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Abstract

As consumer devices become more and more ubiquitous, new interaction solutions
are required. In this thesis, we explore inertial-based gesture recognition on Smart-
phones, where gestures holding a semantic value are drawn in the air with the device
in hand.

Based on accelerometer and gyrometer data, three main approaches exist in the
literature. The earliest methods suggest to model the temporal structure of a gesture
class, with Hidden Markov Models for example; while another approach consists in
matching gestures with reference instances, using a non-linear distance measure gener-
ally based on Dynamic Time Warping. Finally, features can be extracted from gesture
signals in order to train specific classifiers, such as Support Vector Machines.

In our research, speed and delay constraints required by an application are critical,
leading us to the choice of neural-based models. While Bi-Directional Long Short-Term
Memory and Convolutional neural networks have already been investigated, the main
issue is to tackle an open-world problem, which does not only require a good classifi-
cation performance but, above all, an excellent capability to reject unknown classes.

Thus, our work focuses on metric learning between gesture sample signatures using
the "Siamese" architecture (Siamese Neural Network, SNN), which aims at modelling
semantic relations between classes to extract discriminative features, applied to the
MultiLayer Perceptron.

Contrary to some popular versions of this algorithm, we opt for a strategy that
does not require additional parameter fine tuning, namely a set threshold on dissimilar
outputs, during training. Indeed, after a preprocessing step where the data is filtered
and normalised spatially and temporally, the SNN is trained from sets of samples,
composed of similar and dissimilar examples, to compute a higher-level representation
of the gesture, where features are collinear for similar gestures, and orthogonal for dis-
similar ones.

While the original model already works for classification, multiple mathematical
problems which can impair its learning capabilities are identified.

Consequently, as opposed to the classical similar or dissimilar pair; or reference, sim-
ilar and dissimilar sample triplet input set selection strategies, we propose to include
samples from every available dissimilar classes, resulting in a better structuring of the
output space. Moreover, we apply a regularisation on the outputs to better determine
the objective function. Furthermore, the notion of polar sine enables a redefinition of
the angular problem by maximising a normalised volume induced by the outputs of the
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reference and dissimilar samples, which effectively results in a Supervised Non-Linear
Independent Component Analysis. Finally, we assess the unexplored potential of the
Siamese network and its higher-level representation for novelty and error detection and
rejection. With the help of two real-world inertial datasets, the Multimodal Human
Activity Dataset as well as the Orange Dataset, specifically gathered for the Smart-
phone inertial symbolic gesture interaction paradigm, we characterise the performance
of each contribution, and prove the higher novelty detection and rejection rate of our
model, with protocols aiming at modelling unknown gestures and open world configu-
rations.

To summarise, the proposed SNN allows for supervised non-linear similarity metric
learning, which extracts discriminative features, improving both inertial gesture clas-
sification and rejection.

Keywords: Gesture Recognition, MicroElectroMechanical Systems, Inertial Sen-
sors, Machine Learning, Metric Learning, Similarity Metric, Artificial Neural Network,
Siamese Network
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Résumé

Alors que les appareils électroniques deviennent toujours plus omniprésents, de
nouvelles solutions d’interfaces sont requises. Cette thèse explore la reconnaissance de
gestes à partir de capteurs inertiels pour Smartphone. Ces gestes consistent en la réalisa-
tion d’un tracé dans l’espace présentant une valeur sémantique, avec l’appareil en main.

Trois principales approches sont identifiées dans la littérature pour l’exploitation
des données accélérométriques et gyrométriques. Les premières méthodes cherchent à
modéliser la structure temporelle de chaque classe de geste, avec, par exemple, les Mo-
dèles de Markov Cachés (Hidden Markov Model). Une autre approche consiste à faire
correspondre les gestes avec des instances de référence à l’aide d’une mesure de distance
non-linéaire, le plus souvent basée sur un alignement temporel dynamique (Dynamic
Time Warping). La dernière stratégie propose d’extraire des valeurs caractéristiques
des signaux gestuels afin d’entraîner des classifieurs spécifiques, tels que les Séparateurs
à Vaste Marge (Support Vector Machines).

Dans notre contexte de recherche, les contraintes de rapidité d’exécution imposées
par l’application jouent un rôle critique, nous orientant ainsi vers le choix de modèles
neuronaux. Alors que les réseaux de neurones récurrents "longue mémoire à court terme"
(Long Short-Term Memory) bidirectionnels et les réseaux de neurones convolutionnels
ont déjà été explorés, notre problématique consiste en un "monde ouvert", qui nécessite
non seulement de très bonnes performances en classification, mais aussi avant tout une
grande capacité à rejeter des classes inconnues.

Ainsi, notre étude porte en particulier sur l’apprentissage de métrique entre signa-
tures gestuelles grâce à l’architecture "Siamoise" (réseau de neurones siamois, SNN ),
qui a pour but de modéliser les relations sémantiques entre classes afin d’extraire des
caractéristiques discriminantes. Cette architecture est appliquée au perceptron multi-
couche (MultiLayer Perceptron).

A l’inverse de versions plus populaires de cet algorithme, nous faisons le choix d’une
stratégie qui ne requiert pas d’ajustement de paramètres supplémentaires au cours de
l’apprentissage. Après une étape de prétraitements durant laquelle les données sont fil-
trées et normalisées en temps et en amplitude, le SNN est entraîné à partir d’ensembles
d’échantillons, composés d’exemples similaires et dissimilaires, afin de produire une re-
présentation supérieure, où les vecteurs caractéristiques sont colinéaires entre gestes
similaires et orthogonaux entre gestes dissimilaires.
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Alors que le modèle original du SNN a été principalement pensé pour des estima-
tions de similarité, peu de modifications ont jusqu’alors été proposées afin d’exploiter
l’ensemble des relations connues entre classes dans le cadre d’une problématique de
classification. Les stratégies classiques de formation d’ensembles d’apprentissage sont
essentiellement basées sur des paires similaires et dissimilaires, ou des triplets for-
més d’une référence et de deux échantillons respectivement similaires et dissimilaires
à cette référence. Ainsi, nous proposons une généralisation de ces approches. Chaque
ensemble d’apprentissage porte toutes les informations disponibles, avec une référence,
un example positif, et un exemple négatif pour chaque classe dissimilaire, dans le but
d’améliorer la structuration de l’espace de sortie du réseau.

Par ailleurs, plusieurs problèmes mathématiques dans la fonction d’erreur utili-
sée pouvant influer sur les capacités d’apprentissage du modèle sont indentifiés. Nous
appliquons donc une régularisation particulière sur les sorties du réseau au cours de
l’apprentissage afin de déterminer de manière plus précise la fonction objectif et limiter
les variations de la norme moyenne des vecteurs caractéristiques obtenus.

Enfin, nous proposons une redéfinition du problème angulaire par une adaptation
de la notion de sinus polaire. Il s’agit alors de maximiser un volume normalisé, induit
par les vecteurs caractéristiques des échantillons pour un ensemble d’apprentissage, ce
qui aboutit à une analyse en composantes indépendantes non-linéaire supervisée basée
sur une nouvelle métrique de similarité pour un ensemble de vecteurs.

A l’aide de deux bases de données inertielles, la base d’activité humaine multimodale
(Multimodal Human Activity Dataset) ainsi que la base Orange, spécifiquement collec-
tée dans le cadre d’une interaction pour Smartphone basée sur des gestes symboliques
inertiels, les performances de chaque contribution sont caractérisées et les meilleures
capacités de détection et rejet de nouveauté du SNN sont prouvées au moyen de proto-
coles modélisant un monde ouvert, qui comprend des gestes inconnus par le système.

En résumé, le SNN proposé permet de réaliser un apprentissage supervisé de mé-
trique de similarité non-linéaire, qui extrait des vecteurs caractéristiques discriminants,
améliorant conjointement la classification et le rejet de gestes inertiels.

Mots-clés : Reconnaissance de Gestes, Systèmes MicroElectroMécaniques, Cap-
teurs Inertiels, Apprentissage Automatique, Apprentissage de Métrique, Métrique de
Similarité, Réseau de Neurones Artificiels, Réseau Siamois
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French summary

0.1 Introduction
Le geste, et la reconnaissance de gestes en général, s’inscrivent dans un contexte

d’intelligence ambiante (voir Fig.1.2), et plus précisément d’informatique ubiquitaire.
En effet, selon Mark Weiser [Wei91], pionnier dans ce domaine, l’informatique ubiqui-
taire consiste à "penser les ordinateurs en considérant l’environnement humaine, afin
qu’ils s’effacent dans le paysage".

Les interfaces homme-machine ont ainsi connu plusieurs stades d’évolution. Alors
que les premières interfaces n’étaient accessibles qu’aux professionnels et experts, les
interfaces graphiques ouvrirent la voie à l’informatique personnelle (personal compu-
ting) grâce à des concepts plus instinctifs, avec une manipulation d’objets concrets,
tels que des dossiers, au moyen de nouveaux outils, tels que la souris. Cependant, ces
solutions nécessitent toujours un effort important de la part de l’utilisateur.

Ainsi, nos travaux se trouvent à la frontière entre capteurs, intelligence artificielle
et interfaces homme-machine. Il s’agit alors de développer de nouvelles solutions d’in-
teraction tirant parti de la richesse de cette modalité naturelle qu’est le geste.

Nous étudions ici les gestes pouvant être intégrés dans une interface, gestes qui
transmettent des informations à l’environnement. Ainsi, quatre catégories de gestes
sont identifiées dans le continuum de Kendon, proposé par McNeill ([McN92]), pour la
description des gestes : les gestes iconiques, métaphoriques, déictiques, et les battements.
Il est d’ailleurs important de noter que ces catégories ne s’excluent pas mutuellement.
Les gestes iconiques complètent l’image mentale du sujet discuté avec une illustration
concrète de ce sujet, tandis que les gestes métaphoriques ne se limitent pas à une action
ou objet concrets et peuvent représenter des concepts abstraits ou des expressions. Les
gestes déictiques consistent en des mouvements de pointage, qui désignent aussi bien
des objets physiques que des notions abstraites dans le temps et l’espace. Enfin, les
battements sont de petits gestes utilisés par le locuteur comme procédé d’emphase sur
certains mots ou phrases.

Par ailleurs, deux types de production de gestes existent : les gestes statiques sont
relatifs à la posture de l’utilisateur, tandis que les gestes dynamiques sont caractérisés
par la trajectoire d’un membre du corps.

Dans le cadre de nos travaux, nous cherchons à développer une solution d’appren-
tissage de métrique non linéaire, appliqué à la reconnaissance de gestes. Il s’agit alors
de proposer une apprentissage de métrique directement à partir des données issues des
capteurs inertiels présents dans les appareils équipés de capteurs MEMS (MicroElec-
troMechanical Systems). Nous nous concentrons alors sur la reconnaissance de gestes
dynamiques et sémantiques, regroupant les types iconiques et métaphoriques avec des
formes et des actions. Le domaine applicatif final visé concerne les terminaux mobiles,
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dans un contexte de monde ouvert, et de personnalisation, où tous les gestes et tous
les utilisateurs ne sont pas représentés au moment de l’apprentissage, ce qui introduit
un nouveau problème de rejet, où le système doit identifier par lui-même si un geste
réalisé a été appris.

Cinq propriétés sont recherchées (voir Fig.1.3). L’algorithme d’apprentissage doit
être semi-supervisé, non-linéaire, évolutif par rapport au nombre d’exemples et leur
dimension ; il doit également permettre une réduction dimensionnelle, et être applicable
à l’ensemble de l’espace des gestes. Ces critères nous conduisent donc au choix du réseau
de neurones siamois (Siamese Neural Network, SNN), qui apprend une métrique à l’aide
d’informations de similarité, sans nécessité d’étiquetage des données, et qui extrait des
vecteurs caractéristiques représentatifs de dimension ajustable.

Cette thèse est organisée comme suit. Après cette introduction, la section 0.2 pré-
sente les technologies d’acquisition de gestes, suivies d’un état-de-l’art des méthodes
classiques employées pour la reconnaissance et classification de gestes. La section 0.3
aborde la notion de réseau de neurones siamois, avant de présenter nos contributions
théoriques sur ce type de réseau. La section 0.4 analyse ces contributions à l’aide de
tests de classification et de rejet basés sur deux bases de données de gestes 3D. Enfin,
la section 0.5 conclut cette étude et présente les perspectives envisagées pour la suite
de nos travaux.

0.2 Etat de l’art
Cette section présente un aperçu global de la reconnaissance de gestes en deux

parties. Tout d’abord les principaux capteurs mis en jeu sont présentés, des capteurs
inertiels MEMS aux méthodes de motion capture et de suivi de squelette, plus gour-
mandes en matériel. Dans un deuxième temps, nous présentons les différentes approches
pour la reconnaissance de gestes, avec les méthodes statistiques, à base de classifieurs,
et basées sur les réseaux de neurones artificiels.

0.2.1 Acquisition des données de geste
Capteurs inertiels

Les nouvelles applications des Smartphones doivent leur succès en grande partie à
l’utilisation de nouveaux capteurs, en particulier les MEMS. Leur simplicité d’utilisa-
tion et leur faible coût de production basée sur les semi-conducteurs expliquent leur
grand développement dans un grand éventail d’appareils, tels que les voitures pour les
déclencheurs de déploiement d’airbag, ou les drones pour la navigation.

Trois capteurs sont les plus répandus : l’accéléromètre, le gyromètre et le magné-
tomètre. Pour notre étude, nous nous concentrons sur les capteurs les plus fiables,
l’accéléromètre et le gyromètre, dont la combinaison améliore les résultats de clas-
sification (voir [BL]). Ces deux capteurs relèvent respectivement les accélérations et
vitesses angulaires le long de trois axes, représentés Fig.2.1.

L’accéléromètre 3D est le résultat de la combinaison de trois accéléromètres uni-
axiaux. Chaque accéléromètre 1D peut être vu comme un système masse-ressort, où le
déplacement de la masse suite à l’application d’une force est directement corrélé à l’ac-
célération selon le principe fondamental de la dynamique. Le gyromètre repose quant
à lui sur le principe de Coriolis, qui veut qu’une masse oscillante cherche à continuer
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d’osciller dans le même plan alors même que son support subit une rotation. L’objet
applique donc une force sur son support, force dont la mesure permet de remonter à la
vitesse angulaire.

Systèmes basés vision
Les applications de reconnaissance de gestes basés sur la vision par ordinateur s’ap-
puient essentiellement sur l’identification et le suivi de squelettes. Une première stra-
tégie consiste à suivre dans l’espace 3D des points identifiés au préalable sur diffé-
rentes parties du corps afin de reconstruire le squelette ; tandis que la deuxième stra-
tégie est plus facile à utiliser puisqu’elle reconstruit directement le squelette à partir
d’images, sans nécessiter l’utilisation de marqueurs. L’application la plus célèbre de
cette deuxième stratégie est le capteur Kinect, basé sur une source infrarouge, et deux
capteurs d’images, de profondeur et de couleur. Ainsi, un motif est projeté sur la scène
observée à l’aide de la source infrarouge, dont les déformations permettent une recons-
truction en 3D de cette même scène. Enfin, la reconstruction du squelette s’opère par
une étape d’identification des articulations. Ces opérations, très rapides, sont effectuées
sur chaque image d’une résolution de 640×480 indépendamment, à raison de 30 images
par seconde.

Prétraitements des données inertielles
Trois phases de prétraitements sont typiquement nécessaires dans le cadre d’une ap-
plication de reconnaissance de gestes basée sur des capteurs inertiels : une phase de
calibration, une phase de filtrage, et une phase de normalisation. En effet, en tant
que système masse-ressort, l’accéléromètre présente le défaut d’interpréter le déplace-
ment dû à la gravité comme une force verticale, dirigée vers le haut, appliquée sur
le support. Ainsi, un accéléromètre ne présente de mesure nulle qu’en cas de chute
libre. Il est alors nécessaire de gérer ce biais dans le signal, par exemple en opérant
une rotation de ce signal afin d’assurer qu’une estimation de la direction verticale
coïncide pour chaque échantillon [Pyl05]. Par ailleurs, une phase de filtrage permet
de diminuer l’influence du bruit présent dans le signal, dû à de multiples facteurs,
tels que le bruit électronique, mécanique, ou les mouvements involontaires des utili-
sateurs. Sont généralement employés des filtres passe-bas du premier ordre [Mli09],
de butterworth du quatrième ordre [MMST00], ou un lissage au moyen d’une fenêtre
glissante [HHH98] [AV10] [MHS01] [LC13]. Afin de rendre plusieurs dynamiques de
production de gestes comparables, une phase de normalisation spatiale permet une ré-
duction des différences d’amplitude entre plusieurs profils des données inertielles. Deux
stratégies sont communément appliquées : une normalisation des distributions de pro-
babilité vers une loi normale centrée réduite [MHS01] [MMST00] ; une mise à l’échelle
linéaire "min-max", qui projette les relevés sur l’intervalle [0; 1] [MKKK04][ZCL+11],
ou une mise à l’échelle basée sur le relevé de norme maximale pour chaque échan-
tillon [CCB+06] [HL10]. Enfin, une phase de normalisation temporelle peut être néces-
saire, notamment afin de réduire la redondance dans les données avec une opération
de seuillage [Mli09][SPHB08] ; ou pour les modèles ne permettant pas de gérer cette
dimension, avec un ré-échantillonnage [KKM+05][CCB+06], ou une quantification vec-
torielle [HHH98][Kli09] [AV10][KKM+05].

0.2.2 Apprentissage et classification de données gestuelles

Bien que la reconnaissance de gestes représente un domaine relativement récent
comparé à d’autres applications, cette discipline bénéficie de l’expérience accumulée
pour d’autres problématiques telles que la reconnaissance de parole ou de visage. Trois
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principales stratégies sont identifiées. La première stratégie consiste en une modélisa-
tion statistique de la dynamique du geste, notamment à l’aide de réseaux bayésiens
[CCB+06], ou de modèles de markov cachés [HVL10][ZS09][LWJ+04][Pyl05][ZCL+11].
La seconde approche est basée sur des considérations géométriques. La distance élas-
tique Dynamic Time Warping [BD13][CMC10][HL10][AV10][ZT09][ZDlT12] permet
d’établir une mesure de similarité entre gestes de longueurs différentes, tandis que
d’autres méthodes s’appuient sur d’autre caractéristiques géométriques tels que les ei-
genvectors, avec l’Analyse en Composantes Principales (PCA) [MP11][MHS01][YWC08],
ou l’Analyse Discriminante Linéaire (LDA) [LWJ+04][MP11].

Enfin, la troisième approche consiste à produire un classifieur spécifique, notam-
ment les classifieurs Adaboost [HVL10], les Séparateur à Vaste Marge (SVM) [HJZH08]
[WPZ+09][CCB+06], ou les réseaux de neurones artificiels. Ces derniers sont représen-
tés sous différentes architectures, telles que le Perceptron MultiCouches (MLP)[MHS01]
[NH09][YWC08], le réseau de neurones récurrent "longue mémoire à court terme" bi-
directionnel (BLSTM) [LBMG13][LBMG15], ou le réseau de neurones convolutionnel
(CNN)[DBLG14].

Ainsi, à l’inverse des méthodes géométriques et statistiques qui présentent des dif-
ficultés de généralisation, les réseaux de neurones possèdent de bonnes caractéristiques
grâce à leur non-linéarité. Cependant, les différents réseaux étudiés ne permettent pas
de prendre en compte les informations de similarité entre échantillons, qui pourraient
influencer la projection obtenue après apprentissage, ce qui justifie notre choix du ré-
seau de neurones siamois.

0.3 Le réseau de neurones siamois
Dans la section précédente, nous avons présenté différents tupes de réseaux de neu-

rones artificiels appliqués à la reconnaissance et classification de gestes. La plupart des
réseaux peuvent à la fois extraire des caractéristiques, grâce aux couches de convolu-
tion pour les CNNs par exemple ; et réaliser une classification, généralement à l’aide
d’une couche de sortie basée sur la fonction Softmax. Cependant, ces opérations se font
automatiquement, de manière supervisée, sans possibilité de prendre en compte des
informations sur les voisinages attendus pour l’espace caractéristique. Les régions de
cet espace sont manuellement discrétisées et assignées à des classes. Ainsi, elles sont
sémantiquement décorrélées, et les zones qui n’ont pas été attribuées ne portent pas la
même quantité d’informations. L’architecture Siamoise, grâce à sa stratégie d’appren-
tissage semi-supervisée basée sur des relations entre plusieurs échantillons, permet une
structuration différente de cet espace de sortie, de telle sorte que le sens assigné à une
région évolue de manière continue.

Dans cette section, nous présentons d’abord les caractéristiques des différents com-
posants formant le SNN, avant de définir nos contributions et leurs implications pour
chacun de ces composants.

0.3.1 Etat de l’art
Le SNN tire son nom de sa stratégie d’apprentissage, qui met en oeuvre plusieurs

copies identiques du même réseau en parallèle (voir Fig.1). Dans sa version originale,
introduite par Bromley et al. [BGL+94], et Chopra et al. [CHL05], le réseau encode
la similarité à l’aide d’une métrique contrôlée dans l’espace de sortie appliquée à des
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paires d’échantillons. Une fonction d’erreur est alors définie, de telle manière que la
similarité intra-classe soit forte, et la similarité inter-classe soit minime.

NN NNW

),cos( YX OO

),( YXEW

X Y

Figure 1 – Architecture du SNN originel. Deux réseaux partageant un même ensemble
de poids W prennent deux échantillons X et Y en entrée, dans le but de calculer une
erreur relative à une fonction de similarité définie sur l’espace de sortie (ici, la similarité
cosinus), au moyen des vecteurs de sortie respectifs OX et OY.

Les principaux types de réseaux mis en jeu dans l’apprentissage Siamois sont les
réseaux avec réglage en avant (feed-forward neural network), tels que les MLP et les
CNN. Deux principaux composants peuvent alors varier lors de la définition d’un SNN :
la stratégie de sélection des ensembles d’apprentissage, ainsi que la mesure de similarité
utilisée dans l’espace de sortie, associée à la fonction objectif.

Sélection des ensembles d’apprentissage
Les ensembles d’apprentissage sont construits de telle manière à refléter la définition de
la relation de similarité. Ainsi, l’apprentissage a lieu de manière stochastique à partir de
ces relations de similarité entre ensembles d’échantillons. Deux principales approches
sont identifiées : l’approche par paires, et l’approche par triplets. L’approche par paires
est la stratégie la plus commune, retrouvée dans la version initiale du SNN : une
relation de similarité est encodée à l’aide de deux échantillons, ainsi qu’une étiquette
de similarité précisant si ces échantillons sont similaires ou dissimilaires. L’approche par
triplets, proposée par Lefèbvre et al. [LG13], étend cette information en introduisant
une représentation plus symétrique entre similarité et dissimilarité. Ainsi, un ensemble
d’apprentissage est formé de trois échantillons, avec un échantillon de référence, un
échantillon dit positif, similaire à la référence, et un échantillon négatif, dissimilaire de
la référence.

Ainsi, les relations de similarité et leur définition ont un impact direct sur l’archi-
tecture du réseau lors de l’apprentissage, et peuvent être gérées différemment selon
l’application finale de la métrique apprise.

Mesure de similarité et fonction objectif
Deux mesure de similarité, basées sur des considérations géométriques, sont typique-
ment utilisées dans l’espace de sortie : la similarité cosinus, et la distance euclidienne.
Soit X1 et X2 deux vecteurs caractéristiques, ces mesures sont définies ainsi :
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Figure 2 – Systèmes de ressorts. A gauche, deux échantillons similaires s’attirent,
tandis que deux échantillons dissimilaires se repoussent à droite, avec une distance
maximum représentée en pointillés à partir de laquelle les points sont suffisamment
éloignés pour ne plus se repousser. Extrait de [HCL06].

— similarité cosinus

cossim(OX1 ,OX2) = 1− cos(OX1 ,OX2)

cos(OX1 ,OX2) = OX1 .OX2

‖OX1‖ . ‖OX2‖

— distance Euclidienne

d(OX1 ,OX2) = ‖OX1 −OX2‖2 .

Nous présenterons plus en détail les fonctions en relation avec la similarité cosinus,
étudiée dans cette thèse. Trois approches basées sur la similarité cosinus sont identifiées.
La première approche consiste à définir des cibles pour la valeur de la mesure cosinus,
avec le square error objective. Soit un réseau avec un ensemble de poids W et deux
échantillons X1 et X2, la cible tX1X2 est définie selon le label de similarité L entre les
deux échantillons :

EW (X1, X2, L) = (tX1X2(L)− cos(OX1 ,OX2))2, (1)

Plusieurs variantes à existent, telles que le triplet similarity objective [LG13] ; la trian-
gular similarity metric [ZIG+15], et la deviance cost function [YLLL14]. Il est également
possible d’apprendre un classement de paires [YTPM11]. Il s’agit alors de maximiser
la différence ∆ entre des scores de similarité pour deux paires (X1,X2) et (Y1,Y2),
lorsque la première paire est plus similaire que la seconde :

∆ = cos(OX1 ,OX2)− cos(OY1 ,OY2). (2)

Enfin, l’objectif probabiliste [NH10] repose sur la fonction logistique afin d’apprendre
directement à évaluer la probabilité que deux échantillons soient similaires :

Pr(”Same”) = 1
1 + exp(−(w. cos(OX1 ,OX2) + b)) . (3)

Les objectifs basés sur la distance euclidienne reposent essentiellement sur un prin-
cipe de ressorts (voir Fig.2). Ainsi deux échantillons similaires, représentés en noir, sont
connectés par des ressorts attractifs, tandis que des échantillons dissimilaires, en noir
et blanc, sont connectés par des ressorts répulsifs. Cette répulsion est nulle lorsque la
distance entre deux échantillons dissimilaires est supérieure à une marge m à définir au
moment de l’apprentissage. Cette stratégie est bien illustrée avec la fonction objectif
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de Hadsell et al. [HCL06] :

EW (X1,X2) = ‖OX1 −OX2‖2

Esim(EW ) = 1
2(EW )2

Esim(EW ) = 1
2(max{0,m− EW})2

(4)

Ainsi, après avoir présenté les différents choix possibles pour les composants du
SNN, nous présentons dans la partie suivante nos contributions pour chacun de ces
composants.

0.3.2 Contributions
Dans le cadre de cette étude, nous basons l’architecture de notre SNN sur le MLP,

afin de pouvoir suivre l’évolution des sorties de chacune des couches au cours de l’ap-
prentissage, et caractériser plus facilement les propriétés de convergence des nouvelles
fonctions objectifs proposées. L’objectif choisi est basé sur la similarité cosinus avec
cibles, de telle manière que des échantillons similaires aient des vecteurs caractéris-
tiques colinéaires, i.e. tX1X2 = 1, et les échantillons dissimilaires aient des vecteurs
caractéristiques orthogonaux, i.e. tX1X2 = 0. Ce SNN opère une phase d’extraction de
vecteurs caractéristiques, et est combiné à un classifieur k-plus-proches-voisins (K-NN)
pour la phase de classification.

Nous proposons quatre principales contributions : avec une adaptation des en-
sembles d’apprentissage aux problèmes de classification multi-classes ; une relaxation
de la similarité cosinus ; une redéfinition du problème angulaire avec une nouvelle mé-
trique gérant un nombre arbitraire d’échantillons dissimilaires ; et enfin une exploration
de nouvelles applications du SNN, notamment pour la détection de nouveauté et le re-
jet d’erreurs et éléments inconnus, effectué avec la stratégie classique d’un seuil unique
pour toutes les classes.

Stratégie de sélection des ensembles d’apprentissage
Dans un problème de classification adapté au SNN, il est nécessaire au cours de l’ap-
prentissage de traduire les étiquettes des échantillons en relations de similarité, ce qui
introduit un biais. En effet, il est impossible de définir un ratio objectif entre le nombre
de paires similaires et celui de paires dissimilaires à chaque mise à jour du réseau. Nous
proposons donc une généralisation de la définition d’une relation de similarité dans un
cadre de classification, à l’aide de n-uplets. Soit C = {C1, .., CK} les classes représen-
tées dans la base d’apprentissage ; et Rk, Pk, et Nl respectivement les échantillons de
référence de la classe Ck, un échantillon positif de la même classe, et un échantillon
négatif de la classe Cl, le n-uplet est alors défini ainsi :

Tk = {XRk ,XPk , {XNl , l = 1..K, l 6= k}}. (5)

Cette représentation a pour avantage d’accorder un rôle symétrique à toutes les classes,
et ainsi assurer une équité de représentations de toutes les relations présentes dans la
base d’apprentissage.

La nouvelle fonction objectif intermédiaire est alors égale à :

EW (T ) = (1− cos(OR,OP))2 +
∑
l

(0− cos(OR,ONl))2. (6)
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Relaxation de la similarité cosinus
Soit (X1,X2) une paire de vecteurs caractéristiques dont les sorties doivent être mises
à jour, et les fonctions cosOt

X1
et cosOt

X2
, définies par :

cosOt
X1

: Rn → R/X→ 1
2(1− cos(Ot

X1
,X))2,

cosOt
X2

: Rn → R/X→ 1
2(1− cos(X,Ot

X2
))2.

(7)

Ainsi, le gradient de la fonction objectif globale en
(
Ot

X1
,Ot

X2

)
peut être exprimée

comme la concaténation des deux gradients des fonctions définies ci-dessus, respective-
ment évaluées en Ot

X2
et Ot

X1
. La Figure 3 propose ainsi une étude de l’évolution de la

norme de OX2 après une mise à jour. Ainsi, à OX1 fixé, le gradient ∇cosOt
X1

(Ot
X2

) est
orthogonal à la surface équipotentielle en Ot

X2
. Ce gradient est dont tangent au cercle

de rayon égal à la norme de Ot
X2

, la mise à jour Ot+1
X2 voit donc sa norme augmenter.

Il est important de souligner que cette analyse ne tient pas compte de la non-linéarité
introduite par le réseau, et repose uniquement dans l’espace de sortie.

Ainsi, afin de contrôler l’évolution de ces normes, nous proposons de subdiviser la
similarité cosinus en trois cibles indépendantes, en contraignant à la fois le produit
scalaire entre les deux vecteurs caractéristiques, et en appliquant une régularisation de
la norme de ces derniers :

EW (Tk) = (1−OR.OP)2 +
∑
l

(0−OR.ONj)2 +
∑
k

(1− ‖Ok‖)2 (8)

Redéfinition du problème angulaire : le SNN pour une analyse en com-
posantes indépendantes
En dimension 2, il est possible de définir une mesure de dissimilarité entre deux vecteurs
a et b comme une aire d’un polytope normalisée : sin(a,b) = a∧b

‖a‖.‖b‖ . Ainsi, on cherche
à définir une généralisation de cette mesure à une dimension n quelconque. Lerman et
al. [LW09] proposent une fonction appelée Sinus Polaire, qui s’inspire de la définition
du sinus. Soit une matrice A =

[
v1 v2 · · · vn

]
composée de n colonnes linéairement

indépendantes, avec n < m, où m est égal à la dimension de chaque colonne, le sinus
polaire est définit comme :

PolarSine(v1, . . . ,vn) =

√
det (A>.A)∏n
i=1 ‖vi‖

(9)

En posant Anorm =
[

v1
‖v1‖

v2
‖v2‖ · · ·

vn

‖vn‖

]
et S = A>norm.Anorm, le sinus polaire peut

alors être réinterprété comme :

PolarSine(v1, . . . ,vn) =
√

det(S)

avec S(i, j) = cos(vi,vj). Ainsi, la diagonale de la matrice S est toujours égale à 1 en
tant que valeurs de cosinus entre deux vecteurs identiques, et forcer le déterminant de
cette matrice à 0 revient à la faire tendre vers la matrice identité, ce qui force le critère
d’orthogonalité recherché entre des éléments indépendants.

Nous proposons alors une adaptation de ce sinus polaire, qui est à l’origine numéri-
quement instable lors d’une opération de descente de gradient. Ainsi, nous définissons
la métrique sinus polaire, notée psin, comme :

psin(A) = n

√
det (S) (10)
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Figure 3 – Représentation 3D de l’effet d’une étape de mise à jour sur la norme des
sorties pour une paire (OX1 ,OX2) à l’instant t. Les échantillons sont représentés avec
la même norme dans un souci de simplification. Le cône gris correspond à la surface
équipotentielle pour la fonction
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L’introduction de la racine n-ième permet de rendre la valeur de cette métrique indé-
pendante du nombre de vecteurs utilisés dans la matrice A, tout en permettant une
normalisation parfaite de l’erreur, égale à (voir Annexe A.14) :

∂ (psin(A))
∂aij

= psin(A)
n

.
ϕ′(Iij)
‖Aj‖

.
[
AnormS−1 −Anorm

]
ij

(11)

En effet, la matrice inverse présente dans le calcul de l’erreur est normalisée ainsi :

det
(

n

√
det (S)S−1

)
=
(

n

√
det (S)

)n
det

(
S−1

)
= det (S) det

(
S−1

)
= det

(
SS−1

)
= 1.

(12)

Il suffit alors de définir A comme la matrice dont les colonnes sont égales au vecteur
caractéristique de l’ échantillon de référence et des échantillons négatifs afin d’obtenir
une nouvelle définition du problème angulaire, avec une parfaite symétrie pour un
ensemble d’apprentissage Tk entre l’erreur relative à la similarité EsimW (Tk), et celle
relative aux dissimilarités, EsimW (Tk) :

EW (Tk) = EsimW (Tk) + EsimW (Tk)
avecEsimW (Tk) = (1− cos(ORk ,OPk))2

EsimW (Tk) = (1− psin(ORk ,ON1 , . . . ,ONK))2

(13)

Par ailleurs, il est intéressant de noter que cette nouvelle métrique permet de réaliser
une analyse en composantes indépendantes non linéaire supervisée à l’aide du SNN.

Hypothèses émises sur nos contributions
Afin d’évaluer nos contributions, cinq hypothèses sont émises :

1. l’hypothèse H1, concernant les cibles pour paires dissimilaires, suggère
qu’un critère d’orthogonalité (tcos = 0) pour les paires négatives est plus stable
qu’un autre critère également communément utilisé de répulsion maximale (tcos =
−1) ;

2. l’hypothèse H2, portant sur les n-uplets, veut que ces derniers permettent une
meilleure représentation des relations entre classes, aboutissant à une projection
plus discriminante ;

3. l’hypothèse H3 propose que notre procédé de régularisation de la norme
permet un meilleur contrôle de l’évolution de la norme des sorties ;

4. l’hypothèse H4 considère que notre métrique sinus polaire est plus apte à
séparer les classes que d’autres fonctions basées sur la similarité cosinus ;

5. l’hypothèse H5 avance le plus fort potentiel de rejet du SNN comparé à
d’autres méthodes de l’état de l’art à l’aide de son apprentissage discriminant.

0.4 Expériences et résultats
Nos expériences sont réalisées sur deux bases de données : la base Multimodale

d’Activités Humaines (MHAD), nous permettra d’évaluer nos contributions théoriques



CHAPITRE 0. FRENCH SUMMARY xvii

sur le SNN, en cherchant à valider en particulier les hypothèses H1 à H4 ; tandis que la
base Orange, collectée sur place, nous permet d’établir une comparaison de nos contri-
butions avec l’état de l’art, et d’étudier la validité de l’hypothèse H5 sur le potentiel
de rejet de notre SNN.

0.4.1 Expériences sur la base MHAD
La base MHAD de Berkeley [OCK+13] est constituée de 11 actions (jumping, jum-

ping jacks, bending, punching, waving 1/2 hands, clapping, throwing, sit down/stand
up, sit down, stand up), réalisées par un ensemble de 12 participants, à raison de 5
répétitions par utilisateur et par action. Bien que plusieurs capteurs ont été déployés
lors de la collecte des données, combiant des caméras, appareils Kinect, microphones
et motion capture, notre étude se base sur les données inertielles de 6 accéléromètres
attachés aux extrémités des membres et aux hanches.

Après des tests préliminaires, l’accéléromètre attaché au poignet droit des utilisa-
teurs est plus particulièrement sélectionné car les données issues de ce capteur montrent
les résultats les plus discriminants. Les données inertielles sont soumises à un filtrage
passe-bas, un seuillage et un rééchantillonnage afin d’obtenir des données de dimension
fixe avec une dimension temporelle égale à 45.

L’architecture du SNN correspond à un MLP à trois couches, avec une couche
d’entrée égale à 135, une couche cachée de 45 neurones, et une couche de sortie de 90
neurones. Une activation sigmoïde est choisie pour tous les neurones du réseau.

Les tests de classification suivent un protocole leave-one-out, avec les échantillons
de 11 participants utilisés en apprentissage, et le dernier utilisé en test, afin de pouvoir
également évaluer les capacités de généralisation de chaque modèle. Plusieurs configu-
rations sont étudiées, avec une comparaison des deux objectifs pour les paires négatives
(H1) ; une comparaison entre les trois stratégies de sélection d’ensembles d’apprentis-
sage (paires, triplets, n-uplets) ; et une comparaison entre trois fonctions objectives,
notées cos (cf. Equation 6), scal (cf. Equation 8), et psine (cf. Equation 13).

Les résultats sont regroupés dans le Tableau 4.1. Il est intéressant de noter tout
d’abord qu’une cible égale à 0 pour les paires négatives produit les meilleurs résul-
tats pour les deux fonctions objectif cos et psine, et pour la fonction scal associée à
la stratégie n-uplets, ce qui valide notre hypothèse H1. La constatation inverse peut
être faite pour la fonction scal associée aux stratégies paires et triplets, ce qui peut
s’expliquer par la subdivision de la correction angulaire en trois sous-objectifs. Ainsi,
une cible non-atteignable permet d’augmenter l’amplitude relative de l’erreur destinée
à la correction du produit scalaire, par rapport aux erreurs dues à la régularisation
des normes. Par ailleurs, les meilleures configurations sont atteintes avec la stratégie n-
uplets pour toutes les fonctions objectif, avec le meilleur score obtenu par l’association
de notre métrique sinus polaire (psine) avec notre stratégie n-uplets, validant ainsi nos
hypothèses H2 et H4.

L’hypothèse H3 est évaluée en suivant l’évolution des normes moyennes des sorties
du réseau au cours de l’apprentissage (voir Figures 4.2, 4.3, 4.4). De manière surpre-
nante, la non-linéarité apportée par le réseau inverse la tendance théorique d’évolu-
tion des normes, qui diminuent. Cette diminution peut néanmoins poser un problème
pour les longs apprentissages, avec des normes qui tendent vers zéro. Ainsi, les versions
stables des fonctions cos et psine, résultant d’un objectif d’orthogonalité pour les paires
négatives, associées aux différentes stratégies de sélection des ensembles d’apprentis-
sage, voient leur amplitude moyenne des vecteurs de sortie diminuer très rapidement
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durant les premières époques. Cette diminution ralentit au cours de l’apprentissage,
bien qu’elle ne s’arrête pas complètement. A l’inverse, la fonction scal avec régularisa-
tion des normes montre une correction de cette évolution, avec une amplitude moyenne
stabilisée dans les cas stables, ce qui valide notre hypothèse H3.

Après avoir validé nos quatre premières hypothèses sur nos contributions théoriques,
la dernière hypothèse sur le côté applicatif du SNN pour la détection et le rejet d’erreurs
de classification et d’éléments nouveaux est étudiée dans la partie suivante, à l’aide de
la base Orange.

0.4.2 Expériences sur la base Orange
La base Orange est constituée de deux jeux de données inertielles provenant d’un

Smartphone. Un seul de ces deux jeux sera présenté dans ce résumé. Ainsi, 40 échan-
tillons sont prélevés pour un unique utilisateur sur un ensemble de 18 gestes (voir Fig.
4.8). Ces 18 classes sont séparées en deux groupes : seules 14 classes sont apprises par
notre modèle Siamois, tandis que les 4 classes restantes sont utilisées durant la phase de
test en tant que données inconnues. Ainsi, cette base couvre plusieurs types de gestes,
avec de simples translations dans les plans horizontal (Flick North,Flick South,Flick
East,Flick West) et vertical (Up, Tap) ; et des gestes symboliques tels que des lettres
(Z ), N, Alpha) ; des formes (Clockwise, Counter Clockwise, Heart) ; ou des actions (Pick,
Throw). Les classes de gestes écartées durant l’apprentissage sont sélectionnées dans
le but de présenter des similarités avec celles qui sont connues du modèle : le 8 est
très proche des deux gestes circulaires ; Infinity se rapproche également de ces gestes
circulaires ainsi que du geste Alpha ; et les gestes V et W sont similaires à plusieurs
translations, tout en présentant la même dynamique en trois parties que les lettres Z
et N.

Ces données, regroupant les relevés accélérométriques et gyrométriques, sont sou-
mises aux mêmes prétraitements que celles de la base MHAD. L’architecture choisie
pour le SNN est comparable à celle utilisée sur la base MHAD, avec une couche d’entrée
de dimension égale à 270, afin de gérer les 45 relevés pour les deux capteurs 3D pour
chaque échantillon.

Comme expliqué plus haut, cette base nous permet de tester l’hypothèse H5 se-
lon laquelle l’utilisation du SNN implique une meilleure identification et un rejet de
meilleur qualité des éléments inconnus. Ainsi, 5 échantillons sont sélectionnés pour les
14 classes de gestes présentées en apprentissage, tandis que 16 autres échantillons sont
sélectionnés pour ces mêmes classes en test, complétés par les 40 échantillons dispo-
nibles des classes inconnues. Ce test représente donc un paradigme de personnalisation
intégré dans une interface naturelle où l’utilisateur ne spécifie pas à quel moment il réa-
lise un geste, et c’est alors au système qu’incombe la tâche de déterminer si une action
doit être déclenchée, avant même de choisir laquelle. On dispose ainsi de 70 échan-
tillons de gestes en apprentissage ; et de 224 échantillons connus et 160 échantillons
inconnus en test, pour un total de 384 échantillons de test, dont 41.6% sont incon-
nus. Chaque test est répété 10 fois, afin de suivre les scores moyens et leur écart-type.
D’après les résultats obtenus pour les hypothèses H1 à H4 sur la base MHAD, les choix
suivant sont faits pour les SNNs étudiés : une cible d’orthogonalité est choisie pour les
paires négatives, avec une stratégie de sélection des ensembles d’apprentissage basée
sur les n-uplets. Trois différentes configurations, nommées respectivement "SNN-cos",
"SNN-scal" et "SNN-psine" afin de reprendre les notations de la section précédente, sont
comparées, et diffèrent donc uniquement par leur fonction objectif. Une comparaison
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est également faite avec deux méthodes de l’état-de-l’art, sélectionnées pour leur simi-
larité à l’approche SNN. Ainsi, les différentes configurations du SNN sont également
comparées à une méthode basée sur un DTW associé à un K-NN en tant que mesure
de similarité non linéaire ; ainsi qu’au classifieur MLP, en tant que méthode neuronale
voisine.

Deux critères de comparaison sont suivis. Le premier consiste à étudier l’évolution
du taux de classification en fonction du taux de rejet lorsque le seuil de rejet varie.
Le taux de classification est défini comme le rapport entre le nombre d’échantillons
acceptés et correctement classifiés, et le nombre total d’échantillons acceptés ; tandis
que le taux de rejet correspond au rapport entre le nombre d’éléments rejetés et le
nombre d’éléments total. La performance d’un modèle peut alors être évaluée à l’aide
de l’aire sous sa courbe. Par ailleurs, on propose également de suivre les ratios des
différents types de rejet en fonction du taux de rejet. Ainsi, trois différents types sont
identifiés : le faux rejet correspond aux éléments correctement classifiés qui ont été
rejetés ; le rejet des erreurs de classification est formé des éléments mal classifiés, qui
ont cependant été correctement rejetés ; et le rejet des éléments inconnus concerne
l’identification des échantillons provenant des classes non présentées en apprentissage.

Les résultats de ces tests sont présentés dans les Figures 4.10, avec un agrandisse-
ment de la zone importante dans la Figure 4.11. Il est important de noter qu’aucun
modèle ne peut présenter un taux de classification égal à 100% tant que le taux de
rejet n’est pas suffisant pour écarter les 41.6% de données inconnues, d’où la présence
de la zone bleu ciel inatteignable, et de la courbe dorée qui représente une performance
parfaite. On peut immédiatement noter la supériorité des trois configurations SNN, qui
présentent des performances autour de 95% au seuil critique de 41.6% de rejet, perfor-
mances supérieures de 2% au DTW et de 4% au MLP. Le DTW tire parti de sa mesure
de similarité non-linéaire, à l’inverse du MLP, qui n’est pas correctement équipé pour
le rejet d’éléments inconnus en tant que simple classifieur. Parmi les trois configura-
tions du SNN, le SNN-scal montre des résultats supérieurs aux deux autres modèles
SNN-cos et SNN-psine. Ce phénomène peut être expliqué par le fait que la subdivision
du cosinus en trois objectifs et la régularisation sur les normes permet de limiter un
phénomène de surapprentissage, qui est un problème particulièrement sensible dans ce
cas où les tests sont réalisés sur un unique utilisateur. Une analyse plus détaillée du
rejet peut être réalisée à l’aide de la Figure 4.12. On peut remarquer que les méthodes
SNN présentent la plus faible surface pour le taux de faux rejet moyen, avec un rejet
dont la qualité ne commence à se dégrader qu’à partir du seuil critique des 41.6%.
Cela met en évidence le plus fort potentiel de sélections des méthodes SNN comparées
aux deux autres, où la dégradation est plus progressive avec l’augmentation du taux
de rejet. Le SNN-scal montre un taux de faux rejet nul pour les faibles taux de rejet,
tandis que les SNN-psine et SNN-cos rejettent toujours des échantillons correctement
classifiés, autre indice du phénomène de surapprentissage.

En conclusion, nous avons montré la validité de l’approche SNN dans ses différentes
configurations pour la classification et le rejet grâce aux bases de données MHAD et
Orange. Nous avons pu confirmer et quantifier l’impact de nos contributions. Ainsi,
notre stratégie de sélection adaptée aux problèmes de classification permet d’améliorer
l’apprentissage, tandis que l’objectif basé sur le produit scalaire avec régularisation
des normes permet de contrôler l’évolution des variations des normes des vecteurs
caractéristiques, au prix d’une plus grande difficulté de correction des angles pour
des bases de données plus complexes ; et la métrique sinus polaire se révèle être une
généralisation efficace de la fonction sinus afin de mesurer les dissimilarités entre un
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nombre arbitraire de vecteurs, au coût d’une complexité plus élevée. Enfin, le potentiel
du SNN a été évalué sur une base de données réaliste de relevés de capteurs MEMS
sur Smartphone, montrant des résultats concluants en identification et rejet d’erreurs
et éléments inconnus, comparés à ses deux méthodes voisines basées sur le DTW et sur
le MLP.

0.5 Conclusion et perspectives
Ainsi, dans cette thèse, nous avons développé une solution de reconnaissance de

gestes symboliques inertiels dans le but de proposer des interfaces plus riches, dans le
cadre d’un monde ouvert où l’on cherche à gérer de multiples utilisateurs et la possibilité
de rencontrer des gestes inconnus. Pour cela, nous avons travaillé sur l’apprentissage
automatique de métrique non linéaire à l’aide du paradigme Siamois. Nous avons donc
proposé :

1. une adaptation du SNN aux problèmes de classification avec une généralisation
de la stratégie de sélection des ensembles d’apprentissage ;

2. une relaxation de la similarité cosinus afin de mieux contrôler l’évolution de la
projection ;

3. une redéfinition du problème angulaire avec une nouvelle métrique de similarité,
la métrique Sinus Polaire, qui peut être interprétée comme un apprentissage
stochastique d’une analyse en composantes indépendantes non linéaire ;

4. l’utilisation du SNN pour la détection de nouveauté et le rejet d’erreurs et élé-
ments inconnus, avec des performances compétitives par rapport à des méthodes
voisines telles que celles basées sur le DTW et MLP.

Plusieurs perspectives sont envisagées, notamment pour le réseau Siamois lui-même,
puis pour son application à la reconnaissance de gestes. La principale évolution du
réseau Siamois résulterait d’une exploration d’autres architectures de réseaux, notam-
ment avec les réseaux convolutionnels, qui ont déjà montré leur adéquation pour la
reconnaissance de gestes [DBLG14], et plus généralement en cherchant à introduire
la dimension temporelle, avec par exemple des réseaux récurrents tels que le BLSTM
[LBMG15]. Par ailleurs, notre étude de la problématique de la reconnaissance de gestes
tirerait un grand bénéfice d’une augmentation du volume des bases d’apprentissage
et de test afin de pouvoir proposer une application grand public. D’autres stratégies
peuvent être explorées : en apprentissage, il serait intéressant de travailler sur un ap-
prentissage hiérarchique sous forme d’arbre de décisions, avec un classifieur spécialisé
qui permettrait de résoudre les confusions plus subtiles entre des classes similaires qui
sont confondues ; en test, d’autres stratégies de rejet pourraient être expérimentées,
avec par exemple la possibilité de définir un seuil de rejet spécifique à chaque classe.
Enfin, une étude peut être réalisée sur la projection des éléments nouveaux par le
réseau, avec une éventuelle possibilité d’identifier et de labelliser ces éléments sans né-
cessité de réapprentissage, afin d’aboutir à une création dynamique de nouvelles classes
dans un processus de personnalisation.
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Chapter 1
Introduction

Human-Machine Interfaces started with expert modalities, such as punch cards,
cables, or text-based environments with a single keyboard, where instructions were
transmitted to the machine through specific commands only accessible to profession-
als and experts. Emerged then the Graphical User Interfaces along with personal
computing, where users would manipulate more instinctive objects, opening files and
documents in hierarchical structures called directories, copying and pasting; with the
help of new input techniques such as the mouse. While this new paradigm allowed for
a simpler interaction and a wider public with functions hidden behind known patterns,
some basics concepts have to be learned to understand the interaction tools. Moreover,
these actions are still very dependent of the visual modality through the screen.

For this reason, interactions still evolve today with computing capabilities and
new hardware. Multiple fields such as cognitive science and design are integrated to
provide users with new interfaces, mimicking the already established cognitive models
in a "Natural Interface", which allows for a direct manipulation of the device functions.

In this chapter, we first provide an overview of Gesture Recognition and its appli-
cations and limits as a tool for these new concepts. In a second part, we define the
frame and contributions of this study, called "Automatic non-linear metric learning".
Applied to 3D-sensors Gesture Recognition, its main goal is learning a projection and
feature space characteristic of this type of signals from similarity information.

1.1 Gesture Recognition
While linguistics were the first means of Human-Machine Interactions until the

1970s, through the first programming languages closer to natural language such as
FORTRAN, a new interest was then oriented towards a spoken communication with
machines, developing the field of speech recognition, analysis and synthesis. However,
gestures are another instinctive way of conveying messages, information or emotions.
In 1980, Richard A. Bolt explores for the first time a multi-modal interface with "Put
That There", consisting in "a physical facility where the user’s terminal is a room into
which one steps". The user, sat in a chair, combines speech commands to create or
move objects, with spatial and selection information through "gestures", defined as an
extension of the arm in the direction of the screen. The gestures are interpreted using
a magnetic-based space position and orientation sensing device attached to the wrist
of the user (see Fig. 1.1).
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Figure 1.1 – User talking and pointing to items on the screen with the Put-That-There
interface. Extracted from [Bol80].

In this context, Cadoz [Cad94] studies how the gesture modality can be the richest
interaction medium. Indeed, gestures present a duality in a sense that, contrary to
vision or hearing, they allow for practical interactions with the environment as well
as sensing through touch and pressure. Thus, three different functional roles of the
gestural channel are identified: the epistemic role, contributing to the discovery of the
environment through temperature, pressure and the tactile sense; the ergotic role, with
material actions generating modifications and transformations of that environment; and
the semiotic role, communicating meaningful information towards that environment.

The term "gesture" covers a wide variety of movements, with a focus drawn on
face, through expressions and emotions; and arms. In order to define this notion,
McNeill [McN92] proposes a survey based on Kendon’s continuum, from the work of
Adam Kendon, to clarify the distinctions between different actions which might be
called "gestures". Five main categories are identified: gesticulations, speech-framed
gestures, emblems, pantomime and signs. Gesticulations are the most common and
natural gestures: they correspond to movements with a specific meaning accompany-
ing speech, describing for example the shape of an object. Speech-framed gestures differ
from gesticulations in the sense that they hold a specific, independent role in the sen-
tence negating the need for an additional spoken component, for instance, the physical
representation of an action. Emblems are culturally specific gestures which hold their
own meaning, from head shakes or hand movements for signifying approval, to "rude"
gestures. A pantomime is closely related to the speech-framed gestures as it conveys a
narrative line through a gesture or sequence of gestures, but does so without any need
of speech. Finally, the signs replace words in the context of a "sign language".

As a means of communication, the relation between speech and gestures was more
closely analysed to describe the different types of gestures encountered in a multi-modal
speech and gesture frame, for a semiotic purpose. Hence, the identified types mainly
fall within the first two categories, which are gesticulations and speech-framed gestures.
Four types are described: iconic, metaphoric, deictic, and beats gestures. Iconic ges-
tures complete the mental image of the spoken subject with a concrete illustration of
that subject, while metaphoric gestures do not limit to a concrete action or object, to
represent abstract concepts and expressions. Deictic gestures are the ones involved in
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the Put-That-There interface, with pointing movements which can designate physical
objects as well as abstract notions in time and space. Beats are small gestures used by
the speaker in order to emphasise certain words or sentences. It is important to note
that these categories are not mutually exclusive, and are used to characterize a gesture
rather than classifying it.

To conclude, gestures are a main channel in our everyday communications, sup-
porting the current speech as well as communicating concrete and abstract ideas by
themselves. However, they are the result of language development and are not triv-
ially transposed for a "natural" interface. Two roles are identified: while manipulation
allows for a direct transformation of virtual objects, developing the ergotic role of the
gestural channel, control consists in executing a specific command triggered by the
corresponding gesture, in a predefined vocabulary, playing the semiotic role. Here, ges-
ture recognition is defined as the process transmitting information about the gestures
performed by a user to a device.

In the following, we present the thesis context for gesture recognition, the practical
applications of a framework interpreting gesture data and the known issues associated
with such an application.

1.1.1 Context
Nowadays, the urge for more intuitive interactions with machines grows as comput-

ers are always more present in our everyday lives. Personal computing has reached a
peak, and devices become smaller and smaller.

Ubiquitous computing was foreseen by Mark Weiser [Wei91] as "a way of thinking
about computers in the world [which] takes into account the natural human environ-
ment and allows the computers themselves to vanish in the background". It is gradu-
ally becoming a reality through the emergence of the Internet of Things (IoT ), where
everyday objects may provide enhanced services thanks to their connectivity, commu-
nicating between them and added sensors. Thus, the ultimate goal behind ubiquitous
computing is to completely detach the user from the device.

Ambient Intelligence is a concept closely related to ubiquitous computing, and con-
sists in a technological evolution allowing the development of omnipresent, connected
and communicating small sensors, which transmit data without any user intervention.
Its aim is to "enrich specific places (room, building, car, street) with computing facilities
which can react to peoples’ needs and provide assistance" [AM07].

This concept is visible in its early stages today through "smart" accessories or cloth-
ing, more generally called "wearable devices". The most famous example of a device
which has become common is the Smartphone. Bringing the personal computer in
our pocket, these devices deliver much more features thanks to numerous applications.
Indeed, everyday objects such as the agenda, calculator or calendar are replaced, while
an Internet connection allows for the use of a mail client and data synchronization
between devices among other services. However, the integration of new sensors is
the main reason of the development of the Smartphone potential, with, for instance,
geolocalisation, thanks to the GPS, and orientation, with the magnetometer.

As such, Ambient Intelligence also implies a proactive dimension, with context
awareness. Brooks [Bro03] identifies the five basic narrative questions which should
serve as guidelines: Who, What, When, Where and Why. While the processes of
spatial and temporal localisation are well-mastered, the main issues reside in the "Who",
"What", and "When" questions. "Why" is the most challenging question, requiring
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a deep understanding of relationships between events or actions, and the meaning
they hold for the user. However, "Who" and "What" are currently under great study
thanks to Pattern Analysis techniques, with for instance user identification and activity
recognition. Hence, Ambient Intelligence is at a crossroads of multiple fields, linking
sensors, Machine Learning and Human-Computer Interactions (see Fig.1.2).

Figure 1.2 – Relation between Ambiant Intelligence (AmI) and other areas in Comput-
ing Science. Extracted from [AM07].

In that context, as computing and everyday objects merge and become always more
popularized, it is necessary to provide new interaction experiences to users, in order
to ease the manipulation of a technology evermore present, for experts and beginners
alike. As a natural and spontaneous communication channel, the gesture is the right
candidate for a new communication channel with the machine.

1.1.2 Applications
Two kinds of gestures can be considered for different applications. On the one hand,

static gestures correspond to a specific state, described by a unique set of features,
with, in the context of Smartphones, a "phone-to-ear" posture for instance. On the
other hand, dynamic gestures are more complex, since they are described by a time-
series of inertial signals, such as the "picking-up" movement when the user is ready to
take a call. While their path information allows for tasks such as pointing, they can
also hold a meaning through a symbolic association, whether representing a shape or
an action. Thus, in the rest of this thesis, the term gesture targets in particular the
symbolic, dynamic gestures, whose path in space is associated to a meaning, such as
letters, geometric shapes or activities.

Interaction evolutions were always paired with available technology. 2D gesture
recognition was developed first. Based on Optical Character Recognition techniques,
pen strokes or finger movements on a sensing surface are tracked to compute robust
features such as form, speed and acceleration, with very little noise, enabling writing
or symbolic drawing recognition. Then, 3D gestures were analysed. The first systems
were heavily reliant on vision-based systems, with body or hand tracking, body suits,
or instrumented gloves. However, these systems are not user-friendly in the sense that
they require a cumbersome equipment and heavy calibrations. Vision-based gesture
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recognition picked up considerably with the apparition of the Kinect device, which was
the first affordable 3D motion sensing device available to individual customers.

In recent years, new sensors called MicroElectroMechanical Systems (MEMS) were
popularized thanks to their small sizes and low production costs. Nowadays, MEMS-
based inertial sensors like the accelerometer and gyrometer can provide spatial aware-
ness to any device, effectively increasing the accessible space dimensionality. These
sensors may be embbeded in a device such as a Smartphone, allowing for the analysis
of gestures realized by users in the 3D space, with the phone in hand; or directly worn
by the user, for body and activity tracking.

Other applications for gesture recognition can be emphasised, with for instance
remote control of everyday and household devices such as the television, interactions
with virtual objects or interfaces in an Augmented Reality context, avatar control or
object manipulation for gaming, or even authentication with spatial signatures.

Thus, these new sensors are the basis for a new user experience, with a new freedom,
in particular to those with a visual or physical impairment, thanks to a detachment
from the typical, omnipresent visual interface which requires a coordination between
the eye and the hand.

In the next section, we will present the main issues impeding 3D-sensor-based ges-
ture recognition for these domains of application.

1.1.3 Known issues
Inertial gesture recognition is subject to multiple drawbacks which limit its impact.

Indeed, two approaches can be identified. The user-dependent approach only targets
one user, while the user-independent one should not limit the number of users. As
an interface, a gesture-based framework falls into the second category. It is necessary
to design an open-world system, where the model used captures the diversity of the
different productions of the same gestures, and provide a sufficient generalisation.

It is essential to mention that differences between users are amplified by the inertial
sensors. Indeed, while a human being would mainly associate the shape of a gesture
to its meaning, with small possible variations for speed, inertial sensors cannot provide
the equivalent of this mental shape, as only accelerations and angular velocities are
available. Thus, inherent differences in gesture expressiveness, with varying speeds and
amplitudes, are directly impacting the recognition step, which has to process signals
with variable amplitudes and durations.

Moreover, in an open-world application, a personalisation paradigm has to be con-
sidered, allowing users to define their own set of gestures. So, the inertial limits must
also be taken into account during this vocabulary definition. To what extent different
gestures for human beings are different for the machine, sensor-wise? Is it possible to
provide generalisation for an undefined number of users with arbitrary preferences and
styles? Furthermore, within a realistic framework, any personalisation process could
not ask for a comprehensive training set, as it would require a deterring effort from the
user to perform each gesture to be learned many times.

This necessary instinctive and seamless experience introduces new problems. Dur-
ing a natural manipulation of the device where the user does not directly signal its
intention to activate the system, gestures such as involuntary shakes or non-machine-
informational gestures destined to other targets must be filtered by the system thanks
to a rejection strategy.
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Thus, our study focuses on this aspect to devise a framework which would include
classification as well as rejection processes, in particular thanks to a training based on
an automatic, non-linear metric learning through similarity considerations. However,
we do not tackle here the problem of temporal segmentation, which is already performed
for the testing process. In the next section, we define the notion of metric, to develop
the thesis subject and contributions.

1.2 Automatic non linear metric learning
Given a set of features representing a phenomenon, any analysis or classification

task is greatly simplified when a specific metric is available to gauge its similarity to a
known example, for instance through a K-NN classifier [CH67]. However, this metric,
supposed to output respectively low and high values to similar and dissimilar events,
may not be directly accessible because of unknown dependencies or non-linearities. To
that end, metric learning exploits known pairwise constraints in order to devise a more
coherent comparison metric.

Proposition 1 A metric d in a space X is defined by four properties. ∀ X1,X2,X3 ∈
X , the following conditions are satisfied:

1. non-negativity : d(X1,X2) ≥ 0,
2. the coincidence axiom : d(X1,X2) = 0⇒ X1 = X2,
3. symmetry : d(X1,X2) = d(X2,X1),
4. triangle inequality d(X1,X3) ≤ d(X1,X2) + d(X2,X3).

However, multiple axioms can be dropped in practice, leading to:
— pseudo-metrics, where the coincidence axiom is replaced by the identity axiom

d(X1,X2) = 0;
— quasimetrics, dropping the symmetry axiom;
— semi-metrics, dropping the triangle inequality;
— premetrics, which only verify non-negativity and identity.

Metric learning techniques can be characterised depending on five criteria (see
Fig.1.3), which are:

— the learning paradigm (fully, weakly or semi supervised);
— the form of the metric (linear, nonlinear, local);
— the scalability with relation to the number of examples or the dimension of the

data;
— the optimality of the solution (local, global);
— and whether the metric performs a dimensionality reduction.

Three main approaches exist for global metric learning: Mahalanobis metric learn-
ing [Mah36]; linear similarity learning; and kernel methods which introduce a non-
linearity.

The Mahalanobis distance between two vectors X1 and X2 is related to the Eu-
clidean distance between both vectors in a projection space defined by a matrix P.
Thus, given the matrix A = PTP, the distance d(X1,X2) between these two vectors
is defined as:

d(X1,X2) =
√

(X1 −X2)TA(X1 −X2). (1.1)
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Figure 1.3 – Five key properties of metric learning algorithms. Extracted from [BHS13].

The matrix A is symmetric positive semi-definite, satisfying the conditions of a pseudo-
metric. Eigenvector-based methods such as Principal Component Analysis (PCA) or
Linear Discriminant Analysis (LDA) can be seen as a Mahalanobis distance learning,
as they result in a projection matrix, respectively maximising the variance in the sub-
space, and the ratio of the inter-class variance over the intra-class variance. Among
the most popular Mahalanobis distance learning algorithms, we can cite the origi-
nal Malahanobis Metric Learning (MMC) algorithm [XJRN02]; Neighbourhood Com-
ponent Analysis, optimising the expected leave-one-out error of a stochastic nearest
neighbour classifier in the projection space [GHRS04]; Large Margin Nearest Neigh-
bours [WS09], locally minimising the distance with "target neighbours" and maximising
the distance with "impostors" over the training set ; or Information-Theoretic Metric
Learning [DKJ+07] which introduces a Bergman divergence with a LogDet divergence
regularisation, generated by the convex function φ(A) = − log det A defined over the
cone of positive-definite matrices.

Given a square matrix M and a normalization term N(X1,X2), linear similarity
methods aim at learning distance functions KM(X1,X2) of the form:

KM(X1,X2) = X1
TMX2

N(X1,X2) (1.2)

No assumption is made on the matrix M, which can allow for more flexibility. The co-
sine distance dcos(X1,X2) = 1−cos(X1,X2) can be seen as a particular case, where the
matrix M is equal to the identity matrix, and the normalization term is the product of
the norms of X1 and X2. One good representative of this approach is the Generalised
Cosine Learning Algorithm [QGCL08], which aims at learning a cosine similarity in a
projection space implied by a definite semi-positive projection matrix.

Finally, kernel methods consists in introducing non-linear forms of metrics. While
this can consist in a kernelisation of linear methods, with Kernel Principal Component
Analysis [SSM98], or with the Gradient-Boosted Large Margin Nearest Neighbour al-
gorithm [KTS+12], non-linear methods can also take advantage of machine learning
techniques such as Support Vector Machine (SVM), with the Support Vector Metric
Learning algorithm, alternating between training an SVM model with respect to a
Mahalanobis distance and learning a Mahalanobis distance minimising the validation
error of the SVM model; or neural network, with for instance the Siamese strategy
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[BGL+94][CHL05].

In the following, we first present the thesis subject, aiming at an Automatic non
linear metric learning based on neural networks, before introducing our contributions
to this field.

1.2.1 Thesis subject
This thesis focuses on non linear metric learning through neural networks applied

to gesture recognition. Indeed, these models, known for their execution computation
speed, are ideal in a context of embedded computing. This execution speed is however
not the same during training, which may be time consuming. Thus, we focus on the
Siamese Neural Network (SNN), which proposes a training strategy based on known
similarity relationships between pairs of samples, allowing for the non-linearity of the
neural network, as well as a possibility for dimension reduction through an adjustable
output layer. The SNN is trained to reflect these relationships through a controlled
metric, such as the Euclidean or cosine distances, applied to the output space. Hence,
this model also provides representative feature vectors, on which the output metric is
based.

While the SNN acts as a regular neural network during the recognition step to
compute these new features, its training is different from other networks as it implies
the use of identical networks in parallel in order to process and learn from the similarity
information between pairs of samples.

As a consequence, the SNN-based metric learning differs from other classical neural
networks seeing as the original class labels assigned to the data are not necessary any-
more. Class labels are ultimately translated into similarity relationships, and are only
used for the classification process, which intervenes subsequently with an independent
classifier.

In the following, we expose our contributions to the Siamese Neural Network.

1.2.2 Contributions
In this thesis, we propose three contributions to the cosine metric, MultiLayer

Perceptron(MLP)-based SNN.
Firstly, while most applications make use of a limited information during training,

with relationships between pairs or triplets of samples, we first propose to integrate the
simultaneous known relationships between sets of samples through a selection of tuples
in order to produce a more structured output space. This approach looks particularly
sensible with a view to operating a classification, as classes present an inherent, rich
relationship information between sets of samples.

Secondly, the analysis for the cosine similarity applied to the output space shows
many possibilities for numerical instabilities. In this sense, we suggest a modified
similarity metric, where the norm of the outputs is controlled through a regularization
applied to the outputs themselves. This also leads to a simplification of the metric in
the new projection space, which only relies on the scalar product.

Furthermore, we investigate the analysis of relationships between sets of samples,
introducing a polar sine-based dissimilarity metric, which can handle in a uniform, si-
multaneous way the dissimilarities between samples belonging to different classes. This
new similarity metric is then proven to perform a Supervised Non-Linear Independent
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Component Analysis, aiming at decorrelating the set of samples from every available
class.

Finally, we explore the potential of Siamese networks for novelty detection and
rejection, aiming at harnessing the high-level representation capacities for separating
different gestures.

Thus, this thesis explores the potential of a neural network-based similarity met-
ric learning applied to gesture recognition, with a view to enhancing user experience
through the enrichment of new, more natural interaction modalities. This process relies
on the Siamese Neural Network, trained thanks to relationship information between
sets of samples, whose discrimination capacity is proved in a rejection context.

This thesis is organized as follows. After this introduction, Chapter 2 presents a
review of gesture acquisition technology and equipment, followed by a literature of
state-of-the-art methods for gesture recognition and rejection. Chapter 3 studies more
closely the Siamese Neural Network through its previous occurrences, before present-
ing the theoretical background behind our contributions. Chapter 4 analyses these
contributions thanks to classification and rejection tests over two 3D-sensor databases.
Finally, conclusions are drawn in Chapter 5, and perspectives are presented.
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Chapter 2
Classical Methods for Gesture Classification

The following chapter presents a global overview for gesture recognition in two
parts. Firstly, the main sensors involved are studied, from the inertial sensors, like
the MicroElectroMechanical Systems, to the more equipment demanding motion cap-
ture and skeleton tracking. Secondly, we survey the different approaches to gesture
recognition, with statistical, classifier, and artificial-neural-network-based methods.

2.1 Gesture data acquisition

For the rest of this document, we use a notion of gesture which appeared with
modern technology, meaning a specific motion associated to an idea or used to control
a device. Thus, this section presents the multiple sensors and modalities involved
in gesture acquisition, with inertial sensors which describe the relative movement of
a single point; to the global body tracking thanks to vision-based methods such as
motion capture.

2.1.1 Inertial system

New Smartphone applications draw their success mostly from the use of sensors,
enablers of the "smart" trait of these new kind of phones. These sensors are known under
the name "MicroElectroMechanical Systems" (MEMS). Their ease of use and cheap
integrated production costs based on semi-conductors, printed onto circuit boards using
photo-lithography, explain their wide spread in a lot of devices, such as cars for airbag
deployment detection, or drones for navigation.

Three sensors are typically present in our everyday devices: the accelerometer, the
gyrometer and the magnetometer. The latter is usually dismissed, since its use is
not natural in a seamless interface. Indeed, preliminary tests proved that this sensor
is less reliable, as it requires constant calibrations to compensate the variations and
interferences induced by the local electromagnetic fields. That is why we focus on
accelerometers and gyrometers in the following, whose combination improves classifi-
cation results, as proved in [BL], and explain how these sensors operate so as to extract
characteristic features describing the movements of the device. These sensors record
respectively the accelerations and angular rates along the three axes, as represented in
Fig.2.1.
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Figure 2.1 – Representation of the three axis of MEMS sensors, relative to the Smart-
phone device.

2.1.1.1 Accelerometers

A 3-axis accelerometer is actually constituted of three linear accelerometers (see
Fig. 2.2), which record the acceleration of the system along a predetermined axis.
Although many accelerometer types exist, from mechanical to piezoelectric, the most
common accelerometer is based on capacitive effects.

Two imbricated, oppositely charged semi-conductors combs form the capacitive
accelerometer. While one comb is mobile, the other is fixed to the device, which allows
them to act as a mass-spring system where the variation of the total capacitance, and
thus the current going through the sensor, is directly related to the acceleration of the
system.

Figure 2.2 – Schematics for a one-dimensional MEMS accelerometer. Extracted from
[ins].

Let x be the amplitude of the motion of the movable comb, and d the distance
between the forks of the combs at rest. When respective voltage amplitudes V0 and
−V0 are applied to the set of combs, the output voltage Vx measured is directly related
to the displacement of the mobile comb. After a linearisation (cf. [And08] for details):

Vx = x

d
V0. (2.1)
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Figure 2.3 – Schematics for a one-axis vibrating structure MEMS gyrometer. Extracted
from [GK03].

Given Hook’s law for springs, ks the spring constant of the system, and m the mass
of the movable structure, the acceleration a is defined by:

a = ks
m
x = ksd

mV0
Vx. (2.2)

This formula is a simplification, which is only valid in precise circumstances that are
not met in real use, as it would require a high quality factor, limiting the effective
bandwidth of the oscillating system.

2.1.1.2 Gyrometers

Gyrometers only appeared later in consumer devices. They describe the angular
velocity of the device relative to two or three axis depending on the sensor model.
In the following, we describe the principles involved in the angular rate measurement
for an example of a one-axis gyrometer (see Fig. 2.3, 2.4), before presenting another
concept for a single driving mass 3D-axis gyrometer (see Fig. 2.5).

Each gyrometer contains at least one constantly oscillating component, whose dis-
placement is perturbed by the Coriolis effect when the device is rotated. In a reference
frame rotating at an angular velocity Ω, a mass m moving with velocity v is subjected
to a force perpendicular to the vibration direction and to the rotation axis, the force
F is defined as

F = 2mv ∧Ω. (2.3)

Thus, the Tuning Fork Gyroscope (TFG), as a one-axis gyrometer represented in
Figure 2.3, is formed by a symmetric system of two resonating proof-masses. These
masses can resonate along two modes. The drive mode (see Fig. 2.4a) is directed
along specific axis (x) and plane (xy) thanks to capacitive combs (D−, D+), whose
aspect is similar to the accelerometer MEMS. While the system vibrates along the drive
mode, any rotation along the axis perpendicular to the plane of oscillation provokes a
resonating displacement of the two masses, in opposition of phase, along the direction y,
called the sense mode (see Fig. 2.4b). The amplitude of that displacement is measured
thanks to symmetric capacitive sensors (S−, S+), and is directly linked to the angular
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(a) Drive mode. (b) Sense mode.

Figure 2.4 – Resonance modes of the tuning fork gyrometer. Extracted from [ZSZA08].

Figure 2.5 – Single driving structure of 3-axis digital gyroscopes. Extracted from
[STM].

rate of the rotation. Moreover, if a linear acceleration is applied along an axis, both
parts will move in the same direction, which prevents any capacitance differential, and
prevents the system from being influenced.

Other gyrometers can sense rotations along three simultaneous axis with a single
mass, which reduces their size and their power consumption.

The single driving mass gyrometer, represented in Figure 2.5, is indeed able to cover
simultaneously the three angular degrees of freedom, corresponding to every possible
rotation relative to the three axes: two in-plane axes, whose rotations are called roll
and pitch, and one out-of-plane axis, whose rotation is called yaw. The gyrometer is
formed of four partsM1,M2,M3 andM4, which oscillate along a drive mode: each part
vibrates at the same frequency along inward/outward axes. Three other modes exist
for the three rotations. Each mode sees two opposite parts oscillating in opposition
of phase according to a direction symbolised by the red and yellow arrows. Thus,
when an angular rate is applied to an axis, its amplitude can be computed from the
opposite displacements of the parts involved in that mode, which create a capacitance
differential between these two parts.
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2.1.1.3 Flaws of MEMS sensors

MEMS present inherent flaws, which makes their readings uncertain.
Primarily, they can be influenced by physical phenomena. As a spring-mass system,

the accelerometer is only able to measure the acceleration resulting of forces applied
on its frame. This means that a free-falling accelerometer in a vacuum will show a
zero-output, whereas it is accelerating due to gravity. When an accelerometer is placed
on a horizontal surface, the system will only read the acceleration resulting from the
ground reaction force: the mass is still submitted to gravity, which brings it towards
the Earth. This displacement is interpreted by the system as a vertical acceleration
in a direction opposite to gravity. This acceleration component introduces a constant
bias which is difficult to track, as it is impossible to distinguish it from the acceleration
due to the movement of the device.

Moreover, MEMS readings are subjected to non-linearities [Kaa], which can only
be neglected under specific conditions, depending not only on parameters such as the
sensitivity and quality of the sensor, but also on humidity and temperature. Materials
and engineering play an equally important part in reducing the bias drifts present in
every inertial MEMS sensor. The accelerometer mass and spring constant may vary
with use, while wear may change the quality factor determining the oscillation modes
of a gyrometer.

This quality factor has also a large impact in reducing the measurements noise.
This noise has multiple origins [BMKW99]: electronic, from the readout circuit, and
mechanical, from Brownian motion, which cannot be neglected for MEMS because of
the reduced mass and dimensions of the vibrating elements.

Since inertial sensors present multiple flaws which render them unreliable, many
gesture recognition applications involve vision-based systems for position tracking.

2.1.2 Vision-based system
Vision-based gesture recognition applications essentially rely on skeleton identifica-

tion. Multiple strategies are used to generate and track the skeleton. The first method
consists in following known points on different body parts in 3D space to reconstruct
the skeleton, while the second strategy is more easy to use as it does not involve the
specific markers.

2.1.2.1 Marker-based motion capture

Marker-based motion capture relies on specific, camera-identifiable markers dis-
posed on the body or body part to be followed. This type of application is very
equipment-intensive, as it requires a specific room setup. Multiple high-speed cameras
must be placed around the room, covering different angles of the scene, and have to be
calibrated in order to triangulate the markers placed on the subject, which should not
be occluded.

The typical motion capture cameras only sense the infra-red spectrum. These
cameras also include infra-red emitters, and this specific light is reflected on the markers
on the surface of the body. Markers are placed following bio-mechanical considerations,
as they have to be located as close to the real skeleton as possible in order to represent
accurately the movements. The triangulation process corresponds to a square-error
minimisation problem, where the camera orientations are known, and multiple views
are combined to provide an estimate of the 3D space position of the marker. This
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Figure 2.6 – Representation of the visual hull, result of 3D space carving. Extracted
from [GSFP06].

process can accurately be executed within a one millimeter error confidence. Occluded
markers are reconstructed using machine-learning methods where the set of visible
markers serve as features.

2.1.2.2 Markerless motion capture

Many strategies exist for body tracking. For example, as for marker-based motion
capture, multiple cameras can be arranged around a room, and the multiple points of
view will allow a 3D-carving of voxels (volumetric pixels) by projecting multiple cones
on the silhouette of the body, resulting in a visual hull (see Fig. 2.6).

It is also possible to track a body using a single camera. The most famous example
of this strategy is the Kinect device (see Fig. 2.7). Originally produced for the Xbox 360
gaming console by Microsoft, a PC version, Kinect for Windows, was released in 2012,
with new functionalities. Thanks to its low cost, many motion capture applications
and research fields now rely on this device. This technology was licensed to Microsoft
by a company called PrimeSense.

Kinect relies on an infrared light source, a depth image sensor, and a color image
sensor to propose multiple features for gesture interaction. In particular, it is able to
track up to six people, and determine 25 skeletal joints per person. While the details of
the depth map production were not revealed, it is safe to assume from the patent [Pri]
that the system relies on an infrared projector which projects a specific pattern onto
the scene, while a camera captures the image of the projected pattern to reconstruct a
3D map of the scene, based on the grey levels of the captured image and the distortion
of the pattern.

The body part inference and tracking process relies on the Kinect camera, which
gives 640×480 images at 30 frames per second with depth resolution of a few centime-
ters. Using a set of 100,000 poses labelled with 31 distinct body parts, Shotton et al.
[SFC+11] generate synthetic data using computer graphics techniques to render depth
and body part images from texture mapped 3D meshes. The final dataset is formed
of 900,000 training images, which serve to train 3 randomised decision forests of depth
20.

In order to extract body joints, body parts are first identified, and then serve to
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Figure 2.7 – Photograph of a Kinect device.

Figure 2.8 – Depth image, corresponding inferred most likely body part labels and
joints proposals. Extracted from [SFC+11].
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infer the final corresponding joints (see Fig. 2.8). The body part classifier is based on
randomised decision forests, whose split nodes compare simple depth image features
fθ(I,x) to a learned threshold in order to assign a class to each pixel of each image
independently. Given the pixel x in image I; θ = (u,v) a set of two 2D offsets ; and
the depth at any pixel p dI(p), the feature becomes:

fθ(I,x) = dI

(
x + u

dI(x)

)
− dI

(
x + v

dI(x)

)
(2.4)

During training, a random subset of 2000 example pixels by image is formed so as
to ensure an even distribution across body parts. Then, multiple splitting candidates
φ = (θ, τ), with τ the associated threshold, are drawn at random, and used to partition
the set of pixel examples depending on their feature exceeding the threshold. The
splitting candidate giving the highest gain in information is selected, and the algorithm
is repeated on the produced left and right subsets. The final body part classification
is operated from three trees trained to depth 20 with one million images.

Finally, joint position estimations are based on the mean shift algorithm [CM02]
with a weighted Gaussian kernel. The density estimator per body part c is defined as:

fc(x̂) ∝
N∑
i=1

wic exp(−
∥∥∥∥∥ x̂− x̂i

bc

∥∥∥∥∥
2

) (2.5)

where x̂ is a coordinate in 3D world space, N is the number of image pixels, x̂i is
the reprojection of image pixel xi into world space given depth dI(x̂i), bc is a learned
per-part bandwidth, and wic is a pixel weighting equal to:

wic = P (c|I,xi).dI(x)2 (2.6)

Starting points for part c are then selected thanks to a learned threshold λc. The
final identified modes are then shifted along an offset ηc optimised on a validation set
in order to "push them back" into the body, at the joints location instead of just the
surface of the body.

To conclude this section, a lot more information is available for vision-based meth-
ods, relative to inertial based ones. However, this advantage is obtained at the price of
a very heavy and pricey equipment, from high-speed cameras to infra-red sensors fol-
lowed in a controlled and calibrated environment. Conversely, inertial sensors propose
a practical and affordable solution for mobile devices, at the cost of a much greater
unreliability.

Indeed, it is necessary to apply some specific transformations to inertial sensor data
in order to limit the influence of their flaws identified above. In the following, we will
present these data processing steps.

2.2 Inertial gesture data processing
As shown above, inertial gesture data are the combination of two independent sen-

sors, the accelerometer and gyrometer. Thus, a gesture sample corresponds to two
time-series of three dimensional measurement, which present inherent flaws introduc-
ing, noise, drift and biases in the raw measurements. Moreover, these sensors may not
be perfectly synchronised.
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Before any feature computation or classification task, it is mandatory to operate four
steps to extract the essential information for gesture recognition: calibration, in order to
remove the bias induced by gravity on the accelerometer data; filtering, to improve the
signal-to-noise ratio; normalisation, dealing with amplitude gaps between repetitions;
and vectorisation, to reduce temporal discrepancies between different repetitions of the
same gesture and compress the information.

Thus, these preprocessing steps not only improve data alignment for one-user cases,
but also contribute to reducing the differences which naturally exist between different
users in open-world applications.

2.2.1 Calibration
The first step consists in calibrating the accelerometer signals, in order to filter out

the constant due to the reactive force to the gravitational pull of the Earth on the
device. Indeed, in the case where the device is held in the hand, two same gestures
performed with different wrist angles see their reference frame shifted, and result in
two completely different accelerometer readings.

Cho et al. [CCB+06] suggest an approximate gravity removal by substracting the
mean vector of accelerations to each measurement.

In [Pyl05], Pylvänäinen suggest an additional calibration for Smartphone readings,
relying on the fact that any gravity estimation gT (D) over a dataset D in a 3D-
space parametrised with the axes xyz, should point toward the negative y-axis, which
corresponds to the position where the phone is held vertically, screen towards the face
of the subject. The gravity estimation is performed the same way as above, using the
mean vector of accelerations of the gesture duration. Since the sensors axis form an
orthogonal base for the acceleration space, this operation translates to a rotation or
roto-inversion of the initial frame thanks to an orthonormal matrix R. The axes of this
matrix R =

(
r1>

r2>

r3>

)
are determined by means of a Gram-Schmidt orthogonalisation:

the first axis to be determined is the one defined by the unit vector aligned with the
gravity estimation:

r>2 = − gT(D)
‖gT(D)‖ . (2.7)

Given (u,v) ∈ Rn ×Rn), the orthogonal projection operator proju(v) is defined as:

proju(v) = u.v
‖u‖2 u. (2.8)

The last two remaining vectors are then calculated using corrected projections of the
previous unit vectors x̂, ẑ, directing the axes x and z :

r1 = − x̂− projr2(x̂)
‖x̂− projr2(x̂)‖ ,

r′3 = x̂− projr2(ẑ),

r3 = − r′3 − projr1(r′3)
‖r′3 − projr1(r′3)‖ .

(2.9)

2.2.2 Filtering
Filtering is a common signal processing step destined to remove an unwanted com-

ponent from a signal. In our case, the goal is to remove the noise caused by the sensor
itself, or short, quick and unwanted movements of the subject.
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Low-pass and Butterworth filters are classically used as the noise to be filtered
is high-frequency. Indeed, both filters are defined by a cutoff frequency, from which
higher frequencies are progressively attenuated.

The first-order low-pass filter [Mli09] corrects every sample of a signal by considering
its recent past. Thus, for a signal X = {X1, . . . ,Xn}, the sample Xi is adjusted thanks
to a parameter β ∈ [0; 1], which determines the weight given to the past samples in the
filtered signal Xf . The filter function Hlow(z) after z-transform, where z−1 correspond
to a time-shift, is equal to:

Hlow(z) = 1− β
1− βz−1 (2.10)

which easily translates in temporal form to:

Xf
t = βXt + (1− β)Xt−1 (2.11)

The Butterworth filter is often used up to the 4th order [MMST00]. Its frequency
response is characterised by a flat pass-band and linear reject-band. The coefficient of
the z-transform can be found thanks to the normalised Laplace transform, depending
on the order n ∈ [1, 4] of the filter:

Hbutter(s) = 1
Pn(s) (2.12)

with

P1 1 + s
P2 1 + 1.414s+ s2

P3 (1 + s)(1 + s+ s2)
P4 (1 + 0.765s+ s2)(1 + 1.848s+ s2)

A bilinear transform is then applied to determine the coefficient of the time-discrete
filter, using a first-order approximation of s = 1

T
ln(z), with T the period related to

the sampling rate, to give the following replacement formula:

s ≡ 2
T

1− z−1

1 + z−1 . (2.13)

Another acceleration time series smoothing process implies using a mean filter
[HHH98] [AV10] [MHS01] [LC13], where the information is temporally compressed
over a sliding averaging window. For a window of k samples

Xf
t = 1

k

k−1∑
i=0

Xt+i. (2.14)

Finally, other applications apply a Fast Fourier Transform (FFT) or Discrete Co-
sine Transform (DCT) [HJZH08], before cutting the high-frequency coefficients, which
is equivalent to a low-pass filter. However, this method may introduce signal oscil-
lations in the temporal domain of the data near discontinuities, known as the Gibbs
phenomenon.

After the noise attenuating phase, it is necessary to reduce the amplitude differences
between multiple repetitions of a gesture and different dynamics from multiple users,
process which is explained in the following section.
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2.2.3 Spatial Normalisation
The second most important source of discrepancies between users comes from spatial

amplitude. A fast user will produce a higher overall acceleration while performing the
same gesture as a more laid-back user. A specific normalisation step is thus necessary.
Since no a-priori exists on the performing user, this preprocessing phase should be user
independent, and not rely on multiple repetitions of the same gesture.

One first normalisation strategy choice consists in an alignment of the probability
distribution of the data towards a normal distribution with a zero mean and unit
variance for every sensor component [MHS01] [MMST00].

Another common process scales every sensor component of the filtered time series
Xf =

[
Xf

1, . . . ,Xf
n

]
independently and in a linear manner [MKKK04][ZCL+11]. The

scaled time series becomes Xs = [Xs
1, . . . ,Xs

n], with

Xs
i = Xf

i −minj(Xf
j)

maxj(Xf
j)−minj(Xf

j)
(2.15)

While the min-max scaling conveniently projects every component onto the [0; 1]
segment, it also discards the relative scalings between different sensor components.
For that reason, another strategy may be applied, where the components are scaled
by a unique factor depending only on the gesture. This factor is commonly chosen as
the maximum norm of the time-series concatenation of the different sensors readings
[CCB+06] [HL10]. Given the gesture data X = {X1, . . . ,Xn}:

Xs
i = Xi

maxj(‖Xj‖)
(2.16)

While amplitude discrepancies may be the result of broader gestures, they are
often the product of generally more dynamic styles, where gestures are performed
more quickly. As such, amplitude normalisation is often completed with a temporal
scaling in order to improve the alignment of samples produced with different styles.

2.2.4 Temporal Normalisation
Directed by specific kinetics, human motion is highly redundant, which suggest

to reduce the actual number of measurements describing the gesture. Moreover, the
size of gestures performed with different speeds will differ greatly. A step of temporal
normalisation is destined to erase those differences, by thresholding, resampling and
quantisation.

Thresholding proposes to exclude the measurements which do not bring more dis-
criminative information about the gesture, for models to identify more clearly the
meaningful part of the signal. Two types of thresholding filters exist. The first one is
called the "idle thresholding filter", used to remove samples with low importance. Mlich
[Mli09] imposes a threshold on the absolute value of the acceleration samples. Given
a threshold t and the value of the acceleration due to gravity g, a sample acceleration
vector Ai =

{
axi, ayi, azi

}
is removed if:

|‖Ai‖ − g| < t (2.17)

Schlomer et al. [SPHB08] suggest a "directional equivalence filter" where vectors too
close to their predecessor are removed from the final gesture data. For a defined
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threshold ε, the thresholded signal Xth = {Xth1, . . . ,Xthm} presents the following
characteristic:

∀i ∈ [2;m] , ‖Xthi −Xthi−1‖ ≥ ε (2.18)

Resampling allows a standardisation of different gestures durations. Kela et al.
[KKM+05] linearly interpolate or extrapolate the gesture data if any sequence is respec-
tively too short or too long. Cho et al. [CCB+06] suggest to impose a predetermined
length of accelerations signals, and resample the signal in order to get a predetermined
unit length U between successive points.

The second resampling strategy complements the first one. A vector quantisation
step may be applied on gesture data in order to discretise the data. Vector quantisation
is a lossy compression methods which consists in mapping the vector space to a set
of exemplars, forming a "codebook", which permits to encode every sequence as a
one-dimensional exemplar label vector.

Codebooks are often produced as the result of a clustering process of the data.
The most popular clustering algorithm is the k-means algorithm, also called Lloyd’s
algorithm [HHH98][Kli09] [AV10][KKM+05]. This algorithm performs an unsupervised
clustering, which updates a predefined number of cluster centres towards the centres of
mass of the dataset. Vector references are drawn randomly at first, and assigned a set of
data samples on a lowest distance criterion. This process creates a set of clusters, whose
means are computed to serve as new references. Thus, the set of references converges
towards the highest densities of the data distribution, justifying the representative
character of the obtained references. However, this method is strongly affected by the
initial references choice, and only converges towards a local minimum. Moreover, it
is not possible to determine the exact number of representatives needed to accurately
describe the data without losing any crucial information.

However, other codebooks come from a simple even discretisation of the whole
sensors reading space. While this method requires less computation, it is plagued by
the often greater size of the representatives set, as enough granularity is needed to
efficiently differentiate two quantised gestures.

Thus, after this overview of gesture detection and capture, using descriptions whether
inertial or vision-based, we will see in the next section how these sensors have been
used for gesture recognition.

2.3 Gesture Data Learning and Classification
Due to the recent development of the inertial sensors, which are the main enablers

for widespread and accessible gesture recognition, this field is relatively young compared
to other problems, such as speech or face recognition. However, gesture recognition
benefits from the experience accumulated in these disciplines, and offers a wide range
of approaches. Three main strategies can be identified.

The first one consists in a statistical modelling of the gesture dynamics, with models
whose main representative is the Hidden Markov Model (HMM).

The second approach is based on geometric considerations. As an elastic distance,
the Dynamic Time Warping (DTW) allows for a direct similarity between gestures,
while other methods are based on some discriminative geometric features, extracted
thanks to a Principal Component Analysis (PCA), or a Linear Discriminant Analysis
(LDA) for instance.



CHAPTER 2. CLASSICAL METHODS FOR GESTURE CLASSIFICATION 23

Finally, the third approach consists in building a specific classifier, such as Ad-
aboost, Support Vector Machines (SVM), or artificial neural networks. As the theo-
retical base for our study, the artificial neural network-based classifiers are presented
in a more detailed manner in a last section.

2.3.1 Statistical methods
Statistical methods are suited for time series in particular. They aim at producing

a generative model from the analysis of the underlying distribution and dynamics of
samples, also called "observations".

Two main approaches are classically followed: Bayesian-based approaches, and their
Hidden Markov Models (HMMs) specialisation.

2.3.1.1 Naïve Bayes

The Naïve Bayes (NB) classifier gets its name from its original assumption that
every component of the signal is statistically independent during the use of the Bayes
theorem. Thus, for a sample x = {x1, . . . , xn}, the probability of a class Cm given the
sample is equal to:

P (Cm|x) = P (Cm)P (x|Cm)
P (x)

∝ P (Cm)
n∏
i=1

P (xi|Ck).
(2.19)

The distributions of all the continuous variables are considered as Gaussian. Every
distribution is estimated based on the training dataset. The final choice is made on a
maximum likelihood criterion.

Rehm et al. [RBA08] apply the Naïve Bayes classifier on three gesture datasets.
The first dataset is composed of the 10 digits, the second, formed by 7 gestures, is
inspired by the "Berlin Dictionary of German Everyday Gestures", and the third one
is created for Video Cassette Recording (VCR) control. 16 features are extracted from
the accelerometer signals, such as the length of the signal, the minimum and maximum
for each axis, the median and mean for each axis, and the gradient for each axis. The
Digits dataset is composed of the 10 digits recorded 10 times by 7 users. The NB
classifier shows a poor performance of 58.1% on a 10-fold cross-validation in a user-
independent setting, while it can show very inconsistent results in the user-dependent
case, ranging from 90.2% to 100% for different users. The other two datasets are
user-dependent, and prove this inconsistency with a 88.6% accuracy for the German
emblems problem, and 99.6% for the VCR control.

2.3.1.2 Bayesian Networks

Bayesian Networks [Jen96], or Belief Networks, are a type of probabilistic graph-
ical models. Composed of nodes and directed arcs, respectively representing random
variables and their relationships, the network takes the form of a directed acyclic graph.

Cho et al. [CCB+06] use Bayesian networks in order to compute one gesture model
per class (see Fig. 2.9). Firstly, gestures are described as a set of primitives, defined
as a portion of acceleration signals whose values increase or decrease monotonously.
These primitives are thus separated by feature points, called "end-points" EP , which
are local minima or maxima in the acceleration space. Secondly, these primitives are
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Figure 2.9 – Example of a recursive construction of a primitive model. Gesture prim-
itives, formed by two end-points (EP) which are local extrema for the acceleration
signal, are recursively decomposed in inter-primitive points (IP), located at equal dis-
tance from their parents). Extracted from [CCB+06].

recursively decomposed into "primitive models", composed of point models, or "inter-
primitive" points IP , which are located at equal distance from their two parents; and
their relationships.

These relationships correspond to 3D conditional Gaussian distributions, for the
three acceleration axes of multiple repetitions of the same gesture. Given a multivariate
random variable X depending on X1, . . . , Xn, i.e. given a node X and its parents
Pa(X) = X1, . . . , Xn, and µ and Σ its respective conditional mean and covariance
matrix, then conditional probability distribution for a realisation x1, . . . , xn, x is equal
to:

P (X = x|X1 = x1, . . . , Xn = xn) = (2Π)−d/2 |Σ|−1/2 exp ([x− µ]>Σ−1 [x− µ]) (2.20)

with d the dimension of X.
µ = µX|Pa(X) can be computed from the example-learned mean and covariance

matrix for each random variable thanks to a linear regression [Mur98]. Given con-

catenation of the random variables Y =
(

X
Pa(X)

)
; with Pa(X) =

(
X>1 , . . . , X

>
n

)
,

µY =
(

µX
µPa(X)

)
, ΣY =

(
ΣX ΣXPa(X)

ΣPa(X)X ΣPa(X)

)
, and a realisation y = (x, Pa(x)) with

Pa(x) =
(
x>1 , . . . , x

>
n

)
, we can compute:

µ = µX|pa(X)

= µX + ΣXPa(X)Σ−1
Pa(X)(Pa(x)− µPa(X))

(2.21)

and
ΣXPa(X) = ΣX − ΣXPa(X)Σ−1

Pa(X)ΣPa(X)X . (2.22)
The training phase consists in computing the single means and covariance matri-

ces for each node using the set of training examples. One model is trained for each class.

Classification with Bayesian Networks
A 3D-accelerometer gesture sequence G = G(1), . . . , G(T ) is classified on a maximum
likelihood criterion on the set of trained models. Given λm the model corresponding
the class m, the model λ∗(G) assigned to G is obtained with:

λ∗(G) = arg max
m

P (λm|G(1), . . . , G(m)) = P (λm)P (G(1), . . . , G(m)|λm). (2.23)
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Primitives must be recursively matched on all possible segmentations of a gesture
in order to calculate P (G(1), . . . , G(m)|λm). Thus, for a specific segmentation γi =
(t0, t1, . . . , tn), the likelihood corresponds to the product of the conditional probabili-
ties of all nodes given their respective parents. The final likelihood should operate a
sum over all possible segmentations, which leads to an exponential complexity. Thus,
only estimates are computed, approximating the model likelihood with the likelihood of
the most probable segmentation. Moreover, the conditional probabilities of end-points
are initially ignored to only identify the most probable primitives segmentations, whose
likelihoods are then re-scored considering the end-points.

Bayesian Networks for gesture recognition
Cho et al. [CCB+06] propose to use Bayesian Networks to model gestures captured with
a Gesture interactive cell-phone. They obtain a classification score of 96.3% based on
a 100-user, 14-gesture database divided into four-folds. This approach is still limited,
as its recursive intra-primitive point selection is not able to discriminate efficiently
between similar gestures such as "0" and "6".

While this Bayesian network models the general statistical shape of the gesture,
Hidden Markov Models allow to consider the temporal output dynamics.

2.3.1.3 Hidden Markov Models

A temporal signal may be assumed to follow a statistical Markov process, where
the measured observations are the result of emissions produced following the specific
statistical laws of multiple "states", accessible thanks to a set of transitions. However,
these states may not be directly observable, which is why we refer to Hidden Markov
Models (HMM).

An HMM is a generative model, formally defined by the parameters {S,A,B, π},
with S the set of hidden states, A = aij the transition probabilities matrix between
these states, B the emission probability function/density for each state, and π the
probabilities for each state to be an initial state.

Different state transition architectures lead to different signal modelling. An HMM
is said to be ergodic if all its states can operate transitions between them. In the case
of a temporal signal, it is safe to assume that no turnabouts happen in the state space,
leading to the most oftenly "bakis", or left-to-right, model, where transitions only exist
towards forward states (see Fig.2.10).

Two types of HMM exist, depending on the observations type: the discrete HMM
(dHMM), and the continuous HMM (cHMM). The dHMM corresponds to a fixed-size
set of potential observations, whose probability distribution is consequently discrete.
This kind of approach thus requires the step of vector quantisation. Conversely, the
cHMM emissions follow continuous probability distributions. This aspect allows for
a better representation of the acceleration time-series, which varies in a continuous
manner. The model is more capable to handle short incoherences, as an unseen sample
for a dHMM results in a zero likelihood. However, as seen below, model updates
and sequence likelihood computation require additional steps compared to the simpler
dHMM.

Two problems have to be tackled in order to use HMMs for recognition purposes:
the evaluation and the training problems.
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Figure 2.10 – Example of a left-to-right HMM, with two forward connections.

Classification with HMMs
As for the Bayesian network seen above, a sequence G = G(1), . . . , G(T ) is classified
on a maximum likelihood criterion on the set of trained models, with one model per
class, where λm the model for the class m. Classification is then performed by selecting
the model λm∗ such that

m∗ = arg max
m

P (λm|G(1), . . . , G(T )) = P (λm)P (G(1), . . . , G(T )|λm). (2.24)

It is thus necessary to be able to evaluate P (G|λm).
Two algorithms based on the same concept are commonly used: the "Forward" and

"Backward" algorithm. The Forward algorithm computes the likelihood αt(i) that the
model ends up in the state ωi at time t, after producing the subsequence G(1), . . . , G(t−
1). Thus, the likelihood P (G(1), . . . , G(m)|λm) is computed as the sum over all the
states S = ω1, . . . , ωN of the alpha values at time T :

P (G(1), . . . , G(m)|λm) =
N∑
i=1

αT (i). (2.25)

This value is easily computed thanks to a recursive algorithm which efficiently drops
the O(N>) complexity to O(N2T ). Given πj the probability for ωj to be an initial
state, and bj(G(1)) the emission probability of the first observation by this same state,
then we define:

∀j ∈ [1;N ] , α1(j) = πjbj(G(1)). (2.26)
It is then possible to establish a recursive relation between αt and αt+1. The likelihood
to get to state ωj at time t+ 1 , producing the sequence G(1), . . . , G(t+ 1), is equal to
probability to be in any state ωi at time t and producing the sequence G(1), . . . , G(t)
with likelihood αt(i), then operate a transition to ωj with probability aij, and emitting
the observation G(t+ 1) from ωj with probability bj(G(t+ 1)):

αt+1(j) = bj(G(t+ 1))
N∑
i=1

αt(i)aij. (2.27)

Similarly, the Backward algorithm computes the likelihood βi(t) that the model
ends up in the state ωi at time t, after producing the subsequence G(t+ 1), . . . , G(T ).
We define:

∀j ∈ [1;N ] , βT (j) = 1, (2.28)

βt(j) =
N∑
i=1

βt+1(i)ajibi(G(t+ 1)). (2.29)
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HMM training
The training problem consists in updating the model parameters to maximize the
likelihood of training samples. The most commonly used algorithm is called the "Baum
Welch" (BW) algorithm, or "Forward-Backward", which corresponds to a Generalised
Expectation Maximisation. BW relies on the computation of the alpha and beta values
defined in the Forward and Backward algorithm for each available training sample to
redefine and update iteratively the transition, emission and starting states probabilities.
For instance, it is possible to compute for each sample the likelihood of a transition from
the state i to state j at a time t, and the reestimation of the transition probabilities
consists in summing these values over every time step, and normalising the result to
ensure ∑j α̂ij = 1.

Thus, two new intermediate variables are necessary. ξt(i, j) is the probability of
being in ωi at time t and ωj at time t+ 1, producing the entire sequence G. In terms
of α and β, we define:

ξt(i, j) = αt(i)aijbj(G(t+ 1))βt+1(j)
P (G|λ) = αt(i)aijbj(G(t+ 1))βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(G(t+ 1))βt+1(j)
. (2.30)

γt(i) is the probability of being in state ωi at time t, producing the entire sequence
G. This can be interpreted as the probability to be in the state ωi at time t and any
state ωj at time t+ 1, given G and λ, we define:

γt(i) =
N∑
j=1

ξt(i, j). (2.31)

Using these new variables, we can define the general re-estimation formulas for π̂,
Â, and B̂. πi corresponds to the probability to be in state ωi at t = 1, given G and
λm,

π̂i = γ1(i). (2.32)
aij is the probability to be in state ωi at any time and operate a transition to state ωj,
which is equal to the following normalised sum

âij =
∑T−1
t=1 ξt(i, j)∑N

k=0
∑T−1
t=1 ξt(i, k)

=
∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

. (2.33)

The emission probabilities are updated differently, depending on the discrete or con-
tinuous character of the HMM. We detail two cases: the discrete HMM, with discrete
emission probability tables, and the most common continuous HMM, with Gaussian
mixture emission probabilities.

Firstly, in the case of a dHMM, bj(l) is the probability to observe the lth codebook
vector νl from state ωj, which is equal to the following normalised sum:

b̂j(l) =

T−1∑
t=1

s.t.G(t)=νl

γt(j)

∑T−1
t=1 γt(j)

. (2.34)

In the case of a Gaussian-mixture cHMM, the K-Gaussian-mixture emission prob-
ability distributions bj(G(t)) at state ωj, with means µjk, covariance matrices Σjk, and
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coefficients cjk, are defined as:

bj(G(t)) =
K∑
k=1

cjkN(G(t), µjk,Σjk). (2.35)

It is necessary to define a generalisation of γt(i), to take into account the part played
by every Gaussian in the mixtures. Thus, we define γt(j, k) as the probability of being
in state ωj at time t with the kth mixture component accounting for G(t):

γt(j, l) = γt(j)
cjlN(G(t), µjl,Σjl)

K∑
k=1

cjkN(G(t), µjk,Σjk)
. (2.36)

Thus, re-estimations b̂j of bj imply three parameter re-estimations, one for each ĉjl,
µ̂jl, Σ̂jl.

As the coefficient reflecting the proportion played by the lth Gaussian at the state
ωj at any time t, cjl is re-evaluated as the normalised sum over all the time steps:

ĉjl =

>∑
t=1

γt(j, l)
K∑
k=1

>∑
t=1

γt(j, k)
. (2.37)

The means and covariance matrices are updated in a similar manner:

µ̂jl =

>∑
t=1

γt(j, l)G(t)
>∑
t=1

γt(j, k)
(2.38)

and

Σ̂jl =

>∑
t=1

γt(j, l)(G(t)− µjk)(G(t)− µjk)>

>∑
t=1

γt(j, k)
. (2.39)

The HMM for gesture recognition

Hofmann et al. [HHH98] use an alphabet size of 120 samples of joint finger angles
and accelerations for the TUB-SensorGlove. After a study of HMM configurations
and training set size, they show a highest recognition rate of 95.6% for both a 5-state
ergodic HMM and a 3-state left-to-right HMM, using a two-fold cross-validation on a
dataset of 100 gestures repeated 20 times by two persons. Kallio et al. [KKM03] study
the influence of the number of training samples, showing that curvilinear movements
need more training vectors. A recognition rate of over 95% is attained with 16 samples
for each of the 16 gestures for a single user, using a 5-state HMM with a codebook size
equal to 8.

Zhu et al. [ZS09] tackle online gesture recognition step with hierarchical HMMs
complimented by gesture spotting. Gesture start and end points are determined thanks
to a feed-forward neural network, trained to detect gesture and non-gesture sequences
using twelve features extracted from one-second sliding windows over the accelerometer
and gyrometer data, with both means and variances for each axis of both sensors. This
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segmentation is then fed to a Hierarchical HMM (HHMM), generalisation of the HMM
where every state is itself a HHMM, with one upper level HMM, and one lower level
HMM per class. The lower level HMMs compute time-series features extracted on
sliding windows of 20 samples from the gesture data, and a majority voting to classify
150-sample gestures. This result is updated with an online Bayesian filtering, utilising
the context information in the upper level HMM. A detailed explanation for the HHMM
training was proposed by Fine et al. [FST98].

Lukowicz et al. [LWJ+04] rely on the PadNET sensor network with three 3D ac-
celerometers positioned on both wrists to recognize 8 workshop activities for one sub-
ject, showing a 95.51% overall accuracy with a leave-one-out protocol on 10 repetitions
of each gesture. Emission probabilities are modelled using a 3D Gaussian distribution
for each state, while the number of state is actually manually adjusted for each class
model. Pylvänäinen [Pyl05] test the performance of the Gaussian HMM on a dataset
of 10 gestures, with 20 samples per gesture for 7 participants. Thanks to a cross-
validation using 3 samples for training and 17 samples for testing, Gaussian cHMM
show a 96.76% accuracy in the single-user case, and 99.76% accuracy for the multi-user
case, difference explained by the author with a potential overfitting in the single-user
case. Finally, Zhang et al. [ZCL+11] use multi-stream HMMs on accelerometer and
electromyography sensors at the bottom of a decision tree detecting static or dynamic
gestures, short or long durations and hand orientation. The multiple sensors are han-
dled by two separate, independent HMMs, with a fusion corresponding to the sum of
their log-likelihoods: given the weights of each stream/sensor wk so that

K∑
k=1

wk = 1,

and λ the parameters of the global model, λk the parameters of the model specific to
the kth stream, and Gk the portion of the gesture data relative to that stream, we get:

log(P (G|λ)) =
K∑
k=1

wk log(P (Gk|λk)). (2.40)

Probabilistic approaches allow for a generic framework based on known statistical
tools. However, they remain limited due to the high statistical independences assump-
tions on which they rely. The mid/end-point modelling of the Bayesian Network does
not provide enough detail for every gesture to be identified independently. HMMs
present other drawbacks: it is still difficult to determine the correct probability dis-
tribution for the HMM states, whose number has to be determined experimentally.
Moreover, these methods require extensive preprocessing steps in order to ensure a
distribution alignment between multiple repetitions of the same gesture. Probabilistic
methods depend highly on orientation and temporal variations. For example, tempo-
ral delays are problematic for HMMs, whose likelihood drops exponentially with the
number of transitions needed to the same state, forcing a transition to another state,
whose emission distribution may not be adapted anymore.

Given the high variations between repetitions, another strategy consists in compar-
ing directly the geometry of the gesture signals.

2.3.2 Geometric-based methods
Metric-based methods consist in classifying the sample thanks to a decision based

on exemplars, usually, a k-Nearest-Neighbour (K-NN).
Three common approaches are identified: the DTW-based; PCA-based; and the

LDA-based ones.
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Figure 2.11 – Extracted from [RK04]. Example of DTW computation between two
similar, out-of-phase signals Q and C, represented in A. B corresponds to the warping
matrix, with the minimum-weight warping path between the two signals. C is the
representation of the resulting alignment.

2.3.2.1 Dynamic Time Warping

The DTW metric is an elastic metric between two time series of different sizes.
Given two time-series Q = {Q(1), . . . , Q(M)} and T = {C(1), . . . , C(N)}, this algo-
rithm consists in finding the minimum weight reconstruction path followed to transform
Q into C (and reciprocally). The DTW metric computation requires anM×N matrix
D (see Fig. 2.11), where Dij represents the warping path cost between Q(i) and C(j).
This cost can be found using dynamic programming, following the recursive relation

Dij = d(Q(i), C(j)) +min {Di−1,j−1, Di−1,j, Di,j−1} (2.41)

with d(Q(i), C(j)) the Euclidean distance between the two sample vectors Q(i) and
C(j).

In order to limit the computations, multiple heuristics may be applied on the warp-
ing matrix, limiting the path possibilities (see Fig. 2.11.B).

Barczewska et al. [BD13] compare the DTW to two variants, the Derivative Dy-
namic Time Warping (DDTW), and Piecewise Dynamic Time Warping (PDTW), ap-
plied to forefinger gesture recognition. DDTW is the same DTW algorithm, applied
to the estimated derivatives of the signals, while PDTW operates an averaging steps
over fixed-size frames before applying the DTW. Tests were carried out using 10 ges-
ture classes for 9 users, with 15 training and 9 test gestures per user and per class.
In the user-dependent case, one repetition was used as exemplar among 15 training
gestures on a minimum-DTW criterion with the others. For the user-dependent case,
this step was repeated using the exemplar for each user, and selecting the one most
similar to the others. The results show little difference between the 3 methods for the
user dependent case, with an accuracy of about 94%, while the user dependent case
proves the superiority of the original DTW, with a 85.4% accuracy, against 83.6% for
DDTW, and 62.6% for PDTW. This study emphasizes the choice of the most efficient
exemplar.

Likewise, Choe et al. [CMC10] propose a method to reduce the computation cost of
the DTW, which requires as many comparisons as training exemplars, with a modifica-
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tion of the k-means algorithm. Thus, a clustering step is applied to each gesture class
training data in order to extract the most representative exemplars: a set of gesture
signals is used for initialisation, and clusters are formed based on a minimum criterion
using the DTW metric.

While the application above limits intra-class distance variations, Hartmann et al.
[HL10] suggest considering the inter-class distances as well to optimize the DTW pro-
totypes, using four approaches: the minimal interclass to maximal intraclass distance;
the center point distance, based on the difference between distribution centre points;
the Kullback-Leibler Divergence; and the Error Function Integral.

Akl et al. [AV10] propose an Affinity Propagation clustering step to determine
the most relevant exemplars. Affinity propagation (AP) [FD07] is a process involving
passing two kind of messages between data points: responsibility r(i, k), which indicates
how well the point k is suited to be an exemplar for the point i, taking into account
the other potential exemplars; and availability a(i, k), which reflects how appropriate
it would be for i to pick j as an exemplar, taking into account the support from
other points that k should be an exemplar. Exemplars are selected depending on the
value of k which maximises a(i, k) + r(i, k). AP is an iterative process, repeated until
convergence of the exemplars, and initialised with two matrices: A corresponds to
the availability matrix, initially equal to the zero-matrix; and R is the responsibility
matrix, initialised thanks to similarity measures s(i, k) between every pair of points
(i, k) in the dataset. Thus, the initial values r(i, k) are computed as:

r(i, k) = s(i, k)− max
k′ s.t. k′ 6=k

{s(i, k′)} . (2.42)

A and R are updated as:

r(i, k) = s(i, k)− max
k′ s.t. k′ 6=k

{a(i, k′) + s(i, k′)} ,

a(i, k) = min

0, r(k, k) +
∑

i′ s.t. i′ /∈{i,k}
max {0, r(i′, k)}

 ,
a(k, k) =

∑
i′ s.t. i′ 6=k

max {0, r(i′, k)} .

(2.43)

Akl et al. compute the similarity s(i, j) between the gestures Gi =
{
ai
x, ai

y, ai
z

}
and Gj =

{
aj
x, aj

y, aj
z

}
as the negative squared norm of the vector whose components

are the DTW distances between the respective acceleration signals components:

s(i, j) = −(DTW (ai
x, aj

x)2 +DTW (ai
y, aj

y)2 +DTW (ai
z, aj

z)2). (2.44)

In the user-dependent case, a number of exemplars per gesture class is chosen among
the candidates obtained thanks to AP, and classification is carried out on a nearest-
neighbour basis. In the-user independent case, an additional step of Compressive
Sensing is added, reconstructing the signal from the exemplars with a high sparsity
constraint. The label of the gesture class which is the most represented in the recon-
struction is selected as the final classification.

Zhou et al. [ZS09][ZDlT12] propose two generalisations of the DTW similarity met-
ric, namely Canonical Time Warping (CTW) and Generalised Time Warping (GTW).
A reformulation of the DTW computation is proposed: given two samples X and Y of
respective sizes nx and ny; given the matrices Wx ∈ {0, 1}m×nx and Wy ∈ {0, 1}m×ny
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needing to be inferred to align X and Y, and ‖.‖F the Frobenius norm, the DTW can
be expressed as:

Jdtw(Wx,Wy) =
∥∥∥XW>

x −YW>
y

∥∥∥2

F
. (2.45)

CTW adds a linear transformation (V>x ,V>y ) to this least-squares form, allowing align-
ments between signals with different dimensionality. The final computation Jctw is
defined as:

Jctw(Wx,Wy,Vx,Vy) =
∥∥∥V>x XW>

x −V>y YW>
y

∥∥∥2

F
. (2.46)

Optimising Jctw is performed by alternating between solving for Wx, Wy with DTW;
and Vx, Vy using Canonical Correlation Analysis.

Zhou et al. [ZDlT12] also propose GTW for multi-modal alignment of human
motion. Based on multi-set canonical correlation analysis, GTW extends DTW by
incorporating a more flexible temporal warping parametrised by a set of monotonic
basis functions.

In the next section, we present the gesture recognition approaches based on Prin-
cipal Component Analysis.

2.3.2.2 Principal Component Analysis

Principal Component Analysis (PCA) is an eigenvector-based multivariate analysis
performed by eigenvalue decomposition of the data covariance matrix or singular value
decomposition of the data matrix.

Given the N training samples {Gk, k ∈ [1;N ]} available, the covariance matrix C
is defined as:

C = 1
n− 1

N∑
k=1

Gk
>.Gk. (2.47)

As a symmetric matrix, C can be orthogonally diagonalised in a basis of principal
directions Q, with their respective eigenvalues on the diagonal matrix L i.e.

C = Q>LQ. (2.48)

In the case of singular value decomposition, we can write G, the matrix whose columns
are equal to the samples Gk, as the product of a matrix U of left singular vectors, a
diagonal matrix S, and V the matrix of right singular vectors, i.e.

G = USV>. (2.49)

Then, C can be rewritten as:

C = 1
n− 1VSU>USV> = 1

n− 1VS2V>. (2.50)

Thus, the principal components are equal to the right singular vectors, and the eigen-
values of the covariance matrix can be computed as λi = s2

i

n−1 .
It is then possible to use these eigenvalues and eigenvectors, which best reflect the

variance of the data, to minimize the reconstruction error of the data on a lower-
dimensional space for dimensionality reduction for example.

Marasovic et al. [MP11] limit their study of 7 gestures to the x and y accelerometer
axes as the gestures are supposed to be performed in that plane. They apply PCA to
a set of 37 features as a dimension reduction step, keeping 80% of the total variance.
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Tests are carried out on a limited dataset of one user, and 6 repetitions per gesture.
50% of the data is used for training, and 50% is used for testing, which allows for 20
different test configuration, and 60 test examples per gesture, for a global recognition
rate of around 86% for the three 1,3 and 5-NN classifiers.

Mantyjarvi et al. [MHS01] also use PCA as feature extraction to whiten the data,
and decorrelate every axis. The projected data is then normalised to a zero-mean and
a unit variance. Finally, a sliding window of length 256 points and shift of 64 points is
applied on the data in order to perform a wavelet transform. These features are then
submitted to a specific classifier, here a MultiLayer Perceptron (MLP).

Yang et al. [YWC08] operate a Feature Subset Selection for dimension reduction in
an activity recognition application, using the Common PCA (CPCA), generalisation
of PCA for multiple sets. CPCA assumes that the eigenvectors are shared between the
sets while the eigenvalues may vary depending on the set. Eight features are computed
for each accelerometer axis over windows of the acceleration data, namely the mean,
the correlation between axes, the energy, the interquartile range, the mean absolute
deviation, the root mean square, standard deviation and variance. Thus, one feature
subset is created for each class. Common Principal Components (CPCs) are obtained
by performing a PCA on each set, selecting the minimum common number of Principal
Components (PC) so that their cumulative contribution exceeds a certain threshold for
each subset, before performing a second PCA on the set formed by all the identified
PCs. These CPCs are then mapped to a higher dimensional space using a Gaussian
Kernel, where they are clustered. The final selected features are the ones from the
gesture data closest to the cluster centroids.

In the following, another method based on eigenvalues, called the Linear Discrimi-
nant Analysis, is developed.

2.3.2.3 Linear Discriminant Analysis

Contrary to the PCA, which is an unsupervised method, the Linear Discrimi-
nant Analysis (LDA) considers the labels assigned to the samples to produce a set
of directions which best separate the different classes, minimizing intra-class distances
and maximizing between-class distances. This process is well-known under the name
"Fisher’s Linear Discriminant". Classes are then considered to follow Gaussian distri-
butions with the same covariance matrices. Two scatter matrices are defined: SW,
the within-class scatter matrix; and SB, the between-class scatter matrix. Given N
classes {Ci, i ∈ [1;N ]}, with samples

{
xij, i ∈ [1;N ] , j ∈ [1;Ni]

}
, their respective means

µi, and the global mean µ, then:

SW =
N∑
i=1

N i∑
j=1

(xi
j − µi)(xi

j − µi)>, (2.51)

and

SB =
N∑
i=1

Ni(µi − µ)(µi − µ)>. (2.52)

LDA consists in finding a projection matrix W that maximises the Fisher’s dis-
criminant:

S(W ) = det(W>.SB.W)
det(W>.SW.W) . (2.53)
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It is important to note that the rank of SB is equal to N − 1. As a consequence,
only N − 1 of its eigenvalues are non-zero, and the matrix W is a d× (N − 1) matrix,
with d the dimension of the data.

The solution to this problem is the matrix whose columns are the eigenvectors of
S−1

W SB, and maximum linear separation is achieved along the eigenvectors associated
to the highest eigenvalues.

Lukowicz [LWJ+04] combine the HMM and LDA classifications to improve gesture
classification. In their study presented above (2.3.2.2), Marasovic et al. [MP11] com-
pare PCA to LDA associated with a K-NN classifier on their set of 37-feature gesture
samples, showing a similar score for both methods (87.6% accuracy for LDA, 86.7%
accuracy for PCA).

Geometric-based approaches have the advantage to detect similarities between dif-
ferent signals with different reference frames and durations more easily. They do not
require any intensive parametrisation, and permit to approach the actual class distri-
bution as the number of exemplars increases. However, the comprehensive comparisons
to the exemplars may render these methods unusable in a context where a high number
of user has to be considered.

That is why the next approach is based on specific trained classifiers, which do not
need any comparison in order to assign a class label to a signal.

2.3.3 Classifier-based methods
Instead of identifying a rule of similarity over exemplars in order to assign a label to

a sample, other methods aim at extrapolating directly that label from the data with a
trained decision rule. In the following are presented the SVM and Adaboost classifiers,
with neural network-based methods addressed in a more detailed manner in Section
2.3.4.

2.3.3.1 Support Vector Machines

Support Vector Machines (SVM) were introduced by Boser et al. [BGV92]. This
algorithm tries to maximize the margin between training patterns and a decision bound-
ary in a binary classification problem. For a predefined function φ projecting vectors
x in φ-space (kernel trick), w and a bias b, the hyperplan D(x) is defined as,

D(x) = w.φ(x) + b. (2.54)

The distance of a pattern x to this hyperplan is equal to D(x)
‖w‖ . Given training samples

{(xk, yk), k ∈ [1; p]} with yk = 1 if xk ∈ class A, and yk = −1 if xk ∈ class B, then,
considering the margin M between class boundaries and the training pattern exists,

∀k, ykD(xk)
‖w‖

≥M. (2.55)

With the fixed scale M ‖w‖ = 1, the margin problem consists in solving the quadratic
problem exposed in the equation 2.56,

min
w,b
‖w‖2 , s.t. ∀k, ykD(xk) = 1. (2.56)
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This problem can be resolved using the Lagrangian in the dual space. Given the kernel
K(xi,xj) = φ(xi).φ(xj), and the fact that w can be expressed as a linear combination
of the training vectors:

w =
p∑
i=1

αiyixi, (2.57)

then the following Lagrangian has to be minimised

J(α, b) =
p∑

k=1
αk(1− byk)−

1
2α
>.H.α

subject to αk ≥ 0, ∀k ∈ [1; p] ,
(2.58)

where H is a p×p matrix so that Hkl = ykylK(xk,xl). The choice of the bias b requires
an additional strategy, where it can be fixed a-priori, or optimised too.

Classification with SVMs
This algorithm can be relaxed in the case where no hyperplane is able to separate the
data. the Soft Margin method [CV95] relies on additional non-negative variables ξk,
which measure the errors in the separation. Given a constant C, the problem 2.56 is
then modified accordingly:

min
w,b
‖w‖2 + C

p∑
k=1

ξk,

s.t. ∀k, ykD(xk) ≥ 1− ξk, and ξk ≥ 0.
(2.59)

Classification for SVMs can be operated in two ways for multi-class problems. Let
N the number of classes. The one-versus-all approach takes one class as the positive
class, all the others as negatives, for a total of N classifiers. The final decision is based
on the maximum margin over all the classifiers. The one-versus-one approach computes
the decisions of the N(N−1)

2 possible pairs of classifiers, and selects the class which has
been attributed the highest number of votes.

The SVM for gesture recognition
He et al. [HJZH08] compare the performance of SVMs on different sets of features
extracted from the accelerometer signals: DCT coefficients; FFT coefficients; and a
combination of Wavelet Packet Decomposition (WPD), whose low frequency coeffi-
cients extract the primary information of the accelerometer signals while removing the
high frequency noise, and FFT. Tests are carried out on a five-cross-validation over a
dataset of 17 different gestures performed once by 67 subjects. With a classification
based on the "Max-Wins" strategy (one-versus-one case), the features based on DCT
show an average accuracy of 85.16%, FFT 86.92%, and FFT + WPD 87.36%. These
score show that SVMs are suited for gesture data, and that most of the information is
actually contained in the low frequency domain.

Wu et al. [WPZ+09] extract statistical descriptors (mean, energy, entropy, standard
deviation, correlation) over a sliding frame for each gesture. Both approaches for
multi-class SVM classification are studied and compared on a dataset of 12 gestures
repeated 28 times by 10 individuals. The user-dependent case, tested with a 4-fold
cross validation over each user’s data, show an average accuracy of 99.38%; while the
user-independent case, tested with a leave-one-out cross validation, reaches an accuracy
of 95.21%.
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Finally, Cho et al. [CCB+06] enhance their Bayesian Network-based 96.3% average
recognition rate to 96.9% thanks to confusion pair discrimination, in particular between
the gestures "0" and "6", using an SVM.

Thus, the SVM tries to determine frontiers between classes based on the most
relevant samples from the dataset, in order to form a single, unified decision process.
On the contrary, Adaboost, described in the following section, relies on multiple "weak"
classifiers, unusable by themselves, so as to build a strong super-classifier based on the
fusion of multiple decisions.

2.3.3.2 Adaboost-based classifiers

Adaboost, meaning "Adaptative Boosting", combines the decisions of multiple "weak
learners", whose performance is only needed to be better than a random classifier. The
classical Adaboost algorithm is applied to binary problems, with one positive and one
negative class. Thus, every sample in the training set X = {xi|i ∈ [1;n]} from the
training set is assigned an integer yi ∈ {−1,+1}.

Adaboost is an iterative algorithm which specifically targets the misclassified sam-
ples from the previous iteration. Given the iterations 1, . . . , T , Adaboost relies on a
distribution Dt = {Dt(i)|i ∈ [1;n]} over the training samples, initialised with a uniform
distribution, updated to give more importance to the misclassified samples. Let ht be
the weak classifier selected at the tth iteration, minimizing the error:

εt =
∑

i s.t. ht(xi) 6=yi

Dt(i). (2.60)

If the accuracy error is higher than 50%, it is possible to reverse the weak learner
classification condition.

The coefficient αt assigned to that weak classifier is defined as:

αt = 1
2 ln

(1− εt
εt

)
, (2.61)

which, given the normalisation factor Zt, allows the distribution update as follows:

Dt+1(i) = Dt(i) exp(−αtyiht(xi))
Zt

. (2.62)

The final classification, or hypothesis, H(x) is operated on a maximum voting over
the iterated weak learners, i.e.

H(x) = sign(
>∑
t=1

αtht(x)). (2.63)

This algorithm can be derived from an iterative classifier ranking, adding one clas-
sifier at each iteration. Given the linear combination of classifiers at the tth iteration,
we define Ct−1 as follows:

Ct−1(x) =
t−1∑
j=1

αjhj(x), (2.64)

and the total error Et of the extended classifier corresponds to the exponential loss

Et =
n∑
i=1

exp−yi(Ct−1(xi)+αtht(xi)) . (2.65)
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Adaboost for gesture recognition
Hoffman et al. [HVL10] apply the pairwise Adaboost algorithm in order to classify
25 gestures recorded with the accelerometer-based Nintendo Wiimote device, and its
gyrometer-based WiiMotion Plus attachment. 41 features inspired by 2D gestures
drawn on screens are extracted from the data. The set of weak learners consists in a
minimum distance criterion to the Dt-weighted averages of the training samples of the
considered pair. Tests performed on 13 gestures made by 17 participants show that
Adaboost is outperformed by a linear classifier, with respective accuracies of over 99%
and 95% in the user-dependent case; and 98% and 93% in the user-independent case.

In the following section, neural network-based classifiers are developed more in-
depth, as the theoretical background for our study.

2.3.4 Neural network-based methods
Designed to mimic our understanding of biological neuron processes, an artificial

neural network takes advantage of connections between simple processing units called
"artificial neurons" in order to extrapolate a more complex function.

Two main types of artificial neural networks can be identified. The feed-forward
networks take the whole samples as an input, and activate neurons of successive layers.
Opposite to those networks, the recurrent neural networks compute time-series, with
recurrent connections that simulate a memory of previous states.

Two classical feed-forward networks and one recurrent network are presented, re-
spectively the MultiLayer Perceptron and the Convolution Neural Network; and the
Bi-directional Long Short-Term Memory Recurrent Neural Network.

2.3.4.1 MultiLayer Perceptron

A MultiLayer Perceptron (MLP) is a feed-forward network composed of multiple
computational neural layers whose behavior mirrors our understanding of brain neu-
rons. The artificial neuron (see Fig. 2.12) is a mathematical function which acts in
two steps. First, the stimuli from the input connections, symbolizing the biological
neuron dendrites, are integrated. For the jth neuron of the Lth layer NL

j , receiving the
activations aL−1

i , i ∈ [1;n] weighted by the connection weights ωLij and a bias ωLbj, whose
activation is constant and equal to 1, the integrated input netLj is defined as:

netLj =
n∑
i=1

ωLija
L−1
i + ωLbj. (2.66)

This input is then processed by the activation function ϕ, which will determine the
output signal aLi = ϕ(ILi ), also called activation, which mirrors the electrical response
of the real neuron. The most common activation may be linear, proportional to the
input value; or non-linear. In that case, the sigmoid is historically used:

sigmoid(x) = 1
1 + exp(−x) . (2.67)

However, as this function does not allow for negative values, it may be replaced by the
hyperbolic tangent:

tanh(x) = exp(x)− exp(−x)
exp(x) + exp(−x) . (2.68)
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Figure 2.12 – Decomposition of the successive computations operated by an artificial
neuron.

input layer

hidden layer

output layer

Figure 2.13 – Representation of a MLP with one hidden layer, and the forward con-
nections between neurons.

The MLP architecture is comprised of multiple layers (see Fig.2.13), with connec-
tions between the neurons of two successive layers. Thus, the information only flows
forward, hence the name "feed-forward neural network". The MLP is formed of three
types of layers. The input layer Lin is directly activated by the features of the sample
x = {x1, . . . , xn} to be recognised, with one artificial neuron for each dimension:

∀i ∈ [1;n] , aLin
i = xi. (2.69)

The hidden layers hold the computational power of the network. The consecutive
hidden layers perform successive operations on the propagated information, and have
a high potential in mirroring any function. Finally, the output layer, formed of one
neuron for each training class, performs the classification. The output neuron with the
strongest activation determines the winning class for that sample.
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MLP Training: the BackPropagation algorithm
The MLP training is performed using the backpropagation algorithm. Following a
gradient descent logic, for each training sample, the network is activated, then the
discrepancy between the activations of the output layer neurons and the target output
is computed. This discrepancy is usually computed with either of two functions: the
squared error or the cross-entropy.

The squared error objective aims at reducing the squared norm between the outputs
and their corresponding targets, i.e. 1 for the output of the neuron associated to the
known label of the input sample, and 0 (or -1) for the other neuron outputs. Given
K the number of classes; and the target tkl for the output neuron k when the network
has been activated by the sample xn, the least-square error Esquared

W over the training
dataset, with W = {ωji}, is defined as:

Esquared
W =

N∑
n=1

K∑
k=1

(tkn − ykn)2 (2.70)

The second main error criterion is based on the cross-entropy between the estimate
and the target distributions for the model. The name of this function comes from
the Kullback-Leibler cross-entropy method for measuring the number of bits needed to
identify an event from a set of probabilities. In this case, the event is the actual label
of the gesture. Ecross

W is defined as:

Ecross
W = −

N∑
n=1

K∑
k=1

tknlog(ykn). (2.71)

The cross-entropy function is almost always accompanied with a change of the activa-
tion function for the output layer. Every output neuron activation is transformed so
as to represent a probability distribution thanks to the "softmax" function, where the
activations aOi of the output layer are equal to:

aOi = exp(netOi )∑
j

exp(netOj ) . (2.72)

This leads to a very simple error computation formula, developed in Appendix A.1.

The only parameters to be updated during training are the connection weights W,
and the biases B. The most famous technique for MLP training, called the "Back-
propagation" algorithm, relies on gradient descent on the error function. Thus, for the
epoch t, given the learning rate λt, the weights are corrected following the formula

Wt+1 = Wt − λt
∂E

∂W
(Wt) (2.73)

In particular, for each ωij, at the tth epoch, we have to compute ∂E
∂ωij

(ωtij) in order
to update ωtij. Thanks to the chain rule, and δj = ∂E

∂netj
for a neuron nj, we can rewrite

the equation 2.73 as follows:

∂E

∂ωij
(ωtij) = ∂E

∂netj

∂netj
∂ωij

= δjai. (2.74)
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The delta values for the output layer O can be obtained through an immediate
calculation:

δOj = ∂E

∂netOj
= ∂E

∂aOj

∂aOj
∂netOj

= ϕ′(netOj ) ∂E
∂aOj

.

(2.75)

Still using the chain rule for any hidden layer L, the delta values δLi can be expressed
as a function of the deltas of the next layer. Thus, while the signal only flows forward
during activation, the error is propagated backwards in the network during training in
order to update each connection weight, following the "delta rule":

δLi =
∑
j

∂E

∂netL+1
j

∂netL+1
j

∂aLi

∂aLi
∂netLi

= ϕ′(netLi )
∑
j

ωijδ
L+1
j .

(2.76)

Algorithm 1 presents a summary of the MLP BackPropagation algorithm.

Algorithm 1 MLP BackPropagation algorithm : stochastic gradient descent
1: procedure Feed-forward the training sample X = x1, . . . , xn
2: Initialize the input layer ∀i ∈ [1;n] , aLin

i = xi
3: for all other layers L of the network do
4: for all neurons nLi in L do
5: netLj =

n∑
i=1

ωL,tij a
L−1
i + ωb,j

6: aLj = ϕ(netLj )
7: end for
8: end for
9: end procedure

10: procedure Compute the delta values for the output layer O
11: for all neurons nOj in O do
12: δpOj = ϕ′(netpOj). ∂E∂ap

Oj

13: end for
14: end procedure
15: procedure Apply the delta rule
16: for all hidden layers L do
17: for all neurons nLi in L do
18: δLi = ϕ′(netLi ).∑

j
ωij.δ

L+1
j

19: end for
20: end for
21: end procedure
22: procedure Update the weights and biases
23: for all layers L of the network other than the input layer do
24: for all neurons nLi in L do
25: ωL,t+1

ij = ωL,tij − λtaL−1
i .δLj

26: end for
27: end for
28: end procedure
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The MLP for gesture recognition
As seen above, Mantyjarvi et al. [MHS01] extract 24 features from the normalised
signals whitened with a Principal Component Analysis to train a 3-layer MLP. The data
was created using a pair of accelerometers attached to the users’ belt. 6 participants
carry out one of four activities such as walking up or down the stairs. A cross-validation
based on the leave-one-out strategy, with best accuracies reaching 83-90%.

Niezen et al. [NH09] compare HMM, DTW and artificial neural networks per-
formances based on an 8-gesture dataset with 10 repetitions per gesture. The test
protocols may be lacking on the fact that they rely on a leave-one-out strategy, where
only one sample is used for testing, while the other 79 are used for training. Moreover,
no details on the number of users was given. The final results show an accuracy of 90%
for the MLP, compared to 96.25% for DTW and HMM strategies.

Finally, Yang et al. [YWC08] adopt the MultiLayer Feed Forward neural network as
an activity classifier, comprising 8 common activities such as standing, sitting, walking,
running, vacuuming, scrubbing, brushing teet and working at computer. Training
was performed using the Resilient BackPropagation algorithm, which only takes into
account the sign of the gradient. Features are extracted from the original data in
order to recognize static and dynamic gestures, which are handled separately. The
MLP is trained using the features explained above (cf. paragraph 2.3.2.2). Tests were
performed following the one-subject-out strategy, on the data from 7 subjects repeating
each activity 45 times. An average recognition rate of 94.52% was reached for 9 selected
features, and 94.64% for the whole 24 features for the dynamic classifier.

One of the restriction of the MLP classifier consists in its lack of tools for handling
a second dimension, whether for images, or for time-series of feature vectors, which
required a resampling or a specific feature extraction in all the studies above. That is
why the Convolutional Neural Network (CNN), originally designed to process images,
was proposed.

2.3.4.2 Convolutional Neural Networks

Inspired by studies on the visual cortex, the Convolutional Neural Network (CNN)
is based on a mathematical model of receptive fields, where cells are sensitive to small,
over-lapping subregions of the visual fields.

The typical CNN consists of multiple stacks of convolutional and sub-sampling
layers 2.14, completed with fully connected layers which are activated and operate the
classification in the same manner as the MLP.

A convolutional layer processes the correlation between multiple filters/kernels and
sub-regions of the input field. In the case of a 2D input of dimensions n×m convoluted
with a ui × v, u ≤ n, v ≤ m sliding filter fi, the resulting convolution map dimension
may be equal to (n − 1) × (m − 1), or preserve the original dimension thanks to a
preprocessing step of zero padding at the frontiers of the input. One convolution
map is produced for every kernel. Applying a sliding filter ensures a global spatial
independence for the detected features.

Given the input I = {I(i, j), i ∈ [1;n] , j ∈ [1;m]}, the filter f = {ω(k, l), k ∈
[1;u], l ∈ [1; v]} and its bias b, the convolutional map C = {c(i, j)} is computed



42 CHAPTER 2. CLASSICAL METHODS FOR GESTURE CLASSIFICATION

Figure 2.14 – Representation of the architecture and activation maps of a Convolutional
Neural Network. Extracted from [DBLG14]. Convolutional layers ci are followed by
sub-sampling layers si, which allows a progressive dimensionality reduction and feature
computation for the last output layer operating the classification.

according to the formula:

c(i, j) = φc

 ∑
k∈[1;u]
l∈[1;v]

ωk,lI(i+ k, j + l) + b

 . (2.77)

The convolutional layer is then followed by a sub-sampling layer, which reduces the
dimension of the input. Sub-sampling ensures a local independence to small changes,
and can generally be performed in two ways, averaging or max-pooling. The averaging
map sa is produced thanks to a pa × qa kernel, with weight and bias ωa and ba, which
computes a φa squashed weighted average over sliding, non-overlapping windows. sa is
defined as:

sa(x, y) = φa

ωa ∑
k∈[1;pa]
l∈[1;qa]

Iconv(xpa + k, yqa + l) + ba

 . (2.78)

The max-pooling layer creates a new map based on the φm-squashed value of the
maximum activation in non-overlapping pm × qm regions of the input:

sa(x, y) = φm

 max
k∈[1;pm]
l∈[1;qm]

Iconv(xpm + k, yqm + l)

 . (2.79)

CNN training
CNN training is performed usually using an adapted version of the BackPropagation
algorithm.

In the convolutional layers, the delta-rule can be modified in order to take into
account the successive convolutions performed for each filter. Given φ the activation
function of the layer L, aLk,l = φ(netk,l), p× q the dimensions of the layer L− 1, u× v
the dimensions of the layer L, and δLkl = ∂E

∂netL
k,l
, then we can write

∂E

∂ωi,j
=

∑
k∈[0;p−u]
l∈[0;q−v]

∂E

∂netLk,l

∂netLk,l
∂ωk,l

=
∑

k∈[0;p−u]
l∈[0;q−v]

δLklφ
′(netLk,l)aL−1

i+k,j+l. (2.80)
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Moreover, after a zero-padding on the top and left sides of the input,

δL−1
ij = ∂E

∂netL−1
i,j

=
∑

k∈[0;u−1]
l∈[0;v−1]

∂E

∂aLi−k,j−l

∂aLi−k,j−l
∂netL−1

i,j

=
∑

k∈[0;u−1]
l∈[0;v−1]

δLi−k,j−lωk,l.
(2.81)

The CNN for gesture recognition
Duffner et al. [DBLG14] devised a CNN composed of alternated convolution and sub-
sampling layers in order to process temporally normalised gestures, which are classified
with a fully-connected softmax layer. The sensors data are treated as 6 × 45 images,
with the concatenated 3D measurements of a Smartphone accelerometer and gyrometer
over 45 time-samples. This "images" are successively analysed using temporal, feature,
and combined convolutions, with respective filters 3× 1, 1× 3 and 3× 3. Experiments
are carried out over two datasets of 14 symbolic gestures. The first dataset targets
the single-user case, with 40 samples by gesture, while the second dataset comprises
22 users, with 5 samples per user. Temporal convolutions prove to be the most suited
in each of the four test configurations, with a 96.5% accuracy in the single-user case,
93.7% in the multi-user closed-world case, 91.5% in the multi-user open-world, and
73.5% for the most challenging configuration where the network is trained from the
samples of a single user, and is tested on the other users data.

Although the CNN is able to consider the temporal dimension of the gesture, which
is used as a 2D image, another family of neural networks, called "recurrent neural
networks", is specifically designed to process temporal series, such as the Bi-directional
Long Short-Term memory neural network.

2.3.4.3 Bi-directional Long Short Term Memory

The Long-Short Term Memory (LSTM) Recurrent Neural Network was introduced
by Hochreiter and Schmidhuber [HS97]. Recurrent Neural Networks (RNN) are a
specific family of neural networks which can handle time-series thanks to recurrent
connections in the hidden layers. These connections allow for a short-term memory,
where the state of a neuron at time t is influenced by its previous state at time t + 1.
However, this recurrence introduces the problem of the exponential vanishing gradient
during the BackPropagation through time (BPTT). As a solution, Hochreiter proposes
a new architecture based on "LSTM cells", later improved to its current standard by
Graves et al. [GS05]. The LSTM block formed of a Constant Error Carousel (CEC),
with input, output and forget gates, and a peephole connection (see Fig. 2.15).

The CEC shows a constant error flow: given the error e(t) at time t, the linear
activation function f and the recurrent connection weight ω, the following relation is
respected:

e(t) = ∂f

∂ω
(net(t)).ω(t+ 1) = 1. (2.82)

Thus, the CEC stores the error, while the input, output and forget gates respectively
control the "write", "read" and "reset" operations on this error through multiplications.

The LSTM network is composed of one input and one output layers, while the
hidden layer may be formed of LSTM cells as well as "conventional" hidden units
providing inputs to gate units and memory cells. During an activation of a memory
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Figure 2.15 – Extracted from [Sch]. Representation of the LSTM cell. The CEC is
marked in red, while the output, input and forget gates are in green. The peephole
connection corresponds to the connection between the CEC, whose outputs are delayed
by one time step, and the gates. The blue nodes show the multiplications operated by
the gates.

cell cj, the net input netcj
, the internal state scj

, and the output activation acj
are

computed as:
netcj

(t) =
∑
i

ωicj
ai(t− 1),

scj
(t) = scj

(t− 1) + ain(t)f(netcj
(t)),

acj
(t) = ain(t)f(scj

(t)).

(2.83)

Learning is performed thanks to any the "BackPropagation Through Time" (BPTT)
algorithm.

The LSTM network classification can be operated on a majority-voting over every
activation of the output neurons for every time step.

The Bi-directional LSTM (BLSTM) is a variant of the LSTM network. Two net-
works are trained in parallel, the "forward" and "backward" networks. This allows for a
consideration of the past and the future of a time-series sample at every time step. A
fusion of both networks outputs is operated with an output layer whose size is equal to
the number of classes, as for the MLP. Thus, the BLSTM offers one classification for
each time step, and a max-voting operation on these decisions determines the final class.

The BLSTM for gesture recognition
Lefebvre et al. [LBMG15] introduce the same dataset used later by Duffner et al.
[DBLG14] to test the BLSTM performance on a 14 symbolic gestures problem, with 22
users. The inertial data is preprocessed and used directly as the training features. The
study shows that the BLSTM outperforms state-of-the-art methods such as DTW,
FDSVM or cHMM in the multi-user configurations, with an accuracy of 95.57% for
a closed world problem where every user is represented in the training dataset; and
92.57% in an open world configuration, where tests are carried out on the samples
of 5 users completely unknown to the network. BLSTM are not suited to the single-
user case, mostly due to the lack of sufficient data. However, CNNs achieve a higher
accuracy in every configuration in the later study by Duffner et al. [DBLG14].
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2.4 Conclusion
Artificial Neural Networks are also well-known for their adaptation and generalisa-

tion potential, which is well complimented by a very flexible training algorithm allowing
for a great variety of architectures. Neural-based approaches show state-of-the-art re-
sults in the typical gesture recognition frameworks where every class is known and no
rejection is considered. While results depend highly on the right choice of parameters,
such as the network size, they can then be obtained directly from preprocessed inertial
signals, without the need for extensive and subjective feature extraction.

However, it is important to note that the MLP, CNN and BLSTM networks do not
fulfil all the requirements of an open-world application. Indeed, they are limited in the
sense that they cannot adapt to new classes, and operate in a closed-world paradigm.
Any added class would require an entirely new model due to the rigid output layer
architecture which can only handle a predefined number of classes. Moreover, they
cannot take advantage of relationship informations and expected neighbourhoods in
the feature space. As such, it is necessary to consider an intermediary solution, where
the artificial neural networks advantages are captured in order to compute a higher
level and more discriminative representation, which is then submitted to a simplified
classification process.

Thus, in order to harness these performances while achieving a high discrimination
between known and unknown gestures, we propose to learn a similarity metric based
on the Siamese artificial neural network.
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Chapter 3
The Siamese Neural Network (SNN)

In the previous chapter, we presented different types of neural networks applied
to gesture recognition and classification. Most networks both extract features, thanks
to their convolutional and max-pooling layers in the case of CNNs for example; and
classify, generally with a "Softmax"-based output layer. However, in a fully super-
vised manner, they do so automatically, without any possibility to take into account
prior knowledge about expected neighbourhoods in the feature space. Since regions
of the output space are manually discretised, defined and assigned to classes, they are
completely semantically decorrelated, and undefined regions do not hold any meaning.

The Siamese architecture, thanks to its semi-supervised training strategy involving
multiple samples, whose relations are known, allows for a different structuring of the
output space, where the meaning assigned to a region varies in a continuous manner.

In this chapter, we will first detail the different existing variants of the Siamese
architecture components, before defining our contributions and their implications for
each of these components.

3.1 State of the art
More generally, a SNN learns a non-linear similarity metric, and essentially differ-

entiates itself from classical networks thanks to its specific training strategy involving
sets of samples tagged as similar or dissimilar.

Although SNNs perform the same task, their capabilities essentially depend on
four points: the network architecture, the training sets selection strategy, the objective
function for similar and dissimilar pairs, and the training algorithm.

3.1.1 Architecture
The name "Siamese" comes from the necessity to use multiple identical, weight-

sharing parallel networks.
Indeed, during the training step, the network is composed of multiple identical sub-

networks, forming low-level input fields joined at their ends by an output "contrastive
loss layer", whose objective function EW is devised as a distance computation between
features from each of the input samples (see Fig.3.1).

Siamese networks mainly involve two types of networks: CNNs and single or multi-
layer feed-forward perceptrons.
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Figure 3.1 – Architecture of the original Siamese Neural Network. Two identical neural
networks (NN) with shared weights W take simultaneously two input samples X and
Y to compute the error relative to a cosine-based objective function, thanks to the
respective outputs OX and OY .

Three specific studies were crucial for the development of this model, and define the
typical architecture, with two identical CNN sub-networks during training. Bromley et
al. [BGL+94] introduce the Siamese architecture in 1994, with a signature verification
system handling time-series of hand-crafted features extracted from signals captured
with a LCD device. In 2005, Chopra, Hadsell and LeCun [CHL05] formalise the Siamese
architecture, applying CNNs on raw images for face verification, before adapting it for
a dimensionality reduction technique [HCL06].

Every study working with Siamese CNNs is employing this two-sub-network ar-
chitecture. Yi et al. [YLLL14] suggest the "Deep Metric Learning" (DML) method
for person re-identification, where every input image is divided in three parts in or-
der to train three parallel CNN-based Siamese networks. Chen et al. [CS11] extract
speaker-specific information with a pair of identical CNNs auto-encoders where half
of the encoding layer error is regularised with a Siamese objective for every update.
Finally, Sun et al. [SWT14] combine face identification and verification with a softmax
layer added above the feature extraction layer.

The other main types of network involved in the Siamese architecture is based on
feed-forward perceptrons.

The first applications were essentially linear projections, modelled as Single layer
Feed-Forward Neural Networks (SFNNs) with linear activations functions. With their
S2Net, Yih et al. [YTPM11] apply the two-sub-network SFNN Siamese architecture
to compute a similarity score between texts represented by term-vectors. Likewise,
Bordes et al. model [BWCB11] relations between entities in Knowledge Bases with
one SFNN-based Siamese network for each relation, whose weights may not be shared
depending on the symmetry of that relation. Masci et al. [MBBS14] introduce a multi-
modal similarity-preserving hashing based on coupled SFNN Siamese networks.

However, other strategies are needed to compute a non-linear similarity metric.
Lefebvre et al. [LG13] tackle face verification and suggest a MLP Siamese network
based system, trained from features extracted with SOMs. Hu et al. [HLT14] redis-
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cover this architecture using hand-crafted features for face verification, under the name
Discriminative Deep Metric Learning (DDML), while Nair et al. [NH10] pre-train their
network as Regularised Boltzmann Machines (RBMs) for face verification.

Consequently, the Siamese architecture is commonly applied to non-recurrent feed-
forward networks. It engages multiple weight-sharing sub-networks, which process
sets of samples whose similarity is previously known. While the multiple-network
architecture allows for a comparison based training, the latter depends highly on the
similarities modelling.

Thus, in the following, we will expose the different strategies proposed to model
these relationships.

3.1.2 Training Set Selection
As said above, during training, multiple samples are simultaneously forwarded to

each sub-network, in order to devise a non-linear metric based on the respective pro-
jections of each input. The Siamese network is thus trained to project multiple samples
coherently. The resulting application of the network depends on the kind of knowledge
about similarities one implements. In problems such as face or signature verification
[BGL+94][CHL05][LG13][SWT14][YLLL14][ZIG+15], the similarity between samples
depend on their origin, and the network allows to determine the genuineness of a test
sample with a binary classification. In cases involving mapping learning robust to
specific transformations [HCL06], similar samples differ by slight rotations or transla-
tions. However, similarities can be more abstract concepts, such as same documents
in different languages [YTPM11].

As such, the final metric is the result of the modelling of similarity relations. The
most common representation consists in a binary relation based on pairs: given two
samples X1 and X2, the (X1,X2) pair similarity is determined by a tag, which takes
two different values whether the relation is similar or dissimilar.

However, knowledge about semantic similarities can take more complex forms.
Lefebvre et al. [LG13] expand the information about expected neighbourhoods, and
suggest a more symmetric representation: by considering a reference sample H for
each known relation, it is possible to define triplets (H,H+,H−), with H+ forming
a genuine pair with the reference H, while H− is the member of an impostor pair.
Similarities are then represented as much as dissimilarities.

To conclude, similarity relationships may be handled differently, depending on the
knowledge about the data and the final application for the learnt metric.

With these different knowledge representations presenting multiple samples to a
set of weight-sharing sub-networks, it is necessary to study new objective functions in
order to define how semantic relations will be reflected in the output space.

3.1.3 Objective Function
The contrastive loss layer objective function is destined to compute a similarity

metric between the higher-level features extracted from multiple input patterns. Thus,
this discriminative distance is trained to get smaller for similar patterns, and higher for
dissimilar ones. It takes two forms, respectively bringing together and pushing away
features from similar and dissimilar pair of patterns.
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Two main similarity measures, imported from other common applications, are used:
the cosine similarity metric, where similar samples are collinear, and the Euclidean
similarity metric, where the Euclidean distance between similar samples is small. Other
metrics, such as statistics-based ones, are more fringe.

3.1.3.1 Cosine-Based Objective Functions

A cosine objective function aims at learning a non-linear cosine similarity metric,
whether it is expressed specifically, in the form of multiple targets, or relatively, by pair
scores ranking. Given two samples X1 and X2, and the cosine of the angle between
the two vectors implied by these samples cos(X1,X2) = X1.X2

‖X1‖.‖X2‖ , the cosine similarity
metric is defined by:

cossim(X1,X2) = 1− cos(X1,X2). (3.1)

Square Error Objective
One approach comes from the original use of the square error objective function for the
MLP. Given a network with weights W and two samples X1 and X2, a target tX1X2 is
defined for the cosine value between the two respective output vectors OX1 and OX2 .
In [BGL+94], Bromley et al. set this target to 1 if for a similar pair, and -1 otherwise.
Given Y the similarity label, the error estimation EW for any pair is thus defined as:

EW (X1, X2, Y ) = (tX1X2(Y )− cos(OX1 ,OX2))2. (3.2)

Triangular Similarity Metric
Zheng et al. [ZIG+15] imply these same targets. Given Y the numerical label for
the (X1,X2) pair, acting as the target tOX1 OX2

and respectively equal to 1 and -1 for
similar and dissimilar pairs; and C(X1,X2,Y) = OX1 + Y.OX2 the target vector for
the pair, the triangular inequality imposes:

‖OX1‖+ ‖OX2‖ − ‖C‖ ≥ 0. (3.3)

After adding norm constraints to prevent a degeneration towards a null projection, the
final objective function becomes:

EW (X1, X2, Y ) = ‖OX1‖+ ‖OX2‖ − ‖C(X1,X2,Y)‖+ 1
2(1− ‖X1‖)2 + 1

2(1− ‖X2‖)2

= 1
2 ‖OX1‖

2 + 1
2 ‖OX2‖

2 − ‖C(X1,X2,Y)‖+ 1.
(3.4)

Triplet Similarity Objective
Lefebvre et al. [LG13] generalise the Square Error Objective by using simultane-
ously targets for genuine and impostor pairs. Samples outputs from similar classes
are collinear while outputs from different classes tend to orthogonality, which trans-
lates as a target equal to 1 for similar pairs and 0 for dissimilar ones. Let (R,P,N) be
a triplet, with a reference sample R, a positive sample P forming a similar pair with
R, and a negative sample N, forming a dissimilar pair with R, we get:

EW (R,P,N) = (1− cos(OR,OP))2 + (0− cos(OR,ON))2. (3.5)

Deviance Cost Function
Inspired by the common loss functions such as square or exponential losses, Yi et
al. [YLLL14] opt for the binomial deviance. Since their Siamese architecture does
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not necessarily share weights between sub-networks, let B1 and B2 be the respective
functions associated to both sub-networks, and B1(X1) and B2(X2) be the projections
of the samples of a pair, we get:

EW (X1, X2, Y ) = ln(exp−2Y.cos(B1(X1),B2(X2)) +1). (3.6)

Two Pair Objective
Yih et al. [YTPM11] consider two pairs of term-vectors, namely (fp1, fq1) and (fp2, fq2),
where the first pair is known to have a higher similarity than the second. The main
objective is then to maximise the difference between their similarity scores:

∆ = cos(Ofp1 ,Ofq1)− cos(Ofp2 ,Ofq2). (3.7)

with the use of a scaling factor γ, destined to penalise more on the prediction errors,
combined with the logistic loss:

EW (∆) = log(1 + exp(−γ∆)). (3.8)

Probability Driven Objective
Nair et al. [NH10] add a single neuron to their architecture whose activation function
processes directly the cosine value between a pair of sample outputs. Its activation
becomes the probability for two faces to have the same identity. Given the pair of
samples (X1,X2) and w, b scalar learnable parameters:

Pr(”Same”) = 1
1 + exp(−(w. cos(OX1 ,OX2) + b)) . (3.9)

In the next section, we will present the objective functions based on the distance
implied by the Euclidean norm in the output space of the Siamese network.

3.1.3.2 Euclidean-Based Objective Functions

Chopra et al. [CHL05] introduce an objective metric based on the Euclidean dis-
tance, with a (X1,X2) pair energy EW equal to:

EW (X1,X2) = ‖OX1 −OX2‖2 . (3.10)

The goal of the network is to assign a lower energy for any similar pair than for a
dissimilar pair. The existence of an intrinsic universal margin in the data structure is
necessary to ensure the identification of similar examples. Given one genuine training
pair (X1,X2) with an energy EG

W , and one impostor training pair (X1,X′2) with an
energy EI

W , they express this requirement under the condition:

∃m > 0 , EG
W +m < EI

W . (3.11)

Given Q the upper bound of EW , a binary label Y , respectively equal to zero
and one for similar and dissimilar pairs, and specific partial loss functions, LG for
similar/genuine pairs, and LI for dissimilar/impostor pairs, they define:

LG(EW ) = 2
Q

(EW )2,

LI(EW ) = 2Qe(− 2.77
Q
EW ),

L(W,Y,X1,X2) = (1− Y )LG(EW ) + (Y )LI(EW ).

(3.12)
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Figure 3.2 – Spring system between similar examples (solid circles) and dissimilar exam-
ples (hollow circles). (a) Attract-only springs (b) Loss function and gradient associated
with similar pairs. (c) Repulse-only springs with margin m. (d) Loss function and
gradient associated with dissimilar pairs. Extracted from [HCL06].

Hadsell et al. [HCL06] pursue this idea further. While they retain the similarity
metric based on the Euclidean distance between labelled pairs of samples, they suggest a
different partial hinge-loss-based function for dissimilar pairs, which can be interpreted
as a spring system (see. Fig.3.2). Similar sample projections are always brought closer
together, but the loss function relative to dissimilar samples is set to zero if the distance
between their projections is higher than a manually defined margin m,

LG(EW ) = 1
2(EW )2

LI(EW ) = 1
2(max{0,m− EW})2.

(3.13)

Sun et al. [SWT14] opt for the exact same loss function for their face verification
module. Masci et al. [MBBS14] generalise this objective in order to couple multiple
modalities in the same feature space. Given two distinct siamese-based embeddings ξ
and η respectively representing the modalitiesX and Y , with x and y the corresponding
data, they define a cross-modal loss with an energy:

EW,XY = ‖ξ(x)− η(y)‖2 (3.14)

Bordes et al. [BWCB11] choose the L1 norm with a similar objective function. One
similar and one dissimilar pairs, respectively called x and xneg, and sharing one sample,
are selected. This strategy is equivalent to the triplet representation from Lefebvre et
al. [LG13]. However, since the sub-networks do not share their weights, the position
of the mutual example in both pairs is important. The network is updated only when
a unit margin is not respected between the similarity scores f(x) and f(xneg):

EW (x, xneg) = max(0, 1− f(xneg) + f(x)). (3.15)

After presenting the objective functions based on the two main metrics, respectively
the cosine and Euclidean metrics, we develop the statistical objective functions, where
similarities between sets of samples depend on their means and correlation matrices.
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3.1.3.3 Statistical Objective Function

In order to discern different speakers using a CNN auto-encoder, Chen et al. [CS11]
suggest to regularise half of the encoding layer with a Siamese objective. Mel Frequency
Cepstral Coefficients (MFCC) are extracted from TB sliding temporal windows over
each sample, whose input thus corresponds to a set of feature vectors X = {xt}TB

t=1.
The new representation CS(X) = {CS(xt)}TB

t=1 of the sample becomes a set of higher
level feature vectors, and the Siamese network is trained following an incompatibility
measure based on the first and second-order statistics of this new representation, re-
spectively Dm and DS. Let µ(i) and Σ(i) be the mean and covariance matrix for the
sample i, i ∈ [1, 2] of a pair, and ‖.‖F the Frobenius norm:

µ(i) = 1
TB

TB∑
t=1

CS(xit) , Σ(i) = 1
TB − 1

TB∑
t=1

[
CS(xit)− µ(i)

] [
CS(xit)− µ(i)

]>
, (3.16)

then,
Dm =

∥∥∥µ(1) − µ(2)
∥∥∥2

2
, DS =

∥∥∥Σ(1) −Σ(2)
∥∥∥2

F
. (3.17)

Given λm and λS the tolerance bounds of incompatibility scores in terms of Dm and DS

estimated from the training data, the final Siamese objective function is very similar
to the one proposed by Chopra et al. [CHL05]:

L(W,Y,X1,X2) = (1− Y )(Dm +DS) + (Y )(exp(−Dm

λm
) + exp(−DS

λS
)). (3.18)

Although this objective functions involves the same CNN for both samples, it is
also sollicited TB times for each sample of a pair.

We have presented the multiple objective functions which reflects the similarity
relationships between sets of samples in the output space. It is now necessary to
explain how to benefit from the information brought by every sample of these training
sets for a model update.

3.1.4 Training Algorithm
As for most of the neural networks, the main algorithm to train networks in a

Siamese architecture is the stochastic gradient descent, using the backpropagation al-
gorithm. However, two main methods exist in order to perform the gradient descent
for a set of training samples.

The first approach [LG13] consists in applying the exact same backpropagation
algorithm as for a single sample. This amounts to activating one single network with
every member of a training set except one, so as to recover the states of the output
layer for each of them. It is then possible to activate the network with the last sample,
considered as the reference in the training set, and compute the objective function
gradient only in relation to that single sample.

The second approach is the most popular, and more mathematically correct. Let
us define a training set of samples TS = {Xp, p ∈ [1..n]} and the same notations as in
Section 2.3.4.1, with an added exponent denoting which sample each value corresponds
to. We activate n identical networks in parallel with each sample, storing their activa-
tion states. It is possible to compute the output layer δ values for every sub-network
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directly: for the jth neuron of the output layer O of the pth sub-network, noted Np, we
compute δpOj as follows:

δpOj = ∂E

∂netpj
. (3.19)

This allows for independent error backpropagations in each sub-network using the
classical delta rule. In opposition to the first approach, the final update equation takes
into account every sample from the training set, by using the chain rule for composite
functions:

ωt+1
ij = ωtij − λ

∂E

∂ωij
(ωtij) = ωtij − λ

∑
p

∂E

∂netpj
.
∂netpj
∂ωij

= ωtij − λ
∑
p

api .δ
p
j .

(3.20)

Algorithm 2 presents a summary of the BackPropagation generalisation for Siamese
networks.

Algorithm 2 Siamese Generalised Training algorithm
1: for all Xp in TS = {Xp, p ∈ [1..n]} do
2: Forward pass Xp in its corresponding sub-network Np
3: end for
4: for all Xp in TS do
5: procedure Compute the delta values for the output layer O of
Np

6: for all neurons nOj in O do
7: δpOj = ϕ′(netpOj). ∂E∂ap

Oj

8: end for
9: end procedure

10: procedure Apply the delta rule to Np:
11: for all hidden layers L do
12: for all neurons nLi in L do
13: δpLi = ϕ′(netpi ).

∑
j
ωij.δ

p
(L+1)j

14: end for
15: end for
16: end procedure
17: end for
18: procedure Update the shared weights
19: ωt+1

ij = ωtij − λ
∑
p a

p
i .δ

p
j

20: end procedure

Thus, Siamese networks differ from classical networks essentially by their training
strategy involving multiple samples. However, since the Siamese architecture is devised
so as to produce a similarity metric in its projection space, it is necessary to use another
model on the projected data to obtain the final label of a sample for classification tasks.

3.1.5 Siamese Network for Verification/Classification
Siamese networks may be used straightforwardly for their verification capacities,

keeping the identical parallel subnetworks in order to rate the similarity of a pair of
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samples. As seen above, Nair et al. [NH10] directly train the network to give the
probability for two sample images to share the same identity. Masci et al. apply
the Hamming distance on their Siamese-extracted binary hash in order to rank the
relevance of matches with a reference image. Hu et al. [HLT14] and Zheng et al.
[ZIG+15] consider a threshold on the value of the trained metric, respectively Euclidean
and cosine-based, to assess the similarity or dissimilarity between pairs of samples.
Zheng et al. [ZDI+15] also apply the Triangular Similarity Metric Learning objective
function to the MLP architecture for face identification and dimensionality reduction.
The networks are trained from mini-batches composed of N(N − 1)/2 pairs, with N
the number of training examples, with inputs formed of different face descriptors such
as Gabor wavelets, Local Binary Patterns, and Over-complete Local Binary Patterns.
Identification is then performed thanks to a K-NN classifier using the cosine function
to measure the pairwise distance with the nearest neighbour, i.e. K = 1.

The learned metric can also serve as a higher-level representation, combined with
other classifiers to assign a label to a single sample, whether this label is binary for
verification, or multi-valued for recognition. This classifier can be exemplar-based,
depending on direct comparisons with the projected training samples, or trained from
this new representation.

For their verification step, Bromley et al. [BGL+94] only use one single sub-network,
and the output for the pattern to be recognised is compared to a multivariate normal
density model trained from the features of six examples of a person’s signature. Simi-
larly, Chopra et al. [CHL05] compute the likelihood for a test face image to be genuine,
ρgenuine, by evaluating the normal density of the test image on the model of the con-
cerned subject. The probability that the given image corresponds to the subject is
defined as:

Prob(genuine) = ρgenuine
ρgenuine + ρimpostor

, (3.21)

with ρimpostor, the average ρgenuine value for all the training impostor images, which al-
lows for a consideration of the Gaussian model global performance. Sun et al. [SWT14]
combine the Siamese architecture with a classification network, through an added soft-
max layer trained with a cross-entropy objective function. In this case, the Siamese
objective becomes a regularisation over the error of the penultimate layer, which has to
accommodate two objectives simultaneously. This approach has the benefit of a single
training for both identification/classification and verification. However, they operate
their final face verification thanks to a Joint Bayesian Model trained from the PCA-
compressed projected training samples, and do not comment on the accuracy of the
softmax identification layer.

Chen et al. [CS11] apply a one-nearest-neighbour to evaluate their speaker com-
parison system with a metric based on the same statistics used during training. Given
a pair of speaker models {SMi = {µi,Σi}, i = 1; 2}, they define the speaker distance
metric

d(SM1,SM2) = tr
[
(Σ−1

1 + Σ−1
2 )(µ1 − µ2)(µ1 − µ2)>

]
(3.22)

Yih et al. [YTPM11] propose the same classification method to pair Wikipedia articles
written in English with their Spanish counterpart, while Lefebvre et al. recognise faces
within a pool of 68 subjects.

To sum up, Siamese networks are semi-supervised models, trained to learn previ-
ously known similarity relationships from sets of samples. These relationships are em-
bedded in a specific objective function, which characterises the final projected higher-
level features. Most Siamese networks are however used exclusively in a verification
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mindset, with a binary classification problem. While Euclidean-based objectives are
more flexible and more suited to mapping-learning, they require an additional margin
tuning which can be detrimental to the global performance, while cosine-based strate-
gies are not appropriate for multi-class problems combining classification and rejection,
which are both necessary for our gesture recognition system.

3.2 Contributions on the SNN
As seen in the last section, it is necessary to develop the potential for Siamese

networks in order to tackle multi-class configurations with novelty detection. In the
following, we propose multiple contributions aiming at increasing the discriminative
potential of the network and improve its convergence, so as to be able to combine
classification and rejection in a new feature space.

After defining our base choices for our Siamese network, we will present our con-
tributions. Firstly, we suggest a more general way to define similarities in multi-class
problems. Indeed, the pair or triplet strategy is not sufficient to define every relation-
ship between the different classes, which leads to biases in the training set selection.
Moreover, a mathematical analysis developed below proves that cosine-based objec-
tives can lead to numerical instabilities and uncontrolled behaviours, leading us to a
regularisation of the original metric, for a simpler and more computationally efficient
version. We also propose to modify the negative part of the objective function thanks
to the polar sine notion, which consists in a function that estimates a similarity be-
tween sets of vectors, and whose value is maximal for a set of mutually orthogonal
vectors. This approach can be interpreted as an Independent Component Analysis.
We finally conclude with a rejection strategy applied to the learnt representation.

3.2.1 Architecture and General Choices
In the following, we choose a cosine-based objective function for its ease of use, and

a MLP-based Siamese architecture, with hyperbolic tangents activation functions for
every layer. We use the work of Bromley et al. [BGL+94], and Lefebvre et al. [LG13]
as references, with a base objective function depending on the square error objective.
Since a target angle equal to -1 for a dissimilar pairs induces an instability, as this
target cannot be met for more than two classes, we opt for a target for equal to 0.
However, we do not use the common two-sub-network architecture, since the latter is
greatly modified by a our specific training set selection strategy, presented below.

3.2.2 Training Set Selection Strategy
Every training set selection strategy for a Siamese network consists in defining a

subjective number of similar and dissimilar pairs, deemed representative of the global
relationships within the data. This generally induces a bias, since it is not possible to
ensure a perfect coverage for every relationship. This is why we first propose a unified
approach for multi-class problems.

Let C = {C1, .., CK} be the set of classes represented in the training data, ORk the
output vector of the reference sample XRk from the class Ck presented to the model
for update, OPk the output of a different sample XPk from the same class, and ORl

the output of a sample XNl from another class Cl.
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In order to keep symmetric roles for every class and optimise the efficiency of
every update, we propose here to minimise an error criterion for training tuples Tk =
{XRk ,XPk , {XNl , l = 1..K, l 6= k}} involving one reference sample from the class Ck,
one positive sample and one negative sample from every other class.

Our proposal for the error estimation EW (T ) becomes:

EW (T ) = (1− cos(OR,OP))2 +
∑
l

(0− cos(OR,ONl))2. (3.23)

Thus, our network architecture dynamically changes depending on the training
subsets sizes, and involves as many sub-networks as classes. Every sample is taken once
as a reference, while the others are drawn at random. This facilitates the selection of
representative training sets, and gives a global approach which does not require any
additional parameter. Moreover, this strategy acts as a mini-batch learning, which
limits the number of updates required before convergence.

In the next section, we present our second contribution, which consists in a regulari-
sation of the objective function. This regularisation aims at controlling the behaviour of
the output vector norms, which are shown to be uncontrolled thanks to a mathematical
analysis.

3.2.3 Norm Regularisation
In order to improve convergence, we also study the behaviour of a weight update

over the projected samples. In the following, we will analyse the cosine metric as a
function of two vectors of dimension n,

cosX1,X2 : R2n → R/(X1,X2)→ 1
2(1− cos(X1,X2))2. (3.24)

Let (O1,O2) be a pair of outputs to be updated. Given the functions

cosO1 : Rn → R/X→ 1
2(1− cos(O1,X))2

cosO2 : Rn → R/X→ 1
2(1− cos(X,O2))2

(3.25)

respectively evaluated at the points O2 and O1, the cosX1,X2 directional derivative
at (O1,O2) can be expressed as the concatenation of the two directional derivatives
∇cosO1

(O2) and ∇cosO2
(O1).

We will show here that every stochastic gradient descent will increase the norms
for both samples. Indeed, if we consider the function cosO1 , we have an update of O2
which follows:

O2
t+1 = O2

t − λ.∇cosO1
(O2). (3.26)

Besides, the line directed by the vector O2
‖O2‖ belongs to the equipotential for the cosO1

function. By definition, we can conclude that the directional derivative ∇cosO1
(O2) is

orthogonal to O2. Thanks to Pythagoras’ theorem, we can conclude:∥∥∥Ot+1
2

∥∥∥2
=
∥∥∥Ot

2

∥∥∥2
+ λ2.

∥∥∥∇cosO1
(O2)

∥∥∥2

⇒
∥∥∥Ot+1

2

∥∥∥ > ∥∥∥Ot
2

∥∥∥ . (3.27)
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We propose a graphical representation of this phenomenon in 3D in Figure 3.3. The two
vectors Ot

1 and Ot
2 are represented with the same norm for visualisation simplification,

thus belonging to a sphere. The equipotential for cosO1 forms a cone, centred on Ot
1,

and directed by Ot
2. It is then easier to see the higher norm of the updated Ot+1

2 after
a step of gradient descent. It is important to note that the reasoning was based on the
output vectors components, and does not take into account the additional non-linearity
induced by the weights of the network.

Ot
2

Ot
1

λ.∇cosO1
(X2)

Ot+1
2

Figure 3.3 – Representation of the effect of an update step on the norm of the pro-
jections for a pair of outputs (Ot

1,Ot
2) at the epoch t in 3D. The centre of the sphere

corresponds to the origin of the output space. The grey cone represents the equipoten-
tial surface for the function cosO1 . For simplification, Ot

1 and Ot
2 were given the same

norm.

Uncontrolled norms complicate training, possibly leading to a progressive diver-
gence. Moreover, in the case of hyperbolic tangent activation functions, the output
space is a higher-dimensional cube of dimension n, which restricts the norms to a
maximum of

√
n. Thus, to stabilise the convergence of the model, we propose to add

constraints on the norms of every output, forcing them to one. These conditions en-
sure that the norms of the outputs will not keep on increasing with each update, thus
preventing any saturation of the outputs.

We can define EW (Ts) the error for a training subset Ts as:

EW (Ts) =(1− cos(OR,OP))2 +
∑
l

(0− cos(OR,ONl))2

+
∑
k

(1− ‖Ok‖)2.
(3.28)
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Given cos(O1,O2) = O1.O2
‖O1‖.‖O2‖ , we also propose to replace the cosine distance for

each pair by the scalar product O1.O2 between two sample outputs O1 and O2. Since
their norms are set to one for our training subsets, these conditions ensure that the
cosine distance between these outputs is still equal to the original target.

Thus, we define the final error estimation over all the chosen training subsets Ts, s ∈
J1, τK EW as:

EW =
∑

s∈J1,τK
EW (Ts), (3.29)

with
EW (Ts) =(1−OR.OP)2 +

∑
l

(0−OR.ONj)2

+
∑
k

(1− ‖Ok‖)2.
(3.30)

While this formulation is more suited to handle angular updates, it combines many
independent targets, which may reveal impractical for an increasing number of classes.
Moreover, the mean square error objective has specific drawbacks. Indeed, in the
derivative form, the cosine error is pondered by a factor (target− cosine value), which
tends to zero as the model converges. Thus, we propose a new error function, which
will preserve the targets, while answering to both of these problems.

3.2.4 Angle Problem Reformulation
While the cosine allows for a correlation estimation between two vectors in any Eu-

clidean space of finite dimension, it is sensible to consider another function which would
measure dissimilarities, like the sine in 2D. In the following, we propose a reformula-
tion of the objective function based on a higher-dimensional dissimilarity measure, the
polar sine. We will then show that this new analysis leads to a non-linear discriminant
analysis.

Polar Sine Definition
In 2D (see Fig.3.4), given the origin O and two vectors a = OA and b = OB, and
V (V (a,b) the area of the polytope formed by those two vectors, we have the relation:

sin(a,b) = V (a,b)
‖a‖ . ‖b‖

(3.31)

O

a

b

V (a,b)

Figure 3.4 – Area of a 2D polytope implied by a vertex of two vectors a and b
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Inspired by that formula, Lerman et al. [LW09] define the polar sine for a set
V = {v1, . . . , vn} of n-dimensional linearly independent vectors:

PolarSine(v1, . . . ,vn) = Ω
Π , (3.32)

where
Ω =

∣∣∣det
[
v1 v2 · · · vn

]∣∣∣ , (3.33)
and

Π =
n∏
i=1
‖vi‖ . (3.34)

Furthermore, another definition for the polar sine exists for a set Vn = {v1, . . . , vn}
of m-dimensional vectors, with n < m. Given A =

[
v1 v2 · · · vn

]
and its transpose

A>, we define:
Ω =

√
det (A>.A). (3.35)

Also, when the norms are incorporated wisely in the matrix A =
[
v1 v2 · · · vn

]
,

the Polar Sine is equivalent to the square root of the determinant of the matrix

Anorm =
[

v1
‖v1‖

v2
‖v2‖ · · ·

vm

‖vm‖

]
. (3.36)

Thus, the Polar Sine corresponds effectively to the square root of the determinant of a
matrix of cosine values, where the component of the ith line and jth column Snorm(i, j),
with S = A>norm.Anorm:

S(i, j) = cos(vi,vj),

PolarSine(v1, . . . ,vn) =
√

det (S).
(3.37)

Adaptation of the Polar Sine for learning dissimilarities
The polar sine corresponds to a measure of a regularised hyper-volume, which, as seen
above, only depends on the angles between every vector of the set, and reaches its
maximum value when its edges are orthogonal. In that sense, the polar sine will reach
its maximum value when every vector of the set is orthogonal to every other.

However, the error computation of the polar sine introduces a matrix inversion (see
Appendix A.2.3), which provokes a highly unstable behaviour. Moreover, the derivative
of the determinant of the matrix S is still dependent to the value of this determinant,
which, as the product of n eigenvalues, is initially all the lower as the number of vectors
used increases. For example, if initial eigenvalues, comprised between 0 and 1, are equal
to 0.5, then the value of the Polar Sine is equal to 0.5n, making the error too small
to actually allow a correction. Inspired by the equation A.2.2 where the division by
the cosine value is compensated, we can deduce that the correct function should also
normalise the inverse of the matrix S.

As a consequence, we propose a redefinition of the Polar Sine for learning angles.
In the following, we call this adaptation the Polar Sine Metric:

psin(A) = n

√
det (S). (3.38)

By using the nth root of the determinant of the matrix S, i.e. n

√
det (S), the new

value becomes independent from its dimension, which is equal to the number of samples
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in the set. Furthermore, the error for the Polar Sine Metric (see Appendix A.14) is
computed as:

∂ (psin(A))
∂aij

= psin(A)
n

.
ϕ′(Iij)
‖Aj‖

.
[
AnormS−1 −Anorm

]
ij

(3.39)

Thus, the reader can see that every component of the matrix inverse S−1 is multiplied
by the Polar Sine Metric value, i.e. the nth root of the determinant, which leads to a
perfect normalisation, as

det
(

n

√
det (S)S−1

)
=
(

n

√
det (S)

)n
det

(
S−1

)
= det (S) det

(
S−1

)
= det

(
SS−1

)
= 1.

(3.40)

With two comparable similarity estimators, whose values are comprised between
0 and 1, it is now possible to redefine the objective function for our training sets
Tk = {ORk ,OPk , {ONl , l = 1..K, l 6= k}}:

EW (Tk) = EsimW (Tk) + EsimW (Tk),
withEsimW (Tk) = (1− cos(ORk ,OPk))2

EsimW (Tk) = (1− psin(ORk ,ON1 , . . . ,ONK))2.

(3.41)

Optimising the Polar Sine Metric corresponds to assigning a target equal to 0 to
the cosine between every pair of different vectors drawn in Tk \ {OPk

}. This actually
holds more information than our original objective function which aimed at assigning
zero-cosine-values only for pairs between the reference and negative outputs, and may
increase the efficiency of a single update, as every vector in the matrix A plays the
same role, contrary to our previous tuple-based error function. Finally, this approach
is easily scalable to any number of classes.

The Siamese Network as a Supervised Non-Linear Independent Compo-
nent Analysis
While the cosine metric describes the intra-class similarities, the polar sine metric is
an indicator for similarities between classes, with a maximum value when every class
is decorrelated from the other.

Given a set number of sources {G1, . . . ,Gn}, which correspond to the examples for
each of n classes, we transform these initial inputs into maximally independent, multi-
dimensional components {O1, . . . ,On} thanks to the non-linear SNN neuron network.
Indeed with a measure of independence psin(O1, . . . ,On) fully defined by the Polar
Sine Metric. Moreover, the similarity target defined by EsimW (see Equation 3.41)
reinforces at the same time the correlation between samples from a common source.
This approach is also flexible in the sense that the size of the output layer is adjustable,
which allows for the selection of the number of components.

To conclude, our Siamese network, combined with this new objective function,
presents all the properties of a Supervised, Stochastic Non-Linear Independent Compo-
nent Analysis, with multiple advantages, apart from non-linearity. Indeed, the number
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of components is adjustable. Furthermore, with a large enough training dataset, it is
possible to devise strategies for the choice of the number of components, thanks to a
classification score maximisation scheme on a validation set.

After explaining our contributions about the parametrisation and training of the
SNN, we present one original use we make of the SNN, which aims at improving
novelty detection and rejection based on the higher-level representation obtained with
this network.

3.2.5 Dealing with Rejection
Our original hypothesis is that, as Siamese networks learn a structured output space

in relation to similarities between samples, they are more apt to produce coherent
results when presented unknown samples, or samples which are too different from the
training set.

Any classifier can be used on the extracted feature vectors. We choose a K-NN
classification based on the cosine similarity metric in order to prove the validity and
reliability of the learned SNN projection. Indeed, while the K-NN classifier does not
scale efficiently for larger datasets, it stays relevant for the domain of gesture recogni-
tion.

Preliminary test results for rejection are available in Annex B. The network, with
one 45-neuron hidden layer and one 3-neuron output layer, is trained using three of
the four horizontal possible translation gestures, recorded on a Smartphone for a single
user. The respective projections of the training and test sets are represented in Figures
B.1 and B.2. It is important to note that the samples from the unknown class, in black,
are separated from the other classes, who show a tendency to orthogonality.

Thus, our rejection criterion consists in a single threshold, common to all classes,
on the distance to the closest known sample. Error detection should prove all the
better as the within-class similarity is strong, and novelty detection is facilitated by
high inter-class decorrelation and dissimilarity.

3.3 Conclusion
Siamese Neural Networks are specific networks trained to reflect similarities within

a training set. Its architecture, based on CNNs or MLPs, consists of multiple identical,
weight-sharing parallel networks, simultaneously activated by sets of samples. These
parallel networks are joined at their ends by a contrastive loss layer, which computes
a given objective in the output space, devised as a representation of the similarities
between samples.

The two main types of objective functions are built around the cosine metric, with
angular constraints, or the Euclidean distance, with norm constraints. Similarities are
modelled using labelled pairs of samples, or triplets forming one similar pair and one
dissimilar pair. While the Euclidean distance allows for more flexibility, it still depends
on a margin parameter.

Thus, we propose three contributions for a Siamese network based on a MLP, with
a view to classification problems. We generalise the similarity representation to groups
of samples, where every class is taken into account, which benefits from a batch ef-
fect during training, and simplifies greatly an otherwise biased pair selection strategy.
Moreover, we contribute to the parameter-free cosine objective function by applying
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a regularisation on the norms of the outputs, whose behaviour is not controlled, as
seen in section 3.2.3. Finally, we propose a reformulation of the dissimilarities ob-
jective thanks to a new similarity metric for sets of samples, based on the polar sine.
This approach can be interpreted as a non-linear discriminant analysis, which promotes
our goal to take advantage of the Siamese characteristics for error and novelty rejection.

Five hypotheses are made about our contributions.
— The first hypothesis H1 corresponds to the target choice for similar and dissimi-

lar pairs. Indeed, we surmise that an orthogonality objective for the cosine value
between negative samples pairs leads to a better, more stable convergence.

— Hypothesis H2 is related to the training set selection strategy: we conjecture
that a tuple-based set selection strategy allows for a better representation of the
relationships between classes, thus leading to a better structuring of the output
space.

— With hypothesis H3, we suggest a better convergence and a more stable norm
evolution behaviour thanks to the proposed norm regularisation scheme.

— H4 concerns the angular reformulation, in the sense that the Polar Sine Metric-
based objective, through a non-linear discriminant analysis, is more efficient at
separating classes than other objective functions.

— Finally, we hypothesise with H5 the stronger rejection capabilities of the SNN
from its discriminant learning leading to a more discriminant distance.

In the next chapter, we aim at analysing and confirming or invalidate each of these
hypotheses thanks to tests performed on two real-life inertial datasets, the Multimodal
Human Activity Dataset, and the Orange Dataset.
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Chapter 4
Experiments and Results

This chapter aims at characterising our contributions for Siamese networks, in par-
ticular for their classification and discrimination potential. Experiments are carried out
on two different datasets. Firstly, tests based on the inertial sensors of the Berkeley
Multimodal Human Action Database (MHAD) act as a comparison between the differ-
ent SNN configurations, identifying the strength and weaknesses of every contribution.
Secondly, a real inertial smartphone-oriented dataset, called the Orange Dataset, col-
lected by ourselves at Orange Labs, serves as the basis for our study of symbolic gesture
classification and rejection, with a comparison to the main state-of-the-art methods.
It is important to note that every test result corresponds to the best identified config-
uration on the corresponding test set. Indeed, the lack of sufficient data prevents from
forming a representative validation set, which would usually be used to determine a
score in more realistic conditions.

4.1 Multimodal Human Activity Dataset
In this section, we aim at comparing the different choices for the SNN configuration

on a public dataset. The dataset and experimentation protocol encompass a more
general use of the inertial sensor for activity recognition, based on the Multimodal
Human Action Database (MHAD).

In this case, the SNNs should demonstrate their generalisation capabilities for recog-
nizing longer sequences, representing actions performed with different styles by multiple
users.

In the following, we first introduce the Berkeley MHAD. Then, the comparison
protocols are presented, along with the different SNN variants explored. Evaluation
criteria are proposed, based on classification results, output projection analyses and
algorithm complexities. Finally, results are investigated and conclusions are drawn.

4.1.1 Database Introduction

The Multimodal Human Activity Database (MHAD) [OCK+13] was generated as
part of the project “A Bio-Inspired approach to Recognition of Human Movements
and Movement Styles”. This database comprises the recordings from 12 participants
performing 11 different actions (see Fig.4.1). These actions were designed to cover
diverse dynamics combinations for different body extremities, and were not specifically
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Figure 4.1 – Snapshots from all the actions available in the Berkeley MHAD are dis-
played together with the corresponding point clouds obtained from the Kinect depth
data. Actions (from left to right): jumping, jumping jacks, bending, punching, waving
two hands, waving one hand, clapping, throwing, sit down/stand up, sit down, stand
up. Extracted from [OCK+13].

detailed to the subjects in order to collect a representative range of styles for each
action.

The MHAD gathers 5 repetitions by user and by action, for a total of about 660
action sequences, amounting to about 82 minutes of total recording time. Three differ-
ent groups of actions can be identified. The first group shows movement in both upper
and lower extremities (jumping in place, jumping jacks, throwing). The second group
consists of actions with high dynamics in upper extremities (waving one hand, waving
two hands, clapping hands, punching, bending), while the third group proposes actions
with high dynamics in lower extremities (sit down, stand up, sit down then stand up).

While multiple sensors were deployed during the data collection process, combining
stereo cameras, Kinect devices, microphones and Motion Capture, we focus our study
on the inertial sensors, consisting in six wireless three-axis accelerometers placed on
the bodies of the participants, with one on each wrist, one on each foot, and one on
each hip. The accelerometers captured the data at a frequency of about 30Hz.

Classically, gesture data are preprocessed in 3 steps: amplitude scaling and filtering,
shared for both neural and DTW approaches; and specific temporal normalisations. A
general amplitude scaling is performed, where each component of every sample forming
a gesture record is divided by the maximum norm over all the samples of this gesture.
Furthermore, this ensures additionally that every input value is comprised between −1
and +1, which is recommended for an efficient neural network training. Then, a low-
pass filter with a parameter β = 0.7 is applied to the inertial signals so as to filter out
the involuntary small shakes and electronic noise. Finally, gesture data are temporally
normalised, with specific strategies suited to each method to compare. In the case
where the model can handle time series, a vectorisation is applied, limiting the local
approximation error by a factor 0.1. Otherwise, a common fixed size equal to 45 six-
dimensional inertial samples is set for each gesture record thanks to a resampling based
on a fixed curvilinear length between the new samples. This operation is performed
thanks to linear interpolation or extrapolation at fixed coordinates after an estimation
of the curvilinear length L(G) of the whole gesture G = {G0, . . . ,Gn}, which is then
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described by a 270-feature vector Ĝ.
Preliminary tests direct our focus to the A1 accelerometer, attached to the user’s

right wrist, as it allows for the best classification rates over this dataset.

4.1.2 Protocols
This experiment aims at characterizing the behaviour of different SNN configu-

rations. The same architecture is selected for every variant, with a 135-neuron input
layer, one 45-neuron hidden layer, and one 90-neuron output layer. The hyperbolic tan-
gent is classically chosen as the activation function for every neuron, and the learning
rate is set to 0.001.

Multiple aspects are explored. Firstly, the influence of the different choices for the
cosine target between two output vectors from dissimilar inputs is analysed. Secondly,
our contributions are evaluated in relation to the literature, with the different training
set selection strategies and choices for the cost function.

Negative Target Selection (Hypothesis H1)
Two different types of target are commonly used for the cosine value of dissimilar
output vectors. A target equal to -1 ([BGL+94]) will push these vectors apart as
much as possible, creating an unstable balance as this target cannot be met for more
than two classes. The second choice tends to impose an orthogonality between these
vectors, with a target equal to 0 ([LG13]). While this approach allows for a better
convergence as the minimum for the error function(0) can actually be attained, and
it limits the space occupied by the samples. However, it is important to note that
this objective requires an output space dimension superior or equal to the number of
classes represented in the training set, at the risk of overstraining the system, causing
instability.

Training Set Selection Strategy : pairs, triplets vs. tuples (Hypothesis
H2)
We compare three different selection strategies, and assess their relative complexities
and computation costs. Let Nc be the number of classes, and Ns the number of samples
in the dataset.

The first strategy ([BGL+94]) is the most common and consists in selecting a specific
number of pairs of samples, labelled as "similar" or "dissimilar". Here, we propose to
form one similar pair with every sample of the dataset, where the second element of
the pair is drawn at random. Dissimilar pairs are selected so as to represent every
dissimilarity relationship available for every sample of the dataset, for a total of Nc−1
dissimilar pairs per sample. The total number of updates for one epoch is then equal
to Nc ×Ns, with 2(Nc ×Ns) activations.

The second strategy [LG13] favours a symmetry between similarities and dissim-
ilarities, forming triplets, with one reference, one similar and one dissimilar samples
per set. As for the first strategy, every dissimilarity relationship is represented. As
a consequence, a triplet is formed for each dissimilarity, for a total of Nc − 1 posi-
tive and negative pairs per sample. As such, the total number of updates is equal to
(Nc − 1)×Ns, with three activations per update.

Finally, the third strategy consists in our contribution, which generalizes the triplets
approach with tuples. Every relationship, whether similar or dissimilar, is represented
once for each sample. This limits the number of updates per epoch, with only Ns

updates, for [(Nc + 1)×Ns] activations.
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A1 pairs triplets tuples
targets t-11 t01 t-11 t01 t-11 t01
cos 0.901± 0.105 0.916± 0.100 0.881± 0.100 0.916± 0.086 0.880± 0.094 0.915± 0.102
scal 0.883± 0.087 0.869± 0.092 0.871± 0.110 0.869± 0.108 0.880± 0.078 0.886± 0.079
psine 0.910± 0.098 0.910± 0.084 0.918± 0.091

Table 4.1 – Recognition rates for the MHAD-based protocol.

Cost Function Choice : cosine vs. scalar product with norm regularisa-
tion vs. Polar Sine Metric (Hypotheses H3, H4)
The study focused on the cost function allows for a comparison between the initial
cosine-based error function, referred as cos, and our two contributions, namely the
norm regularisation, resulting in the scalar product-based cost function referred as
scal; and the Polar Sine Metric-based cost function referred as psine.

These three points lead to a total of 15 configurations for the SNN, with three
training set strategies, subdivided into two different negative targets for the cosine and
scalar product-based SNNs, while the Polar Sine metric-based one can only accommo-
date an orthogonality between dissimilar output vectors (see Table 4.1). Each SNN
is complimented by a K-NN classifier, with K = 1. Every test is performed on the
MHAD, using the accelerometer named A1, attached to the right wrist of the user.
Indeed, preliminary tests show that this sensor is the most relevant as it holds most of
the discriminative information about each activity performed. A leave-one-out strategy
is selected, with every sample from 11 users selected for training, and the samples from
the last user for the testing phase.

4.1.3 Evaluation Criteria

The main evaluation criterion used in this study is the accuracy of the tests based
on each of the 15 different configurations identified in the section above.

The projection resulting of the different cost functions is further analysed thanks
to a study of the evolution of the mean output norms during training.

We also comment on the trade-offs between the reduced number of updates and
the associated increased error computation complexities: complexity and convergence
speeds are analysed based on the evolution during training of the classification score
on the test set.

Finally, a comparison with state-of-the-art results using the same leave-one-out pro-
tocol is shown, using successively the A1 accelerometer only; and, in order to broaden
the frame of the study, the M20 motion capture sensor only, sensor providing the 3D
coordinates in space of the right hand of each user. The same SNN architecture is
used, and a focus is made on the three objective function variants with a tuple-based
training set selection strategy.

4.1.4 Results

Classification accuracy scores are presented in Table 4.1.
In the following, we successively analyse the hypotheses presented in the section

4.1.2.
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Negative Target Selection
For the cosine-based cost function, an orthogonality between negative vectors, with a
target equal to 0, produces better overall results for every training set selection strategy
than the repulsion scheme, with a target equal to -1. Indeed, classification scores may
differ from 1% for a pair-based selection strategy, to 3% for triplets and tuples-based
strategies. This confirms our initial hypothesis that an orthogonality objective, as a
reachable target, produces a much more stable behaviour favourable during training.

However, this tendency is reversed for the scalar-based cost function with norm
regularisation, with scores giving a slight advantage to the -1 target for negative re-
lationships for pairs and triplets-based strategies. This phenomenon can be explained
by the decomposition of the target angle in three sub-targets. The norm objectives
have to be met perfectly for the scalar product objective to propose the right angle
correction. These norms dynamically change with each update, and norms correction
may be favoured over angle corrections. Thus, a target equal to -1 amplifies the scalar
product error, and gives an extra edge to the amplitude of the corresponding objective
error over the norm objectives error, speeding up the convergence.

Nevertheless, this tendency is reversed with the use of tuples, with a 0.6% advantage
for the orthogonality objective. Indeed, as the norm objectives are met, the batch effect
resulting from the representation of every class increase the global amplitude of the
error dedicated to the angle correction.

Thus, hypothesis H1 is validated for the cosine and Polar Sine Metric-based objec-
tive functions.

Training Set Selection Strategy : pairs, triplets vs. tuples
The training set selection strategy does not impact significantly the classification scores
for the cosine-based cost function, with similar scores around 91.5% for the three
strategies combined with a zero negative target. It is however interesting to notice a
reduced standard deviation for the triplet set strategy with a cosine-based objective,
due to the increased representation of the similarity relationships which improves the
intra-class distances.

Once again, the cosine-based cost function shows better results than the scalar-
based one, for the same reason negative targets improve the scores for this method.
Indeed, the subdivision of the cosine function in three subtargets slows down the con-
vergence considerably. This aspect is developed later in our study. Nevertheless, the
tuple contribution gives the best results for the scalar-based objective.

Finally, the Polar Sine Metric-based SNN shows a correct performance in every
case, comparable to the cosine-based SNN. While the pair and triplet strategies give
the advantage to the cosine-based cost function, the potential of the Polar Sine Met-
ric approach is revealed with tuples, which cover every relationship available during
training. This method shows then the best accuracy, equal to 91.8%, with a reduced
standard deviation of 9.1% over the cosine-based one, whose accuracy is equal to 91.5%
with a standard deviation of 10.2%.

Thus, we can conclude that the Polar Sine Metric-based objective shows challenging
results, as it corrects the cosine values more reliably than the scalar product-based one.

This analysis validates hypothesis H2, with a tuple-based strategy producing better
or similar results as other strategies for the three objective functions. Moreover, H4 is
validated as well, as the Polar Sine Metric-based objective combined with a tuple-based
strategy produces the best classification score. However, the resulting projections differ
for every cost functions, as seen below.
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Projection Analysis
As exposed in the previous chapter, an update based on gradient descent with the cosine
function leads to instabilities in the norms of the outputs. Indeed, for a model where
the gradient descent is simply performed on the components of the output vectors, we
proved that these norms increase with each update. Figures 4.2, 4.3 and 4.3 reflect the
evolution of the mean norms of the output and their corresponding standard deviations
for the different negative targets and training set strategies, respectively combined
with a cosine-based, scalar product-based and Polar Sine Metric-based cost function.
Thus, the mean amplitude of the output norms is followed with the number of epochs
performed during training. Six configurations are studied, corresponding to the three
objective functions for two negative targets choices, 0 and -1.
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Figure 4.2 – Evolution of the mean output norm for cosine-based SNNs.

Firstly, -1 negative targets are commented. Indeed, they introduce an instability,
already noted above, which leads to the expected increasing norms for the pairs and
triplets strategies, for both cosine and scalar product-based cost functions, which is all
the more important as the number of presented pairs during training is high. As norms
amplitudes increase, two phenomena may appear. First, the angular error gradient
also has to increase in order to maintain the angle error correction rate. Moreover,
increasing norms lead to instabilities, as the output space is contained in a hypercube.
Indeed, the maximum norm in a corner of a n-dimensional hypercube is equal to

√
n,

while it is equal to one in the middle of a “face”.
Unexpectedly, the non-linearities of the neural network, where the gradient descent

is ultimately performed on the connection weights, reverse the norm evolution direction
for the zero negative target. For both cosine (see Fig.4.2) and Polar Sine Metric-based
(see Fig.4.4) cost functions, norms decrease steadily with each update, with a speed
depending on the amplitude of the error. Thus, while this decrease slows down as the
model converges, it persists, which may lead to numerical instabilities after a while for
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Figure 4.3 – Evolution of the mean output norm for scalar product-based SNNs.
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long trainings, with mean norms close to zero. However, it is important to note that
this norm decrease facilitates training for the hypercube output space created by the
hyperbolic tangent activation functions. As a consequence, overall norm values inferior
to one enable every direction for any angle update with gradient descent.

The scalar product-based strategy proves more reliable in that case (see Fig.4.3),
although it implies a longer training with 1600 epochs. Indeed, it is devised to coun-
teract this norm variation phenomenon, and proves to be efficient, with mean output
norms close to one, and small standard deviations for the triplets and tuples strate-
gies. While the unit mean norm is not reached for the pairs strategy, it still stabilizes
the norm evolution, validating hypothesis H3, except for tuple and triplet objectives
combined with a -1 negative target whose mathematical instabilities lead to increasing
norms.

As a conclusion, angle updates with SNN networks imply a compromise between
efficient angle corrections and output norms stabilisation, although this phenomenon
does not produce major adverse effects in the case of a relatively small number of
classes and similarity relationships.

Computation Cost and Complexity Analysis
Finally, we assess the strengths and weaknesses of the three proposed training set
selection strategies in terms of computations. As seen above, we have to separate two
kinds of complexities. The first one, is closely related to the number of relationships
present in the cost function, recapitulated in Table 4.2. The second one, presented
in Table 4.3, consists in the memory load and the number of backpropagations and
updates necessary to present to the model every relationship available given a reference
sample.

Firstly, we can observe that the tuple-based strategy proposes updates which are
more balanced in terms of relationship representations. While the cosine and scalar-
based cost functions only present the relationships considering a reference class, the
Polar Sine Metric-based cost function makes every negative relationship update equiv-
alent, as every relationship known in the dataset is available.

Hence, we observe a second trade-off between the required number of updates and
the computation complexity of each update. In this case, the Polar Sine Metric-based
SNN requires twice the number of epochs of the cosine-based SNN, with 1600 epochs
against 800, to reach its optimum configuration, as seen in Figures 4.5 and 4.7. It
can also be noted that the scalar product-based SNN classification score still increases
after 1200 epochs (see Fig.4.6), but at a rate which prohibits a realistic training time
to reach the same score as the other two cost functions.

The cosine and scalar-based cost function with the tuples strategy imply an error
computation complexity which is linear in terms of output dimension NO and number
of classes Nc, i.e. a complexity in O(NO.Nc). While the Polar Sine Metric cost func-
tion involves a matrix inversion, the size of the latter stays quite limited, as it cannot
exceed the number of classes available for the classification task. Moreover, this matrix
is symmetric, positive-definite, which can ease memory usage and computations with
specific, optimised matrix algorithms, such as the Lower-Upper (LU) decomposition
with Cholesky factorisation, easing the determinant computation, limiting the dimen-
sionality of the problem as well as improving numerical stability. Thus, the global
complexity of the error resides in the matrix multiplication between the inverse cosine
matrix S−1 and the normalised output matrix Anorm, as seen in Appendix A.2.3, for a
final complexity in O(NO.N

2
c ). As such, the Polar Sine Metric-based method can stay

competitive for the most common small to medium scale problems. One approach for
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pairs triplets tuples

cos 1 2 Nc

scal 1 2 Nc

psine 1 2 Nc(Nc−1)
2 + 1

Table 4.2 – Number of relationships represented in the cost function per update given
a reference sample, with Nc the number of classes.

pairs triplets tuples
number of parallel networks/update 2 3 Nc + 1
number of backpropagations/update 2Nc 3Nc Nc + 1

number of updates Nc Nc − 1 1

Table 4.3 – Number of parallel networks, backpropagations and updates necessary for
each training set selection strategy to present every available similarity relationship
given a reference sample, with Nc the number of classes.

larger scale problems would be a decomposition into smaller sets of relationships in
order to limit the amplitude of Nc.
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Figure 4.5 – Evolution of the Classification score for the cosine-based SNN.

For information purposes, Table 4.4 reports the average training times for one up-
date, for each training set selection strategy and cost function studied above. These
times were obtained with an Intel(R) Core(TM) i7-4800MQ CPU @ 2.70 GHz. Com-
putation parallelism was not implemented, except for the matrix computations which
were performed with the LAPACK library [ABD+90].

We can see that the order of magnitude identified above are respected, with a
triplets strategy taking about 20% more time than the pair strategy, while the tuples
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Figure 4.6 – Evolution of the Classification score for the scalar product-based SNN.
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A1 pairs triplets tuples
cos 0.300823± 1.21945.10−2 0.353983± 1.01395.10−2 1.60702± 9.48366.10−2

scal 0.317392± 8.24548.10−3 0.386716± 8.50045.10−3 1.71631± 5.94483.10−2

psine 0.273950± 9.81730.10−3 0.328152± 1.95091.10−3 2.05181± 1.17176.10−1

Table 4.4 – Time for one update iteration (in milliseconds) for the different cost func-
tions and training set selection strategies on the MHAD protocol.

strategy increases the update time by more than 400%, which is still interesting with
a total number of updates divided by the number of classes, equal to 11. Finally
the Polar Sine Metric-based times does not reflect the increased complexity, as the
LAPACK library was designed for efficient matrix computations and parallelism.

Thus, thanks to tests on the MHAD, every choice for the SNN variants was evalu-
ated, from cosine targets, to training set strategies and cost functions. The first notable
results reside in the negative target, which offers a much more stable convergence and
better scores when it is set to zero, meaning output vectors from dissimilar samples
tend to orthogonality. Moreover, a tuple-based training set selection strategy shows a
comparable performance to pairs and triplets for the cosine-based cost function, while
it improves the scores for the scalar and Polar Sine Metric-based ones, validating our
approach. While the scalar product-based cost function stays behind with a recogni-
tion rate of 88.6% compared to the other methods around 91.5-91.6%, it was proved
to efficiently stabilise the norm instabilities identified in these other methods. Finally,
the complexities for every variant were studied.

Lastly, we provide a comparison between our results and the literature in order to
prove the viability of Siamese networks as classifiers.

Comparison with state-of-the-art results
Thus, we compare the performances of each SNN objective function variant, with a
tuple-based training selection strategy, whose choice is the result of the validation of
our hypothesis H2. The three tested Siamese configurations are denominated SNN-cos,
SNN-scal and SNN-psine, depending on their respective objective functions based on
the cosine, the scalar product, and the Polar Sine Metric. These results are available in
Table 4.5. For our analysis, we focus on the classification rates obtained from isolated
sensor data, with the accelerometer A1 and motion capture sensor M20.

Indeed, Cumin et al. [CL16] propose to tackle the challenge of human action recog-
nition using multiple data sources, and test their approach on the MHAD, using the
same leave-one-out protocol as the one we adopted. Although they reach a classifica-
tion rate of 99.85% thanks to decision fusion methods from three classifiers, namely
MLP, DTW and SNN with K-NN (K = 1), results are available for single sensors.
Chen et al. [CJK15] use a fusion of accelerometer and depth maps data, for a final
mean classification rate of 99.54%. However, a SVM approach based on A1 is available.

The SNN-based approaches show globally superior results on the inertial sensor
A1, with a lowest score of 88.6% for the SNN-scal, compared to a best score of 86.7%
for the SVM approach. This proves that a SNN-based approach is challenging. This
conclusion is verified for the M20 sensor. While the MLP show an increased classifica-
tion rate from 79.0% with A1 to 91.3% with M20, higher than the results for SNN-cos
and SNN-scal, respectively equal to 90.6% and 91.0%. However, our SNN-psine ap-
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A1 M20

DTW [CL16] 0.790± 0.107 0.888± 0.076
MLP [CL16] 0.818± 0.099 0.913± 0.067
SVM [CJK15] 0.867

SNN-cos 0.915± 0.102 0.906± 0.080
SNN-scal 0.886± 0.079 0.910± 0.065
SNN-psine 0.918± 0.091 0.924± 0.068

Table 4.5 – Comparison between state-of-the-art methods on the MHAD.

proach, implementing the Polar Sine Metric and tuple-based set selection strategies
contributions, show the best result of 92.4%.

After this characterisation of each SNN variant, we focus on the classification per-
formance of the SNN compared to state-of-the-art methods, and assess the rejection
capabilities of such a model (hypothesis H5), thanks to a dataset specifically gath-
ered to target the problem of inertial symbolic gesture classification and rejection with
embedded devices such as Smartphones.

4.2 Inertial Symbolic Gesture Classification and Re-
jection

In this section, we study the behavior of the SNN for inertial 3D symbolic gesture
recognition, with novelty detection and rejection. The context of the experiment is
the case of a Smartphone user gesture-based interface, where shortcuts to applications
may be provided with gestures performed in the air, with the device in hand. This
problem presents all the main characteristics of an open-world problem, where it is not
possible to collect data from every targeted user. It is then mandatory to detect and
isolate unbound or not-learned gestures to prevent any unwanted trigger during the
interaction.

Indeed, rejection is only rarely taken into account by existing methods, or is taken
care of by another model specifically trained for this task. Here, once the SNN is
trained, the output layer provides a feature vector representing a similarity measure of
a set of samples, measure whose consistency should allow for a more selective rejection.

In the light of the state-of-the-art, we assess the classification and rejection potential
of the SNN when building a non-linear similarity metric between sets of samples.

At the beginning of the study, no public dataset was available for 3D symbolic
gesture recognition to our knowledge. Thus, in the following, we first introduce the
gesture database gathered to test our algorithms for gesture recognition. Secondly, two
protocols designed to cover the main open-world aspects are developed. Then, criteria
are proposed to evaluate the performance, combining both classification and rejection.
Finally, conclusions are drawn from the comparison results.

4.2.1 Database Introduction
Two datasets were formed, based on the accelerometer and gyrometer data from

the Android Samsung Nexus S device, sampled at 40Hz. The first dataset, named
DB1, comprises 40 repetitions of 18 different classes performed by a single individual,
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Figure 4.8 – Representations of the gestures in the Orange Dataset.

for a total of 720 records. Indeed, DB1 is the representation of a personalisation
context, where the model is fitted to one user. Conversely, DB2 gathers 5 repetitions
of 14 gesture classes performed by 22 individuals, for a total of 1540 records. DB2
corresponds to an open-world testing with multiple users. The 14 classes in DB2
encompass gestures with different complexities (see Fig.4.8). They are composed of
linear gestures, with horizontal (flick North, South, East, West) and vertical (flick Up,
Down) translations; curvilinear gestures (clockwise and counter-clockwise circles, alpha,
heart, N and Z letters, pick gesture towards, and throw gesture away from the user).
The 4 additional classes in DB1 are chosen to be close to some of the gestures cited
above: the number 8 is close to both clockwise and counter-clockwise circles; the infinity
gesture presents the same confusions in an horizontal plane, and with the gesture alpha;
finally the letters V and W can easily be confused with vertical translations as well as
the letter N.

The same preprocessing steps as in 4.1.1 were applied to the data, that is, an
amplitude scaling-based on the maximum norm over the samples of a gesture; a low-
pass filter with a parameter β = 0.7; and a 45-length resampling of the inertial samples
based on the curvilinear length. An example of accelerometer signals for the gesture
Flick East for one user, before and after preprocess, is available in Annex C. The
signals from the three axes x, y and z, corresponding to the Figure 2.1, are successively
represented, with a scale where 1000 = 1g, given g = 9.8m.s−2 the acceleration due to
gravity.

4.2.2 Protocols
Two sets of experiments are performed on both datasets. The first one consists

in assessing the classification performance of the SNN, while the second sets aims at
studying the rejection potential of this model, according to hypothesis H5. As seen
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in Section 4.1.4, the tuple training strategy with a zero negative target provides the
best results. As such, three variants of the SNN are tested, called "SNN-cos", "SNN-
scal" and "SNN-psine", depending on their respective cost functions 3.23, 3.30 and
3.41. The same architecture is selected for every variant, with a 270-neuron input
layer, one 45-neuron hidden layer, and one 90-neuron output layer. The hyperbolic
tangent is classically chosen as the activation function for every neuron. The training
set strategy is based on tuples, where each sample from the training set is selected once
as a reference, with one additional sample from every class selected as the positive and
negatives examples.

In the following, state-of-the-art models selected for comparison and test protocols
are exposed.

4.2.2.1 Classification tests

The classification tests serve as a direct comparison with the different state-of-the-
art strategies for gesture recognition, in a controlled framework with a closed gesture
vocabulary. Every performed gesture is assumed to belong to this vocabulary, and a
label is immediately assigned.

As the most common framework, classification tests are the most direct and ef-
ficient comparison with the literature. Every gesture recognition approach is rep-
resented in our comparative study: statistical-based methods with continuous Hidden
Markov Models (cHMM) [Pyl05]; geometric-based methods with Dynamic Time Warp-
ing (DTW) [Pet10] and Principal Component Analysis (PCA); classifier-based methods
with the classical Support Vector Machine and Frame-based Descriptor Support Vector
Machines (FDSVM) [WPZ+09]; and neural-based methods with the MultiLayer Per-
ceptron (MLP), Bi-directional Long Short-Term Memory Neural Network (BLSTM)
[LBMG15] and Convolutional Neural Network (CNN) [DBLG14].

The best parameters and configurations for each method were identified thanks to
preliminary experiments:

— cHMMs follow a left-to-right architecture, are composed of 9 states with 3 for-
ward connections using a Gaussian emission distribution, while classification is
operated on a maximum-likelihood criterion;

— the DTW-based method is associated to a 5-nearest-neighbour classifier, with
the vectorised gesture data;

— the PCA-based method is associated to a 1-nearest-neighbour classifier, using
the 90 eigenvectors linked to the highest eigenvalues for reconstruction;

— the SVM-based method is applied to the 270 fixed-size vectors with a linear
kernel;

— the FDSVM-based method extracts 19 features over 9 time-windows, for a total
of 1026-dimensional feature vectors;

— the MLP classifies the 270-feature vectors on a maximum activation criterion:
inputs are processed by a 45-neuron hidden layer with a hyperbolic tangent
activation function, and a 14-neuron "softmax" output layer;

— the BLSTM-based model is composed of two 100-neuron LSTM networks, with
a majority vote over the classifications at each time step, and works on the
vectorised gesture data;

— the CNN is applied to the 270-feature vectors presented as a 45 × 6 image,
using temporal convolutions with a 10-10-65-65-14 network, with two stacks of
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convolutional and subsampling layers, followed by a fully-connected "softmax"
output layer.

The classification tests rely on 4 protocols, named C1 to C4, covering different
real application settings. Each protocol is repeated 10 times so as to take into account
the influence of the training and testing data selection. These 10 configurations are
shared for every method during the tests. The 14 common classes to both DB1 and
DB2 datasets were selected for these experiments.

— C1, based on DB1, covers the closed-world application with a single user and
a controlled set of gestures, with 5 randomly selected samples per class for
training, and 16 samples for testing;

— C2, based on DB2, corresponds to a multi-user closed-world application. Every
user is represented in the training data, with 2 samples per class and per user
used for training, and the 3 remaining samples for testing;

— C3, based on DB2, represents an open-world case, where every potential user
cannot be identified. Thus, the training phase is based on every sample from 17
users, while testing is performed on the samples of the 5 remaining users;

— C4 is the most challenging open-world scenario, with one user used as a refer-
ence, while tests are carried out on the 21 remaining users. While this protocol
underlines the specificities in the gesture style of each user, it also assesses the
generalisation capacities of each classifier.

These protocols also serve as a basis for the rejection study, where unknown classes
are introduced.

4.2.2.2 Rejection tests

In a second phase, we center our study towards the rejection capacities of the SNN
(hypothesis H5). Two approaches are selected to compare the performance of this
model. The DTW-based model stands out as the best immediate comparison with
another similarity metric, while the MLP, as the neural-based classifier counterpart of
the SNN, is the most natural choice to evaluate their performances as neural networks.
With a K-NN classifier, a single distance threshold is applied on the nearest neighbour
for the DTW and SNN-based strategies, which effectively reflects the relative projection
of the test and training samples. Classically, the rejection criterion of the MLP consists
of a threshold on the maximum activation, also interpreted as a posterior probability.

The goal of this experiment is to characterize the performance of the abovemen-
tioned models for two types of rejection: incorrect classifications, where classification
errors have to be identified; and unknown classes. In the first case, the main challenge
is to isolate the misclassified samples before rejecting correctly classified ones, while
the second kind of rejection concerns the "rest of the world" paradigm, which aims at
evaluating a model performance in isolating elements it was not trained for from the
rest of the known classes.

Thus, two protocols were designed for these two tasks.
— R1 tests the rejection quality for misclassified samples, whose outputs are too

far from the references. It is similar to C4: based on DB2, the samples from
one user form the training set, while the data from the 21 remaining users form
the test set. This allows for testing the generalisation potential of the trained
model, as well as its capacity for rejecting samples whose variations from the
reference individual are too important.
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— R2 is similar to C1: based on DB1, 5 samples for the 14 classes are used
for training, and 16 for testing. However, every samples from the 4 remaining
classes ("V", "W", "infinity", "8") are introduced in the testing set. This test
embodies a realistic personalisation paradigm, used in a natural user interface
where the user does not specify when they make a gesture, and the system has
to determine whether to trigger an event even before selecting the corresponding
one.

4.2.3 Evaluation Criteria (classification/reject)
Two different evaluations are performed in order to characterize the performance

for each test.
For the protocols C1 to C4, we report the accuracy of the tests, i.e. the ratio

between the number of correctly classified samples and the total number of samples.
Moreover, a confusion matrix is studied in detail for every protocol in order to identify
the main error origins. For each protocol, the SNN variant showing the best results is
selected for these confusion matrices.

For the rejection protocols R1 and R2, we propose an evaluation of the rejection
quality based on graphs similar to the Receiver Operating Characteristic: we follow the
classification rate as a function of the rejection rate. The classification rate is defined
as the ratio between accepted and correctly classified samples and the total number of
accepted samples, while the rejection rate is defined as the ratio between the number of
rejected samples and the total number of samples. Thus, a high rejection quality will
see an early rising curve, which is why the total performance can be estimated thanks
to the area under the curve. While each model can reach a 100% classification rate even
for a 0% rejection rate for protocol R1, this value cannot theoretically be reached for
protocol R2 until the 41.7% rejection rate mark, which is the ratio of unknown samples
in the test set. We also propose to further study the rejection quality for protocol R2
with a graphical representation of the ratio of the different types of rejected samples as
a function of the rejection rate. This allows for a visualisation of unwanted rejection,
as well as the relative importance of misclassification and unknown classes rejections.

4.2.4 Results
In this section, results for the classification tests are presented, followed by the

rejection protocols.

4.2.4.1 Classification tests

The different SNN variants perform in relatively the same way for each protocol in
the classification tests, showing that the simpler, clean database allows each method
to reach their full potential, with efficient angle updates. In the following, the results
for each protocol is studied into more detail, and compared to the state-of-the-art.

Protocol C1
The general performance comparisons between the main models for gesture recognition
are presented in Table 4.6. As results between the SNN-scal and the SNN-psine versions
are quite similar and often in favour of the first version, the proposed confusion matrices
are extracted from the tests using the SNN-scal.
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C1 C2 C3 C4

DTW 0.995± 0.005 0.945± 0.002 0.911± 0.014 0.791± 0.016
PCA 0.992± 0.007 0.962± 0.008 0.923± 0.012 0.793± 0.019
cHMM 0.992± 0.010 0.858± 0.013 0.817± 0.017 0.765± 0.023
SVM 0.961± 0.009 0.949± 0.008 0.913± 0.002 0.674± 0.037

FDSVM 0.964± 0.019 0.954± 0.006 0.924± 0.013 0.693± 0.041
MLP 0.978± 0.010 0.954± 0.006 0.905± 0.010 0.744± 0.040

BLSTM 0.868± 0.007 0.956± 0.005 0.926± 0.029 0.654± 0.010
CNN 0.979± 0.005 0.958± 0.009 0.934± 0.015 0.787± 0.034

SNN-cos 0.988± 0.008 0.969± 0.007 0.934± 0.013 0.775± 0.032
SNN-scal 0.990± 0.009 0.968± 0.009 0.933± 0.014 0.766± 0.029
SNN-psine 0.987± 0.009 0.968± 0.006 0.934± 0.011 0.776± 0.025

Table 4.6 – Recognition rates for symbolic gesture recognition protocols.

For protocol C1, PCA, DTW and cHMM methods present the best accuracies,
with an advantage for the DTW at 99.5% accuracy. Indeed, neural-based methods are
challenged by the relatively low number of training samples. The BLSTM shows a
clear case of undertraining with an accuracy of 86.8%, while the CNN reaches a higher
accuracy of 97.9%, thanks to its architecture which can offset some variations such as
temporal misalignments. The different versions of the SNN show comparable results,
with the highest scores for neural-based methods, which proves the coherence of the
learnt projections. Overfitting is the main concern for this protocol, and it is easier
to find the best configuration for the SNN-scal as convergence is slower. As shown in
Table 4.7, the few errors come from gestures who show the same initial dynamic. For
instance, the gesture "Alpha" is confused with "N" as both gestures share the same
dynamics, with three vertical strokes. These vertical components are also found in
the gesture "Clockwise". Other confusions come from gestures contained within others,
such as "Z" and "FlickE", where "Z" actually starts with a translation to the right of
the user. These errors might be the sign that the temporal normalisation introduces a
bias. Indeed, the typical Smartphone accelerometer is not needed for precision tasks,
and its range is thus limited. It is then possible to notice some time windows where
the sensors saturate, producing the maximum output value, time windows which are
reduced to a single sample with a the thresholding scheme. Complex gestures such as
the ones above may be deformed, with one critical stroke being neglected.

Protocol C2
The SNN-cos shows the best accuracy for protocol C2 of 96.9%, closely followed by
both SNN-cos and SNN-psine with 96.8%, proving that the SNN performs well even
when multiple, different gesture dynamics are involved. The third best score is obtained
by the PCA-based method, as it can handle variations thanks to the projection on its
principal eigenvectors, which orient the reconstruction towards known configurations.
The majority of the other methods sees their accuracy gravitate around 95.5%.

A closer study of the confusion matrix for the SNN-scal in Table 4.8 shows small
confusions between "N" and "Up", and "Alpha" and "Heart", which are indeed similar
gestures. Moreover, a confusion between "Up" and "Pick" appears, which seems under-
standable as both gestures require a vertical movement upwards. As movements away
from the user, the gestures "Throw" and "Flick North" show the highest error rate. An
analysis of the source of these errors shows that the majority of these samples belong to
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– alpha ccw cw flicke flickn flicks flickw heart n pick tap throw up z sum

alpha 13 3 16
ccw 16 16
cw 16 16

flicke 16 16
flickn 16 16
flicks 16 16
flickw 16 16
heart 16 16
n 1 15 16

pick 16 16
tap 16 16

throw 16 16
up 16 16
z 1 15 16

sum 13 16 17 17 16 16 16 16 18 16 16 16 16 15 224

Table 4.7 – Confusion matrix for protocol C1 for SNN-scal

– alpha ccw cw flicke flickn flicks flickw heart n pick tap throw up z sum
alpha 43 1 44
ccw 42 1 1 44
cw 1 42 1 44

flicke 44 44
flickn 43 1 44
flicks 44 44
flickw 44 44
heart 1 43 44
n 44 44

pick 44 44
tap 44 44

throw 4 40 44
up 2 1 41 44
z 1 43 44

sum 46 42 42 45 47 45 44 43 44 46 45 41 43 43 616

Table 4.8 – Confusion matrix for protocol C2 for SNN-cos

a unique user. Thus, this phenomenon underlines the fact that some users may have a
really specific way of performing gestures, which, combined with the imprecision of the
sensors, may result in a great difficulty to manage them with a single, general model
not specifically trained for these singletons.

Protocol C3
The protocol C3 amplifies the difficulties encountered with C2. The SNN-psine and
SNN-cos take advantage of the bigger training dataset with an accuracy of 93.4%. In
this configuration, neural-based methods such as CNN, BLSTM and SNN perform bet-
ter than other statistical and geometric methods, which justifies the need for a high
non-linearity in order to generalize to unseen users. In that case, the SNN (see Table
4.9) shows a high symmetric confusion between "Pick" and "Up" for the same reasons as
for C2. It also handles badly the gesture "Throw". Indeed, this gesture, which consists
in an arc away from the user, brought about fears of actually throwing the device, fears
causing in turn the highest disparities between users. This result is all the more visible
in C4.
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– alpha ccw cw flicke flickn flicks flickw heart n pick tap throw up z sum

alpha 22 1 1 1 25
ccw 25 25
cw 25 25

flicke 23 1 1 25
flickn 24 1 25
flicks 25 25
flickw 1 1 23 25
heart 25 25
n 1 1 23 25

pick 20 1 4 25
tap 25 25

throw 3 5 2 15 25
up 1 2 22 25
z 1 24 25

sum 23 29 26 27 29 26 23 25 24 22 27 18 27 24 350

Table 4.9 – Confusion matrix for protocol C3 for SNN-psine

Protocol C4
Finally, the protocol C4 presents the highest challenge for these methods, with a single
user data for training. As a consequence, all the flaws identified above are reinforced,
with results dropping respectively to 79.3% and 79.1% for the PCA and DTW-based
methods. Geometric methods have the advantage over neural-based ones, which have
to balance under and overfitting for this very limited training set. The BLSTM-based
method was not developed on this protocol in [LBMG15], since the undertraining un-
derwent in C1 would prove all the more detrimental here. However, the architecture
of the CNN allows for a better absorption of different gesture dynamics, following with
an accuracy of 78.7%, while the SNN-cos and SNN-psine take a 1% advantage over
the SNN-scal, with respective accuracies of 77.5% and 77.6% against 76.5%. The con-
fusion matrix in Table 4.10 confirms the hypothesis of amplified flaws. The gesture
"Counter-Clockwise" is easily confused with a "Z". Indeed, a reasoning on the horizon-
tal plane show that both gestures are composed of three horizontal strokes, towards
the right, the left, and right again. The "Up" and "Pick" gestures are a source of er-
rors, as the difference between the two gestures essentially resides in the end of the
movement where the "Pick" gesture adds a horizontal movement. The same approach
can be used to understand the confusion between the "Up" and "Flick North". Indeed,
during a "Flick North", the user involuntarily introduces a vertical movement as the
arm advances forward, which can be mistaken for the vertical movement of "Up". The
"Throw" gesture reveals all its complexity, representing 25% of the total number of
errors. It is however important to notice that the classification of easier, horizontal
gestures, such as translations, is satisfactory. Thus, most of the complexity and errors
come from more elaborated gestures, for instance "Counter-Clockwise" or "Throw", and
from vertical gestures, with "Up", "Pick" or "Tap".

Thus, many limitations were identified, from unique users to easy confusions be-
tween gestures where one can be identified as a part of the other. While a different
strategy combining multiple classifiers may simplify the task of handling these outliers,
rejection remains as a solution to isolate and prevent these errors.
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– alpha ccw cw flicke flickn flicks flickw heart n pick tap throw up z sum

alpha 82 1 1 1 3 1 7 105
ccw 69 5 3 2 26 105
cw 6 2 88 7 1 1 105

flicke 1 1 3 97 2 1 105
flickn 4 101 105
flicks 104 1 105
flickw 5 3 4 93 105
heart 1 1 1 1 1 99 1 105
n 4 2 1 91 6 1 105

pick 2 1 71 2 29 105
tap 1 4 84 16 105

throw 1 1 11 21 4 4 2 4 3 105
up 2 13 4 1 6 1 78 105
z 7 6 1 2 1 5 83 105

sum 107 79 107 12 143 121 99 99 107 82 127 59 111 109 1470

Table 4.10 – Confusion matrix for protocol C4 for SNN-psine

4.2.4.2 Rejection tests (Hypothesis H5)

Protocol R1
Protocol R1 consists in studying the rejection behaviour for the most challenging case
described above, with a training set comprising the data from a single user. Results are
presented in Figure 4.9. While the DTW-based method takes profit from the temporal
information while recognizing gestures, it is outperformed for error identification after
the 36% rejection rate landmark, where the non-linear projection of the SNN-scal allows
for a more efficient rejection. The SNN-cos and SNN-psine show a slightly inferior
score, while staying more efficient than the MLP-based method. This difference can
be explained by the potential overfitting of the SNN-cos and SNN-psine. Thanks to
its regularisation, the SNN-scal learns every class in a more uniform manner, with a
more consistent intra-class distance over all classes, which in turn favours the rejection
strategy based on a single threshold.

Protocol R2
Protocol R2 shows the better capacity of the SNN to isolate unknown samples. As
seen in Figure 4.10, in a case based on a single user where overfitting does not threaten
generalisation over the testing set in the same manner, every version of the SNN proves
to be superior to the DTW and MLP-based methods. Around the 41.7% landmark
4.11, which is the theoretical minimum rejection rate which would allow the rejection
of every unknown sample, the SNN variants present a classification rate of 94.4%, while
the DTW and MLP-based methods get lower respective scores of 92% and 88%.

A more detailed analysis of the rejection can be conducted thanks to Figure 4.12.
The evolution of three types of rejection is followed as the rejection rate increases.
Rejected misclassifications and samples from unknown classes form the correct rejec-
tion, while rejected samples which would have been correctly classified form the wrong
rejection. It is very interesting to observe that the SNN-based methods present the
lowest area for the mean wrong rejection rate, with a steady rejection rate that only
starts to degrade after the 41.7% landmark. This shows their greater selection ability
compared to the other two methods where the degradation is a lot more spread with
the increase of the rejection rate. The gap with the perfect rejection model, where the
area under the perfect rejection line would be dedicated entirely to unknown classes
rejection, is also a lot smaller for the both SNN variants. Indeed, the non-linearity of
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Figure 4.10 – SNN-scal, SNN-psine, DTW and MLP comparison on R2.

the projections allows for a more even intra to extra class ratio, favouring the single
threshold rejection strategy. The SNN-scal show a zero-incorrect-rejection for smaller
rejection rates, while the SNN-psine and SNN-cos still reject correctly classified sam-
ples, which is another sign of their limited error selection, where more complex classes
cannot be learnt as well before overfitting.

To conclude, we have shown the validity of the SNN-based methods for classification
and rejection, with a single-user most favourable case. Thus, these methods can easily
be considered for a realistic personalisation paradigm, where the interface is suited
to one user in particular, and is also required to handle unseen gestures. Moreover,
the SNN-scal shows state-of-the-art result on a more general closed-world case, where
multiple known users may use the device with a single model. The SNN-scal strategy
proves to be more versatile in a rejection problem, with its norm regularisation pre-
venting an overfitting, which allows a uniform training of every class. Conversely, the
SNN-cos and SNN-psine present more accurate classification scores, to the detriment
of rejection, with a training less adapted to a single threshold rejection. This drawback
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may be corrected with class-specific thresholds, in order to take into account different
intra-class distances.

4.3 Conclusion
We have shown in this chapter the potential of the SNN in its different configurations

thanks to the MHAD and Orange Dataset. We have proved that a training based on
multiple samples covering the whole ensemble of known relationships can improve and
speed up training. Moreover, we have studied the impact of our two variants, with
the scalar-based cost function with norm regularisation, and the Polar Sine Metric-
based cost function. On the one hand, while the scalar-based cost function allows
for a control in the output vector norm variations, its angular correction divided in
three subtargets limits its potential for complex datasets. On the other hand, the
Polar Sine Metric-based cost function proves to be a valid and reliable generalisation
of the sine function to measure dissimilarities, and provides a standardised approach to
handle variable numbers of relationships, at the cost of a higher complexity of the error
computation. The potential of the SNN was also studied for realistic Smartphone-based
gesture recognition problems, with tests performed on the Orange Dataset, covering
multiple realistic scenarios in classification and rejection. The SNN-based methods
show competitive, state-of-the-art results in classification, especially with higher size
training sets; as well as in rejection, outperforming its respective neural and elastic
metric counterparts, the MLP and DTW-based methods, in novelty detection and
rejection.
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Chapter 5
Conclusion and Perspectives

This last chapter presents a summary of our contributions and the associated tests
destined to assess their behaviour and performances. Then, limitations of our research
are developed. Finally, multiple avenues for research are proposed for the development
of the potential of the SNN for Similarity Metric Learning; and for its application for
Gesture Recognition.

5.1 Conclusion
In this work, we present the problem of inertial gesture recognition as a potential

solution for low-cost, richer interfaces and interactions in an ever-growing ubiquitous
computing context. Indeed, recognising gestures or activities from inertial sensors is not
straightforward, as this process is disrupted by the sensors limitations and variations
in realisation between users. However, while this task has already been approached
with classical machine learning methods, every necessary component for a complete
interface was not considered. Thus, we focus our study on classification and rejection
methods applied to gesture recognition, in order to fill the void in the interaction where
the user would perform a gesture not destined to the machine and it is up to the model
to determine whether an action should be triggered or not. Hence, we propose to
perform an automatic non linear metric learning on accelerometer and gyrometer data,
with an artificial neural network based approach inspired by the Siamese paradigm.
While classical neural networks are specifically trained for classification, the Siamese
Neural Network operates an automatic feature extraction thanks to a training based
on multiple samples and their similarity relationships.

Firstly, we propose an adaptation of the Siamese strategy to a multi-class clas-
sification context for a stochastic training. Beyond the typical pairs and triplets of
samples labelled as similar or dissimilar, a generalised training set selection strategy is
suggested, which leverages one sample from every class, effectively simplifying the con-
stitution of these training sets by balancing the representation of every relationship.
Secondly, following the choice of the cosine similarity metric for the output space,
mathematical flaws are identified, in particular concerning the uncontrolled norms of
the outputs during training, leading to a second contribution. Simplifying the original
cosine function, angle updates are decomposed in three independent targets for a pair
of vectors, namely a target on the scalar product between these vectors, and a target
on their respective norms. Finally, we go into multi-class relationships definitions in
depth, and proposed a unified similarity function, the Polar Sine Metric, which holds
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and represents all the available information about dissimilarities in the training set, and
leads to a supervised, stochastic non-linear Independent Component Analysis learning.

Two sets of experiments are then performed in order to assess the performances of
the different cost functions. The first set of experiments is based on the Multimodal
Human Activity Dataset, with 11 actions performed by 12 subjects. This datasets
allows for a comparison between cosine-based, scalar-based and Polar Sine Metric-
based SNN variants, as well as comparisons with methods based on different modalities.
We show that an orthogonality objective for negative pairs of samples is more stable
and produces better classification rates than a repulsion scheme with a target equal
to -1 for the cosine value. Moreover, target functions including the actual cosine, i.e.
the cosine and Polar Sine Metric, possess a higher discrimination potential than the
scalar-based objective function, which suffers from an angle definition divided in three
subtargets. However, a norm evolution study during training shows the uncontrolled
behaviour of the mean output norms, which tend to decrease with each update; while
the regularisation term introduced in the scalar-based objective proves to stabilise that
behaviour, which may be beneficial for longer trainings. Finally, a comparison between
pairs, triplets and tuples training set strategies show that the tuple-based strategy
conciliates the best results for every objective variant, with a roughly same score for
each training strategy with a cosine-based objective. The tuple-based training set
selection strategy comes to the price of a higher number of epochs to reach the best
configuration, with fewer, more computational updates.

Then, a second, Smartphone based dataset, composed of 18 symbolic gestures from
22 users, was gathered in order to represent specifically the embedded device interac-
tion paradigm at the centre of our study. Both classification and rejection problems are
tackled. Multiple classification schemes are proposed, reflecting the different plausible
interaction frameworks, from the single user in a "closed world", with a limited and de-
fined gesture vocabulary, to the open world, where the number of users is not specified
and the model has to generalise. We then show that our SNN approach, coupled with a
one-nearest-neighbour classifier, proves to be competitive against state-of-the-art meth-
ods. In a rejection problem, we bring to light the higher novelty detection capacities
of the SNN network over its neural and distance based counterparts, respectively the
MLP and DTW.

5.2 Research Limitations

The principal limitation of this study consists in the lack of a dataset large enough
to represent a real generalisation problem. Indeed, gesture recognition as an interface
solution would need to encompass the different representations of each gesture, which
cannot be perfectly represented with a limited number of users.

Thus, once again, it is important to bear in mind that the tests performed aimed
at identifying the best performances for each model in order to assess their potential.
As such, it is not a realistic assessment of a real-world application behaviour. This
limitation was induced in particular by the relatively small amount of data available,
which prevented the constitution of the conventional validation set.

A potential solution would be to expand the current Orange Dataset, or identify a
future, larger dataset closely related to our problematic.
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5.3 Perspectives
Two main perspectives are envisioned. First, continued research is possible on the

SNN. Secondly, different strategies can be applied to improve gesture recognition based
on our results.

5.3.1 Continued research on SNNs
In this section, we propose leads for different solutions to the identified problems,

in particular norm regularisation, designed to compensate for the drawbacks of our
contributions identified in this study. Secondly, some evolutions are suggested for the
SNN.

Thus, the norm regularisation scheme proposed with the scalar based cost function
presents the drawback of compromising between output norm and angle correction.
Hence, a solution would be to integrate the angle correction directly in the norm
regularisation, since the proposed model is one epoch late for norm correction: the norm
to be regularised should be the one of the updated sample, rather than the one from
the current projection. In Appendix A.3 is presented a possible solution which takes
into account the angle correction in order to improve training. It is also be possible to
consider a two-stage training, which would require to duplicate every update. Indeed,
the first update, while temporary, is performed normally, and the second one takes into
account the norm of the updated outputs to propose a more accurate regularisation
for the initial network. Finally, a control over the norms may be performed manually
with the help of an added linear layer. Indeed, any multiplication or division of the
weights would not impact the final cost.

Moreover, the Polar Sine Metric proposes a matrix approach to describe relation-
ships, but relies on a determinant to compute the final dissimilarity for a set of samples.
This matrix definition may also be used to generalize the cosine cost function, including
between-negatives relationships, and performing a gradient descent on the Frobenius
Norm of difference between the identity I and the cosines matrix S for a training set
T :

CostFrob(T ) = ‖I− S‖F (5.1)

The SNN structure itself may be modulated to adapt better. First, the Siamese
network is above all a training strategy based on the relationships between sets of
samples. Thus, it is possible to consider different architecture for the SNN than the
proposed one based on a MLP. Indeed, the Siamese training strategy may be seen as
a batch training, where the error is added for the different samples constituting the
training set. As such, any classifier taking fixed inputs should be adaptable to this
strategy, with Siamese CNN for instance.

In the context of temporal series such as inertial sensors data, a great development
would reside in the temporal dimension of the SNN network. However, the adaptation
of the Siamese strategy is not straightforward for temporal networks, such as the recur-
rent or LSTM neural networks, as the network output dimensions are not determined,
which complicates the definition of a similarity criterion in the output space. Indeed,
the objective function relies on a pre-defined, controlled similarity metric, learned in
the produced output space, yet a temporal network would introduce a new dimension
to the outputs, related to the length of the input signal. As such, it is necessary to
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consider similarity metrics between two matrices which only share one dimension. One
intermediary solution would be to normalize the inputs in time, and suggest a similarity
criterion based on matrices formed by the successive outputs. This would be possible
for the cosine metric, which only depends on the definition of a scalar product. For
example, given the matrices A and B, a common scalar product consists in the value
of the trace of the product between one matrix and the conjugate of the other:

< A,B >= tr(A.BH) (5.2)

This scalar product also defines the Frobenius norm, which can be used to generalize the
Euclidean based SNNs. One first correlation estimation between matrices of different
sizes X1 X2 sharing one dimension is the RV-coefficient [Esc06], defined as:

RV (X,Y) =
tr
(
X1X>1 X2X>2

)
√
tr
[
(X1X>1 )2

]
tr
[
(X2X>2 )2

] , (5.3)

which would obviously come with an obvious additional computational cost.

To conclude, while different SNN architecture may be adapted with fixed inputs,
different similarity measures have to be explored in order to propose a true temporal
SNN, which would be beneficial to a more impartial inertial data analysis. After
presenting multiple leads for cost function and SNN architecture evolutions, we focus on
Gesture Recognition to propose research subjects based on Similarity Metric Learning.

5.3.2 Suggestions for Gesture Recognition
Two approaches are suggested to improve Non-Linear Similarity Metric Learning

based Gesture Recognition. The first one consists in training a specific classifier based
on the SNN projection. The second leverages the identification of multiple gesture
styles in order to consider different training strategies.

On the one hand, it would be beneficial to envision using different classifiers. In-
deed, while the K-NN classifier shows a lot of advantages, it may not capitalise on the
whole potential of the trained projection. For example, it is possible to train a second
network using the SNN outputs to produce a global neural classifier. Any classifier
can effectively be considered, which would however require larger datasets, as the final
classifier training should be performed on samples other than the ones used for the SNN
training to limit any overfitting issue. In case of identified confusions for the trained
classifier, classification may also be reinforced thanks to the intrinsic, directly available
K-NN classifier. The first classifier which comes to mind would be the MLP, which
could unify the training of a single network for feature extraction and classification.
Two strategies may arise, with separate trainings for the SNN and MLP, or a unified
scheme, where the Siamese objective is introduced as a regularisation over the error of
one layer in the network.

On the other hand, specific training strategies may be devised to improve the SNN
training. Indeed, a global training on every class available favours the extraction of the
most significant traits necessary to distinguish the most different gestures. However,
this is detrimental to different yet similar classes, which require a much higher effort
to be separated. Thus, we suggest a multi-stage training, which would reveal the more
similar classes. Then, it could be possible to identify "super-classes", which would
differentiate between different "families" of gestures. This approach would then consist
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in a decision tree, where each node is a SNN network and with a K-NN classifier,
trained specifically on the samples of this super-class so as to extract the most salient
features for this particular sub-problem. This approach has the potential of proposing
an adaptive approach, where network-nodes can be added or updated as new classes
are added to the interface.
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Appendix A
Derivation calculations

A.1 Cross-entropy with Softmax output

Let X the output of the MLP for the sample Gx, netXj the input of the neuron
j activated with the sample Gx, aOi the output of the ith neuron of the output layer
O, and ti the corresponding target, equal to 1 for the neuron associated to the class of
Gx, and 0 for the other neurons.

Ecross
W (X) = −

K∑
k=1

tklog(aOk ).

aOi = exp(netOi )∑
k

exp(netOk ) .

∂aOi
∂netXj

= δij
exp(netOi )∑
k

exp(netOk ) − exp(netOi )
exp(netOj )(∑

k
exp(netOk )

)2

= aOi (δij − aOj )

(A.1)

∂Ecross
W

∂netXj
= ∂

∂netXj

(
−

K∑
k=1

tklog(aOk )
)

= −
K∑
k=1

tk
aOk

∂aOk
∂netXj

= −
K∑
k=1

tk(δjk − aOj )

= aOj (
K∑
k=1

tkδik)−
K∑
k=1

tkδjk

= aOj − tj

(A.2)
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A.2 Computations for the Siamese Neural Network
variants

A.2.1 Intermediate results
Let X the output of the MLP for the sample Gx, and netXj the input of the neuron

j activated with the sample Gx
For another sample Gy with an output Y

∂(‖Y‖)
∂netXj

= 0 (A.3)

∂(‖X‖2)
∂netXj

= Σk
∂ϕ(IXk)2

∂netXj
= 2.ϕ(netXj).ϕ′(netXj)

= 2.OXj.ϕ
′(netXj)

(A.4)

∂ ‖X‖
∂netXj

= 1
2. ‖X‖ .

∂(‖X‖2)
∂netXj

= 1
‖X‖

.ϕ(netXj).ϕ′(netXj)

= 1
‖X‖

.OXj.ϕ
′(netXj)

(A.5)

∂(X.Y)
∂netXj

= Σk
∂ϕ(IXk).ϕ(IY k)

∂netXj

= OY j.ϕ
′(netXj)

(A.6)
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A.2.2 Derivation of the cosine function

cos(X,Y) = X.Y
‖X‖ . ‖Y‖

(A.7)

∂cos(X,Y)
∂netXj

= 1
‖X‖2 . ‖Y‖2 .

[
∂X.Y
∂netXj

. ‖X‖ . ‖Y‖ − (X.Y).∂(‖X‖ . ‖Y‖)
∂netXj

]

= 1
‖X‖ . ‖Y‖

.
∂(X.Y)
∂netXj

− X.Y
‖X‖2 . ‖Y‖2 .

[
‖Y‖ . ∂ ‖X‖

∂netXj
+ ‖X‖ . ∂ ‖Y‖

∂netXj

]

= ϕ′(netXj)
‖X‖

.

[
OY j

‖Y‖
− cos(X,Y).OXj

‖X‖
.

]
(A.8)

A.2.3 Derivation of the Polar Sine Metric for n < m

LetA =
[
OR ON1 . . . ONl

]
= {aij}, andAnorm =

[
OR

‖OR‖
ON1
‖ON1‖

. . .
ONl

‖ONl‖
]

=
{Anij}. Let’s assume that the outputs ONi

and OR are not collinear, which is plausible
given our end goal.

Let S = ATnorm.Anorm, then, given ∀i, ‖vi‖ 6= 0 and ∀i, j , vi and vj are linearly
independent, we know that det(A) 6= 0. Thus, S is a symmetric definite positive
matrix, which guarantees that det(S) = det(Anorm)2 6= 0 and the existence of S−1.

Given, for a square matrix M, and its adjugate adj(M) = det(M).M−T

∂ det(M)
∂mij

= adj(M)ij (A.9)

We get for S, with S−1 = S−T

∂ det(S)
∂aij

= ΣkΣl
∂ det(S)
∂skl

.
∂skl
∂aij

= det(S).ΣkΣls
−1

kl.
∂skl
∂aij

(A.10)

or,
∀k,∀l, skl = cos(Ak,Al) (A.11)

Thus,
∂skl
∂aij

= δkj.
∂sjl
∂aij

+ δlj.
∂skj
∂aij

(A.12)

and
∂ det(S)
∂aij

= det(S).ΣkΣls
−1
kl .

[
δkj.

∂sjl
∂aij

+ δlj.
∂skj
∂aij

]

= 2 det(S).
∑
k

s−1
kj

∂ cos(Ak,Aj)
∂aij

= 2 det(S).ϕ
′(Iij)
‖Aj‖

.
∑
k

s−1
kj

[
Aik
‖Ak‖

− cos(Ak,Aj).
Aij
‖Aj‖

.

]

= 2 det(S).ϕ
′(Iij)
‖Aj‖

.

[∑
k

s−1
kj

Aik
‖Ak‖

− Aij
‖Aj‖

∑
k

s−1
kj sjk

]

= 2 det(S).ϕ
′(Iij)
‖Aj‖

.

[∑
k

s−1
kj

Aik
‖Ak‖

− Aij
‖Aj‖

]

(A.13)
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Finally,

∂ (psin(A))
∂aij

=
∂ n

√
det (S)
∂aij

=
n

√
det(S)

2n det (S) .2 det(S).ϕ
′(Iij)
‖Aj‖

.

[∑
k

s−1
kj

Aik
‖Ak‖

− Aij
‖Aj‖

]

= psin(A)
n

.
ϕ′(Iij)
‖Aj‖

.
[
AnormS−1 −Anorm

]
ij

(A.14)

A.3 Gradient Projection Norm Regularisation
The goal here is to replace the regularisation on the norm, set to one for every

sample output. We want to correct the gradient so as to project the updated outputs
onto the norm-1 sphere, which corresponds to a regularization equal to

R(OX) = (1− ‖OX − λ∇(OX)‖)2 (A.15)
Thus, we have to compute the second order partial derivatives in order to evaluate

the gradient corresponding to this regularization.

∂ det(S)
∂aij∂amn

= det(S)Σk
∂

∂amn

[
aik.s

−1
kj

]
= det(S)

[
δim.s

−1
nj + Σkaik.

∂s−1
kj

∂amn

] (A.16)

with
∂s−1

kj

∂amn
= ΣoΣp

∂s−1
kj

∂sop
.
∂sop
∂amn

= −ΣoΣp(S−1 ∂S
∂sop

S−1)kj.
∂sop
∂amn

= −ΣoΣp

[
Σrs

−1
kr .(

∂S
∂sop

S−1)rj
]
.
∂sop
∂amn

= −ΣoΣp

[
Σrs

−1
kr .δro.s

−1
pj

]
.
∂sop
∂amn

= −ΣoΣp

[
s−1
ko .s

−1
pj

]
.
∂sop
∂amn

= −ΣoΣp

[
s−1
ko .s

−1
pj

]
. [δonamp + δpnamo]

= −Σps
−1
kn .s

−1
pj .amp − Σos

−1
ko .s

−1
nj .amo

(A.17)

Thus,

1
det(S)

∂ det(S)
∂aij∂amn

=
[
δim.s

−1
nj + Σkaik.

∂s−1
kj

∂amn

]
= δim.s

−1
nj + ΣkaikΣps

−1
kn .s

−1
pj .amp − ΣkaikΣos

−1
ko .s

−1
nj .amo

= s−1
nj

[
δim − (AS−1AT )im

]
− (AS−1)in.(AS−1)mj

(A.18)

We end up with an impractical formula, with the apparition of the pseudo inverse
of A. The part on the left, depending on s−1

nj , is equal to zero ONLY when the matrix A
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is square, i.e. when the dimension of the output layer is equal to the number of classes.
This is unsatisfactory, as the convergence is improved as this dimension is increased.
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Appendix B
Preliminary rejection tests and projections
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Appendix C
Preprocess visualisation
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Figure C.1 – Raw accelerometer signals for 10 recordings of the "Flick East" gesture
for one user.
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