N
N

N

HAL

open science

Inconsistency Handling in Ontology-Mediated Query
Answering

Camille Bourgaux

» To cite this version:

Camille Bourgaux. Inconsistency Handling in Ontology-Mediated Query Answering. Artificial In-

telligence [cs.Al]. Université Paris Saclay (COmUE), 2016. English. NNT: 2016SACLS292 .

01378723

HAL Id: tel-01378723
https://theses.hal.science/tel-01378723
Submitted on 10 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01378723
https://hal.archives-ouvertes.fr

UNIVERSITE

®
universite P SRS

PARIS-SACLAY

NNT : 2016SACLS292

THESE DE DOCTORAT
DE LUNIVERSITE PARIS-SACLAY
PREPAREE A L’UNIVERSITE PARIS-SUD

Ecole doctorale n°580
Sciences et technologies de I'information et de la communication
(STIC)

Spécialité de doctorat : Informatique

par
MME CAMILLE BOURGAUX

Gestion des incohérences
pour l'acces aux données en présence d’ontologies

Theése présentée et soutenue a Orsay, le 29 septembre 2016.

Composition du Jury :

Mme CHRISTINE FROIDEVAUX Professeur (Présidente)
Université Paris-Sud

M. MAURIZIO LENZERINI Professeur (Rapporteur)
Sapienza Universita di Roma

Mme MARIE-LAURE MUGNIER Professeur (Rapporteur)
Université Montpellier

Mme MARIE-CHRISTINE ROUSSET Professeur (Examinatrice)
Université de Grenoble

Mme MEGHYN BIENVENU Chargée de recherche (Directrice de thése)
CNRS, Université Montpellier

M. FRANGOIS GOASDOUE Professeur (Directeur de thése)

Université Rennes 1

REMERCIEMENTS

Je tiens a remercier tous ceux qui ont permis que ce travail de these se déroule dans de bonnes
conditions.

En premier lieu, un trés grand merci a Meghyn et Francois pour avoir été d’excellents
directeurs de these. Merci pour votre confiance et votre disponibilité. Vos conseils et votre
aide ont été précieux. Je suis consciente de la chance que j’ai eu de travailler avec vous et
espere en avoir encore 1’occasion.

Je remercie vivement Maurizio Lenzerini et Marie-Laure Mugnier d’avoir accepté d’€tre
rapporteurs et pour leur relecture attentive de ce manuscrit. Merci également a Christine
Froidevaux et Marie-Christine Rousset d’avoir accepté de faire partie de mon jury.

Merci aussi a tous ceux que j’ai rencontrés dans le cadre de cette these: mes collegues du
LRI, membres de I’équipe LaHDAK, des équipes pédagogiques dans lesquelles j’ai effectué
mon enseignement, ou des équipes administratives et techniques; ceux de I’équipe Inria
CEDAR, en particulier ceux qui m’ont aidée pour les expérimentations, et ceux de I’équipe
GraphIK du LIRMM qui m’a accueillie pendant trois mois. Je remercie en particulier les
membres du projet PAGODA pour les discussions enrichissantes que nous avons eues.

Enfin, merci a mes proches qui m’ont accompagnée durant ces trois ans. Merci pour
votre soutien et les bons moments partagés.

ABSTRACT

The problem of querying description logic knowledge bases using database-style queries (in
particular, conjunctive queries) has been a major focus of recent description logic research.
An important issue that arises in this context is how to handle the case in which the data is
inconsistent with the ontology. Indeed, since in classical logic an inconsistent logical theory
implies every formula, inconsistency-tolerant semantics are needed to obtain meaningful
answers. This thesis aims to develop methods for dealing with inconsistent description logic
knowledge bases using three natural semantics (AR, IAR, and brave) previously proposed in
the literature and that rely on the notion of a repair, which is an inclusion-maximal subset
of the data consistent with the ontology. In our framework, these three semantics are used
conjointly to identify answers with different levels of confidence. In addition to developing
efficient algorithms for query answering over inconsistent DL-Lite knowledge bases, we
address three problems that should support the adoption of this framework: (i) query result
explanation, to help the user to understand why a given answer was (not) obtained under
one of the three semantics, (ii) query-driven repairing, to exploit user feedback about errors
or omissions in the query results to improve the data quality, and (ii1) preferred repair
semantics, to take into account the reliability of the data. For each of these three topics, we
developed a formal framework, analyzed the complexity of the relevant reasoning problems,
and proposed and implemented algorithms, which we empirically studied over an inconsistent
DL-Lite benchmark we built. Our results indicate that even if the problems related to dealing
with inconsistent DL-Lite knowledge bases are theoretically hard, they can often be solved
efficiently in practice by using tractable approximations and features of modern SAT solvers.

RESUME

Interroger des bases de connaissances avec des requétes conjonctives a été une préoccupation
majeure de la recherche récente en logique de description. Une question importante qui
se pose dans ce contexte est la gestion de données incohérentes avec 1’ontologie. En effet,
une théorie logique incohérente impliquant toute formule sous la sémantique classique,
I’utilisation de sémantiques tolérantes aux incohérences est nécessaire pour obtenir des
réponses pertinentes. Le but de cette these est de développer des méthodes pour gérer des
bases de connaissances incohérentes en utilisant trois sémantiques naturelles (AR, IAR et
brave) proposées dans la littérature et qui reposent sur la notion de réparation, définie comme
un sous-ensemble maximal des données cohérent avec 1’ontologie. Nous utilisons ces trois
sémantiques conjointement pour identifier les réponses associées a différents niveaux de
confiance. En plus de développer des algorithmes efficaces pour interroger des bases de
connaissances DL-Lite incohérentes, nous abordons trois problemes: (i) I’explication des
résultats des requétes, pour aider 1’utilisateur a comprendre pourquoi une réponse est (ou
n’est pas) obtenue sous une des trois sémantiques, (ii) la réparation des données guidée
par les requétes, pour améliorer la qualité des données en capitalisant sur les retours des
utilisateurs sur les résultats de la requéte, et (iii) la définition de variantes des sémantiques
a ’aide de réparations préférées pour prendre en compte la fiabilité des données. Pour
chacune de ces trois questions, nous développons un cadre formel, analysons la complexité
des problémes de raisonnement associés, et proposons et mettons en oeuvre des algorithmes,
qui sont étudiés empiriquement sur un jeu de bases de connaissance DL-Lite incohérentes
que nous avons construit. Nos résultats indiquent que méme si les problemes a traiter sont
théoriquement durs, ils peuvent souvent étre résolus efficacement dans la pratique en utilisant
des approximations et des fonctionnalités des SAT solveurs modernes.

TABLE OF CONTENTS

List of figures xiii
List of tables XV
List of algorithms xvii
1 Introduction 1
2 Preliminaries 7
2.1 Ontology-mediated query answering in DL-Lite 7
2.1.1 Description logicbasics 7
2.1.2 Query answering over DL-Lite knowledge bases 12
2.2 Inconsistency-tolerant semanticso 21
22.1 The ARsemantics 22
2.2.2 The IAR and brave semantics 26
2.2.3 Other inconsistency-tolerant semantics 29
224 Summary e e e e e e e e 39
3 Efficient inconsistency-tolerant query answering in DL-Lite 41
3.1 Algorithms 41
32 TheCQAPrisystem it 43
33 Experiments e e e e 45
3.3.1 The CQAPribenchmark 46
3.3.2 Experimental setting 49
3.3.3 Experimentalresults 49

3.4 Discussion: systems and benchmarks for inconsistency-tolerant query an-
SWETINE . . . v v e v e e e e e e e e e e e e e e e e e 58
3.4.1 Systems for inconsistency-tolerant query answering 58
3.4.2 Experimental settings involving inconsistent DL-Lite KBs 59
4 Explaining inconsistency-tolerant query answering 61
4.1 Explaining queryresultso 61

4.2 Complexity analysis and algorithms 66

Table of contents

4.2.1 Positive brave and IAR-answerso 67

4.2.2 Positive AR-answerso L Lo 67

423 Negative AR-answers L o 71

4.2.4 Negative [AR-answers 75

4.3 Implementation and experiments 77
4.3.1 The explanations framework within CQAPri 77

4.3.2 Experimental setting 78

433 Experimentalresults 78

4.4 Discussion about the notion of responsibility 91
5 Query-driven repairing 99
5.1 Query-driven repairing problem L L. 99
5.2 Optimal repairplans 102
5.2.1 Characterization and complexity analysis 104

5.2.2 Genericalgorithmso oL 113

5.3 Optimal deletion-only repairplans 116
5.3.1 SAT encoding and complexity results 117

5.3.2 Algorithm for optimal deletion-only repairplans 121

5.3.3 Improvements to the algorithm 124

5.4 Considering the AR semantics for wanted answers 127
5.4.1 Characterization and complexity of optimal repair plans 128

5.4.2 Discussion: impact of AR semantics on the algorithms 137

5.5 Implementation and experiments 139
5.5.1 Computing deletion-only repair plans with CQAPri 139

5.5.2 Experimental setting 140

5.53 Experimentalresults, 141

6 Preferred repair semantics 143
6.1 Preferred repair semantics 143
6.1.1 Preferencerelations 144

6.1.2 Discussion: other notions of prioritized repairs 146

6.2 Complexity analysis. 148
6.3 Query answering via reduction to SAT for C p-repair based semantics . . . 164
6.4 Implementation and experiments 168
6.4.1 Consistent query answering with priorities in CQAPri 168

6.4.2 Prioritized ABoxes 169

6.4.3 Experimentalresults 169

7 Related work 177
7.1 Consistent query answeringoutside DL 177
7.2 Explanations 178
7.2.1 Justifications of entailed axioms 178

7.2.2 Explanation of query answers 179

7.2.3 Queryabduction 180

Table of contents

7.3 Evolution, revision and updates
7.4 Inconsistency and uncertainty handlingin DL

8 Conclusion and perspectives
References

Appendix A Complexity of reasoning in propositional logic

A.1 Complexity theory
A.2 Propositional logic L.
A.3 Problems used in reductions
A.3.1 NP orcoNP-hard problems
A32 BHy-hardproblems.
A33 Abor Af[O(log n)|-hard problems
A34 YBorllh-hardproblems

Appendix B Résumé en Francais

Index

X1

LLIST OF FIGURES

2.1
2.2

23

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

4.3
4.4
4.5

5.1
5.2
5.3
54

5.5
5.6
5.7

5.8
5.9

6.1

Reduction from SAT for coNP-hardness of AR query answering. 25
Reduction from Parity(3SAT) for A5[O(log n)]-hardness of ICR query an-

SWETINZ. .« . o v v v e it e e e e e e e e e e e e e e 34
Relationships between inconsistency-tolerant semantics. 40
SAT encoding for AR entailment. 42
LUBM%0 ontology extended with negative inclusions. 47
Queries used in experiments. e 51
Query answering time w.r.t. ABoxsize. 55
Query answering time w.r.t. proportion of conflicts. 56

Proportion of time spent by CQAPri in the different phases of query answering. 57

Reductions for hardness of explaining positive and negative AR-answers. . 74
Reduction for hardness of generating and recognizing best explanations of

negative IAR-answers. 77
Explanation time w.r.t. ABoxsize. 82
Explanation time w.r.t. proportion of conflicts. 83
Proportion of time spent by CQAPri in the different phases of query answers

explanation. L L 84
Reduction for coNP-hardness of optimal repair plans recognition. 111
SAT encoding for potential solutions. 117
Reductions for hardness of problems related to potential solutions. 121
Reduction from Parity(SAT) for AL[O(log n)]-hardness of recognition of

optimal repair plans using AR semantics. 134
Reduction from QBF 5 for Hg-hardness of recognition of < (U, Wy or =y w-

optimal repair plans using AR semantics. 136
Reduction from QBF; 5 for Hg—hardness of recognition of globally =<y 74-

optimal repair plans using AR semantics. 137
Assertions of the original ABox considered false for building QRPs. 140
Time for computing the necessarily false and nonfalse assertions. 141
Time for ranking relevant assertions. 142
Reduction from SAT for NP-hardness of C p-brave query answering. 151

Xiii

List of figures

6.2 Reduction for Ab-hardness of <p-AR or <p-brave query answering. . . . 153
6.3 Reduction for AL[O(log n)]-hardness of <-AR query answering. 156
6.4 Reduction from UNSAT for coNP-hardness of C p-IAR query answering. . 160
6.5 Reduction from Parity(SAT) for A5[O(log n)]-hardness of C p-IAR query
answering w.r.t. combined complexity. 162
6.6 Cp-AR query answering time w.r.t. proportion of conflicts on ulcYpZW. . 170
6.7 Cp-AR query answering time w.r.t. proportion of conflicts on u20cYpZW. . 171

6.8 Cp-AR query answering time w.r.t. ABox size on uXclpZW. 172
6.9 Query answering time w.r.t. proportion of conflicts on ulcYp3a. 174
6.10 Query answering time w.r.t. ABox sizeonuXclp3a. 175

X1V

LLIST OF TABLES

2.1
2.2
23
24
2.5

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

5.1
52

6.1

6.2

Syntax and semantics of DL concept constructors.
Syntax and semantics of DL role constructors.
Syntax and semantics of TBox axioms.
Syntax and semantics of ABox assertions.
Complexity of query answering over DL-Lite KBs under inconsistency-
tolerant semantics. L. oL e e

Characteristics of ABoxes used in experiments.
Characteristics of queries used in experiments.
Time for constructing the conflict graph.
Number of answers in the different classes.

Data complexity results for CQs explanations in DL-Liteg.
Distribution of explanation times.
Distribution of explanation times for negative answers, Case 1.
Distribution of explanation times for negative answers, Case 2.
Distribution of explanation times for negative AR-answers, Case 3.
Distribution of explanation times for negative IAR-answers, Case 4.

Complexity of optimal repair plan recognition in DL-Liteg.
Number of false and true answers per query and ABox.

Data and combined complexity of CQ entailment over DL-Litegx KBs under
AR, TAR, and brave semantics for different types of preferred repairs.
Number of answers of eachkind.

XV

O © © O

LLIST OF ALGORITHMS

2.1
2.2
2.3
3.4
4.5
5.6
5.7
5.8

PerfectRef[Calvanese et al. 2007] 15
ComputeConflicts 19
ComputeCauses 20
ClassifyQuery e e e 44
RelNecNeglAR e 78
OptimalRepairPlan,, o o 115
OptDeletionRepairPlan 123
IndependentSubproblems oo 125

xXvii

INTRODUCTION

Ontology-mediated query answering

With the increase of the volume of available data comes the problem of being able to exploit
it. Querying data in an accurate and efficient way is a complex task and has attracted a
lot of interest. Among the challenges to address in this context, it is necessary to allow
the integration of data coming from different sources using different vocabularies and the
formulation of queries in a simple and intuitive way, with a vocabulary that closely matches
the user’s conceptualization of the world. For instance, suppose that someone needs to
find the professors of a university department who teach a course related to the topic of
artificial intelligence. Suppose that he has got a record of the department members with their
positions, and a list of courses with their instructors. If he simply integrates this data into a
traditional database and queries it in the straightforward way, asking “select every professor
who teaches artificial intelligence”, he may encounter two problems: first, the positions of the
department members will not be recorded simply as “professor’”” but rather with their degree
of seniority (“full professor”, “associate professor’” and “assistant professor” for instance),
second many courses that concern a subfield of artificial intelligence will be missed by such
a query (for instance courses recorded as “machine learning”, “knowledge representation”,
or “description logics” will not be recognized as artificial intelligence courses). He therefore
has to find first the different denominations that correspond to a professor position and the
different fields and subfields of artificial intelligence, and reformulate his query accordingly,
which may become quite complex. Ontology-mediated query answering is a recent paradigm
that adds a semantic layer on top of the data by the means of a logical theory called an
ontology, which formalizes knowledge about a particular domain and is used to reason about
the data in order to provide more complete answers to queries. In our example, adding to
the dataset an ontology that provides knowledge about the fields and subfields of computer
science as well as about the university organization will allow the user to get every relevant
answer while posing his question in the way which is natural for him.

Description logics [Baader ef al. 2003] are a family of fragments of classical first-order
logics which are widely used as ontology languages. A description logic knowledge base
consists in an ontology, called a TBox, which expresses general knowledge and rules about
the domain of interest, and a dataset, called an ABox, which provides information about

Introduction

specific individuals. For instance, the TBox of a knowledge base about the university domain
could indicate that courses are taught by faculty members and followed by students, and its
ABox could state that an individual named Ann gives a database course which is taken by
another individual Bob.

Enriching the data with an ontology comes at a price: using an ontology increases
the computational complexity of query answering. Since scalability is essential for data-
rich applications, there has been an increasing interest in lightweight description logics,
which offer a good trade-off between the expressivity of the language and the computa-
tional complexity of the associated reasoning problems. In particular, the DL-Lite family
[Calvanese et al. 2007] has been especially tailored for ontology-mediated query answering
and allows it to be reduced, via query rewriting, to standard database query evaluation. In
this thesis we adopt the language DL-Liter, which is the dialect of the DL-Lite family that
underlies OWL 2 QL [Motik et al. 2012], i.e. the OWL2 profile devoted to query answering
of the standard for the Semantic Web.

Inconsistency handling

An important issue that arises in the context of ontology-mediated query answering is how
to handle the case in which the data is inconsistent with the ontology. Indeed, while the
TBox is generally rather small and extensively debugged by experts of the domain, the ABox
is typically large, subject to frequent modifications, and may results from the integration
of different data sources, which make errors likely. The problem is that an inconsistent
knowledge base implies any logical sentence, so posing a query over such a knowledge base
will result in getting every possible answer formed with the individuals of the knowledge
base as an answer. For instance, if a knowledge base indicates that it is not possible to be
a full professor and an assistant professor at the same time, and that an individual Ann is
said to be both, the knowledge base will allow us to derive not only that Ann is a full and an
assistant professor, but also that Ann is a course for example, which is clearly undesirable.
There are two possible attitudes in this context. The first one is to restore the consistency,
for instance by dropping one or both assertions about the seniority of Ann in our example,
but it may be impossible to do that in a satisfying way. Indeed, we often do not know how
to repair the data (is Ann an assistant, or a full professor?), and removing every piece of
information that is doubtful because involved in some contradiction will often lead to an
unacceptable loss of information. Moreover, examining manually every conflict in the data
will be too costly when repairing a large dataset. The second option is to decide to live
with the inconsistencies, by trying to get meaningful answers to queries from inconsistent
knowledge bases. For instance, it may be acceptable to derive that Ann is a professor, but
not that she is a course. Several inconsistency-tolerant semantics have been defined to
achieve this goal. The most well-known is the AR semantics [Lembo et al. 2010], which
retrieves the answers which hold in each of the maximal consistent subsets of the data, called
repairs. This semantics amounts to considering true the answers that hold no matter which
possible world is chosen. For instance, it will allow us to find that Ann is a professor, without
any information on her degree of seniority. The drawback of this semantics is that it is
computationally hard. Indeed, over DL-Lite knowledge bases, conjunctive query entailment

under AR semantics is intractable, even when the complexity is measured only w.r.t. the
size of the data. To overcome this difficulty, a data-tractable sound approximation of AR,
called the IAR semantics, has been introduced in [Lembo et al. 2010]. The IAR-answers are
obtained by querying the intersection of the repairs. This semantics is also interesting by
itself, because it retains only the “surest” answers, whose supports are not involved in any
contradiction. Under this semantics, no information about Ann will be retrieved, because the
reasons for thinking that Ann is a professor are both contradicted, so not completely reliable.
At the other end of the scale, the brave semantics provides every answer that holds in some
repair [Bienvenu & Rosati 2013]. It may indeed be important for some applications not to
miss any possible answer that has some consistent reason to hold. Using the brave semantics
allows us to find that Ann may be a full professor as well as she may be an assistant professor.

Contributions

This thesis aims at developing methods to practically deal with inconsistent knowledge bases.
In particular, we defend the idea that even if the AR semantics is intractable, it can be used
in practice.

Our first contribution is indeed an approach for classifying the answers into classes of
increasing reliability, depending on they are entailed under IAR, AR or brave semantics. For
the AR semantics, the brave and IAR semantics provide tractable upper and lower bounds
and a translation into propositional satisfiability allows us to decide whether the brave and
non-IAR answers are entailed under AR.

Beyond efficient query answering, it is important to be able to provide explanations of
the query results under inconsistency-tolerant query answering. Indeed, a user may naturally
wonder why an answer belongs to one of these classes (e.g. why Ann is said to be a professor
under AR semantics but not under IAR semantics?). That is why our second contribution
is a framework for explaining positive and negative answers of a query under AR, IAR
or brave semantics (e.g. Ann is probably a professor because she is either an assistant
professor or a full professor in every possible world, but none of these reasons is beyond
doubt since they contradict each other). We believe that such facilities are essential to make
inconsistency-tolerant semantics really usable.

Our third contribution is a query-driven approach for partially repairing the data. Indeed,
while alternative semantics are necessary to deal with inconsistent knowledge bases, they
cannot replace the need for improving the data quality. We propose to exploit the feedback
of the user at query time about the answers that are correct or incorrect to clean the dataset,
focusing on the part which is useful for the user needs and that he knows well enough to
repair (e.g. if the user knows that Ann is actually an assistant professor, we can delete the
data asserting that she is a full professor, since we know that she cannot be both).

The last contribution of the thesis is the investigation of variants of AR, IAR and brave
semantics obtained by replacing the classical notion of a repair by preferred repairs. This
allows us to take into account the information about the reliability of the data (e.g. if the
piece of information that Ann is an assistant professor comes from a more reliable source
than those that Ann is a full professor, we can keep only the repairs that contain the former,
and conclude that Ann is a professor even under IAR semantics).

Introduction

For each of the issues we consider, we analyze the computational complexity of the
related problems, and propose algorithms to solve them, relying on performances of modern-
day SAT solvers to practically handle those which are hard. We implemented most of
these algorithms in our CQAPri! prototype and empirically study their properties using a
benchmark we built upon the well-known DL-Lite benchmark LUBM3,.

Organization of the thesis

The thesis is organized as follows:

Chapter 2 This chapter introduces the framework of ontology-mediated query answering
in the setting of description logics, focusing on the lightweight description logic DL-Liter
that we adopt in this work. In the second half of chapter, we review the alternative semantics
that have been proposed to deal with inconsistent data in this context.

Chapter 3 In this chapter, we present the algorithms implemented in our CQAPri prototype
system for query answering under AR, IAR and brave semantics over DL-Liter knowledge
bases. Then, we describe the experimental setting we built to evaluate it, as well as the results
we obtained, and briefly discuss other existing systems and benchmarks for inconsistency-
tolerant query answering.

Chapter 4 We address in this chapter the problem of explaining why a tuple is or is
not an answer to a query under the IAR, AR or brave semantics. We define data-centric
explanations for positive and negative answers, study their computational complexity in DL-
Lite, and propose algorithms to compute them by exploiting solvers for Boolean satisfaction
and optimization problems. We also present our implementation within CQAPri and the
experiments we conducted.

Chapter 5 This chapter addresses the problem of query-driven repairing of inconsistent
DL-Liter knowledge bases. The scenario we consider is the following: a user receives
query answers under inconsistency-tolerant semantics, and provides feedback about which
answers are erroneous, or are indeed answers and should hold under a stronger semantics.
The aim is to find a set of ABox modifications (deletions and additions), called a repair
plan, that addresses as many of the defects as possible. After formalizing this problem and
introducing different notions of optimality, we investigate the computational complexity of
reasoning about optimal repair plans and propose interactive algorithms for computing such
plans. For deletion-only repair plans, we propose an improved algorithm and present the
implementation of its core components in our CQAPri system.

Chapter 6 In this chapter, we investigate variants of the AR, IAR and brave semantics
obtained by replacing the classical notion of repair by one of four different types of preferred

lavailable at www.Iri.fr/~bourgaux/CQAPri

www.lri.fr/~bourgaux/CQAPri

repairs (e.g. cardinality-maximal repairs, or repairs based on priority levels that distinguish
more or less reliable assertions). We analyze the complexity of query answering under the
resulting semantics, and propose an approach exploiting a SAT encoding for the semantics
based on repairs using priority levels, whose data complexity is “only” coNP-complete, as
for plain AR semantics. We then present our implementation of these semantics and its
experimental evaluation.

Chapter 7 In this chapter, we position our work in a more general context and provide
more details on some topics mentioned in the other chapters.

Chapter 8 This chapter summarizes our contributions and indicates some possible exten-
sions of this work.

Appendix A The appendix provides basics elements of computational complexity theory
and of propositional logic, and recalls the definitions of the different complexity classes
appearing in this thesis and of the problems used in the complexity proofs.

PRELIMINARIES

In this chapter, we first introduce the framework of ontology-mediated query answering in
the setting of description logics. We focus in this thesis on the lightweight description logic
DL-Lite that has been especially designed for scalable query answering, and in particular on
its dialect DL-Liter. In the second half of chapter, we review the alternative semantics that
have been proposed to deal with inconsistent data in the context of ontology-mediated query
answering.

2.1 Ontology-mediated query answering in DL-Lite

Ontologies are logical theories that formalize the knowledge about a domain of interest. Using
such formalism makes information sharing easier by providing a standardized terminology
with an unambiguous semantics. Moreover, by making knowledge processable by computers,
ontologies support complex automatic reasoning to infer new knowledge from that originally
formulated by some experts of the domain. Recent years have seen an increasing interest in
ontology-mediated query answering (OMQA) in which conceptual knowledge provided by
an ontology is exploited when querying incomplete data (cf. [Bienvenu & Ortiz 2015] for
a survey). The ontology provides an enriched vocabulary that may help users to formulate
queries in a terminology that is closer to the one they are familiar with, without having to
take into account the way the data is stored and the vocabulary of the database schema. It
also allows the integration of different data sources using different vocabularies in one single
conceptual model. Moreover, OMQA provides more complete answers to queries by taking
into account implicit consequences of the facts stored in the data that follow from the rules
formalized in the ontology.

2.1.1 Description logic basics

Description logics (DLs) [Baader et al. 2003] are a family of decidable fragments of classical
first-order predicate logic, which are popular ontology languages. They provide the basis for
the web ontology language (OWL) [Motik et al. 2012], which is the standard of the World
Wide Web Consortium (W3C) for the Semantic Web.

Preliminaries

Syntax

A DL knowledge base is built using a DL vocabulary consisting of three countably infinite,
pairwise disjoint sets of symbols:

* N, is the set of individuals, which are constants referring to specific objects of the
domain of interest

* Nc is the set of concept names, which are unary predicates representing sets of
objects sharing some common characteristics. Concepts are called classes in OWL
terminology.

* NRg is the set of role names, which are binary predicates representing relationships
between objects. Roles are OWL properties.

In this thesis, we will use the university domain for examples.

Example 2.1.1. To build a knowledge base about the university domain, we need to refer
to specific university employees, students, courses, and departments like ann, bob, carl,
D Bcourse, Alcourse, C'Sdepartment: they are individuals of N;. To represent sets of
individuals like professors, students, courses, or departments, we need concept names: Prof,
Student, Course, Department are in N¢. To talk about relations between them, for instance
to express that someone teaches a course, advises a student, or is member of a department,
we use role names: Teach, Advise, MemberOf are in Ng. N

This vocabulary is used to represent the knowledge about the domain of interest with
two kinds of axioms. Terminological axioms express properties of concepts and roles and
relations between them, thus specify intensional knowledge, that concern whole groups of
individuals (e.g. all professors are PhD holders, what is taught is a course). Assertions are
facts about specific individuals which express that an individual belongs to some concept
or that a role links two given individuals (e.g. Ann is a professor, Ann teaches the database
course), thus specify extensional knowledge.

Definition 2.1.2 (Knowledge base). A TBox is a finite set of terminological axioms and an
ABox is a finite set of assertions. A knowledge base (KB) K = (T,.A) is composed of a
TBox 7 and an ABox A. The set of individuals that appear in assertions of A is denoted by
Ind(A).

Terminological axioms can involve complex concepts and roles built from the symbols in
the vocabulary using constructors. Each particular DL is distinguished by the constructors it
offers and restrictions on how to use them in terminological axioms, that allow more or less
expressivity. Tables 2.1 and 2.2 show common constructors.

Example 2.1.3. Assertions can state that Ann is a professor (Prof (ann)) that teaches the
database course (Teach(ann, D Beourse)) and advises Bob (Advise(ann, bob)).
Terminological axioms can express that every professor is a member of some department
(Prof C IMemberOf.Department), that what is taught is a course (3Teach™ C Course), or
that every professor is either a full professor or an associate professor (Prof C FProf LI AProf),
but that a full professor cannot be also an associate professor (FProf = —AProf). <

2.1 Ontology-mediated query answering in DL-Lite

Table 2.1 Syntax and semantics of DL concept constructors: a denotes an individual name,
C, C1 and Cy (complex) concepts, R a (complex) role, and n a natural number.

Name Syntax Semantics

Top concept T AT

Bottom concept 1 0

Nominal {a} {a®}

Negation -C AT\CT

Conjunction CiMCy C’lz N C’QI

Disjunction CiuCy, ctuc?

Existential restriction R {dy | there exists (d1,ds) € RT}

Qualified existential restriction 3R.C' {d; | there exists (dy,d2) € RT with dy € CT}
Qualified universal restriction VR.C' {dy | do € C* for all (dy,ds) € R}
Ungqualified number restrictions >nR {dy | |{dz2 | (d1,d2) € RT}| > n}
<nR {di|{da|(d1,d2) € R"}| <n}
=nR {di|[{d2] (d1,d2) € R"}| =n}
Qualified number restrictions > nR.C' {dy | |{d2 | (d1,d2) € RT and d3 € CT}| > n}
<nR.C {di||{ds](dy,d2) € RT and dy € CT}| <n}
=nR.C {dy||{dz | (d1,ds) € RT and dy € CT}| =n}

Table 2.2 Syntax and semantics of DL role constructors: 12 and S are (complex) roles.

Name Syntax Semantics

Role negation -R (AT x AT)\RT

Inverse R~ {(da,dy) | (dy,ds) € RT}

Composition RoS {(dy,d3) | (d1,d2) € R? and (da,d3) € ST}

Table 2.3 Syntax and semantics of TBox axioms: C, Cs denote concepts and R and S roles.

Name Syntax Semantics

Concept inclusion Chi Ty Clz C CQI

Role inclusion RLCS RIcC st

Transitivity axiom (trans R) RToRTC R

Functionality axiom (funct R) If (dy,ds) € R and (dy,d3) € R, then dy = d3

Table 2.4 Syntax and semantics of ABox assertions: a, b denote two individuals names, C' a
concept and R a role.

Name Syntax Semantics
Concept assertion C(a) at € C*
Role assertion R(a,b) (aZ,b?) € RT

Preliminaries

Semantics

One key feature of DLs is the open world assumption. This means that they deal with
incomplete information by considering all the possible worlds that would satisfy the axioms
of the knowledge base rather than making default assumptions about unspecified information.
It is a difference with the database setting that uses the closed world assumption, where
the facts that are not present in the database are considered to be false. The semantics of
DLs is therefore given through interpretations. In this thesis, we will make the unique name
assumption, assuming that different individual names refer to different individuals.

Definition 2.1.4 (Interpretation). An interpretation is a pair T = (AT,-T), where A” is a
non-empty set called the domain and -Z is a function that maps each a € N, to some a” € AZ,
in such a way that a” # b* whenever a # b (unique name assumption), each A € N¢ to a set
AT C AT, and each R € N to a set of pairs RT C AT x AL, The interpretation function is
extended to complex concepts and roles as specified in Tables 2.1 and 2.2.

Definition 2.1.5 (Model, entailment). The satisfaction of a TBox axiom or an ABox assertion
¢ in an interpretation Z, denoted Z |= &, is defined in Tables 2.3 and 2.4. An interpretation is
a model of a TBox T, written Z |= 7T if it satisfies every TBox axiom. It is a model of an
ABox A, written Z |= A, if it satisfies every ABox assertion. Finally, it is a model of a KB
IC, written Z |= IC, if it is a model of the ABox and of the TBox of /.

A TBox is satisfiable, or consistent, if it has at least one model. A KB is satisfiable,
or consistent, if it has at least one model. An ABox A is T -consistent if the KB (T, A) is
consistent. We often simply say that A is consistent when there is no ambiguity on the TBox
considered.

A TBox axiom or ABox assertion & is entailed from a KB C, written K |= &, if Z |= ¢ for
every Z model of /.

Query answering over description logic knowledge bases

Classical reasoning tasks over DL KBs include TBox reasoning, with subsumption (does
T = C1 E C3?) and classification (find all atomic concepts A, B such that 7 = A C B),
as well as satisfiability, or consistency checking, (is I = (T, A) satisfiable?) and instance
checking (does (T, A) = C(a)?). In this thesis, we study the task of query answering, and
focus on the most common query language for OMQA, namely conjunctive queries.

Definition 2.1.6 (Query). A first-order logic (FOL) query over a KB is a first-order logic
formula over the KB vocabulary and a set of variables. A query is called Boolean if it
has no free variables. Given a query ¢(Z) with free variables # = (x1,...,z)) and a tuple
of individuals @ = (ay,...,a;), we use g(a) to denote the Boolean query resulting from
replacing each z; by a;.

Definition 2.1.7 (Conjunctive query). A conjunctive query (CQ) is a FOL query of the form
q(7) = 3y (&, 1), where ¢ is a conjunction of atoms of the forms A(t) or R(¢,t'), with ¢,
individuals or variables from #’U¢/. The free variables 7 are distinguished, or answer variables.
A union of conjunctive queries (UCQ) is a FOL query of the form ¢(%) = \/;_; 3y; ¥i(Z, 7;)

10

2.1 Ontology-mediated query answering in DL-Lite

such that each Jy; ¥ (Z, g;) is a CQ. A UCQ can be seen as a set of CQs. It is convenient to
define the function atoms which gives the set of atoms occurring in a conjunction.

Definition 2.1.8 (Boolean query entailment). A Boolean query g is satisfied in an interpreta-
tion Z, written Z = ¢, iff ¢ evaluates to true in Z. A Boolean query ¢ is entailed by a KB /C,
written K |= g, iff ¢ is satisfied in every model of K.

The answers of a query are defined through entailment of Boolean queries.

Definition 2.1.9 (Answers in an interpretation). A tuple @ is an answer to a query ¢(¥) in an
interpretation Z, written Z |= ¢(a), iff ¢(@) is satisfied in Z. The set of answers for ¢(Z) in Z
is written ans(q,Z).

Definition 2.1.10 (Certain answers). A tuple @ is a certain answer to a query q(Z) over a
KB K, written KC |= ¢(d), iff @ is an answer to ¢(Z) in every model of K. The set of certain
answers for ¢(Z) over K is written cert(q,).

It follows from the definition of certain answers that query answering over DL knowledge
bases reduces straightforwardly to Boolean query entailment, since answering ¢() can be
done by deciding whether the Boolean query ¢(@) is entailed by K for every tuple @ of the
same arity as .

For Boolean CQs (BCQs), we can give a finer definition of answers through the notion of
match. A Boolean CQ g = 351 (%) is satisfied in an interpretation Z, iff there exists a function
7, called a match, from ¢ to AZ such that Z |= ¢ for every assertion & € atoms(¢(7(%))). A
match for a CQ ¢(#) = Iy (¥,7) in an interpretation Z is therefore a function 7 from the
variables in U to objects in AZ such that Z |= 1 (7 (%), 7(¥)). By definition, @ € ans(q,Z)
just in the case where there exists a match for ¢(Z) in Z that maps each z; € ¥ to a; € .

When we use the generic term query in the following, we mean a CQ.

Complexity measures

There are different complexity measures for the problem of query answering over knowledge
bases, depending on what parameters of the problem are regarded as the input. Data com-
plexity considers only the size of the ABox, denoted |.A|, whereas KB complexity considers
the size of the whole KB (|| = | A| +|T), and combined complexity considers the size of
the whole problem, i.e. the size of the KB and the size of the query |¢|, which is the number
of atoms in the query. Data complexity is preferred when the size of the TBox and the size of
the query are negligible compared to the size of the ABox, which is the case in the context of
OMOQA.
The following classes are utilized in this work (cf. Appendix A.1 for more details):

« ACY: problems that can be solved by a uniform family of cicuits of constant depth and
polynomial-size, with unbounded-fanin AND and OR gates.

* P: problems which are solvable in polynomial time in the size of the input.
* NP: problems which are solvable in non-deterministic polynomial time.

11

Preliminaries

* coNP: problems whose complement is in NP.

* BHjy: problems that are the intersection of a problem in NP and a problem in coNP.

« AP: problems which are solvable in polynomial time with an NP oracle.

* AL[O(log n)]: problems which are solvable in polynomial time with at most logarith-
mically many calls to an NP oracle.

« 3. problems which are solvable in non-deterministic polynomial time with an NP
oracle.

o I15: problems whose complement is in 5.

These classes are related as follow: AC’ C P,P C NP C AB C P and P C coNP C AL CIIE,
and it is widely believed that all these inclusions are proper.

2.1.2 Query answering over DL-Lite knowledge bases

As efficiency is a primary concern in OMQA, significant research efforts have been made to
identify ontology languages with favorable computational properties to allow querying of
large datasets. We focus on the DL-Lite family of description logics [Calvanese et al. 2007],
and in particular on the DL-Lite dialect that underlies the OWL 2 QL profile, which is the
OWL profile devoted to query answering. This family is especially interesting because query
answering can be reduced to evaluation of standard database queries via query rewriting, thus
benefiting from performances of modern database management systems.

Syntax of DL-Liter

In DL-Liter, TBox axioms are concept inclusions B T ' and role inclusions of the form
R C @ built according to the following syntax, where A € Nc and R € Ng:

B:=A|3S, C:=B|-B, S=R|R, Q:=5]|-5

A TBox axiom of the form B C C or R C (@) is a positive inclusion, and a TBox axiom of the
form B C —=C' or R C —() is a negative inclusion.

Example 2.1.11. We will illustrate the definitions and algorithms of the next subsections
over the following DL-Liter KB about the university domain. The TBox expresses that
assistant and full professor are two kinds of professors, who are persons, that those who teach
are persons and that which are taught are courses, that every professor works for some entity
and that working for something implies being member of that thing. Moreover, it states that
assistant professors and full professors are disjoint, as are persons and courses. The ABox
gives information about different individuals.

T ={AProf C Prof, FProf C Prof, Prof = Person, 3Teach C Person,3Teach™ C Course,
Prof C 3WorkFor, WorkFor = MemberOf, AProf C —FProf, Person C —~Course}

A ={AProf(ann), AProf (bob), FProf (bob), MemberOf (bob, dpt), Teach(bob, cy),
WorksFor(carl,dpt), Teach(carl,carl)}

12

2.1 Ontology-mediated query answering in DL-Lite

<

There exist several other dialects of the DL-Lite family. In particular, DL-Litecoye is the
core language of the family and amounts to DL-Liteg without role inclusions; DL-Lite »
extends DL-Lite.oe With functionality axioms on roles or on their inverses of the form
(funct S); and DL-Lite 4 extends DL-Litec,re With both role inclusions and functionality
with the restriction that functional roles cannot be specialized, i.e. used positively on the
right-hand side of a role inclusion.

Most of the results of this thesis can be extended to these other dialects, as we will see in
Chapter 8. For this reason, we formulate the preliminary properties for “DL-Lite”, which we
will use to refer to any of the dialects DL-Litecore, DL-Lite, DL-Lite r or DL-Lite 4.

Query answering through rewriting

A prominent approach for OMQA is query rewriting, where the query is reformulated
independently from the ABox to take into account the TBox, then the reformulated query is
evaluated over the ABox seen as a database. This technique allows query answering to be
reduced to standard database query evaluation. However, it is not guarantee for every DL
that it is possible to find such a rewriting.

We will denote by Z4 = (AZ4,.ZA) the database-like interpretation of A defined as
follows:

« ATA =Ind(A)

* a’A = q for every a € Ind(A)

o ATA={a| A(a) € A} forevery A € Nc

« R4 ={(a,b) | R(a,b) € A} forevery R € Ng

Definition 2.1.12 (FOL rewriting of a query). A FOL rewriting of a query g w.r.t. a TBox
T is a FOL query ¢’ such that cert(q, (7 ,.A)) = ans(q’,Z 4) for all ABoxes .A. When ¢’ is a
UCQ, we call it a UCQ rewriting.

The DL-Lite family has been especially tailored to be FOL-rewritable, which means that
for any satisfiable DL-Lite TBox 7 and query g, there exists a FOL-rewriting of g w.r.t. 7.

Proposition 2.1.13 (FOL-rewritability of DL-Lite). Let T be a satisfiable DL-Lite TBox and
q a CQ. It is possible to compute a FOL rewriting ¢’ of q in polynomial time w.r.t. the size of
the TBox.

Proposition 2.1.14 (UCQ rewriting). Let T be a satisfiable DL-Lite TBox and q a CQ. It is
possible to compute a UCQ rewriting of q such that the size of distinct CQs in the rewriting
is bounded by O(|T 4.

Many algorithms have been proposed to compute FOL rewritings of CQ
in DL-Lite [Pérez-Urbina et al. 2009, Rosati & Almatelli 2010, Calvanese ef al. 2011,
Chortaras et al. 2011, Venetis et al. 2012, Rodriguez-Muro et al. 2013, Gottlob et al. 2014],

13

Preliminaries

most of them producing UCQ rewritings. In the following, we assume that UCQRef is such
an algorithm that produces a UCQ rewriting of a query w.r.t. a DL-Lite KB.

We illustrate rewriting algorithms with the pioneer algorithm for DL-Lite, PerfectRef as
it is presented in [Calvanese et al. 2007] (Algorithm 2.1). The general idea of the algorithm
is to rewrite each atom of the query by applying the positive inclusions of the TBox, and to
unify atoms when it is possible.

Definition 2.1.15 ([Calvanese et al. 2007]). The symbol “_" represents non-distinguished
non-shared variables. A positive inclusion [is applicable to an atom A(z) if I has A in its
right-hand side. A positive inclusion [is applicable to an atom R(x,y) if (i) x =_ and the
right-hand side of [is AR, or (ii) y =_ and the right-hand side of I is 3R, or (iii) [is a role
inclusion and its right-hand side is either R or R™.

Let g be an atom and [be a positive inclusion that is applicable to g. The atom obtained
from g by applying I, denoted by gr(g, I), is defined as follows:

e ifg=A(r)and I = A; C A, then gr(g,]) = A1(x)

* ifg=A(r)and I =3RC A, then gr(g,1) = R(x,—)
e ifg=A(r)and] =3R™ C A, then gr(g,!/) = R(_,x)
e ifg=R(z,—)and] = AC 3R, then gr(g,]) = A(z)

(
(
(
(
e if g = R(x,
(
(
(
(
(

o ifg= R(z,—) and [= 3Ry C 3R, then gr(g,I) = R1(z,—)
_)and I =3R] T 3R, then gr(g,I) = R1(—,x)
s ifg=R(_,x)and] = AC 3R, then gr(g,]) = A(x)
e ifg=R(_,x)and [=3R; C 3R, then gr(g,I) = Ri(x,—)
e ifg=R(_,x)and I = 3R] T 3R, then gr(g,I) = Ri(—,x)
s ifg=R(z,y)and I =Ry T Ror I =R T R™, then gr(g,/) = Ri(x,y)
,Y)

sifg=R and [=Ry C R™ orl=R; C R, thengr(g,]) = Ri(y,x)

Y

Example 2.1.16 (Example 2.1.11 cont’d). Consider the following query that retrieves every
person that is member of something: ¢(x) = JyPerson(x) A MemberOf(x,y).

PerfectRef (q(z),7T) =1

JyPerson(z) A MemberOf(z,y), Person(x) A Prof(x), Person(z) A FProf(x),
JyProf (x) A MemberOf(z,y), Prof(x), Prof (x) AFProf(z) ,
JyAProf (x) A MemberOf(x,y), AProf(z) A Prof(z), AProf (z) AFProf(z),
JyFProf (z) A MemberOf (z,y), FProf (x) A Prof(z), FProf(x),

JyzTeach(x,z) A MemberOf(z,y), JzTeach(z,z) AProf(x), FzTeach(x,z) AFProf(z)}
JyPerson(z) A WorkFor(x,y), Person(x) A AProf (z),

JyProf (x) A WorkFor(z,y), Prof(x) A AProf (z),

JyAProf () A WorkFor(z,y), AProf(z),

JyFProf () A WorkFor(z,y), FProf (x) A AProf (x),

JyzTeach(z,z) AWorkFor(x,y), JzTeach(x,z)AAProf(z),

14

2.1 Ontology-mediated query answering in DL-Lite

Algorithm 2.1 PerfectRef[Calvanese et al. 2007]
Input: a conjunctive query ¢, a TBox 7
QOutput: a union of conjunctive queries PR

1: PR+ {q}, PR <0

2: while PR’ # PR do

32 PR « PR

4: forall g€ PR do

5 for all g € gdo

6: for all / € T applicable to g do

7 PR <+ PRU{q[g+ gr(g.1)]}
8 end for

9 end for
10: for all g1,92 € ¢ do

11: if g1 and go unify then
12: PR+ PRU/{reduce(q,91,92)}
13: end if

14: end for
15: end for

16: end while

17: Output PR

where reduce applies to ¢ the most general unifier between g; and g2 and replaces each
unbound variable with _

15

Preliminaries

PerfectRef(q(z),7") contains a lot of redundant queries. Only minimal queries, that are not
contained in any other, are actually taken into account:

{3yPerson(z) AMemberOf(z,y), JyPerson(z) AWorkFor(x,y), Prof(z), FProf(x),
JdyzTeach(z,z) AMemberOf(z,y), 3JyzTeach(z,z) AWorkFor(x,y), AProf(z)}

We detail the steps needed to produce the rewriting Prof(x):

1. Person(z) A MemberOf(z,_)

2. Prof(z) AMemberOf(z,_) apply I/ = Prof C Person

3. Prof(z) A WorkFor(z,_) apply I = WorkFor C MemberOf
4. Prof(x) AProf(x) apply I = Prof C 3WorkFor

5. Prof(z) unification step

<

Answering a CQ ¢ over a consistent DL-Lite KB (7,.4) amounts to searching for matches
for the CQs in the UCQ rewriting of ¢ in Z 4. An image of a CQ ¢(¥) = Iy (Z,y) in Ais a
set of assertions B C A such that there is a match 7 : U4 +— Ind(B) for ¢ in Z such that
atoms(¢(m (&), m(y))) is equal to B.

Since the first-order rewriting of the query is obtained in polynomial time in the size of
the TBox, and evaluating first-order formulas over a finite interpretation is in ACY in the size
of the interpretation, the next theorem follows:

Theorem 2.1.17 ([Calvanese et al. 2007, Artale et al. 2009]). Answering UCQs in DL-Lite
is in AC® in the size of the ABox (data complexity), and in P in the size of the TBox (so in P
w.r.t. KB complexity).

Since conjunctive query entailment in databases is known to be NP-complete w.r.t.
combined complexity, query answering in DL-Lite is NP-hard. Membership in NP is
shown in [Calvanese et al. 2007] by considering the non-deterministic version of PerfectRef,
which non-deterministically returns only one of the conjunctive queries belonging to the
reformulation of the input query. They show that this algorithm runs in NP because every
query returned by PerfectRef can be generated after a polynomial number of transformations
of the initial query.

Theorem 2.1.18 ([Calvanese et al. 2007, Artale et al. 2009]). Answering UCQs in DL-Lite
is NP-complete in combined complexity.

Because of DL-Lite syntax, the rewriting of an instance query consists in a disjunction
of instance queries, which can be evaluated in polynomial time by testing every possible
matches.

Theorem 2.1.19. Instance checking in DL-Lite is in P w.r.t. combined complexity.

16

2.1 Ontology-mediated query answering in DL-Lite

ABox consistency

We will assume throughout this thesis that the TBoxes of the KBs we consider are consistent.
Indeed, the TBox is usually developed by experts and subject to extensive debugging, so it is
often reasonable to assume that its content is correct, while the ABox is typically large and
subject to frequent modifications, which makes errors likely.

In this case, satisfiability amounts to check whether the ABox is consistent with the
TBox. In DL-Lite, ABox consistency checking reduces to answering the union of conjunctive
queries corresponding to each possible violation of the TBox constraints: we can build a
Boolean query ¢/, ., that looks for a counterexample to one of the negative inclusions or
functional axioms that follow from 7, and that evaluates to true over Z 4 just in the case that
A is T -inconsistent.

Example 2.1.20 (Example 2.1.11 cont’d). Since 7 contains the two negative inclusions
AProf C —FProf, and Person C —Course,

¢! ot =UCQRef (3zAProf () A FProf (z), T) V UCQRef (3zPerson () A Course(z), T)
=(3xAProf (x) A FProf(z)) V (JzPerson(z) A Course(x))V
(JzProf (x) A Course(x)) V (FzAProf (x) A Course(z))V
(zFProf (x) A Course(x)) V (JzyTeach(z,y) A Course(z))V
(JzyPerson(x) A Teach(y,z)) V (FJzyProf (x) A Teach(y,z))V
(JzyAProf (x) A Teach(y,z)) V (JzyFProf () A Teach(y,z))V
(JzyzTeach(x,y) A Teach(z,z)).

The query ¢/ .., evaluates to true over Z 4 because A contains AProf (bob) and FProf (bob),
50 — bob is a match for the first CQ of ¢/, ., in Z4. <

Consistency checking has therefore the same complexity as query answering.

Theorem 2.1.21. In DL-Lite, consistency checking is ACY w.r.t. data complexity, and in P
w.r.t. KB complexity.

Conflicts and causes

When ABoxes are inconsistent, it is important to be able to find the reasons of the inconsis-
tency. We define the notion of conflicts, that are the minimal sets of assertions responsible
for the inconsistency:

Definition 2.1.22 (Conflict). A conflict of I = (T ,.A) is a minimal 7 -inconsistent subset of
A. The set of conflicts of K is denoted conflicts(/C). It can be represented as a conflict graph,
whose vertices are assertions and which is such that there is an edge between two assertions
iff they form a conflict, and a self-loop on an assertion iff it is inconsistent.

An ABox is inconsistent just in the case that its set of conflicts is non-empty. The conflicts
of a DL-Lite KB can be computed while checking the consistency of the ABox with ¢ ..., as

17

Preliminaries

shown in Algorithm 2.2. Indeed, the conflicts of (7,.4) are exactly the images of the CQs in
the rewriting of qZL—n <qt 1N A that do not contain any other image of such a CQ (e.g. if the query
JzyzR(x,y) A R(y,2) has two images { R(a,a), R(a,b)} and {R(a,a)}, only {R(a,a)} is a
conflict). The query g/,,,; is constructed in lines 1 to 10 of the algorithm: for each negative
(concept or role) inclusion, and each functionality axiom of 7, the conjunctive query looking
for a counterexample is constructed, then rewritten with UCQRef, and the rewriting is added
to ¢, ..;- Then the CQs of ¢/, are evaluated, with all their variables considered free, so
that their images can be obtained by taking for each answer the atoms of the corresponding
Boolean query (lines 12 to 16). Finally, the non-minimal images are removed in order to
keep only the conflicts (lines 17 to 23).

Example 2.1.23 (Example 2.1.11 cont’d). The KB X has the following conflicts:
conflicts(K) = {{AProf (bob), FProf (bob) },{ Teach(carl,carl) }}
q

The fact that the CQs in ¢/ ., are of size two and Theorem 2.1.17 yield the following
result:

Proposition 2.1.24. Computing the conflicts of a DL-Lite KB is in P in data and KB com-
plexity.

Since in DL-Lite conflicts are of size at most two, we can define the set of conflicts of a
set of assertions as follows:

Definition 2.1.25 (Conflicts of a set of assertions). Let X = (7,.A) be a DL-Lite KB and
B C A. The set of conflicts of B, denoted confl(B,K), is:

confl(B,K) = {f | Ja € B,{«a, B} € conflicts(K)} U{a | a € B,{a} € conflicts(K)}.

Since an inconsistent KB has no model, it entails every Boolean query, and every tuple
of the same arity as 7 is an answer to the query ¢(%). However, only some of these answers
have actually some consistent reason to hold, which is captured by the notion of causes of a

query.

Definition 2.1.26 (Cause). A cause for a Boolean query ¢ in a KB K = (7, A) is an inclusion
minimal 7 -consistent subset C C A such that (7,C) = q. We use causes(q,) to refer to the
set of causes for ¢ in .

The causes for a query ¢ in a DL-Lite KB (7, .A) correspond to the images of the CQs of
the rewriting of ¢ in A that are consistent and do not contain any other image of such a CQ.
Algorithm 2.3 computes the causes of a Boolean query over a DL-Lite KB. It first compute
the conflicts of the KB (line 1) that will be used to check consistency of the images. The
query is rewritten and evaluated over .4 with all its variables free to construct the images

18

2.1 Ontology-mediated query answering in DL-Lite

Algorithm 2.2 ComputeConflicts

Input: a TBox 7, an ABox A
Output: the conflicts of (77,.A)

S e S S S G S
R S Ll S e

NN N
bl e

24

R A o e

)
T2

qZL;lsat 1
forall Bi C =By €7 do
qz;wat — qz;wat N UCQRef(preneX(Elx (at(Bbx) A at(BZ> .Z'))), T)
end for
for all S; C —S5 €T do
al ot @l V UCQRef (prenex(3z1 29 (at(Sy, 21, 22) Aat(Sz,x1,22))),T)
end for
for all (funct S) € T do
Qe < @ sar V UCQRef (prenex(3zzy o (at(S, x, x1) Aat(S, z, x2) Axy # x9)),T)
end for

: Conflicts + ()
: for all Yy (y) € qz;wat do /I compute images of quat

for all @ € ans(v),Z4) do // all variables in ¥/ are free here
Conflicts < Conflicts U{atoms(1(a))}
end for

: end for
: for all B € Conflicts do // remove non-minimal images of ¢/ ..,

for all B’ € Conflicts do
if B’ C B then
Conflicts < Conflicts\B
end if
end for

- end for

Output C'on flicts

where at is defined as follows:

at(A,z) = A(x)

at(3R,x) = yR(x,y)

at(3R~,x) = JyR(y,x)

at(R,xl,xQ) = R(:El,.ilig)

at(R_,:Ul,xg) = R(mg,wl)

and prenex is defined by: _

prenex(37 (35 g(Z,y) A3y g(Z,y"))) = 323y 3Z(9(Z,9) A g(Z,Z)) with ZNy =0

o

19

Preliminaries

Algorithm 2.3 ComputeCauses

Input: a Boolean conjunctive query ¢, a TBox 7, an ABox A
Output: the causes for g in (7 ,.A)

[\ I N B O R R e e e
N 729 03Nk 2

_—
A 0 R AR A AR e

Conflicts + ComputeConflicts(7,.A)
Q + UCQRef(q,T)

Images < ()
for all 3y (y) € @ do // compute images of ()
for all @ € ans(y),Z4) do /1 all variables in ¢/ are free here
I'mages < Images U {atoms(¢(@)) }
end for
end for
Causes < Images
for all C € Causes do Il filter causes

if 3B C C, B € Conflicts then /1 C is T -inconsistent
Causes < Causes\C
end if

: end for
: for all C € Causes do

for all C' € Causes do
if C' C C then /I C is not minimal
Causes < Causes\C
end if
end for

: end for
: Output C'auses

20

2.2 Inconsistency-tolerant semantics

(lines 4 to 8). The inconsistent or non-minimal images are then discarded (lines 10 to 21). To
check the consistency of images, the algorithm simply checks that they do not contain any of
the precomputed conflicts.

Example 2.1.27 (Example 2.1.11 cont’d). If we call ¢/(z) the rewriting UCQRef(¢(x),T),
then ¢/(ann) has one image {AProf(ann)} in A; ¢/(bob) has three images {AProf(bob)},
{FProf(bob)}, and {Teach(bob, ¢;), MemberOf (bob,dpt)} in A; and ¢’ (carl) has one image
{Teach(carl, carl), MemberOf(carl,dpt)}.

Since {Teach(carl,carl),MemberOf(carl,dpt)} ~ is inconsistent because
Teach(carl,carl) implies that carl is both a person and a course that are disjoint,
only g(ann) and ¢(bob) have causes in K:

causes(q(ann),KC) ={{AProf (ann)}}
causes(q(bob), KC) ={{AProf (bob)}, {FProf (bob) },{ Teach(bob, c},), MemberOf (bob, dpt) } }

<

Because of DL-Lite syntax, a cause for an atom consists of only one assertion, so the

size of a cause for a query ¢ is bounded by the size of the query |g|. It follows that there are
w — O(].A|!9l) causes, since the potential causes are the subsets of

|q| or fewer assertions of .A. Hence the number of potential causes and thus the number of
actual causes are both polynomial in the size of A.

at most Z‘jqz‘l

Proposition 2.1.28. Computing the causes for a query over a DL-Lite KB is in P w.r.t. data
complexity.

2.2 Inconsistency-tolerant semantics

When the ABox is inconsistent with the TBox, it may be impossible to clean the data to make
it consistent, either for lack of time because the data is too large, or for lack of information
on how to resolve the conflicts. It is therefore crucial to be able to retrieve meaningful
answers from inconsistent data. However, since every query is entailed by an inconsistent
KB under the classical semantics presented in the previous section, this semantics is useless
in the inconsistent case, as it fails to provide any relevant information. In this section, we
present inconsistency-tolerant semantics that have been proposed in the literature to query
inconsistent KBs, focusing in particular on the AR, IAR, and brave semantics that we study
in this thesis.

Example 2.2.1. The following inconsistent DL-Liter knowledge bases and query will be
used to illustrate the different semantics. The TBox expresses relationships between concepts
for professors (Prof) of two levels of seniority (AProf, FProf), PhD holders (PhD), postdoc-
toral researchers (Postdoc), persons (Person), students (Student) and courses (Course), and
roles to link instructors to their courses (Teach), and members or employees to their organi-
zations (MemberOf, WorkFor). The ABoxes provide information about different individuals.

21

Preliminaries

The TBox and ABoxes are designed to illustrate the properties of all the different semantics
on a small example, that is why some axioms seem not very accurate from a modelling
perspective.

T ={AProf C Prof, FProf C Prof, Prof C PhD, Postdoc C PhD,PhD C Person,
dTeach C Person,dTeach™ C Course, Prof C FWorkFor, Student C GMemberOf,
WorkFor C MemberOf, AProf C —FProf, Prof C —Postdoc, Student C —Prof,
Person C —Course, IMemberOf ~ C —Postdoc}

Aann ={AProf (ann), FProf (ann),Prof (ann), Teach(ann,c,), Teach(ann,ann)}
Apor ={AProf (bob), FProf (bob), Postdoc(bob), MemberOf (bob, dpt), Teach(bob, cp) }
Acart ={AProf(carl), Teach(carl,c.1), Teach(carl,ce2), Teach(cer, ce2), Teach(cea, ce1)}
Agan ={AProf (dan), Teach(dan,cy1), Teach(dan, cgs), AProf (cq1), AProf (cg2)}
Aevq ={Student(eva), AProf (eva), Prof (eva), Teach(eva, ce) }
Afreqa ={Postdoc(fred), MemberOf(fred, fred), Teach(fred,cs)}
q(x) =3yzPhD(x) A MemberOf(z,y) A Teach(z, z)

All these KBs are inconsistent. Their sets of conflicts are:

conflicts((7T", Aann)) ={{AProf (ann),FProf(ann)},{Teach(ann,ann)}}
conflicts((T, Apop)) ={{AProf (bod), FProf (bob) }, { AProf (bob), Postdoc(bob) },
{FProf (bob), Postdoc(bob) } }
conflicts((7T, Acar1)) ={{Teach(carl,c.1), Teach(cc1,cc2)},
{Teach(carl,cc2), Teach(cea,cc1)}s
{Teach(cc1,cc2), Teach(ce,ce1)} }
conflicts((T, Agan)) ={{Teach(dan,cq1),AProf(cq1)},{Teach(dan,cq2), AProf (cq2)} }
conflicts((7, Aeva)) ={{Student(eva), AProf(eva)}, {Student(eva), Prof (eva)} }
conflicts((7, Afeq)) ={{Postdoc(fred), MemberOf(fred, fred)}}

2.2.1 The AR semantics

The AR semantics (ABox Repair semantics) [Lembo et al. 2010] adapts the consistent query
answering framework used in the database arena (cf. Chapter 7 for details and references)
to DL KBs. Consistent query answering amounts to considering those answers that hold in
every repair, defined as consistent subsets of the database that are ““as close as possible” to
the actual database instance. While in database setting, due to the closed world assumption
and the types of constraints, repairs can be obtained from the actual database by deletion or
insertion of tuples and changes of attributes values, in DL setting the inconsistency can only

22

2.2 Inconsistency-tolerant semantics

stem from the presence of several incompatible assertions, leading to a simpler notion of
repair:

Definition 2.2.2 (Repair). An ABox repair of a KB K = (T ,.A), or repair for short, is an
inclusion-maximal subset of the ABox .4 which is consistent with the TBox 7. The set of all
repairs of C is written Rep(T,.A).

The repairs are all the possible ways of repairing the ABox while preserving as much
information as possible (in the sense of set inclusion) and can be seen as the different possible
worlds. If the quality of the data is relatively good, we can assume that one of the repairs
corresponds to the real world, but we cannot know which one.

Example 2.2.3 (Example 2.2.1 cont’d).

Rep(T , Aann) ={{AProf (ann), Prof (ann), Teach(ann, c,)},
{FProf(ann),Prof (ann), Teach(ann,cy)}}
Rep(T , Apop) ={{AProf (bob), MemberOf (bob, dpt), Teach(bob,) },
{FProf(bob), MemberOf (bob, dpt), Teach(bob, cp) },
{Postdoc(bob), MemberOf (bob, dpt), Teach(bob, cp) } }
Rep(T , Acart) ={{AProf (carl), Teach(carl,c.1), Teach(carl,ce2)},
{AProf(carl), Teach(carl,c.1), Teach(cea,cc1)},
{AProf(carl), Teach(carl,ce2), Teach(ce1,ce2) } }
Rep(T, Agan) ={{AProf(dan), Teach(dan,cq), Teach(dan,cs)},
{AProf(dan), Teach(dan,cqy), AProf (cq2) },
{AProf(dan), Teach(dan,cqa), AProf (cq1)},
{AProf(dan), AProf(cq1), AProf (cq2) } }
Rep(T, Acva) ={{Student(eva), Teach(eva,c.)},
{AProf(eva),Prof(eva), Teach(eva,c.)} }
Rep(T, Afrea) ={{Postdoc(fred), Teach(fred,cy)},
{MemberOf(fred, fred), Teach(fred,cys)}}

Note that the assertion Teach(ann,ann) does not appear in any repair of (7, Agny,) because
this assertion is inconsistent. <

Definition 2.2.4 (AR semantics). A tuple @ is an answer for a query g over a KB K = (T, A)
under AR semantics, written (7, A) =ar ¢(@), if and only if (7T, R) = ¢(@) for every repair
R € Rep(T,.A). We call d a (positive) AR-answer.

Example 2.2.5 (Example 2.2.1 cont’d). The two repairs of .Ag,, contain the cause for g(ann)
{Prof(ann), Teach(ann,c,)}, so (T, Aann) Far ¢(ann).

Every repair of Ay, contains a cause for ¢(bob), and corresponds to a choice between
three incompatible possibilities for bob being a person: he is either an associate professor

23

Preliminaries

({AProf (bob), Teach(bob, cp) }), or a full professor ({FProf (bob), Teach(bob, cp) }), or a post-
doctoral researcher ({Postdoc(bob), MemberOf(bob, dpt), Teach(bob, cp)}). It follows that
(T, Avob) F=ar q(bob).

We have also (7, Acuri) FEar ¢(carl) because every repair contains one or both of
the causes {AProf (carl), Teach(carl,c.1)} and {AProf (carl), Teach(carl,ce2)} for q(carl).
Here the assertions Teach(c,1, cc2) and Teach(cc2,c.1) implies that ¢, or c.o may be persons
and not courses, disqualifying either the first or the second cause for ¢(carl), but not both
since Teach(c.1,cc2) and Teach(ce2,cc1) are incompatible.

Finally, (T, Agan) ~ar ¢(dan) because the last repair of .4 4,,, does not contain any cause
for ¢(dan) (there is no reason for dan teaching anything in that repair), (7, Aeva) FEar q(eva)
because ¢(eva) does not hold in the first repair where there is no reason for eva being a PhD
holder, and (7, Afreq) Foar q(fred) because ¢(fred) does not hold in any repair of A ...
q

The AR semantics is arguably the most natural inconsistency-tolerant semantics. Un-
fortunately, query answering over DL-Lite KBs under AR semantics is intractable, even
for instance queries, because the number of repairs may be exponential in the size of the
ABox. However, it is possible to show that a query does not hold under AR semantics by
non-deterministically finding a repair that does not entail it.

Theorem 2.2.6 ([Lembo et al. 2010]). Conjunctive query answering and instance checking
under AR semantics over DL-Lite knowledge bases is coNP-complete w.r.t. data complexity.

Proof. We present the proof, which inspires proofs for several of our results.

Showing that a query ¢ is not entailed under AR semantics by a KB K = (T, A) can
be done by guessing a repair R of K such that (7, R) |~ ¢q. Checking that R is consistent,
that for every a € A\R, RU {a} is inconsistent, and that (7,R) |~ ¢ is in P w.r.t. data
complexity. Thus, query answering is in coNP.

For the lower bound, a proof for hardness by reduction from SAT is presented in
[Bienvenu 2012]. Let ¢ = {C1,...,C}} be a set of clauses over a set of propositional vari-
ables X = {x1,...,x,}. This problem is encoded in polynomial time as an AR entailment
problem as follows:

T ={3P~ C-3N~,3PC-3U~,3N C-3U,3U C A}
A={P(cj,zi) | zi € C;} U{N(cj,xi) | mx; € Cj}U{U(a,cj) [1 <j <k}
q=Aa)

Figure 2.1 illustrates this reduction on an example. Individuals are seen as vertices and role
assertions as edges.

We show that the formula ¢ is satisfiable if and only if (7", A) F£aR ¢, i.e. there exists a
repair that does not contain any cause for ¢. These causes are the U(a,c;) (1 < j < k).

If ¢ is satisfiable, there exists a valuation v of X such that v(y) = true. Thus, for every
Cj € ¢, there exists x; € C; such that v(z;) = true or —z; € C; such that v(z;) = false.
Let B = {P(cj,x;) | v(x;) = true} U{N(cj, ;) | v(x;) = false}. By construction, B is a
consistent subset of .4 such that every individual ¢; has an outgoing P- or N-edge. Therefore,

24

2.2 Inconsistency-tolerant semantics

Fig. 2.1 Reduction from SAT for coNP-hardness of AR query answering. Graph-
ical representation of the ABox constructed from an example set of clauses ¢ =
{Cl =x1V x9,Cy = g \/:EQ\/—u’lﬁg}.

there exists a repair that extends B that does not contain any assertion of the form U (a, c;),
since such an assertion would be in conflict with the edge outgoing from c;. Since every
cause for ¢ in K is of that form, it follows that (7", A) F~aRr q-

In the other direction, if (7",.A) ~ar ¢, then there exists a repair R such that (7, R) }~ q.
It follows that R does not contain any cause for ¢, so does not contain any assertion of
the form U (a,c;). By definition of a repair, R is a maximal consistent subset of A4, so for
each ¢;, if R does not contain U (a, cj), it contains an assertion which is in conflict with
Ul(a,cj), so c; has an outgoing P- or N-edge in R. Let v be the valuation of X defined
as follows: v(z;) = true if there exists ¢; such that P(c;,z;) € R, v(z;) = false otherwise.
For every C; € o, if there exists x; such that P(c;j,z;) € R, v(C}) = true since x; € C; and
v(x;) = true, otherwise there exists z; such that N(c;,z;) € R, and v(C;) = true because
—x; € Cj and v(z;) = false (since x; cannot have an ingoing P-edge in R, otherwise R
would be inconsistent).]

It has been shown in [Bienvenu 2012] that coNP-completeness of AR conjunctive query
answering holds even for simple ontologies consisting of axioms of the forms A; C Ay and
A1 C —As, where A1, Ay € Nc.

As in the case of classical semantics, where considering combined complexity instead
of data complexity makes query answering NP-complete instead of in P, the combined
complexity of CQs entailment under AR semantics is one level higher in the polynomial
hierarchy than its data complexity.

Theorem 2.2.7 ([Bienvenu & Rosati 2013]). Conjunctive query answering under AR seman-
tics over DL-Lite knowledge bases is 115-complete w.r.t. combined complexity, and instance
checking is coNP-complete w.r.t. combined complexity.

Proof. Showing that a query ¢ is not entailed under AR semantics can be done by guessing a
repair that does not entail g. Since checking that a subset of the ABox is a repair and does not
entail ¢ is in coNP (resp. in P for instance queries) w.r.t. combined complexity, membership
in I15 (resp. in coNP for instance queries) follows.

The lower bound for instance queries follows from Theorem 2.2.6. For CQs, Hg-hardness
is shown in [Bienvenu & Rosati 2013] by the following reduction from validity of QBF3 v

25

Preliminaries

formulas. Let o =V, ...,2,3Y1,...,Ym /\?:1 C'; where /\;7“':1 (' is a 3-CNF formula over the
variables x1,...,%pn, Y1, ..., Ym, where every C} is a clause of the form E; Vv Z? Vv 6?. The variable
of literal ¢/ is denoted by v(¢}). For example for the clause —x1 Vyo V =1, v(—21) = 21,
v(y2) = y2, and v(—y1) = y1.

The problem of deciding if ¢ is valid is encoded in polynomial time as an AR entailment
as follows:

T={3GX;C-3GX, |1<i<n}
k
A=JLLj(ef V(0(€)), L3 (c] .V (0(63))), L(c] .V (0(£3))) |
j=1

V' is a valuation of v(ﬁ}),v(ﬁ?),v(ﬁ?) satisfying C; }U
{GX;(0,1),GX;(1,0) | 1 <i<n}

k3 n
G =W,y Wy Ty ey Ty Z1s ooy 21y Yl ooy Y /\ /\ L?(wj,v(ﬁg?))/\ /\GXi(:r;i,zi)
j=1h=1 i=1

It is shown that ¢ is valid if and only if (7",.A) =ar ¢. Intuitively, GX;(0, 1) means that z; =
0, and the repairs of (7 ,.A) correspond to the valuations of z1, ..., x,, since the conflicts of the
KB are the {GX;(0,1),GX;(1,0)}. The query ¢ looks for a valuation of 1, ..., Zp, Y1, .., Ym

that satisfies /\?5:1 C;: the variables wi, ..., wy, correspond to partial valuations that satisfy

C1,...,Cy respectively and will be mapped to some ch , ...,ckv’“, and the value of v(é?) is

some x; or y; that will be mapped to 0 or 1. U

2.2.2 The IAR and brave semantics

The negative complexity results for AR semantics led [Lembo ez al. 2010] to propose a
tractable approximation of AR obtained by querying the intersection of the repairs: the /AR
semantics (Intersection ABox Repair semantics).

Definition 2.2.8 (IAR semantics). A tuple @ is an answer for a query g over a KB IC = (7, A)
under IAR semantics, written (T, A) =1ar ¢(@), if and only if (7, Rn) = ¢(d@) where Rn is
the intersection of the repairs of IC. We call a a (positive) IAR-answer.

This semantics follows the “when in doubt throw it out” principle, proposed in the area
of belief revision and update, and provides thus a more conservative semantics than AR. The
answers holding under IAR semantics can be considered as the surest answers over the KB.

A query is entailed under IAR semantics just in the case that there exists a cause for the
query in the intersection of the repairs. This condition is equivalent to the existence of a
cause whose assertions do not belong to any conflict. Indeed, such a cause can be added to
any consistent subset of the ABox while preserving consistency, so belongs to every repair of
the ABox. In the other direction, since the conflicts are minimal inconsistent subsets of the
ABox, if an assertion of a cause belongs to some conflict, the other assertions of the conflict
form a consistent subset of the ABox, that can be extended to a repair that cannot contain

26

2.2 Inconsistency-tolerant semantics

this assertion, so does not contain this cause, which is therefore not in the intersection of the
repairs.

Example 2.2.9 (Example 2.2.1 cont’d). The intersections of the repairs of our examples KBs
are as follows:

ﬂ R ={Prof(ann), Teach(ann,c,)}
ReRep(T , Aann)

N R ={MemberOf (bob, dpt), Teach(bob, c,) }
ReRep(T , Apob)

N R ={AProf(carl)}
ReRep(Tv-Acarl)

N R ={AProf(dan)}

ReRep(T , Adan)

ﬂ R ={Teach(eva,ce)}
RERep(T , Aeva)

N R ={Teach(fred,cf)}
ReRep(T , Afreq)

For the query ¢, we have only (T, Aann) F1aR g(ann), since Nre rep(T, Auns) R i the only
one which contains a cause for ¢. <

FOL rewritings have been proposed for querying DL-Lite KBs under IAR semantics
[Lembo et al. 2011, Lembo et al. 2015]. The general idea is to add to the classical rewriting
expressions that ensure that the assertions used to derive the query are not contradicted by
other assertions by enumerating the possible conflicts. For instance, using the TBox of
Example 2.2.1, for the query ¢(z) = Prof (x), the standard rewriting is

q¢'(x) = Prof (z) V AProf () VV FProf (),
and the consistent rewriting will be:

q¢" (x) =(Prof (z) A =Postdoc(z) A —Student(z))V
(AProf (z) A =FProf (x) A =Postdoc(x) A =Student(x))V
(FProf (z) A =AProf (x) A =Postdoc(x) A =Student(x)).

It follows that querying DL-Lite KBs under IAR semantics is in AC® w.r.t. data complexity
and in NP w.r.t. combined complexity.

Another approach consists in computing the intersection of ABox repairs in polynomial
time by removing from A every assertion that is involved in some conflict (cf. Algorithm
2.2 for the computation of the conflicts) before querying it in a standard way. Alternatively,
[Rosati et al. 2012] proposes to annotate the ABox, marking the assertions involved in some
contradiction or self-inconsistent, and modify the standard rewriting to avoid using assertions
that are not in the intersection of the repairs.

27

Preliminaries

Since query answering under IAR semantics can be done through FOL rewritings, it is of
the same complexity as standard query answering.

Theorem 2.2.10 ([Lembo et al. 2010, Lembo et al. 2011]). Conjunctive query answering
under IAR semantics over DL-Lite knowledge bases is in ACY w.r.t. data complexity, NP-
complete w.r.t. combined complexity. Instance checking is in P w.r.t. combined complexity.

While the IAR semantics is the most cautious inconsistency-tolerant semantics, the brave
semantics [Bienvenu & Rosati 2013] at the other end of the scale considers every answer
that holds in some repair.

Definition 2.2.11 (Brave semantics). A tuple @ is an answer for a query ¢ over a KB
K = (T,.A) under brave semantics, written (T, A) FEprave (@), if and only if (T, R) |= ¢(@)
for some repair R € Rep(T,.A). We call @ a (positive) brave-answer.

Example 2.2.12 (Example 2.2.1 cont’d). Three of the repairs of .4,4,, contain some causes
for q(dan) (that are {AProf(dan), Teach(dan,cq1)} and {AProf(dan), Teach(dan,cq2)}),
s0 (T, Adan) Forave q(dan).

The second repair of Acyq, {AProf(eva),Prof(eva), Teach(eva,ce)}, contains two
causes for g(eva), so (T, Acva) Fbrave ¢(eva).

None of the repairs of A ,¢q entails ¢(fred), so (T, Afred) Fbrave ¢(fred). Indeed, the
image of ¢(fred) in Ay,cq, {Postdoc(fred), MemberOf(fred, fred), Teach(fred,cy)} is
inconsistent so ¢(fred) has no cause. 4

A query is entailed under brave semantics just in the case that it is supported by some
internally consistent set of facts, i.e. has at least one cause in the KB. Therefore, deciding if an
answer holds under brave semantics can be done in polynomial time w.r.t. data complexity by
checking if the output of Algorithm 2.3 is not empty. It is shown in [Bienvenu & Rosati 2013]
that query answering under brave semantics can actually be done with FOL rewritings.

Theorem 2.2.13 ([Bienvenu & Rosati 2013]). Conjunctive query answering under brave
semantics over DL-Lite knowledge bases is in AC® w.rt. data complexity, NP-complete
w.r.t. combined complexity. Instance checking is in P w.r.t. combined complexity.

The relations between the three previously introduced semantics have been shown in
[Lembo et al. 2010, Bienvenu & Rosati 2013]: the IAR semantics is a sound approximation
of the AR semantics, i.e. every query entailed under IAR is also entailed under AR semantics,
whereas brave semantics can be seen as a complete approximation of AR: every query
entailed under AR semantics is entailed under brave semantics.

Proposition 2.2.14. The IAR, AR and brave semantics are related as follows, and none of
the reverse implications holds:

K):IAR Q(a) — K):AR Q(a) — K):bmve Q(a)

Our examples illustrate that the reverse implications do not hold.

28

2.2 Inconsistency-tolerant semantics

Example 2.2.15 (Example 2.2.1 cont’d). We have seen that (7, Apop) Ear q(bob) while
(T, Abob) 1R q(bob), and that (T, Adan) Forave ¢(dan) while (T, Agen) Far q(dan). <

Note that contrary to the AR semantics, that cannot derive contradictory statements since
they have to hold in all repairs, which are consistent and can therefore not have inconsistent
consequences, the answers that hold under brave semantics may be inconsistent (if they hold
in different repairs).

2.2.3 Other inconsistency-tolerant semantics

The families of £-support and k-defeater semantics

Two families of inconsistency-tolerant semantics, called k-support and k-defeater semantics,
have been proposed in [Bienvenu & Rosati 2013]. The k-support semantics approximate the
AR semantics from below and the k-defeater semantics from above.

Definition 2.2.16 (k-support semantics). A tuple @ is an answer for a query ¢q over a KB
IC = (T, A) under k-support semantics, written (T, A) |=;_supp ¢(@), if and only if there
exists k causes Cy, ...,Cy, € causes(¢q(a),C) such that every repair R € Rep(T,.A) contains
some C;.

Example 2.2.17 (Example 2.2.1 cont’d). Since the cause {Prof(ann), Teach(ann,c,)} be-
longs to every repair of Agnn, (T, Aann) FE1-supp q¢(ann).

The three causes for ¢(bob) {AProf(bob), Teach(bob, cy) }, {FProf (bob), Teach(bob, cp) }
and {Postdoc(bob), MemberOf (bob, dpt), Teach(bob, cp)} are such that each repair of Ay,
contains one of them, and there is no pair of causes for ¢(bob) that fulfills this condition, so it
yields (T, Apob) F=3—supp q(bob), but (T, Apop) F2—supp q(bob).

In the same way, {AProf(carl), Teach(carl,c.1)} and {AProf (carl), Teach(carl,cc2)}
are sufficient and necessary to cover every repair of A4, 80 (T, Acar1) FE2-supp q(carl),

but <T> Acarl) %1—supp Q(Carl)~ <

The 1-support semantics coincides with the IAR semantics, since it requires that a cause
belongs to every repair, so to their intersection. An answer holds under AR semantics

just in the case where it holds under k-support semantics for some k (in particular for
k = |causes(q(a),C)]).

Definition 2.2.18 (k-defeater semantics). A tuple a is an answer for a query q over a KB IC =
(T, A) under k-defeater semantics, written (T, A) |=i_des ¢(@), if and only if there does not
exist a 7 -consistent subset B C A with |B| < k such that for every cause C € causes(q(@), K),
BUC is T -inconsistent.

Example 2.2.19 (Example 2.2.1 cont’d). The set {AProf(cq1), AProf(cgo)} is consistent and
contradicts the two causes for g(dan) in Ay, and no assertion contradicts both causes, so

<T7 Adcm>):1fdef Q(dan)’ but <7-> Adan) l?éQfdef Q(dan)-

The set {Student(eva)} is consistent and contradicts the two causes for ¢(eva), so

<T7 -Aeva> }:O—def Q(eva)’ but <T7 Aeva) l?él—def Q(eUCL)-
Finally, since there is no cause for ¢(fred), (T, Afrea) Fo—def ¢(fred). <

29

Preliminaries

The 0-defeater semantics coincides with the brave semantics, since it only requires that
the query has some cause. An answer holds under AR semantics if and only if it holds
under k-defeater for every k: indeed, an answer does not hold under k-defeater for some %
just in the case where there exists a 7 -consistent subset B C A such that for every cause
C € causes(q(a@),K), BUC is T-inconsistent, and such a subset B can be extended to a repair
that does not contain any cause for ¢(@).

Both semantics are monotone: for every k > 0, if K =4 _supp ¢» then K |=j 11 —supp ¢, and
if IC =g 1—def ¢- then K =g _ger ¢.

In DL-Lite, query answering under k-support and k-defeater semantics can be done via
FOL-rewriting.

Theorem 2.2.20 ([Bienvenu & Rosati 2013]). Conjunctive query answering under k-support
and k-defeater semantics over DL-Lite knowledge bases is in ACY w.r.t. data complexity,
NP-complete w.r.t. combined complexity. Instance checking is in P w.r.t. combined complexity.

The ICR semantics

Another sound approximation of AR is the /CR semantics (Intersection of Closed Repairs
semantics) of [Bienvenu 2012]. It achieves to be a finer approximation of AR than IAR by
closing repairs with respect to the TBox before intersecting them.

Definition 2.2.21 (ICR semantics). Given a KB (7 ,.A), the logical closure of a set of
assertions BB consists in all the assertions that are entailed by (7, B).

A tuple @ is an answer for a query g over a KB K = (T ,.A) under ICR semantics, written
(T, A) E1cr q(@), if and only if (T, RE) |= q(a@) where R is the intersection of the logical
closures of the repairs of K.

The relation of ICR to AR and IAR has been shown in [Bienvenu 2012]. The intersection
of the repairs clearly belongs to the intersection of their logical closures, so every IAR-answer
is also an ICR-answer. Regarding AR, if an answer holds under ICR semantics, it has a
cause in the intersection of the logical closures of the repairs. Every assertion of such a cause
has a cause in each repair, and since the repairs are consistent, in each repair, the union of
these causes is consistent. It follows that every repair contains a cause for the answer, which
therefore holds under AR semantics. Actually, ICR semantics amounts to standard query
answering over the assertions that hold under AR semantics.

Proposition 2.2.22. The ICR semantics relates with IAR and AR as follows, the reverse
implications do not hold:

KEnrqd) = KEicrel@) = K kEarq(d)

The following example illustrates that an answer can hold under the ICR semantics but
not under IAR, or under AR but not under ICR.

30

2.2 Inconsistency-tolerant semantics

Example 2.2.23 (Example 2.2.1 cont’d). The logical closures of the repairs of (7, App) are
as follows:

{{AProf (bob), Prof (bob), PhD(bob), Person(bob), MemberOf (bob, dpt), Teach(bob, c;),
Course(cp)},

{FProf(bob), Prof (bob), PhD(bob), Person(bob), MemberOf (bob, dpt), Teach(bob, cp),
Course(cp) },

{Postdoc(bob), PhD(bob), Person(bob), MemberOf (bob, dpt), Teach(bob, c}),
Course(cp)}}

Their intersection contains {PhD(bob), MemberOf(bob, dpt), Teach(bob,cp)} that is a
cause for q(bob), so (T, Apep) FE1cr q(b0b). However (T, Apop) Fo1ar q(bob), since none of
the causes for PhD(bob) is in the intersection of the repairs.

We have seen that (7, A1) Ear ¢(carl), but the intersection of the logical closures of
the repairs ({AProf (carl), Prof (carl),PhD(carl), Person(carl)}) does not contain any cause

for q(carl), so (T, Acart) Ficr q(carl). <

Query answering under ICR semantics can be done by query rewriting for simple on-
tologies (consisting of axioms of the forms A; C Ay and A} C —As, where Ay, A3 € N¢)
and even for DL-Lite without inverse roles, but it is still intractable for DL-Lite with inverse
roles. Indeed, we can use the same reduction as for the proof of Theorem 2.2.6 for AR
coNP-hardness.

Theorem 2.2.24 ([Bienvenu 2012, Lukasiewicz et al. 2013]). Conjunctive query answering
and instance checking under ICR semantics over DL-Lite knowledge bases is coNP-complete
w.r.t. data complexity. Instance checking is coNP-complete w.r.t. combined complexity.

However, we next show that regarding combined complexity and CQs, ICR is easier than
AR semantics.

Theorem 2.2.25. Conjunctive query answering under ICR semantics over DL-Lite knowledge
bases is AL[O(log n)]-complete w.r.t. combined complexity.

Proof. To decide if a query is entailed under ICR semantics, we first use a coNP-oracle to
decide, for each assertion built using the KB signature and individuals, whether the assertion
is entailed under AR semantics. Then we use a NP-oracle to decide if the query holds
w.r.t. the ABox consisting of all assertions that are AR-entailed. Since the oracle calls can
be structured as a tree, this procedure gives membership in AJ[O(log n)] (cf. Appendix A.1,
[Gottlob 1995]).

For the lower bound, the proof is by reduction from the Parity(3SAT) problem,
cf. [Wagner 1987, Eiter & Gottlob 1997]. A Parity(3SAT) instance is given by a sequence
V1,...,pm of propositional formulas in 3CNF, and the problem is to decide whether the
number of satisfiable formulas is odd. It is known that it can be assumed w.l.0.g. that the
formulas are such that ;1 is unsatisfiable whenever ¢; is unsatisfiable. Consequently, the

31

Preliminaries

problem reduces to deciding existence of an odd integer p such that ¢, is satisfiable and ;11
is unsatisfiable. .

Consider a Parity(3SAT) instance given by ¢1,...,¢n,. For each 7, p; = /\fg Cij
where every C; ; is a clause of the form 61 \/E2 Vv 63 over variables X; = {Z;1,...,; (5) }-
The variable of literal] ; is denoted by v(ﬂp]). Let k = maxj<i<m(k(i)) and n =
maxi<i<m(n(i)) + 1. We can assume that k(i) = k and n(i) = n for every i by adding
k — k(1) clauses of the form z; ,, V z; , V x; , to each ¢; without changing ; (un)satisfiability.
We define an ICR entailment problem as follows:

T:{ap— C-3N,3PC-3U,ANC 30U, 3U C A}

{U{R wirel), Lyl V(())), Lel V() L3 (el ;, V (u(E) |
7=1

V' is a valuation of v(éz-l’j),v(@z’j),v(ﬁij) satisfying C; ; }
Ae(i) ={P(cij i) | wig € Ci gy U{N(cig,wig) | wig € Cijy U{U (pircig) |1 <5 < k}
A (i) ={E(ai, 0i) } U{Rp(a;,bi) [1 < f <m, fodd, f#i—1}U
{Lj(bici), L (biyci), L3 (bs, ci) | 1< j <k}
A= | (A()UAL() U{E(pi,pis1) | 1 <i<m—1,i0dd}

1<i<m,i even

U U A@)U{Amt1), E(em, omr1) | if mis odd} U AL(m+1)

1<i<m.i odd
m k 3
h h
g=A)n N\ (Blyiz /\ iy wig) A N\ Ly (wig,o((5))),
i=1,0dd j=1 h=1

every variable of ¢ being existentially quantified.

Figure 2.2 illustrates the ABox of this reduction. We show that (7, .A) E=icr ¢ iff there is
some odd p such that (), is satisfiable and ;41 is unsatisfiable (or if ¢y, is satisfiable and m
is odd).

For the first direction, suppose that (7,.4) =1cr ¢. This means that there exists a match
7 for ¢ in the intersection of the logical closures of the repairs. By construction, 7(z) = @41
for some odd p, since only ; with even ¢ can belong to A.

If p # m, for the same reasons as in the proof of Theorem 2.2.6, A(¢,+1) is entailed under
ICR semantics iff ¢, 1 is unsatisfiable, so ;11 is unsatisfiable. Since ()1 is linked by
incoming F-edges to ¢, and ap1, and), has outgoing I2,,-edges while a,, 1 has outgoing
R;-edges for every odd ¢ # p, then for every odd i # p, 7(y;) = ap+1, T(w; ;) = bp+1 and
m(2;1) = cpy1 forevery 1 < j < kand 1 <! <n,and 7(y,) = p. Then forevery 1 < j <k,
we have Ry (¢p, m(wp ;) € A, so there is a valuation V; of U(E}J’j),v(ﬁg’j) (53) satisfying
Cp.j such that w(wy, ;) = c;/’] Note that for every x,,;, either 7(x);) =0 or w(z,;) = 1, so
for every 1 < j,5' <k, V; and V;y must agree on the value of x,;. It follows that the V;

together define a valuation of the x,; which satisfies ,,. Thus there is an odd p such that ¢,
is satisfiable and ¢, {1 is unsatisfiable.

32

2.2 Inconsistency-tolerant semantics

In the case where p = m, A(m+1) has no conflicts so belongs to every repair. Then as
in the case p # m, y,, is satisfiable. Thus there is an odd number of satisfiable formulas.

In the other direction, suppose that there is an odd p # m such that ¢, is satisfiable and
©p+1 1s unsatisfiable. Let v be a valuation of x,1,...,) that satisfies ¢,. Let m be the

function defined by: 7(y,) = p, T(x) = ppt1, forevery 1 < j <k, m(wp ;) = Cz?j’ where V;
is the restriction of v to the variables in clause ¢, ;, forevery 1 <1 <n, (x,;) = v(z,,), and
for every odd ¢ # p: w(y;) = ap1, forevery 1 < j <k, m(w; ;) = bpy1, forevery 1 <[<n,
7(2;1) = cpy1. Then 7 is a match for ¢ in the intersection of the logical closures of the
repairs. Indeed, the only assertion of the query obtained by replacing the variables by their
images by 7 which has some conflicts so is not already in the intersection of the repairs is
A(pp+1), which is ICR because 41 is unsatisfiable. It follows that g is entailed under ICR
semantics.

Finally, if ¢, is satisfiable and m is odd, we can find a match for ¢ using a valuation that
satisfies (¢, as in the case p # m. In this case, since A(@;,+1) has no conflicts, it is also in
the intersection of the repairs and ¢ holds under ICR semantics (actually it holds under IAR
semantics). OJ

The CAR and ICAR semantics

The idea of logically closing part of the data w.r.t. the TBox has also been considered in
[Lembo et al. 2010], with the CAR (Closed ABox Repair) and /ICAR semantics (Intersection
Closed ABox Repair semantics). Contrary to the ICR semantics which closes the repairs, the
CAR and ICAR semantics close directly the ABox by adding every assertion that is entailed
by a consistent subset of the ABox, i.e. which has some cause. CAR and ICAR are then
defined similarly to AR and IAR.

Definition 2.2.26 (CAR and ICAR semantics). The consistent logical consequences of K is
the set clc(K) = {« | there exists B C A such that B is T -consistent and (7, 5) |= a}.

A closed ABox repair R is a consistent subset of clc(/C) such that there exists no
consistent subset R’ of cle(KC) such that RN A C R N A or RAeNA =R NA
and Rele ¢ Re,

A tuple @ is an answer for a query ¢ over a KB K = (7 ,.A) under CAR semantics, written
(T, A) =car q(@), if and only if (T, R) |= (&) for every closed ABox repair R of K.

A tuple @ is an answer for a query ¢ over a KB K = (7 ,.A) under ICAR semantics,
written (7, A) Ficar ¢(@), if and only if (7T, RE¢) = q(@) where R4 is the intersection of
the closed ABox repairs of K.

Remark 2.2.27. It is equivalent to define the ICAR semantics with the intersection of the
repairs of clc(KC): indeed, every closed ABox repair is a repair of clc(KC), so the intersection
of the repairs of clc(K) is included in R, and in the other direction, if v € R, then « is
in the intersection of the repairs of clc(KC), otherwise there would be /5 € clc(K) that conflicts
a, and o would also be in a conflict with a cause v € A of 3, so some closed ABox repair

would contain ~y, that would yield « ¢ R%lc.

33

Preliminaries

Fig. 2.2 Reduction from Parity(3SAT) for AJ[O(log n)]-hardness of ICR query answering.
Graphical representation for the case where m is odd.

A
Ao(1) Ae(2) Ao (3) Ae(4) Ao(m)
A
®1 2 ¥3 P4 ©m Pm+1
E FE | E
0 1 Ao(7) A7) ¢ AL(7)
Y
Lh
J P/N b
Ry
(f#i-1)
R; U @i
E
Pi ©i ©i

34

2.2 Inconsistency-tolerant semantics

This is not true for the CAR semantics since some repairs of clc(K) may not be closed
ABox repairs. For instance, let 7 ={RC S,JRC —-3R~,3SC—-3dR,FRC 35"}, A=
{R(a,b),R(b,c)} and ¢ = JzxyR(x,y). The set {S(a,b),S(b,c)} is a repair of cle((T,.A))
such that (7,{S(a,b),S(b,c)}) ~= g, but (T, A) F=car ¢ because it is not a closed ABox
repair, since contrary to the other repairs of clc((7,.A)) it does not contain any assertion of

A.

The CAR and ICAR semantics are not sound approximations of the AR semantics: some
queries may hold under CAR or ICAR and not under AR semantics. [Lembo et al. 2010]
motivates these semantics arguing that if £ = (7,.A) and K’ = (T, .A’) differ only because
A’ contains assertions that are logical consequences of consistent subsets of A, they should
yield the same query answers, which is not true under AR semantics. These semantics
enforce the consistency of the set of answers retrieved, but query answers may have no cause
in the initial knowledge base.

The relations between ICAR, CAR and AR have been shown in [Lembo ef al. 2010].
ICAR and CAR relate similarly to IAR and AR, and every AR-answer holds under CAR
semantics because by definition, every closed ABox repair contains a repair.

Proposition 2.2.28. The CAR and ICAR semantics relate with ICR and AR as follows, the
reverse implications do not hold:

K Eicr (@) = K Ficar (@) = K [Fcar ¢(@) and K Fag q(@) = K Fcar q(d)

Proof of K =1k q(@) = K |=1car q(@). The relation between ICR and ICAR semantics
follows from the fact that the intersection of the logical closure of the repairs of K is included
in the intersection of the repairs of the consistent logical consequences of K: R%l C R%lc.
Indeed, suppose for a contradiction that « € R< and a ¢ RE€. Since « is in the logical
closure of every repair, « is a consistent consequence of /C, so if « ¢ Rl that means that
there exists (8 € clc(K) such that {«, 5} is inconsistent. Since 3 is entailed by a consistent
subset of .4, which can be extended to a repair, (3 is in the logical closure of a repair R%l

The logical closure of a repair is consistent, so o ¢ Rcﬁl, soa ¢ RE. O]

These relations can be observed in our example KBs.
Example 2.2.29 (Example 2.2.1 cont’d). For the KB (7, Acyq), we have

cle({T, Aeva)) ={Student(eva), AProf (eva), Prof (eva),PhD(eva), Person(eva),

Teach(eva, ¢,), Course(ce) }
So the closed ABox repairs of (7, Aeyq) are:

{{Student(eva),PhD(eva),Person(eva), Teach(eva, c), Course(ce)},
{AProf(eva), Prof(eva),PhD(eva), Person(eva), Teach(eva,c.), Course(ce) } }

Since Student = IMemberOf and Prof = IWorkFor, (T, Acva) FEcar q(eva). The inter-
section of the closed ABox repairs does not contain any cause for q(eva), so (T, Aeva) FEI1CAR
q(eva). We have seen that (T, Acyq) Ear q(eva).

35

Preliminaries

For the KB (7, Afyeq), We have

cle((T, Afrea)) ={Postdoc(fred),PhD(fred),Person(fred),
MemberOf(fred, fred), Teach(fred,cy), Course(cs)}

So the closed ABox repairs of (7, Af,cq) are:

{{Postdoc(fred),PhD(fred),Person(fred), Teach(fred,cy),Course(cy)},
{PhD(fred),Person(fred), MemberOf(fred, fred), Teach(fred,cs),Course(cs)}}

It follows that (7, Atycq) Ficar ¢(fred). Note that (7, Afreq) Fbrave ¢(fred). ICAR
semantics considers as true every consequence of the data that is not contradicted, so allows
to retrieve such answers that can only be derived from inconsistent images in the original
ABox as long as nothing contradicts them.

Finally, we can note that (7", Agu,) F~car ¢(dan) because the closed ABox repair that
contains AProf(cg4,), AProf(cg,) and their consequences does not contain any cause for
q(dan). q

[Lembo et al. 2011] describes how to query DL-Lite KBs under ICAR semantics using
FOL-rewriting. Moreover, instance checking under CAR semantics reduces to checking if
the assertion belongs to the intersection of the closed repairs, i.e. to ICAR semantics.

Theorem 2.2.30 ([Lembo et al. 2010, Lembo et al. 2011]). Conjunctive query answering
under ICAR semantics over DL-Lite knowledge bases is in ACY w.r.t. data complexity. Con-
junctive query answering under CAR semantics is coNP-complete w.r.t. data complexity, and
instance checking is in ACY w.r.t. data complexity. Conjunctive query answering under ICAR
semantics is NP-complete w.r.t. combined complexity. Instance checking under CAR and
ICAR semantics is in P w.r.t. combined complexity.

Theorem 2.2.31. Conjunctive query answering under CAR semantics is Hg-complete
w.r.t. combined complexity.

Proof. Computing clc(K) is in P w.r.t. combined complexity and checking that a subset of
cle(K) is a closed ABox repair that does not entail ¢ is in AL: check in P that it is consistent,
in coNP that it is maximal, and in coNP that it preserves a maximal subset of the ABox, then
check that it does not entail ¢ in coNP. It follows that CQ answering under CAR is in I,
The reduction given for IT)-hardness of AR CQ entailment in proof of Theorem 2.2.7
can be used to show II5-hardness. Indeed, since 7 does not contain any positive inclusion,
cle(K) = K and q is entailed under CAR semantics if and only if it is entailed under AR
semantics.]

The family of %£-lazy semantics

A family of inconsistency-tolerant semantics, the k-lazy semantics, has been introduced in
[Lukasiewicz et al. 2012]. They are based on the notion of k-lazy repairs that are obtained

36

2.2 Inconsistency-tolerant semantics

from the ABox by removing for each cluster of conflicts, i.e. sets of assertions that belong
to some conflict that share assertions, either a minimal subset of at most & assertions that
restores the consistency of the cluster, or the whole cluster if there is no such subset. Note
that not every lazy repair is a repair because of the possible removal of some entire clusters.

Definition 2.2.32 (k-lazy semantics). The clusters are the connected components of the
conflict graph that contain at least one edge.

A k-lazy repair of K = (T, A) is obtained by removing from .4 for each cluster: (i) either
an inclusion minimal set that restores the consistency of the cluster and is of size at most &,
(i1) or the whole cluster if there does not exist such a set.

A tuple d is an answer for a query ¢ over a KB K = (T ,.A) under k-lazy semantics,
written (7, A) E=j_lazy (@), if and only if (T, Ry) |= q(a@) for every k-lazy repair Ry, of K.

Example 2.2.33 (Example 2.2.1 cont’d). There is only one 0-lazy repair for (7, Aann),
obtained by removing every cluster, so every assertion that belongs to some conflict. It
follows that it corresponds to the intersection of the repairs, so (7, Aunn) Fo—1azy ¢(ann).

To restore the consistency of the cluster {AProf(bob), FProf (bob), Postdoc(bob)}, it is
sufficient and necessary to remove two assertions. There are three 2-lazy repairs, that
all contain some cause for ¢(bob). It follows that (T, Apop) Fr—lazy ¢(bob) for k > 2, but
(T, Abob) ~1-1azy q(bob) since the 1-lazy repair is obtained by removing the whole cluster,
so there is no cause left in this repair.

Similarly, to restore the consistency of the cluster { Teach(carl,c.1), Teach(carl,cc2),
Teach(ce1,cce2), Teach(ce, ce1)} it is sufficient and necessary to remove two assertions and
the obtained 2-lazy repairs contain causes for ¢(carl), whereas there is no cause in the 1-lazy
repair. It follows that (7, Acqr1) Fr—lazy ¢(carl) for k> 2, and (T, Acari) F1-lazy ¢(carl).

Finally, for (7,Aepw), the only way of repairing the cluster
{Student(eva), AProf (eva),Prof (eva)} by removing one assertion is to remove
Student(eva), and the 1-lazy repair contains causes for g(eva), so (T, Acva) F1-lazy ¢(eva),
but there are two k-lazy repairs for k& > 2: {AProf(eva), Prof(eva), Teach(eva,c.)} and
{Student(eva), Teach(eva,c.)}, and the second one does not contain any cause for g(eva),
0 (T, Acva) Frk—lazy q(eva) for k > 2. q

An answer holds under IAR semantics if and only if it holds under 0-lazy semantics, that
implies that it also hold under every k-lazy semantics. The k-lazy semantics are not a sound
approximation of AR but a compromise between IAR and brave, and it is notable that these
semantics are not monotone in & as shown in the preceeding example (eva case). However,
for every KB /C and query ¢, there exists & such that IC |=ar ¢ iff £ =4 _1azy ¢

Theorem 2.2.34 ([Lukasiewicz et al. 2012, Bienvenu 2012]). Conjunctive query answer-
ing under k-lazy semantics over DL-Lite knowledge bases is coNP-complete w.r.t. data
complexity for every k > 1. Instance checking is in P w.r.t. data complexity.

Theorem 2.2.35. Conjunctive query answering under k-lazy semantics semantics is 115-
complete w.r.t. combined complexity for every k > 1.

37

Preliminaries

Proof. Checking that a subset of A is k-lazy repair that does not entail ¢ is in Af: check
consistency in P, check in coNP that it is impossible to add an assertion of a cluster that
has not be fully removed without loosing the consistency, and check in coNP that it is not
possible to add one of the fully removed cluster except k assertions, then check that it does
not entail ¢ in coNP. It follows that CQ answering under k-lazy semantics is in 1.

The reduction given for IT5-hardness of AR CQ entailment in proof of Theorem 2.2.7 can
be used to show IT5-hardness. Indeed, the clusters of conflicts are exactly the conflicts (the
{GX;(0,1),GX;(1,0)}, for 1 <i<mn),so are of size two and can be repaired by removing
exactly one assertion, so the repairs correspond to the k-lazy repairs for every k£ > 1, and
q is entailed under the k-lazy semantics for £ > 1 if and only if it is entailed under AR
semantics. [

The general modifier-based framework for inconsistency-tolerant query answering

Recently, [Baget ef al. 2016] introduced a general framework that captures many of the
preceeding semantics and creates new ones. An inconsistency-tolerant semantics is defined
as a pair composed of a modifier, that creates a set of ABoxes from the original ABox, and
an inference strategy to derive queries from these ABoxes. The paper studies in particular the
semantics that use complex modifiers build from the three basic modifiers positive closure (C)
that adds to each ABox all assertions that can be derived by applying the positive inclusions
of the TBox, splitting into repairs (R) of each ABox, and selecting the cardinality-maximal
(M) ABoxes, and one of the four inference strategies universal (V) that considers true the
conclusions that are entailed by every ABox, safe (M) that considers true the conclusions that
are entailed by the intersection of the ABoxes, majority-based (may) that considers true the
conclusions that are entailed by the majority of the ABoxes, and existential (J) that considers
true the conclusions that are entailed by some ABox. This framework can be extended with
other modifiers or inference strategies to cover more semantics.

The AR semantics corresponds to the so-called (R, V), that is, using the modifier splitting
into repairs and the universal inference strategy. The IAR semantics corresponds to (R,N),
and the brave semantics to the (R,3). The ICR semantics corresponds to (C'R,N), the
modifier being the composition of positive closure with splitting into repairs. The ICAR,
CAR and k-lazy semantics can be included in this general framework by defining other
modifiers (adding consistent closure is sufficient to capture ICAR, whereas CAR needs a
modifier that builds closed ABox repairs, and k-lazy needs splitting into k-lazy repairs).

We can note that the “natural instantiation of expansion” considered in [Baget et al. 2016],
positive closure, that amounts to forgetting the negative inclusions to expand the ABox, differs
from that proposed by [Lembo ef al. 2010] for defining the CAR and ICAR semantics and
leads to different semantics (for instance if 7 = {FRC —-3R~,JRC A} and A= {R(a,a)},
A(a) is not entailed under the CAR and ICAR semantics but is entailed under (RC,N)). This
shows that defining how to expand an inconsistent ABox is not completely clear: CAR and
ICAR semantics avoid deriving facts that have only inconsistent reasons to hold but do derive
conjunctive queries from inconsistent sets of ABox assertions.

38

2.2 Inconsistency-tolerant semantics

2.2.4 Summary

In this section, we reviewed the main inconsistency-tolerant semantics that have been pro-
posed in the literature for querying DL. KBs. Some other inconsistency-tolerant semantics
based on preferences over assertions or repairs are presented in Chapter 6, and some related
works in the arena of database or existential rules are reviewed in Chapter 7. Figure 2.3
summarizes the relationships between inconsistency-tolerant semantics presented in this
section, and Table 2.5 the complexity results for these semantics.

In this thesis, the main focus is on the AR semantics which it is the most widely accepted
semantics for querying inconsistent data. We also consider the IAR and brave semantics
which correspond to the most and less safe inference strategies over repairs and provide
natural lower and upper bounds to AR. These two semantics are also interesting by themselves
since they have a clear meaning and it may be important in some applications to know the
surest answers that can be retrieved from the knowledge base, or all answers that have some
consistent reason to hold, when only very reliable answers should be taken into account, or
when missing a possible answer has to be avoided.

Example 2.2.36 (Example 2.2.1 cont’d). We conclude our example by summing up for each
KB (7,.A;) under which semantics holds ¢(z).

IAR ICR k-support AR Fk-defeater brave ICAR CAR k-lazy

ann Vv v >1 v k v v v k>0
bob v k>3 v k v v v >
carl >2 v k v v k>2
dan k<1 v
eva k=0 v v k=1
fred v v

q

39

Preliminaries

Fig. 2.3 Relationships between inconsistency-tolerant semantics. An arrow from S to S’
indicates that if C |=g ¢ then K =g’ ¢.

brave
CAR
k-defeater
AR
k-lazy / \
- ICAR
k-support ICR
IAR

Table 2.5 Data and combined complexity of conjunctive query answering and instance
checking over DL-Lite KBs under inconsistency-tolerant semantics.

Data complexity Combined complexity
CQs instance queries CQs instance queries

AR coNP-co coNP-co I15-co coNP-co
IAR in AC” in AC” NP-co in P
brave in AC" in AC" NP-co in P
k-support in AC” in AC” NP-co in P
k-defeater in AC” in AC” NP-co in P
ICR coNP-co coNP-co AB[O(log n)]-co coNP-co
CAR coNP-co in AC" I15-co in P
ICAR in AC® in AC” NP-co in P
k-lazy (k > 1) coNP-co inP I15-co inP

40

EFFICIENT INCONSISTENCY-TOLERANT
QUERY ANSWERING IN DL-LITE

In this chapter, we present the algorithms we implemented in our CQAPri prototype system
for query answering under AR, IAR and brave semantics over DL-Lite knowledge bases.
Then, we describe the experimental setting we built to evaluate it, as well as the results
we obtained. Finally, we discuss other existing systems for inconsistency-tolerant query
answering.

3.1 Algorithms

We compute the answers that hold under AR, IAR and brave semantics using the basic
algorithms ComputeConflicts and ComputeCauses presented in the preceding section and
exploiting the properties of such answers.

Brave To decide if a Boolean query is entailed under brave semantics, we simply need to
compute its causes with Algorithm 2.3 (ComputeCauses) and verify that the output is not
empty.

IAR Since a query holds under IAR semantics just in the case that one of its cause is such
that none of its assertions is involved in some conflict, deciding if a query is entailed under
IAR semantics can be done by computing its causes with Algorithm 2.3 (ComputeCauses)
and the conflicts of the KB with Algorithm 2.2 (ComputeConflicts).

AR For the coNP-complete problem of deciding if a query is entailed under AR semantics,
we encode it as a (UN)SAT problem. Figure 3.1 presents the encoding we use, where
variables represent assertions of the ABox, and that is satisfiable just in the case that the
query does not hold under AR semantics. Intuitively, the assertions that correspond to the
variables assigned to true in a truth assignment that satisfies the formula form a consistent
subset of the ABox that contains at least one assertion of the conflicts of each cause of the

41

Efficient inconsistency-tolerant query answering in DL-Lite

Fig. 3.1 SAT encoding for AR entailment.

¥oq = /\ \/ LB

Cecauses(q,K) Beconfl(C,K)

Pcons = /\ Zo VxR
Ta,xgEVars(p-q),Aeconfl({a},K)

with vars(y—) the set of variables appearing in .

query (cf. Definition 2.1.25 for conflicts of a cause). Since this subset is consistent, it can be
extended to a repair and such a repair cannot contain any cause for the query, otherwise it
would contain a conflict and be inconsistent. The interest of this encoding is that it has as
many variables as the number of assertions which are in a conflict with some assertions of a
cause of the query. Thus, in practical cases, the size of the formula may be much smaller
than the size of the ABox.

Theorem 3.1.1. Let K be a DL-Liteg KB and q be a Boolean conjunctive query. K [~ag q if
and only if o4 \ Peons is satisfiable, where o4 and Qcons are defined in Figure 3.1.

Proof. Let v be a truth assignment of the variables of ¢4 A @cons and R, = {3 | v(zg) =
true}. The formula -, evaluates to true in v if and only if for every cause C of ¢, there
exists an assertion 5 which is in conflict with some assertion of C and such that v(x3) = true,
so is in R,. The formula ¢.,,s evaluates to true in v if and only if there is no «, 5 which
are in a conflict and such that v(z,) = true and v(z3) = true, so if and only if R, does not
contain any conflict of /C, i.e. is 7 -consistent. Hence ¢—4 A ¢cons €valuates to true in v if and
only if R, is a consistent subset of .A that contradicts each cause for ¢, thus can be extended
to a repair of IC which does not contain any cause for ¢, since adding a cause for ¢ to R,
would make it inconsistent. We conclude that ¢4 A @cons 1s satisfiable if and only if there
exists a repair of X that does contain any cause for ¢, so if and only if I [£aR ¢. [l

Example 3.1.2. We illustrate the encoding on the following KB:

T ={AProf C Prof, FProf C Prof, Prof C PhD, Postdoc C PhD,
AProf C —FProf, Prof = —Postdoc}
A ={AProf(a),FProf(a),Postdoc(a)}

The conflicts of (7,.A4) are {AProf(a),FProf(a)}, {AProf(a),Postdoc(a)}, and
{FProf(a),Postdoc(a)}. We have therefore:

confl({AProf(a)}, K) ={FProf(a), Postdoc(a)}
confl({FProf(a)}, K) ={AProf(a),Postdoc(a)}
confl({Postdoc(a)},) ={AProf(a),FProf(a)}

42

3.2 The CQAPri system

For the query ¢ = Prof(a), which has two causes { AProf (a)} and {FProf(a)}, we obtain:

P-q :(xFProf(a) N xPostdoc(a)) A (xAProf(a) v xPostdoc(a))
Pcons :(_‘IFProf(a) v _'xPostdoc(a)) N (ﬁxAProf(a) v ﬁxPostdoc(a)) A (_‘xAProf(a) N _‘xFProf(a))

A valuation that assigns Tpesidoc(q) 10 true and Taprof(q) and Trprof(q) to false satisfies
Y=g\ Pcons> SO <T> -A> I?éAR q.

If we consider now the query ¢ = PhD(a), which has three causes, {AProf(a)},
{FProf(a)}, and {Postdoc(a)}, we obtain:

$-q :<xFProf(a) \4 xPostdoc(a)) A (xAProf(a) N :CPostdoc(a)) A (xAProf(a) \% xFProf(a))

Pcons :(_'xFProf(a) \ _'xPostdoc(a)) A (ﬁxAProf(a) \% ﬁxPostdoc(a)) A (_‘xAProf(a) \% _‘xFProf(a))

The formula ¢—4 A pcons is unsatisfiable, so (7, A) =ar ¢ <

Remark 3.1.3. If we allow denial constraints of the form B{M...M B,, C L in the TBox or
of the form of a Boolean CQ (351 (%), where 1) is a conjunction of atoms of the forms A(t)
or R(t, t/), with ¢, t’ individuals or variables from %) which has to be false, the encoding can
be adapted to take into account n-ary conflicts: K [~ar ¢ if and only if gplq A @%q A ©cons 18
satisfiable.

A V we B

Cecauses(q,K) Beconflicts(K),CNBAD

dq = /\ /\ ~xcBVIa
zc pEvars(ply) BEB\C

Geons = N\ A AV

ro€vars(p2,) Beconflicts(K),aeB BEB

When conflicts are not binary, we cannot define the conflicts of a cause as a set of assertions:
it may be necessary to use several assertions to contradict a cause. The new variables z¢ 5
represent each possibility to contradict C and goLq expresses that every cause 1s contradicted.
The formula gozq ensures that when w¢ 5 is assigned to true, which means that C is contra-
dicted with the conflict B, every assertion of B which does not belong to C is selected, so
that adding C creates a conflict. As in the preceding encoding, (.ons enforces consistency of
the subset consisting of the assertions those corresponding variables are assigned to true by
preventing all assertions of a conflict to be selected together.

Algorithm 3.4 gives the strongest of these three semantics under which a query holds.

3.2 The CQAPri system

We implemented our query answering framework under AR, TAR and brave seman-
tics over DL-Liteg KBs in Java v1.7 within our CQAPri (“Consistent Query Answer-

43

Efficient inconsistency-tolerant query answering in DL-Lite

Algorithm 3.4 ClassifyQuery
Input: a Boolean conjunctive query ¢, a TBox 7, an ABox A
Output: IAR if (7, A) Fiar ¢, AR if (T, A) Far q¢ and (7, A) ~iar ¢, brave if
(T,A) Fbrave ¢ and (T, A) F~aR ¢, and not brave otherwise

1: Coonflicts < ComputeConflicts(7,.A)
ConflictAssertions <= Upeconfiicts B
Causes + ComputeCauses(q, T ,.A)
if Causes = () then

Output not brave
end if
CausesConfl < ()
for all C € Causes do

if CNConflict Assertions = () then

Output IAR
else
CausesConfl <+ CausesConflU{p | a € C,{a,5} € Conflicts}

end if
: end for
. < ConstructEncoding(CausesCon fl,Conflicts)
. if ¢ is unsatisfiable then
Output AR
. else
Output brave
20: end if

where constructEncoding constructs the SAT encoding of Theorem 3.1 from the conflicts of
the causes for ¢ and conflicts of .

R A A T o

e S e T e T e T e T o SO =S =
P RNDINRERDD 22

44

3.3 Experiments

ing with Priorities") tool. CQAPri is built on top of the relational database server
PostgreSQL v9.3.2 (www.postgresql.org), the Rapid v1.0 query rewriting engine for DL-Lite
[Chortaras et al. 2011], and the SAT4J v2.3.4 SAT solver [Berre & Parrain 2010]. All these
building blocks are used with their default settings.

CQAPri classifies a query answer @ into one of 3 classes:

* Possible: K Fprave ¢(@) and K FEar ¢(@)

* Likely: K [=ar ¢(@) and K JAiar ¢(a)
* (Almost) sure: K =iar ¢(@)

To do that, CQAPri follows the line of Algorithm 3.4, but uses consistent images instead
of causes to decide if a query holds under one or the other semantics, since every cause is an
image and every consistent image contains a cause, and removing non-minimal ones is time
consuming (cf. Section 4.3.3, Figure 4.5 for an insight of this cost).

CQAPri handles ABoxes stored in PostgreSQL, while it keeps the TBox in-memory. It
computes the set of conflicts for the KB in a preprocessing phase since it is query-independent.
Conflicts are computed as in Algorithm 2.2: the SQLized rewritings of the queries looking
for counter-examples to the negative TBox inclusions are evaluated over the ABox, their
images are retrieved and stored as a graph whose vertices are assertions and edges indicate
images, and finally the non-minimal ones are discarded by removing edges between any
self-inconsistent assertion and the others to obtain the conflict graph.

When a query arrives, CQAPri evaluates it over the ABox using its SQLized rewriting,
to obtain its candidate answers and their images. Candidate answers define a superset
of the answers holding under the brave, AR and IAR semantics. Among the candidate
answers, CQAPri identifies the IAR ones, by checking whether there is some image whose
assertions have no outgoing edges in the conflict graph, since such an image contains a
cause such that none of its assertions is involved in a conflict. It also identifies those which
are not brave-answers by discarding the inconsistent images, that contain an edge of the
conflict graph: an answer that has only such images does not hold under brave semantics.
Finally, for brave-answers that are not found to be IAR-answers, deciding whether they are
entailed under the AR semantics is done using the SAT encodings from the preceding section.
Using consistent images instead of causes is not a problem here because the set of causes is
included in the set of images and every consistent image contains a cause, so it is possible to
consistently contradict every cause iff it is possible to consistently contradict every consistent
image.

3.3 Experiments

We conducted experiments to empirically study the properties of our framework. We study
in particular the impact of the data quality and size on CQAPri behavior, and the proportion
of answers in the different classes.

45

www.postgresql.org

Efficient inconsistency-tolerant query answering in DL-Lite

3.3.1 The CQAPri benchmark

To evaluate CQAPri, we needed a DL-Litex KB with a large and inconsistent ABox. Very
few experiments have been done on inconsistent KBs, and the only DL-Lite benchmark we
found was not suitable for our case (cf. Section 3.4.2), so we designed our own.

Ontology

We built our TBox over the LUBM%'O TBox from [Lutz et al. 2013], which provides an ex-
tended DL-Lite version of the well-known £LZ TBox of the Lehigh University Benchmark
(LUBM) of [Guo et al. 2005] that describes the university domain. LUBM;0 differs from
the original LUBM by the removal of the axioms that go beyond DL-Liter but also by
the addition of concept inclusions, many of which having existential restrictions on the
right-hand side, and of subconcepts to increase the size of the ontology. LUBM%0 comprises
127 concepts, 27 roles and 202 positive inclusions. To allow for contradiction, we added
negative inclusions to state the disjointness of pairs of concepts or roles having the same
closest super-concept or super-role. Such concepts and roles appear at the same level in the
TBox (that is, have the same distance to the top concept Thing). We excluded a small number
of such inclusions when they did not seem to reflect the intended meaning of the concepts
or roles. Figure 3.2 illustrates how we added negative inclusions for an example concept
AssistantProfessor. We added 875 negative inclusions in total. This apparently huge number
of constraints results from the many pairwise disjoint concepts or roles used in the TBox.

Datasets

We generated ABoxes of increasing sizes with the Extended University Data Generator
(EUGen) provided with LUBM%O by setting its data completeness parameter (i.e. the percent-
age of individuals from a given concept for which roles describing this concept are indeed
filled) to its default value of 95%, which seems realistic from the application viewpoint. All
the generated ABoxes were found consistent w.r.t. our enriched TBox, meaning that the added
disjointness constraints were faithful to the reused benchmark. The size of these ABoxes
ranges from 75,663 to 9,938,139 assertions, which corresponds to 1 to 100 universities in
EUGen settings, and each ABox is included in the larger ones: the smallest one corresponds
to university 0, the largest one to universities 0 to 99.

Inconsistencies were introduced by reviewing all the assertions of the consistent ABox,
and contradicting the presence of an individual in a concept assertion with probability p,
and the presence of each individual in a role assertion with probability p/2. A contradicting
assertion is built by stating that the considered individual also belongs to a disjoint but close
concept, i.e. the two concepts have the same closest super-concept which is not the top
concept Thing. Note that a concept may here be an unqualified existential role restriction.
The contradicting assertion is added either explicitly or implicitly by choosing one of its
specializations (obtained by query rewriting). The concept or role that is used to build
the assertion which will actually be added to the ABox is chosen among all rewritings of
all possible contradicting assertions with a uniform probability distribution. We chose to

46

3.3 Experiments

Fig. 3.2 The left side displays a part of the concept hierarchy of the LUBM%O ontology,
the right upper part shows of which concepts AssistantProfessor is a subconcept (here the
single concept Professor). The right lower part displays the negative inclusions added
between AssistantProfessor and concepts with the same closest super-concept Professor:
FullProfessor, ExDean, VisitingProfessor, AssociateProfessor and Dean. We did not add
disjointness axioms with the concepts SubjXProfessor, because such concepts indicate the

domain of a professor, which is independent from its seniority.

([Glass hierarchy || Glass hiesarchy (infemed) |

[%] 2]]

¥ @ Thing
p--) organization
¥ person
----- chair
----- director
Employee

‘administrative staff worker’
* 'faculty member’
e lecturer
- 'post doctorate’
v-- @ professor
----- ‘assistant professor’
----- 'associate professor’
----- dean
----- ExDean
----- "full professor’
----- Subj10Professor
----- Subj11Professor
----- Subj12Professor
----- Subj13Professor
----- Subj14Professor
----- Subj15Professor
----- Subj16Professor
----- Subj17Professor
----- Subj18Professor
----- Subj19Professor
----- Subj1Professor
----- Subj20Professor
----- Subj2Professor
----- Subj3Professor
----- Subj4aProfessor
----- SubjsProfessor
----- Subj6Professor
----- Subj7Professor
----- Subj8Professor

4 lass Annotation: rclassLlsaue |

Equivalent To
SubClass Of
professor

General class axioms

SubClazs Of (fnonymous Sncestor)
"Works For' some Thing
'has a masters degree from’ some university
'has a doctoral degree from’ some university

'has an undergraduate degree from' some
university

"Works For' some "university department’
inverse ("was written by') some Thing
teaches some Thing

inverse ('is being advised by') some Thing

Wernbers

Target for Key

Disjaint With
"full professor’
ExDean
"visiting professor’
'associate professor’
dean

47

Efficient inconsistency-tolerant query answering in DL-Lite

generate such inconsistencies because they seem quite natural in real applications (e.g. using
by mistake AssistantProfessor in place of AssociateProfessor). Conflicting assertions thus
introduced are in turn processed as described above to create a few more complex conflicts.
Additionally, for every role assertion, its individuals are switched with probability p/10.
We chose to generate such misuses of roles because they also seem quite natural mistakes
and may lead to inconsistencies (e.g. inverting the Faculty and Course in a TeacherOf role
assertion).

Example 3.3.1. Below are four assertions that have been created to conflict some assertions
of the original consistent ABoxes.

e The assertion Subj4Course(Department11.Universityl /GraduateCourse33) con-
tradicts Subj20Course(Departmentl11.Universityl/GraduateCourse33) because
these concepts are disjoint (Subj20Course T =Subj4Course).

* The assertion Subj3Department(University462) has been inserted to contradict
MastersDegreeFrom(Department22.University0/ Lecturer2, University462): in-
deed, the range of MastersDegreeFrom is University (dMastersDegreeFrom™ C
University), which is disjoint with Department (University = —Department), which
has Subj3Department has subconcept (Subj3Department C Department}).

* PublicationResearch(DUM MY _1_1_749, Department18.Universityl/Course32)
conflicts TakesCourse(Department18.Universityl/UndergraduateStudent124,
Department18.Universityl /Course32). Indeed, TakesCourse has Course for
range, which is disjoint with Research which is the range of PublicationResearch.

* Finally MemberOf(Department5.Universityl, Department5.Universityl/
UndergraduateStudent4T) is obtained by switching the two individuals of an asser-
tion. Note that this kind of assertion may induce that an individual belongs to a totally
different concept, since the domain and the role of a concept have often no common
super-concept other than Thing. Such inversions generally yield a lot of conflicts.

N

For each of the 100 universities that constitute our consistent ABoxes, we set p = 0.002
and generate 50 batches of conflicting assertions to insert, using the method described above.
We obtain inconsistent ABoxes with growing ratios of assertions involved in some conflict by
adding the n first batches of conflicting assertions to each university of the original consistent
ABox, n ranging from 1 to 50, that roughly leads to a percentage of assertions involved in
some conflict varying from about 3% to about 46%. We consider that ABoxes with a few
percent of assertions in conflicts are realistic, but we also built ABoxes with a huge number
of conflicts in order to study the impact of the data quality on the efficiency of our approach.

Table 3.1 displays the characteristics in terms of size, inserted assertions, and number
and percentage of assertions involved in conflicts of the ABoxes of our benchmark. Every
ABox’s id uXcY indicates the number X of universities generated by EUGen and the number
of queries batches used to add conflicts Y. Note that our method ensures that uXcY C uX'cY
when X < X’ and uXcY C uXcY’ whenY <Y’

48

3.3 Experiments

ABoxes are stored as relational databases in PostgreSQL with one table per concept and
role, of one or two columns (named s for concept and s and o for role) that contains the
individuals involved in that concept or role. B-Tree indexes have been created for each table,
on s for concepts and (s,0) and (o, s) for roles. The concepts, roles and individuals names
are encoded by integers, and a dictionary table relates each name to its identifier.

Queries

Figure 3.3 displays the 20 queries used in our experiments and Table 3.2 summarizes their
characteristics. They have between 1 and 8 atoms, with an average of 4.25 atoms. Their
rewritings produced with Rapid have between 2 and 202,710 CQs, 23,185.95 on average.

Queries q14 to q20 were available on websites associated with [Pérez-Urbina et al. 2009,
Lutz et al. 2013, Rosati et al. 2012], and we designed the others ourselves. We chose queries
that use some concepts that have disjoint specializations to get more chance to get answers
that hold under AR semantics and not under [AR semantics.

3.3.2 Experimental setting

All experiments reported in this thesis were run on an Intel Xeon X5647 at 2.93 GHz with 16
GB of RAM, running CentOS 6.8. Reported times are averaged over 5 runs.

We did not measure the time that our prototype takes to present the results (i.e. translating
the answers back in the original terminology with the dictionary table of the database and
printing the results in text files), since the goal our experiments was to study the properties of
the computation of query answers rather than their presentation, that a real OMQA system
would probably handles in a more refined and efficient way.

3.3.3 Experimental results

We empirically study the properties of our consistent query answering framework. We
measure the time spent in the different phases of query answering under IAR, AR and brave
semantics, and how it varies with the size of the ABoxes and the ratio of assertions involved
in some conflicts. We also consider the evolution of the number of answers under each
semantics.

The time it took CQAPri to be up and ready to answer queries is dominated by the
construction of the conflict graph for the ABox (Table 3.3); it took about 2 seconds to load
the TBox, construct the queries that correspond to the violation of negative inclusions, and
open the PostgreSQL connection to the ABox. The time for the construction of the conflict
graph has a linear behavior w.r.t. the size of the ABox, and the more conflicts there are, the
higher is the slope.

Table 3.4 shows, per ABox and query pair, how many Sure, Likely and Possible answers
were identified among the candidate answers. In this table, OOM means that CQAPri ran out
of memory. In all our experiments, we found only a few candidate answers that are not brave:
only q9 got such answers, on all ABoxes (up to 802 inconsistent answers on ul00conf50).
Only 9 queries out of 20 got Likely answers over some ABoxes, 5 of them have only one

49

Efficient inconsistency-tolerant query answering in DL-Lite

Table 3.1 Characteristics of ABoxes used in experiments.

ABox id size % assertions # assertions % assertions
added to uXc0 in some conflict in some conflict
ulcO 75,663 0 0 0
ulcl 75,724 0.08 2,373 3
ulch 75,951 0.38 6,412 8
ulclO 76,201 0.70 10,891 14
ulc20 76,821 1.51 20,175 26
ulc30 77,447 2.30 26,086 34
ulch0 78,593 3.73 34,814 44
ubc0 463,325 0 0 0
ubcl 463,691 0.08 12,191 3
ubch 465,157 0.39 45,906 10
ubcl0 466,919 0.77 83,263 18
ubc20 470,674 1.56 137,836 29
u5c30 474,368 2.33 172,245 36
u5ch0 481,400 3.75 221,900 46
u20c0 1,981,872 0 0 0
u20cl 1,983,493 0.08 69,597 4
u20ch 1,989,788 0.40 253,141 13
u20c10 1,997,445 0.78 408,398 20
u20c20 2,013,048 1.55 610,271 30
u20c30 2,028,069 2.28 748,664 37
u20c50 2,056,957 3.65 946,819 46
u50c0 4,934,691 0 0 0
ub0cl 4,938,737 0.08 224,131 5
u50ch 4,954,494 0.40 686,159 14
u50c10 4,973,292 0.78 1,034,226 21
u50c20 5,010,776 1.52 1,517,499 30
ub0c30 5,046,802 2.22 1,865,679 37
u50c50 5,115,473 3.53 2,353,739 46
ul100c0 9,938,139 0 0 0
ul00cl 9,946,144 0.08 546,708 5
ul00ch 9,977,656 0.40 1,381,298 14
ul00c10 10,014,894 0.77 2,077,201 21
ul100c20 10,087,801 1.48 3,069,321 30
u100c30 10,157,192 2.16 3,755,732 37
u100c50 10,289,863 3.42 4,728,588 46

50

3.3 Experiments

Fig. 3.3 Queries used in experiments.

ql =Person(x) A takesCourse(z,y)
g2 =Employee(z) A publicationAuthor(y, x)
q3 =Professor(z) A teacherOf (z,y) A worksFor(z, Department0.University0)
g4 =FullProfessor(x) A publiAuthor(y, z) A teacherOf(x, z) A advisor (u,) A
graduateStudent(u) A degreeFrom(x,v) A degreeFrom(u,w)
g5 =3JyPerson(Department2.University0/Graduatudent131)A
takesCourse(Department2.University0/GraduateStudent131,y)A
GraduateCourse(y) A takesCourse(x,y) A Person(z)
q6 =3yEmployee(z) A publicationAuthor(y, x) A Employee(z) A publicationAuthor(y, 2) A
memberOf (z, Department4.University0)A
memberOf(z, Department4.University0)
q7 =3zEmployee(z) A memberOf(x, Department2.University0) A degreeFrom(z,y)
q8 =JyteacherOf (z,y) A degreeFrom(z, University532)
q9 =3yuEmployee(z) A memberOf (z,u) A degreeFrom(x,y) A Employee(z)A
memberOf(z,u) A degreeFrom(z,y)
q10 =3uEmployee(x) A memberOf (x,u) A degreeFrom(z, University532) A Employee(2)A
memberOf(z,u) A degreeFrom(z, University532)
qll =3yFaculty(x) A publicationAuthor(y,)
q12 =Organization(z)
q13 =Employee(z)
q14 =Student(x) A advisor(z,y) A Faculty(y) A takesCourse(z, z) A teacherOf (y, 2) A
Course(z)
q15 =Person(z) A worksFor(x,y) A Organization(y)
q16 =3zuStudent(z) A takesCourse(z, y) A Course(y) A teacherOf (z,y) A Faculty(z)A
worksFor(z,u) A Department(u) A memberOf (x, u)
ql7 =3yzFaculty(x) A degreeFrom(z,y) A University(y) A subOrganizationOf (2, y)A
Department(z) A memberOf(z, z)
q18 =3yzPublication(z) A publicationAuthor(z, y) A Professor(y)A
publicationAuthor(x, z) A Student(z)
q19 =3zuUniversity(z) A University(y) A memberOf(z,) A Student(z) A University(y) A
memberOf (u, y) A Professor(u) A advisor(z,u)
q20 =takesCourse(x,y) A Student(z)A
teacherOf (Department0.University0/Associate Professor0,y) A Course(y)

51

Efficient inconsistency-tolerant query answering in DL-Lite

Table 3.2 Queries in terms of shape, numbers of atoms, variables, constants, rewritings, and
rewriting time (Rapid).

id shape #atoms #variables #constants #rewritings rewriting time (ms)

ql chain 2 2 0 80 4
q2 chain 2 2 0 44 3
q3 tree 3 2 1 58 4
q4 dag 7 6 0 25 3
g5 dag 5 2 1 6,401 88
q6 dag 5 3 1 8,240 742
q7 tree 3 2 1 450 7
q8 tree 2 2 1 155 4
q9 dag 6 4 0 202,579 15,917
ql0 dag 6 3 1 202,710 33,865
qll chain 2 2 0 35 3
ql2 atomic 1 1 0 44 3
ql3 atomic 1 1 0 44 3
ql4 dag 6 3 0 23 3
ql5 chain 3 2 0 2 3
ql6 dag 8 4 0 3,887 124
ql7 chain 6 3 0 14,700 190
ql8 tree 5 3 0 667 13
ql9 dag 8 4 0 23,552 920
q20 chain 4 2 1 23 3

52

3.3 Experiments

Table 3.3 Construction of conflict graph in milliseconds w.r.t. size uX and conflicts cY.

cl ch cl0 c20 c30 ch0
ul 2,033 2.384 2,498 2,710 2,920 3,113
ub 7,758 8,542 8,920 9,644 10,462 11,230
u20 27,748 29,878 31,792 34,683 36,982 40,586
ub0 73,031 78,673 80,563 91,122 100,134 118,375

ul00 153,476 166,234 177,441 200,468 221,172 247,191

or two atoms (ql, q2, q11, q12, q13) while the others are more complex (g5, g6, q9, q18).
Such answers show up as these queries are general and involve concepts with many disjoint
sub-concepts. For 67.5% of our ABox and query pairs, AR does not provide any additional
answers compared to IAR. However, in g5 and uXc20 cases, all answers are AR and not
IAR. For such selective queries, using the AR semantics rather than IAR may be necessary
to get answers. Unsurprisingly, for a given ABox size, when the proportion of conflicting
assertions increases, the number of Sure answers decreases while the number of Likely and
Possible answers increases. This incurs a higher computational cost since a call to the SAT
solver is needed for each non-IAR-answer to decide if it holds under AR semantics or not.

Figure 3.4 shows the evolution of the time spent by CQAPri for AR query answering
w.r.t. the size of the ABox, when the proportion of conflicting assertions is a few percent,
as it is likely to be in most real applications, about 30%, and about 45%. Figure 3.5 shows
the evolution of the time spent by CQAPri for AR query answering w.r.t. the proportion of
ABox assertions involved in some conflicts, for small, intermediate and big ABoxes. Figure
3.6 shows the proportion of the query answering time spent in rewriting the query, executing
the rewritten query to get candidate answers, filtering the IAR- or not brave-answers, and
identifying the AR-answers among the remaining answers.

At first sight, there are two outlier queries g4 and q9 whose answering times have an
exponential-like growth w.r.t. ABox size even in realistic cases. Query g4 is very sensitive
both to ABox size and ratio of conflicts, while q9 is rather robust to conflicts. This comes
from the uncommon characteristics of these queries. Indeed, q9 has 202,579 rewritings,
with 4 variables and no constant, that leads to a very costly execution over the database, as
illustrated on Figure 3.6 where almost 90% of the time is spent in executing the rewritten
query even in the case of the largest ABox with the highest percentage of conflicts. Query
q10 that differs from q9 only by the introduction of a constant, behaves very differently
since its answering time stabilizes quickly. Regarding g4, it has a high number of atoms and
variables, which are all free, that yields a huge number of answers (10,362,220 answers on
ul00c10), that becomes quickly non-IAR since their causes involve lots of assertions. These
two queries are interesting to challenge our system but are not realistic, especially q4.

For the other queries, CQAPri scales up to large ABoxes when the proportion of assertions
involved in some conflict is only a few percent, and even a few tens percent for most of the
queries. The increase of the number of non-IAR-answers when the proportion of conflicts
increases generally significantly augments the time spent in this last phase. It explains that

53

Efficient inconsistency-tolerant query answering in DL-Lite

Table 3.4 Number of answers in the different classes for a growing proportion of conflicts
and three sizes of ABoxes.

ulcl ulcs ulclO ulc20 ulc30 ulce50

Sure Likely Possible Sure Likely Possible Sure Likely Possible Sure Likely Possible Sure Likely Possible Sure Likely Possible
ql 20029 0 380 18261 0 2148 16524 0 3885 12538 7 7864 10286 11 10112 6646 19 13747
q2 7215 20 12 7077 57 146 6887 124 308 6284 402 734 5693 652 1174 4728 887 2087
q3 85 0 0 73 0 12 67 0 18 0 0 85 0 0 87 0 0 87
q4 78101 0 5636 62478 0 22159 48745 0 35892 24545 0 60236 12776 0 72221 4806 0 80839
q5 10 0 0 10 0 0 10 0 0 0 10 0 0 10 0 0 0 10
q6 235 0 0 224 0 14 194 9 44 177 14 110 147 39 129 0 0 342
q7 136 0 1 130 0 7 0 0 138 0 0 138 0 0 142 0 0 149
q8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q9 1291 3 80 1220 11 172 1138 26 259 1002 68 406 897 106 530 783 116 741
ql0 0 0 3 0 0 3 0 0 6 0 0 6 0 0 6 0 0 7
qll 534 0 4 524 0 20 513 0 38 471 4 89 440 5 140 385 7 236
ql2 1180 11 10 1140 49 28 1092 90 57 999 174 117 930 231 204 802 345 350
ql3 1069 3 8 1054 11 31 1034 24 56 966 71 122 889 117 204 783 169 351
ql4 191 0 4 177 0 18 157 0 38 98 0 97 65 0 130 36 0 159
qls 405 0 102 337 0 171 235 0 273 99 0 409 34 0 474 0 0 515
ql6 13545 0 3987 10182 0 7350 6669 0 10863 2052 0 15480 392 0 17140 0 0 17532
ql7 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
ql8 3107 0 66 2959 0 214 2770 0 403 2302 0 872 1860 0 1319 1319 0 1871
ql9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q20 50 0 0 49 0 1 26 0 24 25 0 25 2 0 48 0 0 50

u20cl u20c5 u20c10 u20c20 u20c30 u20c50

Sure Likely Possible Sure Likely Possible Sure Likely Possible Sure Likely Possible Sure Likely Possible Sure Likely Possible
ql 532331 0 12776 485196 11 59900 434068 47 110995 344391 190 200539 279492 395 265246 187504 758 356922
q2 189186 228 1019 184238 1642 5628 177611 3902 11443 163260 9927 22489 150280 15085 32790 127098 23819 52117
q3 85 0 0 73 0 12 67 0 18 0 0 85 0 0 87 0 0 87
q4 1123422 0 944364 115026 0 1956534 8955 0 2067051 118 0 2082472 0 0 2092082 0 0 2114007
q5 10 0 0 10 0 0 10 0 0 0 10 0 0 10 0 0 0 10
q6 235 0 0 224 0 14 194 9 44 177 14 110 147 39 129 0 0 342
q7 91 0 46 35 0 102 0 0 138 0 0 138 0 0 142 0 0 149
q8 0 0 31 0 0 31 0 0 31 0 0 31 0 0 32 0 0 32
q9 33433 60 2714 29222 123 7504 27581 126 9873 25701 59 13282 24150 96 16196 21462 267 21419
ql0 0 0 58 0 0 58 0 0 61 0 0 62 0 0 64 0 0 66
qll 14331 0 145 13975 3 708 13514 8 1410 12613 42 2781 11798 96 4066 10329 267 6373
ql2 7082 218 251 6460 649 1044 6120 810 1997 5830 880 3881 5646 914 5548 5395 991 8769
ql3 28891 64 204 28315 348 1033 27512 779 2054 25791 1780 4028 24209 2658 5938 21471 4185 9430
ql4 4785 0 166 4165 0 786 3529 0 1422 2539 0 2412 1853 0 3098 1007 0 3944
qls 12050 0 1702 7877 0 5896 4448 0 9358 1715 0 12143 628 0 13278 54 0 13946
ql6 396411 0 72138 234542 0 234007 115090 0 353459 33936 0 434613 9413 0 459136 585 0 467964
ql7 27 0 10 3 0 34 0 0 37 0 0 37 0 0 37 0 0 39
ql8 81760 0 1342 76118 0 7020 69639 0 13545 58294 0 24959 48975 0 34375 34795 0 48770
ql9 0 0 1 0 0 3 0 0 5 0 0 8 0 0 15 0 0 20
q20 50 0 0 49 0 1 26 0 24 25 0 25 2 0 48 0 0 50

ul00cl ul00c5 ul00c10 ul100c20 ul00c30 ul100c50

Sure Likely Possible Sure Likely Possible Sure Likely Possible Sure Likely Possible Sure Likely Possible Sure Likely Possible
ql 2675887 3 65067 2433476 57 307432 2171624 253 569097 1732258 961 1007794 1398917 1870 1340294 934012 3751 1803546
q2 946599 1003 5807 921744 8217 29012 888761 20619 56374 819168 50118 109934 755044 77267 159584 637443 124113 254737
q3 85 0 0 73 0 12 67 0 18 0 0 85 0 0 87 0 0 87
q4 702009 0 9614733 0 0 10339007 0 0 10362220 OOM OOM OOM OOM OOM OOM OOM OOM OOM
q5 10 0 0 10 0 0 10 0 0 0 10 0 0 10 0 0 0 10
q6 235 0 0 224 0 14 194 9 44 177 14 110 147 39 129 0 0 342
q7 34 0 103 1 0 136 0 0 138 0 0 138 0 0 142 0 0 149
q8 0 0 187 0 0 188 0 0 188 0 0 188 0 0 189 0 0 190
q9 152404 110 27107 140733 18 41939 136664 35 49594 128616 192 64820 121104 451 78963 107220 1300 105450
ql0 0 0 293 0 0 294 0 0 299 0 0 310 0 0 319 0 0 326
qll 71756 0 739 69907 14 3627 67723 35 7089 63411 192 13778 59446 451 19956 51791 1300 31764
ql2 31955 566 1109 30977 674 5066 30224 713 9572 29074 1166 18162 28256 1733 26118 27002 2849 41644
ql3 144313 308 1014 141289 1853 5153 137356 4056 10055 129083 8902 19737 121332 13397 28913 107258 21279 46553
ql4 23330 0 777 20271 0 3836 17222 0 6885 12390 0 11717 9083 0 15024 4942 0 19165
ql5 61189 0 7584 40044 0 28820 23163 0 45806 7693 0 61492 2494 0 66918 221 0 69599
q16 2029091 0 323720 1182399 0 1170412 594303 0 1758508 150512 0 2202299 37860 0 2314951 2374 0 2350437
ql7 28 0 190 0 0 219 0 0 220 0 0 221 0 0 222 0 0 226
ql8 406817 0 7330 378618 0 35727 347379 0 67228 291909 0 123116 246077 0 169421 174140 17 242252
ql9 0 0 5 0 0 13 0 0 26 0 0 56 0 0 81 0 0 124
q20 50 0 0 49 0 1 26 0 24 25 0 25 2 0 48 0 0 50

54

3.3 Experiments

Fig. 3.4 Time in seconds for query answering w.r.t. the size of the ABox for three ratios of
conflicts (about 4%, 30%, and 45% of assertions involved in some conflict). For readability,
the two figures on the right focus on the queries whose answering times are lower and whose
behaviors are thus not visible on the first one.

-
uXc1 b uXc1 ql uXc1 P
—-q2
3
1200 +g4 180 @3 18 g5
1000 _._qg 160 -»—q5 14 q6
a 140 o6
»4-q7 g7 12 »4-q7
800 q8 120
--q9 100 q8 10 q8
= q10 @ el @
g 600 g E 80 ——q12 E 8 =&q11
F 100 Igg F e —-ql3 F 6 —+—q12
—q14 0 —qn 4 —-q13
200 q15 q15
-#-q16 20 -=-q16 2 —ql4
--q17
0 ; .¢ —1—315 0 =" = 5 —+=q17 0 -y =: q15
0 2 4 6 8 10 12 -4-q19 0 2 4 6 8 10 12 -%qi8 0 2 4 6 8 10 12 +—q20
ABox size (million assertions) -»—q20 ABox size (million assertions) -»—q20 ABox size (million assertions) 4
-
uXc20 —e uXc20 =gt uXc20 @
2500 q3 200 e 16
——q4 q3 a5
g5 180 g5 14 .
2000 96 160 6 q
H-q7 q 12
a8 140 g7 »+q7
,\1500 --q9 - 120 q8 - 8
° -x-g}? o 100 eatt g
E 1000 —+q12 E 80 ——qi2 E >-q11
:312 60 —~-q13 —=-q13
500 q15 40 a4 — g4
-»-q16 20 q18
—--q17 —-q17 - q15
0 3 i 18 0 WE==" S ! —ciB 4 X
0 2 4 6 8 10 12 —-q19 0 2 4 6 8 10 12 q 0 2 4 6 8 10 12 +—q20
ABox size (million assertions) +-q20 ABox size (million assertions) +—q20 ABox size (million assertions)
uXc50 b uXc50 ~q2 uXc50 @
6000 93 250 a3 16
Iq; e 14 e
5000 36 q6 q6
=++q7 =++q7 12
4000 q8 @ +eq7
--q9 10 s
3000 qio @ ceal T 4
E 12112 E —+-q12 E] g1
2000 —-q13 —e=q13 gt
—q14 —q14 4
1000 q15 q15 ~—ql4
-=-q16 2 %
—--q17 —e-q17 et q15
G ¢ -+q18 (1} =1 e q18 =
0 2 4 6 8 10 12 —--q19 0 2 4 6 8 10 12 0 2 4 6 8 10 12 20
ABox size (million assertions) +—q20 ABox size (million assertions) +—q20 ABox size (million assertions)

55

Efficient inconsistency-tolerant query answering in DL-Lite

Fig. 3.5 Time in seconds for query answering w.r.t. the ratios of conflicts for three ABox
sizes (about 76K, 2 million, and 10 million assertions). For readability, the two figures on
the right focus on the queries whose answering times are lower and whose behaviors are thus
not visible on the first one.

--q1 -=-q1
ulcYy Seq2 ulcYy g2 ulcY —-q2
250 q3 25 Q3 12 3
Igg ot =+4q7
200 q6 20 "_q: !
+q7 q q8
/-——4"'——' q8 ea 08
150 -*-q9 15 a8 —¢qht
O 0 @ >-qll @
é -x—gn é' _._312 ‘é’ 0,8 ——q12
£ 100 —+q12 £ 10 Seqld B =13
by ?Iﬁ'?'__.d o o 14
50 315 5 q15 s
-=-q16 =q16 02 q15
— ——qi7 —-q17 S ;
0 +qi8 0 ; —— -*-q18 0 —¥-q18
0 5 1015202530 35 40 4550 _4—q1g 0 5 10 15 20 25 30 35 40 45 50 —a—q19 051015202530 35404550 .,
% conflicts -+—q20 % conflicts -»—q20 % conflicts
q
-
u20cY i) u20cY =gt u20cY
600 q3 70 =-q2 3 q3
ra ad +-q7
500 "‘gg 60 a5 25
g7 50 6 8
400 q8 ++q7 2
— 0 4 @8 ><q11
= q10 = =
< 300 >eqll gl T 15
£ —qi2 £ —q2 £ =13
200 —#-q13 20 —-q13 1
_31; —qt4 —q14
100 -=-q16 10 q15 05 15
——qi7 ——q17 .———""‘/_’—'
o T —) -¥q18 0 b s A 0
0 5 10 1520 25 30 35 40 45 50 _y_gqg 0 5 10 15 20 25 30 35 40 45 50 ~*-918 0 5 10 15 20 25 30 35 40 45 50 —q20
% conflicts +—q20 % conflicts -+—q20 % conflicts
-&-q1 -=-qi
u100cY g2 u100cY b u100cY 3
3
10000 *34 600 3 16 -
9000 -»—q5 a5 14
8000 6 500 6 6
+q7 a7 12
7000 38 400 33 -+-q7
6000 -&-q9 q10 10 8
0 ql0 @ g
<5000 Seatt 300 -¢q11 8
a £ £ gt
E 4000 ——qt2 £ —0—q1§ E &
Sl
2000 :312 200 _314 . —#-q13
2000 q15
100 q15 ——ql4
1000 & ate ——qi7 2 r— ‘/"'/‘:
0 = -1-315 0 =ttt | %18 I q15
0 51015202530 35404550 _, q1g 0 5 10 15 20 25 30 35 40 45 50 —&—q19 0 51015202530 35404550 ,_ g
% conflicts -+»—q20 % conflicts -+—q20 % conflicts

56

3.3 Experiments

Fig. 3.6 Proportion of time spent by CQAPri in the different phases of query answering
on 9 ABoxes: the two lower bars are the time for rewriting the query and executing the
rewritten query to get candidate answers, and the two upper bars represent the time needed
to classify such answers, by identifying the IAR- and non-brave-answers in a first step, then

the AR-answers.

uict u1c20 u1cs0
100% 100% 100%
o s HH | ol 111 IH 0% HHH
80% H 80% ! 80% H !
70% | 70% || 70% |
60% 60% 60% |
50% i 50% 50% |
40% | 40% 40%
30% | 30% 30% | | i
20% | 20% 20% |
10% 10% 1 10% J 1

q2 q4 q6 g8 q10 q12 q14 g16 q18 q20
a1 93 g5 q7 q9 q11 q13 q15 q17 19

u likely answers surefinconsistent answers
= candidate answers B query rewriting

q2 q4 q6 g8 q10 q12 q14 g16 q18 q20
a1 93 g5 q7 q9 q11 q13 q15 q17 19

u likely answers surefinconsistent answers
= candidate answers B query rewriting

g2 g4 q6 g8 q10 q12 q14 q16 q18 q2l)
ql g3 g5 q7 q9 q11 q13 q15 q17 q19

= likely answers surefinconsistent answers
= candidate answers M query rewriting

u20c1 u20c20 u20c50

100% u 100%] 100%

%0% 1 11 90% H H 90% H |
80% 80% I I 80% I
70% 70% I I 70% I
60% 60% i 60% |
50% 50% i 50% I
40% 40% i | 40% |- |
30% 30% I I 30% I
20% 20% 20% 1

10% | 10% i 10% 1H

o MLRNENE o MAN KRNRURRRRNRNNN o LANCHRUNERAnRNRNANE

q2 q4 qb qB q10 q12 qi14 q16 q18 q20
ql g3 g5 q7 q9 qg11 q13 q15 q17 q19

B likely answers surefinconsistent answers
B candidate answers M query rewriting

q2 q4 g6 g8 qi10 q12 q14 q16 q1B q20
ql g3 g5 q7 q9 qg11 q13 q15 q17 q19

B likely answers surefinconsistent answers
B candidate answers M query rewriting

q2 q4 g6 g8 q10 q12 q14 q16 q18 q20
ql g3 g5 q7 q9 q11 q13 q15 q17 q19

B likely answers surefinconsistent answers
B candidate answers M query rewriting

u100c1 u100c20 u100c50

100% - 100% 100%

o0% § 1] oo | | I I L I I I
80% 80% || 1 80% |
70% 70% 1 70% |
60% 60% | 60% |- |
50% 50% i 50% || |
40% 11 40% 11| 40%

30% 30% 1 30% 1h
20% 20% 1H| 20% i |
10% 10% 10% I 1

oo LALRLERT ol 1 | B L IRFRIRERTNT] N 1111

q2 q4 qb qB q10 q12 q14 q16 q18 q20
ql g3 g5 q7 q9 g11 q13 q15 17 19

H likely answers surefinconsistent answers
B candidate answers M query rewriting

q2 q4 qS qB q10 q12 q14 q16 g18 q20
ql g3 g5 q7 q9 q11 q13 q15 q17 19

H likely answers surefinconsistent answers
B candidate answers M query rewriting

57

q2 q4 qS qB q10 q12 q14 q16 q1B q20
ql g3 g5 q7 q9 q11 q13 q15 q17 19

H likely answers surefinconsistent answers
B candidate answers M query rewriting

Efficient inconsistency-tolerant query answering in DL-Lite

the lower the ratio of conflicts, the more query answering time shows a linear behavior
w.r.t. the ABox size.

The average time to classify an answer is generally under the millisecond, and of at most
7 ms (for q19 on u20c50). The average time to decide if a brave and non-IAR-answer is AR
or not is generally a little higher but also under the millisecond.

CQAPri scales overall in settings from realistic to more artificial ones. Our experiments
thus demonstrate that the AR-answers can be computed in practice and that this is due to the
fact that the IAR semantics often constitutes a very good approximation of the AR semantics.

3.4 Discussion: systems and benchmarks for
inconsistency-tolerant query answering

3.4.1 Systems for inconsistency-tolerant query answering

In terms of implemented tools and benchmarks for inconsistency-tolerant query answer-
ing over DL KBs, we are aware of two systems : the QulD system [Rosati ef al. 2012,
Lembo et al. 2015] that handles IAR semantics for CQs and DL-Lite 4 KBs, and the system
of [Du et al. 2013] for querying SHZ Q KBs under a variant of AR semantics with weight
on ABox assertions that handles CQs without non-distinguished variables that reduce to
assertions entailments. Neither system is directly comparable to our own, since they employ
different semantics, and in the case of the system of Du et al. target different DLs and queries.

The QulD system implements three approaches for query answering under IAR semantics:
evaluation of the IAR perfect reformulation over the inconsistent ABox, evaluation over the
ABox annotated with information about assertions that belong to some conflict of the original
query enriched with conditions to filter out such assertions, and evaluation of the original
query over the ABox from which every assertion involved in some conflict has been removed
before query answering time. Our approach regarding IAR is closer to the two last, since
our preprocessing phase where we compute and store the conflicts is similar in spirit to the
annotation and extraction of the intersection of the repairs. The main difference is that we
do not modify the query to retrieve only IAR-answers at evaluation time but rather filter out
[IAR-answers from candidate answers by checking a posteriori that they have causes without
conflict.

We can observe some high-level similarities with Du et al.’s system which also has a
preprocessing phase that compiles the KB, then employs SAT solvers and uses a reachability
analysis to identify a query-relevant portion of the KB to do query answering.

There are also a few systems for querying inconsistent relational databases. Most relevant
to our work is EQUIP [Kolaitis et al. 2013], which reduces AR conjunctive query answering
in the presence of primary key constraints to binary integer programming (BIP). Similarly
to our system, EQUIP first computes the IAR-answers and the causes of the answers with
their conflicts. The encoding for AR consists in a first part that encodes the repairs, en-
forcing that exactly one tuple of each group of same-key tuple is selected, and a second

58

3.4 Discussion: systems and benchmarks for inconsistency-tolerant query answering

part that ensures that the repair contains no cause. The main difference with CQAPri is
that instead of building and solving one encoding for each answer, only one is built using
variables to represent the different answers, so that setting them to 1 trivializes the equations
related to the causes of this answer. The answers that do not hold under AR semantics
are computed iteratively, by minimizing the sum of the answers variables, that are then
set to 1 when found not AR, until the system becomes unsatisfiable. We considered us-
ing BIP but were not convinced by our preliminary experiments. Some systems focus on
cases where consistent query answering is tractable, for restricted types of constraints or
queries, using first-order rewritings (ConQuer[Fuxman & Miller 2005, Fuxman et al. 2005])
or conflict-hypergraph (Hippo [Chomicki et al. 2004a, Chomicki et al. 2004b]). Others han-
dle more general constraints that can lead to different kinds of repairs, since for databases
repairs it may be necessary to insert or modify tuples to restore consistency. For instance,
ConsEx [Marileo & Bertossi 2010] reduces AR query answering to answer set programming
(ASP) by building repair programs such that there is a one-to-one correspondence between
stable models and repairs. Experiments reported in [Kolaitis et al. 2013] show that EQUIP
outperforms ConsEx on its restricted setting that is closer to ours.

3.4.2 Experimental settings involving inconsistent DL-Lite KBs

The QulD benchmark QulD is evaluated using the LUBM TBox containing 43 concepts,
25 roles, 7 attributes and about 200 positive inclusions, approximated in DL-Lite by elimi-
nating the inclusions that go beyond DL-Lite, then enriched with 10 negative inclusions, 5
identifications (that state that some sets of properties identify the instances of some basic
concepts), and 3 denials constraints consisting in Boolean CQs (of the form 33/ (¥), where
1) is a conjunction of atoms using variables from ¢) which have to be false.

Datasets are generated with the UBA Data Generator provided with LUBM, for 1, 5, 10
and 20 universities, leading to a size varying from about 100K to about 2 million assertions.
For each of these consistent ABoxes, four inconsistent ABoxes are constructed by adding
1%, 5%, 10% and 20% of assertions that are in conflict. The main difference with our setting
is the way conflicts are generated. Indeed, the original ABox is left consistent while each
assertion added is in conflict with others. In practice, for a growing n, the same n fresh
individuals are assigned to the eleven concepts that appear in some negative inclusion, and
the same n pairs of fresh individuals are assigned to the five roles (or inverse roles) that
appear in some negative inclusion. While such way of adding conflicts may make sense for
evaluating the QulD system that implements IAR semantics, which only needs to ignore
the assertions that are in some conflicts, it is not realistic at all because the new individuals
are inserted in many concepts that are semantically very far from each other like Person,
Publication, Course, and Organization. We could therefore not use these datasets to evaluate
CQAPri since there is no chance that some query could hold under AR semantics but not
under IAR semantics.

59

Efficient inconsistency-tolerant query answering in DL-Lite

Du et al.’s benchmark In Du et al. later work on abduction over inconsistent DL-Lite
KBs [Du et al. 2015], the Semintec and LUBM TBoxes without the non-DL-Lite axioms are
used. The authors added negative inclusions to LUBM in a similar fashion to ours.

Regarding data, Semintec has a small ABox of about 65K assertions and the number of
universities used for LUBM datasets ranges from 1 to 100 as in our experimental setting.
Du et al. present in [Du et al. 2013] the tool called Injector they use to insert conflicts in
ABoxes. Given a consistent KB and a number of conflicts to be inserted, Injector selects
randomly a functional role or an atomic concept that has disjoint atomic concepts. If the KB
already entails assertions that correspond to that role or concept, Injector selects randomly
such an assertion and adds an assertion that conflicts it: in case of functional role, it relates
the corresponding individual of the ABox to a new individual with that role, and in case of
concept assertion, it assigns the individual to one of the disjoint atomic concepts. Otherwise,
Injector adds two assertions that are in conflict in the same way using fresh individuals. This
way of adding conflicts is much more realistic than that of QuID setting. Even if it is similar
in spirit to ours, since it tries to distribute randomly conflicts over the ABox, there are some
differences. First, we select randomly assertions of the initial ABox rather than concepts or
roles that may be contradicted, which leads to a repartition of the conflicts that respects the
structure of the data (since there may be lots of assertions of some concepts and no assertion
of others). Second, we do not use only atomic concepts to build contradictions but also
unqualified existential role restrictions. Finally we take into account another kind of possible
errors by switching role individuals. In [Du et al. 2015], 0 to 400 “conflicts” (i.e. assertions
that contradict an original assertion, or inconsistent pairs of assertions) are added to the
consistent ABoxes. We prefer talk in terms of assertions involved in some conflicts rather
than in terms of assertions added to the consistent ABox, since we can compute the ratio of
conflicts of a real dataset, but not its ratio of erroneous facts. However, note that we added
many more assertions than Du et al. in same size original datasets.

60

4

EXPLAINING INCONSISTENCY-TOLERANT
QUERY ANSWERING

In this chapter, we address the problem of explaining why a tuple is or is not an answer to a
query under the IAR, AR or brave semantics. We first define data-centric explanations for
positive and negative answers. In the second section, we study their computational complexity
in DL-Lite, and propose algorithms to compute them by exploiting solvers for Boolean
satisfaction and optimization problems. The third section presents our implementation within
CQAPri and the experiments we conducted. Finally, the last section discusses the notion
of responsibility in this context. The main results of this chapter have been published in
[Bienvenu er al. 2016a].

4.1 Explaining query results

The need to equip reasoning systems with explanation services is widely acknowledged by
the DL community (see Chapter 7 for more discussion and references), and such facilities
are all the more essential when using inconsistency-tolerant semantics, as recently argued in
[Arioua et al. 2014a, Arioua et al. 2014b, Arioua et al. 2015] which introduce an argumen-
tation framework for explaining positive and negative answers under the ICR semantics.
Indeed, the brave, AR, and IAR semantics allow one to classify query answers into three
categories of increasing reliability (Possible, Likely and Sure), and a user may naturally
wonder why a given tuple was assigned to, or excluded from, one of these categories. Our
goal is therefore to help the user understand the classification of a particular tuple, e.g. why
is @ an AR-answer, and why is it not an [AR-answer? We address this issue by proposing
and exploring a framework for explaining query answers under these three semantics by
introducing the notion of explanation for positive and negative query answers under brave,
AR, and IAR semantics.

Although the study of explanation services for DLs has thus far focused primarily on
explaining entailed TBox axioms or ABox assertions, the problem of explaining conjunctive
query answers under the classical semantics for consistent KBs has been studied. A proof-
theoretic approach to explaining positive answers to CQs over DL-Lite 4 KBs was introduced

61

Explaining inconsistency-tolerant query answering

in [Borgida et al. 2008]. It outputs a single proof, involving both TBox axioms and ABox
assertions, that is generated by “tracing back” the relevant part of the rewritten query, using
minimality criteria to select a “simplest” proof. For negative answers, explanations for
(T, A) £ q(@) are defined in [Calvanese et al. 2013] as sets A" of ABox assertions such
that (7, AUA") = ¢(a@). Practical algorithms and an implementation for computing such
explanations were described in [Du et al. 2014]. The latter work was recently extended to
the case of inconsistent KBs [Du et al. 2015]. Essentially the idea is to add a set of ABox
assertions that will lead to the answer holding under IAR semantics (in particular, the new
assertions must not introduce any inconsistencies).

To explain answers under inconsistency-tolerant semantics, the existing approaches are
not sufficient. Indeed, it is no longer sufficient to prove that positive answers are entailed
by some part of the ABox together with the TBox to show that they hold in every repair for
instance. Regarding negative answers, they do not result from the absence of supporting facts
anymore, but rather from the presence of conflicting assertions. Since we target scenarios
in which inconsistencies are due to errors in the ABox, understanding the link between
(possibly faulty) ABox assertions and query results is especially important. That is why we
choose to focus on ABox assertions, rather than TBox axioms. The explanations we consider
will therefore take either the form of a set of ABox assertions (viewed as a conjunction)
or a set of sets of assertions (interpreted as a disjunction of conjunctions). We shall see
that our “ABox-centric” explanation framework already poses non-trivial computational
challenges. To get more complete explanations, which also present the TBox reasoning
involved in the obtention of the results, our work could be combined with the framework of
[Borgida et al. 2008].

Example 4.1.1. As a running example, consider the following inconsistent KB I = (T, .A)
and queries.

T ={AProf C Prof, FProf C Prof, 3Advise C Prof, Prof C PhD, Postdoc C PhD,
AProf C —FProf, Prof C —Postdoc}
A ={Postdoc(ann), AProf (ann), FProf (ann), Advise(ann, bob),
Teach(ann,cy), Teach(ann, c), Teach(ann,c3)}
q1(z) =Prof(x)
q2(x) =3yPhD(z) A Teach(zx,y)
q3(z) =3yTeach(z,y)

The repairs are as follows:

Rep(T, A) = {
{Postdoc(ann), Teach(ann,cy), Teach(ann,cz), Teach(ann,c3)},
{AProf (ann), Advise(ann,bob), Teach(ann, c1), Teach(ann,cz), Teach(ann,cs3)},
{FProf(ann), Advise(ann,bob), Teach(ann, c;), Teach(ann,cz), Teach(ann,c3)}

}

62

4.1 Explaining query results

Evaluating the queries over the KB yields the following results:
K Ebrave q1(a) K Ear ¢2(a) K E1ar g3(a)
K ar q1(a) K Fiar g2(a) <

The simplest answers to explain are positive brave- and I[AR-answers. We can use the
query’s causes as explanations for the former, and the causes that do not participate in any
contradiction for the latter. Indeed, we have seen in Chapter 2.2.2 that an answer holds under
brave semantics just in the case that it has some cause, and under IAR semantics just in the
case that it has some cause whose assertions do not belong to any conflict.

Definition 4.1.2 (Explanations for IAR- and brave-answers). An explanation for K |=praye
q(@) is a cause for ¢(@) w.r.t. C. An explanation for K |=1ar ¢(@) is a cause C for g(a) w.r.t.
such that C C R for every repair R of .

Example 4.1.3 (Example 4.1.1 cont’d). There are three explanations for K Fprave q1(ann):
AProf (ann), FProf (ann), and Advise(ann,bob).

There are twelve explanations for K Fprave ¢2(ann) that are the following con-
junctions: Postdoc(ann) A Teach(ann,c;), AProf(ann) A Teach(ann,c;), FProf(ann) A
Teach(ann,c;), and Advise(ann,bob) A Teach(ann, c;), for each j € {1,2,3}.

There are three explanations for IC =1ar g3(ann): Teach(ann,c;), Teach(ann,cz), and
Teach(ann, c3), since these assertions are not involved in any conflict. <

To explain why a tuple is an AR-answer, it is no longer sufficient to give a single cause,
since the answer may be supported by different causes in different repairs. We will therefore
define explanations as (minimal) disjunctions of causes that “cover” all repairs.

Definition 4.1.4 (Explanations for AR-answers). An explanation for IC =ar ¢(@) is a set
E={C1,...,Cn} C causes(q(a), /) such that (i) every repair R of K contains some C;, and
(i1) no proper subset of £ satisfies this property.

Example 4.1.5 (Example 4.1.1 cont’d). There are 36 explanations for ' =ar g2(ann), each
taking one of the following two forms:

&ij =(Postdoc(ann) A Teach(ann,c;)) V (Advise(ann,bob) A Teach(ann,c;))
{jk =(Postdoc(ann) A Teach(ann,c;)) V (AProf (ann) A Teach(ann, c;))
V (FProf (ann) A Teach(ann,ci))
for some i, 5,k € {1,2,3}. <

Remark 4.1.6 (Relationship with k-support semantics). A tuple @ is an answer to ¢ under
the k-support semantics if and only if K =g ¢(@) has an explanation consisting of at most
k causes.

We next consider how to explain negative AR- and IAR-answers, i.e., brave-answers
not entailed under AR or AR semantics. For AR semantics, the idea is to give a (minimal)
subset of the ABox that is consistent with the TBox and contradicts every cause of the query,

63

Explaining inconsistency-tolerant query answering

since any such subset can be extended to a repair that omits all causes. For IAR semantics,
the formulation is slightly different as we only need to ensure that every cause is contradicted
by some consistent subset, as this shows that no cause belongs to all repairs.

Definition 4.1.7 (Explanations for negative AR-answers). An explanation for K [£ar ¢(@)
is a T -consistent subset £ C A such that: (i) (7,EUC) = L for every C € causes(q(@),K),
(i1) no proper subset of £ has this property.

Example 4.1.8 (Example 4.1.1 cont’d). The unique explanation for IC [Ear ¢qi1(ann) is
Postdoc(ann), which contradicts the three causes of g (ann). q

Remark 4.1.9 (Relationship with k-defeater semantics). A tuple @ is an answer to ¢ under
the k-defeater semantics if and only if there is no explanation of K Ear ¢(a@) of size at
most k.

Definition 4.1.10 (Explanations for negative IAR-answers). An explanation for I [£jar ¢(@)
is a (possibly T -inconsistent) subset £ C A such that: (i) for every C € causes(q(a),), there
exists a T -consistent subset £’ C & with (7,£'UC) = L, (ii) no proper subset of & has this

property.

Example 4.1.11 (Example 4.1.1 cont’d). The three explanations for K [“ar g2(ann)
are: AProf(ann) A Postdoc(ann), FProf(ann) A Postdoc(ann), and Advise(ann,bob) A
Postdoc(ann), where the first assertion of each explanation contradicts the causes of g2 (ann)

that contain Postdoc(ann), and the second one contradicts those that contain AProf (ann),
FProf (ann) or Advise(ann,bob). 4

The following example illustrates that explanations are more informative than causes and
conflicts, since some causes and conflicts may not be involved in the answer explanations. It
also shows that explanations for negative answers should be accompanied with the explana-
tions for being a brave-answer (i.e. the causes), because otherwise they may be difficult to
understand.

Example 4.1.12. Consider the KB K = (T, A)

T ={3Advise C Prof, Prof C Employee, Postdoc = Employee, Prof = —Postdoc,
dWorkFor C Employee, AWorkFor™ C Department, Employee C —Department,
JTakeCourse™ C Course, JAdvise™ C Person, Course C —Person}

A ={Postdoc(ann), Advise(ann,bob), Advise(ann, carl), Teach(ann,cy),
TakeCourse(ca, carl), WorkFor(ann, dpt), WorkFor (dpt, dan)}

The conflicts are:

conflicts(K) ={{Postdoc(ann), Advise(ann,bob)},{Postdoc(ann), Advise(ann,carl)},
{Advise(ann, carl), TakeCourse(ca, carl)},
{WorkFor(ann,dpt), WorkFor(dpt,dan)}}

64

4.1 Explaining query results

Evaluating the query ¢(x,y) = Employee(z) A Teach(x,y) over K yields K |=ar q(ann,cy).
The causes of g(ann,cy) are as follows:

causes(q(ann,c1),K) = {
{Postdoc(ann), Teach(ann,c1)},{Advise(ann,bob), Teach(ann,cy)},
{Advise(ann, carl), Teach(ann,cy)},{WorkFor(ann,dpt), Teach(ann,c;)}}

There is only one explanation for K =ar ¢(ann,c;): (Postdoc(ann) A Teach(ann,cy)) V
(Advise(ann,bob) A Teach(ann,c1)). The cause Advise(ann,carl) A Teach(ann,c;) does
not participate in any explanation because it is conflicted by TakeCourse(cg, carl) that can
be chosen independently from the other causes. Indeed, note that if R is a repair of K
that contains Advise(ann,carl) A Teach(ann,c1), then R’ = (R\{Advise(ann,carl)})U
{TakeCourse(ca,carl)} is also a repair. Every explanation contains some cause C included
in R/, and TakeCourse(ca,carl) does not belong to any cause, so C C R. It follows that
Advise(ann,carl) A Teach(ann,c1) is not needed to “cover” R. For the same reason, the
cause WorkFor(ann,dpt) A Teach(ann,c;) does not belong to any explanation for K =ar
q(ann, c1) because of the assertion WorkFor(dpt, dan).

There are two explanations for /C £1ar q(ann,c1): WorkFor(dpt, dan) A Postdoc(ann) A
Advise(ann,bob), and WorkFor(dpt,dan) A Postdoc(ann) A Advise(ann,carl). Note that
TakeCourse(ca,carl) is not involved in the explanations of K [“ar ¢(ann,cp), while it is
a conflict of the cause Advise(ann,carl) A Teach(ann,cy). This is because Postdoc(ann)
is also a conflict of this cause and is the only assertion that contradicts the other cause
Advise(ann,bob) A Teach(ann,cy), so each set of assertions which contradicts every cause
contains Postdoc(ann), and TakeCourse(ca,carl) is not needed, so does not appear in any
minimal such set.

If a user receives the explanations for I £ar g(ann,ci), without the causes of
q(ann,cy), it can be very hard for him to figure out why WorkFor(dpt,dan) is relevant.
Indeed, there is no obvious relation between this assertion and the answer (ann, ¢y), since
WorkFor(dpt,dan) does not involve any of the individuals of the answer. Even if the ex-
planations for KL =ar ¢(ann,c;) are provided, it would not help because neither dpt nor
dan appears in them. To understand why WorkFor(dpt,dan) is part of the explanations for
K Fiar q(ann,cy), the user needs to know the cause {WorkFor(ann,dpt), Teach(ann,c1)}.
Ideally, we should allow the user to ask for a justification of the relevance of an assertion «
of the explanations, and provide the causes (or at least one cause) that contain some assertion
in conflict with «. <

When there is a large number of explanations for a given answer, it may be impractical to
present them all to the user. In such cases, instead of presenting all explanations, one may
choose to rank the explanations according to some preference criteria, and to present one or
a small number of most preferred explanations. In this work, we will use cardinality to rank
explanations for brave- and IAR-answers and negative AR- and IAR-answers. For positive
AR-answers, we consider two ranking criteria: the number of disjuncts, and the total number
of assertions. Another interesting criterion would be the difficulty of the associated TBox
reasoning. For example, we may compute for each cause the minimum number of TBox

65

Explaining inconsistency-tolerant query answering

axioms needed to show that the cause yields the query, and then use this number to rank
explanations for brave- and [AR-answers.

Example 4.1.13 (Example 4.1.1 cont’d). Reconsider explanations &1 and &7, for K Far
q2(ann). There are at least two reasons why £1 1 may be considered easier to understand than
&1 43. First, &1 contains fewer disjuncts, hence requires less disjunctive reasoning. Second,
both disjuncts of £11 use the same Teach assertion, whereas 5{ 93 uses three different Teach
assertions, which may lead the user to (wrongly) believe all are needed to obtain the query
result. Preferring explanations having the fewest number of disjuncts, and among them, those
involving a minimal set of assertions, leads to focusing on the explanations of the form &;;,
where ¢ € {1,2,3}. N

A second complementary approach to dealing with a large number of explanations
is to concisely summarize the set of explanations in terms of the necessary assertions
(i.e. appearing in every explanation) and the relevant assertions (i.e. appearing in at least
one explanation). The advantage of this approach is to present the whole information to the
user without overwhelming him with all explanations. This is especially relevant in the case
of positive AR and negative answers, where the number of explanations may be exponential
in the size of the ABox because of the combination of the different causes for AR-answers,
and ways of contradicting each cause for negative answers. Indeed, the set of conflicts of
each cause can be as large as the ABox. Even for positive IAR or brave-answers, the number
of explanations can be very large (imagine for instance a query that retrieves the persons who
teach something, advise some students and have some publications).

Example 4.1.14 (Example 4.1.1 cont’d). If we tweak the example KB to include n courses
taught by ann, then there would be n? +n3 explanations of the form &; j and & ik for
K =ar @2(ann), built using only n + 4 assertions. Presenting the necessary assertions
(here: Postdoc(ann)) and relevant ones (AProf (ann), FProf(ann), Advise(ann,bob), and
Teach(ann,c;) for 1 < j < n) gives a succinct overview of the set of explanations. <

4.2 Complexity analysis and algorithms

In this section, we study the computational properties of the different notions of explanation
for DL-Liteg KBs. In addition to the problem of generating a single explanation (GENONE),
or a single best explanation (GENBEST) according to a given criteria, we consider four related
decision problems: decide whether a given assertion appears in some explanation (REL) or in
every explanation (NEC), decide whether a candidate is an explanation (REC), resp. a best
explanation according a given criterion (BEST REC).

This section aims at proving the following theorem and provides the algorithms we use
to explain answers.

Theorem 4.2.1. The complexity results displayed in Table 4.1 hold.

When showing that a decision problem is hard for a given complexity class, we use
standard polynomial-time many-one reductions (also known as Karp reductions), which
transform an instance of one decision problem into an instance of a second decision problem.

66

4.2 Complexity analysis and algorithms

Table 4.1 Data complexity results for CQs explanations in DL-Liter.

brave, IAR AR neg. AR neg. IAR
GENONE inP NP-h NP-h inP
GENBEST! in P ¥h-ht NP-h NP-h*
REL in P ¥P-co NP-co in P
NEC inP NP-co coNP-co in P
REC in P BHs-co in P in P
BEST REC' in P 115 -cot coNP-co* coNP-co*

T upper bounds hold for ranking criteria that can be decided in P
1 Jower bounds hold for smallest disjunction or fewest assertions
* lower bounds hold for cardinality-minimal explanations

We consider that a procedure solves the generation task GENONE (resp. GENBEST) if
it outputs an explanation (resp. best explanation according to the chosen criterion) when
there is at least one explanation, and otherwise, it outputs no. To show that a generation
task is hard for a class C, we reduce a C-hard decision problem to it. As we cannot use
many-one reductions (which relate two decision problems), we will use polynomial-time
Turing reductions, that is, we will show how to solve the C-hard decision problem using a
polynomial-time Turing machine that can use the generation task as an oracle. Moreover, to
prove a stronger intractability result, we will only allow a single oracle call.

4.2.1 Positive brave and IAR-answers

We recall that in DL-Liteg, the conflicts for a KB K = (7,.A) and the causes of a query
¢ can be computed in polynomial time w.r.t. data complexity. Since the explanations for
positive brave-answers are the causes, and the explanations for positive [AR-answers are the
causes that belong to every repair, i.e. those which do not contain any assertion involved in a
conflict of /C, it is possible to compute the entire set of explanations for positive brave and
IAR-answers in P. This means that GENONE is in P. For polynomial-time ranking criteria,
both GENBEST and BEST REC are solvable in P since we can compare all of the explanations
to identify the best ones. The sets of relevant and necessary assertions can be computed in P
by taking the union and intersection of the explanations.

4.2.2 Positive AR-answers

We relate explanations of positive AR-answers to minimal unsatisfiable subsets of a set of
propositional clauses.

67

Explaining inconsistency-tolerant query answering

Definition 4.2.2 (Minimal Unsatisfiable Subset). Given sets f" and H of soft and hard clauses
respectively, a subset M C F'is a minimal unsatisfiable subset (MUS) of F' w.r.t. H if (1)
M U H is unsatisfiable, and (ii) M’ U H is satisfiable for every M’ C M.

To explain K E=ar ¢(@), we exploit the encoding of Figure 3.1. We consider the soft
clauses
0-q ={Ac | C € causes(q(a),KC)} with \¢ = \/ T
Beconfl(C,K)

that try to contradict every cause, and the hard clauses

Peons = {Ta V28 | Ta,xg € vars(p-q), 5 € confl({a},)}
that enforce consistency.

Proposition 4.2.3. A set £ C causes(q(a),) is an explanation for K =g q(@) iff {\¢ | C €
E}is a MUS of g W.EL. Qeons.

Proof. First suppose that £ is an explanation of K |=ar ¢(@). By Definition 4.1.4, this
means that every repair of /C contains at least one cause C from £. It follows that it is not
possible to select one conflicting assertion for each corresponding cause in a consistent way,
i.e. {\¢ | C € £} Upeons is inconsistent. Moreover, the minimality condition ensures that
for every proper subset £’ C £, there is a repair R that does not contain any cause from &’
We can use R to select a consistent set of assertions that conflict with every cause in &,
which means that {\¢ | C € £’} U peons is satisfiable. Thus, {A¢ | C € £} is a MUS of ¢,
W.I.L. Qcons-

Conversely, suppose that {\¢ | C € £} is a MUS of ¢, W.r.t. @cons. Then {A¢ | C €
E} Upeons is unsatisfiable, and every {\¢ | C € &'} U peons with &' C & is satisfiable. The fact
that {\¢ | C € £} Upcons is unsatisfiable means that there is no way to consistently contradict
the causes in £, so every repair must contain one of the causes in £. The satisfiability of
{Ac | C € E}Upeons for £ C € implies the existence of a repair that omits every cause in £’
We have thus shown that £ satisfies the conditions of Definition 4.1.4, so it is an explanation

of):AR q(c‘i)]

Using Proposition 4.2.3 and known complexity results for MUSes yields the following
upper bounds:

Proposition 4.2.4. Regarding explanations for AR-answers, REC is in BHs, BEST REC is in
I8, and REL is in 35 w.rt. data complexity.

Proof. We recall the following complexity results for MUSes (see [Liberatore 2005]):

* Deciding if a set of clauses is a MUS is BHa-complete.
* Deciding if a clause belongs to some MUS is ¥5-complete.

When combined with Proposition 4.2.3, the first item yields membership in BH of REC. For
BEST REC, we show that an explanation is not a best one by guessing a better candidate and

68

4.2 Complexity analysis and algorithms

checking in BHy that it is an explanation. This yields a X procedure for the complement of
BEST REC, hence membership in IT) for BEST REC.

For REL, we note that an assertion « is relevant for explaining IC =ar ¢(@) just in the case
that there exists a cause C for ¢(d) w.r.t. K that contains « and appears in some explanation.
By Proposition 4.2.3, the latter holds just in the case that A\¢ belongs to some MUS of ¢,
W.I.t. Ycons- By the second item above, deciding whether a particular clause A\¢ belongs to
some MUS can be decided in 5. To obtain a ¥8 decision procedure for REL, we simply add
an initial non-deterministic guess of a cause C € causes(¢(@),) that mentions the considered
assertion ov.]

We next show the NP upper bound for NEC.

Proposition 4.2.5. Regarding explanations for positive AR-answers, NEC is in NP w.r.t. data
complexity.

Proof. 1f « is belongs to every explanation of IC [=ar ¢(@), then there exists a repair R such
that every cause for ¢(@) included in R contains «. Otherwise, if for every repair R, there
was a cause Cr such that a ¢ Cg, then there would be a minimal disjunction of these Cr
which covers every repair and does not contain «. In the other direction, it is clear that if
there exists such a repair ‘R , then any minimal disjunction of causes that covers every repair
contains a.

It follows that o belongs to every explanation of K =ar ¢(@) just in the case that either
there are no explanations at all (i.e. KC ar ¢(@)) or there exists a repair R of K = (T, .A)
such that (7, R\ {a}) K~ q(@).

Both conditions can be tested in NP w.r.t. data complexity. Indeed, to decide whether
the second condition holds, we simply guess a subset R C A and check (in P w.r.t. data
complexity) that R is a repair and (7, R\ {a}) £ q(a). O

The following proposition shows how the connection to MUSes can be exploited to
obtain matching lower bounds.

Proposition 4.2.6. Regarding explanations for positive AR-answers, REC is BHy-hard, NEC
is NP-hard, REL is Eg-hard, and GENONE is NP-hard w.r.t. data complexity. Moreover,
if we rank explanations according to the number of causes or number of assertions, then
BEST REC (resp. GENBEST) is [15-hard (resp. ¥5-hard) w.r.t. data complexity. .

Proof. We show how the MUSes of a propositional clause set can be captured by explanations
of positive AR-answers.

Let pg = {C1,...,Ct } be a set of clauses over { X1, ..., X}, }. Consider the KB and query
used in the reduction of the proof of coNP-hardness of AR entailment (Theorem 2.2.6):

To Z{HP_ C—-dN ,dJPC—-JU , AN C—-3U ,3aU EA}
Ao :{P(Cj,:l?i) |XZ S Cj}U{N(Cj,LI?Z') | -X; € Cj}U{U(CL,Cj) ’ 1< < k}
g =A(z)

69

Explaining inconsistency-tolerant query answering

The causes for go(a) are given by the assertions U (a, c;), which are in conflict with assertions
of the form P(c;, ;) or N(c;,x;). It was shown that (7, Ag) Far A(a) iff ¢g is unsatisfi-
able. To prove the proposition, we will require the following stronger claim:

Claim. The following are equivalent:
1. the set of clauses {C},,...,C},} is unsatisfiable
2. every repair of (7p,.Ag) contains some assertion from {U(a,cj,),...,U(a,c;,)}

Proof of claim. It will be more convenient to show that the negations of the two statements
are equivalent. First suppose that {C},,...,C}, } is satisfiable, as witnessed by the satisfying
assignment v. Define a repair R, of (7,.Ao) by including the assertion P(c;,v;) if v(v;) =
true, including N (c;,v;) if v(v;) = false, and then adding as many other assertions as needed
to obtain a maximal 7o-consistent subset. Since v satisfies every clause in {C},,...,Cj, },
it follows that for every index ¢ € {j1,...,Jp}, the clause Cy contains a positive literal
vy such that v(vy) = true, or a negative literal —v, such that v(vy) = false. In the former
case, R, contains the assertion P(cy,vy), and in the latter case, R, contains N (cg,vg). In
both cases, there is an assertion in R, that conflicts with U(a,c,), so the latter assertion
cannot appear in R,,. We have thus shown that R,, does not contain any of the assertions in
{U(a,cj,),...,U(a,cj,)}.

Next suppose there exists a repair R of (7o,.4p) that has an empty intersection with the set
{U(a,cj,),...,U(a,cj,)}. By the maximality of R, it follows that for every £ € {j1,...,jp}.
there must exist an assertion in R of the form P(cy,v;) or N(cg,v;). Define a (possibly
partial) assignment v by setting by X; to true if R contains some P(c;,z;) and to false if
R contains some N (cj,x;) (recall that R is consistent with 7g, and so it cannot contain both
P(cj,z;) and N(cj,z;)). By construction, v satisfies all of the clauses in {Cj,,...,C}, },
ie. {Cj,...,C},} is satisfiable. (end proof of claim)

It follows from the preceding claim that the explanations for (79,.4g) F=ar qo(a), i.e. the
minimal sets of causes for gp(a) that cover all repairs, correspond precisely to the MUSes of
wo. We can therefore exploit known complexity results for MUSes [Liberatore 2005]:

* Deciding if a clause belongs to a MUS is X5-complete, so deciding if U(a, c;) belongs
to an explanation for (7p,.40) Far qo(a) is X5-hard w.r.t. data complexity. Thus, we
have a > lower bound for REL.

* Deciding if a clause belongs to every MUS is NP-complete, so deciding if U (a,¢;)

belongs to every explanation for (79,.Ap) =ar qo(a) is NP-hard w.r.t. data complexity.
This gives an NP lower bound for NEC.

* REC: Deciding if a set of clauses is a MUS is BHy-complete, so deciding if

{{U(a,cjy)},...,{U(a,cj,)} } is an explanation is BHa-hard w.r.t. data complexity.
Hence, REC is BHy-hard.

The proof of [Liberatore 2005] for Eg-hardness of deciding if there exists a MUS of size
at most k also shows that deciding if a set of clauses is a smallest MUS is I15-hard. It follows
that deciding if an explanation for an AR-answer contains a smallest number of causes is
IT5-hard. Moreover, since every cause in the considered KB consists of a single assertion,

70

4.2 Complexity analysis and algorithms

deciding if an explanation for an AR-answer contains a smallest number of assertions is also
I1)-hard.

To see why the generation task GENONE is NP-hard, we note that to solve the NP-
complete problem of whether K [~ar ¢(@), it suffices to call the procedure for GENONE to
generate a single explanation for IC |=ar ¢(@). If the procedure outputs ‘no’ (meaning there
is no explanation for K =ar ¢(@)), then we output ‘yes’, and if it outputs an explanation,
then we return ‘no’.

The Y5-hardness of GENBEST, when explanations are ranked based upon the number of
disjuncts or the number of assertions, follows from the I15-hardness of BEST REC for these
same criteria. Indeed, to show that an explanation is not a best explanation, it suffices to
generate a best explanation (GENBEST) and verify that it has fewer disjuncts / assertions than
the explanation at hand. 0

4.2.3 Negative AR-answers
We relate explanations of negative AR-answers to minimal models of ¢—; U @cons.

Definition 4.2.7 (Minimal model). Given a clause set 1) over variables X, aset M C X is a
minimal model of 1 iff (i) every valuation that assigns true to all variables in M satisfies 1,
(il) no M’ C M satisfies this condition. Cardinality-minimal models are defined analogously.

Proposition 4.2.8. A set £ is an explanation (resp. cardinality-minimal explanation) for
K Far (@) iff {za | a € E} is a minimal (resp. cardinality-minimal) model of p-qU @cons.

Proof. We recall that the reason why K [=ar ¢(@) iff o A @cons is unsatisfiable is because
the assertions whose corresponding variables are assigned to true in a valuation that satisfies
¢\ Peons form a subset of the ABox which: (i) contradicts every cause, since -, states
that for every cause, one conflicting assertion is selected, and (ii) is consistent, Since ¢cons
states that two assertions in a conflict cannot be selected together. Thus, the inclusion-minimal
models of 4 A peons are precisely the explanations for negative AR-answers. [

Next we show the complexity upper bounds for the decision problems.

Proposition 4.2.9. Regarding explanations for negative AR-answers, REC is in P, BEST REC
is in coNP, REL is in NP, and NEC is in coNP w.r.t. data complexity.

Proof. 1t follows from Definition 4.1.7 that deciding whether £ C A is an explanation for
KC AR q(@) can be done in P (data complexity) by checking:

* consistency of (7,&)
* inconsistency of (7, UC) for every C € causes(q(a),)
* minimality of £: no proper subset £’ C & satisfies the two previous conditions.

We can decide in NP that an explanation £ is not a best explanation (according to some
polynomial-time ranking criterion) by guessing a subset £’ C A and verifying in P w.r.t. data
complexity that £ is an explanation (see previous paragraph) and that it is better than &£
according to the given criterion. This yields a coNP upper bound for BEST REC.

71

Explaining inconsistency-tolerant query answering

A simple NP procedure for deciding REL (resp. not NEC) consists in guessing a subset
& C A that contains (does not contain) the considered assertion and checking in P whether it
is an explanation (using the P procedure for REC). [

For the purposes of implementation, we propose alternative procedures for REL and NEC.

Proposition 4.2.10. An assertion « is relevant for explaining IC [~ g q(a) iff the clause set
P—q U Pcons Upq is satisfiable, where

Yo ={ \/ zc U

Cecauses(q(ad),K),acconfl(C,K)
{—z¢V—zg|C € causes(q(a@),K),a € confl(C,K), 3 € confl(C,K), 5 # a}

Proof. If « is relevant, there exists an explanation &£ such that o € €. Since £ is minimal,
there exists a cause C such that CU (£\{«a}) is consistent. It follows that no assertion § €
confl(C, K) belongs to £ except for . Then the valuation v such that v(x¢) = true, and for
every assertion 3, v(z3) = trueif 8 € £, v(x3) = false otherwise, satisfies ¢—q U @cons U Pa-

In the other direction, if ¢, U @cons U @4 18 satisfiable, it is possible to contradict every
cause with a consistent set £ of assertions such that there exists a cause C such that the only
assertion of £ Nconfl(C,) is . Then an explanation that contains « is included in €. [

Proposition 4.2.11. An assertion « is necessary for explaining K g q(@) iff the set of
clauses o4 U pcons U{ x4} is unsatisfiable.

Proof. By Proposition 4.2.8, £ is an explanation for IC [£ar ¢(a) iff {z4 | a € £} is a minimal
model of ¢, U@cons. It follows that a belongs to every explanation for K ~ar ¢(a@) just
in the case that z,, belongs to every minimal model of ¢, U ©cons, S0 0—q U Peons U{ " }
has no model, i.e. is unsatisfiable. L]

The next proposition establishes matching lower bounds. All reductions are illustrated on
Figure 4.1.

Proposition 4.2.12. Regarding explanations for negative AR-answers, NEC is coNP-hard,
and REL, GENONE, and GENBEST (for any ranking criterion) are NP-hard w.r.t. data
complexity. If explanations are ranked by cardinality, then BEST REC is coNP-hard w.r.t. data
complexity.

Proof. All reductions are from (UN)SAT. Let ¢ = C; A ... AC}, be a set of clauses over
propositional variables { X1, ..., X, }.

e GENONE and GENBEST: Let 7, Ap, and ¢y be as in Proposition 4.2.6. We know that ¢
is satisfiable iff (70,.40) fcar A(a). Thus, to decide the satisfiability of ¢g, we generate
a (best) explanation of (7g,.Ag) fcar A(a). If an explanation is produced, then we return
‘yes’, and if the procedure returns with no explanation, then we output ‘no’.

e NEC: We again let 7y, A, and gg be as in Proposition 4.2.6. Define a new TBox 77 = ToU
{3U € =S} and ABox A; = AgU{S(a)}. By construction, the assertion S(a) contradicts

72

4.2 Complexity analysis and algorithms

every cause for go(a), so (71,A1) F£ar qo(a). We show that deciding whether ¢ is satisfiable
is equivalent to deciding if S(a) is not necessary for explaining (71,.41) F~ar qo(a). This
establishes the coNP-hardness of checking necessity.

= Let v be a satisfying valuation for . It can be easily verified that the set { P(c;,v;) €
Ao | v(vi) =true} U{N(cj,v;) € Ag | v(v;) = false} conflicts with every cause of go(a), and
so by choosing a subset of these assertions, we can construct an explanation for (77,.41) ~ar
qgo(a) that does not contain S(a).

< An explanation £ that does not contain S(a) forms a 7i-consistent set of P- and
N-assertions such that every c¢; has an outgoing P- or N-edge. We obtain a (partial)
assignment v¢ that satisfies o by setting vg(v;) = true if £ contains an assertion P(c;,v;)
and vg (v;) = false if £ contains an assertion N (cj,v;).

e REL: We use the TBox 77 and the ABox Ay = A; U{U(a,cg41), P(ckt1,Tnt1)}- Again,
we note that S(a) contradicts every cause for go(a), so (71,.42) ar qo(a). We show that ¢
is satisfiable iff P(cgy1,2n+1) is relevant for explaining (77,.42) Far qo(a); it follows that
relevance is NP-hard.

= If ¢ is satisfiable, then we can obtain an explanation for (77, A2) Fcar qo(a) by
adding P(cj11,2n+1) to a minimal subset of the P- and N-assertions corresponding to a
satisfying truth assignment for (.

< If @ is unsatisfiable, then every explanation must contain S(a). It follows that {S(a)}
is the only explanation, so P(cpi1,%n+1) is not relevant.

e BEST REC: We consider the following KB:

T3 =ToU{Us T U,U; CU,3U; C—T,3U3 C =S}
Az ={P(cj,z;) | Xi € Cj} U{N(cj,zi) | X € Cj}U
{Ui(a,c;),Us(a,c;), T(c;) | 1 < j < k}U{S(a)}

We claim that £ = {S(a),T(c1),...,T(cx)} is a smallest explanation for (73,.43) Fcar qo(a)
iff is unsatisfiable.

= If ¢ is satisfiable, then we can use a satisfying truth assignment to define a consistent
set of k P- and N-edges such that every c¢; has an outgoing edge. This set is an explanation
for (73,A3) ~ar qo(a), and it has fewer assertions than &.

<« If there exists an explanation of size at most k, it contains necessarily only P- and
N-edges, since k assertions (P, N or T') are needed to conflict all U;, and S(a) is needed
as soon as one of the U;-assertions is conflicted only by a T-assertion. It follows that there
exists a consistent set of P- and N-assertions such that every c; has an outgoing edge, from
which we can construct a satisfying assignment for .

Note that role inclusions are not needed for the lower bound, we can replace Uy C
UUyEU by dPC —-3U; ,AN C -3U; , 3P C =3U,; ,aN C =3U, ,3U; E A,JUs C Ain
the reduction. [

73

Explaining inconsistency-tolerant query answering

Fig. 4.1 Reductions for hardness of explaining positive and negative AR-answers. Graph-
ical representation of the ABox constructed from an example set of clauses ¢ =
{Cl =X1V-Xo, (o =-X1VXy \/—|X3}.

Ap

Ay

As

T
Q}
QCQ

Uy S
U, Us a
Us
A3

74

4.2 Complexity analysis and algorithms

4.2.4 Negative IAR-answers

Similarly to the negative AR-answers explanations, we relate explanations of negative IAR-
answers to minimal models of the clause set p—,. Indeed, to show that an answer is not IAR,
it is sufficient to contradict every cause, without the consistency constraint.

Proposition 4.2.13. A set £ is an explanation (resp. cardinality-minimal explanation) for
K Vg ¢(@) iff {za | a € €} is a minimal (resp. cardinality-minimal) model of p—q.

Proof. The assertions whose corresponding variables are assigned to true in a valuation that
satisfies -, form a subset of the ABox which contradicts every cause, since -, states that
for every cause, one conflicting assertion is selected. Thus, the inclusion-minimal (resp.
cardinality-minimal) models of (-, are precisely the explanations (resp. cardinality-minimal
explanations) for negative IAR-answers. [

Importantly, ¢, does not contain any negative literals, and it is known that for positive
clause sets, a single minimal model can be computed in P, and the associated relevance
problem is also in P. We establish properties of the necessary and relevant assertions that we
use to compute them.

Lemma 4.2.14. An assertion is necessary for explaining KC ag q(@) just in the case that it
is the only conflict of some cause for q(a).

Proof. An assertion is necessary to contradicts every cause iff it is necessary to contradict
one cause. This means that an assertion « is necessary for explaining /C ~ar ¢(@) iff there
exists a cause C for ¢(@) such that confl(C,K) = {a}. O

Lemma 4.2.15. An assertion is relevant for explaining KC ~jag q(@) just in the case that it
is in conflict with a cause C for q(d) such that for every other cause C', if confl(C’,K) C
confl(C,K), then o € confl(C’, K).

Proof. To see why this characterization holds, first note that if « is relevant for IC ar (@),
then there is a subset £ C A with o € £ such that every cause of ¢(a) is in conflict with
some assertion in £, and no proper subset of £’ possesses this property. Since £ is a minimal
set of assertions having this property, we know that there is some cause C that does not
conflict with any assertion in £\ {«}, and so there cannot exist another cause C’ such that
confl(C’,K) C confl(C,K) and a & confl(C’,K). Conversely, let us suppose that the assertion
« is in conflict with a cause C of ¢(@) and for every other cause C’, confl(C’, K) C confl(C,K)
implies « € confl(C’, K). It follows that for every cause C’ of ¢(a), either « € confl(C’, K),
or there exists an assertion 8¢ € confl(C’, K) such that ¢ ¢ confl(C,K). We can therefore
construct an explanation for /C [Aar ¢(@) by taking « together with some of the assertions

Ber. =

We next establish the complexity upper bounds.

Proposition 4.2.16. Regarding explanations for negative IAR-answers, REC is in P,
BEST REC is in coNP, NEC is in P, REL is in P, and GENONE is in P w.r.t. data complexity.

75

Explaining inconsistency-tolerant query answering

Proof. 1t follows from Definition 4.1.10 and from the fact that in DL-Liter conflicts are
binary that deciding whether £ C A is an explanation for IC 1ar ¢(@) can be done in P (data
complexity) by checking:

» for every C € causes(q(a@), K), inconsistency of (7,CU{«}) for some assertion « € £
* minimality of £: no proper subset &’ C & satisfies the previous condition.

We can decide in NP that an explanation £ is not a best explanation (according to some
polynomial-time ranking criterion) by guessing a subset £’ C A and verifying in P w.r.t. data
complexity that £’ is an explanation and that it is better than £ according to the given criterion.
This yields a coNP upper bound for BEST REC.

Since causes and conflicts can be computed in P, it follows from Lemma 4.2.15 that
deciding whether an assertion is necessary can be done in P.

For REL and GENONE, we can use Proposition 4.2.13 to polynomially reduce these
problems to the corresponding problems for minimal models of monotone CNF formulas
and exploit known results for that setting. Here we describe polytime procedures for the REL
and GENONE that are based upon standard techniques from the propositional setting.

The polynomial upper bound for REL follows from the condition of Lemma 4.2.15, which
can be checked in polynomial time by examining the causes and conflicts (which are known
to be computable in P w.r.t. data complexity).

For GENONE, we first compute (in P) the set of causes of ¢ and conflicts of C. If there
is some cause that does not participate in any conflict, then K =1ar ¢(@), so we return ‘no’.
Otherwise, for each cause C € causes(g(a),), we choose some assertion a¢ such that a¢
conflicts with some assertion in C. By construction, {c¢ | C € causes(q(a),K)} contradicts
all causes, which means that this set contains at least one explanation. We therefore proceed
to remove one assertion at a time as long the set retains the property of contradicting all
causes. When it is no longer possible to remove any assertions, we return the current set of
assertions, which is an explanation. 0

Finally, we establish the intractability of BEST REC and GENBEST.

Proposition 4.2.17. Regarding explanations for negative IAR-answers in the case where
explanations are ranked by cardinality, GENBEST is NP-hard, and BEST REC is coNP-hard
w.r.t. data complexity.

Proof. We give a reduction from the problem of deciding if a truth assignment that satisfies
a monotone 2-SAT formula assigns a smallest number of variables to true. This problem
is coNP-complete (coNP-hardness can be shown by a straightforward reduction from the
complement of the well-known NP-complete vertex cover problem).

Let o = Cy A ... A C}, be a monotone 2-CNF over the variables { X1, ..., X, }, and let v be
a truth assignment that satisfies . Consider the following KB:

TZ{EPT_ E—\T|1 STSQ}
A Z{T({Ei) | 1< < n}U{PT(cj,xi) | X; Tth term of Oj}
q=3yz122 P1(y,21) A Pa(y, 22)

76

4.3 Implementation and experiments

Fig. 4.2 Reduction for hardness of generating and recognizing best explanations of negative
IAR-answers. Graphical representation of the ABox constructed from an example set of
clauses ¢ = {Cl =X1VX9,Cy=X> \/Xg}.

T
I P
C1
T Py
€2

P Co

7;53 Py

Figure 4.2 illustrates this reduction on an example. The causes for ¢ take the form
{Pi(cj,xi;), Po(cj,ziy)}. It follows that an explanation for (7, A) Fsar ¢ is a set £
of T-assertions such that for every c;, there is at least one X; € C; such that T'(x;) € £.
Deciding if v assigns a minimal number of variables to true is equivalent to deciding if £ =
{T(z;) | v(X;) =true} is a smallest explanation. This yields the coNP-hardness of BEST REC,
as well as the NP-hardness of GENBEST: we can solve the minimum assignment problem -
and its complement - by generating a cardinality-minimal explanation and comparing its size
with the number of variables set to true by the candidate assignment. [

4.3 Implementation and experiments

4.3.1 The explanations framework within CQAPri

To explain why a query answer @ belongs to one of the three classes Possible, Likely and
Sure that correspond to K =g ¢(@) and K s> ¢(@) for two semantics S and S’, CQAPri
provides all the explanations for @ being a positive answer under the first semantics and a
single explanation for it being a negative answer under the other one (i.e. a counter-example),
together with the necessary and relevant assertions. For Possible answers, we provide also
the necessary and relevant assertions for explaining K [~jar ¢(@). Positive explanations are
ranked as explained in Section 4.1: using the number of assertions for negative answers and
positive brave and IAR-answers, and numbers of disjuncts and total number of assertions for
AR-answers; for ranking the later, the user can choose the priority between the two criteria.

Explanations are computed using the results on positive and negative answers from
Section 4.2. We thus need the causes of the query answers as well as their conflicts. For the
causes, CQAPri prunes the non-minimal images computed during the query answering phase.
The conflicts are directly available from the previous steps.

For positive [AR-answers, CQAPri stores the causes without conflict during the query
answering time. Instead of halting at the first cause without conflict, it reviews all causes. For

77

Explaining inconsistency-tolerant query answering

positive AR-answers, the SAT encoding is constructed for the query answering phase and
CQAPri uses the solver SAT4J to compute the MUSes. Necessary and relevant assertions
for positive answers are simply the intersection and union of the explanations. For negative
AR-answers, we rely on SAT4J to compute a smallest model of ¢4 A @cons, as well as
the necessary and relevant assertions with the encodings presented in Propositions 4.2.10
and 4.2.11 that we use to test every potentially relevant assertion, i.e. that appears in ¢—,.
For negative IAR-answer, we choose to compute by default an arbitrary explanation in
polynomial time (cf. Section 4.3.3 for the reason of this choice), but CQAPri can also provide
a smallest explanation using the SAT solver to find a cardinality-minimal model of ¢-,. The
relevant and necessary assertions are computed using Algorithm 4.5 that exploits Lemmas
4.2.14 and 4.2.15.

Algorithm 4.5 RelNecNeglAR
Input: the conflicts of the causes of ¢(a@): confl(Cy,K),...,confl(Cy,, K)
Output: relevant and necessary assertions for explaining K [~jar ¢(@)

1: for all C; do

2: if |confl(C;, K)| =1 then

3: Necessary < Necessary U confl(C;, K)
4. endif

5: Relevant; < confl(C;,K)

6: forallC; do

7: if confl(C;, K)\confl(C;,K) = () then

8: Relevant; <— Relevant; Nconfl(C;,K)
9: end if
10: end for

11: end for

12: Relevant < |J Relevant;
13: Output Relevant, Necessary

4.3.2 Experimental setting

To assess the practical interest of our framework, we empirically study the properties of
our implementation, in particular: the impact of varying the percentage of assertions in
conflict, the typical number and size of explanations, and the extra effort required to generate
cardinality-minimal explanations for negative IAR-answers rather than arbitrary ones.

We use the benchmark and experimental setting presented in the Chapter 3 and explain
all answers of the queries over all the ABoxes of our benchmark, except for those which
have more than 200,000 answers, because it yields unreasonable experimental times.

4.3.3 Experimental results

We summarize below the general tendencies we observed. Table 4.2 shows the number of
answers from each class for each query, as well as the distribution of the explanation times

78

4.3 Implementation and experiments

Table 4.2 Number of answers of each class with distribution (in %) of their explanation times
(in ms) per query over ABoxes of three different sizes and ratios of conflicts.

ulel #ans <10 [10,100[[100,1000[>1000 wulc20 #ans <10 [10,100[[100,1000[>1000 wuleS0 #ans <10 [10,100[[100,1000[>1000

ql Sure 20029 100 0 0 0 12538 100 0 0 0 6646 100 0 0 0
Likely 0 7 100 0 0 0 19 100 0 0 0
Poss. 380 100 0 0 0 7864 100 0 0 0 13747 99.96 0.04 0 0

q2 Sure 7215 100 0 0 0 6284 100 0 0 0 4728 100 0 0 0
Likely 20 100 0 0 0 402 99.75 0.25 0 0 887 99.89 0.11 0 0
Poss. 12 100 0 0 0 734 100 0 0 0 2087 99.95 0.05 0 0

q3 Sure 85 100 0 0 0 0 0
Poss. 0 85 100 0 0 0 87 100 0 0 0

q4 Sure 78101 100 0 0 0 24545 100 0 0 0 4806 100 0 0 0
Poss. 5636 99.96 0.04 0 0 60236 99.99 0.01 0 0 80839 99.98 0.01 <0.01 0

q5 Sure 10 100 0 0 0 0 0
Likely 0 10 60 40 0 0 0
Poss. 0 0 10 100 0 0 0

q6 Sure 235 100 0 0 0 177 100 0 0 0 0
Likely 0 14 100 0 0 0 0
Poss. 0 110 100 0 0 0 342 100 0 0 0

q7 Sure 136 100 0 0 0 0 0
Poss. 1 100 0 0 0 138 100 0 0 0 149 100 0 0 0

q9 Sure 1291 100 0 0 0 1002 99.99 0.01 0 0 783 100 0 0 0
Likely 3 100 0 0 0 68 100 0 0 0 116 100 0 0 0
Poss. 80 100 0 0 0 406 100 0 0 0 741 99.87 0.13 0 0
Poss. 3 100 0 0 0 6 100 0 0 0 7 100 0 0 0

ql1 Sure 534 100 0 0 0 471 100 0 0 0 385 100 0 0 0
Likely 0 4 100 0 0 0 7 100 0 0 0
Poss. 4 100 0 0 0 89 100 0 0 0 236 99.58 0.42 0 0

ql2 Sure 1180 100 0 0 0 999 100 0 0 0 802 100 0 0 0
Likely 11 100 0 0 0 174 100 0 0 0 345 100 0 0 0
Poss. 10 40 20 40 0 117 69.23 4.27 26.50 0 350 73.43 0 26.57 0

q13 Sure 1069 100 0 0 0 966 100 0 0 0 783 100 0 0 0
Likely 3 100 0 0 0 71 100 0 0 0 169 100 0 0 0
Poss. 8 100 0 0 0 122 99.18 0 0.82 0 351 98.58 0.28 1.14 0

ql4 Sure 191 100 0 0 0 98 100 0 0 0 36 100 0 0 0
Poss. 4 100 0 0 0 97 100 0 0 0 159 100 0 0 0

ql5 Sure 405 100 0 0 0 99 100 0 0 0 0
Poss. 102 100 0 0 0 409 99.76 0 0.24 0 515 99.03 0 0.97 0

q16 Sure 13545 99.99 0.01 0 0 2052 100 0 0 0 0
Poss. 3987 100 0 0 0 15480 99.99 0.01 0 0 17532 99.98 0.02 0 0
Poss. 1 100 0 0 0 1 100 0 0 0 1 100 0 0 0

q18 Sure 3107 100 0 0 0 2302 100 0 0 0 1319 100 0 0 0
Poss. 66 100 0 0 0 872 99.89 0.11 0 0 1871 100 0 0 0

q20 Sure 50 100 0 0 0 25 100 0 0 0 0
Poss. 0 25 100 0 0 0 50 100 0 0 0

79

Explaining inconsistency-tolerant query answering

u20cl #ans <10 [10,100[[100,1000[>1000 u20c20 #ans <10 [10,100[[100,1000[>1000 u20c50 #ans <10 [10,100[[100,1000[>1000

q2 Sure 189186 >99.99 <0.01 0 0 163260 >99.99 <0.01 0 0 127098 >99.99 <0.01 0 0
Likely 228 100 0 0 0 9927 99.98 0.02 0 0 23819 99.97 0.03 0 0
Poss. 1019 100 0 0 0 22489 99.96 0.04 0 0 52117 99.95 0.05 0 0

q3 Sure 85 100 0 0 0 0 0
Poss. 0 85 100 0 0 0 87 100 0 0 0

q5 Sure 10 100 0 0 0 0 0
Likely 0 10 70 30 0 0 0
Poss. 0 0 10 90 10 0 0

q6 Sure 235 100 0 0 0 177 100 0 0 0 0
Likely 0 14 100 0 0 0 0
Poss. 0 110 100 0 0 0 342 100 0 0 0

q7 Sure 91 100 0 0 0 0 0
Poss. 46 100 0 0 0 138 100 0 0 0 149 100 0 0 0

q8 Poss. 31 100 0 0 0 31 100 0 0 0 32 100 0 0 0

q9 Sure 33433 >99.99 <0.01 0 0 25701 >99.99 <0.01 0 0 21462 99.96 0.04 0 0
Likely 60 100 0 0 0 59 100 0 0 0 267 99.63 0.37 0 0
Poss. 2714 100 0 0 0 13282 99.89 0.11 0 0 21419 93.01 6.99 0 0

q10Poss. 58 100 0 0 0 62 100 0 0 0 66 100 0 0 0

ql1 Sure 14331 100 0 0 0 12613 100 0 0 0 10329 100 0 0 0
Likely 0 42 100 0 0 0 267 100 0 0 0
Poss. 145 100 0 0 0 2781 99.89 0.11 0 0 6373 99.70 0.30 0 0

q12 Sure 7082 100 0 0 0 5830 100 0 0 0 5395 100 0 0 0
Likely 218 11.93 88.07 0 0 880 25.68 74.32 0 0 991 58.83 40.06 1.11 0
Poss. 251 4741 23.90 28.69 0 3881 50.40 18.50 31.10 0 8769 54.29 11.68 34.03 0

ql13 Sure 28891 100 0 0 0 25791 100 0 0 0 21471 100 0 0 0
Likely 64 100 0 0 0 1780 100 0 0 0 4185 99.95 0.05 0 0
Poss. 204 98.53 0 1.47 0 4028 98.01 0.05 1.94 0 9430 98.30 0.22 1.48 0

ql14 Sure 4785 100 0 0 0 2539 100 0 0 0 1007 100 0 0 0
Likely 0 0 0
Poss. 166 100 0 0 0 2412 100 0 0 0 3944 100 0 0 0

q15 Sure 12050 100 0 0 0 1715 100 0 0 0 54 100 0 0 0
Poss. 1702 99.82 0 0.18 0 12143 99.28 0.02 0.70 0 13946 98.69 0.03 1.28 0

q17 Sure 27 100 0 0 0 0 0
Poss. 10 100 0 0 0 37 100 0 0 0 39 82.05 17.95 0 0

q18 Sure 81760 >99.99 <0.01 0 0 58294 99.99 0.01 0 0 34795 99.98 0.02 0 0
Poss. 1342 100 0 0 0 24959 99.87 0.13 0 0 48770 99.91 0.09 0 0

q19 Poss. 1 0 100 0 0 8 0 8750 12.50 0 20 0 45 55 0

q20 Sure 50 100 0 0 0 25 100 0 0 0 0
Poss. 0 25 100 0 0 0 50 100 0 0 0

80

4.3 Implementation and experiments

ul00cl #ans <10 [10,100[[100,1000[>1000 ul00c20 #ans <10 [10,100[[100,1000[>1000 ul00c50 #ans <10 [10,100[[100,1000[>1000

q3 Sure 85 100 0 0 0 0 0

Poss. 0 85 100 0 0 0 87 98.85 0 0 115
q5 Sure 10 100 0 0 0 0 0

Likely 0 10 50 50 0 0 0

Poss. 0 0 10 0 100 0 0
q6 Sure 235 100 0 0 0 177 100 0 0 0 0

Likely 0 14 100 0 0 0 0

Poss. 0 110 100 0 0 0 342 100 0 0 0
q7 Sure 34 100 0 0 0 0 0

Poss. 103 100 0 0 0 138 99.28 0 0.72 0 149 7852 20381 0.67 0
q8 Poss. 187 100 0 0 0 188 100 0 0 0 190 10.53 88.95 0.52 0
q9 Sure 152404 99.99 0.01 0 0 128616 99.98 0.02 0 0 107220 99.99 0.01 0 0

Likely 110 100 0 0 0 192 100 0 0 0 1300 70.46 29.54 0 0

Poss. 27107 99.95 0.05 0 0 64820 86.54 13.46 0 0 105450 63.68 32.92 325 015
ql10Poss. 293 100 0 0 0 310 96.45 3.55 0 0 326 33.13 66.87 0 0
ql1 Sure 71756 >99.99 <0.01 0 0 63411 >99.99 0 <0.01 0 51791 >99.99 <0.01 0 0

Likely 0 192 100 0 0 0 1300 99.92 0.08 0 0

Poss. 739 100 0 0 0 13778 99.92 0.06 0.02 0 31764 99.76 0.24 0 0
ql2 Sure 31955 100 0 0 0 29074 >99.99 <0.01 0 0 27002 100 0 0 0

Likely 566 0.53 0 99.47 0 1166 86.19 0 557 823 2849 99.16 0.03 0 0381

Poss. 1109 4328 1217 44.55 0 18162 52.16 2.31 3846 7.07 41644 56.85 0.34 30.08 12.73
q13 Sure 144313 >99.99 <0.01 0 0 129083 >99.99 <0.01 0 0 107258 >99.99 <0.01 0 0

Likely 308 100 0 0 0 8902 99.98 0.02 0 0 21279 99.99 0.01 0 0

Poss. 1014 98.82 0 1.18 0 19737 98.56 0.06 1.38 0 46553 98.56 0.16 1.28 0
ql4 Sure 23330 100 0 0 0 12390 100 0 0 0 4942 100 0 0 0

Poss. 771 100 0 0 0 11717 100 0 0 0 19165 99.99 0 0 0.01
q15 Sure 61189 100 0 0 0 7693 100 0 0 0 221 100 0 0 0

Poss. 7584 99.83 0.01 0.16 0 61492 99.52 0.01 0.47 0 69599 98.99 0.01 1.00 0
q17 Sure 28 100 0 0 0 0 0

Poss. 190 100 0 0 0 221 8190 18.10 0 0 226 3.10 9557 1.33 0
q19 Poss. 5 0 100 0 0 56 0 9821 1.79 0 124 0 6532 34.68 0
q20 Sure 50 100 0 0 0 25 100 0 0 0 0

Poss. 0 25 100 0 0 0 50 100 0 0 0

81

Explaining inconsistency-tolerant query answering

Fig. 4.3 Time in seconds for query answers explanation w.r.t. the size of the ABox for three
ratios of conflicts (about 4%, 30%, and 45% of assertions involved in some conflict). For
readability, the two figures on the right focus on the queries whose explanation times are
lower and whose behaviors are thus not visible on the first one.

uxcl b uxcl =ql uxcl
1200 q3 45 a2 07
=4 o q3 a3
1000 R~ -4 06
g7 % a5 05
6 ,
800 +gg 30 *QT g7
T o a0 T 2 5z
q
g Seqll g oy g 03
= —+ql2 £ Sequ £ %
N / T 15 —-q13 02 @
e 10 —ql4 '
200 g 15 01
~#-ql16 5 g h
——ql7 . -m-q16 -+-q20
0 H=": S —i gl o M=="] 0
0 2z 4 6 8 10 12 Lo 0 2 4 6 8 10 12 ¥98 0 2 4 6 8 10 12
ABox size (million assertions) =20 ABox size (million assertions) -—q20 ABox size (million assertions)
---ql
uXc20 i uXc20 =-ql uXc20
q3 Q2
8000 q 120 3
g4 a3 a3
7 +—q5 g4
000 o 100 _._35 25
6000 H-q7 6
8 80 d 2 et
5000 - +-q7 q
C) quo © B Z
E4()00 ~-ql1 E 60 gl E 15
[—+—ql2 £ weqld E
3000 —-ql3 40 - qli 1 g8
2000 —qld q
a1s 20 as g
1000 -#-q16 -#-ql6 ' —a20
e N N =— ——— RSN °
0 2 4 6 8 10 12 4 g9 0 2 4 6 8 10 12 -¥ql8 0 2 4 6 8 10 12
ABox size (million assertions) -—q20 ABox size (million assertions) -—q20 ABox size (million assertions)
-=-q1 -=-q1
uXc50 g2 uXc50 g2 uXc50 0
18000 _‘_qg 600 q3 25
g ——qd
16000 a5 q
o 500 +q5 2 +-as
14000 g7 6
12000 g8 400 g7 g6
20000 -q ® 15
3 g0 & g0 &
£ 8000 Seqll 2 seglt 2 g7
£ —+qf2 £ —k-q13 = 10
6000 -*-q:z —q14 q8
4000 215 a15 5
2000 -#-q16 —#-q16 —qt4
——q17 —+-q17 i ——
e, ad e —
0 e—— *q18 0 B3 = T -*-q18 0=
0 2 4 6 8 10 12 _, g 0 2 4 6 8 10 12 -aq19 0 2 4 6 8 10 12 90
ABox size (million assertions) -+—q20 ABox size (million assertions) -—q20 ABox size (million assertions)

82

4.3 Implementation and experiments

Fig. 4.4 Time in seconds for query answers explanation w.r.t. the ratios of conflicts for three
ABox sizes (about 76K, 2 million, and 10 million assertions). For readability, the two figures
on the right focus on the queries whose explanation times are lower and whose behaviors are
thus not visible on the first one.

-=-q1 -=q1
utcY e q2 utcY - utcY i
250 Qi 45 q3 18
g
g5 40 —-qd 16 +q7
200 € 35 e 14
»eq7 a6 ! q8
’_.,_/—4 g8 30 ""q; 1,2
150 --q9 q e
= qo & 5 gt B 1 ant
] —¢qi1 2 —+qi2 2
E £ 20 £ 08
£ 100 ——q12 E —eql3 E ~-qt3
—*—q:i 15 —q14 06 »
50 o5 10 a5 o4 q
~#-q16
13:? 5 ——q17 02"/ e f/(q15
0 *-q18 o W=R=F e —T] -*q18 0 =
0 5 10 15 20 25 30 35 40 45 50 —4-q19 0 5 101520 25 30 35 40 45 50 -4-q19 0 5 10 1520 25 30 35 40 45 50 »—q20
% conflicts +—q20 % conflicts +—q20 % conflicts
-=q1
u20cY a2 u20cY 93 u20cY
q3 60 +—q5 35 q3
-»—q5
g6 50 a6 3
»-q7 -+-q7 25 =+-q7
98 40
-8-q9 q8
@ 5 qi0 @ s 2
g qt1 2 30 =gl E s q8
IS —+q12 F —-qi3
—#-q13 20 1
—qi4 —ql4 —ql4
q15 10 q15 0,5
——ql7 b”/
x *qi8 e iy S S} 4 0 -+—q20
0 5 10 1520 25 30 3540 45 50 —a—-q19 0 5 10 15 20 25 30 35 40 45 50 +—q20 0 5 10 15 20 25 30 35 40 45 50
% conflicts +-q20 % conflicts g % conflicts
u100cY a3 u100cY q3 u100cY
-»—q5 3
18000 :s 600 +q5 25 g
16000 =4q7 500 *® 5
14000 @ a7 20
12000 -*-q9 400 a8 a6
10 15
0000 a5 "os
"y =<q11 g 300 =<q11 e =»4q7
£ 8000 — £ £
E 91z S-q13 £ 10
6000 —-q13 200 —qt4 q8
—ql4
4000 q15 100 a15 5 s
2000 a —--q17 e
——q17 = q e b
0 It 0 PESEEeSIEEEN 19 o = -+-q20
0 5 10 15 20 25 30 35 40 45 50 —+-q19 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 !
% conflicts -+—q20 % conflicts +-q20 % conflicts

83

Explaining inconsistency-tolerant query answering

Fig. 4.5 Proportion of time spent by CQAPri in the different phases of query answers
explanation on 9 ABoxes: the two lower bars are the time for rewriting the query and
executing the rewritten query to get candidate answers, the midle bar is the time needed
to classify such answers, and the two upper bars give the total explanation cost, which is
divided in the cost of computing the causes by pruning the non-minimal causes and the time
needed to compute the explanations from the causes and conflicts.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Hexplain

ulcl

g2 g4 q6 g8 gl0 gl2qgl4 gl6ql8 q20
gql 93 g5 g7 99 gll1ql3 ql54gl7 q19

m candidate answersHl query rewriting

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

mexplain

u20cl

g2 g4 q6 g8 gl0 gl2qgl4 gl6ql8 q20
ql g3 g5 q7 g9 gql19l3ql5qgl7 ql9

m candidate answersmquery rewriting

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

mexplain

ul00cl

q2 g4 q6 g8 10 q12 q14 q16 q18 q20
ql 93 g5 q7 g9 gq11q13 q15gl7 q19

B candidate answersEquery rewriting

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Eprune non min images' classify Mexplain

ulc20

il il
g2 g4 q6 g8 gl0 gl2gl4 gl6ql8 q20
gql 93 g5 q7 g9 gl1 913 ql54gl7 q19

m candidate answersHlquery rewriting

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

W prune non min images: classify mexplain

ulch0
100%

90%
80%
70%
60%
50%
40%
30%

20% I
10%
O% - . - I - =
g2 g4 q6 g8 gl0 gl2gl4 gl6ql8 q20
gql 93 g5 q7 g9 gl1 913 ql54gl7 q19

Eprune non min images' classify HMexplain Eprune non min images' classify

H candidate answersHl query rewriting

u20c20 u20c50
100%
I] 903 I
80%
70%
60%
50%
40%
30%
20%
10%
| HH K o A (111 L
g2 g4 q6 g8 gl0 gl2gl4 gl6ql8 q20 g2 g4 q6 g8 gl0 gl2gl4 gl6ql8 q20
ql g3 g5 q7 g9 gll1qgl13ql5qgl7 ql9 ql g3 g5 q7 g9 gl1q9l13gql5qgl7 ql9
W prune non min images: classify mexplain W prune non min images: classify

m candidate answersmquery rewriting

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

W prune non min images: classify mexplain

ul00c20

q2 g4 q6 g8 10 q12 q14 q16 q18 q20
ql 93 g5 q7 g9 gq11q13 q15g1l7 q19

M candidate answersEquery rewriting

84

m candidate answersmquery rewriting

u100c50
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0% | L

q2 g4 g6 g8 q10 q12 q14 q16 q18 q20
ql g3 g5 a7 q9 g11 q13 g15 17 q19

Wprune non min images: classify ® explain M prune non min images ' classify

¥ candidate answers® query rewriting

4.3 Implementation and experiments

for these answers, for ABoxes of growing sizes and ratios of conflicts. Figure 4.3 and Figure
4.4 show the time spent in explaining all query answers w.r.t. ABox size or proportion of
conflicting assertions. Figure 4.5 shows the proportion of time spent in the different phases
to explain all query answers for ABoxes of growing difficulty. The explanation cost, given by
the two upper bars, consists in pruning non-minimal consistent subsets of the ABox entailing
the answers to get the causes, and computing the explanations from the causes and conflicts.
The three lower bars relate to the query answering phase, which consists in rewriting and
executing the query to get the candidate answers, and identifying Sure, Likely, and Possible
answers (classify).

The main conclusion is that explaining a single query answer, as described above, is
always feasible and fast (<1s) when there are a few percent of conflicts in the ABox (Table 4.2,
uXcl case), as is likely to be the case in most real applications. Even with a high percentage
of conflicts, the longest time observed is below 20s (19.5s for explaining a Possible answer
of q9 on u100c50), and remains lower than 1s for small ABoxes (up to u20cY case, i.e. 2
million assertions), and lower than 8s for a significant percentage of conflicts (uXc20 case,
i.e. 30% of assertions in conflict). In all the experiments we made, explaining a single answer
typically takes less than 10ms, rarely more than 1s. However, computing explanations of all
answers can be prohibitively expensive when there are very many answers, which is why we
do not produce them all by default.

In more detail, adding conflicts to the ABox complicates the explanations of answers,
due to their shift from the Sure to the Likely and Possible classes. Explaining such
answers indeed comes at higher computational cost. Figures 4.3, 4.4 and 4.5 illustrate this
phenomenon. Compared to query answering, explaining all query answers is more sensitive
both to ABox size and ratio of conflicts.

We observed that the average number of explanations per answer is often reasonably low,
although some answers have a large number of explanations. For instance, on the ABoxes
ul00cY, we got often less than 10 explanations on average, but this number varies from about
1 to more than 400, and for u100c50, we got up to 4560 for an AR-answer (up to 741 causes
for a brave-answer). Even on small ABoxes (ulcY), we got up to 693 explanations for a
brave-answer and 243 explanations for an AR-answer. Regarding the size of explanations of
AR-answers, the number of causes in the disjunction was up to 25 (for a q12 Likely answer
on ul00c50; up to 5 on the ulcY ABoxes), showing the practical interest of ranking the
explanations.

Explaining negative answers

Our prototype is able to explain K [~g/ ¢(@) by providing a (possibly smallest) explanation
for IC [£g/ q(@), together with the relevant and necessary assertions for K [£g q(@). We
explain here why we chose to compute an arbitrary explanation for K [£jar ¢(@) by default
rather than a cardinality-minimal one. We also give some insight into the explanation
times for I ar ¢(d@) and the contribution of the computation of necessary and relevant
assertions.

85

Explaining inconsistency-tolerant query answering

We consider the following four cases:

* Case 1 is our default setting, in which we compute an arbitrary explanation for negative
IAR-answers, a smallest explanation for negative AR-answers, and the necessary and
relevant assertions for explaining negative answers,

* Case 2 differs from Case 1 in omitting the computation of the necessary and relevant
assertions for IC [far ¢(@) and K Aar (@),

* Case 3 differs from Case 1 in omitting the computation of the relevant assertions for
K ar q(a@),

* Case 4 differs from Case 1 in computing a cardinality-minimal explanation for /C [£iar
q(@) instead of using a polynomial-time procedure to generate an arbitrary one.

Table 4.3 displays, for each query, the number of Likely and Possible answers the query
possesses, and the distribution of the times for explaining K [~g/ ¢(@) in our default setting
(Case 1). If we compare these distributions with those of Table 4.2, we can see that for
many queries, there is the same number of answers having the longest explanation times
(columns [100,1000[and > 1000) when only the negative answer is explained as in the case
where both K =g ¢(a@) and K [~£g/ q(a@) are explained. This shows that for many queries, the
difficulty comes from explaining K ~gr q(a).

Cost of relevant and necessary assertions Table 4.4 shows the same information as
Table 4.3, in the case where the necessary and relevant assertions for explaining K [£Aar ¢(@)
or K ar (@) are not computed. In this case, almost all negative answers are explained in
less than 10ms. This shows that the main part of the explanation time for negative answers is
spent in computing these assertions. Note that for negative IAR-answers (Likely answers),
most of the explanation times were already below 10ms in our default case.

Computation of relevant assertions for negative AR-answers Since computing the nec-
essary and relevant assertions for K [~ar ¢(@) appears to be costly, we investigate further to
see how this cost is distributed and if it is possible to reduce the cost of negative explanation
without losing too much information. For negative AR-answers, deciding if an assertion «
appears in some explanation is an NP-complete problem, and deciding if it appears in all
explanations is coNP-complete. In practice the problem of finding the necessary assertions
can be solved efficiently because for a negative AR-answer, the SAT solver has already
found a model of -, U @cons during the query answer classification phase, so checking
whether ¢, U @eons U {2} is unsatisfiable is trivial when « does not appear in this model,
and if it does, the SAT solver may reuse what it has already computed for a closely related
problem. Deciding if « is relevant is more difficult because the encoding we use differs more
from -, U @cons. Indeed, if we compare the execution times with (Table 4.3, for Possible
answers) and without (Table 4.5) the computation of the relevant assertions for K [~ar ¢(@),
we observe significant differences: for all queries and ABoxes, at least 60% of the negative
AR-answers are explained in less than 10ms (only 6.45% for q19 on ul100c50 in Case 1),
and less than 0.15% of them need more than 1s (12.72% of the negative AR-answers of q12

86

4.3 Implementation and experiments

Table 4.3 Distribution of the times (in ms) for explaining K (~g ¢(@) in Case 1.

ulel #ans <10 [10,100[[100,1000[>1000 wulc20 #ans <10 [10,100[[100,1000[>1000 wule50 #ans <10 [10,100[[100,1000[>1000

ql Likely 0 7100 0 0 0 19 100 0 0 0
Poss. 380 100 0 0 0 7864 100 0 0 0 13747 99.96 0.04 0 0
q2 Likely 20 100 0 0 0 402 100 0 0 0 887 100 0 0 0
Poss. 12100 0 0 0 734 100 0 0 0 2087 99.95 0.05 0 0
q3 Poss. 0 85 100 0 0 0 87 100 0 0 0
q4 Poss. 5636 99.96 0.04 0 0 60236 100 0 0 0 80839 99.99 <0.01 <0.01 0
q5 Likely 0 10 100 0 0 0 0
Poss. 0 0 10 100 0 0 0
q6 Likely 0 14100 0 0 0 0
Poss. 0 110 100 0 0 0 342100 0 0 0
q7 Poss. 1100 0 0 0 138 100 0 0 0 149 100 0 0 0
q9 Likely 3100 0 0 0 68 100 0 0 0 116 100 0 0 0
Poss. 80 100 0 0 0 406 100 0 0 0 741 99.87 0.13 0 0
q10Poss. 3100 0 0 0 6 100 0 0 0 7 100 0 0 0
ql1 Likely 0 4 100 0 0 0 7 100 0 0 0
Poss. 4 100 0 0 0 89 100 0 0 0 236 99.58 0.42 0 0
q12 Likely 11100 0 0 0 174 100 0 0 0 345 100 0 0 0
Poss. 10 70 0 30 0 117 7949 0 20.51 0 350 7542 229 22.29 0
q13 Likely 3100 0 0 0 71 100 0 0 0 169 100 0 0 0
Poss. 8 100 0 0 0 122 99.18 0 0.82 0 351 98.58 0.28 1,14 0
q14 Poss. 4 100 0 0 0 97 100 0 0 0 159 100 0 0 0
ql5 Poss. 102 100 0 0 0 409 99.76 0 0.24 0 515 99.03 0 0.97 0
q16 Poss. 3987 100 0 0 0 15480 99.99 0.01 0 0 17532 99.99 0.01 0 0
q17 Poss. 1 100 0 0 0 1100 0 0 0 1100 0 0 0
q18 Poss. 66 100 0 0 0 872 100 0 0 0 1871 100 0 0 0
q20 Poss. 0 25 100 0 0 0 50 100 0 0 0
u20cl #ans <10 [10,100[[100,1000[>1000 u20c20 #ans <10 [10,100[[100,1000[>1000 u20¢50 #ans <l0 [10,100[[100,1000[>1000
q2 Likely 28 100 0 0 0 9927 100 0 0 0 23819 >99.99 <0.01 0 0
Poss. 1019 100 0 0 0 22489 >99.99 <001 0 0 52117 9997 0.3 0 0
q3 Poss. 0 85 100 0 0 0 87 100 0 0 0
q5 Likely 0 10 100 0 0 0 0
Poss. 0 0 10 100 0 0 0
q6 Likely 0 14 100 0 0 0 0
Poss. 0 110 100 0 0 0 342 100 0 0 0
q7 Poss. 46 100 0 0 0 138 100 0 0 0 149 100 0 0 0
q8 Poss. 31 100 0 0 0 31100 0 0 0 32 100 0 0 0
q© Likely 60 100 0 0 0 59 100 0 0 0 267 100 0 0 0
Poss. 2714 100 0 0 0 13282 9992 0.08 0 0 21419 9447 553 0 0
q10 Poss. 58 100 0 0 0 62 100 0 0 0 66 100 0 0 0
ql1 Likely 0 42 100 0 0 0 267 100 0 0 0
Poss. 145 100 0 0 0 2781 9993 0.07 0 0 6373 9976 024 0 0
q12 Likely 218 100 0 0 0 880 100 0 0 0 991 100 0 0 0
Poss. 251 6653 1355 19.92 0 3881 5926 17.39 2335 0 8769 5643 14385 28.72 0
q13 Likely 64 100 0 0 0 1780 100 0 0 0 4185 100 0 0 0
Poss. 204 9853 0 147 0 4028 9801 005 1.94 0 9430 9835 0.17 1.48 0
q14 Poss. 166 100 0 0 0 2412 100 0 0 0 3944 100 0 0 0
ql5 Poss. 1702 99.82 0 0.18 0 12143 9928 0.2 0.70 0 13946 9872 0.1 1.27 0
q17 Poss. 10 100 0 0 0 37 100 0 0 0 39 100 0 0 0
q18 Poss. 1342 100 0 0 0 24959 9997 003 0 0 48770 9999 001 0 0
q19 Poss. 1100 0 0 0 8 75 25 0 0 20 10 90 0 0
q20 Poss. 0 25 100 0 0 0 50 100 0 0 0
ul00cl #ans <10 [10,100[[100,1000[>1000 ul00c20 #ans <IO [10,100[[100,1000[>1000 ul00c50 #ans <10 [10,100[[100,1000[>1000
q3 Poss. 0 85 100 0 0 0 87 98.85 0 0 115
q5 Likely 0 10 100 0 0 0 0
Poss. 0 0 10 10 90 0 0
q6 Likely 0 14 100 0 0 0 0
Poss. 0 110 100 0 0 0 342 100 0 0 0
q7 Poss. 103 100 0 0 0 138 99.28 0 0.72 0 149 9530 4.03 0.67 0
q8 Poss. 187 100 0 0 0 188 100 0 0 0 190 42.63 56.84 0.53 0
q© Likely 110 100 0 0 0 192 100 0 0 0 1300 100 0 0 0
Poss. 27107 99.99 001 0 0 64820 90.70 930 0 0 105450 7555 22.30 2 015
q10Poss. 293 100 0 0 0 310 9839 1.6l 0 0 326 5123 4877 0 0
ql1 Likely 0 192 100 0 0 0 1300 100 0 0 0
Poss. 739 100 0 0 0 13778 99.97 0.03 0 0 31764 99.84 0.16 0 0
q12 Likely 566 100 0 0 0 1166 100 0 0 0 2849 100 0 0 0
Poss. 1109 6465 0.09 35.26 0 18162 61.67 022 3126 684 41644 5884 284 2560 1272
q13 Likely 308 100 0 0 0 8902 100 0 0 0 21279 100 0 0 0
Poss. 1014 98.82 0 118 0 19737 9860 0.02 1.38 0 46553 98.62 0.10 1.28 0
q14 Poss. 777 100 0 0 0 11717 100 0 0 0 19165 99.99 0 0 001
ql5 Poss. 7584 99.84 0 0.16 0 61492 9953 <0.01 0.47 0 69599 9899 0.01 1.00 0
q17 Poss. 190 100 0 0 0 21 9593 407 0 0 226 1460 84.52 0.88 0
q19 Poss. 5 100 0 0 0 56 9107 893 0 0 124 645 9355 0 0
q20 Poss. 0 25 100 0 0 0 50 100 0 0 0

Explaining inconsistency-tolerant query answering

Table 4.4 Distribution of the times (in ms) for explaining K (~g ¢(@) in Case 2.

ulel #ans <10 [10,100[[100,1000[>1000 ulc20 #ans <10 [10,100[[100,1000[>1000 ule50 #ans <10 [10,100[[100,1000[>1000
ql Likely 0 7100 0 0 0 19 100 0 0 0
Poss. 380 100 0 0 0 7864 100 0 0 0 13747 100 0 0 0
q2 Likely 20 100 0 0 0 402 100 0 0 0 887 100 0 0 0
Poss. 12100 0 0 0 734100 0 0 0 2087 100 0 0 0
q3 Poss. 0 85 100 0 0 0 87 100 0 0 0
q4 Poss. 5636 100 0 0 0 60236 100 0 0 0 80839 100 0 0 0
q5 Likely 0 10 100 0 0 0 0
Poss. 0 0 10 100 0 0 0
q6 Likely 0 14100 0 0 0 0
Poss. 0 110 100 0 0 0 342100 0 0 0
q7 Poss. 1100 0 0 0 138 100 0 0 0 149 100 0 0 0
q9 Likely 3100 0 0 0 68 100 0 0 0 116 100 0 0 0
Poss. 80 100 0 0 0 406 100 0 0 0 741 100 0 0 0
q10Poss. 3100 0 0 0 6 100 0 0 0 7 100 0 0 0
ql1 Likely 0 4100 0 0 0 7 100 0 0 0
Poss. 4100 0 0 0 89 100 0 0 0 236 100 0 0 0
q12 Likely 11100 0 0 0 174 100 0 0 0 345 100 0 0 0
Poss. 10 100 0 0 0 117 100 0 0 0 350 100 0 0 0
q13 Likely 3100 0 0 0 71100 0 0 0 169 100 0 0 0
Poss. 8 100 0 0 0 122100 0 0 0 351 100 0 0 0
q14 Poss. 4100 0 0 0 97 100 0 0 0 159 100 0 0 0
ql5 Poss. 102 100 0 0 0 409 100 0 0 0 515 100 0 0 0
q16 Poss. 3987 100 0 0 0 15480 100 0 0 0 17532 100 0 0 0
q17 Poss. 1100 0 0 0 1100 0 0 0 1100 0 0 0
q18 Poss. 66 100 0 0 0 872 100 0 0 0 1871 100 0 0 0
q20 Poss. 0 25 100 0 0 0 50 100 0 0 0
u20cl #ans <10 [10,100[[100,1000[>1000 u20c20 #ans <10 [10,100[[100,1000[>1000 u20¢50 #ans <10 [10,100[[100,1000[>1000
q2 Likely 228 100 0 0 0 9927 100 0 0 0 23819 100 0 0 0
Poss. 1019 100 0 0 0 22489 100 0 0 0 52117 100 0 0 0
q3 Poss. 0 85 100 0 0 0 87 100 0 0 0
q5 Likely 0 10100 0 0 0 0
Poss. 0 0 10 100 0 0 0
q6 Likely 0 14100 0 0 0 0
Poss. 0 110 100 0 0 0 342 100 0 0 0
q7 Poss. 46 100 0 0 0 138 100 0 0 0 149 100 0 0 0
q8 Poss. 31100 0 0 0 31100 0 0 0 32 100 0 0 0
q9 Likely 60 100 0 0 0 59 100 0 0 0 267 100 0 0 0
Poss. 2714 100 0 0 0 13282 100 0 0 0 21419 99.94 0.06 0 0
q10 Poss. 58 100 0 0 0 62 100 0 0 0 66 100 0 0 0
ql1 Likely 0 42100 0 0 0 267 100 0 0 0
Poss. 145 100 0 0 0 2781 100 0 0 0 6373 100 0 0 0
q12 Likely 218 100 0 0 0 880 100 0 0 0 991 100 0 0 0
Poss. 251 100 0 0 0 3881 100 0 0 0 8769 100 0 0 0
q13 Likely 64 100 0 0 0 1780 100 0 0 0 4185 100 0 0 0
Poss. 204 100 0 0 0 4028 100 0 0 0 9430 100 0 0 0
q14 Poss. 166 100 0 0 0 2412 100 0 0 0 3944 100 0 0 0
ql5 Poss. 1702 100 0 0 0 12143100 0 0 0 13946 100 0 0 0
q17 Poss. 10 100 0 0 0 37 100 0 0 0 39 100 0 0 0
q18 Poss. 1342 100 0 0 0 24959 100 0 0 0 48770 100 0 0 0
q19 Poss. 1100 0 0 0 8 100 0 0 0 20 100 0 0 0
q20 Poss. 0 25 100 0 0 0 50 100 0 0 0
ul00cl #ans <10 [10,100[[100,1000[>1000 ul00c20 #ans <10 [10,100[[100,1000[>1000 ul00c50 #ans <10 [10,100[[100,1000[>1000
q3 Poss. 0 85 100 0 0 0 87 100 0 0 0
q5 Likely 0 10 100 0 0 0 0
Poss. 0 0 10 100 0 0 0
q6 Likely 0 14 100 0 0 0 0
Poss. 0 110 100 0 0 0 342 100 0 0 0
q7 Poss. 103 100 0 0 0 138 100 0 0 0 149 100 0 0 0
q8 Poss. 187 100 0 0 0 188 100 0 0 0 190 100 0 0 0
q9 Likely 110 100 0 0 0 192 100 0 0 0 1300 100 0 0 0
Poss. 27107 100 0 0 0 64820 97.86 14 0 0 105450 9376 6.07 002 015
q10Poss. 293 100 0 0 0 310 100 0 0 0 326 100 0 0 0
ql1 Likely 0 192 100 0 0 0 1300 100 0 0 0
Poss. 739 100 0 0 0 13778 100 0 0 0 31764 100 0 0 0
q12 Likely 566 100 0 0 0 1166 100 0 0 0 2849 100 0 0 0
Poss. 1109 100 0 0 0 18162 100 0 0 0 41644 >99.99 <001 0 0
q13 Likely 308 100 0 0 0 8902 100 0 0 0 21279 100 0 0 0
Poss. 1014 100 0 0 0 19737 100 0 0 0 46553 100 0 0 0
q14 Poss. 777 100 0 0 0 11717 100 0 0 0 19165 100 0 0 0
ql5 Poss. 7584 100 0 0 0 61492 100 0 0 0 69599 100 0 0 0
q17 Poss. 190 100 0 0 0 21 100 0 0 0 26 100 0 0 0
q19 Poss. 5 100 0 0 0 56 100 0 0 0 124 100 0 0 0
q20 Poss. 0 25100 0 0 0 50 100 0 0 0

88

4.3 Implementation and experiments

Table 4.5 Distribution of the times (in ms) for explaining & ~ar ¢(@) in Case 3.

ulel #ans <10 [10,100[[100,1000[>1000 wulc20 #ans <10 [10,100[[100,1000[>1000 wulc50 #ans <10 [10,100[[100,1000[>1000

ql Poss. 380 100 0 0 0 7864 100 0 0 0 13747 100 0 0 0
q2 Poss. 12 100 0 0 0 734 100 0 0 0 2087 100 0 0 0
q3 Poss. 0 85 100 0 0 0 87 100 0 0 0
q4 Poss. 5636 100 0 0 0 60236 100 0 0 0 80839 >99.99 <0.01 0 0
q5 Poss. 0 0 10 100 0 0 0
q6 Poss. 0 110 100 0 0 0 342 100 0 0 0
q7 Poss. 1 100 0 0 0 138 100 0 0 0 149 100 0 0 0
q9 Poss. 80 100 0 0 0 406 100 0 0 0 741 100 0 0 0
q10Poss. 3 100 0 0 0 6 100 0 0 0 7 100 0 0 0
ql1Poss. 4 100 0 0 0 89 100 0 0 0 236 100 0 0 0
ql2Poss. 10 70 20 10 0 117 79.49 16.24 427 0 350 77.71 18.29 4.00 0
q13 Poss. 8 100 0 0 0 122 100 0 0 0 351 98.87 0.85 0.28 0
ql4 Poss. 4 100 0 0 0 97 100 0 0 0 159 100 0 0 0
ql5Poss. 102 100 0 0 0 409 >99.99 <0.01 0 0 515 99.03 0.78 0.19 0
q16 Poss. 3987 100 0 0 0 15480 100 0 0 0 17532 >99.99 <0.01 0 0
q17 Poss. 1 100 0 0 0 1 100 0 0 0 1 100 0 0 0
q18 Poss. 66 100 0 0 0 872 100 0 0 0 1871 100 0 0 0
q20 Poss. 0 25 100 0 0 0 50 100 0 0 0

u20cl #ans <10 [10,100[[100,1000[>1000 u20c20 #ans <10 [10,100[[100,1000[>1000 u20c50 #ans <10 [10,100[[100,1000[>1000
q2 Poss. 1019 100 0 0 0 22489 100 0 0 0 52117 >99.99 <0.01 0 0
q3 Poss. 0 85 100 0 0 0 87 100 0 0 0
q5 Poss. 0 0 10 100 0 0 0
q6 Poss. 0 110 100 0 0 0 342 100 0 0 0
q7 Poss. 46 100 0 0 0 138 100 0 0 0 149 100 0 0 0
q8 Poss. 31 100 0 0 0 31 100 0 0 0 32 100 0 0 0
q9 Poss. 2714 100 0 0 0 13282 99.96 0.04 0 0 21419 99.69 0.31 0 0
q10Poss. 58 100 0 0 0 62 100 0 0 0 66 100 0 0
ql1Poss. 145 100 0 0 0 2781 100 0 0 0 6373 99.98 0.02 0 0
ql2Poss. 251 179.28 13.95 6.77 0 3881 76.04 18.01 5.95 0 8769 71.05 22.98 597 0
q13 Poss. 204 98.53 0.98 0.49 0 4028 98.06 1.29 0.65 0 9430 98.51 1.04 0.45 0
ql4 Poss. 166 100 0 0 0 2412 100 0 0 0 3944 100 0 0 0
ql5Poss. 1702 99.82 0.12 0.06 0 12143 99.29 0.50 0.21 0 13946 98.72 0.92 0.35 0
ql7 Poss. 10 100 0 0 0 37 100 0 0 0 39 100 0 0 0
q18 Poss. 1342 100 0 0 0 24959 100 0 0 0 48770 100 0 0 0
q19 Poss. 1 100 0 0 0 8 100 0 0 0 20 100 0 0 0
q20 Poss. 0 25 100 0 0 0 50 100 0 0 0

ul00cl #ans <10 [10,100[[100,1000[>1000 ul00c20 #ans <10 [10,100[[100,1000[>1000 u100c50 #ans <10 [10,100[[100,1000[>1000
q3 Poss. 0 85 100 0 0 0 87 100 0 0 0
q5 Poss. 0 0 10 100 0 0 0
q6 Poss. 0 110 100 0 0 0 342 100 0 0 0
q7 Poss. 103 100 0 0 0 138 100 0 0 0 149 100 0 0 0
q8 Poss. 187 100 0 0 0 188 100 0 0 0 190 100 0 0 0
q9 Poss. 27107 100 0 0 0 64820 95.40 4.60 0 0 105450 93.64 6.13 0.08 0.15
q10Poss. 293 100 0 0 0 310 100 0 0 0 326 99.69 0.31 0 0
ql1Poss. 739 100 0 0 0 13778 100 0 0 0 31764 99.99 0.01 0 0
ql2Poss. 1109 64.74 29.94 532 0 18162 61.88 27.74 10.38 <0.01 41644 61.68 27.59 10.72 0.01
q13 Poss. 1014 98.82 0.88 0.30 0 19737 98.63 0.84 0.53 0 46553 98.71 0.78 0.50 0.01
ql4 Poss. 777 100 0 0 0 11717 100 0 0 0 19165 99.99 0 0.01 0
ql5 Poss. 7584 99.84 0.12 0.04 0 61492 99.53 0.29 0.18 0 69599 99.00 0.63 0.37 0
q17 Poss. 190 100 0 0 0 221 100 0 0 0 226 100 0 0 0
q19 Poss. 5 100 0 0 0 56 100 0 0 0 124 100 0 0 0
q20 Poss. 0 25 100 0 0 0 50 100 0 0 0

89

Explaining inconsistency-tolerant query answering

Table 4.6 Distribution of the times (in ms) for explaining I AR ¢(@) in Case 4.

ulel #ans <10 [10,100[[100,1000[>I1000 ulc20 #ans <10 [10,100[[100,1000[>1000 ule50 #ans <10 [10,100[[100,1000[>1000

ql Likely 0 7100 0 0 0 19 100 0 0 0

q2 Likely 20 100 0 0 0 402 100 0 0 0 887 100 0 0 0

q5 Likely 0 10100 0 0 0 0

q6 Likely 0 14100 0 0 0 0

q9 Likely 3100 0 0 0 68 100 0 0 0 116 100 0 0 0

ql1 Likely 0 4100 0 0 0 7 100 0 0 0

q12 Likely 11 100 0 0 0 174 100 0 0 0 345 100 0 0 0

q13 Likely 3100 0 0 0 71 100 0 0 0 169 100 0 0 0
u20cl #ans <10 [10,100[[100,1000] >1000 u20c20 #ans <10 [10,100[[100,1000[>1000 u20¢50 #ans <10 [10,100[[100,1000[>1000

q2 Likely 228 100 0 0 0 9927 100 0 0 0 23819 9982 0.18 0 0

q5 Likely 0 10 100 0 0 0 0

q6 Likely 0 14 100 0 0 0 0

q9 Likely 60 100 0 0 0 59 100 0 0 0 267 100 0 0 0

ql1 Likely 0 42100 0 0 0 267 100 0 0 0

q12 Likely 218 100 0 0 0 880 >99.99 0 0 <001 991 TO TO TO TO

q13 Likely 64 100 0 0 0 1780 100 0 0 4185 100 0 0 0
ul00cl #ans <10 [10,100[[100,1000[>1000 ul00c20 #ans <10 [10,100[[100,1000[>1000 ul00c50 #ans <IO [10,100[[100,1000[>1000

q5 Likely 0 10100 0 0 0 0

q6 Likely 0 14 100 0 0 0 0

q9 Likely 110 100 0 0 0 192 9115 1.04 0 78l 1300 99.84 008 0 008

ql1 Likely 0 192 100 0 0 0 1300 100 0 0 0

q12 Likely 566 100 0 0 0 1166 8928 10.63 0 009 2849 TO TO TO TO

q13 Likely 308 100 0 0 0 8902 99.80 020 0 0 21279 9944 0.56 0 0

on ul00c5h0 in Case 1). Moreover, the longest time required to explain an answer in Case 1
is generally significantly longer than in Case 3 (for instance on ul00c20, the longest time
required to explain an answer is 8s in Case 1, while it is 5s for Case 3).

We therefore tried to obtain an approximation of these assertions that is fast to compute.
The assertions relevant for IC =R ¢(@) can be computed very quickly and provide a superset
of those for K [£ar ¢(@), since the explanations for IC [~ ar ¢(@) are the consistent expla-
nations for K [~A1ar ¢(@). However, in our experiments, those two sets of assertions differ
quite significantly, and when they do the difference may be huge (hundreds of assertions
instead of one to four assertions for some answers of q12 on u100c20). When the ABox
size and ratio of conflicts increase, the proportion of answers having additional relevant
assertions for K [“1ar ¢(@) and the difference between the two sets of relevant assertions
for IC ~1ar ¢(@) and KC AR ¢(a@) increase. The two sets always coincide on ulcl, while on
the uXcb0 ABoxes, they differ in up to 100% of the Possible answers of a query (up to 27
assertions for ulc50, up to 651 assertions for u100c50). On ul00cl they differ in up to 5.6%
of the Possible answers of a query, and up to 501 assertions. This shows that it is not possible
to gain time on explaining negative AR-answers without losing too much information.

Cardinality of explanations of negative IAR-answers Although smallest explanations
for negative answers are preferable, we found it worthwhile to use a polynomial-time method
to obtain an arbitrary explanation for a negative I[AR-answer rather than relying on the SAT
solver to generate a smallest such explanation.

Indeed, computing an arbitrary explanation for C [A1ar ¢(@) always takes less than 100ms
(Table 4.3, Likely answers), and in almost all cases less than 10ms.

90

4.4 Discussion about the notion of responsibility

By contrast, when a smallest explanation is computed (Table 4.6), more time may be
needed. A striking case is that of q12: on u20c20, almost 19 minutes are spent in computing
a smallest explanation for one negative [AR-answer, and on ul100c20, it takes around 50
minutes, while computing an arbitrary explanation was done in less than 10ms for every
ABox and negative IAR-answer of q12 (Table 4.3). This even leads to a time-out for ABoxes
from u20c30. This long explanation time is due to the unusual size of the explanation
(18 assertions for the answer on ul00c20, whereas other negative explanations typically
contained only a few assertions).

In terms of size of explanations, we found that on u100c20 the arbitrary explanations
generated for all negative IAR-answers of g5, 6, q11, and q12 have exactly the same size as
the smallest explanations found with the SAT solver, that only one negative IAR-answer of
q13 had a suboptimal explanation (with 4 assertions instead of 3), as well as about 61% of
the negative IAR-answers of q9, whose explanations are at most two assertions bigger than
the smallest ones.

The possibly very high additional cost of computing a smallest explanation for a limited
benefit in terms of the size of explanations lead us to adopt arbitrary explanations for negative
IAR-answers as the default setting in our system. However, note that this very high additional
cost concerns very few answers, for instance all the other negative IAR-answers of q12 on
u20c20 are explained in less than 10ms. It could therefore be possible to allow a short time
to first try to find a smallest explanation, and to provide an arbitrary explanation in case of
failure.

4.4 Discussion about the notion of responsibility

In the database arena, the notion of responsibility has been introduced to quantify the
importance of a tuple in the obtention of a (non)answer and can be used to order the tuples
of the explanation of this (non)answer [Meliou et al. 2010]. The responsibility of a tuple «
is a number whose main property is that it is not null just in the case that « is relevant to
explain the (non)answer, and equal to one just in the case that « is necessary. Expressed in
the DL terminology (in the consistent case and for a positive answer), the responsibility of
an assertion « is 14%/« where £ is the least number of assertions to delete to make « critical in
the obtention of the answer, i.e. to make « belong to every image of the answer.

We tried to adapt this notion to our context and found that it extends well for positive
brave and IAR-answers and seems also to be useful for negative IAR-answers, but that we
lost the natural intuition for positive and negative AR-answers. The notion of responsibility
is based on contingency sets which are in the consistent case sets of assertions whose removal
makes « critical. For the inconsistency-tolerant semantics we consider, we define contingency
sets so that the responsibility fulfills the same main property as the responsibility defined for
the consistent case. The following definitions and propositions hold for a KB expressed in
any DL. We say that a subset B of the ABox contradicts a cause C if there exists a consistent
subset B’ C B such that C U B’ is inconsistent.

Definition 4.4.1 (Contingency set). A contingency set I" for an assertion a w.r.t. (T, A) s ¢
is a set of assertions of A such that:

91

Explaining inconsistency-tolerant query answering

e For S=IAR:

- (T, Rn\I) = q where Rn = Nperep(7.4) R
T RO g e

e For S=brave:

e For S=AR:

— YR € Rep(T, A),(T,R\I') = ¢
— IR € Rep(T, A) (T, (R\D)\{a}) I~ ¢

A contingency set I" for an assertion w.r.t. (7, A) s ¢ is a set of assertions of A such that:

e For S=]JAR:

— A\T contradicts every C € causes(q, (7T ,.A))
— (A\I')\{a} does not contradict every C € causes(q, (T ,.A))

e For S=AR:

— 3R € Rep(T, A), R\I contradicts every C € causes(q, (T,.A))
- VR € Rep(T,A),(R\I')\{«a} does not contradict every C € causes(q, (T ,.A))

Definition 4.4.2 (Responsibility). The responsibility of « for (T, A) =g ¢ (resp. (T, A) s
Q) is: p(a) = m where T" ranges over all contingency sets for o w.r.t. (T,A) =5 ¢
(resp. (T,.A) F~s ¢). If there does not exist any contingency set for a, p(a) =0 .

Proposition 4.4.3. Let p(«) be the responsibility of o for (T, A) =g q (resp. (T, A) s q):

* p(a) # 0 if and only if « is relevant for explaining (T, A) s q (resp. (T, A) s q),
* p(a) =1 ifand only if o is necessary for explaining (T, A) |=s q (resp. (T, A) s q).

Proof. Positive IAR-answer

- Relevance: If « is relevant, there exists a cause Cy in R such that o« € Cyp. Then I' =
Ucecauses(q,k) C\Co is a contingency set. In the other direction, if p(a) # 0, there exists a
contingency set I" such that every cause in R \I" contains v and there exist causes in R\T,
so there exists a cause which contains « in Rn.

- Necessity: « is necessary if and only if « belongs to every cause for g in R, so if and only
if the empty set is a contingency set for o, i.e. p(a) = 1.

Positive brave-answer

- Relevance: If o is relevant, there exists a cause Cy which contains ««. Then I' =
Ucecauses(q,k) C\Co is a contingency set. In the other direction, if p(a) # 0, there exists
a contingency set I" such that there exists repair R such that every cause in Ro\I" contains
« and there exists such a cause. It follows that « is relevant.

92

4.4 Discussion about the notion of responsibility

- Necessity: « is necessary if and only if o belongs to every cause for ¢, so if and only if the
empty set is a contingency set for «, i.e. p(a) = 1.

Positive AR-answer

- Relevance: If « is relevant, then there exists a minimal disjunction of causes Cy, ..., C,
such that every repair contains at least one of these causes and « € Cy. Since the disjunction
is minimal, there exists a repair R such that Cy C Ry and C; € Ry for all 7 # 0. Let
I' = Ucecauses(q,ic) C\Ui=o Ci- Since C; £ Ry for all i # 0, (T, Ro\I'\{a}) [~ ¢, and since
every repair contains at least one C;, which is disjoint with I" by construction, (7, R\I') = ¢
for every R € Rep(T,.A). It follows that I is a contingency set for «, so p(«) # 0.

In the other direction, if p(a) # 0, there exists a contingency set I such that (7, R\I') = ¢

for every R € Rep(T,.A) and there exists R € Rep(T,.A) such that (7, Ro\I'\{a}) ~ ¢.
Every R\I contains at least one cause of ¢, so it is possible to construct a minimal disjunction
of causes with these causes. Since (7, Ro\I'\{a}) }~ ¢, every cause in Ro\I" contains a, so
o appears in the disjunction. This disjunction of causes is such that every repair contains at
least one of the causes, and it is minimal (otherwise, the minimal sub-disjunction covers also
the R\I'). Hence « is relevant.
- Necessity: If « is necessary, then there exists a repair R such that every cause included in
R contains « (cf. proof of Proposition 4.2.5). It follows that (7, R\{a}) F~ ¢, so the empty
set is a contingency set for « and p(a)) = 1. In the other direction, if p(a)) = 1, then there
exists a repair R such that (7, R\{a}) ~ ¢, so every cause for ¢ in R contains «, and every
explanation for (7, A) =ar ¢ contains «.

Negative IAR-answer

- Relevance: If « is relevant, there exists a minimal subset 3 such that o € 8 and B contradicts
every cause. Then I' = 4\ B is a contingency set by construction of 3 since A\I" = B. In the
other direction, if there exists I' as required, 5 = A\I" contradicts every cause, and B\{«a}
does not contradict every cause, so « € . It follows that «v is relevant.

- Necessity: It is clear that « is necessary if and only if A contradicts every cause (g is not
entailed under TAR semantics), and .4\« does not contradict at least one cause (every set
that contradicts every cause contains «).

Negative AR-answer
- Relevance: If « is relevant, there exists a minimal consistent subset B such that o € B and
B conflicts every cause of ¢. Since B is consistent, there exists Ry € Rep(T,.A) such that
B C Ry. Let I' = A\B. Then Ry\I" = B contradicts every cause for ¢, and for every repair
R, R\I'\{a} C B\{«a} does not contradict every cause for ¢ since B is minimal.

In the other direction, suppose that there exists a set I' as required. Then there exists
Ro € Rep(T,.A), such that Ro\I" contradicts every cause. Since R is consistent, a negative
explanation is obtained by selecting a minimal subset of Ro\I" which contradicts every cause.
Since Ro\I"\{a} does not contradict every cause, this negative explanation contains c.
- Necessity: Suppose that «v is necessary. Since « belongs to every consistent subset which
contradicts the causes of ¢, for every repair R, R\{«} does not contradict every cause. Since
q is not entailed under AR semantics, there exists R such that Ry contradicts every cause.
It follows that the empty set is a contingency set.

93

Explaining inconsistency-tolerant query answering

In the other direction, suppose that p(a) = 1 and suppose for a contradiction that there
exists a consistent subset B which contradicts every cause and does not contain «. There
exists a repair Ry such that B C Ry, and R\ {«} does not contradict the causes for ¢ since
the empty set is a contingency set. It follows that B C R\ {«} does not contradict every
cause.]

The following proposition shows that for positive brave or IJAR-answers and negative
IAR-answers, the responsibility has exactly the same meaning as in the database setting: it
corresponds to 11%,{ where £ is the least number of assertions to delete to make « critical in
the (non) obtention of the answer under brave or IAR semantics. In particular, this means that
for S € {IAR, brave}, « is necessary for explaining (7,.4) s ¢ if and only if (7, .A) |=s ¢
and (T, A\{a}) l£s ¢, and that « is necessary for explaining (7, A) ~1ar ¢ if and only if

(T, A) Fiar g and (T, A\{a}) Fiar ¢-
Proposition 4.4.4. If T is a contingency set for a w.r.t. (T, A) =g q for S € {IAR, brave}:

* (T, A\D) s q
* (T, (A\D\{e}) s g

IfT is a minimal contingency set for o w.r.t. (T, A) F1ar q:

« (T, A\D') #ar g
* (T, (A\D)\{a}) Fur g

Proof. For positive IAR-answers, by definition of a contingency set (7, R~\I') | ¢ where
R = NreRrep(T,4) R, so there is a cause for ¢ in Rn\I' C (g pep(7,4\1) R (every asser-
tion in Rn, is free of conflicts in A, so also in A\I"). Thus (7, A\I') =1ar ¢. Moreover,
(T,(Ra\I')\{a}) ~ ¢, so there is no cause for ¢ in (R \I')\{«}. It follows that o belongs to
every cause for ¢ in Rn\I'. In particular, this means that « has no conflict, so removing « does
not make any assertion of A conflict free, and every cause for ¢ in (re pep(7,(A\M)\{a}) R
was in Rn\I'. It follows that (Ve pep(7,(4\1)\ {a}) R contains no cause for g.

For positive brave-answers, since there exists R € Rep(T,.A) such that (T,R\I') |= ¢,
there is a cause for ¢ in R\I" so in A\I" and (7, A\I') Fprave ¢- Moreover, since for
every R € Rep(T,A), (T,(R\I')\{a}) £ ¢, T U{a} intersects every cause for ¢ in A, so
(T, (A\D)\{e}) Forave ¢-

For negative IAR-answers, a minimal contingency set I is such that A\I" contradicts
every cause for ¢, so (T, A\I') ~1ar ¢- Moreover, since I' is a minimal contingency set,
there exists a cause Cy such that confl(Cy,) = I'U{a} (indeed, (A\I')\{a} does not
contradict every cause for ¢, so there exists a cause C such that confl(C,K) CI'U{a}, and
by minimality of ', T'U{«} corresponds exactly to the conflicts of one such cause). Since Cy
is consistent, Co N (I'U{a}) =0, so (A\I')\{a} contains Cy and none of its conflicts, and

(T, (A\D)\{a}) Fiar ¢]

The following examples illustrate how responsibility can help to understand a (positive
brave or IAR or negative IAR) answer by ordering the relevant assertions.

94

4.4 Discussion about the notion of responsibility

Example 4.4.5. Suppose that we have the following KB and query.

T ={GradCourse C =UndergradCourse}
A ={Postdoc(ann), Teach(ann,cq1), GradCourse(c,1), Teach(ann, c,2),
GradCourse(cq2), Teach(ann, c,q3), GradCourse(c,3),
Postdoc(bob), Teach(bob, ¢y), Postdoc(carl), Teach(carl,), GradCourse(cpe),
Postdoc(dan), Teach(dan, cq), GradCourse(c,), UndergradCourse(cy) }
q =3y Postdoc(x) A Teach(z,y) A GradCourse(y)

If a user wonders why ¢ is entailed under brave semantics (for instance because he thinks
that postdoctoral researchers should not teach graduate courses), he will get the 6 following
causes as explanations for (7, A) Fprave ¢, and every assertion from A is relevant except
UndergradCourse(cy):

* {Postdoc(ann), Teach(ann,cs;),GradCourse(cgq;)} for 1 < i < 3,
o {Postdoc(bob), Teach(bob, c..), GradCourse(cpe) }
 {Postdoc(carl), Teach(carl,cy.),GradCourse(cy.) },
 {Postdoc(dan), Teach(dan,cy), GradCourse(cq)}.

Ordering the assertions w.r.t. their responsibility gives the following ranking:

* p=0.33 Postdoc(ann) * p=0.25 Teach(carl,cy.)
* p=0.33 GradCourse(cp) p = 0.20 Teach(ann, cq1)

p = 0.33 Postdoc(dan) p = 0.20 GradCourse(cq1)

p = 0.33 Teach(dan, cy)
=0.20 Teach

* p=0.33 GradCourse(cy) P each(an, ca2)
p = 0.20 GradCourse(cq2)

p = 0.25 Postdoc(bob)
p = 0.20 Teach(ann,cy3)

p = 0.25 Teach(bob, cp..)
p = 0.25 Postdoc(carl) p = 0.20 GradCourse(cg3)

If it is the case that postdoctoral researchers do not teach graduate courses:

« either Postdoc(ann) is erroneous, or at least three assertions are erroneous (either
Teach(ann, c,;) or GradCourse(cy;) for each cg;);

* either GradCourse(cp.) is erroneous, or at least two others assertions are erroneous
(either Postdoc(x) or Teach(x,¢y.) for x € {bob, carl});

* one of the three assertions Postdoc(dan), Teach(dan,c;), and GradCourse(cy) is erro-
neous.

Therefore, if we suppose that every assertion has the same probability of being erroneous a
priori, the assertions of responsibility 0.33 are more likely to be problematic than those of
lower responsibility, since we have to remove more of the latter to lose the entailment of q.
The assertions of higher responsibility are more important in getting the answer. This shows

95

Explaining inconsistency-tolerant query answering

how ranking the relevant assertions by responsibility helps to understand a surprising answer,
or to find problematic assertions in case of erroneous brave-answer.

If we now consider IAR semantics, there are 5 explanations for (7, A) =1ar ¢ (the
5 first causes, so this time Postdoc(dan), Teach(dan, c¢;),GradCourse(c,) are not relevant).
The responsibility is as follows:

* p=0.5 Postdoc(ann)

* p=0.5 GradCourse(cp.)
* p=0.33 Postdoc(bob)

* p=0.33 Teach(bob, cp.)
p = 0.33 Postdoc(carl)
p = 0.33 Teach(carl, cp.)

p = 0.25 Teach(ann,cq1)
p = 0.25 GradCourse(c,1)
p = 0.25 Teach(ann,cq2)
p = 0.25 GradCourse(cq2)
p = 0.25 Teach(ann,cy3)
p = 0.25 GradCourse(cg3)

Here again, by ranking assertions using their responsibility, we get first the assertions
that play a more important role in deriving the answer under IAR semantics. <

Example 4.4.6. Regarding negative IAR-answers, consider the following KB and query:

T ={AProf C Prof, FProf C Prof, 3Advise C Prof, Prof = PhD, Postdoc = PhD,
JTeach™ C Course, AProf C —FProf, Prof C —Postdoc, JAdvise™ = —Course}

A ={AProf(ann),FProf (ann), Advise(ann, c), Course(c), Teach(ann, c), Postdoc(ann)}

q =PhD(ann)

The causes of ¢ are {AProf(ann)}, {FProf(ann)}, {Advise(ann,c)}, and {Postdoc(ann)}.

There are four explanations for (7,.A) f~ar ¢: Postdoc(ann) A Advise(ann,c),
Postdoc(ann) A AProf(ann), Postdoc(ann) A FProf(ann), Course(c) A AProf(ann) A
FProf(ann) and Teach(ann,c) A AProf (ann) A FProf (ann).

* p=0.50 AProf(ann) * p=0.33 Advise(ann,c)
* p=0.50 FProf(ann) * p=10.33 Course(c)
* p=0.50 Postdoc(ann) * p=0.33 Teach(ann,c)

Ordering the assertions w.r.t. their responsibility allows us to get first the assertions that
contradict causes that have fewer conflicts (AProf (ann) and FProf (ann)), then those who
conflict the causes which have more conflicts (Postdoc(ann) and Advise(ann,c)). If the
query should be entailed under IAR semantics, we can think that the former causes have a
higher probability of being correct, and so their conflicts of being erroneous. <

For positive or negative AR-answers, the responsibility is not related to the minimal
number of changes to make « critical in the (non) obtention of the answer under AR
semantics. Indeed, it is related to the minimal number of changes to make « critical in the
(non) obtention of the answer in one repair, but deleting assertions changes the repairs of the
knowledge base. For instance if Prof(a) holds under AR semantics with only one explanation

96

4.4 Discussion about the notion of responsibility

AProf(a) V FProf(a), both assertions are necessary to explain that Prof(a) holds under AR
semantics, so have a responsibility of 1, but deleting one of the two necessary assertions will
make Prof(a) be entailed under IAR semantics. This shows that it is not possible to define
a notion that is related to the minimal number of changes to make an assertion critical in
the obtention of an answer under AR semantics and which is not null just in the case that o
is relevant to explain the answer and equal to one just in the case that « is necessary. The
following example illustrates the same phenomenon for negative AR-answers.

Example 4.4.7. In this example, we consider a KB defined by a set of assertions B and
conflicts I between them. It is always possible to find a KB which corresponds to such a
specification by defining a set of individuals N = {a}, a set of concepts No = {C'| C' € B},
the ABox A = {C(a) | C € N¢}, and the TBox 7 = {C; C =Cy | {C1,C2} € E}. We
can also assume that a query ¢ has for causes some sets of assertions Cy, ...,Cy, by defining
q= Ai(a) A ...\ Ap(a) where n is the maximal size of the C;, and adding for every C; =
{Ci(a),...,Cn,;(a)} the inclusions C1 C Ay, ...,Cpy, C Ay, y...,Cy; T Ay, to the TBoX.

Let A= {«,5,7,d,¢} and T be such that (A, T) has the following conflicts: {«,€},
{B,7}, {7,0}, {6,€}. Suppose that a query ¢ has two causes: Cy = {a, 5}, C1 = {€¢}. Then
q is not entailed under AR semantics and there is only one explanation for (A, 7) ~ar ¢:
{a,7}. If we remove the necessary assertion «, since the remaining cause C; can be
contradicted by 4, ¢ is still not entailed under AR semantics. Therefore, even if p(a) =1, av is
not critical in the obtention of ¢. By contrast, -y is critical since the only way of contradicting
Co in A\{~} is ¢, so no consistent subset contradicts both Cy and Cj. 4

97

QUERY-DRIVEN REPAIRING

In this chapter, we address the problem of query-driven repairing of inconsistent DL-Liteg
knowledge bases: query answers are computed under inconsistency-tolerant semantics, and
the user provides feedback about which answers are erroneous, or missing under a stronger
semantics. The aim is to find a set of ABox modifications (deletions and additions), called
a repair plan, that addresses as many of the defects as possible. After formalizing this
problem and introducing different notions of optimality, we investigate the computational
complexity of reasoning about optimal repair plans and propose interactive algorithms for
computing such plans. For deletion-only repair plans, we propose an improved algorithm
and present the implementation of its core components in our CQAPri system. While we
first focus on IAR and brave semantics, since the erroneous answers should ideally not hold
under brave semantics whereas the desired answers should hold under IAR semantics, we
investigate the use of the AR semantics in the fourth section. Indeed, the AR semantics is a
natural alternative to IAR. We will see that even if considering the AR semantics changes the
complexity of recognizing an optimal repair plan, we do not have to modify our algorithms
to handle it. The main results of this chapter have been published in [Bienvenu et al. 2016b].

5.1 Query-driven repairing problem

While inconsistency-tolerant semantics are essential for returning useful results when consis-
tency cannot be achieved, they by no means replace the need for tools for improving data
quality. That is why we propose a complementary approach that exploits user feedback about
query results to identify and correct errors.

There are several reasons to use queries to guide the repairing process. First, we note
that it is typically impossible (for lack of time or information) to clean the entire dataset,
and therefore reasonable to focus the effort on the parts of the data that are most relevant
to users’ needs. In the database arena, this observation has inspired work on integrating
entity resolution into the querying process [Altwaijry ef al. 2013]. Second, expert users
may have a good idea of which answers are expected for queries concerning their area of
expertise, and thus queries provide a natural way of identifying flaws. Indeed, it was recently
proposed in [Kontokostas et al. 2014] to use queries to search for errors and help evaluate

99

Query-driven repairing

linked data quality. Finally, even non-expert users may notice anomalies when examining
query results, and it would be a shame not to capitalize on this information, and in this way,
help distribute the costly and time-consuming task of improving data quality, as argued in
[Bergman et al. 2015].

We consider the following scenario: a user interacts with an OMQA system, posing
conjunctive queries and receiving the results under inconsistency-tolerant semantics. When
reviewing the results, the user detects some unwanted answers, which are erroneous and
should therefore not have been retrieved, and identifies wanted answers, which should
definitely be considered answers. Ideally, the unwanted tuples should not be returned as
possible (brave) answers, and all of the desired tuples should be found among the sure (IAR)
answers. To fix the detected problems and improve the quality of the data, the objective is to
modify the ABox with a set of atomic changes (deletions and additions of facts), called a
repair plan, that achieves as many of these objectives as possible, subject to the constraint
that the changes must be validated by the user.

Our framework is inspired by that of [Jiménez-Ruiz et al. 2011], in which a user specifies
two sets of axioms that should be entailed or not by a KB. Repair plans are introduced as
pairs of sets of axioms to remove and add to obtain an ontology satisfying these requirements.
Compared to prior work, distinguishing features of our framework are the specification of
changes at the level of CQ answers, the use of inconsistency-tolerant semantics, and the
introduction of optimality measures to handle situations in which not all objectives can be
achieved.

Example 5.1.1. As a running example, we consider the simple KB K, = (Tez, Aez)-

Tex ={AProf C Prof, FProf C Prof, 3Advise C Prof, Prof C PhD, Postdoc C PhD,
AProf C —FProf, Postdoc C —Prof}
Aer ={Postdoc(a),AProf(a), Advise(a,b), Teach(a,c) }

A user poses the queries Prof(z) and PhD(z) over K¢y. Since Kz Fprave Prof(a) and
Kez =ar PhD(a), he receives a as an answer for both queries. Suppose that the user knows
that a is definitely a PhD holder, but is not a professor. He would therefore like PhD(a) to
hold under TAR semantics rather than AR which is less strong, and Prof(a) not to hold under
any semantics, since any cause for this query has something wrong. He then indicates a as
an unwanted answer for Prof () but a wanted answer for PhD(x). q

A first way of repairing the data is to delete assertions from the ABox that lead to
undesirable consequences, either because they contribute to the derivation of an unwanted
answer or because they conflict with causes of some wanted answer.

Example 5.1.2 (Example 5.1.1 cont’d). Deleting the assertions AProf (a) and Advise(a,b)
from A, achieves the objectives since (7., {Postdoc(a), Teach(a,c)}) Fprave Prof(a) and
(Tew,{Postdoc(a), Teach(a,c)}) Ear PhD(a). 4

The next example shows that, due to data incompleteness, it can also be necessary to add
new assertions.

100

5.1 Query-driven repairing problem

Example 5.1.3 (Example 5.1.1 cont’d). Consider K = (7c,,{AProf(a)}) with the same
wanted and unwanted answers as in Example 5.1.1. The assertion AProf(a) has to be
removed to satisfy the unwanted answer, but then there remains no cause for the wanted
answer. This is due to the fact that the only cause of PhD(a) in K contains an erroneous
assertion: there is no “good” reason in the initial ABox for PhD(a) to hold. A solution is for
the user to add a cause he knows for PhD(a), such as Postdoc(a). <

We now provide a formal definition of the query-driven repairing problem investigated in
this chapter.

Definition 5.1.4. A query-driven repairing problem (QRP) consists of a KB K = (T, A) to
repair and two sets YV, U of BCQs that I should entail (VW) or not entail (Uf). A repair plan
(for A) is a pair P = (P_, P+) such that P_ C A and Py N.A = 0; if Py = (), we say that P

is deletion-only.

The sets U and WV correspond to the unwanted and wanted answers in our scenario:
q(@) € U (resp. W) means that @ is an unwanted (resp. wanted) answer for ¢. Slightly
abusing terminology, we will use the term unwanted (resp. wanted) answers to refer to the
BCQs in U (resp. V). We say that a repair plan (P_,P,.) addresses all defects of a QRP
(K, W, U) if the KB K’ = (T, (A\P-) UP) is such that K’ =1ar ¢ for every ¢ € W, and
K’ Hprave q for every g € U.

The next example shows that by considering several answers at the same time, we can
exploit the interaction between the different answers to reduce the search space.

Example 5.1.5 (Example 5.1.1 cont’d). Consider the KB K = (7., A) with
ABox A = {Prof(a),AProf(b),FProf(b), Teach(a,c), Teach(b,c), GradCourse(c),
TakeCourse(s,c)}. 1Tt is easy to see that K is inconsistent, and its two repairs are
obtained by removing either AProf (b) or FProf(b). Evaluating the queries ¢; (z) = PhD(x)
and ¢2(x) = JyzProf (x) A Teach(z,y) A GradCourse(y) A TakeCourse(z,y) over this KB
yields:

K):brave Q1(b) K):brave QQ(b) K):IAR Q2(a)-

We consider the QRP (K, W, U) with wanted answers W = {q1(b),g2(a)} and unwanted
answers U = {qa2(b) }.

Two deletion-only repair plans address all defects: {AProf(b), Teach(b,c)} and
{FProf(b), Teach(b,c)}. Indeed, we must delete exactly one of AProf(b) and FProf(b)
for ¢1(b) to be entailed under IAR semantics, and we cannot remove GradCourse(c) or
TakeCourse(s, c) without losing the wanted answer ¢2(a). Thus, the only way to get rid of
q2(b) is to delete Teach(b,c).

If we consider only U (i.e. W = ()), there are additional possibilities such as
{GradCourse(c)} and {TakeCourse(s,c)}, and there is no evidence that Teach(b,c) has
to be deleted. <

If we want to avoid introducing new errors, a fully automated repairing process is
impossible: we need the user to validate every assertion that is removed or added in order to
remove (resp. add) only assertions that are false (resp. true).

101

Query-driven repairing

Example 5.1.6 (Example 5.1.1 cont’d). Reconsider the problem from Example 5.1.5, and
suppose that the user knows that FProf (b) and TakeCourse(s, ¢) are false and every other
assertion in A is true. An automatic repairing will remove the true assertion Teach(b,c). The
problem is due to the absence of a “good” cause for the wanted answer g2(a) in A. <

Since we will be studying an inferactive repairing process, in which users must validate
changes, we will also need to formalize the user’s knowledge. For the purposes of this
work, we assume that the user’s knowledge is consistent with the considered TBox 7, and
so can be captured as a set M ¢, of models of 7. Instead of using M, directly, it
will be more convenient to work with the function user induced from M e, that assigns
truth values to BCQs in the obvious way: user(q) = true if ¢ is true in every Z € Mg,
user(q) = false if ¢ is false in every Z € M ser, and user(q) = unknown otherwise. We will
assume throughout the chapter the following truthfulness condition: user(q) = false for every
q € U, and user(q) = true for every ¢ € W.

We now formalize the requirement that repair plans only contain changes that are sanc-
tioned by the user.

Definition 5.1.7. A repair plan (P_,P,) is validatable w.r.t. user' just in the case that
user(«) = false for every o € P_ and user(«) = true for every a € P4.

Unfortunately, it may be the case that there is no validatable repair plan addressing all
defects. This may happen, for instance, if the user knows some answer is wrong but cannot
pinpoint which assertion is at fault, as we illustrate next.

Example 5.1.8 (Example 5.1.1 cont’d). Consider the QRP given by:

K =(Tex, {FProf(a), Teach(a,c), GradCourse(c)})
W ={Prof(a)}
U ={3zProf(a) A Teach(a,z) A GradCourse(x) }

Suppose that user(FProf(a)) = false, user(Teach(a,c)) = unknown,
user(GradCourse(c)) = unknown, and user(AProf(a)) = true. Tt is not possible to
satisfy the wanted and unwanted answers at the same time, since adding the true assertion
AProf(a) creates a cause for the unwanted answer that does not contains any assertion «
with user(a) = false: the user does not know which of Teach(a,c) and GradCourse(c) is
erroneous. g

As validatable repair plans addressing all defects are not guaranteed to exist, our aim will
be to find repair plans that are optimal in the sense that they address as many of the defects
as possible, subject to the constraint that the changes must be validated by the user.

5.2 Optimal repair plans

To compare repair plans, we consider the answers from ¢/ and }V that are satisfied by the
resulting KBs, where:

Tn what follows, we often omit “w.r.t. user” and leave it implicit.

102

5.2 Optimal repair plans

* q €U is satisfied by K if K Fprave ¢

* g € Wis satisfied by K if there exists C € causes(q, K) such that confl(C,K) = () and
there is no « € C with user(«) = false.

Remark 5.2.1. Observe that for ¢ € WV to be satisfied by K, we require not only that
K E1AR ¢, but also that there exists a cause for ¢ that does not contain any assertions known
to be false, i.e. L =1ar ¢ should hold “for a good reason”. We impose this additional
requirement to avoid counterintuitive situations, e.g. preferring repair plans that remove
fewer false assertions in order to retain a conflict-free (but erroneous) cause for a wanted
answer.

We say that a repair plan P = (P_,Py) satisfies ¢ € U U W if the KB Kp =
(T, (A\P_)UP,) satisfies g, and we use S(P) (resp. Sy (P), Syy(P)) to denote the sets of
answers (resp. unwanted answers, wanted answers) satisfied by P.

Two repair plans P and P’ can be compared w.r.t. the sets of unwanted and wanted
answers that they satisfy: for A € {{/, W}, we define the preorder <4 by setting P <4
P! iff Sa(P) C Sa(P’), and obtain the corresponding strict order (< 4) and equivalence
relations (~ 4) in the usual way. If the two criteria are equally important, we can combine
them using the Pareto principle:

P <y P iff P <y P and P <y P,

Alternatively, we can use the lexicographic method to give priority either to the wanted
answers (=yy /) or unwanted answers (=7 y):

P=apP iff P<aP orP~sP and P <5 P, where {A, B} = {U,W}.

For each of the preceding preference relations <, we can define the corresponding notions
of <-optimal repair plan.

Definition 5.2.2 (Optimal repair plan). A repair plan (P_, P,) is globally (resp. locally)
=-optimal w.r.t. user iff it is validatable w.r.t. user and there is no other validatable repair
plan (P_,P) such that (P_,Py) < (P_,P,) (resp. such that P_ C P, P, C P/ and
(P—,Py) < (PL,P)).

Globally <-optimal repair plans are those that are maximal with respect to the preference
relation <, whereas locally <-optimal repair plans are those that cannot be improved in the
=< ordering by adding further assertions to P_ or P...

Remark 5.2.3. If a repair plan is validatable and addresses all defects of a QRP, then it is
globally <;,-optimal. If it additionally satisfies every ¢ € WV (ensuring that there is a “good”
cause for every ¢ € W), then it is globally <-optimal for every <€ {=yy, =wuwy Suw
Swut

The following example illustrates the difference between local and global optimality.

103

Query-driven repairing

Example 5.2.4. Consider the QRP ((7¢z, A), W,U) where

A ={Teach(a,e),Advise(a,b), TakeCourse(b, c), TakeCourse(b,e), GradCourse(e) }
W ={3xTeach(a,x),3xTakeCourse(b,z) A GradCourse(z)}
U ={3xyTeach(a,x) AAdvise(a,y) A TakeCourse(y,z) AGradCourse(z)}

Suppose that user(Teach(a,e)) = user(GradCourse(e)) = false, user(a) = unknown for the
other o € A, and the user knows that Teach(a, c), Teach(a,d) and GradCourse(c) are true.
It can be verified that the repair plan P; = ({Teach(a,e),GradCourse(e)},
{Teach(a,c)}) satisfies the first answer in VV and the (only) answer in /. It is locally
={u,w}-optimal since the only way to satisty the second wanted answer would be to
add GradCourse(c), which would create a cause for the unwanted answer, which could
not be repaired by removing additional assertions as the user does not know which of
Advise(a,b) and TakeCourse(b,c) is false. However, Py is not globally < y,-optimal
because Py = ({Teach(a,e),GradCourse(e)}, {Teach(a,d), GradCourse(c)}) satisfies all
answers in WUU. <

5.2.1 Characterization and complexity analysis

In order to gain a better understanding of the computational properties of the different ways
of ranking repair plans, we study the complexity of deciding if a given repair plan is optimal
w.r.t. the different criteria. Since validatability of a repair plan depends on user, in this
section, we will use the following notations for the sets of false, unknown, and true ABox
assertions w.r.t. user:

Falseyser = {av € A | user(a) = false}
Unkyser = {ov € A | user(a) = unknown}

Trueyser = {a | user(a) = true}

Checking if an assertion is false (resp. unknown, true) is in P w.r.t. the size of F'alse e, (resp.
Unkyser, Trueyser). The sets Falseyser and Unkyser are included in A, while T'rue,ser may
be larger. However, only the assertions of T'rue s, that are relevant to the given QRP need
to be considered. We make similar assumptions as for data complexity and thus assume that
the sizes of the queries and the TBox are bounded. We thus measure complexity w.r.t. |.A|,
U|, W], as well as the size of the set

rel

oer ={@ € Trueyser | there exists ¢ € W such that
« € C for some C € causes(q, AUTrueyser) }

True

We make the reasonable assumption that 7'rueyser (hence Trueffsler) is finite.

We begin with the following lemma which shows that removing false assertions or
adding true assertions (whose conflicts are false) can only satisfy more wanted answers, and

104

5.2 Optimal repair plans

removing additional false assertions, while adding the same set of true assertions, can only
satisfy more unwanted answers.

Lemma 5.2.5. Let (P_,P4) and (P’_,P..) be validatable repair plans.
1. If P— CP.and Py C P, then Syy(P-,P+) C Sw(P_,P.).
2. If P CP"and P+ =P, then Sy(P—,P+) C Sy(P.,PL).

Proof. Suppose that P_ C P’ and P, C P! and let g € Syy(P—, P4). There exists a cause
C for ¢ in (A\P_) UP. such that C does not contain any false assertion and has no conflicts
in (A\P_)UP,. Since C C AUP; and P+ C P, C C AUP/, and since C does not
contain any false assertion and (P”_, P’) is validatable, CN'P_ =0, so C C (A\P_)UP..
Moreover, C has no conflict in (A\P—_) U Py, so the set of assertions of A in conflict with C
is included in P_ C P’ so C has no conflict in (A\P’”) UP’_ (note that since the assertions
of C are nonfalse, and the repair plans are validatable, assertions of C cannot conflict with
assertions of P/). It follows that ¢ € Syy(P.,P’,).

Suppose that P_ C P’ and P4 =P/ and let ¢ € Syy(P—, P+). There is no cause for ¢
in (A\P_)UP;+ C (A\PL)UP/,s0qeSy(P_,P). O

We next provide characterizations of optimal plans in terms of the notion of satisfiability
of answers.

Definition 5.2.6 (Satisfiable answer). An answer g € U UV is satisfiable if there exists
a validatable repair plan that satisfies q. We say that g is satisfiable w.r.t. a validatable
repair plan P = (P—,P4) if there exists a validatable repair plan P’ = (P_, P’) such that
P_C ,P/,, Py C ’Pﬁr, qec S(Pl), and P j{u}w} P

Proposition 5.2.7. A validatable repair plan P is:

o globally =<y- (resp. Xy -) optimal iff it is locally =y- (resp. 2y -) optimal iff it satisfies
every satisfiable g € U (resp. ¢ € WV).

* locally =y w-optimal iff it is locally =) -optimal iff it satisfies every g € UUWW
that is satisfiable w.r.t. P.

e locally =y y-optimal iff it satisfies every satisfiable q € VV and every q € U that is
satisfiable w.r.t. P.

Proof.

e A validatable repair plan is globally (or locally) <;,- (resp. <yy-) optimal iff satisfies every
satisfiable ¢ € U (resp. ¢ € W):

- Let (P_,P+) be a globally (or locally) =4~ (resp. <yy-) optimal repair plan. Take some
satisfiable ¢ € U (resp. ¢ € W), and let (P_,P’.) be a validatable repair plan satisfying q.
By Lemma 5.2.5, (P—,P4+) =y (P-UPL,Py) (resp. (P—,P+) =w (P-UPL,PLUPL).
Because of global (or local) optimality, we must in fact have (P_,P;) ~y (P—UP.,Py)
(resp. (P—,P+) ~w (P-UPL,PLUP.)), and so q is satisfied by (P, P).

105

Query-driven repairing

- In the other direction, it follows from the definition of satisfiable answers that if a validatable
repair plan satisfies every satisfiable ¢ € U (resp. ¢ € W), it is globally (so also locally) =<-
(resp. =yy-) optimal.

e A validatable repair plan is locally =<)y-optimal iff it is locally =,y -optimal:

- If a repair plan (P—, P) is locally =<,)y-optimal, it is locally < (u,y-optimal, otherwise
there would be a validatable repair plan (P, P’) such that P_ C P_, P, C P/ and
(P—,P+) <quwy (PL,PL), soalso such that (P, Py.) <y w (PL,PL).

- Suppose for a contradiction that a repair plan (P_, P,) is locally ={u,wy-optimal and
not locally <;;yy-optimal. Then there exists a validatable repair plan (P”, P’) such that
P_C P, Py CPand (P_,Py) <uw (P_,PL). Since removing more false assertions
cannot deteriorate satisfied wanted answers (see Lemma 5.2.5), (P, P)) cannot satisfy
more unwanted answers otherwise we would have (P_,P+) <y (P-UPL,Py). Hence
(P, P’,) must satisfy the same unwanted answers and more wanted answers, which yields
(P_,Ps) <{uwy (P, P.L), contradicting our assumption of local <, y-optimality.

e A validatable repair plan P is locally =g, yy}- (Sy,w-) optimal iff it satisfies every
q € UUW that is satisfiable w.r.t. P:

- Suppose that (P—,P4.) is locally < yy;-optimal, and let ¢ € U/ U)WV be an answer that
is satisfiable w.r.t. (P_,P;). Then there exists a validatable repair plan (P’ , P’) such
that P~ C P_, Py C P, and (P_,Py) 2wy (PL,P}) and ¢ € S(P_, P,). Since
(P—,Py) is locally <y -optimal, we must have (P, P) ~g 1 (P, PY), and hence
q€S(P_,Ps).

- In the other direction, suppose that (P_, P,) is a validatable repair plan that satisfies every
g € YUV that is satisfiable w.r.t. (P—, P). Consider a validatable repair plan (P’_, P,) such
that P C P, P, C P, and (P-,P+) Zqwy (P2, P,), and take some g € S(PL,P,).
Then q is satisfiable w.r.t. (P_, P), so, by our assumption, it must be satisfied by (P_,P).
We thus have (P—,Py.) ~qwy (PL,PL), so (P-,Py) is locally =)y} -optimal.

e A validatable repair plan P is locally =y ;,-optimal iff it satisfies every satisfiable ¢ € W
and every g € U that is satisfiable w.r.t. P:

- Suppose that (P_, P,) is locally <)y ;-optimal. First consider some satisfiable ¢ € W.
Then there exists a validatable repair plan (P’_, P’) such that ¢ € S(P”_, P!). By Lemma
5.2.5, we have (P_,P4) <y (P-UP._, P, UP’). Applying our assumption of local <yy ;-
optimality, we have (P_,P1) ~y (P—UP.,PLUP.), which implies that ¢ is satisfied by
(P—’P+) .

Next take some ¢ € U that is satisfiable w.r.t. (P_, P+). Then there exists a validatable
repair plan (PL, P}) such that P CPL, P, C P, (P-,Py) Sy wy (PL,P}) and g €
S(PL,P). Since (P, P) is locally <yy ;4-optimal, we must have (P_, P) ~y (P_,P)
and (P_,P4) ~y (PL,P). From the latter, we obtain ¢ € S(P_, P4).

- In the other direction, let (P_,P.) be a validatable repair plan that satisfies every satisfiable
q € W and every g € U that is satisfiable w.r.t. (P_,Py). Take some validatable repair
plan (P_, P’) such that P_ C P_, P, C P\ and (P_,P+) 2wy (P_,P). We observe
that (P’_,P’) cannot satisfy more wanted answers than (P_, P,) since (P_, P,) satisfies
all satisfiable wanted answers, nor can it satisfy more unwanted answers, since otherwise
(P—,P,) would not satisfy all unwanted answers that are satisfiable w.r.t. (P_,Py). O

106

5.2 Optimal repair plans

The next lemma characterizes when a validatable repair plan satisfies an unwanted answer.

Lemma 5.2.8. Ler (P_,Py) be a validatable repair plan. Then (P—,P4.) satisfies ¢ € U iff
P_NC # 0 for every C € causes(q, (T, AUPL)).

Proof. For the first direction, suppose that (P_, P,) satisfies ¢ € U. This means that
(T, (A\P_)UP) Fbrave ¢ It follows that for every C € causes(q, (T, AUP)), we have
C Z (A\P-)UP, hence CN'P_ # (.

For the second direction, suppose that P_ NC # () for every C € causes(q, (T, AUPL)).
It follows that causes(q, (7, (AUPL) \ P_)) = (. Since (P_, P) is validatable, we know
that user(«) = false for every a € P_ and user(«) = true for every o € P,. In particular,
this means that P_ NP, =0, so (AUPL)\ P- = (A\P-)UPy. We therefore have
causes(q, (T, (A\P-)UPy)) =0, hence (T, (A\P-)UP+) Fbrave q- O

We now establish the following characterizations of satisfiable answers and answers
satisfiable w.r.t. a repair plan.

Lemma 5.2.9. An answer q € U is satisfiable iff for every C € causes(q, (T ,.A)) there exists
« € C such that user(«) = false.

Proof. 1f q € U is satisfiable, then there exists a validatable repair plan (P_, P,) that satisfies
q. By Lemma 5.2.8, we must have P_NC # () for every C € causes(q, (T, AUP)), hence for
every C € causes(q, (T ,.A)). Since (P_, P4) is validatable, we know that P_ C False,ger,
hence every cause of ¢ in (7,.4) contains at least one assertion « such that user(«) = false.

In the other direction, if for every C € causes(q, (T ,.A)) there exists o € C such that
user(«) = false, then it is easily shown using Lemma 5.2.8 that

({a| 3C € causes(q, (T, A)),a € C,user(«) = false}, D)

is a validatable repair plan that satisfies q. 0

Lemma 5.2.10. An answer q € W is satisfiable iff there exists a T -consistent set of assertions
Co such that (T ,Co) [= q and for every a € Cy, either

* user(«a) = true, or

* a € A, user(a) = unknown and for every 3 € A such that (T ,{«,B}) = L, user(5) =
false.

(We will call Cy a witness for the satisfiability of q.)

Proof. 1f g € W is satisfiable, then there exists a validatable repair plan (P_, P) such that
(A\P_)U P contains a cause Cy for ¢ that contains no false assertion and has no conflicts in
(A\P_)UPs. It follows that for every a € Cy, either o € P and user(«) = true, or a € A
and user(«v) = true or user(«) = unknown, and every conflict § of « is in P_, hence is such
that user(3) = false.

107

Query-driven repairing

In the other direction, if ¢ and Cy satisfy the conditions of the lemma statement, then one
can easily verify that

({B e A|JaeCy,(T,{a,B}) = L, user(B) = false},
{a €Cp\ A | user(a) = true})

is a validatable repair plan that satisfies q. [

Lemma 5.2.11. Let (P_,P4) be a validatable repair plan for the KB (T, A). Then an
answer q € U is satisfiable w.r.t. (P_,P+) iff ¢ € U is satisfiable for the KB (T, AUP).

Proof. If ¢ € U is satisfiable w.r.t. (P_,P,), then there exists a validatable repair plan
(P_,P,) with P~ CP_ and P, C P’ that satisfies ¢. By Lemma 5.2.8, P/ must intersect
all of the causes of ¢ w.r.t. (7, AUP/). Since P, C P’ the set P__ intersects all of ¢'s
causes w.r.t. (7T, AUPy). By applying Lemma 5.2.8 again, we can show that the repair plan
(P’,0) witnesses the satisfiability of ¢ for the KB (7, AUP,).

In the other direction, suppose that ¢ € U is satisfiable when (7, . AU P,) is the input
KB. By Lemma 5.2.9, we know that for every C € causes(q, (T, AUP)) there exists o € C
such that user(«) = false. Now consider the repair plan (P’,P) where P’ contains the
following assertions

P_U{a | 3C € causes(q, (T, A)),o € C,user(a) = false}.

By construction, ¢ is satisfied by the KB (7, (A\ P_) UP,) induced by (P",P,). Since
(P—,P+) is known to be validatable, and P’ \ P_ C Falseyser, it follows that (P, P)
is also validatable. It follows from Lemma 5.2.5 that Syy(P_,P+) C Sy (P~ ,P+) and
Su(P-,P+) C Sy(P.,Ps). We have thus found a validatable repair plan that extends
(P—,P+) and whose corresponding KB satisfies ¢ and all answers that were already satisfied
by (P-,P4+). We can therefore conclude that ¢ € U is satisfiable w.r.t. (P_,P4). O

Lemma 5.2.12. Let (P_,P4) be a validatable repair plan for the KB (T, A). Then an
answer q € W is satisfiable w.r.t. (P_,P+) iff q is satisfiable for the KB (T, A) with a
witness Cy such that every q' € Sy/(P—,P4.) is satisfiable for the KB (T, AU P UCp).

Proof. If ¢ € W is satisfiable w.r.t. (P—,P,), then there exists a validatable repair plan
(P, P.) such that P_ C P’ and P, C P’, which satisfies ¢ and all answers in S(P_, P,).
As g is satisfied by (P”, P/, the ABox (A\P’_)UP contains a cause Cy for ¢ that has no
conflict and that does not contain any false assertion. This means that ¢ is satisfiable for
(T, A). Now take some ¢’ € Syy(P—,P4). Since Sy (P—,P+) C Sy(PL,P.), we have ¢’ €
Su(P’,P’.), and so by Lemma 5.2.8, we have P’ NC # () for every C € causes(¢', (T, AU
P'.)). We observe that P’ C Falseyser and AUPL UCy C AUP. It follows that for every
C € causes(¢, (T, AUP4 UCy)), there exists a € C with user(«) = false. By Lemma 5.2.9,
we can conclude that ¢ is satisfiable for the KB (7, AU P UCp).

In the other direction, suppose that ¢ € W is satisfiable for the KB (7,.4) with a witness
Cop such that every ¢’ € S (P—,P4) is satisfiable for the KB (7, AUP, UCy). Consider the

108

5.2 Optimal repair plans

repair plan (P’ P/) where

P =P_u{BeA|JaeCy(T,{a,B}) | L, user(f) = false} U{a | user(a) = false
and there exists some ¢’ € U and C € causes(q’, (T, AUP UCp)) such that o € C}
P =P,U{aeCy\A|user(a)=true}

By construction, (P_,P’) is validatable and satisfies ¢. We have Syy(P_,P;) C
Sw(P.,P,) by Lemma 5.2.5. To see why Sy(P—,P+) C Sy(P.,P.), take some an-
swer ¢’ € Sy (P—,P4). By our earlier assumption, we know that ¢’ is satisfiable for the KB
(T, AUP4+UCp), so by Lemma 5.2.9, every C € causes(¢/, (T, AU P+ UCp)) contains an
assertion « € C such that user(«) = false, which will thus be included in P’ . Since every
cause for ¢’ in (7, AUP; UCp) has a non-empty intersection with P’ , we can apply Lemma
5.2.8 to conclude that ¢’ is satisfied by (P_,P’). O

It follows from the preceding characterizations that deciding the satisfaction, satisfiability,
or satisfiability w.r.t. a repair plan of an answer is tractable.

Proposition 5.2.13. Deciding if an answer is satisfied, satisfiable, or satisfiable w.r.t. a
repair plan is in P.

Proof.

e Deciding if a wanted (resp. unwanted) answer is satisfied amounts to deciding if it is
entailed under IAR semantics with a nonfalse explanation (resp. not entailed under brave
semantics), so is in P w.r.t. | A|.

e Since computing the causes of a query ¢ is in P w.r.t. | 4|, and the number of causes
is polynomial w.r.t. |A|, the characterization of Lemma 5.2.9 shows that deciding if an
unwanted answer is satisfiable is in P w.r.t. |A].

e Deciding if a wanted answer ¢ is satisfiable using the characterization of Lemma 5.2.10 can
be done by computing the causes of ¢ and their conflicts in (7, AUTruels.) in P w.r.t. | A|

user
and | TruelL,,| and verifying in P that at least one of the causes fulfils the required conditions.

e By Lemma 5.2.11, checking whether ¢ € U is satisfiable w.r.t. (P_, P) reduces to checking
whether ¢ € U is satisfiable for the KB (7, AUP,). We know from earlier that the latter
check can be done in P w.r.t. the size of the ABox. Since Py C True.,, this condition can

user?
be verified in P w.r.t. | A| and |True,|.

e To check whether an answer ¢ € WV is satisfiable w.r.t. (P_,P), it suffices to check
whether ¢ satisfies the conditions of Lemma 5.2.12. These can be verified by: (i) computing
the causes of ¢ and their conflicts in (7, AU TruelL,), and (ii) for each candidate cause Cy
that fulfils the conditions of Lemma 5.2.10, and every unwanted answer ¢’ € U, check that if
¢ is satisfied by (P_, P,), then it is satisfiable for the KB (7, AUP UCy). Everything can

be done in P w.r.t. | A|, |Truel.,|, and || with the same arguments as previous cases. [

We are now ready to establish the complexity of deciding the optimality of a repair plan.
For the lower bounds, we will use the coNP-hard problems presented in the two following
lemmas.

109

Query-driven repairing

Lemma 5.2.14. NP-hardness of SAT holds if we impose that at least one variable appears
in positive and negative form in the formula.

Proof. Reduction from SAT. Let {C',...,Cy, } be a set of clauses. Cj A ... A Cy, is satisfiable
ift C1 A ... ACyy A (2V —2) is satisfiable, where 2 is a fresh variable. O

Lemma 5.2.15. The following problem is NP-hard: given a set {C1,...,Cp,,Cini1} of
clauses such that {C1,...,Cy, } is satisfiable and C,, 11 is not a tautology: decide whether
{C1,...,Cnm, Cry1} is satisfiable.

Proof. Reduction from SAT. Let {C1,...,C},} be a set of clauses. Then C1 A ... ACy, is
satisfiable iff (C7V—z)A...A(Cy, V—z) Az is satisfiable, where z is a fresh variable. Clearly,
(C1V=2)A...A(Cp V —z) is satisfiable and z is not a tautology. O

Theorem 5.2.16. Deciding if a repair plan is globally <-optimal is coNP-complete for
<€ {j{mw}, =uw,=wu}, and in P for <€ {=y,=y}. Deciding if a repair plan is
locally =<-optimal is in P for <€ {=<y, =w, S SUW “wult
Upper bounds. The tractability results follow from the characterizations of optimality given
in Proposition 5.2.7 together with the complexity results of Proposition 5.2.13.

For the coNP upper bounds, we note that to show that P is not <-optimal (for <&
{= wuwy Juw, =<wu}), we can guess another repair plan P’ and verify in P that both plans
are validatable and that P’ satisfies more answers than P. O]

The lower bounds are as follows:

Lower bound for global =y - and = yy-optimality. Let ¢ be a CNF formula of the

form ¢ = /\;’E{l C; over the variables x1, ..., x,, such that A" C; is satisfiable and Cy, 11 is
not a tautology (cf. Lemma 5.2.15). Consider the QRP defined as follows

T={PCSNLCS}

A:{A(xj)7B(xj)|1 <Jj< n}U{P(bvxj>7N<b7xj) |1<j<n}
W ={3zS(c1,x),...,32S(cm+1,2) }

U ={FxyzP(y,x) N\N(z,2) NA(z) N B(x)}

where

Trueje, ={P(ci,zj)lx; € Ciy U{N(c;,z)|~z; € Ci}
Falseyser ={P(b,xj),N(b,zj) |1 <j<n}
Unkyser = A\ False ey

Let v be a valuation of the x; that satisfies A", C;. We show that deciding if the repair
(P*) P+) with

P_ =Falseyser
Pr={P(ci,zj) | xj € Cj,v(z;) =true,1 <i <m}U
{N(ci,z;) | ~x; € Ci,v(x;) = false,1 <i <m}

110

5.2 Optimal repair plans

Fig. 5.1 Reduction for coNP-hardness of recognition of globally =<1)y or < yy)-optimal

optimal repair plans. Graphical representation of AU T rue

user

constructed from an example

set of clauses ® = {01 =x1V-x9,Cy =21 VIV —lZU3} U {03 =9 \/1133}.

A B P Truefl,
A Tl - C1
P
N AB N N
b = L2 P €2
N
A B P
T3 C3
)2

Reduction for coNP-hardness of recognition of globally =<y ;,-optimal optimal repair plans.

. . l
Graphical representation of AU Truels,,

{Cl =x1Vx,Cy =21V \/—|£L“3}.

constructed from an example set of clauses ¢ =

rel

“user

1

2

111

Query-driven repairing

is not globally =,y -optimal iff P is satisfiable.

First observe that (P_,Py) is validatable and satisfies the single unwanted answer.
Moreover, as v satisfies the clauses cy,...,c,,, all of the wanted answers concerning the
individuals ¢y, ..., ¢, are satisfied by (P_,P4).

If ® is satisfiable, let 2/ be a valuation of the x ; that satisfies ®. It is readily verified that
the repair plan (P, P’) with

PL :Fa/lseuser
Pl ={P(ci,zj) | xj € C;,V (x;) = true,1 <i <m~+1}U
{N(ci,zj) | ~zj € Ci,V/ (xj) = false,1 <i <m—+1}

is validatable and satisfies all unwanted and wanted answers, so (P_, P) is not =z yy-
globally optimal.

In the other direction, if (P, P,.) is not globally =<, yy-optimal, then there must exist
a repair plan (P’ , P’) that is validatable and satisfies all of the answers in &/ UW. Then it
can be straightforwardly verified that ® is satisfied by the valuation v/ of the z; defined by
V' (xj) = true iff there exists ¢; such that P(c;,x;) € Py. Indeed, every ¢; has an outgoing
edge in (A\P_)UP., and no z; has both P- and N- incoming edges, since otherwise the
unwanted answer would not be satisfied.]

Lower bound for global =<\ 14-optimality. The proof is by reduction from SAT when at least
one variable appears both in positive and negative form in the formula. Take some CNF
formula ® = AJ“, C; over the variables z1, ..., x,, that satisfies this requirement, and consider
the QRP defined as follows:

T={PCS,NLCS}

A={A(zj),B(z;)|1 <j<n}U{P(b,x;),N(b,z;)|1<j<n}
W ={3zS(c1,x),...,32S(cpm,x) }

U ={FzyzP(y,z) AN (z,z) NA(x) AN B(x)}

where:

Truejse, ={P(ci,zj)lx; € Ciy U{N(c;,a)|~z; € Ci}
Falseyser ={P(b,xj),N(b,zj)|1<j<n}
Unkyser :A\Faln?euser

rel

It is easy to see that the repair plan (P_,P1) = (Falseyser, TTuel%,,) is validatable and
satisfies all wanted answers but does not satisfy the unwanted answer because at least one
x; has both incoming N- and P-edges. In fact, we can show that (P_,P) is not globally
=y y-optimal (i.e., there is some validatable repair plan that satisfies all of &/ UW) iff
is satisfiable. Indeed, every validatable repair plan that satisfies all unwanted and wanted
answers gives rise to a satisfying valuation for ®, and conversely, any such valuation induces

112

5.2 Optimal repair plans

such a repair plan (add either N (¢;,x;) or P(c;,x;) for each z; in such a way that every ¢;
has an outgoing edge). 0

Remark 5.2.17. If U contains only instance queries, deciding if a repair plan is globally
=<-optimal for <€ {=< Wy Suws =wu} is in P. Indeed, because of the truthfulness
condition, every assertion that entails some g € U/ is false, so cannot be used to satisfy a
wanted answer. There is therefore no need to make the compromise between the satisfaction
of wanted and unwanted answers. A repair plan (P_, P,) is globally <-optimal iff it is
globally <;,-optimal (which is in this case equivalent to P_ contains all causes of unwanted
answers) and globally <y -optimal.

5.2.2 Generic algorithms

Our complexity analysis reveals that the notions of global optimality based upon the prefer-
ence relations < wuwy =u,w» and =y 14 have undesirable computational properties: even
when provided with all relevant user knowledge, it is intractable to decide whether a given
plan is optimal. Moreover, while plans globally <;,- (resp. <yy-) optimal can be interactively
constructed in a monotonic fashion by removing further false assertions (resp. and adding
further true assertions), building a globally optimal plan for a preference relation that involves
both 4 and VW may require backtracking over answers already satisfied (cf. the situation in
Example 5.2.4). We therefore target validatable repair plans that are both globally optimal
Jor =y or 2yy (depending which is preferred) and locally optimal for < -

Remark 5.2.18. The repair plans we target actually cover some other cases. Indeed, it

follows from Proposition 5.2.7 that the following notions of optimality are equivalent:

global <z/- and local <, yy-optimality <= global <;- and local </ yy-optimality

global <yy- and local < yy-optimality <= global <yy- and local =<yy ;/-optimality
<= global =<yy- and local <;;-optimality
<= local =)y yy-optimality

It is also notable that for our target repair plans, it is equivalent to replace set-inclusion
by cardinality for the comparison between sets of satisfied answers in the definition of the
preorders. In the following we use <= and <& to denote these two families of preorders.
We show that being globally (resp. locally) optimal for << and << is equivalent for

=€ {2y, 2w} (resp. <€ {=u, 2w, Swys Suws Swud)-

Proposition 5.2.19. For <€ {=y;, 2w}, a repair plan is globally <=-optimal iff it is globally
jg—optimal.

Proof. A repair plan is globally jzg—optimal (resp. j%v—optimal) iff it satisfies all satisfiable
unwanted (resp. wanted) answers, so iff it is globally jﬁ-optimal (resp. j%v-optimal). [

Remark 5.2.20. Even for the other preorders, the complexity of recognizing a globally
optimal repair plan is the same when preorders are defined using cardinality: to show that a
repair plan is not optimal, it is still possible to guess a better one and check in P that it is
actually better.

113

Query-driven repairing

Proposition 5.2.21. For <€ {=<y, =w, =UWEH SUW SWU }, a repair plan is locally <=-
optimal iff it is locally <<-optimal.

Proof. LetP = (P_, P,) be alocally <=-optimal repair plan and suppose for a contradiction
that there exists P’ = (P, P’,) such that P_ C P’ , Py C P/ and P <= P".

Since P_ C P’ and P4 C P’ then by Lemma 5.2.5 Sy (P) C Sy (P’), so if |Syy(P)| <
’SW (73/)’, then Sw(P) - Sw(P/).

It follows that if <==<y, P <= P’ implies P <SP s0 yields a contradiction.

Moreover, if <+# =<y, P satisfies all unwanted answers that are satisfiable w.r.t. P, and
it is not possible that P’ satisfies some unwanted answers that are not satisfiable w.r.t. P,
because those answers have some causes in AU P, so also in AU Pﬁr, which do not contain
any false assertions, so Sy (P’) C Sy(P).

It follows that if <€ {=y, <uw, 2wy} then [Sy(P)| < [Sy(P')], so Su(P') =
S(P). Then, since P <= P, |Sw(P)| < |Sw(P")|, so |[Sw(P)| C |Sy(P')], and P <= P,
which contradicts the local <-optimality of P.

In the case <= =y, either |Syy(P)| < |Sw(P’)| and Sy (P) C Sy (P’), which con-
tradicts the local <S-optimality of P, or Sy, (P) = Syy(P’) and | Sy (P)| < |Sy(P”)|, which
is impossible because Sy (P’) C Sy (P). O

In Algorithm 5.6, we give an interactive algorithm OptimalRepairPlan;, for building a
repair plan that is both globally optimal for <, and locally optimal for <,y to address
the case where U is preferred; if VV is preferred, we use the algorithm OptimalRepairPlany,,
obtained by removing Step 14 from OptimalRepairPlan;, to construct a repair plan that is
globally optimal for <)y and locally optimal for <y yy. The idea of OptimalRepairPlan;,
is to remove every false assertion involved in the QRP in order to satisfy the unwanted
answers and wanted answers that are satisfiable by removing assertions, then to try to satisfy
the wanted answers that are not satisfied by adding assertions, while preserving the satisfied
unwanted answers. The algorithms terminate provided the user knows only a finite number
of assertions that may be inserted. In this case, the algorithms output optimal repair plans:

Theorem 5.2.22. The output of OptimalRepairPlan;, (resp. OptimalRepairPlanyy,) is glob-
ally =y (resp. 2y) and locally =) -optimal.

Proof. We give first the proof for OptimalRepairPlan,.

First observe that at every point during the execution of the algorithm, the current repair
plan is validatable, since only true assertions are added to P and false assertions are added
to P_ (they are either marked as false by the user, or conflict with assertions that have been
marked as true).

Step 2 adds to P_ all assertions known to be false that belong to a cause of some
g € UUW or a conflict of some cause of ¢ € V. Thus, at the end of this step, P_ satisfies
every satisfiable answer in I/, that is, every answer in {{ every cause of which contains at least
one false assertion (cf. proof of Proposition 5.2.13). Hence (P_, P) is globally =<;;-optimal
at the end of Step 2. Moreover, every false assertion that occurs in a cause or conflict of a
cause of a wanted answer has been removed, so if ¢ € WV is not satisfied at this point, then it
has no cause without any conflict in A\{« | user(«) = false}.

114

5.2 Optimal repair plans

Algorithm 5.6 OptimalRepairPlan;,

Input: QRP (K = (T, A),U,W)
Output: repair plan

1:

A A

X o0

10:
11:
12:

13:
14:
15:
16:

17:
18:

P_0,Py <0
Display the assertions of ey yy causes(q; K) and Ugeyw cecauses(q,k) €onfl(C, K)
Ask user to mark all false (F") and true (") assertions
P_ «+ P_UFUconfl(T,K)
while W = W\S)y(P_,Py) # 0 do
q + firstOWV')
Ask the user for true assertions 7, (not already provided) to complete (or create) a
cause for ¢
if 7;, = () then /I nothing to add, g cannot be satisfied
W W\{¢},goto5 /1 try to satisfy next unsatisfied wanted answer
end if
P PyUT,, P_ + P_Uconfl(Ty,,(T,AUT,))
Show assertions of every cause C of ¢ such that 7, NC # () and its conflicts: user
indicates all false, true assertions F',7": P_ <~ P_UF'Uconfl(T',K)
Show assertions of causes of every ¢'€l/ in A\P_ UP,: user indicates all false
assertions F": P_ < P_UF"
if there is ¢” € U such that (T, A\P_UP+) Eprave ¢ and (T, A\P-) Forave ¢’
then
P+ P\ // revert P
end if
end while
Return (P_,P+)

115

Query-driven repairing

The purpose of Step 5 is to add new true assertions to create causes for the wanted
answers not satisfied after Step 2, while preserving S;;(P—, P+). For every g € W, while ¢
is not satisfied, the user is asked to input true assertions to complete a cause for ¢ in Step 7. If
he is unable to do so, at Step 8, we remove ¢ from)}V (since it cannot be satisfied w.r.t. user);
otherwise, we update P_ and P, using 7;, (Step 11). Note that since T}, contains only true
assertions, we can remove its conflicts without affecting already satisfied wanted answers;
this step is necessary because T;;, may conflict with assertions of .4 that are not involved in
the causes and conflicts presented at Step 2. In Step 12, we remove false assertions appearing
in a new cause for ¢ or its conflicts (such assertions may not have been examined in Step 2).
Step 13 removes false assertions of new causes of unwanted answers, and Step 14 undoes
the addition of Tj, if it affects Syy(P—,Py). Thus, at the end of Step 5, for every wanted
answer, either it is satisfied, or the user is unable to supply a cause that does not deteriorate
Su(P-, P+). It follows that (P—,P4) is locally < yyy-optimal.

For OptimalRepairPlan,y, Step 14 is removed, so every satisfiable answer in W is
satisfied at the end of Step 5, and (P_, P) is globally <yy-optimal. To see why (P_,P)
is locally =y,)y)-optimal, observe that (P, P,) satisfies every ¢ € U that is satisfiable
w.r.t. (P_,P4), i.e. is such that every cause for ¢ in AU P contains some false assertion.
Indeed, the assertions of every such cause have been presented to the user either at Step 2 or
at Step 13. [

5.3 Optimal deletion-only repair plans

In this section, we restrict our attention to constructing optimal deletion-only repair plans. In
this simpler setting, all of the previously introduced notions of optimality collapse into the
one characterized in the following proposition.

Proposition 5.3.1. A validatable deletion-only plan is optimal iff it satisfies every ¢ € U
such that every C € causes(q,) has o € C with user(«) = false, and every q € VW for which
there exists C € causes(q, KC) such that user(«) # false for every o € C and user(3) = false
for every (8 € confl(C, K).

Proof. In the case of deletion-only repair plans, being satisfiable or satisfiable w.r.t. a given
repair plan is equivalent since removing more false assertions can only improve the satisfied
answers (see Lemma 5.2.5). Hence, a validatable deletion-only plan is optimal iff it satisfies
every answer satisfied by the “maximal” deletion-only plan {« | user(a)) = false}, or more
precisely: every ¢ € U such that every C € causes(q,) has a € C with user(«) = false, and
every g € WV for which there exists C € causes(q, KC) such that user(«) # false for every a € C
and user(3) = false for every 5 € confl(C, K). O

Constructing such repair plans can be done with one of the preceding algorithms, omitting
Step 5 that adds facts. However, it is possible to further assist the user by taking advantage
of the fact that subsets of the ABox whose removal addresses all defects of the QRP can be
automatically identified, and then interactively transformed into optimal repair plans. We
call such subsets potential solutions.

116

5.3 Optimal deletion-only repair plans

Fig. 5.2 SAT encoding for potential solutions.

aw= N AN Vi

q€U Cecauses(q,K) aelC

ew= N\ wc

qEW Cecauses(q,K)

A\ /\ /\ /\ —we VT

qEW Céecauses(¢,K) aeC

A /\ /\ /\ —we Vg

qEW Cecauses(q,K) Beconfl(C,K)

An assertion is said to be relevant if it appears in a cause of some ¢ € &/ U)WV or in the
conflicts of a cause of some ¢ € V. If an assertion « appears in every potential solution,
either user(«) = false, or there is no validatable potential solution. We call such assertions
necessarily false. If o appears in no potential solution, it is necessary to keep it in A to
retrieve some wanted answers under IAR semantics, so either user(«) # false, or it is not
possible to satisfy all wanted answers. We call such assertions necessarily nonfalse.

When a potential solution does not exist, a minimal correction subset of wanted answers
(MCSW) is an inclusion-minimal subset YW’ C W such that removing W' from W yields
a QRP with a potential solution. Because of the truthfulness condition, we know that the
absence of a potential solution means that some wanted answers are supported only by causes
containing erroneous assertions (otherwise the wanted and unwanted answers would be
contradictory, which would violate the truthfulness condition). Moreover, since removing
all such answers from)V yields the existence of a potential solution, there exists a MCSW
which contains only such answers, which we call an erroneous MCSW. This is why MCSWs
can help identify the wanted answers that cannot be satisfied by a deletion-only repair plan.
We will present an algorithm that exploits necessarily (non)false assertions and MCSWs to
help the user in constructing an optimal deletion-only repair plan.

5.3.1 SAT encoding and complexity results

We first give a propositional encoding that can be used to compute the necessarily (non)false
assertions or the MCSWs. We will use the minimal correction subsets of a formula.

Definition 5.3.2 (Minimal Correction Subset). Given sets F' and H of soft and hard clauses
respectively, a subset M C S'is a minimal correction subset (MCS) of S w.r.t. H if (i)
(S\M)U H is satisfiable, and (ii) (S\M')U H is unsatisfiable for every M’ C M

We construct in polynomial time the propositional CNF ¢ = ¢y A (yy, where ¢y, and
pyy are defined in Figure 5.2, and rely on the results of the following lemma:

Lemma 5.3.3. The CNF formula o has the following properties:

117

Query-driven repairing

* there exists a potential solution iff ¢ is satisfiable (every satisfying assignment corre-
sponds to a potential solution);

* « is necessarily false iff ¢ N\ —x,, is unsatisfiable;

* « is necessarily nonfalse iff © N\ x, is unsatisfiable;

o let H={Vcccauses(q,)We | ¢ € W}, and S = p\H, the MCSWs correspond to the
MCSs of S w.rt. H.

Proof. First suppose that there exists a potential solution P, and let v be a valuation of the
variables of ¢ defined as follows: v(x,) = true iff & € P, and v(w¢) = true iff C C A\P
and confl(C,C) C P for every C € causes(q, K) with ¢ € W.

Since P is a potential solution, it contains at least one assertion of each cause of every
unwanted answer, otherwise this answer would still be entailed under brave semantics in
A\P. It follows that ¢, is satisfied by v. Moreover, every ¢ € WV has at least one cause C
without any conflict in A\ P, so CNP = () and confl(C,) C P. By the way we defined v, it
satisfies (), and hence the full formula ¢.

In the other direction, suppose that the formula ¢ is satisfiable, with satisfying valuation v.
Let P = {a| v(z,) = true}. For every ¢ € U and C € causes(q, K), P contains an assertion
a € C, so there is no cause for ¢ in A\P, so every ¢ € U is satisfied by P. For every
q € W, there is a cause C € causes(q, K) such that v(w¢) = true. By the way we defined ¢,
this means that for every « € C, v(«) = false, so CN'P = (), and for every S € confl(C,K),
v(B) = true, so confl(C,C) C P. It follows that all ¢ € WV are satisfied by P.

Since the assertions assigned to true in a satisfying assignment correspond to a potential
solution, « is necessarily false (resp. necessarily nonfalse) iff ¢ A —x,, (resp. p Azq) is
unsatisfiable: o belongs to every potential solution (resp. no potential solution) iff there is no
satisfying valuation with « assigns to false (resp. to true).

For the final point, we will show that M C W isa MCSW iff M = {\/Cecauses(q, K) We |
q € M} is a MCS of S w.r.t. H. First suppose that M is a MCSW. Since removing M from
W yields a QRP that has a potential solution P, the valuation v such that v(w¢) = false for
every C € causes(q) with ¢ € M, and v(z,) = trueiff « € P, and v(w¢) = true iff C C A\P
and confl(C,/KC) C P for C € causes(q) with ¢ € W\M satisfies ©\M. Moreover, since
removing M’ C M from W does not yield a QRP that has a potential solution, M is a MCS.
The other direction is similar. 0

To show that this approach is optimal from the complexity point of view, we establish the
complexity of deciding if a potential solution exists, if an assertion is necessarily (non)false,
and if W' C W is a MCSW. For the lower bounds, we need the following lemma.

Lemma 5.3.4. Given two sets of soft and hard clauses S, H, deciding if M C S is a MCS of
Sw.rt. H is BHa-complete.

Proof. To show that M is a MCS of S: show in NP that (S\M)U H is satisfiable and in
coNP that M is minimal (to show in NP that M is not minimal, guess M’ C M and a
valuation that satisfies (S\M') U H).

Hardness is shown by reduction from SAT-UNSAT: let ¢ g, ¢r7 be two CNF formulas that
do not share variables. Then —x is a MCS of ¢ = pg A (py V x) A -z iff @g is satisfiable
and r; is unsatisfiable. 0

118

5.3 Optimal deletion-only repair plans

Theorem 5.3.5. For complexity w.r.t. | A|, |U| and |W)|, deciding if a set of assertions of A is
a potential solution is in P, deciding if a potential solution exists is NP-complete, deciding
if an assertion is necessarily (non)false is coNP-complete, and deciding if W' C W is a
MCSW is BHa-complete.

Proof. Deciding if P C A is a potential solution amounts to verifying that (7, A\ P) Eiar ¢
for every ¢ € W, and (T, A\P) Fbrave q for every g € U.

The other upper bounds follow from Lemma 5.3.3 and the fact that the formula ¢ can
be constructed in polynomial time in |A|, || and |WV|. Indeed, the construction relies upon
computing the causes and conflicts of (un)wanted answers, which is known to be computable
inPin |A|.

The lower bounds can be shown by reduction from propositional satisfiability related
problems. Figure 5.3 illustrates the different reductions.

Existence: The proof is by reduction from satisfiability of a CNF C1 A ... AC)y, over z1, ...xp,.
Consider the following QRP setting:

To—{3PC 5,3N C S}

Ao ={P(ci,zj)|xj € Ci} U{N(ci,xj)|~x; € Ci}
Wo ={S(c1),....,5(cm)}

U ={3x,y,2P(x,y) AN(z,y)}

We show that there exists a potential solution iff C1 A ... AC)y, is satisfiable. First suppose
that P is a potential solution, and let v be the valuation defined as follows: v(x;) = true
iff there exists some P(c;,x;) € A\ P. Because P satisfies all wanted answers, we know
that for every Cj, the ABox A \ P contains an assertion of the form P(c;, ;) or N(c;, x;).
In the former case, y(xj) = true, so v satisfies C;. In the latter case, since P satisfies the
unwanted answer, N (¢;,x) € Ag \ P implies that v(x;) = false, so v satisfies C;.
Conversely, if v is a valuation of x1,...,x,, that satisfies the set of clauses, then P =
{P(ci,xj)|v(x;) =false} U{N(c;, zj)|v(x;) = true} is a potential solution: it satisfies every
q € U since no x; can have both incoming P- and N-edges in Ao\ P, and every g € W
because every clause contains some x; with v(x;) = true or —z; with v(z;) = false, so every
¢; has an outgoing P- or N-edge in Ap\P.
MCSWs: The proof is by reduction from deciding if a set of clauses of an unsatisfi-
able set of clauses {C1,...,Cy, } is a MCS, using the same QRP setting as for existence.
Since the set of clauses is unsatisfiable, there does not exist a potential solution. The
MCSWs correspond to the MCSes of {C1,...,C),}. Indeed, a set {S(c;,),...,5(ci,.)} is
a MCSW iff there exists a potential solution with W' = W\{S(¢;,),...,S(c;,)} and for
every M C {S(c;,),...,S(c;,)} there is no potential solution with W' =IW\M. Using
the same arguments as in reduction for existence, one can show that the set of clauses
{C1,....,C, }\{Ci,, ..., C;, } is satisfiable and for every M C {C;,,...,C5, }, {C1,...,Cn }\M
is unsatisfiable. Indeed, a potential solution for W\{S(c;,),...,5(c;,)} corresponds to a
valuation that satisfies {C',...,Cp, }\{C},, ..., C;, }, and if there was a valuation satisfying
{C1,...,Cn }\M for some M C {Cj,,...,C;, }, there would be a potential solution for the
corresponding W\ M. The argument in the other direction proceeds analogously.

119

Query-driven repairing

Necessarily nonfalse: The proof is by reduction from unsatisfiability of C1 A ... A Cyy41
given that C7 A ... A Oy, is satisfiable (cf. Lemma 5.2.15). We use the same TBox 7 and set
U of unwanted answers as before, together with the following slightly modified ABox and
set of wanted answers:

Ar =A{P(ci,zj)|xj € Ciy U{N(ci,xj) |~ € Ci} U{S(cm+1)}
Wi ={S(c1),...,S(em+1)}

We argue that the assertion S(¢;,+1) is necessarily nonfalse iff Cy A ... A Cy, 11 is unsatisfiable.
Since there exists a valuation v that satisfies C1 A ... A C)y,, the repair plan

P ={P(ci,zj)|v(x;) =false} U{N(c;,z;)|v(x;) = true}U
{P(em+1,75), N(em+1,25) } NAL

is a potential solution: the wanted answer S(c;,,+1) is satisfied by the assertion S(cy,1), the
other wanted answers are satisfied by outgoing P- or N-edges as in proof for existence. The
set of clauses C'; A ... A Cy,+1 s unsatisfiable iff no potential solution contains the assertion
S(cm+1) (i-e., we are forced to keep S(cp,+1) to satisfy the wanted answers).

Necessarily false: The proof is by reduction from unsatisfiability of C; A ... AC), 11 given
that Cy A ... AC,, is satisfiable (cf. Lemma 5.2.15). We reuse the sets I/ and VW of unwanted
and wanted answers from before, and consider the following TBox and ABox:

To=ToU{ECS,UC-E}
Az = {P(ci,zj)|zj € Ci} U{N(ci, xj)[—xj € Ci} ULE(emr1), Ulemt1) }

We show that U (c¢;,+1) is necessarily false iff Cj A ... A Cp,41 is unsatisfiable. Since there
exists a valuation v that satisfies C1 A ... A Cy,, the repair plan

P ={P(ci,xj)|v(xj) =false} U{N(c;,xj)|v(xj) = true} U{U(cm41) }U
{P(em+1,75), N(em+1,25) F N A

is a potential solution: the wanted answer S(c,+1) is satisfied by the assertion £(¢y,+1), and
the other wanted answers are satisfied by outgoing P- or N-edges as in proof for existence.
The set of clauses C1 A ... A Cy,41 is unsatisfiable iff every potential solution is such that
S(cm+1) is satisfied by means of the assertion E/(cy,41), so the conflicting assertion U (¢p,41)
is included in the potential solution. [

Remark 5.3.6 (Minimal incompatible sets of wanted answers). If we drop the truthfulness
condition and assume that the user may make mistakes when inputting the wanted and
unwanted answers, it may be interesting to show him the minimal sets of wanted answers that
are incompatible instead of the MCSWs to help him to find its error. Indeed, the former show
a “problem” that must be solved by removing one of the answers of this set, which should
not be wanted, while it may be difficult to choose which MCSW to remove. However, in the
case where we assume that the user cannot make mistake, the MCSWs are more appropriate,

120

5.3 Optimal deletion-only repair plans

Fig. 5.3 Reductions for hardness of problems related to potential solu-
tions. Graphical representation of the ABox constructed from an exam-
ple set of clauses ¢ = {C1=X1V-Xy,Co=-X7VXoV-X3} (or ¢ =
{C1 =X1V—Xy,Co ==XV XoVaX3}U{Cs=x9Va3}).
P P
€1 1 r1 a
c1
M M
Z2 P C2 Z2 P C2
s N N
P S P E.U
T3 « c3 T3 « c3
Ao P A P Ao

since in all cases the user has to look into the causes of the answers to find those which are
supported only by erroneous data.

The minimal incompatible sets of wanted answers correspond to the MUSes of S w.r.t. H,
so can also be computed using ¢. Moreover, the reduction given for the MCSWs can be
used for the minimal incompatible sets of wanted answers that correspond exactly to the
MUSes of the set of clauses, so the complexity results for the MUSes transfer (in particular,
recognition is BHa-complete).

5.3.2 Algorithm for optimal deletion-only repair plans

We present an algorithm OptDeletionRepairPlan (Algorihm 5.7) for computing optimal
deletion-only repair plans. Within the algorithm, we denote by R(K,U, W, A") (resp.
Nt (K, U W, A, Nog(K,U, W, A")) the set of assertions from A" C A that are relevant
(resp. necessarily false, nonfalse) for the QRP (KC,U/, W) when deletions are allowed only
in A’ (the set A’ will be used to store assertions whose truth value is not yet determined).
The general idea is that the algorithm incrementally builds a set of assertions that are false
according to the user. It aids the user by suggesting assertions to remove, or wanted answers
that might not be satisfiable when there is no potential solution, while taking into account the
knowledge the user has already provided. If there exists a potential solution, the algorithm
computes the necessarily (non)false assertions (Step 3) and asks the user either to validate
them or to input false and nonfalse assertions to justify why they cannot be validated (Step
23). When the necessarily (non)false assertions have been validated, the user is asked to
input further true or false assertions if the current set of false assertions does not address all
defects (Step 15). When a potential solution is found (Step 6), the user has to verify that
each wanted answer has a cause that does not contain any false assertion. If there does not
exist a potential solution at some point (Step 25), either initially or after some user inputs,
the algorithm looks for an erroneous MCSW by computing all MCSWs, then showing for
each of them the assertions involved in the causes of each query of the MCSW. If there is
a query which has a cause without any false assertion, the MCSW under examination is

121

Query-driven repairing

not erroneous, nor are the other MCSWs that contain that query. Otherwise, the MCSW is
erroneous and its queries are removed from)V, and we return to the case where a potential
solution exists.

Theorem 5.3.7. The algorithm OptDeletionRepairPlan always terminates, and it outputs an
optimal deletion-only repair plan.

Proof. Termination follows from the fact that every time we return to Step 2, something has
either been added to P_ or deleted from WV, nothing is ever removed from P_ or added to
W, and only assertions from the original ABox .4 can be added to P_.

Note first the following invariants:
e The set P_ contains only false assertions, since every time P_ is modified, the assertions
added have been marked as false by the user, or are conflicts of assertions that have been
declared true. Hence, the output plan is validatable.
e The set P_ U A’ contains all assertions « € A such that user(«) = false. Indeed, A’ is
initialized to .4, and whenever « is removed from A’, it is either added to P_, or it has been
shown to be nonfalse.
e The satisfiable answers (i.e. those that fulfil the conditions of Proposition 3) are never
removed from ¢/ and V. Indeed, I/ is never modified and)V is modified only at Step 38,
where only answers that do not fulfil the conditions of Proposition 3 are removed from W,
since all their causes contain some false assertion. It follows that if at some point P_ satisfies
every answer in { U)WV, then P_ is optimal.

The algorithm can end at three different steps:
- If the algorithm ends at Step 10, then P_ is a potential solution for (Ky,U,). That means
that for every ¢ € U, (T, A\P-) Forave ¢, i-€. ¢ is satisfied by P_, and for every ¢ € W,
(T, A\P-) =1ar ¢- Moreover, for every ¢ € W, Step 7 ensures that there is a cause of ¢ in
K = (T, A\'P_) without conflicts that contains no false assertions, so ¢ is satisfied by P_.
It follows that P_ satisfies every satisfiable answer since such answers always remain in
UUW. The output set P_ is thus an optimal deletion-only repair plan.
- If the algorithm ends at Step 17, the user has been required to input some false or true
assertions at Step 15 and he was not able to input anything, so the user has deleted all false
assertions he knows among the relevant assertions, and thus it is not possible to improve the
current repair plan further. Indeed, the set of relevant assertions contains every assertion that
appear in a cause of ¢ € / UV or in a conflict of a cause of ¢ € VW and has not be declared
false, true or nonfalse yet, so it is not possible to satisfy additional answers by removing
further assertions that are not relevant, either because they are not involved in the problem at
all, or because they are known to be nonfalse.
- If the algorithm ends at Step 38, Step 2 of the general algorithm OptimalRepairPlan;, is
applied: the user is asked to mark every false and true assertion in the relevant assertions, so
the output is optimal since it takes into account everything the user knows. 0

We illustrate OptDeletionRepairPlan running on a small example.

122

5.3 Optimal deletion-only repair plans

Algorithm 5.7 OptDeletionRepairPlan

Input: QRP (K = (T, A),U,W)

Output: repair plan

(Note: below K is a macro for (7,.4\ P_), using the current P_.)
1 Kg+— K, A A P_«0
2: if a potential solution for (K, U, W) exists in A’ then

3 R+ R(K,UW,A", Ny + Nt (K, U W, A"), Nog + N_g(K,U W, A")
4: if the user validates Vo € N¢, user(«) = false, and Voo € N_¢, user(«) # false then
5 P« P_UNg A <—A/\(NfUN_\f)
6: if P_ is a potential solution for (Ko, V) then
7: the user gives all false assertions I C ey cecauses(q,K) confl(C,ic)=0 C
8 P_«P_UF
9: if P_ is still a potential solution then
10: output P_
11: else
12: A +— A\P_, goto?2
13: end if
14: else
15: user selects some F,T C R\ (N¢fUN_¢)
16: if /=T = () then // nothing left to input
17: return P_
18: else
19: P_ « P_UFUconfl(T,), A’ + A\(P-UT),goto2
20: end if
21: end if
22: else
23: user gives F' C {«v € N_¢ | user(a) = false} and NF' C {« € N | user(«) # false}
with FUNF #0, P_ «+ P_UF, A"+ A\(P_UNF)
24: end if
25: else /I search for an erroneous MCSW

26 M <+ MCSWs(K,U,W,A") ordered by size
27: while erroneous MCSW not found and M # () do

28: M + first(M)

29: for all g € M do

30: the user selects F, 7' C Ucecauses(q,k) €

31: P_« P_UFUconfl(T,), A’ + A\(P_UT)
32: if a cause for ¢ contains no false assertion then
33: M~ M\{M' e M| qe M'}, goto27
34: end if

35: end for

36: MCSW found: W < W\ M and go to 3

37: end while

38: No MCSW found: do Step 2 of OptimalRepairPlan;,, output P_
39: end if

123

Query-driven repairing

Example 5.3.8. Suppose that we have the following QRP (K = (T, A), U, W).

T ={AProf C Prof, Prof C Employee, Postdoc = Employee, IMemberOf C Employee}
A ={Teach(a,b),GradCourse(b), AProf (a), Postdoc(a), MemberOf(a,c),
PublicationAuthor(a,d)}
U ={q1 = FxAProf(z) A Teach(x,b),
q2 = JxyTeach(z,y) A GradCourse(y) A Postdoc(z)}
W ={q3 = JxTeach(z,b),qs = Prof(a),qs = FzEmployee(a) A PublicationAuthor(a,x)}

The first step is to check if there exists a potential solution for (/,/, W) in A" = A. This
is not the case because ¢, q3, and g4 cannot be satisfied together because g3 and ¢4 have
only one cause each ({Teach(a,b)} and {AProf(a)} respectively), whose union forms a
cause for the unwanted answer ¢;. Therefore, we jump to Step 25 and compute the MCSWs.
There are two MCSWs: {¢3} and {q4}. We first display the assertions of the causes for g3
(i.e. Teach(a,b)) and ask the user if he knows some true or false assertions. Suppose that
user(Teach(a,b)) = unknown. Since a cause for g3 contains no false assertion, {g3} is not
an erroneous MCSW and we examine the next one. We then present the assertions of the
causes for ¢4 (AProf(a)). Suppose that the user indicates that user(AProf(a)) = false. Since
AProf(a) is false, it is added to P_ and removed from A’. At this point, ¢4 has no cause in
K =(T,A\P-), so {q4} is an erroneous MCSW: ¢4 is removed from ¥ and we jump to
Step 3.

We know that there exists some potential solution and compute the relevant, necessarily
false and nonfalse assertions: Nf = (), N_¢ = {Teach(a,b), PublicationAuthor(a,d)}. Sup-
pose that the user validates that the two assertions of N_¢ are nonfalse. Then Teach(a,b) and
PublicationAuthor(a,d) are removed from A’.

P_ = {AProf(a)} is not a potential solution (since g2 is not satisfied), so the relevant as-
sertions (GradCourse(b), Postdoc(a) and MemberOf(a, ¢)) are displayed. The user indicates
that Postdoc(a) is false, so Postdoc(a) is added to P— and removed from .A’. We then go to
Step 2.

A potential solution exists (actually P_ is a potential solution for (Ko,U, W), so () is a
potential solution for (K = (7, A\P_),U,W)). The user validates the necessarily (non)false
assertions (here all remaining assertions are necessarily nonfalse), and the assertions involved
in some IAR causes of the wanted answers are displayed (here all assertions of A\P_).
Suppose that the user does not find anything false, then we have found an optimal deletion-
only repair plan: P_ = {AProf(a),Postdoc(a)}. N

5.3.3 Improvements to the algorithm

To avoid overwhelming the user with relevant assertions at Step 15, it is desirable to reduce
the number of assertions presented at a time. This leads us to propose two improvements to
the basic algorithm.

First, we can divide QRPs into independent subproblems. Two answers are considered
dependent if their causes (and conflicts in the case of wanted answers) share some assertion.

124

5.3 Optimal deletion-only repair plans

Independent sets of answers do not interact, so they can be handled separately. Algorithm
5.8 computes independent subproblems of a QRP by constructing the independent sets of
answers. For each wanted or unwanted answer qq, the algorithm first builds a set that contains
only this answer. Then for each independent set p it has already built, it checks whether some
query of p is dependent of gg. This is the case if some query of p has causes (or conflicts if it
is a wanted query), that share assertions with the causes of gg (or its conflicts if gg is wanted).
If so, it aggregates p with the set of ¢y. At the end of the algorithm, each query appears in
exactly one set, and every pair of dependent answers are in the same set.

Algorithm 5.8 IndependentSubproblems

Input: QRP (K = (T,A),U,W)

Output: independent QRPs {(K = (T, .A),U;, W)}
1. P+ 0
2: forall g c U/ UW do
33 pgy < {ao}

4. if go € WV then
5: BO — UCecauses(qo,/C) (C U coan(C, IC))
6: else
7 BO — UCEcauses(quC) ¢
8: end if
9: forallpe Pdo
10: Bp A UquﬂW,C€causeS(q7’C) (C U Conﬂ(C7 IC)) U qume{’Cecauses(q,K) ¢
1 if B, N By # () then
12: P+ P\{p}
13: qu <_pqup
14: end if
15: end for
16: P+ PU {pQO}
17: end for

18: Output {(C = (T, A),UNp;, WNp;) | pi € P}

Second, at Step 15, the assertions can be presented in small batches. When axiom
(in)validation can be partially automatized, ranking axioms by their potential impact reduces
the effort of manual revision [Meilicke et al. 2008, Nikitina et al. 2012]. In our setting, we
believe that validating sets of necessarily (non)false assertions requires less effort than
hunting for false assertions among all relevant assertions, leading us to propose a similar
notion of impact to rank assertions to be examined. Indeed, deleting or keeping an assertion
may force us to delete or keep other assertions to get a potential solution. Relevant assertions
can be sorted using two scores that express the impact of being declared false or true. For
the impact of an assertion « being false, we use the number of assertions that becomes
necessarily (non)false if « is deleted. The impact of « being true also takes into account the
fact that the conflicts of o can be marked as false: we consider the number of assertions that
are in conflict with o or become necessarily (non)false when we disallow o’s removal. We

125

Query-driven repairing

can rank assertions by the minimum of the two scores, using their sum to break ties. More
formally, the scores are given by the following formulas:

impacte, e () =| NV (a = false) U N_¢ (o = false)|
impacty, () =|Nf(a = true) U N_¢(a = true)| + | (confl({a},) N R)\ Nt (o = true)|

with

R=R((T,A),U,W,A),
Ny =false) =Ny (T, A\{a}), U, W, A\{a}),
Nye(a = true) =Ny ((T, A), U, W, A\{a}).

Example 5.3.9 (Example 5.3.8 cont’d). At Step 3, there are three assertions to sort:
GradCourse(b) Postdoc(a) MemberOf(a, c)
Their impacts are computed as follows:

impacte, . (GradCourse(b)) =0
impact,,,.(GradCourse(b)) =|{Postdoc(a)}| =1

Indeed, if GradCourse(b) is true, then Postdoc(a) is necessarily false. It fol-
lows that min(impactg,.(GradCourse(b)),impacty,,.(GradCourse(b))) = 0 and
impacte, . (GradCourse(b)) + impacty, . (GradCourse(b)) = 1.

impactg, . (Postdoc(a)) =|{MemberOf(a,c)}| =1
impacty, . (Postdoc(a)) =|{GradCourse(b) }| = 1

Indeed, if Postdoc(a) is false, then MemberOf(a,c) is necessarily nonfalse and
if Postdoc(a) is true, then GradCourse(b) is necessarily false. It follows that
min(impactg, s (Postdoc(a)),impact,,,.(Postdoc(a))) = 1 and impacte,e. (Postdoc(a)) +
impacty, . (Postdoc(a)) = 2.

impactg, e (MemberOf (a, ¢)) =|{Postdoc(a)}| =1
impacty,,(MemberOf(a,c)) =0

Indeed, if MemberOf(a,c) is false, Postdoc(a) is necessarily nonfalse. We
thus have min(impactg, e (MemberOf(a,c)),impact,, ,(MemberOf(a,c))) = 0 and
impacte,ce (MemberOf(a, ¢)) + impacty, o (MemberOf (a,c)) = 1.

Based upon the impact scores, Postdoc(a) will be presented first. <

126

5.4 Considering the AR semantics for wanted answers

5.4 Considering the AR semantics for wanted answers

While in the preceding chapters we studied three semantics, AR, IAR and brave, we defined
the query-driven repairing problem using only the brave and IAR semantics. In this section,
we investigate the use of AR semantics in this context. We still call potential solutions the
repair plans that achieve our objectives in terms of query (non) entailments. More formally,
a potential solution for AR (resp. for IAR) is a subset of the ABox whose removal makes
every unwanted answer not hold under brave semantics, and every wanted answer hold under
AR (resp. IAR) semantics.

One could think that requiring that wanted answers hold under AR semantics instead
of IAR semantics would help to find potential solutions or yield more necessarily nonfalse
assertions. The following proposition shows that this is not true because a potential solution
for AR can always be transformed into a potential solution for IAR.

Proposition 5.4.1. Let ((T,A),U, W) be a QRP. If there does not exist a potential solution
for IAR, then there does not exist a potential solution for AR.

Proof. If (PAR PAR) is a repair plan for ((7,.A),U, V) that makes the wanted answers
hold under AR semantics and unwanted answers not hold under brave semantics, let R be
a repair of (A\PAE)UPLE. Then PIAR = (A\R,P{ENR) is a repair plan that makes
the wanted answers hold under IAR semantics and unwanted answers not hold under brave
semantics. Indeed, (A\PIAR)U P{_AR = R and every ¢ € VV has a cause in 'R, which has
no conflicts by consistency of R. U

Futhermore, deciding if a set of assertions is a potential solution for AR is intractable,
while it is tractable for IAR.

Proposition 5.4.2. For complexity w.r.t. |A|, |[U| and |W)|, deciding if (P—,P+) is a potential
solution for AR is coNP-complete.

Proof. We can show that P is not a potential solution for AR as follows: decide in P if all
unwanted answers are satisfied, and if it is the case, guess a wanted answer ¢ and a repair R
of (T, (A\P_)UPy) such that (T, R) I~ q.

Hardness is by reduction from AR query answering: (7 ,.A) Ear ¢ iff (,0) is a potential
solution for AR for the QRP ({7, A),0,{q}). O

However, the following example shows that it may be useful to accept that some wanted
answers are entailed under AR semantics rather than IAR, because even if using AR semantics
has no impact on the existence of potential solutions, it may have one on existence of
validatable repair plans that satisfy all wanted answers.

Example 5.4.3 (Example 5.1.1 cont’d). Consider the following QRP:

K =(Tex,{FProf(a),AProf (a),Postdoc(a)})
W ={Prof(a)},U =10

127

Query-driven repairing

Suppose that user(FProf(a)) = unknown, user(AProf(a)) = unknown and
user(Postdoc(a)) = false. There are two deletion-only potential solutions: {FProf(a),
Postdoc(a)} and {AProf(a),Postdoc(a)}, but none of them is validatable. However,
deleting Postdoc(a) is a validatable deletion-only repair-plan that makes Prof(a) hold under
AR semantics.

Even in the case where additions are allowed, we would probably prefer to simply delete
Postdoc(a) and keep the information than a is either a full or an assistant professor, rather
than also adding Prof(a) to create an IAR cause which is somehow redundant with the
knowledge already present in the base. Moreover, it is possible that in some settings it would
be forbidden to add assertions using the general predicate Prof, for instance if a professor
has to be registered with his level of seniority. <

In this section, we therefore study the impact of using AR semantics to define the
satisfaction of wanted answers. We refine the notions of satisfaction (resp. satisfiability,
satisfiability w.r.t. a repair plan) of a wanted answer into satisfaction (resp. satisfiability,
satisfiability w.r.t. a repair plan) for IAR and for AR. We say that q is satisfied by K for S (S €
{IAR,AR}) if there exists an explanation for K |=g ¢ that does not contain any false assertions.
In the case of AR semantics, this means that there exist Cy, ...,Ci € causes(q,) such that
every repair of X contains some C; and there is no o € Ule C; such that user(a) = false. We
use S{}VR(P) (resp. S{/’\}R(P)) to denote the set of answers satisfied for AR (resp. for IAR) by
a repair plan P. We redefine the preorder <)y to take both semantics into account: P <y, P’
iff:

« SHE(P) C SHE(P') and SEE(P) C SIFE(P), or
« SpFH(P) = Spfi(P') and S (P) € SJHE(PY).

Remark 5.4.4. When we do not want to impose AR semantics rather than AR semantics to
avoid adding assertions, we can also define a weak preorder: P <wweak P’ iff:

« SHF(P) C S (P') and SJHMH(P) € STHE(P!), or
» SpH(P) = SR (P') and SJHE(P) € SJ(P') and P = Py

5.4.1 Characterization and complexity of optimal repair plans

We recall that for the problems related to optimal repair plans, we measure complexity
w.r.t. |A|, [U|, [W)|, and |True’L,|, and assume that the sizes of the queries and the TBox
are bounded. In particular, this means that the causes of the queries can be computed in

polynomial time.

First note that Lemma 5.2.5 is still true: if P’ is validatable and such that P_ C P’ and
P C P, then S(P_,P1) CSHF(PL,P) and SEMF(P_, Py) C SJAE (P, P!, with
the same argument: extending the repair plan in a validatable fashion preserves the nonfalse
causes of wanted answers, and cannot add assertions which conflict them. It follows that
the characterizations of optimal repair plans in terms of satisfiability of answers with the
redefined <y are similar to those with the initial <y, since the proof of Proposition 5.2.7

128

5.4 Considering the AR semantics for wanted answers

uses only this lemma and the definitions of the different notions of optimality, satisfaction,
satisfiability and satisfiability w.r.t. a repair plan are not modified.

Proposition 5.4.5. A validatable repair plan P is:

» globally <yy-optimal iff it is locally <y -optimal iff it satisfies for AR every q € VW
satisfiable for AR, and for IAR every q € W satisfiable for IAR.

* locally =y w-optimal iff it is locally =, yy-optimal iff it satisfies every q € U that is
satisfiable w.r.t. ‘P, satisfies for AR every q € VV that is satisfiable for AR w.r.t. P, and
satisfies for IAR every q € W that is satisfiable for IAR w.r.t. P.

e locally =y y-optimal iff it satisfies for AR every q € VV that is satisfiable for AR,
satisfies for IAR every q € VV that is satisfiable for IAR, and satisfies every q € U that
is satisfiable w.r.t. P.

As for IAR, we can give the characterizations of answers that are satisfiable or satisfiable
w.r.t. a repair plan for AR.

Lemma 5.4.6. An answer q € W is satisfiable for AR iff there exists some T -consistent sets
of assertions Cy, ...,Cy, such that:

o forevery 1 <i <k (T,Ci) Fq
e for every o € UF_, C;, either user(a) = true, or user(a) = unknown and o € A, and

o for every consistent B C A such that for every 1 < i <k, BUC; is inconsistent, there
exists 3 € B such that user(3) = false.

(We will call Cy, ...,Ci. a witness for the satisfiability of q for AR.)

Proof. If ¢ € W is satisfiable for AR, then there exists a validatable repair plan (P_,Py)
such that (A\P_)UP. contains an explanation Cy, ...,Cy, for (T, (A\P_)UP4) Ear ¢ that
does not contain any false assertions. It follows that Cy, ...,Cj. are consistent sets of assertions
such that (T",C;) k= ¢, and for every o € U¥_, C;, either o € P, and user(a) = true, or o € A
and user(«) = true or user(«) = unknown. Moreover, for every consistent 3 C A such that
BUC; is inconsistent for every 1 < ¢ < k, BNP_ # (). Otherwise B would be a consistent
subset of (A\P_)UP; contradicting every C;, and Cy, ...,Cy, would not be an explanation
for (T, (A\P_)UP,) =ar ¢. Since P is validatable, it follows that there exists € B such
that user(3) = false.

In the other direction, if ¢ and Cy,...,C}, satisfy the conditions of the lemma statement,
then the repair plan P defined by:

({8 € A| 3B C A such that B is consistent and VC; € {Cy,...,C }, BUC; is inconsistent,

k
B € B,user(B) = false},{a € | J C; \ A | user(a) = true})

1=1

is a validatable repair plan that satisfies ¢ for AR. Indeed, there is no consistent B C
(A\P_) UP, that contradicts Cy,...,Ci: since P, contains only true assertions, whose

129

Query-driven repairing

conflicts are false, and the C; contains no false assertions, such a 3 would be included in A,
so would contain some false assertion 3, which belongs to P_ by construction. Therefore
every repair of (A\P_)U P4 contains some C; that contains some cause for ¢ without any
false assertion, and ¢ is satisfied for AR. O]

Lemma 5.4.7. Let (P_,Py) be a validatable repair plan for the KB (T, A). Then an
answer q € W is satisfiable for AR w.r.t. (P—,Py) iff q is satisfiable for AR for the KB
(T, A) with a witness C1, ...,Cy, such that every ¢’ € Sy(P—,P4.) is satisfiable for the KB
(T, AUPLUUL,).

Proof. 1If ¢ € W is satisfiable for AR w.r.t. (P_, P,), then there exists a validatable repair
plan (P”,P’,) such that P_ C P’ and P, C P’ which satisfies ¢ for AR and all answers
in S(P—,P4). As q is satisfied for AR by (P_, P’), the ABox (A\P_)U P’ contains an
explanation Cy, ...,Cy, for (T, (A\P_) UP’.) =ar ¢ that does not contain any false assertion.
This means that ¢ is satisfiable for (7,.4). We then use exactly the same arguments as
in proof of Lemma 5.2.12 to show that every ¢’ € Sy/(P—,P+) is satisfiable for the KB
(T, AUPLUUL,Ci).

In the other direction, suppose that ¢ € V is satisfiable for AR for the KB (7,.4) with
a witness Cy,...,C, such that every ¢’ € Sy (P—, P) is satisfiable for the KB (7, AUP, U
UF_, Ci). We can show as in Lemma 5.2.12 that the repair plan (P, P,) where

P =P_U{B € A|3IBC Asuch that B is consistent and VC; € {C1,...,Cy},
BUC; is inconsistent, 5 € BB, user() = false}U

k
{v|d €U,C e causes(¢ . (T,(A\P-)UPL U JCi)),7 € C,user(y) = false}
i=1

k
P =PrU{ae |JCi\ A| user(a) = true}
i=1

is a validatable repair plan that extends P and satisfies g for AR and all answers in S(P_, Py).
]

In contrast to the characterizations of answers satisfiable or satisfiable w.r.t. a repair plan
for IAR, these characterizations cannot be verified in P, because the size of the witness is not
bounded. However, they allow us to show the following result for instance queries.

Lemma 5.4.8. For instance queries, minimal witnesses of satisfiability for AR are either
a single cause {a} with user(«) = true, or a set of causes {a1 },...,{ay} (k > 1) such that
user(c;) = unknown and «; € A for every «;. It follows that if an instance query q is not
satisfiable for IAR w.r.t. a repair plan ‘P, then q is satisfiable for AR w.r.t. P iff q is satisfiable
for AR with a witness included in A.

Proof. If we need to add a cause {«} with user(«) = true to satisfy an instance query ¢,
since all its conflicts are false, removing the conflicts of « satisfies ¢ for IAR and a minimal
witness for AR satisfiability of ¢ containing {«} does not contain any other cause.

130

5.4 Considering the AR semantics for wanted answers

If ¢ is not satisfiable for IAR w.r.t. P, then ¢ has no true cause {a} such that every
q' € Sy(P) is satisfiable in (T, AUPLU{a}). If ¢ is satisfiable for AR w.r.t. P, its witness
for AR satisfiability w.r.t. P {c},...,{ax} is then such that a; € A for every ;. In the other
direction, if g is satisfiable for AR with a witness {a }, ..., { o } such that a; € A for every «,
AUPLUUE {a;} = AUP,, soevery ¢ € Sy(P) is satisfiable in (7, AUP, UUL {oy})
(using P_). It follows that g is satisfiable for AR w.r.t. P.]

The following proposition gives the complexity upper bounds of deciding if an answer is
satisfied, satisfiable or satisfiable w.r.t. a repair plan for AR.

Proposition 5.4.9. Deciding if a wanted answer is satisfied or satisfiable for AR is in coNP.
Deciding if a wanted answer is satisfiable for AR w.r.t. a repair plan is in ¥.5, in coNP for
instance queries.

Proof. e Showing that ¢ € WV is not satisfied for AR can be done by guessing a repair R of
KC such that every cause for g in R contains some false assertion, so is in NP.

e Showing q € VWV is not satisfiable for AR can be done by guessing a repair R of the KB
(T, (A\Falseyser) UTruel,) such that (T, R) [~ g, so is in NP.

e Deciding whether ¢ € W is satisfiable for AR w.r.t. a repair plan P can be done by guessing
a repair plan P’, and checking in Al that P’ is validatable, extends P, satisfies all answers
satisfied by P (at most 2 x | W] calls to a coNP oracle), and satisfies ¢ for AR, so is in Zg.
If ¢ is an instance query, we first check in P if ¢ is satisfiable w.r.t. P for IAR. If it is,
q is also satisfiable for AR w.r.t. P. If it is not, by Lemma 5.4.8, ¢ is satisfiable for AR
w.r.t. P iff it is satisfiable for AR with a witness included in .4, which can be check in coNP
(show that this is not the case by guessing a repair R of the KB (7, (A\ Falseyser)) such
that (7, R) F~). O

We now establish the complexity of deciding the optimality of a repair plan when AR is
taken into account for the satisfaction of wanted answers.

Theorem 5.4.10. Deciding if a repair plan is globally <-optimal is 115-complete for <€
{=Zuowy Suws 2wut (A5[0(log n)]-complete if all wanted answers are instance queries),
and AY[O(log n)]-complete for <.

Deciding if a repair plan is locally <-optimal is Hg—completefor =€ {j{u’w}, <uw}
(AB]O(log n)]-complete if all wanted answers are instance queries), and AL[O(log n)]-
complete for 2€ {=w, 2wu}-

Upper bounds. e For global or local <y -optimality, the conditions of Proposition 5.4.5 can
be verified as follows: for each wanted answer that is neither satisfied nor satisfiable for [AR
(check in P), use two calls to a coNP oracle that decides if an answer is satisfiable or satisfied
for AR. Then check in P if there is one answer such that the oracle has answered yes to the
first question and no to the second. Since all calls to the oracle are independent, they can be
done in parallel, so the procedure is in AJ[O(log n)] (cf. Appendix A.1).

e For the H‘g upper bounds for <€ {=< wUwWy SUW =w .}, we can show that a repair plan P
is not globally (resp. locally) <-optimal by guessing a better one (resp. that extends P): guess

131

Query-driven repairing

P’ (resp. P’ such that P C P’), and verify with a polynomial procedure (for the unwanted
answers) and 2 x |[W)| calls to a coNP oracle (for the wanted answers) that S(P) C S(P’) (or
Su(P) C Su(P') in the case <y, and SHFH(P) € SHE(P') or SHE(P) = Siif(P) and
SEE(P) € SEME(P') in the case <y).
e When all wanted answers are instance queries, it is possible to decide whether a repair plan
P is globally <-optimal for <€ { =, wy, Suw, Wy} in AP[O(log n)| with the following
procedure that use 2 x |VV| + 1 independent calls to a coNP oracle:

- check whether P is globally <-optimal without taking AR into account (in coNP)

- compute the set B of wanted answers that are satisfied for AR in A\ Flalseser, i.e. which
are satisfiable for AR with a witness included in A (]WV)| calls to a coNP oracle)

- compute SAR() (|W)] calls to a coNP oracle)

- check that B C Siif(P)

We show that P is globally <, ,yy-optimal iff it is globally <,)y-optimal without
taking AR into account and satisfies for AR every ¢ € B.

In the first direction, suppose that P is not globally < {u W}-optimal There exists P’ such
that P <y P'. By Lemma 5.2.5, P" = (Falseuser, P',) is also such that P <,y P”.
It follows that Sy (P) C Sy (P”), SEME(P) C SEME(P”), and SF(P) € Sif{(P”), and one
of these inclusions is proper. If Sy (P) C Sy (P”) or SIAR(P) C SIAR(P”) then P is not
globally =,)yy-optimal without taking AR into account. Otherwise, if Sy(P) = Sy(P")
or SJHE(P) = SEME(P") and SPE(P) € SHE(P), q € Spft(P")\SHF(P) is satisfiable
for AR with a witness included in .4 (otherwise, any witness would contain a true cause and
P" would satisfy ¢ for IAR, so PP would also satisfy ¢ for IAR) so ¢ € B and q ¢ Si\f*(P).

In the other direction:

- If there exists ¢ € B and q ¢ S{F(P), P’ = (Falseyser, P+) is such that Sy(P) C
Su(P"), SEME(P) C SIFE(P') (by Lemma 5.2.5), and satisfies ¢ for AR. Indeed, ¢ has a
witness for AR included in A so by definition of the witness, (7, A\ Falseyser) FFAR ¢, and
P does not add conflicts to the assertions of the witness since they are nonfalse.

- If (P—,P4) is not <z, yy}-globally optimal without considering AR because (P, P’)
is a better repair plan, then we show that either (Falseyser, P'y) or (Falseyser, P+) is a
better repair plan than (P_,P+) when AR is taken into account. First, note that since
Su(P) C Su(P"), SJHE(P) C SIFE(P'), and one of the inclusions is strict, then Sy (P) C
Su(Falseyser, PL), SIAR(P) C SIAR(Falseuser,Pﬁr) and one of the inclusions is strict.

If there exists ¢ such that ¢ € SpE(P), q ¢ Spf(Falseyser,P}) and ¢ €
SR (Falseyser, P+), then (Falseyser, P+) is a better repair plan than (P_, P,). Indeed,
qé¢ SIAR(P) otherwise ¢ € SIAR(Falseuser,P+) SAR(Falseuser,P+)

Otherwise, if for every ¢ such that ¢ € SH(P), if ¢ ¢ S\t (Falseyser, P'.), then q &
SIAR(Falseuser,PQ then we show that in this case (F'alseyser, P’.) is a better repair plan.
Indeed, we can show that SAR(P) - SAR(Falseuser,P "): suppose for a contradiction
that there exists ¢ such that ¢ € SAR(P) and q ¢ SAR(Falseuser,P+) By assumption
q¢ St AR(Falseuse,, P.). It follows that its causes in AUP;. are in A (otherwise there would
be some cause {a} with user(a) = true and the answer would be in SJH(Falseyser, P+)).
It follows that ¢ is also AR in AU P +\F alseyser (a consistent subset that contradicts every

132

5.4 Considering the AR semantics for wanted answers

cause in (AU P!)\ Falseyser would also contradict every cause in (AU P)\Falseyser):
contradiction.

For <€ {=y/w, 2w}, the proof is similar.
e When all wanted answers are instance queries, for <& {f{u,W}a =u,w}, deciding if a
repair plan P is locally <-optimal can be done in A5[O(log n)] using the characterization of

Proposition 5.4.5 and the complexity results of Proposition 5.4.9 (satisfaction and satisfiability
w.r.t. a plan in coNP for instance queries).

e For local =y j/-optimality, the conditions of Proposition 5.4.5 can also be verified with
2%)| independent coNP calls by Proposition 5.4.9.
O]

We next prove the lower bounds.

Proof of AL[O(log n)]-hardness (all cases). The proof is by reduction from the Parity(SAT)
problem, where we assume that the formulas are such that ;1 is unsatisfiable whenever ¢;
is unsatisfiable (cf. Appendix A.3). Consider a Parity(SAT) instance given by 1, ..., ¢y,. For
eachi, 1 <i<n,let{c;1,...,¢; r(;)} be the clauses of o; over variables X; = {; 1, ..., Z; () }-

T ={Up CU,Up CU,3P~ C-3N~,3P C ~3U,3N C -3U~,3Up C - A}
A={P(cim,xi1)|zi) € ciym}t U{N(cim,Ti1)|~Tis € cim U
{Uo(pi,cim)|i=1mod 2,1 <i<n,1<m<r(i)}tu
{Up(pi,civim) |i=1mod 2,1 <i<n—-1,1<m<r(i+1)}U
{Ug(¢n,a) | if n =1 mod 2}U
{A(pi) |i=1mod 2,1 <i<n}
W ={32U(p;,x) |i=1mod 2,1 <i<n}

True, =0
Falseyser ={A(pi) |1 =1mod 2,1 <i<n}
Unkyser =A\ Falseser

Figure 5.4 illustrates the reduction. We show that (P_,P) = (0,0) is not optimal iff there
exists an odd integer & such that ¢y, is satisfiable and ¢y is unsatisfiable (or n is odd and
n 1s satisfiable).

Note that (Falseyser,) is optimal and that the repairs of A\ Flalseyser correspond to the
combinations of the possible valuations of the X; (1 < i < n) (that do not interact), and that
a formula ¢; with 7 odd (resp. i even) is satisfiable iff 3xUp (p;, x) (resp. xUg(p;i—1,x)) is
not AR in A\ Falseyser, using the same arguments as usual.

Let 1 <¢ <n be odd. The causes of JzU(p;,z) in A are the Up(pi,ci) and the
Ug(i,civ1,m)- If @; is satisfiable then there exists a repair that contains no Up(@;,¢im).
There is such a repair that contains A(¢;), so which does not contain any Ug (s, Ci+1,m)-
Thus (7, A) ar 32U (g4,), and (0,0) does not satisfy the wanted answer 3xU (p;, x).
If ;41 is unsatisfiable, then (7, A\ Falseyser) Ear J2Up (s, x), so the wanted answer

133

Query-driven repairing

Fig. 5.4 Reduction from Parity(SAT) for A5[O(log n)]-hardness of recognition of optimal
repair plans using AR semantics. Graphical representation for the case where n is odd.

A
Ao(1) Ao(3)
o1 A4 o3 A on A
U
Ac(1) Ac(3) y
a
AO(i) Ae@)
P/N P/N
Cil Ci (i) Cit1,1 Citlr(i+1)
Uo \ - Ug
Pi ©s

JzU(p;,x) is satisfiable. It follows that if ; is satisfiable and ;; is unsatisfiable, then
(Falseyser,) is a validatable repair plan which is better than (P_,P,), so (P_, P4) is not
optimal. If n is odd and ¢, is satisfiable, (), #) does not satisfy xU (i,) but (Falseyser, D)
satisfies it because A(ypy,) is the only conflict of Ug(pp,,a).

In the other direction, if (P_,P,) is not optimal, there exists 1 < i < n odd such that
(P_,P+) does not satisfy the wanted answer JzU (¢;, x), and there exists a validatable repair
plan that satisfies it, and in particular (Falseyser,) satisfies it. It follows that ; is satisfiable
(otherwise the answer JxU (y;,) is already satisfied) and ;1 is unsatisfiable (or i = n)
(otherwise (Falseyser, ®) would not satisfy it: there would be a repair that corresponds to a
valuation of the X; that satisfies ¢; and a valuation of X that satisfies ¢;41 and that would
not contains any cause for 3zU (p;, x)).

O]

Proof of Hg -hardness for local or global <y}, =y, w optimality. The proof is by reduc-
tion from QBF;3. Let ® = Jz1..xVy1...yp \Vj—1 C; where \/;_; C; is a 2+2 DNF

134

5.4 Considering the AR semantics for wanted answers

(Ci = NI A= A LY.

T={Ty CT,Fy C F, Ty C—~Fy}

A ={A(z;), B(x;)|1 < j <m}U{Ty(y;), Fy (y;) | 1 < j < p} U{A(a),B(a),T(a), F(a)}
U{Pi(ci,18), Pa(ci, 1), N1 (i, 15), No(ci, 13) | Cy =15 AT AT A=}

W ={3e,l,l2,l3,14
Pl(c,h) /\PQ(C,ZQ) N Nl(c,lg) /\NQ(C,Z4) /\T(ll) /\T(lg) /\F(lg) /\F(l4)}

U ={FaT(x)\NF(x)NA(x) NB(z)}

Truel, ={T(x;), F(x;)]1 <j <m}

Falseyser ={A(a),B(a),T(a),F(a)}
Unkyser = A\ Falseyser

Figure 5.5 illustrates the reduction.

We show that the formula ® is valid iff the repair plan (Falseyser, () is not optimal. This
repair plan satisfies the unwanted answer but does not satisfy the wanted answer. Indeed, the
repair of A\ Flalseyser that contains every Fy (y;) does not contain any Ty or " assertion, so
does not entail the wanted answer.

If ¢ is valid, there exists a valuation v of the z; that makes Vy;...y, \Vio, v(C;) true.
Then (P—_,P+) = (Falseuser, {1 () | v(z;) = true} U{F(x;) | v(x;) = false}) satisfies
U and W. The repairs of (A\P_)U P, correspond exactly to the valuations of the y;.
Since for every valuation of the y;, there exists a C; = I Al5 A% A=} such that C; is
true, the corresponding repair contains an F'(x;) or T'(x;) per z;, but not both, as well
as Py(ci,1}), Pa(ci,15), N1(ci, 15), No(c;, 14), and T(1%) or Ty (1), T(1%) or Ty (1), T(1%) or
Ty (%), and T(1}) or Ty (I}), depending whether l; isax;oray;.

In the other direction, if (Falseyser, ?) is not optimal, then there exists (P_, P) that satis-
fies U and W. P contains at most one assertion F'(x;) or T'(z;) per ;. The valuation v such
that v(z;) = true if T'(x;) € P4, v(x;) = false otherwise is such that Vy;...y, \/i=; ¥(C;) is
true: since P_ C Falseyser, the repairs of (A\P_)U P, correspond exactly to the valuations
of the y;, so since WV is satisfied for AR, for every valuation v of the y;, there is a C} which

evaluates to true in v.
O

135

Query-driven repairing

Fig. 5.5 Reduction from QBF 5 for Hg—hardness of recognition of < {u,w)-or =u,w-optimal
repair plans using AR semantics. Graphical representation of the ABox constructed from
{Cl =21 NYy1 A2 A —|y2,02 =22 AY2 Ax1 A —|y1}.

ABT FFABT. F Ty, Fy Ty, Fy A
T N Tap Py Y1 N, 2
P
A BT, F
1 C2 a

Proof for 115 -hardness for global Swu optimality. Let & = Jx1..2mYy1...Yp Vi , C;
where \/;_; C; is a 242 DNF (C; = It Al5 A=l A=lY).

T={TyCT,Fy CF Ty C—-Fy,C1CC,C, CC,C; C—Co}

A={A(z;), B(z;)[1 <j <m}U{Ty (y;),Fy(y;) | 1 <j <p}U{A(a),B(a),T(a),F(a)}
U{Pi(c;,11), Pa(ci,la), N1(ci,13), Na(ci, ly) | Ci =18 NS A=IE A=Y U{CL(D), Ca(b)}
U{Pi(e,d), Px(e,d), Ni(e,d), Na(e,d) } U{A(d), B(d)}

W:{Hc,ll,lz,lg,l4,x
Pi(c,11) A Py(c,la) ANi(c,13) A No(e, 1) AT (1)) AT (Io) AF(I3) AF (1) ANC(z)}

U={FxT(x)\NF(x)NA(x) NB(z)}

Truefie, ={T(x;), F(z;)|1 < j < m}U{T(d), F(d)}
Falseyser ={A(a),B(a),T(a),F(a)}
Unkyser =A\ Falseyser

Figure 5.6 illustrates the reduction. We show that & is valid iff (Falseyser, TTueL,) is not
optimal.

The repair plan (Falseyser, Truels.,) satisfies ¢ € W for AR, since the function 7 such
that w(c) = e,m(l1) = n(le) = w(l3) = 7(l4) = d, and 7(x) = b is a match for the wanted
answer, but (Falseyser, TruelcL,) does not satisfy the unwanted answer. Note that the wanted
answer cannot be satisfied for IAR because 3xC'(z) has only two causes C1(b) and Cy(b)
which are in conflict and are unknown.

If ® is valid, it is possible to satisfy both the wanted answer for AR and the unwanted
answer as in the previous proof.

If (Falseyser, TruelL,) is not optimal, there exists (P_, P,) that satisfies both the wanted
and unwanted answers (since (Falseyser, Truels,) <wu (P-,P4) and the wanted answer
is not satisfiable for IAR). Then ® is satisfiable as in previous proof: e and d cannot be used
to satisfy the wanted answer, since it would require to add both 7'(d) and F'(d) and would
make the unwanted answer not satisfied.

H

136

5.4 Considering the AR semantics for wanted answers

Fig. 5.6 Reduction from QBF; 5 for IT5-hardness of recognition of globally <y ;;-optimal
repair plans using AR semantics. Graphical representation of the ABox constructed from
{Cr =21 A1 A2 A=y, Co = 23 Aya A1 A=y}

ABT.F ABT. F Ty.Fy Ty, Fy ABTF
T x3 yroN, Y2 d
P1 P17P27N17N2
A BT F C1,C2
C1 Cc2 a e b
Table 5.1 Recognition of an optimal repair plan in DL-Lite: complexity w.r.t. |A|, ||, |W],
and |True,|.
with AR without AR
Global Local Global Local
=u in P in P in P in P
=y AB[O(log n)]-co* AB[O(log n)]-co* in P in P
<wu Ih-co/ Ab[O(log n)]-co™ AP[O(log n)]-co* coNP-co* inP
<uw Ih-co/ Ab[O(log n)]-co™ TIh-co/ AL[O(log n)]-co™ coNP-co* inP
< wuwy h-co/ AB[O(log n)]-col™ ITh-co/ AB[O(log n)]-co™ coNP-co* inP

T upper bounds hold for instance queries wanted answers

* lower bounds hold for instance queries wanted answers
If U contains only instances queries: deciding global or local <-optimality for
=€ {=Zwu Suw, 2wy} is A5[O(log n)]-co with AR, and in P without AR

Remark 5.4.11. If U/ contains only instance queries, deciding if a repair plan is globally
=<-optimal for <€ {j{u,w}, <uw,=wuy} is in Ag [O(log n)], since in this case a repair
plan (P_, P,) is globally <-optimal iff it is globally <;,-optimal (i.e. P_ contains all causes
of unwanted answers) and globally <)y-optimal. Moreover, the AJ[O(log n)] lower bound
holds since the reduction does not use unwanted answers.

Table 5.1 summarizes the complexity results for the recognition of an optimal repair plan.

5.4.2 Discussion: impact of AR semantics on the algorithms

While the complexity of recognizing an optimal repair plan increases when AR is taken into
account, the repair plans constructed by the algorithms previously introduced are actually
optimal also in this case.

137

Query-driven repairing

The algorithm OptimalRepairPlan;, (resp. OptimalRepairPlanyy,) still outputs a globally
=u (resp. =) and locally <, 1yy-optimal repair plan. The only difference when we
consider AR is that some answers removed from }V, because they cannot be satisfied for
IAR semantics, are actually satisfied for AR. Indeed, every known cause that can be added
without deteriorating the satisfaction of the unwanted answers has been added, and all of its
false conflicts removed. Therefore, the output plan satisfies for IAR (resp. for AR) every
wanted answer that is satisfiable for IAR (resp. for AR) w.r.t. the output plan. We could add
a step that checks whether an answer not satisfiable for IAR w.r.t. the plan is satisfied for AR
(by simply checking if the answer holds under AR semantics, since every false assertion has
been removed from its causes), to also provide the information about the satisfied answers
for AR.

However, we could also modify the algorithm by dividing the addition step into two
phases: the first one tries to satisfy wanted answers for AR, and the second one tries to
satisfy for IAR the answers already satisfied for AR. In some cases, this procedure allows us
to satisfy more answers for AR than the existing algorithm. Indeed, since we will not add
every known cause for an answer already satisfied for AR, we may be able to add causes
to satisfy another wanted answer that would have interacted in a wrong way with these
superfluous causes. For instance, suppose that Prof(a) and GradCourse(c) are wanted, that
JzyzAdvise(z,b) A Teach(z,y) A GradCourse(y) A TakeCourse(z,y) is unwanted, that AProf
and FProf are disjoint, and the ABox contains the assertions AProf (a), FProf(a), Teach(a,c),
and TakesCourse(c, d). Suppose that the user does not know whether these assertions are true
or false but knows Advise(a,b) and GradCourse(c). If he adds Advise(a, b) to satisfy Prof(a)
for TAR, he cannot satisfy GradCourse(c) and the unwanted answer together, whereas if he
does not add it, he can satisfy the unwanted answer and every wanted answer, at least for AR.
The plans (), {Advise(a,b)}) and (0, {GradCourse(c)}) are both locally <, y}-optimal,
since extending them cannot improve them, but the second one satisfies more answers for
AR.

Regarding deletion-only repair plans, since the potential solutions for IAR are potential
solutions for AR and potential solutions for AR can be extended to potential solutions for
IAR (cf. Proposition 5.4.1), the sets of relevant, necessarily false or necessarily nonfalse
assertions, and the MCSWs are exactly the same as before. As for OptimalRepairPlan;, and
OptimalRepairPlanyy, we can add a step that checks whether the wanted answers that are
not satisfied for IAR are satisfied for AR at the end of OptDeletionRepairPlan, to inform the
user of the satisfaction of the wanted answers under AR semantics, but the repair plan that is
returned is optimal in all cases.

Overall, we believe that the AR semantics can be profitably exploited in the following
scenario: a user begins by executing OptDeletionRepairPlan as a first step to construct a
repair plan such that the resulting knowledge base satisfies all satisfiable unwanted answers
and satisfies for IAR all wanted answers satisfiable for AR without inserting new assertions.
However, this plan does not satisfy some wanted answers, either because they became non-
brave at Step 31, or because the user does not know how to clean a cause (in this case the
algorithm ended at Step 17). He therefore uses the insertion step of OptimalRepairPlan;,
(Step 5) to try to satisfy the remaining unsatisfied wanted answers, but considering as satisfied

138

5.5 Implementation and experiments

the answers satisfied for AR. Note that in this case the final repair plan is not optimal since it
may not satisfy for IAR some wanted answers that are satisfiable for IAR, but the number of
insertions as well as the effort of the user is reduced.

5.5 Implementation and experiments

5.5.1 Computing deletion-only repair plans with CQAPri

We implemented the core components of the OptDeletionRepairPlan within CQAPri. During
the query answering phase, the causes of the answers are computed and stored as for
explaining the answers. The user is then asked to input unwanted and wanted answers. Based
on this input and the precomputed causes and conflicts, CQAPri constructs the encoding
© = @y N pyy of Figure 5.2 and uses the SAT solver to check whether there exists a potential
solution. If so, it computes the necessarily (non)false assertions by checking for each
relevant assertion « if ¢ A (—)z is unsatisfiable, and sorts the remaining relevant assertions.
Their impact is computed as follows: for each other relevant and non necessarily (non)false
assertion 3, CQAPri checks whether ¢ Az, A (—) g is unsatisfiable to compute the impact
of « being false, and whether ¢ A =z, A (—)zp is unsatisfiable for the impact of o being
true. For the latter case, the number of conflicts of « in the relevant assertions is also taken
into account. To compute the necessarily (non)false assertions and the impact of the others,
we rely on a functionality of SAT4J that allows us to assign a value to some variables (for
instance assuming that x,, is true and x g false allows us to decide if removing « implies that
B is necessarily false), so that the solver does not begin from scratch at each call but can
capitalize on the clauses learned when deciding whether ¢ is satisfiable and on the model
already found.

If the user validates the necessarily (non)false assertions, he may input false and true
assertions. The encoding is then updated to take the user input into account by adding clauses
of the form z,, if « is false and —z,, if it is nonfalse, and CQAPri computes the necessarily
(non)false assertions and the impact of the others for the new step.

At each step, CQAPri checks whether the current repair plan is a potential solution by
verifying if: (1) it intersects all unwanted causes and (ii) it removes all conflicts of a cause
that it does not intersect for each wanted answer. In this case, CQAPri stops and outputs the
repair plan. To fully implement OptDeletionRepairPlan, we should add a phase that ensures
that each wanted answer has an [AR cause validated by the user, which does not contain any
false assertion.

If at some point there does not exist any potential solution (i.e. the encoding is unsatisfi-
able), CQAPri uses SAT4J to find the MCSWs by computing the maximal satisfiable subsets
(MSSes) of the encoding, that are the complements of the MCSes. We did not implement the
modification of the wanted answers by the user.

139

Query-driven repairing

Fig. 5.7 Assertions of the original ABox considered false for building QRPs.

TakeCourse(Dept2.Univ0/Graduate Student131, Dept2.Univ0/GraduateCourse8)
WorkFor(Dept2.Univ0/Associate Professor9, Dept2.Univ0)
WorkFor(Dept2.Univ0/Assistant Professor(, Dept2.Univ0)
DoctoralDegreeFrom(Dept2.Univ0/ Full Professord, University463)
DoctoralDegreeFrom(Dept19.Univ56/Assistant Professord, University532)
DoctoralDegreeFrom(Dept14.Univb2/Assistant Professor9, University532)
UnderGraduateDegreeFrom(Dept7.Univl4/Full Professor?,University532)

Table 5.2 Number of false and true answers per query and ABox.

ds q7 qds q10
false true false true false true false true
ul00cl 4 6 7 130 3 184 7 286
ul00c20 4 6 8 130 4 184 24 286

5.5.2 [Experimental setting

We focused on measuring the time to decide whether a potential solution exists, to compute
the necessarily (non)false assertions, to rank the relevant assertions w.r.t. their impact, and to
find the MCSWs.

We built QRPs for ABoxes u100c1 and u100c20 (which have respectively about 5% and
30% of assertions involved in conflicts) using queries g5, q7, g8 and q10 that have many
dependent answers (whose causes and conflicts of causes share some assertions).

When building QRPs, the unwanted answers are picked from a set of “false answers” that
contains: (i) the answers that were not answers over the initial consistent ABox u100c0, and
(i1) the answers such that all their causes contain some assertions that we choose arbitrary
and consider to be false. We choose seven such assertions in total (displayed in Figure 5.7).
The wanted answers are picked from the complement of these false answers. Table 5.2 shows
the number of false and true answers for each query and ABox. We built in sequence 13
QRPs, one being obtained from the preceding QRP by adding further queries answers to I/ or
W. They have for each of the four queries 1 up to 25 wanted answers and 1 up to 7 unwanted
answers. U UWV’s size varies from 8 (one wanted and unwanted answer per query) to 102
(the 21 false answers common to ul00cl and u100c20 are unwanted, the 6 true answers of
g5 and 25 for each other query are wanted). To study the impact of adding further unwanted
answers, we built a second set of QRPs by completing the formers using the additional false
answers obtained on u100c20. These QRPs have the same wanted answers and 1 up to 24
unwanted answers. Therefore, U/ UV’s size is up to 121 (when the 40 false answers on
u100c20 are unwanted).

140

5.5 Implementation and experiments

Fig. 5.8 Time in seconds for computing the necessarily false and nonfalse assertions w.r.t. the
number of relevant assertions involved in the QRP. The two figures on the left are related
to the same QRPs, on ul00cl and u100c20. The QRPs of the figure on the right have more
unwanted answers.

u100c1 u100c20 u100c20
larger QRPs
06 14 18
1,6
05 1,2
14
1
04 12
08 1
=z 03 = =
@ @ 06 2 08
E
E = = 086
F 02 T 04 a
0,4
1
0 0.2 02
0 0 0
0 100 200 300 400 500 600 700 800 0 200 400 600 800 10001200 1400 1600 0 200 400 600 800 10001200 1400 1600
Number of relevant assertions Number of relevant assertions Number of relevant assertions

5.5.3 Experimental results

In all of our experiments, deciding if a potential solution exists, as well as computing the
relevant assertions, takes a few milliseconds. The difficulty of computing the necessarily
(non)false assertions correlates with the number of relevant assertions induced by QRPs. On
ul00cl, the QRPs involve 85 to 745 relevant assertions, and it takes 30ms to 544ms, while
it takes 59ms to 1333ms for the same QRPs on u100c20, where 144 to 1350 assertions are
involved, and up to 1541ms for 1395 assertions for the QRPs having more unwanted answers.
Figure 5.8 shows the time needed to compute necessarily (non)false assertions w.r.t. the
number of relevant assertions on the three cases. While these times seem reasonable in
practice, ranking the remaining relevant assertions based on their impact is time consuming
(it requires a number of calls to the SAT solver quadratic in the number of assertions): it
takes less than 10s up to ~150 assertions, less than 5 minutes up to ~480 assertions, and up
to 30 minutes for ranking 833 assertions. Figure 5.9 shows the time needed to rank remaining
assertions w.r.t. their number.

The percentage of necessarily (non)false assertions is higher on u100c20 (between 29%
and 41% of the relevant assertions) than on ul00cl (between 14% and 21% of the relevant
assertions) for the same QRPs as well as for those having more unwanted answers. This is
due to higher numbers of necessarily false assertions on u100c20.

Regarding the ranking of the relevant assertions not necessarily (non)false, we observed
that the minimal impact guaranteed is typically O for our QRPs, but that the sum of the impact
of being false or true can be high (up to 20 on u100c20, up to 16 on ul00cl). Moreover, the
first assertions have an impact significantly higher than the average: on u100c20, for almost
every QRP, the 10 first assertions have an impact of 20, while the average ranges from 2.4 to
5.8, and on ul00c1, the average impact of the 10 first assertions ranges from 3.8 to 6.5, while
the average of all assertions is below 1.

We also executed a few steps of interaction. We accepted the necessarily (non)false
assertions, and indicated for the 10 first assertions whether they are true or false. We

141

Query-driven repairing

Fig. 5.9 Time in seconds for ranking the relevant assertions that are not necessarily false
or nonfalse w.r.t. the number of such assertions. The two figures on the left are related to
the same QRPs, on ul00cl and u100c20. The QRPs of the figure on the right have more
unwanted answers.

u100c1 u100c20 u100c20

I QRP:

600 1600 2000 argertis
1400 1800
500 1600
1200 1400
400 1000 1200
% 300 - 800 -+ 1000
© P © 800

£ £ 600 £
E 200 E E 600
400 400
100 200 200
0 0 0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Number of assertions Number of assertions Number of assertions

observed that during the first steps, the false assertions (the assertions inserted to create
conflicts as well as those displayed in Figure 5.7) tend to be ranked in the first tens assertions.
Indeed, their impact of being declared true is generally high, either because they have a lot of
conflicts, or because they belong to many causes of unwanted answers which have only one
remaining assertion not assigned to nonfalse beside them.

We also generate random QRPs to get some problems which have no potential solution.

In all cases, computing the MCSWs takes a few milliseconds, and we found at most one
MCSW.

142

PREFERRED REPAIR SEMANTICS

In this chapter, we investigate variants of the AR, IAR and brave semantics obtained by
replacing the classical notion of repair by one of four different types of preferred repairs.
We analyze the complexity of query answering under the resulting semantics, focusing on
DL-Liter. Unsurprisingly, query answering is intractable in all cases, but we nonetheless
identify one notion of preferred repair, based upon priority levels, whose data complexity
is “only” coNP-complete, as for plain AR semantics. This leads us to propose an approach
exploiting a SAT encoding for the semantics based on this kind of repairs. An experimental
evaluation of the approach shows that consistent query answering is more difficult with
priorities than with the classical set-inclusion repairs, but still scales on realistic cases. The
main results of this chapter have been published in [Bienvenu ef al. 2014].

6.1 Preferred repair semantics

The classical notion of repair integrates a very simple preference relation, namely set in-
clusion. When additional information on the reliability of ABox assertions is available, it
is natural to use this information to identify preferred repairs, and to use the latter as the
basis of inconsistency-tolerant reasoning. This idea leads us generalize the earlier definitions,
using preorders to model preference relations.

Definition 6.1.1. Let £ = (7, .A) be a KB, and let < be a preorder over subsets of 4. A
=-repair of IC is a T -consistent subset of .4 which is maximal w.r.t. <. The set of <-repairs
of K is denoted Rep<(K).

Definition 6.1.2. A Boolean query ¢ is entailed by K = (7,.A) under the <-AR semantics,
written IC =<_ar ¢, if (T, R) |= g for every R € Rep<(K); it is entailed by K under the
=-IAR semantics, written K =<1ar ¢, if (T, Rn) = ¢ where Rn = Nrepep, (k) Rs it is
entailed by C under the <-brave semantics, written K =< prave ¢, if (T,R) |= ¢ for some
R € Rep<(K).

143

Preferred repair semantics

6.1.1 Preference relations

The problem of reasoning on preferred subsets has been studied in a number of areas
of Al such as abduction, belief change, argumentation, and non-monotonic reasoning,
see [Eiter & Gottlob 1995, Nebel 1998, Amgoud & Vesic 2011, Brewka ef al. 2008] and ref-
erences therein. We consider four standard ways of defining preferences over subsets.
Cardinality-maximal repairs are intended for settings in which all ABox assertions are be-
lieved to have the same likelihood of being correct. The other three types of preferred repairs
target the scenario in which some assertions are considered to be more reliable than others,
which can be captured qualitatively by partitioning the ABox into priority levels (and then
applying either the set inclusion or cardinality criterion to each level), or quantitatively by
assigning weights to the ABox assertions (and selecting those repairs having the greatest
weight).

Cardinality (<) A first possibility is to compare subsets using set cardinality: A; < As iff
|A1| <|.Az|. The resulting notion of <-repair is appropriate when all assertions are believed
to have the same (small) likelihood of being erroneous, in which case repairs with the largest
number of assertions are most likely to be correct.

Priority levels (C p, <p) We next consider the case in which ABox assertions have been par-
titioned into priority levels P, ..., P, based on their perceived reliability, with assertions in
P considered most reliable, and those in P, least reliable. Such a prioritization can be used
to separate a part of the dataset that has already been validated from more recent additions.
Alternatively, one might stratify assertions based upon the concept or role names they use
(when some predicates are known to be more reliable), or the data sources from which they
originate (in information integration applications). Given a prioritization P = (Py,..., P,)
of A, we can refine the C and < preorders as follows:

* Prioritized set inclusion: A; Cp As iff A1 N P; = AyN P; for every 1 <1i < n, or there
is some 1 <i<nsuchthat A;NF; C AsNF;andforall 1 <j <i, A1NP; = AN P;.

* Prioritized cardinality: A; <p A iff |A; N P;| = | AN P;| for every 1 <i < n,
or there is some 1 < i < n such that [4; N P;| < |A2N P;| and for all 1 < j <4,
|A1ﬂpj’ = ’Agﬂpﬂ.

Notice that a single assertion on level F; is preferred to any number of assertions from F; 1,
so these preorders are best suited for cases in which there is a significant difference in the
perceived reliability of adjacent priority levels. A few priority classes seems a reasonable
scenario.

Weights (<,,) The reliability of different assertions can be modelled quantitatively using
a function w : A — N assigning weights to the ABox assertions. The weight function w
induces a preorder <,, over subsets of .4 in the expected way: A1 <,, A2 iff ¥, 4, w(a) <
Y e, w(a). If the ABox is populated using information extraction techniques, the weights
may be derived from the confidence levels output by the extraction tool. Weight-based
preorders can also be used in place of the <p preorder to allow for compensation between
the priority levels.

144

6.1 Preferred repair semantics

Remark 6.1.3. For cardinality, prioritized cardinality or weights, it may be interesting to
relax the constraint by considering the repairs of cardinality or weight greater than a fraction
of the maximum cardinality or weight to temper the threshold effect. As we will see, this
generalization does not cause an increase in complexity.

By definition of <-IAR, <-AR, and <-brave, we still have the following relation:

Proposition 6.1.4. For every preference relation <:

K }:j-IAR q — K }:j-AR q — K):j-brave q
Moreover, since for <€ {<,Cp,<p, <, }, every =<-repair is a C-repair:

Proposition 6.1.5. For <€ {<,Cp,<p,<,}, and S € {IAR, AR, brave}, if K =c s q, then
KE<sq

Finally, since every <p-repair is a C p-repair:
Proposition 6.1.6. For S € {IAR, AR, brave}, if K =c,.s q, then K =< .5 q.
The following example illustrates the different semantics.

Example 6.1.7. We consider a simple knowledge base K = (T, .A).

T ={Student C Person, Prof C Person, Student C —Prof,
JTeach C Prof,3Teach™ C Course, Course C —Person}

A ={Student(ann), Teach(ann,c;), Teach(ann,cz),
Student(bob), Prof (bob), Teach(cz, bob), Teach(bob, c3) }

From A and the inclusions in 7, we can infer that ann is both a student and professor, and
bob is a person and course, so the KB is inconsistent as both negative inclusions of 7 are
violated. The repairs of C are:

R1 ={Student(ann),Student(bob) }

Ro ={Teach(ann,c;1), Teach(ann,cz),Student(bob) }

R ={Student(ann), Prof (bob), Teach(bob, c3)}

R4 ={Teach(ann,cy), Teach(ann,cz),Prof (bob), Teach(bob, c3)}
R ={Student(ann), Teach(cz, bob)}

R ={Teach(ann,c1), Teach(ann,cz), Teach(ca,bob)}

We observe that the query Person(ann) is entailed under the AR semantics, since it can
be inferred from every repair together with the TBox, but it is not entailed under the IAR
semantics, as the intersection of the repairs does not contain any assertion concerning ann.

By moving to preferred repair semantics, we can obtain further answers. First suppose
we adopt the cardinality criterion. Then there is a single <-repair: R4. Queries Prof(ann)

145

Preferred repair semantics

and Prof(bob) are entailed under the <-IAR semantics, while they were not entailed under
plain AR semantics.
Next suppose we have the following prioritization P = (P, P») of A:

P; ={Student(ann),Student(bob), Prof (bob) }
P, ={Teach(ann,cy), Teach(ann, cz), Teach(bob, c3) }

The C p-repairs are 'R1 and R3, and there is only one < p-repair, namely R3. Notice that
Student(ann) is entailed under the Cp-IAR and <p-IAR semantics, whereas it was not
entailed under plain AR semantics, and it conflicts with an assertion entailed under <-IAR
semantics. The assertion Prof (bob) is entailed under < p-IAR semantics, but only Person(bob)
is entailed under C p-AR semantics.

Finally, if we assign assertions in P, a weight of 2, and assertions of P, a weight of 1,
we obtain two <,,-repairs: R3 and R4. Under <,,-AR semantics, neither Prof(ann) nor
Student(ann) is entailed, but only Person(ann). Under <,,-IAR semantics, Prof(bob) is
entailed. N

6.1.2 Discussion: other notions of prioritized repairs

Three other preference-based semantics are proposed in [Staworko et al. 2012] for querying
databases that violate integrity constraints, based upon partially ordering the assertions
that appear together in a conflict. We show that if such an ordering is induced from an
ABox prioritization, then the three semantics all coincide with our C p-AR semantics. The
following definitions are theirs, adapted to our context.

Definition 6.1.8 (Priority). A priority < is a binary relation on .4 such that < is acyclic and
for every 3, 0 in A, if 5 < ¢ then 5 and ¢ are in a conflict of A w.r.t. 7.

Definition 6.1.9 (Globally-optimal repair). Given a priority <, a subset R of A is a globally-
optimal repair if R € Repc (T ,.A) and no nonempty subset 3 of assertions from R can be
replaced with a subset D of A\R such that for every 5 € B there exists § € D such that
[< ¢ and the resulting set of assertions (R\B) UD is T -consistent.

Definition 6.1.10 (Pareto-optimal repair). Given a priority <, a subset R of A is a Pareto-
optimal repair if R € Repc (T ,.A) and no nonempty subset 3 of assertions from R can be
replaced with a subset D of A\ R such that for every 5 € B and for every 6 € D, < § and
the resulting set of assertions (R\B) UD is T -consistent.

Notice that the definition of Pareto-optimal repair is equivalent if we require D to be a
singleton.

Definition 6.1.11 (Total priority). A priority < is total if for every (3, ¢ in A, if and ¢ are
in a conflict together, then 5 < 6 or § < f3.

Definition 6.1.12 (Completion-optimal repair). Given a priority <, a subset R of A is a
completion-optimal repair if there exists a total priority <" such that <C <’ (i.e. for every f3,
din A, if 8 < § then 8 <’ 0) and R is globally-optimal w.r.t. <’.

146

6.1 Preferred repair semantics

In the following, the sets of repairs of A for these three notions will be denoted
GRep<(T,A), PRep<(T,A) and CRep<(T,.A) respectively.

Remark 6.1.13. If the priority < is total, then it specifies how to resolve every conflict.
In this case, GRep<(T,A) = PRep<(T,A) = CRep<(T,.A) and contain only one repair
[Staworko et al. 2012]. This repair is obtained by repeating the following step until the ABox
is empty: choose an assertion which is not dominated for < by any other, add it to the repair
if it does not lead to 7 -inconsistency, and remove it from A.

These notions use another type of priority than the C p-preference. It is thus natural to
wonder how they are related. We show that the priority induced by a partition of .4 into
priority levels (and even in the case where some assertions are not assigned to any level)
makes the globally-optimal, the Pareto-optimal and the completion-optimal repairs coincide
with the C p-repairs. Notice that in the general case, these three notions of repairs can be
different.

Proposition 6.1.14. Let PUZ = (P, ..., P;) UZ be a partition of A. Let <p be the priority
defined by: for f3, § in A, B <p ¢ if there exist i,j € {1,...,k} such that € P;, 6 € P;
and i > j and f3, § are in a conflict. In this case, CRep<,(T,A) = GRep~,(T,A) =
PRep<,(T,A) = Repc,(T,A).

Proof. [Staworko er al. 2012] has shown CRep~,(T,A) C GRep<,(T,A) C
PRep~,(T,A) in the general case.
e PRep~ (T, A) CCRep<,(T,A):

Let R € PRep~,(T,A). Let <, be a total extension of the priority </, defined by:
p <5 0 if B, 6 are in a conflict and

* there exist,j € {1,...,k} such that 5 € P;, 6 € Pjand ¢ > j, or
* there exists i € {1,...,k} such that 5 € P, and 0 € Z, or

e there exists 7 € {1,...,k} such that 5 € P,\R and 0 € P,N'R, or
e feZ\Randd € ZNR

To get a total priority, it suffices to arbitrary order the assertions belonging to Z\R, to ZNR,
to P;\'R and to P; "R for each i.

Clearly <pC~</5. We show that R is a globally-optimal repair w.r.t. <’». Suppose it is
not. Then there exist nonempty B C R and D C A\R such that for all § € B, there exists
¢ € D such that 5 </, § and (R\B)UD is T -consistent. If BNZ # 0, let 5y € BNZ. There
exists g € D such that Sy </5 do. It follows from the construction of </, that oy ¢ P; for
any j, so 0g € Z. Thus §g € Z\R and Sy € ZN'R so0 dp <'p Bo. This yields a contradiction so
BNZ =0.Letm=min{i|BNP;#0}. If there exist j < m and dy € DN P; then 5 <p &y
for all 5 € B and since (R\B)UD is T -consistent, (R\B) U{dp} is T -consistent. It follows
that R is not a Pareto-optimal repair. Hence for all 6 € D, there exists 7 > m such that
6 € Pj. Let By, € BN Py, and §,, € D be such that £, <’ dy,. If 4,5, € Pj and j > m, then
Om <’P B, else, &, € Py \'R and 0y, <§3 B since B, € P, NR. In both cases, we obtain
a contradiction. Hence R is a globally-optimal repair w.r.t. <, and R € CRep<,(T,A).

147

Preferred repair semantics

o Repc (T, A) C PRep<,(T,A):

Let R € Repc,(T,.A). Suppose for a contradiction that R ¢ PRep— (T ,.A). Then we
can find nonempty B C R and § € A\R such that for all 5 € B, 5 <p 6 and (R\B)U{d} is
T -consistent. Since there exists 3 such that § <p 9, then there exists m such that 6 € P,,
by definition of < p. For all 5 € B, since <p 0, there exists 7 such that 5 € P; and i > m.
Let A’ be any T -consistent extension of (R\B)U{d}. Since for all 8 € B, § € P; with
i>m,then RNZC A NZ, RNP; CA'NPjforall j <mand RN P, C A N Py, which
contradicts the assumption that R € Repc (T, A).

o PRep~,(T,A) C Repc,(T,A):

Let R € PRep~,(T,A). Suppose for a contradiction that R ¢ Repc (7T ,.A). Then
there exists a T -consistent subset A’ C A and m € {1,...,k} such that RNZ C A'NZ,
RNP; CA'NPjforall j <m,and RNP,, C A'NPy,. (Indeed, if RN P; C A'NP; for
all j,and RNZ C A'NZ, then R C A’ is not maximal.) Let 6 € (A'N P,,)\R and let C
be the set of assertions in R U {¢} which belong to a conflict. The assertion § belongs to C,
since R is T -consistent and maximal for set inclusion. Let B = C\ A’. B is nonempty, since
A’ is T -consistent and contains 6. We know that if 3 € B then there exists ¢ > m such that
€ P (since forall 5 € R,if 5 € T or § € P; with j <m, 5 € A’). So we have that for all
g e€B,<pdand (R\B)U{d} is T -consistent (since all conflicts of RU {4} are in C, and
C\B C A’ is T -consistent) which contradicts R € PRep~,(T,A).

O

6.2 Complexity analysis

In this section, we study the complexity of query entailment under preferred repair semantics,
focusing on DL-Liter. However, many of our results hold also for other DLs and ontology
languages.

There are some previous works that study the complexity of reasoning with preferred re-
pairs: [Du et al. 2013] considers query answering under <,,-AR semantics for the expressive
DL SHZQ, but they focus on ground CQs, as such queries are better-supported by SHZQ
reasoners. By contrast, we work with DL-Liter and can thus use query rewriting techniques
to handle CQs with existential variables. In [Lopatenko & Bertossi 2007], the authors study
the complexity of query answering in the presence of denial constraints in the databases
setting under the <-AR and <,,-AR semantics. Because of the difference in setting, we
could not transfer their complexity results to DL-Lite.

Table 6.1 recalls existing results for query entailment under the standard AR, TAR and
brave semantics and presents our new results for the different preferred repair semantics.

Theorem 6.2.1. The results in Table 6.1 hold.

We break the proof of Theorem 6.2.1 down into several propositions. We first consider
combined complexity and the AR family of semantics.

Proposition 6.2.2. Regarding combined complexity, CQ entailment over DL-Liter KBs is
Hg—complete under <-AR, Cp-AR, <p-AR, and <,,-AR semantics.

148

6.2 Complexity analysis

Table 6.1 Data and combined complexity of CQ entailment over DL-Litegx KBs under AR,
IAR, and brave semantics for different types of preferred repairs. For instance queries, the
data and combined complexity coincide with the data complexity for CQs. All results are
completeness results unless otherwise noted. T A5[O(log n)]-complete under the assumption
that there is a bound on the number of priority classes (resp. maximal weight).

C < Cp <p <w
AR coNP AB[O(log n)] coNP ADT ADT
IAR in P AB[O(log n)] coNP ADT AbT
brave in P AP[O(log n)] NP ADT ADT

Data complexity
C < Cp <p <w

AR 1 1 1 1 1
IAR NP AB[O(log n)] AB[O(log n)] AbT AbT
brave NP AB[O(log n)] NP AbT ADT

Combined complexity

149

Preferred repair semantics

Proof. First, we observe that for all four notions of preferred repair, it is possible to test in
coNP whether a given set constitutes a preferred repair. Indeed, if a consistent subset of the
ABox is not a repair, then this is witnessed by another consistent subset which is preferred
to it. Thus, non-entailment of a CQ ¢ from a KB K = (7 ,.A) can be shown by guessing a
subset R C A and using an NP oracle to verify that (i) R is a preferred repair of K, and (ii)
(T,R) 4.

For the lower bounds, we note that the proof of IT5-hardness of CQ entailment under
plain AR semantics can be reused for the <-AR semantics, since the <-repairs and C-repairs
coincide for the KBs employed in that reduction. The lower bounds for the other semantics
follow immediately. [

We next turn to the data complexity of query entailment under the different brave and
AR-based semantics.

Proposition 6.2.3. Regarding data complexity, instance queries and CQ entailment over
DL-Liter, KBs are coNP-complete for C p-AR, and NP-complete for C p-brave semantics.
For instance queries, we obtain coNP-completeness also for combined complexity.

Proof. We observe that it can be tested in polynomial time (w.r.t. combined complexity)
whether a subset R C A is a Cp-repair. This can be done by first verifying that R is
T -consistent and then for 1 < ¢ < k, checking that it is not possible to add an assertion
belonging to P;\ R to RN (P U...U P;) while staying T -consistent. It follows that in the
procedure from the proof of Proposition 6.2.2, properties (i) and (ii) can be verified in P w.r.t.
data complexity, yielding a coNP upper bound for CQ entailment under C p-AR.

For C p-brave, replacing (ii) by (7, R) | ¢ in the procedure from the proof of Proposi-
tion 6.2.2 gives a procedure to show C p-brave entailment of a CQ ¢. This gives us the NP
upper bound.

Finally, we note that in the case of instance queries, property (ii) can be checked
in P w.r.t. combined complexity in both cases, and so we obtain the upper bounds also
w.r.t. combined complexity.

The lower bound for C p-AR follows from the coNP-hardness of instance query entail-
ment under the standard AR semantics.

For the C p-brave semantics, the NP-hardness of instance query entailment can be shown
by reduction from SAT. Let o = c¢1 A... Acy, be a propositional CNF with variables x1, ...,).
Consider the TBox and prioritized ABox defined as follows:

T ={3P C-3N~,3PC-3U",ANC -30U,3U C -B}

Py ={P(cj,z;) |1 <j<m,z; €c;} U{N(cj,x;) |1 <j<m,—z; € ¢;}U
(Ula,e5) 1<) <m)

Py ={B(a)}

with A = PyUP, and P = (P, P»). Figure 6.1 illustrates the reduction. It can be verified
that (7, A) =c p-brave B(a) iff ¢ is satisfiable. Indeed, ¢ is satisfiable iff there exists a

150

6.2 Complexity analysis

Fig. 6.1 Reduction from SAT for NP-hardness of Cp-brave query answering. Graph-
ical representation of the ABox constructed from an example set of clauses ¢ =
{Cl =x1V-x9,Co =21 VoV —|373}.

C-repair of P; that contains no U assertion (as in the proof for coNP-hardness of plain AR
query entailment). Since the U-edges are preferred to B(a), there exists a C p-repair of A
that contains B(a) iff there exists a C-repair of P; that contains no U assertion. It follows
that ¢ is satisfiable iff (7,.A) F=c ,-brave B(a).

]

For the <p and <,,-based semantics, we distinguish two cases, depending on whether
the maximal number of priority classes (resp. maximal weight) is considered to be fixed
independently of the ABox or is counted as part of the input. The former assumption is
made in [Du et al. 2013], where a AL[O(log n)] upper bound is given for the expressive
DL SHZQ that contains DL-Liteg as a fragment. A A[O(log n)] lower bound for atomic
queries 1s also given in [Du et al. 2013], but the proof uses constructs that are unavailable
in DL-Lite. Likewise, the proof of AJ[O(log n)]-hardness for atomic queries under the
<-AR semantics from [Lopatenko & Bertossi 2007] utilizes denial constraints that cannot
be expressed in DL-Lite.

Proposition 6.2.4. Regarding data complexity, instance query and CQ entailment over
DL-Litep KBs are:

. Ag-complete for the <p-AR, <,-AR, <p-brave and <,,-brave semantics,

o AL[O(log n)]-complete for the <-AR and <-brave semantics, and for the <p-AR and
<p-brave, and <,,-AR and <,,-brave semantics, if there is an ABox-independent
bound on the number of priority classes (resp. maximal weight).

For instance queries, these results also hold w.r.t. combined complexity.

For the proof of Proposition 6.2.4 and later propositions, we will leverage the follow-
ing result, which demonstrates how the semantics based upon the prioritized cardinality
preference relation can be recast in terms of weight functions.

Lemma 6.2.5. (Adapted from [Eiter & Gottlob 1995]) Let P = (P, ..., Pk> be a prioritiza-
tion of A, let u= (max?_, | Pi|) + 1, and let w be defined by: w(a) = u*~ for a € P;. Then
the set of <p-repairs of (T, A) coincides with the set of <,,-repairs of (T, A), for every
TBox T.

151

Preferred repair semantics

The proof of Proposition 6.2.4 will also make frequent use of the following characteriza-
tion of <-repairs.

Lemma 6.2.6. A subset R of A is a <-repair of Aw.r.t. T if and only if R is T -consistent
and there do not exist subsets X of R and Y of A\R such that |Y| > |X| and (R\ X)UY
is T -consistent.

Proof. For the first direction, let R be in Rep<(K). Suppose for a contradiction that there
exist a subset X of R and a subset Y of A\R such that |Y| > |X| and (R\ X)UY is
T-consistent. Let R’ = (R\ X)UY. Then R’ is a T-consistent subset of A and |R'| =
IR|—|X|+ Y], s0|R| >|R|. Hence, R is not a <-repair.

For the other direction, let R be a T -consistent subset of .4 such that there does not
exist any subset X of R such that there exists a subset Y of A\R such that |Y| > | X|
and (R\ X)UY is T-consistent. Suppose for a contradiction that R ¢ Rep<(K). Let
R’ € Rep<(K). Since R is not a <-repair, |R’| > |R|. Let X = R\R’' and Y = R’\R. Then
(R\ X)UY =R’is T-consistent and |Y| = |R/| — |[R'NR| and | X| = |R|—|RNR/], so
Y| > | X|. Hence X,Y contradict the assumption. It follows that R € Rep<(K). O

We are now ready to give the proof of Proposition 6.2.4.

Proof of Proposition 6.2.4.

Upper bounds. For the <,,-AR semantics, we use the following procedure to decide whether
K <.-ar ¢

1. Compute the weight e, of <y -repairs by binary search, calling the NP oracle to
determine whether there exists a 7 -consistent subset A" C A such that ¥, c 4 w(a) > u
where v is the input.

2. Call the NP oracle to determine whether there exists R C A, T -consistent and such
that Y ,cgr w(a) = urep and (R, T) }~= ¢. Return “not entailed” if the call succeeds.

This procedure yields membership in AL for the general case. If there is an ABox-independent
bound b on the maximal value of w, then urep < Y e qw() < b|A|, where b is treated as
a constant. It follows that the procedure requires only logarithmically many oracle calls,
yielding an improved upper bound of AZ[O(log n)]. Note that in the case of instance queries,
we can test (R, 7T) [~ q in polynomial time w.r.t. combined complexity, so these upper bounds
apply also w.r.t. combined complexity.

We can derive the upper bounds for the <p-AR semantics by applying Lemma 6.2.5.
Note that when there is a bound £ on the number of priority levels, then this implies a
polynomial bound of (max®_;|P;|+1)*~! < (JA| +1)¥~! on the maximal weight of the
corresponding weight function, and so the AJ[O(log n)] upper bound applies. This holds in
particular when k£ = 1, i.e. for the <-AR semantics.

For the <,,, <p, and <-brave semantics, we simply replace (R, T) }~ ¢ by (R, T) Eq
in the above procedure.

In the case where we consider the repairs that have a weight greater than a fraction
0 <t <1 of the maximum weight, we simply need to replace uep by £ * uep in the second

152

6.2 Complexity analysis

Fig. 6.2 Reduction for Ag—hardness of query answering under < p-AR or < p-brave semantics.
Graphical representation of the ABox constructed from an example set of clauses ¢ =
{Cl =21 V9V, co="21VIyV —|333}.

T
T P
C1
T Ny 3
xT9 Nl
B C2
T N3
T3

step. In this case we cannot use Lemma 6.2.5 to derive the upper bound for <p-AR, but it is

still possible to use a similar procedure, which starts by computing the number of assertions

of each priority in a preferred repair by binary search (compute first the maximum number
1

Srep of assertions from P in a consistent subset, then the maximum number of assertions
1

from P, in a consistent subset that contains s, of assertions from P, etc..).

A’Q) lower bound for instance queries under <p-AR and < p-brave semantics.

The proof is by reduction from the following Ag -complete problem, cf. [Krentel 1988]:
given a satisfiable 3CNF formula ¢ = c1 A ... A ¢y, over variables x4, ..., z,, decide whether
the lexicographically maximum truth assignment satisfying ¢ with respect to (z1,...,25),
denoted by vmax, fulfills vmax(x,) = true. We encode this problem as a <p-AR (resp.
< p-brave) query entailment problem as follows:

T ={3P,C~3N,y,3P, C-3N, |1 < (0 <3}U
{3P,C =3Py, 3N, T =3Ny |1 <L+ <3}U{TC—-3IN; |1< (<3}
A={Py(cj, ;) | z; is the ¢'" literal of ¢;} U {Ny(cj, x;) | ~; is the £ literal of ¢; }U
{T(x;) | 1<i<n}
q="T(xn)
with the prioritization P = (P, ..., P,4+1) of A as follows: P; = A\ {T'(z;) |1 <i<n}, and

for1 <i<n+1, P,={T(z;—1)}. Figure 6.2 illustrates the reduction.
We show that (7, A) < ,-ar ¢ (tesp. (T, A) =< p-brave @) iff Vmax () = true.

153

Preferred repair semantics

The formula ¢ is satisfiable so there exists a truth assignment v satisfying ¢. Let A" be
the subset of A defined as follows:

A" ={T(x;) | v(z;) = true,1 <i<n}U
{Pl(cj,:vi) | v(x;) = true,1 < j < m,z; I'" literal of cj} U

{Nl(cj,:ri) | v(x;) = false,1 < j < m,—wx; 1" literal of cj}

and let A’ be a C-repair of A”.

All the conflicts between the assertions in A" are of the form {P;(¢c;,x;), Py(cj,xy)},
{Ni(¢j,zi), Ny (cj,xi)} or {P(cj,x;), Ny(cj,)} so A’ contains the same assertions in-
volving 7" than A" and exactly m assertions of the form P;(c;,z;) or Nj(c;,z;) (one for each
clause c;, since there is no reason to remove all P;(c;j,x;) or Nj(c;,x;) for a given c;).

It follows that A’ is a C-repair of A which contains m assertions of P;. Since it is not
possible for a 7 -consistent subset of .A to contain more than one assertion of P; involving c;
for each c¢;, a <p-repair of A contains exactly m assertions of P;.

Then, among all C-repairs of .4 which contain m assertions of Pj, if some of them
contain 7'(x1), the others are not < p-repairs of .A. In the same way, for all 1 <14 < n, among
all C-repairs of A which contain m assertions of P; and all possible T'(z},) w.r.t. the same
condition for h < i, if some of them contain 7'(z;), the others are not < p-repairs of A.

Thus, all <p-repairs of .4 contain the same assertions 7'(z;), and the z; are precisely the
variables assigned to true in the lexicographically maximum truth assignment satisfying ¢,
V.

It follows that I =< ,-ar ¢ (resp. K =<, brave) if and only if v, (z,,) = true.

AB[O(log n)]-hardness for instance queries under <-AR and <-brave semantics.

The proof is by reduction from the Parity(3SAT) problem where we assume that the formulas
are such that ;1 is unsatisfiable whenever (; is unsatisfiable (cf. Appendix A.3). Consider
a Parity(3SAT) instance given by ¢1,...,¢;,. Foreachd, 1 <i <n, let {¢;1,...,C; (i)} be
the clauses of ¢; over variables X; = {z; 1, ..., l“z‘,l(i)}- We define an <-AR (resp. <-brave)

154

6.2 Complexity analysis

query entailment problem as follows:

T={3ACY}U
(3A-C-v43A- C-W?|1<d<3}U
{WIC-3K™[1<d<3,1<m<4U
(VIE-3E™|1<d<3,1<m<4}U
{3K™M"E-3F"|1<m<4,1<r<T}U
{3E™ C-891<m<4,1<g<5U
{S9CT-IF |1<g<51<r<TIU
(3F~C-3PF|[1<r<7,1<k<81<I<3}U
{(3F " C-3Nf|1<r<7,1<k<8,1<1<30U
(BN} C-3PF 1<k K <8,1<I'<3}U
(BNF T3P 1<k K <8,1<1,l' <3}
(3PFC 3P |1<k K <81<141'<3}U
(OGN} C 3N} 1<k K <81<I1#£1'<3}
A={A(y,a;) |i=1mod 2,1 <i<n}
U{K™(ai, i), Wa;) | i=1mod2,1<i<n,1<d<3,1<m<4}
U{E™(ai—1,¢i),V¥ai—1) |i=0mod 2,1 <i<n,1<d<3,1<m<4}
U{S(¢i) |1<i<n,1<g<5}
U{F"(picij) | 1<i<n,1<j<m(i),1<r<T}
U{PF(cij win) | wp is the "™ literal of ¢; ;,1 <i<n,1<1<3,1<k<8}
U{Nf(cij xin) | =i is the 17 literal of ¢; j,1 <i<n,1 <1<3,1<k<8}
q=Y(y)

Note that 7, A and ¢ can be constructed in time polynomial in 1, ..., @y,

First, notice that if R € Rep<(K) and CP(z) € R with C € {V,W, S}, then C(z)eR
for all Cp/(a:) € A. Indeed, since C?(x) and cr' () do not conflict with each other and
they conflict with the same assertions of A, both or neither will appear in R. For the same
reasons, if RP(z,z) € R with R € {K,E,F,P,N}, then R (z, z) € R for every assertion
Rp/(:v, z) € A. Hence, if F1(p;,c; ;) € R for instance, then the seven assertions F" (¢;, ¢; ;)
(1 <r<T7)arein R, and if Fl(goi,ci,j) ¢ R, then no assertion of the form F"(y;,¢; ;)
belongs to R.

Next we establish a series of claims that further characterize the sets in Rep<(KC).
Claim 1 If o; is satisfiable and R € Rep<(K), then S*(y;) € R.

Proof of claim. Suppose that ; is satisfiable and let R € Rep<(K). Since ¢; is satisfiable,
there exists a truth assignment v; of X; such that v;(¢;) = true. It follows that for every

155

Preferred repair semantics

Fig. 6.3 Reduction for A5[O(log n)]-hardness of query answering under <-AR semantics.
Graphical representation of an example ABox (for the case n is odd).

T1,1 xl,l(l) x2.1 xg,l(g) Tn,1 xn,l(n)
Al
C1,1 Cl,m(l) C2.1 627m(2) Cn,1 Cn,m(n)
S9 ¥1 v2 59 “n 59
Km\/Em /Km
Vd,Wd ai Qnp, Wd
M
Y

clause ¢; j of ¢;, vi(c; j) = true so there exists k such that x; j, € ¢; ; and v;(x; 1) = true or
—x; 1 € ¢; j and v;(w; 1) = false. Let

A, ={59(pi) |1 < g <5}
U {Hk(ci’j,x,-7h) | 2 p, It literal of CijsVi(xip) =true,1 <k <8}
U {le(CiJ',ZEi’h) | i h lth literal of Ci,jal/i(xi,h) = false, 1< k < 8}

and A, be a C-repair of Aﬁ,i wrt. T. By construction, the conflicts of
A;,l are of the form {Plk<ci,jaxi,h)7Plllfl(ci,pxi,h)}’{le(Ci,jax@h);Nﬁ/(Ci,j,xi,h)} or
{Plk(ci7j,xi7h),Nﬁl(cid,x@h)}. Hence S9(p;) € Ay, (1 < g <5) and for each clause ¢; j,
there exists exactly one h such that PF(c; j,2;5) € Ay, or NF(c; j,xip) € Ay, (1 <k <8)
(otherwise A, would not be maximal for set inclusion).

Suppose for a contradiction that S'(yp;) ¢ R (thus S9(p;) ¢ R, 1 < g <5). Let
Y = A, \R and let X be the set of the assertions of R which conflict with some
assertion of Y w.r.t. 7. By construction of X, (R\X)UY is 7T -consistent. Since
S9(¢;) €Y,1< g <5,and letting n. be the number of clauses ¢; ; such that Pf(c; j, ;) €Y
or Nf(cij,xip) €EY(1<k<8), |Y|=5+n.+8. X can contain at most 4 assertions
of the form E™(a;—1,p;) (if i is even), which conflict with the S9(¢p;), and n. sets of
7 F"(pi,cij) or of 8 NF(cij,xip) ¢ Y or 8 PF(cij,wi5) ¢ Y, which conflict with the
PY(cijywin) €Y or NK (cijmip) € Y(1 <K <8). Hence |X| < 4+n,*8. It fol-
lows that | X'| < |Y|, so applying Lemma 6.2.6, we get R ¢ Rep<(KC). (End proof of Claim 1)

156

6.2 Complexity analysis

Claim 2 If there exists R € Rep<(K) such that S1(y;) € R, then ¢; is satisfiable.
Proof of claim. Let R € Rep<(K) be such that Sl(goz-) €R. Forall¢;jand 1 <r <7,
F(picij) ¢ R.

Suppose for a contradiction that there exists ¢;; such that for all z;; and all [,
Plcij,xin) ¢ R, N} (cij,xip) ¢ R. If i is even, it is possible to add 7 assertions of
the form F"(¢;, ¢; ;) and remove the 5 assertions S9(p;) € R to obtain a 7 -consistent subset
of A, contradicting the fact that R is a <-repair. If 7 is odd, it is possible to add 7 assertions
of the form F"(¢;,c; ;) and 3 assertions of the form 1/ %(a;) and remove the 5 assertions
S9(pi) € R and 4 assertions K™ (a;, ;) € R (or add 7 assertions of the form " (y;,¢; ;)
and remove the 5 assertions S9(yp;) € R if there is no assertions of the form K" (a;, ;) in
R) to obtain a T -consistent subset of .4, contradicting the fact that R is a <-repair. Thus for
all ¢; j, there exists x; , such that P} (¢; j,x;) € R or N} (ci j,zi5) € R.

Let v; be the truth assignment of the variables of X; defined as follows:

* v;(x;) = true if there exists some assertion Pll(cm,xi,h) ER
* v;(x;) = false if there exists some assertion Nll(cm, rip) ER
* v;(x;,) = true otherwise

By construction of v;, Vi(cm) = true for every clause ¢;; of ;. It follows that ; is
satisfiable. (End proof of Claim 2)

Claim 3 If ¢; is unsatisfiable and R € Rep<(KC), then there exists j such that Fl(y;, cij) €
R.

Proof of claim. Suppose that ¢; is unsatisfiable and let R € Rep<(K). Since ¢; is unsat-
isfiable, S9(p;) ¢ R, 1 < g <5 (by 2). Hence there exists j such that F"(p;,c; j) € R
(1 <r<T7or E™(ai—1,9;) € R (1 <m <4) (otherwise R would not be maximal).

Thus, if 7 is odd, then there exists j such that F" (i;, Cz’,j) ERALTr L.

If 7 is even, suppose for a contradiction that " ((p;, cz-,j) ¢ R (1 <r<T) forevery j.
Thus E™(a;_1,0;) ER(1<m <4)so V4 a; 1) ¢R(1<d<3). Let X = ({A(y,a;)} U
{E"™(ai—1,¢i) | 1 <m<4})NRand Y = {99(p;)|1 < g < 5}U{Vd(al-_1) |1 <d<3}.
| X|<b5and |Y|=8 XCR, Y CAR,|Y|>|X|and (R\ X)UY is T-consistent so R
is not a <-repair.

In both cases, there exists j such that F'"(¢;,¢; j) € R (1 <1 < 7). (End proof of Claim 3)

Claim 4 If there exists R € Rep<(K) such that there exists j such that F1(¢p;,c; ;) € R,
then ¢; is unsatisfiable.

Proof of claim. Let R € Rep<(K) be such that there exists j such that F!(p;,c; ;) € R.
Suppose for a contradiction that (; is satisfiable. Then S'(yp;) € R (by 1) which is not
possible since F'}(ip;,¢; ;) and S*(ip;) are in a conflict. (End proof of Claim 4)

Claim 5 Let R € Rep<(K). If there exists an odd integer k such that S'(¢;) € R and
there exists j such that (¢ 1,cx41,;) € R, or such that S1(p;) € R and k = n, then

157

Preferred repair semantics

A(y,ar) € R.

Proof of claim. Let R € Rep<(K) satisfy the above conditions, and suppose for a contra-
diction that A(y,a;,) ¢ R. Since R is maximal, We(a;) € R (1 <d < 3)or V¥ (ay) € R
(1 <d <3). Hence, if k =n, then K™ (ag,) € R (1 < m < 4), and if k # n, then
K™(ag,pr) € R(1<m<4)or E™(ap,pr11) € R (1 <m <4).

Let X = ({Wap) |1 <d <3Yu{V¥ap)1 <d<3)NRand Y = ({K™(as, o) |
1<m<AyU{E™(ar) |1 <m<4})N(A\R). If k=nthen | X|<3and |Y|=4.Ifk#n
then |Y'| >4 and if 4 < |X| <6 then |Y| = 8 (since in this case X contains assertions of
the form W9 (ay,) and V%(ay,)). In both cases, we have X C R, Y C A\R, |Y| > | X| and
(R\ X)UY is T-consistent, so R is not a <-repair.

We have obtained the desired contradiction, so we can conclude that A(y,ax) € R. (End
proof of Claim 5)

Claim 6 Let R € Rep<(K). If there exists an odd integer k& such that A(y,ax) € R, then
S'(1) € R and there exists j such that F'* (541, Cr+1,j) € R, or SYpr)ERandk=n .

Proof of Claim 6. Let R € Rep<(K) with A(y,ax) € R, for k an odd integer.

First suppose for a contradiction that S' () ¢ R. Since k is odd, S* (i) cannot be in a
conflict with some £ (ay,), so there exists [such that F" (¢, c;) € R (1 <7 < 7). Hence
K™(ap, 1) € R (1 <m <4). Let X = {A(y,a;)} and Y = {W%(ay) | 1 < d < 3}. As
XCR, Y CAR, |Y|>|X]|and (R\ X)UY is T-consistent, it follows that R is not a
<-repair. This is a contradiction, so we may conclude that S'(;,) € R.

If k& # n, suppose for a contradiction that for every j, F"(op41,cp41,5) € R (1 <
r < 7). Since A(y,a;) € R, V¥ (a) ¢ R (1 <d <3)s0 89 (ppr1) €ER (1 <g<5)and
E™(a, prr1) € R (1 <m < 4) (otherwise removing the 4 E™(ay,¢k+1) and adding the
5 S9(ppa1) will provide a T -consistent subset of A with a greater cardinality than R).
Let X = {A(y,a;)} and Y = {V%a;) |1 <d<3}. XCR, Y CAR,|Y|>|X|and
(R\ X)UY is T-consistent, so R is not a <-repair. Again we have a reached a contradiction,
and so may infer that there is some j such that F" (¢4 1,cr41,5) € R (1 < v < 7). (End proof
of Claim 6)

We are now ready to show that I =< ar ¢ (resp. K =<_prave ¢) if and only if the answer
of the initial Parity(SAT) problem is “yes”.

* First suppose that there exists an odd integer k such that oy, is satisfiable and ¢y
is unsatisfiable (or k = n). Let R € Rep<(K). Since ¢y, is satisfiable, S1(¢p) € R
(by Claim 1), and since @1 is unsatisfiable (or £ = n) there exists j such that
Fl(gokH,ckHJ) € R (by Claim 3) (or k = n). Hence A(y,a;) € R (by Claim 5).
Thus for every R € Rep<(K), A(y,ar) € R so (R,T) =Y (y). Hence K |=<_ar ¢
(and therefore K =< _prave Q)

* To show the other direction, suppose that K =< prave Y (y) (or that IC =<_ar Y (y)).
There exists R € Rep<(K) such that (R, 7T) = Y (y), so there exists an (necessarily
odd) integer k such that A(y,a;) € R. Thus by Claim 6, S*(¢;,) € R and there exists
4 such that Fl((pk+1,Ck+1’j) € R, or S'(pr) € R and k = n. It follows that ¢y, is

158

6.2 Complexity analysis

satisfiable (by Claim 2) and ¢y 1s unsatisfiable (by Claim 4) or ¢y, is satisfiable and
k=n.

Remaining lower bounds. Applying Lemma 6.2.5, we can transfer the A} lower bound
for instance queries under <p-AR and < p-brave semantics to the <,,-AR and <,,-brave
semantics. The preceding AL[O(log n)] lower bound for instance queries under the <-AR
and <-brave semantics transfers to the <p-AR and < p-brave semantics (under the bounded
priority level assumption). The latter result can then be transferred using Lemma 6.2.5 to the
<w-AR and <,,-brave semantics (under the bounded weight assumption). OJ

We next give the combined complexity of query entailment under the different brave
semantics.

Proposition 6.2.7. Regarding combined complexity, CQ entailment over DL-Liter, KBs is
AB[O(log n)]-complete under <-brave, NP-complete under C p-brave, and AbL-complete
under <p-brave and <,,-brave semantics. If there is an ABox-independent bound on the
number of priority classes (resp. maximal weight), CQ entailment under < p-brave (resp.
<w-brave) is Ab[O(log n)]-complete.

Proof. For the upper bounds, we use the fact that in the decision procedures used in the
proofs for data complexity, instead of guessing a repair and checking that it is a preferred
repair that entails the query ¢, we can guess a repair together with a certificate that it entails ¢,
and verify everything in P w.r.t. combined complexity. Therefore the “guess and check” step
of all procedures is in NP, and the uppers bounds are the same w.r.t. combined complexity as
w.r.t. data complexity. The lower bounds follow from the data complexity. 0

Finally, we establish the complexity of query entailment under the different IAR seman-
tics.

Proposition 6.2.8. Regarding data complexity, instance query and CQ entailment over DL-
Liter KBs is coNP-complete for the C p-IAR semantics. For instance queries, we also have
coNP-complete regarding combined complexity.

Proof. We can show that (7, A) ~c ,-1ar ¢ as follows:

1. Guess a subset A" = {aq,...,a;,} C A together with a subset R; C A with o; € R;
foreach1 <7 <m.

2. Verify that (i) each R; is a C p-repair and (ii) (7, A\ A’) } q.

Since C p-repairs can be identified in polynomial time (cf. proof of Proposition 6.2.3) and
query entailment is in P for data complexity, the above procedure runs in non-deterministic
polynomial time in the size of .A. We thus obtain a coNP upper bound for data complexity.
For instance queries, query entailment is in P for combined complexity, so we obtain an
coNP upper bound also for combined complexity.

159

Preferred repair semantics

Fig. 6.4 Reduction from UNSAT for coNP-hardness of Cp-IAR query answering.
Graphical representation of the ABox constructed from an example set of clauses ¢ =
{Cl =x1V-x9,Co =21 VIV —|373}.

We show coNP-hardness using a reduction from UNSAT. Let p =c; A...A¢cy, be a
propositional CNF with variables 1, ..., z,. Consider the TBox and prioritized ABox defined
as follows:

T ={3P C-3N",3PC-3U " ,3NC-3U ,3UC -B,BC -A}
Py ={P(cj,x;) | 1< j<m,z; € ¢;} U{N(cj,zi) | 1 < j <m, i € ¢j}
Py ={U(a,¢j) |1 <j <m}

Py ={A(a), B(a)}

with A = PUP,U P and P = (Py, P, P3). Figure 6.4 illustrates the reduction. It can
be verified that (7, A) =c ,-1ar A(a) iff ¢ is unsatisfiable. Indeed, a C p-repair does not
contain A(a) iff it contains B(a) (since it is its only conflict), and since the U-edges are
preferred to B(a), a Cp-repair contains B(a) only if it contains some P or N assertions that
conflict every U, i.e. if ¢ is satisfiable. In the other direction, if ¢ is satisfiable, there exists a
C p-repair that contains no U and such a repair contains either A(a) or B(a). O

Proposition 6.2.9. For data and combined complexity, instance query and CQ entailment
over DL-Liter, KBs is:

. Ag-complete for the <p-IAR and <,,-IAR semantics,

 AL[O(log n)]-complete for the <-IAR semantics, and for the <p-IAR and <,,-IAR
semantics, if there is an ABox-independent bound on the number of priority classes
(resp. maximal weight).

We also have AL|O(log n)]-completeness for CQ entailment under C p-IAR semantics for
combined complexity.

Proof.

Upper bounds. For the <,,-IAR semantics, we can use the following procedure to decide
whether (T, A) <, 1AR ¢

1. Compute the weight uep of <y-repairs (cf. proof of Proposition 6.2.4).

160

6.2 Complexity analysis

2. Forevery a € A, use an NP oracle to decide if there exists a 7 -consistent subset B C A
such that a ¢ B and ¥, cgw(a) = urep. Let A’ be the set of all assertions for which no
such subset exists.

3. Use an NP oracle to verify that the CQ ¢ is not entailed from (7, A’).

Correctness of the above procedure is straightforward: the ABox A’ constructed in Step
2 is precisely the intersection of the <,,-repairs. The procedure runs in polynomial time
with access to an NP oracle, yielding membership in AL. For the bounded weight case, we
recall that the class AL[O(log n)] can be equivalently characterized as the class of decision
problems which can be solved in polynomial-time with a single round of parallel calls to an
NP oracle, cf. [Buss & Hay 1991]. By using this technique, instead of computing tyep in
Step 1 by making a sequence of logarithmically many oracle calls, we can instead issue a
single round of parallel calls to the NP oracle. Steps 2 and 3 can be implemented using two
further rounds of parallel NP oracle calls. It follows from results in [Buss & Hay 1991] that
we can reduce these three rounds into a single one, from which membership in A5[O(log n)]
follows.

Similarly to the proof of Proposition 6.2.4, we can exploit Lemma 6.2.5 to obtain the
upper bounds for the <p-IAR and <-IAR semantics. For the C p-IAR semantics, we can
skip Step 1 of the procedure and modify Step 2 by using the polynomial-time procedure for
identifying C p-repairs from the proof of Proposition 6.2.4.

AP[O(log n)]-hardness for CQs and C p-IAR semantics. The proof is by reduction from
the Parity(3SAT) problem. Let ® = ¢q,..., ¢, be a Parity(3SAT) instance satisfying the
same restrictions as in the proof of Proposition 6.2.4, where each ¢; is a 3CNF over the
variables z; 1,...,7; g, composed of m; clauses ¢; 1,...,¢;m,;. We combine ideas from the
proof of Proposition 6.2.8 with a construction from [Bienvenu & Rosati 2013]. In the latter
paper, the authors define ABoxes .A; for the odd j € [1,n] and a Boolean CQ ¢ with the
following properties:

1. if j1 # jo, then Inds(A;,) NInds(Aj,) = 0;
2. (0,U; Aj) = ¢ if and only if (0, A;) = ¢ for some j;
3. (B, A;) k= ¢ if and only if y is satisfiable for 1 < ¢ < j;

4. there is a variable x in ¢ and an individual a; in each A; such that (), A;) = ¢ if and
only if (0, A;) = gz — aj].

The query ¢ and ABoxes A; provide a means of showing that the first j formulas are
satisfiable, but we still also need a way of showing that the j+1st formula is unsatisfiable.
To this end, we consider the TBox from the proof of Proposition 6.2.8:

T ={3P C-3N~,3PC-3U ", 3NC-3U",3UC -B,BC -A}

161

Preferred repair semantics

Fig. 6.5 Reduction from Parity(SAT) for AJ[O(log n)]-hardness of C p-IAR query answering
w.r.t. combined complexity. Graphical representation (case n odd).

A
B;
As An
P/N
ay as an Ci+1,1 Citl,m(i+1)
U
Bs By, A.B
a;

where we assume that P, N, U, B, A are fresh roles and concepts, appearing neither in ¢ nor
any A;. We also create ABoxes B; = B U sz U B3, for each odd j € [1,7]:

Bi ={P(cjs1,6:w541,0) | Tjs1h € ¢are} UIN(Cjan,6mj410) | 7@j41n € e}

Bi ={U(aj.cjs10) | 1 <L <myjia}

B} ={A(aj), B(a;)}
where the individuals of the forms c; 1 ¢ and ;41 j, are fresh and do not appear in any A; or
any Bj/ for j' # j, and the individual a; is shared by B; and .A;. We then define the ABox A

as the union of the A; and B;, for all odd j € [1,n], and consider the following prioritization
P = (P, P, P3):

P = U .AjUBJl

oddje(1,n]
p= J B
oddje(1,n]
= J B
oddje(l,n]

We remark that since the signatures of the ABoxes A, and 7 are disjoint, the assertions
in the ABoxes .4, are not involved in any conflicts, and hence belong to every Cp repair.
Moreover, because the ABoxes B; use disjoint sets of variables, the C p-repairs of .4 w.r.t.
T can be obtained by repairing each of the B; separately (according to the prioritization
P) and taking the union of these repairs and the ABoxes A;. Using similar arguments to
Proposition 6.2.8, one can show that (7, A) =c,-1ar A(a;) just in the case that ;1 is
unsatisfiable.

162

6.2 Complexity analysis

Now let ¢’ be the query obtained by adding A(x) to q. We aim to show that
(T, A) =c p1ar ¢ if and only if there is an odd j € [1,n] such that ¢, is satisfiable and ¢ ;1
is unsatisfiable.

First suppose that (7, A) =c,1ar ¢, and let R be the intersection of the C p-repairs.
Then (7T, R) = ¢, and since T contains only negative inclusions, we in fact have (), R) = ¢'.
Thus, there exists a function 7 mapping variables in ¢’ to individuals in R which witnesses the
satisfaction of ¢'. It follows that A(rw(z)) € R, and hence 7(z) = ay for some odd ¢ € [1,n].
By above, we know that this means that ¢y is unsatisfiable. We have also seen above
that R contains all of the 4, and since ¢ uses only predicates from the .4 ;, we must have
(0,U; Aj) = q. By Properties 2 and 4, we can infer that ((), As) = q. Applying Property 3,
we obtain that (, is satisfiable.

For the other direction, suppose that ¢; is satisfiable and ;1 is unsatisfiable. Then by
our earlier assumption, for every 1 < ¢ < 7, the formula ¢y is satisfiable. It follows then by
Property 3 that (0, A;) = g, and so by Property 4, we must have (0, A;) = ¢z — a;]. Since
Aj appears in all repairs, this yields (7, A;) =cp-1ar ¢[2 — a;]. By earlier arguments, the
unsatisfiability of ;1 means that (7, A) F=c,-1ar A(a;). Putting this together, we obtain
(T, A) Fcpaar ¢

Remaining lower bounds. To show the Ag lower bounds, we can use the reduction from
the proof of Proposition 6.2.4: as the TBox does not give any way of deriving T'(z,,), the
query T'(zy,) holds in all <p-repairs iff it holds in the intersection of all < p-repairs. Finally,
a AL[O(log n)] lower bound for instance query entailment under <-IAR semantics can be
proved similarly to the corresponding result for the <-AR semantics (Proposition 6.2.4). []

Let us briefly comment on the obtained results. Concerning data complexity, we observe
that the use of preferred repairs significantly impacts complexity: we move from polynomial
data complexity in the case of (plain) IAR or brave semantics to coNP-hard or NP-hard data
complexity (or worse) for AR and brave semantics based on preferred repairs. Actually,
the IAR semantics is just as difficult as the AR semantics. This is due to the fact that
there is no simple way of computing the intersection of preferred repairs, whereas this
task is straightforward for C-repairs. In the same way, for brave semantics, verifying the
existence of a cause for the query is not sufficient to show that it holds under <-brave
semantics, since a cause is not guaranteed to belong to some =<-repair. However, if we
consider combined complexity, we see that the IAR and brave semantics still retain some
computational advantage over AR semantics. This lower complexity comes from the fact
that the IAR and brave semantics require only that the answer is entailed by one set of facts
(either the intersection of the repairs or some repair), while the AR semantics requires it is
entailed by every repair. Note that for the IAR semantics, one can precompute the intersection
of repairs in an offline phase and then utilize standard querying algorithms at query time.
Finally, if we compare the different types of preferred repairs, we find that the C p preorder
leads to the lowest complexity, and <p and <,, the greatest. However, under the reasonable
assumption that there is a bound on the number of priority classes (resp. maximal weight),
we obtain the same complexity for the semantics based on <-, <p- and <,,-repairs.

163

Preferred repair semantics

We should point out that the only properties of DL-Liter, that are used in the upper bound
proofs are (i) consistency and instance checking are in P w.r.t. combined complexity, and
(i1) CQ entailment is in P w.r.t. data complexity and in NP w.r.t. combined complexity. Con-
sequently, our combined complexity upper bounds apply to all ontology languages having
polynomial combined complexity for consistency and instance checking and NP combined
complexity for CQ entailment, and in particular to the OWL 2 EL profile [Motik et al. 2012].
Our data complexity upper bounds apply to all data-tractable ontology languages, which in-
cludes Horn DLs [Hustadt et al. 2007, Eiter et al. 2008] and several classes of the existential
rules framework, also called Datalog +/- [Cali et al. 2012]. Such classes have been introduced
in [Baget et al. 2011a, Baget et al. 2011b, Krétzsch & Rudolph 2011, Thomazo 2013b].

6.3 Query answering via reduction to SAT for Cp-repair
based semantics

Since the C p-repair based semantics are coNP or NP-complete w.r.t. data complexity, we
propose to reduce query answering to SAT, as we did for plain AR semantics.

In the case of the C p-AR semantics, the most obvious encoding would stipulate that the
subset corresponding to a valuation (i) contains no cause for ¢, (ii) is maximal w.r.t. Cp,
and (iii) contains no conflicts. However, such an encoding would contain as many variables
as ABox facts, even though most of the ABox may be irrelevant for answering the query
at hand. In order to identify potentially relevant assertions, we introduce the notion of an
oriented conflict graph. In what follows, we use o <p [to signify that there exist ¢ < j such
that o € P; and 3 € Pj, i.e. o has priority over (3.

Definition 6.3.1. Let £ = (7,.A) be a DL-Liteg KB and P be a prioritization of .A. The
oriented conflict graph for KC and P, denoted G, is the directed graph whose set of vertices
is A and which has an edge from /3 to o« whenever o <p (3 and {«, §} is a conflict for .

The outgoing edges of an assertion in the oriented conflict graph link it to the assertions
of same or greater priority which conflict it. The assertions without outgoing edges conflict
only assertions of lower priority.

We now give a succinct encoding inspired from that for plain AR semantics, which can be
seen as selecting a set of assertions which contradict all of the query’s causes, and verifying
that this set can be extended to a C p-repair. Importantly, to check the latter, it suffices to
consider only those assertions that are reachable in Gﬁ from an assertion that contradicts
some cause.

Theorem 6.3.2. Let q be a Boolean CQ , K = (T, A) be a DL-Liteg KB, and P =
(P1,...,P,) be a prioritization of A. Consider the following propositional formulas having

164

6.3 Query answering via reduction to SAT for C p-repair based semantics

variables of the form x, for o € A:

Pg = /\ (\/ \/ zg)

Cecauses(q,K) a€C Beconfl({a},K)

B=pa
Pmax = /\ (TaV \/ 33/@)
a€Ry Beconfl({a},K)
B=pa
Pcons = /\ Zo VTR

OC,BGRq
Beconfl({a},K)

where R is the set of assertions reachable in G,Ié from some assertion (3 such that xg appears
in p—g. Then IC):gP-AR q iﬁ%pﬂq A Pmax \ Pcons IS unsatisfiable.

In order to prove Theorem 6.3.2, we begin by establishing the following lemmas that
relate the C p-repairs of A with the C p-repairs of R,.

Lemma 6.3.3. Every C p-repair of R, can be extended to a C p-repair of A.

Proof. Let B be a C p-repair of R,. Construct a set A’ by adding to 5 a maximal subset C;
of assertions from P; \ BB such that BUC; is T -consistent, then adding a maximal subset Co
of assertions from P \ B such that 5UC; UCq is T -consistent, and so on. By construction,
the set A’ is T-consistent, and we claim that it is in fact a Cp-repair of A. Suppose
for a contradiction that this is not the case. Then there must exist another 7 -consistent
set B’ C A and some k such that A'NP, =B NP, forevery 1 <i <k, and A' NP, C
B’ N Py,.. Consider some a € (B'N P;,) \ (A’ N Py). Tt follows from the construction of A’ that
BUA'N(PLU...UP,))U{a} is T-inconsistent. Since (A'N (P U...UP))U{a}isa
subset of B, B’ is known to be T -consistent, and all conflicts involve at most two assertions,
it must be the case that « conflicts with some 5 € B\ (P1U...UPy). Since § € B, it must
belong to R,. It follows then from the definition of R, and the fact that o € P, that the
assertion o must also belong to R,. Now consider the set B’ = (BN (P U...UP;))U{a}. It
can be easily verified that B’ is a T -consistent set with B C p BB/, contradicting our assumption
that B is a C p-repair of 7. O

Lemma 6.3.4. If A’ is a Cp-repair of A, then A'N\ Ry is a C p-repair of Ry,

Proof. Let A’ be a Cp-repair of A, and set R = A'N R,. Clearly, R is T -consistent.
Suppose for a contradiction that there exists a set R’ C R, such that R Cp R’, and let k be
suchthat RNP; =R, NP, forall 1 <i < kand RNP, C R' NP We claim that

A" = (A\R)N(PLU...UP))UR’

satisfies the following:

1. A" is T-consistent.

2. AACp A"

165

Preferred repair semantics

Note that these statements together contradict our earlier assumption that A’ is a C p-repair.

To show the first statement, suppose for a contradiction that A” is T -inconsistent. Since
A"\ R, and R’ are both known to be T -consistent, and conflicts in DL-Lite involve at
most two assertions, there must exist a conflict {«, 5} with a € (A" \ Ry) N (P U...UPy)
and 3 € R'. Moreover, since § € R, and o ¢ Ry, we must have 3 <p «. The assertion «
belongs to Py U...U Py, so we must have § € P; for some j < k. Since RNP; =R'NP;
for all 1 <i <k, it follows that 3 € R, hence {«, 5} C A’. This is a contradiction, since A’
was assumed to be a C p-repair, and so must be 7 -consistent.

For the second statement, we simply note that since RN P; = R, NP, forall 1 <i <k,
we have A'NP; = A" NP, for every 1 < i < k, and since RN P, € R' N Py, we also have
A NP, C A NP,]

Proof of Theorem 6.3.2. We observe that the set of assertions v whose corresponding vari-
able x, appears in the formula ¢4 A Ymax A @cons 18 precisely the set ;. Moreover, every
variable z, with o € R, appears in the subformula ¢max.

For the first direction, suppose that the formula ¢4 A Ymax A @cons 18 satisfiable, and let
v be a satisfying truth assignment. Consider the corresponding set of assertions R, C R,
consisting of all those assertions o whose corresponding variable x,, is assigned to true by v.
As v satisfies (pcons, the set R, contains no conflicts, i.e. it is 7 -consistent. We claim that R,
is a C p-repair of R,. Suppose that this is not the case, and let R’ be a T-consistent subset
of Ry such that RNP; =R.NP,; forall 1 <i < kand RN P, C R'NPy. Consider some
a € (R'\'R)N Py. Since o ¢ R, we must have v(x,) = false. As omax is satisfied by v,
there must exist some variable 3 with v(xg) = true such that the corresponding assertion 3
satisfies 3 € confl({a},) and 8 <p a. However, we know that RN P; C R} N P; for every
1 <i <k, hence 8 € R/, contradicting the supposed consistency of R’. We have thus shown
that R,, is a C p-repair of R,. Applying Lemma 6.3.3, we can find a C p-repair A’ of A such
that R, C A’. To show that (7, A’) F~ g, consider some cause C for ¢ in K. Then since v
satisfies ¢, there must exist some assertion « € C and some 3 € confl({a},) such that
v(zg) = true. It follows that 5 € R, hence 3 € A’ and C Z A’. We have thus showed that
A’ contains no cause for . We can thus conclude that IC - AR ¢.

For the other direction, suppose that K ~c ,.ar ¢, and let R be a C p-repair of A such
that (7,R) F~ g. Consider the set R' = RN R,. By Lemma 6.3.4, we have that R’ is a
C p-repair of R. Let v/ be the truth assignment that assigns to true precisely those variables
x, for which o € R’. We wish to show that v/ satisfies P—q N\ Pmax N Pcons. First, consider
some cause C C A for ¢ w.r.t. K. Since (7, R) [~ ¢, there must exist an assertion « € C that
does not appear in R. We also know that R is a C p-repair, so there must exist some 5 € R
with 5 <p « that conflicts with « (otherwise, we could obtain a more preferred subset by
adding « to R and removing any assertions conflicting with a). The assertion [belongs to
Ry, so the variable x5 will be assigned to true by v/, and the clause in -, that corresponds
to cause C is satisfied by vz/. We have thus shown that every clause in ¢, is satisfied.

Next, consider an assertion o € R and its associated clause 2o V'V geconfi({a},K),8< pa L3
in the formula pmay. If @ € R/, then x,, will be assigned true by v/, and the clause is satisfied.
If instead o € R/, then also o € R. Using the fact that R is a C p-repair of A and similar

166

6.3 Query answering via reduction to SAT for C p-repair based semantics

arguments to above, we can infer that there is some there must exist some J € R with § <p «
and /3 € confl({a},C). Since a € R, it follows from the definition of the set R, that 5 € Ry,
hence 8 € R’. We thus have vg/(xg) = true, and so the clause for « is satisfied. This proves
that pmax 1s satisfied by vg.

Finally, since R’ is T -consistent, it contains no conflicts, and so v, satisfies Qcons. We
have thus exhibited a satisfying assignment for the formula p—4 A Ymax A @cons. 0

For the Cp-IAR semantics, a query is not entailed just in the case that every cause is
absent from some C p-repair. This can be tested by using one SAT instance per cause.

Theorem 6.3.5. For each C € causes(q, K), consider the formulas:

pc=\ Vo

aeC Beconfl({a},K)

B=pa
C
Pmax = /\ (l’a\/ \/ .135)
a€Re Beconfl({a},K)
B3pa
C
Pcons — /\ T VI
a,BERe

Beconfl({a},K)

where R¢ is the set of assertions reachable in G,PC) from some assertion 3 such that xg
appears in p—¢c. Then K =c ,.iar q iff there exists C € causes(q,K) such that the formula
-0 N PSax N Cons is unsatisfiable.

Proof. Using similar arguments to the proof of Theorem 6.3.2, one can show that ¢_¢ A
gpgons A (pfnax is satisfiable if and only if there exists a C p-repair of .4 which does not contain
the cause C. It follows that p_¢ A ¢S, A ¢, is satisfiable for every C € causes(q, K) just
in the case that there is no cause of ¢ in the intersection of the C p-repairs of A w.r.t. T, i.e.

K Wcpiar ¢ O

For the C p-brave semantics, a query is entailed just in the case that some cause is present
in some C p-repair.

Theorem 6.3.6. Let ¢ be a Boolean CQ, K = (T, A) be a DL-Liteg KB, and P =
(Py,...,Py) be a prioritization of A.

g = (\/ we) A /\ /\ﬂwc\/xa

Céecauses(q,K) Cécauses(q,K) aeC
Pmax = /\ (Ia\/ \/ $5)
aERy Beconfl({a},K)
B=pa
Pcons = /\ To Vg
a,BERq

Beconfl({a},K)

167

Preferred repair semantics

where Ry is the set of assertions reachable in G,]é from some assertion « such that x,, appears
in pq. Then K = p-brave ¢ iff 94 /\ Pmax /\ Pcons is satisfiable.

Proof. As in proof of Theorem 6.3.2, the set of assertions whose corresponding variables are
assigned to true in a valuation that satisfies ¢max A Ycons can be extended to a C p-repair. If
the valuation also satisfies ¢, this set of assertion contains a cause for ¢, so IC |=c ,-brave ¢-

In the other direction, if there exists a C p-repair that contains a cause for ¢, we can find a
valuation that satisfies ¢ A Ymax /A Pcons. As in proof of Theorem 6.3.2, if R is a C p-repair
that contains a cause C for ¢, R’ = RN R, is a Cp-repair of I?,. The valuation v/ that
assigns to true the variables whose corresponding assertions are in R’ and assigns we to
true and wy, to false for every other cause C’ for ¢ satisfies ¢ A Pmax A Pcons. Indeed, since
C C R and every assertion of C has its corresponding variable that appears in ¢,, C C R’ so
for every a € C, v/(ar) = true. O

6.4 Implementation and experiments

6.4.1 Consistent query answering with priorities in CQAPri

We implemented query answering under C p-AR and C p-IAR semantics within CQAPri.
To take into account priorities over ABox assertions, we store the conflicts of the KB as an
oriented conflict graph, so that each assertion is linked only to its conflicts of same or greater
priority.

When a query arrives, CQAPri computes the candidate answers and their images as in the
case without priorities, then discards the non-brave answers by checking if all their images
contain some conflict, and identifies an approximation of the C p-IAR ones by checking
whether there is some image whose assertions have no outgoing edges in the oriented conflict
graph. For those (plain) brave-answers that are not found in the approximation of C p-IAR
answers, CQAPri uses the SAT encoding from the preceding section to decide if they hold
under Cp-AR semantics. Finally, for the Cp-AR answers not in the approximation of
Cp-IAR, it can decide if they hold under C p-IAR semantics with the SAT encodings for
Cp-IAR.

We also implemented an alternative method that consists in first computing the set of
assertions that appear in some image of the candidate answer and are in the intersection of the
C p-repairs. For each relevant assertion, we use our encoding to decide if it is entailed under
Cp-IAR semantics. We then ignore the outgoing edges of such assertions in the oriented
conflict graph when computing the approximation of C p-IAR answers, which is therefore
exactly the set of Cp-IAR answers.

Note that we can observe some high-level similarities between our system and that
presented in [Du et al. 2013] for querying SHZ Q KBs under <,,-AR semantics, which also
employs SAT solvers and uses a reachability analysis to identify a query-relevant portion of
the KB.

168

6.4 Implementation and experiments

6.4.2 Prioritized ABoxes

We put different prioritizations over our benchmark ABoxes. Prioritizations of an ABox
were made either by choosing the same priority level for all the assertions of a concept/role
or by choosing a priority level for each ABox assertion. We built prioritizations this way
to capture a variety of scenarios. For instance, a database administrator may (manually)
partition an ABox using a few priority levels set by concept/role, based upon the reliability
of the business processes that provide the data; an ABox integrating data from many sources
may be partitioned with more priority levels set per assertion, with the priority of an assertion
depending on the reliability of the sources from which it originates.

We built 4 prioritizations for each ABox, further denoted by the id uXcY of the ABox
it derives from, and a suffix pZW first indicating the number Z of priority levels, and then
whether priority levels were chosen per concept/role (W = cr) or assertion (W = a). In our
experiments, the number of priority levels is 3 and 10.

6.4.3 Experimental results

We measure query answering time and how it varies w.r.t. the size and ratio of conflicts of
the ABox depending on the prioritization (3 or 10 levels of priority, set per concept/role or
assertion). We also compare our two approaches to see in which cases computing the set of
C p-IAR assertions involved in the problem improves the performances.

The main conclusion of our experiments is that adding priorities really complicates
query answering under AR, and even more IAR semantics. In particular, query answering
is less robust to the number of conflicts. CQAPTri runs out of memory or time (time-out
fixed to 3 hours) for many queries on ABoxes which are large or have many assertions in
conflicts (e.g. , even on u20c20p3a, CQAPri runs out of time for three queries, and for six
when we try to compute the exact set of C p-IAR answers). However, query answering with
priorities remains feasible on realistic cases, when there are only a few assertions in conflict
(uXc1pZW case), and on small ABoxes (up to u20cYpZW). We therefore present the results
on these cases.

Figures 6.6 and 6.7 show the evolution of the query answering time w.r.t. the proportion
of conflicting assertions for ulcYpZW and u20cYpZW in five cases: standard AR query
answering, and C p-AR query answering for the four prioritizations. Figure 6.8 shows the
evolution of the query answering time w.r.t. the size of the ABox for the same five cases.

Using priorities makes query answering more sensitive to conflicts because the
size of the encodings is related to the number of assertions reachable from the causes
in the oriented conflict graph. We observed that using 3 priority levels typically led
to harder instances than using 10 levels. Indeed, when there is a large number of
priority levels, there are less pairs of conflicting assertions of the same priority, so fewer
conflicts translate into bidirectional edges in the oriented conflict graph and the encodings
involve fewer assertions. By contrast, it is not clear whether choosing to set priority
levels per assertion or per concept and role has an impact on the difficulty of query answering.

169

Preferred repair semantics

Fig. 6.6 Time in seconds for query answering under C p-AR w.r.t. the ratios of conflicts on
ulcYpZW (about 76K assertions), for four prioritizations. For readability, the figures on the
bottom focus on the queries whose answering times are lower and whose behaviors are thus
not visible on the first one.

-_-q1 -=qi -=qi
utcY g2 uicYp3a e q2 ulcYp3cr 2
250 a3 250 93 250 a3
——q4 ——q4 ——q4
-+»—q5 -»—q5 -»—q5
200 a6 200 a6 200 a6
+q7 q7 +q7
/'_‘/_a CIB qa qa
150 --q9 __ 150 -.-q9 _ 150 --q9
= qi0 & qu0 & q10
2 gl @ Sqit 2 ->¢q11
E 100 —+g12 £ 100 —+q12 E 100 ——q12
—-q13 —k-q13 —k=q13
-—q14 —ql4 —ql4
50 q15 50 q15 50 q15
-5-q16 -m-q16 -=-q16
% ——qi7 ——q17 —-q17
0 -¥-q18 0 -+-q18 0 - -+-q18
0 5 10 15 20 25 30 35 40 45 50 _,_gqg 0 51015202530 35404550 _4q1g 0 51015202530 35404550 4 qq9
% conflicts -+—q20 % conflicts -+»—q20 % conflicts -+—q20
-=q1 -l
ulcYp10a —q2 ulcYplOcr “—q2
250 a3 250 a3
g4 ‘ g4
-—q5 /—‘ -»—q5
200 96 200 a6
=+q7 =>4-q7
a8 g8
__ 150 --q9 150 -e-q9
@ qi0 @« ~+-ql0
£ »-qnl 2 g1l
= 100 —+-q12 £ 100 —+=q12
=l=q13 =-ql3
—ql4 —ql4
50 q15 50 q15
-=-q16 -m-q16
——qil7 ——-ql7
0 -q18 0 ’ -¥-qi8
0 5 101520 25 30 3540 4550 4 g9 0 5101520253035404550 4 g1g
% conflicts —+—q20 % conflicts +—020
ulcY =g uicYp3a -=-qi ulcYp3cr -=-q1
—-q2 ——-q2 ——-q2
25 Q3 25 4 40 e
g4 —»—q5 35 g5
+—q5
20 o 20 a6 30 a6
g7 g7 g7
15 @ 15 @ 5 a8
= —>eqil @ =g 0 20 g1
£ —+q12 2 —+qt12 2 ——q12
£ 10 “-q13 F 10 #-q13 F 15 —#=q13
?W.—A —ql4 —ql4 10 a4
5 q15 5 q15 q15
- q16 ——q17 5 ——q17
——qi7
0 W= =" qi8 s = — =" "¥aqi8 0 == = "¥ai8
0 5 10 15 20 25 30 35 40 45 50 —-q19 0 5 10 15 20 25 30 35 40 45 50 —+q19 0 5 10 15 20 25 30 35 40 45 50 —*—q19
% conflicts -+—q20 % conflicts -—q20 % conflicts -—q20
uicYp10a —=ql ulcYplOcr —==ql
—-q2 —-q2
25 g3 35 a3
=»—q5 30 -»—0a5
20 a6 a6
g7 25 -7
15 q8 g8
— - 20
w =gt) =¢&0ll
g —+qiz g g ——q12
= 10 --q13 F --q13
/,r/—. —ql4 10 —ql4
5 q15 q15
——q17 5 ——ql7
0 —— -¥-q18 0 = =" -¥-q18
0 5 10 15 20 25 30 35 40 45 50 —*—q19 0 5 10 15 20 25 30 35 40 45 50 —*—q19
% conflicts -»—q20 % conflicts -+—q20

170

6.4 Implementation and experiments

Fig. 6.7 Time in seconds for query answering under C p-AR w.r.t. the ratios of conflicts on
u20cYpZW (about 2 million assertions), for four prioritizations. For readability, the figures
on the bottom focus on the queries whose answering times are lower and whose behaviors
are thus not visible on the first one.

-=-q1 -=-qi -=-q1
u20cY -2 u20cYp3a g2 u20cYp3cr a2
600 a3 9000 a3 9000 a3
——q4 ——q4 ——q4
+—q5 8000 g5 8000 +—q5
500 q6 7000 % 7000 a6
++q7 +-q7 +q7
400 a8 6000 a8 6000 g8
--q9 --q9 -8-q9
Z 500 gto @500 g10 @5000 q10
e gl Rago0 =Seall Eagoo Seq1
= —+-ql2 E —+-q12 £ —+-q12
200 --q13 3000 —-q13 3000 —-q13
—q14 —aqt4 —qt4
100 g5 2000 gis 2000 15
-#-q16 1000 -!’-q:§ 1000 -#-q16
—-q17 1 —-—q —+-ql7
0 " Ty q18 0 ===y 18 0 = *-q18
0 51015202530 354045 50 _y_g1g 0 5 10 1520 2530 3540 45 50 419 0 5 10 15 20 25 30 35 40 45 50 —+-q19
% conflicts +—q20 % conflicts -»—q20 % conflicts -»—q20
a1 --q1
u20cYp10a 2 u20cYp10cr g2
6000 q3 6000 a3
—-q4 —-q4
=»—q5 -»—q5
5000 a6 5000 6
»¢q7 =+q7
4000 g8 4000 g8
— —-q9 ---q9
a, q10 = q10
23000 eqt1 23000 g1
= —+-q12 = —+—q12
2000 —--q13 2000 —-q13
—ql4 —ql4
1000 q15 q15
-#-q16 1aoo -#-q16
——q17 —+-qi7
--q18 0 E * | w-q18
0 51015202530 35404550 __g1g 0 51015202530 35404550 _, q19
% conflicts -»—q20 % conflicts -+—q20
u20cYy &-q1 u20cYp3a —ql u20cYp3cr -=-q1
--q2 a3
1400 1400 3
70 a3 ——q4 q
60 +q5 1200 +-a5 1200 —+=ab
50 a° 1000 qj 1000 %
==
+q7 :8 g7
g ® *2:31 % 800 glo 7 800 8
[0 [0
g 30 —qi2 E 600 —a12 g oo q10
£ [—k-q13 & q15
20 —-q13 400 —q14 400
—ql4 -#-g16 ale
10 q15 200 —eqi7 E ;)‘ —qi7
—-q17
0 z e — — =1 q 0 -— s —¥-q18 —4—q19
0 5 10 15 20 25 30 35 40 45 50 ~¥-918 0 5 10 15 20 25 30 35 40 45 50 —*—q19 n 5 10 15202530 35404550 o
% conflicts +-q20 % conflicts +—q20 % conflicts 9
u20cYp10a —=ql u20cYp10cr —=ql
—+-q2 —-q2
400 3 250 o3
350 a5 +q5
200 96 200 96
*g; g7
_ =0 gto 150 a8
2
S 200 seqtt T iq:;
ig 150 —+q12 E 100 d
—-q13 —k-q13
100 —ql4 a4
q15 50 q15
50 ——q17 —+-q17
0 P==R=r——pr==" —¥q18 0 e —¥-q18
0 5 101520 25 30 35 40 45 50 —4—q19 0 5 10 1520 25 30 35 40 45 50 —+q19
% conflicts -»—q20 % conflicts -—q20

171

Preferred repair semantics

Fig. 6.8 Time in seconds for query answering under C p-AR w.r.t. the size of the ABox on
uXclpZW (about 4% of assertions involved in some conflict), for four prioritizations. For
readability, the figures on the bottom focus on the queries whose answering times are lower

and whose behaviors are thus not visible on the first one.

-=-q1 -=q1 -=q1
uXc1 - q2 uXcip3a 2 uXc1p3cr a2
1200 q3 8000 a3 9000 93
——q4 ——q4 —A—q4
+—q5 7000 +—q5 8000 g5
1000 q6 96 7000 96
»¢q7 6000 »¢q7 +q7
800 g8 Q8 6000 q8
g9 5000 -*-q9 --q9
Z 600 a0 2,00 q10 @S000 q10
o S¢qll 2 a1 24g00 =g
= ——a12 F3n00 ——gl2 g ——q12
400 —#-q13 —eq13 3000 —e-q13
——ql4 2000 —ql4 —qi4
200 = q15 qts 2000 q15
-#-q16 1000 -#-q16 1000 -#-q16
—-q17 E—] —-q17 — ——q17
0 d v -*-q18 0 -*-q18 0 -*-q18
0 2 4 6 8 10 124419 0 2 4 6 8 10 12 4 gq9 0 2 4 6 8 10 12 4 gqq9
ABox size (million assertions) -»—q20 ABox size (million assertions) —+»—q20 ABox size (million assertions) +—q20
-=q1 -=q1
uXc1p10a —q2 uXc1p10cr —q2
3000 a3 4500 a3
——q4 g4
»—q5 4000 -»—q5
2500 a6 a6
3500
=+q7 =+q7
2000 a8 3000 Q8
-e-q9 -e-q9
s qi0 ©2500 910
o 1500 &gl 2 =gl
£ q £2000 q
[= —+q12 —+-q12
1000 =t=-q13 1500 =t=-q13
—ql4 —ql4
500 15 1000 15
-=-q16 500 -=-q16
——qi7 ——qi7
0 - -*-q18 0 ' -q18
0 2 4 6 8 10 12 4 g9 0 2 4 6 8 10 12 4 g9
ABox size (million assertions) -»—q20 ABox size (million assertions) —+—q20
1 —=q1
uXc1 =gt uXc1p3a q uXc1p3cr q
—-q2 P —-—q2 p —oq2
180 3 450 q3 450 a3
160 +-q5 400 +:: 400 "'qz
q
140 96 350 g7 350 +-q7
+-q7
120 a 300 / 98 300 98
g8 q10 q10
= 100 e LU O Seq1 = 250 g1
g 80 ——q12 g —q12 2 5pg ——q12
= -#-qi3 F —-q13 F —e-q13
60 —q14 —q14 150 —ql4
40 q15 q15 100 q15
.15 -m-q16 -m-q16
20 q ——q17 50 —--q17
= - -1 —+q17 0 = - | qi8 0 M= -q18
0 2 4 8 8 10 12-%q18 0 2 4 6 8 10 12 -aql9 0 2 4 6 8 10 12 -=kq19
ABox size (million assertions) -»—q20 ABox size (million assertions) -—q20 ABox size (million assertions) —»—q20
uXc1p10a “=ql uXc1p10cr “=ql
—-q2 g2
600 q3 450 q3
-+—q5 400 -+—q5
500 q6 q6
+-q7 350 +-q7
400 q8 300 q8
q10 /! q10
Z 0 /E g1 B 250 g1
E ——q12 2 200 ——q12
= =-q13 =e-q13
200 —qi4 150 —qi4
915 100 q15
100 #-q16 #-q16
—-—q17 50 —-—q17
0 = ¥} -+q18 0 - = x| -+q18
0 2 4 6 8 10 12 -4-q19 0 2 4 6 8 10 12 -4-q19
ABox size (million assertions) ——q20 ABox size (million assertions) ——q20

172

6.4 Implementation and experiments

Figure 6.9 shows the evolution of the query answering time w.r.t. the proportion of
conflicting assertions for ulcYp3a in three cases: C p-AR query answering, and C p-AR and
C p-IAR with two different methods: method 1 is the standard method described in Section
6.3, and method 2 consists in deciding for the relevant facts whether they hold under C p-IAR
before deciding whether the answer is entailed under C p-IAR or C p-AR semantics. Figure
6.10 shows the evolution of the query answering time w.r.t. the ABox size for uXclp3a
in the same cases. Table 6.2 shows, per query for some prioritized ABoxes, how many
answers were in the approximation of C p-IAR, the number of C p-IAR answers (not in the
approximation), of Cp-AR answers (not C p-IAR), and the number of candidate answers
which are not C p-AR.

Computing the exact set of C p-IAR answers is very costly when there are lots of C p-AR
answers not in the approximation of C p-IAR (columns C p-IAR and C p-AR in Table 6.2).

The method consisting in computing the set of C p-IAR assertions among the relevant
ones is generally less robust to conflicts and ABox size. However, it sometimes performs
better on easy cases.

173

Preferred repair semantics

Fig. 6.9 Time in seconds for query answering under Cp-AR, or Cp-AR and Cp-IAR
w.r.t. the proportion of conflicts on ulcYp3a. For readability, the figures on the bottom focus
on the queries whose answering times are lower and whose behaviors are thus not visible on
the first one.

-=q1 -=q1 --ql
uicYp3a g2 IA;H c;(pi?ﬂa,j 1 g2 ulc:(p3a g2
250 a3 250 exact (mefhod 1) 3 700 method 2 a3
——q4 - Q4
g5 a5
200 a6 200 a6
e 4-q7
a8 g8
__ 150 --q9 150 -e-q9
@ —+-q10
e >-qll
£ 100 ——q12
==-ql3
—ql4
50 ql5
-B-q16
—-—-ql7
0 - 0 - = 1t 0 -~ Bl il -¥-q18
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 5 1015202530 35 40 4550 4 q1g
% conflicts +—q20 % conflicts +—q20 % conflicts -—020
uicYp3a -ql uicYp3a —ql ulcYp3a —*q2
—+-q2 1AR exact (method 1) —+q2 method 2 g3
25 W 35 i 90 —qa
-»—q5 30 a5 80 05
20 q6 q6 70 g6
»¢q7 25 »¢q7 -»4-q7
60
15 q8 q8 a8
O sqt @ 20 scqit B 50 Q11
g —+-q12 g 15 —+—q12 E 40 —+=q12
F 10 g3 F “qi3 F o 13
——ql4 10 -—ql4 —ql4
5 q15 q15 20 q15
——q17 5 ——q17 10 ——ql7
0 L —_—— —¥-q18 0 =" i —¥-q18 0 == ==t —*-qi8
0 5 10 15 20 25 30 3540 45 50 —*—q19 0 5 10 15 20 25 30 3540 45 50 —*=q19 0 5 10 15 20 25 30 35 40 45 50 —+—q19
% conflicts —+—q20 % conflicts -»—q20 % conflicts =20
uicYp3a 3 uicYp3a 3 uicYp3a
12 4 16 IAR exact (method 1) 4 8 method 2 a3
-+ -
1 a7 14 a7 7 »q7
@ 12 ® 6 8
08 Seq 1 el 5
— — — -q11
= = =
5 06 —+—q12 3, 08 ——q12 o 4
E E E —e-q13
S o4 —-q13 "~ 06 —eqt3 F 3
o —ql14
—ae —qt4 2 ¢
o2 é 0.2 1
PR - ' q15 R q15 _ q1s
0 e 0 e]
0 51015202530 3540 4550 »—q20 0 51015202530 3540 4550 »—q20 0 5 10 15 20 25 30 35 40 45 50 —»—q20
% conflicts % conflicts % conflicts

174

6.4 Implementation and experiments

Fig. 6.10 Time in seconds for query answering under C p-AR, or Cp-AR and Cp-IAR
w.r.t. ABox size on uXclp3a. For readability, the figures on the bottom focus on the queries
whose answering times are lower and whose behaviors are thus not visible on the first one.

uXc1p3a b uXc1p3a b uXc1p3a b
8000 C|3 12000 IAR exact (method 1) qS 10000 methode 2 qS
——q4 —A—q4 ——q4
7000 g5 g5 9000 +>q5
g6 10000 6 8000 a6
6000 +q7 +q7 7000 +=-q7
5000 q8 8000 q8 g8
. g9 --q9 6000 —#-q9
IO ql0 =2 ql0 =& q10
g4000 gt 20000 seqtt @900 "
F3000 —+q12 £ —=q12 {Z4000 —+-q12
--q13 4000 B T --q13
2000 —ql4 —aql4 —aql4
q15 2000 q15 2000 q15
1000 -#-q16 -=-q16 1000 2 -#-q16
I —-q17 —-q17 ——qi17
-*-q18 0 -*-q18 0 R - 7 *q18
0 2 4 6 8 10 12 4 qq9 0 2 4 6 8 10 12 4 qq9 0 2 4 6 8 10 12 4 qq9
ABox size (million assertions) -»—q20 ABox size (million assertions) -+—q20 ABox size (million assertions) +—q20
uXc1p3a :“; uXc1p3a =ql uXc1p3a @
q AR exact (method 1) —+q2 methode 2
450 93 450 3 450 +g5
400 "'gg 400 -»-q5 400 ®
q6
350 eq7 350 g7 350 g7
300 / 98 300 q8 300
Q10 10 q8
= 250 gl & 250 a9 & 250
© gl2 @ gt q10
E 200 a E 200 ——qi2 E 200
F ==q13 F —ql4
150 —ql4 150 —#=q13 150
100 @15 100 _-3:; 100 "
-#-q16
50 : 50 —-qi7 50 —+-qt7
——q17 —
0 - T ot -¥q18 0 - = —¥-q18 [T = =} —-q19
0 2 4 6 8 10 12 —=A-q19 0 2 4 6 8 10 12 —=ql9 0 2 4 6 8 10 12 20
ABox size (million assertions) —-+—q20 ABox size (million assertions) -»—q20 ABox size (million assertions)
uXc1p3a -&-q1 uXc1p3a 'l uXc1p3a
90 ——q2 00 IAR exact (method 1) —-q2 5 methode 2 q3
a3 a3
80 80
g5 g5 30 g5
70 70
g6 g6 25
60 g7 60 +q7 a6
z 50 @ B 50 @8 =20
® © © =++q7
E 40 =>e&qit E 40 =>&qi E 15
[[
30 g1z © 30 ——g12 o
20 —l=q13 20 13 10
—q14 —ql4 —_
10 o 10 ats 5 qt4
0 W= — i o W= o —at7 0 b=z ¥ 020
0 2 4 6 8 10 12 0 2 4 6 8 10 12 q 0 2 4 6 8 10 12 a
ABox size (million assertions) -+—q20 ABox size (million assertions) -+—0q20 ABox size (million assertions)

175

Preferred repair semantics

Table 6.2 Number of answers that are in the approximation of C p-IAR, of C p-IAR answers
(not in the approximation), of C p-AR answers (not C p-IAR), and of candidate answers not
Cp-AR.

ulclp3a ulc20p3a ulc50p3a

Approx. C p-IAR Cp-AR Candidate Approx. C p-IAR Cp-AR Candidate Approx. C p-IAR Cp-AR Candidate
ql 20181 113 0 115 14681 3244 0 2484 9642 5174 0 5596
q2 7220 0 20 7 6812 210 33 365 6039 734 177 752
q3 85 0 0 0 20 48 0 17 0 0 0 87
q4 81052 810 0 1875 35948 19548 0 29285 8324 21627 0 55694
q5 10 0 0 0 10 0 0 0 0 6 0 4
q6 235 0 0 0 207 30 5 59 0 0 0 342
q7 136 1 0 0 29 94 1 14 0 0 0 149
q8 0 0 0 0 0 0 0 0 0 0 0 0
q9 1310 55 2 7 1103 150 17 206 979 154 45 462
ql0 2 1 0 0 0 0 0 6 3 0 0 4
qll 537 0 0 1 527 1 0 36 515 8 0 105
ql2 1191 1 3 6 1132 3 52 103 1049 6 125 317
ql3 1072 1 2 5 1041 20 15 83 997 43 49 214
ql4 192 1 0 2 116 50 0 29 55 71 0 69
ql5 449 58 0 0 214 155 0 139 50 166 0 299
ql6 14201 3218 0 113 3342 7451 0 6739 67 5210 0 12255
ql7 0 1 0 0 0 0 0 1 0 0 0 1
ql8 3137 1 0 35 2717 137 0 320 2169 425 0 596
ql9 0 0 0 0 0 0 0 0 0 0 0 0
q20 50 0 0 0 25 0 0 25 16 8 0 26

u20clp3a u20c20p3a u20c50p3a

Approx. C p-IAR Cp-AR Candidate Approx. C p-IAR Cp-AR Candidate Approx. C p-IAR C p-AR Candidate
ql 536452 5332 0 3323 TO TO TO TO TO TO TO TO
q2 189557 358 47 471 177253 7609 1868 8946 TO TO TO TO
q3 85 0 0 0 0 0 0 85 11 46 0 30
q4 1375343 388968 0 303475 TO TO TO TO TO TO TO TO
q5 10 0 0 0 10 0 0 0 4 OOM 6 0
q6 235 0 0 0 180 41 14 66 114 OOM 124 104
q7 105 20 0 12 0 0 0 138 0 0 0 149
q8 21 10 0 0 0 0 0 31 0 0 0 32
q9 33901 1526 17 763 27582 1741 193 9526 TO TO TO TO
ql0 41 17 0 0 0 0 0 62 0 0 0 66
qll 14406 4 0 66 14141 63 2 1230 13701 255 15 2998
ql2 7305 1 61 184 6451 27 653 3460 TO TO TO TO
ql3 28983 28 17 131 28113 508 494 2484 TO TO TO TO
ql4 4814 83 0 54 2910 1184 0 857 TO TO TO TO
ql5 12666 815 0 271 3626 3910 0 6322 TO TO TO TO
ql6 408655 46175 0 13719 TO TO TO TO TO TO TO TO
ql7 27 7 0 3 0 4 0 33 0 0 0 39
ql8 82410 224 0 468 70783 4407 0 8063 TO TO TO TO
ql9 0 0 0 1 0 0 0 8 1 0 0 19
q20 50 0 0 0 26 0 0 24 0 0 0 50

176

RELATED WORK

In this chapter, we position our work in a more general context and provide more details on
some topics mentioned in the other chapters.

7.1 Consistent query answering outside DL

Consistent query answering (CQA), which corresponds to query answering under AR seman-
tics in the database setting, has been introduced in [Arenas et al. 1999]. Contrary to DLs, the
closed world assumption is generally made, so the facts that are not in the database are consid-
ered false. It follows that the violations of integrity constraints of the form Yz A(z) = B(x)
can be solved by removing or adding tuples (e.g. if the database contains only A(a) with
the example constraint, we can either remove A(a) or add B(a) to restore consistency). A
repair is generally defined as a database that is consistent with the integrity constraints and
whose symmetric difference to the original database is inclusion-minimal. The computa-
tional complexity of CQA with different kinds of integrity constraints and queries has been
extensively studied, and algorithms have been proposed for the different combinations of
classes of constraints and queries (see [Bertossi 2006, Chomicki 2007, Bertossi 2011] for
surveys about CQA).

In [Cali ef al. 2003], several semantics are defined for inconsistent and incomplete
databases, by considering the database instances that satisfy the integrity constraints and are
either supersets (sound semantics) or subsets (complete semantics) of the initial database
instance. In order to avoid that the violation of a constraint leads to the non-existence of
such instances in the sound case, loose versions of these semantics are introduced. They
consider the consistent databases that are “as close as possible” to the actual database in-
stance, w.r.t. the intersection (sound semantics) or the difference (complete semantics) with
the initial database. The loosely-sound semantics therefore corresponds exactly to the AR
semantics, since these database instances correspond to the models of the repairs (in the DL
sense) of the actual instance.

Regarding variants of CQA, [Lopatenko & Bertossi 2007] considers repairs whose
symmetric difference to the original database is cardinality-maximal, but also aggregate
attribute repairs, which are attribute-based repairs (under which database instances can

177

Related work

be repaired by changing attributes values in existing tuples only), which minimize a
numerical aggregation function over attribute changes throughout the database. Recently,
[Pfandler & Sallinger 2015] proposed another variant where the distance between the repairs
and the original database is bounded. Note that contrary to preferred repair semantics, a
distance-bounded repair is not guaranteed to exist. In this case, every query is considered not
entailed under distance-bounded CQA.

Consistent query answering has also been investigated for ontologies given by existential
rules. The data complexity of query answering under AR, IAR, and ICR semantics is
studied in [Lukasiewicz et al. 2013], and [Lukasiewicz et al. 2015] analyzes the combined
complexity (as well as bounded-arity combined complexity, where the arity of the predicates
is bounded, and fixed-program combined complexity, which amounts to fix the TBox in DL
setting) of AR query answering for the main decidable classes of existential rules enriched
with negative constraints.

Recently, the AR semantics has been generalized in [Eiter et al. 2016] so that rules and
rule instances, not just database facts, can be removed to restore consistency. This would
correspond to removing or altering TBox axioms in the DL setting. Generalized repairs
are obtained by minimally removing database facts and rules, and local generalized repairs
by minimally removing database facts and rule instances but not whole rules (e.g. if we
have the rules Vo A(z) = B(z) and Ve B(z) AC(x) = L and the facts A(a) and C(a), itis
possible to restore consistency by removing the rule instance A(a) = B(a)). In both cases,
it is allowed to define sets of hard rules and facts that cannot be removed.

7.2 Explanations

7.2.1 Justifications of entailed axioms

As mentioned in Chapter 4, there has been significant interest in equipping DL rea-
soning systems with explanation facilities. The earliest work proposed formal proof
systems as a basis for explaining concept subsumptions [McGuinness & Borgida 1995,
Borgida et al. 2000], while the post-2000 literature mainly focuses on axiom pinpointing
[Schlobach & Cornet 2003, Kalyanpur et al. 2005, Horridge et al. 2012], in which the prob-
lem is to generate minimal subsets of the KB that yield a given (surprising or undesirable)
consequence. Such subsets are often called justifications. It should be noted that work on
axiom pinpointing has thus far focused on explaining entailed TBox axioms (or possibly
ABox assertions), and in particular on TBox debugging by explaining unsatisfiable classes.
In our work, we assume that the TBox has been properly debugged, so is consistent and
correct, i.e. all consequences of the TBox are desirable. This work on axiom pinpointing can
therefore be seen as a first step that allows us to be sure that the errors stem from the data.
For the lightweight DL €L+, justifications have been shown to correspond to min-
imal models of propositional Horn formulas and can be computed using SAT solvers
[Sebastiani & Vescovi 2009]; a polynomial algorithm has been proposed to compute one

178

7.2 Explanations

justification in [Baader et al. 2007]. In DL-Lite, the problem is simpler: all justifications can
be enumerated in polynomial delay [Pefialoza & Sertkaya 2010].

Beside computing efficiently justifications, several works addressed the problem of
making them understandable for the user, either by studying their cognitive complexity
[Horridge et al. 2011], or by grouping justifications that have a similar structure to help to
handle large number of justifications [Bail e al. 2013]. Our experiments showed that a query
answer can possess a very large number of explanations, many of which are quite similar in
structure. It could therefore be interesting to investigate ways of improving the presentation
of explanations, e.g. by identifying and grouping similar explanations as has been done for
justifications, or by adopting a factorized representation (like in [Olteanu & Zavodny 2012]).

7.2.2 Explanation of query answers

The problem of explaining answers to conjunctive queries over DL-Lite KBs is considered
in [Borgida et al. 2008] which provides a proof-theoretic approach to explaining positive
answers. The proof of an answer involves the ABox assertions and TBox axioms used
to derived it. As mentioned in Chapter 4, the difficulty of such proofs could provide an
additional criteria for ranking explanations, and the work on the cognitive complexity of
justifications may give clues on this difficulty.

Probably the closest related work is [Arioua et al. 2015] which introduces an argumenta-
tion framework for explaining positive and negative answers under the inconsistency-tolerant
semantics ICR. Their motivations are quite similar to our own, and there are some high-
level similarities in the definition of explanations (e.g. to explain positive ICR-answers,
they consider sets of arguments that minimally cover the preferred extensions, whereas for
positive AR-answers, we use sets of causes that minimally cover the repairs). They propose
to compute one explanation for a positive or negative ICR-answer with a hitting set algorithm,
applied either on the sets of supporting arguments (which correspond to our causes) present
in each extension (corresponding to the repair), or on the set of attacking arguments (which
correspond to the conflicts of the causes). Our work differs from theirs by considering
different semantics and by providing detailed complexity analysis, in which we do not as-
sume that the set of repairs is given, and an implemented prototype. Another argumentation
framework has been proposed for ground BCQs explanation under IAR and brave semantics
in [Arioua & Croitoru 2016a], then under AR semantics in [Arioua & Croitoru 2016b], and
has been implemented in the DALEK prototype.

Finally, we note that the problem of explaining query results has been studied in the
database community (cf. [Cheney et al. 2009] for a survey). The lineage of a query answer
is the set of tuples of the database that contribute to produce the answer, i.e. the union of
the images for the answer. The why-provenance corresponds to the images and the minimal
witness basis to the set of causes of the answer. The how-provenance describes how a result
was produced from the tuples. The where-provenance provides the location (i.e. relation,
tuple and attribute) of the values in the answer tuple.

179

Related work

7.2.3 Query abduction

Since we defined explanations for a negative AR- or [AR-answer using assertions of the
ABox that conflict its causes, defining explanations for negative brave-answers (which have
no cause) would significantly differ in spirit. The problem of explaining negative answers
has been primarily seen as the problem of finding a minimal dataset to be added to the data to
get the missing answers, i.e. as query abduction, both in the DL (cf. [Calvanese ef al. 2013,
Du et al. 2014] for DL-Lite and [Wang et al. 2015] for ££H |) and in the database arena
(cf. [Herschel & Herndndez 2010]). In both settings, restrictions on the signature of the
explanation are allowed. Note that a different approach related to query debugging was
proposed in the database context [Bidoit et al. 2014], and focuses on finding subqueries
responsible for pruning the missing answer from a query result. This approach is less relevant
to our setting since conjunctive queries over DL KBs are much simpler and less error-prone
than SQL queries.

The complexity of the decision problems related to explaining negative answers in DL-
Lite (recognition and existence of an explanation, necessity and relevance of an assertion)
is studied in [Calvanese et al. 2013]. An implementation that computes explanations in
DL-Lite was presented in [Du et al. 2014] and the case of inconsistent KBs is treated in
[Du et al. 2015], where an explanation is a set of assertions to add that will lead to the answer
holding under IAR semantics. These three papers tackle the issue of preferred explanations:
Calvanese et al. consider subset or cardinality-minimal explanations, whereas Du et al.
introduce the notion of representative explanation, which is an explanation that is minimal
(when allowing renaming of fresh individuals to compare explanations) and is not subsumed
by any other (e.g. if Advise(ann,ann), Advise(ann,bob), and Advise(ann,ind) where ind is
a fresh individual are the explanations for ann not being an answer to JyAdvise(x,y), the last
one is the unique representative explanation), and cardinality-minimal preferred explanations
for a preference relation based on cardinality-preserving substitutions.

The idea of representative explanation could be used for presenting our explanations,
treating the individuals that are mapped to existentially quantified variables in the same way
as Du et al. treat fresh individuals. The framework of query abduction could also be a useful
starting point for providing users with suggestions of assertions to add when insertions are
needed to satisfy some answers during query-driven repairing. As mentioned in Chapter 35, it
would be natural to restrict the signature of the explanations to avoid adding some predicates.
It would also be crucial to exploit the interaction between the answers of the QRP and to
define proper preference relations. For instance, we should favor the insertion of assertions
that do not create causes for unwanted answers or participate in creating causes for several
unsatisfied wanted answers.

7.3 Evolution, revision and updates
The problem of making a knowledge base evolve has been intensively explored in the past

decades. Belief revision [Girdenfors 1992] consists in incorporating new information in a
KB while preserving consistency. Different operators have been defined for removing or

180

7.3 Evolution, revision and updates

adding a sentence to a logical theory. A commonly agreed criterion is that the changes to the
original belief set have to be minimal, but minimality can be defined at the syntactic level
(formula-based changes), or at the level of the models of the knowledge base (model-based
changes). The former approach seems more reasonable if the KB corresponds to a body of
explicit belief, while the latter respects the principle of irrelevance of syntax that expresses
that two KBs which have the same models are equivalent so should lead to equivalent
revised KBs. Note that in our setting, since we treat inconsistent KBs that have no models,
formula-based approaches make more sense.

When there are several KBs that realize the revision and differ minimally from the
initial KB, several strategies have been proposed. Among the approaches considered in
[Eiter & Gottlob 1992], the three formula-based approaches consider the formulas true
in all (Ginsberg’s approach), some (Cross-Product), or the intersection (When In Doubt
Throw It Out) of the possible worlds. The AR, brave and IAR semantics correspond to
these approaches. The latter is used in [Nebel 1991] in the context of belief revision, and
[Fagin et al. 1983] considers the Cross-Product strategy for updating databases.

It is widely accepted that some pieces of knowledge are more important or re-
liable than others. Partitioning the KB into levels of priority is a natural solution
[Fagin ef al. 1983, Nebel 1991]. In particular, in [Fagin et al. 1983], they are used to make
database integrity constraints take priority over database facts, since the authors consider that
the constraints should not be given up because of an update in the data that violates them.

Many works address belief change in the DL setting. The model-based approach for
instance-level update and erasure (i.e. addition or deletion of a set of assertions) is studied
in [De Giacomo et al. 2009], with a focus on DL-Lite r. Since the KB resulting from such
an update may not be expressible in the DL of the initial KB, the authors introduce a
minimal extension of DL-Liter closed for instance-level updates and use it to construct
an approximated instance-level update and erasure for DL-Lite r KB. The formula-based
approach is considered in [Calvanese et al. 2010] which proposes novel update strategies for
which evolution is expressible in DL-Lite to overcome the limitation of the Cross-Product
approach (which leads to KBs not expressible in DL-Lite), while losing less information than
with the “When In Doubt Throw It Out” approach. Similar problems have been explored in
[Calvanese et al. 2015], where different inconsistency-tolerant semantics for querying and
updating knowledge and action bases are defined.

While the new piece of information is traditionally considered more reliable than
the initial KB, [Ahmeti er al. 2016] defines three semantics for SPARQL instance-level
updates that do not systematically give preference to the update: the cautious semantics
rejects updates potentially introducing conflicts; the brave semantics gives favor to the
new information, and the fainthearted semantics is a compromise between the former two
approaches which incorporates as much of the new information as possible, as long as
consistency with the prior knowledge is not violated.

Closer to our work on query-driven repairing is the problem of modifying DL KBs to
ensure (non) entailments of assertions. The erasure operation, which consists in deleting

181

Related work

an entailed statement, is tackled from a practical point of view in [Gutierrez et al. 2011]
for RDFS knowledge bases. When the erasure concerns the schema, the possible solutions
correspond to the minimal cuts in the path from the causes to the unwanted consequence. In
the case of instance erasure, when the schema should be left untouched, the erasure is unique
and amounts to removing the (singleton) causes of the unwanted assertion.

Our query-driven repairing framework is inspired by that of [Jiménez-Ruiz et al. 2011],
in which a user specifies two sets of axioms that should be entailed or not by a KB.
Repair plans are introduced as pairs of sets of axioms to remove and add to obtain
an ontology satisfying these requirements. Deletion-only repair plans are studied in
[Jiménez-Ruiz et al. 2009] where heuristics based on the confidence and the size of the plan
are used to help the user to choose a plan among all minimal plans. Axioms that occur in
all plans (i.e. are necessary to remove to be able to find a solution) are also marked. We
adapted their framework to the setting of conjunctive queries and inconsistent KBs, using
inconsistency-tolerant semantics. This leads us to consider not only the causes of the answers,
but also the conflicts of the causes of wanted answers, since a tuple may be a negative
IAR-answer because of the presence of erroneous assertions that contradict its causes.
The main difference with our work is in the treatment of the problem: Jiménez-Ruiz et al.
compute all solutions (if there are any) and present them to the user, while we investigate
the case in which the assertions that can be added are not in a known finite set (so it is not
possible to compute all solutions), and we look for approximations when there is no solution
and ensure that a solution will actually satisfy every answer. In the case of deletion-only
repair plans, instead of computing all solutions and presenting them, we propose to help
the user to find which assertions to remove. We integrate a notion of impact similar to that
presented in [Nikitina ef al. 2012]. The latter paper studies the problem of interactive KB
revision where each axiom of a KB has to be (in)validated by an expert, and the goal is
to reduce the expert effort by ordering the axioms to evaluate to maximize the automatic
(in)validation of axioms.

Compared with the work of Jiménez-Ruiz et al., one distinguishing feature of our work is
the specifications of the changes at the level of query answers. The main idea of our query-
driven repairing approach is the same as in [Bergman et al. 2015]: erroneous or missing
answers are indicated by the user and the data has to be repaired by asking the user if some
tuples are valid or not. The strategy presented in the latter work consists in repeating the two
following steps until the objectives are achieved: (i) remove all erroneous answers, one after
the other, by removing singleton causes (necessarily false) then questioning the user about the
tuples that appear in the highest number of causes; (ii) add the missing answers by asking the
user to complete a partial cause.The authors also study the impact of using several imperfect
experts for this process and try to split the query to help the user to find a cause for a missing
answer. The main difference of our approach is that we take into account all answers at the
same time to increase the number of necessarily false assertions. The number of causes in
which a tuple appears, as well as other criteria mentioned in [Bergman et al. 2015], such as
responsibility or trust scores could be considered to refine our ranking.

182

7.4 Inconsistency and uncertainty handling in DL

Note that the problem of modifying the data to make some consequences hold is also
related to the problem of view update in databases where the data modification is specified at
the level of a view, which corresponds to a query, and the corresponding database update has
to be found [Fagin et al. 1983].

7.4 Inconsistency and uncertainty handling in DL

The problem of dealing with inconsistencies has been considered in several areas of knowl-
edge representation and reasoning (cf. survey [Bertossi et al. 2005]). Regarding DL-based
ontologies, [Haase et al. 2005] surveys four different approaches to handling inconsistency:
consistent ontology evolution, which has been discussed in the preceding section, locating
and repairing inconsistencies, reasoning in the presence of inconsistencies, and multi-version
reasoning, which considers not only the latest version of an ontology, but also all previous
versions to deal with inconsistencies that arise from the interaction of the ontology with its
environment.

A general framework for reasoning in the presence of inconsistent ontologies is presented
in [Huang et al. 2005]. The authors define some desirable properties for an inconsistent
reasoner, among them soundness, which requires that every formula that follows from an
inconsistent KB follows from a consistent subset using a classical reasoner, and meaningful-
ness, which requires that the reasoner does not allow to derive contradictory statements. In
our setting, semantics that are sound approximations of brave fulfill the soundness criteria,
and complete approximations of AR, as well as CAR and ICAR and k-lazy semantics are
meaningful according to this definition.

An alternative way to get meaningful answers from an inconsistent theory is to adopt
paraconsistent logics, which have more than two truth values (most often four (Belnap’s
logic): true, false, undefined and over-defined). For DL KBs, a four-valued semantics
is defined in [Zhou et al. 2012, Maier et al. 2013]. We give the idea of this semantics
using simple ontologies consisting of axioms of the forms A C B and A C - B, where
A,B € Nc. A four-valued interpretation Z over a domain AL maps each concept A to
a pair of sets (AI ,A]IV> of individuals. The inclusion A C B is satisfied if A%D C BEL,
AL —Bis satisfied if AL C BL,, and the assertion A(a) is satisfied if aZ € AL. Models and
entailment are defined as usual. Under this semantics, the KB ({A C -B},{A(a),B(a)})
has models, like AL, = {a’}, AL, =0 and BL = {a’}, B% = {a’}, and both A(a) and B(a)
are entailed. Note that AC —B and B C —A are no longer equivalent. This approach is
orthogonal to inconsistency-tolerant semantics. If a DL allows us to use intersection and
bottom, it is possible to construct a KB that has no models in the four-valued semantics,
like ({AM—-BLC 1},{A(a),B(a)}), while inconsistency-tolerant semantics always give
meaningful results.

Inconsistency is quite related to uncertainty. First because uncertainty may arise from
inconsistency, for instance the answers to a query under different inconsistency-tolerant
semantics could be seen as more or less certain. Second because inconsistency can be
avoided to some extent by expressing that we are not sure of some pieces of knowledge, so

183

Related work

that two contradictory but unsure statements can coexist. Different ways of dealing with
uncertain DL KBs have been proposed.

The first and most widely studied proposition is the use of probability to model un-
certainty. There has been a number of proposals for probabilistic DLs. In [Jaeger 1994],
probabilistic KBs associate probabilities to the ABox assertions, and the TBox contains both
classical terminological axioms and probabilistic terminological axioms that take the form of
conditional probability which express statistical probabilities. In [Lutz & Schroder 2010],
the authors introduce an operator that allows them to construct complex concepts involving
priorities and to express probability on conjunctions of (negated) assertions. In the OMQA
setting, [Jung & Lutz 2012] introduces probabilistic ABoxes that associate expressions built
on probabilistic events to ABox assertions and probabilities to these events, and computes
the probabilities of conjunctive query answers.

In possibilistic DLs [Qi et al. 2007], each axiom is associated with a degree of certainty,
and the a-cut of a KB consists of the axioms of degree greater than . The inconsistency
degree Inc of a KB is the maximal degree such that the corresponding cut is inconsistent,
and the plausible consequences of the KB are the consequences of its /nc-cut. Recently,
[Benferhat et al. 2015] investigated inconsistency-tolerant semantics in possibilistic DL-Lite,
which extend the plausible consequences, for instance by adding to the /nc-cut the assertions
that are free of conflicts, or conflicted only by assertions of lower degree of certainty.

Subjective DLs [Garcia et al. 2015] extend ABox assertions with opinions (b, d,u) where
bis a degree of belief, d the degree of disbelief, and u the degree of uncertainty (b+d+u = 1).
The semantics is given in terms of interpretations that map each individual to an element
of the domain, and each concept (resp. role) to a function that associates to every element
(resp. pair of elements) of the domain an opinion. For instance, an interpretation Z satisfies
an assertion A(a) if the degree of belief and disbelief associated to A% (a’) are greater than
those of the opinion associated to A(a). The problem of instance checking amounts to find
the most general opinion associated to a given assertion, and query answering is defined
accordingly.

Note that fuzzy DLs [Straccia 2001] model vagueness rather than uncertainty, by provid-
ing degree of membership for concepts for which there exists no sharp distinction between
members and nonmembers (e.g. for two concepts describing temperature cold and hot, some
intermediate values could be assigned to both concepts, with a degree of membership lower
than 1. Notice that in this case, it would not make sense to state that these two concepts are
disjoint).

184

CONCLUSION AND PERSPECTIVES

Summary of our contributions

In this thesis, we defended the idea that it is possible to deal with inconsistent data in a
satisfying and efficient way, which is a crucial point for spreading the use of ontologies
allowing for disjointness axioms or functional roles. Indeed, until now, most of ontology-
based data-rich applications simply avoid inconsistency, either by using simple ontologies
that do not allow for contradiction, or by rejecting any update of the data that will lead to
inconsistency. We focused on the AR semantics, which is the most well-known and arguably
the most natural semantics, since it can be seen as a generalization to the inconsistent case of
the classical semantics, under which the certain answers have to hold in every model of the
KB. We also use the TAR and brave semantics, which we consider as lower and upper bounds
of the possible answers. As a first step, we proposed an efficient approach to compute the
answers under these three semantics, and our experimental evaluation showed promising
results. We then addressed three problems that should support the adoption of this framework:
query result explanation, to help the user to understand the different levels of confidence of
the answers he obtained, query-driven repairing, to capitalize on the user feedback about
query results to improve the data quality, and preferred repair semantics, to take into account
the reliability of the ABox assertions. For these three issues, we came up with a solution
framework, analyzed the complexity of the related problems, and proposed and implemented
algorithms, which we empirically studied over an inconsistent DL-Liteg benchmark we built.
Our results indicate that even if the problems related to dealing with inconsistent DL-Liter
KBs are theoretically hard, they can often be solved efficiently in practice by using tractable
approximations and features of modern SAT solvers.

Discussion and perspectives

We conclude this dissertation by discussing some of our results and possible directions for
future work.

185

Conclusion and perspectives

Going beyond DL-Liter

Throughout the thesis, we focused on DL-Lite for simplicity and because it is the basis
for the W3C standard OWL 2 QL. It is natural to wonder what happens for other ontology
languages. Most of our results actually hold for other dialects of the DL-Lite family, but
the problem of reasoning with the inconsistency-tolerant semantics we consider becomes
considerably harder for many other well-known DLs.

Extension of our results to other languages of the DL-Lite family We recall that DL-
Litecore 1s the core language of the family and amounts to DL-Liteg without role inclusions.
DL-Lite r extends DL-Lite.oe With functionality axioms on roles or on their inverses of the
form (funct S). DL-Lite 4 extends DL-Litecore With both role inclusions and functionality
with the restriction that functional roles cannot be specialized, i.e. used positively on the
right-hand side of a role inclusion.

The complexity of query answering, consistency checking and computation of the causes
for a query and the conflicts of a knowledge base are the same for all these languages, and
the size of the conflicts is at most two in all cases. Therefore, all complexity upper bounds
presented in the thesis hold for DL-Litecre, DL-Liteg, DL-Lite r and DL-Lite 4. Moreover,
since all our algorithms only need the causes and conflicts, they can be used without any
modification. To make our prototype CQAPri able to handle KBs expressed in DL-Lite r
or DL-Lite 4, we simply need to modify the computation of the conflicts of the knowledge
base that currently only search for violation of disjointness TBox axioms in order to also find
pairs of assertions that contradict functionality axioms.

Regarding complexity lower bounds, all hardness results of Chapters 4 and 6 hold for KBs
expressed in DL-Litecqre, hence for these four DL-Lite dialects. Indeed, the reductions used
to prove hardness in these chapters do not use role inclusions. In Chapter 5, the complexity
results for potential solutions (Theorem 5.3.5) hold for KBs expressed in DL-Liteqye, but
the reductions used in the proofs of the complexity results related to optimal repair plans
(Theorem 5.2.16) use role inclusions. Note that if we allow the restriction of the signature
of the assertions that can be added, the hardness results hold for DL-Lite.oe: We can avoid
using role inclusions in the reductions if we restrict this signature. For the complexity of
recognizing an optimal repair plan with AR (Theorem 5.4.10), the I15-hardness results hold
for DL-Litecore, but not the AL[O(log n)]-hardness results. The latter hold in the case where
the insertion signature is restricted.

Regarding Horn versions of DL-Lite, which allow the use of conjunctions in the concepts
appearing in the left-hand side of TBox inclusions, our complexity results do not hold because
in this case the size of the causes is not bounded by ¢, so they cannot be computed in P.

DL languages outside the DL-Lite family When moving outside the DL-Lite fam-
ily, query answering under the AR, or even the IAR or brave semantics becomes hard
[Rosati 2011]. For ALC, which is the prototypical expressive description logic, query an-
swering under these three semantics is in the second level of the polynomial hierarchy
w.r.t. data complexity, even for instance queries, while it is coNP-complete under classical
semantics. Even for ££ |, which extends the lightweight DL ££ with the ability to express

186

disjointness using L, query answering under IAR and brave semantics is intractable w.r.t.
data complexity for instance queries, while query answering is in P under classical semantics.
However, for ££ |, AR query answering has the same complexity as in DL-Lite. It would be
interesting to see if query answering under these semantics can be done efficiently for £L£ |,
since the IAR semantics does not provide a tractable approximation of AR in this setting.

Using other query answering techniques

Our approach is based on the computation of the causes of the answers, which are obtained
straightforwardly using the UCQ rewritings of the initial queries. Our system uses the tool
Rapid that implements the algorithm of [Chortaras et al. 2011] to reformulate the query, but
we could use any algorithm that produces such rewritings. However, database management
systems perform poorly on large UCQs, and it is not uncommon for UCQ rewritings to
be (very) large (there were more than 200,000 CQs in the rewritings of some queries of
our benchmark!). That is why FOL rewritings that can be evaluated more efficiently in
practice than the standard UCQs have been proposed. In [Thomazo 2013a], an algorithm that
rewrites a conjunctive query in a union of semi-conjunctive queries (which are conjunctions
of disjunctions) is proposed. In [Bursztyn et al. 2015, Bursztyn et al. 2016], the authors
introduce a space of reformulated queries which are joins of unions of conjunctive queries,
from which the reformulated query with the lowest estimated evaluation cost is selected.
Another promising approach is the use of non-recursive Datalog rewritings. The algorithm
Presto presented in [Rosati & Almatelli 2010] generates a non-recursive Datalog program
instead of a UCQ, and produces a query that is not exponential in the number of atoms of the
initial query but only in the number of a subset of the join variables of the query typically
much smaller. In [Eiter et al. 2012], the Clipper system, which implements an algorithm
for rewriting queries over Horn-SHZ Q ontologies that transforms the query into a Datalog
program ready for evaluation over any ABox, performs well over DL-Lite KBs.

To improve the performance of our system for queries that have a long evaluation time,
we could try to use such optimized techniques to find the candidate answers, and then evaluate
only the Boolean UCQ rewritings instantiated with these answers to retrieve their causes.
Indeed, they would contain less variables and so would be easier to evaluate than the original
UCQs. It would probably be useful for queries with a limited number of answers. An open
question is whether it is possible to compute the causes more directly, without the UCQs.

Note that the alternative method to rewriting for query answering in DL-Lite, namely the
combined approach [Lutz et al. 2013], which saturates the data by adding to the ABox every
assertion that can be derived and introduces constants to witness existential role restrictions,
then uses a special rewriting to prune spurious answers, cannot be straightforwardly adapted
to our setting. Indeed, this approach is based on the fact that a DL-Lite KB has a canonical
model which is such that the answers of a query in the canonical model are the same as those
over the KB, and the inconsistency-tolerant semantics are based on repairs that each has its
own canonical model. For IAR semantics, it is possible to compute the intersection of the
repairs then use the combined approach over the resulting consistent KB, but in this case
updating the saturated intersection when the original ABox is modified will be non-trivial.

187

Conclusion and perspectives

Developing and enhancing this work

Explanation framework The explanations we defined provide the basic information
needed to understand positive and negative query answers under the AR, IAR and brave
semantics. We could build a more complete explanation framework which allows the user
to ask for the justification of such explanations (e.g. why is this set of assertions a cause
for the query? which causes are contradicted by this assertion and why? in which causes is
this assertion?). Such justifications would involve both ABox and TBox axioms and rely on
related work about justifications of entailed axioms and query answer explanations. They
could be computed on demand and we could find clues on how to select or present them in
the literature (cf. Chapter 7.2).

Query-driven repairing framework Our work on query-driven repairing gives the basis
for partially cleaning the data based on the user feedback at query time. There are many
possible improvements to our algorithms. First, when insertions are allowed and needed, it
is very important to help the user to find what insert. Besides the work on query abduction
that will be very useful, we could use the specific aspects of this setting to propose inser-
tions. For instance, when the wanted answers were initially entailed under brave semantics
and lost their causes because of the deletion of some assertion, we could suggest that the
user adds an assertion that “replaces” the assertion deleted (e.g. if we removed AProf (ann)
and lose the wanted answer JzProf(x), we could suggest to add Prof(ann)). In the same
vein, we could present the consequences of the deleted assertions to the user to ask him if
he wants to preserve some of them. It would also be interesting to see how allowing the
insertion of ABox assertions using variables, as it is done for the language introduced in
[De Giacomo et al. 2009], impacts the problem. Another approach which could be interest-
ing is to try to find which assertions have to be removed by asking more general questions to
the user to obtain part of his knowledge. For instance suppose that a QRP involves several
assertions from which derives Prof (ann), and others from which derives Postdoc(ann), that
Person(ann) is wanted and that Prof and Postdoc are disjoint subconcepts of Person. Then
asking for the truth value of Prof(ann) will allow us to discover that several assertions are
false if the answer is different from unknown. Finally, our algorithm for deletion-only repair
plans could be improved by refining the impact we use to rank the assertions, optimizing its
computation or considering ranking only a part of the relevant assertions.

Preferred repairs We provided algorithms for the semantics based on Cp, but did not
investigate further the three other cases, which are computationally harder. It would be
interesting to find a good way of performing query answering under these semantics, espe-
cially <,,, which can also translate different levels of reliability but allow for compensation
between the priority levels.

It would also be interesting to extend our explanation framework to the case of preferred
repair semantics. Indeed, a starting point for explaining a positive or negative answer under
these semantics would be the explanations defined in the same way as in the classical case
(i.e. causes included in some preferred repair, or in the intersection of the preferred repairs,
disjunctions of causes that cover the preferred repairs, minimal consistent subsets of the

188

ABox contradicting every cause and belonging to some preferred repair...), but we also need
to explain why a given cause is in some or all preferred repairs for instance. In the case of
the C p based semantics, it should still be possible to provide explanations that involve only
a restricted part of the ABox, since it is possible to reason locally to decide whether a query
is entailed or not under these semantics.

System, benchmarks and experiments Our CQAPri system is a prototype, which aims at
analyzing the behavior of our algorithms. We therefore focused on the algorithmic part of the
system rather than on the query evaluation part or on the presentation of query results. A real
system for inconsistency-tolerant query answering should be able to use different rewriting
systems, be more flexible on the way of storing the data, and implement an interface for
efficiently displaying the results and interacting with the user. Working on these points would
probably result in gains in performance.

We did our best to experimentally evaluate our algorithms and built an experimental
setting over a well-known benchmark by adding contradictions in data in a way as realistic
as we could. However, LUBM%0 is an artificial benchmark whose data is very regular,
and it would be important to find more natural and varied data to test our framework in a
more realistic setting. As discussed in Section 3.4.2, there have been very few experiments
conducted over DL-Lite KBs with inconsistent ABoxes, and we did not find any satisfying
benchmark.

Another parameter that should be taken into account in the experiments to go further is
the user. Indeed, when providing explanations or support for repairing, the major objective
is to help a user to operate inconsistent data. The next step should therefore be to conduct
experiments with users to understand better what are their needs and how the explanations or
suggestions of assertions to remove to repair the ABox are useful and can be improved.

Going a step further

We focused on the setting where the TBox is consistent and assumed to be correct. Little
work has been done without this assumption, and there are interesting questions there.

Inconsistency-tolerant semantics could also be combined with other approaches for
uncertainty handling (probabilistic or possibilistic DLs for instance), or other settings that
take into account some other dimensions of the data, like vagueness with fuzzy DLs, or
temporal aspects.

189

REFERENCES

[Ahmeti ef al. 2016] Albin Ahmeti, Diego Calvanese, Axel Polleres et Vadim Savenkov.
Handling Inconsistencies Due to Class Disjointness in SPARQL Updates. In Pro-
ceedings of ESWC, 2016.

[Altwaijry et al. 2013] Hotham Altwaijry, Dmitri V. Kalashnikov et Sharad Mehrotra. Query-
Driven Approach to Entity Resolution. PVLDB, vol. 6, no. 14, pages 18461857,
2013.

[Amgoud & Vesic 2011] Leila Amgoud et Srdjan Vesic. A new approach for preference-
based argumentation frameworks. Annals of Mathematics and Artificial Intelligence,
vol. 63, no. 2, pages 149-183, 2011.

[Arenas ef al. 1999] Marcelo Arenas, Leopoldo E. Bertossi et Jan Chomicki. Consistent
Query Answers in Inconsistent Databases. In Proceedings of PODS, 1999.

[Arioua & Croitoru 2016a] Abdallah Arioua et Madalina Croitoru. Dialectical Characteri-
zation of Consistent Query Explanation with Existential Rules. In Proceedings of
FLAIRS, 2016.

[Arioua & Croitoru 2016b] Abdallah Arioua et Madalina Croitoru. A Dialectical Proof The-
ory for Universal Acceptance in Coherent Logic-based Argumentation Frameworks.
In Proceedings of ECAI, 2016.

[Arioua et al. 2014a] Abdallah Arioua, Nouredine Tamani et Madalina Croitoru. On Con-
ceptual Graphs and Explanation of Query Answering under Inconsistency. In
Proceedings of ICCS, 2014.

[Arioua et al. 2014b] Abdallah Arioua, Nouredine Tamani, Madalina Croitoru et Patrice
Buche. Query Failure Explanation in Inconsistent Knowledge Bases Using Argumen-
tation. In Proceedings of COMMA, 2014.

[Arioua et al. 2015] Abdallah Arioua, Nouredine Tamani et Madalina Croitoru. Query
Answering Explanation in Inconsistent Datalog +/- Knowledge Bases. In Proceedings
of DEXA, 2015.

[Artale et al. 2009] Allessandro Artale, Diego Calvanese, Roman Kontchakov et Michael
Zakharyaschev. The DL-Lite Family and Relations. Journal Artif. Intell. Res. (JAIR),
vol. 36, pages 1-69, 2009.

191

References

[Baader et al. 2003] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi
et Peter F. Patel-Schneider, editors. The description logic handbook: Theory, imple-
mentation and applications. Cambridge University Press, 2003.

[Baader et al. 2007] Franz Baader, Rafael Pefialoza et Boontawee Suntisrivaraporn. Pin-
pointing in the Description Logic ELT . In Proceedings of KI, 2007.

[Baget et al. 2011a] Jean-Frangois Baget, Michel Leclere, Marie-Laure Mugnier et Eric
Salvat. On rules with existential variables: Walking the decidability line. Artif.
Intell., vol. 175, no. 9-10, pages 1620-1654, 2011.

[Baget et al. 2011b] Jean-Francois Baget, Marie-Laure Mugnier, Sebastian Rudolph et
Michaél Thomazo. Walking the Complexity Lines for Generalized Guarded Ex-
istential Rules. In Proceedings of IJCAI, 2011.

[Baget et al. 2016] Jean-Francois Baget, Salem Benferhat, Zied Bouraoui, Madalina
Croitoru, Marie-Laure Mugnier, Odile Papini, Swan Rocher et Karim Tabia. A

General Modifier-Based Framework for Inconsistency-Tolerant Query Answering. In
Proceedings of KR, 2016.

[Bail ef al. 2013] Samantha Bail, Bijan Parsia et Ulrike Sattler. The logical diversity of
explanations in OWL ontologies. In Proceedings of CIKM, 2013.

[Benferhat er al. 2015] Salem Benferhat, Zied Bouraoui et Karim Tabia. Non Defeated-
Based Repair in Possibilistic DL-Lite Knowledge Bases. In Proceedings of FLAIRS,
2015.

[Bergman et al. 2015] Moria Bergman, Tova Milo, Slava Novgorodov et Wang-Chiew Tan.
QOCO: A Query Oriented Data Cleaning System with Oracles. PVLDB, vol. 8,
no. 12, pages 1900-1911, 2015.

[Berre & Parrain 2010] Daniel Le Berre et Anne Parrain. The Satdj library, release 2.2.
JSAT, vol. 7, no. 2-3, pages 59-64, 2010.

[Bertossi et al. 2005] Leopoldo E. Bertossi, Anthony Hunter et Torsten Schaub, editors.
Inconsistency Tolerance [result from a Dagstuhl seminar], volume 3300 of Lecture
Notes in Computer Science. Springer, 2005.

[Bertossi 2006] Leopoldo E. Bertossi. Consistent query answering in databases. SIGMOD
Record, vol. 35, no. 2, pages 68—76, 2006.

[Bertossi 2011] Leopoldo E. Bertossi. Database repairing and consistent query answering.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[Bidoit et al. 2014] Nicole Bidoit, Melanie Herschel et Katerina Tzompanaki. Query-Based
Why-Not Provenance with NedExplain. In Proceedings of EDBT, 2014.

[Bienvenu & Ortiz 2015] Meghyn Bienvenu et Magdalena Ortiz. Ontology-Mediated Query
Answering with Data-Tractable Description Logics. In Lecture Notes of the 11th
International Reasoning Web Summer School, volume 9203 of LNCS, pages 218-307.
Springer, 2015.

192

References

[Bienvenu & Rosati 2013] Meghyn Bienvenu et Riccardo Rosati. Tractable Approxima-
tions of Consistent Query Answering for Robust Ontology-based Data Access. In
Proceedings of IJCAI, 2013.

[Bienvenu ef al. 2014] Meghyn Bienvenu, Camille Bourgaux et Francois Goasdoué. Query-
ing Inconsistent Description Logic Knowledge Bases under Preferred Repair Seman-
tics. In Proceedings of AAAI, 2014.

[Bienvenu ef al. 2016a] Meghyn Bienvenu, Camille Bourgaux et Frangois Goasdoué. Ex-

plaining Inconsistency-Tolerant Query Answering over Description Logic Knowledge
Bases. In Proceedings of AAAI 2016.

[Bienvenu ef al. 2016b] Meghyn Bienvenu, Camille Bourgaux et Francois Goasdoué. Query-
driven Repairing of Inconsistent DL-Lite Knowledge Bases. In Proceedings of IJCAI,
2016.

[Bienvenu 2012] Meghyn Bienvenu. On the Complexity of Consistent Query Answering in
the Presence of Simple Ontologies. In Proceedings of AAAI 2012.

[Borgida et al. 2000] Alexander Borgida, Enrico Franconi et Ian Horrocks. Explaining ALC
Subsumption. In Proceedings of ECAI, 2000.

[Borgida et al. 2008] Alexander Borgida, Diego Calvanese et Mariano Rodriguez-Muro.
Explanation in the DL-Lite Family of Description Logics. In Proceedings of OTM,
2008.

[Brewka et al. 2008] Gerhard Brewka, Ilkka Niemeld et Miroslaw Truszczynski. Preferences
and Nonmonotonic Reasoning. Al Magazine, vol. 29, no. 4, pages 69-78, 2008.

[Bursztyn et al. 2015] Damian Bursztyn, Francois Goasdoué et loana Manolescu. Efficient
Query Answering in DL-Lite through FOL Reformulation (Extended Abstract). In
Proceedings of DL, 2015.

[Bursztyn et al. 2016] Damian Bursztyn, Francois Goasdoué et loana Manolescu. Teaching
an RDBMS about ontological constraints. PVLDB, 2016.

[Buss & Hay 1991] Samuel R. Buss et Louise Hay. On Truth-Table Reducibility to SAT.
Information and Computation, vol. 91, no. 1, pages 86—102, 1991.

[Cali et al. 2003] Andrea Cali, Domenico Lembo et Riccardo Rosati. On the decidability

and complexity of query answering over inconsistent and incomplete databases. In
Proceedings of PODS, 2003.

[Cali ef al. 2012] Andrea Cali, Georg Gottlob et Thomas Lukasiewicz. A general Datalog-

based framework for tractable query answering over ontologies. Journal Web Sem.,
vol. 14, pages 57-83, 2012.

[Calvanese et al. 2007] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini et Riccardo Rosati. Tractable Reasoning and Efficient Query Answer-
ing in Description Logics: The DL-Lite Family. Journal of Automated Reasoning
(JAR), vol. 39, no. 3, pages 385-429, 2007.

193

References

[Calvanese et al. 2010] Diego Calvanese, Evgeny Kharlamov, Werner Nutt et Dmitriy
Zheleznyakov. Evolution of DL-Lite Knowledge Bases. In Proceedings of ISWC,
2010.

[Calvanese et al. 2011] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maur-
izio Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco
Ruzzi et Domenico Fabio Savo. The MASTRO system for ontology-based data access.
Semantic Web, vol. 2, no. 1, pages 43-53, 2011.

[Calvanese et al. 2013] Diego Calvanese, Magdalena Ortiz, Mantas Simkus et Giorgio Ste-
fanoni. Reasoning about Explanations for Negative Query Answers in DL-Lite.
Journal of Artificial Intelligence Research (JAIR), vol. 48, pages 635-669, 2013.

[Calvanese et al. 2015] Diego Calvanese, Marco Montali et Ario Santoso. Verification of

Generalized Inconsistency-Aware Knowledge and Action Bases. In Proceedings of
IJCALI, 2015.

[Cheney et al. 2009] James Cheney, Laura Chiticariu et Wang Chiew Tan. Provenance in
Databases: Why, How, and Where. Foundations and Trends in Databases, vol. 1,
no. 4, pages 379-474, 20009.

[Chomicki et al. 2004a] Jan Chomicki, Jerzy Marcinkowski et Slawomir Staworko. Comput-
ing consistent query answers using conflict hypergraphs. In Proceedings of CIKM,
2004.

[Chomicki et al. 2004b] Jan Chomicki, Jerzy Marcinkowski et Slawomir Staworko. Hippo:
A System for Computing Consistent Answers to a Class of SQL Queries. In Proceed-
ings of EDBT, 2004.

[Chomicki 2007] Jan Chomicki. Consistent Query Answering: Five Easy Pieces. In Pro-
ceedings of ICDT, 2007.

[Chortaras ef al. 2011] Alexandros Chortaras, Despoina Trivela et Giorgos Stamou. Opfi-
mized Query Rewriting for OWL 2 QL. In Proceedings of CADE, 2011.

[De Giacomo et al. 2009] Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi
et Riccardo Rosati. On Instance-level Update and Erasure in Description Logic
Ontologies. Journal of Logic and Computation, vol. 19, no. 5, pages 745-770, 2009.

[Du et al. 2013] Jianfeng Du, Guilin Qi et Yi-Dong Shen. Weight-based consistent query

answering over inconsistent SHZ Q knowledge bases. Knowledge and Information
Systems, vol. 34, no. 2, pages 335-371, 2013.

[Du et al. 2014] Jianfeng Du, Kewen Wang et Yi-Dong Shen. A Tractable Approach to
ABox Abduction over Description Logic Ontologies. In Proceedings of AAAI, 2014.

[Du et al. 2015] Jianfeng Du, Kewen Wang et Yi-Dong Shen. Towards Tractable and Practi-

cal ABox Abduction over Inconsistent Description Logic Ontologies. In Proceedings
of AAAI 2015.

194

References

[Eiter & Gottlob 1992] Thomas Eiter et Georg Gottlob. On the Complexity of Propositional
Knowledge Base Revision, Updates, and Counterfactuals. Artif. Intell., vol. 57,
no. 2-3, pages 227-270, 1992.

[Eiter & Gottlob 1995] Thomas Eiter et Georg Gottlob. The Complexity of Logic-Based
Abduction. Journal of the ACM, vol. 42, no. 1, pages 3—42, 1995.

[Eiter & Gottlob 1997] Thomas Eiter et Georg Gottlob. The Complexity Class @5 . Recent
Results and Applications in AI and Modal Logic. In Proceedings of FCT, 1997.

[Eiter ef al. 2008] Thomas Eiter, Georg Gottlob, Magdalena Ortiz et Mantas Simkus. Query
Answering in the Description Logic Horn-SHZ Q. In Proceedings of JELIA, 2008.

[Eiter et al. 2012] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran et
Guohui Xiao. Query Rewriting for Horn-SHIQ Plus Rules. In Proceedings of AAAI,
2012.

[Eiter et al. 2016] Thomas Eiter, Thomas Lukasiewicz et Livia Predoiu. Generalized Con-
sistent Query Answering under Existential Rules. In Proceedings of KR, 2016.

[Fagin et al. 1983] Ronald Fagin, Jeffrey D. Ullman et Moshe Y. Vardi. On the Semantics
of Updates in Databases. In Proceedings of PODS, 1983.

[Fuxman & Miller 2005] Ariel Fuxman et Renée Journal Miller. First-Order Query Rewrit-
ing for Inconsistent Databases. In Proceedings of ICDT, 2005.

[Fuxman et al. 2005] Ariel Fuxman, Elham Fazli et Renée J. Miller. ConQuer: Efficient
Management of Inconsistent Databases. In Proceedings of SIGMOD, 2005.

[Garcia et al. 2015] Jhonatan Garcia, Jeff Z. Pan et Achille Fokoue. Handling uncertainty:
An extension of DL-Lite with Subjective Logic. In Proceedings of DL, 2015.

[Gérdenfors 1992] Peter Girdenfors. Belief Revision. Cambridge University Press, Cam-
bridge, 1992.

[Gottlob et al. 2014] Georg Gottlob, Giorgio Orsi et Andreas Pieris. Query Rewriting and

Optimization for Ontological Databases. ACM Trans. Database Syst., vol. 39, no. 3,
page 25, 2014.

[Gottlob 1995] Georg Gottlob. NP Trees and Carnap’s Modal Logic. Journal of the ACM,
vol. 42, no. 2, 1995.

[Guo et al. 2005] Yuanbo Guo, Zhengxiang Pan et Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. J. Web Sem., vol. 3, no. 2-3, pages 158-182, 2005.

[Gutierrez et al. 2011] Claudio Gutierrez, Carlos A. Hurtado et Alejandro A. Vaisman.
RDFS Update: From Theory to Practice. In Proceedings of ESWC, 2011.

[Haase et al. 2005] Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stucken-
schmidt et York Sure. A Framework for Handling Inconsistency in Changing Ontolo-
gies. In Proceedings of ISWC, 2005.

195

References

[Herschel & Herndandez 2010] Melanie Herschel et Mauricio A. Herndandez. Explaining
Missing Answers to SPJUA Queries. PVLDB, vol. 3, no. 1, pages 185-196, 2010.

[Horridge et al. 2011] Matthew Horridge, Samantha Bail, Bijan Parsia et Ulrike Sattler. The
Cognitive Complexity of OWL Justifications. In Proceedings of ISWC, 2011.

[Horridge et al. 2012] Matthew Horridge, Bijan Parsia et Ulrike Sattler. Extracting Justifi-
cations from BioPortal Ontologies. In Proceedings of ISWC, 2012.

[Huang et al. 2005] Zhisheng Huang, Frank van Harmelen et Annette ten Teije. Reasoning
with Inconsistent Ontologies. In Proceedings of IJCAI, 2005.

[Hustadt et al. 2007] Ullrich Hustadt, Boris Motik et Ulrike Sattler. Reasoning in Descrip-
tion Logics by a Reduction to Disjunctive Datalog. Journal Aut. Reasoning (JAR),
vol. 39, no. 3, pages 351-384, 2007.

[Jaeger 1994] Manfred Jaeger. Probabilistic Reasoning in Terminological Logics. In Pro-
ceedings of KR, 1994.

[Jiménez-Ruiz et al. 2009] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks et
Rafael Berlanga Llavori. Ontology Integration Using Mappings: Towards Getting
the Right Logical Consequences. In Proceedings of ESWC, 2009.

[Jiménez-Ruiz et al. 2011] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ian Horrocks et
Rafael Berlanga Llavori. Supporting concurrent ontology development: Framework,
algorithms and tool. Data & Knowledge Engineering Journal (DKE), vol. 70, no. 1,
pages 146-164, 2011.

[Jung & Lutz 2012] Jean Christoph Jung et Carsten Lutz. Ontology-Based Access to Proba-
bilistic Data with OWL QL. In Proceedings of ISWC, 2012.

[Kalyanpur et al. 2005] Aditya Kalyanpur, Bijan Parsia, Evren Sirin et James A. Hendler.
Debugging unsatisfiable classes in OWL ontologies. Journal Web Sem., vol. 3, no. 4,
pages 268-293, 2005.

[Kolaitis et al. 2013] Phokion G. Kolaitis, Enela Pema et Wang-Chiew Tan. Efficient Query-
ing of Inconsistent Databases with Binary Integer Programming. PVLDB, vol. 6,
no. 6, pages 397-408, 2013.

[Kontokostas ef al. 2014] Dimitris Kontokostas, Patrick Westphal, Soren Auer, Sebastian
Hellmann, Jens Lehmann, Roland Cornelissen et Amrapali Zaveri. Test-driven
evaluation of linked data quality. In Proceedings of WWW, 2014.

[Krentel 1988] Mark W. Krentel. The Complexity of Optimization Problems. Journal of
Computer and System Sciences, vol. 36, no. 3, pages 490-509, 1988.

[Krotzsch & Rudolph 2011] Markus Krétzsch et Sebastian Rudolph. Extending Decidable
Existential Rules by Joining Acyclicity and Guardedness. In Proceedings of IJCAL,
2011.

[Lembo et al. 2010] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi
et Domenico Fabio Savo. Inconsistency-Tolerant Semantics for Description Logics.
In Proceedings of RR, 2010.

196

References

[Lembo et al. 2011] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi
et Domenico Fabio Savo. Query Rewriting for Inconsistent DL-Lite Ontologies. In
Proceedings of RR, 2011.

[Lembo et al. 2015] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi
et Domenico Fabio Savo. Inconsistency-tolerant query answering in ontology-based
data access. Journal Web Sem., vol. 33, pages 3-29, 2015.

[Liberatore 2005] Paolo Liberatore. Redundancy in logic 1: CNF propositional formulae.
Artif. Intell. (ALJ), 2005.

[Lopatenko & Bertossi 2007] Andrei Lopatenko et Leopoldo E. Bertossi. Complexity of
Consistent Query Answering in Databases Under Cardinality-Based and Incremental
Repair Semantics. In Proceedings of ICDT, 2007.

[Lukasiewicz et al. 2012] Thomas Lukasiewicz, Maria Vanina Martinez et Gerardo I. Simari.
Inconsistency Handling in Datalog+/- Ontologies. In Proceedings of ECAI, 2012.

[Lukasiewicz et al. 2013] Thomas Lukasiewicz, Maria Vanina Martinez et Gerardo 1. Simari.
Complexity of Inconsistency-Tolerant Query Answering in Datalog+/-. In Proceed-
ings of OTM, 2013.

[Lukasiewicz et al. 2015] Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris et
Gerardo 1. Simari. From Classical to Consistent Query Answering under Existential
Rules. In Proceedings of AAAI 2015.

[Lutz & Schroder 2010] Carsten Lutz et Lutz Schroder. Probabilistic Description Logics
for Subjective Uncertainty. In Proceedings of KR, 2010.

[Lutz et al. 2013] Carsten Lutz, Inan¢ Seylan, David Toman et Frank Wolter. The Combined
Approach to OBDA: Taming Role Hierarchies Using Filters. In Proceedings of
ISWC, 2013.

[Maier et al. 2013] Frederick Maier, Yue Ma et Pascal Hitzler. Paraconsistent OWL and
related logics. Semantic Web, vol. 4, no. 4, pages 395-427, 2013.

[Marileo & Bertossi 2010] Monica Caniupan Marileo et Leopoldo E. Bertossi. The con-
sistency extractor system: Answer set programs for consistent query answering in
databases. Data Knowl. Eng., vol. 69, no. 6, pages 545-572, 2010.

[McGuinness & Borgida 1995] Deborah L. McGuinness et Alexander Borgida. Explaining
Subsumption in Description Logics. In Proceedings of IJCAI, 1995.

[Meilicke et al. 2008] Christian Meilicke, Heiner Stuckenschmidt et Andrei Tamilin. Sup-
porting Manual Mapping Revision using Logical Reasoning. In Proceedings of
AAAL 2008.

[Meliou et al. 2010] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore et Dan

Suciu. The Complexity of Causality and Responsibility for Query Answers and
non-Answers. PVLDB, vol. 4, no. 1, pages 34-45, 2010.

197

References

[Motik et al. 2012] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille
Fokoue et Carsten Lutz. OWL 2 Web Ontology Language Profiles. W3C Recommen-
dation, 11 December 2012. Available at http://www.w3.org/TR/owl2-profiles/.

[Nebel 1991] Bernhard Nebel. Belief Revision and Default Reasoning: Syntax-Based Ap-
proaches. In Proceedings of KR, 1991.

[Nebel 1998] B. Nebel. Handbook of defeasible reasoning and uncertainty management
systems, volume 3: Belief change, chapitre How Hard is it to Revise a Belief Base?
Kluwer, 1998.

[Nikitina ef al. 2012] Nadeschda Nikitina, Sebastian Rudolph et Birte Glimm. Interactive
ontology revision. Journal of Web Semantics (JWS), vol. 12, pages 118—-130, 2012.

[Olteanu & Zavodny 2012] Dan Olteanu et Jakub Zavodny. Factorised representations of
query results: size bounds and readability. In Proceedings of ICDT, 2012.

[Pefialoza & Sertkaya 2010] Rafael Pefialoza et Baris Sertkaya. Complexity of Axiom Pin-
pointing in the DL-Lite Family of Description Logics. In Proceedings of ECAI,
2010.

[Pérez-Urbina et al. 2009] Héctor Pérez-Urbina, Ian Horrocks et Boris Motik. Efficient
Query Answering for OWL 2. In Proceedings of ISWC, 2009.

[Pfandler & Sallinger 2015] Andreas Pfandler et Emanuel Sallinger. Distance-Bounded
Consistent Query Answering. In Proceedings of IJICAI, 2015.

[Qi et al. 2007] Guilin Qi, Jeff Z. Pan et Qiu Ji. A Possibilistic Extension of Description
Logics. In Proceedings of DL, 2007.

[Rodriguez-Muro et al. 2013] Mariano Rodriguez-Muro, Roman Kontchakov et Michael
Zakharyaschev. Ontology-Based Data Access: Ontop of Databases. In Proceedings
of ISWC, 2013.

[Rosati & Almatelli 2010] Riccardo Rosati et Alessandro Almatelli. Improving Query An-
swering over DL-Lite Ontologies. In Proceedings of KR, 2010.

[Rosati et al. 2012] Riccardo Rosati, Marco Ruzzi, Mirko Graziosi et Giulia Masotti. Eval-
uation of Techniques for Inconsistency Handling in OWL 2 QL Ontologies. In
Proceedings of ISWC, 2012.

[Rosati 2011] Riccardo Rosati. On the Complexity of Dealing with Inconsistency in Descrip-
tion Logic Ontologies. In Proceedings of IJCAI, 2011.

[Schlobach & Cornet 2003] Stefan Schlobach et Ronald Cornet. Non-Standard Reasoning
Services for the Debugging of Description Logic Terminologies. In Proceedings of
[IJCALI, 2003.

[Sebastiani & Vescovi 2009] Roberto Sebastiani et Michele Vescovi. Axiom Pinpointing in
Lightweight Description Logics via Horn-SAT Encoding and Conflict Analysis. In
Proceedings of CADE, 2009.

198

http://www.w3.org/TR/owl2-profiles/

References

[Staworko et al. 2012] Slawek Staworko, Jan Chomicki et Jerzy Marcinkowski. Priori-
tized repairing and consistent query answering in relational databases. Annals of
Mathematics and Artificial Intelligence, vol. 64, no. 2-3, pages 209-246, 2012.

[Straccia 2001] Umberto Straccia. Reasoning within Fuzzy Description Logics. J. Artif.
Intell. Res. (JAIR), vol. 14, pages 137-166, 2001.

[Thomazo 2013a] Micha&l Thomazo. Compact Rewritings for Existential Rules. In Pro-
ceedings of IJCAI, 2013.

[Thomazo 2013b] Michaél Thomazo. Conjunctive Query Answering Under Existential
Rules - Decidability, Complexity, and Algorithms. PhD thesis, Montpellier 2 Univer-
sity, France, 2013.

[Venetis et al. 2012] Tassos Venetis, Giorgos Stoilos et Giorgos B. Stamou. Incremental
Query Rewriting for OWL 2 QL. In Proceedings of DL, 2012.

[Wagner 1987] Klaus W. Wagner. More Complicated Questions About Maxima and Minima,
and Some Closures of NP. Theoretical Computer Science, vol. 51, pages 53—-80,
1987.

[Wang et al. 2015] Zhe Wang, Mahsa Chitsaz, Kewen Wang et Jianfeng Du. Towards Scal-
able and Complete Query Explanation with OWL 2 EL Ontologies. In Proceedings
of CIKM, 2015.

[Zhou et al. 2012] Liping Zhou, Houkuan Huang, Guilin Qi, Yue Ma, Zhisheng Huang et
Youli Qu. Paraconsistent query answering over DL-Lite ontologies. Web Intelligence
and Agent Systems, vol. 10, no. 1, pages 19-31, 2012.

199

A

COMPLEXITY OF REASONING IN PROPOSI-
TIONAL LOGIC

A.1 Complexity theory

We study the complexity of different problems, generally decision problems, whose answer
is yes or no on any input, and a few generation problems, which generate a solution (or all
solutions). We say that a procedure solves a decision problem if it terminates and outputs the
correct answer on all inputs, and it solves a generation problem if, for all inputs, it outputs a
solution (or all solutions) if one exists, and no otherwise.

Decision problems can be assigned to different complexity classes depending on the
computational resources needed to solve them. The following classes of the polynomial
hierarchy are relevant to this thesis:

* P: problems which are solvable in polynomial time in the size of the input.

* NP: problems which are solvable in non-deterministic polynomial time.

* coNP: problems whose complement is in NP.

* BHjy: problems that are the intersection of a problem in NP and a problem in coNP.
« AD: problems which are solvable in polynomial time with an NP oracle.

 AP[O(log n)]: problems which are solvable in polynomial time with at most logarith-
mically many calls to an NP oracle.

« 3. problems which are solvable in non-deterministic polynomial time with an NP
oracle.

« I15: problems whose complement is in 5.

These classes are related as follow: P C NP C AL C 35 and P C coNP C AL C I15, and it is
widely believed that all these inclusions are proper.

Importantly, the class ALY[O(log n)] can be equivalently characterized as the class of
decision problems which can be solved in polynomial time with a single round of parallel
calls to an NP oracle, (cf. [Buss & Hay 1991]). Actually, problems that can be solved by

201

Complexity of reasoning in propositional logic

a polynomial-time procedure using NP oracle calls that can be structured as a tree are in
AP[O(log n)] [Gottlob 1995].

The class AC” consists of those problems that can be solved by a uniform family of
circuits of constant depth and polynomial size, with unbounded-fanin AND and OR gates. It
is known that AC’ C P.

A problem is hard for a complexity class if it is at least as difficult as any problem of
this class. When showing that a decision problem P is hard for a given complexity class,
we use standard polynomial-time many-one reductions (also known as Karp reductions),
which transform an instance of one decision problem known to be hard P’ into an instance
of P. To show that a generation task is hard for a class C, we reduce a C-hard decision
problem to it. As we cannot use many-one reductions (which relate two decision problems),
we use polynomial-time Turing reductions, that is, we show how to solve the C-hard decision
problem using a polynomial-time Turing machine that can use the generation task as an
oracle. Moreover, to prove a stronger intractability result, we only allow a single oracle call.

A.2 Propositional logic

We recall here some definitions for propositional satisfiability and related problems. Proposi-
tional formulas are defined from a set of propositional variables X, two constants true and
false, and a set of logical connectors: — (negation), V (disjunction), and A (conjunction).
Other connectors can be introduced as abbreviations.

Definition A.2.1 (Propositional formulas). Given a set of propositional variables X =
{z1,...,xn}, propositional formulas are defined as follows:

* true and false are propositional formulas
* every x € X is a propositional formula
* for every propositional formula ¢, = is a propositional formula

* for all propositional formulas ¢ and ¢, ¢V ¢ and ¢ A1 are propositional formulas

We denote by vars(i) the set of propositional variables that appear in ¢. A literal is a
formula of the form = or ~z with x € X. A clause is a disjunction of literals. A formula
@ 1s in conjunctive normal form (CNF) if it is a conjunction of clauses, and in disjunctive
normal form (DNF) if it is a disjunction of conjunctions of literals. A formula in CNF
¢ = C1 N\ ... \C} is often be seen as the set of clauses {C1,...,Cy}. A formula in CNF is
monotone if all its literals are of the form x.

The semantics of propositional formulas is given by interpretations. An interpretation, or
valuation, v is a function that assigns to each variable x € X a truth value in {true,false}. If
the domain of v is a proper subset of X, v is called partial. The truth value of a formula ¢ in
an interpretation v, denoted v(y), is defined as follows:

* v(true) = true and v(false) = false

202

A.3 Problems used in reductions

* for every propositional formula ¢, v(—¢) = true if v(p) = false and false otherwise
* for all propositional formulas ¢ and :

v(p V) = trueif v(p) = true or v(1)) = true, and false otherwise

v(p A1) = true if v(p) = true and v (1)) = true, and false otherwise

Definition A.2.2 (Satisfiability, unsatisfiability, tautology). An interpretation v satisfies a
propositional formula ¢ if v(p) = true. If there exists a interpretation that satisfies ¢, then ¢
is satisfiable. Otherwise, ¢ is unsatisfiable. If every interpretation satisfies ¢, ¢ is valid and
called a tautology.

A model of ¢ is the set of variables assigned to true in a valuation that satisfies .

If S and H are two sets of soft and hard clauses such that SU H = {C1,...,C}}, a subset
M C S'is a minimal unsatisfiable subset (MUS) of S w.r.t. H if M U H is unsatisfiable, and
M’ U H is satisfiable for every M’ C M. A minimal correction subset (MCS) of S w.r.t. H
is a subset M C S such that (S\M) U H is satisfiable and (S\M') U H is unsatisfiable for
every M’ C M. The sets of MUSes and MCSes are hitting set duals of one another: the
MUSes are the minimal hitting sets of the MCSes and vice versa. The maximal satisfiable
subsets (MSSes) are the complements of the MCSes in S.

Definition A.2.3 (Quantified Boolean Formula). A guantified Boolean formula (QBF) is
a formula in quantified propositional logic where every variable is quantified, using either
existential or universal quantifiers, at the beginning of the sentence. The truth value of a QBF
is defined recursively:

o Jdxy,..., (a1, ..., zp) is true iff p(z1,...,x,) is satisfiable,

o Vai,...,tpp(x1,...,zp) is true iff v(e(x1,...,2y)) = true for every valuation v of
{xl,...,xn},

o dxy, ., (X1, ., Ty Tpt1, .-y) 18 true iff there exists a valuation v of {z1,...,x,}
such that v(o(z1, ..., Tp, Tnt1,..-Tm)) 18 true,

o Va1, .., Tp(T1, .y Ty Tpt1, ...y) is true iff for every valuation v of {xy,...,z,},
v(p(x1, .oy Ty Tpg 1, .--Ty)) 1S true.

A QBF is valid if and only if it is true.

A.3 Problems used in reductions

We list here the problems of propositional logic we use to show hardness by reduction in the
complexity proofs of this thesis.

203

Complexity of reasoning in propositional logic

A.3.1 NP or coNP-hard problems

The following problems are NP-complete:

* SAT: decide if a propositional formula is satisfiable. SAT is already NP-complete for
formulas in 3-CNF, i.e., conjunctions of three-literal clauses (3SAT). NP-hardness of
SAT holds if we impose that at least one variable appears in positive and negative form
in the formula (Lemma 5.2.14).

* decide if a clause of a propositional formula in CNF belongs to every MUS is NP-
complete [Liberatore 2005].

The following problems are coNP-complete:

* UNSAT: decide if a propositional formula is unsatisfiable. UNSAT is already coNP-
complete for formulas in 3-CNF.

* decide if a valuation that satisfies a monotone 2-SAT formula assigns a smallest number
of variables to true (coNP-hardness can be shown by a straightforward reduction from
the complement of the well-known NP-complete vertex cover problem).

* Tautology: decide if a propositional formula is a tautology (since ¢ is valid if and only
if = is unsatisfiable).

e given a set {C1,...,Ck, Cy1} of clauses such that {C1,...,Cy } is satisfiable and Cj 1
is not a tautology: decide whether {C1,...,C},Cj1} is satisfiable (Lemma 5.2.15).

A.3.2 BH>-hard problems

The following problems are BHs-complete:

» SAT-UNSAT: given a pair (¢1,¢2) of propositional formulas, decide if o is satisfiable
and @9 unsatisfiable.

* given two sets of soft and hard clauses S, H, deciding if M C S is a MCS of S w.r.t. H
(Lemma 5.3.4).

* decide if a set of clauses of a propositional formula in CNF is a MUS [Liberatore 2005].

A3.3 Al or Af[O(log n)]-hard problems
The following problem is Ab-complete:

* Lexicographically maximum truth assignment problem [Krentel 1988]: given a satis-
fiable 3CNF formula ¢ = C7 A ... A C} over variables x1, ..., z,, decide whether the
lexicographically maximum truth assignment satisfying ¢ with respect to (1, ..., Zy),
denoted by vmax, fulfills vax () = true.

The following problem is AL[O(log n)]-complete:

204

A.3 Problems used in reductions

* Parity(SAT) problem [Wagner 1987, Eiter & Gottlob 1997]: a Parity(SAT) instance is
given by a sequence ¢1,. .., ¢, of propositional formulas in CNF, and the problem
is to decide whether the number of satisfiable formulas is odd. It is known that it can
be assumed w.l.0.g. that the formulas are such that ;1 is unsatisfiable whenever ¢;
is unsatisfiable. Consequently, the problem reduces to deciding existence of an odd
integer p such that ¢, is satisfiable and ¢, is unsatisfiable. AY[O(log n)]-hardness
holds if the propositional formulas are in 3-CNF (Parity(3SAT)).

A34 30 or IT)-hard problems

The following problems are ¥5-complete:

* QBF; 3: decide the validity of a QBF; 5 formula

L1, e, VYL, s YmP(X1y ey Ty Y1y ey Y)

>P-hardness holds when (z1,...,%0,Y1,....,Ym) is a a 2+2 DNF formula,
L. @(1, ey Ty Y1, oo Ym) = VE_q G, where C; = 4 Ay N =Ly A,

* deciding if a clause of a propositional formula in CNF belongs to a MUS
[Liberatore 2005].

The following problem is I15-complete:

* QBF; y: decide the validity of a QBF; y formula

V1o T IYLs s YmP(T 1y ooy Ty Yl -y Y) -

I15-hardness holds when ¢(x1, ..., %, Y1, ..., Ym) is a 3-CNF formula.

205

RESUME EN FRANCAIS

Interrogation de données en présence d’ontologies

L’accroissement du volume des données disponibles pose le probleme de savoir les exploiter.
Interroger les données de facon précise et efficace est une tdche complexe. Il est notamment
nécessaire de permettre I’intégration de données provenant de différentes sources utilisant
des vocabulaires différents et la formulation de requétes d’une maniere simple et intuitive,
dans un vocabulaire proche de celui de I'utilisateur. Par exemple, supposons que quelqu’un
cherche a trouver les professeurs d’un département qui enseignent un cours li€ a I’intelligence
artificielle a partir d’une liste des membres du département avec I’intitulé de leur poste et une
liste des cours avec leurs enseignants. Si il integre simplement ces données dans une base de
données traditionnelle et formule directement sa requéte “sélectionner tous les professeurs
qui enseignent I’intelligence artificielle”, il peut rencontrer les problémes suivants: d’abord

29 <&

I’intitulé des postes ne sera pas “professeur” mais plutot “professeur titulaire”, “professeur
assistant”, ou “professeur associé” par exemple, ensuite de nombreux cours qui concernent un
sous-domaine de I’intelligence artificielle ne seront pas pris en compte par cette requéte (par
exemple les cours répertoriés comme traitant de “raisonnement automatique”, “représentation
des connaissances” ou “logiques de description” ne seront pas reconnus comme des cours
d’intelligence artificielle). Il doit donc d’abord trouver les différentes dénominations qui
correspondent a un poste de professeur et les différents domaines et sous-domaines de
I’intelligence artificielle, puis reformuler sa requéte en conséquence. L’interrogation de
données en présence d’ontologies est un paradigme récent qui ajoute une couche sémantique
au-dessus des données a 1’aide d’une théorie logique appelée ontologie, qui formalise la
connaissance a propos d’un domaine d’intérét et est utilisée pour raisonner sur les données
pour fournir des réponses plus completes aux requétes. Dans notre exemple, ajouter aux
données une ontologie qui donne des informations sur les domaines et sous-domaines de
I’informatique et sur 1’organisation de I’université permettra a 1’utilisateur d’obtenir toutes
les réponses pertinentes en posant sa requéte de la maniere qui lui est naturelle.

Les logiques de description [Baader et al. 2003] sont une famille de fragments de la
logique du premier ordre qui sont largement utilis€ées comme langages d’ontologie. Une
base de connaissances exprimée en logique de description est constituée d’une ontologie,

appelée TBox, qui exprime des connaissances générales et des regles a propos du domaine

207

Résumé en Francais

d’intérét, et d’un ensemble de données, appelé ABox, qui donne des informations sur des
individus spécifiques. Par exemple, la TBox d’une base de connaissances sur le domaine de
I’université pourrait indiquer que les cours sont enseignés par des enseignants et suivis par
des étudiants, et sa ABox pourrait spécifier qu’un individu nommé Ann donne un cours de
base de données qui est suivi par un autre individu Bob.

Enrichir les données avec une ontologie a un prix: cela augmente la complexité algorith-
mique de la réponse aux requétes. Le passage a 1’échelle étant essentiel pour les applications
riches en données, les logiques de description dites 1égeres, qui offrent un bon compromis
entre I’expressivité du langage et la complexité des problemes de raisonnement associés,
ont suscité un intérét croissant. En particulier, la famille DL-Lite [Calvanese et al. 2007] a
été spécialement congue pour I’interrogation de données en présence d’ontologies qu’elle
permet de réduire, par réécriture de la requéte, a I’évaluation standard d’une requéte sur une
base de donnée. Dans cette these, nous adoptons le langage DL-Liter qui est le dialecte de
la famille DL-Lite a la base de OWL 2 QL [Motik et al. 2012], le profil du standard pour le
web sémantique OWL2 pour la réponse aux requétes.

Gestion des incohérences

Un probleme important qui se pose dans le contexte d’interrogation de données en présence
d’ontologies est de traiter le cas ou les données sont incohérentes avec 1’ontologie. En effet,
alors que la TBox est généralement de taille limitée et soigneusement déboguée par des
experts du domaine, la ABox est typiquement large, sujette a de fréquentes modifications,
et peut résulter de I’intégration de différentes sources de données, ce qui rend les erreurs
probables. Une base de connaissances incohérente impliquant toute formule logique, poser
une requéte sur une telle base renvoie toutes les réponses possibles formées a partir des
individus de la base. Par exemple, si une base de connaissances indique qu’il est impossible
d’étre en méme temps un professeur titulaire et un professeur assistant et qu’un individu
Ann est indiqué comme étant les deux, la base de connaissances permettra de conclure non
seulement qu’ Ann est un professeur titulaire et assistant, mais aussi qu’Ann est un cours par
exemple, ce qui est clairement indésirable.

Il y a deux attitudes possibles dans ce contexte. La premiere est de restaurer la cohérence,
en abandonnant une ou plusieurs assertions portant sur I’ancienneté d’Ann dans notre
exemple, mais il peut étre impossible de le faire d’une fagon satisfaisante. En effet, nous
ne savons souvent pas comment réparer les données (Ann est-elle un professeur titulaire
ou assistant?), et supprimer toutes les informations impliquées dans des contradictions
résulterait souvent en une perte d’information inacceptable. De plus, examiner a la main
chaque conflit dans les données pour réparer une grande base de données serait trop cofiteux.
La seconde option est de décider de vivre avec les incohérences, en essayant d’obtenir
des réponses qui ont du sens a partir de données incohérentes. Par exemple, il peut étre
acceptable de conclure qu’Ann est un professeur, mais pas que c’est un cours. Plusieurs
sémantiques tolérantes aux incohérences ont été définies dans ce but. La plus connue est la
sémantique AR [Lembo et al. 2010], qui fournit les réponses qui sont vraies dans chaque
sous-ensemble cohérent maximal des données, appelé réparation. Cette sémantique revient a
accepter les réponses qui sont vraies quelque soit le monde possible choisi. Par exemple, elle

208

permet de trouver qu’ Ann est un professeur, sans information sur son niveau d’ancienneté.
L’inconvénient de cette sémantique est qu’elle est difficile a calculer. En effet, pour des
bases de connaissances en DL-Lite, la réponse aux requétes conjonctives sous la sémantique
AR est intractable, méme quand la complexité est mesurée uniquement en fonction de la
taille des données. Pour surmonter cette difficulté, une approximation de AR, appelée IAR,
a été introduite dans [Lembo ef al. 2010]. Les réponses IAR sont obtenues en interrogeant
I’intersection des réparations. Cette sémantique est aussi intéressante pour elle-méme car
elle retient seulement les réponses les plus siires, dont les supports ne participent a aucune
contradiction. Sous cette sémantique, aucune information a propos d’ Ann ne sera obtenue,
car les raisons de penser qu’Ann est un professeur prennent toutes les deux part a un conflit,
donc ne sont pas completement fiables. A 1’autre bout de I’échelle, la sémantique brave donne
toutes les réponses qui sont vraies dans au moins une réparation [Bienvenu & Rosati 2013].
Il peut en effet €tre important pour certaines applications de ne manquer aucune réponse
possible qui a une raison cohérente d’€tre vraie. Utiliser cette sémantique permet de trouver
qu’Ann peut étre un professeur titulaire aussi bien qu’elle peut étre un professeur assistant.

Contributions

Le but de cette these est de développer des méthodes pour gérer en pratique des bases de
connaissances incohérentes. En particulier, nous défendons 1’idée que la sémantique AR,
bien qu’intractable, peut étre utilisée en pratique.

Notre premiere contribution est en effet une approche pour classer les réponses selon
qu’elles sont conséquences de la base de connaissances sous sémantique IAR, AR ou brave.
Pour la sémantique AR, les sémantiques brave et IAR fournissent des bornes supérieures
et inférieures calculables en temps polynomial par rapport a la taille des données, et une
traduction du probleme en un probleme de satisfiabilité propositionnelle nous permet de
décider si les réponses braves et non-IAR sont vraies sous sémantique AR.

Au-dela de I’efficacité de la réponse aux requétes, il est important de pouvoir expliquer
les résultats des requétes sous les sémantiques tolérantes aux incohérences. En effet, un
utilisateur peut naturellement se demander pourquoi une réponse appartient a une de ces
classes (e.g. pourquoi Ann est-elle indiquée comme un professeur pour la sémantique AR
mais pas pour [AR?). C’est pourquoi notre seconde contribution est un cadre pour expliquer
les réponses positives et négatives sous les sémantiques AR, TAR et brave (e.g. Ann est
probablement un professeur car c’est un professeur assistant ou un professeur titulaire dans
tous les mondes possibles, mais aucune de ces deux raisons n’est hors de doute car elles sont
contradictoires).

Notre troisieme contribution est une approche de réparation partielle des données guidée
par les requétes. En effet, bien que les sémantiques alternatives soient nécessaires pour
utiliser des bases de connaissances incohérentes, elles ne dispensent pas d’améliorer la
qualité des données. Nous proposons d’exploiter les retours des utilisateurs sur les résultats
des requétes qui sont corrects ou incorrects pour nettoyer les données en nous concentrant
sur la partie utile pour I’utilisateur et qu’il connait suffisamment bien pour la réparer (e.g. si
I’utilisateur sait qu’ Ann est un professeur assistant, nous pouvons supprimer les données qui
indiquent que c’est un professeur titulaire, puisqu’elle ne peut pas étre les deux a la fois).

209

Résumé en Francais

La derniere contribution de la these est I’étude de variantes des sémantiques AR, IAR
et brave obtenues en remplacant les réparations classiques par des réparations préférées.
Cela nous permet de prendre en compte les informations sur la fiabilité des données (e.g. si
I’information qu’Ann est un professeur assistant vient d’une source moins fiable que le
fait qu’ Ann est un professeur titulaire, nous pouvons garder uniquement les réparations qui
contiennent ce dernier fait et conclure qu’ Ann est un professeur méme pour la sémantique
IAR).

Pour chacun des sujets abordés, nous analysons la complexité des problemes liés et
proposons des algorithmes pour les résoudre, en exploitant les performances des SAT solveurs
modernes pour résoudre en pratique les problemes durs. Nous avons mis en oeuvre la
plupart de ces algorithmes dans notre prototype CQAPri! et avons étudié leurs propriétés
empiriquement a 1’aide d’une base de connaissances incohérente que nous avons construite a
partir du benchmark LUBM%O.

Organisation de la these

La these est organisée comme suit:

Chapitre 2 Ce chapitre introduit 1’interrogation de données en présence d’ontologies
exprimées en logique de description et le langage DL-Lite adopté dans ce travail. Dans la
seconde partie du chapitre, nous passons en revue les sémantiques alternatives qui ont été
proposées pour gérer des données incohérentes dans ce contexte.

Chapitre 3 Dans ce chapitre, nous présentons les algorithmes implémentés dans notre
prototype CQAPri pour répondre aux requétes sous les sémantiques AR, IAR et brave en
DL-Liteg. Nous décrivons ensuite le cadre expérimental que nous avons construit pour
évaluer notre systeme et les résultats obtenus, et passons rapidement en revu les systeémes et
benchmarks existants.

Chapitre 4 Nous abordons dans ce chapitre le probleme d’expliquer pourquoi un tuple
est ou n’est pas une réponse a une requéte sous les sémantiques IAR, AR ou brave. Nous
définissons des explications centrées sur les données pour les réponses positives et négatives,
étudions leur complexité pour DL-Liteg, et proposons des algorithmes pour les calculer en
exploitant des SAT solveurs. Nous présentons aussi notre implémentation dans CQAPri et
les expériences que nous avons effectuées.

Chapitre 5 Ce chapitre aborde la réparation des données guidée par les requétes pour
des bases de connaissances DL-Lite, incohérentes. Nous considérons le scénario suivant:
un utilisateur recoit les réponses a des requétes sous les différentes sémantiques tolérantes
aux incohérences et indique que certaines réponses sont fausses tandis que d’autres sont
correctes et devraient étre impliquées sous une sémantique plus forte. Le but est de trouver un
ensemble de modifications de la ABox (suppressions et ajouts), appelé un plan de réparation,

lavailable at www.Iri.fr/~bourgaux/CQAPri

210

www.lri.fr/~bourgaux/CQAPri

qui résout le plus de problemes possible. Apres avoir formalisé ce probleme et introduit
différentes notions d’optimalité, nous étudions la complexité de raisonnement lié aux plans
optimaux et proposons des algorithmes interactifs pour calculer de tels plans. Dans le cas ou
seules les suppressions sont autorisées, nous proposons un algorithme amélioré et présentons
I’implémentation de ses principaux composants dans CQAPri.

Chapitre 6 Dans ce chapitre nous étudions des variantes des sémantiques AR, IAR et brave
obtenues en remplacant la notion de réparation classique par un type de réparation préférée
parmi quatre (e.g. les réparations de cardinal maximal, ou basées sur des niveaux de priorité
qui distinguent les assertions plus ou moins fiables). Nous analysons la complexité de la
réponse aux requétes sous les sémantiques résultantes et proposons une approche exploitant
un encodage SAT pour celles basées sur les niveaux de priorité, dont la complexité est la
méme que pour la sémantique AR classique. Nous présentons ensuite notre implémentation
de ces sémantiques et son évaluation expérimentale.

Chapitre 7 Dans ce chapitre, nous nous positionnons dans un contexte plus général de
I’état de I’art et détaillons certains sujets mentionnés dans les chapitres précédents.

Chapitre 8 Ce chapitre résume nos contributions et indique quelques extensions possibles
de ce travail.

Annexe A L’annexe fournit les bases de théorie de la complexité et de la logique proposi-
tionnelle, et rappelle les définitions des classes de complexité apparaissant dans cette these
ainsi que les problemes utilisés dans les preuves de complexité.

211

INDEX

P = (P_-,Py), 101
S(P), 103

U, 101

W, 101

<p, 144
causes(q,K), 18
conflicts(KC), 18
confl(B,K), 18
vars(p—q), 42
Ind(.A), 8

<, 144

ans(q,Z), 11
cert(q,K), 11

=, 10

<p, 164

=u> 2w, Squwys Suws “wus 103
Rep<(T,A), 143
Rep(T,A), 23
Cp, 144

<w, 144

Nj, Nc, Ng, 8
atoms, 11

ABox, 8

answer, 11

AR semantics, 22
axiom, 8

Boolean conjunctive query (BCQ), 11
Boolean query, 10
brave semantics, 28

candidate answer, 45
CAR semantics, 33

cause, 18
clause, 202
combined complexity, 11
conflict, 17
conflict graph, 17

oriented, 164
conflicts of a set of assertions, 18
conjunctive normal form (CNF), 202
conjunctive query (CQ), 10
contingency set, 91

data complexity, 11

deletion-only, 101

dependent answers, 124

disjunctive normal form (DNF), 202
DL-Liteg, 12

entailment, 10

explanation
for a negative AR-answer, 64
for a negative IAR-answer, 64
for a positive AR-answer, 63
for a positive brave-answer, 63
for a positive IAR-answer, 63

IAR semantics, 26

ICAR semantics, 33

ICR semantics, 30

image, 16

impact, 125

independent subproblems, 124
interpretation, 10

k-defeater semantics, 29

213

Index

k-lazy semantics, 37
k-support semantics, 29
KB complexity, 11
knowledge base (KB), 8

Likely answer, 45
literal, 202

match, 11
MCSW

eroneous MCSW, 117

minimal correction subset of wanted an-

swers, 117

minimal correction subset (MCS), 117
minimal unsatisfiable subset (MUS), 67
model, 10

minimal model, 71
monotone, 202

necessarily false, 117
necessarily nonfalse, 117
necessary assertions, 66

ontology, 7
ontology-mediated
(OMQA), 7
optimal repair plan, 103
optimality
global optimality, 103
local optimality, 103

query answering

Parity(SAT), 205
Possible answer, 45
potential solution, 116
for AR, 127
for IAR, 127
preferred
explanation, 65
repair, 143

QBF; 3, 205

QBF; v, 205

quantified Boolean formula (QBF), 203
query, 10

query-driven repairing problem (QRP), 101

relevant assertion, 117
relevant assertions, 66
repair, 23

repair plan, 100, 101
responsibility, 91
rewriting, 13

SAT, 204

satisfaction of an answer, 102

satisfiable

answer, 105

formula, 203
satisfiable answer

w.r.t. a repair plan, 105
Sure answer, 45

tautology, 203
TBox, 8
truthfulness condition, 102

UNSAT, 204
unsatisfiable

formula, 203
unwanted answer, 100, 101
user, 102

validatable, 102

wanted answer, 100, 101
witness for satisfiability
for AR, 129
for IAR, 107

214

ECOLE DOCTORALE

Sciences et technologies
de l'information
et de la communication (STIC)

o .
universite

PARIS-SACLAY

Titre : Gestion des incohérences pour I'accés aux données en présence d’ontologies

Mots clefs :

Résumé : Interroger des bases de connaissances
avec des requétes conjonctives a été une préoc-
cupation majeure de la recherche récente en lo-
gique de description. Une question importante qui
se pose dans ce contexte est la gestion de don-
nées incohérentes avec l'ontologie. En effet, une
théorie logique incohérente impliquant toute for-
mule sous la sémantique classique, I'utilisation de
sémantiques tolérantes aux incohérences est né-
cessaire pour obtenir des réponses pertinentes. Le
but de cette thése est de développer des méthodes
pour gérer des bases de connaissances incohérentes
en utilisant trois sémantiques naturelles (AR, IAR
et brave) proposées dans la littérature et qui re-
posent sur la notion de réparation, définie comme
un sous-ensemble maximal des données cohérent
avec l’ontologie. Nous utilisons ces trois séman-
tiques conjointement pour identifier les réponses
associées a différents niveaux de confiance. En plus
de développer des algorithmes efficaces pour inter-
roger des bases de connaissances DL-Lite incohé-

Logiques de description, Réponse aux requétes, Gestion de 'incohérence

rentes, nous abordons trois problémes: (i) l'expli-
cation des résultats des requétes, pour aider I'uti-
lisateur & comprendre pourquoi une réponse est
(ou n’est pas) obtenue sous une des trois séman-
tiques, (ii) la réparation des données guidée par
les requétes, pour améliorer la qualité des don-
nées en capitalisant sur les retours des utilisateurs
sur les résultats de la requéte, et (iii) la défini-
tion de variantes des sémantiques & ’aide de ré-
parations préférées pour prendre en compte la fia-
bilité des données. Pour chacune de ces trois ques-
tions, nous développons un cadre formel, analysons
la complexité des problémes de raisonnement asso-
ciés, et proposons et mettons en oeuvre des algo-
rithmes, qui sont étudiés empiriquement sur un jeu
de bases de connaissance DL-Lite incohérentes que
nous avons construit. Nos résultats indiquent que
méme si les problémes & traiter sont théoriquement
durs, ils peuvent souvent étre résolus efficacement
dans la pratique en utilisant des approximations et
des fonctionnalités des SAT solveurs modernes.

Title :
Keywords :

Abstract : The problem of querying description
logic knowledge bases using database-style queries
(in particular, conjunctive queries) has been a ma-
jor focus of recent description logic research. An
important issue that arises in this context is how
to handle the case in which the data is inconsistent
with the ontology. Indeed, since in classical logic an
inconsistent logical theory implies every formula,
inconsistency-tolerant semantics are needed to ob-
tain meaningful answers. This thesis aims to deve-
lop methods for dealing with inconsistent descrip-
tion logic knowledge bases using three natural se-
mantics (AR, IAR, and brave) previously proposed
in the literature and that rely on the notion of a
repair, which is an inclusion-maximal subset of the
data consistent with the ontology. In our frame-
work, these three semantics are used conjointly to
identify answers with different levels of confidence.
In addition to developing efficient algorithms for
query answering over inconsistent DL-Lite know-

Inconsistency Handling in Ontology-Mediated Query Answering

Description logics, Query answering, Inconsistency handling

ledge bases, we address three problems that should
support the adoption of this framework: (i) query
result explanation, to help the user to understand
why a given answer was (not) obtained under one of
the three semantics, (ii) query-driven repairing, to
exploit user feedback about errors or omissions in
the query results to improve the data quality, and
(iii) preferred repair semantics, to take into account
the reliability of the data. For each of these three
topics, we developed a formal framework, analy-
zed the complexity of the relevant reasoning pro-
blems, and proposed and implemented algorithms,
which we empirically studied over an inconsistent
DL-Lite benchmark we built. Our results indicate
that even if the problems related to dealing with
inconsistent DL-Lite knowledge bases are theore-
tically hard, they can often be solved efficiently in
practice by using tractable approximations and fea-
tures of modern SAT solvers.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de 'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Table of contents
	List of figures
	List of tables
	List of algorithms
	1 Introduction
	2 Preliminaries
	2.1 Ontology-mediated query answering in DL-Lite
	2.1.1 Description logic basics
	2.1.2 Query answering over DL-Lite knowledge bases

	2.2 Inconsistency-tolerant semantics
	2.2.1 The AR semantics
	2.2.2 The IAR and brave semantics
	2.2.3 Other inconsistency-tolerant semantics
	2.2.4 Summary

	3 Efficient inconsistency-tolerant query answering in DL-Lite
	3.1 Algorithms
	3.2 The CQAPri system
	3.3 Experiments
	3.3.1 The CQAPri benchmark
	3.3.2 Experimental setting
	3.3.3 Experimental results

	3.4 Discussion: systems and benchmarks for inconsistency-tolerant query answering
	3.4.1 Systems for inconsistency-tolerant query answering
	3.4.2 Experimental settings involving inconsistent DL-Lite KBs

	4 Explaining inconsistency-tolerant query answering
	4.1 Explaining query results
	4.2 Complexity analysis and algorithms
	4.2.1 Positive brave and IAR-answers
	4.2.2 Positive AR-answers
	4.2.3 Negative AR-answers
	4.2.4 Negative IAR-answers

	4.3 Implementation and experiments
	4.3.1 The explanations framework within CQAPri
	4.3.2 Experimental setting
	4.3.3 Experimental results

	4.4 Discussion about the notion of responsibility

	5 Query-driven repairing
	5.1 Query-driven repairing problem
	5.2 Optimal repair plans
	5.2.1 Characterization and complexity analysis
	5.2.2 Generic algorithms

	5.3 Optimal deletion-only repair plans
	5.3.1 SAT encoding and complexity results
	5.3.2 Algorithm for optimal deletion-only repair plans
	5.3.3 Improvements to the algorithm

	5.4 Considering the AR semantics for wanted answers
	5.4.1 Characterization and complexity of optimal repair plans
	5.4.2 Discussion: impact of AR semantics on the algorithms

	5.5 Implementation and experiments
	5.5.1 Computing deletion-only repair plans with CQAPri
	5.5.2 Experimental setting
	5.5.3 Experimental results

	6 Preferred repair semantics
	6.1 Preferred repair semantics
	6.1.1 Preference relations
	6.1.2 Discussion: other notions of prioritized repairs

	6.2 Complexity analysis
	6.3 Query answering via reduction to SAT for P-repair based semantics
	6.4 Implementation and experiments
	6.4.1 Consistent query answering with priorities in CQAPri
	6.4.2 Prioritized ABoxes
	6.4.3 Experimental results

	7 Related work
	7.1 Consistent query answering outside DL
	7.2 Explanations
	7.2.1 Justifications of entailed axioms
	7.2.2 Explanation of query answers
	7.2.3 Query abduction

	7.3 Evolution, revision and updates
	7.4 Inconsistency and uncertainty handling in DL

	8 Conclusion and perspectives
	References
	Appendix A Complexity of reasoning in propositional logic
	A.1 Complexity theory
	A.2 Propositional logic
	A.3 Problems used in reductions
	A.3.1 NP or coNP-hard problems
	A.3.2 BH2-hard problems
	A.3.3 p2 or p2[O(log n)]-hard problems
	A.3.4 p2 or p2-hard problems

	Appendix B Résumé en Français
	Index

