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Résumé

Dans cette thèse, nous proposons une analyse probabiliste de deux problèmes de biologie moléculaire
dans lesquels la stochasticité joue un rôle essentiel : la polymérisation des protéines dans les maladies
neurodégénératives ainsi que le raccourcissement des télomères.

L’agrégation des protéines en fibrilles amyloïdes est un important phénomène biologique associé à plusieurs
maladies humaines telles que les maladies d’Alzheimer, de Huntington ou de Parkinson, ou encore
l’amylose ou bien le diabète de type 2. Comme observé au cours des expériences reproduisant les petits
volumes des cellules, les courbes d’évolution cinétique de l’agrégation des protéines présentent une phase
de croissance exponentielle précédée d’une phase de latence extrêmement fluctuante, liée au temps de
nucléation.
Après une introduction au problème de polymérisation des protéines dans le chapitre I, nous étudions
dans le chapitre II les origines et les propriétés de la variabilité de ladite phase de latence ; pour ce faire,
nous proposons un modèle stochastique minimal qui permet de décrire les caractéristiques principales
des courbes expérimentales d’agrégation de protéines. On considère alors deux composants chimiques
: les monomères et les monomères polymérisés. Au départ, seuls sont présents les monomères ; par
suite, ils peuvent polymériser de deux manières différentes : soit deux monomères se rencontrent et for-
ment deux monomères polymérisés, soit un monomère se polymérise à la suite d’une collision avec un
autre monomère déjà polymérisé. Malgré son efficacité, la simplicité des hypothèses de ce modèle ne lui
permet pas de rendre compte de la variabilité observée au cours des expériences. C’est pourquoi dans
un second temps, au cours du chapitre III, nous complexifions ce modèle afin de prendre en compte
d’autres mécanismes impliqués dans la polymérisation et qui sont susceptibles d’augmenter la variabilité
du temps de nucléation. Lors de ces deux chapitres, des résultats asymptotiques incluant diverses échelles
de temps sont obtenus pour les processus de Markov correspondants. Une approximation au premier et
au second ordre du temps de nucléation sont obtenus à partir de ces théorèmes limites. Ces résultats re-
posent sur une renormalisation en temps et en espace du modèle de population, ainsi que sur un principe
d’homogénéisation stochastique lié à une version modifiée d’urne d’Ehrenfest.

Dans une seconde partie, un modèle stochastique décrivant le raccourcissement des télomères est pro-
posé. Les chromosomes des cellules eucaryotes sont raccourcis à chaque mitose à cause des mécanismes
de réplication de l’ADN incapables de répliquer les extrémités du chromosome parental. Afin d’éviter
une perte de l’information génétique, ces chromosomes possèdent à chaque extrémité des télomères qui
n’encodent pas d’information génétique. Au fil des cycles de réplication, ces télomères sont raccourcis
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jusqu’à rendre la division cellulaire impossible : la cellule entre alors en sénescence réplicative. L’objectif
de ce modèle est de remonter aux caractéristiques de la distribution initiale de la taille des télomères à
partir de mesures de temps de sénescence.
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Abstract

This PhD dissertation proposes a stochastic analysis of two questions of molecular biology in which ran-
domness is a key feature of the processes involved: protein polymerisation in neurodegenerative diseases
on the one hand, and telomere shortening on the other hand.

Self-assembly of proteins into amyloid aggregates is an important biological phenomenon associated with
human diseases such as prion diseases, Alzheimer’s, Huntington’s and Parkinson’s disease, amyloidosis
and type-2 diabetes. The kinetics of amyloid assembly show an exponential growth phase preceded by a
lag phase, variable in duration, as seen in bulk experiments and experiments that mimic the small volume
of the concerned cells. After an introduction to protein polymerisation in chapter I, we investigate in
chapter II the origins and the properties of the observed variability in the lag phase of amyloid assembly.
This variability is currently not accounted for by deterministic nucleation-dependent mechanisms. In
order to tackle this issue, a stochastic minimal model is proposed, simple, but capable of describing the
characteristics of amyloid growth curves. Two populations of chemical components are considered in this
model: monomers and polymerised monomers. Initially, there are only monomers and from then, two
possible ways of polymerising a monomer: either two monomers collide to combine into two polymerised
monomers, or a monomer is polymerised by the encounter of an already polymerised monomer. However
efficient, this simple model does not fully explain the variability observed in the experiments, and in
chapter III, we extend it in order to take into account other relevant mechanisms of the polymerisation
process that may have an impact on fluctuations. In both chapters, asymptotic results involving different
time scales are obtained for the corresponding Markov processes. First and second order results for the
starting instant of nucleation are derived from these limit theorems. These results rely on a scaling
analysis of a population model and the proof of a stochastic averaging principle for a model related to
an Ehrenfest urn model.

In the second part, a stochastic model for telomere shortening is proposed. In eukaryotic cells, chromo-
somes are shortened with each occurring mitosis, because the DNA polymerases are unable to replicate
the chromosome down to the very end. To prevent potentially catastrophic loss of genetic information,
these chromosomes are equipped with telomeres at both ends (repeated sequences that contain no genetic
information). After many rounds of replication however, the telomeres are progressively nibbled to the
point where the cell cannot divide anymore, a blocked state called replicative senescence. The aim of
this model is to trace back to the initial distribution of telomeres from measurements of the time of
senescence.
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General introduction

Since the 19th century, mathematical methods have been widely used in physics. The use of mathematical
methods for biology is more recent. This delay is mainly due to the sheer complexity of biological systems
and to the fact that fundamental discoveries in molecular biology occurred later, that is, in the second
half of the 20th century.

In 1944, a seminal book by Erwin Schrödinger called ‘What is life’ [Schrödinger, 1944] paved the way
for modelling in biology, introducing the concept of ‘order-from-disorder’ which was predominant in
biology for almost fifty years [Symonds, 1986]. For Schrödinger, life being a highly ordered system, the
randomness of interactions at the microscopic level disappears at the macroscopic level because of the
large number of molecules involved in the mechanisms considered. This echoes the vision that prevails
in statistical physics, where the order of magnitude of the number of interacting objects is very large—
comparable, for instance in the kinetic theory of gases, to the Avogadro constant (6.02 ·1023). As a result,
modelling biological phenomena followed a deterministic approach, although these orders of magnitude
can be much lower in biology. In addition to this inadequacy, the discovery of DNA as the molecular basis
of genetic information in 1962 by Watson and Crick, resulted in a mechanistic approach in which genetic
information is unequivocally translated into proteins, which are in turn responsible for the functionalities
of cells. However, many experiments have revealed the stochastic nature of the expression of genes, which
is at the very core of molecular biology. For instance in [Elowitz et al., 2002], the author tracked the
expression of a fluorescent protein in two separate cells in order to assess their individual production
level—which turned out to be different, thus shedding light on the reality of cell-to-cell variability.

Although probabilistic methods are more systematically used in the fields of evolutionary biology and
population dynamics (see for instance [Lambert, 2008, Méléard and Bansaye, 2015]), recent advances in
cancer and neurodegenenerative diseases research, as well as extended possibilities to collect large sets of
data at the micro level, have also allowed for rigorous mathematical analyses [Friedman, 2010], leading
to stochastic modelling playing an increasingly important role in molecular biology. In this thesis, we
use such probabilistic methods to address two questions of this field, examined in two separate parts:
protein polymerisation in the framework of neurodegenerative diseases, and telomere shortening causing
replicative senescence.
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1.1. PRION DISEASES AND PRION-LIKE DISEASES 15

In this part, we propose a stochastic modelling of polymerisation of proteins, also called aggregation,
involved in prion and prion-like diseases. We start by introducing the biological problem, and we then
give some insights on the mathematical tools we use to model these diseases stochastically.

1.1 Prion diseases and prion-like diseases

Prion diseases, also called Transmissible Spongiform Encephalopathies (TSEs) are fatal neurodegenerative
diseases characterised by the abnormal aggregation of prion protein. Early stages exhibit dementia,
troubles in speech and coordination of movements, and visual problems. They include Bovine Spongiform
Encephalopathy (BSE, or ‘mad cow’ disease) in cattle, Creutzfeldt-Jakob Disease (CJD), Fatal Familial
Insomnia (FFI) or Gerstmann-Sträussler-Scheinker syndrome (GSS) in humans. First description of a
prion disease dates back to scrapie, a disease of sheep and goats, in 1732, inducing among other many
behavioural changes, excessive scraping sensations; hence the name. In humans, the first reported prion
disease was Kuru, a disease of New Guinea, which diffusion was related to funerary cannibalism. Their
transmission can be either genetic (GSS, FFI, CJD), infectious (CJD) or sporadic (CJD), which made
them hard to identify as a single disorder. However, in the seventies, many similarities in the central
nervous systems of people infected by kuru and scrapie were found: they presented the characteristic
spongiform aspect. In 1967, Griffith [Griffith, 1967] proposed a new mechanism of infection due to a
protein, rather than a virus, or a viroid-like pathogen: the concept of prion was born. Experiments in
[Prusiner, 1998], revealed that the infectious agent was devoid of nucleic acid, and thus confirmed this
hypothesis. Stanley Prusiner proposed the term ‘prion’ (contraction of ‘proteinaceous’,‘infectious’ and
‘on’) and received the Nobel Prize in Physiology or Medicine in 1997 for his work. The prion agent is a
protein, denoted PrP, that may change conformation and become infectious. Prion protein is normally
present in many species, including all mammals, in the form called PrPC, for ‘cellular’. Its physiological
role is not well understood, but it is believed to be involved in many cellular functions. In prion diseases,
PrPC is converted into PrPSc, for ‘scrapie’, an isomeric form of PrP rich in β-sheets. These β-sheets are
sticky, and cause aggregation of prion into amyloids. Amyloid plaques have been proved to be pathogenic
in the case of prion diseases [Prusiner, 1998].

The mechanism of protein misfolding followed by polymerisation is com-
mon to other diseases namely Alzheimer’s, Huntington’s and Parkinson’s
disease, amyloidosis and type-2 diabetes. They share with prion dis-
eases the presence in tissues of amyloid fibrils, even if the pathogenic
role of this plaques is not as clear as in prion diseases [Jarrett and Lans-
bury, 1993, G.Roberts, 2016]. However, each disease has its own pro-
tein. Among amyloidogenic proteins, one can cite β-amyloid aggregates,
observed in the brains of patients infected by Alzheimer’s [Glenner and
Wong, 1984, Murphy and LeVine, 2010] as shown in figure 1.1. One also
observes β2-microglobulin (β2m) amyloid fibrils in individuals infected by
dialysis-related amyloidosis [Goto et al., 2005].

Figure 1.1: β-amyloid
aggregates (red) Credit:
Sanford-Burnham Med-
ical Research Institute,
www.sciencedaily.com
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Hence, despite the variety of the diseases and the proteins involved, there seems to be a common mecha-
nism underlying these disorders: protein polymerisation. Before introducing the mathematical details of
the modelling, we start by describing the aggregation of proteins from a biophysical and kinetic point of
view.

1.2 Polymerisation of proteins

As mentioned above, understanding the phenomenon of protein polymerisation is fundamental to study
many neurodegenerative diseases and amyloid diseases. Nevertheless, it should be noted that protein
aggregation is also involved in other areas. In biology, it is naturally and positively occurring in the
cytoskeleton to maintain the shape and mobility of cells. Cells endure many changes in their environment
and must adapt quickly. This is achieved through a rapid and controlled polymerisation of microtubules
and actin filaments [J.M. Berg, 2002, Desai and Mitchison, 1997].
In the industry, it may happen that unwanted amorphous aggregates of proteins are produced. Thus,
controlling the polymerisation also has significant impacts in the biotechnology industry [Roberts, 2003].
Hence, polymerisation mechanisms that will be introduced are actually general enough to take into
account all these modes of polymerisation.

1.2.1 Collecting data

Collecting data of protein aggregation is not straightforward. From an epidemic point of view, it is not
easy to determine the number of infected people since the incubation time is very long.

In vivo robust data are also complicated to get. Indeed, when following aggregation of proteins in a
culture of cells, it is hard to isolate the kinetics of the polymerisation from the complex dynamics of
the cell. Moreover, there are many unsolved questions concerning the interaction of polymers and the
cell environment. For instance, it is not clear whether the amyloid fibrils are formed in the extra or
intracellular medium, or both [Ma and Lindquist, 2002].

Recent techniques have allowed the study of the assembly of monomers into polymers in vitro. These
experiments allow the monitoring of the mass of polymers formed during the polymerisation. However,
the presumably intermediate species (details about these species will be given later) are not tractable
using these approaches. For the purpose of our study we will look at data of aggregation of β2m amyloid
fibrils. These data have been published in [Xue et al., 2008]. Because of its quick polymerisation without
formation of amorphous aggregates, β2m is a good choice for the study of self-assembly of proteins. β2m
is, as previously stated, involved in dialysis-related amyloidosis. The native β2 m structure is converted
into a cross-β structure, typical of amyloid diseases, and becomes prone to formation of amyloid-like
fibrils. During the experiment, the mass of polymers formed is measured via fluorescence of thioflavin
(ThT). ThT is a dye that is amyloid-specific, and does not interfere with the process of fibril formation.
ThT fluorescence is linearly correlated to the mass of polymers formed.
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In our set of data, the mass of polymers formed is monitored until the total consumption of monomers
for 20 different initial concentrations of monomers introduced in the test tube. For a given initial con-
centration of monomers, denoted m throughout this thesis, the experiment of polymerisation is repeated
between 9 and 12 times. This gives a set of 235 traces shown in figure 1.2.

0 10 20 30 40 50 60 70 80 90 100

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (hours)

Q
u
an

ti
ty

of
P
ol
y
m
er
s
(n
or
m
al
is
ed
)

20

40

60

80

100

120

140

160

180

200

220

240

Figure 1.2: Experimental progress curves of polymerised mass for initial concentration of monomers
ranging from 8.4µM to 243.5µM (color bar), curves obtained from the same initial monomer concentration
have the same color, published in [Xue et al., 2008].

Observations. Looking at figure 1.2, one notes that:

— Each curve is characterised by a slow beginning, and then, as soon as a small fraction δ of polymers
is formed, all monomers are very quickly polymerised, until total consumption of monomers. All
curves have a sigmoid shape, typical of protein polymerisation experiments. Hence, the time to form
a small fraction δ of polymers in a volume V of solution, the take-off of the curve, is an interesting
feature that we will later be interested in. In the polymerisation literature, δ is often chosen to be
between 10 and 20% [Ferrone, 1999], and is then called lag time. For the purpose of the subsequent
study, we introduced the notation TV (δ) for the time for δ reaction completion, that will be used
throughout this thesis.



18 CHAPTER 1. AN INTRODUCTION TO PROTEIN POLYMERISATION

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Figure 1.3: m = 122µM

— For a given initial concentration m of
monomers, in the same volume V of so-
lution, repeating the same experiments 12

times, the lag-time varies in a range within
hours. For instance, if we look at the
initial concentration 122µM (figure 1.3),
the lag-time varies from approximately 7

hours, to approximately 10 hours [Xue
et al., 2008]. This is very surprising
regarding the large volumes considered
(15µL). This suggests a high stochastic-
ity for TV (δ).

This randomness is sometimes attributed to experimental imprecisions. However, it is more likely
that stochasticity is inherent to the mechanism of polymerisation since it obeys some rules:

� the smaller the initial concentration m is, the longer the lag-time is. It is intuitive in a
stochastic framework since putting fewer monomers gives rise to a smaller probability for the
monomers to meet, and so to aggregate.

� the smaller the initial concentration m is, the higher the variance of TV (δ) is. Here again,
when fewer monomers interact, it is intuitive to get a higher variance.

From this observation, we can define the random variable TV (δ) mathematically, as the time when
a fraction δ of the initial number of monomers is polymerised. It is the stopping time:

TV (δ) = inf{t > 0, X2(t) ≥ δMV }

where,

� MV is the number of monomers introduced initially. For example, if m is given in µM
(microMolar), V in litres (L), then

MV = m · 10−6 · V ·NA (1.1)

where NA is the Avogadro constant, NA = 6.02 · 1023.

� X2(t) is he number of polymerised monomers at time t. We will get into details of this concept
later in this thesis.

It is important to note that the natural definition of the lag time here, according to our set of data,
is the time when a fraction δ of the initial number of monomers introduced is polymerised, and
not only the time of formation of one polymer as in [Yvinec, 2012, Szavits-Nossan et al., 2014].
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— Nevertheless, for a given initial concentration m of monomers again, all the curves have the same
shape and can be superimposed: while the lag-time is certainly stochastic, the rest of the process
seems to be deterministic.

1.2.2 Intermediate states

From its native state to fibrils, a protein involved in a polymerisation process exists under different inter-
mediary forms. We briefly describe these forms before getting into the details of the kinetic aspects.

Monomers: In the beginning, native proteins are in the state of soluble monomers. We denote the
species ‘native monomers’ by X0, and their number X0 (throughout this thesis, we will make the same
distinction in the notation between the chemical species and their number.)

Misfolded monomers: It is widely admitted [Chiti and Dobson, 2006, Uversky et al., 2001, Uversky
and Fink, 2004, Prusiner, 1998, Griffith, 1967] that before being able to polymerise, monomers undergo
a conformational change that makes them ‘active’. We call this form ‘misfolded monomer’ and denote it
by X1.

Nucleus: Before a critical size, called the ‘nucleus size’ and denoted i0 here, the aggregation is chem-
ically unfavorable, whereas dissociation is favourable. When it reaches this critical size, the monomers
form a nucleus that is thermodynamically stable and allow further growth. In 1999, Ferrone defined the
critical nucleus as the aggregate of size after which ‘the association rate exceeds the dissociation rate
for the first time’ [Ferrone, 1999]. The nucleus is the first aggregate thermodynamically stable on the
pathway from monomers to polymers. Details about the mechanism of nucleation will be given in the
next section.

Oligomers: Oligomers are intermediate states of polymerised mass that are not easy to track experi-
mentally. There are two types of oligomers: soluble oligomers, which are intermediate species between
the monomers and the nucleus, and insoluble oligomers, between nucleus and fibrils. The latter are also
called protofibrils (as often in the polymerisation literature, many different words are used with the same
meaning). Protofibrils of amyloid-β (related to Alzheimer’s) have been experimentally observed by Lans-
bury [Caughey and Lansbury, 2003]. It has even been suggested that these intermediaries are actually
the toxic pathogens of Alzheimer’s (rather than the plaques) [Shankar et al., 2008]. Indeed, there is still a
controversy on whether protofibrils are ‘on’ the pathway to fibril formation, or ‘off’, as shown in figure 1.5;
their toxicity however seems to be quite likely [Chiti and Dobson, 2006, Kayed and Lasagna-Reeves, 2013].
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Monomer Misfolded
monomer

Oligomer Nucleus Oligomer* Fibril

Oligomer*X0 X1

Polymerised monomer

X2

Figure 1.5: Intermediate states of a protein during polymerisation, from monomers to polymers. The
species that will be considered in this thesis are in black. Inspired from [Morris et al., 2009].
*: oligomers are found ’on’ and ’off’ pathway to fibrils, depending on the protein involved.

Fibrils: The final product of polymerisation is amyloid fibrils.
They are insoluble fibres detected in the extra or intracellular
medium. Despite the diversity of amyloidogenic proteins, the amy-
loid fibrils have an incredibly common structure [Sunde et al., 1997]
consisting of protofilaments twisted along the same axis, as shown
in figure 1.4.

Figure 1.4: Fibril of sickle
cell hemoglobin. Retrieved
from [Ferrone, 2006]

Polymerised Monomers: Concerning the products of the polymerisation, in order to avoid the debate
about fibrils, amorphous aggregates, oligomers, the concept of polymerised monomers is often used [Weg-
ner and Engel, 1975, Ferrone, 1999] as it allows many simplifications. It has been first introduced by
Oosawa in 1962 [Oosawa and Kasai, 1962]. A polymerised monomer is a monomer involved in a polymer
with a size greater than the nucleus size. We will use this simplification in our modelling approach.
Polymerised monomers will be denoted by X2.

A first global picture of how these forms interact is given in figure 1.5. Our approach consists in focusing
on:

— the reversible conversion of X0 into X1 (Conformation step)

— the formation of the nucleus (Nucleation)

— the formation of X2 (Growth and secondary pathway)

1.2.3 Steps of protein polymerisation

In this section, we review the mechanisms presumably involved in protein polymerisation. Subsequent
models will be a combination of these possibilities.

Conformation step

Physico-chemical properties of a protein are not only inherited from its sequence of amino acids, but
also from its 3d-structure. Hence, having the correct conformation is necessary for proteins to be func-
tional. They are able to adopt a minimal-energy conformation surprisingly quickly. However, many other
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minimal-energy conformations than the native one are possible so that it happens that proteins do not
fold correctly. In this case, other proteins called chaperones come into play: chaperones [Ellis, 1987]
‘help’ the proteins to find their native structure, or even refold a non-native protein [Wright et al., 2015].
Usually in the native state, hydrophobic amino acids stick together in the core of the protein to avoid
water molecules, and hydrophilic ones are at the surface, on contact with cellular medium.
Unfortunately, it happens that proteins misfold despite the help of chaperones. They convert into a struc-
ture rich in β-sheets, that are highly hydrophobic. Thus, while the native form is often soluble in the
cellular environment, the misfolded one is frequently insoluble and has a propencity to aggregate.

Misfolding in prion and prion-like diseases. Already in 1967, Griffith suggested that the agent
responsible of scrapie was becoming infectious because of a change of conformation. Prusiner confirmed
this hypothesis with experiments revealing that PrPSc had a secondary structure rich in β-sheets whereas
PrPC was of α-helix secondary structure, but still, they both have the same sequence of amino acids.
Hence, PrPC and PrPSc are isomers that do not have the same physico-chemical properties, especially
regarding aggregation: the higher proportion of β-sheet makes PrPSc aggregate. Formation of β-sheets
has also been reported in various amyloid diseases [Knowles et al., 2014a]. This hypothesis also explains
the diversity of prions. Indeed, varieties of prions were brought to light by experiments revealing differ-
ent features, like incubation times for instance, each of them being induced by a certain conformation
of PrPSc [Prusiner, 1998]. In conclusion, some proteins have an intrisic, i.e encoded in its amino acid
sequence, capacity to convert into another 3d-structure [Knowles et al., 2014a]. Normally, chaperones
prevent this from happening, but, in the case of prion and prion-like diseases, misfolding has been exper-
imentally observed as being the first step before aggregation of proteins [Collins et al., 2004]. Misfolding
is now often stated as a pre-step for polymerisation [Prigent et al., 2012, Serio et al., 2000, Chiti and
Dobson, 2006]. It explains:

— sporadic appearance of prion and prion-like diseases: a protein spontaneously changes its
conformation and becomes able to polymerise.

— genetic transmission: a genetic mutation in the gene coding for the protein will induce a higher
propensity to change conformation.

— infectious transmission: transmission of the protein in the misfolded state, ready to polymerise.

Misfolding is chemically modelled by equation (1.2).

X0
γ−⇀↽−−−
γ∗
X1 (1.2)

where,

— γ is the chemical rate of misfolding of protein from its native state to its ‘active’ state.

— γ∗ is the chemical rate of conversion of a misfolded protein back to its native state.
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A: Normal Prion Protein
B: Diseased Prion Protein

Figure 1.6: A: Functional PrPC. B: PrPC is converted into PrPSc, rich in sticky β-sheets (the blue
structure). β-sheet are composed of β-strands. In the amyloid case, β-strands are perpendicular to the
fibril axis [Knowles et al., 2014a]. Retrieved from: www.ucsf.edu/news/2001/08/4709/ucsf-study-finds-
two-old-drugs-may-help-fight-prion-diseases

— γ << γ∗, misfolding is fortunately thermodynamically unfavourable.

Misfolding is a slow reaction that might by itself explain the slow beginning of the reaction. However,
this initial lag phase is also commonly modelled by a nucleation phase, or by both conformation and
nucleation.

Nucleation

The concept of nucleation was initially introduced in the framework of crystallisation [Volmer and Weber,
1926]. It is a phase transition after which growth can occur. Before, aggregation is thermodynamically
unfavourable. Protein polymerisation does present some distinctive features of a nucleated growth:

— First, experimental curves reveal a long lag phase (figure 1.2), attributed to the formation of nu-
clei [Chiti and Dobson, 2006].

— Second, this lag phase strongly depends on the initial concentration of monomers introduced (fig-
ure 1.2).

— Finally, introduction of preformed fibrils drastically reduces the lag phase [Jarrett and Lansbury,
1993]. Indeed, suppose nucleation is happening, it acts like a kinetic barrier to overcome for amyloid
formation. When introducing preformed fibrils, the growth is not limited anymore by the nucleation
step [Chiti and Dobson, 2006]. This ’seeding’ effect also suggests that the initiation of the poly-
merisation is very slow compared to the growth. This interplay will be important for our modelling.

Nucleation had already been introduced as a first step for actin polymerisation in 1959 [Oosawa and
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Kasai, 1962]. Later, in 1993, Jarrett and Lansbury proposed it as a key step in Alzheimer’s disease and
scrapie [Jarrett and Lansbury, 1993]. In fact, nucleated polymerisation explains the infectivity of prion,
the pathogenic agent being the aggregated PrPSc acting as seeds [Jarrett and Lansbury, 1993]. The
general chemical scheme of nucleation is given by equation (1.3). We consider here that the aggregation
happens by addition of misfolded monomers.

X 1 + X1

k1on−−⇀↽−−−−
k2off

X 2

...

X i0−1 + X1

ki0−1
on−−−−⇀↽−−−−−−
k
i0
off

X i0

(1.3)

where:

— i0 is the size of the nucleus,

— kion is the rate of polymerisation of an oligomer of size i ≤ i0, before nucleation,

— ki+1
off is the rate of depolymerisation of an oligomer of size i+ 1, i ≤ i0, before nucleation,

— kion · c1 < ki+1
off : aggregation is unfavourable before nucleation, with c1 the concentration of X1.

Note that multiplying by c1 on the left hand side is necessary for the comparison between the rates
because of homogeneity.

However, since intermediate species before nucleus are very unstable, and so never observed, it is also
considered that the formation of the nucleus is not an addition of X1 until i0, but obeys an i0 kinetic
order, that is equation (1.4) [Oosawa and Asakura, 1975].

X1 + ...+ X1︸ ︷︷ ︸ knon−−⇀↽−−
knoff
X i0

i0

(1.4)

where knon is the chemical rate of formation of the nucleus, knoff its rate of breakage.

Nucleation is a highly stochastic phenomenon. The key feature of the nucleation step is its
stochasticity. It corresponds to the very unlikely encounter of i0 monomers, where i0 is the size of
the nucleus. First, as said above, the nucleation time strongly depends on the initial concentration of
monomers. The lower the initial concentration is, the longer the lag phase is. It could be explained
by the decrease of probability to meet for monomers, and thus to form nuclei. Second, one notes on
the data figure 1.2 that for small initial concentrations, the variance of the lag time is higher than for
high concentrations, so that the stochasticity seems inherent to the polymerisation mechanism. This
randomness of the initial phase was emphasised in [Szabo, 1998, Hofrichter, 1986b].

Choice i0 = 2. A nucleation step involving dimer formation is often made in the literature [Wegner and
Engel, 1975, Knowles et al., 2009]. Indeed, the first attachment step towards nucleation has the biggest
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energy penalty in the classical nucleation theory. Back in 1967, Griffith suggested that the dimerisation
was initiating the polymerisation. For the sake of simplification, in order to capture the main features of
a nucleated polymerisation, choosing i0 = 2 is then reasonable. In our models, we will consider that the
size of the nucleus is equal to 2.

As a conclusion, one must keep in mind that the nucleation step is stochastic and slow.

Growth and secondary pathway

Once the nucleus is formed, polymerisation becomes more favourable than depolymerisation, and poly-
mers start to elongate. Polymerisation is often considered as occurring by monomers addition. However,
when a conformation step occurs, it is not clear whether the additional monomer is misfolded or not. Here,
we will consider that only a misfolded monomer can polymerise, as suggested by [Jarrett and Lansbury,
1993, Frieden and Goddette, 1983]. To be fully general, we introduce the possibility to depolymerise,
even if in this dissertation, regarding our data, we will consider that a polymer can only grow. If we
denote i0 the size of the nucleus, Xi a polymer of size i, then, for i ≥ i0 the growth mechanism follows
the scheme:

X i + X1 ↽−−−
ki+1
dep

kipol−−−−−⇀ X i+1 (1.5)

where,

— kipol is the chemical rate (not to be confused with the rate of the associated Markov process that
will be defined later) of the reaction of polymerisation for a polymer of size i ≥ i0,

— ki+1
dep the chemical rate of the reaction of depolymerisation of a polymer of size i+ 1, i ≥ i0,

— X1 a monomer, either native or misfolded, depending on the model chosen,

— ki+1
dep < kipol · c1: in the growth phase, polymerisation is favourable.

However, this mechanism of formation of polymers is not sufficient to explain by itself experimental curves
presenting a very quick consumption of monomers as soon as the process has started. There are also
autocatalytic mechanisms involved that enhance the polymerisation called ’secondary pathways’. These
are for instance:

— Heterogenous nucleation: Heterogenous nucleation was shown to take part in sickle hemoglobin
polymerisation by Ferrone and his coworkers in 1985 [Ferrone et al., 1985]. In this framework, the
nucleation initiating polymerisation in bulk is referred as homogenous nucleation. Once a polymer
is formed, another nucleation happens on the surface of the polymer, initiating a new fibril assembly.
Hence, the longer a fibril is, the higher the possibilities of heterogenous nuclei formation are. This
explains the autocatalytic part observed in experiments. As soon as homogenous nucleation has
happened, there is an exponential growth of polymers [Ferrone et al., 1980].

— Fragmentation: Another autocatalytic mechanism usually proposed is fragmentation. It comes
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from the same idea as heterogenous nucleation. What takes time in polymerisation is the initiation
of the process. Secondary processes are mechanisms that shortens, or removes the lag phase to ini-
tiate new polymers via existing polymers. Fragmentation plays this role. Suppose a (rather long)
polymer is formed. Then, if it breaks into two shorter polymers, this allows to initiate the formation
of two new polymers from the initial long one, and so on. At the end, we get an exponential growth.
This mechanism was suggested in [Xue et al., 2008, Collins et al., 2004] for instance.
Fragmentation hypothesis was experimentally supported by the fact that mechanical agitation was
drastically increasing the rates of fibrillation [Bishop and Ferrone, 1984]. This indicates that the
breakages induced by agitation were accelerating the polymerisation. We consider that fragmenta-
tion is irreversible. The chemical reaction modelling the breakage of a polymer of size i + j into
two polymers of size i and j is:

X i+j

ki+jfr−−−→ X i + X j (1.6)

where ki+jFr is the rate of fragmentation of a polymer of size i+ j.

Now that we know most of the mechanisms suspected to be involved in the polymerisation so far, we can
introduce the classical models used in the literature of polymerisation.

1.2.4 Review of polymerisation models

The broad polymerisation literature contains many models of self-assembly of proteins relying on the
steps described in the previous section. However, depending on the protein involved and on the purpose
of the study (estimating parameters, understanding a precise mechanism not directly observed in the
experiments etc.), different approaches can be used. In this section, we will try to review the main
models, in our sense, introduced since the last fifty years concerning protein polymerisation in general,
not only prion aggregation.
Before starting, we should note that kinetic equations derived from these models are up to now essentially
deterministic rather than stochastic and rely on the law of mass action, which will be described later in
this thesis.

For the sake of clarity, we summarise the notations that will be used throughout this section.

— X0: monomers in their native state.

— X1: monomers in their ‘active’ state, able to polymerise. When conformation step is taken into
account, it corresponds to the misfolded monomer.

— Xi: polymers of size i. This notation will be useful for mechanistic models taking into account
the whole polymer size distribution, instead of the concept of polymerised monomers previously
introduced.

— i0: size of the nucleus.
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— ci: concentration of polymers of size i.

— kion: chemical rate of association for a polymer of size i < i0.

— kioff: chemical rate of dissociation for a polymer of size i < i0.

— kipol: chemical rate of polymerisation for a polymer of size i ≥ i0.

— kidep: chemical rate of depolymerisation for a polymer of size i ≥ i0.

— ki+jfr : chemical rate of fragmentation of a polymer of size i+ j.

— γ: chemical rate of misfolding of protein from its native state to its ’active’ state.

— γ∗: chemical rate of conversion of a misfolded protein nack to its native state.

Towards a complete model of protein self-assembly

Models of polymerisation have progressively evolved to a complete picture of the mechanism of polymeri-
sation.

A basic approach, nucleation and growth. First contributions to the modelling of protein aggrega-
tion are due to Oosawa and his coworkers [Oosawa et al., 1959]. They studied actin protein and modelled
the conversion of G-actin into F-actin. Some key features of polymerisation were already identified:

— The beginning is very slow, and is followed by a steep slope, suggesting an autocatalytic mechanism.

— The lag phase is shortened by addition of native G-actin, suggesting a stochastic effect due to the
encounter of initial monomers.

— Introduction of F-actin removes the lag-phase, impling a seeding effect suggesting nucleation.

In 1974, Hofrichter et al. proposed a mechanism based on these observations with two steps: nucleation
followed by polymerisation via subsequent addition of monomers. The constants of reaction chosen do
not depend on the size of the polymer, so that we forget about the superscript i. The sigmoidal shape of
experimental curves suggests that:

— Until the nucleus size, polymerisation is thermodynamically unfavourable, inducing a lag phase.
This is modelled in [Hofrichter et al., 1974] by kon · c1 < koff. (See picture 1.7)

— For i ≥ i0, polymerisation becomes favourable, inducing a steep take-off. They [Hofrichter et al.,
1974] thus chose kpol · c1 > kdep.

Note that there is neither a conformation step nor a secondary pathway. Chemical reactions associated
to [Hofrichter et al., 1974] are shown in figure 1.7.
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X1 + X1

kon X2
koff

X1 + Xi0−1
kon Xi0koff

X1 + Xi0

kpol Xi0+1
kdep

X1 + Xi

kpol Xi+1
kdep

Nucleation:

kon · c1 < koff

Growth:

kpol · c1 > kdep

Figure 1.7: Polymerisation mechanism suggested in [Hofrichter et al., 1974]. Before nucleation, depoly-
merisation is favourable. Once the nucleus is formed, polymerisation becomes favourable.

Addition of a secondary pathway. Later, Fer-
rone [Ferrone et al., 1985] argued that this model
wasn’t able to take into account the ’extreme auto-
catalysis’. He introduced a secondary pathway called
’heterogenous nucleation’, previously described. In
1982, Wegner and Savko [Wegner and Savko, 1982]
added another secondary process for polymerisation
of actin: fragmentation (equation (1.6)). However,
actin kinetics do not present a lag phase contrary
to our experiments. Hence, they didn’t include nu-
cleation, but only growth and fragmentation, what
allows to predict the steep slope of the polymerisa-
tion as shown in figure 1.8.

Figure 1.8: Actin polymerisation curves com-
pared to predictions from Wegner and Savko’s
model. Retrieved from [Wegner and Savko,
1982]

.

And the conformation step? Based on Wegner and Savko’s model, Frieden and Goddette added a
conformation step for polymerisation of actin [Frieden and Goddette, 1983], as modelled by reaction (1.2).
Growth also takes into account different rates of polymerisation and depolymerisation for different sizes
i of polymers. It corresponds to reaction (1.5).

Prion aggregation

Early models of polymerisation are essentially based on actin. However, the situation is different for prion
and prion-like aggregation. The main difference lies in the long lag phase observed on experimental curves,
highly variable, unlike actin filaments formation for instance (see figure 1.8). This phase is the stochastic
step of polymerisation, and is therefore crucial for us. The models proposed for prion aggregation all
include this slow beginning.

The mathematician Griffith was the first to propose models of prion infection for scrapie. He included
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a conformation step followed by the formation of a dimer. The misfolding is unfavourable, but if the
rate of polymerisation is large enough, it pushes the equilibrium towards the formation of misfolded
monomers. Then, growth occurs by addition of native monomers, their integration being promoted by
the presence of other polymers. In 1982, Prusiner proposed that the misfolded monomer X1 was catalyzing
the conversion of PrPC into PrPSc. In these models, the slow take-off was supposed to be explained by the
slow conformation step, and the autocatalysis part by the fact that presence of polymers and misfolded
monomers is boosting the conformation step. Still, no kinetic analysis was performed, so that in 1996,
Eigen showed that the rates for X1 to be the catalytic agent were numerically unrealistic [Eigen, 1996].
Later models added a secondary pathway to enhance the catalytic part.

Finally, Lansbury proposed in 1993 [Jarrett and Lansbury, 1993] a model including nucleation. It fol-
lows the chemical scheme of figure 1.7 with a prenucleation step, misfolding of protein, as described by
reaction (1.2).

It seems clear from the vast literature of protein aggregation that a complete model should take into
account both the initial phase, highly stochastic and very slow, and the following autocatalytic reaction
leading to an explosion of the formation of polymers. Our work will essentially be based upon the complete
model of nucleated polymerisation by subsequent monomer addition, proposed in [Prigent et al., 2012],
and represented by equation (5.5).

X0
γ−⇀↽−−−
γ∗
X1

X1 + ...+ X1︸ ︷︷ ︸ knon−−⇀↽−−−−
knoff

X i0

i0

X i + X1 ↽−−−
ki+1
dep

kipol−−−−−⇀ X i+1

(1.7)

Polymerised monomers. The complete model of protein aggregation involves an infinite set of chemical
reactions, which leads to mathematical complications for the derivation of the kinetics. Instead of taking
into account the distribution size of the filaments, a common simplification consists in considering only
two species: free monomers, X1, and monomers polymerised in aggregates of sizes greater than the
nucleus size, X2 (we make here a small abuse of notations: in the previous complete models, X2 was
referring to dimers). Our work relies on this approach. Hence, forgetting about the conformation step,
this simplification transforms (5.5) into:

X1 + ...+ X1︸ ︷︷ ︸ −⇀↽−− i0X 2

i0

X1 + X2 ↽−−−⇀ 2X 2

(1.8)

The first reaction captures the slow nucleation step, while the second the fast autocatalytic growth.



1.3. MATHEMATICAL MODELLING OF PROTEIN POLYMERISATION 29

Finally, X2 represents the mass polymerised, so that, for a volume of solution V :

X2(t)

V
=
∑
i≥i0

ici(t)

which is precisely the quantity usually measured in experiments, allowing curve-fitting.

This minimalistic 2-step model was initially used in [Watzky and Finke, 1997] for transition-metal
nanocluster formation, and after for protein polymerisation [Morris et al., 2008] in a slightly different
form [Morris et al., 2009]:

X1
k1−−→ X 2

X1 + X2
k2−−→ 2X 2

(1.9)

It is referred as the Finke-Watzky mechanism (F–W mechanism), and is said to be equivalent to (1.8)
in [Morris et al., 2008]. However, from our stochastic point of view, models (1.9) and (1.8) differ on
the rates of reaction, since the F–W mechanism does not take into account the low probability of the
encounter of monomers to initiate the polymerisation. This will lead to different dynamics for the
stochastic processes (X1)t and (X2)t. The crucial choice of rates of reactions in the stochastic framework
will be discussed deeper later.

Now that we have a general picture on the models of protein polymerisation, we get into the details on
the way to derive a kinetic analysis, and ultimately, to get information about the parameters involved
both in the deterministic and and in the stochastic settings.

1.3 Mathematical modelling of protein polymerisation

It is the role of biologists and physicists to collect data and interpret them to propose mechanistic models.
In the modelling process, mathematicians have then to understand what the biologists made, or at least
try to, often simplify their models, and mathematically formalise the mechanisms in order to derive
an analytical solution to the model capable to predict the behaviour of the quantities involved. Then,
the dream comes true when the model, with parameters estimated from biological data, reproduces the
experiments.
Here, we explain how to derive a mathematical analysis from the models presented before. We also review
some methods used in the literature to fit the kinetic parameters of the polymerisation mechanism. As it
will be systematically be done in the subsequent chapters, we will, from now on, always assume a nucleus
size of two and that no depolymerisation occurs:

i0 = 2,

kNoff = 0,

kidep = 0 ∀i ≥ i0.

(1.10)



30 CHAPTER 1. AN INTRODUCTION TO PROTEIN POLYMERISATION

1.3.1 Deterministic modelling

The mechanisms involved in the polymerisation are essentially written as a set of chemical reactions. The
most famous way to derive kinetics of a reaction network (i.e a set of chemical reactions) is the law of
mass action, due to Guldberg and Waage in 1867, which leads to a set of ordinary differential equations
(ODEs) (see [Rubinov, 1975] for instance and references therein). The key idea underlying this modelling
is the same in the stochastic framework.
More precisely, let’s consider two species, A and B that tend to form C in a volume V of solution:

A+ B k−−→ C (1.11)

We consider that the content of the solution is homogeneous so that only the temporal evolution of the
concentrations of chemical species interests us. The concentration inA (resp. B and C) at time t is denoted
by cA(t) (resp. cB(t) and cC(t)), the total composition of the solution by c(t) = (cA(t), cB(t), cC(t)).
Then, in order to write a differential equation representing the temporal evolution of this reaction, we
have to define KA+B→C(c), the instantaneous rate at which reaction (1.12) occurs. Deriving a kinetics for
a reaction network means defining a rate function for each reaction in the network. Once this assignment is
done, it is easy to describe the time evolution of the composition of the solution: each time reaction (1.12)
occurs, we loose one molecule of A, one molecule of B, and we gain one molecule of C so that:

˙cA(t) = ˙cB(t) = −KA+B→C(c(t))

˙cC(t) = KA+B→C(c(t))

The law of mass action states that KA+B→C(c) is proportional to the probability for A and B, that is
proportional to cA(t) · cB(t). The usual kinetics follows [Rubinov, 1975]:

˙cA(t) = −kcA(t) · cB(t) (1.12)

where k is the constant of proportionality. In the chemical jargon, this quantity is called ’rate of reaction’
(which is different from the rate of occurence of the reaction).

Law of Mass Action For Polymerisation. We now apply the law of mass action, in the deterministic
framework to the general model of nucleated polymerisation (5.5) with assumptions (1.10). We obtained
the infinite set of ODEs shown in equation (1.13).

ċ0(t)=γc0(t)− γ∗c1(t)

ċ1(t)=−γc0(t) + γ∗c1(t)− kNonc1(t)2 −∑∞i=2 k
i
onc1(t) · ci(t)

ċ2(t)=kNonc1(t)2 − k2
polc1(t)c2(t)

ċi(t)=ki−1
pol c1(t) · ci−1(t)− kipolc1(t) · ci(t), for i ≥ 3.

(1.13)
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Becker-Döring. In this paragraph, we do not take into account the conformation step. We recall that
this infinite system is in fact well-known. Indeed, equation (1.13) can be rewritten as a Becker-Döring
system as follows:

ċi(t) = Ji−1 − Ji for i ≥ 2

ċ1(t) = −
∞∑
i=2

Ji − J1 (1.14)

where Ji = kipolci · c1 for i ≥ 2, J1 = kNonc
2
1.

In 1935, Becker and Döring introduced this model for deriving kinetics of many phenomena involving
phase transition such as metastability of a ferromagnet for instance [?]. Their model applies to systems
invoking two components: monomers and i-clusters of size i ≥ 2. In our case, the two components are
free monomers and fibrils of different sizes. The resulting system (1.14) is infinite but, under certain
assumptions, has a unique solution.

Theorem 1.3.1. [Ball et al., 1986] Suppose that:

(i) for all i ≥ 2, kion = O(i) when i tends to infinity,

(ii) for all i ≥ 1, ci(0) ≥ 0,

(iii)
∑∞
i=1 ici(0) <∞,

then, the system defined by (1.14) does have a solution for all positive times t. Moreover, if we also have:

∞∑
i=1

i2ci(0) <∞,

then the solution is unique for a given initial condition.

In addition, we also have a density conservation if all the conditions for the existence of a solution are
satisfied. We define:

ρ(t) :=
∞∑
i=1

ici(t)

which represents the density of particles at time t (i.e the number of particles per unit of volume).

Theorem 1.3.2. [Ball et al., 1986] Let c(t) = (ci(t))i≥1 be a solution of (1.14). Then for all t ≥ 0:

ρ(t) = ρ(0).

In practice, in our experiments, at time t = 0, we introduce only monomers i.e
∑∞
i=1 ici(0) = m, the

initial concentration of monomers introduced, so that these theorems provide the existence of a solution of
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the infinite deterministic system (1.14) for an appropriate choice of polymerisation rates. Theorem 1.3.2
corresponds to the principle of mass conservation.

We want, in this PhD dissertation, to adapt these models to the stochastic framework.

1.3.2 Stochastic modelling of chemical reactions

We go back to a general simple chemical reaction (1.11) of type

A+ B k−−→ C.

In the stochastic framework, we want to count the number of molecules of type A (resp. B and C) at time
t in a volume N , that we denote by AN (t) (resp. BN (t) and CN (t)) and derive its temporal evolution.
We consider here that the solution is homogenous.

We shall first introduce the concept of ’volume’ before writing the stochastic evolution equations. So far,
we referred to V as the physical volume of the solution, i.e in litres, but since we are dealing with number
of molecules here we need to introduce a molecular volume, denoted N , such that

N = bNA · V c,

where NA is the Avogadro constant, NA = 6.02 · 1023. Hence, the quantity AN (t)/N is the concentration
of the species A in the solution per unit volume at time t; it is the stochastic equivalent of the previous
quantity cA(t). It is also coherent with the definition (1.1) of MV that becomes

MV = bm ·Nc

where m is the initial concentration of monomers given in M (molar). N is very large (the Avogadro
constant is huge) and will therefore be our scaling parameter. Note that the introduction of a molecular
volume is very convenient since N can be considered as large even for very small volumes of order 1µL

(microlitre). From now on, we will always refer to N when we mention the volume, and all the subscripts
and superscripts of our variables will be changed into N .

Before getting into the mathematical details of the stochastic modelling, the first question to address is:
what is the added value of a stochastic modelling as compared to a deterministic one? In fact, a chemical
reaction is by nature probabilist but in most cases, the law of mass action captures exactly what happens.
As we will develop it in this section, the stochastic treatment of (1.11) leads to:

lim
N→∞

AN (Nt)

N
= cA(t).

where cA is the solution of the law of mass equation (1.12), so that for large volumes we do not see the
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stochastic fluctuations around the deterministic (and continuous) mean. However, when the number of
reactions is small, as it is sometimes the case in molecular biology, a stochastic approach is necessary.
In our case, we might a priori think that the quantities involved are large enough to use directly the
law of mass action, and this is why the fluctuations observed on the data presented figure 1.2 are quite
surprising. Hence, to explain this variance observed, we do not have any other choice than going back to
the microscopic scale and study precisely the statistical fluctuations in a stochastic manner.

In this PhD dissertation, we treat the chemical network as a continuous-time Markov process, as usually
done in the literature in this framework [Anderson and Kurtz, 2011, McQuarrie, 1967, Ball et al., 2006].
For this purpose, we introduce here the Markov process (X(t)) := (A(t), B(t), C(t)).

Transition rates of the corresponding Markov process

We start by the easy general case (1.11). In order to translate this reaction into a Markov process, we
need to define its transition rates. We choose these transition rates according to the law of mass action.
More precisely, for (a, b, c) ∈ N3:

(i) the probability of the transition (a, b, c)→ (a, b, c) + (−1,−1, 1) in the interval (t, t+ ∆t) is propor-
tional to the product of the concentrations in A and B at time t, i.e of the form ka×b/N2∆t+o(∆t),
where k is the chemical constant of reaction and o(∆t)/∆t → 0 for ∆t → 0. Since we are looking
at reaction (1.11) that involves an encounter of molecules, what matters is the concentration of
reactants.

(ii) the probability of the transition (a, b, c)→ (a, b, c) in the interval (t, t+∆t) is 1−ka×b/N2∆t+o(∆t).

These assumptions define completely the Markov process (X(t)). These are usual assumptions for chem-
ical reactions [Anderson and Kurtz, 2011].

Case of the reaction A +A → C. The previous set-up directly derived from the law of mass action
works for A different from the species B. However, the stochastic framework allows us to be more precise
than the brutal law of mass action. Indeed, for the reaction

A+A → C

seen as the N2-valued Markov process ((A(t), C(t))), the rate of the transition from the state (a, c) to
(a, c)+(−2, 1) is proportional to the number of couples of molecules of type A, that is a(a−1)/2, and not
a2 as would say the law of mass action. For the same reason as before, this rate is inversely proportional
to the square of the volume. As a result, for (a, c) ∈ N2:

(a, c) −→ (a, c) + (−2, 1) at rate k a(a− 1)/(2N2).

This kind of reaction involving the meeting of two molecules of the same type will be used in this thesis
for the modelling of the nucleation step (chosen here to be a dimerisation according to (1.10)).
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Case of the reaction A → B. In the case of a unimolecular reaction, there is no reason why the
transition rates should depend on the volume. They only depend on the number of molecules of type A
at time t. Hence, for (a, b) ∈ N2:

(a, b) −→ (a, b) + (−1, 1) at rate k a.

This type of reaction will be used in this thesis to model the conformation step.

Derivation of the stochastic evolution equations

In this section, we use the formalism of [Robert, 2003].

Poisson counting process. In order to count the number of occurrences of reaction (1.11) in an
interval of time, we will use point measures. We start by recalling some useful mathematical definitions,
most of them being given in [Robert, 2003], for the non probabilist reader.

The space R is endowed with the Borelian σ-field. M(R) denotes the set of non-negative Radon measures
on R.
Definition 1.3.1 (Point measure). If m is an element ofM(R), then m is a point measure if it can be
represented as

m =
∑
n

δun

where (un)n∈Z is a sequence of RZ, and δa is the Dirac measure at the point a.

We denote the set of point measures on R byMp(R).
Definition 1.3.2 (Point process). A point process N is a random variable with values inMp(R).

For instance, if we have a set of random observations, encounters of molecules provoking the chemical
reaction in our case, and we want to count the number of observations until time t, then we define a point
process

N : (Ω,F ,P)→Mp(R)

ω 7→ N(ω,dt)

attached to these observations. In our case of chemical networks, as suggested in the previous section,
and as it is done for example in [Anderson and Kurtz, 2011], we make the following reasonable hypothesis
on our chemical processes:

(i) Encounters of molecules occur one at a time.

(ii) The number of encounters occurring in disjoint intervals of times are independent.

(iii) The number of encounters of molecules occurring in an interval of time depends only on the length
of the interval.
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This allows us to choose, for our counting process, a Poisson point process.

Definition 1.3.3 (Poisson point process). A Poisson process Nµ of intensity µ is a point process on R
such that:

(i) If I is an interval of R, the distribution of the random variable N (ω, I) is Poisson with parameter
µ(I), i.e for k ≥ 0,

P(N (ω, I) = k) =
µ(I)k

k!
e−µ(I).

(ii) If I1, . . . , In are disjoint intervals of R, then N (I1), . . . ,N (In) are independent random variables.

We now apply this to our favourite reaction (1.11)

A+ B k−−→ C

associated to the Markov process (A(t), B(t)) which transitions rates are, for (a, b) ∈ R2

(a, b) −→ (a, b) + (−1,−1) at rate k · ab/N2

with the initial conditions AN (0) = MN and BN (0) = 0, and limN→+∞MN/N = m.

Throughout this thesis, Nξ denotes a Poisson point process on R with parameter ξ ∈ R+. Nξ([0, t])
denotes then the number of points of the point process Nξ in the interval of time [0, t]. We add a
superscript N i

ξ , i ∈ N, when we consider an i.i.d sequence of Poisson processes of parameter ξ.

We now derive the stochastic differential equation describing the temporal evolution of the number of
molecules of type A, (A(t)). Each encounter of a molecule of type A and a molecule of type B causes the
disappearance of a molecule of type A. According to the previous discussion, we attach to each couple
of a molecule of type A and a molecule of type B a Poisson point process of parameter k/N2. There are
AN (t) ·BN (t) such couples at time t. If the differential dAN (t) is defined as

dAN (t) = AN (t)−AN (t−)

then, the stochastic differential equation ruling the evolution of (AN (t)) is

dAN (t) = −
AN (t−)BN (t−)∑

i=1

N i
k/N2(dt) (1.15)

with AN (0) = MN .
The existence and uniqueness of such an equation is given by proposition A.11 p.356 of [Robert, 2003].
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From microscopic interactions to the deterministic law of mass action

We now draw the link between the stochastic modelling and the deterministic modelling of chemical
reactions. We do not get into the details of the rigorous mathematical proofs since it will done in the
following chapters for the reactions involved in polymerisation.

The idea is, from the equivalent integral form of equation (1.15)

AN (t) = AN (0)−
+∞∑
i=1

∫ t

0

1{AN (s−)BN (s−)≥i}N i
k/N2(ds)

to rewrite it according to the martingales associated to the Poisson point measures N i
k/N2

MN (t) =
+∞∑
i=1

∫ t

0

1{AN (s−)BN (s−)≥i}

(
N i
k/N2(ds)− k

N2
ds

)

with quadratic variation

〈MN 〉(t) = k

∫ t

0

AN (s)BN (s)

N2
ds

in order to obtain, at the first order, the deterministic ODE (1.12). The proof of the fact that MN is
actually a square integrable martingale with the corresponding quadratic variation is given for instance
in proposition 6.2 p.143 of [Robert, 2003].
Hence,

AN (t) = AN (0) + MN (t)−
∫ t

0

AN (s)BN (s)

N2
ds.

We consider the fluid limits
AN (t) =

AN (Nt)

N

and
BN (t) =

BN (Nt)

N

(see section 1.4 for the definition of a fluid limit) that satisfy

AN (t) = m+
MN (Nt)

N
−
∫ t

0

AN (s)BN (s) ds. (1.16)

In all the following chapters, we use the same methodology. We start by proving by using Doob’s
inequality that the term martingale MN (t)/N vanishes uniformly on finite intervals. Then, by writing
the same stochastic differential equation for (BN (t))N and using the fact that (AN (t)) and (BN (t)) are
bounded, we show that the sequences of processes (AN (t))N and (BN (t))N are tight. Let (cA(t)) (resp.
(cB(t))) be one of the limiting points of (AN (t))N (resp. (BN (t))N ), they necessarily satisfy the following
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differential equation:
˙cA(t) = −kcA(t) · cB(t)

with cA(0) = m, which is precisely the law of mass action (1.12). Hence, at the first order, with a change
of time scale, when N tends to infinity, we go back to the deterministic modelling.

In the following chapters, we will also prove functional central limit theorems, i.e limits for the convergence
in distribution of process of the quantity

(
AN (t)−NcA(t)√

N

)

t

.

The last step in the modelling process is to estimate the kinetic parameters of the chemical reaction, like
the parameter k of equation (1.11) for instance.

1.3.3 Curve-fitting

In this section, we briefly discuss some methods of parameter estimation. Essentially, the kinetic behaviour
of the models is obtained deterministically and is derived from the law of mass action. The Finke-Watzky
mechanism (F–W mechanism) (1.9) is often considered as one of the best models able to fit a broad set
of data, including amyloid, α-synuclein, and polyglumatine [Morris et al., 2008] and still be simple. The
constant of reactions k1 and k2 are obtained deterministically by least-squares from the law of mass action
derived from (1.9), with c1 the concentration of X1, the free monomers, and c2 the concentration of X2,
the polymerised monomers:

ċ2(t) = k1c1(t) + k2c1(1) · c2(t).

A ‘fit’ is a set of parameters that allow the model to reproduce the experiments. An example of a fit
obtained by Morris et al. by the F–W mechanism in [Morris et al., 2008] is shown in picture 1.9.

Figure 1.9: Retrieved from [Morris et al., 2008].
Fit of the F–W mechanism on data of amyloid
β peptide aggregation published in [Bieschke
et al., 2005].

In this case, data consist in one experiment of poly-
merisation of amyloid β, so that a deterministic ap-
proach is natural. Other approaches are empirical,
which have the drawback of not being mechanisti-
cally relevant. The experimental sigmoidal curves
are often fit by a logistic function [Naiki and Gejyo,
1999, Naiki and Nakakuki, 1996, Hasegawa et al.,
2002], but it is then not easy to determine the phys-
ical meaning of the constants, whether they are re-
lated to the initiation of polymerisation or to the
autocatalytic part.
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Finally, a deterministic approach does not take into account the stochasticity of the initial phase. In [Sz-
abo, 1998] and [Hofrichter, 1986b], the distribution of the time of nucleation is fit to data by assuming
that for proteins exhibiting a large variance in the lag phase when polymerising, the tail of the distribution
of the lag time is exponential. Then, parameters of growth and secondary processes are fit empirically.
More recently, [Szavits-Nossan et al., 2014] proposed a complete stochastic approach for modelling pro-
tein self-assembly. However, as far as curve-fitting is concerned, parameters were obtained by a fit on the
deterministic prediction of [Knowles et al., 2009].

In this dissertation, we use a minimalistic 2-step model and derive its kinetic parameters in a stochastic
framework. In chapter II, we fit the parameters of nucleation and autocatalytic growth on the data
presented section 1.2.1.

In the next section, we introduce get into the details of the scaling methods that will be used throughout
the two next chapters.

1.4 Scaling methods

In the previous section 1.3.2, we introduced the fluid limit (the definition will be given below) associated
with the Markov process (AN (t)) to get back, at the first order, to the law of mass action. Fluid limits
are actually a convenient tool to capture the main behaviour of a Markov process (XN (t)) by erasing
some stochastic fluctuations.
More generally, scaling in time and space of Markov processes consists in finding appropriate sequences
(ωN (t)) and (νN ) in order to study the sequence of processes

(XN (t)) =

(
XN (ωN (t))

νN

)
when N tends to infinity. Here, our scaling parameter is the molecular volume N previously defined. By
appropriate, we mean that the limit of this rescaled process is able to reproduce the main characteristics
of the initial Markov process. Renormalisation in time and space is quite classical in statistical physics
(see for instance [Comets, 1991]), where it is referred to as ‘hydrodynamic limits’. The underlying idea
is to study the macroscopic behaviour from the microscopic dynamics.

In this PhD dissertation, since we are dealing with chemical reaction, it is natural to consider that the
total number of particules in our system, i.e ‘the molecular volume’ N scales our Markov processes in
space. The scaling in time is more complicated. In fact, when studying a network involving many chemical
reactions in our case, the time scale t 7→ ωN (t) allows to focus on specific steps of the mechanism. If we
consider a reaction requiring the encounter of two molecules, then the transition rates of the associated
Markov processes are O(1). Therefore, in order to see the polymerisation happening, i.e to observe
variations of order N in the quantity of polymerised monomers, the correct time scale is the linear one
t 7→ Nt. The scaling in time and space by the initial size of the system is called a fluid limit. We give a
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more precise definition [Robert, 2003]:
Definition 1.4.1. A fluid limit associated with the continuous-time Markov process (XN (t)) such that
XN (0) = N is a stochastic process which is one of the limits of the renormalised process

(XN (t)) =

(
X(Nt)

N

)
when N tends to infinity.

For the general chemical reaction (1.11), we are in the nice case where the fluid limit is unique and
deterministic, solution of the ODE describing the law of mass action. Fluid limits provide an asymptotic
description when the initial size of the system is large. From then, we can get more information about the
fluctuations of the initial Markov process by studying the diffusion around the fluid limitXN (t) [Anderson
and Kurtz, 2011]. We will follow this methodology in chapter II. However, it happens, as it will be shown
in chapter III, that fluid limits do not give a useful description of the process, so that we have to find
another time scale for our study. Indeed, in one of the proposed models of this chapter, we rescale the
rates of reaction to slow down the nucleation. As a consequence, the linear time scale is not fast enough
to see variations in the quantity of polymers of the order of N .

Coexistence of different time scales. The situation is more complicated when we consider a reaction
network with different chemical reactions evolving on different time scales. It is the case when we consider
a conformation step, as done in chapter III. Then, the transition rates of the misfolding are of the order of
N . As a result, this process is very fast, while the following steps of polymerisation including nucleation
and growth are slow. Therefore, locally around a time t, the slow process of polymerisation sees the fast
process of misfolding at equilibrium. These two processes are intrinsically linked because the misfolding
depends on the quantity of free monomers, i.e on the polymerisation, while the polymerisation depends
on the number of misfolded monomers. When different time scales coexist in a network in this way, then
it is defined as a stochastic averaging problem.
This phenomenon has already been mentioned in biochemistry in 1913 by Michaelis and Menten as ‘time-
scale separation’ [Michaelis and Menten, 1913]. It has also been studied in the deterministic framework by
Guckenheimer and Holmes in [Guckenheimer and Holmes, 1990] and in statistical mechanics, in 1961 by
Bogolyubov [Bogoliubov, 1961]. In the stochastic context, Khaminskii’s studies on averaging for stochastic
calculus [Khasminskii, 1968] were further developed by Papanicolaou et al. in in 1977 [Papanicolaou et al.,
1977] and by Freidlin and Wentzell [Freidlin and Wentzell, 1998]. Averaging has also been investigated for
loss networks by Hunt and Kurtz in 1994 [Hunt and Kurtz, 1994]. In chapter III, we describe a stochastic
averaging principle for a model of polymerisation including a conformation step.

1.5 Presentation of subsequent chapters

This first part of the thesis contains two chapters, each of them corresponding to a paper:
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Chapter II. S. Eugène, W. Xue, P. Robert, and M. Doumic. Insights into the variability of nucleated
amyloid polymerization by a minimalistic model of stochastic protein assembly. Journal of Chemical
Physics, vol. 144, iss. 17, p. 175101+, 2016.

Chapter III. M. Doumic, S. Eugène, and P. Robert. Asymptotics of Stochastic Protein Assembly
Models. Submitted to SIAM Appl. Math., 2016. http://arxiv.org/abs/1603.06335.

In this section, we introduce these chapters and discuss the main contributions of this thesis.

1.5.1 Chapter II: Introduction of a minimalistic 2-step model

The goal of this chapter is to introduce a simple stochastic model for protein polymerisation in order to
confront it to the data presented in section 1.2.1, able to explain the surprisingly high variance (regarding
the volumes considered) observed in the initial lag phase.

Our approach departs from the complete model (5.5) and simplifies it to a minimalistic 2-step model, by
using the concept of polymerised monomers. We make our usual assumptions (1.10) (including nucleus
size i0 = 2), so that the model introduced in this chapter is the following:

X1 + X1
α/N2

−−−→ 2X 2

X1 + X2
β/N2

−−−→ 2X 2

(1.17)

with as usual, X1 being the free monomers, X2 the polymerised monomers. We write explicitly the
dependence on the volume N in the rates of reaction, in order to put emphasis on the encounter of two
monomers for the reactions to happen, as it is not always clear in the chemical literature what is hidden
behind the word ’rate of reaction’.

We define as usual XN
1 (t) (resp. XN

2 (t)) the number of free monomers at time t (resp. the number
of polymerised monomers) in a volume N (the dependence in the volume N is from now on written
explicitely to avoid confusions in the calculations). We also make the following assumption:

(i) In order to capture the slow initiation (first reaction) as compared to the quick autocatalysis (second
reaction), we assume α� β.

(ii) The initial number of introduced monomers at t = 0 is denoted byM . We then have a conservation
of the total number of monomers for all t: XN

1 (t) +XN
2 (t) = MN .

(iii) The volume N is large and is intended to go to infinity.

(iv) The initial concentration of monomersm = limN→∞MN/N remains constant in all our calculations.

Following the approach described in section 1.3.2, we study the corresponding Markov process (XN
1 (t), XN

2 (t)),
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the transitions of which being given by the law of mass action, i.e for (x1, x2) ∈ N2,{
(x1, x2) −→ (x1, x2) + (−2, 2) at rate αx1(x1 − 1)/N2

(x1, x2) −→ (x1, x2) + (−1, 1) at rate βx1 × x2/N
2.

The first reaction represents the nucleation step, leading to a lag phase in the experiments shown in
picture 1.2. It is often assumed in the literature that the concentration of monomers is more or less
constant during the whole process of polymerisation [Morris et al., 2008, Szavits-Nossan et al., 2014], so
that the rate of the first reaction can be rewritten as αm2. Here, we want to cover the whole aggregation
process, we do not make any approximation and take into account the depletion of monomers. The order
of reaction is then quadratic, and depends on the probability for two monomers to meet, i.e the product
of the concentrations (c.f section 1.3.2).

In the second reaction, X2 is both a reactant and a product of the reaction, defining an autocatalysis. This
captures the steep take-off on the experimental curves (figure 1.2). Hence, the β parameter is a mixture
of polymerisation and accelerating secondary processes. The concept of polymerised monomer gives to
each monomer of a fibril the same power of polymerisation, so that we do not have to invoke the number
of polymers as it is often done in the polymerisation literature [Szavits-Nossan et al., 2014].

Law of mass action for the minimalistic 2-step model. Kinetics of (1.17) are obtained, at the
first order, from the law of mass action:

ẋ1(t) = −αx1(t)2 − βx1(t) · x2(t). (1.18)

with x1(t) (resp. x2(t)) the deterministic concentration of X1 (resp. X2). For clarity, x1 and x2 denote
respectively the concentrations of free monomers and polymerised monomers in the minimalistic 2-step
model, and ci the concentration of polymers of size i in the complete model (5.5).

From Becker-Döring to our minimalistic model. This minimalistic mechanism is phenomeno-
logical and despite its apparent simplicity, it derives directly from Becker-Döring system, which takes
into account the size distribution of the fibrils (Xi)i≥1. Indeed, the idea is that X2 represents the mass
polymerised, i.e, from the stochastic point of view

XN
2 (t)

N
=
∞∑
i=2

i
XN
i (t)

N

or, in the deterministic framework

x2(t) =
∞∑
i=2

ici(t).
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It can easily be seen on the deterministic kinetics. If we go back to a general nucleation-growth model of
polymerisation (with assumptions (1.10)) we have:

X1 + X1
knon−−→ X 2

X i + X1

kipol−−→ X i+1 for i ≥ 2

which kinetics are given by equations (1.14), we get:

d

dt

∞∑
i=2

ici(t) =
∞∑
i=2

i [Ji−1 − Ji] = 2J1 +
∞∑
i=2

Ji (1.19)

where Ji = kipolci · c1 for i ≥ 2, J1 = kNonc
2
1. Here, we must remember that the Becker-Döring system

models a priori only growth by monomer addition, without any enhancing secondary pathway. To include
the autocatalysis, we assume that the rates of reactions are linearly correlated to the length of the polymer
(which is coherent with the fact that each polymerised monomer has the sae power of polymerisation),
i.e

kipol = βi.

We also denote 2kNon = α so that equation (1.19) becomes

d

dt

∞∑
i=2

ici(t) = αc21(t) + βc1(t)
∞∑
i=2

ici(t)

which is precisely what we wanted, i.e equation (1.18) by choosing c2(t) =
∑∞
i=2 ici(t).

Advantages of the 2-step model. Hence, this simplification captures the main features of the mech-
anism of polymerisation, with α being an averaged rate of nucleation, β an averaged rate of growth
but allows a clear deconvolution of the nucleation and the growth. Finally, this model only has two
parameters, which makes it a good candidate for confrontation to data.

Time scale of polymerisation. Before presenting our results, we briefly discuss the time scale of the
polymerisation. By using the methods described in section 1.3.2, we can derive the stochastic evolution
equations of the process (XN

2 (t)):

XN
2 (t) = MN (t) + α

∫ t

0

XN
1 (s)(XN

1 (s)− 1)

N2
ds+ β

∫ t

0

XN
1 (s)XN

2 (s)

N2
ds (1.20)

where MN (t) is a martingale whose increasing process is given by

〈MN 〉(t) = 2α

∫ t

0

X(s)(X(s)− 1)

N2
ds+ β

∫ t

0

X(s)

N

(M −X(s))

N
ds.
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On the normal time scale, we can show that, for the convergence in distribution of processes

lim
N→∞

(
XN

2 (t)

N

)
= 0 and lim

N→∞

(
XN

1 (t)

N

)
= lim
N→∞

(
m− XN

1 (t)

N

)
= m. (1.21)

Indeed, let ε > 0.

P
(

sup
0≤t≤T

| XN
2 (t) | ≥ εN

)
≤ P

(
sup

0≤t≤T
|MN (t) |≥ ε

2
N

)
+ P

(
αm2T + βmT ≥ ε

2
N
)
.

By Doob’s inequality, one gets:

P
(

sup
0≤t≤T

|MN (t)| ≥ ε

2
N

)
≤ E (〈MN 〉(T ))

(ε/2)2N2
−→
N→∞

0.

So that:
P
(

sup
0≤t≤T

| XN
2 (t) | ≥ εN

)
−→
N→∞

0.

which proves equation (1.21).

In fact:
Proposition 1.5.1. On the normal time scale t 7→ t, when N tends to infinity, the process (XN

2 (t))

converges in distribution to a Poisson process of parameter αm2.

Proof. The proof follows the same steps as theorem 3 of [Feuillet et al., 2014]. Actually, t 7→ X2(t) can
be seen as a point process with jumps of size 1. Relation (1.20) shows that(

XN
2 (t)− α

∫ t

0

XN
1 (s)(XN

1 (s)− 1)

N2
ds− β

∫ t

0

XN
1 (s)XN

2 (s)

N2
ds

)
is a martingale with respect to the natural filtration of the associated Poisson processes. The random
measure

ηN (t) = α

∫ t

0

XN
1 (s)(XN

1 (s)− 1)

N2
ds+ β

∫ t

0

XN
1 (s)XN

2 (s)

N2
ds

is a compensator of the point process t 7→ XN
2 (t) (see [Kasahara andWatanabe, 1986]). Since the sequence

of processes (ηN (t)) is tight by using the fact that (X1(t)/N) and (X2(t)/N) are bounded processes, we
actually showed that the random measure ηN is converging to the deterministic mesure αm2 ds. By
theorem 5.1 of [Kasahara and Watanabe, 1986], the result is proved.

It correlates the fact that polymerisation in a slow process; to see polymers being produced, we have to
speed up the time and study the fluid limit of (XN

2 (t)), as described in section 1.4.
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Main contributions of this chapter. In chapter II we start by deriving the asymptotics of the
concentration of monomers on the linear time scale. For this purpose, we introduce the notation

X
N

i (t) =
XN
i (Nt)

N

for i ∈ {1, 2} We prove that, with standard results of stochastic calculus, if MN/N → N , then

lim
N→∞

X
N

1 (t) = c1(t)

where c1(t) is precisely the solution of the law of mass action written in equation (1.18) and then showed
the following functional central limit theorem. For the convergence in distribution,

lim
N→+∞

(
XN

1 (Nt)−Nc1(t)

m
√
N

)
= (U(t)),

where U(t) is a diffusion.

From then, we derived the asymptotics of the time for δ reaction completion

TN (δ) = inf{t > 0, XN
1 (t) ≤ (1− δ)MN}.

Remember that our main goal was to derive the variance of this random variable in order to explain
the fluctuations of the initial phase of polymerisation. For this end, we derived from the asymptotics of(
X
N

1

)
a central limit theorem for TN (δ)

lim
N→+∞

TN (δ)−Ntδ√
N

=
U(tδ)

m[α(1− δ)2 + βδ(1− δ)]

where tδ is the deterministic time for δ reaction completion, i.e tδ = c−1
1 (δ), allowing us to compute the

standard deviation σN , when N tends to infinity

lim
N→∞

σN = σ =

√
3

2MNαβm2
. (1.22)

The last result of this chapter is the estimation of the parameters α and β. The main difficulty is that we
have a very small set of data (twelve curves per concentration). To find a robust estimation, we showed
that actually all the curves superimpose very well, so that the slope of the curve at TN (1/2) is the same
for all the realisations of the process t 7→ X

N

2 (t). We based our estimation on this result, and managed to
obtained a robust estimation of β, robust in the sense that we obtained almost the same value of β for all
the initial concentrations considered. This means that the second reaction of (1.17), despite its drastic
simplification, captures the autocatalysis correctly. Unfortunately, the estimation of α is less pretty, since
it models the initial take-off, which is highly stochastic.
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1.5.2 Chapter III: Asymptotics of stochastic protein assembly models

The minimalistic 2-step model has essentially two limitations.

First, it does not explain the variance observed in the large experimental volumes. By volume, we mean
indifferently the physical volume V , 15µL in our set of experiments, or N = NA · V , or MN , the initial
number of monomers introduced (since it is proportional to N). However, we find it more convenient
to think in terms of MN , since it has a real physical meaning (on the contrary to N), and it reveals what
we mean by ’large’ (on the contrary to V ). We reason with the twelve experimental curves obtained for
m = 122µM showed figure 1.3 to find the typical ’volume’ MN

MN = m · V · 10−6 ·NA = 1, 1 · 1015.

For this order of magnitude, formula (1.22) gives us σ = 1.98 · 10−4 h for the estimated parameters α and
β corresponding to the initial concentrationm = 122µM when the experiments have a standard deviation
of 0.9h (hours). This means that our minimalistic model, with our estimated parameters, is not able to
reproduce the variance of the lag time observed in large volumes. It predicts however a variance of order
1h for a smaller intial number of monomers, namely MN = 106.

The second problem is the regime of validity of our asymptotic expansions. Indeed, in our calculations,
we make N tend to infinity and consider that the parameters α and β are constant. However, in practice
N is large but not infinite, and the parameters estimated have extreme values to reproduce the sigmoidal
shape. By extreme, we mean that α must be very small compared with β in order to capture the slow
ignition phase. We estimated for instance α = 1.33−10h−1 · µM−1 for m = 122µM . As a result, α/β
becomes comparable to N and cannot be treated as a constant anymore.

The third chapter of this part tries to tackle these two problems by introducing two variants of the
minimalistic 2-step model:

— A first model including a conformation step, which should increase the variance,

— A second model equivalent to the minimalistic 2-step model but with α/Nν (ν > 0) as a parameter
for the nucleation phase instead of α.

Including a conformation step. As said in section 1.2.3, misfolding of proteins is strongly suspected
to be the first step towards polymerisation. If we want to refine our study of the initiation of the poly-
merisation, in order to study its variance, it is then natural to introduce the initial change of conformation
of monomers. The rest of the reaction, i.e nucleation and growth, is the step as in the simple minimalistic
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X 1X 0

X 2

Figure 1.10: Ehrenfest urn for the polymerisation model with misfolding (1.23). The grey balls are the
introduced free monomers, the blue ones the misfolded free monomers and the yellow ones the polymerised
monomers.

model. The model proposed is then:

X 0

γ−⇀↽−−−
γ∗
X 1

X 1 + X 1

α/N2

−−−→ 2X 2

X 1 + X 2

β/N2

−−−→ 2X 2 (1.23)

with γ � γ∗. According to the discussion on the rates of reaction in section 1.3.2, the transition rates of
the corresponding Markov process (XN (t)) = (XN

0 (t), XN
1 (t), XN

2 (t)) are the following, for an element
x = (x0, x1, x2) ∈ N3,

x 7→

x+(1,−1, 0) at rate γ∗ x1

x+(−1, 1, 0) γ x0,
x 7→

x+(0,−2, 2) α (x1/N)2

x+(0,−1, 1) β x1/N × x2/N,
(1.24)

since the change of conformation does not depend on the volume available but on the number of monomers.
Hence, the rates of the change of conformation are much larger than the one for the polymerisation.

As a result, this model can be seen as two processes evolving on different time scales: a fast process,
the change of conformation (X0(t), X1(t)), and a slow process, the polymerisation, which is precisely the
minimalistic model previously studied. Polymerisation is happening on the linear time scale t 7→ Nt

while misfolding is, locally around a time t, instantaneously at equilibrium. In this chapter, we study
the first step of (1.23) as an Ehrenfest urn with rates γ and γ∗ the size of which varying in time as the
polymerisation occurs, as shown in figure 1.10. These two processes are fully coupled, in the sense that
the stochastic evolution of X2(Nt) depends on the quick equilibrium of the urn, and this equilibrium
depends on the size of the urn, MN − X2(Nt). We prove a Stochastic Averaging Principle (SAP) (c.f
section 1.4) and the corresponding central limit theorem.
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Rescaled reaction rates. In this section we take into account the extreme values of the parameters
involved in the polymerisation mechanism. In fact, in order to capture the long phase observed on the
data by only a dimerisation step, the α-parameter must be very small, that is, of order N−ν , with ν > 0.
α is therefore changed into α/Nν in the minimalistic 2-step model:

X1 + X1
α·N−ν/N2

−−−−−−−→ 2X 2 (1.25)

X1 + X2
β/N2

−−−→ 2X 2 (1.26)

with the usual corresponding Markov process with transition rates for (x1, x2) ∈ N2,{
(x1, x2) −→ (x1, x2) + (−2, 2) at rate α ·N−ν(x1/N)2

(x1, x2) −→ (x1, x2) + (−1, 1) at rate βx1 × x2/N
2.

In this model, it appears that that the polymerisation will happen on a faster time scale than the linear
one, since we have slowed down the nucleation as compared to the minimalistic 2-step model. The time
scale of polymerisation depends here actually on ν. In this chapter, we prove that the polymerisation
happens on the time scale t 7→ N lnNt for 0 < ν ≤ 1, and on the faster time scale t 7→ Nνt for
ν > 1.

Intuitively, for 0 < ν ≤ 1, we understand that on the time scale t→ N1+δt, the polymerisation has already
finished for all δ > 0. Indeed, initially, since the polymerisation happens on a faster time scale than the
linear one, X(Nt)/N = m. Thus, on t 7→ N1+δt, reaction (1.25) leads to a quantity αm2N1−ν+δt of
polymers. Afterwards, reaction (1.26) consumes all the monomers: it creates a quantity βmN1−ν+δNδt of
polymers, i.e X2 becomes of order N1−ν+2δ, then a quantity N1−ν+3δ etc... X2 becomes of order N1−ν+kδ

until it reaches N. Finally, on the time scale t→ N1+δt, the polymerisation has already finished.

For ν > 1, we are in an extreme regime where only the formation of one polymer is enough to trigger the
polymerisation, as studied in [Yvinec, 2012, Szavits-Nossan et al., 2014] so that the lag time is actually
an exponential random variable of parameter αm2.

1.6 Future directions

With these models, we have not solved the problem of the large variance of the lag time observed
experimentally. The minimalistic 2-step model fails for the large experimental volumes. For the other
models presented in chapter III, we only provide a theoretical study, without any confrontation to the
experimental data and estimation of parameters.
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Procedure of estimation of parameters. The model (1.23) with a conformation step suggests a
variance

lim
N→+∞

Var(TN (δ)) =
3

2Mαr2βrm2
.

with r = γ/(γ+γ∗), the fraction of misfolded monomers in the Ehrenfest urn composed of free monomers
X0 and misfolded monomers X1.

Our study of the minimalistic 2-step model proved that the variance of the lag time was highly dependent
on the number of monomers able to polymerise. Hence, the parameter r plays an important role in this
variance since it quantifies the number of misfolded monomers. It also gives another degree of freedom to
the model for the parameter estimation procedure. The idea in the models with rescaled rates is the same.
We create a filter on the number of monomers able to polymerise with the parameter ν. As a conclusion,
to explain the variance, a possible way would be to find a new estimation of the set of parameters (α, β, r)

for the model with the conformation step, or for (α, β, ν) for the rescaled rates, taking, in addition to the
sigmoidal shape, the experimental variance as an entry.

Sophistication of the model. The other obvious way for future work in the stochastic modelling of
protein polymerisation is to study the complete model

X0 X1

γ

γ∗

X1 + X1

k1on X2
k2off

X1 + Xi0−1
k
i0−1
on Xi0
k
i0
off

X1 + Xi0

k
i0
pol Xi0+1

k
i0+1
dep

X1 + Xi

kipol Xi+1
k
i+1
dep

Nucleation

Growth

in the stochastic framework. It would be more realistic, for a probabilistic modelling, to consider that the
nucleation occurs by monomers addition, since the encounter of i0 monomers, for i0 > 2, is very unlikely,
and would have a very low probability.
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The format of this chapter obeys to the recommendations of the Journal of Chemical Physics, i.e re-
sults are presented in the main part, while the proofs of the mathematical results are postponed in the
supplemental material.

Introduction

The amyloid conformation of proteins is of increasing concern in our society because they are associated
with devastating human diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease,
Prion diseases and type-2 diabetes [Knowles et al., 2014a, Chiti and Dobson, 2006]. The fibrillar assem-
blies of amyloid are also of considerable interest in nano-science and engineering due to their distinct
functional and materials properties [Fowler et al., 2007, Schwartz and Boles, 2013, Knowles and Buehler,
2011]. Elucidating the molecular mechanism of how proteins polymerize to form amyloid oligomers,
aggregates and fibrils is, therefore, a fundamental challenge for current medical and nanomaterials re-
search.

Amyloid diseases are associated with the aggregation and deposition of mis-folded proteins in the amyloid
conformation [Knowles et al., 2014a, Chiti and Dobson, 2006]. Amyloid aggregates form through nucle-
ated polymerization of monomeric protein or peptide precursors (e.g. [Xue and Radford, 2013, Kashchiev
and Auer, 2010, Ferrone, 1999, Collins et al., 2004, Knowles et al., 2009]). The slow nucleation pro-
cess that initiates the conversion of proteins into their amyloid conformation is followed by exponential
growth of amyloid particles, resulting in growth of amyloid fibrils that is accelerated by secondary pro-
cesses such as fibril fragmentation and aggregate surface catalyzed heterogeneous nucleation [Xue et al.,
2008, Knowles et al., 2009, Cohen et al., 2013, Xue and Radford, 2013] (Figure 2.2). Current mathemati-
cal description of protein assembly into amyloid are based on systems of mass-action ordinary differential
equations, and they have been successful in describing the average behaviour of amyloid assembly ob-
served by kinetic experiments (e.g.[Xue et al., 2008, Knowles et al., 2009]). The formation kinetics of
amyloid aggregates has been studied extensively by bulk in vitro experiments in volumes typically in
the range of hundreds of µL or larger [Xue et al., 2008], but has also been observed recently in elegant
microfluidic experiments in pL to nL range, more closely mimicking physiological volumes in tissues
and cellular compartments [Knowles et al., 2011]. Amyloid growth experiments typically follow the ap-
pearance of amyloid aggregates or the depletion of monomers as function of time, yielding information
regarding the rate of the exponential growth and the length of the lag phase under different protein con-
centrations at fixed volumes. A hitherto overlooked piece of information that can be derived from these
kinetic experiments is the observed variation between experimental repeats, which may hold the key to
understanding the early rare nucleation events of amyloid formation [Xue et al., 2008, Szavits-Nossan
et al., 2014, Hofrichter, 1986b, Hofrichter, 1986a]. However, current deterministic models cannot describe
variability, thus, unable to address whether the observed variations in lag phase length reflect subtle ex-
perimental differences between the replicates, contributions from the stochastic nature of the nucleation
mechanism, or a combination of both factors. As shown recently by Szavits-Nossan and co-workers using



2.1. A PHENOMENOLOGICAL STOCHASTIC MODEL 51

a stochastic nucleated growth model, rare nucleation events are expected to dictate the behaviour and
variability of amyloid formation in small volumes such as in cellular compartments [Szavits-Nossan et al.,
2014]. Understanding these rare initial nucleation events of amyloid formation and the variability result-
ing from the stochastic nature of nucleation, therefore, is of paramount importance in the fundamental
understanding of amyloid diseases and in controlling amyloid formation.

Here, we present a new stochastic protein assembly model with the aim to capture the fundamental
features of amyloid self-assembly that includes their stochastic nature, and still allow a fully rigorous
mathematical analysis of these processes (Figure 2.1). In this spirit, our model contains minimal pos-
sible complexity needed to describe a nucleated protein polymerization process, allowing us to study it
theoretically in a mathematically rigorous manner, but still allowing useful comparison to experimental
data. From our minimal model, we derive a closed form formula that can describe and predict variability
in the lag phase duration of nucleated protein assembly by giving a proof to a central limit theorem for
our model. Our results demonstrate how stochasticity at the molecular level may influence the kinetics
of the total reaction population at a macroscopic scale depending on the relative rates of nucleation and
exponential growth, and on reaction volume. We also show how new information relevant to any specific
nucleated amyloid assembly can be gained in a conceptually simple and clear manner by applying our
analytical results to the analysis of published β2m amyloid assembly kinetics data [Xue et al., 2008]. We
demonstrate that our model qualitatively captures key features of the data such as parallel progress of
the curves and the order of magnitude for the rates of the self-accelerating reactions. We also show that
the intrinsic stochastic nature of nucleation alone cannot explain the observed variability in lag phase
length for published β2m amyloid assembly data acquired in large (15 µL) volumes suggesting alternative
mechanistic assembly steps and additional experimental sources that contribute to the variability in the
observed amyloid growth curves. Our approach represents the basis for the development of extensive and
tractable stochastic models, which will allow the variability information from amyloid growth kinetics
experiments to be used to inform the fundamental molecular mechanisms of the key rare initial events of
amyloid formation that may be involved in producing early on-pathway cytotoxic species associated with
amyloid disease.

Supplemental material presents the mathematical background of these results, in particular the rigorous
proofs of the convergence results, the precise mathematical characterization of the variability of the
assembly process and, finally, some simulations of these stochastic processes.

2.1 A phenomenological stochastic model

To make the model as simple as possible, we consider two distinct types of monomers, we call these
species monomers and polymerised monomers, respectively. The polymerised monomers represent all
monomers in the amyloid conformation in the aggregates. Its amount may be viewed as representing the
total polymerised mass, captured for instance by Thioflavine T (ThT) measurements, as in Figure 2.2.
Such a simplification is also justified by the fact that current kinetics measurements of amyloid growth
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Figure 2.1: (A) Schematic illustration of a full amyloid assembly model, including conformational ex-
change, nucleation, elongation growth, secondary surface nucleation and fibril fragmentation processes.
(B) Schematic illustration of the minimal model represented by reactions (1) and (2). The phenomeno-
logical parameters α and β represent the rate constant of the ignition phase, and the rate constant of all
possible accelerated growth pathways to the formation of polymers, respectively. The circles represent
the un-polymerised monomer X and the parallelograms represent the monomeric units in the amyloid
formation Y in (1) and (2). Some monomeric units are highlighted with bold outlines to highlight few
possible paths a monomeric unit in (1) and (2) can take through the aggregation process.

exhibit variability on the timecourse of the total polymerised mass, without giving any information on
the size distribution of fibrils. However, such a simplification do not contain any contributions from
spatial dynamics, molecular motion and transport processes, which may add complexity to the stochastic
behaviour in small volumes. Previous studies (see for instance [Prigent et al., 2012], Supplemental material
(S.M.) 2) have shown that the detail of the reactions of secondary pathways, such as a fragmentation
kernel, may have a major impact on the size distribution of polymers, but comparably smaller effects
on the timecourse of the polymerised mass. Overall, with this simplification, we can distill the problem
down from infinite sumber of species to two species, which subsequently can describe the ability of
the amyloid state to convert normal unpolymerised monomers to the amyloid state without invoking
polymer ends or number. Thus, our model is phenomenological and aims to give new insights into
the key determinants of stochastic behavior of protein aggregation and suggests simple ways to extract
information from experimental data. Our approach departs from the mechanistic modelling approach
used in conventional deterministic models of protein aggregation but is complementary to those models
(e.g. [Xue et al., 2008, Knowles et al., 2009, Szavits-Nossan et al., 2014]), and the simplifications allows
tractable mathematical derivation of closed expressions.

We thus consider two distinct species in our model: monomers, X1, and polymerised monomers, X2. We
then consider XN

1 (t) and XN
2 (t) to be the respective numbers of particles of each species at time t in a

fixed volume V . Initially, it is assumed that there are only M monomers: XN
1 (0) = M and XN

2 (0) = 0.
We denote m = M/(V ·NA) the initial molar concentration of monomers, where NA is the Avogadro
constant. For convenience in the calculations hereinafter, we introduce the notation N = V ·NA. N will
be our scaling parameter.
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Thus, the chemical reactions associated with this simple model are as follows:

X1 + X1
α/N2

−→ 2X2, (2.1)

X1 + X2
β/N2

−→ 2X2, (2.2)

where α/N2 and β/N2 are rates of the reactions with rate constants of α > 0 and β > 0. These
reactions describe the following features of a nucleated polymerisation of proteins that characterises
amyloid assembly (see Figure 2.1 for an explanatory scheme of the reactions):

— Reaction (2.1): We call this step ‘ignition’ since it models the starting point of the polymerisation
process. Here, we represents this step as the simplest possible concentration dependent nucleation
step that converts two monomers into two monomers that are growth competent (equivalent to two
polymerised monomers). The initiation step (1) is equivalent to a nucleation step involving dimer
formation. This is a common simplification that has been applied in a number of deterministic
model (e.g. [Knowles et al., 2009, Cohen et al., 2013]), and is also motivated by the fact that
the first molecular attachment step towards the nucleation barrier may have the biggest energetic
penalty according to the classical nucleation theory. In our model, this reaction will occur in a
stochastic way. Following the principles of the law of mass action, the encounter of two chemical
species occurs at a rate proportional to the product of the concentrations of each species. Therefore
two given monomers disappear to produce two polymerised monomers at a rate α/N2.

— Reaction (2.2): We call this second step ‘conversion’, which we modelled as a self-accelerating
autocatalytic process. Here, given a monomer and a polymerised monomer, the monomer converts
into a polymerised monomer at a rate β/N2. This is representative of a range of accelerating
secondary pathway reactions such as fragmentation, lateral growth, and aggregate surface catalyzed
second nucleation. In this sense, our model may be viewed as a simplification and amalgamation
of several mechanistic models. For example, in the case of fragmentation accelerated growth,
fibril fragments that interact with monomers X1 are generated, in a first order approximation,
proportional to the number of breakage sites [Xue and Radford, 2013], which in-turn depends
on the number of monomeric units in the amyloid fibrils. In the case of secondary fibril surface
nucleation, the sites that promote surface nucleation is proportional to available surface [Cohen
et al., 2013], which is also dependent on the number of monomeric units in the amyloid fibrils
(Fig 1). In particular, we expect our model to behave qualitatively similarly to the mechanistic
model described in [Szavits-Nossan et al., 2014], which includes nucleation, polymerization, and
fragmentation as a representative self-accelerating secondary process motivated by its experimental
analysis [Knowles et al., 2011]. It is however not intended for reaction (2) to be associated to any
specific microscopic meaning as described above.

Stochastic Evolution. Any given pair of monomers reacts together by Reaction (2.1) at rate α/N2,
whereas for a given pair of monomer/polymerized monomer reacts by Reaction (2.2) at rate β/N2. Let
MN be the initial number of monomers and the random variable describing the number of monomers
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Figure 2.2: Twelve experimental timecourse of polymerised mass for two given initial concentrations of
monomers: 122 µM (blue) and 30.5 µM (green) published in [Xue et al., 2008].

remaining at time t is denoted by XN
1 (t). By taking into account the XN

1 (XN
1 −1)/2 monomers pairs,

and the XN
1 (MN−XN

1 ) monomers/polymerised pairs, the variable XN
1 (t) has jumps of size −2 or −1

which occur at the following rates

XN
1 7→

X
N
1 −2 at rate

XN
1 (XN

1 −1)

2
× α

N2
,

XN
1 −1 “ XN

1 (MN−XN
1 )× β

N2
.

(2.3)

The conservation of mass gives the additional relation XN
1 (t)+XN

2 (t)=MN . As noticed previously, in the
description of Reactions (2.1) and (2.2) above, this representation is completely coherent with the law of
mass action.

2.1.1 Asymptotic evolution of the number of monomers

Assuming that the volume V is large and the initial concentration of monomers remains constant and
equal to m > 0, i.e. the initial number of monomers MN is such that MN/N ∼ m, we can derive the
following:

Polymerisation occurs on the time scale t7→Nt. Let (X
N

1 (t)) be the scaled process defined by

X
N

1 (t) =
XN

1 (Nt)

N
. (2.4)

In Equation (2.4), the time scale of the process
(
XN

1 (t)
)
is accelerated with a factor N . As it will be

seen, as N gets large, t→ Nt is the correct time scale to observe the decay of (XN
1 (t)) on the space scale

proportional to N .

Assuming for the moment that
(
X
N

1 (t)
)
is converging in distribution, Relations (2.3) then suggest that
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its limit (x1(t)) should satisfy the following ODE

dx1

dt
= −αx1(t)2 − βx1(t)(m− x1(t)), with x1(0) = m. (2.5)

The following result shows that this is indeed the case.
Proposition 2.1.1 (Law of large numbers). If the initial number MN of monomers is such that

lim
N→+∞

MN

N
= m > 0,

then, as N goes to infinity, the process (X
N

1 (t)) converges in distribution to (x1(t)), solution of Equa-
tion (2.5), given by the formula

x1(t) = m
β

α

1

eβmt − 1 + β/α
. (2.6)

The proof is classical [Ethier and Kurtz, 1986], we recall it in Sections 2.3.1 and 2.3.6 of supplemental
material, we comment on the relative influence of the parameters α and β on the deterministic curve, see
supplemental figure 2.7.

In order to be able to quantify the variability of experimental replicates, we need to go further, to a
second order approximation, i.e. with a central limit result.
Proposition 2.1.2. If the initial number MN of monomers is such that

MN = mN + o
(√

N
)
,

for m > 0, then, for the convergence in distribution,

lim
N→+∞

(
XN

1 (Nt)−Nx1(t)

m
√
N

)
= (U(t)),

where U(t) is a diffusion, the unique solution of the following stochastic differential equation (2.12).

The proof is postponed in Section 2.3.2 of supplemental material, together with an explicit formulation
and an analysis of the influence of the parameters α and β on the stochasticity of the reactions. We found
that the smaller the ratio α/β is, the more important the influence of the stochasticity on the lag-time,
but the less important for the following of the reaction. This is quantified in the following study of the
stochastic time for δ completion below.

2.1.2 Asymptotics of the time for δ reaction completion

To quantify the effect of α and β on the stochasticity of the reactions, we define the t ime for δ reaction
completion, where 0 < δ < 1 is a percentage, as the following stopping time

TN (δ) = inf{t > 0, XN
1 (t) ≤ (1− δ)MN}
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(a) α = 10−5, β = 1,M = 106
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(b) α = 10−6, β = 1,M = 106
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(c) α = 10−5, β = 0.1,M = 106
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(d) α = 10−5, β = 1,M = 107

Figure 2.3: Simulations of the model with different parameters. The red curve is the first order obtained
in Proposition 1.

where TN is the first time when there is a δ fraction of polymers is produced. TN for δ small - 5 to 10%

- represents an alternative definition for the lag-time of the reaction[Prigent et al., 2012].

A law of large numbers and a central limit result for TN (δ) as V goes to infinity can be obtained. Note
that due to the change in the time scale, we need to rescale TN by V to get a limit.
Theorem 2.1.1 (Asymptotics of the time for degree of reaction completion δ). If the initial number MN

of monomers is such that
MN = mN + o

(√
N
)
,

for m > 0 then, for the convergence in distribution

1. Law of Large Numbers.

lim
N→+∞

TN (δ)

N
= tδ

def.
=

1

βm
log

(
1 +

βδ

α(1− δ)

)
. (2.7)

2. Central Limit Result.

lim
N→+∞

TN (δ)−Ntδ√
N

=
U(tδ)

m[α(1− δ)2 + βδ(1− δ)]

where (U(t)) is the solution of the SDE (2.12).
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The proof of Theorem 2.1.1 is given in Section 2.3.4 of supplemental material. Supplemental Figure 2.6
illustrates and the law of large numbers and the central limit theorem for T1/2. Note that the definition
of tδ, which is the limit of the stochastic times TN (δ)/N when N →∞ is coherent with the definition of
the deterministic time of δ reaction completion as

tδ = inf{t > 0, x1(t) ≤ (1− δ)m} = x−1
1 ((1− δ)m),

where (x1(t)) is given by Equation (2.6). Thus, for any given experiment, the distance between a re-
alization of TN (δ)/N and tδ is being given by the explicit formula above. We can therefore derive its
stochastic behaviour. The following corollary establishes its variance.
Corollary 2.1.1 (Variance of Time TN (δ)). Under the assumptions of the above theorem and with its
notations, the variance σ2

N of the time for δ completion has a limit σ2, when α� β

lim
N→+∞

σN = σ ∼
√

3√
2m
√
MNαβ

. (2.8)

The proof of corollary 2.1.1 is given in Section 2.3.5 of supplemental material, together with the exact for-
mula for σ. Interestingly, this result obtained from our minimal model is comparable to the expression on
lag-time variations obtained in [Szavits-Nossan et al., 2014] based on a more complex mechanistic model
by the mean of a Taylor expansion. This result, therefore, corroborates with the idea that our minimum
model with only ignition and conversion contains the key features sufficient in qualitatively describing
the stochastic properties of the nucleated protein aggregation processes. Our simplified formula (2.8)
and its full general form in the equation (2.18) of the supplemental information, are mathematically fully
rigorous, and allows analysis of the intricate interplay between the ignition reaction and the autocatalytic
reaction. In fact, it is possible to have a whole range of times when both reactions have an influence
over the whole aggregation timecourse, as may be seen on Formula (2.8). It should be noted that this
representation of σ is independent of δ. This suggests that the fluctuations do not depend on δ, and
therefore, the growth curves predicted by our simple model are all parallel for any given concentration.
Figures 2.5 (c) and 2.5 (d) below have been obtained by centering the 12 curves of Figures 2.5 (a) and 2.5
(b) at the half-time corresponding to δ = 1/2. As it can be seen, the times TN (δ) for 0.4 ≤ δ ≤ 0.7

are then also superimposed: the curves are identical for this range of values. This is an illustration of
the above relation (2.8). The exact mathematical formulation of this phenomenon is shown in supple-
mental material. Simple as it is, our model captures well this feature experimentally observed. Also, it
emphasizes the fact that we can take different values for δ without having an influence on the study. A
difficulty however lies in the fact that when the numerical values of the constant α above is in the order
of 1/MN , then the convergence itself may be a problem, as it can be seen on Figure 2.4.

2.1.3 Estimation of the parameters

In this section, we tested the results obtained with our minimalistic stochastic model on the data published
in [Xue et al., 2008]. In these experiments, there are 12 replicate kinetic traces reported for each sample
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Regime of Validity of the Model

1 2 3 4 5 6 8
0

10

20

30

lo
g

M
V

� log(↵)

M
ea

n
of

T
1
/2

Predicted Mean
Simulated Mean

1 2 3 4 5 6 8
101

103

105

107

109

lo
g

M
V

� log(↵)

V
ar

ia
n
ce

of
T

1
/2

Predicted Variance
Simulated Variance

Figure 2.4: Comparison between the simulations and the predictions to see the regime of parameters
where the calculations are valid. For these simulations, we fixed MN = 107 monomers, β = 1, and made
α varying.

concentration in constant 100µL reaction volume. The parameters α and β are obtained by fitting the
mean half-time t1/2 and the mean slope k of the curves at t1/2. More precisely, using Formula (2.5) for
k and Relation (3.24) for t1/2, gives

t1/2 = log (1 + β/α) /βm and k = mβ (1 + β/α) /4. (2.9)

In the experiments in [Xue et al., 2008], there are 12 replicate kinetic traces reported for each sam-
ple concentration in constant 15 µL reaction volume. The parameters α and β can be obtained in a
straightforward manner by fitting equations (2.9) to the mean half-time t1/2 and the mean slope k of the
curves at t1/2. Table 2.1 shows a summary of our analysis. The constants α and β, and the calculated
variance (2.8) are shown for each of the concentrations used. We also carried out a global analysis for
α and β, fitting (2.9) simultaneously all of the curves for all concentrations. See Fig. 2.9. The overlay
of the experimental curves around the predicted mean is illustrated in Figure 2.5, Figures 2.5 (c) and
2.5 (d) have been obtained by centering the 12 curves of Figures 2.5 (a) and 2.5 (b) at the half-time
corresponding to δ = 1/2. As can be seen, the agreement between the calculated and the experimental
curves is good for 0.4 ≤ δ ≤ 0.7. This is consistent with the relation (2.8).

Our analysis further demonstrates two important insights. Firstly, we obtained a more well-estimated
β parameter. It is remarkable that the numerical value of β, which quantifies the conversion step in
our model, does not change much for the 15 concentrations tested in the experiments, considering the
simplicity of our model. This is not the case for α,which quantifies the ignition phase, varies between 10−7

and 10−13. Here, the parameter α which quantifies the take-off phase (remember that the slope of (x1(t))

at 0 is −αm2) is intrinsically estimated with less precision than β, see Section 2.3.6 of supplemental
material. This is a limitation of this simple model, and it also reflect the lack of information content in



2.1. A PHENOMENOLOGICAL STOCHASTIC MODEL 59

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Time (hours)

Q
u
an

ti
ty

of
P
ol
y
m
er
s

(a) m = 122µM
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(b) m = 30.5µM
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(c) Superimposition m = 122µM
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(d) Superimposition m = 30, 5µM

Figure 2.5: (a) and (b): Experimental timecourse of polymerised mass for 12 different experiments. (c)
and (d): with a centering at the TN (1/2) of each curve. Published in [Xue et al., 2008]. The red curve
is the predicted mean with the estimated parameters.

m(10−6M) α(h−1.M−1) β(h−1.M−1) Experimental Std (h) Predicted Std (h)

12.3 6.18·10−7 5.07·104 7.95 5.34·10−2

14.6 2.81·10−6 4.54·104 2.98 2.05·10−2

16.7 1.59·10−4 3.75·104 2.68 2.45·10−3

17.0 1.88·10−3 3.70·104 1.52 6.98·10−4

29.5 1.40·10−5 3.34·104 2.13 3.7·10−3

30.2 2.89·10−2 2.96·104 2.57 8.40·10−5

30.5 9.57·10−8 4.16·104 1.53 3.84·10−2

43.7 7.99·10−3 2.35·104 2.10 1.03·10−4

48.5 1.68·10−2 2.01·104 1.56 6.55·10−5

61.0 2.61·10−2 2.04·104 1.03 3.71·10−5

61.0 2.22·10−5 2.56·104 2.55 1.14·10−3

84.1 4.53·10−4 2.24·104 1.59 1.66·10−4

102.2 1.52·10−3 1.88·104 0.62 7.39·10−5

122 1.33·10−4 1.75·104 0.90 1.98·10−4

123.5 2.13·10−4 1.79·104 0.90 1.52·10−4

142.1 2.58·10−4 1.74·104 1.11 1.13·10−4

243.5 1.75·10−3 1.09·104 0.60 2.46·10−5

Table 2.1: Parameters estimated from experimental data published in [Xue et al., 2008] using our model.
The two first columns are the estimated parameters α and β from the model. The third column is the
experimental standard deviation of TN (1/2), while the fourth is the standard deviation predicted by our
mathematical results for the model with the estimated parameters. We see that the estimation for β is
quite robust, in contrast with that of α.
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the kinetics data during the lag phase compared to the growth phase.

Secondly, despite good agreement between our analysis and the data in terms of the shapes of the
growth curves, the analysis results in a much smaller order of magnitude for the variability among curves
compared with experimental data. Since the relation α � β holds in the numerical estimations,
Equation (2.8) gives the approximation σ2 ∼ 3/(2MNm

2αβ) for the variance of the characteristic times
of the kinetic traces. A variance of the order of magnitude observed in the experiments [Xue et al., 2008]
would be obtained by our model for an initial number of monomersMN in the order of 106. As the number
MN in the experiments of [Xue et al., 2008] performed in 100µL volumes is closer to 1015, our analysis
suggest that the variability observed result from more than a simple stochastic homogeneous nucleation
of monomers. This result is consistent with the mechanistic approach used by Szavits-Nossan and co-
workers [Szavits-Nossan et al., 2014], where the authors used a stochastic nucleation-polymerization-
fragmentation based model. Thus, our model and analysis of the variance suggest alternative initial rare
assembly steps that involve additional complexities such as conformational exchange, and/or additional
experimental sources that contribute to the variability in the observed amyloid growth curves.

2.2 Conclusion and discussion

Our approach also suggest a straightforward manner in which information regarding the stochastic be-
haviour of nucleated protein aggregation can be extracted from experimental kinetics data using equa-
tions (2.8) and (2.9). We see that the stochasticity influences mainly the ignition step: once the reaction
accelerates in the conversion step, all curves become parallel and deterministic, as illustrated both by
experiments and the model we presented here. Thus, simple as it is, our model captures well the fea-
tures experimentally observed for amyloid growth curves. Also, it confirms, as expected, that we can
take different characteristic times (such as lag time, or growth mid point) when analysing kinetic growth
curves. Our model further informed the need for new mechanistic steps or experimental interpretation
of the large observed variations in the lag time lengths. Thus, the variation seen in the kinetic traces
must be taken into account in addition to the concentration dependent behaviour of the kinetic traces in
evaluating and developing mechanistic understanding of amyloid protein assembly processes.

While our model design was not aimed at describing the reality of any specific amyloid forming system
with all of their individual associated complexities, our design by pursuing maximum simplicity are com-
plementary to mechanistic approaches such as in [Xue et al., 2008, Knowles et al., 2009, Szavits-Nossan
et al., 2014] in capturing global properties of amyloid assembly. A particularly interesting direction for
future work would be to envisage other orders for the reactions, in particular β, which currently is not spe-
cific to any particular accelerating growth processes, or an extended model with an initial conformational
exchange step, for example. In summary, our current method allows for a rigorous theoretical treatment
and understanding, and therefore, provides a basis for future model selection on stochastic ‘minimal
model’, each of these models being the condensation of a family of possible stochastic mechanistic models
that are closer to reality but for which analytical formulae are out of reach.



2.3. SUPPLEMENTAL MATERIAL 61

It should be remarked that in many cases the reaction curve shows significant asymmetries about the
half-time which cannot be captured without accounting for the correct dependencies of the secondary
nucleation rate on the monomer. Such an asymmetry is present e.g. in the data of Figures 2.2 and 2.5,
take off is slower than the approach to the plateau, a common characteristic of systems dominated
by fragmentation. However, the model predictions, e.g. in Figure 2.3, give curves that are perfectly
symmetric about the half time (because of the term X(M − X) in the rate equations). This suggests
the possibility of different dependencies of the autocatalytic part on the monomer which we plan to
investigate in the future.

2.3 Supplemental material: proofs of the main results and anal-

ysis of the parameters

Recall that it is assumed that the parameter MN is asymptotically proportional to m

lim
N→+∞

MN

N
= m.

2.3.1 Proof of the law of large numbers

The proof relies on classical methods of stochastic calculus, see for instance Darling and Norris [Darling
and Norris, 2008] or Ethier and Kurtz [Ethier and Kurtz, 1986]. Here, we give a summary of the proof
for the completeness.

Stochastic Equations. Let Nα/N2(dt) [resp. Nβ/N2(dt)] be a Poisson process with parameter α/N2

[resp. β/N2], then Relations (2.3) give that the random variable XN
1 (t) can be represented as a solution

of the following stochastic differential equation

dXN
1 (dt) = −2

XN1 (XN1 −1)(t−)/2∑
i=1

N i
α/N2(dt)−

XN1 (M−XN1 )(t−)∑
i=1

N i
β/N2(dt), (2.10)

with XN
1 (0) = M and f(s−) denotes the limit on the left of f at s. For more discussion and results on

related models, see for example Anderson and Kurtz [Anderson and Kurtz, 2011] and Higham [Higham,
2008] and references therein. These SDEs are an equivalent, probabilistic, form of the master equation.
To get asymptotics, it is in general easier to work directly with this stochastic differential equation (SDE)
rather than with the evolution of the distribution of the process (an infinite system of ODEs) or its
generating function.
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By using Equation (2.10) and X
N

1 defined by (2.4), one gets

X
N

1 (t) =
XN

1 (Nt)

N
=
MN

N
+ MN (t)− α

∫ t

0

X
N

1

(
X
N

1 −
1

N

)
(s) ds− β

∫ t

0

X
N

1

(
MN

N
−XN

1

)
(s) ds,

(2.11)
where (MN (t)) is the martingale

MN (t) =− 2

N

∞∑
i=1

∫ Nt

0

1{≤XN1 (XN1 −1)(s−)/2}
(
N i
α/N2(ds)− α

N2
ds
)

−
∞∑
i=1

1

N

∫ Nt

0

1{i≤XN1 (M−XN1 )(s−)}

(
N i
β/N2(ds)− β

N2
ds

)
.

Its quadratic variation is given by

〈MN 〉(t) =
2α

N

∫ t

0

X
N

1

(
X
N

1 −
1

N

)
(s) ds+

β

N

∫ t

0

X
N

1

(
MN

N
−XN

1

)
(s) ds ≤ 1

N
Ct,

for some constant C since XN
1 is bounded by MN . Doob’s inequality gives that, with high probability,

the martingale (MN (t)) vanishes uniformly on finite intervals: for ε > 0,

P
(

sup
0≤s≤t

|MN (s)| ≥ ε
)
≤ 1

ε2
E (〈MN 〉 (t)) ≤

1

N

Ct

ε2
.

We can now show that the sequence (X
N

1 )N is tight. Let

wN (δ) = sup
|u−v|≤δ
u,v≤t

∣∣∣XV

1 (u)−XV

1 (v)
∣∣∣ .

Then, Equation (2.11) gives

wN (δ) ≤ sup
|u−v|≤δ
u,v≤t

|MN (u)−MN (v)|+ δ(α+ β)

(
MN

N

)2

.

Therefore, for ε > 0 and η > 0, there exist δ0 and V0 such that if δ ≤ δ0 and V ≥ V0 then P(wN (δ) ≥
ε) ≤ η. Consequently, the sequence (X

N

1 (t)) is tight, see Ethier and Kurtz [Ethier and Kurtz, 1986]
for example. Let (x1(t)) be one of the limiting points of (X

N

1 (t)), it necessarily satisfies the following
differential equation

ẋ1 = −αx2
1 − βx1(m− x1) with x1(0) = m.
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2.3.2 Proof of central limit result

One proves that, for the convergence in distribution,

lim
N→+∞

(
XN

1 (Nt)−Nx1(t)

m
√
N

)
= (U(t)),

where U(t) is the unique solution of the following stochastic differential equation

dU(t) =
β
√
α
√
eβmt + 1

αeβmt + β − α dW (t)− βmeβmt+1−β/α
eβmt−1+β/α

U(t) dt, (2.12)

with U(0) = 0 and (W (t)) denotes a standard Brownian motion.

With Equation (2.11), one gets

UN (t) =
XN

1 (Nt)−Nx1(t)

m
√
N

=

√
NMN (t)

m
− α

∫ t

0

UN (s)
(
X
V

1 (s) + x1(s)
)

ds

− βm
∫ t

0

UN (s) ds+ β

∫ t

0

UN (s)(X
V

1 (s) + x1(s)) ds+
α√
N

∫ t

0

X
V

1 (s) ds. (2.13)

First note that the process associated to the last term of this expression converges in distribution to zero.
Concerning the martingale term of this relation, one has〈√

N
MN

m

〉
(t) =

1

m2

[
2α

∫ t

0

(
X
V

1

)(
X
V

1 − 1
)

(u) du+ β

∫ t

0

X
V

1

(
m−XV

1

)
(u) du

]
.

The law of large numbers which has just been proved gives that this process converges to

2α

∫ t

0

x2
1

m2
ds+

β

m2

∫ t

0

x1(s)(m− x1(s)) ds =
α

m2

∫ t

0

x1(s)2 ds+
1

m2
(m− x1(t)) = ψ(t).

Thus, we get from Theorem 1.4 page 339 of Ethier and Kurtz [Ethier and Kurtz, 1986] that, as V goes
to infinity, the process (

√
NMN (t)/m) converges in distribution to∫ t

0

√
ψ̇(s) dW (s),

where (W (t)) is the standard Brownian motion.

We now prove that the sequence of processes (UN (t)) is tight. Let

wN (δ) = sup
|u−v|≤δ
u,v≤t

|UN (u)− UN (v)| ,
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then, by using Equation (3.16), one gets

wN (δ) ≤ sup
|u−v|≤δ
u,v≤t

∣∣∣∣∣
√
NMN (u)

m
−
√
NMN (v)

m

∣∣∣∣∣+ sup
u,v≤t
|u−v|≤δ

α√
N

∣∣∣∣∣
∫ N

u

X
V

1 (s) ds

∣∣∣∣∣+ C0 sup
u,v≤t
|u−v|≤δ

∫ N

u

|UN (s)|ds,

(2.14)
for some fixed constant C0. Consequently,

sup
s≤t
|UN (s)| ≤ sup

s≤t

(∣∣∣∣∣
√
NMN (s)

m

∣∣∣∣∣
)

+
α√
N
mt+ C0

∫ t

0

sup
τ≤s
|UN (τ)| ds,

by using Gronwall’s lemma, one gets

sup
s≤t
|UN (s)| ≤

[
sup
s≤t

(∣∣∣∣∣
√
NMN (s)

m

∣∣∣∣∣
)

+
α√
N
mt

]
eC0t.

The convergence of the processes
(√

NMN (t)
)
shows that the left-hand side of the above expression is

bounded with high probability. Relation (3.17) and the tightness of
(√

NMN (t)
)
give then directly the

tightness of (UN (t)).

Let U be a limiting point of the sequence (UN (t)) when N goes to infinity. Relation (3.16) shows that U
must satisfy the following stochastic equation

U(t) =

∫ t

0

b(s) dW (s) +

∫ t

0

a(s)U(s) ds, (2.15)

where

b(t) =

√
ψ̇(t) =

β
√
α
√
eβmt + 1

αeβmt + β − α , a(t) = βm
β − α− αeβmt
β − α+ αeβmt

. (2.16)

This proves that the process (UN (t)) converges in distribution to (U(t)).

2.3.3 Explicit solution of the SDE for U

Corollary 2.3.1. The SDE for U has an explicit solution:

U(t) =
eβmt

(β/α− 1 + eβmt)
2

∫ t

0

β√
α

[(
β

α
− 1

)
e−βms/2 + eβms/2

] [√
1 + e−βms

]
dWs. (2.17)

Straightforward stochastic calculus shows that the right-hand side of Equation (2.17) satisfies the Stochas-
tic Differential Equation associated to Relation (3.18).



2.3. SUPPLEMENTAL MATERIAL 65

2.3.4 Proof of the asymptotics for time for δ reaction completion

It is enough to prove the central limit result. We recall that tδ is the deterministic time of δ reaction
completion, that is

tδ = x−1
1 ((1− δ)m)

For w ≥ 0, since {TN (δ) ≤ w} = {XN
1 (w) ≤ (1− δ)MN},{

TN (δ)−Ntδ√
N

≤ w
}

=
{
XN

1

[
N(tδ + w/

√
N)
]
≤ (1− δ)MN

}
,

the probability of the event can therefore be expressed as

P

XN
1

[
N(tδ+w/

√
N)
]
−Nx1

(
tδ+w/

√
N
)

√
N

≤
√
N
(
x1(tδ)−x1

(
tδ+w/

√
N
))

+o(1)

 .

Hence, by the central limit result, for the convergence in distribution

lim
N→+∞

XN
1

[
N(tδ + w/

√
N)
]
−Nx1(tδ + w/

√
N)

m
√
N

= U(tδ),

consequently, one gets the convergence

lim
N→+∞

P
(
TN (δ)−Ntδ√

N
≤ w

)
= P

(
U(tδ) ≤

−ẋ1(tδ)

m
w

)
= P

(
U(tδ)

m[α(1− δ)2 + βδ(1− δ)] ≤ w
)

The result is proved.

2.3.5 Proof of asymptotics of variance of the time for δ reaction comple-
tion

This is a direct consequence of the above central limit result and of Relation (2.17) and the fact that

σ2 := lim
N→+∞

E

[(
TN (δ)−Ntδ√

N

)2
]

= lim
N→+∞

E

[(
U(tδ)

m[α(1− δ)2 + βδ(1− δ)]

)2
]

=
α

m3β2

[(
β

α
− 1

)2
1

2β

(
1− 1

(1 + βδ/(α(1− δ)))2

)
+

(
β

α
− 1

)(
β

α
+ 1

)
δ

βδ + α(1− δ)

+

(
2
β

α
− 1

)
1

β
log

(
1 +

βδ

α(1− δ)

)
+

1

α

δ

1− δ

]
. (2.18)

One can get a more precise result by using the fact that (U(t)) is a Gaussian process, by Equation (2.17)
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for example, the following representation holds for the TN (δ).

Remark. Provided that α�β then, as N gets large, the asymptotic behavior of TN (δ) is the follow-
ing:

TN (δ) ∼ Ntδ +
√
NN

(
0,

3

2MNαβm2

)
, (2.19)

where N (0, x) is a center Gaussian random variable with variance x.

We illustrate this remark on Figure 2.6 below. This expansion shows that the stochastic fluctuations, the
term associated with

√
N , do not depend on δ. This remarkable property is also true in the experiments:

the curves superimpose very well. See Figure 2.5 (c) and (d).
Indeed, the central limit result gives

TN (δ)−Ntδ√
N

∼ U(tδ)

m[α(1− δ)2 + βδ(1− δ)] ∼ N (0, σ2),

by Equation (2.17), where σ is defined above. The expansion follows by using the fact that α� β in the
explicit expression (2.18) of σ.

Index of simulation
0 20 40 60 80 100 120 140 160 180 200

T 1/
2
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Figure 2.6: Comparison between predicted mean and standard deviation with simulations. We carried
out 200 simulations. For each simulation, T1/2 is plotted (blue crosses). The predicted mean and the
predicted standard deviation of T1/2(red line and green lines), and the simulated mean and simulated
variance (pink line and dashed line) are also shown with parameters MN = 106, α = 10−3, β = 1 and
m = 1.

2.3.6 Qualitative analysis of the behaviour of x1 and U

Behaviour of x1(t)

Recall that

dx1

dt
= −αx2

! − βx1(m− x1) with x1(0) = m, i.e. x1(t) = m
β

α

1

eβmt − 1 + β/α
.
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The limit which interests us is when α � β : otherwise, the slope at zero, given by αm2, is not small

Time t 

Figure 2.7: Functions x1(t) a(t) and b(t) for α = 10−k, k = 0, . . . , 3. The function a(t) corresponds to the
deterministic part of the equation whereas b(t) corresponds to the stochastic part, see Equations (3.18)
and (2.16).

compared to the slope at t1/2, which is m2(α + β)/4, so that there is no lag-time, contrarily to what is
observed even for high concentrations. In this limit, the formulae for t1/2 and k are

t1/2 =
1

βm
log (1 + β/α) ≈ 1

βm
log(β/α) and k =

mβ

4
(1 + α/β) ≈ mβ

4
,

so that β = 4k/m and α = β exp(−βmt1/2) = 4k exp(−4kt1/2)/m.

The slope k being measured with little variance between curves of a given concentration, the estimation
for β is good, at least for a given concentration. What is remarkable is its goodness through different
concentrations: our model thus predicts a linear dependence between k and m. Concerning α, it may
change by a typical factor of exp(±βmσ), so that taking the experimental values of Table 2.1 (first, third
and fourth columns) we obtain an uncertainty for α which ranges between 7 and 2.105 according to the
set of experiments. This high uncertainty in the estimation of α may to a large extent explain the high
variability obtained in the estimated α (See Table 2.1, second column). Note also that this uncertainty
does not decrease when the initial concentration increases.

Behaviour of U(t)

In Figure 2.7, the functions (a(t)) and (b(t)) are plotted for fixed β = 1, V = 105 and m = 1, and various
values of α are considered. These functions, defined by Equations (2.16), drive the dynamics of (U(t))

by Relation (3.18),
dU(t) = b(t) dW (t) + a(t)U(t) dt.
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In particular the coefficient b(t) of the Brownian motion (W (t)) modulates the stochasticity of (U(t)).

We observe that for sufficiently small α :

— a(t) begins at 1, decreases to −1. The curves are translations from one another and the time when
a(t) = 0 increases when α decreases.

— b(t) is nonnegative, bell-shaped, vanishes at zero and infinity, the curves are translation from one
another and its maximum is always the same, around 0.55. The time at which b(t) is maximum
increases when α decreases.

— At the crossing time, a(t) = b(t) values a constant, around 0.4 (while b(t) is increasing).

— The smaller the ratio α/β, the higher the average peak value for |U |, and the less noisy each path
is (see Figure 2.8 for an illustration).

All these facts may be deduced analytically from the approximation values when α � β. Denoting
ε = α/β

b(t) ≈
√
εβ
√
eβmt + 1

1 + εeβmt
, a(t) ≈ βm1− εeβmt

1 + εeβmt
.

For t = 0, we have a(0) ≈ βm = 1, a(t) is clearly decreasing and for t large we have a(t) → −βm. This
implies that a(t), which has the deterministic influence, leads to exponential growth for U around 0 and
exponential decrease for U around infinity.

At t = 0, b(t) ≈ √εβ is very small, b is always positive and at infinity we have b(t) ≈ √β exp(−βmt/2)/
√
ε.

Concerning the crossing point, it occurs when

√
εβ
√
eβmt + 1

1 + εeβmt
≈ βm1− εeβmt

1 + εeβmt
.

Denoting d = ε exp(βmt), assuming ε� βm2 and taking the square, we have d+ε ≈ d ≈ βm2(1−d)2, and
this gives a value for d which is independent of ε and α, and for this value we have a=b ≈ βm(1−d)/(1+d)

depending only on β and m.

This also explains the fact that the maximal value for |U | increases in average, whereas the ‘noise’ in each
path decreases. These observations are illustrated in Figure 2.8, where we show for each of the previous
values of α = 10−k with k = 0, . . . , 4 five trajectories for UN in blue and five trajectories for U in red, for
M = 105.
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Time t 

Time t Time t 

Time t Time t 

Figure 2.8: Stochasticity of the centered assembly processes (UN (t)) and (U(t)). For each of the previous
values of α = 10−k with k = 0, . . . , 4, five trajectories for UN in blue and five trajectories for U in red, for
M = 105. We see that the noise inside each path decreases when α decreases, the stochasticity remaining
in the startup of the curves.
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Figure 2.9: Comparison between experimental measurements (blue crosses) and simulated values (black
line) for the global best-fit parameters α = 3.2h−1M−1 and β = 1.7 ·104h−1M−1. Left: t1/2 with respect
to the concentration m in µM , in linear scale. Right: the slope k with respect to the concentration m,
in linear scale.
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3.1 Introduction

Protein polymerization is involved is involved in many important biological phenomena: human diseases
such as Alzheimer’s, Parkinson’s, Huntington’s diseases and also key biological processes such as actin
filamentation, or yet industrial processes, see McManus et al. [McManus et al., 2016] and Ow and Dus-
tan [Ow and Dunstan, 2014]. The initial step of the chain reactions giving rise to polymers consists in
the spontaneous formation of a so-called nucleus, that is, the simplest possible polymer able to ignite the
reaction of polymerization. This early phase is called nucleation, and is still far from being understood.
As underlined by previous studies, see Szavits-Nossan et al. [Szavits-Nossan et al., 2014], the nucleation
step is intrinsically stochastic, leading to an important variability among replicated experiments, not
only in small volumes but even in relatively large ones, see Xue et al. [Xue et al., 2008]. The question of
building convenient stochastic models, able to render out the heterogeneity observed, and even to predict
it, has recently raised much interest in the biological and biophysical community, see Szavits-Nossan et
al. [Szavits-Nossan et al., 2014], Yvinec et al. [Yvinec et al., 2016], Pigolotti et al. [Pigolotti et al., 2013]
and Eden et al. [Eden et al., 2015].

We start with a simple stochastic model, proposed and studied in Eugène et al. [Eugène et al., 2015] for
which we consider extensions to get a deeper understanding on the intricate influence of each reaction
considered. In Eugène et al. [Eugène et al., 2015], rigorous asymptotics of the simple model were proved,
and it was fitted to the experimental data published in Xue et al [Xue et al., 2008]. It was shown that
the predicted variability was much smaller by the model than what was experimentally obtained. One
of the conclusions of this work is that other mechanisms have to be taken into account to explain the
variability observed in the experiments. We thus propose here two ways to complement the basic model.
Let us first recall its definition.

3.1.1 The Basic Model

One of the simplest models to describe the nucleation process considers two populations of chemical
components: free monomers and polymerised monomers. Initially there are only free monomers. There
are two reactions for the polymerization of a monomer: either two monomers collide to combine into two
polymerised monomers or a monomer is polymerised after the encounter of a polymerised monomer. The
chemical reactions associated with the basic model can then be described as follows:

X1 + X1
α−→ 2X2,

X1 + X2
β−→ 2X2.

(3.1)

These reactions can be represented by the sample paths of a Markov process (XN
1 (t), XN

2 (t)), where
XN

1 (t) [resp. XN
2 (t)] is the number of free [resp. polymerised] monomers at time t ≥ 0. The scaling

variable N should be thought of as the reaction volume. In particular XN
2 (t)/N is the concentration

of polymerised monomers at time t. If MN is the initial number of monomers, it is assumed that the
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following regime
MN = mN + o

(√
N
)

(3.2)

holds for some m > 0. The scaling parameter N can be thought as related to the volume of the system.
Since MN/N is converging to m, m is therefore the initial, asymptotic, concentration of monomers.
Throughout the paper m∗ denotes an upper bound for the sequence (MN/N).

The transition rates of (XN
1 (t), XN

2 (t)) are given by, for x = (x1, x2) ∈ N2,

x 7→


x+(−2, 2) at rate α

x1(x1 − 1)

2N2

x+(−1, 1) ” β
x1

N

x2

N
.

(3.3)

The second coordinate x2 represents the polymerised mass, i.e., the number of monomers present in any
polymer of any size, hence the jump of 2 for x2 as for x1 in the first reaction. Note that the conservation
of mass implies that the quantity XN

1 (t)+XN
2 (t) is constant and equal to MN , the total number of initial

monomers.

— The first reaction of (3.1) converts two free monomers into two polymerised monomers. In our
model, due to thermal noise in particular, these reactions will occur in a stochastic way. Following
the principles of the law of mass action, the encounter of two chemical species occurs at a rate
proportional to the product of the concentrations of each species. Therefore two given monomers
disappear to produce two polymerised monomers at a rate αx1(x1 − 1)/(2N2).

— The second reaction can be seen as an auto-catalytic process. Here, given a monomer at the
contact of a polymerised monomer, the monomer is converted into a polymerised monomer at a
rate β. Again, by the law of mass action, free monomers disappear at the rate β(x1/N)(x2/N).

See Eugène et al. [Eugène et al., 2015], Szavits-Nossan et al. [Szavits-Nossan et al., 2014] and Xue et
al. [Xue et al., 2008] for a general presentation of these phenomena in a biological context. For more
discussion and results on stochastic models associated to chemical reactions, see for example Anderson
and Kurtz [Anderson and Kurtz, 2011] and Higham [Higham, 2008] and references therein.

This simple intuitive model of polymerisation has the advantage of having only two parameters to deter-
mine. It can be analyzed mathematically by standard tools of probability theory, see Eugène et al. [Eugène
et al., 2015]. It has been shown that if XN

2 (t) is the number of polymerised monomers at time t, then
the polymerisation process can be described via the following convergence in distribution

lim
N→+∞

(
XN

2 (Nt)

N

)
= (x2(t)), (3.4)

where (x2(t)) is the non-trivial solution of the following simple ordinary differential equation

ẋ2(t) = α
(
m− x2(t)

)2
+ β

(
m− x2(t)

)
x2(t). (3.5)
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The variable x2(t) is converging to m has t goes to infinity.

By using these simple mathematical results and the data from experiments with 17 different initial
concentrations of monomers (the value ofm) and 12 experiments for each concentration, Table I of Eugène
et al. [Eugène et al., 2015] shows that, in this setting, the estimation of β is reasonably robust. This is
unfortunately not the case for the numerical estimation of α which is varying from 9.57·10−8h−1M−1

to 1.68·10−2h−1M−1. An additional difficulty with this simple model comes from the small values of α
obtained. Indeed, for the experiments, the value of the volume N is in the order of 1015, some of the
estimated values of α in 10−8 are therefore, numerically, of the order of 1/

√
N . The asymptotic results

are obtained when N gets large and α fixed. For this reason, one may suspect a problem of convergence
speed in Relation (3.4) when these parameters are used. It turns out that our simulations confirm that
the asymptotic regime (3.4) does not seem to represent accurately the system when α is too small.

The purpose of the present paper is to refine this basic model in two different ways.

1. The model can be improved by introducing a key feature of the polymerisation process: misfolding
of monomers. Experiments show that, in some cases, monomers can be polymerised only if their
3-D structure has been modified by some events. Such monomers are called misfolded monomers,
see Dobson [Dobson, 2003, Dobson, 2006], Knowles et al. [Knowles et al., 2014b]. It turns out
that, at a given time, only a small fraction of monomers are misfolded which may also explain that
the polymerisation process starts very slowly. In biological cells, this phenomenon of misfolding
is reversible, dedicated proteins may correct the misfolded monomers. A misfolded monomer can
be turned into a regular monomer and vice-versa. See Bozaykut et al. [Bozaykut et al., 2014] and
Lanneau et al. [Lanneau et al., 2010] for example. Section 3.3 is devoted to the mathematical
analysis of these models.

2. Another approach is to keep the basic model but with the parameter α being of the order of 1/Nν

for some positive ν to take into account that, in practice, the values of this parameter can be very
small. Note that this is only a numerical observation, the value of α has no reason to depend on
the volume. This model is analyzed in Section 3.3.

The rest of the section is devoted to a brief sketch of the mathematical aspects of these two classes of
models. As it will be seen, the models are more challenging from a mathematical point of view, the model
with misfolded monomers in particular.

3.1.2 Models with Misfolding Phenomena

Chemical reactions associated with this simple model are as follows:

X0
γ−→←−
γ∗
X1,


X1 + X1

α−→ 2X2,

X1 + X2
β−→ 2X2.
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At time t ≥ 0, XN
0 (t) denotes the number of regular monomers, XN

1 (t) the number of misfolded
monomers. As before, the last coordinate XN

2 (t) is the polymerized mass. As a Markov process,
(XN

0 (t), XN
1 (t), XN

2 (t)) has the following transitions, for an element x = (x0, x1, x2) ∈ N3,

x 7→

x+(1,−1, 0) at rate γ∗ x1

x+(−1, 1, 0) ” γ x0,
x 7→


x+(−2, 2) at rate α

x1(x1 − 1)

2N2

x+(−1, 1) ” β
x1

N

x2

N
.

(3.6)

It is important to note that the transition between state 0, a regular monomer, and state 1, a misfolded
monomer, is spontaneous. Consequently, as it can be seen, the corresponding transition rates do not
depend on the volume N but simply on the number of components and not on their concentrations. An
important consequence of this observation is that the system exhibits a two-time-scales behavior that we
will investigate.

An informal description of the asymptotic behavior of (XN
2 (t))

The first two coordinates can be seen as an Ehrenfest process with two urns 0 and 1 where each particle
in urn 0 (resp. 1) goes to urn 1 (resp. 0) at rate γ (resp. γ∗). See Bingham [Bingham, 1991] and
Karlin and McGregor [Karlin and McGregor, 1965] for example. Particles in urn 1 can also go to the
urn 2 corresponding to the polymerized mass but this phenomenon occurs at a much slower rate so that,
locally, it does not change the orders of magnitude in N of XN

2 .

WhenXN
2 ∼x2N , there is a total of (m−x2)N particles in the urns 0 or 1. The components (XN

0 (t), XN
1 (t))

are both of the order of N and are moving on a fast time scale, proportional to N . The transition rates
of the process (XN

2 (t)) are slower, bounded with respect to N . Because of the fast transition rates of the
first two coordinates, the Ehrenfest urn process should reach quickly an equilibrium for which XN

0 has a
binomial distribution with parameter (m− x2)N and r with r = γ/(γ+γ∗), in particular

XN
0

N
∼ (1− r)(m− x2) and

XN
1

N
∼ r(m− x2).

This suggests that,

a) to see an evolution of XN
2 of the order of N , one has to be on the linear time scale t 7→ Nt:

transition rates of the process XN
2 are O(1),

b) if XN
2 (Nt) ∼ x2(t)N , in view of transition rates of (XN

2 (t)) of Relation (3.6), then (x2(t)) should
satisfy the following ordinary differential equation

ẋ2(t) = αr2(m− x2(t))2 + βr(m− x2(t))x2(t). (3.7)

We recognize the limit equation (3.5) of the simple model, where α, β are respectively replaced by αr2 and
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βr. This result is also true when considering the second order fluctuations of the number of polymers,
see Theorem 3.2.2. The proof of the convergence of the process of the concentration of polymerized
monomers to the solution of the ODE (3.5) use standard arguments of convergence of a sequence of
stochastic processes, see the supplementary material of Eugène et al. [Eugène et al., 2015]. The proof of
the corresponding result with misfolding phenomena for the ODE (3.7) is, as we shall see, more delicate
to handle.

Stochastic Averaging Phenomenon

To summarize these observations, the coordinates (XN
0 (t), XN

1 (t)) form a fast process and (XN
2 (t)) is a

slow process when the scaling parameter N goes to infinity. This suggests a stochastic averaging principle
(SAP) in a fully coupled context.

1. The stochastic evolution of (XN
2 (Nt)) is driven by the invariant distribution of an instantaneous

associated Ehrenfest process.

2. The parameters of the Ehrenfest process depend on the macroscopic variable (XN
2 (Nt)),

see Papanicolaou et al. [Papanicolaou et al., 1977] and Chapter 8 of Freidlin and Wentzell [Freidlin and
Wentzell, 1998] for example, see also Kurtz [Kurtz, 1992a].

A stochastic averaging principle is indeed proved as well as a corresponding central limit theorem (CLT).
In our cases there are some differences with the classical framework of stochastic averaging principles.
The state space of the fast process depends on the scaling parameter N , and is not in particular a fixed
process (with varying parameters) as it is usually the case. See Hunt and Kurtz [Hunt and Kurtz, 1994]
or Sun et al. [Sun et al., 2015] for example. A law of large numbers with respect to N for the invariant
distribution of the fast process is driving the evolution of the slow process. The approach used in the
paper relies on the use of occupation measures on a continuous state space instead of a discrete space,
this leads to some technical complications as it will be seen. Concerning central limit theorems in a
SAP context, there are few references available for jump processes. The methods presented in Kang et
al. [Kang et al., 2014] or in Sun et al. [Sun et al., 2015] do not seem to be helpful in our case. Instead,
an ad-hoc estimation, Proposition 3.2.4, gives the main ingredient to derive a central limit theorem, see
Section 3.2.

3.1.3 Models with Scaled Reaction Rates

Again, XN
1 (t) (resp. XN

2 (t)) is the number of free (resp. polymerised) monomers at time t ≥ 0. The
transition rates of the Markov process (XN

1 (t), XN
2 (t)) associated to these models are the same, except
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that the parameter α is replaced by α/Nν with ν > 0. For x = (x1, x2) ∈ N2, the rates are given by

x 7→


x+(−2, 2) at rate

α

Nν

x1(x1 − 1)

2N2

x+(−1, 1) ” β
x1

N

x2

N
.

(3.8)

Convergence (3.4) shows that the polymerisation occurs on the linear time scale t 7→ Nt for the basic
model. It will be shown that for (3.8), the phenomenon does not start on this time scale. A slightly more
rapid time scale is necessary for this purpose, it is shown that polymerization is happening on the time
scale t 7→ (N logN)·t for 0 < ν ≤ 1 and t 7→ Nνt when ν>1. See Section 3.3.

3.2 Stochastic Models with Misfolding Phenomena

3.2.1 Notations and Definitions

The following notations will be used throughout the paper. For ξ ≥ 0, Nξ(dt) denotes a Poisson process
with parameter ξ and (N i

ξ(dt)) an i.i.d. sequence of such processes. All the Poisson processes are defined
on a probability space (Ω,F ,P).

If f is a real valued function on R+ continuous on the right and with a left limit at any point of R+,
f(t−) denotes its limit on the left of t > 0. In the following the jump of f at t > 0 is denoted as

df(t) = f(t)−f(t−).

Recall that, at time t ≥ 0 , XN
0 (t) is the number of monomers, XN

1 (t) is the number of misfolded
monomers and XN

2 (t) is the polymerized mass. It is not difficult to see that these processes can be seen
as the solution of the following stochastic differential equations,

dXN
0 (t) =

XN1 (t−)∑
i=1

N i
γ∗(dt)−

XN0 (t−)∑
i=1

N i
γ(dt),

dXN
2 (t) =

XN1 (t−)(XN1 −1)(t−)/2∑
i=1

2N i
α/N2(dt)+

XN1 (t−)XN2 (t−)∑
i=1

N i
β/N2(dt),

(3.9)

with the relation of conservation of massMN=XN
0 (t)+XN

1 (t)+XN
2 (t) and initial conditionsXN

0 (0) = MN

and XN
1 (0) = XN

2 (0) = 0.

It should be noted that the processes (XN
0 (t)), (XN

1 (t)) and (XN
2 (t)) are taken as cadlag, i.e. for i = 0,

1, 2, almost surely the function t 7→ XN
i (t) is right continuous and has a left limit on any point of R+.

For N ≥ 1, the property of martingale mentioned in the following for processes with index N will refer
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to the filtration (FNt ) defined by, for t > 0,

FNt = σ
〈
N i
ξ([0, s]) : s ≤ t, i ∈ N, ξ ∈ {γ∗, γ, α/N2, β/N2}

〉
.

For some fixed T , we investigate the convergence in distribution of the sequence of processes (XN
2 (Nt))/N)

on the finite time interval [0, T ] in the space of cadlag processes on [0, T ] endowed with the Skorohod
topology, see Chapter 3 of Billingsley [Billingsley, 1999]. As it will be seen the convergence proved
occurs in fact for the topology of the uniform norm on this space of functions. All statements concerning
convergence in distribution of processes in the following will refer to this notion.

3.2.2 Evolution Equations

By integrating Equation (3.9), one gets the relation

XN
2 (t) = XN

2 (0) +
α

N2

∫ t

0

XN
1 (s)(XN

1 (s)−1) ds +
β

N2

∫ t

0

XN
1 (s)XN

2 (s) ds + MN
2 (t), (3.10)

where (MN
2 (t)) is the martingale

MN
2 (t) = 2

∫ t

0

XN1 (s−)(XN1 −1)(s−)/2∑
i=1

[
N i
α/N2(ds)− α

N2
ds
]

+

∫ t

0

XN1 (s−)XN2 (s−)∑
i=1

[
N i
β/N2(ds)− β

N2
ds

]

which can be rewritten as an infinite sum of martingales

MN
2 (t) =

+∞∑
i=1

∫ t

0

2× 1{i≤XN1 (s−)(XN1 −1)(s−)/2}
[
N i
α/N2(ds)− α

N2
ds
]

+
+∞∑
i=1

∫ t

0

1{i≤XN1 (s−)XN2 (s−)}

[
N i
β/N2(ds)− β

N2
ds

]
.

The previsible increasing process (
〈
MN

2

〉
(t))of the martingale (MN

2 (t)), is the unique increasing previsible
process (A(t)) null at t=0 such that the process((

MN
2 (t)

)2 −A(t)
)

is a local martingale. See Section VI-34 page 377 of Rogers and Williams [Rogers and Williams, 2000].
It is given by

〈
MN

2

〉
(t) = 2

α

N2

∫ t

0

XN
1 (s)(XN

1 (s)−1) ds+
β

N2

∫ t

0

XN
1 (s)XN

2 (s) ds. (3.11)

This can be seen by using the independence of the i.i.d. sequences of Poisson processes (N i
α/N2) and

(N i
β/N2) and the fact that, if (Y (t)) is a bounded left-continuous adapted process and λ > 0, then the
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previsible increasing process of the martingale(∫ t

0

Y (s) [Nλ(ds)− λds]

)
is given by

(
λ

∫ t

0

Y (s)2 ds

)
.

See, for example, Theorem (27.6) page 48 of Rogers and Williams [Rogers and Williams, 2000].

For i = 0, 1, 2 and t ≥ 0, denote

X
N

i (t) =
XN
i (Nt)

N
,

the main goal of this section is to prove that the process (X
N

2 (t)) is converging in distribution to the
solution (x2(t)) of a non-trivial ordinary differential equation. It will show in particular that the poly-
merization process is occurring on the linear time scale t 7→ Nt.

3.2.3 Random Measures Associated to Occupation Times

Define µN the random measure on [0,m∗]2 × [0, T ] by

〈µN , g〉 =

∫
R+

g
(
X
N

0 (Nu), X
N

1 (Nu), u
)

du.

The distribution of the variable µN , N ≥ 1 is an element of the space of the Radon measures on
[0,m∗]2 × [0, T ] whose mass is less than T . The following proposition shows that the sequence of these
distributions is tight.
Proposition 3.2.1. The sequence (µN ) is tight. Any limiting point µ∞ of this sequence is such that

〈µ∞, g〉 =

∫
R3

+

g (x, y, u) πu(dx,dy) du, (3.12)

for any continuous function g on [0,m∗]2×[0, T ], where for each u≥0, πu is a random Radon measure on
R2

+.

Recall that m∗ is an upper bound of the sequence (MN/N).

Proof. Since X
N

0 (t) and X
N

1 (t) are bounded, for any T > 0, the measure µN has a compact support.
Lemma 3.2.8 page 44 of Dawson [Dawson, 1993] gives directly that the sequence (µN ) of random measures
is tight.

Let (µNk) be a convergent subsequence with limit µ∞. By using Skorohod’s representation theorem, see
Theorem 1.8 of Ethier and Kurtz [Ethier and Kurtz, 1986], one can assume that there exists a negligible
measurable set A of the probability space such that, outside this subset, the convergence of the sequence
(µNk) of Radon measures towards µ∞, that is

lim
k→+∞

〈µNk , g〉 = 〈µ∞, g〉 for all g ∈ C([0,m∗]2 × [0, T ]),
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holds.

Let h ∈ C([0,m∗]2) and f ∈ C([0, T ]), denoting h ⊗ f(x, y, u) = h(x, y)f(u), for (x, y) ∈ [0,m∗]2 and
u ∈ [0, T ], then, as a limit of the sequence (µNk), the Radon measure

f 7→ 〈µ∞, h⊗ f〉

is absolutely continuous with respect to Lebesgue’s measure. Consequently, for any h ∈ C([0,m∗]2), there
exists some function (π̃u(h), 0 ≤ u ≤ T ) such that

〈µ∞, h⊗ f〉 =

∫ T

0

π̃u(h)f(u) du.

By the differentiation theorem, see Theorem 7.10 in Rudin [Rudin, 1987], the function (π̃u(h)) can be
represented as

π̃u(h) = lim sup
ε→0

1

ε

〈
µ∞, h⊗ 1{[u−ε/2,u+ε/2]}

〉
, u ∈ [0, T ],

consequently, the mapping (ω, u) 7→ π̃u(h)(ω) is F ⊗ B([0, T ])-measurable.

Let S be a countable dense subset of C([0,m∗]2), then there exists a subset E0 of [0, T ] negligible for the
Lebesgue measure such that, for all u ∈ [0, T ] \ E0 and φ1, φ2 ∈ S,

1. π̃u(p1φ1 + p2φ2) = p1π̃u(φ1) + p2π̃u(φ2), ∀p1, p2 ∈ Q,

2. π̃u(φ1) ≤ π̃u(φ2) if φ1 ≤ φ2,

3. π̃u(1) = 1.

With the same method as in Section II.88 of Rogers and Williams [Rogers and Williams, 1994], for any
u ∈ [0, T ] \ E0 , one gets the existence of a Radon measure πu on [0,m∗]2 such that π̃u(h) = πu(h) for
any h ∈ S. By density of S, the mapping (ω, u) 7→ πu(h)(ω) is also F ⊗ B([0, T ])-measurable and the
relation

〈µ∞, h⊗ f〉 =

∫ T

0

πu(h)f(u) du.

holds for all h ∈ C([0,m∗]2) and f ∈ C([0, T ]). To identify µ∞ one concludes with the density of the
functions of the form h⊗f where h [resp. f ] belongs to some countable dense subset of C([0,m∗]2) (resp.
C([0, T ])). The proposition is therefore proved.

Representation (3.12) is related to Lemma 1.4 of Kurtz [Kurtz, 1992a]. Our proof relies on classical
arguments of measure theory, a functional version of Caratheodory’s extension theorem in particular
which is described in Section II.88 of Rogers and Williams [Rogers and Williams, 1994]. In Kurtz [Kurtz,
1992a], a more sophisticated result, see Morando [Morando, 1969], on the extension of bi-measures is the
key ingredient. The notion of bi-measure goes back to Kingman, see Dellacherie and Meyer [Dellacherie
and Meyer, 1978] for example. We could also have used it to prove our result, but we preferred to give
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here a more self-contained proof. It should be mentioned that Lemma 1.4 of Kurtz [Kurtz, 1992a] gives
also additional measurability properties of the family (πu) which are of no use in our case.
Proposition 3.2.2. If µ∞ is a limiting point of (µN ) with the representation (3.12) then, for any C1-
function f on R2

+, almost surely

∫ t

0

∫
R2

+

(γ∗y − γx)

(
∂

∂x
f(x, y)− ∂

∂y
f(x, y)

)
πu(dx,dy) du = 0, ∀t ≥ 0, (3.13)

in particular, almost surely, ∫ t

0

∫
R2

+

(γ∗y − γx)
2
πu(dx,dy) du = 0, ∀t ≥ 0. (3.14)

Relation (3.14) just says that almost surely and for almost all u, the measure πu is degenerated on R2
+

and carried by the subset {(x, γx/γ∗) : 0 ≤ x ≤ m∗}. Since m∗ is only an upper bound of the sequence
(MN/N), it can therefore be taken arbitrarily close tom. The support of the measure πu is thus contained
in the set {(x, γx/γ∗) : 0 ≤ x ≤ m}.

Proof. for (i, j) ∈ Z2, one denotes by ∆ij the discrete differential operator

∆N
ij (f)(x, y) = f(x+ i/N, y + j/N)− f(x, y), (x, y) ∈ [0,m∗]2.

After some trite calculations, the stochastic differential equations (3.9) give the relation

f
(
X
N

(t/N)
)

= f
(
X
N

(0)
)

+ γ

∫ t

0

XN
0 (s)∆N

−1,1(f)
(
X
N

(s/N)
)

ds

+ γ∗
∫ t

0

XN
1 (s)∆N

1,−1(f)
(
X
N

(s/N)
)

ds

+ α

∫ t

0

XN
1 (s)(XN

1 (s)− 1)

2N2
∆N

0,−2(f)
(
X
N

(s/N)
)

ds

+ β

∫ t

0

XN
1 (s)

N

XN
2 (s)

N
∆N

0,−1(f)
(
X
N

(s/N)
)

ds+ MN
f (t), (3.15)

where (X
N

(t)) = (XN
0 (Nt)/N,XN

1 (Nt)/N) and (MN
f (t)) is the associated martingale. Its previsible
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increasing process is given by

〈
MN
f

〉
(t) = γ

∫ t

0

XN
0 (s)∆N

−1,1(f)2
(
X
N

(s/N)
)

ds

+ γ∗
∫ t

0

X1(s)∆N
1,−1(f)2

(
X
N

(s/N)
)

ds

+ α

∫ t

0

XN
1 (s)(XN

1 (s)− 1)

2N2
∆N

0,−2(f)2
(
X
N

(s/N)
)

ds

+ β

∫ t

0

XN
1 (s)

N

XN
2 (s)

N
∆N

0,−1(f)2
(
X
N

(s/N)
)

ds. (3.16)

Note that, for i, j ∈ Z

∆N
i,j(f)(x, y) =

1

N

(
i
∂f

∂x
(x, y) + j

∂f

∂y
(x, y)

)
+ o(1/N),

and, since (X
N

i (t)) is bounded for i = 0 and 1, there exists some finite constant C0(T ) such that for
0 ≤ s ≤ NT , one has 〈MN

f 〉(s) ≤ C0(T ).

By changing the time variable in Nt in Equation (3.15) and by dividing by N one gets the relation

1

N

(
f
(
X
N

(t)
)
− f

(
X
N

(0)
))

=

∫ t

0

[
γ∗X

N

1 (s)− γXN

0 (s)
] [∂f
∂x
− ∂f

∂y

](
X
N

(s)
)

ds

− α

N

∫ t

0

X
N

1 (s)
(
X
N

1 (s)− 1/N
) ∂f
∂y

(
X
N

(s)
)

ds

− β

N

∫ t

0

X
N

1 (s)X
N

2 (s)
∂f

∂y

(
X
N

(s)
)

ds+
MN
f (Nt)

N
+ o(1), (3.17)

with (X
N

(t)) = (X
N

0 (t), X
N

1 (t)).

Since the previsible increasing process of the martingale (MN
f (Nt)/N) is

(〈
MN
f (N ·)
N

〉
(t)

)
=


〈
MN
f

〉
(Nt)

N2

 ,

Doob’s Inequality, see Theorem (70.1) page 177 of Rogers and Williams [Rogers and Williams, 2000],
gives that for any ε > 0,

P

(
sup

0≤t≤T

|MN
f (Nt)|
N

≥ ε
)
≤ 1

ε2
E

(〈
MN
f (N ·)
N

〉
(T )

)
≤ C0(T )

N2
,

the martingale process (MN
f (Nt)/N) is thus converging to 0.
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From Equation (3.17), one gets similarly the following convergence in distribution

lim
N→+∞

(∫ t

0

[
γ∗X

N

1 (s)− γXN

0 (s)
] [∂f
∂x
− ∂f

∂y

](
X
N

(s)
)

ds

)
= 0. (3.18)

For t ≥ 0, ∫ t

0

[
γ∗X

N

1 (s)− γXN

0 (s)
] [∂f
∂x
− ∂f

∂y

](
X
N

(s)
)

ds

=

∫
[γ∗y − γx]

[
∂f

∂x
− ∂f

∂y

]
(x, y)1{s≤t} µN (dx,dy,ds),

and, by approximating the indicator function of [0, t) (resp. [0, t]) from below (resp. from above ) by
continuous functions on [0, T ], this last term converges in distribution to

∫
[γ∗y − γx]

[
∂f

∂x
− ∂f

∂y

]
(x, y)1{u≤t} µ∞(dx,dy,du)

=

∫ t

0

∫
R2

+

(γ∗y − γx)

(
∂

∂x
f(x, y)− ∂

∂y
f(x, y)

)
πs(dx,dy) ds.

This convergence in distribution also holds for any finite marginals of this process. The convergence
of processes (3.18) gives therefore the desired identity (3.13) in distribution. The last assertion of the
proposition is proved by taking the function f(x, y) = γ∗x2 − γy2.

3.2.4 A Stochastic Averaging Principle

Relation (3.10) gives the following integral equation for (X
N

2 (t)),

X
N

2 (t) = X
N

2 (0) + α

∫ t

0

X
N

1 (s)
(
X
N

1 (s)−1/N
)

ds

+ β

∫ t

0

X
N

1 (s)X
N

2 (s) ds+
MN

2 (Nt)

N
, (3.19)

In the same way as before, one can show that the expected value of the previsible increasing process
of the martingale (MN

2 (Nt)/N) is vanishing as N gets large by Equation (3.11). Doob’s Inequality
gives that the martingale converges in distribution to 0. The criteria of the modulus of continuity, see
Theorem 7.2 page 81 of Billingsley [Billingsley, 1999], gives therefore that the sequence of processes
(X

N

2 (t)) is tight in the space of cadlag processes endowed with the Skorohod topology, see Chapter 3 of
Billingsley [Billingsley, 1999]. Corollary of page 142 of this reference gives in fact that the convergence in
distribution of a subsequence of (X

N

2 (t)) occurs for the topology of the uniform norm. It can therefore
be assumed, for some subsequence (Nk), that the following convergence holds,

lim
k→+∞

(
µNk ,

(
X
Nk
2 (t)

))
= (µ∞, (x2(t)))
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for a random measure µ∞ as in Proposition 3.2.1 and some continuous stochastic process (x2(t)). The
rest of the section is devoted to the identification of (x2(t)).
Proposition 3.2.3. For any continuous function g on [0,m∗]2, the relation(∫ t

0

du

∫
g(x, y)πu(dx,dy)

)
dist.
=

(∫ t

0

g ((m−x2(u))(1−r, r)) du

)
holds, with r = γ/(γ + γ∗).

One concludes that the measure πu(dx,dy) of Proposition 3.2.1 is simply the Dirac measure at [m −
x2(u)](1−r, r). This is the rigorous description of the fact described at the beginning of this section that,
if the fraction of polymerized mass is x2(u), then the fraction of regular [resp. misfolded] monomers is
(1− r)(m− x2(u)) [resp. r(m− x2(u))].

Proof. The criteria of the modulus of continuity shows that the sequence of processes(∫ t

0

g
(
X
Nk

(u)
)

du

)
=

(∫ t

0

g
(
X
Nk
0 (u), X

Nk
1 (u)

)
du

)
is tight. In particular a possible limit of this sequence is a continuous process. All we have to do is to
identify its finite marginals.

For a fixed t ≥ 0, by using the convergence in distribution of the positive measure (µNk), Skorohod’s
representation theorem and by approximating the indicator function of [0, t) (resp. [0, t]) from below
(resp. from above ) by continuous functions on [0, T ], one gets the convergence

lim
k→+∞

∫ t

0

g
(
X
Nk
0 (u), X

Nk
1 (u)

)
du

=

∫ t

0

du

∫
g(x, y)πu(dx,dy) =

∫ t

0

du

∫
g

(
x,

γ

γ∗
x

)
πu(dx,dy) (3.20)

by Proposition 3.2.2. The above convergence in distribution also holds for finite marginals for t1 ≤ t2 ≤
· · · ≤ tp, p ≥ 1. One has to identify the first marginal of (πu). If f is a continuous function on [0,m∗],
by conservation of mass, one has the relation(∫ t

0

f
(
X
Nk
0 (u) +X

Nk
1 (u)

)
du

)
=

(∫ t

0

f

(
MNk

Nk
−XNk

2 (u)

)
du

)
.

Relation (3.20) and the convergence properties of the right hand side of this identity give the following
identity of the distribution of processes(∫ t

0

f (x/r)πu(dx,dy) du

)
dist.
=

(∫ t

0

f (m− x2(u)) du

)
.

The proposition is proved.

Theorem 3.2.1. Under the scaling condition (3.2) and if the initial state of the solution of the SDE (3.9)
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is given by (MN , 0, 0) then, for the convergence in distribution,

lim
N→+∞

(
XN

2 (Nt)

N

)
= (x2(t))

def.
=

(
1− e−βrmt

1 + (β/αr − 1)e−βrmt
m

)
, (3.21)

with r = γ/(γ + γ∗).

Proof. By using Relation (3.19), Proposition 3.2.1 and the above proposition, one gets that any limiting
point (x2(t)) of (XN

2 (Nt)/N) satisfies necessarily the following integral equation (integral form of the
equation (3.7))

x2(t) = αr2

∫ t

0

(m− x2(s))2 ds+ βr

∫ t

0

(m− x2(s))x2(s) ds. (3.22)

By uniqueness of the solution of this equation, one gets the convergence in distribution of the sequence
of processes (XN

2 (Nt)/N). Its explicit expression is easily obtained.

The following corollary gives the asymptotics of the first instant when a fraction δ ∈ (0, 1) of monomers
has been polymerized. This is a key quantity that can be measured with experiments.
Corollary 3.2.1. [Asymptotics of Lag Time] Under the conditions of Theorem 3.2.1, if for δ ∈ (0, 1),

TN (δ) = inf{t ≥ 0 : XN
2 (t)/MN ≥ δ}, (3.23)

then, for the convergence in distribution

lim
N→+∞

TN (δ)

N
= tδ

def.
=

1

rmβ
log

(
1 +

δβ

αr(1− δ)

)
. (3.24)

3.2.5 Central Limit Theorem

From Proposition 3.2.2, it has been proved that if f : [0,m∗]2 → R is a C1-function then, for the
convergence in distribution

lim
N→+∞

(∫ t

0

(γ∗y−γx)

(
∂

∂x
f(x, y)− ∂

∂y
f(x, y)

)
µN (dx,dy,ds)

)
= (0),

with the above notations. The following proposition is an extension of this result. This is the key
ingredient to prove the central limit result of this section.
Proposition 3.2.4. If g : [0,m∗]2 × R+ → R is a C1-function then, for the convergence in distribution,

lim
N→+∞

(∫ t

0

(γ∗y−γx)

(
∂

∂x
g(x, y, u)− ∂

∂y
g(x, y, u)

) √
NµN (dx,dy,du)

)
= (0).

Proof. We follow the same lines as in the proof of Proposition 3.2.2. The analogue of Relation (3.17) is,
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recall that X
N

(t) = (X
N

0 (t), X
N

1 (t)),

1√
N

(
g
(
X
N

(t), t
)
− g

(
X
N

(0), 0
))

=
√
N

∫ t

0

[
γ∗X

N

1 (s)− γXN

0 (s)
] [∂g
∂x
− ∂g

∂y

](
X
N

(s), s
)

ds

− α√
N

∫ t

0

X
N

1 (s)
(
X
N

1 (s)− 1/N
) ∂g
∂y

(
X
N

(s), s
)

ds

− β√
N

∫ t

0

X
N

1 (s)X
N

2 (s)
∂g

∂y

(
X
N

(s), s
)

ds

+
1√
N

∫ t

0

∂g

∂z

(
X
N

(s), s
)

ds+
MN
g (Nt)√
N

+ o(1/
√
N). (3.25)

It is not difficult to check with the analogue of Relation (3.16) for the previsible increasing process of the
martingale (MN

g (Nt)/
√
N) that, for t ≥ 0,

lim
N→+∞

E

(〈
MN
g (Nt)√
N

〉)
= lim
N→+∞

E
(〈
MN
g

〉
(Nt)

)
N

= 0.

Consequently, by Doob’s Inequality, the martingale of Relation (3.25) vanishes when N gets large. By
using the fact that, if H is some bounded Borel function on R3

+, then∫ t

0

H
(
X
N

(s), s
)

ds =

∫
R2

+×[0,t]

H (x, y, s) µN (dx,dy,ds),

and that X
N

2 (s) = MN/N − X
N

0 (s) − XN

1 (s), the desired convergence of the proposition is then easily
derived.

Theorem 3.2.2 (Central Limit Theorem). Under Condition (3.2) and if (x2(t)) is the function defined
by Relation (3.21) then, for the convergence in distribution,

lim
N→+∞

(
XN

2 (Nt)−Nx2(t)√
N

)
= (U(t)),

where (U(t)) is the solution of the stochastic differential equation

dU(t) =
√
σ(t) dB(t) + h(t)U(t) dt, (3.26)

and (B(t)) is a standard Brownian motion andσ(t) = 2αr2(m−x2(t))2+βr(m−x2(t))x2(t)

h(t) = r(β − 2αr)(m− x2(t))− βrx2(t).

The corresponding result of Eugène et al. [Eugène et al., 2015] when there is no misfolding phenomenon
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shows that the functions σ and h are similar if α and β are respectively replaced by αr2 and βr.

Proof. Denote

UN (t) =
XN

2 (Nt)−Nx2(t)√
N

=
√
N
(
X
N

2 (t))− x2(t)
)
.

By combining Equation (3.19),

X
N

2 (t)) = α

∫ t

0

X
N

1 (s)2 ds+ β

∫ t

0

X
N

1 (s)X
N

2 (s) ds+
MN

2 (Nt)

N
+O(1/N)

and Relation (3.22),

x2(t) = αr2

∫ t

0

(m− x2(s))2 ds+ βr

∫ t

0

(m− x2(s))x2(s) ds, (3.27)

one gets

UN (t) = α
√
N

∫ t

0

(
X
N

1 (s)2 − r2(m− x2(s))2
)

ds

+ β
√
N

∫ t

0

(
X
N

1 (s)X
N

2 (s)− r(m− x2(s))x2(s)
)

ds+
MN

2 (Nt)√
N

+O(1/
√
N).

Concerning the martingale term, Relation (3.11) gives, for t ≥ 0,〈
MN

2√
N

〉
(Nt) = 2α

∫ t

0

X
N

1 (s)2 ds+ β

∫ t

0

X
N

1 (s)X
N

2 (s) ds+O(1/N)

=

∫
R2

+×[0,t]

[
2αx2 + βx (MN/N − x− y)

]
µN (dx,dy,ds) +O(1/N).

With the same method as in the proof of Theorem 3.2.1, one gets the following convergence in distribution

lim
N→+∞

(〈
MN

2√
N

〉
(Nt)

)
=

(∫ t

0

[
2αr2(m−x2(s))2+βrx2(s)(m−x2(s))

]
ds

)
by Relation (3.27).

Note also that, for s ≥ 0,

√
N
(
X
N

1 (s)X
N

2 (s)− r(m− x2(s))x2(s)
)

= UN (s)X
N

1 (s) +
√
N
(
X
N

1 (s)− r(m− x2(s))
)
x2(s)

and
√
N
(
X
N

1 (s)− r(m− x2(s)
)

= −
√
N

γ + γ∗

(
γX

N

0 (s)− γ∗XN

1 (s)
)
− rUN (t). (3.28)
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The above relation for (UN (t)) can then be rewritten as

UN (t) =

∫ t

0

UN (s)
(

(β − αr)XN

1 (s)− αr2(m− x2(s))− βrx2(s)
)

ds

− 1

γ + γ∗

∫ t

0

(γ∗y−γx) [α(y+r(m−x2(s)))+βx2(s)]
√
NµN (dx,dy,ds)

+
MN

2 (Nt)√
N

+O(1/
√
N). (3.29)

The convergence in distribution of the martingale, Proposition 3.2.4 and the criterion of the modulus of
continuity give easily the tightness of the sequence (UN (t)). Let (U(t)) be a limit of some subsequence
(UNk(t)).

A close look at Relation (3.29) shows that the theorem will be proved, with standard arguments, if the
following convergence in distribution is proved

lim
k→+∞

(∫ t

0

UNk(s)X
Nk
1 (s) ds

)
=

(
r

∫ t

0

U(s)(m− x2(s)) ds

)
.

For k ≥ 0, ∫ t

0

UNk(s)X
Nk
1 (s)− rU(s)(m− x2(s)) ds

=

∫ t

0

UN (s)
(
X
N

1 (s)−r(m−x2(s))
)

ds+

∫ t

0

r(m−x2(s))
(
UN (s)−U(s)

)
ds,

the process associated to the last term of the second part of this identity converges in distribution to 0.
By Relation (3.28), the first term can be written as

−
∫ t

0

(
X
Nk
2 (s)− x2(s)

)( √Nk
γ + γ∗

(
γ∗X

Nk
0 (s)− γXNk

1 (s)
)

+ rUNk(t)

)
ds

= −r
∫ t

0

(
X
Nk
2 (s)− x2(s)

)
UNk(s) ds

− 1

γ + γ∗

∫ t

0

(
MNk

Nk
− x− y − x2(s)

)
(γx− γ∗y)

√
NkµNk(dx,dy,ds).

the first term of the right hand side converges in distribution to 0 due to Theorem 3.2.1 and the same
property also holds for the second term by Proposition 3.2.4. The theorem is proved.

As a consequence, one gets the following central limit theorem for the lag time. The notations of Corol-
lary 3.2.1 and Theorems 3.2.1 and 3.2.2 are used.
Corollary 3.2.2. Under the scaling regime (3.2), for δ ∈ (0, 1), the convergence in distribution

lim
N→+∞

TN (δ)−Ntδ√
N

=
−U(tδ)

rm2(1− δ)(β + αr(1− δ)) (3.30)
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holds, where the variables TN (δ) and tδ are defined by (3.23) and (3.24) and (U(t)) by (3.26), and
r = γ/(γ + γ∗).

Proof. For z ∈ R note that, since (XN
2 (t)) is a non-decreasing process,

{
TN (δ)−Ntδ√

N
≥ z
}

=
{
XN

2 (sN ) < δMN

}
=

{
X
N

2 (sN )−Nx2(sN/N)√
N

<
δMN −Nx2(sN/N)√

N

}
,

with sN = Ntδ + z
√
N . From Theorem 3.2.2 one gets the convergence in distribution

lim
N→+∞

X
N

2 (sN )−Nx2(sN/N)√
N

= U(tδ)

and the expansion of (x2(t)) at tδ gives

lim
N→+∞

δMN −Nx2(sN/N)√
N

= −zrm2(1− δ)(β + αr(1− δ)).

This completes the proof of the corollary.

Equation (3.30) shows that the variance of the lag time is inversely proportional to γ/γ∗, a low misfolding
rate will thus increase the variability of the polymerisation process.

3.3 Models with Scaled Reaction Rates

For t ≥ 0, XN
1 (t) is the number of free monomers at time t and XN

2 (t) is the number of polymerized
monomers. Recall that, for this model, the transition rates are given by

x 7→


x+(−2, 2) at rate

α

Nν

x1(x1 − 1)

2N2

x+(−1, 1) ” β
x1

N

x2

N
.

The initial condition is XN
1 (0) = MN and XN

2 (0) = 0. Because of the relation of conservation of mass,
one has MN = XN

1 (t) +XN
2 (t).

It is not difficult to see that the process (XN
2 (t)) can be represented as the solution of the following

stochastic differential equations,

dXN
2 (t) =

XN1 (XN1 −1)(s−)/2∑
i=1

2N i
α/Nν+2(dt)+

XN1 (s−)XN2 (s−))∑
i=1

N i
β/N2(dt). (3.31)
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By integrating this equation, one gets the relation

XN
2 (t) =

α

N2+ν

∫ t

0

XN
1 (s)(XN

1 (s)−1) ds+
β

N2

∫ t

0

XN
1 (s)XN

2 (s) ds+MN (t), (3.32)

where (MN (t)) is a martingale whose previsible increasing process is given by

〈
MN

〉
(t) = 2

α

N2+ν

∫ t

0

XN
1 (s)(XN

1 (s)−1) ds+
β

N2

∫ t

0

XN
1 (s)XN

2 (s) ds. (3.33)

The following proposition shows that, on the time scale t 7→ Nt, the polymerised mass is for this model
in the order of N1−ν .
Proposition 3.3.1. Under the scaling condition (3.2), for the convergence in distribution, the relation

lim
N→+∞

(
XN

2 (Nt)

N1−ν

)
=

(
αm

β

(
eβmt − 1

))
holds.

Proof. The proof is standard by using the identities (3.32) and (3.33), and the relationXN
1 (t)+XN

2 (t)=MN .
See Eugène et al. [Eugène et al., 2015] for example.

The following lemma introduces a branching process which will be helpful to estimate the order of
magnitude in N of the lag time

TN (δ) = inf{t ≥ 0 : XN
2 (t)/MN ≥ δ},

for 0 < δ < 1.
Lemma 3.3.1. For a, b > 0, let (WN

a,b(t)) be a pure birth process with birth rate

a

Nν
+

b

N
x

in state x ∈ N, with W (0) = 0 and 0 < ν ≤ 1. If

τNa,b(δ)
def.
= inf

{
t > 0 : WN

a,b(t) ≥ δN
}
,

then the sequence (τNa,b(δ)/(N logN)) converges in distribution to ν/b.

As it can be seen (WN
a,b(t)) is a branching process with immigration. Immigration rate is a/Nν and the

reproduction rate is given by b/N . See Harris [Harris, 2002] for example.

Proof. Let, for x ∈ N, ENx denotes an exponential random variable with parameter a/Nν+xb/N , assuming
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that the random variables ENx , x ≥ 0 are independent, then clearly

τNa,b(δ)
dist
=

bδNc∑
x=0

ENx .

hence after some simple estimations

lim
N→+∞

E(τNa,b(δ))

N logN
=
ν

b
.

In the same way, one checks that the sequence (Var(τNa,b(δ)/N)) is bounded

Var

(
τNa,b(δ)

N

)
≤

+∞∑
x=0

1

(aN1−ν + xb)2
. (3.34)

The convergence in distribution follows , by using Chebishev’s Inequality.

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

M = 106, m=1, α = 1, β = 0.1, ν = 0.7

XN
2 (N logNt)/MN

Wā,b̄(N logNt)/MN

Figure 3.1: In blue, 20 simulations of (Wā,b̄/MN ) and in green, 20 simulations of (XN
2 /MN ) on the time

scale t 7→ N logNt.

Let 0 < δ < 1 and fix some κ < 1 < κ, one can assume that N is sufficiently large so that κ≤MN/(mN)≤κ
holds. Recall that TN (δ) is the first time that the fraction of the number of polymerised monomers
XN

2 (t)/MN is greater than δ. The transition rates of (XN
2 (t)) are given by

x 7→

x+2 at rate α/Nν [(MN − x)/N ]2

x+1 β x/N × (MN − x)/N.
(3.35)

By comparing the transition rates, we see that, for x < δMN one hasα/Nν ((MN − x)/N)2 ≥ α/Nν (κm)2(1− δ)2,

β x/N × (MN − x)/N ≥ βκm(1− δ).
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One can therefore construct a coupling such that, on the event {TN (δ) > t}, the relation XN
2 (t)≥Wa,b(t)

holds with a=ακm2(1−δ)2 and b=βκm(1−δ). One obtains the relation τNa,b(δm)≥stTN (δ), where ≥st
denotes the stochastic order: if U and V are two real valued random variables

U ≥st V if P(V ≥ x) ≤ P(U ≥ x) ∀x ∈ R.

Since XN
2 (t)≤2Wā,b̄(t), with ā=α(κm)2 and b̄=βκm, one has τN

ā,b̄
(δm/2)≤stTN (δ). One gets there-

fore
τNā,b̄(δm/2) ≤st TN (δ) ≤st τNa,b(δm). (3.36)

Since the constants κ and κ can be chosen arbitrarily close to 1, the following proposition has therefore
been proved.
Proposition 3.3.2 (Order of Magnitude of Lag Time). For δ > 0 and 0<ν≤1,

lim
N→+∞

P
(

ν

βm
≤ TN (δ)

N logN
≤ ν

βm(1− δ)

)
= 1.

Remark. It is very likely that, to reach the state δN , only the second reaction has a real impact as soon
as the variable XN

2 is not 0. If true, simple calculations, as in the proof of the above lemma, would then
give that the variable TN (δ)/(N logN) is converging in distribution to ν/(βm) as N get large. Note
that the limit in this asymptotic result does not depend on δ which suggests a sharp transition for the
polymerisation process.

The birth process (Wā,b̄(t)) seems to be close to (XN
2 (t)) during the initiation of the polymerisation, as

the simulations of Figure 3.1. This suggests that, for δ small, the variables τN
ā,b̄

(δm) and TN (δ) are very
close. We conclude this part by considering the case ν > 1.

A Very Slow Nucleation Step

Now we assume that ν > 1, in this regime, the first reaction, the nucleation step, is then significantly
slowed.
Proposition 3.3.3. For any ε > 0 and 0 < δ < 1, there exist 0 < K1 < K2 such that

lim inf
N→+∞

P
(
K1 ≤

TN (δ)

Nν
≤ K2

)
≥ 1− ε.

Proof. By using Relation (3.36), it is enough to derive a corresponding limit theorem for τNa,b(δ)/N
ν for

some a>0 and b>0. Let (E1
x) be a sequence of i.i.d. exponential random variables with parameter 1, then

τNa,b(δ)

Nν
=

bδNc∑
x=0

E1
x

a+ xbNν−1
=
E1

0

a
+

bδNc∑
x=1

E1
x

a+ xbNν−1
. (3.37)

The expected value of the last term of the right hand side of the above relation is bounded byK log(N)/Nν−1
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for some constant K>0. Consequently, this term becomes negligible in distribution for N large. One gets
that the variable τNa,b(δ)/N

ν converges in distribution to an exponential random variable. The proposition
is proved.

As we have seen in the proof, the only term that matters in the series in Relation (3.37) is the first one:
the time to reach one polymerised monomer. It characterises the order of magnitude of the lag time. This
variable has been analysed in Szavits-Nossan et al. [Szavits-Nossan et al., 2014] and Yvinec et al. [Yvinec
et al., 2016].

In this article, we proposed and analysed two possible extensions of the model studied in Eugène et
al. [Eugène et al., 2015].

The first consists in adding a conformation step, whereas the second investigates the influence of a very
slow nucleation reaction - so slow that it may be qualitatively viewed as in the same order of magnitude
as a power law of the volume N .

As in [Eugène et al., 2015], we analysed the asymptotic behaviours of these models and proved central
limit theorems, whose proofs appeared to be significantly more technical, due to the different time scales
involved.

Following our study, there remain many open questions, both theoretical - how can we further enrich the
models and prove similar asymptotic results - and linked to experiments - which model variants could
finally lead to variances in the same order as experimentally observed in Xue et al. [Xue et al., 2008].
These are directions for future work.
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Most of the time, cells do not divide indefinitely; if they do however, we are in the presence of a po-
tentially pathological phenomenon most commonly known as cancer. The limitation to cell division is
generally attributed to the shortening of telomeres, a process that we modelled using stochastic methods.
The present chapter offers biological justifications for the particular mathematical model that will be
introduced in the next chapter.

4.1 Biology of telomere shortening

We start by giving some useful definitions, before explaining why and how telomere shortening oc-
curs.

4.1.1 Telomeres, replicative senescence: definitions

Telomere. Telomeres are extremities of linear chromosomes in eukaryotic cells. They are essential to
genomic stability, as they prevent the ends of chromosomes from being mistaken for DNA breakage. In
humans for instance, approximately 10, 000 accidental DNA breaks occur daily [Wellinger and Zakian,
2012a] and must be immediately repaired. For telomeres, it is quite the contrary; they must not be
fused with other ends to maintain genome stability. In addition, they play another key role in the cell’s
fate: at each replication round, they are shortened because the DNA-replication machinery is not able
to replicate the extremities (see section 4.1.2). This is why they are also often considered as molecular
clocks counting the number of cell divisions.

Replicative senescence. When telomeres become too short because of the so-called telomere ’end-
replication problem’ [Watson, 1972, Olovnikov, 1973], the cell cannot divide anymore: this state is called
replicative senescence. It has been shown in [Abdallah et al., 2009a, Hemann et al., 2001a] that the
introduction of a single very short telomere was enough to arrest cell divisions, suggesting that the
shortest telomere was triggering senescence. This result allows for a mathematical definition of the time
of senescence. In the model presented in the next chapter, we study telomere shortening in Saccharomyces
cerevisiae which has 16 chromosomes, i.e 32 telomeres, and therefore the number of generations before
senescence (the time of senescence) can be defined as the random variable T such that

T = inf
{
n ≥ 0,min(L1

n, · · · , L32
n ) < S

}
(4.1)

where (L1
n, · · · , L32

n ) is the vector of the lengths of the 32 telomeres of the cell and S is the threshold of
senescence.

Telomerase. Most eukaryotic organisms have a specific polymerase called telomerase able to elongate
telomeres [Blackburn and Collins, 2011]. Telomerase is a reverse transcriptase, i.e an enzyme that creates
single-stranded DNA from single-stranded RNA [Autexier and Lue, 2006]. It has been shown in [Teixeira
et al., 2004] that telomerase adds new telomere sequences preferentially to shorter telomeres. Hence,
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when telomerase is expressed, telomere length is maintained via an equilibrium between the shortening
due to the DNA replication machinery and the elongation by telomerase. However, in some multicellular
eukaryotes including man, somatic cells inhibit the expression of telomerase so that telomeres are only
shortened until replicative senescence [Hayflick, 1965].

4.1.2 The telomere end-replication problem

In this section we explain in more details where the ‘telomere end-replication problem’ comes from.

DNA replication. DNA replication occurs via a complex DNA replication machinery called the repli-
some. At each cell division, according to the semiconservative replication mode, the double-stranded
DNA opens at several origins generating different replication forks growing simultaneously in two oppo-
site directions (figure 4.1). Each parental strand acts as a template for the synthesis of the new strands.

5′3′

3′5′

Replication fork

Figure 4.1: Semiconservative mechanism of DNA replication and genera-
tion of a replication fork. The left hand side picture is taken from spar-
knotes.com/biology/molecular/dnareplicationandrepair/section1.rhtml

The ‘end replication problem’. Hence, each strand is copied by the replication machinery. How-
ever, these strands are oriented from an extremity called 5′ to the other called 3′, and are antiparallel.
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Since the replisome can only replicate DNA
from the extremity 5’ to 3’, one strand is cre-
ated continuously (the leading strand) while the
other (the lagging strand) is discontinuously
replicated into short bits called Okazaki frag-
ments [Okazaki et al., 1968]. Each Okazaki
fragment is initiated by a small segment of RNA
(blacks fragments in figure 4.2).

s

5′

3′

Figure 4.2: Schematic representation of the synthesis
of Okazaki fragments. For simplicity, we do not rep-
resent the single-stranded overhang in the parental
chromosome.

The last step consists in removing these RNA primers and replacing them by DNA except the very last
one at the terminus of the chromosome that cannot be replaced by the replication machinery. As a result,
the newly synthesised strand via the lagging machinery is shorter than its corresponding parental strand,
as shown in figure 4.3.

5′

3′

Figure 4.3: Schematic representation of
the loss of nucleotides at the chromosome
extremity after replication.

As a result, the lagging machinery generates single-
stranded overhang while the leading machinery creates a
blunt end [Lingner et al., 1995]. In reality, the parental
chromosome also has this overhang structure (the previ-
ous schemes 4.2 and 4.3 were simplified). Therefore, the
length of the template for lagging strand synthesis is ac-
tually the same as the parental length. Importantly, on
the leading strand, in most organisms (except angiosperm
plants [Riha et al., 2000]), additional maturation steps
involving resection and fill-in also recreate the overhang
structure [Faure et al., 2010, Larrivée et al., 2004].

In conclusion, the mechanism of replication generates two daughter chromosomes having both the same
length and single-stranded extremities. This symmetry allows us to focus on a lineage of cells in the next
chapter, i.e we consider at each generation only one of the daughters; then, exactly one of the extremities
has been shortened after replication. We conclude this section by the global picture of telomere shorten-
ing shown in picture 4.4, also illustrating our model of telomere shortening in the following chapter, that
summarises the previous considerations.

4.1.3 Ageing and Cancer

The problem of telomere shortening has been sparking more and more interest amongst researchers, as
it relates to two fundamental problems in biology. Indeed, the shortening mechanism has naturally been
associated with ageing, but also with cancer. In fact, the limited number of cell divisions due to the
finite length of telomeres is often seen as a barrier against cancer. Hence, cancer cells have exceeded



4.2. SOME MATHEMATICAL MODELS OF TELOMERE SHORTENING 107

3’5’

5’3’

TelomereTelomere

Chromosome

DNA Replication

3’5’

5’3’

+

Lagging telomereLeading telomere

Leading telomereLagging telomere
5’3’

Coupling

Coupling

3’5’

overhang a overhang a

Figure 4.4: Mechanism of DNA replication and telomere shortening. Following one lineage, exactly one
extremity of the chromosome is shortened after replication (coupling).

the number of divisions allowed and managed to elongate their telomeres either by telomerase reactiva-
tion or by alternative mechanisms not yet entirely identified, but most probably including homologous
recombination [de Jesus and Blasco, 2013].

4.2 Some mathematical models of telomere shortening

Telomere-shortening dynamics are an ideal framework for mathematical modelling.. For instance, in 1995,
Arino et al. [Arino et al., 1995] proposed a mathematical modelling for telomere shortening based on the
mechanism proposed in [Levy et al., 1992], shown in figure 4.5.
This model considers that a parental chromosome has a blunt end at one extremity, while the other
extremity is single-stranded. It does not take into account the resection recreating the overhang struc-
ture after replication observed experimentally in [Faure et al., 2010, Larrivée et al., 2004] for instance.
Therefore the two possible asymmetric initial configurations of parental chromosomes must be consid-
ered. Moreover, the two daughter cells inherit chromosomes of different lengths. This premise allows
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Figure 4.5: Transition rules for telomere shortening in [Levy et al., 1992]. Retrieved from [Arino et al.,
1995].

the author to derive quantitative behaviour of the whole cell population by considering at first that cell
divisions occur synchronously. Then, in a more realistic version, branching processes are used, in which
cell lifetimes are independent identically distributed (i.i.d) random variables. This model was later ex-
tended in [Olofsson and Kimmel, 1999] by including cell death in population dynamics. Further, other
stochastic growth models of cell populations including telomere loss have been proposed in [Dyson et al.,
2007, Portugal et al., 2008]. The latter, for instance, considers that the probability for a cell to divide
decreases as telomeres shorten. Another interesting phenomenon occurring in telomere dynamics is the
emergence of ’survivors’, defined in mutant yeast cells that do not express telomerase but are still able
to maintain their telomeres through recombination-based mechanisms [Lundblad and Blackburn, 1993];
these survivors are considered as valuable experimental model for a subset of cancer cells that also rely
on recombination, the so-called ‘ALT cancer cells’. The emergence of survivors has been mathematically
studied for example in [Olofsson and Bertuch, 2010].

4.3 Presentation of chapter V

The subsequent chapter, chapter V, corresponds to the following article:

Chapter V. S. Eugène, T. Bourgeron and Z. Xu. Effects of initial telomere length distribution on
senescence onset and heterogeneity. Submitted to Phys. Rev. Letters, 2016.

This paper is available on: http://arxiv.org/abs/1606.06842.

In chapter V, we propose a stochastic model for telomere shortening in Saccharomyces cerevisiae, based
on the mechanism shown in figure 4.4. Here, the two daughter chromosomes have the same length.
Therefore, we study at each generation only one of these two daughters, i.e we study one lineage and
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do not take into account the size of cell population. From then, we propose a mechanism including two
phases.

First, telomerase is activated, and telomere length distribution achieves an equilibrium due to the contri-
bution of both the shortening and the elongation. We study the discrete-time Markov chain associated
to the length distribution of one telomere (Ln)n, where Ln is the length of a given telomere at generation
n.
In a second part, telomeres are initially distributed according to the previous equilibrium and then telom-
erase is inhibited: telomeres can only shorten until the cell enters replicative senescence. We study the
impact of the initial distribution on the number of generations before senescence, called time of senescence
and denoted T in this thesis (the stopping time T was already defined at the beginning of this chapter by
equation (4.1)). We separately study the effect of the initial mean length of telomeres and of its initial
variance.
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5.1 Introduction

Telomeres, the ends of eukaryote chromosomes, are poised in a dynamic equilibrium controlled by two pro-
cesses: limited telomere shortening and elongation by telomerase, a dedicated holoenzyme able to generate
de novo telomere sequence by reverse-transcribing a template RNA. When telomerase is not expressed, as
in human somatic cells, or is mutated, as done experimentally in model organisms such as Saccharomyces
cerevisiae, [Lundblad and Szostak, 1989], telomeres can only shorten and after many divisions the cell
enters replicative senescence, a permanent cell cycle arrest induced by short telomeres that elicits a DNA
damage response. Replicative senescence is implicated in organismal ageing and is a potent barrier to can-
cer emergence, but its remarkable asynchrony and heterogeneity remain a challenge for investigating the
exact relationship between initial telomere length distribution and senescence onset. Telomere shortening
is the unavoidable consequence of the end replication problem, [Olovnikov, 1973, Watson, 1972, Soudet
et al., 2014]. In most examined species, telomeres end with an 5’ to 3’ singled-stranded DNA overhang
(Fig. 5.1), [Hemann and Greider, 1999, Henderson and Blackburn, 1989, Klobutcher et al., 1981, Makarov
et al., 1997, McElligott and Wellinger, 1997, Raices et al., 2008, Riha et al., 2000, Wellinger et al., 1993].
When the replication fork reaches the end of the chromosome, the removal of the last Okazaki frag-
ment leaves a gap at the lagging strand, which recreates the single-stranded overhang of the parental
telomere (see Fig. 5.1).On the leading strand, after replication, complex maturation steps involving re-
section and fill-in also regenerate the overhang structure, [Larrivée et al., 2004, Faure et al., 2010, Chai
et al., 2006, Wu et al., 2012, Soudet et al., 2014]. Regardless of these maturation steps, the leading
strand template for replication is shorter than the lagging strand one, thus generating after replication
two new telomeres of different lengths, one unchanged compared to the parental telomere and the other
shorter by exactly the length of the overhang, as illustrated in Fig. 5.2. Previous mathematical models of
telomere shortening also based on the end-replication problem [Arino et al., 1995, Olofsson and Kimmel,
1999, Arkus, 2005, Levy et al., 1992] did not consider the maturation of the leading strand telomere that
generates a 3’-end overhang identical to the one on the lagging strand. This maturation step is widely
conserved throughout species with the notable exception of angiosperm plants that display a blunt end at
the leading telomere [Riha et al., 2000]. We also note that other mathematical models examined higher
level structures such as t-loops [Griffith et al., 1999, Rodriguez-Brenes and Peskin, 2010], or additional
telomere states or breaking mechanisms [Kowald, 1997, Rubelj and Vondracek, 1999, Proctor and Kirk-
wood, 2002, Proctor and Kirkwood, 2003].

On average, each telomere has shortened by a fixed length, which is exactly half of the overhang length.
As a corollary, experimental measurements of telomere length, which average over a large subset of
telomeres and over a great number of cells (typically 107 − 108), should display a constant decrease in
telomere length when telomerase is absent and when neglecting other possible shortening mechanisms
such as telomere break. This is the case for S. cerevisiae, for which telomere shortening in the absence
of telomerase was measured to be around 3-4 bp (base pairs) per generation [Marcand et al., 1999], in
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Figure 5.1: Mechanism of DNA replication and Telomere Shortening. Following one lineage, exactly one
extremity of the chromosome is shortened after replication (coupling).

agreement with the measured length of the overhang (5-10 nucleotides, [Soudet et al., 2014]). However,
while the average dynamics of telomere length is informative of the global regulation and homeostasis of
telomere length, it misses important contributions of the asymmetry of telomere replication mechanism
to the overall telomere length distribution and to the heterogeneity of the onset of replicative senescence.
Taking this asymmetry into account, the shortening of a given telomere in a cell lineage, defined as a
random succession of mitotically related cells, [Xu et al., 2015], is not constant and deterministic, but
rather probabilistic and follows a Bernoulli process. More precisely, for a given chromosome, after a
round of replication, one extremity has been shortened, while the other kept its parental length. Using
mathematical modelling and simulations fitted to experimental data, it has previously been showed that
the asymmetry of telomere replication per se is responsible for variations in the timing of senescence,
illustrating the biological relevance of such a mechanism [Bourgeron et al., 2015]. Additionally, if the
two ends of a given chromosome are considered together, the 3’-end at one telomere belongs to the same
DNA strand as the 5’-end on the other telomere of the same chromosome, implying that the asymmetry
of the shortening mechanism during replication at one telomere is inverted compared to the other (see
Fig. 5.1). This coupling mechanism between the two ends of the same chromosome will also be included
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here.

In this chapter, we study the consequences of the asymmetry and the coupling on the distribution and
the dynamics of telomere length in two distinct phases: at steady state in the presence of telomerase
and in a strictly shortening regime without telomerase, i.e., senescence. We show that the robustness of
telomerase recruitment impacts on the variance of the steady-state distribution of telomere length. In
turn, this variance defines different regimes of senescence. In a regime of low initial variance, we find that
senescence onset cannot be linearly inferred from the average telomere length or even the length of the
shortest telomere. In contrast, a high variance implies a linear correlation between the initial shortest
telomere and senescence onset. The ultimate goal is to study the impact of the initial distribution on
the onset of senescence and so, in further studies, from measurements of times of senescence for different
lineages [Xu et al., 2015], go back to the features of the equilibrium state of telomeres evolving with
telomerase.

Hence, our strategy consists in studying separately these two phases. In the first section, we study
telomeres being repaired by telomerase and show that the length distribution of telomeres achieves an
equilibrium distribution denoted by L∞ that we explicitly characterise. We also identify the biological
mechanisms that affect this distribution. In the second section, we consider a cell of 16 chromosomes,
i.e 32 telomeres, initially distributed as the previous equilibrium distribution. The telomerase is then
inhibited so that telomeres can only be shortened, until the shortest telomere goes below the threshold
of senescence and the cell doesn’t replicate anymore. Here, we investigate separately the impact of the
initial mean and variance on the onset of senescence. For this purpose, we start by considering that
all telomeres have initially the same deterministic length E(L∞) and derive an asymptotic expansion of
the expected time of senescence. Then, the initial telomere length distribution is chosen to be uniform,
centred on E(L∞), in order to study the impact of the initial variance on the time of senescence.

5.2 Telomeres evolving with telomerase

We first describe the most general model, corresponding to a lineage of haploid yeast cells dividing in
the presence of active telomerase. Let (L1

n, L
2
n) ∈ N2 denote the lengths of the two extremities of a given

chromosome at generation n (’length’ stands here for the number of base pairs so that all our processes
lie in N). Then, at generation n+ 1:

— exactly one of the extremities is shortened by a length denoted a. The coupling is captured by a
Bernoulli random variable Bn with parameter 1/2: if Bn = 1, then L1

n is shortened by a nucleotides,
whereas L2

n is preserved, and conversely if Bn = 0.

— telomerase adds new telomere sequences preferentially to shorter telomeres, [Teixeira et al., 2004,
Britt-Compton et al., 2009], a behavior that we capture by introducing for each extremity Cin, a
Bernoulli random variable with parameter f(Lin), (i ∈ {1, 2}), as it is done in [Xu et al., 2013],
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where f has the shape shown in Fig. 5.2 (a),
f(l) = 1 if l ≤ Ls
f(l) =

1

1 + β(l − Ls)
if l > Ls

(5.1)

with β and Ls two constants in R × N, and Lin is the length of the telomere before replication. If
Cin = 1, telomerase is recruited to telomere Lin and elongates it, whereas if Cin = 0, the telomere is
not elongated and only shortens or stays at the same length. The shape of f is such that below a
length threshold Ls, the Bernoulli random variable equals 1 that is telomerase is always active. For
a telomere longer than Ls, the probability of Cin = 1 decreases to zero, meaning that the longer the
telomere, the less likely it is to be elongated by telomerase.

— the number of nucleotides added by telomerase is independent of the length of the telomere, [Teixeira
et al., 2004, Xu et al., 2013]. We introduce G1

n and G2
n two independent geometric random variables

of parameter p, independent of all the other quantities (including L1
n, L

2
n), which correspond to the

number of nucleotides added by telomerase to each telomere.

As a result, for any given chromosome the evolution of the N2-valued process (L1
n, L

2
n) can be described

as follows:


L1
n+1

L2
n+1

 =


(L1

n − a ·Bn)+ + C1
n ·G1

n

(L2
n − a · (1−Bn))+ + C2

n ·G2
n

 (5.2)

where x+ = max(0, x).

The goal of this section is to investigate the properties of the steady state of telomere length distribu-
tion. For simplicity, we focus on the behaviour of one telomere, and consider the projection of the first
coordinate of a chromosome in order to compute its equilibrium. We will analyse the coupling effect in
more depth in the second regime without telomerase. Our model thus becomes:

Ln+1 = (Ln − a ·Bn)+ + Cn ·Gn (5.3)

where Ln is the length of a given telomere at generation n, Ln+1 the length of one of the two daughter
telomeres (at generation n + 1), Gn a geometric random variable of parameter p ∈ (0, 1); we also recall
its generating function which will be useful later:

E(uGn) =
∞∑
k=0

ukP(Gn = k) =
∞∑
k=0

ukp(1− p)k =
p

1− u(1− p) .

Equation (5.3) corresponds to Lindley’s Equation in the queuing networks field (see for instance [Robert,
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2003] p.332). An averaged version of this model has been studied in [Xu et al., 2013, Dao Duc and
Holcman, 2013], where instead of being stochastic, telomere shortening was chosen to be deterministic
with a constant value of a/2 (i.e Ln+1 = Ln − a/2 + Cn ·Gn). Finally, to make our computations fully
explicit without betraying the principles of the biological mechanism, instead of f , we consider g a sharp
threshold at a value is (Fig. 5.2 (b)) g(l) = 1 if l ≤ is

g(l) = 0 if l > is
(5.4)

with is a constant in N, not necessarily equal to Ls. Our model becomes:

Ln+1 = (Ln − a ·Bn)+ + Gn · 1{Ln≤is}. (5.5)

(a)
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Figure 5.2: (a): f(l) = 1 if l ≤ Ls, which means that telomeres shorter than Ls are always elongated.
For l > Ls, f(l) = 1/(1 + β(l − Ls)). (b): sharp threshold at is.

Proposition 5.2.1. The Markov chain (Ln) defined by (5.5) is aperiodic, irreducible and ergodic. There-
fore, it has a unique equilibrium distribution, denoted L∞, the distribution of which being given by:

(1 + ...+ ua−1)E(uL∞) =
(1− p)(1 + ua)

1− u(1− p)

is∑
k=0

ukπk +
p

1− u(1− p)
a−1∑
k=0

uk(1 + u+ ...+ ua−k−1)πk (5.6)

where πk = P(L∞ = k).

Note that equation (5.6) shows that it is enough to determine the initial vector (π0, ..., πis) to get the
whole equilibrium distribution of the size of one telomere in telomerase-positive cells.

Proof. To fully identify our Markov chain, we first write the transition probabilities. Let pij = P(Ln+1 =

j|Ln = i) and p(n)
ij = P(Ln = j|L0 = i). Then:

— if i > is, pii =
1

2
and pi,i−a =

1

2
.

— if i < a, pij =
1

2
P(Gn = j) +

1

2
P(Gn = j − i) for j ≥ i,

and pij =
1

2
P(Gn = j) for 0 ≤ j < i.
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— if a ≤ i ≤ is, pij = 0 for j < i− a,

pij =
1

2
P(Gn − a = j − i) for i > j ≥ i− a,

and pij =
1

2
P(Gn − a = j − i) +

1

2
P(Gn = j − i) for j ≥ i.

Let us fix i, j ∈ N. If i < a, then pij > 0 for all j ∈ N. If i ≥ a, then we consider the event to be
shortened at each generation until you go below a, which has a probability greater than p(k)

i,i−ka > 0 with
k = bi/ac, and then you can reach the state j with the geometric random variable. Irreductibility follows.
It is aperiodic because for instance, p(2)

ii > 0 and p(3)
ii > 0 for all i ∈ N.

The ergodicity is a direct consequence of Foster-Lyapunov criteria (see Corollary 8.7 p.214 of [Robert,
2003]). Let Ex be the expectation of the Markov chain (Ln)n starting at x. Then:

— Ex(L1 − x) = −a/2 for x > is.

— Ex(L1) = x− a/2 + (1− p)/p <∞ for x ≤ is.

Let L∞ be the stationary distribution of (Ln)n, with πk = P(L∞ = k). We have:

lim
n→∞

P(Ln = k) = πk

and:
L0
L
= L∞ =⇒ L1

L
= L∞

so that L∞ satisfies:
L∞

L
= (L∞ − a.B0)+ + G01{L∞≤is}.

and its Laplace transform can be computed by distinguishing three cases for L∞,L∞ < a, a ≤ L∞ ≤ is

and L∞ > is:

E
(
uL∞

)
= E

(
u(L∞−a.B)++Gn1{L∞≤is}

)
= E

(
uG0 .1{L∞<a.B}

)
+ E

(
uL∞−a.B+G0 .1{a.B≤L∞≤is}

)
+ E

(
uL∞−a.B .1{L∞>is}

)
=

1

2
E
(
uG0
) [

P(L∞ < a) + P(L∞ < 0)

]
+

1

2

[
E
(
uL∞−a+G0 .1{a≤L∞≤is}

)
+ E

(
uL∞+G0 .1{0≤L∞≤is}

) ]
+

1

2

[
E
(
uL∞−a.1{L∞>is}

)
+ E

(
uL∞ .1{L∞>is)}

) ]
=

1

2
E
(
uG0
) a−1∑
k=0

πk +
1

2
E
(
uG0
) [ 1

ua

is∑
k=a

ukπk +

is∑
k=0

ukπk

]

+
1

2

(
1 +

1

ua

)[
E
(
uL∞

)
−

is∑
k=0

ukπk

]

=
1

2

(
1+

1

ua

)
E
(
uL∞

)
+

1

2

(
1+

1

ua

)[
E
(
uG0
)
−1
] is∑
k=1

ukπk +
1

2
E
(
uG0
)a−1∑
k=0

πk

(
1− u

k

ua

)
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And therefore,

(ua − 1)E
(
uL∞

)
= (1− p)(ua + 1)

(
is∑
k=0

ukπk

)(
u− 1

1− u(1− p)

)

+
p

1− u(1− p)
a−1∑
k=0

(ua − uk)πk

Simplifying by u− 1, we get expression (5.6).

5.2.1 Unit shortening, a = 1

We start by the simpler case, a = 1, where the expressions of the steady state are explicit.
Proposition 5.2.2. When a = 1, the equilibrium distribution (πk)0≤k<∞ of (Ln) is given by:

∀k ∈ J1, isK, πk =

(
2(1− p)

p

)k
π0

∀k > is, πk = p(1− p)k
(

2

p

)is+1

π0.

(5.7)

Proof. When a = 1, equation (5.6) becomes:

E(uL∞) =
(1− p)(1 + u)

1− u(1− p)

is∑
k=0

ukπk +
p

1− u(1− p)π0

= (1− p)(1 + u)
∞∑
k=0

uk(1− p)k
is∑
k=0

ukπk + pπ0

∞∑
k=0

uk(1− p)k
(5.8)

To find the initial vector (π0, ..., πis), we just identify the coefficients of the power series on both sides of
equation (5.8):

∞∑
k=0

ukπk = (1− p)

 ∞∑
k=0

{
k∧is∑
l=0

πl(1− p)k−l
}
uk +

∞∑
k=1


(k−1)∧is∑
l=0

πl(1− p)k−1−l

uk


+ pπ0

∞∑
k=0

uk(1− p)k

Fix π0 (it will be determined by the normalisation condition). The identification of the coefficients of
equation (5.8) gives us that for 1 ≤ k ≤ is:

pπk = (2− p)
k−1∑
l=0

πl(1− p)k−l + pπ0(1− p)k.

By induction, we find:

∀1 ≤ k ≤ is, πk =

(
2(1− p)

p

)k
π0
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We can now find all the πk. Let k ≥ is + 1. By identification of the coefficients in (5.8),

πk = (2− p)π0

is∑
l=0

(
2(1− p)

p

)l
(1− p)k−l + pπ0(1− p)k = p(1− p)k

(
2

p

)is+1

π0.

Finally, since
∞∑

k=is+1

πk = π0

(
2(1− p)

p

)is+1

,

we can determine π0 by the normalisation condition

1 =

is∑
k=0

πk +
∞∑

k=is+1

πk = π0

is+1∑
k=0

(
2(1− p)

p

)k

so that
π0 =

pis+1(3p− 2)

pis+2 − (2(1− p))is+2
.

5.2.2 Arbitrary a

We now want to identify the first (π0, · · · , πis) states of the equilibrium for an arbitrary shortening of
length a. In this case, we do not get explicit formulas for the equilibrium distribution as before, but we
provide here a method to obtain numerically the distribution of the steady state.

We start by showing that actually only the first a terms (π0, · · · , πa−1) are missing.
Lemma 5.2.1. For all k ≥ a, there exists a linear function φk : Ra 7→ R such that:

πk = φk(π0, . . . , πa−1).

Proof. Equation (5.6) shows that it is enough to prove that (πa, · · · , πis) depends linearly on (π0, · · · , πa−1).

By multiplying equation (5.6) by (u− 1)(1− uq), with q = 1− p, we get:

(ua − 1)(1− uq)E
(
uL∞

)
= q(ua + 1) (u− 1)

(
is∑
k=0

ukπk

)
+ p

a−1∑
k=0

(ua − uk)πk (5.9)

We now identify the coefficients of the power series of each side of (5.9) distinguishing cases for the values
of k. Using the identities: (ua− 1)(1− uq) = −qua+1 + ua + qu− 1, (u− 1)(ua + 1) = ua+1− ua + u− 1,
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the left hand side of (5.9) is decomposed as follows:

(−qua+1 + ua + qu− 1)E
(
uL∞

)
=
∞∑
k=0

πk
(
−quk+a+1 + uk+a + quk+1 − uk

)
=
∞∑
k=0

(−qπk−a−1 + πk−a + qπk−1 − πk)uk

and the right hand side:

q

[ is+a+1∑
k=a+1

πk−a−1 u
k −

is+a∑
k=a

πk−a u
k +

is+1∑
k=1

πk−1 u
k −

is∑
k=0

πk u
k

]
+ p

a−1∑
k=0

πk u
a − p

a−1∑
k=0

πk u
k.

The following table gives the recurrence relations obtained after identification of the coefficients.

k relation

J0, a− 1K ∅

a πa = 2
1− p
p

π0 −
a−1∑
k=1

πk

Ja+ 1, isK πk = −2
1− p
p

πk−a−1 +
2− p
p

πk−a

Hence, for all a ≤ k ≤ is, there exists a linear function ϕk : Rk 7→ R such that

πk = ϕk(πk−1, · · · , π0).

Finally, by induction, for all a ≤ k ≤ is, there exists a linear function φk : Ra 7→ R such that

πk = φk(π0, . . . , πa−1)

so that the distribution of L∞ is actually determined by its a first states.

We are now able to characterise mathematically the equilibrium of the distribution of the length of
telomeres evolving with telomerase. By using lemma 5.2.1, we can find ψ : Ra × [0, 1] 7→ R linear in the
first a coordinates such that:

(1 + · · ·+ ua−1)E(uL∞) = ψ(π0, . . . , πa−1, u). (5.10)

The polynome R(u) = 1 + ... + ua−1 has exactly a − 1 roots in the unit disk which are the ath roots
of unity except 1. Let uk = e2iπk/a for 1 ≤ k ≤ a − 1. The vector (π0, ..., πa−1) is thus solution of the
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system:
ψ(π0, ..., πa−1, uk) = 0 for 1 ≤ k ≤ a− 1 (5.11)

where π0 is, as usual determined, by the normalisation condition. If the system is invertible, then there
exists a unique vector (π0, ..., πa−1) solution of (5.11) to which we added the normalisation condition.
Therefore, we can at least numerically obtain the vector (π0, ..., πa−1). Once we have it, the distribution
of the chain follows from (5.10).

We simplified the general model (5.3) in which telomerase recruitment is governed by f by (5.5) with
a sharp threshold for telomerase recruitment in order to have explicit formulas for the equilibrium of
telomere length distribution to have an insight of the impact of the parameters (a, p) on the equilibrium
distribution of telomere length. However, this simplification also shows the role of the imprecision of the
recruitment of the telomerase is the variance of this equilibrium. More precisely, it happens sometimes
that telomerase elongates long telomeres. This behavior is captured by the shape of f (5.A) but absent
when the threshold is sharp. Hence, a comparison between (5.5) and (5.3) reveals the impact of the
imprecision of the telomerase on the equilibrium.

5.2.3 Numerical application

To rigorously compare the variance of the simplified model (5.5) with (5.3), we choose is so that the
ceiling function of the mean of the equilibrium of (5.5) dE(L∞)e is the same as the one for (5.3), ie 342

bp [Xu et al., 2013]. We take the biological parameters obtained in [Teixeira et al., 2004, Soudet et al.,
2014] and used in [Xu et al., 2013]

a = 7, p = 0.026, Ls = 90, β = 0.045.

For this purpose, we make is vary and run 106 numerical simulations of (5.5) per choice of is in order
to compute the corresponding mean of the equilibrium. This mean is then computed and plotted as a
function of is:
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Finally, we chose the is that gives dE(L∞)e = 342 bp. This procedure leads to is = 308 bp.

We ran then 106 simulations of (5.3) and (5.5) again with the parameters from [Teixeira et al., 2004,
Soudet et al., 2014] and used in [Xu et al., 2013] (Fig. 5.3) and find that the variance obtained using the
simplified model (5.5) is smaller than the one with the complete model (5.3) (37 bp as compared to 101

bp) for the biological parameters, demonstrating that the residual recruitment of telomerase to rather long
telomeres strongly contributes to the spread of the steady state distribution of telomere length.
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Figure 5.3: In red, the equilibrium distribution of the Markov Chain (5.5). In blue, the equilibrium
distribution obtained in [Xu et al., 2013]

As a conclusion, our calculations on model (5.5) exhibit how the equilibrium distribution of telomere
length depends on the shortening length a and the elongation by the telomerase via the parameter p.
For instance, we showed that for a = 1, the geometric elongation gives rise to a geometric behaviour of
the equilibrium distribution. In addition, the comparison with model (5.3) shows that, surprisingly the
mode of recruitment and activation of telomerase, dependent on the biochemical properties of telomerase
and on its interactions with telomeric proteins (i.e. Rap1/Rif1/Rif2, Tel1, Cdc13, MRX complex and Ku
complex) is also critical for the variance of this equilibrium.

5.3 Impact of the steady state distribution on the onset of senes-

cence

We now analyse the consequences of the steady state distribution on the onset of senescence, meaning
the number of generations undergone by a given cell lineage until it enters senescence, which we simply
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call time of senescence and we denote T . The main goal of this section is to derive the parameters
of the initial distribution from the time of senescence, which is useful for experimentalists because the
exact parameters of the initial distribution are usually not accessible while the time of senescence can be
measured [Lundblad and Szostak, 1989, Xu et al., 2015]. In senescing cells, telomerase is inactive and when
the shortest telomere goes below a threshold S, the cell enters replicative senescence and stops dividing,
[Abdallah et al., 2009b, Lundblad and Szostak, 1989, Hemann et al., 2001b, Zou et al., 2004, Armanios
et al., 2009]. A haploid yeast cell has 16 chromosomes and thus 32 telomeres. Mathematically, we consider
the vector (L1

n, L
2
n, . . . , L

32
n ) of these 32 telomere lengths at generation n. Because each chromosome

behaves independently [Shampay and Blackburn, 1988], we can start by studying one chromosome and
the behaviour of the 32 will easily follow. More precisely, the vector (L1

n, L
2
n, . . . , L

32
n ) can be seen

as a family (Xi
n, Y

i
n)1≤i≤16 of 16 independent identically distributed couples each representing the two

telomeres of a chromosome.

In order to be more general, we consider that chromosomes are initially distributed along the equilibrium
of model (5.2) which take into account the coupling of the two extremities of a given chromosome. By
using the same arguments as in the proof of proposition 5.2.1, we show that the Markov chain (L1

n, L
2
n)

evolving in N2 and described by equation (5.2) has a unique equilibrium distribution denoted Π. Hence,
for all 1 ≤ i ≤ 16, the initial distribution of the couple (xi0, Y

i
0 ) is the following: for k, l ∈ N,

P(Xi
0 = k, Y i0 = l) = Π(x0 = k, Y0 = l).

The time of senescence is mathematically expressed as:

T = inf

{
n ≥ 0, min

1≤i≤16

[
min(Xi

n, Y
i
n)
]
< S

}
.

In the following calculations, for simplicity, we will always choose a = 1 and S = 0. For numerical
estimations of the time of senescence, we will divide our results by a = 7 to obtain biologically relevant
values.

5.3.1 Distribution of the time of senescence

We start by computing the expectation of the time of senescence when the initial distribution of the
lengths of telomeres of the same chromosome is Π.

Proposition 5.3.1. The distribution of the random variable T is given by:

P(T > n) =

 ∑
k+l≥n

Π(x0 = k, Y0 = l)
1

2n

k∑
t=n−l

(
n

t

)16

. (5.12)
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In particular, its expectation can be written as a function of π, the initial distribution as follows:

E(T ) =
∞∑
n=1

 ∑
k+l≥n

Π(x0 = k, Y0 = l)
1

2n

k∑
t=n−l

(
n

t

)16

. (5.13)

Proof. For the sake of simplicity, we drop the superscript i in this section and start by studying a
typical couple (Xn, Yn). The shortening of these two telomeres can be mathematically translated into
the following model: Xn+1 = (Xn −Bn)+

Yn+1 = (Yn − (1−Bn))+

where Bn is a Bernoulli random variable of parameter 1/2, and (x0, Y0)
dist.∼ Π. This process is an oriented

simple random walk on Z2 until one of the coordinates reaches zero, and can be written explicitly:

Y

X

Y0

X0


Xn = Xn−1 −Bn = x0 −

∑n
i=1Bi = x0 − Bin(n, 1/2)

Yn = Yn−1 − (1−Bn) = Y0 − n+ Bin(n, 1/2)

where Bin(n, 1/2) is a binomial distribution of parameters n and 1/2. In this case, let’s define the
first time one of the coordinates reaches zero, T 1:

T 1 = inf {n ≥ 0,min(Xn, Yn) < 0}

Then,

P(T 1 > n) = P(min(Xn, Yn) ≥ 0)

= P(x0 − Bin(n, 1/2) ≥ 0, Y0 − n+ Bin(n, 1/2) ≥ 0)

=
∑
k+l≥n
k,l≥0

Π(x0 = k, Y0 = l)
1

2n

k∑
t=n−l

(
n

t

)
.

From here, we easily derive the distribution of the time of senescence by considering all 16 independent
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pairs of telomeres:

P(T > n) = P(¬{senescence at the nth generation})

= P( min
1≤k≤32

Lnk ≥ 0) = P(∀i ∈ J1, · · · , 16K,min(Xi
n, Y

i
n) ≥ 0)

= P(min(Xn, Yn) ≥ 0)16 = P(T 1 > n)16.

The expected time of senescence is then:

E(T ) =
∞∑
n=0

P(T > n) =
∞∑
n=1

 ∑
k+l≥n

Π(x0 = k, Y0 = l)
1

2n

k∑
t=n−l

(
n

t

)16

.

We now study separately the influence of the mean and the variance of the initial state on the time of
senescence.

5.3.2 Impact of the initial mean on the time of senescence

We start with the effect of the mean of π on the expected time of senescence, without taking into account
the variability of the initial distribution, and thus consider that telomeres have initially a deterministic
and constant length, denoted x0 equal to the mean of the initial distribution π, i.e for k ∈ J1, 32K,

Lk0 = dE(L∞)e = x0 (5.14)

We define T 1
x0

as the first time one of two coupled telomeres reaches zero both starting from x0, and Tx0

as the time of senescence of the whole cell when the initial state is constant and equals x0.

Almost surely, x0 ≤ T 1
x0
≤ 2x0. This implies that P(T 1

x0
> n) = 0 for n ≥ 2x0, and P(T 1

x0
> n) = 1 for

n ≤ x0 − 1. For x0 ≤ n ≤ 2x0 − 1, the law of T 1
x0

is given by:

P(T 1
x0
> n) =

1

2n

x0∑
k=n−x0

(
n

k

)
.

The expected time of senescence is then:

E(Tx0) = x0 +

2x0−1∑
n=x0

[
P(T 1

x0
> n)

]16
= x0 +

2x0−1∑
n=x0

[
1

2n

x0∑
k=n−x0

(
n

k

)]16

. (5.15)

Numerical simulations with biological parameters from [Teixeira et al., 2004, Soudet et al., 2014]show,
cf. Fig. 5.3, that the mean of the steady state distribution L∞ is large (342 bp), so that we can use
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an asymptotic expansion of E(Tx0
) for large values of x0. At the first order the mean behaviour pre-

vails, which can be seen as the result of the deterministic process (X̃n, Ỹn) such that (in red on the figure):

Y

X

X0

X0


X̃n = X̃n−1 − 1/2

Ỹn = Ỹn−1 − 1/2.

This suggests that
E(T 1

x0
) ∼
x0→+∞

2x0

holds.
Proposition 5.3.2. [Asymptotics of the Time of Senescence for one Chromosome] For the convergence
in distribution, when x0 tends to infinity:

2x0 − T 1
x0√

x0
−→ |W2|

where (Wt) is a standard Brownian Motion.

Proof. To find the second order of the expansion, we consider a coupling (X̄n, Ȳn) such that for n ≤ T 1
x0
,

P [(Xn, Yn) = (x, y)] = P
[
(X̄n, Ȳn) = (x, y)

]
where (X̄n, Ȳn) is the unbounded random walk on Z2.
For convenience, the subscript n of the random walks (Xn, Yn) and (X̄n, Ȳn) will from now on be put as
an argument, i.e we will rather write (X(n), Y (n)).

Classical Donsker’s theorem [Billingsley, 2009] shows that if (Bi)i is a sequence of independent Bernoulli
random variables of parameter 1/2, then(∑btx0c

i=1 (Bi − 1/2)√
x0

)
L−→

x0→+∞
1

2
(Wt)

where (Wt) is a standard Brownian Motion.
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Therefore, for the convergence in distribution,

lim
x0→+∞

(
x0 − X̄(btx0c)− btx0c/2√

x0
,
x0 − Ȳ (btx0c)− btx0c/2√

x0

)
=

(
1

2
Wt,−

1

2
Wt

)
We can now compute the asymptotic distribution of T 1

x0
. By definition, since (Xn) and (Yn) are decreasing,

and by the previous coupling,

P
(

2x0 − T 1
x0√

x0
< w

)
= P

(
T 1
x0
> 2x0 − w

√
x0

)
= P

(
T 1
x0
> b2x0 − w

√
x0c
)

= P
(
X

(⌊
x0

(
2− w√

x0

)⌋)
≥ 0, Y

(⌊
x0

(
2− w√

x0

)⌋)
≥ 0

)
= P

(
X̄

(⌊
x0

(
2− w√

x0

)⌋)
≥ 0, Ȳ

(⌊
x0

(
2− w√

x0

)⌋)
≥ 0

)
.

Therefore,

lim
x0→∞

P
(

2x0 − T 1
x0√

x0
< w

)
= lim
x0→∞

P
(
x0 −

b(2− w/√x0)x0c
2

−√x0
1

2
W2 ≥ 0,

x0 −
b(2− w/√x0)x0c

2
+
√
x0

1

2
W2 ≥ 0

)
= P (w +W2 ≥ 0, w −W2 ≥ 0)

= P (|W2| ≤ w)

so that for the convergence in distribution, when x0 tends to infinity:

2x0 − T 1
x0√

x0
−→ |W2|. (5.16)

Approximation of the expected time of senescence: Since|W2| is a random variable whose density
is given by 1/

√
πe−x

2/4
1{x≥0}, we can get an approximation of the time of senescence for the whole cell

from equation (5.15) by replacing T 1
x0

by its asymptotic (5.16), when x0 tends to infinity. This suggests
the approximation

E(Tx0
) ≈ x0 +

2x0−1∑
n=x0

[P(2x0 −
√
x0 |W2| > n)]

16

≈ x0 +

x0−1∑
k=0

[
P(|W2| <

k√
x0

)

]16

≈ x0 +

x0−1∑
k=0

[
erf
(

k

2
√
x0

)]16

(5.17)

where erf is the error function.
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To evaluate whether this expansion is indeed accurate, we ran 10, 000 simulations starting with a constant
telomere length distribution, with all telomeres having a length x0 (Fig. 5.4). As stated earlier, we take
a = 7 in the simulations, although a was chosen equal to 1 in the calculations. We find that the expan-
sion (5.16) is hardly distinguishable from the theoretical process (compare the dashed line and blue line
in Fig. 5.4) and can thus be directly used to estimate the mean of the initial state in experimental studies.

50 100 150 200 250 300 350

0

20

40

60

80

x0

E
(T

x
0
)

Simulated E (Tx0)

Asymptotic expansion

Initial State ∼ L∞

Figure 5.4: The asymptotic expansion (dashed line) corresponds to equation (5.17). The simulation of
the process starting from the initial conditions (5.14) is drawn in blue. The green line is the mean time
of senescence obtained from an initial distribution L∞, translated to make its mean vary.

When all telomeres have initially the same length, they have the same probability to be the first to
reach the threshold of senescence S. The effect of the coupling between the two extremities of the same
chromosome is very strong, so that we have to study the 32 telomeres at once. We see on figure 5.4
that the difference with the process (in green) starting from an initial distribution L∞ is negligible
(about ten generations). In fact, it is the case because of the small variance of L∞ (37 bp). On the
contrary, if the initial variance is large, the intuition is that the senescence will be essentially due to the
initial shortest telomere. It has previously been shown in [Bourgeron et al., 2015] that, starting with
an experimental distribution of telomere length, in approximately 60 percent of the lineages, the initial
shortest telomere among the 32 remains the shortest at the onset of senescence, i.e. the signaling telomere.
This phenomenon can of course not be explained when considering the initial state as deterministic and
constant.

5.3.3 Influence of the initial variance on the time of senescence

Having in mind the previous considerations, we now consider a random initial distribution. To study
only the influence of the initial variance, we consider that each initial telomere is uniformly distributed



128 CHAPTER 5. TELOMERE SHORTENING

in the interval [x0− σ, x0 + σ] and simulate the expected time of senescence as a function of σ (Fig. 5.5).

0 100 200 300 400 500

150

200

250

σ

E(L∞) = 1000

Simulated E(Tσ)
2E

(
min1≤k≤32 L

0
k

)

Figure 5.5: Starting from a uniform distribution of variance σ, the time of senescence is computed using
equation (5.18), which takes only the mean behaviour of the initial shortest telomere into account, and
compared to numerical simulations.

The time of senescence of the cell is denoted Tσ in this subsection.
Approximation of the distribution of the time of senescence. For large σ, i.e σ of the order of x0,
the time of senescence depends only on the mean time of senescence of the initial shortest telomere:

lim
σ→x0

E(Tσ) = 2 E
[

min
1≤k≤32

L0
k

]
. (5.18)

In fact, the larger σ is, the most likely it is for the initial shortest to be the signaling telomere. The effect
of the coupling is not relevant any more in this case and we can just consider that the initial shortest
telomere is performing a simple random walk on Z2 until it reaches the threshold on senescence. Let
M = E

(
min1≤k≤32 L

0
k

)
. If we accept the previous hypothesis, Tσ is now the time for a simple random

walk starting from M to reach zero. By using again Donsker’s theorem, this leads to the following
expansion for Tσ:

2M − Tσ√
M

L∼
M→∞

W2

suggesting (5.18). See figure 5.5 for numerical simulations.
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5.3.4 Impact of the initial distribution

As a conclusion, depending on the initial variance σ, we found two approximations of the expected time
of senescence:

(i) if σ is small, considering that all telomeres have a constant length equal to the mean of the initial
distribution allows a good approximation of the expected time of senescence (see figure 5.4). All
telomeres have the same probability to be the signalling telomere at the senescence so that we have
to consider the coupling between the two extremities of a given chromosome. This coupling induces
a second order that is non negligible with the biological parameters from [Teixeira et al., 2004].

(ii) if σ is large, the time of senescence is mainly determined by the shortening of the initial shortest
telomere.

With the biological parameters form [Teixeira et al., 2004] and the more general model (5.3) with a smooth
threshold at Ls, the variance of the initial state is large enough to allow the use of equation (5.18) for
the prediction for the mean time of senescence. Figure 5.6 summarises these phenomena.

5.4 Conclusion and discussion

In summary, we modelled several molecular mechanisms that contribute at various levels to telomere
length distribution and dynamics in S. cerevisiae, where they are the most exhaustively and quantita-
tively described. Among these mechanisms, we found that the asymmetry of telomere replication and
the coupling between the two telomeres belonging to the same chromosome significantly contributes to
senescence heterogeneity and we formally established their links. We also showed that the mode and
robustness of telomerase recruitment control the variance of the steady-state telomere length distribu-
tion, defining two senescence regimes. With a low initial variance, the 32 telomeres of the cell can be
considered as having the same length equal to the initial mean telomere length. In contrast, a high initial
variance leads to a major role of the initial shortest telomere in controlling senescence. Because natural
telomere length distributions can vary a lot, even within a species, we suggest that depending on the
initial variance, the two regimes we describe may operate at the same time during senescence. This work
uncovers a new layer of complexity in the relationship between senescence onset and telomere shortening
explained by the asymmetry and coupling mechanisms, and proposes methods for assessing the time of
senescence or conversely inferring parameters of the initial telomere length distribution.
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Figure 5.6: Three initial distributions for the telomere length are considered: the equilibrium of (5.3)
(which existence is proved appendice 5.A), with a smooth threshold at Ls, L∞, with a sharp threshold
at is, and a constant initial state at dE(L∞)e. For each case, 1000 simulations of the time are plotted.
The threshold of senescence is fixed at S = 19 bp. Then, the green line corresponds to equation (5.17),
the red dashed line to equation (5.18), and the black line is the simulated expectation. (a): the variance
of (5.3) is large enough so that expansion (5.18) captures the mean time of senescence. (b): the variance
of (5.5) is not large enough to use expansion (5.18), and not small enough for (5.17). (c): equation (5.17)
reproduces the mean time of senescence.



Appendix

5.A Ergodicity of the complete model

The more general model for telomere length distribution when the telomerase is active is given by equa-
tion (5.3):

Ln+1 = (Ln − a ·Bn)+ + Cn ·Gn.

Since we use its equilibrium distribution for the numerical simulations presented figure 5.6, we verify here
that the Markov chain (5.3) is ergodic.

Lemma 5.A.1. The Markov chain (Ln) defined by (5.3) is ergodic.

Proof. Note that, as before, it is easy to check that the chain is irreductible and aperiodic. The ergodicity
is again obtained from Foster-Lyapunov criteria. The shape of the function f governing the mode of
recruitment of telomerase 

f(l) = 1 if l ≤ Ls
f(l) =

1

1 + β(l − Ls)
if l > Ls

allows us to find γ < p/(1− p) · a/2 and K such that if x ≥ K, f(x) ≤ γ. Then:

— Ex(L1 − x) = −a/2 + f(x)(1− p)/p ≤ −(a/2− γ(1− p)/p) for x > K, and a/2− γ(1− p)/p > 0.

— Ex(L1) ≤ x− a/2 + (1− p)/p <∞ for x ≤ K.

The lemma is proved.

5.B If telomeres were always elongated

The threshold at is is a key feature of the dynamics of the telomeres evolving with telomerase. However,
it is interesting to see what happens if the telomerase always repairs the shortened telomeres, no matter

131
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how long or short they are. This is equivalent to choose is =∞. The model becomes:

Ln+1 = (Ln − a.Bn)+ + Gn (5.19)

where Bn is still a Bernoulli random variable of parameter 1/2, independent of all the other quantities.

Proposition 5.B.1. If a > 2(1− p)/p, then the Markov chain (Ln) defined by (5.19) is ergodic and has
a unique equilibrium distribution L∞, the distribution of which being given by:

[
p(1 + u+ · · ·+ ua−1)− 2(1− p)ua

]
E(uL∞) = pua

a∑
l=1

πa−l

(
1

u
+ · · ·+ 1

ul

)
(5.20)

Proof. We apply again Foster’s criterion:

Ex(L1 − x) = −(a/2− (1− p)/p) < 0

for a > 2(1 − p)/p. The chain is then ergodic; aperiodicity and irreductibility is, as before, immediate.
Let L∞ be the equilibrium again, (πk)k its distribution; it satisfies:

L∞ = (L∞ − a.B0)+ + G0

We can now compute the Laplace transform of L∞:

E(uL∞) = E(u(L∞−a.B0)++G0)

= E(uG0) · E(u(L∞−a.B0)+)

=
1

2
E(uG0)

[
P(L∞ < 0) + P(L∞ < a) + E

(
uL∞−a · 1{L∞≥a}

)
+ E

(
uL∞ · 1{L∞≥0}

)]
=

p

2(1− u(1− p))

[
P(L∞ < a) +

(
1

ua
+ 1

)
E(uL∞)− 1

ua

a−1∑
k=0

ukπk

]

Then:

[2ua(1− u(1− p))− p(1 + ua)]E(uL∞) = p
a−1∑
k=0

(ua − uk)πk

= pua(u− 1)
a∑
l=1

πa−l

(
1

u
+ ...+

1

ul

)
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One notes that:

2ua(1− u(1− p))− p(1 + ua) = (2− p)ua − 2ua+1(1− p)− p
= p(ua+1 − 1)− (u− 1)ua(2− p)
= (u− 1)

[
p(1 + u+ · · ·+ ua−1)− 2(1− p)ua

]

So that: [
p(1 + u+ · · ·+ ua−1)− 2(1− p)ua

]
E(uL∞) = pua

a∑
l=1

πa−l

(
1

u
+ · · ·+ 1

ul

)
The distribution of L∞ is completely determined by the a first terms (π0, · · · , πa−1). Since we already
have the normalisation constraint, we have to find a− 1 other equations satisfied by (π0, · · · , πa−1). We
are going to show that the polynomial

[
p(1 + u+ · · ·+ ua−1)− 2(1− p)ua

]
has exactly a−1 roots in the

disk of convergence of the series E(uL∞). Let:

P (u) =
[
p(1 + u+ · · ·+ ua−1)− 2(1− p)ua

]
Q(u) = (u− 1)P (u) = (2− p)ua − (2ua+1(1− p) + p)

Then: P has a− 1 roots in the unit disk if and only if Q has a roots in the unit disk.
For this, we use Rouché’s theorem: suppose there exists r0 > 1 such that:

|2ua+1(1− p) + p| < (2− p)|ua| ∀u, |u| = r0

then Q has as many roots as ua inside D(0, r0), i.e a roots. If u = reiθ:

|2ua+1(1− p) + p| < (2− p)|ua| ⇐⇒ p+ 2ra+1(1− p) < (2− p)ra

Let’s introduce ψ(r) = p+ 2ra+1(1− p)− (2− p)ra. We want to show that ψ remains negative for some
r0 > 1. Quick calculations give us:

ψ′(r) = 2(a+ 1)ra(1− p)− a(2− p)ra−1

ψ′(r) = 0 ⇐⇒ r := x0 = a(2− p)/(2(1− p)(a+ 1)).

So, ψ decreases on [0, x0], increases on [x0,+∞), and ψ(1) = 0. It is clear that it is possible to find such
an r0 if only if x0 > 1, i.e:

a > 2
1− p
p

(5.21)

If this condition is satisfied, then all 1 < r0 < x0 work. Since r0 is arbitrary, by using Rouché’s theorem,
we prove that Q has at most a− 1 roots in the unit disk, that we call (u1, · · · , ua−1). Hence, the vector
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(π0, · · · , πa−1) is solution of the following system:

puai

a∑
l=1

πa−l

(
1

ui
+ · · ·+ 1

uli

)
= 0

for i = 1 . . . a− 1.
If this system is invertible, then we can fully determine E(uL∞). If we look closer at equation(5.21), we
see that it is equivalent to say:

E(aB) > E(G)

which is the ergodicity condition. As a conclusion, for a > 2(1− p)/p, the Markov chain (Ln)n is ergodic
and its equilibrium distribution L∞ satisfies (5.20).



References

[Abdallah et al., 2009a] Abdallah, P., Luciano, P., Runge, K. W., Lisby, M., Géli, V., Gilson, E., and
Teixeira, M. T. (2009a). A two-step model for senescence triggered by a single critically short telomere.
Nature Cell Biology, 11(8):988–993.

[Abdallah et al., 2009b] Abdallah, P., Luciano, P., Runge, K. W., Lisby, M., Géli, V., Gilson, E., and
Teixeira, M. T. (2009b). A two-step model for senescence triggered by a single critically short telomere.
Nature Cell Biology, 11(8):988–993.

[Antal and Krapivsky, 2011] Antal, T. and Krapivsky, P. (2011). Exact solution of a two-type branching
process: models of tumor progression. Journal of Statistical Mechanics: Theory and Experiment,
2011(08):P08018.

[Arino et al., 1995] Arino, O., Kimmel, M., and Webb, G. F. (1995). Mathematical modeling of the loss
of telomere sequences. Journal of theoretical biology, 177(1):45–57.

[Arkus, 2005] Arkus, N. (2005). A mathematical model of cellular apoptosis and senescence through the
dynamics of telomere loss. Journal of theoretical biology, 235(1):13–32.

[Armanios et al., 2009] Armanios, M., Alder, J. K., Parry, E. M., Karim, B., Strong, M. A., and Greider,
C. W. (2009). Short telomeres are sufficient to cause the degenerative defects associated with aging.
The American Journal of Human Genetics, 85(6):823–832.

[Autexier and Lue, 2006] Autexier, C. and Lue, N. F. (2006). The structure and function of telomerase
reverse transcriptase. Annu. Rev. Biochem., 75:493–517.

[Billingsley, 2009] Billingsley, P. (2009). Convergence of probability measures. John Wiley & Sons, INC,
pages 1–287.

[Blackburn and Collins, 2011] Blackburn, E. H. and Collins, K. (2011). Telomerase: an rnp enzyme
synthesizes dna. Cold Spring Harbor perspectives in biology, 3(5):a003558.

[Bourgeron et al., 2015] Bourgeron, T., Xu, Z., Doumic, M., and Teixeira, M. T. (2015). The asymmetry
of telomere replication contributes to replicative senescence heterogeneity. Scientific Reports, 5.

135



136 REFERENCES

[Britt-Compton et al., 2009] Britt-Compton, B., Capper, R., Rowson, J., and Baird, D. M. (2009). Short
telomeres are preferentially elongated by telomerase in human cells. FEBS Letter, 583(18):3076?3080.

[Canela et al., 2007] Canela, A., Vera, E., Klatt, P., and Blasco, M. A. (2007). High-throughput telomere
length quantification by fish and its application to human population studies. Proceedings of the
National Academy of Sciences, 104(13):5300–5.

[Chai et al., 2006] Chai, W., Sfeir, A. J., Hoshiyama, H., Shay, J. W., and Wright, W. E. (2006). The
involvement of the mre11/rad50/nbs1 complex in the generation of g-overhangs at human telomeres.
EMBO reports, 7(2):225–230.

[Dao Duc and Holcman, 2013] Dao Duc, K. and Holcman, D. (2013). Computing the length of the
shortest telomere in the nucleus. Physical Review Letters, 111(22):228104.

[de Jesus and Blasco, 2013] de Jesus, B. B. and Blasco, M. A. (2013). Telomerase at the intersection of
cancer and aging. Trends in genetics, 29(9):513–520.

[Dyson et al., 2007] Dyson, J., Sánchez, E., Villella-Bressan, R., and Webb, G. F. (2007). Stabilization of
telomeres in nonlinear models of proliferating cell lines. Journal of theoretical biology, 244(3):400–408.

[Eugène et al., 2016] Eugène, S., Bourgeron, T., and Xu, Z. (2016). Effects of initial telomere length
distribution on senescence onset and heterogeneity. Submitted to Phys. Rev. Letters.

[Faure et al., 2010] Faure, V., Coulon, S., Hardy, J., and Géli, V. (2010). Cdc13 and telomerase bind
through different mechanisms at the lagging-and leading-strand telomeres. Molecular cell, 38(6):842–
852.

[Griffith et al., 1999] Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H.,
and De Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell, 97(4):503–514.

[Hayflick, 1965] Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experi-
mental cell research, 37(3):614–636.

[Hemann and Greider, 1999] Hemann, M. T. and Greider, C. W. (1999). G-strand overhangs on telomeres
in telomerase-deficient mouse cells. Nucleic acids research, 27(20):3964–3969.

[Hemann et al., 2001a] Hemann, M. T., Strong, M. A., Hao, L.-Y., and Greider, C. W. (2001a). The
shortest telomere, not average telomere length, is critical for cell viability and chromosome stability.
Cell, 107(1):67–77.

[Hemann et al., 2001b] Hemann, M. T., Strong, M. A., Hao, L.-Y., and Greider, C. W. (2001b). The
shortest telomere, not average telomere length, is critical for cell viability and chromosome stability.
Cell, 107(1):67–77.



REFERENCES 137

[Henderson and Blackburn, 1989] Henderson, E. R. and Blackburn, E. (1989). An overhanging 3’terminus
is a conserved feature of telomeres. Molecular and Cellular Biology, 9(1):345–348.

[Klobutcher et al., 1981] Klobutcher, L. A., Swanton, M. T., Donini, P., and Prescott, D. M. (1981). All
gene-sized dna molecules in four species of hypotrichs have the same terminal sequence and an unusual
3’terminus. Proceedings of the National Academy of Sciences, 78(5):3015–3019.

[Kowald, 1997] Kowald, A. (1997). Possible mechanisms for the regulation of telomere length. Journal
of molecular biology, 273(4):814–825.

[Larrivée et al., 2004] Larrivée, M., LeBel, C., and Wellinger, R. J. (2004). The generation of proper
constitutive g-tails on yeast telomeres is dependent on the mrx complex. Genes & Development,
18(12):1391–1396.

[Levy et al., 1992] Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., and Harley, C. B. (1992).
Telomere end-replication problem and cell aging. Journal of molecular biology, 225(4):951–960.

[Lingner et al., 1995] Lingner, J., Cooper, J. P., and Cech, T. R. (1995). Telomerase and dna end
replication: no longer a lagging strand problem? Science, 269(5230):1533.

[Lundblad, 2012] Lundblad, V. (2012). Telomere end processing: unexpected complexity at the end
game. Genes & development, 26(11):1123–1127.

[Lundblad and Blackburn, 1993] Lundblad, V. and Blackburn, E. H. (1993). An alternative pathway for
yeast telomere maintenance rescues est1- senescence. Cell, 73(2):347–360.

[Lundblad and Szostak, 1989] Lundblad, V. and Szostak, J. W. (1989). A mutant with a defect in
telomere elongation leads to senescence in yeast. Cell, 57(4):633–643.

[Makarov et al., 1997] Makarov, V. L., Hirose, Y., and Langmore, J. P. (1997). Long g tails at both
ends of human chromosomes suggest a c strand degradation mechanism for telomere shortening. Cell,
88(5):657–666.

[Marcand et al., 1999] Marcand, S., Brevet, V., and Gilson, E. (1999). Progressive cis-inhibition of
telomerase upon telomere elongation. The EMBO Journal, 18(12):3509–3519.

[Martens et al., 2000] Martens, U. M., Chavez, E. A., Poon, S. S., Schmoor, C., and Lansdorp, P. M.
(2000). Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Experi-
mental cell research, 256(1):291–299.

[McElligott and Wellinger, 1997] McElligott, R. and Wellinger, R. J. (1997). The terminal dna structure
of mammalian chromosomes. The EMBO journal, 16(12):3705–3714.



138 REFERENCES

[Okazaki et al., 1968] Okazaki, R., Okazaki, T., Sakabe, K., Sugimoto, K., and Sugino, A. (1968). Mecha-
nism of dna chain growth. i. possible discontinuity and unusual secondary structure of newly synthesized
chains. Proceedings of the National Academy of Sciences, 59(2):598–605.

[Olofsson and Bertuch, 2010] Olofsson, P. and Bertuch, A. A. (2010). Modeling growth and telomere
dynamics in saccharomyces cerevisiae. Journal of theoretical biology, 263(3):353–359.

[Olofsson and Kimmel, 1999] Olofsson, P. and Kimmel, M. (1999). Stochastic models of telomere short-
ening. Mathematical biosciences, 158(1):75–92.

[Olovnikov, 1973] Olovnikov, A. M. (1973). A theory of marginotomy: the incomplete copying of template
margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal
of theoretical biology, 41(1):181–190.

[op den Buijs et al., 2004] op den Buijs, J., van den Bosch, P. P., Musters, M. W., and van Riel, N. A.
(2004). Mathematical modeling confirms the length-dependency of telomere shortening. Mechanisms
of ageing and development, 125(6):437–444.

[Ow and Dunstan, 2014] Ow, S.-Y. and Dunstan, D. E. (2014). A brief overview of amyloids and
alzheimer’s disease. Protein Science, 23(10):1315–1331.

[Portugal et al., 2008] Portugal, R., Land, M., and Svaiter, B. F. (2008). A computational model for
telomere-dependent cell-replicative aging. BioSystems, 91(1):262–267.

[Proctor and Kirkwood, 2002] Proctor, C. J. and Kirkwood, T. B. (2002). Modelling telomere shortening
and the role of oxidative stress. Mechanisms of ageing and development, 123(4):351–363.

[Proctor and Kirkwood, 2003] Proctor, C. J. and Kirkwood, T. B. (2003). Modelling cellular senescence
as a result of telomere state. Aging cell, 2(3):151–157.

[Raices et al., 2008] Raices, M., Verdun, R. E., Compton, S. A., Haggblom, C. I., Griffith, J. D., Dillin,
A., and Karlseder, J. (2008). C. elegans telomeres contain g-strand and c-strand overhangs that are
bound by distinct proteins. Cell, 132(5):745–757.

[Riha et al., 2000] Riha, K., McKnight, T. D., Fajkus, J., Vyskot, B., and Shippen, D. E. (2000). Analysis
of the g-overhang structures on plant telomeres: evidence for two distinct telomere architectures. The
Plant Journal, 23(5):633–641.

[Robert, 2003] Robert, P. (2003). Stochastic Networks and Queues. Stochastic Modelling and Applied
Probability Series. Springer-Verlag, New York.

[Rodriguez-Brenes and Peskin, 2010] Rodriguez-Brenes, I. A. and Peskin, C. S. (2010). Quantitative
theory of telomere length regulation and cellular senescence. Proceedings of the National Academy of
Sciences, 107(12):5387–5392.



REFERENCES 139

[Rubelj and Vondracek, 1999] Rubelj, I. and Vondracek, Z. (1999). Stochastic mechanism of cellular
aging–abrupt telomere shortening as a model for stochastic nature of cellular aging. Journal of theo-
retical biology, 197(4):425–438.

[Shampay and Blackburn, 1988] Shampay, J. and Blackburn, E. H. (1988). Generation of telomere-
length heterogeneity in saccharomyces cerevisiae. Proceedings of the National Academy of Sciences,
85(2):534–538.

[Sidorov et al., 2004] Sidorov, I. A., Gee, D., and Dimitrov, D. S. (2004). A kinetic model of telomere
shortening in infants and adults. Journal of Theoretical Biology, 226(2):169–175.

[Soudet et al., 2014] Soudet, J., Jolivet, P., and Teixeira, M. T. (2014). Elucidation of the dna end-
replication problem in saccharomyces cerevisiae. Molecular cell, 53(6):954–964.

[Tan, 1999] Tan, Z. (1999). Intramitotic and intraclonal variation in proliferative potential of human
diploid cells: explained by telomere shortening. Journal of theoretical biology, 198(2):259–268.

[Teixeira et al., 2004] Teixeira, M. T., Arneric, M., Sperisen, P., and Lingner, J. (2004). Telomere length
homeostasis is achieved via a switch between telomerase -extendible and -nonextendible states. Cell,
117(3):323–35.

[Watson, 1972] Watson (1972). Origin of concatemeric t7 dna. Nat. New Biol., 239(94):197–201.

[Wellinger et al., 1993] Wellinger, R. J., Wolf, A. J., and Zakian, V. A. (1993). Saccharomyces telomeres
acquire single-strand tg 1–3 tails late in s phase. Cell, 72(1):51–60.

[Wellinger and Zakian, 2012a] Wellinger, R. J. and Zakian, V. A. (2012a). Everything you ever wanted
to know about saccharomyces cerevisiae telomeres: beginning to end. Genetics, 191(4):1073–1105.

[Wellinger and Zakian, 2012b] Wellinger, R. J. and Zakian, V. A. (2012b). Everything you ever wanted
to know about saccharomyces cerevisiae telomeres: beginning to end. Genetics, 191(4):1073?1105.

[Wu et al., 2012] Wu, P., Takai, H., and de Lange, T. (2012). Telomeric 3’ overhangs derive from resection
by exo1 and apollo and fill-in by pot1b-associated cst. Cell, 150(1):39–52.

[Xu et al., 2013] Xu, Z., Dao Duc, K., Holcman, D., and Teixeira, M. T. (2013). The length of the shortest
telomere as the major determinant of the onset of replicative senescence. Genetics, 194(4):847–857.

[Xu et al., 2015] Xu, Z., Fallet, E., Paoletti, C., Fehrmann, S., Charvin, G., and Teixeira, M. T. (2015).
Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages. Nature
communications, 6.

[Zou et al., 2004] Zou, Y., Sfeir, A., Gryaznov, S. M., Shay, J. W., and Wright, W. E. (2004). Does a
sentinel or a subset of short telomeres determine replicative senescence? Molecular biology of the cell,
15(8):3709–3718.


	Résumé
	Abstract
	General introduction
	References
	I Stochastic modelling of protein polymerisation
	An introduction to protein polymerisation
	Prion diseases and prion-like diseases
	Polymerisation of proteins
	Collecting data
	Intermediate states
	Review of polymerisation models

	Mathematical modelling of protein polymerisation
	Deterministic modelling
	Stochastic modelling of chemical reactions

	Scaling methods
	Presentation of subsequent chapters
	Chapter II: Introduction of a minimalistic 2-step model
	Chapter III: Asymptotics of stochastic protein assembly models

	Future directions

	Insights into the variability of nucleated amyloid polymerisation by a minimalistic model of stochastic protein assembly
	A phenomenological stochastic model
	Asymptotic evolution of the number of monomers
	Asymptotics of the time for  reaction completion
	Estimation of the parameters

	Conclusion and discussion
	Supplemental material
	Proof of the law of large numbers
	Proof of central limit result
	Explicit solution of the SDE for U
	Proof of the asymptotics for time for  reaction completion
	Proof of asymptotics of variance of the time for  reaction completion
	Qualitative analysis of the behaviour of x1 and U


	Asymptotics of stochastic protein assembly models 
	Introduction
	The Basic Model
	Models with Misfolding Phenomena
	Models with Scaled Reaction Rates

	Stochastic Models with Misfolding Phenomena
	Notations and Definitions
	Evolution Equations
	Random Measures Associated to Occupation Times
	A Stochastic Averaging Principle
	Central Limit Theorem

	Models with Scaled Reaction Rates

	References

	II Stochastic modelling of telomere shortening
	An introduction to telomere shortening
	Biology of telomere shortening
	Telomeres, replicative senescence: definitions
	The telomere end-replication problem
	Ageing and Cancer

	Some mathematical models of telomere shortening

	Impact of the initial telomere distribution on the onset of senescence
	Introduction
	Telomeres evolving with telomerase
	Unit shortening, a=1
	Arbitrary a
	Numerical application

	Impact of the steady state distribution on the onset of senescence
	Distribution of the time of senescence
	Impact of the initial mean on the time of senescence
	Influence of the initial variance on the time of senescence
	Impact of the initial distribution

	Conclusion and discussion
	Appendices
	Ergodicity of the complete model
	If telomeres were always elongated

	References


