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Global Notations

This is a list of global notations. Local notations will be set at the beginning of each of the three parts.

• N is the set of natural integers;

• Z is the ring of integers;

• C is the field of complex numbers;

• K is a computable commutative field of characteristic zero (Q ⊆ K ⊆ C).

• We use upper case letters for algebraic structures, matrices, and vectors (except for easily identified
cases); the lower case letters i, j, k, l for indices; and some lower case letters (greek and latin)
locally in proofs and sections, such as u, v, σ, ρ, ̺, etc...

• We use x, t, τ as independent variables (xi, ti in the case of several variables) and ε as a parameter.

• We use n to denote the dimension of the systems considered in this thesis; R to denote the algebraic
rank of specified matrices (leading coefficient matrices); p (resp. pi in case of several variables) to
denote the Poincaré rank, i.e. order of pole in x (resp. xi); h to denote the order of the pole in ε
and ξ (also called ε-rank and ξ-rank respectively).

• We use F, G, U, W, Z for unknown n-dimensional column vectors (or n × n-matrices). We use
f, g, and w in the case of scalar equations.

• We give the blocks of a matrix M with upper indices, e.g.

M =

(
M11 M12

M21 M22

)

.

The size of the different blocks is dropped unless it is unclear from the context.

• Id×n (resp. In) stands for the identity matrix of dimensions d × n (resp. n × n); and Od×n (resp.
On) stands for the zero matrix of dimensions d × n (resp. n × n); the dimensions are dropped
whenever confusion is not likely to arise.

• We say that A ∈ Mn(R) whenever the matrix A is a square matrix of size n whose entries lie in a
ring R.

• V is used to signify vector spaces of dimension n.

• GLn(R) (resp. GL(V)) is the general linear group of degree n over R (the set of n × n invertible
matrices together with the operation of matrix multiplication).

• We use ∂ to signify a derivation. x dominates this thesis and so we drop it in the derivation. And
so we write ∂ = d

dx , ∂t = d
dt , ∂τ = d

dτ and ∂i =
d

dxi
, ∂ti =

d
dti

in the case of several variables.
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• We deal mainly with three systems which are denoted throughout this thesis as follows:

– [A] represents a singular linear ordinary differential system (ODS, in short) ;

– [Aε] and [Aξ] represent a singularly-perturbed linear differential system;

– [A] represents a completely integrable Pfaffian system with normal crossings.
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How to read this thesis?

• The outline of the thesis as a whole is given at its beginning. Furthermore, each part has its own

introduction where the literature review is given, the content of individual chapters is outlined, and

the main contributions are identified.

• The list of global notations which will be used within the thesis as a whole was given. However,

each of three parts has its own notations as well which is given within their local introduction.

• In the sequel of the thesis, we suppose that the base field is C for the simplicity of the presentation.

However, the base field can be any computable commutative field K of characteristic zero (Q ⊆
K ⊆ C). The algorithms presented are refined within their implementation to handle efficiently

field extensions as explained in Chapter 1 and Section 3.3.

• Chapter 1 is written in a simplified manner and serves as an introduction to the field of study. It

describes the local analysis of an ODS [A].

• Chapters 2 discusses the perturbed algebraic eigenvalue problem and can be read independently

from the other chapters of the thesis.

• Chapter 3 treats apparent singularities of linear systems with rational function entries and can be

read independently from the other chapters of the thesis.

• Part II investigates the construction of formal solutions of singularly-perturbed linear differential

systems and can be read independently.

• Part III investigates the construction of formal solutions of completely integrable Pfaffian systems

with normal crossings at the origin and can be read independently.

• The users of computer algebra systems come from a multitude of disciplines. Those who are

interested in examples of computations solely, can skip to Appendix B where the description of

the packages is adjoined.

Page ix



Background

Gentle Introduction

The study of differential equations stands out as one of the most extensive branches of mathematics,

lying at the core of modeling in natural, engineering, and increasingly social sciences. It started off in the

year 1675 with the ordinary differential equations arising naturally from the efforts to seek a solution of

physical problems. However, the quest of general methods to solve thoroughly differential equations at

hand was unfruitful except for very special cases and thus was abandoned after 100 years [117]. Since

then, diverse approaches have flourished depending on the classification of the equations.

The local analysis of nth-order linear differential equations and first-order linear differential systems

is attained via the computation of their series solutions. At ordinary points, it suffices to consider Taylor

series (power series). Any engineering student or scientist is familiar with the resolution procedure and

popular computer systems always consider a package for this goal. However, singular points are another

story and are the interest of this thesis.

In general, a singularity is a point at which a mathematical object is not defined or not well-behaved.

In the words of Harvard Theoretical physicist Andrew Strominger: “We know what a singularity is, it

is when we don’t know what to do”∗. In the second half of the twentieth century, the mathematical

knowledge has integrated with electronic computers. Computer algebra, i.e. the application of computers

to exact (“almost” exact, in contrast to numeric) mathematical computation, is a prominent outcome

of this integration and a dynamic field of contemporary research tackling a multitude of mathematical

problems (see, e.g., [62, 56]). While numerical computation involves numbers directly and their

approximations, symbolic computation involves symbols and exact values and manipulates algebraic

expressions.

∗This quote is from a BBC Horizon interview entitled “ Who’s Afraid of a Big Black Hole?” which addresses the public. This
quote is figurative to say that classical methods are not adequate for such problems. It does not really mean that we really do not
know what to do. The interview can be accessed at:
https : //www.youtube.com/playlist?list = PLAB9F4AFC3B789C74. Another way to view singularities is to consider critical
points, or black holes: the infinite gravity and infinite density concentrated at an infinitesimally small region. Or alternatively,
consider a box of surprises: If we have sufficient information about the event, the people invited, etc..., we might guess the exact
content of the box or an approximation to it. However, there remains a chance, inversely proportional to our information and
guessing techniques, that we get really surprised. A symbolic solution is the solution to this question: What is happening? What is
the “exact” content of the box?
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Background

Figure 1: The function 1/x is not defined at x = 0 and explodes to ±∞ in a neighborhood of x = 0
(Sage calculus tutorial)

Symbolic representation Numeric representation
1
8 0.125

π 3.14159 . . .

tan(24) −2.13489 . . .

Symbolic computation Numeric computation
∫ 1

0
xe−xdx = 1− 2e−1

∫ 1

0
xe−xdx = 0.26424...

For this purpose, the language of abstract algebra is used in symbolic computation.

Symbolic Manipulation

2 + 3 = 5 → x+ (x+ 1) = 2x+ 1, x ∈ Z

Such an abstraction serves as an umbrella under which mathematical objects, e.g. equations and

differential equations, linear operators and linear differential operators, can be handled analogously.

This language is then translated into a code in computer algebra softwares, e.g. MAPLE, MATHEMATICA,

and MATHEMAGIX.

Traditionally, a numerical solution is sought whenever the analytical (symbolic) solution cannot be

found or have a very high cost in terms of time and memory. And this happens very often. Nevertheless,

even in the latter case, a symbolic investigation can still give valuable information about the solution

which contributes to the improvement of the numerical methods themselves.
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Background

Given the differential equation [11, Preface]

x2 d

dx
f − f + x = 0,

a “traditional” or “true” solution to a differential equation is a solution which satisfies the equation

formally, and possesses some smoothness properties. The power series f(x) =
∑∞

k=0 k!x
k+1 can be

verified to satisfy the former condition but not the latter since it is divergent. One can explicitly compute

solutions of this particular equation in closed form so we do not need to bother with divergent series.

However, this is not the case with differential equations and systems in general and the utility of such

divergent series stems from this fact. Such divergent series can give valuable information about the

asymptotic behavior of “true” solutions.

This thesis is concerned with symbolic resolution, i.e. the explicit computation of such series

representations of solutions in a neighborhood of a singularity, rather than their analytic properties.
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Thesis outline

Thesis Outline

Let K be a commutative field of characteristic zero equipped with a derivation ∂, that is a map ∂ : K → K

satisfying

∂(f + g) = ∂f + ∂g and ∂(fg) = ∂(f)g + f∂(g) for all f, g ∈ K.

We denote by K its field of constants and V an n-dimensional K-vector space. Let A be an element of

Mn(K). Setting ∆ = ∂−A , ∆ is a ∂-differential operator acting on V , that is, a K-linear endomorphism

of V satisfying the Leibniz condition:

∀f ∈ K, v ∈ V, ∆(fv) = ∂(f)v + f∆(v).

By setting ∂ = d
dx and K = K((x)), the field of formal Laurent series in x over K, ∆ is associated to

the widely studied singular linear ordinary differential system (ODS). There exist several algorithms,

contributing to the formal reduction of such systems, i.e. the algorithmic procedure that computes a

change of basis w.r.t. which the matrix representation of the differential operator has a normal form.

This form allows the construction of a fundamental matrix of formal solutions (FMFS).

This thesis is mainly concerned in giving a two-fold generalization of such algorithms to treat a wider

class of systems over bivariate and multivariate fields. Namely,

• let K[[x]][[ε]] be the ring of formal power series in a parameter ε whose coefficients lie in K[[x]], the

ring of formal power series in x over K. Let K be its field of fractions and set again ∂ = d
dx . We are

interested in the operator ∆ε associated to a singularly-perturbed linear differential system;

• let K[[x1, x2, . . . xm]], m ≥ 2, be the ring of formal power series in x = (x1, x2, . . . , xm) over K
and K its field of fractions. Setting ∂i =

∂
∂xi

, we are interested in completely integrable Pfaffian

systems with normal crossings associated to

∆iF = 0, 1 ≤ i ≤ m,

for which the following integrability conditions are satisfied (pairwise commutativity of the

operators),

∆i ◦∆j = ∆j ◦∆i, 1 ≤ i, j ≤ m.

The systems associated to these operators are discussed in three separate parts as explained below.
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Thesis outline

Part I: Singular Linear differential systems

The first part of this thesis is devoted to topics in local and global analysis over univariate fields. It

encompasses three chapters the first of which recalls the local analysis of linear singular differential

systems. We describe the formal reduction and its underlying algorithms, leading to the construction

of solutions (e.g. uncoupling of the system into systems of lower dimensions, dropping the rank of the

singularity to its minimal integer, computing formal invariants).

The perturbed algebraic eigenvalue problem arises naturally within the discussion of the first chapter

and so it is discussed in a second chapter (∂ is set to a trivial (zero) derivation and consequently ∆ is a

linear operator). Applications to this problem arise in numerous fields as well including quantum physics

and robust control.

The third chapter is dedicated to removing apparent singularities of systems whose entries are rational

functions (∂ = d
dx and K = K(x)).

Main contribution

• The formal reduction algorithm described in the Chapter 1 lead to the package MINIISOLDE [96]

written in MAPLE, and the package LINDALG [96] written in MATHEMAGIX, the open source

computer algebra and analysis system [135].

• The new algorithm for removing apparent singularities given in Chapter 3 lead to the paper [27]

with M.A. Barkatou and a MAPLE package [100] APPSING.

Part II: Singularly-perturbed linear differential systems

The second part of this thesis is dedicated to the study of the singularly-perturbed linear differential

systems. Such systems are traced back to the year 1817 [140, Historical Introduction] and are exhibited

in a myriad of problems within diverse disciplines including astronomy, hydraulics (namely the work of

Prandtl (1904) and his students [112]), and quantum physics [89, 103, 35]. Their study encompasses a

vast body of literature as well (see, e.g. [43, 140, 103] and references therein).

It was the hope of Wasow, in his 1985 treatise summing up contemporary research directions and

results on such systems, that techniques developed for the treatment of their unperturbed counterparts

be generalized to tackle their problems. The bivariate nature of such systems and the phenomenon of

turning points renders such a generalization nontrivial. The investigation in this part addresses these

obstacles.

Main contribution

• We give an algorithm to compute (outer) formal solutions in a neighborhood of a turning point. The

results of this part amount to a paper [2] with A. Barkatou and H. Abbas, a paper under redaction

with M. Barkatou [28], and a MAPLE package PARAMINT [98].
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Part III: Completely Integrable Pfaffian Systems with Normal

Crossings

“Partial differential equations are the basis of all physical theorems” (Bernhard Riemann 1826-1866). In

particular, Pfaffian systems arise in many applications including the studies of aerospace and celestial

mechanics. By far, the most important for applications are those with normal crossings [111], which are

discussed in the third part of this thesis. Although it was not always stated explicitly in physical models

that one is simply applying the general theory of Pfaff forms (1-forms), such forms play a broad-ranging

role. Fundamental fields of classical physics are defined in terms of forces per unit mass, charge, etc..

And generally forces take that form†.

A univariate completely integrable Pfaffian system with normal crossings reduces to the ODS discussed

in Chapter 1, for which, unlike the multivariate case considered herein, algorithms have been developed.

Theoretical studies guarantee the existence of a change of basis which takes the system to Hukuhara-

Turrittin’s normal form from which the construction of a fundamental matrix of formal solutions is

straightforward. However, the formal reduction, that is the algorithmic procedure computing such a

change of basis, is a question of another nature and is the interest of this part.

Main contribution

• We give a formal reduction algorithm for bivariate systems which amounts to the paper [1] with

H. Abbas and M. Barkatou, and the MAPLE package [99] PFAFFINT. These results are extended

under certain conditions to multivariate systems in a submitted paper with M. Barkatou and M.

Jaroschek [25].

We conclude each of the three parts separately and give items for further research. There exist several

additional notions and approaches to treat an ODS. In this thesis, we only recall notions which correspond

to our generalizations. However, we point out in Appendix A some possible future investigations over

bivariate and multivariate fields.

A large part of this thesis is code lines. The pseudo code given for some of the algorithms within

the chapters serves the purpose of clarification only and does not coincide with the implementation.

The description of some of the functionalities of the packages and some examples of computations are

adjoined in Appendix B. The packages are available on my web page for download with their manuals.

†We refer to [49] where one can find examples from physical systems and references to early notable advances in the
understanding of such problems
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Introduction to Part I

Introduction

The theory of linear differential equations is so powerful that one can usually predict the

local behavior of the solutions near a point x0 without knowing how to solve the differential

equation. It suffices to examine the coefficient functions of the differential equation in the

neighborhood of x0. [. . . ] Even when the solution to a differential equation can be expressed

in terms of the common higher transcendental functions, the techniques of local analysis are

still very useful. For example, saying that the solutions to ∂2f = x4f are expressible in terms of

modified Bessel functions of order 1/6 does not convey much qualitative information to someone

who is not an expert on Bessel functions. On the other hand, an easy local analysis of the

differential equation shows that solutions behave as linear combinations of x−1 exp (±x3/3)

as x→ +∞‡.

We consider in this first part a linear system of n ordinary differential equations (ODS) in the

neighborhood of a singular point:

[A] xp+1∂F = A(x) F = (

∞∑

k=0

Akx
k) F (1)

where p is an integer, and the A(x) is holomorphic in some region (D) of the complex plane. Without loss

of generality, we have assumed that the singularity lies at the origin. Otherwise, a simple translation of

the independent variable can be performed. Moreover, the change of variable x 7→ 1/x permits to classify

the point x =∞. If p = 0 then we say we have a first kind singularity at x = 0. And if p > 0 then we say

we have a second kind singularity.

It is well-known that in a neighborhood of an ordinary point (p ≤ −1), a solution possesses a power

(Taylor) series representation locally (see, e.g., [139, The Existence Theorem, pp 3]). Moreover, the

former is holomorphic in the largest disc contained in (D). A classical example is the Airy equation which

is given by
d2

dx2
f = xf,

‡C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and
perturbation theory, Vol. 1. Springer, 1999, quoted from the introduction of Chapter 3
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and whose first-order system representation is easily obtained by setting F = (f, ∂f)T :

∂F =

[

0 1

x 0

]

F.

The general solution near x = 0 is

y(x) = c0

∞∑

k=0

x3k

9k k! Γ(k + 2/3)
+ c1

∞∑

k=0

x3k+1

9k k! Γ(k + 4/3)
,

where Γ stands for the Gamma function and c0, c1 depend on the initial conditions§. However, if p ≥ 0

then such a power series representation breaks downs even in simple scalar examples.

| Example 0.1

[35, Exm 1, pp 68] Given ∂2f + 1
4x2 f = 0 whose first-order system representation is:

x2 ∂F =

[

0 x2

−1/4 0

]

F.

• Let f(x) =
∑∞

k=0 akx
k. A formal substitution in the given equation yields:

a0 = a1 = 0, and (4k(k − 1) + 1)ak = 0, ∀ k ≥ 2.

Thus, this presentation gives the trivial solution f(x) = 0.

• However, considering a Frobenius series representation, y(x) = xα
∑∞

k=0 akx
k where α ∈ Q

and a0 6= 0, it is easy to verify that: f(x) = a0
√
x.

�

Frobenius series representations may break down as well as illustrated in the following example.

| Example 0.2 ( [35], Exm 2, pp 77)

Given

x3 ∂2f = f

whose first-order system representation with F = [f, ∂f ]T is:

x3 ∂F =

[

0 x3

1 0

]

F.

Let f(x) = xα
∑∞

k=0 akx
k where α ∈ R and a0 6= 0. Substituting as above we have:

(k − 1− α)(k − 2 + α)ak−1 − ak = 0 ∀ k ≥ 1

§One may consult The Encyclopedia of Special Functions, Microsoft Research - INRIA joint Centre, at:
http : //algo.inria.fr/esf/
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and a0 = 0 which is an immediate contradiction. Hence, no Frobenius representation exists for

this example.

�

For a system [A] with p ≥ 0, we call p the Poincaré rank. Such systems have been studied extensively

(see, e.g., [11, 139] and references therein). It is well-known that a solution is, in general, the product

of not only a matrix of formal power series in a root of x (Airy equation at x = 0) and a matrix power of

x (Example 0.1), but also an exponential of a polynomial in a root of x−1 (Example 0.2).

Consider again Airy equation but for large |x| (x 7→ 1/x). It is known to possess two linearly independent

solutions, the Airy functions of the first and second kind, Ai(x) and Bi(x), having the following

asymptotic representation (see, e.g. [139, Ch. VI]):

Ai (x) =
1

2
√
π
x−1/4 exp (

−2
3x3/2

) [1 +O(|x|−3/2)],

Bi (x) =
1√
π
x−1/4 exp (

2

3x3/2
) [1 +O(|x|−3/2)].

More generally, it follows from Hukuhara-Levelt-Turrittin normal form, which is an explicitly prescribed

form closely resembling Jordan canonical form (JCF) of matrix presentations of linear operators, that a

fundamental matrix of formal solutions (FMFS) of [A] is given by (see, e.g., [133, 85, 139])

Φ(x1/s) xC exp(Q(x−1/s)), (2)

where

• s is a positive integer which we refer to as the ramification index;

• Φ is a matrix of meromorphic series in x1/s (root-meromorphic in x) over C;

• Q(x−1/s) is the exponential part. It is a diagonal matrix whose entries are polynomials in x−1/s over

C without constant terms.

• C is a constant matrix which commutes with Q(x−1/s).

This gives another classification of the singularity: If Q(x−1/s) is the zero matrix then x = 0 is a regular

singular point. In this case, s = 1 and the formal series Φ(x1/s) converges whenever the series of A(x)

does: All solutions grow at most like a finite power of |x|. Otherwise, x = 0 is an irregular singular

point (see, e.g. [139, Chapter 4, Section 2, pp 111]), and the elements of Q(x−1/s) determine the main

asymptotic behavior of actual solutions as x→ 0 in sectors of sufficiently small angular opening (see, e.g.

[139, Theorem 19.1, pg 110]). This classification however, based upon the knowledge of a FMFS, is not

immediately apparent for a given differential system and will be discussed further in Section 1.5.1 and

Chapter 3.

Contrary to the other systems to be considered in this thesis, i.e. the singularly-perturbed linear

differential system and the Pfaffian system, algorithms to related problems leading to the construction of

formal solutions of system [A] and nth-order scalar differential equations have been developed by various

authors (see, e.g., [14, 24, 29, 32, 121, 137, 125, 66, 64, 101] and references therein).
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• In Chapter 1, we recall the formal reduction of system [A]. We outline the main algorithm given

in [14], and its underlying procedures. As we are interested in formal reduction, we drop reference

to analytic/asymptotic properties. In the latter direction, one may consult [139, 11] and references

therein.

• As we will see in Chapter 1, the one-parameter algebraic eigenvalue problem is central to the

theory of differential systems. In Chapter 2, we describe briefly two direct approaches tackling this

problem: The approach of [74, 75] which is based on Lidskii’s genericity conditions and inspired

by the techniques developed within the treatment of system [A]; and the approach of [4] within the

realm of tropical algebra.

• The study of these system lead to questions of global nature as well. In the scalar univariate

case, several desingularization algorithms exist for differential, difference, and more generally, Ore

operators. However, the apparent singularity of systems of first-order linear differential equations

with rational function coefficients, can be removed by acting directly on it, rather than on the

equivalent scalar equation. This is the subject of Chapter 3.

Local Notations

• K[[x]] is the ring of formal power series in x whose coefficients lie in a commutative field K
of characteristic zero (Q ⊆ K ⊆ C). K((x)) is its fraction field, namely the field of formal

meromorphic ( or Laurent) series in x with coefficients in K;

• K[x] is the ring of polynomials in x over K and K(x) is the field of rational functions in x over K
(to be used in Chapter 3);

• ∂ denotes the derivation d
dx ;

• We recall that a valuation of K((x)) indicates the order in x of an element a(x) of this field at zero

(valx(0) = ∞). It is defined by the map valx : K((x)) → Q ∪ ∞ which satisfies the following

properties for all a(x), b(x) in K((x)):

1. valx (a) =∞ if, and only if, a = 0;

2. valx (ab) = valx (a) + valx (b);

3. valx (a+ b) ≥ min (valx (a), valx (b)), and equality holds if valx (a) 6= valx (b);
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Chapter 1

Formal Reduction (Computing a FFMS)
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Consider again system [A] given by (1):

[A] xp+1∂F = A(x) F = (

∞∑

k=0

Akx
k) F,

where p ≥ 0 and A(x) ∈ Mn(K[[x]]). As mentioned in the introduction, formal reduction is

the algorithmic procedure that constructs a fundamental matrix of formal solutions (2) of [A] (see,

e.g., [14, 114], and references therein). A recursive algorithmic procedure attaining formal reduction

was developed by Barkatou in [14]. As in the classical approach, it consists of computing at every step,

depending on the nature of the eigenvalues of the leading matrix coefficient A0, a transformation (change

of basis). Accordingly, a block-diagonalized equivalent system, an irreducible equivalent system, or the

formal exponential order are computed. These operations will be described individually in the following

sections and will be generalized in the later chapters of this thesis. Upon performing this transformation,

the resulting (uncoupled) system(s) are of either dimension(s) or Poincaré rank(s) lower than that of

[A]. Based on the former operations, the packages ISOLDE [31] and LINDALG [96] written respectively in

MAPLE and MATHEMAGIX, are dedicated to the symbolic resolution of such systems.

Page 13



1.1 Gauge transformations Chapter 1

1.1 Gauge transformations

Given system [A], let T (x) ∈ GLn(K̄((x))). A transformation (change of basis) F = T G yields

[Ã] xp̃+1 ∂G = Ã(x) G, (1.1)

where Ã ∈Mn(K̄[[x]]), p̃ is an integer, and

Ã

xp̃+1
= T−1 A

xp+1
T − T−1 ∂T. (1.2)

We say that system [Ã] is equivalent to system [A] via T (x) and we write [Ã] := T [A]. One can observe that

this transformation deviates from similarity with the term T−1 ∂T . The theory of differential operators

henceforth deviates from that of linear operators. We refer to T−1AT as the similarity term of (1.2).

Two special types are the constant transformation and the shearing transformation. We remark that in

literature, T is referred to sometimes as gauge transformation or coordinate transformation.

Constant Transformations

Let T ∈ GLn(K̄). Clearly, F = T G yields system [Ã] such that p̃ = p and Ã = T−1 A T .

Shearing Transformation

The shearing transformation is a polynomial transformation of the general form:

S = Diag (xα1 , . . . , xαn), where α1, . . . , αn ∈ Z.

Such transformations can change the leading matrix coefficient radically upon altering its eigenvalues.

Given system [A], it follows from (1.2) that the transformation F = T G yields system [Ã] such that for

p = p̃ we can write

Ã = S−1 A S − xp Diag (α1, . . . , αd).

where given A = [aij ]1≤i,j≤n , we have

S−1 A S = [aij x
αj−αi ]1≤i,j≤n, or more explicitly,

Ã = S−1 A S − xp Diag (α1, . . . , αd)

=












a11 − α1x
p a12 xα2−α1 . . . a1n xαn−α1

a21 xα1−α2 a22 − α2x
p . . . a2n xαn−α2

...
... . . .

...

an1 xα1−αn an2 xα2−αn . . . ann − αnx
p












.
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1.2 Equivalence between a system and an equation Chapter 1

| Example 1.1

Consider S = Diag (x, . . . , x, 1, . . . , 1). The following diagram exhibits the shearing (“cropping”)

effect of S on [A].

+ x + x2 + x3 + . . .

+ x + x2 + x3 + . . .

O
+ x + x2 + x3 + . . .

∗

�

1.2 Equivalence between a system and an equation

In the introduction, we saw that an nth-order differential equation can be rewritten equivalently as a first-

order linear differential system. The other direction holds as well although it is nontrivial. The formal

solutions of the latter can then be computed from the former (see, e.g. [136] and references therein).

However, it is debatable whether such a treatment is satisfactory. Some experimental results show that

the size of the coefficients grows dramatically. In any case, its major drawback is that it overlooks the

information that can be derived directly from the system itself. Nevertheless, it plays a key role in the

theoretical basis of algorithms treating system [A] and those which we develop later in Part II. And so, it

is convenient to recall it in this subsection.

Given system [A], a standard procedure is to consider a nonzero row vector U(x) = (u1, . . . , un) with

entries in K̄((x)) and define inductively the row-vector sequence {Ui(x)}0≤i≤n as follows:

U0 = U, Ui = ∂Ui−1 + Ui−1
A

xp+1
, 1 ≤ i ≤ n.

Let

f = U0 F = u1 f1 + · · ·+ unfn .

By substituting ∂F = A
xp+1F in the successive computations of ∂f, . . . , ∂nf , we obtain:

∂if = UiF, 0 ≤ i ≤ n. (1.3)

Now let T (resp. Ã) be the n-square matrices whose ith rows are formed by Ui−1 (resp. Ui) for 1 ≤ i ≤ n;

and let G be the column vector whose ith component is ∂i−1f . Then the set of equations in (1.3) can be

rewritten as

G = T F. (1.4)
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Noting that Ã = ∂T + T A
xp+1 , (1.4) can be rewritten as

∂G = Ã F. (1.5)

We say that U(x) is a cyclic vector if the matrix T is invertible. Cyclic vectors always exist (see, e.g. [46]

and references therein). We can thus rewrite (1.5) and (1.4) as

F = T−1 G and ∂G = ˜̃A G, where ˜̃A(x) = ÃT−1 = T
A

xp+1
T−1 + ∂TT−1

is a companion matrix. Denoting the entries in its last row by (˜̃ai)0≤i≤n−1(x) ∈ K̄((x)), the system is

obviously equivalent to the nth-order scalar differential equation:

∂nf − ˜̃an−1(x) ∂
n−1f − . . . ˜̃a1(x) ∂f − ˜̃a0(x) f = 0.

Another algorithm is that of [13] which computes a companion block diagonal form for system [A]. The

former can be easily adapted to singularly-perturbed linear differential systems as well to serve theoretical

purposes (Chapter 4).

In the sequel, we offer a direct treatment of the system [A], i.e. without resorting to an equivalent

nth-order scalar equation. The classical direct treatment of system [A] depends on the nature of the

eigenvalues of the leading matrix coefficient A0. For the clarity of the presentation, we can assume

without loss of generality that A0 is in Jordan canonical form (JCF, in short). This can always be achieved

by a constant transformation and efficient algorithms exist for this task [59].

1.3 A0 has at least two distinct eigenvalues

Whenever A0 has at least two distinct eigenvalues, system [A] can be uncoupled into systems of lower

dimensions via the classical Splitting lemma which we recall here with its constructive proof (see,

e.g. [139, Section 12, pp 52-54] or [11, Lemma 3, pp 42-43]).

| Theorem 1.1

Given system [A] with A(x) ∈Mn(K[[x]]). If the leading matrix coefficient is of the form

A0 =

[

A11
0 O

O A22
0

]

(1.6)

where A11
0 and A22

0 have no eigenvalues in common, then there exists a unique transformation T (x) ∈
GLn(K[[x]]) given by

T (x) =

[

I O

O I

]

+
∞∑

k=1

[

O T 12
k

T 21
k O

]

xi,
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such that the transformation F = TG gives

xp+1 d

dx
G = Ã(x) Z =

[

Ã11(x) O

O Ã22(x)

]

G

where Ã0 = A0 and Ã(x) ∈Mn(K[[x]]).

Proof. We have from (1.2):

xp+1∂T (x) = A(x)T (x)− T (x)Ã(x). (1.7)

Assume the above form for T (x), then we have for 1 ≤ ̺ 6= ς ≤ 2:







A̺̺(x)− Ã̺̺(x) +A̺ς(x) T ς̺(x) = O

Aς̺(x) +Aςς(x) T ς̺(x)− T ς̺(x) Ã̺̺(x) = xp+1∂T ς̺(x)
(1.8)

Inserting the series expansions A(x) =
∑∞

k=0 Akx
k and Ã(x) =

∑∞
k=0 Ãkx

k in (1.8), and equating the

power-like coefficients, we get recursion formulas of the form:

For k = 0 we have 





A̺̺
0 = Ã̺̺

0

Aςς
0 T ς̺

0 − T ς̺
0 Ã̺̺

0 = O

which are satisfied by settingAςς
0 = Ãςς

0 and T ςς
0 = I, T ς̺

0 = O.

For k ≥ 1 we have

Aςς
0 T ς̺

k − T ς̺
k A̺̺

0 = −Aς̺
k −

k−1∑

j=1

(Aςς
k−jT

ς̺
j − T ς̺

j Ã̺̺
k−j) + (k − p) T ς̺

k−p (1.9)

Ã̺̺
k = A̺̺

k +

k∑

j=1

A̺ς
k−jT

ς̺
j (1.10)

where T ς̺
k−p = O for k ≤ p.

It’s clear that (1.9) is a Sylvester matrix equation that possesses a unique solution due the assumption on

the disjoint spectra of M ςς
0 and M̺̺

0 (Lemma 1.1). Remarking that the right hand sides depend solely

on the Tj , Ãj with j < k, the system of equations (1.9) and (1.10) are successively soluble as illustrated

by the following diagram:
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O
+

O
x + x2 + x3 + . . .

O
+

O
O

x +
O

x2 + x3 + . . .

O
+

O
O

x +
O

O
x2 +

O
x3 + . . .

�

| Lemma 1.1 (see, e.g., [11], Appendix A.1, pp 212-213)

Given M ∈ Mm(K) and N ∈ Mn(K). If M and N have disjoint spectra, i.e. do not have an

eigenvalue in common, then for every P ∈Mm×n(K) the matrix equation

M X − X N = P

has a unique solution inMm×n(K).

Thus the system can be split into two subsystems of lower dimensions and formal reduction proceeds on

each of the subsystems in parallel.

1.4 A0 has a unique nonzero eigenvalue

Supposing that A0 has a single nonzero eigenvalue γ ∈ K̄, it is easy to verify that the so-called eigenvalue

shifting, which is a special type of exponential transformations,

F = G exp(

∫ x

γz−p−1dz), (1.11)

results in a system with a nilpotent leading matrix coefficient (in fact, in (1.2), Ã(x) = A(x) − γIn and

p̃ = p).

1.5 A0 is nilpotent

This case is the most interesting and requires at least one of the following steps, the first of which is rank

reduction. In the following two parts, we will see that the main difficulties arise in the case of nilpotency

as well.
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1.5.1 Rank reduction

Given a system [A], one would like to determine whether x = 0 is a regular or an irregular singularity.

It is well known that a singularity of the first kind of system [A], i.e. for which p = 0, is a regular

singularity (see, e.g. [81, Proposition 3.13, pp 258] and references therein). However the converse is

not true: Even when x = 0 is a multiple pole (a singularity of second kind), it is still possible for x = 0

to be a regular singularity. Horn’s theorem [67] states that [A] has a regular singularity if and only if

it is equivalent to a system whose singularity is of first kind. Rank reduction is the procedure which

constructs a transformation that yields such an equivalent system. More generally, whether the system

is regular singular or irregular singular, rank reduction reduces the Poincaré rank to its minimal integer

value, called the true Poincaré rank ptrue. In the case of irregular singularity, ptrue is the minimal integer

which gives an upper bound to the growth order of the solutions in a neighborhood of x = 0. There exists

several reduction criteria to determine ptrue and several algorithms to construct an equivalent system

whose Poincaré rank is the true Poincaré rank [121, 138, 87, 32]. In this section, and generally in this

thesis, we are interested in the Moser-based ones.

Moser-based rank reduction of system [A] is a reduction based on the criterion defined by Moser in [107].

Consider the following two rational numbers called the Moser rank and Moser invariant respectively:







m(A) = max (0, p+ rank(A0)
n )

µ(A) = min { m(T [A]) for all possible choices of T in GLn(K̄((x)))},
(1.12)

If µ(A) ≤ 1 then system [A] is regular. For m(A) > 1, it is proved in [107, Theorems 1 and 2, pg 381]

that m(A) > µ(A) if and only if the polynomial

θA(λ) := xrank(A0) det(λI +
A0

x
+A1)|x=0

vanishes identically in λ. If it is the case, we say that system [A] (resp. A(x)) is reducible. Constant

transformations cannot change the rank of the system unless combined with shearings : m(A) can be

diminished by applying the transformation Y = TZ where T ∈ GLn(K(x)) is a product of polynomial

transformations of the form [15]

P Diag(x, . . . , x, 1, . . . , 1) where P ∈ GLn(K).

Otherwise, the system (resp. A(x)) is said to be irreducible∗.

Thus, a system has a regular singularity at a point x = 0 if and only if it is equivalent to a system [Ã] with

a first-kind singularity at x = 0. Such a T (x) ∈ GLn(K(x)) can be constructed via the rank reduction

algorithms of [32] and references therein. Moser-based rank reduction algorithms result in a system

equivalent to [A] which holds not only the true Poincaré rank but also a minimal algebraic rank for the

leading matrix coefficient A0. A minimal algebraic rank of A0 is a prerequisite for later computations

∗In literature, the terminology of Moser-reducible and Moser-irreducible is used. However, we adopt the simpler terminology
of reducible and irreducible which will be helpful in Parts II and III, where a parameter or several variables are involved. Upon
generalizing such reductions to more general systems, we will eventually need to specify the parameter or variable with respect to
which the system is reduced, e.g. ε-irreducible, ξ-irreducible, and xi-irreducible.
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1.5 A0 is nilpotent Chapter 1

(Subsection 1.5.2) and from here stems our interest in such algorithms. Hence, in the rest of this thesis,

we generalize this reduction criterion and the Moser-based rank reduction algorithm of [15].

We can now suppose without any loss of generality that [A] is an irreducible system. Three possibilities

arise:

• System [A] is regular singular and so it is transformed into an equivalent system whose Poincaré

rank is zero. We proceed in the formal reduction as in Section 1.6.

• System [A] is irregular singular and the leading matrix coefficient has at least two distinct

eigenvalues (resp. unique nonzero eigenvalue). We thus retreat to Section 1.3 (resp. Section 1.4) .

• System [A] is irregular singular and the leading matrix coefficient is nilpotent. This case demands

introducing a ramification in x. This ramification (re-adjustment of the independent variable) is

not known from the outset but can be computed as we show in Subsection 1.5.2.

We remark that more recent rank reduction algorithms were given in [32] and references therein. The

transformations considered therein were optimal in the following sense: If p can be dropped by one then

the similarity transformation computed achieves this goal in one single step. Moreover, θA(λ) gives other

valuable information about the system leading to a generalized splitting lemma [114]. Roughly speaking,

the latter uncouples the system into two subsystems, one of which does not demand a ramification for

the retrieval of the leading term of the exponential parts. The former are however out of the scope of this

brief description.

1.5.2 Formal exponential order ω(A)

| Definition 1.1

[14, Theorem 1] Given system [A] and its exponential part in (2):

Q(x−1/s) = Diag(q1(x
−1/s), q2(x

−1/s), . . . , qn(x
−1/s)).

Then, the formal exponential order, exponential order in short, of [A] (resp. A(x)) is the rational

number

ω(A) = −min1≤i≤n valx(qi).

In literature, ω(A) is also referred to as Katz invariant. As mentioned, one cannot retrieve ω(A) from

the outset. However, it is proved in [14, Theorem 1], which we recall here, that ω(A) can be computed

from the characteristic polynomial of A(x)/xp whenever A(x) is irreducible. Supposing that ω(A) = ℓ
d

with ℓ, d relatively prime positive integers, one can then set t = x1/d , and perform again rank reduction.

The resulting equivalent system has Poincaré rank equal to ℓ and leading matrix coefficient with at least

d distinct eigenvalues. Consequently, the Splitting lemma can be reapplied to uncouple the system.
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| Theorem 1.2 ([14], Theorem 1)

Given system [A] with p > 1. Let

det (λIn −
A(x)

xp
) = λn + αn−1λn−1 + · · ·+ α0.

such that αn = 1 and αi =
∑∞

j=valx(αi)
αi,j x

j for 0 ≤ i < n. If p > n− rank (A0), then we have

ω(A) =
n−1
max

0
(0,
−valx(αi)

n− i
).

One can analyze det(λIn− A(x)
xp ) by associating a Newton polygon (see, e.g. [75, Section 2.1]), and ω(A)

would then be the steepest slope of this polygon. This theorem establishes a relationship between the

algebraic Newton polygon, that is the Newton polygon of A(x) on one hand and the differential Newton

polygon, that is the Newton polygon of the equivalent scalar nth-order differential equation on the other

hand (see also [64, 66, 136]).

| Remark 1.1

The condition p > n − rank (A0) is non-restrictive as it can be always attained by a suitable choice

of ramification and a computable transformation [14, Lemma 5].

The leading term of Q(x−1/s) is then given by

− 1

ω(A) xω(A)
Diag (a1, . . . adeg (E), 0, . . . , 0),

where the ak ’s denote the roots of the (Newton) polynomial given by the algebraic equation

E(X) =

ℓ∑

k=0

α(ik,valx(αik
)) X

(ik−i0) (1.13)

where 0 ≤ i0 < i1 < · · · < iℓ = n denote the integers i for which ω(A)(n− i) = −val(αi).

Or equivalently Q(x−1/s) is given by,

−
∫ x 1

(p+ 1) z p+1
Diag (γ1, . . . , γn) dz,

where the γi’s are the eigenvalues of A0 in K̄.

1.6 Regular systems

This section is devoted to systems which are regular singular x = 0, i.e. system[A] with ptrue = 0. Without

loss of generality, we suppose that [A] is irreducible and consequently p = ptrue = 0. Relevant methods of

resolution are discussed in [139, Chapter 1], [29, 24] for more general contexts, and references therein.
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The discussion is, again, based on the nature of the eigenvalues of A0:

| Theorem 1.3

Given system [A] with p = 0. If the eigenvalues of A0 do not differ by nonzero integers, then there

exists

T (x) =

∞∑

i=0

Tk xk ∈ GLn(K[[x]]), where T0 = In,

which yields an equivalent system [Ã] for which Ã = A0. Consequently, a formal fundamental matrix

of formal solutions of [A] is given by T (x) xA0 .

Proof. If follows from (1.2) that

x ∂T (x) = A(x) T (x) − T (x) A0.

Inserting the series representation of A(x) and T (x) yields:







A0 T0 − T0 A0 = On

(A0 − k In) Tk − Tk A0 = −∑k−1
i=0 Ak−i Ti , k ≥ 1.

Choosing T0 = In, the Tk ’s can be successively computed since A0−kIn and A0 have disjoint spectra. �

| Proposition 1.1

If the eigenvalues of A0 differ by a nonzero integer then there exists T ∈ GLn(K((x))), product of

shearing (polynomial) transformations and constant transformations such that the eigenvalues of the

leading matrix coefficient of the equivalent system do not differ by nonzero integers.

The proof is constructive and is skipped here since it is very similar to the proof of Proposition 3.4 in

Chapter 3. An efficient version of the resulting algorithm is proposed in [84, pp 67 - 68].

| Example 1.2

Given the famous modified Bessel equation of order ν:

∂2f +
1

x
∂f − (1 +

ν2

x2
)f = 0.

We discuss the construction of a fundamental matrix of formal solutions at x = 0 according to the

values of ν. Let F = (f, ∂f)T . Then the given equation can be rewritten as the following linear

first-order differential system of dimension 2:

x2 ∂F = A(x) F =

[

0 x2

x2 + ν2 −x

]

F. (1.14)

The leading term A0 := A(0) is nilpotent and the system is reducible according to Moser’s criterion
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(θ(λ) = 0). The transformation F = T G where T =

[

x 0

0 1

]

yields the equivalent system:

x ∂G = Ã(x)G =

[

−1 1

x2 + ν2 −x

]

G.

Thus, ptrue = 0 and the system is regular singular at x = 0. The new leading matrix Ã0 = Ã(0) =
[

−1 1

ν2 0

]

is not nilpotent. The difference between its two eigenvalues is given by
√
4ν2 + 1. We

thus distinguish two cases:

• Case 1 : If
√
4ν2 + 1 ∈ N∗ then Proposition 1.1 is applied to reduce.

• Case 2 : Otherwise, we proceed to constructing T (x) of Theorem 1.3 and hence a

fundamental matrix of formal solutions is given by T (x) xÃ0 .

�

1.7 Formal reduction algorithm

Based on the above, the terms of Q(x−1/s) of largest degrees can be found recursively. This process is

exhibited in Algorithm 1†, which computes the exponential part of a FMFS (2), and eventually, a full

fundamental matrix of formal solutions of system [A]. In fact, the transformations performed in the

process of computing the former, are endowed in the latter.

Algorithm 1 results in a set of decoupled systems with dimension n = 1 (case of first-order linear scalar

equations) and/or a set of system(s) whose Poincaré ranks are zeros, and consequently, has(ve) zero

exponential part(s) and can be treated as in Section 1.6.

1.8 Remarks about the implementation

In this section, we point out some considerations in the implementation of the packages MINIISOLDE [31]

and LINDALG. The implementation is in the former recursive and in the latter iterative although the

algorithm itself is recursive.

The polynomial Q(x−1/s) of a FMFS given by (2) is determined by at most the first np terms in the Taylor

expansion of A(x) in (1) [9, 90]. Thus, finitely many terms are needed for the construction of the

exponential part and this number is reduced as the system splits into two or several systems and as the

Poincaré rank drops. Moreover, any additional number of terms can be taken into account to increase

the precision of Φ(x) of a FMFS. The base field can be any commutative field K of characteristic zero.

Algorithm 1 and its underlying sub-algorithms can be refined to handle efficiently algebraic extensions of

the constant base field, as explained below.

†The pseudo code is provided to give an overview of the main steps of this recursive algorithm. The implementation itself
demands different considerations. The source code of LINDALG is accessible with examples of computations within the current
release of MATHEMAGIX [135].
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Algorithm 1 FMFS_ODS (p,A(x)) : Computes a fundamental matrix of formal solutions (2) of [A]
Input: p, A(x) of (1)
Output: A fundamental matrix of formal solutions FMFS (2)

Q,C,← On; Φ← In;
while p > 1 and n 6= 1 do

if A0 has at least two distinct eigenvalues then
Split system as in Subsection 1.3; Update Φ;
FMFS_ODS (p, Ã11(x)); Update Φ, C,Q;
FMFS_ODS (p, Ã22(x)); Update Φ, C,Q;

else if A0 has one non-zero eigenvalue then
Update Q from the eigenvalues of A0;
A(x)← Follow Subsection 1.4; (A0 is now nilpotent);
FMFS_ODS (p,A(x)); Update Φ, C,Q;

else
Follow Subsection 1.5.1 for rank reduction; Update Φ; Update p; Update A0;
if p > 1 and A0 has at least two distinct eigenvalues then

Split system as in Subsection 1.3;
FMFS_ODS (p, Ã11(x)); Update Φ, C,Q;
FMFS_ODS (p, Ã22(x)); Update Φ, C,Q;

else if A0 has one non-zero eigenvalue then
Update Q from the eigenvalues of A0;
A(x)← Follow Subsection 1.4; (A0 is now nilpotent)
FMFS_ODS (p,A(x)); Update Φ, C,Q;

else
Follow Subsection 1.5.2;
ω(A) = ℓ

d ; x← xd;
A(x)← Follow Subsection 1.5.1 for rank reduction; Update Φ; p← ℓ;
Update Q from eigenvalues of A0;
A(x)← Follow Subsection 1.4; (A0 is now nilpotent)
FMFS_ODS (p,A(x)); Update Φ, C,Q;

end if
end if

end while
if n = 1 then

Proceed by integration up to the first p− 1 terms; Update Φ, C,Q;
else if p = 0 then

Update Φ, C from Subsection 1.6;
end if
return Φ, C, Q.
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The JCF can be avoided in Theorem 1.1, Proposition 1.1, and whenever appropriate, by making use of

the following lemma.

| Lemma 1.2 (Lemma A.1, [32])

Given a rank deficient matrix M ∈ Mn(K). Then there exists a constant matrix T ∈ GLn(K) such

that

M̃ = T−1 M T =

[

D Or×(n−r)

O(n−r)×r N

]

∈Mn(K),

where r := rank (Mn), D ∈Mr(K) is nonsingular, and N is a nilpotent matrix.

The proof follows from the rank-nullity theorem. In practice we proceed as in Algorithm 2. Variations of

Algorithm 2 BLOCK_DIAG: Block-diagonalization of M over K
Input: M ∈Mn(K)
Output: The transformation of Lemma 1.2
r = rank(Mn);
if 0 < r < n then

Compute a basis {T1, . . . , Tr} of the space generated by the columns of Mn;
Compute a basis {Tr+1, . . . , Tn} of the kernel of Mn (using Gaussian Elimination);
Form the matrix T (x) whose columns are {T1, . . . , Tr, Tr+1, . . . , Tn};

else
T = In;

end if
return T .

Lemma 1.2 can also be applied to isolate distinct eigenvalues, e.g. to put A0 in the form 1.6 to prepare

[A] for the Splitting lemma or Proposition 1.1. However, despite avoiding JCF, some algebraic extensions

might be introduced with the roots of (1.13) and eigenvalue shifting. In fact, let ω(A) = ℓ
d with

gcd(ℓ, d) = 1. If a is a root of the polynomial (1.13) of multiplicity ν then there exists ν polynomial

entries on the diagonal of the exponential part Q(x−1/s) that have − a
ω(A) xω(A) as a leading term, i.e. the

leading term of Q(x−1/s) is given by

− 1

ω(A) xω(A)
Diag (a, . . . , a, 0, . . . , 0).

Following Algorithm 1, we apply the ramification x = td and eventually carry out the shifting

F = exp (
−a

ω(A) tℓ
) G.

At this point, we leave the constant field K and start working in its extension K(a). These extensions

arise naturally but it is possible to restrict their sizes using a trick described in [14, Section 5] which we

outline here:
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Let u and v be two integers verifying uℓ + vd = 1. Let z = a−u t and b = ad. Then we have:







−a
ω(A) tℓ

= −auℓ+vd

ω(A) tℓ
= −adv

ω(A) (a−ut)ℓ
= bv

ω(A) zℓ ,

x = td = adu zd = bu zd.

One notices that if a is a root of the polynomial (1.13) then b = ad is a root of a reduced polynomial

given by Ereduced (Xd) = E(X). Hence, Algorithm 1 can then be modified as follows:

• Choose a root b of Ereduced;

• compute u and v satisfying uℓ + vd = 1;

• substitute x by bu zd;

• apply the shifting

F = G exp(
−bv

ω(A) zℓ
).

The new constant field is then K(b) where b is a root of a polynomial of degree equal to the degree of the

polynomial (1.13) divided by d. The computations are done up to conjugations.

We illustrate these enhancements with this very simple example.

| Example 1.3 ([14], Example 4)

Let K = Q and consider the following system:

x3 ∂F = A(x) F =

[

2x x

x− 1 1

]

.

Without applying the above trick, Algorithm 1 computes the exponential part to be:

Q(x−1/2) = Diag (q1(x
−1/2) , q2(x

−1/2)),

where 





q1(x
−1/2) = − 2

√
−1

3x3/2 − 1
x + 2

√
−1√
x

,

q2(x
−1/2) = + 2

√
−1

3x3/2 − 1
x −

2
√
−1√
x

.

However, we proceed instead as follows:

• The leading matrix A0 is nilpotent and irreducible so we need to compute ω(A);

• we compute ω(A) = 3/2 and E(X) = X2 + 1 (1.13). Hence we set Ereduced = U + 1;

• we take u = 1, v = −1, and b = −1 (the unique root of Ereduced);

• we apply the ramification x = bt2 = −t2 and rank reduction again to obtain the new system

t4 ∂t G = Ã(t) G =

[

2t3 −2t2 − 2

−2 −4t− t3

]

;
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• The shifting

G = H exp(
2

3t3
),

shifts the eigenvalues of the leading matrix coefficient by two which yields

t4 ∂t H = ˜̃A(t) H =

[

2t3 + 2 −2t2 − 2

−2 −4t− t3 + 2

]

;

Now, the leading matrix coefficient ˜̃A0 of the resulting system has zero as a simple eigenvalue

and is given by
[

2 −2
−2 2

]

.

One can then isolate its nilpotent part based on Lemma 1.2 (whose transformation coincides

with Jordan transformation in this case): We compute

T =

[

8 1

−8 1

]

so that T−1 ˜̃A0 T =

[

4 0

0 0

]

.

• We then split the system to any desired precision by Theorem 1.1. which leads to the scalar

equation

t3 ∂tf = n(t) f = n(t) f = (−2− 2 t+ . . . ) f.

The latter has exp( 1
t2 + 2

t ) as its exponential part.

• Thus, we obtain a polynomial in 1/t

q(1/t) =
2

3 t3
+

1

t2
+

2

t
, where x = −t2.

Thus, q1(x−1/2) and q2(x
−1/2) obtained above by computations in Q(i) can be both obtained from

q(t) by substituting t = ±ix1/2 in q(1/t), which is computed in Q.

�

1.9 Conclusion

In this chapter, we revised major components of the formal reduction of linear singular differential

systems. For the sake of brevity, we restricted our description to the notions which serve the algorithms

that are developed in the later chapters of this thesis. Several other central notions exist and are recalled

briefly with prospects of their generalization to wider classes of systems in Appendix A.

LINDALG and MINIISOLDE are currently dedicated to the symbolic local treatment of nth-order linear

differential equations and first-order linear differential systems with singularities. Following the track

of the MAPLE package ISOLDE, algorithms for computing global solutions will be adjoined as well (e.g.

rational, exponential, and liouvillian solutions) in the future.
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Chapter 2

Perturbed (Algebraic) Eigenvalue

Problem

Contents
2.1 Tropicalization of A(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Application to differential systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Differential-like reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Integer leading exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Fractional leading exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 Singular case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

As we have seen in Subsection 1.5.2, the formal invariants of linear singular differential system [A] given

by (1)

xp+1 d

dx
F = A(x) F = (

∞∑

i=0

Akx
k) F,

can be retrieved (after certain reductions) from the characteristic polynomial of its matrix A(x). We thus

turn our attention in this chapter to the algebraic eigenvalue problem.

We consider the one-parameter A(x) perturbation of an n× n constant matrix A0:

A(x) = xν
∞∑

k=0

Akx
k, for some ν ∈ Z, (2.1)

where the Ak ’s belong toMn(C) and A0 6= On.

It is well-known that the eigenvalues of A(x) can be expressed in some neighborhood of x = 0 as a

formal Puiseux series (see, e.g., [34, 80]), i.e. each admits a formal expansion in fractional powers of x

of the form xν̃
∑∞

k=0 λkx
k/s, where λk ∈ C (or more specifically some field extension of the base field),

s ≥ 1 is an integer, and ν̃ ∈ Z. We suppose without loss of generality that λ0 6= 0 and we refer to it as the

leading coefficient and to ν̃ + k/s as the leading exponent.
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These eigenvalue expansions can be computed by applying Newton-Puiseux algorithm to the

characteristic polynomial of A(x) (see, e.g. [50]) and there already exist computer algebra packages

for this purpose. However, this approach is indirect. A direct approach would recover leading terms from

a few low order coefficients of a matrix similar to A(x) rather than an associated scalar equation.

A direct approach to the perturbed eigenvalue problem (and more generally the perturbed eigenvalue-

eigenvector problem), is given in the linear case by the perturbation theory of Visik, Ljusternik [136], and

Lidskii [88]. For a generic matrix, the leading exponents of the eigenvalues are the inverses of the sizes

of the Jordan blocks of A0 and the leading coefficients can be obtained from certain Schur complements

constructed from the entries of A0 and A1. However, it might happen that Schur complements do not

exist or A1 has a sparse or structured pattern. The generalization of this theory to cover such cases is

the subject of profound research for both matrices and matrix pencils (see, e.g. [4, Introduction] and

references therein).

One extension of the former takes advantage of methods of min-plus algebra and is given by Akian-

Bapat-Gaubert in [4]. Another extension is given by Jeannerod-Pfluegel in [75] and relies on a

differential-like reduction inspired by Moser’s reduction criteria (Subsection 1.5.1) for linear singular

differential systems. In the latter, a direct algorithm was proposed to find the first terms of the

perturbed eigenvalues for which s = 1. In the same differential spirit, the case of s > 1 was discussed

afterwards by Jeannerod [74] based on Lidskii’s genericity conditions for perturbed eigenvalues, and

their characterization in terms of the Newton diagram of A(x) given by Moro-Burke-Overton in [105].

However, although both approaches generalize Lidskii-Visik-Ljusternik’s theory to a wider class of

matrices, both leave behind singular cases open to investigation∗. This chapter describes briefly the main

results of both approaches regarding the computation of the asymptotics of the eigenvalues of (2.1), in

Sections 2.1 and 2.2 respectively.

We aim to show the interaction between the studies of differential and linear operators: On one hand,

the techniques developed for the former turn out to be useful in the treatment of the latter; and on

the other hand, the advancements in the latter contribute directly to the former (see also [138, 108]).

Moreover, we give in Subsection 2.2.3 our partial result, in an attempt to explain the singular case in the

differential-like approach (Section 2.2), using the results of the tropical approach (Sections 2.1).

2.1 Tropicalization of A(x)

Tropical algebra (also min-plus algebra) has been initiated independently by several schools and

developed in relation with diverse mathematical fields (see, e.g. [10, 5, 92]). Let R be the ring

of real numbers. The tropical semiring Rmin is the semiring R ∪ {∞} equipped with the operations

x⊕ y : = min (x, y) and x⊙ y : = x+ y.

Tropical analogues of many classical algebraic functions exist. Let A = [vij ]1≤i,j≤n ∈ Mn(Rmin). In

∗A singular matrix herein refers to a Jordan canonical form (JCF) perturbation which cannot be treated by one or none of the
two direct approaches discussed in this chapter. This terminology has nothing to do with the terminology of singular regular and
singular irregular points used in Chapter 1
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particular, the tropical characteristic polynomial of A is given by:

PA(λ) =
⊕

σ∈Σn

n⊙

i=1

(λ δiσ(i) ⊕ viσ(i)) ∈ Rmin[λ],

where Σn is the set of permutations of {1, . . . , n} and δiσ(i) is Kronecker’s delta. A tropical analogue

of the fundamental theorem of algebra exists and is due to Cuninhame-Green and Meijer (see, e.g. [4,

Theorem 2.9]).

An eigenvalue of A is a real number λ such that

A⊙ v = λ⊙ v, for some v ∈ Rn
min.

Although this chapter does not aim to discuss the efficiency of the approaches described, we remark that

the eigenvalues of A can be computed in polynomial time due to a result by Burkard and Betkovič [40].

We recall that A can be represented by a weighted directed graph G(A) with n nodes labeled 1, 2, ..., n as

follows: There is an arc (i, j) from node i to node j if and only if vij <∞; and the weight vij is assigned

to each arc. The normalized weight of a directed path i0, i1, ..., ik in G(A) is given by (
∑k

j=1 vij−1,ij ) /k.

If ik = i0 then the path is a directed cycle (see e.g. [92, pp 127-133]). We say that a directed graph

is strongly connected if every node is reachable from every other node, i.e. one can find a directed path

connecting both nodes. Such graphs have the following interesting property (see, e.g. [92, Theorem

5.1.1, pp 128], [4, Theorem 2.1], or [10, Theorem 3.23]).

| Theorem 2.1

Let A be a tropical n × n matrix whose graph G(A) is strongly connected. Then A has a unique

eigenvalue λ(A), which is equal to the minimal length of any directed cycle in G(A).

Back to (2.1), let A(x) = [aij(x)]1≤i,j≤n ∈ Mn(C((x))). Then the tropicalization of A(x) is given by

the constant matrix A = [valx(aij)]1≤i,j≤n. Let PA(λ) =
∑n

i=0 pi(x)λ
i ∈ C[[x]][λ] be the characteristic

polynomial of A(x). For generic entries of A(x), the tropical characteristic polynomial of A coincides with

the tropicalization of the classical characteristic polynomial of A(x) given by⊕n
i=0 valx(pi)⊙λi ∈ Rmin[λ].

Supposing that the underlying digraph of A is strongly connected, we have:

| Theorem 2.2 ( [4], Theorem 3.8)

Let α = (α1, ..., αn), (α1 ≤ · · · ≤ αn), denote the sequence of the leading exponents in the expansions

of the eigenvalues of A(x) counted with their multiplicities and v = (v1, . . . , vn), v1 ≤ · · · ≤ vn) denote

the sequence of roots of the tropical characteristic polynomial of A. Then, α is weakly majorized by v,

that is( [4, Definition 3.5]),

α1 ⊙ · · · ⊙ αi ≥ v1 ⊙ · · · ⊙ vi , for all i = 1, . . . , n.

Moreover, for generic values of the aij ’s,

αi = vi, for all i = 1, . . . , n.
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We illustrate the above theorem by the following example.

| Example 2.1 ( [92], pp 132)

Consider the matrix

A(x) =






x 1 x

1 x −x2

x x2 x






The tropicalization of the matrix A(x) is

A =






1 0 1

0 1 2

1 2 1






whose underlying graph is strongly connected. The tropical characteristic polynomial of A is

(see [92], pp 132)

PA(λ) = λ3 ⊕ 1⊙ λ2 ⊕ 0⊙ λ⊕ 1

which factors as follows as a polynomial function:

PA(λ) = (λ⊕ 0)
2 ⊙ (λ⊕ 1).

This reflects that A(x) has two eigenvalues of order 0 and one eigenvalues of order 1. In fact, A(x)

has three distinct eigenvalues x,
√
1 + x2 − x4 + x , and −

√
1 + x2 − x4 + x. We also remark that

by Theorem 2.1, λ = 0 is the only eigenvalue of the matrix A.

�

2.1.1 Application to differential systems

We show in this subsection the relation between the exponential parts of a linear singular differential

system (1) and the tropical eigenvalues of the tropicalization A of A(x). It is investigated in [17] in the

light of a refined version of Theorem 1.2. We illustrate this relation in two examples from [17]†.

| Example 2.2

Given the irreducible linear singular differential system x2 d
dx F = A(x) F where

A(x) =






−x 2
3 (x− 1) 16

9 x

0 −x 4
3x

9
4

3
4 (1 + x) −x




 .

†For the computation of tropical eigenvalues, one may consult the MAPLE package MAXLINEARALGEBRA [116]. And for the
computation of the exponential parts using Algorithm 1, one may consult the accompanying examples of LINDALG where this
example in particular is treated.
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The tropicalization of x−2 A(x) is given by

A =






−1 −2 −1
∞ −1 −1
−2 −2 −1




 .

G(A) is strongly connected and so it has a unique tropical eigenvalue − 5
3 . This is the root of

the tropical characteristic polynomial with multiplicity 3, corresponding to the cycle of minimal

weight. A(x) has three eigenvalues of order x−5/3. The exponential parts of A(x) are given by

(observe the leading term):

q1,2,3 =

∫ t

4 u−5 − 10

3
u−4 +

8

3
u−3, where x = −1

2
t3.

�

We might encounter distinct roots as well:

| Example 2.3

Given the irreducible linear singular differential system x3 d
dx F = A(x) F where

A(x) =









x2 (x− 1) −(x− 1) −(3 + x) x2 x (−2x2 + x4 + x3 + 1)

0 −x (2 x + 1) 0 x

x2 (x+ 1) −x −x2 (4 + x) x (x4 + x3 + 1)

1 0 0 −x (−1 + 3 x)









.

The tropicalization of x−3 A(x) is given by

A =









−1 −3 −1 −2
∞ −2 ∞ −2
−1 −2 −1 −2
−3 ∞ ∞ −2









.

G(A) is strongly connected. The roots of the tropical characteristic polynomial are −8
3 of

multiplicity 3 and −1 of multiplicity 1. Consequently, the eigenvalues of A(x) are of orders x−8/3

and x−1. The exponential parts of A(x) are given by:

q1,2,3 =

∫ t

u−8 +
1

3
u−7 − 1

81
u−5 +

8

243
u−4 − 7

3
t−3, where x = t3

q4 =

∫ t

−4 u−1, where x = t3.

�
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2.2 Differential-like reduction

Consider again (2.1). The orbit of matrices similar to A(x) is

OA = {P−1AP, P ∈ GLn(C((x)))}.

This differential-like reduction is based on the observation that the similarity term of (1.2) in Chapter 1

plays a very central role within the formal reduction of the differential system [A] given by (1).

Consequently, such reductions are well-suited to treat (2.1) whose orbit consists solely of similar matrices.

This algorithm consists of the following main operations which will be described in the sequel:

• Minimizing the rank of the leading matrix A0 over OA.

• Recovering the eigenvalues with integer leading exponents (s = 1)

– Generalized splitting lemma.

• Recovering the eigenvalues with fractional leading exponents (s < 1)

– Minimizing the Ségre characteristics of the leading matrix A0 over OA .

An application of this approach to a perturbed eigenvalue problem in quantum mechanics is discussed in

[76]. The question addressed therein was to determine the stationary states of an electron-like particle

in a quantum well of semi-conductors.

2.2.1 Integer leading exponents

The criterion Moser gave in [75] proved to be useful in perturbation theory as well. Based on the former,

one can construct the so-called CRV forms, to attain an analog of irreducible systems defined earlier

(Section 1.5.1) in the context of differential equations.

| Definition 2.1 ([75], Definition 1)

Let A(x) given by (2.1)

A(x) = xν
∞∑

k=0

Akx
k.

A(x) is said to be column reduced by valuation (CRV) if it has both a maximal valuation ν and a

minimal number of nonzero columns of valuation ν, among all similar matrices, i.e. over OA.

The valuation of a CRV matrix is smaller than the smallest leading exponent of the eigenvalues. Following

[107, Theorems 1 and 2, pp 381], it can be shown that a matrix A(x) is in CRV form if and only if the

polynomial

θA(λ) := xrank(A0) det(λI +
A0

x
+A1)|x=0 (2.2)

does not vanish identically in λ.

An algebraic rank-reduction algorithm which puts A(x) in such a form can be obtained by a simple
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adaptation of the algorithms of [32]. It suffices to restrict the expression of transformations used

therein to their similarity terms. Not only does the polynomial (2.2) give a reduction criterion but also it

characterizes the eigenvalues and leads to a non-classical splitting as follows.

| Proposition 2.1 ([75], Proposition 1)

Let A(x) be in CRV form and θA(λ) be its associated polynomial. Let µ be a root of θA(λ) with

multiplicity m. Then A(x) has m eigenvalues of the form

λ(x) = µxν+1 + o(xν+1).

| Example 2.4 ( [75], Example 1)

Consider the companion matrix

A(x) =











0 0 0 0 −2x10

1 0 0 0 2x7

0 1 0 0 −3x5

0 0 1 0 x3

0 0 0 1 −x2











whose five eigenvalues satisfy







λ1,2(x) = ±x3/2 + o(x3/2),

λ3(x) = x2 + o(x2),

λ4(x) = 2x2 + o(x2),

λ5(x) = o(x2).

One can verify that θA(λ) ≡ 0. Reducing A(x) yields Ã(x) = T−1(x)A(x)T (x) whose valuation

is 1. Because of λ1,2, the valuation cannot be increased further over OA. In fact, Ã(x) is in CRV

form and its associated polynomial is θ(λ) = −λ(λ − 1)(λ − 2) which is obviously not identical to

zero. Thus, the roots of θ(λ) appear in accordance with Proposition 2.1 as the leading (possibly

zero) coefficients of the eigenvalues λ3, λ4, and λ5. Moreover, since the dimension n = 5 and

deg θ = 3 > 0, Ã(x) can be block-diagonalized into two square matrices of respective dimensions

n− deg θ = 2 and deg θ = 3.

�

The CRV form leads to non-classic splitting of A(x) [75, Section 4.2] such that the eigenvalues of each

submatrix admit a ramification s > 1. It remains thus to deal with the resulting nilpotent submatrices.

This is the case relevant to our study of the differential system (1) and it is subject of the next subsection.

2.2.2 Fractional leading exponent

Without loss of generality, we can now assume that A0 = J is nilpotent in JCF and ν = 0. Moreover,

at least one of the eigenvalues of A(x) has its leading exponent between zero and one, i.e. s > 1. We
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rewrite (2.1) as

A(x) = J +A1x+O(x2), (2.3)

and we follow the presentation of [74].

J can be completely defined by its Segré characteristics, i.e. the sizes of its blocks counted with their

multiplicities. We use Arnold’s compact notation 0k to denote a nilpotent Jordan block of size k and (0k)r

to denote a block-diagonal matrix that consists of r such blocks. Then we write

J = (0n1)
r1 . . . (0nq )

rq

such that n1 > · · · > nq where r1, . . . , rq are positive integers and obviously n =
∑q

i=1 rini. The Segré

characteristics of J may be represented by the following partition of n

κ(J) = (n1, . . . , n1
︸ ︷︷ ︸

r1

, . . . , nq, . . . , nq
︸ ︷︷ ︸

rq

) (2.4)

which we may also express as κ(J) = ((rj , nj))1≤j≤q. Given (2.3), we set κ(A) = κ(J) (where J is the

JCF of A0) [74, Definition 1].

| Definition 2.2 [91]

Let ̟ = e
2πi
k . A set of k eigenvalues of A(x) that satisfies

λℓ(x) = µ̟ℓx1/k + o(x1/k), ℓ = 0, . . . , k − 1, 0 6= µ ∈ C,

is called a k-ring. The number µ is the ring constant.

If κ is known from the outset, we can then substitute x = tnj into A(x) and then apply the reduction

algorithm of the preceding subsection to A(tnj ) (notice the analogy with o(A) of Subsection 1.5.2). This

is the case of a Lidskii matrix whose eigenvalue splitting identifies with its leading Jordan structure.

Lidskii-Visik-Ljusternik provided in [88, 136] sufficient conditions on A1, given an arbitrary nilpotent

Jordan structure J , for which A(x) is a Lidskii matrix.

Let uj = r1 + · · · + rj , vj = r1n1 + . . . rjnj , u = uq, v = vq = n. Set v0 = u0 = 0. We partition A1 in

accordance with the partition of J into u2 blocks. Lidskii’s results assert that the leading coefficients of

the eigenvalues of and perturbation A(x) of A0 depend exclusively on the entries in the lower left corners

of these sub-blocks. These entries form the qj-square constant matrices Lj as illustrated in the following

example:
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| Example 2.5 ( [74], Example 2 )

Consider the 13× 13 matrix A(x) whose J = (03)
2
(02)

3
(01)

1. We partition A1 as follows:

A1 =































∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a31 ∗ ∗ a34 ∗ ∗ a37 ∗ a39 ∗ a3,11 ∗ a3,13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a61 ∗ ∗ a64 ∗ ∗ a67 ∗ a69 ∗ a6,11 ∗ a6,13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a81 ∗ ∗ a84 ∗ ∗ a87 ∗ a89 ∗ a8,11 ∗ a8,13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a10,1 ∗ ∗ a10,4 ∗ ∗ a10,7∗ a10,9∗ a10,11∗ a10,13

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a12,1 ∗ ∗ a12,4 ∗ ∗ a12,7∗ a12,9∗ a12,11∗ a12,13

a13,1 ∗ ∗ a13,4 ∗ ∗ a13,7∗ a13,9∗ a13,11 ∗ a13,13































where ∗ ∈ C may be any value. Then the constant matrices Lj , 1 ≤ j ≤ 3, are given by:

L1 =

[

a31 a34

a61 a64

]

L2 =











a31 a34 a37 a39 a3,11

a61 a64 a67 a69 a6,11

a81 a84 a87 a89 a8,11

a10,1 a10,4 a10,7 a10,9 a10,11

a12,1 a12,4 a12,7 a12,9 a12,11











L3 =














a31 a34 a37 a39 a3,11 a3,13

a61 a64 a67 a69 a6,11 a6,13

a81 a84 a87 a89 a8,11 a8,13

a10,1 a10,4 a10,7 a10,9 a10,11 a10,13

a12,1 a12,4 a12,7 a12,9 a12,11 a12,13

a13,1 a13,4 a13,7 a13,9 a13,11 a13,13














�

The matrix Lj is called the j-Lidskii submatrix associated with A(x). Let ∆j ≡ det Lj . We denote by ∆k
j ,

for k = 1, . . . , rj , the sum of the principal minors of Lj with order tj−1 + k that contain Lj−1. Then we

have:

| Theorem 2.3 [88, 105]

We say that a matrix is a Lidskii matrix if and only if ∆j 6= 0 for j = 1, . . . , q. Additionally, the nth
j

power of the ring constants for each j are the roots of the polynomial θj = det(Lj − λEj) of degree rj
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where Ej = diag (0tj−1
, Irj ).

| Example (Continue Example 2.5)

We have, 





E1 = diag (λ, λ);

E2 = diag (0, 0, λ, λ, λ);

E3 = diag (0, 0, 0, 0, 0, λ).

�

A generic perturbation of a JCF is a Lidskii matrix. However non-generic perturbations occur and the

following is a well-known example.

| Example 2.6 ([74], Example 2)

Consider again A(x) of Example 2.5. In A1, we set all the entries equal to zero except for

a31 = a67 = a89 = a10,11 = a12,13 = a13,4 = 1.

One can easily verify that Lidskii conditions are not satisfied in this case since ∆1 = ∆2 = 0

although ∆3 6= 0. In fact, the splitting of the eigenvalues comply not with κ(A) = (3, 3, 2, 2, 2, 1),

but rather with (3, 2, 2, 2, 2, 2).

�

Thus, we need to compare two partitions of n. For this purpose, we recall two of their representations:

the Ferrer diagram (Young tableaux) and the Newton envelope.

A Ferrer diagram characterization

The Ferrer diagram R(J) of J represents each Jordan block 0nj as a stack of nj coins, ordered by

nonincreasing heights from left to right. The move of a coin from a stack to another, from the left

to the right, without modifying the monotonicity of the partition is called a rightward coin move, as

illustrated by Figure 2.1.

Given two nilpotent Jordan structures J and J̃ such that rank(J) = rank(J̃). We have κ(J) > κ(J̃) if

and only if R(J̃) can be derived from R(J) by a rightward coin move.

| Example 2.7

Let J = (03)
2
(02)

3
0 (Example 2.6) and J̃ = (03) (02)

5. Then,

κ(J) = (3, 3, 2, 2, 2, 2, 1) > κ(J̃) = (3, 2, 2, 2, 2, 2, 1).

�
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Figure 2.1: Ferrer diagrams for J and J̃ and rightward coin move indicating that κ(J) > κ(J̃) [74, Fig.
1].

Figure 2.2: Newton envelopes for J = (03)
2
(02)

3
0 and J̃ = (03) (02)

5 also indicating that κ(J) > κ(J̃)
[74, Fig. 2].

A Newton diagram characterization

Another possible characterization of Lidskii’s conditions is given in terms of a Newton envelope associated

with J in [105, pg 805-806]. By setting P0 ≡ (0, 0) and defining for j = 1, . . . , q, k = 1, . . . , rj

Pk
j ≡ (vj−1 + k nj , uj−1 + k) and Pj ≡ Prj

j ≡ (vj , uj).

The Newton envelope E(J) associated with J is then the lower convex hull of the set {Pj}0≤j≤q.

Given two nilpotent Jordan structures J and J̃ such that rank(J) = rank(J̃). We say that E(J̃) lies above

E(J) when all the P̃k
j lie on E(J) with at least one of them lying strictly above E(J) (see Figure 2.2). We

have κ(J) > κ(J̃) if and only if E(J̃) lies above E(J). In fact, E(J) is the lowest possible Newton diagram

that can be obtained by a perturbation of J , which gives rise to the following proposition.

| Proposition 2.2 ( [74], Proposition 1)

If A(x) is a Lidskii matrix then κ(A) is minimum over OA.

This proposition suggests two steps:

• Minimizing the rank of J over OA. This can be achieved as explained in the previous subsection

using the algebraic rank-reduction algorithm. In particular, the last Lidskii condition ∆q 6= 0 is

equivalent to θA(λ) 6= 0 ( [74, Proposition 3]). Hence, we can assume without loss of generality

that A(x) is in CRV form.
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Figure 2.3: Newton diagram and envelope for Example 2.6: ∆1
1 6= 0 and ∆3 6= 0, whereas ∆1 = ∆1

2 =
∆2

2 = ∆2 = 0 [74, Fig. 3].

• However, minimizing the rank does not suffice to satisfy all Lidskii conditions as illustrated in Figure

2.3. This suggests minimizing κ(A) over the subset of OA for which leading matrices have the same

minimal rank. This is the subject of the subsection 2.2.2.

Minimizing κ(A)

Without loss of generality, we can assume that rank(J) is minimal over OA and so ∆q 6= 0. We denote by

j the smallest integer of {2, . . . , q} such that ∆j−1 = 0 (nj−1 > 1). Based on an analysis by Newton

envelopes, an algorithm was given in [74], which uses shearing transformations and column/row

operations to fulfill recursively Lidskii conditions. In the Ferrer diagram, these transformations are

illustrated by a rightward coin move (see Figure 2.4). In particular, if nj = nj−1 − 1 then the coin

has first to roll before falling (see Figure 2.1).

Figure 2.4: Coin move from 04020 to (03)
2
0 or to 03(02)

2 [74, Fig. 4].

The reduction of A(x) in [74] stops either when all Lidskii’s conditions ∆j 6= 0 are satisfied, i.e. either

A(x) a Lidskii matrix, or κ(A) cannot be decreased strictly any further. The eigenvalues of the output

matrix do not split into rj nj-rings (see. e.g. [74, Sec. 7]). In such a situation, A(x) has necessarily a

leading Jordan form whose block sizes differ at most by one. Otherwise, a rightward movement in the

Ferrer diagram can still be attained to decrease κ(A) strictly. In fact, Proposition 2.2 is necessary but not

sufficient. Thus, there are singular cases which cannot be treated by this algorithm. In the next section,

we try to explain these cases using results from the tropical investigation.
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2.2.3 Singular case

We illustrate the singular case in the following very simple example.

| Example 2.8

Let

A(x) =






0 1 0

0 0 x

x 0 0




 and B(x) =






0 1 0

0 0 1

x2 0 0






which are similar for all x 6= 0 and whose eigenvalues are 11/3 x2/3. Clearly, for the matrix A(x)

we have

L1 =
[

0
]

and L2 =

[

0 1

1 0

]

.

Hence ∆1 = det L1 = 0 and so A1(x) is not a Lidskii matrix although κ(A) is minimum over OA

(see Figure 2.5).

However, we have observed the following: Consider the tropicalization A of A(x),

A =






∞ 0 ∞
∞ ∞ 1

1 ∞ ∞




 .

One can easily verify that its underlying digraph G(A) is strongly connected (see Figure 2.5). By

Theorem 2.1, A has a unique eigenvalue 2
3 , which coincides with the exponents of the the classical

eigenvalues of A(x).

�

Figure 2.5: Ferrer diagram of A(x) with labeled coins and digraph of A in Example 2.8.

Example 2.8 is not a particular case regarding the strong connectedness of the underlying digraph.

Before proving that this holds true for any singular case of the differential-like reduction, we remark

again that, in such a case, A(x) has necessarily a leading Jordan form whose block sizes differ at most by

one. We denote this form by

J = (0n1)
r1 (0n2)

r2 for some n1 > n2, r1, r2 ∈ N∗.

We prove the following:
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| Proposition 2.3

Let A(x) of (2.1) be in CRV form and have a minimal κ(A) over OA. Suppose that A(x) is not a

Lidskii matrix and denote by A ∈ Rmin its tropicalization. Then, the underlying digraph G(A) of A is

strongly connected.

Proof. We recall that the in_degree of a node is the number of arcs leading to that node, and the

out_degree of a node is the number of arcs leading away from that node. In order to prove that a digraph

is strongly connected, it suffices to prove that every node has each of its in_degree and out_degree strictly

greater than zero, upon excluding the arcs from a node to itself (see, e.g. [130]). For this purpose, we

label the coins in the Ferrer diagram of A(x) from 1 to n from left to right, up to bottom (see Example

2.9 for an illustration). We divide the nodes of G(A) to three families with nonempty intersections:

Nout = {n1 j, 0 < j ≤ r1} ∪ {n1 r1 + n2 j, 0 < j ≤ r2}
Nin = {n1 j + 1, 0 ≤ j < r1} ∪ {n1 r1 + n2 j + 1, 0 ≤ j < r2}
NJ = {i, 1 ≤ i ≤ n} − Nout.

Let (i, j) denote an arc from node i to node j (1 ≤ i, j ≤ n). For any i ∈ NJ , the structure of J induces

the arcs (i, i+ 1). Remarking that Nin ⊂ NJ , we have:







If i ∈ NJ then out_degree(i) > 0;

If i ∈ {NJ −Nin} ∪ Nout then in_degree(i) > 0.

Thus, it is left to prove that

If i ∈ Nin then in_degree(i) > 0; (2.5)

If i ∈ Nout then out_degree(i) > 0. (2.6)

(2.7)

Consider the sequences Sin and Sout formed by ordering the elements of Nin and Nout respectively with

respect to the natural ordering. Then the two 1-Lidskii and 2-Lidskii submatrices can be expressed as

follows:

L1 = [aij ]{i∈Sout, j∈Sin, 1≤i ,j ≤n1 r1};

L2 = [aij ]{i∈Sout, j∈Sin}.

We recall that for whatever 1 ≤ i, j ≤ n, if aij 6= 0 then there exists an arc (i, j). Under the assumptions

in the statement of the proposition, ∆1 = det(L1) = 0 and ∆2 = det(L2) 6= 0. It follows from the latter

that in every column of L2 there exists at least one nonzero entry. And in every row there exists at least

one nonzero entry. We thus distinguish between two cases:

• If n2 > 1 then (2.5) and (2.6) follow directly from ∆2 6= 0.

Page 41



2.2 Differential-like reduction Chapter 2

Figure 2.6: Ferrer diagram of A(x) with labeled coins and the arcs of G(A) induced by J .

• If n2 = 1 then one should consider ∆1 = det(L1) = 0 since ann ∈ Sin ∪ Sout: Suppose that the

only nonzero entry in the last column is ann (and so the nth-node has an arc to itself and not to

another distinct node). By expanding ∆2 with respect to the last column, ∆2 = ann ∆1 = 0 which

is a contradiction. The same argument follows for the last row.

�

| Example 2.9

A(x) =



















∗ 1 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 1 ∗ ∗ ∗ ∗ ∗
a31 ∗ ∗ a34 ∗ ∗ a37 ∗
∗ ∗ ∗ ∗ 1 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 1 ∗ ∗
a61 ∗ ∗ a64 ∗ ∗ a67 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

a81 ∗ ∗ a84 ∗ ∗ a87 ∗



















.

We have

L1 =

[

a31 a34

a61 a64

]

and L2 =






a31 a34 a37

a61 a64 a67

a81 a84 a87






Since J = (03)
2
(02)

1, we have (see Figure 2.6):

Nout = {3, 6, 8}
Nin = {1, 4, 7}
NJ = {1, 2, 4, 5, 7}.

�

One might question whether the digraph is necessarily strongly connected if κ(A) is not minimal. The

following example gives a negative answer.
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| Example 2.10

Let

A(x) =














∗ 1 ∗ ∗ ∗ ∗
∗ ∗ 1 ∗ ∗ ∗
a31 ∗ ∗ a34 ∗ a36

∗ ∗ ∗ ∗ 1

a51 ∗ ∗ a54 ∗ a56

a61 ∗ ∗ a64 ∗ a66














and L3 =






a31 a34 a36

a51 a54 a56

a61 a64 a66




 .

We also have L2 =

[

a31 a34

a51 a54

]

and L1 =
[

a31

]

.

A quick sketching of the Ferrer diagram shows that κ(A) is not minimal. Suppose that Lidskii

conditions are not all satisfied: ∆1 = 0, ∆2 6= 0, and ∆3 6= 0. The argument of the proof of

Proposition 2.3 cannot be replicated here to prove that in_degree(6) > 0: Suppose that a66 is

the only nonzero entry of the last row of ∆3. Then, no contradiction arises since in this case

∆3 = a66 ∆2 6= 0.

�

We also have the following corollary which explains the singular case of Example 2.8.

| Corollary 2.1

Under the notations and assumptions of Proposition 2.3, the unique eigenvalue of A is bounded from

above by r1+r2
n .

Proof. Since the underlying graph of A is strongly connected, it follows from Theorem 2.1 that A has a

unique tropical eigenvalue determined by the minimal normalized weight of cycles. To find the claimed

bound for the eigenvalue, it suffices to find a cycle whose normalized weight is given by this bound. We

show here the existence of such a cycle. In particular, a Hamiltonian cycle (a cycle that visits each node

exactly once) which has only one-weighted arcs and a maximum number of zero-weighted arcs. Such a

cycle can be retrieved as follows:

Consider again the sets NJ , Nout, and Nin in the proof of Proposition 2.3. Since the set NJ corresponds

to the arcs induced by J , these arcs are zero-weighted. And their number is equal to the cardinal cardNJ
.

In other words, it is equal to the number of “1”’s in J . Recalling that n2 = n1 − 1, it is given by:

cardNJ
= (r1 n1 − r1) + (r2 n2 − r2) = (r1 + r2) n1 − r1 − 2 r2.

To complete our cycle, we choose a minimal number of one-weighted arcs whose number is clearly equal

to n − cardNJ
= cardNout

. Thus, the normalized weight of such cycle is given:

1. cardNout
+ 0. cardNJ

n
=

r1 + r2
n

.

�
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In the case the bound is attained, the eigenvalues of A(x) split generically into a r1+r2
n -ring by

Theorem 2.2. This gives an explanation to the exponent 2
3 of Example 2.8.

2.3 Conclusion

In this chapter, we discussed the interaction between the perturbation theory of JCF, the differential-like

reduction, and tropical algebra. We implemented some of the algorithms described in this chapter in the

package ALGPARAM in Maple. We conclude with various open questions regarding this interaction, the

most prevalent among which are: Do the two approaches presented here superpose so that one can cover

the singular case of the other? And what kind of interpretation does this hold for a linear differential

system‡? For example, can the genericity required in Theorem 2.2 be guaranteed for an irreducible linear

singular differential system?

‡Miyake introduced in [104] a reduction based on computing a volevič weight (due to L.R.Volevič) of the differential system (1).
Roughly speaking, this weight is the minimum of normalized sums of the valuations of the system’s matrix A(x). It thus seems
plausible to attempt to interpret this weight in terms of an underlying graph of the tropicalization of A(x). Additionally, it is also
interesting to study the relation between this weight and notion of irreducibility of the system described in Section (1.5.1)
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Chapter 3

Removing Apparent Singularities
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In this chapter we present a new algorithm which, given a system of first-order linear differential system

with rational function coefficients, constructs an equivalent system with rational function coefficients,

whose finite singularities are exactly the non-apparent singularities of the original system. This chapter is

an elaboration [27] and refinement of the algorithm which was first introduced in [19]. We thus consider

the following system

[A] ∂F = A(x)F

where A ∈ Mn(C(x))
∗. The finite singularities of system [A] are the poles of A(x) in C. A singular

point x0 ∈ C is called an apparent singularity if there exists a fundamental matrix solution Φ(x) which is

analytic at x = x0. Consider, for example, the first-order differential system

∂F = A(x) F =

[

0 1
−2
x 1 + 2

x

]

F (3.1)

Clearly, this system is equivalent to the second-order scalar differential equation given by the monic

∗We remark that in this chapter we are interested in a global aspect and so we are considering A ∈ Mn(C(x)) rather than
A ∈ Mn(C[[x]]). Obviously, the absence of xp in the left hand side does not imply that the system is regular because the entries of
A(x) are rational functions.
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operator L:

L := ∂2 − x+ 2

x
∂ +

2

x
,

for which ex and 1 + x + x2

2 form a basis of solutions. Due to this basis, one can deduce that the point

x = 0 is an apparent singularity of system (6.12). Desingularization, i.e. the problem of constructing

another operator L̃(f) of higher order such that the solution space of L̃(f) = 0 contains that of L(f) = 0,

and for which the factor x is “removed” from the denominator, is an interesting problem of research. For

instance, by the method given by Abramov-Barkatou-van Hoeij in [3] (and which we refer to as the ABH

method), one can compute a desingularization of order 4 given by the operator

L̃ = ∂4 + (−1 + 1/4x) ∂3 + (−1/4− 3/8x) ∂2

+(1/2 + 1/8x) ∂ − 1/4.

In the scalar case, several desingularization algorithms exist for differential, difference (e.g., [3]),

and more generally, Ore operators (see, e.g. [45, 44] and references therein). However, the apparent

singularity of system (6.12) (equivalently of L) at x = 0, can be also removed by acting directly on it. In

fact, by setting [19]

F = T (x) G, T (x) =

[

1 0

1 x2

]

,

the new variable G satisfies the equivalent first-order differential system of the same size as the order of

L, given by

[Ã] ∂G = Ã G

where

Ã := T−1AT − T−1∂T =

[

1 x2

0 0

]

.

As in Chapter 1, we say that systems [A] and T [A] = [Ã] are equivalent over C(x).

In this chapter, we shall prove that, given any system [A] with rational coefficients, it can be reduced to

an equivalent system [Ã] with rational coefficients, such that the finite singularities of [Ã] coincide with

the non-apparent singularities of [A]. Our method can, in particular, be applied to the companion system

of any scalar linear differential equation with arbitrary order n. We thus have an alternative method to

the standard methods for removing apparent singularities of linear differential operators. However, it is

also interesting by its own since first-order linear differential systems with apparent singularities arise

naturally in applications (see, e.g., [77, 83, 37] and references therein for applications within Feynman

integrals and statistical physics). Moreover, such a desingularization can be very beneficial to numerical

methods.

We recall (see Section 1.5.1) that a singular point x0 ∈ C is called a regular singular point for the system

[A] if in a neighborhood of x0, there exists a fundamental matrix solution of the form Φ(x)(x−x0)
C where

C ∈ Mn(C) is a constant matrix and Φ(x) is a matrix which is analytic at x0; otherwise x0 is called an

irregular singular point. The change of variable x 7→ 1/x permits to classify the point x = ∞ as an

ordinary, a regular singular, or an irregular singular point of the system [A].
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Hence apparent singularities of [A] are among regular singularities of [A]. And, as shown in

Section 1.5.1, it is proven that in the case where x0 is a regular singularity there exists a polynomial

matrix function T of x − x0 which is nonsingular for x 6= x0 such that the transformation F = TG

transforms the system [A] into an equivalent system [Ã] ∂G = Ã(x)G, for which x0 is a simple pole.

This latter system can be constructed using the so called Rational Moser algorithm developed in [15].

This algorithm, establishes partial desingularization, as it computes for a given system [A] a polynomial

transformation T (x) with det(T (x)) 6≡ 0 that leads to a system [Ã] such that:

(i) The finite singularities of [Ã] are among the finite singularities of [A].

(ii) Every finite singular point of [Ã] has a minimal pole order among all equivalent systems.

This chapter is organized as follows: In Section 3.1, we give our main result: We show how apparent

singularities can be detected, prove the existence of desingularizations, and develop a desingularization

algorithm over C(x). In Section 3.2, we show some examples of treating scalar linear differential

equations. In Section 3.3, we give a rational version of our algorithm. And finally, we point out items for

further investigation in Section 3.4.

3.1 Detecting and removing apparent singularities

Consider a system [A] ∂F = A(x)F with A(x) ∈Mn(C(x)).

| Definition 3.1

A system [Ã] ∂G = Ã(x) G is called a desingularization of [A] if:

(i) There exists a polynomial matrix T (x) with det(T (x)) 6≡ 0 such that [Ã] = T [A];

(ii) The singularities of [Ã] are the singularities of [A] that are not apparent.

We first prove that desingularizations do exist:

| Proposition 3.1

If x = x0 is a finite apparent singularity of [A] then there exists a polynomial matrix T (x) with

det T (x) = c(x− x0)
α
, c ∈ C∗, α ∈ N

such that [Ã] := T [A] has no pole at x = x0.

Proof. Every fundamental matrix of formal solutions Φ(x) of [A] is analytic at x0. Formally, Φ(x) ∈
Mn(C[[x]]). Since C[[x]] is a principal ideal domain, one can construct unimodular transformations

P (x) ∈ GLn(C[x]), and Q(x) ∈ GLn(C[[x]]) such that (see, e.g.[107, Lemma 1] or Smith normal form)

P (x)Φ(x)Q(x) = diag((x− x0)
α1 , . . . , (x− x0)

αn)

Page 47



3.1 Detecting and removing apparent singularities Chapter 3

where α1, . . . αn are nonnegative integers. We then set

T (x) = P−1(x) diag((x− x0)
α1 , . . . , (x− x0)

αn).

�

This proof however is not constructive. In the sequel we shall develop an algorithm that produces a

desingularization of any system [A] over C(x). We start by explaining how to remove one apparent

singularity.

| Proposition 3.2

If x = x0 is a finite apparent singularity of [A] then one can construct a polynomial matrix T (x) with

det(T (x)) = c(x− x0)
α, c ∈ C∗ and α ∈ N such that T [A] has at worst a simple pole at x = x0.

Proof. We have:

(i) An apparent singularity is a regular singularity, hence [A] can be reduced to an equivalent system

T [A] which has x0 as a singularity of first kind.

(ii) The transformation T can be constructed by the algorithm in [15] and hence it has the required

property (see [15, Theorem 2]).

�

| Proposition 3.3

Suppose that A(x) has simple pole at x = x0 and let

A(x) =
A0

(x− x0)
+
∑

i≥1

Ai(x− x0)
i−1, Ai ∈Mn(C).

If x0 is an apparent singularity then the eigenvalues of the so-called residue matrix A0, are nonnegative

integers.

Proof. Suppose that A0 possesses at least one eigenvalue which does not belong to N and let µ be an

eigenvalue of A0 such that µ ∈ C \ N with a maximal real part. Then the system [A] has a nonzero local

vectorial solution of the form:

F (x) = (x− x0)
µ

+∞∑

k=0

Fk(x− x0)
k

with Fk ∈ Cn and F0 6= 0, the series being convergent in a disc centered at x0 (see, e.g. [11, Chapter 2,

Theorem 6, pp 32]). Such a solution however is not analytic at x = x0 because µ /∈ N. This implies that

x0 is a singularity which is not apparent. �

Page 48



3.1 Detecting and removing apparent singularities Chapter 3

| Proposition 3.4

Suppose that x = x0 is a simple pole of A(x) and that A0 has only nonnegative integer eigenvalues.

Then there exists a polynomial matrix T (x) with det(T (x)) = c(x− x0)
α for some c ∈ C∗ and α ∈ N

such that [Ã] ∂G = Ã(x) G has at most a simple pole at x = x0 and Ã0 has a single eigenvalue:

Ã0 = mIn +N where m ∈ N and N is nilpotent. Moreover, x0 is an apparent singularity iff N = O.

In this case, the transformation G = (x − x0)
mW leads to a system for which x = x0 is an ordinary

point.

Proof. Let m1, . . . ,ms ∈ N be the eigenvalues of A0. For i = 1, . . . , s, denote by νi the multiplicity of mi.

Suppose that m1 > m2 > . . . > ms and put ℓi = mi−mi+1 ∈ N∗, i = 1, . . . , s−1. By applying a constant

transformation we can assume that A0 is in Jordan form:

A0 =




A11

0 0

0 A22
0



 , (3.2)

where A11
0 is an ν1 by ν1 matrix having one single eigenvalue m1:

A11
0 = m1Iν1

+N1,

N1 being a nilpotent matrix. The transformation F = PZ, where

P = diag((x− x0)Iν1 , In−ν1) (3.3)

yields the new system:

∂Z = B(x)Z,

where

B(x) = P−1A(x)P − P−1∂P.

Its residue matrix is given by:

B0 =
(
A0 + (x− x0)P

−1A1P − (x− x0)P
−1∂P

)

|x=x0
.

Let A1 be partitioned as A0 :

A1 =




A11

1 A12
1

A21
1 A22

1



 , A11
1 ∈Mν1

(C)

Then

B0 =




A11

0 − Iν1 A12
1

0 A22
0



 . (3.4)

Hence the eigenvalues of B0 are: m1 − 1,m2, . . . ,ms, each with the same initial multiplicities.
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By repeating this process ℓ1 times where m1 − ℓ1 = m2, the eigenvalues become:

m2,m2, . . . ,ms,

with the respective multiplicities ν1, ν2 . . . , νs. Thus, after ℓ1+ . . .+ ℓs−1 = m1−ms steps, let T (x) be the

product of all the transformations applied, then one gets an equivalent system [Ã] := T [A] ∂G = ÃG

of the first kind with a residue matrix A0 with a single eigenvalue ms of multiplicity ν1 + . . . + νs = n.

Hence the matrix N := A0−msIn is nilpotent. Moreover the matrix T is the product of matrices that are

either constant or of the form (3.3). Hence T is a polynomial matrix of degree at most m1 −ms and its

determinant is of the form det(T (x)) = c(x− x0)
α for some c ∈ C∗ and α ∈ N.

Due to the form of Ã0 it follows that the system [Ã] has, in the neighborhood of x0, a fundamental matrix

solution of the form

G(x) = (x− x0)
msΦ(x)(x− x0)

N

where

Φ(x) = In +

+∞∑

k=1

Φk(x− x0)
k analytic at x = x0.

Hence x0 is an apparent singularity of [A] if and only if N is the zero matrix. Finally, if we put G =

(x − x0)
msW the resulting system has the above matrix Φ(x) as a fundamental matrix solution around

x = x0. As Φ(x0) = In, the point x0 is an ordinary point for the latter system. �

| Remark 3.1

One can deduce from the above proof that a necessary (but not sufficient) condition for a first-kind

singularity x0 to be an apparent singularity for [A] is that the residue matrix A0 be diagonalizable with

nonnegative integer eigenvalues. Indeed, if A0 is not diagonalizable then in (3.2) at least one of the

two blocks A11
0 , A22

0 has a nonzero nilpotent part. It follows from the form of (3.4) that transformation

(3.3) cannot annihilate the nilpotent part of the residue matrix. Thus if the residue matrix A0 of the

input system (or one of the intermediate systems) is not diagonalizable then the output system [Ã] has

a residue matrix Ã0 = mIn +N with N 6= O.

We thus proved the following theorem:

| Theorem 3.1

If x = x0 is a finite apparent singularity of [A] then one can construct a polynomial matrix T (x) with

det(T (x)) = c(x− x0)
α, c ∈ C∗ and α ∈ N such that Ã(x) := T [A] has no pole at x = x0.

Due to the form of its determinant, the gauge transformation T (x) in the previous theorem does not affect

the other finite singularities of [A]. This means that the apparent singularity at x0 is removed without

introducing new finite singularities or changing the pole order of the other finite singularities of [A], as

illustrated by the following simple example.
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| Example 3.1

Given the system [A] ∂F = A(x)F where

A =




0 1

2 −1+2 x2

x2+2 − 3 x2−4
x(x2+2)





It has a simple pole at x = 0 with a residue matrix

A0 =




0 0

0 2



 .

Our algorithm computes the gauge transformation given by

T =




1 0

x −x2





The matrix of the new equivalent system is

Ã = T−1(AT − ∂T ) =





x −x2

1 −x(x2+7)
x2+2





As expected it has x = 0 as an ordinary point. Moreover, neither new finite singularities are

introduced, nor the pole order of the other non-apparent finite singularities, i.e. the roots of

(x2 + 2), are changed.

�

Thus by successively applying Theorem 3.1 to each finite apparent singularity of [A], we get the following:

| Theorem 3.2

Given a system [A], one can construct a polynomial matrix T (x) which is invertible in C(x) such that

the finite poles of Ã := T [A] are exactly the poles of A that are not apparent singularities for [A].

| Remark 3.2

If the point at infinity of the original system is singular regular then it will be also singular regular of

the computed desingularization. However, the order of the pole at infinity may increase. This follows

immediately from the fact that the two systems are gauge equivalent.

Consider a system [A] ∂F = A(x)F and let P(A) denote the set of finite poles of A(x). We thus have

the desingularization Algorithm 3.

Page 51



3.1 Detecting and removing apparent singularities Chapter 3

Algorithm 3 APP_SING Desingularization Algorithm
Input: A(x);
Output: T (x) ∈ GLn(C(x)) and T [A] such that T [A] is a desingularization of the input system [A]. And,
the two sets App and Σ of apparent singularities (which are “removed”) and simple poles (which are not
apparent singularities) respectively.
T ← Use the Rational Moser Algorithm of [15] to compute a polynomial matrix T (x) with det(T (x)) 6≡ 0
such that

• The roots of det(T (x)) = 0 belong to P([A]) (this implies that the poles of T−1(x) are among the
poles of A and hence P(T [A]) ⊂ P([A]))

• The orders of the poles of T [A] are minimal among all equivalent systems

[A]← T [A];
App← {set of simple poles of A, xi : 1 ≤ i ≤ µ};

Σ ← {};

i← 1;
while i 6= µ+ 1 do

• Compute Axi
the residue matrix of A at x = xi

• Compute the SN decomposition of Axi
, namely Ai = Sxi

+ Nxi
where Sxi

semi-simple, Nxi

nilpotent, and Sxi and Nxi commute. We remark that a rational decomposition exists (see, e.g.
[86])

if Nxi
6= On or Sxi

has at least one eigenvalue in C \ N then App← App \ {xi}; Σ← Σ ∪ {xi};
else Use the method presented in the proof of Proposition 3.4 to compute a polynomial matrix Txi

such that Txi
[A] has at worst a simple pole at x = xi with residue matrix of the form Axi

= mxi
In+Nxi

where mxi ∈ N and Nxi is nilpotent.
if Nxi 6= 0n then App← App \ {xi}; Σ← Σ ∪ {xi};
else [A]← Txi

[A]; T ← T ⋆ (x− xi)
mxiTxi

;
end if

end if

• i← i+ 1;

end while
return (T, A, Σ, App).
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3.2 Application to desingularization of scalar differential equations

The interest in desingularization of scalar differential equations dates back to the 19th century. Since

then, several algorithms have been developed for such and more general scalar equations (see, e.g.,

the introductions of [3, 45] and the references therein). The desingularization algorithms developed

specifically for scalar equations are based on computing a least common left multiple of the operator

in question and an appropriately chosen operator. This outputs in general an equation whose solution

space contains strictly the solution space of the input equation. As we mentioned in the introduction,

the algorithm developed in this paper can be used as well for the desingularization of a companion

system of any scalar differential equation. This desingularization is based on an adequate choice of a

transformation. Thus the desingularized output system is always equivalent to the input system and the

dimension of the solution space is preserved. However, a scalar differential equation equivalent to the

desingularized system (see, e.g., [13, 46]) would generally feature apparent singularities. Thus, when

dealing with scalar differential equations, our algorithm is well-suited to situations where adhering to

a scalar representation is insignificant, e.g. reduction prior to computing solutions near singularities via

numerical methods.

In this section, we use Algorithm 3 to desingularize companion systems of two equations which are

already treated by existing algorithms. But first we recall the definition of desingularization in the scalar

case. Let L ∈ C(x)[∂] be a monic differential operator of order n,

L = ∂n + cn−1(x)∂
n−1 + · · ·+ c0(x).

We denote by S(L) the set of finite singularities of L, i.e. the set of the poles of the ci’s, 0 ≤ i ≤ n− 1.

| Definition 3.2

An operator L̃ ∈ C[x][∂] is called a desingularization of L if :

(i) L̃ = RL for some R ∈ C(x)[∂] ,

(ii) S(L̃) = {x0 ∈ S(L) | x0 is not apparent}

An algorithm developed in [3] constructs, for a given a monic operator L ∈ C(x)[∂] of order n, a monic

operator L̃ ∈ C(x)[∂] with minimal order m + 1 ≥ n satisfying (i) and (ii), m being the maximum of

the of the set of all local exponent at the different finite apparent singularities of L. This algorithm has

been implemented in MAPLE and is referred to in this paper as ABH method. The system of Example 3.1

is in fact the companion system of the following differential equation which we treat below by the ABH

method.

| Example 3.2

Consider the operator

L = ∂2 +
(3x2 − 4)

x(x2 + 2)
∂ + 2

1− 2x2

x2 + 2
.

It has an apparent singularity at x = 0 with local exponents 0 and 3. The desingularization
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computed by ABH method is the following operator of order 4:

L̃ = ∂4 +
x(24 + 7x2)

2(x2 + 2)
∂3 +

(58x2 + 88 + 27x4)

2(x2 + 2)2
∂2

−x(−4x2 + 4 + 93x4 + 28x6)

2(x2 + 2)3
∂ − 4(44x2 + 16 + 42x4 + 7x6)

(x2 + 2)3

�

The classical algorithm for differential equations takes the least common left multiple of the given

differential operator and a well-chosen auxiliary one (see, e.g., [70]). A “three-fold generalization”

of this algorithm to more general operators is given recently in [45]. The following example has been

treated therein. However, the removal of one apparent singularity, namely at x0 = 0, introduces new

singularities. The latter can then be removed by using a trick introduced in ABH algorithm (see [3,

Theorem 2 and Step 6 in Algo “t-desing”] and [45, Sec 3]). As illustrated below, Algorithm 3 removes all

apparent singularities at one stroke without introducing any new ones.

| Example 3.3

Let

L = ∂2 − (x2 − 3)(x2 − 2x+ 2)

(x− 1)(x2 − 3x+ 3)x
∂ +

(x− 2)(2x2 − 3x+ 3)

(x− 1)(x2 − 3x+ 3)x
.

The apparent singularities of L are x = 0 and the roots of x2 − 3x + 3 = 0. In what follows, we

seek their removal using different algorithms:

(i) A desingularization computed by the classical algorithm [45, Example 1]:

L̃CLASSICAL = (x− 1)(x4 − x3 + 3x2 − 6x+ 6)∂4

− (x5 − 2x4 + x3 − 12x2 + 24x− 24)∂3

− (3x3 + 9x2)∂2 + (6x2 + 18x)∂ − (6x+ 18).

L̃CLASSICAL is a desingularization of L at x = 0 and x2 − 3x + 3 = 0. However, new apparent

singularities, i.e. the roots of x4 − x3 + 3x2 − 6x+ 6 = 0, are introduced.

(ii) A desingularization computed by the probabilistic of [45], which we refer to as CKS algorithm,

(see Example 7(1) therein):

L̃CKS = (x− 1)(x6 − 3x5 + 3x4 − x3 + 6)∂4

− (2x6 − 9x5 + 15x4 − 11x3 + 3x2 − 24)∂3

− (x7 − 4x6 + 6x5 − 4x4 + x3 + 6x− 6)∂

+ (2x6 − 9x5 + 15x4 − 11x3 + 3x2 − 24).

L̃CKS is a desingularization of L at x = 0 and x2 − 3x + 3 = 0. However, new apparent

singularities, i.e. the roots of x6 − 3x5 + 3x4 − x3 + 6 = 0, are introduced.

Page 54



3.3 Rational version of the algorithm Chapter 3

(iii) The desingularization computed by ABH method:

L̃ABH = ∂4 +
(16x4 − 55x3 + 63x2 − 42x+ 36)

9(x− 1)
∂3

− (64x5 − 316x4 + 591x3 − 468x2 + 123x+ 42)

9(x− 1)2
∂2

+
β

9(x− 1)3
∂ − 96x5 − 570x4 + 1333x3 − 1597x2 + 993x− 219

9(x− 1)3
,

where

β = (48x6 − 197x5 + 148x4 + 488x3 − 1162x2 + 999x− 288).

(iv) The desingularization computed by algorithm 3:

The companion system of L is given by:

[A] ∂F =

[

0 1
(x−2)(2x2−3x+3)
(x−1)(x2−3x+3)x

(x2−3)(x2−2x+2)
(x−1)(x2−3x+3)x

]

F. (3.5)

The gauge transformation F = TG where

T =

[

1 0

1 (−x2 + 3x− 3)x2

]

(3.6)

results in the following equivalent system

[Ã] ∂G =

[

1 −x2(x2 − 3x+ 3)

0 2
1−x

]

G. (3.7)

Observe that in (iii) and (iv) no new apparent singularities are introduced while old ones are

removed.

�

Note that, as system (3.5) has rational function coefficients, the transformation (3.6) and the equivalent

system (3.7), computed by our algorithm, have rational function coefficients as well. In the following

section, we describe how such a “rationality” is preserved by our algorithm.

3.3 Rational version of the algorithm

So far, we have presented our algorithm over C for the sake of clarity. However, in practice, the base field

can be taken as any commutative field K of characteristic zero (Q ⊆ K ⊂ K̄ ⊆ C). Consider now a system

[A] ∂F = A(x)F, with A(x) ∈Mn(K(x)). (3.8)

Let Ω = {α1, . . . αd} ⊂ K̄ be a set of conjugate simple poles of A(x). We aim to find an equivalent system

which is a desingularization of (3.8) at each of the points of Ω. One possible method is the successive
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application of Algorithm 3 to each singularity individually. That is, we first compute a transformation T1

such that the equivalent system T1[A] is a desingularization in α1. We then compute a transformation T2

such that the equivalent system T2[T1[A]] = (T2T1)[A] is a desingularization in α2. Eventually, this yields

an equivalent system (
∏d

i=1 Ti)[A] which is a desingularization of [A] at all points of Ω. However, the

entries of Tj and (
∏j

i=1 Ti)[A], 1 ≤ j ≤ d, belong to K(α1, . . . , αj)[x]. Thus, this individual treatment of

singularities in d steps, requires an algebraic field extension K(α1, . . . αd).

This section describes our “rational” algorithm, i.e. the algorithm which avoids computations with

individual singularities by representing them by the irreducible polynomial p(x). Consequently, it replaces

d steps by only one step and the computations of intermediate steps are limited to K(x)/(p). We remark

however that neither the former nor the latter method require a field extension for the final output, i.e.

the equivalent system and the transformation.

For this purpose, we work, similar to [15], with the irreducible polynomial p(x) =
∏d

i=1(x− αi) ∈ K[x],
and consider the p-adic expansions instead of Laurent series expansions at the αi’s.

Let p be an irreducible polynomial in K[x], i.e. a finite “point”. If f is a non-zero element of K(x), we

define ordp(f) (read order of f at p) to be the unique integer n such that :

f =
a

b
pn, with a, b ∈ K[x] \ {0}, p 6 | a and p 6 | b.

By convention, ordp(0) = +∞. The local ring at p is Op = {f ∈ K(x) : ordp(f) ≥ 0}. If f ∈ Op

then f = a/b ∈ K(x), where gcd (a, b) = 1 and p 6 | b. The residue field of K(x) at p is Op/pOp, which is

isomorphic to the field K[x]/(p).
Let f ∈ K(x) then it has a unique p−adic expansion given by:

f = pordpf (f0,p + pf1,p + · · · )

where the fi,p’s are polynomials of degree < deg p, and f0,p 6= 0 is called the leading coefficient.

In analogy, let A = (ai,j) be a matrix inMn(K(x)). We define the order at p of A, notation ordp(A), by

ord
p
(A) = min

i,j
(ord

p
(ai,j)).

We say that A has a pole at p if ordp(A) < 0. Similarly, the leading coefficient is A0,p 6= 0n in the p-adic

expansion of A given by:

A = pordp(A)(A0,p + pA1,p + · · · ).

3.3.1 The residue matrix at p

The following lemma leads to a definition of the residue matrix at p.

| Lemma 3.1

Consider the system

[A] ∂F = A(x)F, with A(x) ∈Mn(K(x)).

Let Ω = {α1, . . . αd} ⊂ C be a set of conjugate apparent singularities and p(x) =
∏d

i=1(x−αi) ∈ K[x]
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be the irreducible polynomial representing them. Consider the p-adic and αi-Laurent expansions of

A(x) given respectively by

A(x) =
1

p
(A0,p + pA1,p + · · · )

A(x) =
1

(x− αi)
(A0,αi

+ (x− αi)A1,αi
+ · · · ), 1 ≤ i ≤ d.

Then we have,
1

∂p(αi)
A0,p(αi) = A0,αi , 1 ≤ i ≤ d.

Proof. From the above expansions, it follows that

A0,p

p
(x) =

d∑

i=1

A0,αi

(x− αi)

=

d∑

i=1

A0,αi

p

∏

1≤j 6=i≤d

(x− αj).

But ∂p(αi) =
∏

1≤j 6=i≤d(x− αj), which completes the proof.

�

| Remark 3.3

In the following each equivalent g of K[x]/(p) is represented by the unique polynomial of degree

< deg p belonging to g. The operations of addition and multiplication in K[x]/(p) are performed on

the representatives considered as polynomials and the results are reduced modulo p. For inverting a

nonzero element of K[x]/(p) we use the extended Euclidean algorithm.

Thus, the following definition is well-justified.

| Definition 3.3

The matrix given by
A0,p(x)

∂p(x)
∈Mn((K[x]/(p)))

is called the residue matrix of A(x) at p. We shall denote by R0,p(x) its representative inMn(K[x]).
The latter is of degree strictly less than d and can be computed as: (uA0,p mod p), where u denotes

the inverse of (∂p mod p).

| Example 3.4

Given

[A] ∂F = A(x) F =
1

1 + x2

[

1− x x

−x 1 + x

]

F.

Let p := 1 + x2, then p is an irreducible polynomial over Q[x] and its roots are given by ±i over
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Q(i). Then u=−x
2 is the inverse of ∂p modp. Thus, R0,p(x) is given by uA0,p mod p and so we have

R0,p(x) =
1

2

[

1− x −1
−1 −1− x

]

.

Indeed, one can verify that the residue matrices at ±i, are given by

[
1−i
2i

1
2

− 1
2

1+i
2i

]

and

[
−1−i
2i

1
2

− 1
2

−1+i
2i

]

.

�

We now proceed to giving a rational algorithm for testing whether the eigenvalues of R0,p(x) are

nonnegative integers or not.

3.3.2 Computing the integer eigenvalues of the residue matrix

Given R0,p(x) ∈ Mn(K[x]), we wish to compute its integer eigenvalues, in the course of reduction, to

identify the nature of the singularity. Let the characteristic polynomial of R0,p(x) be given by

χR(x, λ) = λn + an−1(x)λ
n−1 + · · ·+ a0(x),

where ai(x) ∈ K[x] s.t. degx(ai) < degx(p) = d. Then, χR(x, λ) can be rewritten equivalently as

χR(x, λ) =
d−1∑

i=0

bi(λ)x
i,

where bi(λ) ∈ K[λ], 0 ≤ i ≤ d − 1, are of maximal degree n. Let h(λ) = gcd {bi(λ) , 0 ≤ i ≤ d − 1}. It

follows that the set of integer roots of h(λ) coincides with the set of integer roots of χR(x, λ).

Additionally, we remark that in order to compute the integer roots of χR(x, λ), it suffices to compute

those of det(∂pλ−A0,p) mod p. Similar arguments hold true for operations of Proposition 3.4.

3.3.3 Applications

In this subsection, we illustrate the rational version of our algorithm with two examples. We first treat the

introductory example of [44], and then an example from [37] arising in statistical physics. We show how

the corresponding systems can be desingularized by “rational” transformations at irreducible polynomials

of degrees 3 and 4 respectively. A third example with an irreducible polynomial of degree 37 is available

within the description of the package [100].

| Example 3.5 Introduction, [44]

Consider the differential operator

L = (1 + x)(23− 20x− x2 + 2x3)∂2

+2(33− 9x− 3x2 − x3)∂ − (45 + 25x− 35x2 − x3 + 2x4).
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whose companion system is given by:

[A] ∂F = A(x)F

where

A(x) =

[

0 1
(45+25x−35x2−x3+2x4)
(1+x)(23−20x−x2+2x3) − 2(33−9x−3x2−x3)

(1+x)(23−20x−x2+2x3)

]

.

The gauge transformation F = TG where

T =

[

1 −14
143 x

2 + 3
11x+ 153

143

0 1

] [

2x3 − x2 − 20x+ 23 0

0 1

]

,

results in the following system desingularized at

p = (23− 20x− x2 + 2x3):

[Ã] ∂G =

[
14x3−39x2−258x−175

143(x+1)
98x2−497x−1385

−20449(x+1)
2x4−x3−35x2+25x+45

x+1
14x3−39x2−258x+111

−143(x+1)

]

G.

The algorithm gives as well a negative response for whether [A] can be desingularized at (1 + x).

In fact, the eigenvalues of the residue matrix are 0 and −2, which is a negative integer.

�

| Example 3.6 (The Ising Model [37])

Given†

[A] F =






0 1 0

0 0 1
−4α1

x2(−1+16x)3q
−4α2

x2(−1+16x)2q
−2α3

x(−1+16x)q




F,

where

q = (4x− 1)
(
4352x4 + 3607x3 − 1678x2 + 252x− 8

)

α1 = 89128960x7 + 74981376x6 − 97687536x5

33948640x4 − 4652220x3 + 84480x2 + 9469x− 294

α2 = 17825792x7 + 13139200x6 − 16119599x5

+5128290x4 − 689440x3 + 28373x2 − 185x− 6

α3 = 1183744x6 + 770128x5 − 872579x4 + 252146x3

−30499x2 + 1172x− 12.

†We thank J.-A. Weil for pointing out to these large examples.
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We are interested in desingularization at

p =
(
4352x4 + 3607x3 − 1678x2 + 252x− 8

)
.

Our algorithm computes the gauge transformation

F = T1T2G where

T1 =






1 γ1γ2 γ3

0 1 0

0 0 1




 ,

T2 =






p 0 0

0 1 0

0 0 1




 , and

γ1 = −6128505692416x3 − 5454831630087x2 + 2041133482952x− 215817804724

γ2 =
10598786x3

22324211786901375
− 145270123x2

714374777180844000
− 70951x

71437477718084400

+
79111

44648423573802750

γ3 =
169580576x3

525308635
− 145270123x2

1050617270
− 70951x

105061727
+

632888

525308635
.

The system is not desingularizable at any of the other polynomials. In fact, the algorithm gives as

well the following information:

• x = 0 is a simple pole, and a partial desingularization can be computed. However, only two

of the eigenvalues of the residue matrix are nonnegative integers.

• The root of 16x − 1 = 0 is a simple pole, and a partial desingularization can be computed.

However, none of the eigenvalues of the residue matrix are nonnegative integers.

• The root of 4x − 1 = 0 is a simple pole. However, only two of the eigenvalues of the residue

matrix are nonnegative integers.

The resulting desingularizaton at p and the partial desingularizations at x and 16x−1 are available

with [100].

�

3.4 Conclusion

In this chapter, we gave an algorithm, implemented as the package APPSING in MAPLE, for detecting

and removing the apparent singularities of linear differential systems via a rational algorithm, i.e. an

algorithm which avoids the computations with individual conjugate singularities. Our method can be

used, in particular, for the desingularization of differential operators in the scalar case.
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One field of investigation is the generalization of our algorithm to treat more general systems, e.g.

systems with parameters as well as investigating the case of difference systems. First steps in this

direction, namely reductions in the parameter and the partial desingularization, are established in [21]

and Part II respectively.

Another major field of investigation is the complexity study of the various algorithms existing for the

scalar case and comparing their efficiency, as well as studying the complexity of this new algorithm.

Partial results in this direction are already obtained in [32].
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Introduction

A distinctive feature of the singularly-perturbed equations is that their solution and/or

the solution derivatives have intrinsic narrow zones (boundary and interior layers) of large

variations in which they jump from one stable state to another or to prescribed boundary values.

Such situation occurs in many physical, chemical, biological, and sociological phenomena. In

physics, for example, this happens in viscous gas flows in the zones near the boundary layers

where the viscous flow jumps from the boundary values prescribed by the condition of adhesion

to the inviscid flow or in the zones near the shock wave where the flow jumps from a subsonic

to supersonic state. In chemical reactions the rapid transition from one state to another is

typical for solution processes. In biology such sharp changes occur in population genetics.

Typical examples of rapid transitions in sociology give revolutions and corresponding changes

of political institutions‡.

In this part, we are interested in the symbolic resolution of the first-order singularly-perturbed linear

differential system given by

[Aε] εh ∂ F = A(x, ε)F, (3.9)

where ∂ = d
dx , h is an integer, and A(x, ε) is an n × n matrix, in the variable x and parameter ε, in a

region of the (x, ε)-space defined by the inequalities

[D] |x| ≤ α0 , 0 < |ε| ≤ ε0, |arg ε| ≤ θ0 , (3.10)

where α0, ε0, θ0 are positive constants. We assume that A(x, ε) have an asymptotic expansion

A(x, ε) ∼
∞∑

k=0

Ak(x)ε
k

which is valid in the given region as ε tends to zero. The Ak(x)’s are assumed to be holomorphic for

|x| ≤ α0 and we write

A0(x) = A00 + A10 x + A20 x2 + . . . .

In the case of a regular perturbation, i.e. h ≤ 0, a solution of system [Aε] can be sought by presenting

‡V. D. Lisĕikin, Layer resolving grids and transformations for singular perturbation problems, VSP, 2001, quoted from the preface
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it as a power series in ε. The latter can then be inserted into (3.9) and the like powers of ε equated. This

reduces the problem of constructing solutions of [Aε] to solving recursively a set of (in)homogeneous

unperturbed singular linear differential systems over C((x)), the first of which is system [A] given by (1)

in Chapter 1 (see Section 5.2). However, singular perturbations cause major complications for their part.

As we have seen in Chapter 1, the classical formal simplification of system [A] given by (1) begins

with the reduction of its leading matrix coefficient A0 to its Jordan form. Hence, in addition to the usual

difficulties encountered within the formal reduction itself, additional ones arise for system [Aε] since its

leading matrix coefficient A0(x) is a matrix-valued function rather than a constant one. In particular,

if it has multiple eigenvalues then they might coalesce (see Section 5.4). In classical textbooks, points

where the Jordan form of A0(x) is unstable, that is to say either the multiplicity of the eigenvalues or the

degrees of the elementary divisors are not constant in a neighborhood of such points, are referred to as

turning points§. As illustrated by the following example, the behavior of solutions of the perturbed system

[Aε] around such points is far more complicated than that of system [A] around an irregular singularity.

The difficulties are exhibited by the division of the domain |x| ≤ α0 into subdomains in each of which the

solutions, which have yet to be constructed, behave quite differently [73].

| Example 3.7 ( [110], Introduction, Subsection 1.5 )

Consider the decisively simple-looking differential equation

ε2 ∂2f2 − (x3 − ε)f = 0

over the (x, ε)-region D : |x| ≤ α0 , 0 < |ε| ≤ ε0. Setting

F =

[

f

ε∂f

]

,

this equation can be rewritten as the following first-order system:

ε ∂F = A(x, ε) F =

[

0 1

x3 − ε 0

]

F. (3.11)

One can observe that the Jordan form of A0(x) is not stable in any neighborhood around x = 0.

Thereby, x = 0 might be a turning point for (3.11) and our aim is to compute a solution in a full

neighborhood of x = 0 as the parameter tends to zero.

§The definition of such points is subject to debate in literature and is refined in Definition 5.3.
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• In the region β0|ε|1/3 ≤ |x| ≤ α0 where β0 is a positive constant, the transformation F = T1G

where

T1 =

[

1 0

0 x3/2

]

transforms system (3.11) into¶

(x−3ε)x3/2 ∂G = {
[

0 1

1 0

]

+ (x−3ε)

[

0 0

−1 −3
2 x1/2

]

}G,

which can be rewritten, by a self-explanatory change of notation x−3ε = ξ, as

ξx3/2∂G = {
[

0 1

1 0

]

+ ξ

[

0 0

−1 −3
2 x1/2

]

}G.

Then a transformation G = T2U where

T2 =

[
1
2

1
2

− 1
2

1
2

]

+O(ξ)

results in the block-diagonalized system

ξx3/2∂U = {
[

−1 0

0 1

]

+O(ξ)}U.

Consequently, the system splits into two first-order linear differential scalar equations and

¶See Example 6.8 for the details of computation.
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giving rise to the following fundamental matrix of formal solution for (3.11) in this region

Fouter = T1 T2 exp(

[

− 2
5x

5/2ε−1 +O(x−1/2) 0

0 2
5x

5/2ε−1 +O(x−1/2)

]

).

• In the region |x| ≤ β0|ε|1/3, we shall perform a so-called stretching transformation. Namely,

we set τ = xǫ−1/3 and ∂τ = d
dτ . Then, for all τ such as |τ | < ∞, except possibly for

neighborhoods of the roots of τ3 − 1 = 0‖, the transformation F = L1 G where

L1 =

[

1 0

0 ε1/2

]

reduces the system (3.11) to

ε1/6∂τ G =

[

0 1

τ3 − 1 0

]

G.

And the transformation G = L2 U where

L2 =





1
2 + 1

8 τ
3 +O(τ6) 1

2 + 1
8 τ

3 +O(τ6)

− i
2 + i

8τ
3 +O(τ6) i

2 − i
8τ

3 +O(τ6)



 ,

reduces the above system to

ε1/6∂τU = {
[

−i+ i
2τ

3 +O(τ6) 0

0 i− i
2τ

3 +O(τ6)

]

+O(ε1/6)}U,

which has the following fundamental matrix of formal solution in this region:

Finner = L1 L2 exp(

[−iτ+(i/8)τ4+O(τ7)
ε1/6

0

0 iτ−(i/8)τ4+O(τ7)
ε1/6

]

).

We call Fouter (resp. Finner) an outer (resp. inner) solution as it is obtained in the outer (resp.

inner) region around x = 0. For less particular systems, intermediate regions might arise as well.

�

The formal reduction is to take place over a bivariate rather than univariate field. An immediate

consequence is the obligation to choose at each step whether to prioritize x or ε, depending on the

setting. The treatment of the singularity in x, might complicate dramatically the singularity in ε, and

vice-versa, if not handled carefully.

The methods proposed in the literature for the symbolic resolution of system [Aε] either exclude turning

points (see [43] and references therein), treat systems of dimension two, impose restrictions on the

‖The turning points other than τ = 0 do not explicitly correspond to the original turning point. They are referred to as
secondary turning points [110].
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structure of the leading matrix (see [140] and references therein), or are not fully algorithmic. In [72],

the work of [73] on scalar nth-th order differential equations was generalized to treat system [Aε], based

on results from [71, 72, 73, 122] and references therein. This approach was later simplified in [142].

However, all the former methods make an essential use of the so-called Arnold-Wasow form [7]∗∗.

Moreover, there exists no computer algebra package dedicated to the symbolic resolution of neither

system [Aε] nor the scalar nth-order scalar equation, with the exception of [93] which computes the

outer solutions of the latter. In particular, the widely-used softwares MAPLE and MATHEMATICA content

themselves to the computation of outer formal solutions for scalar equations.

Within the vast literature on this topic, we list some major results in the direction of symbolic

computation of formal solutions which inspire and motivate the approach of the work established in

this part. For a survey on numerical techniques, one may refer to [78].

• In [68], Hukuhara established the form of a fundamental matrix of formal solutions of (3.9) under

the hypothesis that x does not lie in a neighborhood of a value for which there is an abrupt change

in the structure of the Jordan form of the leading matrix coefficient A0(x).

• In [132], fifteen years later, Turrittin treated independently the same problem at Solomon

Lefschetz‘s suggestion to visit Princeton and work essentially on the same subject of his doctoral

dissertation (i.e. solutions of system [A]) but in a more general point of view. The same above

hypothesis on A0(x) was made purposely to sidestep the entire turning point problem [134, Sec.

2].

• In [122], Sibuya established a theorem for analytic reduction of [Aε] (and equivalently nth-order

singularly-perturbed differential equations) under the hypothesis that A00 has at least two distinct

eigenvalues.

• In [143] and references therein, Wasow attacked the problem of turning points upon subjecting the

system to shearing and stretching transformations. A00 was assumed to have only one elementary

divisor, i.e.











0 1 0 0 0

0 0 1 0 0

. . .

0 0 0 0 1

0 0 0 0 0












,

A10 to have a nonzero left-bottom corner, and h was set to one for the inner expansion. (This is a

very particular case of the general turning point treatment we give in Section 5.4.)

• In [73], Iwano and Sibuya studied the reduction of order of singularly-perturbed nth-order

differential equations in a neighborhood of a turning point. It turned out that in the absence of the

hypothesis of distinct eigenvalues of the leading matrix coefficient, no single theorem can possibly

describe all the complexities which might arise. They consequently introduced a convex polygon

∗∗ We refer to [38] for the complexity of a form closely-related to this Arnold-Wasow form and its comparison to the cyclic vector
method.
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similar to the Newton’s polygon in the theory of algebraic functions and singular linear differential

systems (see Chapter 1). The slopes of this polygon determined the division of the domain |x| ≤ α0

into subdomains in each of which the solutions behave differently.

• In [71], Iwano summarized as follows the problems needed to be resolved to obtain the

complete knowledge about the asymptotic behavior of the solutions of a singularly-perturbed linear

differential system [71, quoted from pp 74]:

(1) Divide a domain [D] in (x, ε)-space into a finite number of subdomains so that the solution behaves

quite differently as ε tends to zero in each of these subdomains;

(2) Find out a complete set of asymptotic expressions of independent solutions in each of these

subdomains;

(3) Determine the so-called connection formula; i.e. a relation connecting two different complete sets

of the asymptotic expressions obtained in (2).

In order to resolve (1) and (2), Iwano proceeded by associating a convex polygon to first-order

systems in analogy with the scalar case, after imposing a precise triangular structure on A(x, ε).

Problem (3) remains generally unresolved and it is out of the scope of this thesis as well (see [69,

140] and references therein).

• The hypotheses on A(x, ε) were eventually relaxed for special types of systems in a series of papers

by Iwano, Sibuya, Wasow, Nakano, Nishimoto, and others (see references in [142]). In [142],

Wasow gave a shorter and simpler presentation of the main ideas of these investigations. He used

reductions to Arnold’s form [7, 94, 13] (see Figure 3.1) to bridge first-order system/ nth-order

scalar equation treatments and compute inner and outer solutions.

• Using tools from algebra, the theorem on the existence of a fundamental matrix of formal solutions

and its anticipated form was refined and clarified further by Schaefke and Volkmer in [120].

• A fully algorithmic treatment of first-order systems excluding turning points and based on Arnold-

Wasow form was given in [43] by Chen.

• An algorithmic treatment of nth-order singularly-perturbed differential equations was given by

Macutan in [93] leading to the computation of outer solutions and their Gevrey order.

• A famous and prevalent method among scientists is the WKB method (see, e.g. [82]), which, roughly

speaking, reduces the system at hand into one whose asymptotic behavior is known in the literature.

However, as pointed out in [141], in view of the great variety and complexity of systems given by

[Aε], it is rarely expected that a system can be reduced into an already investigated simpler form.

On the other hand, as we have seen in Chapter 1, the research tackling the reduction of system [A]

given by (1), advanced profoundly in the last two decades making use of methods of modern algebra

and topology. The classical approach has been supported by constructive proofs leading to efficient

algorithms that act directly on the system. In addition to their experimental efficiency compared to the

classical approach (see, e.g. [14, Introduction] and references therein), these direct algorithms are of a
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Figure 3.1: Example on Arnold forms. The black stripes correspond to the only possible locations of
non-constant entries.

theoretical importance: They allow an understanding of the properties and structure of the system itself

as well as its solution.

In this part, we tackle the second problem suggested by Iwano. The difficulty in the symbolic treatment

of system [Aε] given by (3.9) consists in its reduction to one of the base cases : h = 0 or n = 1. One can

proceed for the former case by integrating a set of inhomogeneous systems successively over a univariate

field (see Chapter I) and for the latter case by direct integration (see Section 5.2). We give algorithms

to establish this reduction upon generalizing the components of the recursive algorithm described in

Chapter 1 for [A], the unperturbed counterpart of system [Aε].

We study the invariants of system [Aε] and compute explicitly its outer and inner formal solutions to

any desired precision over three chapters:

• In Chapter 4, we recall two polygons introduced to study nth-order singularly-perturbed linear

differential equations.

• In Chapter 5, we give algorithms for the resolution of turning points and reduction of h to its

minimal integer value (ε-rank reduction).

• In Chapter 6, we show how the ε-formal invariants can be retrieved directly from the system without

passing through its equivalent companion system (and consequently equivalent scalar equation).

We then sum up the work of these chapters to give an algorithm, illustrated by examples, to

construct (outer) formal solutions.

In our investigation, we content ourselves with the process of formal reduction. The related problems of

matching and connection (corresponding to Iwano’s third question) are interesting and difficult problems

of open research, that are not discussed in this thesis (see, e.g., [110] for a complete discussion on

Example 3.7). Hence, any reference to the asymptotic interpretation of formal solutions will be dropped

in the sequel. One may consult in this direction the method of matched asymptotic expansions (see [124,

140] and references therein) or composite asymptotic expansions (see [55, 69] and references therein).

In the sequel, we adopt C as the base field for the simplicity of the presentation. However, any field K
(Q ⊆ K ⊆ C) can be considered instead. In this case, the restrictions on the extensions of the base field

discussed in Section 1.8 apply as well.
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Local Notations

• ∂ = d
dx , ∂t = d

dt , and ∂τ = d
dτ ;

• C[[x]] is the ring of formal power series in x whose coefficients lie in C; and C((x)) is its fraction

field;

• C[[ε]] is the ring of formal power series in ε whose coefficients lie in C; and C((ε)) is its fraction

field;

• C[[x]][[ε]] (resp. C[[x]]((ε))) is the ring of formal (resp. meromorphic) power series in ε whose

coefficients lie in C[[x]];

• C((x))[[ε]] (resp. C((x))((ε))) is the ring (resp. field) of formal (resp. meromorphic) power series

in ε whose coefficients lie in C((x));

• We also recall that the ε-adic valuation of C((x))((ε)) indicates the ε-order of an element of this

field and is defined by a map valε : C((x))((ε)) → Z ∪∞ which satisfies the following properties

for all a(x, ε), b(x, ε) in C((x))((ε)):

– valε (a) =∞ if, and only if, a = 0;

– valε (ab) = valε (a) + valε (b);

– valε (a+ b) ≥ min (valε (a), valε (b)).
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Chapter 4

Singularly-Perturbed nth-order Scalar

Differential Equations

Contents
4.1 ε-Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 (x, ε)-Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Construction of (x, ε)-polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.2 Reduction of order in [D1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Behavior of solutions in intermediate domains [D2] . . . . . . . . . . . . . . . . . . 82

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

This chapter is mainly concerned with the properties and solutions of an nth-order singularly-perturbed

differential equations. We consider the singularly-perturbed linear differential equation given in [D] by

[aε] ∂n f + an−1(x, ε) ∂
n−1 f + . . . + a1(x, ε) ∂f + a0(x, ε) f = 0, (4.1)

where an(x, ε) = 1 and ai(x, ε) ∈ C[[x]]((ε)) for all i ∈ {0, . . . , n− 1}.
In the literature, two polygons are central to the study of equations of the form [aε]: The Newton

polygon introduced in [93] and the Iwano-Sibuya characteristic polygon introduced in [73]. We use a

rather descriptive terminology and refer to these polygons as ε-polygon (Section 4.1) and (x, ε)-polygon

(Section 4.2) respectively.

As mentioned earlier, given a first-order system [Aε] of the form (3.9), a transformation F = TG where

T ∈ GLn(C[[x]]((ε))) yields

[Ãε] εh̃ ∂G = Ã(x, ε) G (4.2)

where h̃ is an integer and Ã(x, ξ) ∈Mn(C[[x]][[ε]]) and

Ã(x, ε)

εh̃
= T−1 A(x, ε)

εh
T − T−1∂T. (4.3)
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Systems [Aε] and [Ãε], given by (3.9) and (4.2) respectively, are called equivalent.

4.1 ε-Polygon

The definition of the ε-polygon and ε-polynomials is given for the nth-order singularly-perturbed scalar

differential equation [aε] in [93] upon generalizing the work of [136], which treats the unperturbed

counterpart of these equations. In fact, the definition of the ε-polygon follows the classical definition

used in [136] except that it collects the valuations with respect to ε rather than x. We first recall the basic

definitions [93, Definition 2.1]:

For (u0, v0) ∈ R2, we put

P (u0, v0) = {(u, v) ∈ R2| u ≤ u0 and v ≥ v0}
= (−∞, u0]× [v0,∞).

Consider [aε] given by (4.1) and let Pε(a) be the union of P (i, valε (ai(x, ε)) for i ∈ {1, . . . , n}. Then the

ε-polygon of [aε], denoted by Nε(a), is the intersection of R+ × R with the convex hull in R2 of the set

Pε(a). We denote the slopes of the edges of Nε(a) by {e1, . . . , eℓ}. These slopes are nonnegative rational

numbers.

For every j ∈ {1, . . . , ℓ}, we consider the algebraic equation given by

(Ej)

ℓ∑

k=0

aik, valε(aik
) (x) X

(ik−i0) = 0,

where 0 ≤ i0 < i1 < · · · < iℓ = n denote the integers i for which (i, valε(ai)) lie on the edge of slope

ej of the ε-polygon, and ai, valε(ai)(x) = ε−valε(ai) ai(x, ε)|ε=0
. We say that (Ej) is the ε-polynomial∗

associated to the slope ej . We then have the following proposition:

| Proposition 4.1 ([93], Proposition 4.1)

Consider a nonzero [aε] and its ε-polygon Nε(a) of slopes {e1, . . . , eℓ}. Let

f(x, ε) = exp(

∫ x

q(z, ε)dz) with q(x, ε) 6= 0 ∈
⋃

s∈N∗

C((x))((ε1/s)).

If f(x, ε) satisfies [aε] formally then

q(x, ε) =
1

εej
(X(x) +O(ε))

for some j ∈ {1, . . . , ℓ} and X(x) is one of the non zero roots of the ε-polynomial (Ej) associated to

ej .

The full expansion of q(x, ε) can be obtained with the substitution f = exp(
∫ x X(z)

εej
dz) g [93, Proposition

∗In the literature, the slopes (resp. ε-polynomials) are also called critical indices (resp. characteristic equations).
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4.1 ε-Polygon Chapter 4

Figure 4.1: The ε-polygon associated to (4.4) in Example 4.1

4.2].

| Example 4.1

Consider the following singularly-perturbed linear differential equation†:

[aε] ∂3f − x

ε2
∂2f − 1

ε5
f = 0. (4.4)

We wish to study this equation according to its ε-polygon (see Figure 4.1). We have two slopes:

• The slope e1 = 3
2 for which (E1) x X2 + 1 = 0 whose nonzero solutions are X = ± i√

x
.

• The slope e2 = 2 for which (E2) X3 − xX2 = 0 whose nonzero solution is X = x.

By Proposition 4.1, the leading terms (of the ε-exponential part) of solutions of (4.4) are given by

exp(
∫ x z

ε2 dz) and exp(±
∫ x i√

zε3/2
dz).

�

In analogy to the unperturbed case (see Chapter 1), we give the following definition:

| Definition 4.1

Consider [aε] which is given by (4.1). The largest slope of the ε-polygon Nε(a)

ωε(a) = max{ej , 1 ≤ j ≤ ℓ},

is called the ε-formal exponential order (ε-exponential order, in short).

Clearly, we have

ωε(a) =
n−1
max
i=0

(0,−valε (ai)

n− i
).

†Examples on the harmonic oscillator with damping and Orr-Sommerfeld equation are treated in [93, Section 5].
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4.2 (x, ε)-Polygon Chapter 4

4.2 (x, ε)-Polygon

The ε-polygon gives valuable information about the ε-formal invariants of [aε], which resolves the second

item in Iwano’s reformulation of the problem, i.e. the construction of formal solutions. However, it gives

no answer to the first item which questions the division of the domain. This is the purpose of the (x, ε)-

polygon, introduced by Iwano and Sibuya in [73], and which takes into account the x-adic valuations in

addition to the ε-adic valuations considered in the ε-polygon. We follow their aforementioned paper in

the presentation of this section.

We consider again [aε] and we make use of the positive rational number ωε(a) (ωε for brevity) to

rewrite (4.1) as:

[ãε] ∂n f + ε−ωε ãn−1(x, ε) ∂
n−1 f + . . . + ε−nωε ã0(x, ε) f = 0, (4.5)

where ãi(x, ε) ∈ C[[x]][[ε]], for i ∈ {0, . . . , n − 1}, and ãi(x, ε = 0) 6≡ 0 for at least one index i. We then

turn our attention to the algebraic equation

λn + ãn−1(0, 0) λ
n−1 + . . . + ã0(0, 0) = 0. (4.6)

If (4.6) has at least two distinct roots then the reduction of the order of the equation is always possible

by an analog of the splitting described in Section 1.3 (see [122, Corollary, pp 529]). We will elaborate

further this case in Section 5.3. Thus, we can assume without loss of generality that (4.6) has only one

root of order n. The transformation

g = f exp(

∫ x ãn−1(z, ε)

n εωε
dz) (4.7)

would then reduce [ãε] to

[˜̃aε] ∂ng + ε−2ωε ˜̃an−2(x, ε) ∂
n−2g + . . . + ε−nωε ˜̃a0(x, ε)g = 0, (4.8)

which we study under the assumptions:

• ˜̃ai(x, ε = 0) 6≡ 0 for at least one i ∈ {0, . . . , n− 2};

• and ˜̃ai(x = 0, ε = 0) = 0 for all i ∈ {0, . . . , n− 2}.

Consequently, the algebraic equation

λn + ˜̃an−2(0, 0) λ
n−2 + . . . + ˜̃a0(0, 0) = 0 (4.9)

has only one root λ = 0 of order n for x = 0, but it has at least two distinct roots for x 6= 0. Hence, x = 0

is probably a turning point.
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| Example 4.2 (Continue Example 4.1)

Consider again the equation (4.4) of Example 4.1 given by:

∂3 f − x

ε2
∂2 f − 1

ε5
f = 0.

We wish to study this equation according to the (x, ε)-polygon. We first compute ωε =

max {2, 3
2} = 2. Thus, (4.4) can be rewritten as

∂3 f + ε−2 (−x) ∂2 f + ε−6 (−ε) f = 0. (4.10)

One can verify that ã2(x, ε = 0) = −x 6≡ 0 and the algebraic equation λ3 ≡ 0 has zero as a triple

root. The transformation (4.7) yields

∂3 g + ε−4 (
−1
3

x2 + ε2) ∂ g + ε−6 (
2

27
x3 + ε) g = 0. (4.11)

So we have

• ˜̃a1(x, ε) = −1
3 x2 + ε2 and ˜̃a0(x, ε) = 2

27x
3 + ε ;

• The algebraic equation (4.9) is given by

λ3 − 1

3
x2 λ+

2

27
x3 = (λ+

2

3
x)(λ− 1

3
x)2.

Clearly, if x = 0 then we have λ = 0 as a triple root otherwise we have two distinct roots. So

x = 0 is possibly a turning point.

�

Consider again [˜̃aε] given by (4.8). The domain |x| ≤ x0 of [D] (3.10) can be divided into a finite

number of subdomains in each of which the solution of [˜̃aε] behaves quite differently [73, Intro, pp 2].

To construct these subdomains, a sequence of positive rational numbers

[ρ] 0 = ρ0 < ρ1 < ρ2 < · · · < ρm. (4.12)
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can be employed as follows:

[D1]







βm |ε|ρm ≤ |x| ≤ αm−1 |ε|ρm−1 ,

βm−1 |ε|ρm−1 ≤ |x| ≤ αm−2 |ε|ρm−2 ,

...

β2 |ε|ρ2 ≤ |x| ≤ α1 |ε|ρ1 ,

β1 |ε|ρ1 ≤ |x| ≤ α0 ;

(4.13)

[D2]







|x| ≤ βm |ε|ρm ,

αm−1 |ε|ρm−1 ≤ |x| ≤ βm−1 |ε|ρm−1 ,

...

α1 |ε|ρ1 ≤ |x| ≤ β1 |ε|ρ1 ;

(4.14)

where the βi’s (resp. αi’s) are sufficiently large (resp. small) numbers.

The sequence [ρ] can be determined with the aid of a convex polygon which we describe in the following

subsection.

4.2.1 Construction of (x, ε)-polygon

For the simplicity of the presentation, we re-adjust our notations from [˜̃aε] to [aε]. Without loss of

generality, we consider

[aε] ∂nf + ε−2ωε an−2(x, ε) ∂
n−2f + . . . + ε−nωε a0(x, ε)f = 0. (4.15)

with the properties of equation [˜̃aε]. We expand the coefficients with respect to ε:







ai(x, ε) =
∑∞

k=0 ai,k(x) ε
k, 0 ≤ i ≤ n− 2,

ai,k(x) =
∑∞

j=0 ai,k,j x
j , ai,j,k ∈ C, k ≥ 0.

(4.16)
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Figure 4.2: (x, ε)-Polygon

We plot this set of points in a cartesian coordinate system (U, V ) (Figure 4.2):

Pωε = (ωε,−1)

Pik = (
valε (ai)

n− i
,
valx (ai,valε(ai))

n− i
), 0 ≤ i ≤ n− 2 , k ≥ 0,

where ai, valε(ai)(x) = ε−valε(ai) ai(x, ε)|ε=0
. Let

Pε = {Pωε
} ∪ {Pik}0≤i≤n−2, k≥0.

Then the (x, ε)-polygon of [aε], which we denote by N(x,ε)(a), is the convex downwards polygon formed

from finitely many points of Pε so that none of the points of Pε is located below it. Clearly, Pωε is a vertex

of the polygon. By construction, due to the conditions satisfied by the coefficients of [aε], one of the Pik ’s

on the polygon lies on the V -axis and is not the origin. We shall denote it by P0. Furthermore, we shall

denote Pωε by Pm and the vertices between P0 and Pm by P1, P2, . . . , Pm−1, successively from the left

to the right (see Figure 4.2). Set

Pi = (ui, vi), 0 ≤ i ≤ m. (4.17)

We then define the positive rational numbers ρi’s of (4.12) as (the negative inverse of the slopes):

ρi = − ui − ui−1

vi − vi−1
, 1 ≤ i ≤ m.

The utility of such a polygon is to clarified upon investigating the effect of the shearing transformations

and variable stretching on equation (4.8). This is the goal of the next two subsections.

| Example 4.3 (Continue Example 4.2)

We consider again the equation given by (4.11)

∂3 g + ε−4 (
−1
3

x2 + ε2) ∂ g + ε−6 (
2

27
x3 + ε) g = 0.
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The (x, ε)-polygon is then defined by the following set of points: Pωε
= (2,−1), P00 = (0, 1),

P01 = ( 13 , 0), P10 = (0, 1), and P12 = (1, 0). Hence, it has two slopes −3 and −1.

�

4.2.2 Reduction of order in [D1]

Let

F = (f, εωε ∂f, ε2 ωε ∂2 f, . . . , ε(n−1) ωε ∂n−1 f)T .

Then the equation [aε] given by (4.15) can be rewritten equivalently as the first-order system

[Aε] εωε ∂F = A(x, ε) F, (4.18)

where A(x, ε) is a companion matrix of the form

A(x, ε) =












0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

0 0 0 . . . 0 1

−a0(x, ε) −a1(x, ε) −a2(x, ε) . . . −an−2(x, ε) 0












.

In this subsection, we show that in subdomains of [D1], the system can be uncoupled into at least two

subsystems of lower dimensions (and consequently, the order of the scalar equation is reduced).

The shearing transformation F = SG (see Section 1.1), where S is of the form

S = diag(1 , εuxv , (εuxv)
2
, . . . , (εuxv)

n−1
), (4.19)

yields the equivalent system

[Ãε] εωε−u x−v ∂G = Ã(x, ε) G = ( B(x, ε) − v εωε−u x−v−1 C) G, (4.20)

where

B(x, ε) =












0 1 . . . 0 0

0 0 . . . 0 0
...

...

0 0 . . . 0 1

−(εuxv)
−n

a0(x, ε) −(εuxv)
1−n

a1(x, ε) . . . −(εuxv)
−2

an−2(x, ε) 0











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and C is a constant diagonal matrix of the form

C =












0 . . .

1

2

. . .

n− 1












.

If follows form (4.16) that for 0 ≤ i ≤ n− 2 we have

(εuxv)
i−n

ai(x, ε) =

∞∑

k=0

∞∑

j=0

ai,k,j x
j−v(n−i) εk−u(n−i). (4.21)

Thus, the shearing transformation (4.19) is a change of coordinates in the (U, V )-plane (see Figure 4.3).

The new coordinate system has its origin at (u, v):

U ′ = U − u and V ′ = V − v. (4.22)

Figure 4.3: Interpretation of a shearing transformation

We seek a subdomain of [D] where xj−v(n−i) εk−u(n−i) of (4.21) remains bounded. Consider the two

straight lines L = 0 and L′ = 0 which pass through the point (u, v) and are given by:

L = ρ (V − v) + (U − u) (4.23)

L′ = ρ′ (V − v) + (U − u), where 0 < ρ < ρ′. (4.24)

Clearly, if for some (u0, v0) , L(u0, v0) ≥ 0 (resp. L′(u0, v0) ≥ 0 ) then the point (u0, v0) does not lie

below the straight line L = 0 (resp. L′ = 0). Substituting for (U, V )

(
k

n− i
,

j

n− i
),
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in (4.23) and (4.24), we obtain

ρ′ L − ρ L′ =
ρ′ − ρ

n− i
(k − u (n − i))

L′ − L =
ρ′ − ρ

n− i
(j − v (n − i)).

Thus, we can rewrite every monomial of (4.21) as

xj−v(n−i) εk−u(n−i) = x
(n−i) (L′

− L)

ρ′ − ρ ε
(n−i) (ρ′ L − ρ L′)

ρ′ − ρ (4.25)

= (x ε−ρ)
(n−i) L′

ρ′ − ρ (x ε−ρ′

)
−(n−i) L

ρ′ − ρ . (4.26)

Recalling that we have L ≥ 0 (resp. L′ ≥ 0) if and only if ( k
n−i ,

j
n−i ) does not lie below the straight line

defined by L = 0 (resp. L′ = 0), we encounter the following scenarios:

• L = 0 and L′ = 0 which corresponds to ( k
n−i ,

j
n−i ) ≡ (u, v). In (4.26), we have

xj−v(n−i) εk−u(n−i) = 1;

• L = 0 and L′ > 0 (resp. L > 0 and L′ = 0), which corresponds to ( k
n−i = u, j

n−i > v) (resp.

( k
n−i > u, j

n−i = v)). In (4.26), we have

xj−v(n−i) εk−u(n−i) = (x ε−ρ)
(n−i) L′

ρ′ − ρ (resp. xj−v(n−i) εk−u(n−i) = (x ε−ρ′

)
−(n−i) L

ρ′ − ρ ).

In this case, (4.26) (and consequently (4.21)) is small when x ε−ρ is small (resp. x ε−ρ′

is large).

• L > 0 and L′ > 0 which corresponds to ( k
n−i > u, j

n−i > v) for some (u, v) lying above both straight

lines (4.23) and (4.24). In this case, (4.26) (and consequently (4.21)) is small when (xε−ρ) is small

and (xε−ρ′

) is large. This corresponds to a domain

β |ε|ρ
′

≤ |x| ≤ α |ε|ρ,

where β and 1/α are very large positive constants.

The same can be proved for the substitution

U = ωε and V = −1.

Consider again the subdomains of (4.13) and the vertices of the ε-polygon (4.17). We substitute for ρ

and ρ′ as follows: For any i ∈ {0, . . . ,m− 1}, let

L = ρi (V − vi) + (U − ui)

L′ = ρi+1 (V − vi) + (U − ui).
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then system [Aε] can be uncoupled into systems of lower dimensions in each of the subdomains

βi+1 |ε|ρi+1 ≤ |x| ≤ αi |ε|ρi

by applying a shearing transformation (4.19) where u = ui and v = vi [73, Fundamental Lemma, pp

12]. In fact, the resulting equivalent system [Ãε] of (4.20) is given by

[Ãε] εωε−ui x−vi ∂G = Ã(x, ε) G = (Ã0(x) + Ã1(x) ε + Ã2(x) ε
2 + . . . ) G,

where L ,L′ ≥ 0, Ã0(x) = Ã00 + Ã10x + Ã20x
2 + . . . , and

Ã00 =












0 1 . . . 0 0

0 0 . . . 0 0
...

...

0 0 . . . 0 1

ã0,0 ã1,0 . . . ãn−2,0 0












.

At least one of the constants ãi’s is different from zero since L = L′ = 0 for some i. Thus, Ã00 has at least

two distinct eigenvalues and consequently, the splitting can be applied to uncouple the system into two

subsystems of lower dimensions (see Section 5.3). Consequently, the order of the corresponding scalar

equation [aε] drops in such subdomains.

4.2.3 Behavior of solutions in intermediate domains [D2]

Consider again system [Aε] given by (4.18):

[Aε] εωε ∂F = A(x, ε) F.

We now investigate the behavior of the solution in the subdomains of [D2] given by (4.14). We study the

effect of the so-called stretching which is followed by a shearing (4.19) of the following form:







x = ερτ where ρ is a positive rational number ,

F = S G where S = diag(1 , εγ , ε2γ , . . . , ε(n−1)γ), γ ∈ Q.
(4.27)

Under (4.27), the resulting system is given by

[Ãε] εωε−ρ−γ ∂τG = Ã(τ, ε) G, (4.28)
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Figure 4.4: Interpretation of a stretching-shearing transformation

where

Ã(τ, ε) =












0 1 . . . 0 0

0 0 . . . 0 0
...

...

0 0 . . . 0 1

−ε−nγ ã0(τ, ε) −ε(1−n)γ ã1(τ, ε) . . . −ε−2γ ãn−2(τ, ε) 0












,

where ãi(τ, ε) = ai(x = ερτ, ε) for 0 ≤ i ≤ n− 2. It follows from (4.16) that for 0 ≤ i ≤ n− 2 we have

εγ(i−n) ãi(τ, ε) = εγ(i−n) ai(ε
ρτ, ε) =

∞∑

k=0

∞∑

j=0

ai,k,j τ
j εk−γ(n−i)+ρj . (4.29)

Let

γ′ = ρ V + (U − γ), (4.30)

then γ′ = 0 defines a straight line passing through the point (γ, 0) (see Figure 4.4) and

• γ′(u0, v0) ≥ 0 implies that the point (u0, v0) does not lie below the straight line.

• γ′(u0, v0) = 0 if and only if (u0, v0) is on the straight line.

Substituting for (U, V ) by

(
k

n− i
,

j

n− i
) and (ωε , −1),

respectively in (4.30) yields respectively

εk−γ(n−i)+ρj = εγ
′(n−i) (4.31)

εωε−ρ−γ = εγ
′

. (4.32)
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Thus, the transformation (4.27) effects a change of coordinates in the (U, V )-plane given by

U ′ = ρ V + (U − γ) and V ′ = V. (4.33)

The V ′-axis is the straight line defined by U ′ = 0, i.e. ρ V + (U − γ) = 0 and the origin of the new

coordinate system is the point (γ, 0).

Consider again the subdomains of [D2]. For any i ∈ {1, . . . ,m − 1}, we perform the transformations

of (4.27) on [Aε] with ρ = ρi and γi equal to the U -intercept of the straight line γ′
i = 0 of slope ρi and

which passes through the points Pi and Pi−1 of the polygon. In a subdomain of (4.14):

αi |ε|ρi ≤ |x| ≤ βi |ε|ρi , (or αi ≤ |ω| ≤ βi)

the resulting equivalent system [Ãε] is given by

εγ
′

i ∂τG = Ã(τ, ε) G = (Ã0(τ) + Ã1(τ) ε + Ã2(τ) ε
2 + . . . ) G.

We have γ′
i > 0 for i ∈ {1, . . . ,m − 1} and γ′

m = 0. Moreover, since none of the points (4.17) lie below

the straight line γ′
i = 0, we have Ã(τ, ε) ∈ C[[τ ]][[ε]] and in particular

Ã0(τ) =












0 1 . . . 0 0

0 0 . . . 0 0
...

...

0 0 . . . 0 1

ã0(τ) ã1(τ) . . . ãn−2(τ) 0












,

with at least one of the ãi(τ)’s differing from zero. Thus, either Ã0(τ = 0) has at least two distinct

eigenvalues and consequently the splitting can be applied (see Section 5.3); or [Ãε] has possibly turning

points‡. However, the number of such points is finite and so the subdomain under question can be

covered by a finite number of open sets each containing at most one of such points. In each of the open

sets, one can make a translation in the variable τ to get back to the situation we started with. And so,

a (x, ε)-polygon would be constructed again. It can then be verified that ωε of the new system is less

than that of the original equation and the point P0 of the polygon does not lie above the original one.

Consequently, after finite repetitions of this process, we arrive at a situation were ωε = 0.

4.3 Conclusion

In this chapter we recalled two polygons which are used to study nth-order singularly-perturbed linear

differential equations. In the next chapter, we consider scalar equations and systems of a more general

but related form.

‡In literature, such points are referred to as secondary turning points.

Page 84



Chapter 5

Chapter 5

Two-Fold Rank Reduction of

First-Order Systems

Contents
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Equivalent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.2 Restraining index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Basic cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Case h ≤ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.2 The Scalar Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 ε-Block diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Resolution of turning points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 ε-Rank reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5.1 ε-Reduction, h > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5.2 ε-Reduction, h = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 ε-Moser invariant of a scalar equation . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6.1 Example of comparison with Levelt-Barkatou-LeRoux’s approach . . . . . . . . . . 118

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

We consider again system (3.9) which is given by

[Aε] εh ∂F = A(x, ε)F = (

∞∑

k=0

Ak(x)ε) F,

where h is an integer and A(x, ε) has its entries in C[[x]][[ε]]. We refer to A0(x) as the leading matrix

coefficient and to A00 := A0(x = 0) as leading constant matrix.

This chapter is concerned with our contribution in the resolution of turning points and reduction of

ε-rank h to its minimal integer value. It is based on [2], where we propose algorithms to treat the turning

points of system (3.9) and uncouple it into a set of systems of lower dimensions such that each has the
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minimal integer value for its ε-rank among all its equivalent counter-parts. This minimization is essential

to formal reduction as we will see in the next chapter but is a stand-alone problem as well.

This chapter is organized as follows: In Section 5.1, we introduce more general systems and recall

preliminary results on the reduction of system [Aε]. In Section 5.3, we recall the well-known Splitting

lemma and refine the classical proof. In Section 5.4 we treat the turning point. And finally in Section 5.5,

we describe the algorithm which reduces h to its minimal integer value.

5.1 Preliminaries

Consider system [Aε] given by (3.9). We assume that it has at most one turning point otherwise the

region of study can be shrunk. We place this turning point at the origin (otherwise, a translation in the

independent variable can be performed.

As illustrated by Example 3.7 in the introduction, the formal reduction of system [Aε] leads inevitably to

the consideration of more general systems (see, e.g., [142, Chapter 2] and references therein). We thus

consider the following two subsets of C((x))[[ε]] and C((x))((ε)) respectively:

R[[ε]] = {f =

∞∑

k∈N

fk(x)ε
k ∈ C((x))[[ε]] s.t. valx(fk) ≥ σk + p for all k ∈ N, for some σ ∈ Q−, p ∈ Z};

R((ε)) = {f =
∞∑

k∈Z

fk(x)ε
k ∈ C((x))((ε)) s.t. valx(fk) ≥ σk + p for all k ∈ Z, for some σ ∈ Q−, p ∈ Z}.

One can verify that R[[ε]] is a ring and R((ε)) is its field of fractions. In these two chapters, we will treat

systems of the form ∂F = M(x, ε) with M(x, ε) ∈Mn(R((ε))) or, with a more pleasant notation:

[Aε,σA
] εh xp ∂ F = A(x, ε)F =

∞∑

k=0

Ak(x)(x
σAε)k F, (5.1)

where A(x, ε) ∈ Mn(R[[ε]]). Here, p is an integer, σA is a nonpositive rational number, and Ak(x) ∈
Mn(C[[x]]) for all k ≥ 0. Without loss of generality, we assume that σA is a nonpositive integer, since

otherwise, a change of the independent variable x = tα can be introduced for some appropriate choice

of natural number α. We also assume that A0(x) (resp. A00) is a nonzero matrix otherwise h (resp. p

and σA) can be re-adjusted. In the sequel, we resort sometimes to the shorthand notation ξ = xσAε for

clarity.

Evidently, system [Aε] given by (5.1) is a particular case of system [Aε,σA
] for which p = σA = 0. And as

for system [Aε], h will be assumed to be a positive integer since this is the case where major complications

arise. The simpler case of h ≤ 0 is discussed in Subsection 5.2.1.
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5.1.1 Equivalent systems

Consider system [Aε,σA
] given by (5.1). Let T ∈ GLn(R((ε))) then the transformation F = TG yields

[Ãε,σÃ
] εh̃xp̃∂G = Ã(x, ε)G =

∞∑

k=0

Ãk(x)(x
σÃε)k G (5.2)

where σÃ is some nonpositive integer and Ãk(x) ∈Mn(C[[x]]) for all k ≥ 0. One can verify that:

Ã(x, ε)

εh̃xp̃
= T−1 A(x, ε)

εhxp
T − T−1∂T. (5.3)

We say systems [Ãε,σÃ
] and [Aε,σA

] are equivalent and we write [Ãε,σÃ
] = T [Aε,σA

]. In the sequel, we

seek at each step such a transformation which takes system [Aε,σA
] to an equivalent system [Ãε,σÃ

] which

either has h̃ < h or can be uncoupled into systems of lower dimensions. Before proceeding, we discuss

in the following section the two basic cases h ≤ 0 and n = 1.

5.1.2 Restraining index

As we are lead naturally to the study of system [Aε,σA
], we are required to investigate the inevitable

growth of the order of the poles in x within the reduction. This is the first step towards determining

inner and intermediate formal solutions. Such solutions may be constructed by the techniques developed

herein for the construction of the (outer) formal solutions, after performing an adequate stretching, i.e.

a change of the independent variable of the form τ = xε−ρ for some positive rational number ρ (as

discussed for the case of nth-order singularly-perturbed differential equation in Chapter 4).

As described in [142, Chapter 2] and as can be seen from the structure of the ring of coefficients, these

poles grow at worst linearly with k. The information on the orders of the poles in x which might be

introduced in system [Aε] within the process of reduction, is stored in p and σA. This allows tracking

their growth. More precisely, the first input is system [Aε] given by (3.9). We then have σA = p = 0

at the beginning of our treatment. After each transformation T performed (with a careful choice of T ),

we compute σÃ and p̃ by adjusting σA and p so that for the system T [Aε,σA
] := [Ãε,σÃ

], the entries of

the Ãk(x)’s are again in C[[x]] and A00 is nonzero for a nonzero system. For any such adjustment, σÃ is

chosen to be maximal.

| Remark 5.1

Consider system [Aε,σA
] given by (5.1) with h > 0. In the sequel, we might need to assume that

p ≥ σAh+1 within certain steps of the reduction. This assumption however is non-restrictive since for

a system [Aε,σA
] with p < σAh+ 1, we can set σB = p−1

h . Then, σA > σB and we can rewrite xσA as

xσBxσA−σB , and A(x, ε) as

A(x, ε) =

∞∑

k=0

Ak(x)(x
σAε)k =

∞∑

k=0

Bk(x)(x
σBε)k

with Bk(x) = Ak(x)x
(σA−σB)k ∈ Mn(C[[x]]) for all k ≥ 0. Hence, the treatment of system [Aε,σA

]
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can be substituted by the treatment of the system

[Bε,σB
] ∂F = B(x, ε)F =

∞∑

k=0

Bk(x)(x
σBε)kF.

5.2 Basic cases

A detailed discussion of these basic cases, whenever σA = p = 0, is given in [43, Chapter 3, Section 1, pp

52 -56]. We give here a brief discussion without any condition on σA and p.

5.2.1 Case h ≤ 0

If h ≤ 0 then the solution of system [Aε,σA
] can be sought, up to any order µ, upon presenting the solution

as a power series in ξ = xσAε, i.e.

F =

∞∑

k=0

Fk(x) ξ
−h+k.

The latter can then be inserted into [Aε,σA
] and the like powers of ξ equated. This reduces the symbolic

resolution to solving successively a set of inhomogeneous linear singular differential systems in x solely,

the first of which is the unperturbed system [A] given by (1).

xp ∂F0 = (A0(x) + h σA xp−1I) F0

xp ∂F1 = (A0(x) + (h− 1) σA xp−1I) F1 + A1(x) F0

...

xp ∂Fµ = (A0(x) + (h− µ) σA xp−1I) Fµ +A1(x) Fµ−1 + . . . + Aµ(x) F0.

For any k ≥ 0, the solution of the homogeneous system singular in x can be sought via MINIISOLDE or

LINDALG. The solution of the inhomgeneous system can be then obtained by the method of variation of

constants (see, e.g. [11, Theorem 3, pp 11]). We remark that a transformation Fµ = x−µσAG reduces

the inhomogeneous system corresponding to Fµ to:

xp ∂G = (A0(x) + h σA xp−1I) G(x) ,

which coincides with that of F0(x). Thus we have:

Fµ(x) = x−µσA F0(x)

∫ x

0

F−1
0 (z) zµσA [A1(z) Fµ−1(z) + . . . + Aµ(z) F0(z)] dz.
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5.2.2 The Scalar Case

The resolution of the scalar case of a first-order system [Aε,σA
] is straightforward (see, e.g., [43, pp 52-

55] or [142, page 101] ). The nth-order scalar equations with less general entries were discussed in

Chapter 4. We discuss here those with entries in R((ε)).

Equivalence with first-order systems

In Chapter 4, we have seen that a scalar equation [aε] can be expressed trivially as a first-order system [Aε].

In this section, we are interested in the reverse claim for more general systems: Given a first-order system

[Aε,σA
], can we find an equivalent system which has a companion matrix form? If the answer is positive

then by denoting the entries in the last row of this companion matrix by {(ai(x, ε)), 0 ≤ i ≤ n−1} ⊂ R((ε)),

the system is obviously equivalent to the singularly-perturbed scalar differential equation [aε,σa ] given by:

[aε,σa ] ∂nf − an−1(x, ε)∂
n−1f − . . . a1(x, ε)∂f − a0(x, ε)f = 0.

In fact, cyclic vectors in analogy with Section 1.2 exist [46, 120]. Due to this equivalence, the formal

solutions of systems can be computed after their reduction to scalar equations. And the results of

Subsection 4.1 can be easily generalized to these more general scalar equations. However such a

treatment is computationally unsatisfactory (see e.g. [93, Conclusion]) and overlooks the information

that we can derive from the system directly. Nevertheless, it plays a key role in the theoretical basis of the

algorithm which we will develop in later chapters. In particular, it allows the definition of the ε-formal

exponential order of system [Aε,σA
] as follows:

| Definition 5.1

Consider a singularly-perturbed differential system [Aε,σA
] given by (5.1). The ε-polygon and ε-

polynomials of such a system are those of its equivalent nth-order singularly-perturbed differential

equation.

We denote the largest slope of the ε-polygon by ωε(A). It is called the ε-formal exponential order (ε-

exponential order in short) of system [Aε,σA
]. The ε-polygon, ε-polynomials, and ωε(A) are independent

of the chosen cyclic vector (see, e.g., [46, 120]). Additionally, it follows from the equivalence under a

cyclic vector, that the ε-exponential order of system [Aε,σA
] is given by

ωε(A) = max
0≤i≤n

(0, (
−valε (ai)

n− i
)). (5.4)

Another possible approach is that of [13] which computes a companion block diagonal form for an

unperturbed system [A] given by (1). The corresponding algorithm relies on polynomial (shearing)

transformations in x and elementary row/column operations. This algorithm can be easily adapted to

the perturbed system [Aε,σA
] upon using polynomial (shearing) transformations in both x and ε, and

elementary row/column operations. Such operations are discussed further in Section 5.5.

As mentioned in the introduction, a classical bridge between scalar equations and systems is Arnold’s
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form (also called Arnold-Wasow form in this context) which can be attained by elementary row/column

operations as well [13, 7, 43, 94]. This form is “sufficiently” sparse, based on the Jordan canonical form

of the leading constant matrix coefficient (Figure 3.1), so that, roughly speaking, the techniques used for

equations can be adapted to systems. For example, given A(x, ε) in Arnold’s form, the (x, ε)-polygon is

introduced for [Aε] upon defining its vertices from the nonzero coefficients of A(x, ε) [142, Chapter 2].

In the following section, we start the process of formal reduction, acting directly on the system, with the

well-known Splitting lemma which allows uncoupling certain systems.

5.3 ε-Block diagonalization

A classical tool in perturbation theory is the so-called splitting which separates off the existing distinct

coalescence patterns. Whenever the leading constant matrix A00 := A0(0) admits at least two distinct

eigenvalues, there exists a transformation which block-diagonalizes system [Aε,σA
] so that it can be

uncoupled into subsystems of lower dimensions whose leading constant matrices have a unique distinct

eigenvalue each (see, e.g., [65, Theorem XII − 4− 1, pp 381] and [142, Theorem 8.1, pp 81]).

| Theorem 5.1

Consider system [Aε,σA
] given by (5.1):

[Aε,σA
] εh xp ∂ F = A(x, ε)F =

∞∑

k=0

Ak(x)(x
σAε)k F,

If p ≥ σAh+ 1 and A00 =

[

A11
00 O

O A22
00

]

and A11
00 and A22

00 have no eigenvalues in common, then there

exists a unique transformation T (x, ε) =
∑∞

k=0 Tk(x)(x
σAε)k given by

T (x, ε) =

[

I T 12
0 (x)

T 21
0 (x) I

]

(I +

∞∑

k=1

[

O T 12
k (x)

T 21
k (x) O

]

(xσAε)
k
),

with Tk(x) ∈Mn(C[[x]]) for all k ≥ 0, such that the change of basis F = TG yields

[Ãε,σA
] εhxp∂G = Ã(x, ε) G =

∞∑

k=0

Ãk(x
σAε)kG =

[

Ã11(x, ε) O

O Ã22(x, ε)

]

G,

where Ã00 = A00 and Ãk(x) ∈Mn(C[[x]]) for all k ≥ 0.

Well-known proofs (e.g. [65, pp 382- 385] and [139, pp 138 - 142]) proceed in two steps: Block-

diagionalizing A0(x), followed by the total block-diagonalization of A(x, ǫ). However, the proofs of the

first step are given only for the well-behaved case. This is the case when A0(x) have at least two distinct

eigenvalues and is holomorphically similar to its Jordan form, i.e. the eigenvalues don’t coalesce in the

region of study (see Example 5.1). We give herein a constructive proof of the first step without imposing

any restriction on the eigenvalues and eigenvectors of A0(x), as we aim to give a general discussion which
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does not exclude turning points. The second and third steps of the proof are adaptations of [43, Chapter

3, pp 56-59] and [140, Theorem 2.3-1, pp 17], which are based on a result originally due to [122].

Proof. We proceed in three steps:

Step 1: We first block-diagonalize the leading matrix coefficient : We can construct a transformation

F = T0(x)G s.t. the leading matrix coefficient Ã0(x) of the equivalent system has the following block-

form in accordance with A00:

Ã0(x) =

[

Ã11
0 (x) O

O Ã22
0 (x)

]

.

From (5.3) we have

On = A0(x) T0(x) − T0(x) Ã0(x). (5.5)

Assuming that T0(x) ∈Mn(C[[x]]) is in the following form

T0(x) =

[

I T 12
0 (x)

T 21
0 (x) I

]

,

we have for 1 ≤ ̺ 6= ς ≤ 2:







A̺̺
0 (x) − Ã̺̺

0 (x) + A̺ς
0 (x) T ς̺

0 (x) = O

Aς̺
0 (x) + Aςς

0 (x) T ς̺
0 (x) − T ς̺

0 (x) Ã̺̺
0 (x) = O

(5.6)

We inserting the series expansions A0(x) =
∑∞

i=0 Ai0x
i and Ã0(x) =

∑∞
i=0 Ãi0x

i in (5.6), and we

equate the power-like coefficients (Ãi0 may be written conveniently as Ãi,0):

For i = 0 we have 





A̺̺
00 = Ã̺̺

00

Aςς
00 T ς̺

00 − T ς̺
00 Ã̺̺

00 = O

which are satisfied by setting Ãςς
00 = Aςς

00 and T ςς
00 = I, T ς̺

00 = O.

For i ≥ 1 we have

Aςς
00T

ς̺
i0 − T ς̺

i0 A
̺̺
00 = −Aς̺

i0 −
i−1∑

j=1

(Aςς
i−j,0T

ς̺
j0 − T ς̺

j0 Ã
̺̺
i−j,0) (5.7)

Ã̺̺
i0 = A̺̺

i0 +

i−1∑

j=1

A̺ς
i−j,0T

ς̺
j0 . (5.8)

It’s clear that (7.13) is a set of Sylvester matrix equations that possess a unique solution due to the

assumption on the disjoint spectra of A11
00 and A22

00 (see, Lemma 1.1). Remarking that the right hand side

depends solely on the Aj0, Tj0, Ãj0 with j < i, equations (7.13) and (7.15) are successively soluble.

Step 2: We can now assume without loss of generality that the leading matrix coefficient A0(x)

of [Aε,σA
] has a block-diagonal form in accordance with that of A00 and we study the effect of the
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transformation

F = (I + (xσAε)jTj(x)) G, for some j ≥ 1. (5.9)

One can verify that (5.9) yields the equivalent system

εhxp∂G = Ã(x, ε)G

for which

(I + (xσAε)jTj(x)) Ã(x, ε) = A(x, ε) (I + (xσAε)jTj(x)) − εhxp(xσAε)j(
jσA

x
+ ∂)Tj(x). (5.10)

We can rewrite

εhxp(xσAε)j = εhxp+σAh−σAh(xσAε)j = (xσAε)hxp−σAh(xσAε)j = (xσAε)h+jxp−σAh.

We then assume that Ã(x, ε) =
∑∞

k=0 Ã(x)(xσAε)k. With the help of the shorthand notation ξ = xσAε,

we insert the series expansions of A(x, ε) and Ã(x, ε) in (5.10), and equating power-like coefficients of ξ.

We obtain (x is dropped for clarity):

∞∑

k=0

(Ãk + TjÃk−j) ξ
k =

∞∑

k=0

(Ak +Ak−j Tj) ξ
k − ξh+jxp−σAh (∂ +

jσA

x
) Tj

where Ãk−j = Ak−j = O if k < j.

Equating power-like coefficients, we have:

Ãk = Ak +Ak−j Tj − TjÃk−j − γxp−σAh−1(x∂ + jσA I)Tj (5.11)

where γ = 1 if k = h+ j and γ = 0 otherwise. In particular, we have:

Ãk = Ak for 0 ≤ k < j (5.12)

Ãj = Aj +A0 Tj − TjÃ0 (5.13)

One can observe that (5.13) is a Sylvester matrix equation of the type discussed in Step 1. Thus, by taking

Tj(x) =

[

I O

O I

]

+

∞∑

i=1

[

O T 12
ji (x)

T 21
ji (x) O

]

xi,

and remarking that A00 = Ã00, one can construct such a Tj and can compute the Ãk ’s successively.

Step 3: By a product of transformations of type (5.9), namely

F =

µ
∏

j=0

(I + ξjTj(x)) G

the Aj(x)’s can be block-diagonalized successively to any desired order µ ∈ N starting with j = 1. For
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a given j ≥ 1, the terms of lower degree in ε (equivalently of lower degree in ξ) are not altered, as

exhibited by (5.12). �

| Remark 5.2

Under the notations of Theorem 5.1 and the non-restrictive condition p ≥ σAh+ 1 (see Remark 5.1),

one can observe that σÃ ≥ σA.

| Remark 5.3

Clearly, Theorem 5.1 is a generalization of Theorem 1.1. The above form of A00 is non-restrictive. It

suffices that A00 has at least two distinct eigenvalues so that Lemma 1.2 be applied. Consequently, in

case the base field is K rather than C, no extension is required.

Consider one of the uncoupled systems and assume its leading constant matrix is in Jordan normal form

with a unique eigenvalue γ ∈ C. This can be always attained by a constant transformation. Then, upon

applying the so-called eigenvalue shifting, i.e.

F = G exp(

∫ x

ε−hz−p γ dz), (5.14)

it is easy to verify from (5.3) that the resulting system has a nilpotent leading constant matrix.

5.4 Resolution of turning points

Without loss of generality, we can now assume that system [Aε,σA
] is such that A0(0) is nilpotent. Clearly,

it doesn’t follow that A0(x) is nilpotent as well. The origin may be a turning point for system [Aε,σA
].

In fact, if the matrix under reduction has multiple eigenvalues then they might coalesce. We have seen

the characterization of such points for the scalar case in Chapter 4 in terms of algebraic equations. The

following example gives an illustration of this phenomenon for a system∗.

| Example 5.1 ([140], pp223)

Let a(x), b(x) be holomorphic for x in a region Ω ∈ C and

M(x) =






x 1 a(x)

0 x b(x)

0 0 0




 .

A short calculation shows that most general transition matrix T (x) is given by

T (x) =






α(x) β(x) γ(x)(−a(x)x−1 + b(x)x−2)

0 α(x) −γ(x)b(x)x−1

0 0 γ(x)




 .

∗The terminology turning point was coined by physicists as a description for experiments where such differential equations first
arose (e.g. total reflection in the propagation of light in inhomogeneous mediums) [140, Historical Introduction].
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Thus we have the following in Ω for x 6= 0

J(x) = T−1M(x)T (x) =






x 1 0

0 x 0

0 0 0




 .

The scalar functions α(x), β(x), γ(x) are arbitrary, so far, except that α and γ must not vanish

anywhere in Ω. If they are holomorphic, so is T , provided zero is not a point of Ω. If 0 ∈ Ω, then

T (x) has a pole at x = 0 unless the following conditions are satisfied:

b(0) = 0 and ∂b(0) = a(0).

Therefore, M(x) is in general not holomorphically similar to J(x) in regions that contain the origin.

Moreover, if the second condition is not satisfied, two possibilities arise:

• if b(0) = 0 then there exists a constant invertible matrix S such that

S−1M(0)S =






0 1 0

0 0 0

0 0 0




 .

Then M(x) is pointwise similar to J(x), even in regions containing x = 0.

• if b(0) 6= 0 then the Jordan form of M(0) is

J(0) =






0 1 0

0 0 1

0 0 0






so that J(x) is not holomorphic at x = 0.

Hence, it might occur that the Jordan matrix is not holomorphic in some region or the Jordan

matrix is itself holomorphic but, nevertheless, not holomorphically (although perhaps pointwise)

similar to M(x).

�

| Definition 5.2 ([142], pp 57)

Consider system [Aε,σA
] given by (5.1). We refer by turning points to the points where the

Jordan form of A0(x) changes, i.e., either the multiplicity of the eigenvalues or the degrees of

the elementary divisors are not constant in a neighborhood of such points.
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| Example 5.2 ([142], pp 57)

Consider the following system:

ε2∂F =






0 1 0

0 0 1

ε 0 x




F where A0(x) =






0 1 0

0 0 1

0 0 x




 and σA = 0.

We remark that this system is obtained from (4.4) by setting F = [f, ε2∂f, ε4∂2f ]T . It follows from

the form of A0(x) that the origin is a turning point for this system.

�

At this stage of formal reduction, i.e. when A00 is nilpotent, our approach diverges from the classical

one. As mentioned before, our algorithm requires neither the Arnold-Wasow form for A(x, ε) nor a cyclic

vector to reduce system [Aε,σA
] to a scalar differential equation. Instead, we proceed by treating the

turning point. This treatment transforms the system at hand to a more general system for which A0(x) is

nilpotent as well.

| Proposition 5.1

Consider system [Aε,σA
] given by (5.1):

[Aε,σA
] εhxp ∂F = A(x, ε) F =

∞∑

k=0

Ak(x)(x
σAε)

k
F.

If A00 is a nilpotent matrix and A0(x) has at least one nonzero eigenvalue then there exist an integer

s and a transformation T ∈ GLn(C(x
1/s)) such that, by setting x = ts, and re-adjusting p and σA,

the transformation F = TG results in the following equivalent system:

[Ãε,σÃ
] εhtp̃ ∂t G = Ã(t, ε) G =

∞∑

k=0

Ãk(t)(t
σÃε)

k
G

where Ã00 := Ã0(0) has at least one nonzero constant eigenvalue.

Proof. The eigenvalues† of A0(x) admit a formal expansion in the fractional powers of x in the

neighborhood of x = 0 (see, e.g., [80]). We are interested only in their first nonzero terms. Let

µ(x) =
∑∞

j=0 µjx
j/s be a nonzero eigenvalue of A0(x) whose leading exponent, i.e. smallest j/s for

which µj 6= 0 and j, s are coprime, is minimal among the other nonzero eigenvalues. Then, without

loss of generality, we can assume that s = 1; otherwise we set x = ts. Now, let T ∈ GLn(C(x)) be the

polynomial transformation for which B0(x) = T−1A0(x)T = B00 +B10x+ . . . is in CRV form, i.e.

θB0(x)(λ) = xrank(B00) det(λI +
B00

x
+B10)|x=0

does not vanish identically in λ (see Section 2.2.1). Let ν > 0 denote the valuation of B0(x) then, by

†For details regarding eigenvalues and perturbed eigenvalue problem, please refer to Chapter 4.
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Proposition 2.1, there are n − degθ eigenvalues of B0(x) whose leading exponents lie in [ν, ν + 1[, and

deg θ eigenvalues for which the leading exponent is equal to or greater than ν + 1. Then, the application

of the transformation T (x) to the system [Aε,σA
] yields

[Bε,σA
] εhxp ∂G = B(x, ε) G =

∞∑

k=0

Bk(x)(x
σAε)k G

where B0(x) := xν(B00 + B10x+ . . . ) and B00 has n− degθ eigenvalues whose leading exponents lie in

[0, 1[. Since T (x) is a polynomial transformation, then for every k ≥ 0, valx(Bk(x)) ≥ min(p − σAh −
1, spanx(T )) where spanx(T ) is the difference between the valuation and the degree of the polynomial

transformation T (x) in x. Let q be the maximal nonpositive integer such that

valx(Bk(x)) ≥ qk + ν, for all k > 0.

(Geometrically, q is the maximal nonpositive integer among the slopes of the straight lines which pass

through the point (0, ν) and stays below the points (k, valx(Bk)) for all k > 0.) Then upon setting

σÃ = σA + q and p̃ = p− ν, system [Bε,σA
] can be rewritten as

[Ãε,σÃ
] εhxp̃ ∂G = Ã(x, ε) G =

∞∑

k=0

Ãk(x)(x
σÃε)

k
G

where for all k > 0, Ãk(x) = x−ν−qkBk(x) ∈ Mn([[x]]), Ã0(x) = x−νB0(x), and Ã00 = B00. Then

µ(x) is an eigenvalue of Ã0(x) with a minimal leading exponent and hence it is among those whose

leading exponents lie in [0, 1[ (see Proposition 2.1). By our assumption s = 1, and hence the leading

exponent of µ(x) is zero and µ0 6= 0. Since µ0 is a nonzero eigenvalue of Ã00, it follows that the latter is

non-nilpotent. �

| Remark 5.4

The eigenvalues of A0(x) are the roots of the algebraic scalar equation f(x, µ) = det(A(x)−µIn) = 0

and can be computed by Newton-Puiseux algorithm or as described in Chapter 2. The linear

transformation T ∈ GLn(C(x
1/s)) can be computed via MINIISOLDE or LINDALG.

| Example 5.3

Given the matrix expression of Weber’s equation (σA = 0, p = 0, s = 1):

[Aε,σA
] ε∂F =

[

0 1

x2 0

]

F.

To put the leading coefficient in CRV form, we use T (x) =

[

1 0

0 x

]

. Then F = TG yields the
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following equivalent system:

[Bε,σA
] ε∂G =

[

0 x

x −εx−1

]

G.

Then ν = 1. We compute σÃ = −2 and p̃ = −1. We thus have:

[Ãε,σÃ
] εx−1∂G =

[

0 1

1 −εx−2

]

G.

The leading coefficient Ã0(x) is a constant matrix now and is clearly in CRV form (θÃ0(x)
(λ) = −1).

The degree of d := θÃ0
is zero and there are n − d = 2 eigenvalues of Ã0(x) whose leading

exponents lie in [0, 1[, namely zero.

�

Under the above notations of Proposition 5.1, one can observe that the treatment of a turning point yields

σÃ ≤ σA. Proposition 5.1 leads to the following refined definition of a turning point.

| Definition 5.3

Consider system [Aε] given by (3.9), and its equivalent expression as system [Aε,σA
] given by (5.1),

with σA = 0 and p = 0. We say that system [Aε] has a turning point at x = 0 if, by the end of

the process of formal reduction of system [Aε,σA
], at least one of its uncoupled subsystems has a

nonzero restraining index.

“Actual” solutions of systems of zero restraining index have been studied in [126] and references therein.

| Example 5.4

We consider the following system for which σA = 0:

ε2 ∂F =






0 1 0

0 0 1

ε x 0




F where A0(x) =






0 1 0

0 0 1

0 x 0




 .

Here, s = 2. So we can set x = t2 and let F = TG where T =






0 0 1

0 t 0

0 0 t2




. Or equivalently, let

T =






0 0 1

0 x1/2 0

0 0 x




 .
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This results in:

ε2 ∂G = x1/2{






0 1 0

1 0 0

0 1 0




+






0 0 0

0 0 0

1 0 0




x−3/2ε+






0 0 0

0 −1 0

0 0 −2




x−1ε2} G.

Hence, ν = 1/2, p̃ = −1/2, σÃ = −3/2. Thus the above system can be expressed as:

ε2x−1/2 ∂G = {






0 1 0

1 0 0

0 1 0




+






0 0 0

0 0 0

1 0 0




 (x−3/2ε) +






0 0 0

0 −x2 0

0 0 −2x2




 (x−3/2ε)2 } G.

Now that the leading term is a constant matrix with three distinct eigenvalues, we can proceed by

applying the Splitting of Theorem 5.1. Luckily, this system can be uncoupled thoroughly.

�

However, we might encounter different scenarios as well, as illustrated in the following example which

was treated initially in [142, pp 88]. We remark however that the techniques proposed in the former start

with the reduction of A(x, ε) to its Arnold-Wasow form followed by the construction of the (x, ε)-polygon.

This particular example therein was already given in Arnold-Wasow form for the sake of simplicity and

hence, the transformations computed by our algorithm, which doesn’t require reduction to this form, do

not deviate herein from those in the former.

| Example 5.5 ([142],pp 57)

Consider again the system of Example 5.2 (σA = 0, p = 0) which is equivalent to the scalar

equation (4.4):

ε2 ∂F =






0 1 0

0 0 1

ε 0 x




F.

As mentioned, we have a turning point at x = 0. A00 is nilpotent in Jordan form while the

eigenvalues of A0(x) are 0, 0, x, whence s = 1. Let T = diag(1, x, x2) then upon setting F = TG

we get

ε2 ∂G = x{






0 1 0

0 0 1

0 0 1




+






0 0 0

0 0 0

1 0 0




x−3ε+






0 0 0

0 −1 0

0 0 −2




x−2ε2 } G.

Hence, σÃ = −3, p̃ = −1, and the former can be rewritten equivalently as:

ε2x−1 ∂G = {






0 1 0

0 0 1

0 0 1




+






0 0 0

0 0 0

1 0 0




 (x−3ε) +






0 0 0

0 −x4 0

0 0 −2x4




 (x−3ε)2 } G.

The constant leading matrix coefficient of the resulting matrix is no longer nilpotent. Hence the
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system can be uncoupled into two subsystems upon setting G = TW where

T =






1 0 1

0 1 1

0 0 1




+






−1 −1 0

−1 −1 −2
−1 −1 0




 (x−3ε) +O((x−3ε)2).

The resulting equivalent system then consists of the two uncoupled lower dimension systems where

W = [W1,W2]
T :

ε2x−1∂W1 = {
[

0 1

0 0

]

+

[

−1 0

−1 0

]

(x−3ε) +

[

1 −1
1 −1 + x4

]

(x−3ε)2 +O((x−3ε)3) }W1.

ε2x−1∂W2 = {1 + (x−3ε) + (1 + 2x4)(x−3ε)2 +O((x−3ε)3) }W2.

For the second subsystem, the ε-exponential part is
∫

ε−2x(1 + O(εx−3)) dx = 1
2ε

−2x2 + . . . :

the eigenvalue x of the leading matrix coefficient of the system we started with is recovered as

expected. This is in accordance with the ε-exponential parts obtained for the scalar equation (4.4).

As for the first subsystem, A0(x) and A00 are now simultaneously nilpotent.

�

To proceed to the total uncoupling of the above system into scalar equations, we introduce the ε-rank

reduction.

5.5 ε-Rank reduction

We consider again system [Aε,σA
] given by (5.1). We suppose that the turning point of the system is

treated and no further reduction can be attained via splitting. We can now assume without loss of

generality that A0(x) and A00 are simultaneously nilpotent and we investigate the ε-rank reduction of

the system, i.e. we seek to determine the minimal integer value of h among all equivalent systems to

[Aε,σA
] and to construct a transformation for which the equivalent system has this minimal ε-rank.

We first generalize Moser’s reduction criterion given in [107] (see Chapter 1). We remark that, as we

have seen in Section 1.5.1, the motivation behind [107] was to determine the nature of the singularity

(regular or irregular) of the unperturbed system [A] given by (1). Consequently, the reduction of the

Poincaré rank p of x to its minimal integer value was investigated. For the perturbed system [Aε,σA
]

(or [Aε]) however, it seems more plausible to reduce h, rather than p, to its minimal integer value (see

Section 5.2 for the resolution of the case h = 0).

Moser’s criterion was generalized as well to linear functional matrix equations in [21], a particular

case of which is the unperturbed system [A]. It was also borrowed in [75] from the theory of differential

systems to investigate efficient algorithmic resolution of the perturbed algebraic eigenvalue-eigenvector

problem (see Chapter 2).However, despite their utility and efficiency for such univariate systems,

algorithms based on this criterion are not considered so far over bivariate fields.

Barkatou developed in [15] a Poincaré rank reduction algorithm for the unperturbed differential system

[A] with rational coefficients. In this section, we give a rank reduction criterion and generalize this
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algorithm to system [Aε,σA
]‡.

Following the discussion for unperturbed systems [A] of the form (1), we define the ε-Moser rank and

ε-Moser invariant of system [Aε,σA
] respectively as the rational numbers:

mε(A) = max (0, h+
rank (A0(x))

n
) and

µε(A) = min {mε(T [Aε,σA
]) for all possible choices of T in GLn(R((ε)))}.

| Definition 5.4

We say that system [Aε,σA
] (the matrix A(x, ε) respectively) is ε-reducible if mε(A) > µε(A),

otherwise we say that is ε-irreducible.

If mε(A) ≤ 1, then h = 0. Hence, we restrict our attention to the case of mε(A) > 1.

| Remark 5.5

This definition is not to be mixed neither with the usual sense of Moser-irreducible unperturbed system

[A] given by (1), i.e. the systems whose Poincaré rank p is minimal; nor with the common sense of

reduced system in the literature, i.e. the system defined from [Aε,σA
] by xp∂F = A0(x)F .

The main result of this section is the following theorem and its sufficient condition whose proof follows

after a series of intermediate results. In this section, given a system [Aε,σA
], we assume, without loss of

generality due to Remark 5.1, that p− σAh− 1 ≥ 0.

| Theorem 5.2

Consider system [Aε,σA
] given by (5.1):

[Aε,σA
] εhxp∂F = A(x, ε)F =

∞∑

k=0

Ak(x)(x
σAε)

k
F.

We assume that h > 1, mε(A) > 1, and r = rank (A0(x)) < n. Suppose that there exists a

transformation F = T (x, ε)G, where T =
∑∞

k=0 Tk(x)(x
σAε)k is invertible, and Tk(x) ∈Mn(C[[x]])

‡Moser himself, within his numerous and diverse interests, was interested in such systems. However, he did not consider his
own approach to rank reduction of the unperturbed counterparts of such systems to treat system [Aε,σA ] as we propose in this
section. In an internal technical report [106], he investigates the formal growth order. His treatment resembles essentially that of
Iwano in [71] although these works were developed independently. On another rather irrelevant note, Moser had another kind of
relationship to researchers interested in such systems: In [112], O’Malley and Robert trace the birth of singular perturbation theory
to Göttingen with the seven-page paper of Prandtl entitled “On fluid motion with small friction”. This paper, as they quote from Tani
(1977), marked on the epoch in the history of fluid dynamics, opening the way for understanding the motion of real fluids. Prandtl’s
life however was characterized by his most famous student Theodore von Kármán as particularly full of overtones of näiveté. Indeed,
when Prandtl decided he ought to marry in 1909, he wrote to the Föppls asking for the hand of one of their daughters, without
specifying one of them in particular. In a discussion whether Prandtl married the appropriate daughter of the Föppls, the authors
of [112] remark that, I quote, the tradition of marrying the daughter of one’s professor had been common in academic Germany,
sometimes being suggested as the way mathematical talent was transferred between generations. Courant, for example, married Runge’s
daughter, and his daughters have also married prominent mathematicians, namely Jurgen Moser and Peter Lax, who certainly did not
need family assistance to obtain success.
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for all k ≥ 0, such that the equivalent system

[Bε,σA
] εh̃xp∂G = B(x, ε)G =

∞∑

k=0

Bk(x)(x
σAε)

k
G

satisfies either (h̃ < h) or (h̃ = h and rank(B0(x)) < r). Then, setting ξ = xσAε, the polynomial

θA(λ) := ξr det(λI +
A0(x)

ξ
+A1(x))|ξ=0 (5.15)

vanishes identically in λ.

Proof. Suppose that such a T (x, ε) exists, then we can present T (x, ε) in the form (see [106, Lemma 1]):

T (x, ε) = P (x, ε) ξα Q(x, ε),

where P (x, ε), Q(x, ε) are unimodular elements ofMn(R[[ε]]), and α = diag(α1, . . . , αn) for some integers

α1 ≤ α2 ≤ · · · ≤ αn.

We then define the span s(T ) by

s := s(T ) = αn − α1 = max1≤i,j≤n (αi − αj).

Without loss of generality, one can assume that s = 1. Otherwise, T can be written as a product of s+ 1

transformations, the first of which is of span zero and the rest are of span one each, and which can be

applied successively to the system. In fact, let ek,l = 0 if k = l and ek,l = 1 otherwise. Then one can

construct§ s+ 1 sequences

β(i) = (β
(i)
1 , . . . , β(i)

n ), i ∈ {0, . . . , s},

§We illustrate with the following examples:

• α = (1, 2, 4) then s = 3 and the 4 sequences can be chosen as (1, 1, 1), (0, 1, 1), (0, 0, 1), (0, 0, 1);

• α = (2, 3, 3) then s = 1 and the 2 sequences can be chosen as (2, 2, 2), (0, 1, 1);

• α = (−2,−1, 3) then s = 5 and the 6 sequences can be chosen as (−2,−2,−2), (0, 1, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1)
.
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in the following manner

β(0) = (α1, α1, . . . , α1)

β(1) = (0, eα2,α1
, . . . , eαn,α1

)

β(2) = (0, eα2,α1+1, . . . , eαn,α1+1)

...

β(i) = (0, eα2,α1+i−1, . . . , eαn,α1+i−1)

...

β(s) = (0, eα2,α1+s−1, . . . , eαn,α1+s−1)

One can then verify that for any i ∈ {1, . . . , s} we have

β
(i)
1 ≤ · · · ≤ β(i)

n ,

β(i)
n − β

(i)
1 = 1, and

s∑

i=0

β
(i)
j = αj , j ∈ {1, . . . , n}

We then proceed by defining

T (i) = Pξβ
(i)

P−1, for i ∈ {0, 2, . . . , s− 1}
T (s) = Pξβ

(s)

Q.

We then have

T = T (0)T (1)T (2) . . . T (s)

where s(T (0)) = 0 and s(T (i)) = 1, i ∈ {1, . . . , s}.
We now consider Ã = P−1AP − ξhxp−σAhP−1∂P and B̃ = QBQ−1 + ξhxp−σAh(∂Q)Q−1. Then we have

B̃ = ξ−αÃξα − ξhxp−σAh−1 diag(σα1, . . . , σαn).

It then follows from the unimodularity of P and Q with respect to ε (and consequently ξ) that mε(A) =

mε(Ã) and mε(B) = mε(B̃). Let ϑ(λ) = ξr det(λI + A
ξ )|ξ=0, then we have:

ϑ(λ) = ξr det(λI +
A

ξ
)|ξ=0 = ξr det(λI +

Ã

ξ
+ ξh−1xp−σAh−1P−1(∂P ))|ξ=0

= ξr det(λI +
B̃

ξ
+ P̃ ) |ξ=0

where P̃ = ξh−1xp−σAh−1(diag(σα1, . . . , σαn) + xξ−αP−1∂Pξα). Hence, P̃ (x, ξ) has no poles in ξ since

span(T ) = 1. In other words, the pole introduced in ξ−αP−1∂Pξα is at worst a simple pole. And so, P̃

has no poles.
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Thus the worst pole the determinant of ϑ(λ) can have is of order µ ≤ rank(B̃0(x)) = rank(B0(x)) < r,

i.e.

ϑ(λ) = ξr−µ E(x, ξ, λ)|ξ=0

where E(x, ξ, λ) is a polynomial in λ whose coefficients lie in C((x))[[ξ]]. Consequently, ϑ(λ) ≡ 0. But

ϑ(λ) = ξr det(λI +
A

ξ
)|ξ=0 ≡ ξr det(λI +

A0(x)

ξ
+A1(x) +

∞∑

k=2

Ak(x)ξ
k−1)|ξ=0,

and so it suffices to consider A0 and A1, which yields θA(λ) ≡ 0. �

| Remark 5.6

The assumption that σA = σB = σT in the baove theorem does not restrict its generality. In fact, if

σB 6= σA or σT 6= σA then the transformation and both systems can be re-expressed with a common

restraining index equals to min(σA, σB , σT ).

In what follows, we prove constructively that the condition on (5.15) is also sufficient whenever h > 1.

We remark that the distinction between the two cases h > 1 and h = 1 is technical as explained in the

following remark and unlike for the Poincaré rank p of an unperturbed system [A], it does not lead to a

classification of regularity.

| Remark 5.7

Given system [Aε,σA
] we study herein the effect of the two transformations that we will perform in the

sequel:

• Let T (x) = (In +Q(x)) ∈ GLn(C[[x]]) such that

Q(x) = [qij ]1≤i,j≤n , s.t.







qnj ∈ C[[x]] , for r + 1 ≤ j < n

qij = 0 elsewhere.

By F = TG, the resulting equivalent system is given by:

[Ãε,σA
] εhxp∂G = Ã(x, ε)G =

∞∑

k=0

Ãk(x)(x
σAε)k

where σÃ = σA and







Ã0(x) = (In +Q(x))−1 A0(x) (In +Q(x))

Ã1(x) = (In +Q(x))−1 A1(x) (In +Q(x))− γxp∂Q(x);

Ã2(x) = . . .

(5.16)

where γ = 1 if h = 1 and γ = 0 otherwise. But, due to (5.15), we can limit our interest to A0(x),

A1(x), Ã0(x), and Ã1(x) solely. Hence, if h > 1 then it suffices to investigate T−1 A(x, ξ) T ,

the similarity term of (5.3). However, if h = 1 then the term T−1∂T (x) should be taken into
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account.

• Let T = diag((xσ
Aε)

α1 , . . . , (xσ
Aε)

αn) where α1, . . . , αn are integers. Then T−1∂T =

diag 1
x (σα1, . . . , σαn).

The two cases h > 1 and h = 1 are discussed separately and respectively in the following two subsections.

5.5.1 ε-Reduction, h > 1

| Theorem 5.3

Given the system

[Aε,σA
] εhxp∂F = A(x, ε)F =

∞∑

k=0

Ak(x)(x
σAε)

k
F

with h > 1 and mε(A) > 1. Set rank (A0(x)) = r . Suppose that the polynomial

θA(λ) := ξr det(λI +
A0(x)

ξ
+A1(x))|ξ=0

vanishes identically in λ. Then there exists a transformation F = R(x, ε)G such that the equivalent

system

[Ãε,σA
] εh̃xp∂G = Ã(x, ε) G =

∞∑

k=0

Ãk(x)(x
σAε)

k
G

satisfies either (h̃ < h) or (h̃ = h and rank(Ã0(x)) < r). Moreover, such a R(x, ε) can be always

chosen to be a product of unimodular transformations in GLn(C[[x]]) and polynomial transformations

in (xσAε) of the form diag((xσAε)α1 , . . . , (xσAε)αn) where α1, . . . , αn are nonnegative integers.

The proof of the theorem will be given after a set of intermediate results. We start with the following

lemma.

| Lemma 5.1

Given the system

[Aε,σA
] εh xp ∂F = A(x, ε)F =

∞∑

k=0

Ak(x)(x
σ
Aε)

k
F,

with r = rank (A0(x)). There exists a unimodular transformation U(x) in GLn(C[[x]]) such that the

leading matrix coefficient Ã0(x) of the equivalent system is given by

[Ãε,σA
] εhxp∂G = Ã(x, ε)G =

∞∑

k=0

Ãk(x)(x
σ
Aε)

k
G,
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and Ãk(x) ∈Mn(C[[x]]) for all k ≥ 0, and Ã0(x) has the form

Ã0(x) =

[

Ã11
0 (x) O

Ã21
0 (x) O

]

where Ã11
0 (x) is a square matrix of dimension r and

[

Ã11
0 (x)

Ã21
0 (x)

]

is a n× r matrix of full column rank r.

We call the transformation of Lemma 5.1 column reduction. Remark that the form of Ã0 is analogous to

the CRV form of Definition 2.1.

Proof. By Remark 5.7, Ã0(x) = U−1(x)A0(x)U(x). Hence it suffices to search a similarity transformation

U(x). Since C[[x]] is a principal ideal domain (the ideals of C[[x]] are of the form xkC[[x]]), it is well

known that one can construct unimodular transformations Q(x), U(x) lying in GLn(C[[x]]) such that the

matrix Q(x)A0(x)U(x) has the Smith normal form

Q(x) A0(x) U(x) = diag(xβ1 , . . . , xβr , 0, . . . , 0))

where det(U(0)) 6= 0, det(Q(0)) 6= 0 , and β1, . . . , βr in Z with 0 ≤ β1 ≤ β2 ≤ · · · ≤ βr.

It follows that we can compute a unimodular matrix U(x) in GLn(C[[x]]) so that its last n − r columns

form a C[[x]]-basis of ker (A0(x)). �

| Remark 5.8

In practice, U(x) can be obtained, as suggested in [26], by performing Gaussian elimination on the

columns of A0(x) taking as pivots the elements of minimum valuation (order) in x.

Hence, we can suppose without loss of generality that A0(x) is of the form

A0(x) =

[

A11
0 (x) O

A21
0 (x) O

]

(5.17)

with r independent columns and (n− r) zero columns. We partition A1(x) in accordance with A0(x), i.e.

A1(x) =

[

A11
1 (x) A12

1 (x)

A21
1 (x) A22

1 (x)

]

, and consider

GA(λ) =

[

A11
0 (x) A12

1 (x)

A21
0 (x) A22

1 (x) + λIn−r

]

. (5.18)

This consideration of GA(λ) gives an ε-rank reduction criterion equivalent to θA(λ) as demonstrated in

the following lemma:

| Lemma 5.2

Let θA(λ) and GA(λ) be given by (5.15) and (5.18) respectively. Then, det(GA(λ)) vanishes

identically in λ if and only if θA(λ) does.
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Proof. With ξ denoting xσAε, let D(ξ) = diag(ξIr, In−r) where r = rank (A0(x)). Then we can write

ξ−1A(x, ξ) = ND−1 where N := N(x, ξ) ∈ Mn(C[[x]][[ξ]]) has no poles in ξ. Set D0 = D(0) and

N0 = N(x, 0). Then we have

det(GA(λ)) = det(N0 + λD0) = det(N + λD)|ξ=0

= (det(
A(x, ξ)

ξ
+ λIn) det(D))|ξ=0

= (det(
A0(x)

ξ
+A1(x) + λIn) ξ

r)|ξ=0 = θA(λ).

�

We illustrate our progress with the following simple example.

| Example 5.6

Consider εh∂F = A(x, ε)F where σA = 0, h > 1, and

A(x, ε) =









ε −x3ε (1 + x)ε 0

x2 xε 0 −2xε
−x 0 0 2ε

0 2 0 ε2









.

Clearly, A0(x) is nilpotent of rank 2 and

GA(λ) =









0 0 x+ 1 0

x2 0 0 −2x
−x 0 λ 2

0 2 0 λ









. (5.19)

�

We then have the following proposition:

| Proposition 5.2

Consider the system [Aε,σA
] given by (5.1):

[Aε,σA
] εh xp ∂F = A(x, ε)F =

∞∑

k=0

Ak(x)(x
σAε)

k
F,

and set r = rank (A0(x)). If mε(A) > 1 and det(GA(λ)) ≡ 0 then there exists a finite product of

triangular matrices T (x) = P (In + Q(x)) where P is a permutation and detT (x) = ±1, such that

for the equivalent system

[Ãε,σA
] εhxp∂G = Ã(x, ε) G =

∞∑

k=0

Ãk(x)(x
σAε)

k
G
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we have Ãk(x) ∈Mn(C[[x]]) for all k ≥ 0 and:

GÃ(λ) =






A11
0 (x) U1(x) U2(x)

V1(x) W1(x) + λIn−r−̺ W2(x)

M1(x) M2(x) W3(x) + λI̺




 , (5.20)

where 0 ≤ ̺ ≤ n− r, W1, W3 are square matrices of order (n− r − ̺) and ̺ respectively, and

rank (

[

A11
0 (x) U1(x)

M1(x) M2(x)

]

) = rank (
[

A11
0 (x) U1(x)

]

), (5.21)

rank (
[

A11
0 (x) U1(x)

]

) < r. (5.22)

Our procedure differs from [15] in the properties of M1, M2, and W3. The nullity of M1 and M2 in the

former is replaced by the weaker condition (5.21) here. Otherwise, the unimodularity of T (x) cannot be

guaranteed. Moreover, this refinement avoids unnecessary computations. We establish Remark 5.9 which

we will use in the proof of this Proposition.

| Remark 5.9

Suppose that G[Aε,σA
](λ) has the form (5.20) and there exists a transformation T (x) ∈ GLn(C((x)))

such that GT [Aε,σA
](λ) has the form

GT [Aε,σA
](λ) =






A11
0 U1 U2

V1 W1 + λIn−r−̺ W2

O O W̃3 + λI̺




 ,

where 0 ≤ ̺ ≤ n− r and W̃3 is upper triangular with zero diagonal. Then,

det(GT [Aε,σA
](λ)) = λ̺ det(

[

A11
0 U1

V1 W1 + λIn−r−̺

]

).

If det(G[Aε,σA
](λ)) ≡ 0 then we have det(GT [Aε,σA

](λ)) ≡ 0 as well (rank of leading matrix coefficient

is unchanged). Hence,

det(

[

A11
0 U1

V1 W1 + λIn−r−̺

]

) ≡ 0. (5.23)

For a fixed ̺ ∈ {0, . . . , n− r} we shall denote by G
(̺)
0 the matrix

[

A11
0 U1

V1 W1

]

of (5.20).

Proof. (Proposition 5.2) Since det(GA(λ)) ≡ 0 then in particular, the matrix GA(λ = 0) is singular. Let

E1 (respectively E2) be the vector space spanned by the first r (resp. last n− r) rows of GA(λ = 0). We

have

dim(E1 + E2) = rank(GA(λ = 0)) < n.
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If dim(E1) < r then setting ̺ = 0 suffices to fulfill our claim. Otherwise, since

dim(E1 + E2) = dim(E1) + dim(E2)− dim(E1 ∩ E2) < n,

it follows that either dim(E2) < n − r or dim(E1 ∩ E2) > 0. In both cases, there exists at least a row

vector ̟(1)(x) = (̟
(1)
1 (x), . . . , ̟

(1)
n (x)) with entries in C((x)) in the left null space of GA(λ = 0), such

that ̟(1)
j (x) 6= 0 for some r + 1 ≤ j ≤ n. We can assume without loss of generality that ̟(1)(x) has its

entries in C[[x]]. Indeed, this assumption can be guaranteed by a construction as in Remark 5.8. Let the

constant matrix P (1) denote the product of permutation matrices which exchange the rows of A(x, ε), so

that valx(̟
(1)
n (x)) < valx(̟

(1)
j (x)) , r+1 ≤ j ≤ n− 1, where valx denotes the x-adic valuation (order in

x). Let

Q(1)(x) = [q
(1)
ij (x)]1≤i,j≤n , s.t.







q
(1)
nj (x) = −

̟
(1)
j (x)

̟
(1)
n (x)

, for r + 1 ≤ j < n

q
(1)
ij = 0 elsewhere

Thus, P (1)(In +Q(1)(x)) is unimodular in GLn(C[[x]]).

Set F = F 0, A(x, ε) = A(0)(x, ε), and let A(1)(x, ε) be the matrix of the equivalent system εhxp∂F (1) =

A(1)(x, ε)F (1) obtained by the transformation

F (0) = P (1)(In +Q(1)(x)) F (1).

Thus, by Remark (5.7), GA(1)(λ) has the form (5.20) with (5.21) and ̺ = 1.

By Remark 5.9, the matrix GA(1)(λ = 0) is singular and the condition (5.22) does not occur, then one can

find, by the same argument as above a permutation matrix and a nozero vector ̟(2)(x) in the left null

space of G(1)(λ = 0). Let

Q(2)(x) = [q
(2)
ij (x)]1≤i,j≤n , s.t.







q
(2)
n−1,j(x) = −

̟
(2)
j (x)

̟
(2)
n−1(x)

, for r + 1 ≤ j < n− 1

q
(2)
ij = 0 elsewhere

The matrix GA(2)(λ) is then of the form (5.20) with (5.21) and ̺ = 2.

Consider the finite sequence of equivalent systems obtained by the transformation

F (s−1) = P (s)(In +Q(s)(x)) F (s)

where 1 ≤ s ≤ ̺ and

Q(s)(x) = [q
(s)
ij (x)]1≤i,j≤n , s.t.







q
(s)
n−s+1,j(x) = −

̟
(s)
j (x)

̟
(s)
n−s+1(x)

, for r + 1 ≤ j < n− s+ 1

q
(s)
ij = 0 elsewhere.

Then this process yields an equivalent matrix Ã(x, ε) := A(̺)(x, ε) with (5.21) for which either (5.22)

occurs or ̺ = n − r. But in the latter case one has, again by Remark 5.9, that det(A11
0 (x)) = 0, and

so (5.22) occurs. It is easy to observe that, under the assumption p− σAh− 1 ≥ 0, σÃ = σA(s) = σA. �
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| Example 5.7 (Continue Example 5.6)

A simple calculation shows that det(GA(λ)) ≡ 0 hence A is ε-reducible. From (5.19), for λ = 0,

we have the singular matrix

GA(λ = 0) =









0 0 x+ 1 0

x2 0 0 −2x
−x 0 0 2

0 2 0 0









. Let T =









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0









then the transformation F = TG yields the equivalent system εh∂G = Ã(x, ε)G where

Ã(x, ξ) =









ε −x3ε 0 (1 + x)ε

x2 xε −2xε 0

0 2 ε2 0

−x 0 2ε 0









.

GÃ(λ) has the form (5.20) with ̺ = 1 and r = 2. In fact,

GÃ(λ) =









0 0 0 (1 + x)

x2 0 0 0

0 2 λ 0

−x 0 2 λ









.

�

| Lemma 5.3

Consider the system [Aε,σA
] given by (5.1):

[Aε,σA
] εh xp ∂F = A(x, ε)F =

∞∑

k=0

Ak(x)(x
σAε)

k
F.

Set r = rank(A0(x)) and suppose that mε(A) > 1 and GA(λ) has the form (5.20)

with conditions (5.21) and (5.22) satisfied. Consider the shearing transformation S(x, ε) =

diag((xσAε)Ir, In−r−̺, (x
σAε)I̺) if ̺ 6= 0 and S(x, ε) = diag((xσAε)Ir, In−r) otherwise. Then

F = S(x, ε)G yields the equivalent system

[Ãε,σA
] εh xp ∂G = Ã(x, ε)G =

∞∑

k=0

Ãk(x)(x
σAε)

k
G,

for which Ãk(x) ∈Mn(C[[x]]) for all k ≥ 0 and rank(Ã0(x)) < r.
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Proof. We partition A(x, ε) as follows ((x, ε) dropped for clarity)

A(x, ε) =






A11 A12 A13

A21 A22 A23

A31 A32 A33






where A11, A22, A33 are of dimensions r, n− r − ̺, and ̺ respectively. It is easy to verify then that

Ã(x, ε) = S−1AS − S−1∂S

= S−1AS − (xσAε)hxp−σAh−1 diag(σIr, On−r−̺, σI̺)

=






A11 − (xσAε)hxp−σAh−1σIr (xσAε)−1A12 A13

(xσAε)A21 A22 (xσAε)A23

A31 (xσAε)−1A32 A33 − (xσAε)hxp−σAh−1σI̺




 .

Hence, since h, p > 1, the new leading matrix coefficient is

Ã0(x) =






A11
0 U1 O

O O O

M1 M2 O






and rank(Ã0(x)) = rank(A11
0 U1) < r. The rest of the properties can be easily verified due to the

assumption p− σAh− 1 ≥ 0. �

| Example 5.8 (Continue Example 5.7)

Let S(ε) = diag(ε, ε, 1, ε) then G = S(ε)U yields εh∂U = ˜̃A(x, ε)U where

˜̃A(x, ε) =









ε −x3ε 0 (1 + x)ε

x2 xε −2x 0

0 2ε ε2 0

−x 0 2 0









.

It is clear that the leading term ˜̃A0(x) has rank 1 < 2 = rank(A0(x)).

�

Proof. (Theorem 5.3) By Lemma 5.1, we can assume that A0(x) is in the form (5.17). Then, GA(λ) is

constructed as in (5.18). Since det(GA(λ)) ≡ 0, it suffices to take the change of basis F = R(x, ε)G =

T (x, ε)S(x, ε)G, where T (x, ε) and S(x, ε) are as in Propositions 5.2 and Lemma 5.3 respectively. �

| Remark 5.10

The ε-reducibility of [Aε,σA
] implies that the rank of the leading matrix coefficient can be dropped

(and consequently the ε-Moser rank) without necessarily reducing the ε-rank h of the system. If the

ε-rank reduction criterion is satisfied for a sufficient number of equivalent systems then a repetitive

application of such a transformation results in an equivalent system whose leading matrix coefficient
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has a zero rank, hence h can be reduced by one (e.g. Example 5.9). At this point, the discussion

restarts from the nature of the eigenvalues of the leading constant matrix.

| Example 5.9

Consider the system ε4∂F = A(x, ε)F where σA = 0 and

A(x, ε) =









2xε3 3x2ε4 2xε2 (2x+ 1)ε5

0 ε4 0 0

0 0 ε2 0

−2x 0 0 0









.

The transformation F = TG, where

T =









0 ε3 0 0

0 0 ε 0

ε3 0 0 0

0 0 0 1









,

computed by our algorithm results in an equivalent ε-irreducible system ε2∂G = Ã(x, ε)G where

Ã(x, ε) =









1 0 0 0

2x 2xε 3x2 2x+ 1

0 0 ε2 0

0 −2xε 0 0









,

whose ε-rank is diminished by two .

�

5.5.2 ε-Reduction, h = 1

It is left now to treat the case of h = 1. Let htrue denote the true ε-rank, i.e. the minimal integer value

that can be attained for h upon applying an invertible transformation.

| Proposition 5.3

Consider the system [Aε,σA
] given by (5.1) for which h = 1:

[Aε,σA
] εxp∂F = A(x, ε)F =

∞∑

k=0

Ak(x)(x
σAε)

k
F

such that mε(A) > 1. If by a ramification ε = ε̃s where s ≥ n + 1 and ε̃-rank reduction of

Subsection 5.5.1, the equivalent system is of the form

[Ãε̃,σÃ
] ε̃xp∂F = Ã(x, ε̃)F =

∞∑

k=0

Ãk(x)(x
σÃ ε̃)

k
F,
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then, the singularity in ε is apparent, i.e. htrue = 0.

Proof. Let ωε(A) = ℓ
d where ℓ and d are coprime. Then, d, ℓ ≥ 0, d < n and ωε(A) ≤ htrue (see

Corollary 5.2). Let ε = ε̃s then ωε̃(Ã) = sωε(A) and ωε̃(Ã) ≤ h̃true. Hence, if s ≥ n+ 1, we have,

ωε̃(Ã) = sωε(A) = s
ℓ

d
≥ (n+ 1)

ℓ

n
≥ (1 +

1

n
)ℓ.

Hence, if ℓ 6= 0 then

1 < (1 +
1

n
)ℓ ≤ ωε̃(Ã) ≤ h̃true.

�

| Remark 5.11

Proposition 5.3 lifts the problem from h = 1 to h > 1. It can be restated as follows: Within the formal

reduction, whenever the case h = 1 is attained, a ramification ε = ε̃s where s is an integer greater

than n+1, is introduced so that the reduction of Subsection 5.5.1 can be applied. After this reduction,

two cases arise:

• If the ε-rank of the resulting system is less than or equal to one then htrue of the original system

is zero, and we stop.

• Otherwise, we proceed with our reduction.

The case htrue = 0 can be treated with classical Arnold-Wasow approach. That is, the system is put in

Arnold’s form first and the (x, ε)-polygon can be constructed to determine the proper shearing¶.

| Example 5.10

Consider the first resulting subsystem of Example 5.5:

ε2x−1∂W1 = {
[

0 1

0 0

]

+

[

−1 0

−1 0

]

(x−3ε) +

[

1 −1
1 −1 + x4

]

(x−3ε)2 +O((x−3ε)3) }W1.

It’s easy to see that the leading coefficient and constant matrices coincide and θ(λ) = 1.

�

To proceed in the formal reduction of Example 5.10, one needs to introduce a ramification in ε. This

is the objective of Chapter 6. A major constituent of the proofs established in the latter is the ε-Moser

invariant of a scalar equations, is introduced in Section 5.6.

¶ We remark that in the implementation, we first try to find whether there exist constant vectors in the left null space of GA(λ).
If such vectors do exist, we use them to construct a transformation which might reduce the rank. If the ε-rank remains one after
all the constant vectors are exhausted, we compute a candidate for the ramification in ξ from the characteristic polynomial. If
this candidate, after applying again the ε-rank reduction results in a system with non-nilpotent leading coefficient, we keep it.
Otherwise, we use Arnold-Wasow approach.
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Algorithm 4 ε-RANK_REDUCTION: ε-Rank Reduction of System [Aε,σA
]

Input: h, p, A(x, ε) of [Aε,σA
] (under the non-restrictive assumptions indicated within reduction)

Output: R(x, ε) ∈ GLn(R((ε))) and an equivalent system given by h̃ and Ã(x, ε) which is ε-irreducible.
R← In;
h← ε-rank of A;
U(x)← Lemma 5.1 so that U−1A0(x)U has form (5.17);
R← RU ;
A← U−1AU − (xσAε)hxp−σAh−1U−1∂U ;
d = det(Gλ(A));
while d = 0 and h > 0 do

if h > 1 then
T (x), ̺← Proposition 5.2 ;
A← T−1AT − (xσAε)hxp−σAh−1T−1∂T ;
S(x, ε)← Lemma 5.3;
A← S−1AS − (xσAε)hxp−σAh−1S−1∂S;
R← RTS;

else
A← Proposition 5.3;

end if
U(x)← Lemma 5.1 ;
R← RU ;
A← U−1AU − (xσAε)hxp−σAh−1U−1∂U ;
d = det(Gλ(A));
h← ε-rank of A;

end while
return (R, A, h).
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5.6 ε-Moser invariant of a scalar equation

Due to the equivalence between the scalar equation [aε] and system [Aε] (resp. [Aε,σA
]) as discussed in

Section 5.2.2, it is natural to define and question the ε-Moser invariant of the former. This is the goal

of this section which is fulfilled by generalizing the analogous notion discussed for unperturbed scalar

linear differential equations in [107, Part IV]. Hence, we consider again the singularly-perturbed linear

differential equations given by

[aε,σa ] ∂n f + an−1(x, ε) ∂
n−1 f + . . . + a1(x, ε) ∂f + a0(x, ε) f = 0, (5.24)

and, in accordance with the case of systems, we consider the more general entries as follows: an(x, ε) = 1

and ai(x, ε) ∈ R((ε)). Thus, there exists a nonpositive integer σa such that for every i ∈ {0, . . . , n − 1},
ai(x, ε) can be expressed as

ai(x, ε) =

∞∑

k∈Z

ai,k(x)(x
σaε)k, with ai,k(x) ∈ xpC[[x]] for all k ∈ Z.

| Proposition 5.4

Given the differential equation [aε,σa ]. Let κ, ν be the smallest integers such that valε (ai(x, ε)) ≥
(i− n)(κ− 1)− ν. In other words, let

κ = min {̺ ∈ N| valε (ai) + (n− i)̺ ≥ 0, 0 ≤ i ≤ n} (5.25)

ν = max {(i− n)(κ− 1)− valε (ai), 0 ≤ i ≤ n} (5.26)

Then the ε-Moser invariant of the system given by the associated companion matrix is

µε(a) = κ+
ν

n
.

| Remark 5.12 (Geometric interpretation)

Consider again Nε(a), the ε-polygon (Section 4.1) in a (U, V )-plane. First, one can construct the

straight line passing through the point (n, 0), with the smallest integer slope κ, which stays below

Nε(a). It is the straight line of equation V = κ(U − n). Then, one finds among all the parallel lines

of slope (κ − 1), the highest straight line with an integer V -intercept which stays below Nε(a). The

V -intercept of the latter is −ν − n(κ − 1) where ν is an integer. In other words, the latter has the

equation V = (U − n)(κ− 1)− ν.

Proof. (Proposition 5.4) We define

γi = max {κ(i− n), (κ− 1)(i− n)− ν}, 0 ≤ i ≤ n− 1.
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Then, by construction, γi ≤ valε (ai) and equality is attained for at least one i ≥ n− ν (otherwise ν and

κ can be minimized). Let i0 represent the smallest integer such that γi0 = κ(i0 − n), then i0 = n − ν.

Geometrically, the γi’s represent a broken line dominated by the (i, valε (ai)). They will aid in the

construction of an ε-irreducible system which is equivalent to (5.24). In fact, let

wi+1 = (xσaε)γi ∂if, 0 ≤ i ≤ n− 1.

then we have







∂wi+1 = (xσaε)−κ [







(xσaε)wi+2 0 ≤ i < i0

wi+2 i0 ≤ i ≤ n− 2
+ (xσaε)κ σaγi

x wi+1],

wn = (xσaε)γn−1 ∂n−1f = (xσaε)−κ ∂n−1f,

∂wn = σaγn−1

x wn + (xσaε)−κ∂nf = (xσaε)−κ[(xσaε)κ σaγn−1

x wn +
∑n−1

i=0 αi(x, ε)wi+1].

where αi(x, ε) = −ai(x, ε)(xσaε)−γi =
∑∞

k∈Z
ai,k(x)(x

σaε)k−γi . Let W = (w1, . . . wn)
T and A(x, ε) =






















σaγ0(x
σaε)κ x(xσaε)

. . .

σaγi0−1(x
σaε)κ x(xσaε)

σaγi0(x
σaε)κ x

σaγi0+1(x
σaε)κ

x

xα0 xα1 . . . xαi0 xαi0+1 . . . xαn−1 + σaγn−1(x
σaε)κ






















.

Then one can verify that,

[Aε,σa ] xσaκ+1εκ∂W = A(x, ε)W.

It remains to prove that this system is ε-irreducible. We first remark that A(x, 0) has rank ν = n − i0

due to the linear independence of its last ν rows. In fact, it’s clear that it has ν − 1 linearly independent

rows (the rows with the x’s). Moreover, αi(x, ε) = −ai(x, ε)(xσaε)−γi = −ai(x, ε)(xσaε)−valε(ai), and

so αi(x, 0) 6= 0 for at least one i ∈ {0, . . . , i0}. Thus the last ν rows are linearly independent. Setting
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ξ = xσaε we have:

θA (λ) = ξν det(λI +
A0(x)

ξ
+A1(x))|ξ=0

= ξν

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ+ δ(σaγ0) x

. . .

λ+ δ(σaγi0−1) x

λ+ δ(σaγi0)
x
ξ

λ+ δ(σaγi0+1)

x
ξ

xα0

ξ
xα1

ξ . . .
xαi0

ξ

xαi0+1

ξ . . . λ+ δ(σaγn−1) +
xαn−1

ξ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

|ξ=0

= ξν−n+i0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ+ δ(σaγ0) x

. . .

λ+ δ(σaγi0−1) x

xα0 xα1 . . . xαi0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where δ = 1 if κ = 1 and is zero otherwise.

Hence, since αi(x, 0) 6= 0 for at least one i ∈ {0, . . . , i0}, θA(λ) does not vanish identically in λ and its

highest possible degree is i0. It follows from Theorem 5.2 that the system is ε-irreducible and µε(a) =

µε(A) = κ+ ν
n . �

| Example 5.11

Let σa = −1 and set ξ = xσaε. We consider the scalar differential equation

∂5f + (xξ−3 + x)∂4f + 2x2ξ−1∂3f + (ξ−3 + 1)∂2f + (−3ξ−4 + x2ξ−2)∂f − ξ−2f = 0.

First, we plot the points (i, valε(ai)), 0 ≤ i ≤ n = 5 and the ε-polygon (see Figure 5.1). Next, we

plot the straight line passing through the point (n, 0) = (5, 0) with smallest integer slope such that

it stays below all these point. This yields V = 3U − 15 = 3(U − 5) and τ = 3. Then, we plot the

straight line of slope τ − 1 = 2 which stays below these points: V = 2U − 11 = 2(U − 5) − 1.

This yields ν = 1. Finally, we consider γ = (γ0, . . . , γ4) = (−11,−9,−7,−5,−3). We observe that

i0 = n− ν = 4 and so the equivalent system is given by:

ξ3∂W =











11
x ξ3 ξ 0 0 0

0 9
xξ

3 ξ 0 0

0 0 7
xξ

3 ξ 0

0 0 0 5
xξ

3 ξ

ξ9 3ξ5 − x2ξ7 −ξ4 − ξ7 −2x2ξ4 −x− (x− 3
x )ξ

3











W,
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Figure 5.1: Geometric Interpretation

or equivalently

x−2ε3∂W =











11ξ3 xξ 0 0 0

0 9ξ3 xξ 0 0

0 0 7ξ3 xξ 0

0 0 0 5ξ3 xξ

xξ9 3xξ5 − x3ξ7 −xξ4 − xξ7 −2x3ξ4 −x2 − (x2 − 3)ξ3











W.

And the system is ε-irreducible since θA(λ) = xλ4.

�

| Corollary 5.1

Consider an ε-irreducible system [Aε,σA
] εhxp∂F = A(x, ε)F . Then, for any choice of a cyclic vector,

we have κ = h and ν = rank(A0), where κ and ν are defined in (5.25) and (5.26) respectively.

Proof. Let [Cε,σC
] εh̃xp̃∂G = C(x, ε)G denote an equivalent system associated to a cyclic vector (i.e.

whose matrix is in companion form, then by the equivalence between both systems and the ε-irreducibility

of A(x, ε), we have:

κ+
ν

n
= µε(C) = µε(A) = mε(A) = h+

r

n

Consequently, κ = h and ν = rank(A0). �

| Corollary 5.2

Under the given and notations of Corollary 5.1, we have:

κ− 1 +
ν

n
≤ ωε(A) ≤ κ and h− 1 +

rank(A0)

n
≤ ωε(A) ≤ h.
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Proof. Follows from (5.25), (5.26), and (5.4). �

5.6.1 Example of comparison with Levelt-Barkatou-LeRoux’s approach

While Moser defined two rational numbers in [107], Levelt investigated the existence of stationary

sequences of free lattices in [87]. Since Moser-based and Levelt’s algorithms serve the same utility,

i.e. rank reduction of the unperturbed system [A] given by (1), it is natural to question their comparison.

These algorithms have different theoretical bases but turned out to have an identical cost in the univariate

case, which suggests a further experimental study so that they can be well-compared [84, pp 108]. The

latter algorithm was generalized in [26] to a certain class of Pfaffian systems (free of turning points)

over bivariate fields. We refer to this generalization as Levelt-Barkatou-LeRoux’s algorithm. Following

arguments similar to those of [26] whenever the leading matrix coefficient is nilpotent and to Section 5.4

whenever it is not, Levelt-Barkatou-LeRoux algorithm seems adaptable to system [Aε,σA
] as well. Such

an attempt would give rise to Algorithm 5.

For the simplicity of the presentation, we assume that the input system has no turning point and so we

give the Algorithm and illustrate by an example for [Aε,σA
] with σA = 0.

Algorithm 5 PARAM_LATTICE_RANK_REDUCTION: Adaptation of Levelt-Barkatou-LeRoux Rank Reduction
to System [Aε]

Input: A(x, ε) of system [Aε];
Output: T (x, ε) computed via Levelt’s approach and an equivalent system given by T [A] which is
ε-irreducible in the sense of Moser.

T ← In
i← 0;
h← ε-rank of A;
while i < n− 1 and h > 0 do r ← rank(A0);

U(x)← unimodular transformation of Lemma 5.1 such that U−1A0U has the form (5.17);
S(x)← diag(εIr, In−r);
P ← US;
T ← TP ;
A← P−1AP − εP−1∂P ;
h̃← ε-rank of A;
if h̃ < h then then i← 0;
else i← i+ 1;
end if
h← h̃;

end while.
return (T, A).

It is clear that Algorithm 5 coincides with Algorithm 4 for ̺ = 0. For ̺ > 0, which frequently occurs

for matrices of dimension greater than 3, we ran simple examples of systems [Aε,σA
]. Despite the

identical cost of both algorithms, these examples exhibit that Algorithm 5 complicates dramatically the

matrix coefficients of the system under reduction. One factor in this complication stems from the weak

termination criterion of this algorithm. However, even upon adjoining Moser’s termination criterion

(given by θ(λ)) to this algorithm, as suggested in [26, Section 5], the result remains less satisfying than
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that of Algorithm 4. Another factor, is that Algorithm 5, contrary to Algorithm 4, demands unnecessary

Gaussian eliminations which might explain this growth in the size of coefficients. In fact, one can observe

that for ̺ > 0, Algorithm 5 applies, for every step in the iteration, Gaussian elimination on the leading

matrix coefficient followed by a shearing transformation without any assurance that the rank r will

drop. The latter is not guaranteed until n − 1 steps are performed. On the other hand, for ̺ > 0,

Algorithm 4 applies a “weak” Gaussian elimination on matrices of decreasing dimensions (see the proof of

Proposition 5.2) so that the form (5.20) is attained. With this form, a shearing transformation guarantees

a drop in the rank r of the leading matrix coefficient (Proposition 5.3). We exhibit here a selected example

over C[[x]][[ε]]. Additional examples are available for download with the package.

| Example 5.12

Let εh∂F = A(x, ε)F where

A =














0 0 0 εx(εx+ 3) ε3(x+ 9) εx2

x 0 0 0 9ε2x2 0

x2 −1 0 εx(εx6 + 1) 0 0

x3 + x −x 0 εx2 0 0

0 0 x −3ε 0 0

x3 − 1 5 0 0 0 0














.

It is easily verified that A is ε-reducible. Furthermore, we have mε(A) = h+ 3
6 and µε(A) = h+ 2

6 .

Hence, it suffices to run only one reduction step, for which the rank of the leading matrix

coefficient is dropped by one. We give the transformation T (x, ε) and the matrix of T [A] as

computed by Algorithm 4, Algorithm 5 with Moser’s criterion adjoined, and Algorithm 5 without

Moser’s criterion respectively. We illustrate the dramatic growth of their coefficients by listing

some entries due to the lack of space. The full computations can be found within the package.

• T =














ε 0 0 0 0 0

0 ε 0 0 0 0

0 0 ε 0 0 0

0 0 0 0 0 ε

0 0 0 1 0 0

0 0 0 0 ε 0














, T [A] =














0 0 0 ε2(x+ 9) x2ε εx(εx+ 3)

x 0 0 9x2ε 0 0

x2 −1 0 0 0 εx(εx6 + 1)

0 0 εx 0 0 −3ε2
x3 − 1 5 0 0 0 0

x(x2 + 1) −x 0 0 0 x2ε














;

• T =














ε3 0 0 0 0 −9xε2
0 0 −1/3x2ε2 ε2 0 0

0 0 0 0 ε 0

0 ε2 −1/3εx 0 0 0

0 0 0 0 0 1

0 0 ε 0 0 0














and T [A] = [ãij ] has entries with 2-digit

coefficients of degree 8 in x, e.g., ã12 = −x(27ε2 − εx− 3) and ã53 = −(1/3)ε2x8.
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• T = [tij ] and T [A] = [ãij ] have entries with 4-digit and 10-digit coefficients resp. The degrees

in x surpass 8, e.g.,

t23 =
1458ε2x5(x3 + 3x2 + 2)

2

243x11 + 1944x10 + 3627x9 + · · · − 324

ã13 = (39366εx25 + 1220346εx24 + 14565420εx23

+ 83731482εx22 + · · ·+ 944784)/(243x11

+ 1944x10 + 3627x9 + · · ·+ 324)2.

�

5.7 Conclusion

We proposed in this chapter an algorithm which treats the turning points of a singularly-perturbed linear

differential systems in a general setting and reduces its ε-rank to its minimal nonzero integer value.

A complementary step to attain the full formal reduction and construct formal solutions is to find the

ramification in the parameter which reduces the general case to the case discussed here in a recursive

process. This will be the subject of the next chapter. It is also left to reduce a system with h = 1 and

htrue = 0 to an equivalent one with h = 0, without resorting to Arnold-Wasow form.

Examples comparing this algorithm with a generalization of Levelt’s favors the former. However, it

suggests that Levelt’s algorithm be generalized to system [Aε,σA
] and that a detailed complexity analysis

comparing both algorithms be held alongside. Furthermore, it motivates the consideration of algorithms

based on a generalization of Moser’s criterion over other differential bivariate fields. This is to be

investigated for bivariate completely integrable Pfaffian systems with normal crossings in Chapter 8.

An additional field of investigation is tackling the two-parameter algebraic eigenvalue problem via

a differential-like approach. Such investigation is held for the one-parameter case in Chapter 2 and

references therein. In fact, by Remark 5.7, the main role in the reduction process is reserved to the

similarity term of T [Aε,σA
], i.e. T−1AT rather than T−1∂T . Hence, for a non-differential operator where

T [Aε,σA
] = T−1AT , the discussion is not expected to deviate from the discussion presented here for a

differential one.
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We consider again system [Aε,σA
] which is given by (5.1) and which we recall here:

[Aε,σA
] εh xp ∂ F = A(x, ε)F =

∞∑

k=0

Ak(x)(x
σAε)k F. (6.1)

In this chapter, we adopt without loss of generality the assumptions of Section 5.1 and the additional

assumption that [Aε,σA
] is ε-irreducible and h > 0. The goal of this chapter is to investigate the ε-formal

exponential order (ε-exponential order, in short) and ε-polynomials of system (6.1).

As for system [A] given by (1) in the first chapter, one cannot retrieve ωε(A) of system [Aε,σA
] from the

outset. In Section 6.1, we prove that ωε(A) can be computed from the characteristic polynomial of A(x,ε)
εhxp

and an associated ε-polygon whenever the system is ε-irreducible.

The ωε(A) and the corresponding ε-polynomial give indispensable information for formal reduction. In

particular, the former determines the ramification in ε which can lead to a system whose leading matrix is

non-nilpotent, so that the process of reduction can be resumed. This leads to the recursive Algorithm 6.

Eventually, we can construct fundamental matrices of formal solutions in any given subdomain. We

illustrate this algorithm by examples and motivate items for further investigation in Section 6.3.

6.1 Computing ε-exponential order using ε-polygon

Consider the ε-irreducible system [Aε,σA
] given by (6.1) with h > 0 and let

det(λI − A(x, ε)

εhxp
) = λn + αn−1(x, ε)λn−1 + · · ·+ α0(x, ε). (6.2)
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such that αn = 1 and αi(x, ε) =
∑∞

j=valε(αi)
αi,j(x)ε

j ∈ R((ε)) for i ∈ {0, . . . , n}. We define the ε-

polygon Nε(A) of [Aε,σA
] as in Section 4.1, by taking Pε(A) to be the union of P (i, valε (αi(x, ε)) for

i ∈ {1, . . . , n}.

| Theorem 6.1

Consider the ε-irreducible system [Aε,σA
] given by (6.1) with h > 0 and (6.2). If h > n−rank(A0(x))

then the ε-formal exponential order is given by

ωε(A) = max
0≤i<n

(
−valε(αi)

n− i
).

Additionally, the corresponding ε-polynomial is given by the algebraic equation

Eε(X) =

ℓ∑

k=0

αik,valε(αik
) X

(ik−i0)

where 0 ≤ i0 < i1 < · · · < iℓ = n denote the integers i for which ωε(n − i) = −valε(αi) (i.e. lie on

the edge of slope ωε of the ε-polygon Nε(A) of [Aε,σA
]); and αi,valε(αi)(x) = ε−valε (αi) αi(x, ε)|ε=0.

Not only does this theorem compute these invariants of the system, but also a further reduction of the

system as follows: Suppose that ωε(A) = ℓ
d with ℓ, d relatively prime positive integers. One can then

set ε̃ = ε1/d in [Aε,σA
] and perform again ε-rank reduction (the true ε-rank is ℓ). This will lead to an

equivalent system whose leading matrix coefficient has at least d distinct eigenvalues. The system can

thus be uncoupled into subsystems of lower dimensions. By repeating these procedures for each of the

resulting subsystems, we can uncouple the initial system into subsystem(s) of lower dimension(s) or zero

ε-rank. This leads to the recursive algorithm of Section 6.2.

We remark that the condition h > n − rank(A0(x)) in Theorem 6.1 is non-restrictive. We can always

arrive to a system satisfying this condition by a generalization of [14, Lemma 5], which is based on

applying the affinity (U, V ) → (U, d V ) for some integer d to the ε-polygon. In fact, we can prove the

following lemma:

| Lemma 6.1

Consider an ε-irreducible system [Aε,σA
] given by (6.1) with h > 0 and r = rank (A0(x)). Let d be

an integer such that d ≥ n
h−1+ r

n
and let

ε̃h̃xp̃∂G = Ã(x, ε̃)G.

be the ε̃-irreducible differential system obtained by the ramification ε = ε̃d and performing ε̃-rank

reduction. Then µε̃(Ã) = h̃+ r̃
n , where r̃ = rank (Ã0(x)) and h̃+ r̃ > n.

Proof. By Corollary 5.2 we have, h − 1 + r
n ≤ ωε(A) ≤ h. And due to ε = ε̃d, we have ωε(A) =

ωε̃(Ã)
d .

Hence, ωε̃(Ã) ≥ d(h − 1 + r
n ) ≥ n. But h̃ ≥ ωε̃(Ã) and r̃ ≥ 1, which yields h̃ + r̃ ≥ ωε̃(Ã) + 1 ≥

d(h− 1 + r
n ) + 1 ≥ n+ 1 > n. �
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| Example 6.1

Consider the system [Aε,σA
] ε2∂F = A(x, ε)F with σA = 0 and

A(x, ε) =






















0 0 ǫ2 0 ǫ x 0

ǫ2 ǫ3 xǫ 0 0 0 0

0 0 0 x 0 0 4

3 ǫ x2 0 0 0 ǫ2 xǫ 0

0 xǫ 0 0 0 ǫ2 0

0 0 xǫ ǫ2 ǫ2 0 0

0 ǫ3 0 0 0 0 xǫ






















.

A(x, ε) is ε-irreducible, and we have n = 7, h = 2, and r := rank(A0(x)) = 2. Thus, the condition

h > n− r of Theorem 6.1 is not verified. Let us first consider a random ramification in ε regardless

of Lemma 6.1. For instance, let us consider ε = ε̃3 and apply ε̃-rank reduction. This yields system

[Cε,σC
] ε̃5∂G = C(x, ε̃)G with σC = 0 and

C(x, ε̃) =






















0 0 0 xε̃ ε̃4 ε̃4 0

1/4 ε̃2x2 xε̃2 ε̃7 0 1/4 ε̃
(
ε̃3 − x2

)
1/4 ε̃4x 3/4 ε̃ x3

0 0 ε̃8 xε̃2 0 0 ε̃5

0 4 0 0 0 0 0

xε̃3 0 0 0 0 ε̃5 3 ε̃2x2

ε̃6 0 xǫ2 0 0 0 0

x 0 0 ε̃5 0 ε̃2 0






















,

for which, h̃ = 5 and r̃ = 2. Thus, the condition h̃ > n − r̃ is still not necessarily verified after

a random ramification. To guarantee that we will arrive at a system verifying this condition,

we make use of Lemma 6.1 and choose an integer d such that d ≥ 7/(1 + 2/7) = 49/9. Let

d = 7 > 49/9, perform ε = ε̃7 in [Aε,σA
], and then ε̃-rank reduction. This yields the system
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[Bε̃,σB
] ε̃11∂G = B(x, ε̃)G with σB = 0 and

B(x, ε̃) =






















ε̃4x 1/4 ε̃4x2 ε̃15 0 1/4 ε̃
(
ε̃7 − x2

)
1/4 ε̃8x 3/4 ε̃ x3

0 0 0 ε̃ x ε̃8 ε̃8 0

0 0 ε̃18 ε̃4x 0 0 ε̃11

4 0 0 0 0 0 0

0 ε̃7x 0 0 0 ε̃11 3 ε̃4x2

0 ε̃14 ε̃4x 0 0 0 0

0 x 0 ε̃11 0 ε̃4 0






















.

For system [Bε̃,σB
], we have: h̃ = 11, r̃ = 2, and so the condition h̃ = 11 > n− r̃ = 7− 2 holds, and

so, Theorem 6.1 can now be applied. From det(λI− B(x,ε̃)
ε̃11 ), we can compute ωε̃(M) = 42

4 . And so,

we introduce the ramification ε̃ = ˜̃ε4 and apply ˜̃ε-rank reduction which gives a ˜̃ε-system of order 42

and whose leading coefficient has 4 nonzero eigenvalues∗: In fact, we compute [M̃˜̃ε,σM
] ˜̃ε42∂W =

M̃(x, ˜̃ε)W with σM = 0 and

M̃(x, ˜̃ε) =























˜̃ε
14
x 1/4 ˜̃ε

14
x2 0 0 1/4 ˜̃ε

28 − 1/4x2 1/4 ˜̃ε
28
x 3/4x3

0 0 0 x ˜̃ε
28 ˜̃ε

28
0

0 0 0 ˜̃ε
14
x 0 0 ˜̃ε

42

4 0 0 0 0 0 0

0 ˜̃ε
28
x 0 0 0 ˜̃ε

42
3 ˜̃ε

14
x2

0 0 ˜̃ε
14
x 0 0 0 0

0 x 0 ˜̃ε
42

0 ˜̃ε
14

0























.

∗ One can observe that this procedure was not necessary for such system since gcd(14, 42, 28) = 14. Thus a simplification would
leave us with a system of order 3. Thus, in the implementation we first try to ignore the condition h > n−r and apply Theorem 6.1
directly to the system [Aε,σA ]. For this particular example we obtain ωε(A) = 3/2. Then by performing ε = ε̃2 and the ε̃-rank
reduction, we arrive at a ε̃-irreducible system of order 3 whose leading coefficient has 4 nonzero eigenvalues. In fact, we compute
[Ãε̃] ε̃3∂G = Ã(x, ε̃)G where

Ã(x, ε̃) =



































0 0 0 x ε̃2 ε̃2 0

1/4 ε̃ x2 ε̃ x ε̃4 0 −1/4x2 + 1/4 ε̃2 1/4xε̃2 3/4x3

0 0 ε̃5 ε̃ x 0 0 ε̃3

0 4 0 0 0 0 0

xε̃2 0 0 0 0 ε̃3 3 ε̃ x2

ε̃4 0 ε̃ x 0 0 0 0

x 0 0 ε̃3 0 ε̃ 0



































.

If Theorem 6.1 does not lead to the desired result, we then resort Lemma 6.1. In the case of unperturbed system, it is also a matter
of discussion whether this condition is necessary. M. Miyake recently claimed to have such an example (where this condition is
necessary).
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�

We give the proof of Theorem 6.1 after establishing a series of useful lemmas. The following proofs are an

adaptation to the parametrized setting of the proofs in [14, Lemma 3, Lemma 4, Proposition 1, Theorem

1] respectively. For clarity within these intermediate proofs, we will express systems in the equivalent

notation [Bε,σB
] ∂F = B(x, ε)F where B(x, ε ∈ Mn(R((ε))), rather than [Bε,σB

] εhxp∂F = B(x, ε)F

where B(x, ε) ∈Mn(R[[ε]]).

| Lemma 6.2

Let A(x, ε), W (x, ε) be matrices in Mn(R((ε))) and Mn(R[[ε]]) respectively. Put h =

max(0,−valε (A(x, ε))) and let

det(λI−A(x, ε))−det(λI−A(x, ε)+W (x, ε)) = αn−1(x, ε)λ
n−1+αn−2(x, ε)λ

n−2+ · · ·+α0(x, ε),

where αn−1(x, ε), αn−2(x, ε), . . . , α0(x, ε) lie in R((ε))). Then

valε(αn−i) ≥ (1− i)h 1 ≤ i ≤ n.

Proof. For any i ∈ {1, . . . , n}, it follows from Cramer’s rule that

αn−i =

γ
∑

l=0

(wl

i−1∏

s=1

al,s)

where for 0 ≤ l ≤ γ, 1 ≤ s ≤ i − 1, wl are entries in W (x, ε) and al,s are entries in W (x, ε) or A(x, ε).

Consequently,

valε(αn−i) ≥ (i− 1)valε(A(x, ε)) ≥ h.

�

| Lemma 6.3

Let A(x, ε), B(x, ε) be two matrices inMn(R((ε))) such that valε(A(x, ε)) ≤ valε(B(x, ε)). Consider

the two systems [Aε,σA
] ∂F = A(x, ε)F and [Bε,σB

] ∂G = B(x, ε)G. Suppose that there exists

T ∈ GLn(R((ε)))) such that [B] = T [A]. Put h = max(0,−valε (A(x, ε))) and let







det(λI −A(x, ε)) = λn + αn−1λ
n−1 + αn−2λ

n−2 + · · ·+ α0

det(λI −B(x, ε)) = λn + βn−1λ
n−1 + βn−2λ

n−2 + · · ·+ β0.

Then, we have:

valε(αn−i(x, ε)− βn−i(x, ε)) ≥ (1− i)h, 1 ≤ i ≤ n.

Proof. By [106, Lemma 1] we can write T (x, ε) = P (x, ε) εγ Q(x, ε) where P,Q are units ofMn(R[[ε]])

and εγ = diag(εγ1 , . . . , εγn) for some integers (γ1 ≤ γ2 ≤ · · · ≤ γn). Consider Ã = P [A] and B̃ = Q−1[B].
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Then we have

B̃ = ε−γÃεγ , valε(Ã) = valε(A), and valε(B̃) = valε(B).

It follows that,







det(λI − Ã) = det(λI − P−1AP + P−1∂P ) = det(λI −A+ (∂P )P−1)

det(λI − B̃) = det(λI −QBQ−1 +Q∂Q−1) = det(λI −B + (∂Q−1)Q)

det(λI − B̃) = det(λI − ε−γÃεγ) = det(λI − Ã).

Since P,Q, P−1, Q−1, are units ofMn(R[[ε]]), it follows that (∂P )P−1 and (∂Q−1)Q inherit this property

as well. The rest of the proof follows as a consequence of Lemma 6.2. �

| Proposition 6.1

Consider the system [Aε,σA
] ∂F = A(x, ε)F where A ∈Mn(R((ε))) and let:

det(λI −A(x, ε)) = λn + αn−1(x, ε)λ
n−1 + αn−2(x, ε)λ

n−2 + · · ·+ α0(x, ε).

Let [Cε,σC
] ∂G = C(x, ε)G where

C(x, ε) = Companion (ci(x, ε))0≤i≤n−1 =












0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1

c0 c1 c2 . . . cn−1












, (6.3)

be a companion system which is equivalent to [Aε,σA
] over GLn(R((ε))). Then we have,

valε (αi − ci) ≥ (1− (n− i))h 0 ≤ i ≤ n− 1.

Proof. Let [cε,σc ] with cn = 1 be the scalar equation representing [Cε,σC
] (σc = σC). Consider κ of

[cε,σc ] as defined in Section 5.6. We define βi = (n − i)κ, for i ∈ {0, . . . , n − 1} and [Dε,σD
] =

εβ [Cε,σC
]. Then D(x, ε) = ε−βC(x, ε)εβ where εβ = diag(εβ0 , . . . , εβn−1). It follows that D(x, ε) =

ε−κ Companion (εβici(x, ε))0≤i≤n−1. We have, valε(D(x, ε)) ≥ −κ since valε(ε
βici) = (n−i)κ+val(ci) ≥

0. By the equivalence between [Aε] and [Cε] (resp. [Dε]) we have h ≥ κ (resp. valε(D(x, ε)) ≥ −κ ≥ −h).

Let

det(λI −D(x, ε)) = λn + dn−1(x, ε)λ
n−1 + · · ·+ d0(x, ε).

Hence, by Lemma 6.3, we have

valε (αi − di) ≥ (1− (n− i))h, 0 ≤ i ≤ n.

Page 126



6.2 Formal reduction algorithm Chapter 6

Moreover, by Lemma 6.2

valε(di − ci) ≥ (1− (n− i)) max (0,− valε (D(x, ε))) ≥ (1− (n− i))κ ≥ (1− (n− i))h.

It follows that

valε(αi − ci) ≥ min (valε (αi − di), valε (di − ci)) ≥ (1− (n− i))h.

�

Proof. (Theorem 6.1) Let [Cε,σC
] ∂G = C(x, ε)G be as in Proposition 6.1. Due to their equivalence,

[Aε,σA
] and [Cε,σC

] have the same ε-exponential order and ε-polynomial. Hence, we have

ωε := ωε(A) = ωε(C) = max0≤i<n (
−valε(ci)
n− i

) and Eε(X) =
ℓ∑

k=0

cik,valε(cik )X
(ik−i0)

where 0 ≤ i0 < i1 < · · · < iℓ = n denote the integer i for which ωε(n − i) = −valε(ci). By Corollary 5.2

and Proposition 6.1 one has

valε (αi − ci) ≥ (i− n+ 1)h = (i− n)ωε + (i− n)(h− ωε) + h

≥ ωε(i− n) + (−n)(1− r

n
) + h ≥ ωε(i− n) + r + h− n.

It follows from h+ r − n > 0 that valε (αi − ci) > (i− n)ωε, 0 ≤ i ≤ n.

• If i ∈ {i0, . . . iℓ} then ωε(i − n) = valε (ci) and valε (αi − ci) > valε (ci). Hence, valε (αi) =

valε (ci) and αi, valε (αi) = ci, val (ci).

• Else valε (αi − ci) > ωε(i− n) and valε (ci) > ωε(i− n). Thus,

valε (αi) ≥ min (valε (αi − ci), valε (ci)) > ωε(i− n).

This completes the proof. �

6.2 Formal reduction algorithm

With the algorithms of uncoupling, turning point resolution, ε-rank reduction, and as can be verified by

Algorithm 6† below, one can deduce a general form for a fundamental matrix of formal outer solutions

for system [Aε] given by (3.9). In fact, it is given by

F = (

∞∑

k=0

Φk(x
1/s) εk/d) exp(

∫

Q(x1/s, ε−1/d)), (6.4)

†The pseudo code of the algorithms is provided to show the sequence of steps. The implementation itself demanded different
considerations.
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Algorithm 6 EXP_PARAM(h, p, σA, A(x, ε)) : Computes the ε-exponential part of system [Aε] or [Aε,σA
]

(performs formal reduction)
. Input: h, p, σA, A(x, ε) of system (5.1) (p = σA = 0 for system (3.9))
Output: Q(x1/s, ε−1/d)

Q← diag(0, . . . 0);
while h > 0 and n 6= 1 do

if A00 has at least two distinct eigenvalues then
Apply the ε-block diagonalization of Section 5.3;
EXP_PARAM(h, p, σA, Ã11(x, ε)); Update Q;
EXP_PARAM(h, p, σA, Ã22(x, ε)); Update Q;

else if A00 has one non-zero eigenvalue then
Update Q from the eigenvalues of A00;
A(x, ε)← perform eigenvalue shifting (5.14); (A00 is now nilpotent);
EXP_PARAM(h, p, σ,A(x, ε)); Update Q;

else if A0(x) is not nilpotent then
A(x, ε), p, σA,← apply turning point resolution of Subsection 5.4; (A00 is now non-nilpotent

and σA is updated);
EXP_PARAM(h, p, σA, A(x, ε)); Update Q;

else
A(x, ε), h← ε-rank reduction of Section 5.5;
if h > 0 (i.e. htrue > 0) then

if A00 has at least two distinct eigenvalues then
Apply the ε-block diagonalization of Section 5.3;
EXP_PARAM(h, p, σA, Ã11(x, ε)); Update Q;
EXP_PARAM(h, p, σA, Ã22(x, ε)); Update Q;

else if A00 has one non-zero eigenvalue then
Update Q from the eigenvalues of A00;
A(x, ε)← perform eigenvalue shifting (5.14); (A00 is now nilpotent);
EXP_PARAM(h, p, σA, A(x, ε)); Update Q;

else if A0(x) is not nilpotent then
A(x, ε), p, σA,← apply turning point resolution of Subsection 5.4; (A00 is now non-

nilpotent and σA is updated);
Update Q from the eigenvalues of A00;
A(x, ε)← perform Eigenvalue shifting; (A00 is now nilpotent);
EXP_PARAM(h, p, σA, A(x, ε)); Update Q;

else
Use Theorem 6.1 of Section 6.1;
ωε =

ℓ
d ; ε← εd;

h,A(x, ε)← Apply ε-rank reduction of Section 5.5 (h← ℓ);
EXP_PARAM(h, p, σA, A(x, ε)); Update Q;

end if
end if

end if
end while
return (Q).
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where s, d are positive integers; Q is a diagonal matrix whose entries are polynomials in ε−1/d with

coefficients in C((x1/s)). We refer to Q :=
∫
Q as the ε-exponential part (logarithms in a root of x might

arise as a result of integration); and the entries of Φi(x
1/s)’s are root-meromorphic in x (see, e.g. [120,

Introduction]).

| Remark 6.1

Under the notations and statements of Theorem 6.1, the leading term of Q is given by

1

εωε(A)

∫ x

diag(X1(z), . . . , Xdeg (Eε)(z), 0, . . . , 0) dz,

where the Xi’s denote the roots of the ε-polynomial Eε(X). A similar statement can be stated in terms

of the eigenvalues of the leading matrix coefficient, xp, and εh.

We sum up our main results in Algorithm 6 which computes the ε-exponential part and consequently a

fundamental matrix of formal solutions (6.4) in a given subdomain. We recall that:

• If n = 1 then we proceed by integration up to the first h terms;

• If h ≤ 0 then we follow Subsection 5.2.1 (use MINIISOLDE or LINDALG).

Evidently, computing a FMFS over a commutative field K of characteristic zero rather than C may require

algebraic extensions of the base field. Chapter 1 describes how one can limit such extensions. One can

easily verify that a similar refinement can be applied to Algorithm 6. This is taken into consideration

within our implementations in MAPLE.

| Remark 6.2 Current Investigations

According to Section 4.2, Iwano’s first problem can be resolved with the help of a sequence of positive

rational numbers [ρ] given by (4.12):

[ρ] 0 = ρ0 < ρ1 < ρ2 < · · · < ρm.

In Section 6.3, we try to motivate the following approach to resolve the same problem for a system:

Suppose that we start the reduction with system [Aε,σA
], σA = 0, given by (5.1) as an input. Then,

Algorithm 6 can determine the “true” restraining index σA,true of this system at the end of the reduction

and its outer solutions. If the restraining index is nonzero then we have a turning point and ρ1 =

−1/σA,true. We can then perform the stretching τ = xε−ρ1 for the initial system [Aε,σA
], and apply

to it Algorithm 6. This determines ρ2. The same process can be repeated with ρ2 to determine ρ3, and

then with ρ3, . . . , until we reach a system with a restraining index zero. We are currently investigating

the correctness of such a process and questioning the redundancy of certain information by using the

equivalence between a system and a scalar equation, and the (x, ε)-polygon recalled in Section 4.2.
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6.3 Examples and investigations

We illustrate our algorithm and its flexibility upon applying it to examples in literature. The computations

herein are suppressed for clarity and brevity. The computation of the full ε-exponential parts of the

following examples is available within the MAPLE package PARAMINT [98].

| Example 6.2 (Continue Example 5.5)

• We continue to compute the outer solution of system [Bε,σB
] given by:

ε2x−1∂W1 = B(x, ε)W1

= {
[

0 1

0 0

]

+

[

−1 0

−1 0

]

(x−3ε) +

[

1 −1
1 −1 + x4

]

(x−3ε)2 +O((x−3ε)3) }W1,

with σB = −3. The leading matrix coefficient

[

0 1

0 0

]

is nilpotent and ε-irreducible. We

compute the characteristic polynomial of B(x,ε)
ε2x−1 :

λ2 − (εx− 1)

εx2
λ+

(ε− x3)(ε2 − x2)

ε3x6
.

Then the ε-formal exponential order is ωε = 3
2 and the ε-polynomial is X2 + 1

x = 0. Thus, by

setting ε = ε̃2 (we also adjust σB to σ̃B = −3/2) and applying ε̃-rank reduction of Section 5.5

via diag(1, ε̃), we get an ε̃-irreducible system whose leading matrix coefficient is

[

0 1

−x−3 0

]

.

And so, by the turning point algorithm of Section 5.4, we apply the transformation

[

1 0

0 x−3/2

]

which yields (note that we can also express the former using a change of independent variable

x = t2)

ε̃3x1/2∂U = Ã(x, ε̃)U where

Ã(x, ε̃) =

[

0 1

−1 0

]

+

[

−1 0

0 0

]

(x−3/2ε̃)+

[

0 0

1 0

]

(x−3/2ε̃)2+

[

1 0

0 −1 + x4

]

(x−3/2ε̃)3+O((x−3/2ε̃)4).

The leading matrix has two distinct eigenvalues. Applying Splitting Lemma we get

ε̃3x1/2∂R = ˜̃B(x, ε̃)R where

˜̃B(x, ε̃) =

[

−i 0

0 i

]

+

[

− 1
2 0

0 − 1
2

]

(x−3/2ε̃) +O((x−3/2ε̃)2).
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Thus this system can be uncoupled to any desired precision. The solution follows by

straightforward integration. Remark that, as expected, the system has the same ε-formal

exponential order and ε-polynomials, as its equivalent scalar equation given in Example 4.1.

The leading term of the ε-exponential part Q is then given by: exp(

[
−2i

√
x

ε3/2
0

0 2i
√
x

ε3/2

]

). Thus,

we have ρ1 = 1/3 which is consistent with Example 4.3. Moreover, further computations

yield the full exponential part of outer solutions. In fact, consider again the initial system of

Example 5.5:

ε2 ∂F =






0 1 0

0 0 1

ε 0 x




F.

Then the diagonal entries of the ε-part of a fundamental matrix of formal solutions in the

outer subdomain are given by:

x2

2ε2
− 1

xε
and

− 1

20t5ε1/2
− 1

2t2ε
+

2t

ε3/2
where x = −t2.

• For the initial system of Example 5.10 given by:

ε2∂F =






0 1 0

0 0 1

ε 0 x




F,

we have obtained so far outer formal solutions. To compute inner (and probably

intermediate) solutions, we set τ = xǫ−ρA = xǫ−1/3 which yields:

ε
5
3 ∂τF =






0 1 0

0 0 1

ε 0 τε
1
3




F.

We can then set ε = ε̃3. And by Algorithm 6, one can compute the transformation F = TG

where

T =






0 0 1

0 1 0

1 0 0











ε̃2 0 0

0 ε̃ 0

0 0 1




 .

The resulting system is

ε̃4∂τG = Ã(x, ε̃)G =






τ 0 1

1 0 0

0 1 0




G.

One can verify that Ã00 has three distinct roots and so the system can be uncoupled into three

scalar equations. The leading term of the ε-exponential part in the inner subdomain is then
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given by:

exp(







∫ τ dz+...

ε4/3
0 0

0
∫ τ −1+i/

√
3+...dz

2ε4/3
0

0 0
∫ τ −1−i/

√
3+...dz

2ε4/3






).

And further computations show that the diagonal entries of the ε-exponential part of a

fundamental matrix of formal solutions in the inner subdomain are given by:

τ + (1/6)τ2 + (1/27)τ3 +O(τ4)

ε4/3
and

τ RootOf(z2 + z + 1) + (1/6)τ2 − (1/27)(RootOf(z2 + z + 1) + 1)τ3 +O(τ4)

ε4/3
.

�

| Example 6.3 ([35], Example 1, Section 9.5, pp 446)

Consider the following singularly-perturbed scalar differential equation

ε∂3f − ∂f + xf = 0

which can be rewritten as the following differential first order system

[Aε,σA
] ε∂F = A(x, ε)F =






0 ε 0

0 0 ε

−x 1 0




F

where F = [f, ∂f, ∂2f ]T and σA = 0. A0(x) is nilpotent and consequently no treatment of turning

points is required. The transformation F =








0 1 0

1 0 0

0 0 1















1 x 0

0 1 0

0 0 1








G yields the following

ε-irreducible equivalent system (θÃ(λ) = −λ− x):

[Ãε,σA
] ε∂G = Ã(x, ε)G =








−ε x −x2ε− ε ε

ε ε x 0

1 0 0







G

Since the leading matrix coefficient is still nilpotent, we compute the ε-exponential oder. The

characteristic polynomial of Ã(x,ε)
ε is given by:

λ3 +
ε− 1

ε
λ+

x

ε
.

Consequently, the ε-exponential oder is given by: ωε(Ã) = max { 12 , 1
3} = 1

2 . Let ε = ε̃2 then we
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have:

[ ˜̃Aε,σA
] ε̃2∂G = ˜̃A(x, ε̃)G =








−ε̃2 x −x2ε̃2 − ε̃2 ε̃2

ε̃2 ε̃2 x 0

1 0 0







G.

The transformation G =






ε̃ 0 0

0 ε̃ 0

0 0 1













0 1/2 1/2

1 0 0

0 −1/2 −1/2







U yields the following ε̃-irreducible

system:

[Bε,σA
] ε̃∂U = B(x, ε̃)U =








ε̃ x ε̃/2 ε̃/2

(
−x2 − 1

)
ε̃ −1/2 ε̃ x− 1 −1/2 ε̃ x

(
−x2 − 1

)
ε̃ −1/2 ε̃ x −1/2 ε̃ x+ 1







U

The leading matrix coefficient B00 has three distinct roots and consequently, the system can be

uncoupled into three first order scalar differential equations by performing the Splitting lemma. A

fundamental matrix of formal solutions is then given by:

Φ(x, ε1/2) exp(






0 0 0

0 −x
ε1/2

0

0 0 x
ε1/2




).

where Φ(x, ε1/2) is the product of all the transformations performed including that of the Splitting

lemma. Since the restraining index remains zero, the origin is not a turning point for this system

and we do not need stretchings.

�

| Example 6.4 (order 4)

Consider the following scalar equation (σa = 0)

[aε,σa
] ∂4 f − ε−4(2x+ ε3)∂2 f + ε−8(x3)f = 0, (6.5)

for which ωε = 2. The (x, ε)-polygon of Section 4.2 is defined by the following set of points:

Pωε(a) = (2,−1), P00 = (0, 3
4 ), P20 = (0, 1

2 ), and P23 = ( 32 , 0) leading to only one slope given by −3
4 .

Then, according to Section 4.2 the behavior can be investigated with the help of [ρ] 0 < ρ1 = 4/3.

Hence, there is only one stretching to consider: τ = xε−4/3. We now wish to compute formal

solutions and the sequence [ρ] with the matricial representation: Let F = [f, ε2∂f, ε4∂2f, ε6∂3f ]T
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then (6.5) can be expressed as the following first order differential system (σA = 0)

[Aε,σA
] ε2∂F = A(x, ε)F =









0 1 0 0

0 0 1 0

0 0 0 1

−x3 0 ε3 + 2x 0









F. (6.6)

• For the turning point treatment, we set x = t2 and then apply the transformation

T =












0 0 0 1

0 0 t2 0

t3 0 0 0

0 t4 0 0












which yields the system

[Ãε,σÃ
] ε2t−2∂tG = Ã(t, ε)G =












−3 ε2

t3 2 0 0

4 + 2 ε3

t2 −4 ε2

t3 0 −2 t

2 0 −2 ε2

t3 0

0 0 2 t 0












G. (6.7)

Hence σÃ = −3/2 (in t and not in x) and we can rewrite (6.7) as

ε2t−2∂tG =












−3 (t−3/2ε)
2

2 0 0

4 + 2 (t−3/2ε)
3
t5/2 −4 (t−3/2ε)

2
0 −2 t

2 0 −2 (t−3/2ε)
2

0

0 0 2 t 0












G. (6.8)

Applying the Splitting lemma uncouples (6.7) into two subsystems (truncated at order 4 in

both t and ε)

ε2t−2∂tU
1 = S1(t, ε)U1 and ε2t−2∂tU

2 = S2(t, ε)U2

where

S1(t, ε) =






−1/2 (t−3/2ε)
2
(

(t−3/2ε)
4
t2 + t2 + 6

)

−(t−3/2ε)
4
t2 + 2

2 (t−3/2ε)
3
t5/2 − (t−3/2ε)

4
t2 − t2 + 4 −1/2 (t−3/2ε)

2
(

3 (t−3/2ε)
4
t2 + t2 + 8

)






whose leading coefficient has two constant nonzero eigenvalues (hence the dimension of the
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system /order of the equivalent equation can be reduced ). And

S2(t, ε) =

[

1/2 (t−3/2ε)
2
(3 (t−3/2ε)

4
t2 + t2 − 4) γ1

1/2 t(2 (t−3/2ε)
4
t2 + t2 + 4) γ2

]

, (6.9)

where γ1 = −1/8 t(4 (t−3/2ε)
3
t5/2 − 9 (t−3/2ε)

4
t2 − 8 (t−3/2ε)

4 − 8) and γ2 =

−1/16 t2(t−3/2ε)
2
(8 (t−3/2ε)

3
t5/2 − 105 (t−3/2ε)

4
t2 − 40 (t−3/2ε)

4 − 14 t2 − 16. Since εt−3/2 =

εx−3/4, we have ρ1 = 4/3.

If we wish to continue the reduction for the second subsystem, then, as usual, we first consider

its leading coefficient:

S2
0(t) = t




0 1

2 + 1/2 t2 0



 .

Hence, by the turning point resolution (here it suffices to factorize t). Thus, the system [S2
ε,σÃ

]

can be rewritten as:

[S̃2
ε,σS̃2

]ε2t−3t∂tR = S̃2(t, ε)R

where σS̃2 = −2 (in t) and

S̃2(t, ε) =





1/2 (εt−2)
2
(

3 t4(εt−2)
4
+ t2 − 4

)

γ̃1

t4(εt−2)
4
+ 1/2 t2 + 2 γ̃2





where γ̃1 = −1/2 (εt−2)
3
t4 + 9 t4(εt−2)

4

8 + (εt−2)
4
t2 + 1 and γ̃2 =

−1/16 t2(εt−2)
2
(

−105 t4(εt−2)
4
+ 8 (εt−2)

3
t4 − 40 (εt−2)

4
t2 − 14 t2 − 16

)

. The leading

constant coefficient has two constant eigenvalues and hence can be uncoupled.

• We consider again system [Aε,σA
] which is given by (6.6), and we apply the stretching x =

ε4/3τ which yields

ε2/3∂τH =









0 1 0 0

0 0 1 0

0 0 0 1

−2τ3ε4 0 ε3 + 2τε4/3 0









H. (6.10)

Then the ε-rank reduction with

T =












0 0 0 1

0 0 ǫ2/3 0

0 ǫ4/3 0 0

ǫ2 0 0 0











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yields

∂τQ =












0 ǫ5 + 2 τ 0 −2 τ3ǫ4

1 0 0 0

0 1 0 0

0 0 1 0












Q

whose ε-exponential part is zero.

�

| Example 6.5 (Roo’s equation [109])

Given the singularly-perturbed scalar differential equation (σa = 0)

[aε,σa
] ε4 ∂2f = (x5 + εx2 + ε2)f (6.11)

whose (x, ε)-polygon consists of three segments connecting four points [109, pp 607], P00 =

(0, 5/2), P01 = (1/2, 1), P02 = (1, 0), and Poε = (2,−1), and thus having the three slopes, −3,−2,

and −1. Then, according to Section 4.2 the sequence [ρ] of positive rational numbers is given by:

[ρ] 0 < ρ1 = 1/3 < ρ2 = 1/2 < ρ3 = 1.

We now wish to compute the sequence [ρ] with the matrix representation of [aε,σa
]. Let F =

[f, ε2∂f ]T then [aε,σa
] can be rewritten as the following first order differential system (σA = 0)

[Aε,σA
] ε2∂F = A(x, ε)F =

[

0 1

x5 + εx2 + ε2 0

]

F. (6.12)

• Let T =

[

1 0

0 x5/2

]

(resolution of turning point) then F = TG yields

ε2∂G =

[

0 x5/2

x5/2 + εx−1/2 + ε2x−5/2 − 5
2ε

2x−1

]

G = x5/2

[

0 1

1 + εx−3 + ε2x−5 − 5
2ε

2x−7/2

]

G

which can be rewritten as

[Ãε,σÃ
] ε2x2∂G = Ã(x, ε) =

[

0 1

1 + (x−3ε) + (x−3ε)x − 5
2 (x

−3ε)2x5/2

]

G (6.13)

with σÃ = −3. The system [Ãε,σÃ
] can be uncoupled into two scalar equations and we thus

have ρ1 = 1/3.

• We consider again system [Aε,σA
] and perform the stretching τ = xε−1/3. We get:

[Bε,σB
] ε5/3∂τU = B(τ, ε)U =

[

0 1

τ5ε5/3 + ε5/3τ2 + ε2 0

]

U.
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with σB = 0. Let T1 =

[

1 0

0 ε

]

(ε-rank reduction) then U = T1G yields

ε∂τG =

[

0 ε1/3

τ5 + τ2 + ε1/3 0

]

G.

The leading coefficient matrix is nilpotent. The computation of the ε-exponential order

suggests introducing an additional ramification in ε of order 2. Since we already have a

ramification of order 3, we set ε = ε̃6. This yields:

ε̃6∂τG =

[

0 ε̃2

τ5 + τ2 + ε̃2 0

]

G.

Let T2 =

[

ε̃ 0

0 1

]

(ε̃-rank reduction) then G = T2W yields

ε̃5∂τW =

[

0 1

τ5 + τ2 + ε̃2 0

]

W.

Let T3 =

[

1 0

0 τ

]

(resolution of turning point) then W = T3U yields

ε̃5∂τW =

[

0 τ

τ4 + τ + ε̃2τ−1 −ε̃5ω−1

]

W

which can be rewritten as

[B̃ε,σB̃
] ε̃5τ−1∂τW = B̃(x, ε)W =

[

0 1

τ3 + 1 + (τ−1ε̃)
2 −(τ−1ε̃)

5
τ3

]

W

with σB̃ = −1(w.r.t. ε̃). Clealry, system [B̃ε,σB̃
] can be uncoupled into two scalar equations.

Upon rewriting τ−1ε̃ in terms of x and ε,

τ−1ε̃ = τ−1ε1/6 = (x−1ε1/3)ε1/6 = x−1ε1/2 = (x−2ε)1/2,

we deduce ρ2 = 1/2.

• We consider again system [Aε,σA
] and perform the stretching τ = xε−1/2. We get:

[Cε,σC
] ε3/2∂τZ = C(τ, ε)Z =

[

0 1

τ5ε5/2 + τ2ε2 + ε2 0

]

Z,
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with σC = 0. Let T1 =

[

1 0

0 ε

]

(ε-rank reduction) then Z = T1G yields

[C̃ε,σC
]ε1/2∂τG =

[

0 1

τ5ε1/2 + τ2 + 1 0

]

G

which can be uncoupled into two scalar equations and for which the restraining index remains

zero.

And so, by our techniques, we have obtained the two slopes ρ1 = 1/3 and ρ2 = 1/2.

�

| Example 6.6 from [71]

We consider the scalar differential equation

[aε,σa
] ε3∂2f − (x3 + ε)f = 0,

with σa = 0. Setting F = [f, ∂f ]T , [aε,σa
] can be expressed with the following differential first

order system

[Aε,σA
] ε3∂F = A(x, ε)F =

[

0 ε3

x3 + ε 0

]

F

where σA = 0.

• Since A00 is nilpotent and A0(x) is not, we first start with the treatment of the turning point

at x = 0. It suffices however to factorize x3 from A0(x) which modifies the restraining index.

We then apply the transformation F =

[

(x−3ε) 0

0 1

]

G to get the ε-irreducible system:

[Ãε,σÃ
] ε2∂G = Ã(x, ε)G =

[

3x5(x−3ε)2 (x−3ε)x6

1 + (x−3ε) 0

]

G

with σÃ = −3. Since Ã0(x) is still nilpotent, we proceed to computing the ε-exponential order

from the characteristic polynomial of Ã(x,ε)
ε2 which is given by:

λ2 − 3

x
λ− (

x3

ε3
+

1

ε2
).

Hence, ωε(Ã) = 3
2 and the ε-polynomial is given by: X2 − x3 = 0. Let ε = ε̃2, then we have:

[ ˜̃Aε,σ ˜̃
A
] ε̃4∂G = ˜̃A(x, ε̃)G =

[

3x11(x−3ε̃)4 (x−3ε̃)2x9

1 + x3(x−3ε̃)2 0

]

G
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with σ ˜̃A
= −3. We then perform G =

[

(x−3ε̃) 0

0 1

]

U to get the ε̃-irreducible system:

[Bε,σ ˜̃
A
] x3ε̃3∂U = B(x, ε̃)U =

[

3x11(x−3ε̃)2((x−3ε̃) + 1) x9

1 + x3(x−3ε̃)2 0

]

U.

Now that B0(x) has two distinct eigenvalues and B00 is nilpotent, we perform U =
[

x9/2 0

0 1

]

W to treat the turning point. Then we have:

[B̃ε,σ ˜̃
A
] x−3/2ε̃3∂W = B̃(x, ε̃)W =

[

3x13/2(x−3ε̃)2(1− (1/2)(x−3ε̃)) 1

1 + x3(x−3ε̃)2 0

]

W.

Since B̃00 has two distinct eigenvalues, ±1, one can proceed to the Splitting lemma which

uncouples the system thoroughly. Hence, from the ε-polynomial or the eigenvalues of B̃00,

one can read the ε-exponential part of this system in an outer subdomain

exp(

[ ∫ x z3/2dz

ε3/2
0

0 −
∫ x z3/2dz

ε3/2

]

),

and deduce that ρ1 = 1/3.

• We consider again system [Aε,σA
] and perform the stretching τ = xǫ−1/3. Then, we have:

[Bε,σB
] ε5/3∂τU = B(τ, ε) =

[

0 ε2

τ3 + 1 0

]

U

with σB = 0. The transformation U =

[

ε 0

0 1

]

G yields

[B̃ε,σB
] ε2/3∂τG = B̃(τ, ε)G =

[

0 1

τ3 + 1 0

]

G.

which, due to the nature of the eigenvalues of the leading matrix coefficient, can be uncoupled

into two scalar equations. The restraining index remains zero which suggests that there are

no more stretchings to perform.

• However, we can consider again system [Aε,σA
] and experiment with the stretching τ = xǫ−1.

We get:

[Bε,σB
] ε∂τU = B(τ, ε)U =

[

0 ε2

τ3ε2 + 1 0

]

U
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with σB = 0. By the transformation U =

[

ε 0

0 1

]

G and some simplification we get

[B̃ε,σB
] ∂τG = B̃(τ, ε)G =

[

0 1

τ3ε2 + 1 0

]

G,

which can be uncoupled into two scalar equations as well and has restraining index zero.

However, this system has a zero ε-exponential part.

Our approach can thus determine the stretching τ = xε−1/3 but not the stretching τ = xε−1.

However, both stretchings can be obtained by the treatment of this system as a scalar equation [71,

Last section].

�

| Example 6.7 ([35], Example 1, Section 9.5, pp 453)

In this example, the input system has p = 1. We run our algorithm to compute formal solutions.

However, the regions of validity of these solutions is still to be determined. Given

ε3x∂2f + x2∂f − (x3 + ε)f = 0

which can be rewritten as the following first order differential system

[Aε,σA
] xε3∂F = A(x, ε)F =

[

0 ε3x

x3 + ε −x2

]

F

where σA = 0 and F = [f, ∂f ]T . A00 is nilpotent while A0(x) is not. Thus, we first start with the

treatment of the turning point at x = 0. It suffices here to factorize x2 which yields

[Ãε,σÃ
] x−1ε3∂F = Ã(x, ε)F =

[

0 (x−2ε)3x5

x+ (x−2ε) −1

]

F

where σÃ = −2. Now that Ã00 has two distinct eigenvalues, we can proceed to the Splitting

lemma. We first block-diagonalize Ã0(x) by the transformation F =

[

0 1

1 x

]

G which yields

[ ˜̃Aε,σÃ
] x−1ε3∂G = ˜̃A(x, ε)G =

[

−(x−2ε)3x6 − 1 −(x−2ε)3x7 − (x−2ε)3x5 + (x−2ε)

(x−2ε)3x5 (x−2ε)3x6

]

G,

from which we can deduce that the ε-exponential part is given by:

exp(

[
−x2

2ε3 +O(ln(x)ε−2) 0

0 O(ln(x)ε−2)

]

).

Since the restraining index is nonzero, we can deduce that ρ1 = 1/2 and apply a stretching in

system [Aε,σA
] and repeat the formal reduction.
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�

| Example 6.8

In this example, we use our algorithm to explain some of the computations in the introductory

example in the light of the eigenvalues of the matrix of the system. Thus, we consider again the

system [Aε,σA
] given by (3.11):

[Aε,σA
] ε ∂F = A(x, ε)F =

[

0 1

x3 − ε 0

]

F.

We have seen that in the region |x| ≤ M |ε1/3| (ρ1 = 1/3 is obtained from the reduction in the

outer subdomain), we set τ = xǫ−1/3. Then, by a change of parameter ε = ε̃3, we have:

ε̃2∂τF = Ã(τ, ε̃)F =

[

0 1

τ3ε̃3 − ε̃3 0

]

F.

Ã00 = Ã0(τ = 0) and thus no treatment of turning points is required. We proceed to ε̃-rank

reduction: The transformation F = T1G where T1 =

[

1 0

0 ε̃

]

reduces the system to

ε̃∂τG = B(τ, ε̃)G =

[

0 1

τ3ε̃− ε̃ 0

]

G.

The system is ε̃-irreducible and so we proceed now to compute the ε̃-formal exponential order.

From the characteristic polynomial of B(τ,ε̃)
ε̃ which is given by

λ2 − τ3 − 1

ε̃
,

it is clear that ωε̃ =
1
2 . Thus upon setting ε̃ = ε̌2, the transformation G = T2U where T2 =

[

1 0

0 ε̌

]

,

reduces the above system to

ε̌∂τU = B̌(τ, ε̌)U =

[

0 1

τ3 − 1 0

]

U.

Now that B̌00 has two distinct eigenvalues, the Splitting lemma can be applied with L2. We have:

ε = ε̃3 = ε̌6 and L1 = T1T2. The restraining index remains zero and hence no further stretchings

are required.

We remark that the eigenvalues of A(x, ε) are given by λ1,2 = ±(x3 − ε)1/2. We thus have the

two possible expansions which correspond to the two subdomains above:

• λ1,2 = ±(x3 − ε)1/2 = ±iε1/2(1− 1
2ε

−1x3 − 1
8ε

−2x6 + . . . ), valid for |ε−1x3| < 1.

• λ1,2 = ±(x3 − ε)1/2 = ±x3/2(1− 1
2εx

−3 − 1
8ε

2x−6 + . . . ) , valid for |εx−3| < 1.

�
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6.4 Conclusion

In this chapter, we gave a method to compute the ε-formal invariants of the system. This result allowed

us to give an algorithm for formal reduction which resolves the second item in Iwano’s reformulation of

the problems of singularly-perturbed systems, and motivates an approach to resolve the first item in this

reformulation.
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Conclusion

In this part, we give an algorithm, implemented in MAPLE [98], which computes a formal fundamental

matrix of formal solutions for singularly-perturbed linear differential systems, in a given subdomain, in

a neighborhood of a turning point. The sub-algorithms are stand-alone as well (e.g. ε-rank reduction,

resolution of turning points) and reply interesting questions. The algorithm is based on the generalization

of the algorithm given in [14] for the unperturbed counterparts of such systems.

Our results are presented in the formal setting. However, the growth of the order of poles in x is

tracked within the formal reduction to compute an outer solution and the restraining index is computed.

Consequently, an adequate stretching transformation can be determined and applied to construct a inner

and intermediate solutions as well. This approach is promising as we show with some examples and its

correctness is under current investigation upon investigating [Aε,σA
] in the light of the valuations of both

x and ε. Another field of investigation is the relation between the algebraic eigenvalues of the matrix

A(x, ε) of system [Aε,σA
] and the ε-exponential part of its solutions (see Example 6.8 and Chapter 2). Such

an investigation would allow us to benefit from the existing work on fractional power series expansions of

solutions of bivariate algebraic equations, to compute [ρ] (4.12) (see, e.g. [36, 8] and references therein).

On the other hand, it would be interesting to investigate a differential-like reduction for a two-parameter

perturbation of a JCF (see Chapter 2 for the one-parameter case).

The generalization of other notions (e.g. notion of simple systems [29, 24]) and efficient algorithms

can be investigated as well, making use of the ideas presented in this part, as discussed in Appendix A.

Our algorithm can be extended to treat formally other types of bivariate systems, e.g. systems

meromorphic in both x and ε (see, e.g., Examples 6.3 and 6.7), systems with essential singularity [23],

and perturbed difference systems. This is motivated by the success of generalizations of the algorithms

of the unperturbed counterparts of such systems (see, e.g. [1, 21]).

The multi-parameter case [119] may be investigated using tools from both, this part, and Part III due

to the multivariate nature of the problem.

There remains as well the questions which fall under the complexity, e.g. studying the complexity of

this algorithm; the bounds on number of coefficients needed in x in computations; developing efficient

algorithms for computing a cyclic vector and comparing it to the results of our direct algorithm.

And finally, to give a full answer on the behavior of the solutions, the related problems of connection,

matching, and secondary turning points, are to be studied as well (see, e.g. [69, 55] and references

therein).
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Completely Integrable Pfaffian Systems
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Introduction

A differential equation- whether ordinary or partial- admits of an infinite number of solutions.

The older and the classical point of view, concerning its integration, consisted in finding the

so-called “general integral”, i.e. a solution of the equation containing as many arbitrary

elements (arbitrary parameters or arbitrary functions) as are necessary to represent any

solution, save some exceptional ones. But in more recent research, especially as concerns partial

differential equations, this point of view had to be given up, not only because of the difficulty or

impossibility of obtaining this “general integral”, but above all, because the question does not

by any means consist merely in its determination. The question, as set by most applications,

does not consist in finding “any” solution of the differential equation, but in choosing, amongst

all those possible solutions, a particular one defined by properly given accessory conditions. (...)

If we have the general integral, there remains the question of choosing the arbitrary elements

in its expression so as to satisfy accessory conditions. In the case of ordinary differential

equations, so that, at least theoretically, the question may be considered as solved, being

reduced to ordinary algebra; but for partial differential equations, the arbitrary elements

consist of functions, and the problem of their determination may be the chief difficulty in this

question‡.

The systems considered in this part are the completely integrable Pfaffian systems with normal

crossings. More explicitly, let R = C[[x1, . . . , xm]] be the ring of formal power series in x =

(x1, x2, . . . , xm) over the field of complex numbers and Frac(R) be its fraction field. We are interested in

the symbolic resolution of the class of linear systems of partial differential equations in m variables and

of the dimension n given by

[A] xpi+1
i ∂iF = A(i)(x) F, 1 ≤ i ≤ m (6.14)

where, for all i ∈ {1, . . . ,m}, ∂i = ∂
∂xi

, A(i) is a n × n matrix whose entries lie in Frac(R), and pi is an

integer. We therefore explain the terminology:

• System (6.14) is said to have normal crossings, if for each i ∈ {1, . . . ,m} the integer pi can be

‡ J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press 1923, quoted from the
introductory paragraph of Chapter 1
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re-adjusted so that

A(i) ∈ C[[x1, . . . , xm]].

• The differential form associated to (6.14) is a 1-form given by

dF =

m∑

i=1

A(i)

xpi+1
i

dxi.

1-forms go back to the 1815 work of Johann Friedrich Pfaff§, and are consequently referred to as

Pfaffian forms.

• A Pfaffian system is called completely integrable¶, if the following commutation rule holds for all

i, j ∈ {1, . . . ,m}:

xpi+1
i ∂iA(j)(x) + A(j)(x) A(i)(x) = x

pj+1
j ∂jA(i)(x) + A(i)(x) A(j)(x). (6.15)

Without loss of generality, the singularity is placed at the origin (x1 = 0, . . . , xm = 0). Otherwise,

translations in the independent variables can be performed. The singular locus of this system is the union

of hyperplanes of coordinates x1x2 . . . xm = 0. Subsequently, whenever we refer to a Pfaffian system,

we assume it is a completely integrable system with normal crossings, unless explicitly stated otherwise.

Clearly, due to (6.15), one can assume that A(i), for any i ∈ {1, . . . ,m}, is not a zero matrix (otherwise

∂i A(j) = 0 for all j ∈ {1, . . . ,m} and the number of subsystems of [A] can be reduced to m− 1).

In a series of articles in the seventies and eighties by Levelt, van den Essen, Charrière, Gérard,

Sibuya, and others (see, e.g. [41, 42, 54, 58, 53] and references therein), the language of singular

linear connections and stable modules over the ring of formal power series was used to establish

important theoretical results regarding the existence of the solution, the classification and the nature

of singularities (see [84] and references therein). These investigations provided neither constructive

proofs nor techniques for the construction of solutions. Nevertheless they provided the indispensable

theoretical base for the formal reduction and its sub-algorithms which will be deveoped in this part.

Obviously, the univariate case reduces to singular linear ordinary differential systems studied in

Chapter I. A rank reduction algorithm, i.e. an algorithm which, roughly speaking, minimizes the pi’s

individually and simultaneously (see Chapter 8), is given in [26] by Barkatou and LeRoux for the bivariate

case upon generalizing Levelt’s algorithm given in [87] for univariate systems (1). LeRoux investigated

as well the construction of formal solutions for systems whose (p1, . . . , pn) = (0, . . . , 0) in his thesis [84,

Chapter 3]. He gave effective algorithms based on the works of Gérard and Levelt [57], Takano and

Yoshida [127]. In analogy to the univariate case, we say that such systems have a singularity of the first

kind. System [A] is said to have a singularity of second kind otherwise. Thus, in our investigation, we will

be tackling the general multivariate case with no restriction to the values of pi’s. We also mention [22]

for computing global solutions and [63] for numeric evaluations.

§J. F. Pfaff. Methodus generalis, aequationes differentiarum partialium, nec non aequationes differentiales vulgares, utrasque
primi ordinis inter quotcunque variabiles, complete integrandi, 1815.

¶Roughly speaking, to get some intuition, one may think about complete integrability in the context of conservation of the total
energy in a physical system (see [49, Part II, Section 5] for an elaborated discussion)
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In the hope of constructing solutions, one may wonder whether bivariate Pfaffian system can be treated

with the same approach and techniques developed for singularly-perturbed linear differential system in

Part II, holding one of the independent variables as a parameter. We show that although both systems

are treated over bivariate fields, they manifest distinct difficulties and obstacles. Namely, Pfaffian systems

do not share the phenomenon of turning points with singularly-perturbed systems (see Proposition 7.2).

Their interesting feature is rather the interdependence between the m subsystems (Section 7.1.1) and, in

general, their multivariate nature. Thus, our approach for the symbolic resolution of bivariate and more

generally the multivariate Pfaffian systems take a different turn which makes use of a set of m associated

univariate subsystems of form (1) discussed in Chapter 1 (Definition 7.4).

To get an intuition of our approach in this part, we show (informally) our proposed steps of reduction

with the following simple bivariate Pfaffian system.

| Example 6.9

Given the following bivariate system over the ring of formal power series in (x1, x2) with complex

coefficients: 





x4
1 ∂1F = A(1) F =




x3
1 + x2

1 + x2 x2
2

−1 x3
1 + x2

1 − x2



 F

x3
2 ∂2F = A(2) F =




x2
2 − 2x2 − 6 x3

2

−2x2 −3x2
2 − 2x2 − 6



 F

(6.16)

Following theoretical results (see Corollary 7.1), a fundamental matrix of solutions of (6.16) is

given by

F (x1, x2) = Φ(x1, x2) xC1
1 xC2

2 exp(Q(x
−1/s1
1 )) exp(Q(x

−1/s2
2 )).

For this simple example, we show that it can be constructed in four steps:

• Firstly, we associate a system of two ODS subsystems of the form (1) discussed in Chapter 1.







x4
1 ∂1F = A(1)(x1, x2 = 0) F =




x3
1 + x2

1 0

−1 x3
1 + x2

1



 F,

x3
2 ∂2F = A(2)(x1 = 0, x2) F =




x2
2 − 2x2 − 6 x3

2

−2x2 −3x2
2 − 2x2 − 6



 F.

We show in Section 7.2 that the formal invariants Q1 and Q2 of (6.16) can be computed from

this associated ODS system. Thus, we compute

Q1 =
−1
x1

I2 and Q2 = (
3

x2
2

+
2

x2
)I2

via MINIISOLDE or LINDALG. Thus we have s1 = s2 = 1 and F (x1, x2) is given by

Φ(x1, x2) x
C1
1 xC2

2 exp(

[
−1
x1

0

0 −1
x1

]

) exp(

[
3

x2
2 + 2

x2
0

0 3
x2

2 + 2
x2

]

).
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• Secondly, we apply the so-called eigenvalue shifting (Subsection 7.1.5)

F = G exp(
−1
x1

) exp(
3

x2
2

+
2

x2
),

which yields 





x4
1 ∂1G =




x3
1 + x2 x2

2

−1 x3
1 − x2



 G

x2
2 ∂2G =




x2 x2

2

−2 −3x2



 G

And so, it remains to compute:

G(x1, x2) = Φ(x1, x2) x
C1
1 xC2

2 .

• Thirdly, we reduce the orders of the singularity in x1 and x2 to their minimal integer values.

This is the rank reduction discussed in Chapter 8. We apply G = T1H where

T1 =

[

x2x
3
1 −x2

0 1

]

which yields: 





x1 ∂1H =




−2 0

−x2 1



 H,

x2 ∂2H =




−2 0

−2x3
1 −1



 H.

• Finally, by a simple calculation (see [84, Chapter 3] for general cases), we compute

T2 =

[

1 0
x2

3 + 2x3
1 −1

]

.

Then H = T2 U yields







x1 ∂1U = C1 U =




−2 0

0 1



 U,

x2 ∂2U = C2 U =




−2 0

0 −1



 U.

Thus, a fundamental matrix of solutions is given by

T1 T2 xC1
1 xC2

2 exp(

[
−1
x1

0

0 −1
x1

]

) exp(

[
3

x2
2 + 2

x2
0

0 3
x2

2 + 2
x2

]

).
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�

Unlike this simple example, the steps of computation can be far more evolved and demand multiple

levels of recursion. Nevertheless, we give in this part the formal reduction of such systems over three

chapters as follows:

• In Chapter 7, we show that the formal invariants of the system (6.14) can be retrieved from an

associated linear ordinary differential subsystems (ODS), each having the form [A] given by (1)

and discussed in Chapter 1. We then give a formal reduction algorithm, under the assumption that

we have at hand a rank reduction algorithm.

• In Chapter 8, we distinguish between bivariate and multivariate systems and propose rank reduction

algorithms.

We then discuss two examples which arise from applications and have different structure from the

systems considered in this thesis. Chapters 7 and 8 are based on our published paper [1] for the bivariate

case and the ongoing investigation for the multivariate case. A Maple package is also given [100].

In the sequel, we adopt C as the base field for the simplicity of the presentation. However, any other

field K (Q ⊆ K ⊆ C) can be considered instead. In this case, the restrictions on the extensions of the base

field discussed in Section 1.8 apply as well and are taken into consideration within the implementation.

Local Notations

• We use n for the dimension of each of the subsystems in accordance with the other parts. And

we use the integer m where m ≤ 1 for the number of variables. As mentioned above, for m = 1,

system (6.14) is simply an ODS.

• As mentioned in the introduction, we denote by x (resp. x̄i) the collection of variables x1, . . . , xm

(resp. x1, . . . , xi−1, xi+1, . . . , xm). We thus refer by R (resp. Rx̄i
) to C[[x1, . . . , xm]] (resp.

C[[x1, . . . , xi−1, xi+1, . . . , xm]]), the ring of formal power series in x (resp. x̄i) over the field of

complex numbers C. And we denote its field of fractions by Frac(R) (resp. Frac(Rx̄i)).

• Aside from the rings R and Rx̄i
, we will frequently have to work in other algebraic structures. Let

L be the set of monomials given by,

L = {xβ = xβ1

1 xβ2

2 . . . xβm
m for β = (β1, β2, . . . , βm) ∈ Nm}.

Clealry, L is closed under multiplication and contains the unit element. Then, one can define

RL := L−1R, the localization of R at L, i.e. the ring of series with only finitely many terms having

monomials of strictly negative exponents. Unlike in the univariate case, Frac(R) and RL do not refer

to the same algebraic structure, e.g. (x1 + x2)
−1 is an element of Frac(R) which is not an element

of RL. In fact, there exists no β ∈ N2 such that xβ(x1 + x2)
−1 ∈ RL as (x1 + x2)

−1 = 1/x1

1−(−x2/x1)

whose formal expansion with respect to x2 is
∑

i≥0(−1)ix−i−1
1 xi

2, which has infinitely many poles

in x1. For a further characterization of Frac(R), one may refer to [6].
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• In the sequel, it will be necessary to introduce ramifications of the form xi = tαi
i for new variables

ti and positive integers αi (i ∈ {1, . . . ,m}). And so we denote by Rt = C[[t1, . . . , tm]] the ring of

formal power series in t = (t1, t2, . . . , tm) over the field of complex numbers C and by Frac(Rt) its

field of fractions.

• We set ∂i = ∂i

∂xi and ∂ti =
∂i

∂ti for all i ∈ {1, . . . ,m}.

• We will have to work with some m-tuples and so we underline them so that they can be easily

identified. Let a = (a1, . . . , am) and b = (b1, . . . , bm) belong to Qm. We set 1 = (1, . . . , 1), 0 =

(0, . . . , 0), and define the order relation � over Qm by

a � b if and only if ai ≤ bi ∀ i ∈ {1, . . . ,m}.

We also have

a = b if and only if ai = bi ∀ i ∈ {1, . . . ,m},

a ≺ b if and only if a � b, and ∃ at least one index i ∈ {1, . . . ,m} such that ai < bi,

and a− b = (a1 − b1, . . . , am − bm).

• In the sequel we make use of the following series representations:

– The expansion of A(i)(x) with respect to xi:

xpi+1
i ∂iF = (A(i),0 +A(i),1xi +A(i),2x

2
i ++ · · ·+A(i),kx

k
i + . . . ) F,

where the entries of A(i),k lie in the ring Rx̄i
; we refer to A(i),0 := A(i)(xi = 0) as the leading

matrix coefficient of the ith component [A(i)] of system [A];

– Occasionally, we need to refer to the leading matrix coefficient in the expansion of A(i)(x)

with respect to xj where i 6= j. In this case, we simply write A(i)(xj = 0) ∈ Rx̄j
to avoid any

confusion with A(i),0, which we use to denote the leading matrix coefficient in the expansion

of A(i) with respect to xi.

– We define A(i)(xi) := A(i)(x1 = 0, . . . , xi−1 = 0, xi, xi+1 = 0, . . . , xm = 0) which has its entries

in C[[xi]]. In other words, A(i)(xi) is obtained from A(i)(x) by setting to zero all the variables

xj for which j 6= i where j ∈ {1, . . . ,m}.
– For the monomial expansion of M(x) ∈Mn(R), we use the lexicographical ordering (see, e.g.

[6, Section 4]) and the following short-hand notations for k = (k1, . . . , km) ∈ Nm:







|k| = k1 + · · ·+ km

xk = xk1
1 xk2

2 . . . xkm
m

and so we write:

M(x) =

∞∑

|k|=0

Mk xk where Mk ∈Mn(C).
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• A family of matrices is given with lower indices, e.g. (M(i),k)1≤i≤m,k≥0, and for a matrix M(i),k,

blocks are given with upper indices where the sizes of the different blocks are clear from the context.

For example, we may partition A(i),k, the kth coefficient of the matrix of the ith component, as

follows

A(i),k =

(

A11
(i),k A12

(i),k

A21
(i),k A22

(i),k

)

.

• We denote by pi the Poincaré rank of the ith component [A(i)] and by p = (p1, . . . , pm) the Poincaré

rank of the system [A].

• The leading matrix coefficient can be regarded as non-zero without any loss of generality, otherwise

pi can be readjusted. It will play a crucial role in our considerations. We thus adopt the following

notations:

– A(i),0 is the leading matrix coefficient of the ith component of [A] as explained above;

– A0 = (A(1),0, . . . , A(m),0) is m-tuple of the leading matrix coefficients of the system [A];

– A(i),0 = A(i)(x = 0) and A0 = (A(1),0, . . . , A(m),0) is m-tuple of the constant matrices of the

system [A].

– We also use A = (A(1), . . . ,A(m)).
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In this chapter, we are interested in the formal reduction of system [A] given by (6.14) and which we

recall here

[A] xpi+1
i ∂iF = A(i)(x) F, 1 ≤ i ≤ m,

where A(i) ∈ Mn(R) and pi ≥ 0 for every i ∈ {1, . . . ,m}. Let T (x) ∈ GLn(Frac(R)) then the (gauge)

transformation F = TG gives rise to

[Ã] xp̃i+1
i ∂iG = Ã(i)(x) G, 1 ≤ i ≤ m (7.1)

where p̃i is an integer and

Ã(i)

xp̃i+1
i

= T−1 (
A(i)

xpi+1
i

T − ∂iT ), 1 ≤ i ≤ m. (7.2)

We say that system (7.1) is equivalent to system (6.14) and we write [Ã] := T [A]. It can be easily verified

that complete integrability is inherited by an equivalent system∗. Subsequently, to stay in the same class

of systems under study, special care will be taken so that the transformations used in our considerations

∗In fact, such a transformation can be viewed as change of basis in the language of operators.
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do not alter the normal crossings. In fact, In addition to computing over multivariate fields, a major

difficulty within the symbolic manipulation of system (6.14) arises from (7.2) and will be discussed in

Subsection 7.1.1.

This chapter is thus organized as follows: In section 7.1, we give some preliminaries regarding some

results on the existence of solutions, the classification of singularities, the properties of the leading

matrix coefficients, and the uncoupling of the system to systems of lower dimensions (splitting) in

this multivariate setting. In Section 7, we describe our proposed algorithm which relies on two major

ingredients: The first ingredient is associating to our system a set of ODS’s from which its formal

invariants can be efficiently derived. This is detailed in Section 7.2. And the second ingredient is the

rank reduction which we discuss in Chapter 8.

7.1 Preliminaries

7.1.1 Compatible transformations

It is evident from (7.2) that any transformation alters all the components of [A] simultaneously. In

particular, the equivalent system does not necessarily inherit the normal crossings even for very simple

examples, as exhibited by the bivariate example which we recall here.

| Example 7.1 ([26], Section 4)

Consider the following completely integrable Pfaffian system with normal crossings of Poincaé

rank (3, 1):

[A]







x4
1 ∂1F = A(1)(x1, x2) F =




x3
1 + x2 x2

2

−1 −x2 + x3
1



 F

x2
2 ∂2F = A(2)(x1, x2) F =




x2 x2

2

−2 −3x2



 F.

. (7.3)

This system appears within the reduction of the system of Example 6.9 in the introduction. As we

have seen, we computed (by the algorithm which we will propose in Chapter 8) a transformation

which dropped p1 to zero. However, this can also be attained by the transformation F =
[

x3
1 −x2

2

0 x2

]

G which is computed by the univariate-case Moser-based rank reduction algorithm,

upon regarding the first component as an ODS in x1 with x2 as a transcendental constant. This

transformation would result in the following equivalent system

[Ã]







x1 x2 ∂1G = Ã(1)(x1, x2) G =




−2x2 0

−1 x2



 G

x3
2 ∂2G = Ã(2)(x1, x2) G =




−x2

2 0

−2x3
1 −2x2

2



 G.
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We can see that such a transformation achieves the goal of diminishing the Poincaré rank of the

first component, considered as an ODS, to its minimum (zero). However, unlike the transformation

which we used in the introduction, it alters the normal crossings by introducing the factor x2 in the

denominator of an entry in Ã(1). Moreover, it increases the Poincaré rank of the second component

of [A].

�

The urge to preserve the normal crossings motivates the following definition:

| Definition 7.1

Let T ∈ GLn(Frac(R)). We say that the transformation F = TG (respectively T ) is weakly

compatible with system [A] given by (6.14) if T [A] := [Ã] is again a completely integrable Pfaffian

system with normal crossings, i.e. [Ã] can be expressed by (7.2) with Ãi ∈ Mn(R) for every

i ∈ {1, . . . ,m}.

Clearly, any constant or unimodular invertible matrix is an example of such transformations. We also give

a further characterization of weak compatibility in Proposition 7.1.

In the sequel, we will also need to resort to transformations with stronger properties:

| Definition 7.2

Let T ∈ GLn(Frac(R)). We say that a transformation F = TG (respectively T ) is compatible with

system [A] if it is weakly compatible with [A] and the Poincaré rank of each individual component

of T [A] do not exceed that of the corresponding component of [A]. In other words, T does not

increase p of [A].

7.1.2 Fundamental matrix of formal solutions FMFS

Before studying how to construct formal solutions to a given system, the question arises if and how many

solutions exist. The language of stable modules over the ring of power series is used in [42, Theorem 1]

and [54, Main Theorem] independently to establish the following theorem which gives an answer to this

question.

| Theorem 7.1

Consider the completely integrable system [A] given by (6.14). There exist strictly positive integers

αi, 1 ≤ i ≤ m, and an invertible matrix T (t) whose entries lie in Rt such that, upon setting xi = tαi
i ,

the transformation F = TG yields the equivalent system:

tαip̃i+1
i ∂tiG = Ã(i)(ti) G, 1 ≤ i ≤ m, where

Ã(i)(ti) = diag (Ã11
(i)(ti), Ã

22
(i)(ti), . . . , Ã

jj
(i)(ti)),

Page 155
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and for every ℓ ∈ {1, . . . , j}, Ãℓℓ
(i)(ti) is a square matrix of dimension nℓ of the form

Ãℓℓ
(i) = wℓℓ

(i)(ti) Inℓ
+ tαip̃i

i (cℓℓ(i)Inℓ
+N ℓℓ

(i));

where

• n1 + n2 + · · ·+ nj = n;

• wℓℓ
(i)(ti) =

∑αip̃i−1
j=0 λijℓ t

j
i is a polynomial in ti, with coefficients in C;

• cℓℓ(i) ∈ C and N ℓℓ
(i) is a constant (with respect to all derivations ∂ti) dℓ-square matrix having

nilpotent upper triangular form;

• for any fixed ℓ ∈ {1, . . . , j}, the matrices {N ℓℓ
(i)}i=1,...,m

are permutable;

• for every ℓ ∈ {1, . . . , j − 1}, there exists i ∈ {1, . . . ,m} such that

wℓℓ
(i)(ti) 6= w

(ℓ+1)(ℓ+1)
(i) (ti)

or cℓℓ(i) − c
(ℓ+1)(ℓ+1)
(i) 6∈ Z.

The argument in both papers relies on induction on the number of variables and the dimension of

the system. Theorem 7.1 guarantees the existence of a transformation which takes system (6.14)

to Hukuhara-Turrittin’s normal form from which the construction of a fundamental matrix of formal

solutions FMFS (7.4) is straightforward. In fact, we have:

| Corollary 7.1

Consider system [A] given by (6.14). A fundamental matrix of formal solutions exists and is of the

form

Φ(x
1/s1
1 , . . . , x1/sm

m )

m∏

i=1

xCi
i

m∏

i=1

exp(Qi(x
−1/si
i )), (7.4)

where† Φ is an invertible matrix whose entries lie in Rt and for each i ∈ {1, . . . ,m} we have:

• si is a positive integer;

• the diagonal matrix

Qi(x
−1/si
i ) = diag

(

qi,1(x
−1/si
i ), qi,2(x

−1/si
i ), . . . , qi,n(x

−1/si
i )

)

contains polynomials in x
−1/si
i over ❈ without constant terms. We refer to Qi(x

−1/si
i ) as the

xi-exponential part. Under the notations of Theorem 7.1, it is obtained by formally integrating
wℓℓ

(i)

t
αip̃i+1

i

;

• Ci is a constant matrix which commutes with Qi(x
−1/si
i ).

†Notice the analogy with the univariate system [A] given by (1)
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System [A] is said to be regular singular whenever, for every i ∈ {1, . . . ,m}, Qi(x
−1/si
i ) is a zero matrix.

In this case si = 1, 1 ≤ i ≤ m, and the formal series Φ of (7.4) converges whenever one of the leading

matrix coefficients has n distinct eigenvalues and the expansions of the A(i)(x)’s converge. Otherwise,

system (6.14) is said to be irregular singular and the entries of Qi(x
−1/si
i ), 1 ≤ i ≤ m, determine the

main asymptotic behavior of the actual solutions as xi → 0 in appropriately small sectorial regions [58,

Proposition 5.2, pp 232, and Section 4]. We also have the following definition:

| Definition 7.3

Given system [A]. We denote by d(i),j the minimum order in xi within the terms of qi,j(x
−1/si
i )

in Qi(x
−1/si
i ) for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Then, the xi-formal exponential growth order

(xi-exponential order, in short) of [A(i)], the ith component of [A], is the rational number

ωi = −min1≤j≤n di,j .

The m-tuple of rational numbers ω(A) = (ω1, . . . , ωm) then defines the exponential order of system

[A].

If two systems are equivalent then they have the same xi-exponential parts and xi-exponential order for

all i ∈ {1, . . . ,m}, under any gauge transformation. And so, we refer to these quantities as the formal

invariants.

The above theoretical results on existence do not establish the formal reduction itself, that is the

algorithmic procedure which computes explicitly the αi’s of Theorem 7.1 and a transformation which

takes the system to a normal form that allows the construction of such solutions. This will be our task in

the following sections. But before proceeding to describe the algorithms we propose, we characterize the

transformations to be used.

| Proposition 7.1

Consider a system [A] given by (6.14). Let T ∈ GLn(Frac(R)) and set T [A] = [Ã]. If T is a

transformation which is weakly compatible with system [A] then T ∈ GLn(RL).

Proof. It follows from (7.2) that

∂iT =
Ai

xpi+1
i

T − T
Ãi

xp̃i+1
i

, 1 ≤ i ≤ m.

Using the Kronecker tensor product and the vectorization of T = [tjℓ]1≤j,ℓ≤n, this set of m equations can

be expressed equivalently by

∂ivec(T ) = Mi(x) vec(T ), 1 ≤ i ≤ m. (7.5)

where vec(T ) is the column vector given by the transpose of

[t11, . . . , tn1, t12, . . . , tn2, . . . , t1n, . . . , tnn]
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and

Mi = In ⊗
Ai

xpi+1
i

− Transpose (Ãi)

xp̃i+1
i

⊗ In.

Thus, T itself is a solution of a completely integrable Pfaffian system with normal crossings. By

Corollary 7.1, vec(T ) has the form (7.4). But T ∈ GLn(Frac(R)) and consequently T is free of logarithmic

and exponential terms. Hence, T corresponds to a log-free regular solution of (7.5). Thus, T ∈Mn(RL).

The same argument serves to prove that T−1 ∈Mn(RL) as well, upon remarking that T−1[Ã] = [A]. And

thus, T ∈ GLn(RL). �

The proposition above can also be established by a consequence of the generalization of Abel’s formula

for the Wronskian (see, e.g. [11, Proposition 1, proof, pp 6]):

∂idetT = (
trace (Ai)

xpi+1
− trace (Ãi)

xp̃i+1
) detT, 1 ≤ i ≤ m.

7.1.3 Properties of the leading coefficients

Classically, as we have seen in Chapter 1, the starting point in the formal reduction is the nature of

eigenvalues of the leading matrix coefficients. The integrability conditions and the property of normal

crossings play a major role in establishing Theorem 7.1 and its corollary. In particular, they give rise to

interesting and useful aspects of the leading matrix coefficient A0 of system [A]. We first recall that the

set of integrability conditions of system [A] are given by the pairwise rules of (6.15):

xpi+1
i ∂iA(j)(x) − x

pj+1
j ∂jA(i)(x) = A(i)(x) A(j)(x) − A(j)(x) A(i)(x), i, j ∈ {1, . . . ,m}.

Setting xi = 0 in the above yields

x
pj+1
j ∂jA(i),0 = A(j)(xi = 0) A(i),0 − A(i),0 A(j)(xi = 0), i, j ∈ {1, . . . ,m}, (7.6)

which can be restated as

A(i),0 ∈ E(A(j)(xi = 0)) (7.7)

where E(A(j)(xi = 0)) is the eigenring of A(j)(xi = 0) which is defined in this context as follows: The set

of matrices T with entries in Frac(Rx̄i
) satisfying

x
pj+1
j ∂jT = A(j)(xi = 0) T − T A(j)(xi = 0).

The idea of using eigenrings to investigate factorization of linear differential operators over univariate

fields, i.e., computing a change of basis under which the matrix representation has a triangular or block-

diagonal form, was introduced by Singer [123], and have been used for factoring systems of linear

functional equations over base fields of positive or zero characteristic (see, e.g. [16] and references

therein) and for computing closed-form solutions of integrable connections in [22]. Results on eigenrings

characterize the interdependence within the m components of [A]. In particular, we have:

| Proposition 7.2
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For any i ∈ {1, . . . ,m}, the eigenvalues of A(i),0 belong to C.

For a proof in the context of eigenrings, one can refer to [16, Proposition 2.2] and otherwise to [54,

Proposition 1, pp 8] and [42, Lemma 4.1, pp 93].

Due to established results on eigenrings, one can relate the structures of A(i),0 and A(j)(xi = 0),

i, j ∈ {1, . . . ,m}, which will prove to be very beneficial to test and guarantee the compatibility of the

transformations used within our treatment. In particular, the following fact can be proved easily in our

particular situation but it can also be seen as an adaptation of [16, Theorem 3.1] to our settings:

| Lemma 7.1

Let T,B ∈ Mn(K) where K is a commutative field of characteristic zero equipped with a derivation

∂. Suppose that T ∈ E(B) and set r to be the rank of T . If T =

[

T 11 Or,n−r

T 21 On−r,n−r

]

where

[

T 11

T 21

]

is of

full rank r then B =

[

B11 Or,n−r

B21 B22

]

.

Proof. Since T ∈ E(B) then we have

∂T = BT − TB. (7.8)

Let B be partitioned in analogy with the block stucture of T as B =

[

B11 B12

B21 B22

]

. Inserting this form

in (7.8) and equating the entries of same positions, we get:

[

T 11

T 21

]

B12 = On,n−r. Since

[

T 11

T 21

]

is of full

rank, we then have B12 = Or,n−r. �

7.1.4 Block-diagonalization

Consider system [A] given by (6.14) and its m-tuple of leading matrix coefficients A0 =

(A(1),0, . . . , A(m),0). Whenever there exists an index i ∈ {1, . . . ,m} such that A(i),0 has at least

two distinct eigenvalues, system [A] can be uncoupled into subsystems of lower dimensions as we

demonstrate in Theorem 7.2. Theorem 7.2 generalizes the uncoupling algorithm of the univariate case

(see Section 1.3) to this multivariate setting. The proof we give in this subsection is constructive and is

based on that of [58, Section 5.2, pp 233]. For a statement and a proof in the language of modules, one

can refer to [42, Section 4] and [54, Corollary, pp 9].

| Theorem 7.2

Consider system [A] given by (6.14) and its m-tuple of leading matrix coefficients A0 =

(A(1),0, . . . , A(m),0). Suppose that for some i ∈ {1, . . . ,m}, the leading matrix coefficient A(i),0 has at

least two distinct eigenvalues. Then there exists a unique transformation T (x) ∈ GLn(R) of the form

T (x) =

(

1 T 11(x)

T 22(x) 1

)

,
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which is compatible with [A] and such that the transformation F = TG yields the equivalent system

x
pj+1
j ∂jG =

(

Ã11
(j) O

O Ã22
(j)

)

G, 1 ≤ j ≤ m,

where the entries of Ã11
(j) and Ã22

(j) lie in R. If furthermore the constant matrix has the form

A(i),0 =

[

A11
(i),0 O

O A22
(i),0

]

(7.9)

where A11
(i),0 and A22

(i),0 do not have an eigenvalue in common, then Ã(i),0 = A(i),0.

The theorem can be restated by saying that if one of the m components of [A] has a leading matrix with

at least two distinct eigenvalues then it can be uncoupled to subsystems of lower dimensions. Moreover,

all of the other components will be uncoupled simultaneously. And by Proposition (7.2), it suffices that

the constant matrix of one of the components has at least two distinct eigenvalues. The following lemma

(see [58, Proposition 5.3, pp 238] for m = 2) will be useful in the proof of this splitting.

| Lemma 7.2

Given P(i), Q(i), C(i) ∈ Mn(C) such that P(i)P(j) = P(j)P(i) and Q(i)Q(j) = Q(j)Q(i) for all i, j ∈
{1, . . . ,m}. If for some i ∈ {1, . . . ,m}, P(i) and Q(i) do not have any eigenvalue in common then the

system

P(i) X − X Q(i) = C(i), 1 ≤ i ≤ m

has a unique solution if and only if

P(j) C(i) − C(i) Q(j) = P(i) C(j) − C(j) Q(i), 1 ≤ i, j ≤ m.

Proof. (Theorem 7.2) We suppose that for some i ∈ {1, . . . ,m}, the leading matrix coefficient A(i),0 has at

least two distinct eigenvalues. By Proposition 7.2, these are also eigenvalues of the constant matrix A(i),0.

And without any loss of generality, we can assume that A(i),0 has the block-diagonal structure (7.9),

otherwise Lemma 1.2 can be applied. We fix this i and proceed in two steps:

First Step: We show that the block-diagonal structure of A(i),0 induces the same structure on A(j),0 for

j ∈ {1, . . . ,m}. For this purpose, we partition the former in accordance with the partition of the

latter as follows:

A(j),0 =

[

A11
(j),0 A12

(j),0

A21
(j),0 A22

(j),0

]

.

We then observe that substituting x = 0 in (6.15) yields

A(i),0 A(j),0 = A(j),0 A(i),0. (7.10)
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And (7.10) yields

A11
(i),0A

12
(j),0 − A12

(j),0A
22
(i),0 = O

A22
(i),0A

21
(j),0 − A21

(j),0A
11
(i),0 = O

The above equations are Sylvester matrix equations with a unique solution due to the assumption

on the disjoint spectra of A11
(i),0 and A22

(i),0 (see Lemma 1.1). Thus A12
(j),0 = O and A21

(j),0 = O for all

j ∈ {1, . . . ,m}.

Second Step: We construct the monomial expansions of T (x) and Ã(x) up to any desired precision:

Let T (x) ∈ GL(V ) then it follows from (7.2) that for any j ∈ {1, . . . ,m} we have

x
pj+1
j ∂jT (x) = A(j)(x) T (x) − T (x) Ã(j)(x) (7.11)

Assume the desired forms for T (x) and Ã(x), then we have for 1 ≤ ̺ 6= ς ≤ 2:







A̺̺
(j)(x)− Ã̺̺

(j)(x) +A̺ς
(j)(x) T

ς̺(x) = O

Aς̺
(j)(x) +Aςς

(j)(x) T
ς̺(x)− T ς̺(x) Ã̺̺

(j)(x) = x
pj+1
j ∂jT

ς̺(x)
(7.12)

Inserting the monomial expansions

T (x) =

∞∑

|k|=0

Tk xk A(j)(x) =

∞∑

|k|=0

A(j),k xk, Ã(j)(x) =

∞∑

|k|=0

Ã(j),k,

in (7.12) and equating power-like coefficients yields for |k| = 0 and for all j ∈ {1, . . . ,m}

A̺̺
(j),0 = Ã̺̺

(j),0

Aςς
(j),0 T ς̺

0 − T ς̺
0 Ã̺̺

(j),0 = O

which are obviously satisfied by setting A(j),0 = Ã(j),0 and T ς̺
0 = O and T ̺̺

0 = I.

As for |k| > 0, we have

Aςς
(j),0T

ς̺
|k| − T ς̺

|k|A
̺̺
(j),0 = −Aς̺

(j),|k| + (kj − pj) T
ς̺

|k̃| (7.13)

−
∑

0<|l|<|k|
(Aςς

(j),|k−l|T
ς̺
|l| − T ς̺

|l| Ã
̺̺
(j),|k−l|) (7.14)

Ã̺̺
(j),|k| = A̺̺

(j),|k| +
∑

0<|l|≤|k|
A̺ς

(j),|k−l|T
ς̺
|l| (7.15)

where 





k̃ is such that







k̃j = kj , if j 6= i

k̃j = kj + pj and

T ς̺

|k̃| = O if kj ≤ pj
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Hence, for any k ∈ Nn , j ∈ {1, . . . ,m} , 1 ≤ ̺, ς ≤ 2 , the computation of T ς̺
|k|, and Ãςς

(j),|k|, depends

solely on terms of lower order. Moreover, it can be verified by that the conditions of Lemma 7.2

are guaranteed by the monomial expansion of the integrability conditions and the disjoint spectra

of A11
(i),0 and A22

(i),0. Thus, (7.15) and (7.13) can be determined uniquely and successively to any

desired precision.

We finally remark that T (x) is clearly compatible with system (6.14) since T (x = 0) = In. �

Henceforth, we can assume now without loss of generality that there exists some index j ∈ {1, . . . ,m+1}
such that for the m-tuple of the leading matrix coefficients A0 = (A(1),0, . . . , A(m),0) we have:

• For 1 ≤ i < j, A(i),0 is nilpotent.

• For j ≤ i ≤ m, A(i),0 has a nonzero unique eigenvalue λi ∈ C,

which leads us to the next subsection.

7.1.5 Eigenvalue shifting

Let i ∈ {1, . . . ,m} and suppose that A(i),0 of system [A] has a nonzero unique eigenvalue γi ∈ C. We can

then apply the so-called eigenvalue shifting

F = G exp(

∫ xi

γiz
−pi−1
i dzi), (7.16)

to arrive at a system [Ã] whose ith component has a nilpotent leading matrix coefficient. In fact we have







Ã(i)(x) = A(i)(x)− γiIn

Ã(j)(x) = A(j)(x) for all 1 ≤ j 6= i ≤ m
.

Such a transformation is clearly compatible with system [A]. Henceforth, by applying to system [A]

F = G

m∏

i=j

exp(

∫ xi

γiz
−pi−1
i dzi),

we arrive at a system [Ã] with a m-tuple of nilpotent leading coefficients.

Similar to Parts I and II, with this nilpotency arises the main difficulties in formal reduction. In the next

section, we show how to compute the formal invariants of such systems.

7.2 Computing the formal invariants

One cannot retrieve ω(A) (see Definition 7.3) from the outset. In the univariate case, ω(A) reduces to

ω(A) which, as we have seen in Chapter 1, can be computed from the characteristic polynomial of A(x),

i.e. det(λI − A(x)) [14, Theorem 1], based on an analysis by a Newton’s polygon. In this section we

show that, unlike Part II, one need not search for a generalization of [14, Theorem 1] and its underlying
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set of reductions. We show that instead, the formal invariants of [A] can be obtained from a system of

associated linear singular ordinary differential systems (ODS). And so, not only we give a method to

retrieve these invariants but also we reduce computations to univariate fields. We first define these ODS

components:

| Definition 7.4

Consider system [A] given by (6.14):

[A] xpi+1
i ∂i F = A(i)(x) F, 1 ≤ i ≤ m.

We call the following the associated ODS with [A]:

[A] xpi+1
i ∂i F = A(i)(xi) F, 1 ≤ i ≤ m, (7.17)

where A(i)(xi) := A(x1 = 0, . . . , xi−1 = 0, xi, xi+1 = 0, . . . , xm = 0).

We then introduce the following notations:

• ω(A) = (ω(A(1)), . . . , ω(A(m))) the m-tuple of the exponential orders of the components of the

associated ODS, and

• p(A) = (p(A(1)), . . . , p(A(m))) the m-tuple of the Poincaré ranks of the components of the associated

ODS.

• p
true

(A) = (ptrue(A(1)), . . . , ptrue(A(m))) the m-tuple of the true Poincaré ranks of the components

of the associated ODS, as defined in Section 1.5.1.

We can then establish the following theorem:

| Theorem 7.3

Given the completely integrable system with normal crossings [A] and its associated ODS system [A].

For every i ∈ {1, . . . ,m}, the xi-exponential parts of the former are the exponential parts of the ith

component of the latter (see Figure 7.2). And consequently we have,

ω(A) = ω(A).

To prove this result, we rely on a triangular form weaker than the Hukuhara-Turrittin’s normal form of

Theorem 7.1. This weaker form suffices to give an insight into the computation of xi-exponential parts.

The following proposition was first given for the bivariate case in [41, Proposition 3, pp 654] and then

generalized to the multivariate general case in [42, Theorem 2.3].

| Theorem 7.4

Consider system [A] given by (6.14). There exists a positive integer α1, and a transformation T ∈
GLn(Frac(Rt)) (where x1 = tα1

1 and xi = ti, 2 ≤ i ≤ m), such that the transformation F = TG
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yields the equivalent system:

[Â]







tα1p̂1+1
1 ∂t1 G = Â(1)(t1, x2, . . . , xm) G,

xp̂i+1
i ∂xi

G = Â(i)(x2, . . . , xm) G, 2 ≤ i ≤ m, where

(7.18)

Â(1)(t1, x2, . . . , xm) = diag(Â11
(1), Â

22
(1), . . . , Â

jj
(1)),

Â(i)(x2, . . . , xm) = diag(Â11
(i), Â

22
(i), . . . , Â

jj
(i)), 2 ≤ i ≤ m,

and for all ℓ ∈ {1, . . . , j} and i ∈ {2, . . . ,m} the entries of Âℓℓ
(i) lie in Rx̄1

. The Âℓℓ
(1)’s are of the form

Âℓℓ
(1)(x2, . . . , xm) = wℓℓ

(1)(t1)Idℓ
+ tα1p̂1

1 (N̂ ℓℓ
(1)(x2, . . . , xm) + cℓℓ(1)Inℓ

),

where

• n1 + n2 + · · ·+ nj = n;

• wℓℓ
(1)(t1) and cℓℓ(1) are as in Theorem 7.1;

• If ℓ, ℓ′ ∈ {1, . . . , j − 1} and ℓ 6= ℓ′, then wℓℓ
(1)(t1) 6= wℓ′ℓ′

(1) (t1) or cℓℓ(1) − cℓ
′ℓ′

(1) 6∈ Z;

• N̂ ℓℓ
1 (x2, . . . , xm) is a nilpotent nℓ-square matrix whose entries lie in Rx̄1

.

Moreover, T can be chosen as a product of transformations in GLn(Rt) and transformations of the

form diag(tβ1

1 , . . . , tβn

1 ), where β1, . . . , βn are nonnegative integers.

Proof. (Theorem 7.3) Upon the change of independent variable x1 = tα1
1 , the transformation F = TG

yields system (7.18) for which the first component is given by

tα1p̂1+1
1 ∂t1 G = Â(1)(t1, x2, . . . , xm) G. (7.19)

with the notations and properties as in Theorem 7.4. It then follows from (7.2) that

tα1p̂1+1
1 ∂t1T = α1 A(1)(x1 = tα1

1 ) T − T Â(1). (7.20)

Due to the particular choice of T (x) characterized in Theorem 7.4, setting xi = 0, 2 ≤ i ≤ m in (7.20) is

legitimate. In particular, we are interested in the relation between the leading terms







A(1)(t1) := A(1)(x1 = tα1
1 , x2 = 0, . . . , xm = 0) ,

Â(1)(t1) := Â(1)(t1, t2 = 0, . . . , tm = 0) ,

T(t1) = T (t1, t2 = 0, . . . , tm = 0) ,

which is clearly given by

tα1p̂1+1
1 ∂t1T = α1 A(1)(x1 = tα1

1 ) T − T Â(1). (7.21)
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Input
system

First
component

Last
component

First
associated

ODS

Last
associated

ODS

Exp. part
in first var.

Exp. part
in last var.

Exp. part

Figure 7.1: Computing the exponential part from associated ODS’s

Hence, the systems given by [α1 A(1)(x1 = tα1
1 )] (resp. [A(1)(x1)]) and [Â(1)(t1)] are equivalent. It follows

that they have the same formal invariants.

Clearly, the same result can be obtained for any ith component of the system [A], i ∈ {1, . . . ,m}, by

permuting it with the first component. �

| Lemma 7.3

The xi-exponential parts of system [A] can be determined by a truncation of total order max({npi |
1 ≤ i ≤ m}) of each of the components A(i), i ∈ {1, . . . ,m}.

Proof. It suffices to remark that for any associated ODS, the exponential part is determined by, at most,

the first npi coefficients [9, 90]. �

Let p
true

(A) = (p1,true, . . . , pm,true) denote the true Poincaré rank of system [A], i.e., the m-tuple of

the minimal integers bounding the maximal growth orders in the m variables. In other words, it is the

m-tuple of the minimal integers satisfying the following inequalities:

pi,true − 1 < ωi ≤ pi,true, i ∈ {1, . . . ,m}.

Hence, the above theorem gives an insight to this true Poincaré rank of system [A] as well and allows its

characterization in terms of the invariants of the associated ODS.

It is shown by Deligne and van den Essen separately in [48, 53], for the multivariate case in geometric

and algebraic settings respectively, that a necessary and sufficient condition for system [A] to be

regular singular is that each individual ith component [A(i)], 1 ≤ i ≤ m, considered as a system of

ordinary differential equations in xi, with the remaining variables held as transcendental constants,

is regular singular. As a consequence, system [A] is regular singular if and only if its true Poincaré

rank is (0, 0, . . . , 0). And to test this regularity, algorithms available for the univariate case of m = 1

(e.g. [32, 87]) can be applied separately to each of the individual components‡. The following corollary

‡Transformations computed with this approach might alter the normal crossings of such systems. Hence, although they serve a
theoretical purpose here, rank reduction algorithm will be constructed differently in Chapter 8.
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follows directly from Theorem 7.3, giving a characterization of the true Poincaré rank in both the regular

and irregular cases.

| Corollary 7.2

Under the notations of this section, we have

p
true

(A) = p
true

(A).

For the proof, it suffices to remark that§

ptrue(A(i)) − 1 < ωi = ω(A(i)) ≤ ptrue(A(i)).

Hence, the formal exponential order, the true Poincaré rank, and most importantly the Qi’s in (7.4),

can be computed efficiently over a univariate rather than a multivariate field using the existing packages

(see Chapter 1). As mentioned in the introduction, this exponential part is of central importance in

applications since it determines the asymptotic behaviour of the solution in the neighborhood of a

singularity. However, one might also be interested in computing a full fundamental matrix of formal

solutions FMFS as given by (7.4). As we have seen in Chapter 1, the two pillars of formal reduction in

case of nilpotent leading coefficients are the formal order growth and rank reduction. So, in order to give

an algorithm to compute a fundamental matrix of formal solutions, it remains to give a compatible rank

reduction for system [A].

We assume in the next section, that we have at hand such an algorithm and we give an algorithm of

formal reduction. A rank reduction algorithm will then be investigated in Chapter 8.

7.3 Formal reduction algorithm

Given system [A], we discuss the eigenvalues of the leading matrix coefficients of its m components. If for

all of these components uncoupling is unattainable, then we fix i ∈ {1, . . . ,m} and proceed to compute

the exponential order ωi from the associated ODS. Suppose that for some i, we compute ωi = ℓ
d with

ℓ, d coprime positive integers (see Figure 7.3 and Algorithm 7). We can then set ti = x
1/d
i and perform

again rank reduction to get an equivalent system whose ith component has Poincaré rank equal to ℓ and

leading matrix coefficient with at least d distinct eigenvalues. Consequently, block-diagonalization can be

re-applied to uncouple the ith component. By Subsection 7.1.4, this uncoupling results in an uncoupling

for the whole system. This procedure can be repeated until we attain either a scalar system, i.e. a system

whose n components are scalar equations, or a system whose Poincaré rank is given by (0, . . . , 0). The

former is trivial and effective algorithms are given for the latter in [84, Chapter 3].

§Stronger bounds are given in [14, Remark 3]

Page 166



7.3 Formal reduction algorithm Chapter 7

Algorithm 7 FMFS_PFAFF Computes a fundamental matrix of formal solutions (7.4) of a completely
integrable Pfaffian system with normal crossings given by (6.14)
Input: p = (p1, . . . pm), A(x) = (A(1), . . . , A(m)) of (6.14)
Output: A fundamental matrix of formal solutions (FMFS) (7.4)
{Ci} 1≤i≤m ← On; {Qi} 1≤i≤m ← On; Φ← In;
while n 6= 1 or pi > 0 for some i ∈ {1, . . . ,m} do

if A(i),0 has at least two distinct eigenvalues then
Split system [A] as in Section 7.1.4; Update Φ;

FMFS_PFAFF (p, Ã
11
(x)); Update Φ, {Ci} 1≤i≤m, {Qi} 1≤i≤m;

FMFS_PFAFF (p, Ã
22
(x)); Update Φ, {Ci} 1≤i≤m, {Qi} 1≤i≤m;

else if A(i),0 has one non-zero eigenvalue then
Update Qi from the eigenvalues of A(i),0;
A(x)← Follow Subsection 7.1.5; (A(i),0 is now nilpotent);
FMFS_PFAFF (p, Ã(x)); Update Φ, {Ci} 1≤i≤m, {Qi} 1≤i≤m;

else
Apply rank reduction of Chapter 8; Update Φ;Update p; Update A(i),0;
if pi > 0 and A(i),0 has at least two distinct eigenvalues then

Split system as in Section 7.1.4; Update Φ;
FMFS_PFAFF (p, Ã

11
(x)); Update Φ, {Ci} 1≤i≤m, {Qi} 1≤i≤m;

FMFS_PFAFF (p, Ã
22
(x)); Update Φ, {Ci} 1≤i≤m, {Qi} 1≤i≤m;

else if A(i),0 has one non-zero eigenvalue then
Update Qi from the eigenvalues of A(i),0;
A(x)← Follow Subsection 7.1.5; (A(i),0 is now nilpotent);
FMFS_PFAFF (p, Ã(x)); Update Φ, {Ci} 1≤i≤m, {Qi} 1≤i≤m;

else
Follow Section 7.2 to compute ωi =

ℓ
d ;

xi ← xi
d;

Apply rank reduction of Chapter 8; Update Φ; pi ← ℓ; Update A(i),0;
Update Qi from the eigenvalues of A(i),0;
A(x)← Follow Subsection 7.1.5; (A(i),0 is now nilpotent);
FMFS_PFAFF (p,A(x)); UpdateΦ, {Ci} 1≤i≤m, {Qi} 1≤i≤m;

end if
end if

end while
return p, A, Φ, {Ci} 1≤i≤m, {Qi} 1≤i≤m.
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Input
system
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component

Last
component

System w.
lower dim.

System w.
lower dim.

≥ 2 distinct
eigenvalues

Unique
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Nilpotent

System w.
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Apply rank
reduction
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eigenvalues

Nilpotent
Compute

exp. order
in first var.

Apply rami-
fiction in
first var.

Figure 7.2: Computing a fundamental matrix of formal solutions by studying one of the components, e.g.
the first component. The other components would follow the chosen component in the uncoupling.

7.4 Conclusion

In this chapter, we gave an explicit method to compute the exponential parts of completely integrable

Pfaffian systems with normal crossings in several variables. This gives the main information about the

asymptotic behavior of its solutions. Moreover, this new approach limits the computations to a finite

number of constant matrices instead of matrix-valued functions, limits the number of coefficients we

need in the expansions in computations to get the exponential part, and constitutes an eminent portion

of the process of formal reduction. To complement our work and compute a fundamental matrix of

formal solutions, we propose Algorithm 7 which demand a compatible rank reduction algorithm. Such

an algorithm is investigated in the following chapter.
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Consider again system [A] given by (6.14):

[A] xpi+1
i ∂i F = A(i)(x) F, 1 ≤ i ≤ m.

The Poincaré rank of the system given by p = (p1, . . . , pm) and its true Poincaré rank is given by

p
true

(A) = (p1,true, . . . , pm,true).

In this chapter, we are interested in the rank reduction of Pfaffian systems, i.e. the explicit computation

of a transformation which, given system [A], yields an equivalent system whose Poincaré rank is the true

Poincaré rank. In other words, we show that the true Poincaré ranks of the m components of [A] can be

attained simultaneously via a transformation compatible with [A] in the bivariate case and under certain

conditions in the multivariate case.

As mentioned in the introduction, such an algorithm is developed for bivariate Pfaffian systems

in [26] upon generalizing the univariate algorithm of Levelt. Efficiency considerations aside (see

Subsection 5.6.1), the former algorithm results in an equivalent system whose Poincaré rank is minimal

but does not guarantee that the leading matrix coefficients have minimal algebraic ranks, unlike

algorithms based on Moser’s criterion. In the univariate case, the latter condition is indispensable for

the formal reduction of Algorithm 1.

This chapter is organized as follows: We first discuss two reduction criteria in Section 8.1 within

the attempt to generalize Moser’s criterion (see Section 1.5.1) and guarantee minimizing both ranks
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(the Poincaré’s and the algebraic). We then generalize Moser-Barkatou’s algorithm of [15] to treat

bivariate and, under certain prescribed conditions, multivariate systems. We state our main theorem

in Section 8.2. Not only is the generalization of this algorithm to the bivariate case nontrivial, but also

the transition from the bivariate setting to the multivariate setting is not straightforward and the obstacle

is common in literature. For instance, Theorem 7.1 was first given and proved in [41] for bivariate

systems. In the theory developed there, one operator (component) was considered and facts about

principal ideal domains (which arise once eliminating one variable) were used in many places to prove

that certain modules introduced are free modules. This does not allow an immediate generalization to

the case of more than two variables since one can no more rely on properties of such domains. The same

obstacle arises in Barkatou-LeRoux-Levelt rank reduction in [26] and in the analogous theory of formal

decomposition of m commuting partial linear difference operators studied by Praagman [115]. This

problem manifests itself within our algorithm in the column reduction which we discuss in Section 8.3.

We then give a constructive proof of our main theorem in Section 8.4.

8.1 Reduction criterion

As mentioned in Section 7.1.1, algorithms available for the univariate case can be adapted to the

multivariate setting by considering one of the variables (whose Poincaré rank is to be reduced) as the

“principal” variable and regarding the others as transcendental constants. However, we have also seen

that the compatibility of the transformations computed via such algorithms with the Pfaffian system is

not guaranteed (see Example 7.1). Moreover, computations over bivariate and multivariate fields have

a different nature. In order to develop an algorithm suitable for the multivariate setting, we suggest the

following two reduction criteria.

8.1.1 Moser’s criterion for the associated ODS systems

Consider system [A] given by (6.14), we recall that its associated ODS system is defined by (7.17) as

follows (see Definition 7.4):

[A] xpi+1
i ∂i F = A(i)(xi) F, 1 ≤ i ≤ m,

where A(i)(xi) := A(i)(x1 = 0, . . . , xi−1 = 0, xi, xi+1 = 0, . . . , xm = 0). Based on Corollary 7.2, a

possible reduction criterion is that of the associated ODS system itself. Hence, we can define the m-tuples

of rational numbers as follows∗:

m(A) = (m(A(1)), . . . ,m(A(m))) where m(A(i)) = max (0, p(A(i)) +
rank (A(i),0)

n
)

µ(A) = (µ(A(1)), . . . , µ(A(m))) where µ(A(i)) = min {m(T [A(i)]) | T ∈ GLn(RL)}.

∗We are adopting the same notations for the Moser rank and invariant in the literature in the hope that no confusion would arise
between m(A(i)) which denotes Moser’s rank and m which denotes the number of variables.
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It then follows from the above definitions that if µ(A) = m(A) then the Poincaré rank of system (6.14) is

its true Poincaré rank. In particular, it is regular singular if and only if µ(A) � 1, i.e. the true Poincaré

rank is the zero m-tuple. However, there is no guarantee that the converse holds: It might happen

that the true Poincaré rank of system (7.17) (and consequently for system (6.14)) is attained but the

minimal algebraic ranks of its constant leading matrices are not attained yet. This is a consequence of

rank (A(i),0) ≤ rank (A(i),0), 1 ≤ i ≤ m. And so we might have µ (A) � m (A) although system (6.14)

attained its true Poincaré rank and its leading matrix coefficients attained their minimal algebraic ranks.

Hence, we propose a more precise criterion in the next subsection.

8.1.2 Generalized Moser’s criterion

We consider again a multivariate Pfaffian system [A] given by (6.14). We define the generalized Moser

rank and invariant of this system respectively as the following m-tuples of rational numbers (see [15, 107]

for univariate systems):

m(A) = (m(A(1)), . . . ,m(A(m))) where m(A(i)) = max (0, pi +
rank (A(i),0)

n
)

µ(A) = (µ(A(1)), . . . , µ(A(m))) where µ(A(i)) = min {m(T [A])|T ∈ GLn(RL)}.

We remark that µ(A) is well-defined due to Corollary 7.2 and the implication that the true Poincaré rank

of the system is attained whenever the true Poincaré ranks of its m components are individually and

simultaneously attained.

| Definition 8.1

The system [A] (the matrix A(x) respectively) is called reducible if µ(A) ≺ m(A), otherwise it is

said to be irreducible.

In other words, System [A] is irreducible whenever each of its components is. In particular, it is easy to

see from this definition that the system is regular singular if and only if µ(A) � 1, i.e. the true Poincaré

rank is the zero m-tuple, which coincides with Deligne’s and van den Essen’s criterion.

8.2 Rank reduction algorithm

By the aid of compatible transformations and the criterion established in Subsection 8.1.2, we study the

rank reduction of some component A(i)(x) of [A] which is given by (6.14). We will see that rank reduction

can be carried out for each component independently without affecting the individual Poincaré ranks of

the other components. We fix i ∈ {1, . . . ,m} and we recall that one can expand the components of [A]

w.r.t. xi. In particular, for the fixed index i we have,

xpi+1
i ∂iF = A(i)(x)F = (A(i),0(x̄i) +A(i),1(x̄i)xi +A(i),2(x̄i)x

2
i + . . . )F.
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We set

ri := rank(A(i),0).

For all i we can assume without loss of generality that A(i),0 is not the zero matrix and thus the reducibility

of system [A] coincides with the existence of an equivalent system such that for some i the rank of the

leading matrix coefficient A(i),0 is less than ri. We establish the following theorem which clearly is the

multivariate generalization of [107, Theorems 1 and 2, pp 381] for the univariate ODS, and analog of

Theorems 5.2 and 5.3 for singularly-perturbed systems discussed in Part II.

| Theorem 8.1

Given a Pfaffian system [A] with m(A(i)) > 1 for some i ∈ {1, . . . ,m}. If µ(A(i)) < m(A(i)) then the

polynomial

θi(λ) := xi
ri det(λI +

A(i),0

xi
+A(i),1)|xi=0 (8.1)

vanishes identically in λ. Conversely, if θi(λ) vanishes, then under prescribed conditions we can

construct a compatible transformation T ∈ GLn(RL) which reduces m(A(i)). Moreover, T can be

chosen to be a product of transformations in GLn(Rx̄i) and polynomial transformations of the form

diag(xβ1

i , . . . , xβn

i ) where β1, . . . , βn are non-negative integers.

We first prove that the statement is necessary: We give here the proof of the necessary condition of

Theorem 8.1. The proof of the sufficiency follows after a series of intermediate results that will also

describe the intermediate steps in the algorithm. We will need two kinds of transformations, shearing

transformations and column reductions, which will be explained in the next section.

Proof of Theorem 8.1 (Necessary condition). Suppose that there exists a transformation T (x) ∈ GLn(RL)

which reduces m(A(i)) for some i ∈ {1, . . . ,m}, i.e. , setting T [A] := Ã, we have:

m(Ã(i)) < m(A(i)).

We can then view the ith component of system [A] as a system of ordinary differential equations (ODS)

in xi upon considering the xj ’s for j 6= i, j ∈ {1, . . . ,m}, to be transcendental constants. Hence, by [107,

Theorem 1], θi(λ) = 0. �

For a given index i ∈ {1, . . . ,m}, the algebraic rank of the leading coefficient matrix can be decreased

as long as θi(λ) vanishes identically in λ. In case the leading matrix coefficient eventually reduces to a

zero matrix, the Poincaré rank pi drops at least by one. This process can be repeated until the Moser

rank of system [A] equate its Moser invariant. Due to the compatibility of T (x) in Theorem 8.1 with

system [A], rank reduction can be applied to any of the components of [A] without altering the Moser

rank of the others. Hence, by Corollary 7.2, the true Poincaré rank of system [A] can be attained by a

successive application of the rank reduction algorithm to each of its components. We remark that this

process terminates because the Poincaré rank cannot be dropped further than zero. Hence, we have the

following corollary.
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| Corollary 8.1

Given System (6.14). A necessary and sufficient condition for [A] to be reducible, i.e. for the existence

of a T (x) ∈ Gl(V ) such that the algebraic rank of at least one of the leading matrix coefficients can

be decreased strictly, is that at least one of the polynomials

θi(λ) := xi
ri) det(λI +

A(i),0

xi
+A(i),1)|xi=0, 1 ≤ i ≤ m,

vanishes identically in λ. Moreover, under prescribed conditions identified within its construction,

T (x) can be chosen to be in GLn(RL) and to be compatible with system [A].

By Corollary 7.2, the true Poincaré rank of system (6.14) can be deduced from its associated ODS. If

rank reduction is applied within a formal reduction algorithm (Algorithm 7), then one does not need a

criterion to detect the true Poincaré rank, as it can be deduced from the associated ODS. Nevertheless this

criterion is essential as it furnishes the construction of the change of basis T (x) as will be demonstrated

in later sections. Moreover, it allows the rank reduction algorithm to be implemented as a stand-alone

procedure which is independent of the formal reduction itself.

The proof of the sufficient condition of Theorem 8.1 follows after a series of intermediary results. As

we have already experienced with rank reduction algorithms, this algorithm is based on two kinds of

transformations: shearing and column reduction (as in Lemma 5.1). We first explain the conditions

required in the following section.

8.3 Column reduction

To enable rank reduction, we alternate between the shearing transformation and transformations which

reduce some columns of a leading matrix coefficient to zero:

(P) Given a square matrix A(x) = [v1, . . . , vn] ∈ Mn(R) (where vi denotes the ith column

of A) of rank r < n when considered as an element ofMn(Frac(R)). It is required to find a

unimodular transformation T ∈ GLn(R) such that the last n− r columns of TAT−1 are zero

columns.

Before considering the algorithmic aspects, we first discuss the existence of such a transformation. As the

next example shows, the desired transformation does not necessarily exist for any matrix A.

| Example 8.1

The matrix 




0 x1 x2

0 0 0

0 0 0






is obviously of rank 1 over Frac(R). There is, however, no unimodular transformation T ∈ GL3(R)

such that TAT−1 contains only one non-zero column.

�
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Consider the finitely generated Rn-submodule M := 〈v1, . . . , vn〉. We call it the column module of A. In

order to construct a suitable transformation for bivariate Pfaffian systems (for which the leading matrix

coefficients are univariate), one can use the fact that ❈[[x1]] and ❈[[x2]] are principal ideal domains and

hence that every finitely generated submodule of a free module over this ring is free. We generalize

this for the multivariate case by showing in Corollary 8.2 that the freeness of the column module M is

a necessary and sufficient condition for the existence of a transformation that meets our requirements.

This is a direct consequence of Nakayama’s Lemma for local rings.

| Theorem 8.2

Let R be a local ring, M its maximal ideal and let M be a finitely generated R-module. Then

v1, . . . , vr ∈ M form a minimal set of generators for M if and only if their images v̄1, . . . , v̄r under

the canonical homomorphism M → M/MM form a basis of the vector space M/MM over the field

R/M.

Proof. See [102, Theorem 2.3, pp 8]. �

The central consequence of Theorem 8.2 for us is that if M is free, a module basis of M can be chosen

among the columns of A. We adapt the theorem to our situation to show that we can bring A into a

column-reduced form if and only if its column module is free.

| Corollary 8.2

Let A(x) ∈ Mn(R) be of rank r over Frac(R) and let M be the module generated by the columns

of A. If M is free, then there exists a subset B of the columns in A with r elements such that B is a

module basis of M . Furthermore, B is also a Frac(R)-vector space basis of the column space of A.

Proof. By Theorem 8.2 we can find a basis B of M among the columns of A. By definition, the elements

of B are linearly independent over R, so they are also linearly independent over Frac(R) (otherwise,

multiplying a linear relation in Frac(R) with a common denominator yields a relation in R). Since B is

a basis of the column module, it also contains a generating set of the Frac(R)-vector space generated by

the columns of A. �

In theory, Corollary 8.2 would allow the computation of a unimodular column reduction transformation

as required in (P ) simply via Gaussian elimination. Assume we are given a matrix A and already know a

subset B = {b1, . . . , br} of the columns of A which forms a basis of the column module. Let v be a column

vector of A which is not in B. Then, since B is a vector space basis, there exist c1, . . . , cr ∈ Frac(R) such

that

c1b1 + · · ·+ crbr = v.

By assumption, B is also a module basis, so there also exist d1, . . . , dr ∈ R with

d1b1 + · · ·+ drbr = v.
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The bi are linearly independent, and therefore the cofactors of v with respect to B are unique. It follows

that ci = di for all 1 ≤ i ≤ r.

The main algorithmic difficulty stems from the fact that not all formal power series admit a finite

representation, as in the introductory example, and even if the initial system is given in a finite form,

the splitting transformation as in Theorem 7.2 does not preserve finiteness. In particular, we face two

main problems when working with truncated power series:

(P1) Detecting the correct rank and the linear independent columns of A

(P2) If we know the independent columns, a column reduction transformation computed after truncation

(in total order) is not uniquely determined.

These computational problems arise for general multivariate and for bivariate systems, but were not

addressed in previous algorithmic works on this topic [26, 84]. Before we propose our resolution, we

illustrate both problems in the following example:

| Example 8.2

Consider the matrix 




x 0 x2 x2 + x

0 x x x

1 0 0 1






Then it the first three columns v1, v2, v3 are linearly independent and generate the column module.

A linear combination of the fourth column v4 is given by

1 · v1 + 0 · v2 + 1 · v3 = v4.

When truncating at order 1, the system is given as






x 0 0 x

0 x x x

1 0 0 1






The original rank cannot be determined from the truncated matrix. Furthermore, even if we know

that v1, v2, v3 are linearly independent, there are several linear combinations of the fourth column

after truncation:

1 · v1 + 0 · v2 + 1 · v3 = v4.

1 · v1 + 1 · v2 + 0 · v3 = v4.

The cofactors of the second linear combination are not the truncated cofactors of the first. It can

not be extended with higher order terms to a linear combination over the formal power series ring

without truncation.

�

We can solve both (P1) and (P2) with the help of minors of the original system. Let r be the rank of A.

Then there exists a nonzero r × r submatrix B of A whose determinant is nonzero. Let k be the order of
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the determinant. If we take the truncated system Ã = A remxk+1, the same submatrix B̃ in Ã will have

a non-zero determinant modulo xk+1 and we can therefore identify in Ã which columns in A are linearly

independent. This resolves (P1) as long as the truncation order k is chosen to be big enough.

Now assume that for instance the first r columns of A are linearly independent, i.e. we can choose B such

that its columns correspond to v1, . . . , vr. Let k be as above, ℓ be a positive integer and let v be a column

vector that is linearly dependent on the columns of B. Then there exist c1, . . . , cr ∈ R such that

B · (c1, . . . , cr) = v.

By Cramer’s rule, we know that the ci are given by

ci =
det(Bi)

det(B)
, (8.2)

where Bi is the matrix obtained by replacing the ith column of B by v. Rewriting Equation (8.2) gives

det(B)ci − det(Bi) = 0, (8.3)

and this equation allows the computation of ci by coefficient comparison. In particular, we are guaranteed

to obtain the correct ci up to order ℓ if in (8.3) we replace B by B̃, its truncation at order ℓ+ k + 1, and

Bi by B̃i, the truncation of Bi at order ℓ+ k + 1. This resolves (P2).

This approach is based on the fact that there is a truncation order such that we can find a submatrix

of maximal dimension with non-zero determinant. We have to remark, however, that by the nature of

formal power series, it is in general not possible to tell a priori if a given truncation is high enough. Only

after computing a wrong result (in comparison to what we can compute with the associated ODS) can

we determine that the truncation order has to be increased. This procedure necessarily terminates, since

there exists a suitable truncation order. Furthermore, not every Frac(R)-vector space basis of the column

space of A is also a module basis, so, in the worst case,
(
n
r

)
submatrices have to be tested.

Subsequently, we will refer to the following conditions whenever necessary:

We say that (C) (resp. (R)) is satisfied if the column (resp. row) module of the matrix under

consideration is free.

Evidently, (C) and (R) are always satisfied in the any of the following cases:

• m = 2, since Rx̄1
and Rx̄2

would be principal ideal domains. Gaussian elimination can be thus

performed by taking as pivots the entries with least valuation in x within the row or column,

depending on the context.

• n = 2, since one can perform elementary row and/or column operations taking as pivot an entry

with a non-zero constant term (see, e.g., Arnold’s form [7]).
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8.4 Proof of Theorem 8.1

We consider again the multivariate system [A] given by (6.14). We fix i ∈ {1, . . . ,m} and investigate the

rank reduction of the ith component of (6.14) given by

xpi+1
i ∂iF = A(i)(x) F = (A(i),0 + A(i),1 xi + A(i),2 x2

i + A(i),3 x3
i + . . . ) F, (8.4)

where the matrices A(i),k, k ≥ 0, have their entries in Rx̄i
and the algebraic rank of A(i),0 is denoted by

ri.

The proof of Theorem 8.1 for the reduction in xi follows essentially the steps of that of Section 5.5 in ξ

but requires additional structure on the leading matrix coefficient to guarantee the compatibility of the

shearing transformations with system [A]. Hence, whenever adequate, we omit the details which are

already described in Chapter 5.

The construction requires successive applications of unimodular and shearing transformations. We

remark that in particular, to study the effect of a transformation T ∈ GLn(Rx̄i) on the ith component

of system [A], it suffices to study the similarity part since (7.2) reduces to

Ã(i) = T−1 A(i) T.

| Lemma 8.1

Under certain conditions which can be verified constructively, there exists a unimodular

transformation U(x̄i) ∈ GLn(Rx̄i
) such that for Ã(i) = U [A(i)] we have

Ã(i),0 =








Ã11
(i),0 O O

Ã21
(i),0 Or−d O

Ã31
(i),0 Ã32

(i),0 On−r








(8.5)

with diagonal blocks of sizes d × d, (r − d) × (r − d) and (n − r) × (n − r) respectively for some

0 ≤ d < r and where



Ã11

(i),0

Ã21
(i),0



 and








Ã11
(i),0 O

Ã21
(i),0 O

Ã31
(i),0 Ã32

(i),0








are r × d and n× r matrices of full column ranks d and r respectively.

Proof. If A(i),0 satisfies the condition (C) of Subsection 8.3, then one can compute a unimodular

transformation U1 ∈ GLn(Rx̄i
) such that

U−1
1 A(i),0U1 =

(

B11 O

B21 O

)
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has rank r, entries in Rx̄i
and with diagonal blocks of sizes r × r and (n − r) × (n − r) respectively.

Let d be the rank of B11. If B11 also satisfies the condition (C), then one can compute a unimodular

transformation U2 ∈ GLr(Rx̄i
) such that

U−1
2 B11U2 =

(

E11 O

E21 O

)

has properties analogous to U−1
1 A(i),0U1. We set U := diag(U2, In−r) · U1. Then the leading coefficient

Ã(i),0 of the equivalent system U [A(i)] has the form (8.5). Clearly, U is compatible with system A since it

is unimodular. �

Hence we assume that the leading coefficient A(i),0(x̄i) of (8.4) is in form (8.5) and we partition A(i),1(x̄i)

in accordance with A(i),0(x̄i). Let

GA(i)
(λ) =








A11
(i),0 O A13

(i),1

A21
(i),0 O A23

(i),1

A31
(i),0 A32

(i),0 A33
(i),1 + λ In−r







. (8.6)

The λ-polynomial det(GA(i)
(λ)) vanishes identically in λ if and only if θi(λ) given by (8.1) does. In fact,

let D(xi) = diag(xiIr, In−r). Then we can write xi
−1A(i)(x) = N(x)D−1(xi) where N(x) ∈Mn(R), and

set D0 = D(xi = 0), N0 = N(xi = 0). Then we have

det(GA(i)
(λ)) = det(N0 + λD0) = det(N + λD)|xi=0

= (det(
A

xi
+ λIn) det(D))|xi=0

= (det(
A(i),0

xi
+A(i),1 + λIn) xi

r)|xi=0,

and hence

det(GA(i)
(λ)) = θi(λ). (8.7)

GAi(λ) has an additional important utility within the construction of a desired transformation as we show

in the following proposition.

| Proposition 8.1

Suppose that m(A(i)) > 1 and det (GA(i)
(λ)) is identical to zero, where GA(i)

(λ) is given by (8.6).

Then, under explicitly described conditions, there exists a unimodular matrix Q(x̄i) in GLn(Rx̄i) with

det Q(x̄i) = ±1, compatible with system [A], such that the matrix GÃ(i)
(λ)) has the form

GÃ(i)
(λ)) =











A11
(i),0 O U1 U2

A21
(i),0 O U3 U4

V1 V2 W1 + λ Id−r−̺ W2

M1 M2 M3 W3 + λ I̺











, (8.8)
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where 0 ≤ ̺ ≤ n− r, M2 is a null matrix, and

rank








A11
(i),0 U1

A21
(i),0 U3

M1 M3








= rank




A11

(i),0 U1

A21
(i),0 U3



 , (8.9)

rank




A11

(i),0 U1

A21
(i),0 U3



 < ri. (8.10)

Proof. The transformation Q(x̄i) can be constructed as in the proof of Proposition 5.2 under the condition

(R) of Section 8.3 and its weaker forms whenever necessary for intermediate matrices whose row vector

space is inspected. Since Q(x̄i) is unimodular, it is compatible with system [A]. It remains to remark

however, that each row of [M1 M2 M3] is a linear combination of the rows of




A11

(i),0 O U1

A21
(i),0 O U3



 .

Hence, by construction, M2 is a zero matrix. �

We remark that in the particular case of d = 0 (8.5) is given by

Ã(i),0(x̄i) =




Or O

Ã32
(i),0 On−r



 , with rank(Ã32
(i),0) = r.

Consequently, it can be easily verified that (8.8) is given by

GÃ(i)
(λ) =




Or U3

V2 W1 + λIn−r



 , and ̺ = 0.

| Proposition 8.2

Consider system [A] given by (6.14). If m(A(i)) > 1 and det (GA(i)
(λ)) ≡ 0 is as in (8.8) with

conditions (8.9) and (8.10) satisfied, then the ith component A(i) of [A] is reducible and reduction

can be carried out with the shearing F = S(xi) G where







S(xi) = diag (xiIr, In−r−̺, xiI̺) if ̺ 6= 0

S(xi) = diag(xiIr, In−r) otherwise.

Furthermore, this shearing is compatible with system [A].
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Proof. For any j ∈ {1, . . . ,m} we partition A(j)(x) in accordance with (8.8)

A(j)(x) =











A11
(j) A12

(j) A13
(j) A14

(j)

A21
(j) A22

(j) A23
(j) A24

(j)

A31
(j) A32

(j) A33
(j) A34

(j)

A41
(j) A42

(j) A43
(j) A44

(j)











, 1 ≤ j ≤ m,

where A11
(j), A

22
(j), A

33
(j), A

44
(j) are square matrices of dimensions d, r − d, n − r − ̺, and ̺ respectively. It is

easy to verify that the equivalent system S[A] := [Ã] given by (7.1) admits the form

Ã(i)(x) =











A11
(i) A12

(i) x−1
i A13

(i) A14
(i)

A21
(i) A22

(i) x−1
i A23

(i) A24
(i)

xiA
31
(i) xiA

32
(i) A33

(i) xiA
34
(i)

A41
(i) A42

(i) x−1
i A43

(i) A44
(i)











− xpi

i diag (Ir, On−r−̺, I̺)

Ã(j)(x) =











A11
(j) A12

(j) x−1
j A13

(j) A14
(j)

A21
(j) A22

(j) x−1
i A23

(j) A24
(j)

xjA
31
(j) xjA

32
(j) A33

(j) xjA
34
(j)

A41
(j) A42

(j) x−1
j A43

(j) A44
(j)











, 1 ≤ j 6= i ≤ m.

Hence, the leading matrix coefficient of the equivalent ith component is given by

Ã(i),0(x̄i) =











A11
(i),0 O U1 O

A21
(i),0 O U3 O

O O O O

M1 O M3 O











where rank(Ã(i),0) < ri since (8.9) and (8.10) are satisfied.

It remains to prove the compatibility of S(xi) with the system [A], in particular, that the normal crossings

is preserved. It suffices to prove that the entries of Aj(x), 1 ≤ j 6= i ≤ m, which are multiplied by x−1
i

upon applying S(xi), namely, the entries of A13
(j), A

23
(j), and A43

(j) are zero matrices modulo xi otherwise

poles in xi would be introduced. This can be restated as requiring A13
(j)(x̄i = 0), A23

(j)(x̄i = 0), and

A43
(j)(x̄i = 0) to be zero submatrices. This requirement is always satisfied due to the integrability condition

and the resulting equality given by (7.6) which we restate here

x
pj+1
j ∂jA(i),0 = A(j)(xi = 0) A(i),0 − A(i),0 A(j)(xi = 0), 1 ≤ j 6= i ≤ m.

and which induces a structure of A(j)(xi = 0) depending on that of A(i),0. Since GA(i)
(λ) is as in (8.8)

then, before applying the shearing transformation, A(i),0(x̄i) have the form (8.11) and A(j),0(xi = 0) can
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be partitioned accordingly. And so we have for 1 ≤ j 6= i ≤ m:

A(i),0(x̄i) =











A11
(i),0 O O O

A21
(i),0 Or−d O O

V1 V2 On−r−̺ O

M1 O O O̺











, (8.11)

A(j)(xi = 0) =











A11
(j)(xi = 0) A12

(j)(xi = 0) A13
(j)(xi = 0) A14

(j)(xi = 0)

A21
(j)(xi = 0) A22

(j)(xi = 0) A23
(j)(xi = 0) A24

(j)(xi = 0)

A31
(j)(xi = 0) A32

(j)(xi = 0) A33
(j)(xi = 0) A34

(j)(xi = 0)

A41
(j)(xi = 0) A42

(j)(xi = 0) A43
(j)(xi = 0) A44

(j)(xi = 0)











. (8.12)

Inserting (8.11) and (8.12) in (7.6), one can obtain the desired results by equating the entries of (7.6)

and argument similar to that in the proof of Lemma 7.1. More explicitly, upon investigating the entries in

(Column 3), (Rows 1 and 2, Column 2), and (Row 4, Column 2), we observe the following respectively:

•











A11
(i),0 O

A21
(i),0 O

V1 V2

M1 O














A13

(j)(xi = 0)

A23
(j)(xi = 0)



 = On,n−r−̺. The former matrix is of full rank ri by construction thus




A13

(j)(xi = 0)

A23
(j)(xi = 0)



 is a zero matrix.

•
[

A11
(i),0

A21
(i),0

]

A12
(j)(xi = 0) = Or,r−d. The former is of full rank d by construction thus A12

(j)(xi = 0) is a

zero matrix.

• Finally, A43
(j)(xi = 0) V2 −M1 A12

(j)(xi = 0) = O̺,(r−d). But A12
(j)(xi = 0) is null and V2 is of full

column rank r − d by construction and so A43
(j)(xi = 0) is a zero matrix as well.

This completes the proof. �

We give hereby the proof of sufficiency of Theorem 8.1.

Proof. (Theorem 8.1) For the sufficiency, under the notations of this section and the conditions described

above, we can assume that A(i),0(x̄i) has the form (8.5). Let GA(i)
(λ) be given by (8.6). Then, by 8.7,

det((GA(i)
(λ))) vanishes identically in λ if and only if θi(λ) does. Then the system S[Q[A]] where S,Q

are as in Propositions 8.1 and 8.2 respectively, has the desired property. �
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Algorithm 8 PFAFF_RANK_REDUCTION: Rank Reduction of System (6.14)
Input: {pi, A(i)(x)}1≤i≤m of (6.14)
Output: T (x) ∈ GL(V ) a transformation and an irreducible equivalent system T [A]. In particular, the
Poincaré rank of this system is its true Poincaré rank.

T← In
For every i from 1 to m do
T ← In; pi ← Poincaré rank of A(i);
while the described conditions are satisfied do

U(x̄i)← Lemma 8.1;
A(i) ← U(x̄i) A(i) U(x̄i); T ← TU ;
while det(GA(i)

(λ) = 0) and pi > 0 do
Q(x̄i), ρ← Proposition 8.1;
S(xi)← Proposition 8.2;
P ← QS; T ← TP ;
A(i) ← P−1A(i)P − xpi

i S−1 ∂S
∂xi

;
pi ← Poincaré rank of A(i);
U(x̄i)← Lemma 8.1;
A(i) ← U(x̄i) A(i) U(x̄i); T ← TU ;

end while
end while
For every j 6= i from 1 to m do A(j) ← T−1A(j)T − x

pj+1
j T−1 ∂T

∂xj
;

end for.
T← T T ;
end for.
return (T, A(i) i ∈ {1 ≤ i ≤ m}).
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| Example 8.3

Examples of dimensions two and three do not give insight to the richness of the techniques

presented. So we treat an example of dimension six. Due to the size of the system and the

number of necessary computation steps, we are not able to include it directly in this thesis. It is

available in several formats at my web page.

�

8.5 Conclusion

In this chapter, we gave a rank reduction criterion and an algorithm which reduces the Poincaré rank

of system [A] to its true Poincaré rank via compatible transformations of GLn(RL). Unlike the bivariate

case, the column reduction which is required in the algorithm demands imposing certain conditions in the

multivariate case. Although these conditions seem severe, the proposed algorithm gives an insight to the

obstacles encountered and resolves the problem on the linear algebra level. The same obstacle of freeness,

described in Section 8.3, arise in the attempt to generalize Levelt-Barkatou-LeRoux’s algorithm given

in [26] for bivariate systems, and in generalizing the univariate case algorithm described in Section 1.6

to construct solutions for regular-singular systems [84, Section 3.2]. An item of further investigation

is thus to investigate whether the conditions can be eliminated or weakened. We remark however that

the resolution of the linear algebra problem in Section 8.3 allows a generalization of Barkatou-LeRoux-

Levelt’s to the multivariate case under the condition (C). Hence whenever a required condition of the

form (R) do not hold anymore in Algorithm 8, such a generalization can be used as long as condition (C)
holds. There remains however, the question on the equivalence of these conditions.
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Conclusion and Applications

In this part, we studied completely integrable Pfaffian systems with normal crossings. We showed that

one can associate a set of univariate linear singular differential systems from which the formal invariants

of the former can be retrieved. This reduces computations to computations over a univariate field via

MINIISOLDE or LINDALG, and limits the numbers of coefficients necessary for the computations. We then

complemented our work with a rank reduction algorithm based on generalizing Moser’s criteria and the

algorithm given by Barkatou in [15]. The former is applicable to any bivariate system. However, for

multivariate systems, it demands the satisfaction of explicitly described conditions.

We obtained our results via different types of expansions:

• We used a monomial expansion to uncouple the system to systems of lower dimension in case the

leading matrix of at least one of the components has at least two distinct eigenvalues.

• To compute the formal invariants of the ith component of system [A] for any i ∈ {1, . . . ,m}, we

used expansions modulo x1, . . . , xi−1, xi+1, . . . , xm.

• For rank reduction of an ith component of system [A], we used an expansion in the variable xi.

• To study the compatibility of a transformation applied to the ith component of system [A], we

expanded the other components with respect to xi.

These different series representations allowed us to retrieve information which was then patched up

together to construct formal solutions or study their behavior. In spite of the obstacles met within this

treatment, the possible approaches as well as possible series representations to such systems are not

exhausted yet due to their rich structure. For instance, one possible approach to construct a FMFS

without passing through rank reduction is to represent T (x) in the proof of Theorem 7.3 in its monomial

expansion in the light of the information about the formal invariants and construct it term by term.

We mentioned the work of [22] which computed closed form solutions of integrable connections in

m variables recursively by adapting existing algorithms handling ordinary linear differential systems.

The approach therein consists in considering m − 1 variables as transcendental constants and running

algorithms for ODS. It would be thus interesting to try instead to follow the approach developed herein

of considering the associated ODS and studying what helpful information can be derived.

Another prominent field of investigation is the analytic (asymptotic) interpretation of the formal

solutions and the recovery of “true” solutions. We mention [58, 95] in this direction and [57, 127]

for therein consists regular singularity.
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One field of investigation is the formal reduction in the difference case using the approaches given

proposed herein. Praagman established in [115] a formal decomposition of m commuting partial linear

difference operators. This study was intended as an analog to that established by Levelt, van den Essen,

Gérard, Charrière, and others.

Unlike the univariate case, the algorithmic generation of examples on completely integrable Pfaffian

systems (with random or special structure) does not seem to be trivial and would be interesting to

investigate it. However, as mentioned in the introduction, Pfaffian systems arise naturally in many

applications. Systems arising from applications do not necessarily or directly fall into the class of

completely integrable Pfaffian systems with normal crossings. Our study in this thesis was restricted

to Pfaffian systems with normal crossings at the origin. But what would happen in the general case

or different locus? Investigations in this direction can be found in [111, 63, 128, 129] and references

therein.

We exhibit herein two examples to point out the obstacles encountered in adapting the techniques

developed herein but nevertheless their flexibility whenever the system at hand have a particular structure

that can be exploited. The techniques developed so far can then be modified to deal with such a system

on an individual basis. Namely, we discuss two bivariate Pfaffian systems, the first of which is perturbed

by a parameter ε, and the second lacks the normal crossings discussed in this thesis.

Since both of the systems discussed here are bivariate systems, for the clarity of the presentation, we

set m = n = 2, x = x1, y = x2, A(1)(x1, x2) = A(x, y), A(2)(x1, x2) = B(x, y), ∂1 = ∂x, and ∂2 = ∂y.

Perturbative quantum chromodynamics

The following system is a simplified version of systems arising in the field of perturbative quantum

chromodynamics†. Generally the aim is to compute certain aspects of the interaction of elementary

particles as precise as possible in order to compare it to experimental data from precision

measurements. Interactions of elementary particles can be arbitrarily complicated, involving arbitrarily

many intermediate particles, which are then called virtual particles. So one and the same interaction can

happen in many different ways internally. The parameter y below is the square of the ratio of the masses

of two of the particles involved and ranges from 0 to infinity while x ranges from 0 to 1.

Let F = (f1, . . . , f7)
T denote an unknown vector and ε be a parameter. We have the following Pfaffian

system 





∂xF = 1
ε x (x−1) (xy+ε−y+1) A(x, y, ε) F

∂yF = 1
y (y−1) (xy+ε−y+1) B(x, y, ε) F

(8.13)

where

A(x, y, ε) =

[

O4×4 O4×3

A21 A22

]

and B =

[

B11 O4×3

B21 B22

]

.

†We thank C. Raab and J.A. Weil for communicating to us this example and for discussions. At that time, C. Raab was
a postdoctoral researcher at DESY, which is a research centre whose main site lies in Hamburg. The main focus of DESY is
experimental physics in the areas of particle physics, photon science, and accelerator technology.
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A(x, y, ε) and B(x, y, ε) have polynomial entries in ε, x, and y over Q. We do not show the explicit entries

and the uninteresting lengthy computations in the sequel. Our aim is to show how the system can be

uncoupled into systems whose form had been already discussed in this thesis. One can easily verify that

system (8.13) is completely integrable.

The question here is to compute a solution around y = 1 as ε→ 0.

Seemingly, the first component is singularly-perturbed in ε. However, we have:

A21(x, y, ε = 0) =






0 0 0 0

0 0 0 0

1 1 1 1




 and A12(x, y, ε = 0) = O4×3.

Thus, the transformation F = TG where T = diag(ε, ε, ε, ε, 1, 1, 1) yields an equivalent system regularly-

perturbed in ε. This transformation is compatible with the second component since B12 = O4×3. The

singular perturbation was thus apparent. We now consider







∂xG = 1
x (x−1) (xy+ε−y+1) Ã(x, y, ε) G = 1

(x−1) x (xy+ε−y+1)




O4×4 O4×3

Ã21 A22



G

∂yG = 1
y (y−1) (xy+ε−y+1) B̃(x, y, ε) G = 1

y (y−1) (xy+ε−y+1)




B11 O4×3

B̃21 B22



G

(8.14)

For fixed values of ε, one may test the existence of closed form solutions via the MAPLE package for

Integrable Connections developed in [22]. In the sequel, we will be interested in a series expansion in

ε. In the view of the denominators of system (8.13), one can expect from the outset the following as ε

tends to zero:

• In the neighborhood of (x = 0, y = 1) the system lacks normal crossings.

• In the neighborhood of (1, 1), the system is at worst regular singular in both x and y and a

FMFS (7.4) takes the form:

Φ(x, y, ε) (x− 1)
C1(ε)(y − 1)

C2(ε)

• In the neighborhood of x 6= {0, 1} and y = 1 , the system is at worst regular singular in (y − 1) and

regular in x. Hence we get the following FMFS

Φ(x, y, ε) (y − 1)
C2(ε)

An analogous claim is true for (x 6= {0, 1} and y = 1) and (y 6= {0, 1} and x = 0 or x = 1).

• In the neighborhood of (0, 0) the system is regular singular. Thus we know that a FMFS takes the

form

Φ(x, y, ε) xC1(ε)yC2(ε).
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Clearly, due to the sparsity of A(x, y, ε) and B(x, y, ε), we can split the 7× 7 system into systems of lower

dimensions. Let G =

[

W

U

]

. With some simplifications related to the explicit values of the entries we have







∂xW = O4×4

∂yW = 1
y(y−1) B

11(y, ε) W

(8.15)

and 





∂xU = 1
x (−1+x) (xy+ε−y+1) [A

22 U + Ã21 W ]

∂yU = 1
y (y−1) (xy+ε−y+1) [B

22 U + B̃21 W ]

(8.16)

For a solution in a neighborhood of (x 6= {0, 1}, y = 1), one can perform a simple translation z = y − 1

and replace rational functions by their series expansions to get

{

∂W = 1
z E(z) W (8.17)

and 





∂xU = R̃(x, z, ε) U + S̃(x, z, ε) W

∂zU = 1
z [M(x, z, ε) U + N(x, z, ε) W ]

(8.18)

Thus, the initial system can be broken down to system (8.17) which can be resolved by expanding the

solution in ε and solving a set of inhomogeneous systems (See Subsection 5.2.1). And to system (8.18) for

which the solution can be expanded analogously and inserted. The problem is then reduced to solving a

set of inhomogeneous bivariate Pfaffian systems with normal crossings. For a solution in a neighborhood

of (x = 1, y = 1), a translation can be introduced to x as well. And the case (x = 0, y = 0) can be treated

analogously.

Statistics

Another interesting example‡ arises from statistics. The following system is obtained from the Muirhead

system in [63, Theorem 1]. Takayama et al. are working on numerical evaluations of solutions of such

systems upon introducing the holonomic gradient method [63].

∂xF = A(x, y) F (8.19)

∂yF = B(x, y) F (8.20)

‡We thank N. Takayama for pointing out this system to us.
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where a, b, c are constants and

A =












0 −x−2 0 0

− a
x

(cx−1)y+(−c+1/2)x2+x
x2(y−x) − (2 y − 2x)

−1
0

0 0 0 −x−2

−1/2 ay
y−x 3/4 y2

(y−x)2
α1

(cx−1)y+(−c+1/2)x2+x
x2(y−x)












B =












0 0 −y−2 0

0 0 0 −y−2

−a
y (2 y − 2x)

−1 (c−1/2)y2+(−cx−1)y+x
y2(y−x) 0

1/2 ax
y−x α2 3/4 x2

(y−x)2
(c−1/2)y2+(−cx−1)y+x

y2(y−x)












where 





α1 = ((c/2−3/4)x−a)y2+(−1/2 cx+2 a−1/2)xy+(−a+1/2)x2

x(y−x)2
;

α2 = (−1/2 cx−a+1/2)y2+((c/2−3/4)x+2 a−1/2)xy−ax2

y(y−x)2
.

It can be easily verified that this system is completely integrable. However, obviously, it does not have

normal crossings. Nevertheless, setting ε = (y − x) and adapting the ξ-rank reduction algorithm of the

singularly-perturbed differential system (5.1) , one can compute

T =












0 1 0 0

1 3/2 x2

cx−1 − (cx− 1)
−1 ax

cx−1

0 0 1 0

0 0 0 1












such that the transformation F = TG yields a system for which the order of the pole in (y − x) drops by

one as follows:

∂xG = Ã(x, y) G (8.21)

∂yG = B̃(x, y) G (8.22)

Page 188



8.5 Conclusion Conclusion of Part III

where

Ã =











−3/2 (−y + x)
−1 cx−1

(−y+x)x2
1

(−y+x)x2 − a
(−y+x)x

−1/2 cx−1
x2 0 − a

x

α3 −1/2 cxy+2 ax−2 ay−x
(−y+x)x α4 1/2 ay

−y+x

0 −x−2 0 0











B̃ =












1/2 2 cxy−2 cy2+3 y2−2 x+2 y
(−y+x)y2 − yc−1

(−y+x)y2 − 1
(−y+x)y2

a
(−y+x)y

0 0 −y−2 0

−3/4 x2

−y+x −1/2 −cxy+2 ax−2 ay+y
(−y+x)y α5 −1/2 ax

−y+x

−y+x
y2 −y−2 0 0












where 





α3 = 1/4 2 cx2y−2 cxy2+4 ax2−8 axy+4 ay2+3 xy2−2 x2+2 xy
(−y+x)x ;

α4 = 1/2 2 cx2−2 cxy−x2−2 x+2 y
(−y+x)x2 ;

α5 = 1/2 2 cxy−2 cy2+y2−2 x+2 y
(−y+x)y2 .

Several questions arise:

• Can the rank reduction algorithm be generalized to such systems? And can a criterion be given to

determine whether the minimum of the singularity’s order is attained?

• A close inspection of the system reveals a kind of symmetry for this system. In particular, Let

P =












1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1












then P [A](y, x) = P−1AP = B(x, y). Consequently, one expects some kind of symmetry in the

solution which can be exploited to get the formal invariants.

One of the first consequences of the loss of the normal crossings is the instability of the JCF of the

leading constant matrix. In the case of singularly-perturbed linear differential systems, this instability

gave rise to the turning point phenomenon discussed in Part II. Thus, for a bivariate Pfaffian with

singularities of the monomial form xαyβ for some α, β ∈ N (studied e.g. by H. Majima), would it

be plausible to investigate the techniques developed in Part II to uncouple the system into systems of

lower dimensions and systems with normal crossings by holding one of the independent variables as a

parameter?
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Additional notions for Symbolic

Resolution

In chapter 1, we recalled the formal reduction algorithm of [14] and its components which are relevant

to the work in Parts II and III. However, several other notions of irreducible systems are central to the

local analysis of linear systems of ordinary differential equations. Such notions refine Algorithm 1 and

give as well theoretical results and estimations of the formal invariants.

Given again system (1) of Chapter 1

[A] xp+1 d

dx
F = A(x) F = (

∞∑

k=0

Akx
k) F,

we have the following notions:

Regular solutions

In the case of regular singularity, we have seen that regular solutions can be constructed by the

transformations of Section 1.6. However, one might still encounter regular solutions in the case of

an irregular singularity. Such solutions correspond to the nullity of at least one of the diagonal entries of

the exponential part in (2). A method which computes such regular solutions is proposed in [29]. This

method relies on matrix pencil theory and in particular on simple forms.

Super-irreducible systems

The notion of super-irreducible systems introduced in [64] is a generalization of Moser-irreducible

systems described in Subsection 1.5.1. The former notion takes into account additional coefficients

of A(x) by defining:







mk(A) = max (0, p+ ν0(A)
n + ν1(A)

n2 + . . . νk−1(A)
nk )

µk(A) = min { mk(Ã) for all possible choices of T in (1.1))} for1 ≤ k ≤ p,
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where νi denotes the number of columns of A having valuation i− p− 1. Then we have:

| Definition A.1

The system (1) (and A) is called k-reducible if mk(A) > µk(A), otherwise it is said to be k-

irreducible. The system is called super-irreducible if it is k-irreducible for all 1 ≤ k ≤ p.

Analogously, a criteria to test the k-irreducibility of a system is defined by:

θ(k,A)(λ) := xpk(A) det(xp+1−kA− λIn)|x=0,

where pk(A) = kν0(A) + (k − 1)ν1(A) + · · ·+ νk−1(A). Then we have

| Proposition A.1

[64] The system (1) (and A) is k-irreducible for 1 ≤ k ≤ p if and only if the polynomials θ(i,A)(λ),

1 ≤ i ≤ k, do not vanish identically in λ.

Inspired by Lidskii matrices, new versions of Moser-based rank reduction algorithm of [15] were

introduced in [30, 32]. Moreover, the task of computing super-irreducible form of the system (1) was

reduced to that of computing one or several Moser-irreducible forms, using a block-reduction algorithm.

However, these algorithms rely on putting the leading matrix coefficient A0 in JCF. This prerequisite is a

first symptom of the non-triviality of generalizing such algorithms.

Simple systems

Certain information derived from k-irreducible systems, such as computing regular solutions, integer

slopes of the Newton polygon, computation of global solutions (rational solutions [20], certain

exponential solutions [113] ), can be derived using weaker forms called k-simple forms (see [24]

and references therein). This notion was first introduced in [29] where a more general form of (1) was

considered:

D(x) νk (F (x)) + N(x) F (x) = On,

where k ∈ N, νk = xk+1 d
dx , and D(x) and N(x) belong to C[[x]]. Such a system is said to be k-simple if

the matrix pencil defined by

Lk(λ) = D(0)λ+N(0)

is regular, i.e., det (Lk(λ)) 6= 0. Any super-irreducible system is simple [29, Appendix A]. However,

the algorithm of [24] computes a k-simple form of the system without requiring super-reduction. The

former relies on matrix manipulations over a univariate field and shearing transformations. For system

(5.1), the required matrix manipulations are to be performed over a bivariate field. For system (6.14),

the required matrix manipulations are to be performed over a multivariate field and the compatibility of

the shearing transformation is under question as well. Some tricks employed in this thesis for giving rank

reduction algorithms can be employed herein as well. As remarked in [24], corresponding algorithms

have implications in the symbolic integration of ordinary differential systems with hyper-exponential
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Table A.1 Summary of some non-trivialities encountered whence extending notions and algorithms given
for singular linear differential systems (1), to singularly-perturbed linear differential systems (3.9) and
completely integrable Pfaffian systems with normal crossings (6.14)

System (1) System (5.1) System (6.14)

Reduction algorithms [32] JCF of leading matrix JCF of leading matrix
Super-reduction JCF of leading matrix JCF of leading matrix
Simple systems Bivariate field Multivariate field

Transformations’ compatibility
Generalized splitting lemma Simple forms Simple forms

Series representation
Regular solutions Simple systems Simple systems

Series representation

extensions [33] as well as in the computation of closed form solutions of integrable connections [22].

Generalized Splitting lemma

The generalized splitting lemma given in [114, Proposition 3.1] generalizes the classical splitting lemma

described in Section 1.3. In addition to refining the formal reduction algorithm, this generalized splitting

allows establishing estimates on former exponential orders [114]. The proof of this lemma requires

simple forms.

Increasing the dimension

In Parts I and II, we have discussed the equivalence between a nth-order scalar differential equation and

first-order linear differential systems, whether perturbed or unperturbed. Although this equivalence is not

employed in the algorithms developed, associating to a first-order system an nth-order scalar differential

equation served for the underlying proofs of corresponding theorems.

However, other approaches in literature associate to a system of a given dimension, a sequence of matrices

of higher dimensions. Such approaches proved their utility in rank reduction and, more generally, formal

reduction of first-order differential systems (see, e.g. [137, 121, 138]). Thus, it would be interesting to

study these approaches algorithmically and their extension to more general systems.

Complexity

The complexity estimates of the algorithms proposed herein were not investigated. In the light of the

different possible treatments of the systems at hand and experimental results (see, e.g. Subsection 5.6.1),

it would be a very interesting item of further research. For univariate systems, first steps are set in [38]

where the cyclic vector method was compared to the algorithm which computes a companion block

diagonal form [13], in [32] for rank reduction algorithms, and in [52] for simple systems.
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Software

The examples of computation and the description of the packages are too large to be included here.

Please refer to my web page which is, at the moment of writing this thesis, hosted by the University of

Limoges at:

http : //www.unilim.fr/pages_perso/suzy.maddah/
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Réduction Formelle des Systèmes Différentiels Linéaires Singuliers:
Systèmes différentiels linéaires singulièrement perturbés et systèmes de Pfaff complètement

intégrables à croisements normaux

Résumé : Dans cette thèse, nous nous sommes intéressés à l’analyse locale de systèmes différentiels
linéaires singulièrement perturbés et de systèmes de Pfaff complètement intégrables et multivariés à
croisements normaux. De tels systèmes ont une vaste littérature et se retrouvent dans de nombreuses
applications. Cependant, leur résolution symbolique est toujours à l’étude. Nos approches reposent
sur l’état de l’art de la réduction formelle des systèmes linéaires singuliers d’équations différentielles
ordinaires univariées (ODS).

Dans le cas des systèmes différentiels linéaires singulièrement perturbés, les complications surviennent
essentiellement à cause du phénomène des points tournants. Nous généralisons les notions et les
algorithmes introduits pour le traitement des ODS afin de construire des solutions formelles. Les
algorithmes sous-jacents sont également autonomes (par exemple la réduction de rang, la classification
de la singularité, le calcul de l’indice de restriction).

Dans le cas des systèmes de Pfaff, les complications proviennent de l’interdépendance des multiples
sous-systèmes et de leur nature multivariée. Néanmoins, nous montrons que les invariants formels de
ces systèmes peuvent être récupérés à partir d’un ODS associé, ce qui limite donc le calcul à des corps
univariés. De plus, nous donnons un algorithme de réduction de rang et nous discutons des obstacles
rencontrés.

Outre ces deux systèmes, nous parlons des singularités apparentes des systèmes différentiels univariés
dont les coefficients sont des fonctions rationnelles et du problème des valeurs propres perturbées.

Les techniques développées au sein de cette thèse facilitent les généralisations d’autres algorithmes
disponibles pour les systèmes différentiels univariés aux cas des systèmes bivariés ou multivariés, et aussi
aux systèmes d’équations fonctionnelles.

Mots clés : Calcul formel, réduction formelle, reduction de rang, singularités, points tournants,
systèmes différentiels linéaires, systèmes de Pfaff complètement intégrables à croisements normaux,
systèmes différentiels linéaires singulièrement perturbés, les algorithmes.



Formal Reduction of Linear Singular Differential Systems:
Singularly-perturbed linear differential systems and completely integrable Pfaffian systems

with normal crossings

Abstract: In this thesis, we are interested in the local analysis of singularly-perturbed linear differential
systems and completely integrable Pfaffian systems in several variables. Such systems have a vast
literature and arise profoundly in applications. However, their symbolic resolution is still open to
investigation. Our approaches rely on the state of art of formal reduction of singular linear systems
of ordinary differential equations (ODS) over univariate fields.

In the case of singularly-perturbed linear differential systems, the complications arise mainly from the
phenomenon of turning points. We extend notions introduced for the treatment of ODS to such systems
and generalize corresponding algorithms to construct formal solutions in a neighborhood of a singularity.
The underlying components of the formal reduction proposed are stand-alone algorithms as well and
serve different purposes (e.g. rank reduction, classification of singularities, computing restraining index).

In the case of Pfaffian systems, the complications arise from the interdependence of the multiple
components which constitute the former and the multivariate nature of the field within which reduction
occurs. However, we show that the formal invariants of such systems can be retrieved from an
associated ODS, which limits computations to univariate fields. Furthermore, we complement our work
with a rank reduction algorithm and discuss the obstacles encountered.

The techniques developed herein paves the way for further generalizations of algorithms available
for univariate differential systems to bivariate and multivariate ones, for different types of systems of
functional equations.

In addition to proposing algorithms for these two systems, we report on apparent singularities of
differential systems whose coefficients lie in the univariate field of rational functions and perturbed
eigenvalue problem. The main results of this thesis are summed up in three published papers [1, 2, 27],
a submitted paper [25], a paper under redaction [28], and five computer algebra packages [96, 97, 98,
99, 100].

Keywords: Computer algebra, formal reduction, rank reduction, singularities, turning points, linear
differential systems, Pfaffian systems, singularly-perturbed linear differential systems, algorithms.
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