreplicates but also produces an intermediate species (β), serving as a delay step,

that subsequently produces γ, an inhibitor of α. In this representation, a chemical

activation (solid arrow) requires a three component machinery: a template (T), a

polymerase (pol) and a nickase (nick). In order to keep the system responsive, linear

degradation, represented by dashed arrows, of α, β and γ species, is accomplished by

an exonuclease (exo). Inhibition, denoted by a blunt-end arrow, involves an inhibitor

species that hybridizes reversibly to the template, thus blocking the hybridization

of the input. In other words, inhibition results in the obstruction of the activation.

As a simple demonstration of the possible oscillatory dynamics of all three chemical

Figure 1.7 – Network topology and expected oscillatory dynamics of the Oligator.
(A) The Oligator topology is a positive feedback loop coupled to a delayed negative
feedback loop. Autoreplication of α uses a three component activation machinery:
a template, pol and nick; this is represented by a solid arrow. α is also an activator
to produce β which in turn activates the creation of inhibitor γ. This latter prevents
enzymatic autoreplication of α, this step is represented by a blunt-end arrow. Dashed
arrows denote degradation of chemical species by exo. (B) Numerical simulations
under chosen conditions to generate sustained oscillations.

species of this network topology, a numerical simulation using DACCAD [33] was
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plotted along side the network topology in Fig. 1.7 B. Chemical oscillations with a

period of about 100 minutes are obtained if the autocatalyst grows up to an activated

state, and it is subsequently turned off by an inhibitor. However, the autocatalytic

node must be able to recover its ON-state and repeat the oscillatory ON-OFF cycle.

From this statement, it can be recognized that the fundamental controlling aspects

must be balanced to reach such dynamical behavior: (i) sigmoidal growth kinetics

of α, (ii) inhibition strength of γ on the autocatalyst node, and (iii) delay response

between inhibitor and autocatalyst node.

1.2.2 Experimental conditions of the Oligator

Each node of the Oligator topology is composed of a species and its corresponding

template. We list the templates of the Oligator used by Montagne et al. [26] in Ta-

ble 1.2. In the notation used here the superscripts indicate the input and the output

species (Tαβ takes α as an input and generates β as an output). P2 stands for two

phosphorothioate (PTOs) modifications, which are necessary for protection from

RecJ f degradation. Because RecJ f degrades ssDNA processively from 5’ to the 3’ end

by hydrolyzing the phosphate bond, two phosphorothioate in the 5’ protect from

degradation (Fig. 1.8A).

Table 1.2 – Sequences of the three nodes of the Oligator. Node-1 template autorepli-
cates α , node-2 template takes α to produce β which then triggers node-3 template
to output γ. P2 stands for two phosphorothioates (P2 = **).

Name Template sequence 5’→3’ Name Node sequence 5’→3’
Tαα(P2) A*A*CAGACTCGAAACAGACTCGA α TCGAGTCTGTT
Tαβ(P2) G*C*ATGACTCATAACAGACTCGA β ATGAGTCATGC
Tβγ(P2) T*T*ACTCGAAACAGACTGCATGACTCAT γ AGTCTGTTTCGAGTAA

The Oligator was originally configured under certain experimental reaction condi-

tions to display an oscillating behavior. For example, chemical modifications to the

template and selection of buffer components were carefully planned to ensure en-

zyme compatibility, such as enzyme thermostability and prevention of undesirable

reactions. The Oligator buffer (buffer O), listed in Table 1.3, contains a high concen-
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Figure 1.8 – Chemical modification to template as a protection against exonuclease
degradation. (A) Backbone modification by phosphorothioate bond on 5’-end of tem-
plates; this involves the replacement of a sulfur atom by an oxygen on the phosphate
group. (B) Biotin is linked to the final phosphate base of a template on its 5’-end via
an aminoethoxy-ethoxyethanol linker. Images adapted from www.biomers.net

tration of trehalose (400 mM) in order to stabilize RecJ f exonuclease [34]. RecJ f is

stabilized this way for experiments at 38.5°C, otherwise, RecJ f deactivates above 37°C.

The addition of trehalose strongly influences the hybridization thermodynamics of

DNA strands, increases the viscosity of the solution and keeps the activity of RecJ f

only therefore preventing further exploration and tuning of this interesting reaction

network at higher temperatures. For these reasons, in subsequent works [31, 32],

Recj f was replaced by thermostable full-length exonuclease ttRecJ that can work at

high temperatures in the absence of trehalose.

However, replacing RecJ f by ttRecJ results in the loss of oscillatory behavior of the

Oligator. This can be due to different reasons. First and obviously, due to the higher
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Table 1.3 – Comparison of the Oligator buffer (Buffer O) [26] with buffers used in
other reaction networks: Bistable buffer (Buffer BS) [31] and Predator-Prey buffer
(Buffer PP) [32]. Components marked (-) are not contained.

Component Buffer O Buffer BS Buffer PP
Thermopol B DF 10 v/v% 10 v/v% 10 v/v%
Tris-HCl,pH =8 45 mM 45 mM 20
Mg2+ 7 mM 7 mM 8 mM
NaCl 50 mM 50 mM 50 mM
KCl 10 mM 10 10
(NH4)SO4 10 mM 10 10
dNTP 0.1 mM 0.4 mM 0.4 mM
Trehalose 410 mM (-) (-)
Dithiothreitol (DTT) 6 mM 6 mM 4 mM
Bovine serum albumin (BSA) 100 µg mL−1 500 mgL−1 500 mgL−1

Synperonic F108 (-) 1 g/L 1 g/L
Netropsin (-) 0.2 µM 0.2 µM

activity of ttRecJ. Second, because the higher activity of ttRecJ implies that undesired

degradation of templates occurs if these are not additionally protected by three 5’-PTO

backbone modifications instead of two. This extra PTO can increase or decrease the

dissociation constant between templates and complementary species, thus, altering

the design parameters. Third because removing the trehalose from the buffer strongly

changes the hybridization thermodynamics. Fourth, our collaborators realized that if

3 PTO on the 5’ end of a ssDNA inhibit the degradation activity of ttRecJ, they do not

preclude its binding. As a result ssDNA templates with PTOs in 5’ strongly inhibit exo

activity but this activity is restored when the input is in high concentration and the 5’

end of the template is majority double stranded. This feature lakes that the activity

of the exonuclease strongly changes with the node concentration, thus hindering

the programmability. In order to address this latter problem, biotin linking on the

5’-end coupled to streptavidin, instead of PTO modifications, can be used to protect

templates from exonuclease degradation without inhibiting exonuclease (Fig. 1.8B).

As a result in this chapter we seek to obtain oscillations in the Oligator in conditions

that are physico-chemically very different from the work of Montagne et al. [26]. We

had two options, to first obtain oscillations in the original conditions and gradually
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change conditions. Or to change all the conditions at once and build the network

again step by step following similar experiments proposed by Baccouche et al. [35].

We decided to follow the latter strategy. We have sketched a working plan in Fig. 1.9.

We will first test the autocatalytic node, then the inhibition on this node. Lastly, we

will close the loop and search for oscillations by varying concentrations of templates

and enzymes.

Figure 1.9 – Experimental scheme to test the Oligator. Autocatalysis is characterized
with and without degradation, then inhibition is tested by introducingγ to an activated
autocatalyst and by addition of activator β. In a final stage, the looped is closed and
tested under different template and enzyme concentrations.

In this chapter we will perform reactions containing exonuclease ttRecJ, thus, we will

use templates with either three 5’-PTOs or 5’-biotin/streptavidin modifications. We

list the modified templates that are used in this work in Table 1.4. We also use a second

set of sequences (Table 1.5) to create also an Oligator. This second set came from

a numerical study of the Oligator done by the group of Tom de Greef at Technische

Universiteit Eindhoven. He provided us with the sequences, and we have adapted

them by adding DNA modifications. Also, we do not need to include trehalose in the

buffer reaction since we do not used RecJ f . For this reason, we test similar buffers

before replacing the Oligator buffer with one of these buffers, which are used in the

Predator-Prey and bistable networks (Table 1.3).
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Table 1.4 – Modified templates of the original Oligator network. In our notation,
internal modifications are in parenthesis whereas molecules covalently linked (such
as dyes and biotin) on the 5’-end or the 3’-end of template are written before T or after
(-) respectively. P3 stands for three phosphorothioates (P=*) and U for deoxy-ribo-
Uridine, which substitutes a thymine. Dy and Cy refer, respectively, to dyes Dy530 and
Cy3.5. Biotin and Biotin-TEG are indicated, respectively, by bt and Teg.

Name Sequence 5’→3’
Tαα(P3,U) A*A*C*AGACUCGAAACAGACTCGA
Tαα(P3)-Dy A*A*C*AGACTCGAAACAGACTCGA-Dy
Tαα(P3,U)-Dy A*A*C*AGACUCGAAACAGACTCGA-Dy

btAATαα(U)-Dy bt-AAAACAGACUCGAAACAGACTCGA-Dy
Tαβ(P3) G*C*A*TGACTCATAACAGACTCGA
Tβγ(P3)-Cy T*T*A*CTCGAAACAGACTGCATGACTCAT-Cy
TegAATβγ-Cy Teg-AATTACTCGAAACAGACTGCATGACTCAT-Cy

1.3 Assessment of an autocatalytic node

In this section, we characterize the basic reactions of the PEN-DNA toolbox: auto-

catalytic growth and degradation. We will first compare the kinetics of autocatalytic

growth reactions in different buffers. Then, we will perform autocatalysis in dNTPs

limited reactions to assay the turnover kinetics of pol and nick for a given template,

and these also in different buffers. Finally, we will address the issue of possible seques-

tration of exo by 5-phosphorothioate or 5-biotin modified templates.

1.3.1 Autocatalytic reactions in different buffers

So for the PEN-DNA toolbox has been used in three different buffers. The initial oliga-

tor buffer (O) had a high concentration of trehalose to stabilize RecJ exonuclease, as

already discussed. Later the bistable buffer (BS) [31] was optimized for one particular

nicking enzyme, Nt.BstNBI, and the Predator-Prey buffer (PP) [32] was optimized for

another nicking enzyme, Nb.BsmI (Table 1.3). Here, we study the effect of different

buffers on the autocatalytic growth of the PEN-DNA toolbox. We assay this effect by

performing autocatalytic reactions of species α using template Tαα(P2) without exo

in the three buffers listed in Table 1.3.
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Table 1.5 – Sequences of an in silico-designed Oligator by van Roekel et al. [36].
Node-1 template autoreplicates α2 , node-2 template takes α2 to produce β2 which
then triggers node-3 template to output γ2. In this naming notation, internal modi-
fications are in parenthesis, whereas molecules covalently linked (such as dyes and
biotin) on the 5’-end or the 3’-end of template are written before T or after (-) respec-
tively. U stands for deoxy-ribo-Uridine, which substitutes a thymine. Dy and Cy refer,
respectively, to dyes Dy530 and Cy3.5. Biotin is indicated by bt.

Name Sequence 5’→3’
btAATα2α2 (U)-Dy bt-AACATTGACUCTGCATTGACTCTG-Dy
btAATα2β2 (U) bt-AATACCGACUCCACATTGACTCTG
btAATβ2γ2 -Cy bt-AAACACTCTGCATTGACTTACCGACTCCA-Cy3.5
α2 CAGAGTCAATG
β2 TGGAGTCGGTA
γ2 AGTCAATGCAGAGTGT

We activated the growth ofαwith the autocatalytic template Tαα(P2) at 60 and 200 nM

in the three different buffers. In Fig. 1.10A we see their growth profile in the presence

of EvaGreen. At 60 nM Tαα(P2), the initial profile is similar for all three buffers with

a small reaction time delay of 4 min in the buffer PP. Although the maximum green

fluorescence shift (∆F) is different between buffers, values fell within a similar range.

Interestingly, at 60 nM template a steady state in fluorescence is reached in buffer PP,

but not in buffer BS nor in buffer O. In contrast at 200 nM template such steady state

is reached in all three buffers.

It is important to note that we talk here about a steady state in EvaGreen fluorescence

and not in concentration of species α. Indeed in our conditions α does not fluoresce

in its single stranded form but only when it hybridizes to its template Tαα(P2). As a

result the EvaGreen fluorescence is proportional to the total concentration of α only

if Tαα(P2) is not saturated. Thus, the horizontal lines in Fig. 1.10A do not mean that

the dynamic system has reached a steady state in concentration but that Tαα(P2) has

reached saturation.

To quantify the initial growth kinetics (i.e. when α is at low concentration) of the

autocatalysis we calculate the time for half growth (t1/2). To do so, we plot the deriva-

tive of the fluorescence shift (
d(∆F )

d t
) as a function of time (Fig. 1.10B). Its maximum
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Figure 1.10 – Autocatalytic growth of α in buffers PP, BS and O. (A) The green fluo-
rescence shift (∆F) from EvaGreen is recorded over time. Tαα(P2) was 200 nM for 5
markers while 60 nM for #. Reactions were performed with 3% pol and 2% nick, and
triggered with 5 nM α at 38.5 °C. (B) Numerical differentiation of data from A versus
time.

corresponds to t1/2. We observe no significant differences between buffers BS and

O, but a small difference exists for buffer PP. An exponential fit using Eq. (1.8) reveals

the value of the rate constant (κ) is in fact the same for Buffer O and Buffer BS and

about 1.5 times larger for the buffer PP (Table 1.6). Moreover κ, within the same

buffer, seems to scale with
p

[Tαα], but this needs to be confirmed by having more

experimental points.

Table 1.6 – Exponential rate constant of autocatalytic growth of α in different
buffers. The fits were performed for the data in Fig. 1.10. The kinetic rate constant κ
is reported within two standard deviations.

Exponential Fit

Buffer
κ (min−1)
60 nM Tαα(P2)

κ (min−1)
200 nM Tαα(P2)

Buffer O 0.25 ± 0.03 0.50 ±0.06
Buffer BS 0.28 ± 0.04 0.49 ± 0.06
Buffer PP 0.44 ± 0.04 0.71 ± 0.09

We can conclude that the autocatalytic growth is indistinguishable between buffers

BS and O. The major difference in their compositions is a higher concentration of

dNTPs and the absence of trehalose in buffer BS and O. We know from the experiment
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in Fig. 2.23 that increasing the concentration of dNTPs slows down growth. This

would suggest that trehalose would also slow down growth so that both effects are

balanced. Comparing BS and PP buffers, PP has half the concentration of Tris-HCl

and 1 mM more of Mg2+. Knowing the much greater influence that di-cations have

both in DNA hybridization kinetics and in enzymatic activity it is possible that the

concentration of Mg2+ is the main source of difference in kinetics between BS and PP.

Further experimentation is required to verify this, but it is more practical to simply

adopt buffer BS.

1.3.2 Effect of buffer on the turnover profile

A turnover experiment is a method to quantify the capacity of a given autocatalyst

template to consume dNTPs, and this gives a qualitative view of the kinetics of all

three enzymes (pol, nick and exo). In these experiments we see first an exponential

growth of fluorescence then a plateau, and finally an exponential decay due to the

degradation of the autocatalyst when all the dNTPs have been consumed (Fig. 1.11).

We adjust the concentration of the dNTPs to be able to see the turnover profile in

a reasonable time. For a given template sequence the reaction time (∆t) between

growth and decay depends on the concentrations of the template and dNTPs. The

shorter ∆t the more efficient is a template to consume dNTPs and thus the faster pol

and nick work with it.

To further assay the effect of the buffer on the enzymatic kinetics we study the turnover

profile of template Tαα(P3,U) in the buffers BS and O (Fig. 1.11). Despite a small

different of 10 minutes in ∆t the exponential growth rate were comparable, so we turn

to compare their decay regions. A linear fit of the initial decay shows that the rate

constant kdecay for buffer BS (-0.045± 0.001 min−1) was around 40 % smaller than for

buffer O (-0.063± 0.002 min−1) but ∆t was comparable for buffer BS and buffer O, 170

and 160 min, respectively. At the end of the decay, the fluorescence goes slowly to

zero; such slow decay rate can be explained by invoking the inhibition of ttRecJ with

the 5’ end of the templates. As α is consumed, the concentration of single-stranded

template carrying phosphorothioates on its 5’ end increases, and exo gets strongly
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Figure 1.11 – Turnover of autocatalyst α in two different buffers (BS and O). The
green fluorescence shift from EvaGreen is recorded over time. The turnover profile
has a positive skewed-bell shape with three regions: (i) exponential growth, (ii) steady
state and (iii) decay. ∆t is the time it takes the profile to turn from steady state to decay.
The reactions were performed at 42 °C with Tαα(P3,U) = 100 nM, 0.5% pol, 1% exo, 1%
nick and 40 µM dNTPs. The activation was triggered with α = 0.1 nM.

inhibited. Although this linear activity of exo was reduced in buffer BS, the overall

profiles were similar, thus, this turnover experiment further supports the idea that

buffer BS can be used to replace buffer O in the Oligator network.

1.3.3 Inhibition of ttRecJ by the templates: phosphorothioate vs bi-

otin/streptavidin modified templates.

Exo can bind unproductively to the 5’ end of a template carrying phosphorothioates,

thus decreasing its degradation activity towards α. Here, we will characterize this

effect indirectly by performing turnover experiments and we will compare templates

protected with three phosphorothioates versus templates carrying a biotin/strepta-

vidin modification in their 5’ end. We will use template Tαα(P3,U)-Dy in the first case

and btAATαα(U)-Dy in the second case. Both templates have dye 530 covalently linked

to its 3’ side, so we can monitor the concentration of α by fluorescence quenching of

Dy-530 upon binding of α to the input side of the template [37].

First, we perform turnover experiments with different concentrations of Tαα(P3,U)-
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Dy (Fig. 1.12). We see that ∆t increases with template concentration above 50 nM

Tαα(P3,U)-Dy. Also, we observe that the decays become less steep as the concentration

of template increases. This tells us that as the template concentration increases, exo is

less efficient in degrading α. To quantify this, we linearly fit the initial decay (Fig. 1.13).

It seems that there is a linear relationship between kdecay and template concentration.

This indicates that phosphorothioate-modified templates can sequester exo, thus

resulting in a lower exo activity.

Figure 1.12 – Turnover of phosphorothioate-modified template Tαα(P3,U)-Dy. (A)
A profile is the yellow fluorescence shift (∆F) divided by its template concentration.
Tαα(P3,U)-Dy was varied from 30 to 100 nM. Maximums fall within average max ±
two standard deviations (displayed in shaded gray). The reactions were performed at
42°C with 1% pol, 1% exo, 2% nick and 40 µM dNTPs in buffer BS.

For the biotin/strepatvidin modified template case we used template btAATαα(U)-Dy

in turnover experiments at 30 to 100 nM (Fig. 1.14). Their turnover profiles are similar

when the fluorescence shift (∆F) is normalized by template concentration (T0). Even

their ∆F maximums are within two standard deviation from their mean. The turnover

time is independent of template concentration. Most of dNTPs consumption happens

during the plateau of fluorescence, i.e. when concentrations of the substrates of pol

(Ti n in Fig. 1.3) and nick (Text ) in the range of template concentration used here are

one or both high. Our results thus indicate that enzymes are saturated. To determine if

exo is inhibited by the biotin modification in btAATαα(U)-Dy, we search for differences

in the decay region in the turnover profiles. We confirm this by linearly fitting the

initial decay (Fig. 1.13). The decay rate does not depend on the template concentration
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Figure 1.13 – Rate decay constant from turnover experiments with phosphoroth-
ioate vs biotin/streptavidin modified templates. A linear fit of the initial decay as
function of template concentration from data in Fig. 1.12 and Fig. 1.14 is plotted here.

when the fluorescence has been normalized by template concentration. The fact

that they are all similar tells us that there is less inhibition of exo from the biotin

modification. From the results presented here, we conclude that phosphorothioate-

modified templates inhibit strongly exo, whereas biotinylated/streptavidin templates

inhibit exo less.

In the Oligator network, it is important that exo is available to degrade species. For

example during the oscillations of the Oligator, if the autocatalyst α is being inhibited,

exo must be able to first degrade most of α, and also when α recovers its ON state,

it must degrade the inhibitor. Thus, the sequestration of exo by the templates can

potentially destroy the dynamics and no oscillations are produced. After testing

biotinylated and phosphorothioate-modified templates, we conclude that the former

modification should be used if the sequestration of ttRecj negatively impacts the

dynamics of the system.

34



1.4. Autocatalyst growth in the presence of an inhibitor

Figure 1.14 – Turnover of biotin modified template btAATαα(U)-Dy. (A) A profile is
the yellow fluorescence shift (∆F) divided by its template concentration. btAATαα(U)-
Dy was varied from 30 to 100 nM. Maximums fall within average max ± two standard
deviations (displayed in shaded gray). The reactions were performed at 42°C with 1%
pol, 1% exo, 2% nick and 40 µM dNTPs in buffer BS

1.4 Autocatalyst growth in the presence of an inhibitor

An inhibitor must be designed such that it is able to slow down the autocatalyst growth.

Here, we test the growth of an autocatalyst in the presence of an inhibitor. As we see

in the sketch from Fig. 1.15, there is no degradation of either species.

We trigger the growth of autocatalyst α2 in the presence of different concentrations

of inhibitor γ2 (Fig. 1.16). By increasing the concentration of γ2 the activation of the

autocatalyst is delayed, and the initial rate growth seems to slows down also with

increasing γ2. We see in this experiment (Fig. 1.16) that this inhibitor is strong enough

to delay the autocatalyst for hundreds of minutes. We will test the inhibition when the

autocalyst is already activated (i.e. ON state) in the following sections.

Figure 1.15 – Sketch of an autocatalyst in the presence of an inhibitor. Neither of
the species are degraded since no exo is added.
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Figure 1.16 – Autocatalyst growth in the presence of an inhibitor. The inhibitor γ2 is
varied from 0 to 512 nM. The autocatalyst growth was activated with 0.5 nM of α2. The
reactions were performed at 42°C with 0.5% pol, 3% nick and 60 nM btAATα2α2 (U)-Dy.

1.5 Inhibition of the autocatalyst in the ON state: NOT

gate assay

The inhibition of the autocatalyst is an essential part of the Oligator, if it is too weak

the stable state is an autocatalyst that is always ON, whereas if it is too strong, the

autocatalyst is switched OFF and a weakly responding network is obtained.

In this section we assay the inhibition of an autocatlyst that is activated, then we

analyze the inhibitory effectiveness. We call this assay a NOT gate due to its analogy to

the corresponding logic gate (Fig. 1.17). In this assay the autocatalyst is first activated

reaching an ON state. Then to test the inhibition, we inject in the reaction solution

the inhibitor γ. If the inhibition is effective, the autocatalyst growth of α is stopped.

Eventually, γ is degraded and α goes back to its ON state.

We remind the reader that we use a different exonuclease from the one reported in

the original Oligator publication, hence we must determine the concentrations of

templates and enzymes to adequately balance the inhibition. We perform NOT gate
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experiments to determine the right experimental conditions at which the autocatalyst

is effectively first inhibited to reach the OFF state and later able to recover to the ON

state.

Figure 1.17 – Sketch of the inhibition of an autocatalyst in the ON state: NOT gate
assay. An autocatalyst in the ON state is switched off by the addition of an inhibitor
(γ). The inhibitor is degraded and the ON state is recovered.

1.5.1 Effect of inhibitor concentration on a NOT gate assay

We first study the impact of different inhibitor concentrations on anα autocatalyst that

has already grown on its template btAATαα(U)-Dy in standard enzymatic conditions.

We let the growth of α reach a fluorescence steady state, which we call the ON state

in Fig. 1.18. Once in the ON state, the reaction tube (that contains 20 µL) is removed

from the fluorometer. Then, 2 µL of a solution containing the inhibitor in water is

added to the activated reaction solution, which is subsequently mixed by vortexing for

15 seconds. The solution is placed back into the fluorometer to continue measuring

the yellow fluorescence shift.

In the experiment in Fig. 1.18 we injected an inhibitor γ at a final concentration from

0 to 10 µM. We see that at γ < 1 µM the autocatalyst remains in the ON state. A partial

inhibition is achieved at γ = 1 µM. A stronger inhibition seems possible at γ = 10 µM,

but the ON state is then recovered within 300 minutes. The experimental conditions

do not seem to be at the correct balance for effective inhibition. The fact that the

autocatalyst can only be switched off at very high concentration of γ indicates that

the autocatalyst is too strong.

37



Chapter 1. Testing DNA-enzyme reaction
networks

Figure 1.18 – NOT gate experiments in which the inhibitor γ is injected at different
concentrations. Inhibitor was injected once the autocatalyst was activated (min =
154) at γ = 0-10000 nM. The experiment was performed at 42°C with 1% pol, 1% exo,
2% nick and 50 nM of btAATαα(U)-Dy.

1.5.2 Slowing down the autocatalyst: effect of nickase concentra-

tion on a NOT gate assay

In Section 1.5.1 we saw that the autocatalyst was too strong to be inhibited in the NOT

gate experiment. We know that increasing the concentration of nick decreases the

strength of the autocatalyst through a competition between nick and pol. Using this

idea, we perfom NOT gate experiments at different concentrations of nick and expect

to be able to inhibit the weaker autocatalyst.

We activate an autocatalyst at nick = 2%, 3% and 4%, then at steady state we inject

either 0 or 1 µM of inhibitor γ (Fig. 1.19). We see that the inhibition is more effective

as the concentration of nick increases. We numerically derivate this data as a function

of time to determine if the autocatalyst indeed weakens as the concentration of nick

(nick) increases (Fig. 1.19). The higher peak for 2% nick tells us that the autocatalyst

inital growth rate is larger at this nick concentration. The amplitude of the peak

decreases with nick confirming the weaking of the autocatalyst. Although we success-

fully inhibited the autocatalyst in Fig. 1.19, the recovering of the ON state still was too

slow. This means that the inhibtor is not quickly degraded, and this is probably due to

the low concentration of exo.
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Figure 1.19 – NOT gate experiments at different nick concentrations. (A) The initial
growth was activated at nick = 2, 3, 4%. In the legend (γ) means that 1 µM is injected
but if the sample is not labeled with γ, then only water is injected. The experiment
was performed at 42°C with 1% pol, 1% exo, 2% nick and 50 nM of btAATαα(U)-Dy. (B)
Numerical differentiation of data over from A versus time.

1.5.3 Slowing down the autocatalyst: effect of exonuclease concen-

tration on a NOT gate assay

Here, we perform NOT gate experiments at different concentrations of exo for two

reasons: (i) to slow down the autocatalyst and (ii) to study how the recovery of the

ON state after inhibition depends on exo. In Fig. 1.20 we show NOT gate profiles of

an autocatalyst that is activated at exo = 2, 4 and 8%. Injecting 0.5 µM of inhibitor γ is

able to partially switch the autocatalyst off. We see that the inhibition becomes more

effective as exo increases. We conclude that that the ON states are not identical but

the total α concentration on the ON state decreases as exo increases, thus making

easier its inhibition. However, the recovery time from the OFF back to the ON state

seems to be independent of exo. This may indicate that exo is saturated, thus leading

to identical recovery times.

1.5.4 Forced oscillations in a NOT gate assay

We have learned from the NOT gate experiments that there must be a balance between

the strengths of the autocatalyst and the inhibitor to stop the autocatalyst, which must
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Figure 1.20 – NOT gate experiments at different exo concentrations. Activation of
template Tαα(P3)-Dy was performed in a reactions solution containing exp = 2, 4 and
8%. We injected 2 µL of inhibitor γ at final concentration of 0.5 µM at min = 150, and 2
µL of water was added as a negative control (thinner dotted lines). The reactions were
performed at 42°C, 1% pol, 2% nick and 50 nM Tαα(P3)-Dy, which was activated with
1 nM α.

be able to recover its ON state. If the NOT gate experiments are successful, with each

inhibitor injection the autocatalyst can be forced to oscillate with periods related to

the time it takes the autocatalyst to recover its ON state. We demonstrate this here. We

show here only an experiment using template btAATα2α2 (U)-Dy and not with template

Tαα(P3)-Dy since we did not continue studying this latter design because we identified

a problem with it as we will explain later in Section 1.6.1.

In Fig. 1.21 an autocatalyst is first activated (ON), which is indicated by the fluores-

cence value of 1, then we inject different concentrations of inhibitor γ. The higher the

concentration of γ that we inject the closer we get to a complete OFF state. Injecting

20 nM of γ only deactivates the autocatalyst between 5-10%, whereas, 512 nM of γ

inhibits up to 70%. This ON and OFF cycle can be repeated by injecting the inhibitor

several times. At each injection of γ, its inhibitory efficiency decreases. This could be

because we are injecting a solution that contains only γ in water, thus diluting by ∼10%

the activated reaction solution with every injection. At the fourth injection the salt

concentration has been divided by a factor 1.4 and the binding affinity of γ2 towards

btAATα2α2 (U)-Dy has probably decreased strongly. However, this hyphothesis should
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be verified in the future by injecting γ2 in the proper buffer. Another hypothesis is that

the reaction mixture ages over time making the autocatalyst stronger, for example by

partially consuming dNTPs.

Making the autocatalyst to manually oscillate gives information on how well the

autocatalytic template can recover. Here, we demonstrate that we can find reasonable

experimental conditions of an autocatalyst and inhibitor pair to force the oscillations.

Figure 1.21 – Oscillations in a NOT gate assay by periodically injecting inhibitor
γ. The yellow fluorescence here is the normalized fluorescence with respect to the
ON state. Activation is indicated by a fluorescence level of 1. An autocatalyst was
activated, and once activated 2 µL of inhibitor γ2 was injected at 20, 128 and 512
nM. The reactions were performed at 42°C, 0.5% pol, 5% exo, 3% nick and 30 nM
btAATα2α2 (U)-Dy, which was activated with 1 nM α2.

1.6 Inhibition of the autocatalyst in the ON state: inver-

sion function

A further step towards the integration of the Oligator network is the inversion function

assay, in which both the autocatalyst and inhibitor template are present. In Fig. 1.22

we sketch the inversion function assay: (i) the autocatalyst is activated with a small

concentration ofα in the presence of the inhibitor template, which is dormant because

β is not present, (ii) the activated autocatalyst α is switched off by injecting β, which
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activates the production of the inhibitor γ, and (iii) the ON state is recovered after

degradation of β and γ. This assay allows us to test the effectiveness of activating the

production of the inhibitor in the presence of the activated autocatalyst.

Figure 1.22 – Sketch of the inhibition of an autocatalyst in the ON state: inversion
function assay. An autocatalyst in the ON state is switched off by the addition of an
inhibitor (γ). The inhibitor is degraded and the ON state is recovered.

1.6.1 Effect of the inhibition activator on an inversion function

Here, we perform the inversion function assay by injecting species β, which activates

the production of the inhibitor, at different concentrations (Fig. 1.23). As expected,

the autocatalyst deactivation increases by increasing the concentration of β. Injecting

50 nM of β reaches a maximum deactivation of the autocatalyst in about 30 min, and

it has a flat OFF state of ∆ti nhi b = 100 min. At 10 and 20 nM of β the maximum deacti-

vation occurs, respectively, in 70 and 50 minutes without reaching a flat OFF state. In

all cases, β is gradually degraded, thus stopping the production of the inhibitor γ, and

the ON state is recovered upon the complete degradation of γ. However the level of

fluorescence in the recovered ON state is not the same in all cases. At low α the inital

and recovered ON states appear identical. As α grows the system does not seem to

completely recover.

For the experiment in Fig. 1.23 we only succeeded to make an efficient inversion

function by using the inhibitor template Tβγ(P2) that carries two PTOs and no dye, but

not with Tβγ(P3)-Cy nor TegAATβγ-Cy that carry either 3 PTOs or a biotin/streptavidin

in 5’ and both labeled with dye Cy3.5 in 3’. We noticed that the autocatalyst would
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Figure 1.23 – Inversion function at injections of different concentrations of the ac-
tivator (β) of the inhibitor module. An autocatalyst was activated with 1 nM α, and
once activated 2 µL of βwas injected at 0, 10, 20, 50 nM. The reactions were performed
at 42°C, 1% pol, 4% exo, 2% nick, 30 nM Tαα(P3)-Dy and 80 nM Tβγ(P2).

grow to the ON state then deactivate by itself in the presence of Tβγ(P3)-Cy without

adding β. A control experiment suggested that the Cy3.5 poisoned the system in an

unknown way. This was problematic since we cannot use template Tβγ(P2) in the full

network because this sequence has only two phosphorothioates, thus exo can slowly

degrade it. We decided to stop using this design.

1.6.2 Forced oscillations in an inversion function assay

Since the oligator designed by the de Greef and co-workers (α2, β2 and γ2) (Table 1.5)

produced good results for the forced oscillations in the NOT gate assay from now on

we will show experiments using these sequences. As in Section 1.5.4 we can manually

trigger oscillations. Here, we do so by injecting multiple times the activator β of the

inhibitor module. In this experiment we test if the inhibitor module can be activated

efficiently multiple times.

We inject β to an activated autocatalyst at different concentrations (Fig. 1.24). We see

that the level of OFF state increases by increasing β as expected. Interestingly, very

small differences in concentration seem to produced highly different OFF state levels.
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For example, from 8 nM to 10 nM we go from 50% inhibition to 90%. This suggests that

the γ2 more efficiently inhibits template btAATα2α2 (U)-Dy that α1 did with Tαα. In the

full network we will have thus to choose a concentration of the template producing β2

that it is not too high such that the maximum concentration of β2 is about 10 nM.

Figure 1.24 – Oscillations in an inversion function assay by periodically injectingβ2.
The yellow fluorescence here is the normalized fluorescence with respect to the ON
state. Activation is indicated by a fluorescence level of 1. An autocatalyst was activated
with 1 nM α2, and once activated 2 µL of β2 was injected at 0, 4, 8 and 10 nM. The
reactions were performed at 42°C, 0.5% pol, 5% exo, 3% nick, 30 nM btAATα2α2 (U)-Dy
and 80 nM btAATβ2γ2 -Cy.

However, when we inject a second time the level of OFF state seems much less than

the first time. Again, this could be due to the dilution of the activated solution with

each injection. A second injection of 10 nM β2 is actually an injection of β2 at 9 nM.

Because the system is very sensitive to the concentration ofβ2 in the injection solution

(see the difference between β2 = 8 and 10 nM at 100 min), this could explain at least

part of the weaker inhibition with the second injection.

1.7 Testing the fully connected Oligator network

In this section we explore the Oligator network completely connected (Fig. 1.25). We

have chosen to test this network with the sequences from Table 1.5 since we have

succeeded to produce forced oscillations using the NOT gate and inversion function
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networks with these sequences.

Figure 1.25 – Scheme of the fully connected Oligator network.

1.7.1 Effect of the template concentration on the Oligator network

We start by fixing the concentrations of the autocatalyst template btAATα2α2 (U)-Dy

and intermediate node template btAATα2β2 (U), but we change the concentration of

the inhibitor template (Fig. 1.26). We keep the conditions where the forced oscillations

were observed with the inversion gate (Fig. 1.24) except for nick that was reduced from

3 to 2%. We set the the intermediate template btAATα2β2 (U) to a low concentration of

0.5 nM to try to limit the maximum concentration of β2 and increase the delay from

btAATα2α2 (U)-Dy. We monitor the concentrations of species α by recording the yellow

fluorescence shift.

We see in Fig. 1.26 that at 4 nM of inhibitor template, the autocatalyst grows sig-

moidally and remains fully activated (ON). By increasing the inhibitor template we

see a deactivation of the autocatalyst between minutes 50-80. Once a maximum

deactivation is achieved the autocatalyst starts to grow again. However, we just see

half-oscillating cycles damping. At 128 nM inhibitor template the autocatalyst re-

mains mainly inhibited, whereas at 64 nM the final state is probably a mixed state

of inhibitors and autocatalysts. The fact that the inhibitor template concentration

needed to deactivate an activated autocatalyst is (> 64 nM) larger than that of the

autocatalyst template (30 nM) suggests the autocatalyst is too strong.

To decrease the strength of the autocatalyst we reduced its concentration from 30 to

20 nM and performed a similar experiment (Fig. 1.27). At 20 nM inhibitor template

the autocatalyst remains in its ON state, but at greater concentrations we start to
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Figure 1.26 – Oligator network at different inhibitor template concentrations and
30 nM autocatalyst template. The reaction solutions contained 4, 32, 64 and 128
nM inhibitor template btAATβ2γ2 -Cy. The autocatalyst was initially activated with 0.5
nM α2. The reactions were performed at 42°C, 0.5% pol, 5% exo, 2% nick, 132 nM
streptavidin, 30 nM btAATα2α2 (U)-Dy and 0.5 nM btAATα2β2 (U).

see its deactivation. At 50 nM inhibitor template we reach almost, at minute 130,

a full deactivation, and from this maximum the growth resumes but never decays

again. It seems that the system is trapped between two possible steady states: (i) weak

inhibition such that the autocatalyst remains activated (at low btAATβ2γ2 -Cy) or (ii)

mixed zone of activator and inhibitor.

The intermediate node serves as a delay between the growth of the autocatalyst and

the production of the inhibitor. On the one hand, if the inhibitor is produced too early

the autocatalyst has not grown sufficiently and is inhibited permanently. On the other

hand, if the inhibitor is produced too late the autocatalyst has grown to a very strong

state and is never inhibited.

To test this we varied the concentration of the intermediate node template btAATα2β2 (U)

while fixing the concentrations of the autocatalyst and the inhibitor templates (Fig. 1.28).

Decreasing the concentration of the intermediate node template delays the deacti-

vation. Although with < 1 nM concentration of this template we can escape from

the permanently inhibited state, the system remains in a mixed state of inhibitors
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and autocatalysts. We repeated this experiment at several other concentrations of

inhibitor template and similar results were obtained. This suggests that our system is

trapped in that state, so a different strategy is needed.

Figure 1.27 – Oligator network at different inhibitor template concentrations and
20 nM autocatalyst template. The reaction solutions contained 20, 30, 40 and 50
nM inhibitor template btAATβ2γ2 -Cy. The autocatalyst was initially activated with
0.5 nM α2. The reactions were performed at 42°C, 0.5% pol, 3% exo, 2% nick, 20 nM
btAATα2α2 (U)-Dy and 0.5 nM btAATα2β2 (U).

Figure 1.28 – Oligator network at different concentrations of the intermediate node
template. The reaction solutions contained 0.25, 0.5, and 1 nM intermediate node
template btAATα2β2 (U). The autocatalyst was initially activated with 0.5 nM α2. The
reactions were performed at 42°C, 0.5% pol, 3% exo, 2% nick, 30 nM btAATα2α2 (U)-Dy
and 45 nM btAATβ2γ2 -Cy.
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1.7.2 Numerical simulations of the Oligator at different concentra-

tions of enzymes

To guide our next experiments we explore our system numerically using the DNA

Artificial Circuits Computer Assisted Design (DACCAD)[33], which is a dedicated

software for simulating PEN-DNA toolbox networks. The rate constants are extracted

from [31]. We want to know if by changing the concentrations of enzymes we can

move our system towards oscillations.

We set enzymatic and DNA thermodynamic parameters at similar values to those

reported in [26, 36]. In each plot in Fig. 1.29 exo is varied from 0.1 to 10 %, then nick and

pol increase, respectively, from top to bottom and from left to right. We are able to find

oscillations even when a system is stuck in a state of mixed inhibitors and autocatalysts

(not shown here), for example this is done by increasing the concentration of exo in

the right bottom plot. Increasing the concentration of nick, going from the top left to

the bottom left plot, increases the number of oscillation periods. In the plots shown

in Fig. 1.29 it seems that decreasing pol moves the system towards oscillations at the

lower concentrations of nick. Although we have not performed an exhaustive search

in the parameter space, we find in general that nick and exo are important parameters

to obtain oscillations.

We learn two other things from the simulations in Fig. 1.29. The first autocatalyst peaks

is much longer than the others and (ii) an oscillating system always goes through a

phase where the concentration of α is close to zero. So far in our experiments we were

never able to reach a very low level ofα after the first peak. This suggests that in all our

experiments either the autocatalyst loop is too strong or the inhibition loop is weak,

or both.
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Figure 1.29 – Numerical simulations of the Oligator at different concentrations of
enzymes. In the legends E stands for percent exo concentration. From left to right pol
is 0.5 and 5%, and from top to bottom nick is 0.2 and 4.6%. The inset in the bottom
right hand side plot is zooming on the y-axis of the larger plot. We set the dissociation

constant of each species individually to: K α
d = 36 nM, K β

d = 41 nM and K γ

d = 3 nM.

1.7.3 Effect of the concentrations of enzymes on the Oligator net-

work

Exploring experimentally a wide a range of enzyme concentrations requires a large

number of experiments. Thus, we did simple tests to gain insights of how the enzymes

affect the overall dynamics of the Oligator.

We performed an experiment at constant template concentrations and we varied the

concentration of nick (Fig. 1.30). Increasing nick delays the inhibition of the auto-

catalyst since the autocatalyst is weaker at higher concentrations of nick. Eventually

all curves go into damped oscillations. Nick weakens the autocatalyst favoring the
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inhibition, however, even at low nick the autocatalyst is eventually fully inhibited.

Figure 1.30 – Oligator network at different concentrations of nickase. The reaction
solutions contained 1, 3, 4 and 5% nick. The autocatalyst was initially activated
with 0.5 nM α2. The reactions were performed at 42°C, 0.5% pol, 3% exo, 20 nM
btAATα2α2 (U)-Dy, 0.5 nM btAATα2β2 (U) and 50 nM btAATβ2γ2 -Cy.

If the inhibitor is not degraded the autocatalyst remains inhibited. We test in the

following if increasing the concentration of exo can help the autocatalyst to resume

its growth after being inhibited. In Fig. 1.31 we vary the concentration of exo while

keeping all the concentrations of the templates, nick and pol constant. At 1% exo the

inhibition of the activated autocatalyst is very slow but eventually reaches a complete

inhibition. At higher concentrations of exo the activated autocatalyst is switched off

more efficiently than at 1%. However, increasing exo between 3 and 5% increases the

steady state concentration of γ2 and thus moves the system away from an oscillatory

state.

1.7.4 Effect of the inhibition template concentration on the Oliga-

tor network at higher temperature (45°C)

To explain the mixed state of inhibitors and autocatalysts we hypothesize that the

species remain hybridized to their templates too long, thus they are not efficiently
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Figure 1.31 – Oligator network at different concentrations of exonuclease. The
reaction solutions contained 1, 3, 4 and 5% exo. The autocatalyst was initially activated
with 0.5 nM α2. The reactions were performed at 42°C, 0.5% pol, 2% nick, 20 nM
btAATα2α2 (U)-Dy, 0.5 nM btAATα2β2 (U) and 50 nM btAATβ2γ2 -Cy.

degraded. Increasing the reaction temperature increases the dissociation constant

of all the species, consequently spending less time on their templates. If the species

are not on the template they are available for degradation. However, increasing

the temperate also changes the activities of all the enzymes and the system is on a

completely different state. Nonetheless, we experimentally test this situation as a last

alternative.

We increased the temperate from 42°C to 45°C and we varied the concentration of

the inhibitor template in the Oligator network (Fig. 1.32). Increasing the inhibitor

template increases the OFF level of the activated autocatalyst. However we are never

able to complementary inhibit the autocatalyst. We always face the same problem:

the autocatalyst loop is too strong and/or the inhibiting loop too weak.
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Figure 1.32 – Oligator network at different inhibitor template concentrations at
45°C. The reaction solutions contained 40, 60 and 100 nM inhibitor template
btAATβ2γ2 -Cy. The autocatalyst was initially activated with 0.5 nM α2. The reac-
tions were performed at 45°C, 0.5% pol, 3% exo, 2% nick, 15 nM btAATα2α2 (U)-Dy and
0.2 nM btAATα2β2 (U).

1.8 Conclusions and perspectives

We have tested systematically the kinetics of an activator-inhibitor reaction network

as a candidate network to explore in the future Turing patterns. To do, so we have

taken as a model the Oligator oscillating network designed by Montagne et al. [26].

Although oscillations are not needed for a network to be able to display a Turing

instability we took oscillations as a design goal to learn how to test PEN-DNA networks.

First, we evaluated the autocatalytic node in the absence and in the presence of its

inhibitor. Then, we generated logic functions by injecting the inhibitor in the NOT

gate experiment and the activator of the inhibitor module in the inversion function.

We aimed to recover the oscillatory behavior by testing each node in an incremental

manner. Notably we obtained forced oscillations with an inversion function network

with sequences that were designed in silico in [36] but never before tested experimen-

tally. Once the Oligator network was fully connected the system always finished in a

steady state with nonzero concentration of autocatalyst.
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We have discovered that modifying key parameters such as the template and exonu-

clease concentration requires extensive experimentation that is very time consuming.

In this network, the number of possible parameters that we can vary to search for

oscillations is indeed large. Perhaps, this type of research can be complemented

in the future with High Throughput Screening (HTS) methods such as the one im-

plemented by Genot et al. [38], in which the reaction solutions are encapsulated in

thousands of micro-droplets allowing to explore many experimental conditions in a

single experiment. Although the PEN-DNA toolbox is programmable it is still hard

and time-consuming to obtain the designed dynamic behavior. Nevertheless, another

important conclusion is that the testing of reaction networks allowed me to learn the

experimental techniques necessary for the work presented in the following chapters.

Here, we have covered temporal dynamics, but in the next chapters we will expand

the computation capabilities of the PEN-DNA toolbox from time to time and space.
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2 Controlling diffusion: wave propaga-

tion with immobilized DNA strands

Turing patterns emerge from an activator-inhibitor reaction network in which the dif-

fusion coefficient of the activator must be much smaller than that of the inhibitor (see

Fig. 2 in the Introduction). In this chapter, we explore how to meet this condition for

activators based on the PEN-DNA toolbox. After reviewing the literature concerning

the redction of diffusion for Turing patterning, we focus on developing a strategy to

tune the diffusion coefficient, D Ai , of DNA autocatalytic species, Ai . Our strategy is

based on the fact that the autocatalytic species, as seen in Chapter 1, hybridizes to

its complementary template, thus forming a complex. Molecular drags linked to the

templates, or their complete immobilization, should result in the reduction of the

effective diffusion coefficient (D Ai e f f ) of the activation species due to the complex-

ation. We use biotinylated templates that can be linked to various substrates via a

streptavidin-biotin interaction. We investigated two types of substrates: (i) ∼30 µm

diameter porous agarose beads and (ii) ∼200 nm diameter magnetic nonporous beads.

As a means to test these two strategies we study traveling fronts of an autocatalytic

node. Reducing D Ai e f f should result in lower front velocities, and by measuring the

velocity of the fronts we can estimate D Ai e f f . We achieved a reduction of D Ai e f f by

up to 4.3 fold using a diluted dispersion of agarose beads in an agarose gel and of 2.4

fold with a dispersion of the magnetic beads in solution. When the agarose beads

were closely packed the fronts gave a low fluorescence signal and tended to vanish

after propagating only for short distances.
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2.1 State of the art: a complexation reaction as a strat-

egy to reduce the diffusivity

In this section we focus on how the reversible complexation of a genetic activator

species with an immobile ligand reduces the effective diffusion coefficient of the

activator, thereby assisting in the emergence of Turing patterns. First, we go over the

theoretical aspects of complexation in an activation-inhibitor model. Subsequently,

we review the first research works on Turing patterns, which were possible because

of the complexation of the activator species with starch. Lastly, we introduce the

Belousov–Zhabotinsky (BZ) reaction in a water-in-oil Aerosol OT (AOT) microemul-

sion, a system developed in the early 2000s where a difference in diffusion between

the activator and inhibitor in an aqueous and oil phase gives rise to a rich diversity of

patterns.

2.1.1 Theoretical aspects of complexation in Turing patterns

Turing patterns are steady-state concentration structures with well-defined wave-

length that emerge in a reaction-diffusion system where all the concentrations are

initially homogeneous across space. The first criterion for Turing patterning is that the

system has temporally uniform steady state that is stable in the absence of diffusion

[39]. The second criterion is that in the presence of diffusion there is at least one

spatially inhomogeneous infinite-small perturbation to the uniform steady state that

is bistable, i.e. it grows instead of decaying. Turing patterning is thus a symmetry-

breaking process.

The first experimental demonstrations of chemical Turing patterns by Castets et al.

[18] and Ouyang and Swinney [19] used the chlorite–iodide–malonic acid (CIMA)

reaction in an open gel reactor in the presence of starch as iodide indicator. In

this system, the activator and the inhibitor are, respectively, I− and ClO−
2 . However,

their expected diffusivities in solution are not drastically different as required for

Turing patterning. These works led to theoretical [40–42] and further experimental
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[43] studies that aimed to explain how the requirements for the criteria for Turing

instability were met in such experiments. Lengyel and Epstein [40] proposed that the

complexation of the activator I− with the starch indicator results in the reduction of

its effective diffusivity. To illustrate how complexation facilitates the Turing instability

the authors first consider a reaction-diffusion (RD) system of two chemical species (A

and I) with rate constants (k),

∂A

∂t
= f (A, I ,k)+D A

∂2 A

∂z2
(2.1)

∂I

∂t
= g (A, I ,k)+D I

∂2I

∂z2
,

where D A and D I are the diffusion constants, t is the time and z the spatial vari-

able. f and g are functions providing the rate of creation and destruction of A and I,

respectively. The jacobian matrix of Eq. (2.1) is defined as,

J =
a11 a12

a21 a22

 (2.2)

where

a11 = ∂ f

∂A
, a12 = ∂ f

∂I
, a21 = ∂g

∂A
, a22 = ∂g

∂I
. (2.3)

The first criterion for Turing patterning is that X has a steady state that is spatially

uniform to perturbations. Linear stability analogous tells us that this criterion is

verified if and only if [39]

tr(J ) = a11 +a22 < 0 (2.4)

and

det(J ) = a11a22 −a12 +a21 > 0. (2.5)

The second criterion for Turing patterning is that the steady state of Eq. (2.1) is unsta-
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ble to as spatially inhomogeneous perturbation. This implies [39] that

a11D I +a22D A > 0 (2.6)

Equations (2.4) and (2.5) are the necessary and sufficient constraints for a two-variable

system to display Turing patterns. From Eq. (2.4) a11 + a22 should be negative but

Eq. (2.6) implies that a11 and a22 have opposite signs. This means that one species

promotes its own production (the activator, a22 < 0). In this situation for Eq. (2.6) to

hold we need

|a11| < |a22|. (2.7)

From Eqs. (2.6) and (2.7) we have

D A

D I
< 1, (2.8)

that activator must diffuse slower than the inhibitor. These criteria are summarized in

the expression by Gierer and Meinhardt [14] short-range activation and long-range

inhibition. Let’s see now how adding complexation to an immobile species modifies

this equation. In the presence of a binding partner (S) of the activator the formation

of the complex (C) at equilibrium is given by,

A+S
k+


k−

C, K = C

AS
= k+

k−
, (2.9)

where k+ and k− are, respectively, the forward and backward rate constants. The

concentration of the binding partner is much larger than A such that the concen-

tration of S is considered constant (S ≈ S0 ) and grouped into K ′ = K S0. Adding the
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complexation reaction to the RD system in Eq. (2.1) yields,

∂A

∂t
= f (A, I ,k)−k+S0 A+k−C +D A

∂2 A

∂z2
(2.10a)

∂I

∂t
= g (A, I ,k)+D I

∂2I

∂z2
(2.10b)

∂C

∂t
= k+S0 A−k−C (2.10c)

Note that C is immobile and thus its diffusivity is zero. We can substitute C by K ′A in

Eq. (2.10c),

K ′∂A

∂t
= k+S0 A−k−C . (2.11)

Then, we can cancel the terms on the right hand side of Eq. (2.11) by adding it to

Eq. (2.10a),

σ
∂A

∂t
= f (A, I ,k)+D A

∂2 A

∂z2
(2.12)

∂I

∂t
= g (A, I ,k)+D I

∂2I

∂z2
,

where σ = (1+K ′). What Eq. (2.12) tells us is that the complexation separates the time

scales for changes in the concentrations of the inhibitor and activator by a factor of σ

in the same way as a difference in diffusion coefficient does. This is perhaps easier to

analyze when the system is rescaled by setting t = t ′/σ and z = D1/2
A z ′,

∂A

∂t ′
= f (A, I ,k)+ ∂2 A

∂z ′2 (2.13)

∂I

∂t ′
=σ

(
g (A, I ,k)+ψ ∂2I

∂z ′2

)
,

where ψ = D I /D A. Hence, the greater the σ, i.e. the more stable the complex, the

larger the difference in the time scale of diffusion between the two chemical species:

σψ. From Eq. (2.13) we can rewrite the equivalent of the Turing constraints Eqs. (2.4)
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to (2.6),

a11

σ
+a22 < 0 (2.14)

a11a22 −a12a21 > 0 (σvanishes) (2.15)

D A

σD I
< 1. (2.16)

We recall that in the activator-inhibitor system a11 > 0 and a22 < 0. Complexation of A

with an immobile ligand has thus two important consequences for Turing patterning:

1) It increases the range of stability of the uniform steady state (Eq. (2.15)).

2) It reduces the apparent diffusivity of A Eq. (2.16).

From Eq. (2.4) for example, if the system has a unique unstable steady state displaying

oscillatory dynamics without complexation (σ = 1), then the presence of complexation

(σ > 1) can stabilize the homogeneous steady state, and Turing instabilities occur in

this expanded region. σ simply enlarges the range of the stability area of the steady-

state (Fig. 2.1). This tells us that diffusion-driven instabilities for Turing patterning are

possible now at parameter values that were inside the stable oscillatory region of the

system without complexation [40].

Pearson [41] extended this analysis to conditions outside the regime of the quasi-

steady state approximation. His findings are similar to those of Lengyel and Epstein

[40], and he concludes that the main role of complexation is to stabilize a steady state

which would be unstable for the case without complexation [41]. The analysis tells

that by taking into account complexation, the Turing conditions can be satisfied even

if both, the activator and inhibitor, have equal diffusivity [42].
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Figure 2.1 – Stability analysis for a general activator-inhibitor system in the pres-
ence of a ligand binding to the activator. The y-axis and x-axis are the jacobian
elements in Eq. (2.3). The shaded area is the stable steady state of the an inhibitor-
activator model σ = (1+K ′) where K ′ is the apparent equilibrium constant for the
association of the activator and the ligand. When σ > 1 the shaded area increases thus
making easier to obtain Turing patterns. This figure was taken from [40].

2.1.2 Turing patterns by complexation in inorganic reactions

As mentioned in Section 2.1.1 the activator in the CIMA reaction (I−) forms a complex

with the starch resulting in the reduction of its effective diffusivity relative to that of

the inhibitor (ClO−
2 ). The starch was completely immobilized in the gel [18]. Using

this system a rich set of Turing patterns were found by Ouyang and Swinney [19]:

Fig. 2.2 shows (a-b) hexagons, (c) stripes, and (d) mixture of hexagons and stripes.

The brighter regions in Fig. 2.2 correspond to activator concentration that is detected

upon binding to the starch indicator.

In a numerical study [44] of this system, Ouyang and Swinney [19] point out that a

diffusion ratio between the inhibitor and activator DC lO−
2

/D I−3 of at least 10 is required.

Also Lengyel and Epstein [44] estimated DC lO−
2

/D I−3 ≈ 15, which results from the

complexation of the activator in a gel with excess binding partners. The reduction of
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Figure 2.2 – Chemical Turing patterns in an open gel reactor. The following patterns
of activator (I−) were found: (a-b) hexagons, (c) stripes, and (d) mixture of hexagons
and stripes. The patterns are visualized in transmitted light (580 nm). The scale
bars are 1 mm. This figure was borrowed from [19], and the complete experimental
conditions are found in FIG.1 of this publication.

the diffusivity is proportional to the fraction of time that the activator is trapped in

the complex [13].

The starch serves two different purposes to reduce the effective diffusion of the acti-

vator and as an indicator. If that is the case any other immobilized agent that forms

a complex with the activator might yield similar results. This was demonstrated by

Noszticzius et al. [45] using polyvinyl alcohol to reduce the diffusion coefficient of

I−3 (Fig. 2.3B). In a more recent study, Asakura et al. [43] employed polymers with

a quaternary alkyl ammonium cationic side chain and micelles of quaternary alkyl

ammonium cationic amphiphiles to lower the effective diffusivity of I−, and Turing

patterns were also observed.

The complexation of the activator has allowed meeting the Turing instability condition

in the CIMA reaction. However, this approach has been limited to this system and to
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Figure 2.3 – Chemical Turing patterns using (A) poly(vinyl alcohol) and (B) soluble
starch. The patterns have different wavelengths (λ) : (A) λ = 0.32 mm for poly(vinyl
alcohol) at 15 g/L and (B) λ = 0.21 mm for soluble starch at 2.5 g/L. The disk reactors
are 6 mm in diameter. This figure was extracted from [45].

the ferrocyanide-iodate-sulfite (FIS) reaction [46]. Only another approach has been

successful in achieving the reduction in diffusivity needed for Turing patterning, as

we will see in the following text.

2.1.3 Modifying the effective diffusivity by solubility difference be-

tween two phases

Here, we present a approach to obtain Turing patterns introduced by Vanag and Ep-

stein [47]. It modifies the effective diffusivity by using the difference in solubility of

the activator and inhibitor in a medium with two-phases. They used the Belousov–

Zhabotinsky (BZ) reaction in a water-in-oil microemulsion stabilized with the sur-

factant Aerosol OT (AOT). In this system, the BZ reaction solution is encapsulated in

nanometer sized water droplets dispersed in an oil (octane) phase. Since the initial BZ

reagents are polar, they remain in the droplets. Then, the reaction starts and produces

the inhibitor species (Br2), which can diffuse into the oil phase due to its nonpolar

nature. In this two-phase system the difference in diffusivity is achieved by the higher

solubility of Br2 in the oil phase making its effective diffusion coefficient much larger

than that of the activator (HBrO2) that is confined in the water micro-droplets and its

diffusivity is given by the diffusivity of the droplets.
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In homogeneous reaction conditions, the oscillating BZ system spatially organizes into

traveling waves: either outwardly moving spirals or concentric circles [15, 48]. How-

ever, when this reaction is constrained into water-in-oil AOT microemulsion droplets,

a new class of patterns emerges: Turing structures, standing waves, accelerating waves

and inwardly moving spirals [47, 49].

Figure 2.4 – Inwardly rotating spiral (A) and concentric circle (B) BZ waves in AOT
microemulsion droplets. (A) Antispirals formed at a volume fraction of droplets φd

= 0.55. Frame size was 1.8 × 3.75 mm2. (B) Concentric circles were obtained at φd =
0.59. Frame size was 2.7 × 2.5 mm2. Figures compiled from [49]

Inwardly-moving spirals emerge because of the ability of the waves to accelerate. From

an initial pattern, the waves move towards the center of their arc, and consecutive

waves increase in size. The free space between the waves allows a faster wave end to

curl up around the end of the next outer wave. The velocity, v , is proportional to the

diffusion coefficient of the activator: v ∼ (D A)1/2. The change of velocity comes from

the different diffusivity of the activator in water and in oil. The velocity of a spiral of

short wavelength is driven by the diffusion coefficient of the activator in water, but a

spiral of long wavelength is driven by the diffusion coefficient of the activator in oil,

Doi l .

It is important to note that after 35 years of active research only three chemical systems

are capable of generating Turing patterns. The CIMA and the FIG systems do so in an

open gel reactor while the BZ-AOT reaction is capable of generating them in a closed

reactor. This underlies the great experimental challenges to create a new system

capable of Turing patterns.
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We have discussed how complexation can reduce the effective diffusivity of the acti-

vator in the CIMA reaction, however, the implementation of this approach to other

inorganic reaction systems capable of generating Turing patterns is far from trivial.

The issue comes from the fact that most inorganic molecules have similar diffusion

coefficients and a ligand for reversible complexation of the activator must be found.

Whereas the usage of the two-phase approach is limited reaction systems that can be

kept out of equilibrium in a closed reactor for a limited time. The problem is that the

only such system made of inorganic reactions in the BZ reaction. A promising reaction

system that can benefit from both of the approaches covered in this section must: (i)

operate out-of-equilibrium in a closed reactor and (ii) involve chemical species that

can easily from complexes with immobile or slowly diffusion ligands.

2.2 Strategies to control the diffusivity of short DNA strands

As we have seen in Section 2.1.1 controlling the diffusivity of the activator is not

straightforward, and it has been achieved only in a few cases. A system that is capable

of pattern formation in which the diffusivity of the activator and inhibitor species can

be methodically tuned is needed. We believe that the PEN-DNA toolbox is such system,

and the achievement of tuning diffusivity will open the possibility of engineering

Turing patterns in a rational manner.

In the PEN-DNA toolbox, the activator and inhibitor are short DNA strands as we have

described in Chapter 1. Our goal is to search for an experimental approach that allows

us to reduce the diffusion coefficient of short DNA strands with a specific sequence.

Such methodology must be compatible with the PEN-DNA toolbox, in other words,

it must not negatively interfere with the enzymatic machinery of the toolbox. In this

section, we first review the literature related to controlling the diffusivity of short DNA

strands. Subsequently, we present our experimental approach.
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2.2.1 DNA covalently attached to polyacrylamide gels

Allen et al. [50] developed a methodology to control the mobility of a desired DNA

strand by immobilization of a DNA binding partner in a polyacrylamide-DNA gel.

The binding partner templates are acrydite-modified DNA oligonucleotides. This

modification allows their incorporation into the polyacrylamide gel matrix during

polymerization of the gel. Figure 2.5 shows how the authors use DNA base-paring to

control the hybrization degree of a short DNA strand (L) to the binding partner (*B).

The hybridization reaction is favored by increasing the number of paired bases, which

increases the Gibbs free energy (-∆G°) of the reaction. Their experiment was carried

out as follows: the immobilized binding partner is evenly distributed in the gel, then

the L strand is loaded into the gel. In a reference experiment, the *BL complexes are

also loaded into a gel without immobilization. The diffusivity of the species with an

immobilized binding partner is normalized by its diffusivity without immobilization

as a function of -∆G° (Fig. 2.6). Increasing -∆G° reduces the mobility of L. If we take the

last point from the plot in Fig. 2.6 to be µ/µnati ve ∼ 0.125, we can calculate a maximum

reduction of diffusivity of 8 fold.

Figure 2.5 – Controlled hybridization by controlling base-pairing of DNA strand L
to its immobilized binding partner (*B). The xxxx on *B indicate its immobilization.
Increasing the number of paired bases increases the Gibbs free energy (-∆G°) of the
hybridization reaction. This sketch was taken from [50].
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Figure 2.6 – Diffusivity of a DNA strand decreases with the -∆G° of complex forma-
tion with an immobilized DNA partner. The y-axis is the fraction between the mobil-
ity from binding to immobilized partner and the mobility without immobilization.
This figure was taken from [50].

2.2.2 Strategy to control the diffusivity of DNA in the PEN-DNA tool-

box

Anton Zadorin in our group profited from the fact that a PEN-DNA autocatalyst A

needs to bind to its template T (Fig. 2.7) to control its diffusivity. Indeed if T is attached

to a hydrodynamic drag (Fig. 2.8) the diffusivity of the A:T will be similar to that of the

T. Using this idea, Zadorin et al. [29] utilized triton X-100 micelles of 5.5 nm in radius as

hydrodynamic drags. Templates had a cholesteryl modification on their 3’ (Table 2.1).

The templates interacted with the micelles through hydrophobic interactions between

the chrolesteryl and the micelles. This resulted in the reduction of the mobility of the

template (DT), therefore, decreasing De f f . In this strategy the interactions with the

micelles were not permanent, additionally, the micelles, themselves, were mobile. Yet,

this strategy achieved a reduction of the diffusion coefficient of up to 2.7 fold. In this

chapter we build upon the work of Zadorin et al. [29] by using completely immobilized

templates to control diffusion.
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Table 2.1 – Results obtained by Zadorin et al. [29]. Estimated hydrodynamic radius,
Rh , measured diffusion coefficient, Di , growth rate, r ′(0), front velocity, v, and an
inferred diffusion coefficient associated to the front propagation, De f f (0). Template
concentration 200 nM, pol = 16 U/mL, nick = 300 U/mL, 10 g/L triton X-100. All
measurements were performed at 38°C. Where applicable, values are accompanied
by the confidence interval with the confidence probability of 0.95. The intervals are
calculated for samples of n = 5 both for r ′(0) and v, De f f (0) was treated as a function
of these variables.

Species Rh Di r’(0) v De f f (0)
(nM) (103µm2min−1) (10−2min−1) (µm min−1) (103 µm2 min−1)

A - 16 ± 3 - - -
T:trit 1.51 10.7 ± 0.72 7.7 ± 1.3 65 ± 5 14 ± 3
T-ch:trit 5.53 4.0 ± 0.34 7.8 ± 0.5 40 ± 4 5.1 ± 1.1

Figure 2.7 – DNA-DNA hybridization reactions of species A to its template T. In the
PEN-DNA toolbox autocatalytic templates have identical sequences in the input and
output site.

Figure 2.8 – Sketch of the diffusion control strategy. The template (T) is attached to
a hydrodynamic drag, while the active species (A) reversibly hybridizes to it.
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Let’s now introduce a model to evaluate the effective diffusivity of an autocatalytic

species in the presence of its template. Species A can be free or bound to T, and at

equilibrium the effective diffusion coefficient of A depends on all the species involved

(Fig. 2.7)

De f f (A) = ηADA +ηA:TDA:T +ηT:ADT:A +ηA2:TDA2:T, (2.17)

where A is the concentration of species A. And ηi and Di are, respectively, the molar

fraction and diffusivity of the species i .

If DT < DA it is reasonable to expect that DA:T ≈ DT:A ≈ DA2:T ≈ DT, thus

De f f (A) ≈ ηADA + (ηA:T +ηT:A +ηA2:T)DT . (2.18)

Equation (2.17) tells us that if we want to reduce De f f (A) we must decrease the

effective diffusivity of the template. Although all the species in Fig. 2.7 should in

principle be considered, at low concentrations5 of A we can consider only reaction (1)

and (2) in Fig. 2.7,

A+T
ka


kd

A : T (2.19)

A+T
ka


kd

T : A

where Kd is the dissociation constant. We assumed that hybridization of A in the

input and output side of T has identical Kd s. Because we have considered that both

reactions have identical Kd , then the concentrations A : T = T : A, which we can group

as a single complex C of concentration C = 2A : T . We thus have,

ηA +ηC ' 1, (2.20)

where ηC is the molar fraction of C. Using the definition in Eq. (2.20), Eq. (2.17)

5This is the case at the edge of a traveling front.
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becomes,

De f f (A) ≈ ηADA + (1−ηA)DC. (2.21)

In this context ηA is defined as,

ηA = Atot −C

Atot
, (2.22)

where Atot is the combined concentration of free and bound A. Combining both

equilibrium reactions from Eq. (2.19) yields,

Kd

2
≈ (Atot −C )(T0 −C )

C
, (2.23)

where T0 is the initial template concentration. If T0 is much larger than Atot , therefore

T0 À C . Then, we can simplify Eq. (2.23) to,

Kd

2
≈ (Atot −C )T0

C
. (2.24)

Solving for C in Eq. (2.24) gives,

C ≈ Atot T0

T0 + Kd

2

. (2.25)

This definition of C can be substituted into Eq. (2.22),

ηA ≈ Kd

2T0 +Kd
. (2.26)

Then, to get an approximation of the diffusivity that can give us an insight on what

physical parameters are important we substitute in Eq. (2.26) into Eq. (2.21),

De f f (0) = Kd

2T0 +Kd
DA + 2T0

2T0 +Kd
DT. (2.27)

The diffusion coefficient of free A cannot be changed. Thus, from Eq. (2.27) reducing

the effective diffusivity of A is done by reducing the diffusivity of the template DT .
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2.2.3 Our strategy: porous and non-porous microparticles to con-

trol the diffusivity of DNA in the PEN-DNA toolbox

Here, we discuss our strategy to tune the diffusivity of the autocatalytic species A.

Our approach allows us to test several technologies. For this reason, templates are

biotinylated and linked to different substrates via streptavidin-biotin binding (Fig. 2.9).

As discussed in the previous paragraph, we expect the diffusivity of A to be controlled

by the hybridization to its template. Primarily, we tested 200 nm diameter magnetic

beads and 34 µm diameter crosslinked agarose beads, but we also considered an

oil-in-water emulsion with oil droplets of 4 µm in diameter (Table 2.2).

These three different drags were considered for several reasons. First because they

cover a quite large range of sizes (2 orders of magnitude) and because of their low

diffusivities. Second because they are physiochemically very different and one ob-

jective of our work (as it will be shown in Chapter 3) was to explore the behaviour

of the PEN-DNA toolbox with different materials. Indeed the magnetic beads could

be in the future used to control the position of the template-bound beads with an

external magnetic field. Magnetic beads and microdroplets are non-porous to DNA

and enzymes, while agarose beads are, which possibly has an impact in the diffusion

of DNA. Moreover, droplet size can be modified and the streptavidin on their surface

can move and concentrate on some areas, in contrast with the magnetic beads where

streptavidin is homogeneously distributed.

If they are homogeneously dispersed in the solution, in the case of the magnetic

beads and the oil droplets, the effective diffusion of A is given by Eq. (2.27). This

is fundamentally the same strategy as the one covered in Section 2.2.2 since the

templates are attached only to the surface of the supports. The beads and the droplets

act as molecular drags that reduce the diffusivity of the template. We expect a larger

reduction of diffusivity of A, than using the 5-nm triton X-100 micelles (DT = 4000

µm2min−1), because of the smaller diffusion coefficient of the magnetic beads (DT

= 600 µm2min−1) and the oil droplets (DT = 30 µm2min−1). We did not have the

opportunity to test in diffusion control the oil droplets due to time limitations, thus
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we leave this open for future research.

Figure 2.9 – Biotinylated templates can be attached to streptavidin-coated mag-
netic beads, oil droplets and agarose beads. Superparamagnetic beads (ademtech
streptavidin plus), lipid-stabilized emulsion droplets [51], and crosslinked agarose
(Sepharose GE Healthcare) beads are, respectively, 200 nm, 4 µm and 34 µm in diame-
ter. Complexation of A is formed by the hybridization to its template strand.

Table 2.2 – Physical parameters of magnetic beads, oil droplets and agarose beads.
Diffusion coefficients were estimated from van Ommering [52] for the (‡) magnetic
beads at 40°C and from Feng et al. [51] for the (†) droplets at 25°C.

Magnetic beads Droplets Agarose beads
Diameter (µm) 0.2 4 34
Porous No No Mesoporous
Beads/µL in stock 1.2 ×109 1.9×107 1.5×104

Binding sites/bead 4.2×103 5.2×106 1.2×1010

Diffusivity (µm2min−1) ∼ 600‡ ∼ 30† ∼ 0

2.2.4 Theoretical aspects of diffusion in packed agarose beads

The templates within the agarose beads have no mobility, and if they are homoge-

neously distributed we can set Eq. (2.27) to,

De f f (0) = Kd

2T0 +Kd
DA. (2.28)
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However, we cannot approximate the distribution of templates within agarose beads

that are discretely positioned as a homogeneous system. The diffusivity reduction

using templates attached to agarose beads needs a different analysis. This leads to

packing agarose beads as closely as possible to be closer to such a homogenous system.

To understand such system we will develop next a model based on the geometrical

distribution of closely packed agarose beads. We have two regions of distinct diffusivity

in such system. We see in Fig. 2.10 that even though beads are closely packed, regions

without beads appear at the interfaces. Templates are immobilized within the agarose

beads (inside region), but in the outside region there are no templates.

Figure 2.10 – DNA species diffuse differently in the inside and the outside regions
of packed agarose beads. (A) Sketch of packed beds with labeled regions. li n and lout

are characteristic diffusion lengths in the inside and outside regions. (B) A wavefront
of DNA species travels through inside and outside regions of the beads.

Thus, A diffuses differently in these two regions. In this case, the average diffusion

coefficient (D〈t〉) depends on the fraction of the time (χτ) that A spends on the inside

region, where the effective diffusion is Di n , or in the outside region, where the effective

diffusion is Dout . We have

D〈t〉 =χτi n Di n +χτout Dout (2.29)

χτi n = τi n

τi n +τout
, χτout =

τout

τi n +τout
,

where χτi n and χτout are, respectively, the fraction time that A spends in the inside and

outside regions. τ is calculated as the characteristic time of diffusion over a length
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li n/lout , which is the size of each region,

τi n = l 2
i n

Di n
, τout =

l 2
out

Dout
. (2.30)

Using the triangle from the sketch in Fig. 2.10 we can determine for each region,

li n = 2r, lout = 2r (
p

2−1), (2.31)

where r is the radius of the agarose beads. Now, we have all the variables to develop a

diffusion model for the packed beads, and such equation becomes,

D〈t〉 = 1+Υ
1

Di n
+ Υ

Dout

, (2.32)

where Υ = 3 - 2
p

2 ≈ 0.17. Interestingly, Eq. (2.32) does not depend on the radius of

the beads. Thus, this equation applies to any system in which the beads are closely

packed. Note that D〈t〉 goes to zero if Di n → 0.

The diffusivity of the templates is considered zero (i.e. DT = 0) for this system, and Dout

is the same diffusivity of the free species (DA). So, the expression for the diffusivity of

A inside the beads is Eq. (2.27) without the second term on the right hand side as in

Eq. (2.28). Thus, inputting Eq. (2.28) for Di n and DA for Dout into Eq. (2.32) gives the

effective diffusion equation in packed agarose beads in 2D,

D〈t〉e f f =
DAKdΘ

T0 +KdΘ
, Θ= (1+Υ)

1

2
≈ 0.6. (2.33)

This results only applies to a two-dimensional (2D) space. If the diffusion coefficient

inside the bead is zero and the beads are packed in a 2D space we cannot find a path

to go through without passing inside a bead. In a three-dimensional space this is not

true as a molecule could find a path through the interfaces of the beads. In the 3D
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case the calculation is more complicated [53]. It yields

D〈t〉 = π

4
D y +

(
1− π

4

)
Di n , (2.34)

where

D y = 2Di nDout

Di n −Dout

(
Di n

Dout −Di n
Ln

(
Di n

Dout

)
−1

)
(2.35)

when Di n → 0 and D〈t〉 → 0.2 Dout .

In this experimental setting, increasing T0 or decreasing Kd decreases D〈t〉e f f sig-

moidally. Interestingly Eq. (2.33) is very similar to Eq. (2.28), which is in fact the case

of complete immobilization with homogeneous (ideal case) distribution of templates.

At Θ = 0.5 Eq. (2.33) becomes Eq. (2.28) meaning that the existence of outside regions

are just slightly less favorable for reducing diffusivity. This difference is small enough

to conclude that it is worth using agarose beads closely packed. Additionally, agarose

beads are very attractive because of their experimental advantages: high versatility,

quick binding and the possibility of adjusting the density of beads.

2.2.5 Relating the front propagation velocity to the diffusivity

Throughout this chapter we have chosen to measure the effective diffusivity of an auto-

catalyst by measuring its front propagation velocity. The reaction-diffusion equation

for an autocatalytic species A is,

∂A

∂t
= R(A)+ ∂

∂x

(
De f f (A)

∂A

∂x

)
, (2.36)

where R(A) is the reaction term. As demonstrated by Zadorin et al. [29], provided that

the function R(A) respects certain conditions6, Eq. (2.36) has a traveling front solution

6(a) Bounded growth, i.e., there exists Amax > 0 such that r (Amax ) = 0, (b) r (0) = 0, (c) r ′(0) > 0, and
on (0, Amax ) (d) r (A) > 0, (f) r ′(A) < r ′(0).
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A(x, t ) = A(x − v t ) which minimal velocity, v , is given by

v = 2
√

R ′(0)De f f (A), (2.37)

where R ′(0) is the derivative of R at A = 07. This is known as the velocity of Fisher-KPP

[1]. In this chapter we will employ this equation to relate measured values of v to

De f f . To do so we need in addition to determine the reaction kinetics R ′(0) of our

DNA-based reaction system. We spatialize the system by generating propagating

fronts of species A. As a result De f f will be calculated by

De f f =
v2

R ′(0)
. (2.38)

We note that Eqs. (2.37) and (2.38) are only valid for pulled propagating fronts [54].

Pulled fronts are those whose dynamics are controlled by what happens at the tip of

the front where A → 0. Fisher-KPP fronts are a class of pulled fronts. Pushed fronts, in

contrast, are controlled by the dynamics behind the front where A 6= 0. For pushed

fronts only the scaling v ∼
√

R ′(0)De f f (A) holds. As a rule of thumb, fronts due to

monostable kinetics tend to be pulled while those relying on bistable kinetics maybe

expected to be pushed. Despite this fundamental difference, in the next sections we

will use Eqs. (2.37) and (2.38) for analyzing fronts due to monostable and bistable

networks. We should consider them just as scaling laws though.

2.3 The bistable network and its experimental procedure

Zadorin et al. [29] encountered a problem of measuring the velocity of propagation

of a simple PEN-DNA autocatalyst: self-start. An autocatalyst template with pol and

nick but without its input finds the way to self start and still produce an autocatalytic

growth of the input. This is very annoying for generating traveling fronts because

the system grows uniformly across space before a front is observed. We selected a

reaction network that displays bistability since this property allows us to eliminate

7We remind the reader that this is the case at the edge of a traveling front.
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self-start, which is the self-triggering of autoreplication in the absence of an input.

This DNA bistable network designed by our collaborator Y. Rondelez is composed of

an autocatalytic node and a repression node Fig. 2.11. The activation node involves

the autocatalytic production of the species A. In the repression node, the activation

species is captured by a repressor template and converted into a waste species (W).

Both, species A and W can be eliminated by exo.

Figure 2.11 – The mechanism of the DNA bistable network. This network is com-
posed of an autocatalytic node and a repression node with enzymatic degradation.
Activation. The activation species (A) binds to the activation template (T). The T:A
complex is extended by the polymerase (pol). Subsequently, the double strand com-
plex is cut by the nickase (nick) enzyme producing two As. Repression. Activation
species is captured by the repressor template. The complex R:A is extended by pol
producing the waste species (W). Degradation. Activation species and waste species
are degraded by the exonuclease (Exo) enzyme.

The bistability arises from the fact that the activation species has a higher affinity

towards binding to the repressor template. This results in the repression node to be a

more favored reaction. Then, we can expect that A grows sigmoidally only when the

activation growth rate surpasses the repression rate.

2.3.1 DNA oligonucleotides

For the most part of this chapter we utilize two independent sets of DNA sequences

(Table 2.3) that can be put together into a bistable network. We named these two
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independent sets: bistable network 1 and 2. Each network is composed of: an activa-

tion species (Ai ), an activation template (Ti ), and a repressor template (Ri ). All the

templates carry a biotin modification except T2N and R2N . These non-biotinylated

templates bear the same design as T2 and R2, so they are not treated as a different net-

work. The absence of biotin allows us to test for potential differences in the behavior

of biotinylated sequences and non-biotinylated ones.

Table 2.3 – DNA sequences of the two bistable networks. The two independent
bistable networks are numbered 1 and 2. Each network contains its own set of au-
tocatalytic (Ai ) species, autocatalytic template (Ti ), and repressor template (Ri ). All
templates contain a biotin covalently linked, except T2N and R2N . Phosphorothioate
backbone modifications are indicated by an asterisk (*).

Network Name Template sequence 5’→3’
Bistable A1 CATTCAGGATCG
network 1 T1 bt-*A*A* G*ATCCTGAATGCGATCCTGAAT

R1 bt-AAAAAACGATCCTGAATG
Bistable A2 CATTCTGACGAG
network Biotinylated

T2 C*T*C*G*TCAGAATGCTCGTCAGAAAAAAA-bt
R2 T*T*T*T*CTCGTCAGAATGAAAAA-bt
Non-biotinylated
T2N C*T*C*G*TCAGAATGCTCGTCAGAA
R2N T*T*T*T*CTCGTCAGAATG

As we can see from the hybridized structures in Fig. 2.12 (Page 79) the design in the

bistable network 1 has one unpaired base on A1 in the T1:A1 structure, but no unpaired

bases in R1:A1. In the case of the bistable network 2, two bases in T2:A2 are unpaired

instead of one. R2:A2 has no unpaired bases on A2. The absence of the unpaired bases

in Ri :Ai results in the preferential hybridization of Ai to Ri rather than to Ti . This

preferential affinity towards Ri :Ai can be reprogrammed by changing the number

of unpaired bases. To estimate the affinity of Ai to the templates, we calculate the

thermodynamic parameters for the hybridization reactions between Ai /Ti and Ai /Ri

(Table 2.4). We can see in this table that the hybridization reactions Ai /Ri have higher

melting temperatures and more negative changes in enthalpy due to the absence of

unpaired bases, so they are slightly more favored than the Ai /Ti reactions.
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Figure 2.12 – Double strand DNA structures for the bistable (A) network 1 and (B)
network 2. The structures were calculated using the NUPACK web application [55].
The parameters were set at 38°C, N a+ = 0.05 M, and M g++ = 0.006 M.

Table 2.4 – Thermodynamic parameters for the hybrization reactions. The melting
temperature (Tm), ensemble enthalpy (∆H), and ensemble entropy (∆S) were calcu-
lated using DINAMelt web server [56]. The concentrations of Ai , Ti , and Ri were 1 µM,
and N a+ = 0.05 M and M g++ = 0.006 M.

Tm (°C) ∆H (kcal/mol) at 38°C ∆S (cal/mol/K) at 38°C
A1/T1 48.2 -94.1 -293.6
A1/R1 49.1 -103.6 -322.0
A2/T2 50.6 -101.9 -316.9
A2/R2 52.2 -105.0 -324.9

2.3.2 Determination of the dissociation constant

As we discussed in Section 2.2.2, the dissociation constant (Kd ) has a strong influ-

ence in the effective diffusivity. Here, we characterize Kd in the formation of the

double strand complexes T1:A1 and R1:A1 at different temperatures. We evaluate this

formation during DNA-DNA hybridization reactions at equilibrium.

The experiment consisted of titrating R1 = 50 nM with A1 = 0-400 nM (Fig. 2.13).

This same protocol was repeated to titrate T1 = 50 nM (Fig. 2.14). The green fluo-

rescence level increases by increasing A1 since the concentration of double strand
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DNA increases. We use Eq. (1.3) to relate the fluorescence to the concentration of A1,

and Eq. (1.5) to extract the dissociation constant (Kd ) by fitting the data in Figs. 2.13

and 2.14. At every temperature Kd is larger for T1/A1 than for R1/A1. This means that

the formation of the R1:A1 complex is more likely than the T1:A1 complex.

For our system to maintain bistability the Kd of the activator template T1 must be

larger than that of the repressor template R1. The experiments here tells us that indeed

Kd is larger for T1:A1 in a temperature range of 37-45°C. Secondly, we have obtained

an experimental value of Kd that can be used to estimate the De f f . We expect that the

templates in the bistable network 2 have similar Kd values since their thermodynamic

parameters are comparable (Table 2.4).

Figure 2.13 – Determination of the dissociation constant of R1:A1 complex. Isother-
mal titration of R1 = 50 nM was titrated with A1 = 0-400 nM at different temperatures.
The data was fitted to Eq. (1.5) to determine the dissociation constant (Kd ).
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Figure 2.14 – Determination of the dissociation constant of T1:A1 complex. Isother-
mal titration of T1 = 50 nM was titrated with A1 = 0-1000 nM at different temperatures.
The data was fitted to Eq. (1.5) to determine the dissociation constant (Kd ).

2.3.3 Experimental procedure

In this chapter we use the Predator-Prey buffer listed in Table 1.3. Subsequently, a

reaction mixture is prepared containing the buffer and the required enzymes. For

the most part in this chapter, the concentrations of the enzymes are as reported in

Table 2.5, unless otherwise stated. We also included in the buffer 5% v/v of EvaGreen

Table 2.5 – Enzyme concentration used in this chapter. The enzyme concentrations
are reported in dimensionless formats: exon = exo/exo0 with exo0 = 12.5 nM, poln =
pol/pol0 with pol0 = 16 U/mL, and nickn= nick/nick0 with nick0 = 80 U/mL. The
concentrations listed here are the final values in the reaction tube.

Enzyme Concentration
Exonuclease ttRecJ (exo) 0.5
Bst large fragment DNA polymerase (pol) (NEB) 1
Nb.BsmI nicking enzyme (nick) (NEB) 5
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(Biotium) dye to monitor the concentration of the DNA species. Kinetic experiments

were performed in a real-time PCR machine (Biorad CFX96 or Qiagen Rotor-Gene Q)

in plastic PCR tubes. Front propagation experiments were conducted in borosilicate

glass capillaries (VitroCom) of 0.5 x 0.5 mm (outside dimensions) and monitored in

an inverted Zeiss Axio Observer Z1 microscope (see the microscope specifications in

Page 201). To perform a front experiment, a glass capillary was filled with the reaction

solution containing the autocatalytic and the repressor templates, the enzymes and

the buffer but not containing the input species A (Fig. 2.15). Then, to trigger the front

of species A, 2 µL of the reaction solution containing A = 400 nM were added to one of

the sides of the capillary.

Figure 2.15 – Setting up a front propagation experiment in a glass capillary. 1. The
capillary is filled with the reaction buffer and templates. 2. An initial condition is
injected only on one side. The initial condition is the reaction solution additionally
containing A(t=0) = 400 nM. 3. The capillary is mounted on a glass slide and its open
ends shut with two part-epoxy adhesive (Araldite).

2.4 Reactions with templates diffusing freely in solution

This section consists of two major subsections: (1) characterization of the kinetics

of activation species and (2) characterization of the front propagation of activation

species. Here we present reactions of the two DNA-based bistable networks in which

the templates diffuse freely in solution.

2.4.1 Kinetics of the DNA bistable network

Autocatalytic DNA nodes tend to suffer from self-start. To eliminate the self-start from

the activation node, we use the repressor node of the bistable network. Afterwards, we

characterize the kinetics at bistable conditions by determining the reaction rate law.
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Lastly, we compare the kinetics in plastic PCR tubes to the kinetics in glass capillaries.

2.4.1.1 Repressor node eliminates self-start

First, we test the activation node, and simultaneously, we assay its self-start (Fig. 2.16).

The sigmoidal growth of A2 species starts by adding an initial concentration of A2,

but it is also self-started after 200 min. Increasing R2 to 5 nM delays the self-start

(blue curve). The self-start is eliminated at R2 = 10 nM. Tuning the repressor template

concentration in these bistable networks successfully eliminates self-start.

Figure 2.16 – Increasing the concentration of repressor template R2 eliminates self-
start. The sigmoidal growth of the A2 activation species was triggered with 0.2 nM A2

or self-started. The reaction was performed at 45°C and T2 = 100 nM.

We also tested the elimination of the self-start on the T1 template by increasing R1

(Fig. 2.17A). Self-start at R1 = 0 nM starts around 90 min, which is delayed by increasing

R1. From Fig. 2.17B we determine that the time delay in the reaction starting time is

somewhat linear before the self-start is completely eliminated at R1 = 30 nM.
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Figure 2.17 – Increasing the concentration of repressor template R1 eliminates self-
start. (A) The sigmoidal growth of the A1 species was triggered with A1(t=0) = 0.2 nM
or self-started. (B) Linear fit of the starting time as a function of R1. The reaction was
performed at 45°C, streptavidin = 40 nM, and T1 = 100 nM.

2.4.1.2 DNA-based reaction system at bistable conditions

We are interested in characterizing the bistability of these networks to later determine

the growth kinetics of Ai . The concentration of T1 was reduced to 50 nM, and in these

conditions R1 = 10 nM suppressed self-start. Then, we tested the bistability of the

system at R1 = 10 nM and T1 = 50 nM (Fig. 2.18). The OFF state means that there is

no sigmoidal growth of A, which can be switched to the ON state by adding an initial

concentration of A1 (A1(t=0)).

The bistable networks were designed to work at 45°C, but we were interested in

working at a lower temperature to decrease the dissociation constant, Kd , between

templates and activation species (Figs. 2.13 and 2.14). First, we determined if our

system displays bistability at lower temperatures. Instead of first determining the

concentration of R1 needed to suppress the self-start and then doing the bistability test,

we add A1(t=0) = 0.2 nM to the reaction solution and increase R1 until it suppresses the

activation. Figure 2.19 shows this bistability test at 41.1°C and 38.4°C. The activation

of A1 is suppressed with R1 = 8 nM and R1 = 16 nM, respectively, at 41.1°C and 38.4°C.

Additionally, the autocatalytic growth was compared by extracting a rate growth

constant R ′ (Table 2.6). At R1 = 0, R ′ increases 10% by lowering the temperature from
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Figure 2.18 – Illustration of the bistability of bistable 1. The OFF state can be
switched to the ON state by including A1(t=0) = 5 nM in the reaction solution. The
reactions were performed at 45°C, R1 = 10 nM and T1 = 50 nM.

41.1°C to 38.4°C. Whereas, at 38.4°C increasing R1 from 0 to 8 nM decreases R ′ by 1.37

fold.

Figure 2.19 – Bistability at 41°C and 38.5°C. R1 was varied from 0-16 nM. The reaction
solution contained A1(t=0) = 0.2 nM, T1 = 50 nM, and streptavidin = 80 nM. The reaction
was performed at (A) 41°C and (B) 38.5°C.

These results demonstrate that although the bistability of this network is designed to

function at 45°C, bistability is displayed also at lower temperatures. The robustness

of the bistability probably comes from the fact that the difference in the dissociation

constant between R1/A1 and T1/A1 is large enough even at lower temperatures, as we

see in the Kd measurements in Figs. 2.13 and 2.14.
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Table 2.6 – Rate growth constant R ′ at 41.1°C and 38.4°C for bistable system 1 with
T1 = 50 nM. R ′s were extracted from the data in Fig. 2.19.

Temperature (°C) R1 (nM) R ′
g r ow th (min−1)

41.1 0 0.10
38.4 0 0.11
38.4 8 0.04

2.4.1.3 Determination of the rate order of reactions

To measure the reaction kinetics in the bistable network we perform experiments in

which we activate a system at bistable conditions at increasing concentrations of A1.

In Fig. 2.20 we fix the T1 and R1, and we vary the initial concentration of A (A1(t=0)).

The activation occurs above a threshold value of A1(t=0). The activation happens at

A1(t=0) = 0.4 nM, and at higher values of A1(t=0) the activation time is reduced.

Figure 2.20 – The sigmoidal activation of A1 occurs above a threshold. The initial
concentration of A1(t=0) is varied from 0 nM to 10 nM. The reaction was performed at
38.5°C, T1 = 50 nM and R1 = 20 nM.

Then, to determine the rate law at these experimental conditions we consider the

overall reaction of the activation node: A−→2A. We propose testing for first and

second order rate. A first order rate law is given by,

d A

d t
= k A, (2.39)
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with solution,

A(t ) = A(t = 0)ekt , (2.40)

where k is the reaction rate coefficient. We call t1/2 the time at which the concentration

of A has reached a certain A1/2. We have

t1/2 = 1

k
ln(A(t=0))− 1

k
ln(A1/2). (2.41)

The time taken by a first order rate law to reach a given concentration scales with the

logarithm of the initial concentration.

If the growth kinetics are second order, we have

d A

d t
= k A2 (2.42)

with solution

A(t ) = 1
1

A(t = 0)
−kt

, (2.43)

and thus

t1/2 = 1

k A(t=0)
− 1

k A1/2
. (2.44)

To determine what order rate law our data in Fig. 2.20 displays we extract the half-life

t1/2 for which the fluorescence reaches half its maximum value. In Fig. 2.21 we plot

t1/2 as a function of ln(A(t=0)) or
1

A(t=0)
following Eqs. (2.41) and (2.44).

The linear regression fits the second order rate law better than a first order one (except

for the point at 1/A(t = 0) = 2.5 nM−1, i.e. A(t = 0) = 0.4 nM). Thus, this indicates that

our system follows a second order rate law. From the inverse of the slope in Fig. 2.21B

we obtain a reaction rate coefficient of k = 5×10−3 min−1nM−1.
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Figure 2.21 – Testing for (A) first and (B) second order rate laws. The time in Fig. 2.20
at which A1 reaches half of maximum growth is plotted as function of (A) ln(A1(t=0))
or (B) 1/A1(t=0).

2.4.1.4 Kinetics in glass capillaries

Once the kinetics of the bistable network were characterized in plastic tubes in the

fluorometer, we checked whether the kinetics were similar in the glass capillaries,

where the front propagation experiment will be performed. We soon discovered that

the reactions in the capillaries lasted for shorter times than in plastic tubes. Here, we

present our efforts to find the right experimental conditions to prolong the reactions

in the capillaries.

Figure 2.22 shows the autocatalytic growth of A2 using template T2 at 45°C with the

standard concentration of dNTPs (400 µM). The reactions were carried out simulta-

neously in a glass capillary and in a plastic tube. The most striking difference is the

behavior at long times. In the plastic tube we observe a strong increase in fluorescence

that we have interpreted as a parasitic reaction. In the glass capillary the intensity

drops to the initial value before increasing again slightly and dropping back to zero.

The second difference is that growth is delayed in plastic tubes compared with glass

capillaries, although the apparent growth rate is identical as we can see when we

normalize the curves and shift the time. Finally, the plateau of fluorescence is really
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Figure 2.22 – Autocatalyst growth in a glass capillary and a plastic tube. The reaction
solution was split to simultaneously carry out the reactions in a plastic PCR tube and
a glass capillary. The green fluoresce signal was normalized and the time shifted for
the plastic tube reaction to superimpose the curves. The reactions were carried out at
45°C.

flat in glass capillaries but it grows linearly in the tubes. The third difference is the

emergence of a side reaction (parasite) that produces a parasitic species with high

fluorescence in the presence of EvaGreen. The high intensity in fluoresnce indicates

the formation of a large amount of double-stranded DNA. Although such parasitic

reactions may occur in isothermal amplification schemes [57] and are not uncommon

in the PEN-DNA toolbox [35], they tend to appear after more than 500 minutes and do

not affect the initial growth kinetics.

These observations suggest that some of the enzymes have a different activity between

the capillaries and the tubes. This is probably not the case for pol as the growth rate

is similar in both situations (and we know that in our conditions pol is limiting the

growth compared to nick). We could hypothesize that either nick or exo is more active.

In the first case the autocatalyst turns over faster when it is saturated (on the plateau)

and thus dNTPs are consumed rapidly, the decay of intensity will be indicative of an

exhausting of the dNTPs.
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To test this hypothesis, we increased the concentration of dNTPs (Fig. 2.23A). We see

in this plot that all the curves have a similar decay. Since the decay rate seems to be

independent of dNTPs we conclude that our first hypothesis (increase of the activity

of nick consumes dNTPs) is not verified. However, the effect of dNTPs is in the initial

rate growth, which decreases by increasing dNTPs. Additionally, the starting time

is delayed by dNTPs. For example, at dNTPs = 0.8 mM the initial starting time was

delayed by around 50 minutes and by more than 100 minutes at dNTPs = 1.2 mM. The

addition of dNTPs changes the kinetics and does not prolong the reactions in glass

capillaries. To make sure this effect on the initial growth rate by the increase of dNTPs

was not only unique to the glass capillaries, we perform the same reactions in plastic

tubes (Fig. 2.23B). We also observed a delay in starting time and a decrease in the

initial rate growth.

Figure 2.23 – Effect of dNTPs on the reaction time in (A) glass capillaries and (B)
plastic tubes. The green fluoresce signal was divided by its value at time = 0 min. The
reactions were carried out at 45°C.

Since the results in Fig. 2.23 do not point to an increase of nick activity, a second

hypothesis is that an increase of the exo activity in the capillaries is coupled to strong

inhibition of exo in the presence of free template with phosphorothioates in the

5’ end. We proposed the following speculative interpretation. This could explain

the growth/plateau/decay observed temporal pattern as follows. At initial time the

concentration of single stranded T2 with phosphorothioates in the 5’ end is high and

exo is completely inhibited by binding to it. As the autocatalyst is produced it binds

to T2 and the concentration of the 5’ decreases, and thus exo is activated. At some
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point all exo are liberated from the 5’ end of T2 and it happens that degradation >

production, the grown state becomes unstable and the signal decays. At this point

most of the free 5’ ends belong to A2 and not to T2 and thus during the decay phase,

exo is not inhibited. Later A2 is so low that all the 5’ ends belong to T2, exo is inhibited

again and the system starts to grow again.

Although we could not test this second hypothesis fully, we tested it partially by

decreasing the concentration of T2 in the capillary (Fig. 2.24). From T2 = 100 nM to T2

= 50 nM the decay is strongly reduced. This seems to support our second hypothesis.

Figure 2.24 – Effect of T 2 on the reaction time in (A) glass capillaries and (B) plastic
tubes. The green fluoresce signal was divided by its value at time = 0 min. The
reactions were carried out at 45°C.

The inhibition of exo with high concentration of template is critical in this system.

This could be used in the future to engineer interesting non-linear dynamics. For our

purposes of having stable fronts in glass capillaries the lowest concentration of T2

seems better.

2.4.2 Fronts with templates diffusing freely in solution: Bistable net-

work 2

Here, the bistable network 2, previously discussed in Section 2.4.1, is spatialized

in the form of traveling fronts of activation species A2. Front propagations occur

with templates (with steptavidin attached) that diffuse freely in solution in a closed

microreactor, thus there is no hydrodynamic flow.
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A glass capillary was filled with the reaction buffer containing T2 = 100 nM and R2 =

10 nM, and the front propagation triggered with A2 = 400 nM. The kymograph8 of this

experiment in Fig. 2.25A shows the front of fluorescence due to EvaGreen traveling

along a glass capillary. The front propagates from left to right. The front velocity can

be extracted by a linear fit through the border between the low and high fluorescence

as indicated with the long white arrows. The fluorescence profile along the channel

for different times is plotted in Fig. 2.25C to give an idea of the propagation dynamics.

In the top kymograph in Fig. 2.25A the velocity is constant (46.2±2.3 µm min−1) for

about 10 mm before slowing down to 39.2±0.6 µm min−1. In a replicate experiment (ky-

mograph in Fig. 2.25B) the front velocity is 49.2±1.8 µm min−1, which is constant over

the whole experiment. The initial velocity in Fig. 2.25A and the velocity in Fig. 2.25B

are identical within experimental precision. However, we have no explanation for

the sudden change in the velocity in Fig. 2.25A. Another variation is that sometimes

we observe black regions appearing on the kymograph as the front progresses. We

can see these areas where reactions are not sustained in Fig. 2.25B. The appearing

time is around 350 minutes. This time agrees well with the duration time at which

reactions were sustained in well-mixed conditions in capillaries in Fig. 2.23. Generally,

the unsustained reaction areas do not seem to interfere with the front propagation.

Following the conclusion in Section 2.4.1.4 that reducing T2 may remove the decay

of fluorescence generated a front at a lower concentration of T2 (T2 = 50 nM and R2

= 20 nM). In this experiment, the velocity is 35.4±0.2 µm min−1 (Fig. 2.26). Self-start

occurred on the right hand side of the capillary around 500 min. We can compare

experiments from Figs. 2.25 and 2.26 by using Eq. (2.37), in which we can assume that

the effective diffusivity of A2 is the same in both experiments to get the ratio of rate

8From now on we will use a kymograph to represent the dynamics of the front. A kymograph
is a fluorescence vs time vs space 3D plot. At each time point the fluorescence profiles along the
longitudinal axes of the capillary are averaged long the transversal axis to make one horizontal line in
the kymograph. Time goes vertically from top to bottom and the distance along the longitudinal axis of
the capillary goes horizontally. See Fig. 4.32 for more details.
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2.4. Reactions with templates diffusing freely in solution

Figure 2.25 – Front propagation of A2 with templates (T2 = 100 nM, R2 = 10 nM)
diffusing freely in solution. Kymographs of the front propagation of A2 species. (A)
The front velocities are v I = 46.2±2.3 µm min−1 and v I I = 39.2±0.6 µm min−1. The
velocities are obtained by fitting linearly through the edge of low and high fluorescence
as the white arrows indicate. (B) Replicate experiment with v = 49.2±1.8 µm min−1. (C)
The front profiles were extracted by plotting the profile across space at different times
from the kymograph in (A). The fronts were triggered with 2 µL of reaction solution
containing A2 = 400 nM. The reactions were carried out at 45°C and streptavidin = 100
nM.

growth between these two experiments,

v2
1

v2
2

= R ′
1

R ′
2

= R ′
r ati o . (2.45)

With v1 = 47.7 µm min−1 and v2 = 35.4 µm min−1 we get R ′
r ati o = 1.8. This factor is in

good agreement with the factor 2 expected from a scaling R ′ ∼ T2 shown by Zadorin

et al. [29].
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Figure 2.26 – Front propagation of A2 with templates (T2 = 50 nM, R2 = 20 nM) dif-
fusing freely in solution. Kymograph of the EvaGreen fluorescence. We found v =
35.4±0.2 µm min−1. The front was triggered with 2 µL of reaction solution containing
A2 = 400 nM. The reactions were carried out at 45°C and streptavidin = 100 nM.

2.4.3 Fronts with templates diffusing freely in solution: Bistable net-

work 1

We also tested the bistable network 1 in front propagation experiments. The activation

template was fixed at T1 = 50 nM but R1 was varied. We first generate fronts at T1

= 50 nM and R1 = 10 nM. From the kymograph in Fig. 2.27A we compute a front

velocity of 40.5±0.2 µm min−1. This velocity remains constant until self-start occurs at

around 450 minutes. When we include additional dNTPs (0.4 mM) and keep the same

template concentrations (Fig. 2.27B), the front velocity decreases (32.7±0.2 µm min−1)

and self-start is eliminated. This observation is coherent with a small inhibition of

growth by dNTPs (as observed in Fig. 2.23 for template T2). In these two experiments

we expect the diffusivity of A1 to be identical but not the kinetics, thus, solving for the

rate constant in Eq. (2.37) and we get the fraction of rate growth between these two

experiments,

v2
1

v2
2

= R ′
1

R ′
2

. (2.46)

Inputting the values for velocities in Eq. (2.46) we get R ′
noE xtr a/R ′

d N T Ps = 1.5. Velocity

decreases by approximatelty 20% by adding additional dNTPs possibly because the

rate growth is 1.5 times larger in the absence of additional dNTPs = 0.4 mM. In Table 2.6

R’g r ow th = 0.04 min−1 for R1 = 8 nM so De f f = v2/(4R ′) = 104 µm2 min−1. When R1 is

increased at 0.4 mM of DNTPs from 10 to 20 nM (Fig. 2.28) the initial front velocity
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was reduced to 31.3±0.9 µm min−1. After 550 min the velocity is further reduced to

23.3±0.5 µm min−1.

Figure 2.27 – Front propagation of A1 with templates (T1 = 50 nM, R1 = 10 nM) dif-
fusing freely in solution. Kymograph of the EvaGreen fluorescence. (A) The con-
centration of dNTPs was, as usual, 0.4 mM. We found: v = 40.5±0.2 µm min−1. (B)
The concentration of dNTPs in the reaction solution was increased to 0.8 mM. We
found: v = 32.7±0.2 µm min−1. The fronts were triggered with 2 µL of reaction solution
containing A1 = 400 nM. The reactions were carried out at 45°C. The black lines are
bubbles that appeared and grew without disturbing the experiments.

Figure 2.28 – Front propagation of A1 with templates (T1 = 50 nM, R1 = 20 nM) dif-
fusing freely in solution. Kymograph of the EvaGreen fluorescence. We found: v I =
31.3±0.9 µm min−1 and v I I = 23.3±0.5 µm min−1. The concentration of dNTPs was,
as usual, 0.4 mM. The front was triggered with 2 µL of reaction solution containing A1

= 400 nM. The reactions were carried out at 45°C and streptavidin = 100 nM.

In Section 2.3.2 we saw that achieving a low De f f is critically dependent on a low

dissociation constant Kd which, as shown in Fig. 2.14, happens at lower temperature.

For this reason we reduced the temperature from 45°C to 38.4°C and measured the

velocity (Fig. 2.29). The front velocity remains constant (32.9±0.9 µm min−1) for the
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time of observation. Interestingly, the front velocity does not change significantly

even though the temperature is reduced by 6.6°C. This can probably be explained

by an increase of the rate growth R ′ and a decrease of the effective diffusivity of A1

by decreasing the temperature. For example, in Table 2.6 we saw that R ′ at R1 = 0

increased 1.1 fold by decreasing the temperature from 41.1°C to 38.4°C.

Figure 2.29 – Front propagation of A1 with templates (T1 = 50 nM, R1 = 20 nM) dif-
fusing freely in solution at 38.4°C. Kymograph of the EvaGreen fluorescence. The
front velocity is v = 32.9±0.9 µm min−1. The reaction solution contained 80 nM of
streptavidin. The front was triggered with 2 µL of reaction solution containing A1 =
400 nM.

In conclusion, we obtained here for the first time propagating fronts in a DNA bistable

network with templates freely diffusing in solution. We found experimental conditions

that suppress self-start (by increasing the repressor concentration) and that reduce

the decay of the growth at longer times (by reducing template concentration). In most

cases the velocity of the front was constant over time but in two occasions decreased

significantly (10 to 30%). This observation could indicate that they system takes

long to reach a steady state. Finally fronts were observed at 45 and 38.4°C without a

detectable change in velocity.

2.5 Reactions with templates immobilized in agarose beads

In this section we utilize crosslinked agarose beads to immobilize templates (see

the protocol in Appendix A.1). As we discussed in Section 2.2.3, these beads are

porous, hence allowing reactions to be carried out within the beads. We explore two

experimental settings: (i) closely packed agarose beads and (ii) a diluted dispersion of
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agarose beads in an agarose gel.

In the first case, the beads are as closely packed as possible in a glass capillary. We

have to point out that the packing does not cover the entire capillary but only about

half of the bottom of the capillary (see protocol 2 in Appendix A.2 for details), yet we

refer to this system as ’closely packed’9. First, we study the kinetics in the packed

beads. Subsequently, we study the front propagation and how this pertains to the

reduction of the diffusivity of the activation species.

In the second experimental setting, the concentration of the beads is much lower than

in the first case. The agarose beads can sediment within a few hours, so we embedded

them in an agarose gel. The agarose gel solidifies and fixes the beads spatially within

the microreactor (see representation in Fig. A.2, Appendix A.2). In this case we also

study first the kinetics followed by the front propagation dynamics.

2.5.1 Templates within packed agarose beads

We utilize the bistable network 2 with templates T2 and R2 immobilized within agarose

beads that are closely packed.

2.5.1.1 Growth kinetics within packed agarose beads

First, the autocatalytic growth of A2 in the absence of R2 is investigated. For this we

prepare a reaction solution containing T2 attached to the agarose beads (see protocol

in Appendix A.1) at half the desired concentration in the reaction buffer with/without

enzymes. We let the porous agarose beads soak in the solution with enzymes for

15 minutes; the solution is vortexed frequently during this time. The solution is

centrifuged to sediment the beads to the bottom, and half of the liquid removed using

9We did not quantify the impact of autocatalyst species diffusing freely in the upper part of the
capillary where beads are not present on the front propagation. However, since there are no autocatalyst
templates in this upper region of the capillary there is no growth of the autocatalyst species. We can
hypothesize that the contribution to the front propagation of the autocatalyst species in the region
without beads can be neglected since there is degradation of the autocatalyst species but no growth in
this region.
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a folded piece of absorbing paper. We illustrate this protocol in Fig. 2.30A, in which

the red arrows point to the air-liquid interface before being removed and after.

Figure 2.30 – Autocatalytic growth of A2 with templates either attached (T2) or not
attached (T2N ) to agarose beads. (A) Sample preparation of the packed agarose
beads: solutions are initially prepared at 50% (v/v) beads then liquid is removed
before reaction with a piece of folded paper. (B) Fluorescence profile of the growth
of A2 with either T2 = 100 nM or T2N = 100 nM. The symbols (-) and (+) mean that
agarose beads are absent and present, respectively. The reactions were carried out at
45°C and activated with A2 = 0.2 nM.

Table 2.7 – Rate growth constant R ′ in agarose packed beads. R ′s were extracted
from the data in Fig. 2.30.

Beads Template R ′ (min−1)
Beads T2 0.08
Beads T2N 0.17
No beads T2 0.19

The activation of A2 with T2 within the packed agarose beads is possible as demon-

strated by the black markers in Fig. 2.30B. To assay the effect of packing agarose beads

we repeat this protocol for the template that cannot be attached to the beads (T2N ). In

this case because templates are not attached they go in and out of the agarose beads.

The activation of A2 with T2N (blue markers in Fig. 2.30B) shows a faster sigmoidal

growth than with T2. To quantify this, we normalized the data and fitted an expo-

nential model to the data. And we obtained growth rate constant: R ′ = 0.08 min−1
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for T2 attached to the beads, and R ′ = 0.17 min−1 for T2N not attached to the beads.

The rate growth constant of the template not attached is about twice of that to the

template attached. The slower growth might be explained by arguing that templates

inside the beads are less accessible by the enzymes. Another hypothesis is that the

enzymes did not have enough time to diffuse into the beads tot reach a homogeneous

concentration during the pre-incubation time of 15 min. This is however unlikely.

Indeed, for a typical diffusivity of an enzyme of 50 µm2s−1 the diffusion timescale

occurs 30 µm beads in only 10s.

A second control experiment compares the growth kinetics on T2 in a solution with

no beads (Fig. 2.30B). The growth kinetics with T2 (R ′ = 0.19 min−1) without beads is

comparable to that of T2N (R ′ = 0.17 min−1) with beads. Growth with T2 in the absence

of the beads reaches a larger fluorescence shift. The smaller fluorescence is probably

due to light scattering since beads are highly packed.

Finally, we verified that R2 was functional in the packed beads (Fig. 2.31). Indeed,

self-start occurs at 280 minutes in the absence of the repressor template (R2), but it is

eliminated with R2 = 5 nM.

Figure 2.31 – Self-start with T2 = 100 nM attached to packed agarose beads is sup-
pressed with R2 = 5 nM. The reactions were carried out at 45°C.
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2.5.1.2 Front propagation with templates immobilized in packed agarose beads

We spatialized the system, as in Section 2.4.2, with both templates T2 and R2 attached

to the agarose beads and generated traveling fronts. Figure 2.32 shows the kymograph

of this experiment. Initially a front of low fluorescence propagates at a velocity of

27.4±1.5 µm min−1. The fluorescence of the front decreases as it propagates further

into the channel. Then, after 2 mm the velocity of this low intensity front decreases to

18.8±1.1 µm min−1 and is eventually caught up by the second front.

A second front with high fluorescence is triggered at time = 400 min. Below the original

kymograph in Fig. 2.32, we show a treated version using a fluorescence threshold to

facilitate the identification of the low and high intensity fronts. The high fluorescence

front has a velocity two times higher than the low intensity one (54.6±2.8 µm min−1)

and it remains constant throughout the length of the channel. We think that the low

fluorescence front corresponds to the propagation of A2 while the high intensity one

is due to the parasite.

Figure 2.32 – Front propagation of A2 with templates (T2 = 100 nM and R2 = 10 nM)
immobilized in agarose beads. Kymograph of the EvaGreen fluorescence. The low
fluorescence has two fronts with velocities of v I = 27.4±1.5 µm min−1 and v I I =
18.8±1.1 µm min−1, whereas the high fluorescence front velocity is 54.6±2.8 µm min−1.
Bottom kymograph is the top kymograph after thresholding. The front was triggered
with 2 µL of reaction solution containing A2 = 400 nM. The reaction was carried out at
45°C.

We repeated the previous experiment but increasing T2, from 100 nM to 200 nM, to

get a larger signal (Fig. 2.33). We again observed a low fluorescence front followed by a

high fluorescence one, however both fronts display this time a similar velocity 34 and
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37 µm min−1, respectively. The velocity increases to 34.0±2.7 µm min−1 by increasing

T2. The front eventually vanishes as the green fluorescence tends to decrease as the

front progresses. Again, a high fluorescence front appears at time = 500 min and

propagates at a constant velocity of 37.3±1.0 µm min−1.

Figure 2.33 – Front propagation of A2 with templates (T2 = 200 nM and R2 = 10 nM)
immobilized in agarose beads. Kymograph of the EvaGreen fluorescence. The low
fluorescence front velocity is v = 34.0±2.7 µm min−1. The high fluorescence front
velocity is 37.3±1.0 µm min−1. Bottom kymograph is the top kymograph after thresh-
olding. The front was triggered with 2 µL of reaction solution containing A2 = 400 nM.
The reaction was carried out at 45°C.

We can now to estimate the reduction of diffusion by comparing the velocities in

Figs. 2.25 and 2.32 and given that the reaction kinetics in beads are 2-fold faster with

templates free in solution or not attached to the beads,

R ′
packed v2

f r ee

R ′
f r ee v2

packed

= D f r ee

Dpacked
= ΓD , R ′

f r ee = 2R ′
packed , (2.47)

where ΓD is the ratio of how much the effective diffusion coefficient has been reduced.

We get only ΓD = 1.5. This result is significantly lower than what was achieved with

micelles (ΓD = 2.7) by Zadorin et al. [29] even though the templates are completely

immobilized. Although the packing bead strategy requires further investigation the

capacity of this system to reduce diffusion seems poor. To verify this result it would

be interesting to measure De f f in the absence of a traveling front, for example using

fluorescence recovery after photobleaching.
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It would be also interesting to performed these experiments at a lower temperature,

such as 38°C, to decrease Kd . At 45°C the Kd between A1 and T1 is 90 nM. Taking DT

in the beads equal to zero we can use Eq. (2.27) to estimate ΓD as

ΓD
D A

De f f (0)
= 2T0 +Kd

Kd
≈ 3. (2.48)

This is actually not so far from the obtained values of ΓD = 1.5. If the experiments were

to be performed at 38°C where Kd = 24 nM we expect ΓD = 9, which is an important

gain. This could be interesting in future studies. In any case, we were successful in

obtaining reproducible fronts in a particularly complex porous medium.

2.5.2 Templates immobilized in agarose beads in agarose gel

In this section templates are immobilized in the same crosslinked agarose beads, but

now these are diluted at 5% v/v in an agarose medium. The results were obtained in

collaboration with Olivier Languin, an undergraduate student that I supervised. First,

we study the growth kinetics, then in a similar manner as seen in the previous sections

we investigate the dynamics of front propagation.

2.5.2.1 Experimental system

Due to historical reasons [29] we do not use a bistable system as the one we have used

in the previous sections but merely an autocatalytic node. The DNA sequences are

given in Table 2.9. We use the same buffer as before, however the nicking enzyme is

Nt.Bst NBI instead of Nb.BsmI (Table 2.8). Agarose beads are used at 5% v/v in the

solution. Then, the final solution is assembled by mixing the master mix with either

a 4 g/L agarose solution gel or a water solution. The gel solidifies within minutes

avoiding the sedimentation of the beads.
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Table 2.8 – Enzyme concentration in the experiments of Section 2.5.2. The enzyme
concentrations are reported in dimensionless formats: poln = pol/pol0 with pol0 =
16 U/mL and nickn= nick/nick0 with nick0 = 80 U/mL. The concentrations listed here
are the final values in the reaction tube.

Enzyme Concentration
Bst large fragment DNA polymerase (pol) (NEB) 1
Nt.Bst NBI nicking enzyme (NEB) various concentrations

Table 2.9 – DNA sequences of the self-activation node used here. This node is com-
posed of an activation (α) species and an activation template (Tαα(P2)), which exists
in two versions: biotinylated (-bt) and nonbiotinylated. Phosphorothioate backbone
modifications are indicated by (*).

Name Template sequence 5’→3’
α TCGAGTCTGTT
Tαα(P2)T5-bt A*A*CAGACTCGAAACAGACTCGATTTTT-bt
Tαα(P2) A*A*CAGACTCGAAACAGACTCGA

2.5.2.2 Growth kinetics in a diluted dispersion of agarose beads

The system in this section is simply an activation node, its growth kinetics are known

to be first order [29], and they were studied in Chapter 1. First, we compare the

growth kinetics ofα over Tαα(P2)T5-bt and Tαα(P2) and extract a growth rate constant

(Fig. 2.34). We obtain a growth rate constant of R ′ = 0.13 min−1 identical for both

templates. This is somewhat expected since these two templates bear the same

replication sequence, however, chemical modifications, such as biotinylation, can

modify the kinetics in these DNA systems. In contrast the delay before growth is

significantly different and α grows later with Tαα(P2)T5-bt than with Tαα(P2).

We tested if the agarose medium influences the growth kinetics. To investigate this

we analyze the growth of α in the absence or presence of a 4 g/L agarose gel medium.

Figure 2.35 shows that the curves are superimposable in both media. However, the

growth activation started 110 minutes earlier in agarose. Before going into front

propagation experiments in agarose, we also determine the kinetics in the presence

of the agarose beads with the template that can be linked (Tαα(P2)A5-bt) to the beads

and with the one (Tαα(P2)) that cannot be linked (Fig. 2.36). The initial growth rate is
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Figure 2.34 – Growth kinetics of α with Tαα(P2)T5-bt and Tαα(P2). The natural
logarithm of the fluorescence shift was taken and the data linearly fitted. The fit
is the growth rate constant (R ′). The reactions were performed at 38°C, nickn = 3,
Tαα(P2)A5−bt or Tαα(P2) = 50 nM, and triggered with 1 nM α.

Figure 2.35 – Sigmoidal growth of α in agarose or water medium. The curve for no
agarose is shifted to superimpose the two curves. The activation was self-started. The
concentration of agarose was 4 g/L. The reactions were performed at 38°C, nickn = 3,
and Tαα(P2)A5−bt = 100 nM.

very similar for both templates, however, in the case of Tαα(P2)A5-bt the fluorescence

intensity is more than 40% higher. The negative control shows no growth, when the

solution with beads and templates is washed, since the template is not linked to the

beads. We obtained a rate growth constant R ′ for Tαα(P2) that was 10% larger than for

Tαα(P2)A5-bt (Table 2.10).
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Figure 2.36 – Growth kinetics of α in the presence of agarose beads in an agarose
gel. Templates Tαα(P2) cannot be attached to the agarose beads, so in a negative
control, which is indicated by the word wash, the solution with beads was washed
three times. The concentration of agarose gel was 4 g/L. The reactions were performed
at 38°C, 5 % v/v agarose beads, nickn = 4, and Tαα(P2)A5−bt or Tαα(P2) = 100 nM.

Table 2.10 – Rate growth constant R ′ in agarose beads in an agarose gel. R ′s were
extracted from the data in Fig. 2.36.

Beads Template R ′ (min−1)
Beads Tαα(P2) 0.101
Beads Tαα(P2)A5-bt 0.091

2.5.2.3 Front propagation in a diluted dispersion of agarose beads

We perform front experiments in which Tαα(P2)T5-bt templates are attached to

agarose beads as in Section 2.5.1.2, but here the beads are not packed. An aque-

ous reaction solution is prepared at 10% (to make a final 5%) v/v agarose beads using

a 2x master mix (Table 2.8) at 4°C, then this solution is added to a 8 g/L agarose so-

lution (at 50°C) to make a final 1x reaction solution. Before the gelification of the

resulting solution, it is introduced into polystyrene/parafilm microfluidic channels

(see Section 4.3.1).

Figure 2.37 shows the kymograph of an experiment following this protocol. Visible

vertical stripes in the kymograph come from the discrete distribution of the beads.

We calculate a front velocity of v = 18.3±0.1 µm min−1. Replicate experiments yield

velocities that vary around 15% from 15.9 to 18.8 µm min−1.
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Figure 2.37 – Front propagation of α with templates (Tαα(P2)A5 − bt = 100 nM)
immobilized in agarose beads within an agarose gel. Kymograph of the EvaGreen
fluorescence. The front velocity is v = 18.3±0.1 µm min−1. The white arrow points to
the self-start. The front was triggered with 1 µL of reaction solution containing α = 1
µM. The reaction was carried out at 38°C with 5 % v/v agarose beads, nickn = 4 and
Tαα(P2)A5−bt = 100 nM.

Several attempts were required to obtain valid experiments. This is because many

times fronts were self-triggered from the sides, i.e. the parafilm walls, of the channel.

We can see this in the Fig. 2.38, in which two time frames were taken to demonstrate

how the self-triggered fronts appear.

Figure 2.38 – Two time frames displaying a triggered front (grey arrows) and a self-
triggered front (white arrows). The frames were taken from an experiment similar to
the one presented in Fig. 2.37.

To compare and understand our results we perform similar front propagation experi-

ments with template Tαα(P2), which cannot be attached to the agarose beads since

this template does not bear a biotin modification. Figure 2.39 shows the front propa-

gation of α in the presence of agarose beads within a gel agarose. Initially, multiple

fronts developed colliding with each other then becoming one front, so we measured

the velocity once the front traveled uniformly as one front. The front velocity in this
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Figure 2.39 – Front propagation ofαwith templates (Tαα(P2) = 100 nM) in the pres-
ence of agarose beads within an agarose gel. Kymograph of the EvaGreen fluores-
cence. The front velocity is v = 37.7±1.2 µm min−1. The reaction solution contained
Tαα(P2) = 100 nM and 5 % v/v agarose beads. The front was triggered with 1 µL of
reaction solution containing α = 1 µM. The reaction was carried out at 38°C with nickn

= 4.

experiment is v = 37.7±1.2 µm min−1, which is about twice than the one calculated

when Tαα(P2)A5−bt is attached to the beads.

To compare our results from Figs. 2.37 and 2.39 we use again Eq. (2.37) and the rate

growth values from Table 2.10 for each respective condition. The diffusivity ratio is

thus given by,

ΓD = D f r ee

Dat t ached
=

v2
f r ee R ′

at t ached

v2
at t ached R ′

f r ee

. (2.49)

Thus, using Eq. (2.49) we obtained ΓD = 4.3±0.3. From replicate experiments, Dr ati o

varied between 3.7-4.3. We obtained more satisfactory results when the beads are not

packed. However, we must point out that the reaction conditions were different, not

only we used different sequences but the temperature was also lower. The dissociation

constant for Tαα(P2)T5-bt:α (Kd ∼ 3 nM at 38°C) is lower than for the system used in

Section 2.5.1 (Kd ∼ 80 nM at 45°C).
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Figure 2.40 – Front propagation of α with templates (Tαα(P2)) diffusing freely in
the presence of agarose beads in an aqueous solution. Kymograph of the EvaGreen
fluorescence. The front velocity is v = 37.5±0.2 µm min−1. The front was triggered
with 1 µL of reaction solution containing α = 1 µM. The reaction was carried out at
38°C with 5 % v/v agarose beads, nickn = 4 and Tαα(P2) = 100 nM.

2.6 Reactions with templates attached to magnetic beads

In this study we use again the bistable network 1 with templates T1 and R1 attached to

200 nm beads. We first study the kinetics, then we generate propagating fronts and

measure their velocities.

2.6.1 Growth kinetics with templates attached to magnetic beads

We attached the templates to the surface of 200 nm magnetic beads (ademtech bio-

Adembeads strept plus) using a binding and washing (B&W) buffer (2 M NaCl, TE 10

mM and 0.2% tween). The templates T1 and R1 were not attached to the same bead,

so we created repressor beads and activation beads. The magnetic beads binding sites

were never saturated since we covered only 1/3 of the sites with templates. The final

concentration of beads was 0.02% v/v of beads/solution for 100 nM of templates.

The kinetics of the autocatalytic growth of A1 with the templates attached to the mag-

netic beads were assayed in glass capillaries (Fig. 2.41). Both curves grow sigmoidally

reaching a maximum that then decreases. We extracted the rate growth constant R ′

to use it in the calculation of the effective diffusivity of A1 (Table 2.11). We list these

values in the next subsection to group them with the front velocities. The R ′ for T1 =

100 nM in Fig. 2.41 is 1.16 fold larger than for T1 = 80 nM.
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Figure 2.41 – Kinetics with templates attached to magnetic beads in glass capillar-
ies. T1 and dNTPs were varied but the repressor template R1 was fixed to 20 nM. The
reactions were performed at 45 °C and triggered with A1 = 4 nM.

2.6.2 Front propagation with templates attached to magnetic beads

We generated a propagating front in which the concentration of templates was T1

= 100 nM and R1 = 20 nM (Fig. 2.42). The front velocity was constant and equal to

32.4±0.7 µm min−1.

Figure 2.42 – Front propagation of A1 with templates (T1 = 100 nM and R1 = 20 nM)
attached to magnetic beads. Kymograph of the EvaGreen fluorescence. The front
velocity is v = 32.4±0.7 µm min−1. The front was triggered with 2 µL of a reaction
solution containing A1 = 400 nM. The reaction was carried out at 45°C with 0.8 mM
dNTPs.
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Figure 2.43 shows the kymograph of a similar experiment in which the activation

template is reduced to T1 = 80 nM, but the repressor template concentration remains

at R1 = 20 nM. We obtain a similar front velocity (33.4±0.6 µm min−1) to that at T1 =

100 nM even though T1 = 80 nM. For an unknown reason the front started after a delay

of 300 minutes.

Figure 2.43 – Front propagation of A1 with templates (T1 = 80 nM and R1 = 20 nM)
attached to magnetic beads. Kymograph of the EvaGreen fluorescence. The front
velocity is v = 33.4±0.6 µm min−1. The front was triggered with 2 µL of a reaction
solution containing A1 = 400 nM. The reaction was carried out at 45°C.

We summarize the results from Figs. 2.42 and 2.43 in Table 2.11. Additionally we

estimated the values of De f f (0) and the predicted velocity using this and the mea-

sured R ′(0). First, we determine the validity of the model, v = 2[R ′(0)De f f (0)]1/2 by

comparing the model velocity (vmod ) to the measured velocity (vexp ). The model

tends to overestimate the velocity between 10-15%, which is reasonable since Zadorin

et al. [29] reported similar variations.

To get an estimate of the efficiency of our strategy we compare the values of De f f (0)

with the predicted value when the templates are not attached (De f f (0) ∼ 12400

µm2min−1). The diffusion of A1 is only reduced by up to = 2.4 fold. This strategy

does not yield strong diffusion control despite low diffusivity of the magnetic beads.

We believe this is again due to the much high dissociation constant (Kd ∼ 80 nM at

45°C) of the network used here whereas Zadorin et al. [29] benefit from the lower Kd

(∼ 3 nM at 38°C).
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Table 2.11 – Data on fronts of A1 with templates attached to magnetic beads. The
symbols (†) and (‡) indicate the experiments contained, respectively, dNTPs = 0.4
mM and 0.8 mM. vexp and vmod , respectively, stand for experimentally measured

and predicted from the model. vmod is calculated using: 2
√

De f f (0)R ′(0). De f f (0) is

estimated at the corresponding conditions using Eq. (2.27) at: Kd = 80 nM, D A = 16000
µm2min−1 and DT = 600 µm2min−1. Templates not attached to the magnetic beads
yield De f f (0) ∼ 12430 µm2min−1 using DT =11000 µm2min−1 [29].

Conditions vexp vmod De f f (0) R ′(0)
(Templates in nM) (µm min−1) (µm min−1) (µm2min−1) (min−1)
T1 = 100, R1 = 20, ‡ 32.4 37.0 5000 0.069
T1 = 80, R1 = 20, † 33.4 37.1 5730 0.059

Working at 38.4°C the bistability is maintained (as seen in Fig. 2.19) and Kd ∼ 24 nM

Fig. 2.14. However we were unable to generate fronts in these conditions. Only few at-

tempts were done due to time limitations. Inhomogeneous and very low fluorescence

signals were obtained. It can be interesting that future experiments are performed at

intermediate temperatures from 38.4°C to 42°C.

2.7 Conclusions and perspectives

In this chapter we used 200 nm magnetic nanoparticles and 34 µm agarose beads to

immobilized DNA-PEN templates in order to reduce the effective diffusion coefficient

of an activator. We studied the growth kinetics and front propagation dynamics for a

bistable network in packed agarose beads (case 1) and diluted magnetic beads (case 2)

and for an autocatalytic network in diluted agarose beads (case 3). Finding the correct

experimental conditions to obtain stable propagating fronts for the bistable network

in both situations was time-consuming. Our results yielded a reduction factor in the

effective diffusivity of the activation species of: 1.5, 2.4, 4.3 for the cases 1, 2 and 3

respectively. Clearly the propagation of fronts in these complex porous media requires

further investigation.

To get further insight, the determination of diffusivities in these media for a non-

reactive system (only DNA complexation without enzymes) appears as a critical step.

Furthermore, Kd , the dissociation constant between the active species and templates
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with the hydrodynamic drag, appears as a critical parameter. In the future, decoupling

the control of diffusion from the reactive templates seems an attractive solution, for

example by designing a ligand of the autocatalyst that does not act as a template and

can be used a a larger concentration.
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3 Material morphogenesis:

self-assembly of beads directed by

DNA patterns

In Chapter 2 we found the conditions for coupling a biochemical system capable of

generating spatiotemporal patterns, the PEN-DNA toolbox, with a variety of material

supports. These supports were both physico-chemically diverse and spanned two

orders of magnitude in size. Our goal was then that these material supports influence

the chemical patterns via a reduction of diffusion. We now focus on the complemen-

tary objective: that chemical patterns determine the shape of a material. We have

called this approach material morphogenesis [58] by analogy to embryo morphogen-

esis where chemical pattern formation in a field of pluripotent cells results in the

structuration of this initially homogeneous material. As a proof of principle we have

chosen to use DNA-decorated colloids as their capacity to aggregate in the presence of

complementary strands is well described [59]. In particular, we demonstrate that DNA

patterns can control the conditional aggregation of magnetic beads in two situations:

(i) a traveling front of Ai that directs a front of aggregating beads and (ii) a stationary

front of Ai that induces the assembly of a fixed pattern of aggregated beads.

The work of this chapter is the result of three contributions: (i) my work on front

propagation with templates attached to magnetic beads described in Chapter 2, (ii) the

work of Vadim Dilhas, a master student in our group, that I contributed to mentor for

controlling the aggregation of beads and (iii) the work of Anton Zadorin, a postdoctoral

researcher in our group, to generate stationary DNA patterns. Therefore, this chapter
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is shorter than the other experimental chapters. This work has been submitted and

the preprint appears in Appendix B.

3.1 Experimental system

In contrast with Chapter 2 we have used 1 µm and not 200 nm diameter paramagnetic

beads (except on Section 3.3.2). A similar protocol, with slight variations, to the one

reported by Leunissen et al. [60] was used to prepare DNA-functionalized beads. It

took however several months to achieve a stable dispersion of beads that did not

aggregate non-specifically. The use of pluronic, a hydrophilic and neutral polymer

that adsorbs on the surface of the beads, solves most of these issues. We decorated 1

µm diameter, streptavidin-coated (5 µM biotin binding sites and 10 mg/mL of beads)

Dynabeads (MyOne Streptavidin C1) with the biotinylated DNA. Two types of beads

(B1 and B2) were created by changing the sequence attached to the bead (Fig. 3.1). We

have listed the DNA sequences in Table 3.1.

Table 3.1 – DNA sequences for the functionalization of beads capable of material
morphogenesis. B1 and B2 are biotinylated (bt). Phosphorothioate backbone modifi-
cations are indicated by an asterisk (*).

Name Template sequence 5’→3’
B1 G*G*A*TGAAGATGAGCATTACTTTCCGTCCCGAGAGACCTAACTGACACGC

... TTCCCATCGCTA-bt
B2 bt-AGCATTACTTTCCGTCCCGAGAGACCTAACTGACACGCTTCCCATCGCT

... AGGATGAAGATG
S T*A*G*CGATGGGAAGCGTGTCAGTTAGGTCTCTCGGGACGGAAAGTAATGC
TL T*T*G*GATGAAGATGGGATGAAGATGGAATG’CGATCCTGAATG
L CATCTTCATCCCATCTTCATCCAA

Complexes Bi :S are linked to the beads. The two types of beads are assembled in the

presence of a linker strand L. The linker has 2 thymine extra bases (drawn in red in

Fig. 3.1) on its 3’ end to prevent polymerase extension and the subsequent strand

displacement of S on B1 beads by the polymerase. The detailed protocol to assemble

the two bead types is as follows:
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Figure 3.1 – Scheme of DNA-decorated magnetic beads capable of aggregation in
the presence of a linker L. Two types of beads are created depending on the sequence
used for the functionalization of the beads. Biotinylated templates B1 and B2 hybridize
to S to form a rigid DNA complex, which is linked to streptavidin coated beads of 1
µm in diameter. A linker strand L assembles the two type of beads by hybridization to
the sticky ends in the Bi :S complexes.

1. The solutions containing the Bi :S complexes are prepared at a final

concentration of 8 µM in the suspension buffer (10 mM phosphate, 50

mM NaCl and 0.1% w/w Pluronic surfactant F127, Sigma-Aldrich).

2. The beads are rinsed 3 times in the suspension buffer and split into two

aliquots.

3. The functionalization of the beads is done by removing the bead su-

pernatant and adding the corresponding Bi :S complexes solution to each

bead aliquot. The resulting solutions are incubated at room temperature

for 30 min under gentle mixing. The final concentration of the beads is 10

mg/mL.

4. The two bead solutions are mixed and rinsed 3 times in the suspension

buffer followed by an incubation period of 30 minutes at 55°C for 30 min.

Afterward, the solution is rinsed again 3 times to eliminate the non-grafted

strands. The solution is stored at 4°C.
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To carry out an experiment, the master solution is assembled as in Section 2.3.3.

However, before adding the beads to the master solution, the bead solution is pre-

heated at 55°C for 30 min, then added at 0.5 mg/mL of beads to the final reaction

mix.

The bistable network topology that we have presented in Fig. 2.11 was modified to

include the linear production of the linker (L) (Fig. 3.2). This way the aggregation of

the beads is only started by triggering first the production of the activation species A.

Here we use the sequences of the bistable network 1 (Table 3.2).

Figure 3.2 – Network topology of a bistable system with linear production of a linker
(L). The production of the linker L needs the template that takes species A as an input
and produces L as the output.

Table 3.2 – DNA sequences of the bistable network used here: autocatalytic species
A1, autocatalytic template T1, and repressor template R1. Phosphorothioate backbone
modifications are indicated by an asterisk (*). T1 has dye CY3.5 on its 5’ end.

Network Name Template sequence 5’→3’
Bistable A1 CATTCAGGATCG
network 1 T1 CY3.5-C*T*C*G*TCAGAATGCTCGTCAGAA

R1 T*T*T*T*TCGATCCTGAATG

3.2 Propagating front of aggregated beads

In this section we present a propagating front of aggregated beads directed by a front

of DNA. First, a DNA front is triggered, as in Fig. 2.25 of Chapter 2, in the presence of

the unaggregated beads (Fig. 3.3). The traveling front of A1 is followed by a front of L

(yellow arrows), which then induces the aggregation of the beads. Initially, the beads
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are able to move by Brownian motion and are homogeneously distributed. As the

front propagates it produces the linker and the beads aggregate into heavy, immobile

clusters, which we can see in the zoom area at the bottom of Fig. 3.3. The front of

aggregating beads travels at a velocity of 30± 3 µm min−1.

Figure 3.3 – A propagating front of beads is induced by a front of DNA. Yellow arrows
indicate the direction of the propagation of the front. Green squares are zoom areas.
The front velocity was 30± 3 µm min−1. This experiment was performed at 45°C at T1

= 25 nM, R1 = 10 nM, TL = 50 nM and triggered with A1(t=0) = 100 nM.

This demonstrates that patterns generated by the PEN-DNA toolbox systems can be

coupled to materials leading to directed assembling, or material morphogenesis. We

use this interesting conclusion in Section 3.4 to transfer a stationary DNA pattern

to beads, but first we will cover in Section 3.3 how the stationary DNA patterns are

generated and how we can use again the beads as in Chapter 2 to control a stationary

pattern.

3.3 DNA stationary patterns based on positional infor-

mation

Before going into the experimental part, we will introduce briefly how to engineer sta-

tionary spatial DNA patterns using a positional information approach. The resulting

pattern is composed of two chemically-distinct regions separated by a sharp border,
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which we will refer in this chapter as a Polish flag. Subsequently, we will use the low

diffusivity of 200 nm beads for the generation of sharp gradients of templates attached

to these beads. Finally, the sharp gradients of repressor template (R1) attached to

magnetic beads are used in the generation of a Polish flag of species A1.

3.3.1 Introduction to the mechanism of positional information

As we have seen in the Referencesch:intro, one of the most influential ideas in embry-

onic development is Lewis Wolpert’s positional information (PI) [4]. In this mecha-

nism, a pre-pattern composed of a morphogen concentration gradually increasing

across space is differentiated into chemically distinct zones with sharp borders, a

situation that Wolpert named the French flag problem (Fig. 3.4). This differentiation is

based simply on morphogen differences in concentration. The growth of a first chem-

ical species in a zone can be inhibited above or below a concentration of morphogen,

thus allowing the activation of a second species in this region. This process occurs in

other zones resulting a pattern such as the French flag presented in Fig. 3.4.

We use the principle of positional information patterning to generate a spatial DNA

pattern. Initially, a gradient of morphogen (repressor template) is generated along the

longitudinal axis of the capillary (Figs. 3.5 and 3.6). Also, a homogeneous distribution

of the activation species A1 is at low concentration everywhere in the channel. This

is very different to the fronts, in which A1 is initially present only as a Heaviside

initial condition that triggers the propagation of the front. We see in Fig. 3.5 that the

repressor gradient is constant over time, but the concentration of A1 changes from

the initial to the final state. The autocatalytic production of A1 is triggered by the

initial presence of A1. And because we use a bistable network, A1 only grows below a

threshold concentration of the repressor template. The resulting Polish flag pattern is

a region of species A1 and a second region without it.
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Figure 3.4 – French flag pattern. A morphogen gradient is interpreted into three
chemically distinct zones, thus giving rise to a French flag pattern. There is a threshold
concentration at which the growth of a chemical species occurs while repressing the
other two chemical species. This figure was taken from [10].

Figure 3.5 – A Polish flag pattern emerges by the positional information mecha-
nism. Species A grows only below a threshold concentration of the repressor, thus
resulting in a two-region pattern. The final pattern is stable over time.

3.3.2 Generating sharp gradients of DNA-decorated beads

Anton Zadorin was the first one to obtain a Polish flag pattern in our group. He

generated the shallow gradient by mixing inside the capillary by Taylor dispersion
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a solution containing no repressor, coming from one side, and a solution with high

repressor concentration coming from the other side. For the gradient to be stationary

the duration of the experiment (20 h) he had to use 5 cm long capillaries. Our objective

here was to show that 200 nm beads can be used to create sharp gradients of repressor

template. But, first we will describe how the gradients are manually produced.

We prepare a solution containing 0.4 µM repressor template R1 and a second solution

without the represssor. Both solutions contain the buffer, the dNTPs, A1, T1 and

the three enzymes: pol, nick and exo. We first fill completely a capillary using a

micropipette and a custom-made connector with the solution without the repressor.

Then, a pipette is inserted being in the ’push’ position into the connector. The other

end of the capillary is dipped into the reaction solution containing the repressor

template. We pump 10 times 4 µL of liquid in and out of the capillary to generate a

gradient by Taylor dispersion. In Fig. 3.6 we show an image of gradients of methylene

blue dye as a demonstration. We see the high concentration of methylene blue dye on

the right hand side and the low concentration on the left hand side.

Figure 3.6 – Gradients of methylene blue dye generated by Taylor dispersion. The
gradients are created by pipetting back and forth a constant volume of dye. Subse-
quently, each extremity of the capillary is sealed with a droplet of glue that serves
also to attach it to a glass slide. The glass capillaries have inside 50 ×4×0.2 mm3

dimensions.

We create two gradients with templates: (i) attached to 200 nm beads and (ii) not

attached. Templates are attached at half the binding capacity of the beads (bead prop-

erties in Table 2.2) following a similar protocol to the one described in Section 2.6.1.

The 0.4 µM template-bead solution results in a concentration of 0.025% v/v of beads/-

solution. The gradients were done using the same pipetting protocol, nonetheless the

gradient with templates attached to the beads is sharper than the one without beads
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(Fig. 3.7). The gradient with templates attached to the beads sharpens quickly at 32

mm. Whereas, the sharpening of the gradient of templates not attached is slower and

starts at 25 mm. To quantify the sharpness of the gradients we fitted an exponential to

the gradients, and we obtained a characteristic length of 2.5 mm for the case with the

templates attached and 15 mm for not attached.

Figure 3.7 – Gradients with templates attached (+beads) or not attached (-beads)
to 200 nm beads. The red fluorescence shift comes from the fluorophore (Cy3.5)
modification on the 5’ end of the templates.

When we are creating the gradients by ’Taylor dispersion’1 the smearing out of the high

concentration of repressor into the lower concentration depends on the diffusivity of

the templates. Thus, we are able to create sharper gradients of repressor template by

attaching them to magnetic beads, which have a diffusion coefficient of around 18

fold smaller than the templates alone.

1The Taylor dispersion concerns the spreading of a solute A in a solution flowing in a capillary, typi-
cally with a Poiseuille (quadratic) velocity profile across the transversed direction of the capillary. The
effective dispersion coefficient is given by Ddi sp = D A +DTaylor where D A is the Brownian diffusivity

of species A and DTayl or ∼
1

D A
. Our group has thoroughly characterized the spreading of a free DNA

template during the generation of the morphogen gradient and it follows a Taylor dispersion mech-
anism. The fact that the DNA templates attached to beads with 18-fold smaller Brownian diffusivity
generate a sharp gradient implies that they do not follow a Taylor mechanism, thus the quotes.
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3.3.3 Stationary patterns with a gradient of morphogen attached to

beads

The work of Zadorin in our group demonstrated that French and Polish flag patterns

can be generated with DNA repressor templates that diffuse freely in solution (see

Appendix B for details). And, we just saw that we can create sharp gradients due

to the low diffusivity of the 200 nm beads. Here, we combine both expertises to

generate a Polish flag pattern with repressor templates attached to these beads. We use

biotinylated templates so that they can be attached to the beads (listed in Table 2.3)

instead of the ones listed in this chapter (Table 3.2). Two reaction solutions are

prepared as indicated in Section 2.3.3. One solution contains 400 nM of R1 linked to

the beads and the other contains no R1. Then, we create a morphogen gradient of R1

along the capillary, which is subsequently closed. Figure 3.8A shows the kymograph

of the emergence of a Polish flag pattern following our protocol. Initially, we see

that a front of A1 propagates from left to right. However, the front velocity decreases

as it approaches higher concentrations of the repressor template until it stops at a

threshold concentration of R1. Once the stationary pattern develops, it is stable for

at least 3 hours. The fluorescence profile of the stable pattern in Figure 3.8B shows

the sharp border between a region of A1 and a region without A1. For this particular

experiment we did not monitor the gradient profile, but because we followed the same

protocol as in Fig. 3.7 we expect a sharp gradient.

For unknown reasons, our control experiment seeking to generate a Polish flag pattern

in the same conditions in the 22 mm long capillary but without the beads did not work.

However, we can compare our experiment of the repressor template attached to the

beads with a Polish flag generated in a 50 mm long capillary without beads (Fig. 3.9).

The stationary fluorescence profile with beads is 2 fold sharper than the one without

beads. This probably comes from the sharper gradient in the case of the experiment

with beads. However, it needs to be studied further how the gradients affect the final

pattern.
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Figure 3.8 – Polish flag pattern using a gradient of repressor template linked to
magnetic beads. (A) Kymograph of EvaGreen fluorescence. We thresholded the zoom
region to emphasize the pattern. (B) Green fluorescence shift spatial profile at 600
min. The repressor template R1 template was varied between 0 nM and 400 nM. White
crosses point to fluoresce increase coming from around the edges of the capillary
channel, so we do not attribute this to DNA fluorescence. The reaction was performed
at 45°C, T1 = 25 nM, A1(t=0) = 1 nM with a repressor template of 0 to 400 nM. Enzyme
concentrations were as listed in Table 2.5.

Figure 3.9 – Fluorescence profiles of Polish flag patterns with repressor templates
attached and not attached to 200 nm beads. The reactions were performed at 45°C,
T1 = 25 nM, A1(t=0) = 1 nM with a repressor template gradient of 0 to 400 nM. The
enzyme concentrations were as listed in Table 2.5.
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The experiment in Fig. 3.9 is a preliminary result that confirms that 200 nm magnetic

beads are compatible with DNA stationary patterns and that sharp gradients can also

be used to generate a Polish flag pattern. However, even without a sharp gradient a

Polish flag pattern develops, as shown in the recent work of our group (Appendix B),

in which steady-state patterns based on positional information, including a French

flag pattern, were observed for the first time in a chemical system.

3.4 Stationary front of aggregated beads

Here, we transfer a Polish flag pattern of DNA into a Polish flag pattern of aggregated

beads. As opposed to Section 3.3.3 the repressor template is not linked to the beads, so

we create a gradient of R1 less sharp, to focus on material morphogenesis instead. The

beads that aggregate in this section are the same we presented in Section 3.2. As in

Section 3.2 the beads B1 and B2 are initially homogeneously dispersed in the capillary.

As in Section 3.3.1 a bistable network is present in the capillary with a gradient of R1

along the capillary. As in Section 3.2 the bistable network produces the linker L that

aggregates the beads (Fig. 3.1).

We show in Fig. 3.10A a brightfield image of the central part of the capillary after 40 h

of the experiment showing the materialization of the Polish flag. On the left side of the

image the beads are aggregated, but not on the right side. We observe on the left hand

side that the beads are farther from each other because they have clustered into larger

aggregates. The level of aggregation is quantified by determining the average size of

the aggregates (Fig. 3.10B). The aggregated bead clusters were between 250-400 µm2

in size. We see in the zoom in Fig. 3.10C the aggregated and non-aggregated beads. On

the right hand side of the image the beads formed much smaller aggregates of about

50 µm2 in size. These small aggregates could be due to non-specific assembly of the

beads in the absence of L or due to a leak on the reaction producing L. Interestingly,

the pattern of beads was stable for up to a month at room temperature (Fig. 3.11).
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Figure 3.10 – Polish flag pattern of aggregated beads. (A) Brightfield image at the
center of the capillary channel. (B) Average size of particle aggregates (blue disks,
left axis) and initial concentration of R1 (yellow line, right axis) along the channel.
The colored squares indicate the positions at which the brighfield images in (C) were
recorded. The dashed lines correspond to the position where (A) was recorded. The
reaction was performed at 45°C, T1 = 25 nM, A1(t=0) = 1 nM. Enzyme concentrations
were as listed in Table 2.5.

Figure 3.11 – A Polish flag pattern of aggregated beads is stable for a month. The
aggregated beads are seen on the left hand side of the capillary. The photos were taken
in brightfield with a Nikon D600 camera equipped with a 35 mm lens.
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3.5 Conclusions and perspectives

Our efforts in controlling the interaction of DNA strands with microparticles for

controlling diffusion (Chapter 2) found here an application in material morphogenesis.

We have demonstrated that DNA concentration patterns can be transferred into

patterns of bead aggregation. This is shown in two different cases: a traveling and a

stationary front. This DNA model of morphogenesis mimics two key stages of embryo

development: (i) the generation of chemical patterns and (ii) the transfer of patterns

into a material (the initial homogeneous development of beads can be seen as an

embryo mode of pluripotent cells ). We foresee the continuation of this research to

create more complex morphogenetic materials . The rational design of DNA patterns

together with responsive materials are an opportunity to explore the capabilities of

material morphogenesis.

Furthermore, in the case of the Polish flag patterns the influence of the sharpness

of the gradients on the dynamics and shape of the patterns should be studied. For

instance, a stable pattern can be perturbed externally with a magnetic field if the

templates are attached to magnetic beads. This can be an interesting contribution for

understanding the physical aspects of pattern formation. In the positional information

mechanism the initial and boundary conditions impact greatly the final pattern, as it

happens in many other patterning mechanisms except for Turing patterns. In the next

chapter, our goal will be to develop a method compatible with the PEN-DNA toolbox

to control the patterning boundary conditions.
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4 Propagation of DNA waves in

microreactors of tailored geometry

After attempting to control network topology in Chapter 1 and diffusion in Chapter 2,

and coupling of reaction-diffusion patterns with materials in Chapter 3, here we

address the problem of imposing the boundary conditions over a DNA-based reaction-

diffusion system. More precisely, we developed a microfluidic technique to study the

propagation of DNA waves in microreactors with controlled geometry. As an example

we investigated the dynamics of propagation of a modified Predator-Prey network [32].

This network consisted in the autocatalytic replication of a prey species subsequently

consumed by an autocatalytic predator reaction. In a microreactor with spatially

homogeneous concentrations of both species, the network produced a concentration

pulse of preys followed by a sigmoidal growth of predators. We quantified its kinetics as

a function of the concentration of polymerase (pol) and nicking (nick) enzymes and of

predator. These reactions occurred at 44°C and to bring them into microfluidic devices

we needed a technology that reduced evaporation. We tested three technologies.

PDMS devices were compatible with our reaction, however, evaporation remained too

high despite our efforts in reducing it. Microfluidic stickers made of photocurable glue

were, alike PDMS devices, optically transparent and capable of replicating submicron

size features but, in addition, were less porous and thus evaporation was strongly

reduced. We also explored a low-cost fabrication method that consisted in embedding

pre-cut parafilm channels between two polystyrene (or glass) slides. Finally, we

studied wave propagation in these devices. In straight channels, we observed that
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the relative velocity of the pursuing predator wave compared with the velocity of the

evading prey depended on the state of the propagation dynamics and on the material

of the channel. To test the capacity of our microfluidic technique to investigate

geometry-related phenomena we studied two cases: front propagation along a 90° turn

and computing the optimal path in a maze. Moreover, during this work, an alternative

microfluidic method to control the initial condition of the wave was developed using

PDMS valves. In summary, we have explored microfluidic tools compatible with the

investigation of DNA-based reaction-diffusion systems. Although evaporation is still a

challenge, we believe that this work allows the control of geometry in such systems.

This work was published in J. Phys. Chem. B (Appendix C).

4.1 State of the art

Living cells must be capable of sensing their dimensions by continuously mapping

their surroundings to adapt to physical constraints. This sensing of space needs a

molecular ruler for decision making. Such a molecular ruler would involve trans-

portation of molecules across cells, often at much larger distances than that of the

size of molecules. Diffusion alone only drives chemical processes into homogeneity,

hence the emergence of spatiotemporal organization requires also locally interacting

out-of-equilibrium processes [8]. Reaction-diffusion (RD) processes could act as these

molecular rulers and programs because they have an intrinsic characteristic length

(Lc ), which is given by the diffusion coefficient of molecules (D) and their reactivity

(k): Lc = (D/k)(1/2). Traveling waves are RD processes that can transmit chemical

information across space within cells and operate in an out-of-equilibrium manner.

Some biological examples of the functionality of traveling waves are: calcium waves

[61, 62] that are involved in the activation of cellular processes, Min CDE protein waves

[63] that oscillate from pole to pole in E. coli to determine the division site, or traveling

waves of cyclic AMP [64] in cell-to-cell communication in the amoebae Dictyostelium

discoideum [65]. These traveling waves propagate within the boundary-limited and

crowded intracellular world in the living cell. However, due to the complexity of living

systems, it is experimentally challenging to study the effect of geometry on the spa-
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tiotemporal organization of chemical waves in vivo. To circumvent this problem, wave

propagation studies have been performed under controlled conditions in artificial

systems.

In this section, we review several works that have studied the effect of geometry on

the propagation dynamics of traveling waves. First, we review the effects of curvature

on Belousov-Zhabotinsky (BZ) waves [15]. Second, we will give examples in which

enclosures give rise to new spatiotemporal patterns and other cases where physical

obstacles impact the original pattern. We focus on the propagation of chemical waves

and how they react to lateral and two-dimensional geometrical constraints. Finally,

we emphasize the use of microfluidic technology to control initial and boundary

conditions.

4.1.1 Effect of curvature on the wave propagation velocity

The first experimental approach to study the effect of curvature on a BZ chemical wave

was done by Foerster et al. [66]. The temporal evolution of the collision of circular

waves propagating from opposite directions was recorded. The collisions formed

cusplike structures of high curvature, for which velocities were measured (Fig. 4.1).

The normal velocity, v⊥, depended on the front curvature, γ, according to an eikonal

relation,

v⊥ = v0 +γD, (4.1)

where v0 is the planar wave velocity and D is the diffusivity. From the term γD in

Eq. (4.1) we see that the effect of curvature is relevant only in the length scales of the

order of a diffusion length [67]. Indeed, the normal velocities of the chemical waves

increased linearly with the curvature (Fig. 4.1B). These experiments validated Eq. (4.1)

since D , the slope of the linear regression, was in good agreement with the expected

diffusion coefficient of the propagator species.
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Figure 4.1 – The normal velocity of a traveling wave depends on its curvature. (A)
Cusplike structures put into a montage of successive contour maps with time increas-
ing in the direction of black arrows. The time of the entire sequence is 5 s. The spatial
resolution is 4.5 µm per pixel. (B) The normal velocity and curvature were determined
from the cusplike structures produced during the collision of circular BZ-chemical
waves. The computed slope of the linear fit is 1996 µm2/s with an intercept of 95
µm/s. The slope is the calculated diffusion coefficient of HBrO2, and this value can be
compared to the estimated value (1800 µm2/s) in [68]. This figure was reprinted from
[66].

The propagation of chemical waves in the previously described experiments (Fig. 4.1)

was not performed under geometrical constraints. But the theory from Eq. (4.1)

and the experimental validation inspired subsequent works on wave propagation

experiments with boundary conditions.

The effect of curvature and geometrical constraints was exploited to create logic gates

using BZ waves in capillaries as input [69, 70]. The experimental set-up consists of

two open capillaries with their open ends facing each other with a gap in-between.

The input is a BZ wave traveling in the capillary towards the gap and the output is a

propagation of a wave in the gap. As an example, we present an implementation of

an AND and an OR gate in Fig. 4.2. A BZ wave was triggered from the right side of the

capillary. The wave traveled along the capillary reaching the exit. In the case of the OR

gate (Fig. 4.2A), the conditions were such that the wave can further propagate through

the gap between the two capillaries. The authors also demonstrated that as long as a
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Figure 4.2 – OR (A) and AND (B) logic gates in capillaries with Be-
lousov–Zhabotinsky waves. (A) Images of the traveling wave at 10 s intervals
in a capillary tube of 50 µm radius. The wave was only triggered from the right tube
(red arrow 1), then in the OR gate the wave reached the exit and propagated into the
gap. No wave was triggered from the left tube (red arrow 0). The size of the field view
is 0.38 × 2.42 mm2 for top three panels and 0.82 × 2.42 mm2 for the bottom panel.
The gap between the tubes is 180 µm. And Br O−

3 = 0.14 M. (B) In the AND gate the
wave reached the exit but it did not propagate into the gap. The same conditions were
used as in (A) except that Br O−

3 = 0.1085 M. The size of the field view is 0.38 × 2.58
mm2 for the three panels. These figures were reprinted from [69].

wave was triggered from either capillary, the OR gate was successful. In the case of the

AND gate, the wave reached the exit but it did not propagate into the gap (Fig. 4.2B).

BZ waves propagated only through gaps above a critical size. The observations can be

explained as follows. For the OR gate the concentration of BrO−
3 was tuned to have

a high value of v0 while in the AND gate v0 was lower. When the wave gets out of a

capillary of radius r the front is convex with also radius r. A convex front has γ < 0

(Fig. 4.3) and thus there is a critical value γc =
1

rc
, give by rc = D/v0 for which v⊥ = 0

and the front stops. In the AND gate a single wave at the exit of one capillary had v⊥
but when two waves combined γ > γc and thus v⊥ > 0.

The effect of the curvature was later used to sense door sizes using BZ-waves in

labyrinths [71]. Door sizes and optimal trajectories were determined in geometries

with large and small doors positioned at different locations (Fig. 4.4). The curvature

effects lead to speeding up or slowing down of waves that otherwise would travel at

constant velocities in the bulk. The wave propagation velocity was highly reduced
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Figure 4.3 – Value of curvature depends on the shape of the propagation front. The
curvature , γ, values in Eq. (4.1) for the three front shapes are: (1) γ> 0 (concave), (2)
γ= 0 (planar) and (3) γ< 0 (convex).

Figure 4.4 – Belousov–Zhabotinsky waves interrogate door sizes in labyrinths.
Waves traveled faster through larger doors and slower through smaller ones. White
lines are the optimal paths. Total time, dimensionless, was 24.15 and 14.60 for left and
right plots respectively. Time lapses were color coded, time increasing in the following
order: red, green, yellow and blue. This figure was taken from [71].

when exiting narrow doors and enhanced at larger ones. In the same publication [71]

a more complex labyrinth was mapped by the BZ waves (Fig. 4.5). The propagating

waves solved this labyrinth by finding the minimum path length between two points.
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Figure 4.5 – Belousov–Zhabotinsky waves map the geometry of a labyrinth. 50 im-
ages at 50 s intervals were superimposed of the propagating waves. Total area of the
labyrinth was 3.2 × 3.2 cm2. This figure was obtained from [71].

4.1.2 Effect of spatial confinement on wave propagation

In a more recent study, traveling waves were assembled [72] by purifying the MinCDE

protein system, which is involved in cell division in E. coli [73]. Min protein waves on

planar lipid bilayers organized into spirals when no geometrical constraints existed.

Spirals switched to aligned waves in reactors of size similar to the characteristic length

scale of the protein waves, lc (50-100 µm) (Fig. 4.6A). In the absence of obstacles,

traveling waves of Min proteins with wavelength 50 µm and 100 µm were observed

on supported lipid bilayers. Propagation always oriented along the largest distance

as illustrated by the experiment within a rectangular region (Fig. 4.6B) in which the

protein waves traveled diagonally.

In the presence obstacles, of size around lc , influenced the outcome pattern. When the

obstacles were larger than lc , see Fig. 4.7A, waves did not influence each other, whereas

when the size of the obstacles were ≈ lc , irregular patterns were formed (Fig. 4.7B).

When the obstacle size was reduced, propagation was unaffected once again, see

Fig. 4.7C. Definitely, Min-protein waves sensed and responded to geometry, but to

extend this conclusion and to expose the principles of spatiotemporal organization

under geometrical constraints will require further investigations with other reactive
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systems and the use of microfluidics, for precise liquid handling and definition of the

boundary conditions.

Figure 4.6 – Min Protein waves oriented along the longest path when geometrically
constrained. (A) Min protein waves propagated on membranes without (upper) and
with (bottom) geometrical confinement. (B) Waves propagated diagonally (red arrow)
in a rectangle patched. Figures compiled from [72]. The concentration of the proteins
were: 0.8 µm MinD, 0.5 µm MinE with 10% Cy5-labeled MinE.

Figure 4.7 – Min Protein waves are influenced by obstacles of (B) characteristic
length scale but not by (A) larger or (C) smaller ones. Min protein waves propa-
gated on membranes in the presence of obstacles (black patches). The concentration
of the proteins were: 0.8 µm MinD, 0.5 µm MinE with 10% Cy5-labeled MinE. Figures
compiled from [72].

4.1.3 Microfluidic approaches to control reaction-diffusion patterns

Recent advances in microfluidic technology allowed to control boundary conditions

and to explore BZ waves in micrometer size channels. Ginn et al. [74] illustrated how
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the curved shape of the front was affected by the geometrical confinement (Fig. 4.8).

In 1 mm regions, the BZ waves propagated with a curved shape. When these waves

went through a channel of 50 µm width they lost the curved shape. But when the

waves exited the narrow channel the original shape was recovered.

Figure 4.8 – Propagation of an oxidation wave through a BZ system in a microreac-
tor. The time interval between the snapshots is 10 s. Bright and dark regions represent
the oxidized and reduced states of the ferroin-catalyzed CHD-BZ system, respectively.
The dimension of the channel are 80 µm height and 50 µm width. The circular regions
of the microreactor is 1 mm in diameter (reference bar is 200 µm). Initial BZ concen-
trations are 1.50 M H2SO4, 0.15 M CHD, 0.10 M NaBrO3, and 3.1 mM ferroin. This
figure was taken from [74].

Figure 4.9 – Belousov–Zhabotinsky droplets spaced by octane solution in a glass
capillary. (A) Drawing of the microfluidic device. Red and blue droplets correspond,
respectively, to the reduced catalyst (ferroin) and to the oxidized form (ferriin). (B)
Snapshot of microfluidic device with droplets. BZ droplets with convex surfaces are
dark due to ferroin. The capillary is 150 µm in diameter and 4.8 mm in length. Figure
was taken from [75].
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Microfluidics was also used to study the level of communication between oscillat-

ing systems. This was achieved by the comparmentalization of the BZ system in

droplets within glass capillaries (Fig. 4.9). BZ water-in-oil droplets were created by

flowing, normal to each other, octane and BZ-solutions, see Fig. 4.9A. The spacing

with octane allows for communication between droplets through the hydrophobic

intermediate Br2. The authors were capable of finding stationary Turing structures

that emerged from an initial state of oscillations (Fig. 4.10). In a latter publication

this technology was extended to control the droplet size and the octane gaps, and

six of the Turing-type instabilities were found [20]. By constructing two-dimensional

arrays of droplets, the authors elegantly demonstrated the suitability of microfluidics

to study spatiotemporal organization.

Figure 4.10 – The Turing structures of BZ in water-in-oil droplets were generated
from an initial oscillatory state. Space-time plot showing emergence of stationary
Turing structures with alternating oxidized and reduced states. The total time is 180
min. The capillary is 150 µm in diameter and 4.8 mm in length. Figure was taken from
[75].
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We have seen that the propagation of chemical waves is strongly affected when geo-

metrical constraints are of the order of magnitude of the wavelength, which has been

used to create, among other things, logic gates in the BZ system. In order to be able to

impose geometrical constraints in the PEN-DNA-toolbox systems, it was needed to

develop specific microfluidic devices, which we will present in the following sections.

4.2 Kinetics of Predator-Prey reactions

Here, the Predator-Prey DNA network, previously published by Fujii and Rondelez [32],

is adapted by removing the enzymatic degradation (exonuclease) of DNA species, but

all other reactions remain. In the absence of exonuclease, the Predator-Prey temporal

dynamics change from oscillations to a pulse of preys that grows exponentially then

decays sigmoidally during predation. Because it is sufficiently complex but robust

this is a good network to test for the compatibility of our microfluidic techniques with

PEN- DNA-toolbox systems in general.

In this section we will study how the dynamics of the degradation-free Predator-Prey

system depend on the concentration of pol, nick and the initial predator.

4.2.1 Predator-Prey mechanism without enzymatic degradation

The DNA-based degradation-free Predator-Prey system involved three DNA species

(sequences listed in Fig. 4.11A): prey (N), grass (G) and predator (P). G was a hairpin

and P had a palindromic design. The Predator-Prey network was based on two overall

reactions: (i) N−→2N , autocatalytic prey growth, and (ii) N +P−→2P , predation. In

the prey growth, depicted in Fig. 4.11B, N hybridizes to G and pol extends the G:N

complex. This is followed by a nicking step of IN , which dehybridizes into two N and

one G. In the predation reaction, N binds to P, then the P:N complex is extended to

produce two P.

In this chapter we used the buffer PP (listed in Table 1.3), which contained two en-

zymes: Nb.BsmI nicking enzyme (nick) and Bst large fragment DNA polymerase (pol).
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Figure 4.11 – The Mechanism of the DNA-based degredation free Predator-Prey sys-
tem. (A) Harpoon-ended arrows represent single strand DNA. Their sequences are
given in uppercase. a and b are sequence domains CATT and CGGCCG respectively,
and a∗ and b∗ are their complementaries. (B) Autocatalytic prey growth over grass
template G involves two enzymes, pol and nick. The predation reaction consumes N
to produce two copies of P.

Our stock concentration of nick and pol were 8000 and 160 U/mL respectively, but

their concentrations in the reaction mixture were varied according to the experiment.

Throughout this chapter the enzyme concentrations are reported in dimensionless

formats: poln = pol/pol0 with pol0 = 16 U/mL and ni ckn = ni ck/ni ck0 with ni ck0

= 80 U/mL.

4.2.2 Experimental probing of the DNA-based Predator-Prey network

The Predator-Prey dynamics are monitored using two fluorophores as in Section 1.1.3.

The fluorescence of DY530, which is attached to the grass template (G), is quenched
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(quantum yield,φN = 0.70) upon hybridization with N near the 3’, Fig. 4.12A. P contains

the sequence of N, so it is able to hybridize to G as well. However, the quenching

quantum yield of P (φP = 0.23) is three times smaller than that of N. The determination

Figure 4.12 – Monitoring description of the extent of Predator-Prey dynamics. (A)
DY530 dye attached to G and DNA-binding dye EvaGreen are used as reporters. (B)
Predator-Prey dynamics are followed by the fluorescence shift of EvaGreen (EG) and
DY530. The main stages of the dynamics are labeled.

of fluorescence quantum yields is performed in titration experiments, in which the

initial concentration of grass template (G0) is fixed at 200 nM and either P or N is

added to a series of tubes at increasing concentrations from 0 to 3.5 µM (Fig. 4.13).

When the concentration of N increases, the fluorescence of DY530 decreases. As in

Chapter 1 to facilitate the reading we plot the fluorescence shift of DY530, which is the

absolute value of the fluorescence change such that it is always proportional to N . The

dependence of the fluorescence change is fitted to a model derived from equilibrium

reactions as previously described in Eq. (1.5) , Page 18.

EvaGreen (EG) fluorescence is proportional to the concentration of double strand DNA

(Fig. 4.12A). Consequently, in the monitoring of the Predator-Prey dynamics we expect

a contribution to the fluorescence shift from all species. However, when observing the

experimental data, the fluorescence shift of EvaGreen seems to correlate only to the

predation. For example in Fig. 4.12B, the increase in EvaGreen fluorescence does not

start simultaneously with the prey growth, instead there is a start delay of around 10

minutes. The signal increases steadily even during the prey decay, then it reaches a

steady-state. In addition, previous works reported that EvaGreen preferentially stains
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Figure 4.13 – Dependence of yellow fluorescence on N (red) or P (black). Fluores-
cence of DY530 as a function of P or N. Reaction mixtures contained 200 nM G and
usual buffer, with the exception of enzymes, and were incubated at 44°C for 10 min-
utes. Then the fluorescence of each individual tube was recorded and the data fitted
to the equation shown above the plot.

the predator [28, 32]. From these clues, we assume P is monitored by EvaGreen and

N by DY530.

Both temporal reactions and wave propagations are monitored using DY530 and

EvaGreen which are later referred in the text as yellow and green fluorescence shifts

respectively. Kinetic experiments are carried out in test tubes and monitored in a real-

time PCR machine (Biorad CFX96 or Qiagen Rotor-Gene Q) as in previous chapters.

The Predator-Prey dynamics are always first studied in 0D experiments, in which by

vortexing before introducing the tubes into the real-time PCR machine we obtain a

system that is spatially homogeneous in concentration of all the chemical species. In

a typical Predator-Prey 0D experiment, as seen in Fig. 4.12B, the fluorescence shift

of DY530 increases during prey growth up to a maximum, where the prey growth

rate equals the predation rate, then after this point the signal decreases reaching a
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steady state. This maximum corresponds to Nmax and the steady state to P = Pmax

and N(t=inf) ≈ 0. The signal of DY530 does not go back down to zero at steady state,

∆Ft=inf, due to the quenching contribution of P.

4.2.3 Effect of polymerase concentration

The pol enzyme participates in both prey growth and predation reactions (see the

mechanism in Fig. 4.11B), so we first study the effect of pol concentration on the

Predator-Prey dynamics. In Fig. 4.14 we plot the Predator-Prey dynamics for poln =
0.5-4. Increasing poln increases the maximum fluorescence shift and reduces the

temporal width (wt ) of the bell-shaped curves.

Figure 4.14 – Predator-Prey dynamics at different pol concentrations. Yellow fluo-
rescence shift vs time for poln = 0.5-4. Solid circles and lines correspond, respectively,
to experiments and to fits to the model in Eq. (4.2).

A simplified model, adapted from the model proposed by Fujii and Rondelez [32],

is used to fit the experimental data. The autocatalytic prey growth and predation

reaction rates, ri , are described by saturable Michaelis-Menten equations, Eqs. (4.2)
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and (4.3) respectively,

N
r1−→2N r1(N ) = κ1poln

N

1+bN
(4.2)

N +P
r2−→2P r2(N ,P ) = κ2

N P

1+bP
. (4.3)

The system of equations ruling the dynamics is thus

d N

d t
= r1 − r2 (4.4)

dP

d t
= r2,

where N and P are the prey and the predator concentrations, respectively. κ1, which is

proportional to the initial concentration of grass template, and κ2 are rate constants,

poln is a normalized concentration of pol enzyme and b is a saturation term. In these

equations, the autocatalytic growth rate of prey depends explicitly on κ1 and poln ,

which is experimentally accessible. In the case of predation, poln is not explicit in

Eq. (4.3). However, Nmax depends on poln , so the apparent predation rate, rp , also

depends on it. Using the data of the dependence of fluorescence on N and P previously

discussed (Fig. 4.13), we could relate the data from Fig. 4.14 to concentrations of N

and P, then fit and solve for the other parameters in Eq. (4.4). The values obtained were

κ1 = 0.05 ± 0.02 min−1, κ2 = 0.5 ± 0.1 min−1µM−1 and b = 1.0 ± 0.5 µM−1. This phe-

nomenological model, Eq. (4.4), captured both the maximum and final fluorescence

dependence on poln , as well as quantitatively the observed experimental bell-shaped

dynamics.

To compare quantitatively the experiments with the model we use two phenomeno-

logical rates, rg and rp , correspending to the prey growth and predation respectively.

These are obtained by fitting functions erg t and e−rp t , respectively, at short and long

times to the curves in Fig. 4.14. The prey growth rate, rg , depends linearly on poln ,
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Figure 4.15 – Dependence of the phenomenological rates, rg (red), and rp (blue), on
poln . Lines correspond to simulations and circles to experimental data from Fig. 4.14
and fig. S4 in section 1.4 of SI Appendix C.2. The values of the parameters in Eqs. (4.2)
and (4.3) for the simulations were: κ1 = 0.05 min−1, κ2 = 0.5 min−1µM−1 and b = 1.0
µM−1.

experimentally and in the simulations, in the range of poln = 0.5-4 (Fig. 4.15). How-

ever, the rg saturation above poln > 4 is not captured. The model also captures well

the dependence of rp on poln . In conclusion, the simplified three-parameter model

(Eqs. (4.2) to (4.4)) and growth rate assumptions are sufficient for describing the

essential dynamics of the Predator-Prey system presented here.

4.2.4 Effect of nickase concentration on self-start

The autocatalytic loop of the Predator-Prey reactions suffered from self-start, which

is defined as the activation of a template even in the absence of input as we have

seen in Section 2.4.1. During the self-start, N is produced by the pol enzyme even

at N(t=0) = 0, then the same dynamics are obtained as in the case of N(t=0) > 0. This

limited the time window at which wave propagation could be monitored as self-start

destroyed the waves. When these experiments were performed the bistable network

used in Chapter 2 was not yet available. We turn our attention to the nicking step to

study the possible effect of ni ckn on the self-start. In the full mechanism proposed

in Fig. 4.11, a nicking step follows the production of intermediate species, IN . In our

hands, a change of nick in the range ni ckn = 1-10 had a negligible influence in the
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Predator-Prey dynamics. We thus concluded that the nicking reaction was not the

kinetically limiting step.

In Fig. 4.16 we see the Predator-Prey dynamics at ni ckn = 10, 12, 16. The delay

in reaction start time motived us to explore the self-start as function of ni ckn . We

performed a similar experiment but without an initial concentration of N (Fig. 4.17). In

this figure, we see that the growth prey rate and the width of the pulse are independent

of ni ckn , but self-start is delayed by increasing ni ckn .

Figure 4.16 – Predator-Prey dynamics at different nick concentrations. Yellow fluo-
rescence shift vs time for ni ckn = 10, 12 and 16. Reactions were performed at 44°C,
poln = 1, P(t=0) = 2 nM, N(t=0) = 10 nM and G0 = 200 nM.

The data from Figs. 4.16 and 4.17 were normalized to extract a start time at the same

value of fluorescence. This value was chosen to be 0.1. Then, a linear fit (Fig. 4.18) of

the reaction start time as function of ni ckn was performed. And although only three

data points were available, it can be concluded that nick strongly delays self-start

while only slightly changes the dynamics in the presence of N .

In conclusion, prey growth is independent of ni ckn when poln is limiting and ni ckn

is in excess. Moreover a large excess of ni ckn can be used to reduce self-start. We

can propose a mechanism to explain the delay of the self-start (Fig. 4.19). In fact,

the G:N complex contains a specific sequence site for the nick to bind on. if the nick
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Figure 4.17 – Predator-Prey dynamics without an initial N at different nick concen-
trations. Yellow fluorescence shift vs time for ni ckn = 10, 12 and 16. Reactions were
performed at 44°C, poln = 1, P(t=0) = 2 nM, N(t=0) = 0 nM and G0 = 200 nM.

Figure 4.18 – Linear fit of the reaction start time as a function of nick concentra-
tion. Data from Figs. 4.16 and 4.17 were normalized. And the reaction start time,
t(FNor mal i zed=0.1), was extracted and linearly fitted as a function of ni ckn .

is bound, pol cannot bind and extend the upper strand. This competition for the

G:N substrate could result in a partial inhibition of the polymerization reaction. The

inhibition should be enhanced by increasing the concentration of nick. So we expect

this inhibition to be mostly effective in the case of G : N ¿ ni ckn .
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Figure 4.19 – Schematic description of the inhibition of the pol step by competition
with nick for a template. The template G:N can be extended by pol to produce IN

or nick can bind unproductively to G:N. Nick can target G:N because this complex
contains a recognition nick site (5’...GAATGC...3’).

4.2.5 Effect of initial predator concentration

The dynamics of the Predator-Prey pulse at different initial concentrations of predator

serve to explore the state at which the predation overtakes the prey growth. In Fig. 4.20

we monitored N and P , respectively, by yellow and green fluorescence. We also

observe that at P(t=0) = 0, the prey pulse reaches a maximum at t = 20 min and then

decreases over time. This maximum and subsequent decrease correlates with the

increasing in the green fluorescence shift (black arrow in Fig. 4.20), which implies that

this decrease in the prey signal is due to a predator self-start.

Figure 4.20 – Predator-Prey dynamics at different initial predator concentrations.
(A) Yellow fluorescence shift vs time for P(t=0) = 0-16 nM. (B) Green fluorescence shift
vs time. Black arrow points to self-start of the predation. Reactions were performed at
44°C, ni ckn = 5, poln = 1, G0 = 200 nM and N(t=0) = 10 nM.

This means that our system is able of producing P even if it is initially absent. We
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speculate that a truncated polymerization of N on a G template is possible. In this case,

since G also contains a region that is partially complementary to P, it is not unlikely

that an incomplete polymerization could result in the production of a tiny amount of

P which could then exponentially grow due to its autocatalytic nature in the system.

In Fig. 4.20A the height of the fluorescence yellow shift decreases with P(t=0). This

maximum Nmax corresponds to d N /d t = 0. From Eqs. (4.2) to (4.4), we find

Nmax = κ

bP
+κ− 1

b
, (4.5)

where κ= κ1polnκ
−1
2 and P = Pt=0 +Ppr oduced . From Eq. (4.5) we expect that Nmax

decreases as P increases and in a qualitative manner we see that our experimental

results follow this tendency.

The data in Fig. 4.20 was normalized (analysis not shown here) and the curves were

almost superimposable for P(t=0) = 1-16. To be more quantitative, we extracted the

phenomenological prey growth rate (rg ) and plotted it as a function of P(t=0) (Fig. 4.21).

rg decreases somewhat linearly with P(t=0). At low P(t=0) the initial growth rate of the

prey can be approximated by developing r2 to the first order in P. From Eqs. (4.2)

to (4.4) we have

rg ≈ d N

d t
|P→0= κ1poln

N

1+bN
−κ2N P(t=0). (4.6)

From Eq. (4.6) we see that rg decreases linearly with P(t=0) as we have observed in

Fig. 4.21.

We also tried to reduce the prey self-start by increasing P(t=0) further. For this, the

Predator-Prey dynamics were studied in reactions without an initial concentration

of N at different P(t=0). Figure 4.22A shows that the pulse decreases with P(t=0) as

previously observed in Fig. 4.20A. In the case of the green fluorescence (Fig. 4.22B),

the final level tends to decrease with P(t=0) with the exception of P(t=0) = 32 nM. Also,

increasing P(t=0) introduces a linear delay in the reaction starting time, as we see in

Fig. 4.22C. However, a complete suppression of self-start through P(t=0) is theoretically

impossible as this remains monostable regardless of P(t=0). As before, we extracted rg
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Figure 4.21 – Dependence of the experimental growth rate rg on the initial predator
concentration of P. rg was calculated from the data in Fig. 4.20A. Error bars corre-
spond to one standard deviation. Red dotted line is a linear fit of the data.

Figure 4.22 – Predator-Prey dynamics without an initial N at different initial preda-
tor concentrations. (A) Yellow fluorescence shift vs time for P(t=0) = 0-64 nM. (B)
Green fluorescence shift vs time for P(t=0) = 0-64 nM. Reactions were performed at
44°C, ni ckn = 5, poln = 1, G0 = 200 nM and N(t=0) = 0 nM.
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and plotted it as a function of P(t=0) (Fig. 4.23). rg decreases linearly with P(t=0). This

agrees with our estimation of the linear contribution of P(t=0) on r2 using Eq. (4.6).

Figure 4.23 – Dependence of the experimental growth rate rg on the initial predator
concentration of P. rg was calculated from the data in Fig. 4.22A. Error bars corre-
spond to one standard deviation. Red dotted line is a linear fit of the data.

In conclusion, it can be said that P(t=0) determines the concentration of N at which

d N /d t = 0. And the phenomenological rate growth of the prey linearly depends

on P(t=0). Also autocatalytic nodes as we have already seen suffer from self-start.

Although increasing P(t=0) introduces a time delay, it is not a powerful parameter to

control self-start because it changes the growth kinetics.

4.3 Microfluidic devices used for spatiotemporal reac-

tions

Microfluidic devices have emerged due to their capability to manipulate small vol-

umes of liquid in the range of µL-pL with high-precision. One of the earliest work

that demonstrated that elastomers are practical for the formation of well-defined and

stable µm-sized capillaries as well as for the liquid handling was done by Delamarche

et al. [76]. In this work polydimethylsiloxane (PDMS)-based devices were employed to

pattern biomolecules on gold, glass, and polystyrene. PDMS has many advantages

as a material to build microfluidic chips. The low Young’s modulus of PDMS makes
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incorporation of active elements such as valves and pumps possible [77]. In addition,

its porosity makes PDMS permeable to gases thus allowing removal of air, which is

trapped during the filling of the channel. However, it is this same property that causes

evaporation when working above room temperature for several hours [78, 79]. The

evaporation rates are in the scale of µL h−1. In batch reactors of typical volume of 0.1-1

µL, evaporation precludes the use of PMDS devices at temperatures above ambient.

In order to prevent evaporation, the authors in [80] placed their batch PDMS devices

in a humidified incubator and antievaporation channels were incorporated around

the channels within the device. Another group reported submerging the entire device

into a water bath [81]. Microfluidic devices have also been fabricated from nonporous

materials, such as metal and silicon, but the fabrication techniques are often com-

plicated and at much higher costs [79]. Poly(methyl methacrylate) (PMMA) has also

been used in microfluidic devices because it is both nonporous and transparent.

Evaporation-free PMMA devices were fabricated by direct-write laser micromachining

[82]. But the fabrication required extra bonding time and surface smoothness at high

temperatures.

In this section, we first describe the fabrication process for each of the microfluidic

devices that we used in this chapter. Also, we present our efforts to find practical solu-

tions to avoid evaporation within our experimental microfluidic setups. We explore a

possible solution to the evaporation issue in PDMS devices. We also report the use

of low-evaporation devices that were assembled from three nonporous materials: (1)

photocurable glue/glass, (2) polystyrene/parafilm, and (3) glass/parafilm.

4.3.1 Fabrication and testing of microfluidic devices

Our PDMS devices are produced by casting a piece of PDMS on a silicon wafer con-

taining a SU-8 mold, which is previously created by photolithography. The PDMS

is prepared at a weight ratio of 10:1 base/curing agent and bubbles are removed by

degassing in a vacuum desiccator for around 1h. The PDMS is cured at 70°C for 1h.

Holes were drilled to access the channels. The PDMS used in the final device and a
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glass slide are treated by O2 plasma to allow permanent bonding when their surface

are placed in contact.

As an effort to solve the evaporation issue in PDMS devices, an anti-evaporation water

tank was incorporated into a device (Fig. 4.24). In this design the tank is placed on

top of the fluidic channel. Also the thickness of the PDMS layer above the channel is

reduced to 250 µm to minimize the evaporation. These PDMS microfluidic devices

with embeded valves were compatible with DNA-based reactions networks (Fig. 4A in

Appendix C, Page 203), however, evaporation remained an issue despite our efforts.

Figure 4.24 – Schematic drawing of an anti-evaporation water tank on a PDMS de-
vice. Side view of the PDMS device, with a fluidic channel, a control channel and an
antievaporation tank (not to scale). (B)

Microfluidic stickers [83], or NOA devices as we will call them in this text, are made

from a photocurable thiolene based resin NOA81 (Norland optical Adhesive), and

contrary to PMDS devices, evaporation is strongly reduced. NOA devices, alike PDMS,

allow for submicron size pattern replication and display a low autofluorescence above

500 nm [83]. These devices are simple and rapid to fabricate from a PMDS mold that

was first made by replica-molding of a micro-milled PMMA pattern, as explained in

Fig. 4.25. Once we have a PDMS mold, the fabrication takes around 15-20 minutes per

chip and 5-20 channels could be accommodated on a single device depending on the

dimensions of individual channels.

In order to quantify the evaporation in both NOA and PDMS devices, we filled channels
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a

Figure 4.25 – Step by step fabrication process of a NOA device. 1. A PDMS mold is
first obtained by replica-molding of a micro-milled PMMA sheet (Minitech Machinery
Corporation). 2. and 3. A drop of NOA is pressed in between the structured PDMS
and a flat layer, and then UV insulate. 4. The structured PDMS is removed revealing
a thin layer of non-cross-linked glue which is used to seal the device to a glass slide.
5. Removing the flat PDMS is the final step. Photography is a closed view of a 1
mm-diameter inlet. Channel size is 300 µm width and 120 µm high. Total thickness of
the glue is 300 µm.

with a fluorescein solution and imaged them over time (Fig. 4.26). Bubbles were

spotted in PDMS devices after 2 h and significant evaporation within 5 h, making

them impractical (Fig. 4.26A). From the calculated percent evaporation in Fig. 4.26B,

we determined that complete evaporation in PDMS occurs in 25 h. In the case of NOA

devices, small bubbles appeared in 5 h in the outlet but evaporation remained low for

over 25 h. The resistance to in NOA devices comes from the fact that NOA is nonporous.

The evaporation issue was thus dramatically reduced by using NOA devices. However,

we detected in NOA devices a high autofluorescence in the green channel. Thus

monitoring P with Evagreen could not be done in NOA device. Depending on the

experiment this was or was not an issue since we could in any case monitor the pulse

of preys in the yellow channel.

In contrast with NOA, glass and polystyrene are not autofluorescent. We used these

materials to fabricate straight fluidic channels when we were interested in monitoring
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Figure 4.26 – Comparison of the evaporation in PDMS and NOA devices. (A) Chan-
nels, 120 µm high and 1mm width, were filled with 100 µM fluorescein and sealed with
PCR adhesive film. The devices were mounted on a microscope heating stage (Tokai
Hit thermoplate) at 44°C for 25 h. (B) Percentage of evaporated sample represents the
thickness-corrected area for which there is no more fluorescence signal.

the predator front. For this type of devices we employed a simple and low-cost

fabrication technique. Polystyrene devices were fabricated by embedding two layers

of parafilm, with 1-mm width carved channels (Fig. 4.27A), between two polystyrene

slides (Fig. 4.27B). Then they were placed on a hot plate at 50°C to glue the assembly.

Prior to assembly, two holes of 1-mm diameter were drilled, in the upper slide, at

the end of each side. The channels were filled by aspiration with a micropipette. A

similar protocol used glass slides instead of the polystyrene slides, except that no

holes were drilled. In this latter case the upper glass slide was a short glass coverslip,

such that the parafilm channels were not completely covered, see Fig. 4.27C. The

hydrophobic surface of polystyrene/parafilm devices or the absence of well-defined

inlets in glass/parafilm devices make filling complex geometries very challenging

153



Chapter 4. Propagation of DNA waves in
microreactors of tailored geometry

(Section 4.3.1). Parafilm-based devices were quick to assemble but they were limited

to wave propagations in straight channels only.

To give a picture of the differences in material composition among the microfluidic de-

vices, we show a photo and a scheme of each straight channel device (Fig. 4.28). Three

of the devices are mounted on glass slides (Fig. 4.28A,B,D) and one on polystyrene

slides (Fig. 4.28C).

Figure 4.27 – Low-cost fabrication of polystyrene and glass devices. (A) Channels
were cut in a parafilm sheet with a plotter cutter. (B) Two of these sheets were embed-
ded between two polystyrene slides aligning the ends of the channels with the drilled
holes on slide 1. Then the device was placed on a hot plate at 50°C for 45 s to glue the
assembly. (C) A glass slide and a coverslip could be used instead of polystyrene slides.
But no holes were drilled. The width of the channels were unevenly deformed upon
heating but the height (≈ 200 µm) remained constant.

So far, we have described fabrication techniques and evaporation issues. To illustrate

the fabrication intricacy of complex geometries in NOA devices we will discuss how

we solved two technical issues. NOA devices greatly reduced the evaporation problem,

yet, careful fabrication and usage steps were taken to overcome technical problems in

these devices. For example, bubbles were produced (blue arrows in Fig. 4.29) when

pouring the liquid NOA during step 2 in the fabrication, see Fig. 4.25. A possible

solution was vacuum degassing after the pouring, but it was simpler and faster to

carefully remove the bubbles with a needle. Bubble formation was also minimized

by slow pouring of NOA over the PDMS mold. Another cause of channel failure was

air-branched tunnels (golden dash lines in Fig. 4.29) produced when the NOA stamp

was assembled with the glass slide in step 4 in Fig. 4.25. These tunnels were fed by

empty spots that allowed air to branch to the channel border. Slowly pouring sufficient

NOA from the center outward during the fabrication step 2 solved this problem.
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Figure 4.28 – Channel structures in microfluidic devices used in this chapter. (A)
PDMS channels on a glass slide. (B) Channels made of photocurable glue NOA on a
glass slide. (C) Embedded layers of parafilm formed channels between two polystyrene
slides or (D) glass slides.

Figure 4.29 – Technical issues upon fabrication in NOA devices. Bubbles (blue ar-
rows) formed when pouring liquid NOA on the PDMS mold before UV solidification
and ended up inside the channels. Channel was destroyed by utilization of insufficient
NOA, which produced large gaps (golden dash lines) fed by empty spot (green arrow).

Complex reactor geometries, as it was the case of NOA maze devices (Section 4.5),

required step-by-step filling when setting up an experiment (Fig. 4.30, Page 156).

This type of technical issue arises when reaction solution can flow from multiple
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Table 4.1 – Comparison of the microfluidic devices used in this work. 1. The order
of magnitude of the size of the features that can be replicated. 2. The size at which
the initial conditions can be controlled. 3. Autofluorescence of channel material. 4.
Fabrication time (†) is longer because a reusable mold is first designed and fabricated.
5. Filling difficulty of straight channels with the DNA reaction solution. 6. Filling
difficulty of turn and maze devices with the reaction solution. 7. Evaporation was
not tested for longer times (‡) in these devices. 8. Type of geometry for which a
microfluidic technology was found to be more practical.

PDMS/
glass

NOA/
glass

Polysterene/
parafilm

Glass/
parafilm

1. Size features Submicron Submicron Millimetre Millimetre
2. Initial condition size Micron Micron Millimetre Millimetre
3. Autofluorescence No In green No No
4. Fabrication time > 4 h(†) > 20 min(†) 15 min 10 min
5. Filling 1D devices Easy Easy Moderate Moderate
6. Filling 2D devices Easy Moderate Challenging Challenging
7. Evaporation < 2 h > 25 h > 3 h(‡) > 3 h(‡)

8. Preferred for: - 2D 1D 1D

directions to fill the same region, thus trapping air because NOA is impermeable to

gases. Before filling, a layer of transparent PCR tape (premium Plate sealing film,

Platemax, Axigen) was placed on top of the device to block all holes. Then, holes were

opened by hole-punching holen and holen+1, thus allowing reaction solution to flow

into these channels. This was repeated in the numbered order until the entire device

was filled, then the holes sealed with PCR tape.

Figure 4.30 – Filling steps of NOA maze devices. Drilled holes of the maze device were
taped temporally, then opened and filled with the reaction mixture in the numbered
order. Then once the device was filled, all holes were sealed with PCR tape.
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Of the four technologies considered so far —PDMS, polystyrene/parafilm, glass/-

parafilm and NOA— each has advantages and disadvantages (Table 4.1). The porosity

of PDMS is both a great advantage for filling a device with complex geometry, be-

cause bubbles entrapped during device filling disappear by simply increasing the

pressure at the inlet, and a disadvantage when working at high temperatures, because,

in our hands, we were unable to efficiently suppress evaporation. For this reason

we discarded PDMS for our experiments. Both parafilm-based and NOA devices

have low porosity and are thus suitable for working at high temperatures. Because

parafilm-based devices are much simpler to fabricate, they were preferred for 1D ge-

ometries. However, they were impossible to fill for more complex geometries. Indeed,

polystyrene being hydrophobic, these devices can only be filled with pressure. In

contrast, NOA/glass devices are naturally hydrophilic and one can take advantage of

capillary forces to carefully fill complex geometries minimizing bubbles. For these

reasons we used only NOA/glass devices for studying front propagation in complex

geometries.

4.3.2 Setting up a wave propagation experiment within a microre-

actor

Spatiotemporal or wave propagation experiments required preparing the microfluidic

device in advance. During a typical experiment a microfluidic device was filled with

a reaction mixture containing the PP-buffer, the grass (G) template and an initial

concentration of predator, as depicted in Fig. 4.31. The filling was driven by capillary

forces in the case of glass-based devices, but in the case of polystyrene-based devices,

the liquid was pushed during the micropipette filling. As we did in Chapter 2, to

selectively trigger wave propagation at one side of the channel, a second mixture

containing an initial concentration of prey was introduced and mixed into a hole on

one side of device. A small volume was removed from the other side in order to drive

the trigger solution deeper into the channel. The device was completely sealed.
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Figure 4.31 – Experiment preparation in a microfluidic device. 1. Channel is filled
with a reaction mixture containing the PP-buffer (along with nick and pol), grass
template and an initial concentration of predator. 2. A trigger solution, mixture
containing 100 nM of prey, was introduced and mixed. Then from the other side, 0.5
µL were removed to ensure the trigger was inside of the channel. 3. Any extra liquid
near the holes was displaced during the sealing of the device.

The microfluidic device in a wave propagation experiment was prepared as described

in Fig. 4.31, then the reaction would take place at 44°C in a heating stage mounted on

an inverted Zeiss Axio Observer Z1 microscope (see the microscope specifications

in Page 201). As an example, the experimental data of a propagating pulse in a NOA

device is displayed in Fig. 4.32. The fluorescence shift was recorded over time along

the channel, see the time-lapse in Fig. 4.32A. In this figure the entire channel appears

black at time zero because there is no prey present. For t > 0 min the prey leading

front is displayed as the clear region in a gray scale and the darkening behind is the

predator trailing front. From the profile plots we see that the resulting dynamics is a

traveling pulse (Fig. 4.32B).

As we did in previous chapters, it is practical to represent the spatiotemporal data

in a kymograph, in which the x-axis is the position along the channel and the y-axis

is the time as shown in Fig. 4.32C. From this figure the velocities of the fronts can

be extracted by fitting straight lines through the boundaries labeled prey front and

predator front. Velocity is the inverse of the calculated slope. For this particular

experiment, we see that the prey front has a constant propagation velocity (v1) smaller

than that of the predator front (v2), so the spatial width (wx) of the front decreases as
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the pulse moves forward along the channel. In the upcoming sections, kymographs

will be used to quantitatively analyze the front width and the velocities of the prey and

predator fronts in wave propagations in straight channels (Section 4.4) and in more

complex geometries (Section 4.5).

Figure 4.32 – Predator-Prey waves propagating in a straight NOA channel. (A) Time-
lapse of fluorescent shift images. Wave propagation is triggered (golden arrow) from
the left side by adding 100 nM prey. (B) Profiles of the prey and predator fronts along
the channel. (C) Corresponding kymograph for a traveling pulse of preys. Reactions
were performed at 44°C, poln = 2, P(t=0) = 2 nM and G0 = 200 nM.

4.4 Pulse propagation in straight channels

Note to the reader: The results are qualitatively similar to those already discussed

in Sections 2.4.2 and 2.4.3. We have included them for completeness. The non-

specialized reader may skip them and proceed to Section 4.5 in Page 170.
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We shortly summarize the theoretical predictions concerning front propagation before

discussing the experiments. In this case Eqs.4.4 become a set of two partial differential

equations,

∂N

∂t
= κ1poln

N

1+bN
−κ2

N P

1+bP
+DN∆N (4.7)

∂P

∂t
= κ2

N P

1+bP
+DP∆P,

where DN and DP are the diffusion coefficients of N and P, respectively, and ∆ is the

Laplace operator. In the propagation along a straight channel (x direction), as it is

the case in this section, ∆ becomes a second order partial derivative of the involved

species with respect to x, such that

∆N = ∂2N

∂x2
& ∆P = ∂2P

∂x2
. (4.8)

Initially, propagation starts with a Heaviside-type initial condition, i.e. large (N(t=0))(x=0).

So the leading wave of N propagates in a region where P(t=0) ≈ 0, such that r2 ≈ 0. Con-

sequently the leading wave described by Eq. (4.7) is independent of the trailing front,

and its solution is a Fisher-KPP front of constant velocity (derivation in Page 214),

given by,

v1 = 2
√

r ′
1(0)DN , (4.9)

where r ′
1(0) = κ1poln is the derivative of r1 at N = 0 and DN is the diffusion coefficient

of N. DN was estimated by measuring the diffusion of 11 and 22 bases long ssDNA,

and its value was found to be 15000 µm2 min−1 at 44°C, G0 = 200 nM and low N [29].

We can extract r ′
1(0) from well-mixed reactions to estimate the propagation velocity of

the leading front (v1). Then, we can validate the model by comparing the measured

velocity of the prey to the estimated value.
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To develop a similar expression to that in Eq. (4.9) for the predator front velocity we

assume that N is independent of time when the prey front arrives, then

v2 = 2
√

r ′
2(N (x),0)DP , (4.10)

where r ′
2(0) = κ2N (x) is the derivative of r2 at (N ,P ) = (N (x),0). The value of the

predator diffusion coefficient was taken to be DP ≈ DN , since both N and P are

of similar size, 11 and 14 bases respectively. We can use this model to guide our

understanding on the propagation of the predator front.

In the following subsections, propagation experiments of Predator-Prey waves in

straight channels — in NOA/glass, polystyrene/parafilm and glass/parafilm devices—

are presented. In these experiments, the effects of poln and the initial concentration

of predators on the propagation dynamics are investigated. Subsequently, we discuss

the three relative velocities of prey front velocity (v1) related to predator front velocity

(v2): (1) v1 < v2, (2) v1 > v2, and (3) v1 = v2.

4.4.1 Effect of polymerase on the propagation dynamics in NOA chan-

nels

The simple modeling in Eq. (4.7) predicts that the leading (prey) front is independent

of the trailing (predator) front and we can describe the velocity of the prey front,

v1 using Eq. (4.9). This equation tells us that v2
1 ∼ κ1poln . To test the validity of

the model we measured the effect of polymerase on the velocity of the prey. The

reaction solutions were prepared at different poln , then we triggered the pulse of

preys in separate channels in a single microfluidic device, as described in Fig. 4.31.

This study was done in NOA devices to characterize the dynamics of 1D propagation

and subsequently to study 2D propagation (Section 4.5.1) and complex geometries

(Section 4.5.2).

In Fig. 4.33 we plot the kymographs of the Predator-Prey fronts at different poln . In all

three concentrations of pol, the prey front velocity is always lower than the predator
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Figure 4.33 – Wave propagation at different polymerase concentrations in NOA
channels. (A) Kymograph of the yellow fluorescence shift in a channel containing the
Predator-Prey system with poln = 1, 2 or 4. Black scale bar is 1 mm. The reactions
were performed at 44°C, ni ckn = 12, P(t=0) = 2 nM, G0 = 200 nM and triggered with
N(t=0) = 100 nM. Green arrow and blue arrows point to, respectively, the start time and
the temporal width.

front velocity. In Fig. 4.34 we plot the velocity of the prey front as a function of poln . In

this figure we see that a linear fit through the data describes well the dependency of v2
1

on poln , as expected from our model (v2
1 ∼ κ1poln). In addition, this proportionally

has also been demonstrated by Zadorin et al. [29], a posdoctoral researcher in our

group, using a different PEN-DNA toolbox network. However, in the case of Zadorin

the linear fit goes through v2 = 0 at poln = 0, but not in our case. Zadorin explores

values of poln ≤ 2, whereas we have poln = 1-4. So a second linear regime below

poln ≤ 1 that goes through v2 = 0 should exist in our system. This hypothesis needs to

be tested with lower concentrations of poln .

Since v1 < v2 the spatial width (wx) of the pulse width decreases along the channel

in the wave propagations at the values of poln = 1, 2, and 4 (Fig. 4.33). In other

words the distance between the leading front and trailing front gets smaller with

time. Instead of quantifying wx , directly it is simpler to get similar information by

analyzing the temporal profile at each position along the channel. We analyze the

profile by obtaining the difference in time between the predator and the prey fronts at

any particular point over the length of the channel (one such location is indicated by

the blue arrows on Fig. 4.33). We call this value the temporal width (wt ). In order to

have a robust comparison of wt for different channels and different experiments, we

systematically normalized the fluorescence with respect to the maximum value. And,
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we defined wt as the width of the peak at 0.4 of the normalized fluorescence as shown

in Fig. 4.33.

Figure 4.34 – Square of the prey velocity as function of the concentration of poly-
merase. The square velocity of the leading (prey) front is linearly fitted as a function
of poln . The slope is 1100 µm2poln/min2 and the intercept is 520 µm2/min2. Error
bars come from one standard deviation.

Figure 4.35 – Temporal width as a function of position in a channel. (A) The tempo-
ral profile was normalized and the temporal width, wt , was taken to be at position 0.4.
The profile is a sketch for illustration. (B) Temporal width as a function of position for
wave propagation experiments at poln = 1, 2, and 4 in Fig. 4.33.

We computed wt at every location along the channel for poln = 1, 2 and 4 (Fig. 4.33B).

Since the predator front is faster than the prey front, we expect wt to get smaller as the
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propagation progresses along the channel, which is confirmed by our experiments

(Fig. 4.33). Another interesting observation is that for a given position, wt varies

largely for the three different values of poln . We hypothesize that lower poln brings

the reaction towards steady state faster. This implies that if the propagation at a

certain value of poln is allowed to continue over a longer distance, wt would get

smaller and attain values comparable to those obtained at lower poln . In other words,

the temporal width would be a function of space, wt (x), and the starting size would

be given by poln . For poln = 4, wt decreases initially as the propagation progresses

along the channel. Then, at 15 mm, the slope decreases drastically. This change in

slope might be an indication that eventually a steady state can be reached in a longer

channel. The propagation dynamics at larger values of poln would have to be studied

to see if wt (x) follows this tendency beyond poln > 4. For poln < 4, the slope d wt /d x

maintains a linear decay and this slope remains constant along the channel.

In summary, we can say that because experiments in Fig. 4.33 do not reach a steady

state we do not know what is the final outcome of the instable situation, v1 < v2.

Two outcomes are possible from such situation: (1) either the front is caught by the

predator front and both fronts vanish, or (2) both fronts stabilize at at an equal velocity.

To gain further insight about the propagation of P we included EvaGreen in the reac-

tion solution. To do so, we switched from NOA/glass devices to glass/parafilm devices.

We carried out wave propagation experiments at poln = 0.25, 0.5, 1, and 2. Figure 4.36

shows the kymographs of the combined fluorescence shift profiles (blue for P, red for

N) at different concentrations of pol. We found that v1 ≥ v2 in all cases, so the predator

front did not catch the prey front. Surprisingly we distinguished two propagation

phases with distinct dynamics, in which the prey and predator fronts go through a

velocity switch. In the case of poln = 0.25-0.5, the velocity of the prey front from phase

I, v I
1, decreases in phase II, i.e.v I

1 > v I I
1 . And the predator front velocity follows the

same tendency v I
2 > v I I

2 . In the case of poln = 1-2, only v1 decreases when going into

phase II.
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Figure 4.36 – Predator-Prey waves display rich dynamics in a glass/parafilm device.
Composite kymographs with two overlaid channels: EvaGreen (blue) and DY530 (red)
fluorescence shifts for different polymerase concentrations, poln . The blue and red
channels mainly account for P and N, respectively. The reactions were performed at
44°C, ni ckn = 12, P(t=0) = 2 nM, G0 = 200 nM and triggered with 100 nM N.

We then estimated that r ′
1(0) ≈ rg and r ′

2(N (x),0) ≈ rp (Fig. 4.15). Using this approxima-

tion, we can explain Phase I using Eqs. (4.9) and (4.10). In phase I we measured two dis-

tinct proportionality constants between the velocities and poln : (1) v I
1 ≈ v I

2 = 32pol 1/2
n

µm min−1 for poln = 0.25-0.50, and (2) v I
1 = 58pol 1/2

n µm min−1 and v I
2 = 55pol 1/2

n

for poln = 1-2. This was not surprising since the difference in the proportionality

constant is in good agreement with the variation observed for rg and rp in the same

poln ranges (Fig. 4.15).

However, the propagation dynamics suddenly change and phase II takes over. In

phase II the prey front is followed by a mixture of the two fronts (N + P), which are

later followed only by a predator front. The switching times scale with pol 1/2
n . Phase II
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shows a switching time that scales with pol 1/2
n : tswi tch (150 ± 20)pol 1/2

n min. Unlike

phase I, phase II does not have a clear scaling law between vi and poln . However,

v I I
1 ≈ v I

1 for poln = 1-2 while, in contrast, v I I
1 is significantly larger than v I

1 for poln =

0.25-0.50.

A sudden switch in the propagation dynamics has already been observed in fronts

of replicating RNA [84]. In that case a faster propagating mutant triggered the transi-

tion. Although a mutation cannot be entirely disregarded, the scaling tswi tch ∼ pol 1/2
n

points towards a deterministic process. We suspect that phase I and II may corre-

spond, respectively, to pulled and pushed fronts [54]. This means that in phase I the

dynamics are controlled by what happens ahead of the front where the autocatalyst

concentrations are low. Whereas in the second phase the reaction term behind the

front controls propagation.

4.4.2 Effect of initial predator concentration on the propagation dy-

namics

Here, we investigate the effect of the initial predator concentration (P(t=0)) on the

propagation dynamics. To do so, we use polystyrene/parafilm and glass/parafilm de-

vices. Our motivation for this was to test if the velocity of the prey front, v1, decreases

with P(t=0). In fact, we saw in Fig. 4.23 that the phenomenological growth rate of the

prey, rg , decreases with P(t=0). Hence, we aim to test our model: v1 ∼
√

rg (P(t=0)).

We let Predator-Prey waves propagate in polystyrene/parafilm devices at different

P(t=0). Figure 4.37 shows the kymographs of the DY530 and EvaGreen fluorescence

shifts at different P(t=0). In this figure, a high concentration of N appears dark in

DY530, while a high P appears bright in EvaGreen. Contrary to the results obtained

in Fig. 4.33, here the prey front velocity matches the velocity of the predator front.

Hence the system is at steady state. Furthermore, the temporal width (blue arrows in

Fig. 4.37) is constant (≈ 20 min) since v1 = v2. Once the prey pulse passes, the signal in

DY530 is not well recovered for P(t=0) > 8 nM (Fig. 4.37B) and we believe that it was due

to the contribution of predators to the quenching of DY530 (Fig. 4.13). Unfortunately,
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we discovered that self-start (golden arrow) happens around 50-60 minutes, which is

much earlier than in NOA/glass or glass/parafilm (≈ 150 min). We decided to switch

to glass/parafilm devices to continue our study.

Figure 4.37 – Predator-Prey wave propagation at different initial predator concen-
trations in polystyrene/parafilm channels. Kymograph of the yellow (upper) and
green (lower) fluorescence shifts in a channel containing the Predator-Prey system
with (A) P(t=0) = 2 nM and (B) P(t=0) = 32 nM. Reactions were performed at 44°C,
ni ckn = 5, poln = 1, and triggered with 100 nM N. Self-start stopped wave propagation
(golden arrow). Time and space arrows represent 100 min and 1 mm respectively.

The same experiment was repeated in glass/parafilm devices since self-start in these

devices was less problematic. The initial concentration of the predator was also varied.

The kymographs of these experiments are shown in Fig. 4.38. We observe that initially

the prey front velocity is slightly bigger than the predator front velocity, i.e. v1% v2,

but at around t ≈ 160 min (blue arrow) v2 decreases abruptly and v1 remains constant.

The same effects are observed for P(t=0) > 2 nM. This is consistent with the two phase

dynamics previously described in Fig. 4.36.

In Fig. 4.39 we plot the square velocity of the prey as a function of P(t=0). v2
1 decreases

by increasing P(t=0). In our model ( v1 ∼ √
rg (P(t=0))) and we have shown that rg

decreases linearly with P(t=0) in Section 4.2.5. Hence, we fitted the data with a linear

regression and compared it with the predicted square of the velocity. Although v1

is overestimated when using rg from temporal studies to predict v1, the estimation

is within the correct order of magnitude. In Fig. 4.39 we see that the linear fit is
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Figure 4.38 – Predator-Prey propagating waves at different initial predator concen-
trations in glass/parafilm channels. Kymograph of the yellow (upper) and green
(lower) fluorescence shifts in a channel containing the Predator-Prey system with
(A) P(t=0) = 2 nM, (B) P(t=0) = 8 nM, (C) P(t=0) = 16 nM, and (D) P(t=0) = 100 nM. The
golden cross point to the area of autofluorescence from the sealing grease. Self-start
stopped wave propagation (golden arrow). The velocity of the predator front abruptly
slows down (blue arrows). Reactions were performed at 44°C, ni ckn = 5, poln = 1
and triggered with 100 nM N. Time and space arrows represent 100 min and 1 mm
respectively.

Figure 4.39 – Prey front velocity as a function of initial concentration of predator.
The velocity of the prey front were determined from DY530 fluorescence shift from
the kymographs in Fig. 4.38 and other experiments not shown here. Red dotted line
is a linear fit of the data: slope = -63.7 ± 31.6 and intercept = 6690 ± 350. The blue
solid line is the the predicted square velocity, which is calculated using the rg from
the linear fit in Fig. 4.23 and a diffusion coefficient of 15000 µm2 min−1.
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noisy, but these variations in v1 are within our measurement precision. In Page 203

(Appendix C.1), the standard deviation was determined to be 5% in a series of replicate

experiments with identical reaction mixtures in a single chip, but this rose to ≈ 20%

when comparing experiments performed in different days. Thus, it is not surprising

that these variations, possibly coming from discrepancies of chip surfaces upon

fabrication, make difficult to precisely quantify how v1 is related to P(t=0) in Fig. 4.39.

It can be thus stated that the prey velocity depends linearly on P(t=0). Unfortunately,

the early self-start in polystyrene/parafilm devices did not allow us to study the prop-

agation dynamics over distances longer than 4 mm. Thus we might have missed a

phase transition in the propagation dynamics in these devices. We can also speculate

that the fact that v1 > v2 in glass/parafilm, but v1 = v2 in polystyrene devices, indicate

that surface interactions due to the channel materials exist. If the discrepancies come

from surface interactions, this must be tested further.

4.4.3 Discussion on the relative velocities of the prey and the preda-

tor fronts

In the numerical simulations in Appendix C Page 222, the width and shape of the front

was predicted to be constant, and the front width to be regulated by κ2. Also, both

the velocities of the trailing front and the leading front, v2 and v1 respectively, were

predicted to be identical, and equal to 70 µm min−1. However, in contrast with the

simulations, in the experiments we found three relative velocity regimes: (1) v1 < v2

(Fig. 4.33), (2) v1 > v2 (Figs. 4.36 and 4.38 ), and (3) v1 = v2, (Fig. 4.37). We have listed

in Table 4.2 the experimental conditions at which we found each regime.

The first case was discussed in the article (Appendix C Page 204) in which it was argued

that the trailing front had not reached steady state at the experimental conditions

used. It was hypothesized that this came from pol sequestration during prey growth,

which lowered κ2. Once predation started, the non-saturated κ2 was recovered. The

second regime (v1 > v2) could be understood by analyzing the expression for the

prey front velocity: v2 ∼
√

r ′
2(N (x),0). Decreasing the derivative of the predation rate,
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Table 4.2 – The three relative velocity regimes and their experimental conditions.
(1) This regime was observed in the experiments in Fig. 4.33. (2) The regime had two
subcategories of the propagation phases. One in which both v1 and v2 decreased in
phase II, experiments in Fig. 4.36, for poln = 0.25-0.5. And a second one where only
v2 decreased for poln = 1-2 and ni ckn = 12, in Fig. 4.36, and poln = 1 and ni ckn = 5,
in Fig. 4.38. (3) This regimec occurs at steady state, experiments in Fig. 4.37.

Regime: (1) v1 < v2 (2) v1 > v2 v1 > v2 (3) v1 = v2

Device NOA Glass Glass Polysteryne
/glass /parafilm /parafilm /parafilm

EvaGreen No Yes Yes Yes
Two propagation No Yes: Yes: No
phases v I

2 > v I I
2 v I

2 > v I I
2

v I
1 > v I I

1
poln 1-4 0.25-0.5 1, 1-2 1
ni ckn 12 12 5, 12 5

r ′
2(N (x),0), lowers the value of v2 while v1 remains unaffected. We suggest that this is

the case at the experimental conditions at which we observed this regime. Another

interesting feature of this regime is the existance of two phases in the propagation

dynamics. At poln = 0.25−0.5 both v1 and v2 decreased in the phase II, but only v2

decreased in the phase II for poln = 1−2. Finally, in the third regime the system is at

steady state, thus v1 = v2 as predicted by the model.

4.5 Wave propagation in different geometries

In the previous section the propagation of waves was confined to 1-dimensional

reactors. Here we will focus on the propagation of the prey front in two dimensions.

Complex 2D reactors could only be filled when fabricated in NOA/glass.For this reason

we used only NOA/glass devices for complex geometries.

We tested two geometries, the simplest 2D geometry, a 90° turn, and quantified the

effect of the turn radius in the propagation, and a complex one, a maze, and demon-

strated that the Predator-Prey network can solve the classical problem of finding the

optimal path between two points [71].
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4.5.1 Predator-Prey propagation dynamics in a 90° turn

We have seen in Section 4.1.1 that curvature influences the propagation of fronts when

it is of the order of the diffusion length
p

D/k, where k is the characteristic rate of the

reaction. In Section 4.4 we demonstrated that the propagation velocity of the prey

front, v1, was constant in straight channels, were the curvature was zero. Here we

investigated the effect of curvature in the propagation of Predator-Prey fronts.

To do so, we fabricated 90° turn channels with two different radii in NOA devices

(see Page 204 in the article in Appendix C.1). Figure 4.40A shows DY530 fluorescence

images during the propagation of a front in a turn with a 1.5 mm radius. At the

entrance of the turn, the curvature of the front was practically zero1. When the front

engaged into the turn its shape got curved. The curvature was not constant across

the width of the channel: it was negative (the front was convex) along the inner path

and became positive (the front was concave) close to the outer path. We measured

v1 along the inner and outer paths and observed that it respectively decreased and

increased (Fig. 4.40B). v1 decreased up to 75 µm min−1 and increased up to +120 µm

min−1 from 150 µm min−1 at the entry (Table 4.3). A 90° turn with higher radius, 8 mm,

induced front curvatures that were significantly smaller in absolute value (Fig. 4.41A-

B) together with smaller changes in velocity (-18.6 and +6.2 µm min−1 from 62 µm

min−1 at the entry).

Table 4.3 – Measurement and precision of the front curvature. Mean radius, Rc , of
the circles fitted to propagating front on the inner and outer paths in a turn channel
with inner curvature radius 1.5 mm at 21 (‡) and 26(∗) min. Front curvatures, γ, for
the inner and outer sides of the front were measured by manually adapting a circle to
the front shape, as seen in Fig. S11, Page 225.

inner‡ outer‡ inner∗ outer∗

|Rc | (103 µm) 1.2 ± 0.4 0.3 ± 0.1 1.2 ± 0.3 0.3 ± 0.1
| γ | (10−3 µm−1) 0.9 ± 0.3 3.7 ± 1.2 0.9 ± 0.2 3.5 ± 1.3
γD (µm min−1) -16 ± 5 +67 ± 22 -16 ± 4 +63 ± 23
measured "γD" (µm min−1) -75 +120 -75 +120

1Indeed the curvature is not exactly zero because during the creation of the initial condition with
the pipette we induce a slight curvature that remains.
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Figure 4.40 – Propagation dynamics of a Predator-Prey wave in a 90° turn of small
radius. (A) Yellow fluorescence shift time-lapse images of a traveling pulse of N
propagating through a 90°-turn channel with 1.5 mm curvature radius. (B) Normalized
(left axis) and absolute (right axis) velocity of the prey front along the longitudinal
coordinate of the channel at different times for the inner (black) and outer (red) path
of the channel. The channel is 2 mm wide and 500 µm deep. The experiment was
performed at 44°C, ni ckn = 10, poln = 0.5, P(t=0) = 2 nM, G0 = 200 nM and triggered
with N(t=0) = 100 nM.

We recall (Section 4.1.1, Page 129) that the effect of curvature, γ, on the velocity is

given by:

v⊥ = v0 +γD (4.11)

where v0 is the planar wave velocity and D is the diffusion coefficient. The curvature

is given as the inverse of the radius of a circle tangent to the front line. To compare

our results with this theoretical prediction we measured (see Fig. S11, Page 225) the

maximum curvature along the inner and outer paths in our experiments (Table 4.3,

Page 171). Although Eq. (4.11) underestimates by 2-fold and 6-fold, respectively, the

experimental inner and outer velocities, the correct order of magnitude and the sign

are in agreement.
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Figure 4.41 – Propagation dynamics of a Predator-Prey wave in a 90° turn of large
radius. (A) Yellow fluorescence shift time-lapse images of a traveling pulse of N
propagating through a 90°-turn channel with 1.5 mm curvature radius. (B) Normalized
(left axis) and absolute (right axis) velocity of the prey front along the longitudinal
coordinate of the channel at different times for the inner (black) and outer (red) path
of the channel. The channel is 2 mm wide and 500 µm deep. The experiment was
performed at 44°C, ni ckn = 10, poln = 0.5, P(t=0) = 2 nM, G0 = 200 nM and triggered
with N(t=0) = 100 nM.

4.5.2 A propagating pulse computes the optimal path in a maze

We tested the capability of the Predator-Prey waves to compute optimal paths within

multi-branched channels. We fabricated a NOA maze device and allowed waves to

explore the entire geometry (Fig. 4.42). The wave propagation was triggered from the

upper-left corner of the maze. Waves propagated through all possible paths, splitting

when multiple paths were available and vanishing at dead ends and upon collision

with a counter-propagating wave.

The entire maze was 5.5 × 9 mm2 and it was explored by the propagating waves in

150 minutes (Fig. 4.42B). We arbitrarily assigned the exit of the maze to outlet O in

Fig. 4.42B. From this data, the shortest path between the starting point, I, and the exit,

O, was computed. The algorithm to compute the shortest distance involved analyzing
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the reverse front propagation. We started by the last recorded image at the position O

and searched for the closest front on the previous image and so on until arriving to I.

We obtained the white line which is in good agreement with the solution.

Figure 4.42 – Pulse of prey computes the optimal path between the entrance and
the exit of a maze. (A) Time-lapse yellow fluorescence shift images, represented in a
color scale. Black arrows indicate the propagation direction of the leading edge. Black
circles are air bubbles. (B) Computation of the shortest path (white line) was done
by tracking in time the position of the leading front and analyzing the reverse front
propagation. Color indicates the time stamp of the leading edge of the pulse. The
5.5 × 9 mm2 maze had 500 µm wide and 200 µm deep channels. The experiment was
performed at 44°C, ni ckn = 10, poln = 0.5, P(t=0) = 2 nM, G0 = 200 nM and triggered
with N(t=0) = 100 nM.

A maze with a 4-fold larger area was also tested, but the waves did not have sufficient

time to explore the entire device because self-start triggered wave propagation at

random positions within the maze. Shrinking the device was a technical solution but

for future applications, the bistable network in Chapter 2 should be used. It was not

available when the experiments were performed.
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4.6 Conclusion and perspectives

In this chapter, microfluidic devices compatible with the PEN-DNA toolbox were

developed and used: (1) to confine the wave propagation to 1-dimension and study

the propagations dynamics of a prey front that is chased by a predator front, (2) to

control the geometry of reactors to study reaction-diffusion waves in 2-dimensions,

and (3) to explore the computation capability of chemical waves.

The methodology presented here allowed us to explore the intriguing dynamics of

two interconnected waves. Rich dynamics, such as pulses of varying width, were

produced by out-of-equilibrium reactions that arose from coupling two autocatalytic

nodes into a Predator-Prey network topology. In addition, the influence of pol on

front propagation was investigated. In straight channels, poln plays a role in the

relative velocity of prey front velocity related to the predator front velocity. Two phases

of propagation dynamics were observed when varying poln . Increasing the initial

concentration of predators decreased the velocity of the prey front. We obtained

prey and predator fronts that propagated at equal velocities in polystyrene-based

devices but not in glass-based device. For this case, we observed that the velocity of

the pursuing predator wave related to the prey velocity also depends on the material

of the channel, but the causes were not determined. The pulse propagation in 90°

turns revealed that the effect of curvature can be studied with our system. Finally,

a traveling pulse of preys navigated a labyrinth, and we were able to determine the

optimal path by tracing the front position. It can be concluded from this work that

DNA-based programmable synthetic systems, coupled with microfluidic technology,

are a promising experimental framework for investigating the influence of geometry

on spatiotemporal organization.

By changing the concentration of the enzymes and the initial concentrations of its

DNA components the Predator-Prey network presented here has been thoroughly

characterized in temporal and spatiotemporal studies. Using this accumulated knowl-

edge, future experiments can focus on the front propagation within highly complex

geometries. For example, it would be interesting to create logic gates in channels
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based on the PEN-DNA toolbox. The programmability of the PEN-DNA toolbox would

be allow to generate a large amount of non-interacting gates by designing templates

with orthogonal sequence. Dominic Scalise and Rebecca Schulman at Johns Hopkins

University in Baltimore have already shown interest in bulding relatively large-scale

analogue computers based on this technology. Another interesting direction concerns

the propagation of waves across a bed of obstacles. Beyond the results review in

Section 4.1.2 it is not known how a RD front propagates across randomly distributed

obstacles close to percolation. A combination of the methods developed in this chap-

ter with the packed agarose beads in Chapter 2 appears as an attractive solution to

tackle this question. In this context, the complexity of the interactions between chem-

ical species can be increased. DNA networks displaying higher level of connections

that are related to the Predator-Prey network have already been design. For example

the propagation dynamics of the Predator-Prey-mutualism and competition-bilateral

symbiosis networks could be studied in the complex geometries. All these network

behaviors are unfeasible using inorganic reactions such as the BZ system.
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During this PhD work, we have worked extensively on engineering reaction-diffusion

systems based on the PEN-DNA toolbox that display spatiotemporal dynamics by

aiming to control four key elements: (1) the topology of the network, (2) the reaction

rates, (3) the diffusion coefficients and (4) the boundary conditions. We have shown

that we can control all four elements within the PEN-DNA toolbox, but further research

is required to gain full control of all these elements.

In Chapter 1 we have thoroughly characterized the kinetics of an activator-inhibitor

network with a thermostable exonuclease in the search of its oscillatory behavior. We

generated temporal logic functions by injecting the inhibitor in the NOT gate exper-

iment and the activator of the inhibitor module in the inversion function. Notably,

we obtained forced oscillations with an inversion function network with sequences

that were designed in silico in [36] but never before tested experimentally. In par-

ticular, the autocatalyst will need to be weakened to get a functional oscillator. We

have discovered that modifying key parameters such as the template and exonucle-

ase concentration in a multi-node network such as the Oligator requires extensive

experimentation that is very time consuming due to the large number of possible

parameters that we can vary to search for oscillations. Although the PEN-DNA toolbox

is programmable, dynamical behaviors are not obtained by plug and play. Thus, if

the PEN-DNA toolbox is to be widely-adopted to design new networks and to modify

existing ones with several nodes more efforts in developing computer-assisted design
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tools are required.

In Chapter 2 we used 200 nm diameter magnetic nanoparticles and 34 µm diameter

agarose beads to immobilized DNA-PEN templates in order to reduce the effective

diffusion coefficient of an autocatalyst species. We studied the growth kinetics and

front propagation dynamics for a bistable network in packed agarose beads (case

1) and diluted magnetic beads (case 2) and for an autocatalytic network in diluted

agarose beads (case 3). Our results yielded a reduction factor in the effective diffusivity

of the activation species of: 1.5, 2.4, 4.3 for the cases 1, 2 and 3 respectively. Although

we were able to reduce the diffusivity of short DNA strands, clearly the propagation of

fronts in these complex porous media requires further investigation. First of all, it is

critical to determine the diffusivities in these media for a non-reactive system (only

DNA complexation without enzymes) in the future. Furthermore, Kd , the dissociation

constant between the autocatalyst species and templates with the hydrodynamic drag,

appears as a crucial parameter. Secondly, we can also investigate in the future decou-

pling the control of diffusion from the reactive templates. This seems an attractive

solution, for example by designing a ligand of the autocatalyst that does not act as a

template and can be used a larger concentration.

The work from Chapter 2 provided the foundation for controlling colloidal aggregation

with DNA patterns resulting in entirely new type of materials: morphogenetic materi-

als in Chapter 3. To the best of our knowledge this constitutes the first demonstration

of a morphogenetic material. We demonstrated that DNA concentration patterns can

be transferred into patterns of bead aggregation. This was shown in two different

cases: a traveling and a stationary front. This DNA model of morphogenesis resembles

two key stages of embryo development: (i) the generation of chemical patterns and

(ii) the transfer of patterns into a material. In the future more complex morphogenetic

materials can be created using this research. Furthermore, in the case of the Polish flag

patterns the influence of the sharpness of the gradients on the dynamics and shape of

the patterns should be studied. In the future, if the templates are attached to magnetic

beads, external forces can be applied to perturb the stable patterns investigate the

physical aspects of pattern formation.
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In Chapter 4 microfluidic devices compatible with the PEN-DNA toolbox were devel-

oped and used: (1) to confine the wave propagation to 1-dimension and study the

propagations dynamics of a prey front that is chased by a predator front, (2) to control

the geometry of reactors to study reaction-diffusion waves in 2-dimensions, and (3) to

explore the computation capability of chemical waves. In 1-dimensional devices, two

phases of propagation dynamics were observed when varying poln , and increasing

the initial concentration of predators resulted in the decrease of the velocity of the

prey front. We used 2-dimensional devices to quantify the effect of curvature. Finally,

a traveling pulse of preys navigated a labyrinth, and we were able to determine the

optimal path by tracing the front position. Future experiments can focus on the front

propagation within highly complex geometries. For example, it would be interesting

to create logic gates in channels based on the PEN-DNA toolbox. The programmability

of the PEN-DNA toolbox would allow to generate a large amount of non-interacting

gates by designing templates with orthogonal sequence. Another interesting direction

concerns the propagation of waves across a bed of obstacles. Beyond the works re-

view in crefsec:confi it is not known how a reaction-diffusion front propagates across

randomly distributed obstacles close to percolation.

The methodology presented in this work allowed us to characterize the rich dynamics

of traveling waves and stationary fronts. These spatiotemporal patterns were produced

by out-of-equilibrium reactions that arose from three different network topologies:

a bistable, an autocatalytic and a Predator-Prey network. We have shown that we

can measure the growth kinetics and dynamic rates of DNA reaction networks and

work towards rationally engineering spatiotemporal behaviors in this quantitative

approach. Overall, we have expanded the number of available tools to study chemical

and material pattern formation and contributed towards Turing patterns with DNA

strands.
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A.1 Protocol for attaching templates to agarose beads

To attach templates T2 to the agarose beads we followed a similar protocol as described

next but we adjusted the concentration of beads and template depending on the

experiment. Agarose beads were mixed at final concentration of 4% in a solution

containing 100 nM of T2 in the binding and washing (B&W) buffer (2 M NaCl, TE 10

mM and 0.2% tween). The resulting solution was constantly mixed for 30 minutes,

then washed 3 times with B&W buffer to remove any unbound templates. The solution

with templates attached was stored at 4°C or used in an experiment, which required

pre-washing to remove the B&W buffer.

Templates did not attach uniformly to the agarose beads. They tended to concentrate

more on the surface of the beads and less in the interior Fig. A.1. They formed shells

of templates covering the surface of the beads.
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Figure A.1 – Templates T2 attached to agarose beads. On the right hand side we show
the images of the green fluorescence of EvaGreen in buffer PP. On the left hand side
we plot the fluorescence profile at the location indicated by the yellow line. A2 was
present at a concentration of 1 µM.

A.2 Distribution of packed and diluted agarose beads in

a capillary

In Section 2.5 we studied the growth kinetics and the front propagation dynamics for

three cases in which the templates were attached to agarose beads that were closely

packed (case 1) and diluted (case 2).

In the first case, our experimental protocol had to be adapted to generate a system

of several layers of packed beads but not fully packing the entire capillary (Fig. A.2A).

We point out that we have not quantified the impact of autocatalyst species diffusing

freely in the upper part of the capillary where beads are not present on the front

propagation. However, since there are no autocatalyst templates in this upper region

of the capillary there is no growth of the autocatalyst species. We can hypothesize

that the contribution to the front propagation of the autocatalyst species in the region

without beads can be neglected since there is degradation of the autocatalyst species

but no growth in this region. In the second case, the agarose beads were dispersed in

agarose gel, thus fixing them after gelification (Fig. A.2B). We will explain in the next

subsection the protocols for both cases.
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Figure A.2 – Schematic diagrams of packed and diluted agarose beads in a capil-
lary.(A) Agarose beads sediment to the bottom forming layers of beads. (B) Diluted
agarose beads are dispersed in a solidified agarose gel.

Protocol to packed agarose beads

We developed two protocols to obtained ’packed agarose beads’. One protocol al-

lowed us to get also an entire capillary of packed beads but we did not succeed in

obtaining propagating fronts with this protocol. In the second protocol we obtained

packed beads in layers that do not fill the entire capillary (Fig. A.2A). We succeeded in

generating propagating fronts using the second protocol.

Protocol 1

Agarose beads are packed by filling a capillary with the reaction solution containing

the templates attached to the beads. The liquid is removed slowly while aiming to

keep the beads inside the capillary. The capillary is refilled again with the reaction

solution with the beads resulting a more concentrated in agarose beads. The liquid is

removed again from the capillary, which is again refilled. These two steps are repeated

until the beads are closely packed in the entire capillary.

Protocol 2

This second protocol is much simpler. We use a reaction solution that contains

agarose beads at a concentration of 50% in volume. The capillary is then filled with

this solution. We let the beads sediment by gravity for 15 minutes, thus resulting in

several layers of packed agarose beads at the bottom of the capillary. In this protocol,
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the number of layers of packed beads depends on the initial concentration of beads

in the reaction solution. We can approximate the number of layers to be around seven

since beads are 34 µm in diameter in a capillary of 500 µm in height. Thus at 50%

beads, we get

500

34
×50% ≈ 7.
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reaction-diffusion waves in micro-

reactors with tailored geometry

C.1 Main text
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ABSTRACT: Out-of-equilibrium chemical systems may self-organize into
structures displaying spatiotemporal order, such as traveling waves and Turing
patterns. Because of its predictable chemistry, DNA has recently appeared as an
interesting candidate to engineer these spatiotemporal structures. However, in
addition to the intrinsic chemical parameters, initial and boundary conditions have a
major impact on the final structure. Here we take advantage of microfluidics to
design controlled reactors and investigate pursuit-and-evasion chemical waves
generated by a DNA-based reaction network with Predator−Prey dynamics. We first
propose two complementary microfabrication strategies to either control the initial
condition or the two-dimensional geometry of the reactor where the waves develop.
We subsequently use them to investigate the effect of curvature in wave
propagation. We finally show that DNA-based waves can compute the optimal
path within a maze. We thus suggest that coupling configurable microfluidics to
programmable DNA-based dissipative reaction networks is a powerful route to investigate spatiotemporal order formation in
chemistry.

■ INTRODUCTION
The classic experimental approach to investigate the emergence
of spatiotemporal order in chemistry relies on the Belousov−
Zhabotinsky (BZ) reaction and its relatives.1 This successful
framework allowed the first proof of the existence of Turing
patterns2 and very recently the experimental verification of
Turing’s predictions,3 among many other insightful observa-
tions.4

Spatiotemporal order in molecular systems may arise from
the coupling of reaction and diffusion processes. In this case,
ordered structures are steady-state solutions of the associated
partial differential equations. They thus depend on the chemical
mechanism, and the associated reaction rates, as well as on the
diffusion coefficients of the reactants. However, of course, they
are also strongly constrained by the initial and boundary
conditions. BZ-related systems have highlighted the importance
of initial and boundary conditions in the outcome of spatial
self-organization.5 For instance, excitable waves cannot
propagate through doorways below a critical width, which has
been used to implement chemical reaction-diffusion (RD) logic
gates.6 Moreover, because of their constant propagation
velocity and parallel exploration of space, RD waves have
been used to find optimal paths in a two-dimensional (2D)
labyrinth.7 Coupling microfabrication with BZ-related reactions
has proven to be an interesting approach to investigate the
influence of boundary conditions on reaction-diffusion chemical
systems. For instance, Steinbock and co-workers developed
polydimethylsiloxane (PDMS) microfluidic devices to charac-
terize BZ waves,8 while Ismagilov and collaborators were able

to reproduce in a simple chemical system the complex
spatiotemporal behavior of hemostasis.9

Despite its great importance, BZ-related reactions are
difficult to engineer, and we are thus limited by a reduced set
of experimentally available mechanisms. To extend this set, a
recent approach, developed by Schwille and collaborators, uses
purified biochemical systems: the Min system self-organizes
into traveling waves in vitro10 and is capable of sensing
geometry over hundreds of microns.11

We have introduced an alternative approach that uses
synthetic DNA-based dissipative systems.12 Because of its
simple synthesis and predictable reactivity toward the hybrid-
ization reaction,13 DNA is a suitable chemical to engineer
programmable chemical reaction networks (CRNs). Dissipative
CRNs with various topologies and up to six nodes have been
demonstrated experimentally14 and computer-assisted design
tools are now available.15 The rate constants and diffusion
coefficients of individual nodes can also be conveniently
tuned.16 However, no attempt has been made to control the
initial and boundary conditions of reactions involving these
versatile systems.
In this work we take advantage of microfluidics to precisely

define initial and boundary conditions of a dissipative DNA-
based CRN. To this end, we use a CRN with Predator−Prey
(PP) dynamics that exhibits pursuit-and-evasion traveling
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waves. The predictable reactivity of the DNA system used here
allows us to propose a model in fair agreement with the
experimental data. We further investigate the effect of curvature
in the dynamics of PP propagation. Finally we show that DNA-
based waves can find the shortest path within a maze. These
results suggest that the combination of DNA-based reaction
networks with tailored microfluidic reactors is an interesting
experimental framework to investigate spatiotemporal pattern
formation in chemistry.

■ EXPERIMENTAL SECTION
Preparation of Solutions. DNA oligonucleotides were

purchased from Biomers with HPLC purification. Sequences
for DNA prey N, DNA predator P, and DNA template G and
buffer components were described elsewhere14b and are given
in Supporting Information (SI) Section 2 for convenience. The
reaction mixture also contained two enzymes, the Bst large
fragment DNA polymerase, noted pol, and 500 U/mL Nb.BsmI
nicking enzyme, noted nick (both from NEB); concentrations
are given as poln = pol/pol0 with pol0 = 16 U/mL. Unless stated
otherwise, all experiments were performed at 44 °C with initial
concentrations G0 = 200 nM and P0 = 2 nM. For kinetic
experiments N0 = 10 nM. For propagation experiments N0 =
100 nM at the inlet of the channel.
Monitoring. The fluorescence shift of DY530 attached to

the 3′ end of G was used to monitor the extent of the reaction.
Kinetic experiments were performed in a real-time PCR
machine (Biorad CFX96 or Qiagen Rotor-Gene Q). For
propagation experiments, we used an inverted Zeiss Axio
Observer Z1 microscope equipped with an HXP 120 fiber-
coupled illuminator, a Brightline SpGold-B-ZHE Semrock YFP
filterset (EX FF01-534/20, EM FF01-572/28, DM FF552-
Di02), a 2.5× or a 10× objective EC Plan Neofluar with N.A.
0.075 and 0.3, respectively, a Marzhauser XY stage with a
TokaiHit ThermoPlate, and an Andor iXon Ultra camera.
During a typical experiment we recorded the fluorescence of six
microfluidic channels with 1 or 2 min time lapse. Image
acquisition and analysis were performed using Micro-Manager
1.4 (The Open Source Microscopy Software) and ImageJ
(NIH).
Microreactor Fabrication. PDMS devices with reduced

evaporation were fabricated by multilayer soft lithography.17 To
do so we superimposed two thin layers with embedded fluidic
and control channels (fabricated as described elsewhere18) and
added on top a thick PDMS layer with a punched centimetric
hole filled with water to avoid evaporation. The thickness of the
PDMS layer below the water tank was 250 μm. The main
challenge consisted in aligning the two thin PDMS layers. The
control and fluidic layers were made of spin-coated 1:20 and
1:10 PDMS, while the thick layer was 5 mm thick 1:5 PDMS.
After partial curing for 30 min at 70 °C the thick and fluidic
layers were assembled, cured for another 30 min and then
aligned on the control layer. The device was finally sealed with
a glass slide after a plasma treatment.
Microfluidic NOA81 (Norland Optical Adhesive) thiolene-

based, photocurable glue devices were made as described19 (SI
Section 4). The sample was injected with a micropipette
through the 1 mm access holes embedded in the NOA81 layer.
The initial condition was created by injecting 0.5 μL of reaction
mixture with 100 nM N. To prevent evaporation, the chip was
sealed with PCR scotch tape (premium Plate sealing film,
Platemax, Axigen).

■ RESULTS AND DISCUSSION
Predator−Prey Network without Degradation Exhib-

its a Single Pulse in a Well-Mixed Reactor. Throughout
this work we consider a reaction network composed of two
species: the prey, N, and the predator, P. In the presence of a
polymerase, pol, and a nicking enzyme, nick, a 10-bases long
oligonucleotide grows autocatalytically on the template G
(Figure 1 and SI Figure S1). P is a palindromic oligonucleotide

14-bases long that contains the complementary sequence of N
on its 3′ end. When P and N hybridize, the polymerase extends
the short strand yielding two P and thus resulting in the
predation of N by P. Note that this system lacks an exonuclease
providing degradation of N and P, in contrast with previous
work.12b,14b In the following, species concentrations are noted
in italics.
We first studied the kinetics of this system in a well-mixed

reactor for different pol (Figure 2). The extent of the reaction

was followed by recording over time the fluorescence of a dye
attached to the 3′ end of G (SI Figure S2). All the curves
display the same qualitative behavior: the fluorescence shift
grows over 20−150 min, reaches a maximum, and then
decreases and eventually attains a steady state at a value higher
than the initial one, 100−200 min later. This corresponds to
the growth of N until a maximum value, Nmax, reached when
growth and predation rates become equal, followed by a

Figure 1. Mechanism of the DNA-based degradation-free Predator−
Prey system consisting on the autocatalytic growth of the prey N (top)
and the predation of N by P (bottom). Harpoon-ended arrows
indicate single strand DNA with N, the prey, G, the template on which
N grows, and P, the predator. pol and nick stand for polymerase and
nicking enzyme, respectively. Colors denote DNA domains with equal
or complementary sequences.

Figure 2. Predator−Prey dynamics in a well-mixed reactor.
Fluorescence shift vs time for different polymerase concentrations,
poln = 0.5−4. Disks and lines correspond, respectively, to experiments
and to fits to the model in eqs 1 and 2 and eq S2 in the SI.
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decrease of N due to predation until the steady state (N = 0, P
= Pmax) is attained. A significant portion of the growth phase
can be fitted by a monoexponential, with rate rg (SI Figure S5).
After the maximum of intensity is reached, the first 2/3 of the
intensity drop during predation can also be fitted by a
monoexponential, with rate rp. Both rg and rp depend on poln
(Figure 3A, circles). For rg we distinguish three different

regimes: for poln = 0−0.5, rg = (0.12 min−1)poln; in the range
poln = 0.5−4, rg = (0.026 poln + 0.06) min−1, and for poln > 4, rg
= 0.16 min−1. rp coincides with rg for poln = 0.5−2, then
saturates and finally drops for poln > 5 (Figure 3A, circles).
Both the maximum and final fluorescent shifts depend on poln
(Figure 2 and SI Figure S3).
Model. The aforementioned observations are compatible

with the following simplified mechanism

κ→ = +N N r N pol N
bN

2 ( )
1

r
n1 1

1

(1)

κ+ → = +N P P r N P NP
bP

2 ( , )
1

r
2 2

2

(2)

where ri is the rate of reaction i; κ1 and κ2 are the rate constants
for prey growth and predation, respectively (with κ1 propor-
tional to G0); poln is the normalized concentration of pol; N
and P are the concentrations of N and P at time t; and b is a
saturation constant (note the addition of a saturation term for
predation compared with refs 12b and 14b). Note also that

predation does not explicitly depend on poln. However, the
apparent predation rate rp does depend on poln because Nmax
depends on poln. The different functional dependence of r1 and
r2 on poln allows us to construct a phenomenological model
that accounts for the fact that both the time at which the
maximum fluorescence is attained and its intensity depend on
poln (Figure 2A). To compare the experimental data to the
model in eqs 1 and 2, we first measured the dependence of the
fluorescence shift on N and P by titration of a solution of G (SI
Figure S2 and eq S2). We then fitted the data by numerically
solving eqs 1−4, together with eq S2 in the SI, with a single set
of parameters and obtained κ1 = 0.05 ± 0.02 min−1, κ2 = 0.5 ±
0.1 min−1μM−1, and b = 1.0 ± 0.5 μM−1.
During the growth phase N ≫ P and r1 ≈ κ1poln for bN ≪ 1.

We can thus identify r1 and rg. On the contrary, there is no
simple analytical expression to link r2 and rp. To compare the
experiments and the model we run simulations for the
following parameter range: κ1poln = 0.01−0.4 min−1, κ2 =
0.1−1 min−1 μM−1, and b = 0−5 μM−1. We then extracted rg
and rp from the simulations and plotted them vs poln, κ2, and b
(Figure 3 and SI Figure S4). The model captures semi-
quantitatively the behavior observed experimentally. Indeed rg
in the simulations depends linearly on poln as happens
experimentally in the range poln = 0.5−4. However, as
expected, our model does not capture the saturation of rg at
high poln. The model also captures well the bell-shaped
dependence of rp on poln. Further, rg extracted from the model
depends uniquely on poln and not on k2 or b, as expected. rp
depends on all the parameters, and we cannot give a
fundamental meaning to it. We conclude that rg ≈ κ1poln and
that this simple 2-variable model accounts for the essential
dynamics of our PP system over the range poln = 0.5−4 with a
single set of three parameters.
In a spatially inhomogeneous reactor, which we shall

consider in the following, the evolution of N and P is given by

∂
∂ = − + ΔN

t
r r D N(N) (N, P)1 2 N (3)

∂
∂ = + ΔP

t
r D P(N, P)2 P (4)

where DN and DP are the diffusion coefficients of N and P,
respectively, and Δ is the Laplacian operator. For a Heaviside-
type initial condition for N and a homogeneous and sufficiently
small one for P, one can consider that N propagates in a region
where P ≈ 0, such that r2 ≈ 0. Then, eq 3 is independent of eq
4, and its solution is a Fisher-KPP front of constant velocity (SI
Section 1.6), given by

= ′v r D2 (0)1
mod

1 (5)

where r1′(0) = κ1poln is the derivative of r1 at N = 0 and D is the
diffusion coefficient of the average species N. Indeed, N can be
free or bound to G. As a result D is an average of DN

free and
DN

bound weighted16 by the hybridization constant of N and G,
KH. We estimated D by measuring the diffusion of fluorescently
labeled 11 and 22 bases long ssDNA and found16 DN

free = (18
± 3) × 103 μm2 min−1 and DN

bound = (11.8 ± 0.8) × 103 μm2

min−1 at 44 °C. We measured KH = 4 μM−1 (SI Figure S2), and
thus, at low N and G0 = 200 nM, 50% of N is bound to G
yielding D ≈ 15 μm2 min−1.

Spatial Reactors with Precise Control of the Initial
Condition. A propagating pulse of prey appears when its initial
concentration is inhomogeneously distributed over space. In

Figure 3. Dependence of the phenomenological rates, rg (red) and rp
(blue), on the kinetic parameters poln (A), κ2 (B), and b (C). Lines
correspond to simulations and circles to experimental data in Figure 2.
κ1 = 0.05 min−1, κ2 = 0.5 min−1 μM−1, and b = 1 μM−1 (see SI Figure
S4).
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our previous work, propagating wave trains arose from a
homogeneous initial condition through uncontrolled phenom-
ena that induced a symmetry break.12b To precisely control the
position and the time where the prey pulse is triggered, we
fabricated a channel reactor with embedded microvalves using
soft lithography. Our device, depicted in Figure 4A, consists in

a long serpentine channel and a loading area with four valves
dedicated to the injection of the initial condition. To minimize
evaporation, the thickness of the PDMS layer above the
channels was reduced to 250 μm and covered with a water
reservoir.
Setting an experiment is as follows (SI Figure S5). First, the

long serpentine channel is filled with a solution containing
everything but species N. Once valves 4−5 are closed, a
solution containing N can thus be loaded to fill the injection
volume between valves 3−4. While valve 4 remains closed no
change is observed in the serpentine channel, indicating that it
is impermeable to N. When valve 4 is open, 80 amol of N are
injected into the inlet of the serpentine channel. At this point a
fluorescence pulse propagates along the channel (Figure 4C
and SI Figure S6). The propagation velocity was constant and
equal to 68 μm min−1 for G0 = 1 μM and poln = 0.5. In these
conditions we measured rg = (5.2 ± 0.5) × 10−2 min−1. From
eq 5, and taking r′1(0) = rg, we found v1

mod = 55 μm min−1,
which is 1.2-fold lower than the measured value.
PDMS microfluidic devices with embedded valves are thus

compatible with DNA-based reaction networks. In particular
they can be used to precisely set an initial condition to trigger a
traveling pulse. Nevertheless, and despite our efforts to reduce
evaporation, bubbles were observed after 2 h at 44 °C, which
rendered this device impractical to operate (SI Figure S8).
Several partial solutions for reducing evaporation in PDMS
chips have been proposed.20 However, it appears difficult to
implement these methods with devices that include valves. We
chose instead a more robust and simpler technology.

Versatile Spatial Reactors with Well-Defined Geome-
try and Low Evaporation. Microfluidic stickers are micro-
fluidic devices made of the thiolene-based photocurable glue
NOA81.19 They are simple and rapid to fabricate from a PDMS
mold (SI Figure S7). Moreover, they can replicate submicron
features and display a low autofluorescence above 500 nm,21

and evaporation is strongly reduced compared to PDMS (SI
Figure S8).
To test the compatibility of NOA81 devices with DNA-based

networks we fabricated channel reactors 1 mm wide, 120 μm
high, and 15 mm long connected at both ends by 1 mm holes.
Figure 5A,B shows the propagation of a pulse of preys, together

with the corresponding fluorescence profiles along the channel.
The shape of the pulse is somewhat trapezoidal, with a sharp
leading edge and a more diffuse trailing edge, 650 μm and 2
mm wide, respectively. The leading and the trailing edges
correspond to propagating fronts of preys and predators,
respectively. Both the leading and the trailing edges of the pulse
have a stable shape over time, indicating that they correspond
to traveling fronts. However, the shape of the propagating pulse
is not constant but narrows over time. The velocity of the
leading and trailing edges were v1

exp = 51 μm min−1 and v2
exp =

71 μm min−1, respectively, at G0 = 200 nM and poln = 2. At
steady state we expect vexp1 = vexp2 indicating that the velocity of
the trailing front (and thus its width) has not reached a steady
state in our experimental conditions. The standard deviation of
the measured velocity was as low as 5% in a series of replicate
experiments with identical reaction mixtures in a single chip. It
rose to 20% when comparing experiments performed in
different days, which suggests variations in the state of the
chip surfaces upon fabrication. From eq 5, with r1′(0) = rg =
0.11 ± 0.01 min−1 (Figure 3A) we calculated v1

mod = 80 ± 20
μm min−1, which is 1.6-fold higher than the measured value. In
the model of eqs 3 and 4 the velocity depends only on the prey

Figure 4. Control of the initial condition using a PDMS microfluidic
device. (A) Side view of the device, with fluidic channel, control
channelm and antievaporation tank (not to scale). (B) Photo of the
main area of the device from the top. The serpentine channel is
dedicated to the observation of traveling waves, while the five valves
are used to prepare a precise initial condition. The fluidic channel is in
deep red. (C) Time-lapse images of a traveling wave of preys in the
serpentine channel. G0 = 1 μM; poln = 0.5.

Figure 5. Pursuit-and-evasion wave propagating in a straight NOA81
channel. Kymograph (A) and corresponding fluorescence shift profiles
along the channel (B) for a traveling pulse of preys. poln = 2. See also
SI Movie 002.avi. (C) Simulated fluorescence shift profiles from eqs
1−4 and eq S2 in the SI with κ1 = 0.05 min−1, κ2 = 0.5 min−1 μM−1, b
= 1 μM−1, and DN = DP = D = 15 × 103 μm2 min−1.
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growth rate and on the diffusion of the prey and does not
depend on the predation reaction (κ2 and b) that takes place at
the trailing edge. The 1.6-fold difference between the model
and the experiments could thus arise from a poor estimation of
r1′(0) or D that would be at most 2.5 lower than stated. Errors
on r1′(0) may appear if the intensity of our fluorescent reporter
underestimates the concentration of N at low N, which cannot
be excluded. Concerning the value of D, it is difficult to imagine
it being lower than DN

bound, which would make at most a
correction factor of 1.25, although interactions with the surface
may reduce DN

bound further. A quantitative agreement of the
modeled and experimental propagation velocities requires
further investigation and is outside the scope of this work.
Subsequently, we numerically integrated eqs 1−4 in a one-

dimensional space using the method of lines and the
parameters extracted from Figure 2. In agreement with the
experiments, the simulations predict a pulse with a leading and
a trailing front that propagate at constant velocity. However, in
contrast with the experiments, the velocities of these two fronts
were identical in the simulations and equal to 70 μm min−1.
This is respectively 1.4-fold larger and identical than the
measured values for the leading and trailing front. The shape of
the simulated front was bell-like and its width was constant over
time, in contrast with the experiments. The parameter κ2
governed the width of the pulse (SI Figure S9) and did not
influence the velocity as expected from the theory (SI Section
1.5). We thus hypothesize that the variation of the experimental
pulse width over time is due to a change of κ2. A possible
mechanism for this is the saturation of the polymerase at high
N, i.e., just behind the leading front. In that case pol would be
sequestered by the prey growth reaction and would not be
available for predation, lowering κ2. As soon as P starts to grow
and the predator front forms (at t = 84 min in the
experiments), the mechanism would change and κ2 would
recover its value without saturation.
Predator−Prey Propagation in a 90°-Turn. In NOA81 it

is straightforward to fabricate spatial reactors with arbitrary
two-dimensional shapes. To investigate PP propagation
dynamics in two-dimensions we designed channels with a
90°-turn and different curvature radii. Figure 6 shows a pulse of
prey propagating in 2 mm wide channels with curvature radius,
Rc, of 1.5 and 8 mm at their center. The inner and outer paths
of the turn were 0.8 and 3.9 mm long, in the first case, and 11
and 14 mm in the second. In contrast with the results obtained
in the straight channel the velocity of the leading edge was not
constant. For Rc = 1.5, the velocity along the outer path
increased up to +120 μm min−1, while it decreased by up to
−75 μm min−1 along the inner path, from 150 μm min−1 at the
entry of the turn. For Rc = 8, the changes in velocity were less
pronounced 6.2 and −18.6 μm min−1, respectively, from 62 μm
min−1 at the entry. Similar qualitative changes were obtained in
simulations (SI Figure S10).
These changes in velocity can be understood considering that

in a straight channel the front can be approximated by a planar
wave while in the turn the front acquires a curvature, γ, that
depends on space and time. The wave velocity along a
coordinate normal to the front, is influenced by γ as

γ= +⊥v v D0 (6)

where v0 is the planar wave velocity and D is the diffusion
coefficient of the propagator species.22 For Rc = 1.5 mm, we
measured maximum curvatures at the outer and inner paths of
γout = (3.7 ± 1.3) × 10−3 μm−1 and γin = −(9 ± 3) × 10−4

μm−1, respectively (SI Figure S11). With D = 18000 μm2 min−1

we get γoutD = 67 ± 21 μm min−1 and γinD = −16 ± 5 μm
min−1. These figures are, respectively, 2-fold and 6-fold smaller
than the experimental values for the outer and inner paths.
However, the order of magnitude and the sign are correct.
Moreover eq 6 was derived for excitable systems, which is not
the case of the PP network studied here.

Finding the Optimal Path in a Maze. Reaction-diffusion
systems are known to compute optimal paths within complex
labyrinths. This approach has been undertaken using the
Belousov−Zhabotinsky reaction7 and the Physarum slime
mold.23 However, in none of these systems the computed
output could be easily interfaced with a chemical downstream
process. In contrast, DNA-based reaction-diffusion systems can
be simply connected to other DNA-based networks with
further information-processing capabilities or to DNA nano-
structures.24 We thus fabricated a 5.5 × 9 mm2 maze with 500
μm wide channels and tested the capability of the PP pulse to
compute optimal paths (Figure 7). A pulse was initiated at the
upper-left corner of the maze. It propagated through all
possible paths, splitting at each crossing and vanishing at dead
ends and upon collision with a counter-propagating pulse. The
pulse took 150 min to explore the whole maze. We determined
the shortest path between the inlet (I) and the outlet (O) by
analyzing the reverse front propagation with a homemade
automated image-processing algorithm, although other algo-
rithms have been described.25 We first determined the position

Figure 6. Effect of the front curvature in the propagation dynamics of
pursuit-and-evasion waves. (A) Yellow fluorescence shift time-lapse
images of a traveling pulse of N passing through a 90°-turn channel of
1.5 or 8 mm curvature radius. (B) Velocity of the leading front, v1,
along the longitudinal coordinate of the channel at different times for
the inner (black) and outer (red) path of the channel. poln = 0.5.
Channel is 2 mm wide and 500 μm deep. See also SI Movie 003.avi.
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of every propagating front at all times. Then, starting from the
last image, we selected the front at the exit of the maze and
searched for the closest front on the previous image. By
iteration, the shortest path from O to I was found (Figure 7B,
white line).
In NOA devices, bubbles hindering front propagation appear

after at least 25 h (SI Figure S8). With typical front speeds of
100 μm min−1 this makes a maximum traveled distance of
about 15 cm, which is comparable to previous demonstrations
of labyrinth-solving chemical systems.7 It is to be noted that
with a typical front width of 100 μm, details smaller than 100
μm will not be sensed by the propagating front. These
constraints should be considered in future applications of this
method.

■ CONCLUSION
We have recently demonstrated the capability of DNA-based
reaction-networks to create traveling waves and spirals in a
closed system.12b Such reaction-diffusion systems are moreover
highly controllable: both the topology of the reaction
network12a,14a and the reaction and diffusion rates of each
node16 can be tuned. Here we have extended the capabilities of
this experimental framework to the control of the initial
condition and of the geometry of the reactor where the
reaction-diffusion process takes place. These controlled reactors
have allowed us to investigate the intriguing dynamics of
pursuit-and-evasion waves. In summary, dissipative DNA-based
reactions in combination with microfluidics make an exper-
imental framework of choice for investigating emergent
spatiotemporal behaviors in synthetic systems.
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1 Degradation-free Predator-Prey mechanism and model

1.1 Mechanism of the DNA-based degradation-free Predator-Prey 
system 

3

Figure  S1:  Mechanism of  the  DNA-based  degradation-free  Predator-Prey system. A.  The 3  DNA species  

involved in the reactions: prey N, predator P and grass template G. B. Reaction 1: autocatalytic prey growth of  

prey  N in  presence  of  the  grass  template  G.  C.  Reaction  2:  predation,  predator  P consumes  prey  N and  

reproduce, yielding two predators P. Complementary DNA sequences share the same color: pink/red for a/a*  

domains and green/light-green for self-complementary b domain. And pol stands for polymerase while nick  

stands for nicking enzyme
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1.2 Dependence of the fluorescence shift on N and P

We followed the extent of the reaction by recording the fluorescence from DY530 attached to 

the 3' end of G. Because P contains the sequence of N, both can hybridize on the 3' end of G, 

and both contribute to the quenching of fluorescence. To determine this dependence we 

titrated a solution of 200 nM G with N or P.

From the data in Figure S2 we can relate the normalized yellow fluorescence shift to 

the actual concentrations of P and N as

 
I shift

norm
=ϕN N G+ϕP PG (1)

where NG and PG are the concentrations of N bound to G and P bound to G, respectively and 

φN and φP are their respective fluorescence quantum yields. Writing the equilibriums N + G = 

NG and P + G = PG with equilibrium constants KN and KP, respectively, we find:

 I shift

norm
=

ϕN

2G0

(1/ K N +G0+N −√−4G0 N +(1 /K N+G0+N )
2
)

+ϕP

2G0

(1/ K P+G0+P−√−4G0 P+(1 /K P+G0+P )
2
)

(2)

4

Figure S2:  Fluorescence of a 200 nM solution of G as a function of P (black) or N (red) concentration in the  

working buffer without enzymes at 44 ºC. Note that the fluorescence shift used in the main text corresponds to an  

arbitrary constant minus the yellow luorescence.
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From Figure S2 and Eq. 2 we find φN = 0.7 and φP = 0.23, KN = 1.4 µM-1 and KP =  4.6 

µM-1. In the simulations in Figs. 2A and 4C of the Main Text we use Eq. 2 to calculate the 

fluorescence shift from the simulated values of N and P.

1.3 Dependence of the maximum and final fluorescence shift on 
poln

5

Figure S3: Maximum (left) and final (right) fluorescence shift vs poln for the data in Figure 2A of the Main Text.
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1.4 Fitting of the growth rate

At the  beginning of  an  experiment  in  Figure 2A of  the  Main Text,  we can consider  the 

concentration of both preys and predators to be low - solutions are prepared with 10 nM prey 

and 2 nM predator respectively and thus

 
r1≪r2 (3)

which leads to 

 
d N

dt
≈κ1 poln

N

1+b N
(4)

Otherwise, at low concentration of prey, b N ≪1 , we have 

d N

dt
≈κ1 poln N  for which a solution is N (t)=N 0 e

κ1 pol n t
=N 0 e

rg t

Fitting the exponential growth of preys using a nonlinear least square fitting algorithm – red 

curve in  Figure S4 - we extracted the corresponding rate constant  rg as a function of the 

polymerase concentration as summarized in Figure 2 B in the main text. 

Note  that  although  the  exponential  growth  is  only  fitted  for  the  initial  prey  growth,  the 

exponential growth is nicely maintained further along prey growth for higher concentrations 

of prey. The computation of the rate constant rg is not exactly straightforward as we must  fit 

only the initial prey growth up to a valid growth time that holds true to the assumptions from 

equations.  Therefore  the  criteria  for  selecting  the  upper  growth  time  came  from  the 

exponential fitting: we selected k when the values were not changing much from iteration to 

iteration and  for the lowest values of the square root of residuals as depicted in Figure S4 B. 

6

Figure S4:  Prey growth exponential fitting of predator-prey system in the absence of degradation in a 0D  

reactor. A. Prey concentration is monitored over time for different normalized polymerase concentrations, poln,  

(right to left polymerase concentration: 0.5, 0.75, 1, 1.5, 2, 2.5, 4, 5). Initial prey N, predator P and template G  

concentrations were 10 nM, 2 nM and 200 nM. B. Computed rate constant  (red, top graph) and square root of  

residues (black, bottom graph) for prey growth (k) for poln=5  exponential fitted curve (far left red line in A.) as  

a function of time.
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1.5 1D model and derivation of the front velocity

For simplicity we will  assume that effective  diffusion coefficients  of both prey and 

predator are fixed parameters  and are equal.  Indeed, N and P are 10- and 14-mere DNA 

strands, and their diffusion coefficients are very close by value. With this assumption, the 

reaction-diffusion equations governing the system become

 

∂ N

∂ t
=

κ1⋅poln⋅N

1 + b N
−

κ2 N P

1 + b P
+ D

∂
2

N

∂ x
2

,

∂ P

∂ t
=

κ2 N P

1 + b P
+ D

∂
2

P

∂ x
2

.

(5)

To  facilitate  the  following  analysis  we  introduce  new,  adimensionalized  dependent 

variables, independent variables and a parameter

 

τ = κ1⋅poln⋅t , ξ = x√
κ1⋅poln

D
, n =

κ2

κ1⋅poln

N ,

p =
κ2

κ1⋅poln

P , μ =
κ1⋅poln⋅b

κ2
.

(6)

Substitution of this into (5) results in the following system:

 

∂n
∂ τ

=
n

1 +μ n
−

n p

1 + μ p
+

∂
2
n

∂ξ
2

,

∂ p
∂ τ

=
n p

1 +μ p
+

∂
2

p

∂ ξ
2

.

(7)

To find a traveling wave solution of this system we search for a solution of the form

n  ,= n  −  = n  , p  , = p − = p  , where  =  −  is 

the automodel variable. Here   has a meaning of an adimensional speed of propagation of 

the solution. We will find later how it is linked with the speed of propagation in laboratory 

units. Such substitution results in the following system of second order ODEs:

 

−υṅ =
n

1 +μ n
−

n p

1 + μ p
+ n̈ ,

−υ ṗ =
n p

1 +μ p
+ p̈ ,

(8)

where a dot means derivative with respect to  .

It  is  convenient  to  consider  a  system  of  first  order  ODEs  equivalent  ot  (8) by 

introduction of new dependent variables m = ṅ and q = ṗ. The resulting system is

7
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ṅ = m ,

ṗ = q ,

ṁ =− υm −
n

1 + μn
+

n p

1 +μ p
,

q̇ =− υq −
n p

1 +μ p
.

(9)

The steady states of this system in ℝ
4 are points 0, p ,0 ,0 , and they continuously 

fill  the  p-axis.  A traveling  wave,  that  has  in  front  of  it n = 0, p = p0 , and  behind  it

n = 0, p = p1  p0 , corresponds to a solution of (5) that begins in a point 0, p1 ,0 ,0

and  ends  in  a  point 0, p0 ,0 ,0 (note  the  sign  in  front  of  time  in  =  −  ).  It  is 

important,  that  experimental  initial  conditions  define  the  point 0, p0,0 ,0 , and  in  our 

experiments p0  1 − 
−1

. The  point 0, p1 ,0 ,0 is  defined  by  the  corresponding 

trajectory. To find possible propagation velocities we will  perform a simple local stability 

analysis near the steady states. To do so, we find eigenvalues of (9) in steady states by solving 

the secular equation:

∣
− 0 1 0

0 − 0 1

1 −  p − 1

1   p
0 − −  0

−
p

1   p
0 0 − − 

∣ = 0.  

Its solutions are

1 = 0 , 2 =− , 3,4 =
1

2 − ±  
2
 4

1 −   p − 1

1   p  .  

As was expected from the fact that the steady states form a continuous line, all of them 

are  degenerate  at  least  once.  One  particular  steady  state 0,1 − 
−1

,0 ,0 is  double 

degenerate. 

When p  1−
−1

, the steady state is a saddle with hyperbolic eigenvalues, and its 

local  center  manifold conforms to the  p-axis.  In  this  case 3,4 are  real,  and 3 4  0.

2 corresponds  to  an  eigenvector l 2 = 0,1 ,0 ,−
T

, while 3,4 correspond  to 

eigenvectors l 3,4 = 1,−
p

1−  p−1
,3,4 ,−

p3,4

1− p−1 
T

respectively.

When p  1−
−1

, the  local  center  manifold  is  again  1-dimensional  and 

corresponds to the p-axis, but the stable manifold is now 3-dimensional, and the eigenvectors 

have the same expressions as in the previous case. This case further splits into two subcases:

  2  1−
p

1 p
, and   2  1−

p

1 p
. In the first  subcase,  all  the eigenvalues are 

8
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real, and the stable manifold has a (may be degenerate) node. In the second subcase, 3,4

become complex conjugate, and there is a focus-node in the stable manifold.

The  steady  states  with p  1− 
−1 can  only  be  stocks,  and  the  ones  with

p  1− 
−1 are  the  only  ones  that  can  be  sources.  Therefore,  the  only  physically 

meaningful possibility is to have a trajectory that starts at a steady state with p  1− 
−1

and ends at a steady state with p  1−
−1

. For a given p0  1−
−1

, there exists the 

smallest velocity c = 2  1−
p0

1 p0

. Indeed, there is only two trajectories that enter this 

point in direction of l 2 , as 2  Re4  Re3  0. Because all such trajectories, as seen 

from  (9),  evolve  strictly  in  the  pq-plane,  they  cannot  begin  at  some  other  point  with

p  1− 
−1

. If   2  1−
p0

1 p0

, then  entering  trajectories,  that  originate  at  some 

steady  state  with p  1− 
−1 ,  form  spirals  in  a  plane  spanned  by l 3 +l 4 and

i l 3 − l4 , and this plane is transversal to the pmq-hyperplane. It means, that approaching 

trajectories will have n  0 at any neighborhood of the steady state in question. Assuming 

that this smallest velocity corresponds to the only stable front, like in the Fisher-KPP case, we 

can expect the velocity of the traveling solution of (7) to be equal to 2  1−
p0

1 p0

.

The corresponding velocity  in  laboratory units,  i.e. the parameter v in  the solution 

N  x , t = N x − v t  , P x ,t  = P  x − v t  , as  readily  seen  from  (5),  equals  to 

v = υ√ D κ1⋅pol n = 2√ D(κ1⋅poln −
κ2 P0

1 + b P 0
) . Assuming P0 ≪ 1/b , and

κ2 P0 ≪ κ1⋅poln , as it is in current experiments, we have v = 2 √ Dκ1⋅poln.

If DN ≠ DP , using  the  same  adimentionalized  variables  except 

ξ = x √ κ1⋅poln /DN , we obtain instead of (9) the following system

 

ṅ = m ,

ṗ = q ,

ṁ =− υm −
n

1 + μn
+

n p

1 +μ p
,

q̇ =−
1
δ

υq −
n p

δ(1 +μ p)
,

where δ = DP/ DN .

The eigenvalues in this case are

1 = 0 , 2 =−



, 3,4 =

1

2 − ±  
2
 4

1 −  p − 1

1   p  .  

The expression for the eigenvectors becomes more complicated, but it does not change 

the  reasoning  outlined  above.  The  final  expression  for  the  minimal  velocity  becomes

v = υ√ DN κ1⋅poln = 2√ DN (κ1⋅poln −
κ2 P 0

1 + b P0
).

At small initial predator concentration we have v = 2 √ DN κ1⋅pol n .

9
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2 Preparation of solutions

The  DNA oligonucleotides  were  purchased  from  Biomers  with  HPLC  purification.  As 

depicted in figure S1, sequences for DNA prey N, DNA predator P and DNA template G, are 

respectively 

DNA Sequence (5’> 3’) 3’-modifications

N (prey) CATTCGGCCG

P (predator) CATTCGG-CCGAATG

G (template) CGGCCGAATG-CGGCCGAATG Dy530 (yellow fluorescence)
Area in bold is the recognition sequence of the  

nicking enzyme

Table S1: DNA oligonucleotides sequences and modifications

Reaction buffer contains salts (20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM KCl, 50 mM 

NaCl, 8 mM MgSO4), dNTP (400 µM of each, New England Biolabs), BSA and surfactant 

for  enzyme  stability  (500µg/mL  BSA,  New  England  Biolabs,  0.1%  Synperonic  F108, 

Aldrich), single-stranded binding protein to prevent premature annealing of DNA (5 ng/µL 

extremely thermostable single-stranded binding protein (ETSSB), New England Biolabs), a 

double stranded DNA stabilizer (2 µM Netropsin, Sigma-Aldrich), and a reducing agent (4 

mM dithiothreitol,  Sigma-Aldrich). 
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3 PDMS devices 

3.1 Setting an experiment

 

11

Figure S5: Setting an experiment in the PDMS device. A. The long serpentine channel is filled with a solution  

containing everything but the prey. B. The serpentine channel is then isolated closing valves #4 and opening  

valve #2 a solution containing prey can thus be loaded in order to fill the “initial condition prey volume”. C.  

Once done, valve #3 is closed. D. and E. Opening the valve #4 (“Starting experiment valve”) will thus add some  

prey into the serpentine channel. Growth will start from this point and propagates, then followed by predator.
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3.2 Prey propagation and corresponding profile

12

Figure  S6:  Propagation in  the  PDMS microfluidic  device. A.  Traveling  wave  of  preys  in  the  serpentine  

channel.  Wave of  preys  propagates  at  constant  velocity,  68 µm.min-1.  B.  Corresponding profiles  along the  

channel. Initial predator P and template G concentrations were 2 nM and 1 µM. To start the front, we had a  

solution of prey at 100 nM on top of the channel. Pol=8 U/mL.
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4 NOA81 device fabrication

Microfluidic NOA81 (Norland Optical Adhesive) thiolene-based, photocurable glue devices 

were  made  as  described{D.  Bartolo,  2008  #2279}.  First,  a  PMMA negative  mold  was 

prepared using a CNC micromilling machine (MiniTech). PDMS was poured onto this mold 

and baked for 2 hours at 70°C to obtain a positive PDMS mold. Then, a drop of NOA81 was 

pressed in between the PDMS mold and a flat PDMS layer and cured by UV exposure at 20 

mW cm-2 for 20 s. The structured PDMS was then carefully removed in order to keep the 

NOA81 layer bound to the flat PDMS. This flat PDMS was then pressed over a glass slide 

and a second UV exposure was carried out to finally seal the device (20 mW cm-2 for 60 s). 

Finally the flat PDMS layer was removed. Note that the PDMS mold, prepared from a micro-

milled PMMA sheet, is easy to obtain and widely reusable. The whole fabrication process 

takes less than 4 hours to obtain several copies of a NOA81 device. Sample was injected with 

a  micropipette  through  the  1  mm  access  holes  embedded  in  the  NOA layer.  The  initial 

condition was created by injecting 0.5 µL of reaction mixture with 100 nM N.  To prevent 

evaporation, the chip was sealed with PCR scotch tape (premium Plate sealing film,  Platemax, 

Axigen).

13

Figure S7:  Step by step fabrication process of a NOA device. 1. A PDMS mold is first obtained by replica-

molding of a micro-milled PMMA sheet (Minitech Machinery Corporation). 2. and 3. A drop of NOA is pressed  

in between the structured PDMS and a flat layer, and then UV insulate. 4. The structured PDMS is removed  

revealing a thin layer of non-cross-linked glue which is used to seal the device to a glass slide. 5. Removing the  

flat PDMS is the final step. Photography is a closed view of a 1mm in diameter inlet. Channel size is 300 µm  

width 120 µm high. Total thickness of the glue is 300 µm. 
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5 Evaporation in PDMS and NOA81 devices

14

Figure S8: Comparison of the evaporation in PDMS and NOA81 devices. 120 µm high, 1mm width channels 

are filled with 100 µM fluorescein and sealed with PCR dedicated scotch tape. Experiment takes place on a  

microscope  heating  stage (Tokai  Hit  thermoplate)  at  44°C for  25 hours.  Percentage of  evaporated  sample  

represents the thickness-corrected area for which there is no more fluorescence signal. 
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6 Influence of κ2 on the simulated pulse width

7 Simulation of the pulse propagation in the 90º turn

7.1 Parameters 

We simulated the front propagation in the 90º turn using COMSOL MultiPhysics, Transport 

of Diluted Species interface. We solved the following equation

∂ N

∂ t
=

k 1⋅N

1 + b N
−

κ2⋅N P

1 + b P
+ DN

∂
2
N

∂ x
2

,

∂ P

∂ t
=

κ2⋅N P

1 + b P
+ D P

∂
2
P

∂ x
2

.

using the parameter values given in the Table S2 below.
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Figure S9: The width of the simulated pulse depends on κ2. Fluorescence shift profiles simulated with Eq. 1-4 

in the Main Text and Eq. 2  in the SI with different values of κ2 (in µM-1 min-1) for κ
1 

= 0.05 min-1,  b = 1 µM-1 

and D
N

 = D
P
 = 18×103 µm2 min-1  . 
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DN 0.018 mm2/min Diffusion coefficient of prey

DP 0.018 mm2/min Diffusion coefficient of predator

k1 0.025 min-1 Rate constant for prey growth

κ2 0.0005 nM-1min-1 Rate constant for predation

N0 100 nM Initial concentration of prey

P0 2nM Initial concentration of predator

b 10-3 nM-1 saturation of the growth reaction by N

Table S2: Meaning of the parameters present in the equations and their values used in the simulation.

We defined the following conditions:

– boundary condition: no flux,

– initial condition in the reactor, outside the triggering front area, N=0, P= P0

– initial condition in the reactor, triggering front area, N=N0, P= P0

Mesh  was  automatically  generated  (Physics-controlled  mesh,  extremely  fine).  A control 

simulation was performed by increasing the mesh 2-fold, without change. 

16

223



7.2 Results

17

Figure  S10:  Simulation of  the  front  propagating  in a 90° turn,  1.5 mm curvature  radius.  A.  Time-lapse  

pictures of the front. B. Front position as a function of time for both inner path (black) and outer path (red). C.  

Corresponding velocity of the front for both inner path (black) and outer path (red).
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8 Measurement of front curvatures

Front curvatures, γ, in the experiments described in Figure 5 in the Main Text where 

measured manually after binarization of the corresponding fluorescence image.

The data extracted from Figure S11 are summarized in the table below

9 Supplementary movies

9.1 Movie S1: straight channel

Associated to figure 4 in the main text: traveling wave passing through a straight channel. 

Time-lapse (1 image every minute), yellow fluorescence shift imaging (corresponding to prey 

concentration). Channel is 1 mm width. Experimental conditions as in  figure 4 in the main 

text.

18

Figure S11: Measurement and precision of front curvatures.  Binarized fluorescent shift images for prey front  

propagating in a turn channel with inner curvature radius 1.5 mm at 21 and 26 min. Front curvatures for the  

inner and outer sides of the front were measured by manually adapting a circle to the front shape. To estimate  

the precision of these measurements three circles were used with largest (green), optimal (red) and lowest (light  

blue) radius.

t = 21 min t = 26 min

inner outer inner outer

1.2 0.3 1.2 0.3

0.4 0.1 0.3 0.1

0.9 3.7 0.9 3.5

0.3 1.2 0.2 1.3

<R> (103 µm)

σ
R
 (103 µm)

<γ> (10-3 µm-1)

σ
γ
 (10-3 µm-1)
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9.2 Movie S2: 90° turn, 1.5 mm curvature radius

Associated to figure 5 in the main text: traveling wave passing through a 90° turn. Time-lapse 

(1  image  every  minute),  yellow  fluorescence  shift  imaging  (corresponding  to  prey 

concentration). Channel is 2 mm width.  Experimental conditions as in  figure 5 in the main 

text.

9.3 Movie S3: maze

Associated to figure 6 in the main text: traveling wave passing through an arbitrary maze. 

Time-lapse (1 image every minute), yellow fluorescence shift imaging (corresponding to prey 

concentration). Channels are 500 µm width.  Experimental conditions as in  figure 6 in the 

main text.

19

Figure S13: Movie S2, 90° turn, 1.5 mm curvature radius

Figure S12: Movie S1, straight channel
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Figure S14: Movie S3, maze
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Titre : Synthèse de structure de réaction-diffusion à base d’ADN : vers la génération de structure de 

Turing. 

Mots clés : Réaction-diffusion, les réseaux de réaction à base d'ADN, la formation de motif, la 

microfluidique. 

Résumé : Un exemple fascinant illustrant la 

pertinence des structures spatio-temporels en 

biologie est le développement de l’embryon à 

partir d’un œuf fertilisé quasi-homogène. Les 

structures chimiques qui apparaissent ensuite le 

long de l'embryon, orchestrées selon des 

programmes moléculaires, sont utilisées comme 

patrons par les processus en aval impliqués dans 

la génération d'un organisme entièrement 

développé. 

 

L’article d'Alan Turing sur les mécanismes de 

réaction-diffusion capables de produire des 

brisures de symétrie a inspiré de nombreuses 

études théoriques et expérimentales. Depuis, la 

capacité des systèmes chimiques hors-équilibre à 

s’auto-organiser en motifs spatio-temporels a été 

démontré. Pour autant, l’application des théories 

de Turing aux structures biologiques reste 

controversée en raison de preuves 

expérimentales limitées. Malgré de nombreux 

succès dans la formation de structures à partir de 

la célèbre réaction de Belousov-Zhabotinsky 

(BZ) et ses dérivées, ces motifs spatio-temporels 

sont difficiles à réaliser, limitant ainsi la mise en 

œuvre expérimentale à quelques mécanismes 

disponibles. 

 

Les systèmes basés sur l’ADN permettent de 

rationaliser la mise en place d’un ordre spatio-

temporel grâce à leur chimie prévisible. Cette 

thèse porte sur la conception et le développement 

de modèles spatio-temporels impliquant des 

dddd 

oligonucléotides ADN qui réagissent entre eux 

tout en diffusant dans la solution. La contribution 

de ce travail de doctorat dans la maîtrise de 

modèles de réaction-diffusion a consisté en : (1) 

Tester un réseau de réaction à base d'ADN dans 

une topologie d'inhibiteur-activateur, (2) 

Développer une stratégie pour modifier le 

coefficient de diffusion des brins d'ADN 

activateurs, (3) Explorer comment des motifs 

chimiques déterminent la forme d’un matériau et 

(4) Contrôler la géométrie de l’environnement 

d’un système de réaction-diffusion à base 

d'ADN. Globalement nous avons étendu le 

nombre d'outils disponibles pour étudier la 

formation de motifs chimiques et leurs couplages 

aux matériaux, et réalisé une avancée vers la 

production de motifs de Turing à partir d’ADN. 

 

A l’issue de ce travail, nous pensons que la 

programmabilité et la biocompatibilité de 

systèmes à base d'ADN ouvrent de nouvelles 

perspectives pour l'ingénierie de systèmes 

chimiques de type réaction-diffusion, en 

particulier dans deux directions. Premièrement, 

pour étudier les mécanismes bio-inspirés de 

formation de motifs dans des conditions 

expérimentales simplifiées mais pertinentes. 

Deuxièmement pour construire de nouveaux 

matériaux qui pourraient s’auto-assembler par un 

processus s’inspirant de l’embryogenèse. 
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Abstract: One fascinating example that 

highlights the biological relevance of spatio-

temporal patterns in biology is the development 

of an embryo starting with a nearly homogenous 

fertilized egg. Subsequently, chemical patterns 

across the length of the embryo, orchestrated by 

molecular programs, are used as blue prints for 

downstream processes involved in the 

generation of a fully developed organism. 

 

Alan Turing’s paper about reaction-diffusion 

mechanisms capable of symmetry breaking 

inspired numerous theoretical and experimental 

studies. Since then, the potential of out-of-

equilibrium chemical systems to self-organize 

into spatiotemporal patterns has been 

demonstrated. Yet, the relevance of Turing’s 

idea in biological patterning remains 

controversial due to the limited experimental 

proofs. And despite of the exceptional 

achievements in pattern formation using the 

well-known Belousov-Zhabotinsky (BZ) 

reaction and its relatives, these are difficult to 

engineer, thus limiting their experimental 

implementation to few available mechanisms. 

 

Potentially, DNA-based systems may allow the 

rational engineering of spatio-temporal order 

due to the predictable chemistry of DNA. 

DDDD 

This thesis focuses on the design and 

development of spatio-temporal patterns 

involving DNA oligonucleotides that react and 

diffuse. The contribution of this PhD work to 

controlling reaction-diffusion patterns consisted 

in: (1) testing a DNA-based reaction network 

with an activator-inhibitor topology, (2) 

developing a strategy to tune the diffusion 

coefficient of activator DNA strands, (3) 

exploring how chemical patterns determine the 

shape of a material, and (4) controlling the 

geometry over a DNA-based reaction-diffusion 

system. Overall, we have expanded the number 

of available tools to study chemical and material 

pattern formation and advance towards Turing 

patterns with DNA. 

  

This work suggests that the programmability 

and biocompatibility of DNA-based systems 

open new perspectives for the engineering of the 

reaction-diffusion chemical synthesis, in 

particular in two directions. Firstly, to study 

biologically-inspired pattern-forming 

mechanisms in simplified, yet relevant, 

experimental conditions. Secondly to build new 

materials that would self-build by a process 

inspired from embryo morphogenesis.  
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