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Notation

g numerical computer code model
a.s. almost surely
a.s−→ almost sure convergence
L−→ convergence in distribution
P−→ convergence in probability

CV coefficient of variation
‖x‖ euclidean norm of x
‖x‖q q-norm of x
φ Gaussian probability density function
Φ Gaussian cumulative distribution function
i.i.d independent and identically distributed
µ Lebesgue measure
P probability
X, X random variable, vector
fX probability density function of X
FX cumulative distribution function of X
E[X] expectation of X
V ar[X] variance of X
L(X|Y) distribution of X knowing Y
g ◦ f function g composed with function h
f−1 inverse function of f
� partial order
U− {x ∈ Rd, g(x) ≤ 0}
U+ {x ∈ Rd, g(x) > 0}
Γ the limit surface {x ∈ Rd, g(x) = 0}
(p−

n−1)n≥1, (p+
n−1)n≥1 deterministic bounds of a probability p

(q−
n−1)n≥1, (q+

n−1)n≥1 deterministic bounds of a quantile q
dH(., .) Hausdorff distance in euclidean norm
dH,q(., .) Hausdorff distance in q-norm
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Résumé étendu

Les installations de production d’EDF, premier producteur d’électricité de France, accueillent
des phénomènes physiques pouvant entraîner des dommages aux personnes, à l’environnement
et aux biens si la fiabilité structurale de ces installations n’est pas assurée. En France, l’étude
de fiabilité des structures s’appuie principalement sur les études de robustesse des installations.
Dans des conditions d’exploitation pénalisantes, la structure (ou le composant) considérée peut-
il encore assurer sa fonction ? Pour certains gros composants industriels dits de haute fiabilité,
les données d’exploitation réelle sont uniquement disponibles. Les situations considérées comme
pénalisantes n’ont jamais été rencontrées en pratique depuis leur mise en service, et aucune
défaillance n’est jamais survenue. C’est notamment le cas de nombreux composants passifs du
Parc exploité par EDF, telles que des cuves de production (vessels en anglais). En l’absence de
données de défaillance, une étude de fiabilité structurale doit nécessairement s’appuyer sur une
modélisation mathématique du phénomène. Concrètement, un ou plusieurs modèles numériques
sont élaborés et implémentés par les spécialistes de la physique du phénomène, afin de pouvoir
le simuler dans les conditions de fonctionnement usuelles et exceptionnelles. On parlera plus
naturellement de code numérique dans la suite de ce travail. De tels codes résultent souvent
de chaînages de codes moins complexes, chacun étant dédié à représenter l’un des phénomènes
interagissant sur la dégradation supposée du composant.

Un modèle numérique g permet donc - s’il est validé - d’explorer des configurations critiques,
incarnées par le choix de ses paramètres d’entrée x1, et de déterminer si ces configurations
engendrent un risque de défaillance. Celle-ci peut très grossièrement être définie ainsi : "la
contrainte appliquée C(x) 2 est égale ou supérieure à la résistance R(x) de la structure (ou du
composant)". Ainsi, en définissant génériquement g(x) = R(x) − C(x), une configuration sera
considérée comme menant à une défaillance si g(x) ≤ 0. Outre la vérification que certaines
configurations pénalisantes n’aboutissent pas à des situations de défaillance, les études de sûreté
industrielle emploient couramment deux indicateurs complémentaires :

• la probabilité d’occurence d’une défaillance P(g(X) ≤ 0), en supposant que les paramètres
d’entrée X, souvent connus avec une certaine incertitude, peuvent varier aléatoirement
dans des plages réalistes ;

• l’indicateur dual défini comme la différence entre résistance et contrainte Zα tel que
P(g(X) ≤ Zα) reste en dessous d’un seuil d’acceptabilité α fixé par une règle de sûreté.

Le calcul de ces deux indicateurs permet en parallèle de résoudre (partiellement) le problème
inverse consistant à déterminer les configurations d’entrée menant à des situations de défaillance.

1qui mélangent des paramètres de fonctionnement (ex : pression), des forçages environnementaux (ex : tem-
pérature) et, entre autres, des caractéristiques matériaux.

2Par exemple, une injection d’eau de refroidissement dans une cuve en acier portée à haute température.
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Dans la pratique, de tels codes complexes sont considérés comme des "boîtes noires", ce qui
signifie qu’on ne peut accéder aux détails des équations qu’ils implémentent dans un temps
raisonnable. Ainsi, des techniques d’exploration dites intrusives, notamment fondées sur la
différentiabilité de ces codes, sont difficiles voire impossibles à mettre en oeuvre. L’exploration
des codes, et le calcul des indicateurs fiabilistes en particulier, doit être réalisée en pratique par
des techniques non-intrusives, fondées sur des parcours de simulation.

Les méthodes de type Monte Carlo, naturelles dès lors qu’on traite de simulation, permettent
en théorie d’obtenir des estimateurs statistiques de ces indicateurs fiabilistes. Toutefois, un
coût de simulation (en temps ou espace mémoire) important est souvent consubstantiel à la
complexité et la précision du code, qui peut en pratique interdire l’usage de certaines de ces
méthodes. C’est pourquoi un vaste champ de techniques, dites de Monte Carlo accélérées (ou de
réduction de variance), connaît un essor important depuis plusieurs années. Il vise à produire
des plans d’expériences de simulation numérique intelligents, permettant de telles estimations à
faible coût computationnel. Ce travail de thèse se situe explicitement dans ce champ d’étude.

La vision "boîte noire" des codes n’est pas, à proprement parler, tout à fait exacte dans
la réalité des études de fiabilité. En réalité, la notion de configuration pénalisante implique
nécessairement celle de monotonie globale du phénomène : plus un stress (contrainte) augmente,
plus le risque croît. Réciproquement, plus une résistance augmente, plus le risque décroît. Il
apparaît donc raisonnable de supposer qu’une configuration moins contraignante qu’une config-
uration sûre mène aussi à un événement sûr. Dans de nombreux cas, cette monotonie décrit le
comportement du phénomène - et donc du code correspondant, supposé valide - vis-à-vis de ses
variables les plus influentes. Du point de vue des études de sûreté, l’avantage de la monotonie
est a priori considérable, car elle permet d’encadrer les valeurs des indicateurs de fiabilité de
façon déterministe, et non plus seulement probabiliste (via un intervalle de confiance).

Ce travail de thèse fait donc plutôt l’hypothèse que le code peut être considéré comme une
"boîte grise", dont la monotonie en fonction des entrées incertaines est connue. Certains travaux
parallèles sont en cours à EDF R&D pour vérifier la réalité de cette hypothèse, mais ils ne
sont pas intégrés dans ce document. Ce travail suppose également que les lois probabilistes
des paramètres d’entrée sont connues, et indépendantes. Cette hypothèse d’indépendance peut
être relâchée sous certaines conditions, mais qui ne font pas l’objet d’un travail spécifique dans
cette thèse. Par ailleurs, très peu d’hypothèses supplémentaires sont faites sur le code : celui-
ci, en particulier, peut représenter une physique discontinue (parfois typique des configurations
critiques3) et présenter des effets-falaises. Enfin, la sortie de ce code peut, dans certains cas,
être réduite à la simple expression binaire :

Z(x) = 1{g(x)≤0},

ce qui permet de considérer ce code comme un outil d’aide à la décision au sens large (et non plus
la "simple" représentation d’un phénomène physique). Dans un tel contexte, d’ailleurs, la notion
d’ordre partiel sur des décisions apparaît comme essentielle car elle génère de la monotonie, qui
permet de préférer une décision à une autre. Cette notion d’ordre partiel sera au coeur des
travaux effectués dans cette thèse.

Ce travail porte donc sur l’utilisation des propriétés de monotonie des codes de calcul pour
l’amélioration de l’estimation des indicateurs fiabilistes, dans un contexte où il est souhaitable

3Par exemple, la physique d’un cours d’eau peut être discontinue à l’approche de la crue, caractérisée par une
surverse au-dessus d’une digue.
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que le nombre de simulations à effectuer soit le plus faible possible (pour une précision donnée)
ou respecte un budget prédéfini. Cette amélioration est à comprendre au sens de la précision
des bornes déterministes évoquées précédemment, mais aussi de la vitesse de convergence des
estimateurs statistiques situés entre ces bornes.

Plus précisément, trois problèmes ont été étudiés dans cette thèse.

1. Le comportement théorique des bornes, qui constituent des objets probabilistes du fait
qu’elles sont construites à partir de plans d’expériences numériques simulés. L’étude des
plans d’expérience permettant une bonne convergence de ces bornes en constitue un aspect.
Cette étude a enfin mené à construire et étudier théoriquement un méta-modèle de surface
de l’état-limite {x, g(x) = 0} (surface de défaillance).

2. L’estimation accélérée de la probabilité de défaillance définie ci-dessus, notamment par
l’élaboration de plans d’expériences séquentiels.

3. L’estimation accélérée du quantile également défini, par des procédés similaires.

Enfin, un cas d’étude traitant de la fiabilité de certains composants de production d’EDF, dont
l’étude constituait la motivation industrielle de cette thèse CIFRE, est traité dans un chapitre
dédié.

Les principaux résultats de recherche obtenus au cours de la thèse sont repris plus formelle-
ment dans les sections suivantes.

Apport de la monotonie pour l’estimation de probabilité de dé-
passement de seuil (Chapitre 2)

L’hypothèse centrale de la thèse porte sur la monotonie d’un code. Cette hypothèse est formalisée
dans la définition suivante.

Définition 2.1. La fonction g est dite globalement monotone si elle est monotone relativement
à chacune de ses entrées.

Chacune des entrées du code va avoir un impact favorable ou défavorable sur la fiabilité. Pour
simplifier la construction, on suppose sans perte de généralité que g est globalement croissante.
Ce genre de transformation est courante en fiabilité structurale (voir sections 1.6 et 1.7). La
probabilité que l’on cherche à estimer est définie par

p = P(g(X) ≤ q),

avec X un vecteur aléatoire dont les composantes sont indépendantes entre elles. La transfor-
mation de g permet de considérer que X est un vecteur aléatoire uniformément distribué sur
[0, 1]d (voir section 2.2). Il faut remarquer que faire cette transformation nécessite de connaître
la monotonie de g selon chacune de ses entrées. Enfin, par une translation, on considère sans
perte de généralité que q = 0. On définit un ordre partiel sur Rd.
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Définition 2.2. Soit x = (x1, . . . , xd), y = (y1, . . . , yd) deux points de Rd tels que pour tout
i = 1, . . . , d, xi ≤ yi. Cette relation est un ordre partiel et est notée x � y. On dit aussi que y
domine x.

Cela signifie que pour tout x, y ∈ [0, 1]d tels que x � y alors g(x) ≤ g(y). Si on sait que y
mène à un événement indésirable alors x mène aussi à l’événement redouté. Cette information
est obtenue sans évaluer g en x. Pour simplifier la lecture, on note

U− = {x ∈ [0, 1]d, g(x) ≤ 0},
U+ = {x ∈ [0, 1]d, g(x) > 0},

Γ = {x ∈ [0, 1]d, g(x) = 0}.

Ces ensembles représentent l’ensemble des configurations menant respectivement à un événement
sûr, à un événement indésirable et à la surface limite séparant ces deux ensembles. Soit A un
ensemble de [0, 1]d. On note

U−(A) =
⋃

x∈A∩U−

{u ∈ [0, 1]d, u � x},

U+(A) =
⋃

x∈A∩U+

{u ∈ [0, 1]d, u � x},

avec U−(∅) = {0}d = (0, . . . , 0) et U+(∅) = {1}d = (1, . . . , 1). Tout l’intérêt de la monotonie
pour l’estimation de probabilité se résume aux deux équations suivantes :

U−(A) ⊂ U− ⊂ [0, 1]d\U+(A),

µ(U−(A)) ≤ p ≤ 1− µ(U+(A)),

avec µ la mesure de Lebesgue sur Rd. On peut donc encadrer à la fois l’état limite Γ et la
probabilité p. Comme le nombre d’appels au code est limité, l’ensemble A prend la forme d’un
ensemble de points. Les prochaines notations vont revenir régulièrement dans cette thèse. Soit
(Xk)k≥1 une suite de points ou de vecteurs aléatoires. On notera continuellement s’il n’y a pas
d’ambiguïté,

U−
n = U−(X1, . . . , Xn),

U+
n = U+(X1, . . . , Xn),

Un = [0, 1]d\(U−
n ∪ U+

n ),

p−
n = µ(U−

n ),

p+
n = 1− µ(U+

n ).

La figure 1 illustre cette construction avec A un ensemble de points. La mesure des ensembles
représentés en gris fournissent des bornes pour p.

L’hypothèse de monotonie permet de connaître le signe de g en certains points grâce aux
évaluations précédentes. Cela s’exploite facilement avec l’estimateur de Monte Carlo classique.
Soit (Xk)k≥1 une suite de vecteurs aléatoires indépendant et de loi uniforme sur [0, 1]d. Si on se
donne un budget de n évaluations au code numérique, l’estimateur de Monte Carlo de p est

p̂MC
n =

1
n

n∑

i=1

1{g(Xi)≤0}. (1.5)
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Figure 1: Illustration pour d = 2 de U−(A) et U+(A) avec A = {x1, . . . , x8}.

Supposons que g(X1) > 0. Si X2 domine X1 alors sans faire d’appel à g on sait que
g(X2) > 0. Le signe de g est connu en deux points alors qu’une seule évaluation a été faite. En
prenant en compte cette construction, p peut s’estimer par

1
Nn

Nn∑

k=1

1{g(Xk)≤0}, (2.5)

où Nn est le nombre de simulations faites avec un budget de n appels au code. La valeur
Nn est aléatoire. En effet, à chaque étape k la probabilité d’économiser un appel au code
vaut 1 − E[p+

k−1 − p−
k−1]. Néanmoins, les bornes de p n’interviennent pas directement dans la

construction de cet estimateur.

Une fois les bornes obtenues, la probabilité p peut se réécrire comme

p = p−
n + (p+

n − p−
n )P(X ∈ U−|X ∈ Un).

Cette écriture est proche de celle obtenue par la méthode de simulation multi-niveau décrite
dans la section 1.8. Si les bornes sont connues, p peut être estimée par

p̂N = p−
n +

p+
n − p−

n

N

N∑

k=1

1{X
(n)
k

∈U−}, (2.7)

où (X(n)
k )k≥1 est une suite de vecteurs aléatoire indépendant et uniformément distribués sur

Un−1. Cette stratégie n’est toujours pas optimale. La connaissance des indicatrices présentes
dans la somme n’est pas exploitée pour mettre à jour les bornes de p.

Finalement, il semble nécessaire de simuler, à chaque étape n, sur l’ensemble non-dominé
[0, 1]d\(U−

n−1 ∩ U+
n−1). De cette manière les bornes et l’ensemble non-dominé sont mis à jour à

chaque évaluation du code numérique.

On peut aussi utiliser des critères pour choisir un nouveau point à évaluer. Mais il semble
difficile d’utiliser un critère pour calibrer une fonction d’importance.
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Étude théorique du comportement des bornes (Chapitre 3)

Les bornes déterministes obtenues sont utiles pour construire des estimateurs efficaces de p.
Néanmoins, il faut s’assurer qu’elle convergent bien vers p. En plus de la convergence des
bornes, la convergence de la suite d’ensembles (U−

k )k≥1 a été étudiée. La distance de Hausdorff,
définie ci-dessous, s’avère utile pour comparer deux ensembles.

Définition 3.2. Soit ‖·‖q la norme Lq sur Rd définie pour 0 < q < +∞, ‖x‖q = (
∑d

i=1 |xi|q)1/q,
et pour q = +∞, ‖x‖∞ = max

i=1,...,di=1,...,d

xi. Soit (A, B) deux ensembles non vides de l’espace

vectoriel normé ([0, 1]d , ‖ · ‖q). La distance de Hausdorff dH,q est définie par

dH,q(A, B) = max(sup
y∈A

inf
x∈B
‖x− y‖q; sup

x∈B
inf
y∈A
‖x− y‖q).

Une façon naïve d’y arriver est de simuler sur la surface limite Γ. Évidement cela est
impossible en pratique mais donne une piste pour résoudre ce problème. Les résultats théoriques
montrent qu’il faut simuler infiniment souvent autour de Γ (voir proposition 3.2). Les deux
schémas de simulations étudiés sont l’échantillonnage de Monte Carlo et la simulation uniforme
dans l’espace non-dominé. L’utilisation de ces deux schémas assurent la convergence des bornes
ainsi que la convergence des ensembles U−

n et U+
n respectivement vers U− et U+.

On s’intéresse à la vitesse de convergence des bornes issues de ces deux stratégies de simu-
lation. Sous certaines conditions de régularités (voir définition 3.3) on peut connaître la vitesse
de convergence de la suite (U−

n−1)n≥1 vers U−.

Proposition 3.4. Soit (Xk)k≥1 une suite de vecteurs aléatoires indépendants et uniformément
distribués sur [0, 1]d et (X̃k)k≥1 une suite de vecteurs aléatoires indépendants et uniformément
distribués sur U−. On note Ũ−

n = U−(X̃1, . . . , X̃n). Soit (Fn)n≥1 une suite de sous-ensemble
mesurables de [0, 1]d tel que pour tout n ≥ 1,U−

n ⊂ Fn ⊂ [0, 1]d\U+
n . Alors

(1) dH,2(Fn,U−)
p.s.−→

n→+∞
0 et µ(Fn)

p.s.−→
n→+∞

p.

(2) If U− est régulier, alors presque sûrement

dH,2(Ũ−
n ,U−) = O

(
(log n/n)1/d

)
.

(3) De plus, si U+ est aussi régulier, et si g est continue, alors presque sûrement

dH,2(Fn,U−) = O
(
(log n/n)1/d

)
.

Pour la vitesse des bornes, on commence par le cas d = 1 avec un schéma de simulation
indépendant et uniformément distribué sur [0, 1]. La proposition 3.5 dit que

n(p− p−
n ) L−−−−−→

n→+∞
Exp(1),

n(p+
n − p) L−−−−−→

n→+∞
Exp(1),

E[p+
n − p−

n ] =
2

n + 1
− 1

n + 1

(
pn+1 + (1− p)n+1

)
,
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où Exp(λ) est la loi exponentielle de paramètre λ et de fonction de densité fλ(x) = λe−λx
1{x≥0}.

Une simulation uniforme n’est pas optimale car elle n’exploite pas la connaissance des bornes.
De plus, il va devenir de plus en plus difficile de les mettre à jour lorsque n devient grand. En
effet, la probabilité que Xn mette à jour les bornes est de l’ordre de 1/n. Il faudra donc faire
de plus en plus de simulations avant de pouvoir obtenir de nouvelles bornes. Pour accélérer la
vitesse de convergence il aurait été plus judicieux de simuler à chaque étape n sur l’intervalle
]p−

n−1, p+
n−1[. La proposition 3.6 donne l’écart moyen des bornes pour une telle stratégie :

1
2n
≤ E[p+

n − p−
n ] ≤

(
3
4

)n

.

Comme supposé, la prise en compte de l’information fournie par les bornes accélère signi-
ficativement la vitesse de convergence. Mais le cas d = 1 a peu d’intérêt en pratique car cela
revient à la recherche du zéro d’une fonction croissante. Il est donc intéressant de comprendre
l’influence de la dimension sur ces quantités. On considère maintenant un cas plus général en
supposant que d ≥ 2. Pour d = 1 la surface limite Γ est unique et est égale à {p}. Mais cela
n’est plus valide en dimension supérieure. Il est donc difficile d’obtenir les même résultats qu’en
dimension un pour une valeur de p quelconque. On se restreint à la valeur p = 1. La proposi-
tion 3.7 fournit un résultat similaire à la proposition 3.6 pour la suite (U−

k )k≥1. En effet, pour
d = 1, dH,q (U−

n , [0, 1]) = 1− p−
n−1.

Proposition 3.7. Supposons que Γ = {1}d. Soit (Xk)k≥1 une suite de vecteurs aléatoires
indépendants et uniformément distribués sur [0, 1]d. Pour 0 < q < +∞ on note A(1, q) = 1 et
pour d ≥ 2, Ad,q = 1

dqd−1

∏d−1
i=1 B(i/q, 1/q) avec B(a, b) =

∫ 1
0 ta−1(1− t)b−1dt. Pour tout n ≥ 1,

on note U−
n = U−(X1, . . . , Xn).

(1) Si 0 < q < +∞ alors

(Ad,qn)1/ddH,q

(
U−

n , [0, 1]d
) L−−−−−→

n→+∞
W(1, d).

(2) Si q = +∞ alors

n1/ddH,∞
(
U−

n , [0, 1]d
) L−−−−−→

n→+∞
W(1, d),

où W(1, d) est la loi de Weibull avec un paramètre d’échelle de 1 et un paramètre de forme d

ayant pour fonction de répartition F (t) = 1− e−td
for all t ≥ 0.

La proposition 3.8 donne un ordre de grandeur de l’écart moyen entre les bornes:

E[1− p−
n ] ∼

n→+∞
log(n)d−1

n(d− 1)!
.

Exploiter la monotonie devient moins intéressant lorsque la dimension augmente. Lorsque
l’on rajoute des paramètres d’entrée à un code numérique, ce code peut ne plus être globalement
monotone. L’hypothèse de monotonie est donc plutôt adaptée aux petites dimensions.

Un schéma de simulation séquentielle semble indispensable pour exploiter au mieux la mono-
tonie d’un code. Lorsque l’on veut estimer Γ, une approche séquentielle est aussi plus intéres-
sante. En supposant que Γ soit convexe (ou concave), il est possible de construire un estimateur
adaptatif de Γ. Celui-ci est élaboré à partir de plusieurs classifieurs linéaires produits par Ma-
chine à Vecteur Support (SVM). Chacun de ces classifieurs linéaires est obtenu à partir de
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certains points d’un échantillon. L’aspect adaptatif vient que pour chaque nouvelle simulation,
un nouveau classifieur linéaire est ajouté à l’estimateur de Γ. Il n’est pas forcément néces-
saire de tout reconstruire. Lorsque le temps de calcul est facteur important, cette construction
séquentielle apporte un intérêt concret. On décrit maintenant la construction de cet estimateur.

On se donne un plan d’expérience Dn = (Xi, yi)1≤i≤n ∈ [0, 1]d × {−1, 1} où yi = 1 si
g(Xi) > 0 et −1 sinon. Soit Ξ+

n = {X1, . . . , Xn} ∩U+ et Ξ−
n = {X1, . . . , Xn} ∩U− et pour tout

x ∈ Ξ+
n on définit hx comme l’hyperplan qui sépare x de Ξ−

n . Un classifieur fn est défini par

fn : [0, 1]d → {−1, +1}

y 7→
{
−1 si pour tout X ∈ Ξ+

n , hX(y) ≤ 0

+1 sinon,

et on note

Fn = {x ∈ [0, 1]d, fn(x) = −1},

un estimateur de U−. La construction de cet estimateur est illustrée sur la figure 2 en dimension
d = 2. Le théorème 3.1 donne les principales propriétés de fn et Fn.

Théorème 3.1. On suppose que U− est convexe, alors

(1) fn est globalement croissante.

(2) Pour tout X ∈ {X1, . . . , Xn}, sign(g(X)) = fn(X).

(3) L’ensemble Fn est un polyèdre convexe.

(4) De plus, si (Xk)k≥1 est une suite indépendantes de vecteurs aléatoires uniformément dis-
tribués sur [0, 1]d, alors

dH,2(Fn,U−)
p.s.−→

n→+∞
0,

et presque sûrement

dH,2(Fn,U−) = O
(
(log n/n)1/d

)
.

Estimation de probabilité (Chapitre 4)

Dans ce chapitre, on veut pouvoir fournir un estimateur de la probabilité p. Cet estimateur
doit avoir de meilleures propriétés que celui construit dans [16] qui se fonde déjà sur l’hypothèse
de monotonie. Il ne doit pas avoir de biais, avoir une variance plus faible, réduire la borne
supérieure de la probabilité cherchée et enfin être facilement utilisable. L’équation (4.6) fournit
une écriture général d’un estimateur non biaisé de p

p̃n =
n∑

k=1

ωk,n

(
p−

k−1 +
1

fk−1(Xk)
1{Xk∈U−}

)
, (4.6)

où ω1,n, . . . , ωn,n est une suite de réels positifs tels que
∑n

k=1 ωk,n = 1. L’estimateur p̃n est sans
biais si pour tout k ≥ 1 et pour tout x ∈ Uk−1 ∩ U−, fk−1(x) > 0. Des résultats classiques
en simulation préférentielle fournissent la suite de fonctions de densité (fk−1)k≥1 qui annule la
variance de p̃n:
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Figure 2: Construction du classifieur fondé sur les SVM en dimension 2. La courbe représente
Γ et les points noirs (resp. blancs) sont dans U− (resp. U+). La ligne pointillé représente
{x ∈ [0, 1]d, hX(x) = 0} pour X dans U+. Gauche : il n’y a qu’un seul point dans U+, la ligne
en tiret représente {x ∈ [0, 1]d, hX(x) = 0} et la frontière du classifieur. Droite : les lignes
pointillés représentent les ensembles {x ∈ [0, 1]d, hX(x) = 0} pour X sélectionné comme l’un
deux points blancs. La ligne en tiret représente la frontière du classifieur.

fk−1(x) =
1{x∈U−∩Uk−1}

p−p−
k−1

. (4.7)

Évidemment cette densité optimale ne peut pas être utilisée en pratique mais elle donne une
piste de construction. Elle indique qu’il faut simuler uniformément sur U−∩Uk−1. Cela implique
que seule la borne inférieure sera mise à jour. Comme l’un des objectifs est de réduire la borne
supérieure de la probabilité cherchée, on peut construire l’estimateur suivant :

p̂n =
n∑

k=1

ωk,n

(
p+

k−1 −
1

fk−1(Xk)
1{Xk∈U+}

)
. (4.8)

Cette fois ci, la variance est minimum si, à chaque étape k, on simule uniformément sur
U+ ∩ Uk−1. Comme précédemment cela ne peut pas être fait en pratique. On cherche donc à
s’approcher de la densité optimale tout en gardant la propriété que l’estimateur soit sans biais.
On considère à l’étape k un estimateur Û+

k−1 de U+ ∩ Uk−1. S’il est suffisamment précis, une
simulation uniforme sur cet ensemble sera proche de la distribution optimale. Mais comme il
est impossible de vérifier que Û+

k−1 ⊃ U+ ∩ Uk−1, il n’est pas certain que l’estimateur produit
soit sans biais. On propose alors de simuler Xk de la manière suivante

Xk−1 ∼
{
U(Uk−1\Û+

k−1) avec probabilité εk−1,

U(Û+
k−1) avec probabilité 1− εk−1,

(4.10)

Le choix de εk−1 est crucial pour minimiser la variance de l’estimateur obtenu. Mais ce
choix de εk−1 implique de connaître U+ qui est inconnu. Comme U+ doit être estimé à chaque
itération, l’utilisation de telles méthodes est très coûteuse en temps de calcul. Finalement, le
cas simple suivant a été étudié. Soit (Xk)k≥1 une suite de vecteurs aléatoire tels que pour tout
k ≥ 1, Xk est uniformément distribué sur Uk−1. On note

p̄k = p−
k−1 + (p+

k−1 − p−
k−1)1{g(Xk)≤0},
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et un estimateur sans biais de p devient

p̂n =
1
n

n∑

k=1

p̄k.

Il faut remarquer que la simulation uniforme sur l’ensemble non-dominé n’est pas si éloigné de
la densité optimale. En effet, simuler uniformément sur l’ensemble non-dominé revient à choisir
Û+

k−1 = U+ ∩ Uk−1. Les tests numériques obtenus sur un exemple montrent que E[1 − εk−1] =
E[(p+

k−1−p)/(p+
k−1−p−

k−1)] est proche de 1. C’est à dire qu’avec grande probabilité les simulations
sont faites sur U+ ∩ Uk−1.

On a comparé la vitesse de convergence de la borne supérieure pour deux schémas de sim-
ulations. Le premier est la simulation uniforme sur l’ensemble non-dominé et le second selon
la densité optimale. Comme on l’a dit précédemment cette densité n’est pas utilisable en pra-
tique. Mais avec une méthode de rejet on a pu simuler uniformément sur U+. Les expériences
numériques ont montré que l’utilisation de la densité optimale ne réduit pas significativement la
borne supérieure par rapport à une simulation uniforme sur Uk−1.

Finalement, la simulation uniforme semble plus pratique à utiliser et permet d’avoir un
estimateur sans biais. La simulation optimale ne semble pas être significativement plus efficace
pour réduire la borne supérieure. De plus, cela ne demande pas de construire à chaque étape
un estimateur de U+ ∩ Uk−1. L’ensemble de ces remarques indique que l’estimateur produit a
de bonnes propriétés et est facilement utilisable en pratique.

Cependant cet estimateur reste dans l’état actuel difficilement contrôlable. En effet, les outils
théoriques disponibles montrent que l’estimateur a une variance trop faible. Il ne varie pas assez
pour que l’on puisse obtenir un théorème limite central.

Estimation de quantile (Chapitre 5)

L’objectif de ce chapitre est de fournir un estimateur consistant ainsi qu’un encadrement sûr
à 100% d’un quantile. Pour encadrer une probabilité il suffit de connaître le signe de g sur
un ensemble de points. Cette approche n’est pas viable pour encadrer un quantile. Soit F la
fonction de répartition de g(X). Le quantile d’ordre p de g(X) est défini par

q = inf{t ∈ R, F (t) ≥ p}. (5.1)
On donne quelques définitions pour simplifier la présentation.

Définition 5.1. Soit A ⊂ [0, 1]d. On définit

V−(A) =
⋃

x∈A

{u ∈ [0, 1]d, u � x},

V+(A) =
⋃

x∈A

{u ∈ [0, 1]d, u � x}.

Définition 5.2. Soit α ∈]0, 1[ et S un ensemble de [0, 1]d. On dit que S est α-monotone si
pour tout u, v ∈ S, u n’est pas strictement dominé par v et si µ(V−(S)) = α.

L’idée pour obtenir un tel encadrement vient entièrement de la proposition suivante.
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Proposition 5.3. Pour tout α ∈]0, 1[ on suppose Sα est α-monotone. Soit p− ∈ [0, p[ et
p+ ∈ [p, 1[, alors

min
x∈Sp−

g(x) ≤ q ≤ max
x∈Sp+

g(x).

On remarque que Γ = {x ∈ [0, 1]d, g(x) = q} est p-monotone. En pratique il est difficile de
construire de tels ensembles. Cela peut nécessiter de faire trop d’appels au code pour trouver le
minimum et le maximum de g sur cet ensemble. Deux contraintes pratiques sont à prendre en
compte. La première est de pouvoir construire facilement un ensemble monotone. La seconde
est d’avoir à faire un nombre limité d’appels à g pour trouver le minimum et le maximum.
La solution qui a été trouvée est de construire un ensemble monotone à partir d’un ensemble
de points. Soit x = (x1, . . . , xd) un point de [0, 1]d. La frontière de V−(x) est monotone.
Comme g est globalement croissant, son maximum sur la frontière de V−(x) est atteint en
x. Si µ(V−(x)) = x1 · · · xd ≥ p alors la contrainte de volume est vérifiée et g(x) ≥ q. Une
construction similaire permet d’obtenir une borne inférieure pour q. Ces constructions mènent
à la proposition 5.4.

Proposition 5.4. Soit p ∈]0, 1[ et d ≥ 2. On note

W−(p) =

{
u = (u1, . . . , ud) ∈ [0, 1]d,

d∏

i=1

(1− ui) ≥ 1− p

}
,

W+(p) =

{
u = (u1, . . . , ud) ∈ [0, 1]d,

d∏

i=1

ui ≥ p

}
.

Pour tout (u, v) ∈W−(p)×W+(p) il vient que

g(u) ≤ q ≤ g(v).

Soit W(p) = [0, 1]d\(W−(p) ∪W+(p)), alors

µ(W(p)) = (1− p)
d−1∑

k=0

[
(− log(1− p))k

k!

]
+ p

d−1∑

k=0

[
(− log(p))k

k!

]
− 1.

L’ensemble W(p) représente l’ensemble des points de [0, 1]d où l’on ne sait pas si g est plus
petit ou plus grand que q. Cette construction est universelle car elle ne dépend pas de g. Pour
toute fonction g globalement croissante on sait que {x ∈ [0, 1]d, g(x) = q} ⊂ W(p) où q est le
p-quantile de g(X).

Cette étape d’initialisation est particulièrement intéressante lorsque p tend vers 0 ou 1. En
effet, µ(W(p)) tend vers 0 lorsque p tend vers 0 ou 1. On a représenté sur la figure 3 l’ensemble
W(p) en dimension 2 et pour différentes valeurs de p.

Maintenant qu’une étape d’initialisation est faite, on veut pouvoir encadrer q à partir d’un
ensemble de points E. La proposition 5.3 dit que

µ(V−(E)) > p⇒ max
x∈E

g(x) ≥ q,

µ(V+(E)) > 1− p⇒ min
x∈E

g(x) ≤ q.
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Figure 3: L’ensemble W(p) est représenté en gris pour différentes valeurs de p en dimension 2.

Cela signifie que q peut être borné par le minimum et le maximum des valeurs de g prisent sur
E. Néanmoins, le minimum et le maximum de g ne sont pas très informatifs pour estimer un
quantile. Pour affiner l’encadrement de q on propose de trouver un sous-ensemble de E tel que
les hypothèses sur les volumes sont respectées.

Pour faire cela on part d’un sous-ensemble A de E que l’on va enrichir de points de E. Pour
la borne supérieure (resp. inférieure), le point ajouté est celui qui contribue le moins à la mesure
de V−(A) (resp. V+(A)). Les algorithmes 5.1 et 5.2 décrivent cette méthode. On illustre sur la
figure 4 les premières étapes de l’algorithme 5.2 pour d = 2.

Algorithme 5.1: Obtenir une borne inférieure pour q à partir d’un ensemble de points
x̄n = {x1, . . . , xn}
1. Étape d’initialisation: choisir ū = arg min

x=(x1,...,xd)∈x̄n

∏d
i=1(1− xi)

Soit x̄n = x̄n\ū et vol = µ(V+(ū))
2. Choisir le prochain point u = arg min

x∈x̄n

µ(V+(x̄n ∪ x))− µ(V+(x̄n))

3. Soit ū = ū ∪ u, x̄n = x̄n\u et vol = µ(V+(ū))
4. Si vol ≥ 1− p, répéter les étapes 2 et 3.
5. Retourne minu∈ū g(u).
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Figure 4: Illustration de l’algorithme 5.2 for d =
2. Haut: le point entouré xi1 minimise la contribu-
tion du volume. Bas: on arrête l’algorithme lorsque
µ(V−(xi1 , . . . , xik

)) ≥ p. Il est nécessaire de faire une
évaluation à g seulement sur les points entourés.

Algorithme 5.2: Obtenir une borne supérieure pour q à partir d’un ensemble de points
x̄n = {x1, . . . , xn}
1. Étape d’initialisation: choisir ū = arg min

x=(x1,...,xd)∈x̄n

∏d
i=1 xi

Soit x̄n = x̄n\ū et vol = µ(V−(ū))
2. Choisir le prochain point u = arg min

x∈x̄n

µ(V−(x̄n ∪ x))− µ(V−(x̄n)).

3. Soit ū = ū ∪ u, x̄n = x̄n\u et vol = µ(V−(ū)).
4. Si vol ≥ p, répéter les étapes 2 et 3 .
5. Retourne maxu∈ū g(u).

Un schéma d’échantillonnage séquentiel est maintenant possible. En effet, on sait mettre à
jour les bornes du quantile et ainsi fournir un ensemble non-dominé. On propose de construire
un estimateur F̂ de F et d’estimer q de la façon suivante.

q̂ = inf{t ∈ R, F̂ (t) ≥ p}. (5.2)
Une fois l’étape d’initialisation réalisée, on construit une suite de vecteurs aléatoires unifor-

mément distribués sur l’ensemble non-dominé. Dès que possible, on met à jour les bornes des
quantiles, grâce aux algorithmes 5.1 et 5.2, ainsi que l’ensemble non-dominé. Ces étapes sont
répétées jusqu’à ce que le budget d’appels au code soit épuisé. On note (q−

k )k≥1 et (q+
k )k≥1 les

suites des bornes du quantile q ainsi obtenue.
En s’inspirant de l’estimation de probabilité sous contraintes de monotonie, un estimateur

de F est donné par

F̂n(t) =
1
n

n∑

k=1

(
p−

k−1 + (p+
k−1 − p−

k−1)1{g(Xk)≤t}
)

, (5.10)

et est sans biais pour t = q. Le quantile q est alors estimé par
q̂n = inf

{
t ∈ [q−

n , q+
n ], F̂n(t) ≥ p

}
. (5.11)

Ce schéma d’échantillonnage assure la convergence des bornes (voir proposition 5.6). Par
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construction, on en déduit que q̂n converge aussi vers q. Comme les conditions classique d’un
théorème limite central ne sont pas pas vérifiées par F̂n(q) c’est également le cas pour q̂n.
Néanmoins, on peut obtenir des propriétés d’encadrement et de convergence pour F̂n.

Proposition 5.7. Pour tout t ∈ R, F (min(t, q)) ≤ E
[
F̂n(t)

]
≤ F (max(t, q)) et

E
[
F̂n(t)

]
−→

n→+∞
F (q).

Conclusion

Dans cette thèse on s’est intéressé à l’adaptation au cas monotone des méthodes classiques
d’estimation de probabilité et de quantile. Les méthodes séquentielles apparaissent plus adaptées
car, à chaque nouvel appel au code les bornes obtenues sur les quantités d’intérêt sont mises à
jour.

Plus spécifiquement, le comportement théorique des bornes ont été étudié. On a donné
des conditions pour s’assurer que ces bornes convergent bien vers la probabilité ou le quantile
visé. Ensuite, leur vitesse de convergence a été étudiée pour différents schémas de simulation.
Comme attendu, une simulation séquentielle accélère significativement cette vitesse. Néanmoins,
la monotonie apporte de moins en moins d’information lorsque la dimension augmente. Sous
la condition que Γ soit convexe, on en a construit un estimateur adaptatif dont on contrôle la
vitesse de convergence.

Concernant l’estimation d’une probabilité p, une nouvelle classe d’estimateur a été proposée.
Mais une simulation séquentielle uniforme sur l’ensemble non-dominé semble être ce qu’il y a de
plus pratique. On peut facilement obtenir un estimateur sans biais. La vitesse de convergence
de la borne supérieure semble être équivalente pour cette simulation que pour la simulation
optimale.

On a proposé une méthode d’encadrement d’un quantile à partir d’un ensemble de points.
À partir de cet encadrement, on a pu construire un estimateur adaptatif de q.

Le calcul des bornes de la probabilité devient difficile lorsque la dimension augmente. De
plus, il n’y a pas de raison pour que g reste globalement monotone et l’hypothèse de monotonie
ne peut plus être exploitée.

Plusieurs thèmes n’ont pas été abordés dans cette thèse. Si un code n’est pas globale-
ment monotone, on ne peut plus encadrer sûrement une probabilité ou un quantile. Mais des
bornes conditionnelles peuvent probablement être utilisées pour guider l’estimation. Un autre
aspect important en fiabilité est l’analyse de sensibilité. Cela consiste à quantifier l’influence
des entrées sur une fonction de la sortie du code. Par exemple, sa variance, une probabilité
de dépassement de seuil, un quantile... Il peut être intéressant de déterminer si la monotonie
apporte de l’information sur ce type d’études. Certaines méthodes développées dans cette thèse
ont été ou seront implémentées dans un package nommé MISTRAL de l’environnement logiciel
R disponible sur le CRAN [98].
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Extended abstract

A classical issue encountered by energy producers, like EDF, is to justify the reliability and safety
of their production facilities. The physical phenomena involved in power plants production may
carry damages to people, environment and goods if the structural reliability of these facilities
is not insured. In France, studying the reliability of structures (or components) mainly relies
on robustness testing: in penalizing running conditions, is the considered structure or compo-
nent still be able to produce safely? For many highly reliable industrial components, feedback
experience data are only related to safe situations, the situations considered as penalizing are
never observed in practice from the commissioning and no failure has been observed. This is
the case of numerous passive components of the French park exploited by EDF as, for instance,
production vessels.

In absence of failure observations, structural reliability studies need to rely on mathematical
modelling. One or several numerical models are designed and implemented by the specialists in
order to simulate the considered phenomenon in usual and exceptional running conditions. The
terms computer code or computer model will be extensively used in this document to refer to
this implementation. Such codes often result from chaining of less complex codes, each of them
being devoted to model one of the phenomena interacting on the supposed deterioration of the
component.

A numerical model g, provided it is validated, allows to explore critical configurations, defined
by the choice of an input parameter vector x4, and to determine if those configurations generate
to a risk of failure. The latter can crudely be defined as follows: “the forcing (stress) C(x)5 is
equal to or upper than the resistance R(x) of the structure (or component)". Therefore, defining
generically g(x) = R(x)−C(x), an input configuration will be considered as generating a failure
if g(x) ≤ 0.

Beyond checking if several penalizing configurations do not generate failures, industrial safety
studies currently use two complementary indicators :

• the probability of failure P(g(X) ≤ 0), by assuming that the input parameters X, the
knowledge of which being often uncertain, can randomly move in realistic ranges ;

• the dual indicator defined by the difference between resistance and stress Zα such that
P (g(X) ≤ Zα) be lower than a given acceptable threshold α established by a safety rule.

Computing these two indicators allows in parallel to solve (at least partially) the inverse problem
of determining the input configurations generating failures.

4that typically mix running parameters (e.g., pressure), environmental forcing (e.g., temperature) and, between
others, features of materials.

5For instance an injection of cold water in a steel vessel brought at high temperature.
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In practice, such complex codes are considered as "black boxes", which means that it is
difficult or impossible to have a precise knowledge of all implemented functions and equations
in due time. Therefore so-called intrusive exploration techniques, especially those founded on
the differentiability of computer models, can not be carried out. Computer code exploration
and computation of reliability indicators have to be conducted in practice using non-intrusive
techniques, based on simulation.

Monte Carlo-type methods, that immediately appear natural when dealing with simulation,
in theory allow to get statistical estimators of these indicators. Nonetheless, a huge simulation
cost (in time or/and memory space) is often consubstantial to the complexity and precision of
the computer model, that may forbid in practice the use of several of these methods. This is
why a vast area of so-called accelerated (or variance reduction) techniques has known, these
last years, a significant rise. The methodologies developed in this area aims to design clever
numerical simulation experiments, allowing such estimations at weak computational cost. This
thesis stands explicitly in this field of research.

Properly speaking, the "black box" interpretation of computer models is not fair in the
reality of reliability studies. Indeed, the notation of penalizing configuration necessarily implies
a global monotonicity of the phenomenon: the risk increases with any stress and decreases when
any resistance increases. Therefore it appears reasonable to assume that a contribution which is
less constraining that a sure configuration will itself be sure. In many cases, this monotonicity
describes the behaviour of the phenomenon - and the computer code too, provided it is validated -
with respect to its most influential variables. About safety studies the advantage of monotonicity
is a priori considerable since it allows to surround the values of indicators by two bounds, in a
deterministic sense rather than a probabilistic sense (using typically a confidence interval).

In this thesis work it is alternatively considered that the computer model can be interpreted
as a "grey box", the monotonicity of which being known (with respect to uncertain inputs).
Some parallel works are conducted at EDF R&D to check the completeness of this hypothesis,
but they are integrated within this document. Another base hypothesis is that the probabilistic
distributions of input parameters are known and independent. This assumption of independence
can be relaxed under some conditions, which are studied in another specific research program at
EDF R&D. Besides, very few additional hypotheses are done on the computer model: especially,
it can simulate discontinuous physics (sometimes typical of critical configurations6) and present
so-called edge effects. Finally, the computer model output may, in some cases, be reduced to a
simple binary expression:

Z(x) = 1{g(x)≤0},

which allows to consider the code, in every sense, as a tool of decision (and not still the “simple"
modelling of a physical phenomenon). In such a context, the notion of partial order on decisions
appear as essential since it generates monotonicity, that impose a hierarchy between decisions.
This notion of partial order will be at the heart of the works presented here.

Thus, this work deals with using monotonicity properties of computer codes for improving
the estimation of reliability indicators, in a context where the reduction or a given limitation
of the computational budget is required. This improvement is about the accuracy of bounds

6For instance, the physics of a river can be discontinuous close to flood configuration, which is characterized
by a dike submersion.
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previously evoked and the convergence properties of statistical estimators located between the
bounds.

More precisely, three problems were studied during this Ph.D. thesis.

1. The theoretical behaviour of probability bounds, which are random objects since they
are build from designs of simulated numerical experiments; building the designs ensuring
a good convergence of bounds is a key aspect of this investigation; besides this study
conducted us to build and study a meta-model of the limit state (failure) surface {x, g(x) =
0}.

2. The accelerated estimation of the failure probability defined above, especially by elaborat-
ing sequential designs of experiments.

3. The accelerated estimation of the dual quantile, using similar techniques.

Finally, a real case-study is deeply treated in a dedicated chapter, that deals with the reliability
of some EDF production components. Their study constituted the industrial motivation of this
thesis.

The main research results obtained during the thesis are more formally summarized in the
following sections.

Adaptation of monotonicity constraints (Chapter 2)

In a first work the monotonic hypothesis are adapted to the most classical methods of probability
estimation. The monotonic property is defined in the following definition.

Definition 2.1. Let g : U ⊂ Rd → R, g is said globally monotonic if g is monotonic relatively
to each of its input.

Each input has either a unfavourable or favourable effect towards the reliability. To simplify
the construction, without loss of generality it is considered that g is globally increasing. The
underlying transformation is common to estimate a probability in engineering worl (see Sections
1.6 and 1.7).

The probability to estimate is defined by

p = P(g(X) ≤ q),

with X a random vector with independent components. Transforming g allows to consider that
X is a random vector uniformly distributed on [0, 1]d (see Section 2.2). It must be noticed
that this transformation require to know the monotonicity of g according to each of its inputs.
Finally, consider without loss of generality that q = 0.

The use of the monotonicity hypothesis is based on a partial order on Rd.
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Definition 2.2. Let x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd such that for all i = 1, . . . , d, xi ≤
yi. The partial order of dominance is denoted x � y. It is said that y dominates x.

This means for all x, y ∈ [0, 1]d such that x � y then g(x) ≤ g(y). If it is known that y
leads to an undesirable event then x leads also to the feared event. Such information is obtained
without computing g(x).

To simplify the presentation, denote

U− = {x ∈ [0, 1]d, g(x) ≤ 0},
U+ = {x ∈ [0, 1]d, g(x) > 0},

Γ = {x ∈ [0, 1]d, g(x) = 0}.

These two sets represent the set of configurations leading respectively to a safety event, to an
undesirable event, and situation located on the limit surface separating these two sets. Let A
be a set of [0, 1]d. Denote

U−(A) =
⋃

x∈A∩U−

{u ∈ [0, 1]d, u � x},

U+(A) =
⋃

x∈A∩U+

{u ∈ [0, 1]d, u � x},

with U−(∅) = {0}d = (0, . . . , 0) et U+(∅) = {1}d = (1, . . . , 1).

The main interest of the monotonic hypothesis is summarised in the two following equations:

U−(A) ⊂ U− ⊂ [0, 1]d\U+(A),

µ(U−(A)) ≤ p ≤ 1− µ(U+(A)),

with µ the Lebesgue measure on Rd.
Then, Γ and the probability p can be bounded in a deterministic sense (surely). Since the

number of runs of g is limited in practice, the set A is summarises in general to a set of points.
The following notations are extensively used in this thesis. Let (Xk)k≥1 be a sequence of points
or random vectors. Denote in the remainder of this work

U−
n = U−(X1, . . . , Xn),

U+
n = U+(X1, . . . , Xn),

Un = [0, 1]d\(U−
n ∪ U+

n ),

p−
n = µ(U−

n ),

p+
n = 1− µ(U+

n ).

Figure 5 illustrates this construction, given A a set of points. The Lebesgue measure of the
sets represented in gray provides two bound for p.

From previous evaluations, the monotonic hypothesis allows to know the sign of g on some
points. Such property can be easily exploited with the standard Monte Carlo method. Let
(Xk)k≥1 be a sequence of independent random vectors uniformly distributed on [0, 1]d. Let n
be the available total number of run, a Monte Carlo estimator of p is

p̂MC
n =

1
n

n∑

i=1

1{g(Xi)≤0}. (1.5)
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Figure 5: Illustration for d = 2 of U−(A) and U+(A) with A = {x1, . . . , x8}.

Assume that g(X1) > 0. If X2 dominates X1 then without another run it is known that
g(X2) > 0. The sign of g is known on two points while a unique evaluation by the numerical
code has been made. Taking into account this construction, p can be estimated by

1
Nn

Nn∑

k=1

1{g(Xk)≤0}, (2.5)

where Nn is the number of simulations made with a budget of n runs to g. The number Nn is
randomised. Indeed, at each step k the probability that evaluating g(Xk) is useless is equal to
1 − E[p+

k−1 − p−
k−1]. Nevertheless, the bounds of p are not exploited in the construction of this

estimator.
Exploiting the monotonicity allows to increase, randomly, the total number of simulations.

Nonetheless, the bounds of p are not totally used.
Once the bounds are obtained, the probability p can be rewritten as

p = p−
n + (p+

n − p−
n )P(X ∈ U−|X ∈ Un).

This expression is close to the one obtained by multivel simulation described in Section 1.8. If
these bounds are known, the probability p can be estimated by

p̂N = p−
n +

p+
n − p−

n

N

N∑

k=1

1{X
(n)
k

∈U−}, (2.7)

where (X(n)
k )k≥1 is a sequence of independent random vectors uniformly distributed on Un−1.

This stratety is not optimal. The knowledge of the indicator function is not used to update the
bounds of p.

Finally, it seems necessary to simulate, at each step n, on the non-dominated set

[0, 1]d\(U−
n−1 ∩ U+

n−1).

In this way, the bounds and the non-dominated set are updated after each run of the numerical
code.
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Theoretical studies on the behaviour of the deterministic bounds
(Chapitre 3)

The deterministic bounds of p can be used to build an efficient estimator of p. Nevertheless,
it must be ensured that they converge toward p. Besides the convergence of these bounds, the
convergence of the sequence of sets (U−

k )k≥1 has been studied. The Hausdorff distance, defined
below, is a good ingredient for this study.

Definition 3.2. Let ‖·‖q be the Lq norm on Rd, that is for 0 < q < +∞, ‖x‖q = (
∑d

i=1 |xi|q)1/q,
and for q = +∞, ‖x‖∞ = max

i=1,...,di=1,...,d

xi. Let (A, B) be two non-empty subsets of the normed

vector space ([0, 1]d , ‖ · ‖q). The Hausdorff distance dH,q is defined by

dH,q(A, B) = max(sup
y∈A

inf
x∈B
‖x− y‖q; sup

x∈B
inf
y∈A
‖x− y‖q).

A naive way to ensure the convergence is to simulate on the limit surface Γ. Obviously,
this is impossible in practice but this idea provides a track to do it. Theoretical results state
that it is needed to simulate infinitely often around Γ (see Proposition 3.2). The two studied
frameworks of simulations are the standard Monte Carlo and the nested uniform sampling on
the non-dominated space. Using these two strategies ensure the convergence of the deterministic
bounds as well as the convergence of sets U−

n and U+
n respectively towards U− and U+.

Then, the rate of convergence of U−
n and U+

n is examined. Under some regularity constraints
(see Definition 3.3) this rate is known for the sequence (U−

n−1)n≥1.

Proposition 3.4. Let (Xk)k≥1 be a sequence of iid random variables uniformly distributed on
[0, 1]d and (X̃k)k≥1 be a sequence of independent and identically distributed random variables
uniformly distributed on U−. Denote Ũ−

n = U−(X̃1, . . . , X̃n). Let (Fn)n≥1 be a sequence of
measurable subsets of [0, 1]d such that for all n ≥ 1,U−

n ⊂ Fn ⊂ [0, 1]d\U+
n . Then

(1) dH,2(Fn,U−) a.s.−→
n→+∞

0 and µ(Fn) a.s.−→
n→+∞

p.

(2) If U− is regular, then almost surely

dH,2(Ũ−
n ,U−) = O

(
(log n/n)1/d

)
.

(3) Furthermore, if U+ is also regular, and if g is continuous, then almost surely

dH,2(Fn,U−) = O
(
(log n/n)1/d

)
.

For the rate of convergence of the bounds, let us start with d = 1 and a standard Monte
Carlo framework. Proposition 3.5 states that

n(p− p−
n ) L−−−−−→

n→+∞
Exp(1),

n(p+
n − p) L−−−−−→

n→+∞
Exp(1),

E[p+
n − p−

n ] =
2

n + 1
− 1

n + 1

(
pn+1 + (1− p)n+1

)
,
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where Exp(λ) is the exponential distribution with density fλ(x) = λ exp(−λx)1{x≥0}.

Such distribution is not optimal because the knowledge of the deterministic bounds is not
exploited. Moreover, it becomes more and more difficult to update the bounds while n increases.
Indeed, the probability that Xn update the bounds is approximately equal to 1/n. More and
more simulations are required to update these bounds. To accelerate the rate of convergence, it
would have been better to simulate at each step n on the interval ]p−

n−1, p+
n−1[. Proposition 3.6

provides the mean distance between the bounds obtained from such framework

1
2n
≤ E[p+

n − p−
n ] ≤

(
3
4

)n

.

As expected, taking into account the information provided by the bounds accelerate signif-
icantly the rate of convergence. Study the case d = 1 is not relevant since it is equivalent to
find the zero of an increasing function. It is then interesting to understand the influence of the
dimension on these quantities. Being more general consider that d ≥ 2. For d = 1 the limit
surface Γ is unique and is equal to {p}. This is no more true for greater dimensions. It becomes
difficult to obtain similar results for a given p. The study is restricted to p = 1. Proposition
3.7 provides an equivalent results than Proposition 3.6 for the sequence (U−

k )k≥1. Indeed, for
d = 1, dH,q (U−

n , [0, 1]) = 1− p−
n−1.

Proposition 3.7. Assume Γ = {1}d. Let (Xk)k≥1 be a sequence of iid random vectors uni-
formly distributed on [0, 1]d. For 0 < q < +∞ denote A(1, q) = 1 and for d ≥ 2,

Ad,q =
1

dqd−1

d−1∏

i=1

B(i/q, 1/q),

with B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt. For all n ≥ 1, let U−
n = U−(X1, . . . , Xn).

(1) If 0 < q < +∞ then

(Ad,qn)1/ddH,q

(
U−

n , [0, 1]d
) L−−−−−→

n→+∞
W(1, d).

(2) If q = +∞ then

n1/ddH,∞
(
U−

n , [0, 1]d
) L−−−−−→

n→+∞
W(1, d),

whereW(1, d) is the Weibull distribution with scale parameter 1 and shape parameter d having
cumulative density function F (t) = 1− e−td

for all t ≥ 0.

An order of magnitude can besides be obtained on the mean distance of the bounds. Propo-
sition 3.8 provides an order of magnitude of the mean distance between the bounds:

E[1− p−
n ] ∼

n→+∞
log(n)d−1

n(d− 1)!
.

Exploiting the monotonicity becomes less interesting when the dimension increases. Moreover, in
this context the numerical code may no longer be globally monotonic. The monotonic hypothesis
is then more adapted for low dimensions. The use of a sequential framework of simulations seems
essential to make the best use of the monotonic hypothesis. To estimate Γ, a sequential approach
is more interesting. If Γ is convex (or concave) an adaptive estimator can be built from many
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linear classifiers based on Support Vector Machines (SVM). Each linear classifier is calibrated
from some design. The adaptive property comes from that for each new simulations, a new
linear classifier is added to the current one. It is not necessary to rebuild the whole estimator
at each step. When the computing time is an important factor, this sequential construction
provides a real benefit. The construction of this estimator is now described.

Let Dn = (Xi, yi)1≤i≤n ∈ [0, 1]d × {−1, 1} be a design of experiments where yi = 1 if
g(Xi) > 0 and −1 otherwise. Let Ξ+

n = {X1, . . . , Xn} ∩ U+ and Ξ−
n = {X1, . . . , Xn} ∩ U− and

for all x ∈ Ξ+
n define hx a hyperplane separating x from Ξ−

n . A classifier fn is defined by

fn : [0, 1]d → {−1, +1}

y 7→
{
−1 if for all X ∈ Ξ+

n , hX(y) ≤ 0

+1 otherwise,

and denote

Fn = {x ∈ [0, 1]d, fn(x) = −1}

This construction is illustrated in dimension d = 2 on Figure 6. Theorem 3.1 provides the main
properties of fn and Fn.

Theorem 3.1. Assume U− is convex, then

(1) fn is globally increasing.

(2) For all X ∈ {X1, . . . , Xn}, sign(g(X)) = fn(X).

(3) The set Fn is a convex polyhedron.

(4) Furthermore if (Xk)k≥1 is a sequence of independent random vectors uniformly distributed
on [0, 1]d, then

dH,2(Fn,U−) a.s.−→
n→+∞

0,

and almost surely,

dH,2(Fn,U−) = O
(
(log n/n)1/d

)
.

Probability estimation (Chapter 4)

The aim of this chapter is to provide an estimator of the probability p. This estimator must
have better properties that the one provided in [16]. It must be unbiased, have a lower variance,
reduce the upper bound of the searched probability and be easily tractable. Equation (4.6)
provides a general expression of an unbiased estimator of p

p̃n =
n∑

k=1

ωk,n

(
p−

k−1 +
1

fk−1(Xk)
1{Xk∈U−}

)
, (4.6)

where ω1,n, . . . , ωn,n is a sequence of positive real values such that
∑n

k=1 ωk,n = 1. Estimator
p̃n is unbiased if for all k ≥ 1 and for all x ∈ Uk−1 ∩ U−, fk−1(x) > 0. Classical results in
importance sampling help to determine the sequence of probability density functions (fk−1)k≥1

such that the variance of p̃n becomes null:
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Figure 6: Construction of the classifier based on SVM. The plain line represent Γ and black (resp.
white) points are in U− (resp. U+). The dotted lines represents {x ∈ [0, 1]d, hX(x) = 0} for some
X in U+. Left: there is one point in U+ then the dashed line is both {x ∈ [0, 1]d, hX(x) = 0} and
the frontier of the classifier. Right: Dotted lines represent the two sets {x ∈ [0, 1]d, hX(x) = 0}
for X among the two white points. Dashed line represent the frontier of the classifier.

fk−1(x) =
1{x∈U−∩Uk−1}

p−p−
k−1

. (4.7)

Obviously, this optimal density cannot be used in practice but gives ideas for an effective
choice of importance distribution. It states that the simulation must be done uniformly on
U− ∩Uk−1. This implies that only the lower bound is updated. Since one of the objectives is to
reduce as much as possible the upper bound, the following estimator can be built:

p̂n =
n∑

k=1

ωk,n

(
p+

k−1 −
1

fk−1(Xk)
1{Xk∈U+}

)
. (4.8)

Now, the variance of p̂n is minimum, if at each step k, the simulation is uniformly distributed
on U+∩Uk−1. As previously, this cannot be done in practice. The aim is to simulate according to
the optimal density while maintaining the unbiased condition. Consider at step k an estimator
Û+

k−1 of U+ ∩Uk−1. If it is is sufficiently accurate, a uniform distribution appears to be close to
the optimal distribution. Since it is impossible to check that Û+

k−1 ⊃ U+ ∩ Uk−1, the estimator
can be biased. To fix this issue, it is suggested to simulate Xk as follow

Xk−1 ∼
{
U(Uk−1\Û+

k−1) with probability εk−1,

U(Û+
k−1) with probability 1− εk−1,

(4.10)

The choice of εk−1 is crucial to minimise the variance of the estimator. But this choice
implies to known U+. Since U+ must be estimated at each step the use of such methods is very
time-consuming in practice. Finally, a simple case is studied. Let (Xk)k≥1 a sequence of random
vectors such that for all k ≥ 1, Xk is uniformly distributed on Uk−1. Denote

p̄k = p−
k−1 + (p+

k−1 − p−
k−1)1{g(Xk)≤0},

and an unbiased estimator of p becomes

p̂n =
1
n

n∑

k=1

p̄k.
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It must be noticed that the uniform distribution on the non-dominated space is not so far
to the optimal one. Indeed, it is equivalent to choose Û+

k−1 = U+ ∩ Uk−1. Numerical results
obtained on an example show that E[1− εk−1] = E[(p+

k−1 − p)/(p+
k−1 − p−

k−1)] is close to 1. This
means with high probability the simulations are in U+ ∩ Uk−1.

The convergence of the upper bound has been compared for two frameworks of simulations.
The first one is the uniform distribution on the non-dominated set and the second one is the
optimal density. As said previously, this density is not usable in practice. The use of a reject
method allows to simulate uniformly on U+. Numerical experiments have shown that the use
of the optimal density do not reduce significantly the upper bound compared to a uniform
simulation on the non-dominated set.

Finally, the uniform distribution seems to be more tractable in practice and provides easily
an unbiased estimator. The optimal framework does not seem to be more efficient to reduce
the upper bound. Moreover, it does not require to build at each step the estimator U+ ∩Uk−1.
These remarks reveal that the considered estimator has good properties and is easily usable in
practice.

Nevertheless, it remains difficult to control it. Indeed, the theoretical tools state that under
verifiable condition the fluctuations of the estimator are too small to obtain a central limit
theorem.

Quantile estimation (Chapitre 5)

The aim of this chapter is to provide a consistent estimator as well as two bounds for a quantile.
To bound a probability, it is sufficient to know the sign of g on a set of points. This approach can
no longer be conducted is no more available for quantile estimation. Let F be the cumulative
distribution function of g(X). The p-quantile of g(X) is defined by

q = inf{t ∈ R, F (t) ≥ p}. (5.1)
Some definitions are now provided to simplify the presentation.

Definition 5.1. Let A ⊂ [0, 1]d. Define

V−(A) =
⋃

x∈A

{u ∈ [0, 1]d : u � x},

V+(A) =
⋃

x∈A

{u ∈ [0, 1]d : u � x}.

Definition 5.2. Let α ∈]0, 1[ and S be a set in [0, 1]d. The set S is said α-monotonic if for all
u, v ∈ S, u is not strictly dominated by v and if µ(V−(S)) = α.

Obtaining the bounds for a quantile is entirely based on the following proposition.

Proposition 5.3. For all α ∈]0, 1[ assume that Γα is an α-monotonic set. Let (p−, p+) ∈
[0, p[×[p, 1[, then

min
x∈Γp−

g(x) ≤ q ≤ max
x∈Γp+

g(x).

It must be noticed that Γ = {x ∈ [0, 1]d, g(x) = q} is p-monotonic. In practice, it is difficult
to build such sets. It can require a too high number of runs to find the minimum and the
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maximum of g on this set. Two technical constraints are to be taken into account. The first
one is to build easily a monotonic set. The second one is that a limited runs of g is required
to find its minimum and its maximum. The solution that we propose is the construction of a
monotonic set built from a set of points. Let x = (x1, . . . , xd) be a point of [0, 1]d. The boundary
of V−(x) is a monotonic set. As g is globally increasing, its maximum on the boundary of V−(x)
is reached in x. The boundary of V−(x) is p-monotonic if x1 · · · xd ≥ p. If so, it comes that
g(x) ≥ q. A similar construction allows to obtain a lower bound for q. These constructions are
summarised in Proposition 5.4.

Proposition 5.4. Let p ∈]0, 1[ and d ≥ 2. Denote

W−(p) =

{
u = (u1, . . . , ud) ∈ [0, 1]d,

d∏

i=1

(1− ui) ≥ 1− p

}
,

W+(p) =

{
u = (u1, . . . , ud) ∈ [0, 1]d,

d∏

i=1

ui ≥ p

}
.

For all (u, v) ∈W−(p)×W+(p) it comes

g(u) ≤ q ≤ g(v).

Denoting W(p) = [0, 1]d\(W−(p) ∪W+(p)), then

µ(W(p)) = (1− p)
d−1∑

k=0

[
(− log(1− p))k

k!

]
+ p

d−1∑

k=0

[
(− log(p))k

k!

]
− 1.

The set W(p) represents the set of points in [0, 1]d where the sign of g(.) − q is unknown.
This construction does not depend on g. Let g be a globally increasing function, then {x ∈
[0, 1]d, g(x) = q} ⊂W(p) where q is the p-quantile of g(X).

This initialisation step is particularly interesting when p tends to 0 or 1. Indeed, µ(W(p))
tend to 0 while p tends to 0 or 1. Figure 7 provides the set W(p) for different values of p.

Since an initialisation step is done, the aim is to find two bounds for q from a set of points
E. Proposition 5.3 states that

µ(V−(E)) > p⇒ max
x∈E

g(x) ≥ q,

µ(V+(E)) > 1− p⇒ min
x∈E

g(x) ≤ q.

This means that q can be bounded by the minimum and the maximum of g on E. Nevertheless,
the minimum and the maximum of g are not very informative to estimate a quantile. To refine
these bounds, it is proposed to build a subset A of E such that µ(U−(A)) ≥ p or µ(U+(A)) ≥
1 − p. To do this, let us start with a subset A of E which is then enriched with some points
of E. For the upper bound (resp. lower), the added point is the one that bringing the least
contribution to the measure of V−(A) (resp. V+(A)). Algorithms 5.1 and 5.2 describe this
method. It is illustrated in Figure 4 the first steps of Algorithm 5.2 for d = 2.
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Figure 7: The set W(p) is represented in gray for different values of p in dimension 2.

Algorithm 5.1: getting a greater bound for q from a set of points
x̄n = {x1, . . . , xn}
1. Initialisation step : choose ū = arg min

x=(x1,...,xd)∈x̄n

∏d
i=1(1− xi)

Set x̄n = x̄n\ū and vol = µ(V+(ū))
2. Choose the next point as u = arg min

x∈x̄n

µ(V+(x̄n ∪ x))− µ(V+(x̄n))

3. Set ū = ū ∪ u, x̄n = x̄n\u and vol = µ(V+(ū))
4. If vol ≥ 1− p, repeat steps 2 and 3.
5. Return minu∈ū g(u).

Algorithm 5.2: getting a lower bound for q from a set of points
x̄n = {x1, . . . , xn}
1. Initialisation step : choose ū = arg min

x=(x1,...,xd)∈x̄n

∏d
i=1 xi

Set x̄n = x̄n\ū and vol = µ(V−(ū))
2. Choose the next point as u = arg min

x∈x̄n

µ(V−(x̄n ∪ x))− µ(V−(x̄n)).

3. Set ū = ū ∪ u, x̄n = x̄n\u and vol = µ(V−(ū)).
4. It vol ≥ p, repeat steps 2 and 3.
5. Return maxu∈ū g(u).

A sequential framework of simulations is now possible. Indeed, the bounds can be updated
and provide a non-dominated set. Let F̂ be an estimator of F . It is proposed to estimate q as
follows:

q̂ = inf{t ∈ R, F̂ (t) ≥ p}, (5.2)
Once the initialisation step is done, a sequence of random vectors uniformly distributed on
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Figure 8: Illustration of Algorithm 5.2 for d = 2. Up:
the encircled point xi1 minimises the contribution of
the volume. Down: the algorithm is stopped when
µ(V−(xi1 , . . . , xik

)) ≥ p. It is required to compute the
value of g only on the encircled points.

the non-dominated set is produced. As soon as the bounds of q can be updated using Algorithms
5.1 or 5.2, the non-dominated set can be also updated. These steps are repeated until the budget
of evaluations by the numerical code is reached. Let (q−

k )k≥1 and (q+
k )k≥1 be the sequences of

bounds of the quantile q obtained.
Following probability estimation under monotonicity constraints, an estimator of F is given

by

F̂n(t) = 1
n

n∑

k=1

(
p−

k−1 + (p+
k−1 − p−

k−1)1{g(Xk)≤t}
)
. (5.10)

and is unbiased for t = q. The quantile q is then estimated by
q̂n = inf

{
t ∈ [q−

n , q+
n ], F̂n(t) ≥ p

}
. (5.11)

This sequential framework of simulations ensures that the bounds converge to q (see Propo-
sition 5.6). From construction, it is deducted that q̂n converge towards q. As a central limit
theorem is not available for F̂n(q) with verifiable conditions, the same result applies to q̂n.
Nevertheless, some consistency properties can be obtained for F̂n.

Proposition 5.7. For all t ∈ R, F (min(t, q)) ≤ E
[
F̂n(t)

]
≤ F (max(t, q)) and

E
[
F̂n(t)

]
−→

n→+∞
F (q).

Conclusion

In this thesis, the adaptation of classical methods for probability and quantile estimations under
monotonicity constraints has been examined. Sequential methods appear clearly to be more
adapted since each new run of the numerical code allow to update the deterministic bounds.
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The behaviour of these bounds has been studied. The conditions to ensure the conver-
gence towards the probability and the quantile have been provided. Especially, their rate of
convergence have been studied for different simulations framework. As expected, a sequential
framework accelerates significantly their rate of convergence. Nonetheless, the monotonic prop-
erty provides less and less information while the dimension increases. Under the constraint that
Γ is convex, an adaptive estimate of Γ has been proposed and its convergence can be controlled.

A new construction to estimate a probability has been provided. Sequential uniform sampling
on the non-dominated set seems to be the more tractable method in practice. A unbiased
estimator can be easily deducted.

Alternatively, a method have been provided to bound a quantile from a set of points. From
these bounds, an adaptive estimator of q has been built.

The computation of the bounds of p becomes difficult while the dimension increases. More-
over, while the dimension increases there is no reason that g is still globally monotone. The
monotonic hypothesis becomes more and more difficult to use when the dimension increases.

Many themes have not been studied in this thesis. If a numerical code is not globally
monotonic, a bound for a probability or a quantile are no longer available. But conditional
bounds can be probably used to guide the estimation. Another important aspect in reliability is
sensitivity analysis. This consists in quantifying the influence of the input on a function of the
output of the numerical code. For example, its variance, a probability, a quantile... It can be
useful to determine if the monotonic hypothesis bring information in such studies. Some of the
methods provided in this thesis have or will be implemented in a package so-called MISTRAL
coded in R and available on CRAN [98].
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Introduction

Context

As many energy producers, EDF must justify that its productions plants are safe in running or
stopping condition. This safety justification can be defended by studying the risk engendered
from the occurrence of an undesirable event and can be defined as the product of a cost with
the probability that such event occur. For example, a replacement and/or manufacturing cost,
damages to people and environment. Assessing such probabilities is a key thematic in structural
reliability and constitutes the primary topic of this thesis. More generally, the aim is to provide
reliability indicator of an industrial component.

When the studied component is highly reliable, an undesirable event may have never hap-
pened and then never be observed. The reliability experiments are to costly (e.g. destructive
testing) or dangerous. A possible solution is to implement, under the form of a so-called com-
puter code, a numerical model g that simulates the considered phenomenon. In the industrial
context explored in this thesis it depends on different types of physics as thermodynamics or
mechanics. It is difficult to known the whole of calculus involved in this model. The numerical
code is then considered as black-box: only the input and the output of the numerical can be
known. Moreover, assume that the code is deterministic: a given input provides a unique output

Once this numerical code built, it is necessary to characterise the input of this code. These
inputs represent physical configurations which the component is submitted. One configuration
is defined by the intrinsic physical characteristics of the component as its shape, the materials
used in its construction and the properties of its environments, temperature, pressure, mechanics
constraints... Nonetheless, they can be split in two classes. The first one contains the parameters
which varying during the life of the component and the second one contains the known and fixed
parameters. For each of these configurations, the numerical model provides a reliability index.
To summarise, when a physical configuration X is given as input to the numerical code, it says
that if the configuration leads to an undesirable event or no.

The searched probability is the proportion of these configurations leading to an undesirable
event against all possible configurations. This ratio does not take into account of the frequency of
occurrence of configurations and it is assumed that they have the same influence on the reliability.
To represent these differences a weight can be associated with each of these configurations.
More a configuration occurs often, more the associated weight is high. These weights can be
determined from observations or by the knowledge of the physical properties of the component.
Choosing normalised weights, summing to one, these configurations are represented by a random
vector. This does not mean that X is random, but it takes into account that the behaviour of
component is not uniform with all parameters. In the case where the inputs of the numerical
code are not represented by a random vector, it is equivalent to take identical weights. Even if g
is a black-box, the knowledge of the studied physical phenomenon allows to make hypotheses on
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the numerical code. For example, if a configuration leads to a safe event, it is reasonable to say
that a less restrictive configuration leads also to a safe event. Conversely, if a configuration leads
to an undesirable event, a more severe configuration for the component leads in all probability
to an undesirable event. In this thesis it is assumed that these properties are verified by the
numerical code. It is said that the code is monotone.

Most of probability estimation methods allow to control, with a given confidence level, the
produced estimator. This confidence level is usually fixed by the user at 95%. Obtain a con-
fidence level at 100% is equivalent to say that the probability is comprise between 0 and 1,
which is not informative. One of the main advantages of the monotonicity hypothesis is that a
non-trivial confidence interval at 100% for the searched probability can be obtained. Another
advantage is that the reliability of a configuration can be known without any more evaluations
by g. In practice, this is equivalent to decide if a configuration leads or not to an undesirable
event only from evaluations already made by the numerical code.

Mathematical context

Being more formal and general, consider a numerical code g :

g : Rd × Rm → R

(x, m) 7→ g(x, m).

It is now considered only the input x and the univariate output g(x). A configuration (or
input) x generates an undesirable event if g(x) ≤ q with q fixed by the user. In this thesis,
the probability that such an event occurs is examined first. To do this, the input vector is
represented by a random vector X and then g(X) is a random variable. Assume moreover that
the probability density function fX of X is known. The probability p that an undesirable event
occur is then defined by

p = P(g(X) ≤ q) = E[1{g(X)≤q}] =
∫

Rd
1{g(x)≤q}fX(x)dx.

Conversely, quantile estimation aim to estimate the threshold q when p is known. Denote F the
cumulative distribution of X defined as follow

F (t) = P(g(X) ≤ t).

To illustrate this, assume that F is continuous and strictly increasing, then

F (q) = p.

Probability and quantile estimation are connected since if a quantity is known (p or q), the other
one must be estimated.

Even if g is considered black-box, the knowledge of the studied physical phenomenon allows
to make some hypotheses on the numerical code. In this thesis it is considered that if an input
x leads to the undesirable event then a more severe configuration leads also to the undesirable
event.

For example, consider X = (R, S) where the two random variables R and S represent
respectively a resistance and some constraints. Assume that an undesirable event occur if
g(R, S) = R−S ≤ 0. The undesirable event {R−S ≤ 0} has a lower probability to occur if the
resistance R increases and/or if the solicitation S decreases. Being more general, let g : R2 → R
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Input Distribution parameters Physical representation

X1 truncated Weibull (1.8, 0.00309 , 0.00005, 0.05) depth of a flaw
X2 Log-normal (-1.516, 0.504) Ratio height/length
X3 Normal (0,1) Resistance
X4 Normal (0,1) Constraints

Table 1: Input of the industrial numerical code.

be a function and let (R, S) be a random vector such that if R increases (resp. S decreases)
then g increases. Let r, s two points such that g(r, s) ≥ 0, then for all εR, εS ≥ 0 it comes

g(r + εR, s− εS) ≥ 0,

P(R ≥ r, S ≤ s) ≥ p.

These two equations summarise the whole advantage of monotonicity hypothesis. From a design
of experiments, without any more evaluation by the numerical code, the sign of g can be known
on some points of the input space. Moreover, the probability p can be bounded with a confidence
level at 100%. Indeed, the upper bound does not depend on g. From now, these bounds are
so-called the deterministic bounds of p.

Industrial case study

This thesis has been motivated by the following case study. The reliability of some nuclear
components of a pressurized water vessel must be proved. This thesis focuses on a component
considered to be not replaceable.

To do this, many physical constraints are taking into account to build a model. The neutrons
which initiate the nuclear reaction may collide with the component. It can loses matter when
such collisions occurs and then becomes less resistant. The high temperature of its environment
could cause the deformation of the studied component. Moreover, manufacturing defect must
be taking into account.

The studied model represents the propagation of a flaw on such a component. In such
situations, this flaw may spread in the component. It must be justify that this eventual spreading
does not involve the loss of integrity of the component.

Among all parameters taking as input, only some of them can be represented by random
variables. The numerical code is monotonic according to some of them. As this thesis focuses
on globally monotonic functions, only these inputs are considered. The other ones are set to
their nominal values. The distribution of the input random vector is summarised in Table 1.
The position of the flaw and general resistance and constraints of the component are taking into
account.

Objectives

Three problems have been studied in this thesis.
The theoretical behaviour of probability bounds, which are random objects since they are

build from designs of simulated numerical experiments. Building the designs ensuring a good
convergence of bounds is a key aspect of this investigation. Besides this study conducted us to
build and study a meta-model of the limit state (failure) surface.
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The second problem is the estimation of the probability p. Recall that the probability is
defined by

p = P(g(X) ≤ q).

This threshold q represents a reliability constraint which may come from physical or regulatory
constraints. Once this threshold is fixed, an estimator of this probability allows to justify the
reliability of the studied component. As evoked above, the monotonicity hypothesis allows
to obtain two bounds sure at 100% for p. If the upper bound is lower that an acceptable
probability fixed by the user then the reliability is completely proved. For example, assume that
the frequency of the rise in the water level knowing the height of a dike must be studied. The
undesirable event occur if during one year the height of the water lever is greater than the height
of the dike. An upper bound for the probability is then an upper bound for the frequency of
overflow in one year. Conversely, the lower bound can indicate if the frequency of overflow is
too high, then confirm the height of the dike is to low.

The third studied problem during this thesis is quantile estimation. This means that the
probability is fixed and the associated threshold q must be estimated. As for probability esti-
mation, the monotonic hypothesis allows to bound with a confidence level at 100% the searched
quantile. This hypothesis allows to determine if a configuration leads to the feared event or not
without additional runs to the numerical computer code. This type of bounding permit to de-
termine if a component verify the fixed reliability constraints. In practice, the bounds enable to
adjust the design of the component during its conception step. By taking the previous example,
assume that the aim is to prevent of a one-hundred-year flood. In this case, the height of the
dike corresponds to a p-quantile with p = 10−2. An upper bound for q ensure a sufficient height
for the dike with a confidence level at 100%. If the height of the current dike is lower than the
lower bound of the quantile then a one-hundred-year flood will occur with probability one.

Outline

In Chapter 1, classical methods for probability estimation are presented. It is split in four
mains sections. The first one examines Monte Carlo methods. Descriptions of the standard
Monte Carlo, importance sampling techniques and Quasi-Monte Carlo methods are provided.
The second one focuses on engineering methods used in structural reliability. The estimation of
a probability is obtained by solving an optimisation problem. The third one is based on using
sequential designs. This means that each simulation is conducted in function of the knowledge
of the previous one. Lastly, method based one surrogate (meta-modelling) are examined in the
situation where the numerical is time-consuming. Such technique can provides an estimation of
g which is not time-consuming.

In the two firsts sections of Chapter 2, existing and adapted classical methods of probability
estimation are presented, that take into account of the monotonicity of g.

Information provided by the deterministic bounds around a probability is examined in Chap-
ter 3. The rate of convergence as well as the convergence in law of these quantities are studied.
Different designs are considered. The first one is a Monte Carlo based design and the second
is a sequential framework that exploits the knowledge of deterministic bounds. Moreover, a
sequential estimator of the limit state {x, g(x) = 0} verifying monotonic constraint is built.

The aim of Chapter 4 is to provide a probability estimator which have better properties than
the existing one. A general form of such estimator is provided and its construction is discussed.
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In Chapter 5, the construction of probability estimation is adapted to quantile estimation.
An initialisation step is provided then a method to get deterministic bounds of a quantile is built.
Finally it is presented an estimator of this quantile using the probability estimator provided in
the fourth chapter.

The methods provided in Chapter 4 and 5 are tested on the industrial case in Chapter 6.
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Chapter 1

State of the art: non-intrusive
estimation of an exceedance
probability

Résumé Dans ce premier chapitre, un état de l’art des méthodes non-intrusives d’estimation
d’espérance, et plus particulièrement de probabilité en sortie d’un code numérique, est présenté.
Ce chapitre débute par la méthode de Monte Carlo et inroduit des méthodes de réduction de
variance. Une méthode issue du monde ingénieur dédiée à l’estimation de probabilité est ensuite
présentée. Cette méthode transforme le problème d’estimation en un problème d’optimisation.
Ensuite, des méthodes qui utilisent séquentiellement l’information des simulations sont intro-
duites. Enfin, lorsque le nombre d’évaluations par le code numérique est limité, celui-ci peut
être remplacé par un métamodèle de coût de calcul négligeable, les méthodes tirant parti de
cette substitution sont examinées.

Abstract In this first chapter, a state of the art of non-intrusive methods for integral esti-
mation, and more precisely to estimate a probability, is provided. This chapter first examines
Monte Carlo methods then variance reduction methods. A method coming from engineering
studies and specifically tuned for probability estimation is then provided. This method consists
in transforming the estimation problem into an optimisation problem. Next, sequential methods
which use pieces of information provided by simulations are introduced. Lastly, when the feasi-
ble number of evaluations by the numerical code is limited, it can be replaced by a meta-model
with a negligible cost, methods that take benefit are examined.

1.1 Introduction

Denote by (Ω,A,P) a probability space. Let X be a d-dimensional random vector on U ⊂ Rd

with a known probability density function fX. Denote by g : U ⊂ Rd → R a measurable function
and define

p = P(g(X) ≤ 0) = E[1{g(X)≤0}] =
∫

U
1{g(x)≤0}fx(x)dx. (1.1)

It must be noticed that in practice the threshold is not necessary 0. Without loss of generality,
if the threshold is equal to a real value q then g(.) is transformed in g(.) − q. In a structural
reliability context, such numerical code are complex and each run of g can be time-consuming
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(e.g. one second/minute/hour/day... per run). In practice, this means that the number of
evaluations by g is limited. Moreover, the complexity of the model implies that g is considered
black-box: for a given input x, only the value g(x) is known. The methods described in this
section are non-intrusive.

The aim of this chapter is to make an overview of many methods to estimate the probability
(1.1). Some of them require regularity assumptions on g (for example differentiability). It is
split in four main parts. In the first one, the most common methods based on Monte Carlo-type
sampling are examined. The main disadvantage is while p decreases, less and less simulations
fall within the set of interest {x ∈ U, g(x) ≤ 0}. Thus, for a given precision the size of sample
increases when p becomes small. To address this problem, importance sampling techniques [63]
are introduced to increase the probability of simulating in {x ∈ U, g(x) ≤ 0}. Using an
importance density, importance sampling methods modify the definition of p. Moreover, in a
given sense, the ideal importance distribution can be theoretically found, but is unreachable in
practice. Therefore a vast area of these techniques incorporate approaches to build importance
distribution close to the optimal one.

Other methods refer to engineering practice. This class of methods, known under the name
FORM/SORM (First/Second Order Reliability Methods), transforms the estimation of p in
solving an optimisation problem. Besides an estimation of p, this method provides an estimation
of the limit surface {x ∈ U, g(x) = 0}. as well as the design point. This point is the most
probable input configuration leading to the undesirable event {x ∈ U, g(x) ≤ 0}.

Monte Carlo methods do not use dynamically the simulations to improve the estimation
of p or the limit state surface. In a third part, sequential methods, which aim to do so, are
examined. Splitting method describes p as a product of greater probabilities theoretically easier
to estimate. The last section provides general method using meta-model: a simplified model
(non time-consuming) which mimics g. Then, replacing g by such meta-model, all previous
methods can be used once again.

1.2 Standard Monte Carlo

1.2.1 General description

The standard Monte Carlo [103] is based on the strong law of large numbers (SLLN). Let r > 0
and Z be a random variable, one said Z ∈ Lr if E[|Z|r] < +∞. Let Z ∈ L1 be a real random
variable, the SLLN states that if (Zn)n≥1 is a sequence of random variables independent and
identically distributed (iid) with the same law as Z, then

lim
n→+∞

1
n

n∑

i=1

Zi
a.s.= E[Z]. (1.2)

An estimator of I = E[Z] is given by

ÎMC
n =

1
n

n∑

i=1

Zi. (1.3)

From linearity of the expectation E[ÎMC
n ] = I and if Z ∈ L2, the variance of ÎMC

n is equal to
Var(ÎMC

n ) = σ2/n with σ2 = Var(Z). An empirical way to get more information is to study
a sample of estimators of I. In practice, it can be impracticable to do this if the number of

46



simulations Zi is limited. The central limit theorem (CLT) is commonly used to control the
fluctuations of such estimators. If Z ∈ L2, the central limit theorem states that

√
n

σ

(
ÎMC

n − I
) L−→

n→+∞
N (0, 1),

where L−→
n→+∞

denotes the convergence in distribution while n goes to infinity. The notation

N (0, 1) represents the standard Gaussian distribution with probability density function φ(x) =
e−x2

/
√

2π and cumulative distribution function Φ(x) =
∫ x

−∞ φ(t)dt. For a sufficiently large n
the expectation I is, with probability (1− α) ∈ [0, 1], in the following confidence interval

CIα =
[
ÎMC

n − Φ−1(1− α/2)
σ√
n

, ÎMC
n + Φ−1(1− α/2)

σ√
n

]
, (1.4)

where Φ−1 denote the inverse of the function Φ. In practice, the variance σ2 of Z can be unknown
and the confidence interval (1.4) cannot be used. Nonetheless, an unbiased estimator of σ2 is
given by

σ̂2
n =

1
n− 1

n∑

i=1

(
Zi − ÎMC

n

)2
,

and from Slutsky’s theorem it is deduced that
√

n

σ̂n

(
ÎMC

n − I
) L−→

n→+∞
N (0, 1).

Finally, replacing the estimation σ̂2
n by σ2 in (1.4) provides the following 100(1−α)% confidence

interval

CIα =
[
ÎMC

n − Φ−1(1− α/2)
σ̂n√

n
, ÎMC

n + Φ−1(1− α/2)
σ̂n√

n

]
.

Being more general, the central limit theorem can be extended in multidimensional case.
Let (Zn)n≥1 be a sequence of iid random vectors with mean-vector I and covariance matrix Σ.
Denote

ÎMC
n =

1
n

n∑

k=1

Zk.

The multidimensional central limit theorem states that
√

n
(
ÎMC

n − I
) L−→

n→+∞
Nd(0d, Σ),

whereNd(0d, Σ) represents the multivariate Gaussian distribution with d-dimension mean-vector
0d = (0, . . . , 0) ∈ Rd and covariance matrix Σ.

1.2.2 Application to probability estimation

Recall that X is a d-dimensional random vector on U ⊂ Rd with probability density function fX

and denote p = P(g(X) ≤ 0) = E[1{g(X)≤0}]. Let (Xn)n≥1 be an iid sequence of random vectors
distributed as X. From Equation (1.2), the probability p can be estimated by

p̂MC
n =

1
n

n∑

i=1

1{g(Xi)≤0}
p.s.−→

n→+∞
P[g(X) ≤ 0], (1.5)
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with a variance equals to

V ar
[
p̂MC

n

]
=

p(1− p)
n

≤ 1
4n

, (1.6)

which depends on the unknown probability p. As for the general case, the variance of 1{g(X)≤0}
can be estimated by

σ̂2
n =

1
n− 1

n∑

i=1

(
1{g(Xi)≤0} − p̂MC

n

)2
,

and a confidence interval at 100(1 − α)% becomes

CIα =
[
p̂MC

n − Φ−1(1− α/2)
σ̂n√

n
, p̂MC

n + Φ−1(1− α/2)
σ̂n√

n

]
. (1.7)

The standard Monte Carlo is one of the simplest method to use in practice. The precision
of the estimation does not depends on the dimension and it is sufficient to retain the value of
g on the sample. Moreover, no hypotheses have to be made on the regularity of the function g.
It can be discontinuous, have no derivative and it is sufficient to know if the code is lower or
greater than a given threshold. Nonetheless, the principal drawback of this method is the rate
of convergence in 1/n. For all ε > 0, the Chebyshev’s inequality states that

P(|p̂MC
n − p| > ε) ≤ σ2

ε2n
.

The size n of the sample can be chosen to control the coefficient of variation defined by

CVMC =

√
V ar [p̂MC

n ]

E(p̂MC
n )

=

√
1− p

np
.

Even if the coefficient of variation does not depends on g, it is not robust according to p:

CVMC −→
p→0

+∞.

A possible stopping criterion is to simulate until CVMC ≤ 0.1:

[CVMC ≤ 0.1]⇒
[
n ≥ 102(1− p)/p

]
. (1.8)

For a given precision, the size of the sample increases while p decreases. If the order of magnitude
of p is 10−k, Equation (1.8) states that n must be approximately greater than 10k+2. When the
computer code is time-consuming and p is small (< 10−3) this method is not feasible in practice.
The following sections summarise some variance reduction techniques for integral estimation or
exclusively probability estimation.

1.3 Space filling methods

As said in the previous section, the standard Monte Carlo is inefficient to simulate rare events in
practice. If there is no sample in one of the informative areas, the estimation of an expectation
will have a large variance. This can be explained by the non-regularity of the sample. Since
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(a) A standard Monte Carlo sample on [0, 1]2.
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(b) A regular grid in dimension 2.

Figure 1.1: Representation of two different sampling techniques.

each elements of the sample is built independently, some empty areas can appear (see Figure
1.1).

In this section, several space filling methods are provided. The set of points obtained is
used to compute integrals. This class of method are called Quasi-Monte Carlo. First, stratified
sampling [29] is presented. This class of method consists in estimating the expectation separately
in different subsets of the domain of integration. Second, the Latin Hypercube Sampling (LHS)
developed in [83], a design method which can be compared with stratified sampling, is studied.
If a sample of size n is required then n quartile of the initial distribution will be represented by
the sample. Third, the low discrepancy sequences (see [91]) provide deterministic samples which
are close to the theoretical uniform distribution in some sense. Lastly, maximin and minimax
designs are presented and discussed.

1.3.1 Stratified Sampling

Stratified Sampling [29, 103] consists in splitting up the input space in strata and to estimate
the expectation I = E[H(X)] knowing to be in one of the strata. In other words, the expectation
I is rewritten as

I =
m∑

i=1

E[H(X)|X ∈ Si]P(X ∈ Si),

where ∪m
i=1Si = Rd with Si ∩ Sj = ∅ for i 6= j. If every ρi = P(X ∈ Si) are known, it remains to

estimate Ii = E[H(X)|X ∈ Si]. For example, it could be estimated by

Îi =
1
ni

ni∑

j=1

H(Xi),

where (Xi
j)j≥1 is a sequence of iid random vectors distributed as Xi ∼ L(X|X ∈ Si) and∑m

i=1 ni = n. Finally, I is estimated by the following unbiased estimator

ÎStrat
n =

m∑

i=1

ρiÎi,

the variance of which being

Var(ÎStrat
n ) =

m∑

i=1

ρ2
i σ2

i

ni
, (1.9)
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with σ2
i = Var(E[H(X)|X ∈ Si]). Setting ni = ρin is an intuitive choice. Nonetheless, the

variance in (1.9) is minimum with

ni = n
ρiσi

m∑

j=1

ρjσj

,

and becomes

Var(ÎStrat
n ) =

1
n

(
m∑

i=1

ρiσi

)2

.

Without any more information on H, if X is a random vector of Rd, each Si can be one of the
2d orthant1 of Rd.

1.3.2 Latin hypercube Sampling

The Latin Hypercube Sampling was developed by [83] in any dimension. It consists in splitting
the input space in different strata and to simulate in some of them. The aim is to represent
each marginal of X by a sample. To do this, the support of the probability density function of
each marginal distribution is split in n subsets, representing the number of simulations available.
Assume that X = (X1, . . . , Xd) takes its values in U = S1× · · · ×Sd. Then, each Si is split in n
subsets Si,1, . . . , Si,d with same probability according to fi, the probability density function of
Xi. Thus, Si = ∪n

k=1Si,k with P(Xi ∈ Si,k) = 1/n for all k = 1, . . . , n.
Let X1, . . . , Xn be n points in U with Xj = (X1

j , . . . , Xd
j ) and (X1

1 , . . . , X1
n) distributed on

S1,1 × · · · × S1,n. Let π2, . . . , πd be d − 1 random and independent permutations of {1, . . . , n}.
For all k = 2, . . . , d, denote πk(1, . . . , n) = (ik,1, . . . , ik,n). Finally, for all j = 1, . . . , n, Xj is
simulated on S1,j × S2,i2,j × · · · × Sd,id,j

.
Figure 1.2 illustrates this construction for S1 × S2 = [0, 1]2. In Figures 1.2a and 1.2b the

permutations π2 are respectively equal to {4, 2, 1, 5, 3} and {4, 5, 2, 1, 3}.
One of the main advantages of LHS is that the projection of a sample of size n in each of

the d directions provides a new sample of size n. For example, in Figure 1.1b the projection of
the sample provides 11 different points.

1.3.3 Low discrepancy sequences

The aim of space filling methods is to approximate the theoretical uniform distribution. If
many choices of sample are available it may be appropriate to compare them. To do this,
the discrepancy compares the empirical distribution of a sample with the theoretical uniform
distribution. Without loss of generality consider that the aim is to simulate uniformly on [0, 1]d.
Let {x1, . . . , xn} be a set of points in [0, 1]d. A definition of the discrepancy of {x1, . . . , xn}
provided in [91], is denoted

D(x1, . . . , xn) = sup
S∈S

∣∣∣∣∣
1
n

n∑

k=1

1{xk∈S} − µ(S)

∣∣∣∣∣ ,

where µ represents the Lebesgue measure in Rd and S is the sets of d-dimensional hyper-rectangle
of the form

∏d
i=1[ai, bi[ with 0 ≤ ai < bi ≤ 1 for all i = 1, . . . , d. Since the supremum is computed

1An orthant in Rd is defined by {x = (x1, . . . , xd) ∈ Rd
, εixi ≥ 0} where εi ∈ {−1, 1}.
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(a) LHS on [0, 1]2 with n = 5
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(b) LHS on [0, 1]2 with n = 5
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(c) LHS on [0, 1]2 with n = 10
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(d) LHS on [0, 1]2 with n = 10

Figure 1.2: Representation of different LHS in dimension d = 2.

on all hyper-rectangles in [0, 1]d, the comparison between many sequences becomes infeasible in
practice. To facilitate the computation, the so-called star-discrepancy [92] is a modified version
of the discrepancy. It is defined as follow

D∗(x1, . . . , xn) = sup
S∈S∗

∣∣∣∣∣
1
n

n∑

k=1

1{xk∈S} − µ(S)

∣∣∣∣∣ ,

where S∗ is the sets of d-dimensional hyper-rectangle of the form
∏d

i=1[0, bi[ with 0 < bi ≤ 1 for
all i = 1, . . . , d. There is a relation between these two quantities

D∗(x1, . . . , xn) ≤ D(x1, . . . , xn) ≤ 2dD∗(x1, . . . , xn).

In [92], the discrepancy and star-discrepancy of a finite set of points in dimension 1 are given.
The values of D and D∗ are difficult to obtain in higher dimension. Moreover, these bounds are
not helpful to compare the discrepancy between two sets of points. Let E1 and E2 be two sets
of points with same number of elements. The relation D∗(E1) ≤ D∗(E2) does not imply that
D(E1) ≤ D(E2).

A sequence with a low discrepancy is called a low-discrepancy sequence. In practice, the use
of such sequences is useful to compute integrals. Let h : [0, 1]d → R be a measurable function
and (Xk)k≥1 be a sequence of independent random vectors uniformly distributed on [0, 1]d. The
strong law of large number states that

lim
n→+∞

1
n

n∑

i=1

h(Xi)
a.s.= E[h(X)] =

∫

[0,1]d
h(x)dx.

For an equivalent error of approximation, a low-discrepancy sequence can require less evaluations
by h than the uniform sample X1, . . . , Xn. Let (xk)k≥1 be a sequence of points in [0, 1]d and h
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be a function of bounded variation. In [67], it is shown that for all n ≥ 1

∣∣∣∣∣
1
n

n∑

k=1

h(xk)−
∫

[0,1]d
h(x)dx

∣∣∣∣∣ ≤ V (h)D∗(x1, . . . , xn), (1.10)

where V (h) is the total variation of h in Hardy and Krause sense. In (1.10), the discrepancy
and V (h) have independent role. But in practice, the error strongly depends on both h and
the sample. This upper bound is used to prove that the low-discrepancy sequence provides a
consistent estimator of the integral. In the next paragraph some low-discrepancy sequences are
examined.

Some of them are particular case of the so-called (t, m, d)-net sequences (see [91]). First, it
is required to determine a positive integer b which takes the role of a basis. Then, a number of
strata is determined as well as the number of points simulated on each of these strata. In basis
b, the size of the sample is equal to bm and the Lebesgue measure of each strata is equal to bt−m

and contains bt points. An upper bound of the star-discrepancy of a (t, m, d)-net can be found
in [91]:

2t

n

d−1∑

k=0

(
m− t

k

)
for b = 2,

bt

n

d−1∑

k=0

(
d− 1

k

)(
m− t

k

)⌊
b

2

⌋k

for b ≥ 3.

Several well known low-discrepancy sequences are provided in the following paragraphs (see
also [79]).

Van der Corput sequence. The Van der Corput sequence provides a low-discrepancy se-
quence in dimension one which depends on a basis b. The n first terms x0, . . . , xn−1 of the
sequence is built as follow. For all i = 0, . . . , n− 1, the number i is decomposed in basis b. The
number 0 is coded by 0 for any basis. If i ≥ 1, it can be coded in basis b with m(i, b) digits.
This number of digits is the smaller integer such that i ≤ bm(i,b). Thus,

m(i, b) =





1 if i = 0,

1 +
⌊

log(i)
log(b)

⌋
if i ≥ 1,

(1.11)

and it comes

i =
m(i,b)−1∑

k=0

αk(i, b)bk. (1.12)

Finally, the n first terms of the Van der Corput sequence are defined by {x0, . . . , xn−1} with

xi =
m(i,b)−1∑

k=0

αk(i, b)b−(k+1).
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For example, the nine first terms of the Van der Corput sequence in basis b = 3 are




x0

x1

x2

x3

x4

x5

x6

x7

x8




=




0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2




(
3−2

3−1

)
=




0
1/3
2/3
1/9
4/9
7/9
2/9
5/9
8/9




.

Halton sequence The Halton sequence is the multidimensional version of the Van der Corput
Sequence. Instead to simulate a sequence of Van der Corput of size dn, the Halton sequence
is built with d Van der Corput sequences with d different basis. For all i = 0, . . . , n − 1, the
number i is decomposed in d basis b1, . . . , bd where the kth number is denoted αk(i, bj). The n
first terms of the Halton sequence are defined by {x0, . . . , xn−1} with

xi =




m(i,bj)−1∑

k=0

αk(i, bj)b−(k+1)
j




j=1,...,d

∈ [0, 1]d,

where m(i, bj) is constructed as in (1.11). In practice, the basis b1, . . . , bd must be co-prime
integers2. On Figure 1.3 are displayed four Halton sequences in dimension d = 2 for different
couples of basis. Figures 1.3b and 1.3c highlight that the basis must be co-primes integer.
Otherwise, some undesirable patterns can appear.

Hammersley sequence Hammersley sequence is a combination of a Halton sequence and a
term depending on the size of the sample. In other words, using the same notations as in the
previous paragraph, the Hammersley sequence is defined for all i = 0, . . . , n − 1 by

xi =


 i

n
,

m(i,b2)−1∑

k=0

αk(i, b2)b−(k+1)
2 , . . . ,

m(i,bd)−1∑

k=0

αk(i, bd)b−(k+1)
d


 .

Sobol sequence Sobol sequence was developed in [109]. Such sequences can be built in any
dimension. But to simplify the construction let us start with d = 1. At the difference with the
other sequences presented above, the basis is equal to b = 2 for any dimension. Let (x0, . . . , xn−1)
be a sequence of points in [0, 1] such that for all i = 0, . . . , n− 1

xi =
m∑

k=1

tk2−k,

where tk ∈ {0, 1} for all k ≥ 1. The construction of a Sobol sequence requires the representation
in basis 2 of xi which is denoted

(xi)2 = 0.t1t2 · · · tm.

2Two integers are co-prime if the only positive integer which divides them is 1.
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(a) A Halton sequence with (b1, b2) = (2, 3).
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(b) A Halton sequence with (b1, b2) = (2, 4).
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(c) A Halton sequence with (b1, b2) = (2, 8).
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(d) A Halton sequence with (b1, b2) = (2, 11).

Figure 1.3: Representation of several Halton sequences in dimension d = 2.

For example 3/8 = 0 × 2−1 + 1 × 2−2 + 1 × 2−3 and then (3/8)2 = 0.011. The construction of
such sequence requires a primal polynomial P in Z2 = {0, 1}:

P (z) = zs + a1zs−1 + a2zs−2 + · · · as−1z + 1,

with a1, . . . , as−1 ∈ {0, 1}. Moreover, let (mk)k≥1 be a sequence of integers such that for 1 ≤
k ≤ s, mk is an odd integer chosen arbitrary between 1 and 2k (e.g. 2k + 1) and for k > s,

(mk)2 = (2a1mk−1)2 ⊕ · · · ⊕ (2s−1as−1mk−s+1)2 ⊕ (2smk−s)2 ⊕ (mk−s)2, (1.13)

where ⊕ represents the exclusive-or operator. For example 01001 ⊕ 11011 = 10010. Let
(αk(i, 2))k≥0 be the parameters of the decomposition in basis 2 of i as described in (1.12),
the representation in basis 2 of xi is

(xi)2 = ⊕k≥1αk(i, 2)(vk)2,

with

vk = mk/2k.

Building a Sobol sequence in dimension d ≥ 2 requires to build d Sobol sequences in dimension
1 with d different primal polynomial.

Let us present an example in dimension 1. Let s = 3 and P (z) = z3+z2+1 then a1 = 1, a2 = 0
and let m1 = 1, m2 = 3 and m3 = 5. From (1.13), it comes

(m4)2 = (2a1m3)2 ⊕ (22a2m2)2 ⊕ (23m1)2 ⊕ (m1)2,

= (10)2 ⊕ (0)2 ⊕ (8)2 ⊕ (1)2,

= 1010 ⊕ 0000 ⊕ 1000 ⊕ 0001,

= 0011.
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Since v1 = 1/2, v2 = 3/4, v3 = 5/8 and v4 = 3/16, it comes

(v1)2 = 0.1000,

(v2)2 = 0.1100,

(v3)2 = 0.1010,

(v4)2 = 0.0011.

Finally,

(x0)2 = (0)2 = 0,

(x1)2 = (v1)2 = 0.1,

(x2)2 = (v2)2, = 0.11,

(x3)2 = (v1)2 ⊕ (v2)2 = 0.01,

(x4)2 = (v3)2 = 0.101,

(x5)2 = (v1)2 ⊕ (v3)2 = 0.001,

(x6)2 = (v2)2 ⊕ (v3)2 = 0.011,

(x7)2 = (v1)2 ⊕ (v2)2 ⊕ (v3)2 = 0.111,

(x8)2 = (v4)2 = 0.0011.

Concluding on this example, the nine first points of this Sobol sequence is

(x0, x1, x2, x3, x4, x5, x6, x7, x8) = (0, 1/2, 3/4, 1/4, 5/8, 1/8, 3/8, 7/8, 3/16).

1.3.4 Optimised design

As seen in Figure 1.1a, uniform sampling clusters points and create empty areas. Several criteria
of design was developed to fight against this phenomenon.

Maximin and minimax designs

Maximin and minimax designs, provided in [71], are based on two intuitive ideas. The aim is to
find a set of points which minimises a criterion.

The maximin-distance criterion consists in maximising the minimal distance between the
points of a sample. Let x̄ be a set of points in [0, 1]d, this criterion is equal to

mindist(x̄) = min
x,y∈x̄

x6=y

‖x− y‖, (1.14)

and the aim is to find x̄ such that (1.14) is maximum. This criterion means that the minimum
distance of two points of a sample is maximum.

Minimax design provides a sample such that for each point of [0, 1]d, the distance with its
nearest neighbour of the sample is minimal. This criterion is defined by

MinMax(x̄) = max
y∈[0,1]d

min
x∈x̄
‖y− x‖. (1.15)
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Low discrepancy LHS

A method to minimise the discrepancy of a design of experiments based on LHS is provided
by [70]. Many methods to optimise LHS are detailed in [34]. This problem can be seen as
minimising a criterion by a set of points. If the criterion has not a closed form, simulated
annealing can be used in practice. A LHS is chosen randomly among all LHS and it is accepted
or rejected as the current minimiser of the criterion with a given probability. This step is
repeated until reaching a stopping criterion.

1.4 Importance sampling

1.4.1 General description

The standard Monte Carlo does not ensure to obtain a sample in a domain which brings enough
information to estimate accurately an expectation. For example, if the expectation is a small
probability defined by p = E[1{g(X)≤0}], the event {g(X) ≤ 0} must be simulated as frequently
as possible. For this purpose, a random vector is introduced to modify the initial distribution X
with the aim of concentrating the simulations in an informative area of the input space. Methods
based on this mechanism are called importance sampling techniques [63, 103]. More generally,
let X be a random vector on Rd with probability density function fX and H : Rd → R such that
H(X) ∈ L1. Under mild assumptions, E[H(X)] can be rewritten as

E[H(X)] =
∫

Rd
H(x)

fX(x)
fY(x)

fY(x)dx,

= E
[
H(Y)

fX(Y)
fY(Y)

]
,

with Y a random vector with probability density function fY.

Definition 1.1 Let h : Rd → R, the support of h is defined by supp(h) = {x ∈ Rd, h(x) 6= 0}.
Equalities above hold if the support of fY contains the support of fX. Let (Yn)n≥1 be an iid
sequence of random vectors with the same law than Y. If H(Y)fX(Y)/fY(Y) ∈ L1, the strong
law of large numbers states that

lim
n→+∞

1
n

n∑

i=1

H(Yi)
fX(Yi)
fY(Yi)

a.s.= E
[
H(Y)

fX(Y)
fY(Y)

]
. (1.16)

An estimator of I = E[H(X)] is then given by

ÎIS
n =

1
n

n∑

i=1

H(Yi)
fX(Yi)
fY(Yi)

. (1.17)

Remark 1.1 Estimator (1.17) is unbiased if supp(fX) ⊂ supp(fY).

If H(Y)fX(Y)/fY(Y) ∈ L2, the variance of ÎIS
n is equal to

Var
(
ÎIS

n

)
=

1
n

V ar

(
H(Y)

fX(Y)
fY(Y)

)
,

=
1
n

[∫ (
H2(y)

f2
X(y)

fY(y)

)
dy− E[H(X)]2

]
, (1.18)
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and the variance of H(Y)fX(Y)/fY(Y) can be estimated by

(σ̂IS
n )2 =

1
n− 1

n∑

i=1

(
H2(Yi)

f2
X(Yi)

f2
Y(Yi)

− ÎIS
n

)2

. (1.19)

Remark 1.2 The variance of ÎIS
n can be greater than the variance of the Monte Carlo estimator

if fY is not well chosen The integral in Equation (1.18) can be rewritten as

∫ (
H2(y)

fX(y)2

fY(y)

)
dy =

∫ (
H2(y)

fX(y)
fY(y)

fX(y)
)

dy,

= E
[
H2(X)

fX(X)
fY(X)

]
.

Therefore, the importance sampling estimator has a lower variance than the standard Monte
Carlo estimator if

E
[
H2(X)

fX(X)
fY(X)

]
≤ E

[
H2(X)

]
.

Moreover, if H(Y)fX(Y)/fY(Y) ∈ L2 it comes
√

n

σ̂IS
n

(
ÎIS

n − I
) Law−→

n→+∞
N (0, 1), (1.20)

and an asymptotic confidence interval at 100(1 − α)% is

CIα =
[
ÎIS

n − Φ−1(1− α/2)σ̂IS , ÎIS
n + Φ−1(1− α/2)σ̂IS

n

]
. (1.21)

Equations above do not provide information about the best choice of an importance density.
Minimising the variance given in (1.18), the method of Lagrange multipliers provides the optimal
density fY. Define

L(λ) =
∫ (

H2(y)
fX(y)2

fY(y)

)
dy− λ

(∫
fY(y)dy − 1

)
.

Finding the zero of the derivative, it comes

H2 f2
X

fY

− λfY = 0,

then

fY =
|H|fX√

λ
,

with λ > 0. Under the constraint that fY is a probability density function, it must verify∫
fY(y)du = 1 and then

√
λ =

∫
|H(y)|fX(y)dy.

Finally, the probability density function which minimises the variance of (1.17) is equal to

f∗
Y =

|H|fX∫ |H(y)|fX(y)dy
=
|H|fX

E[|H(X)|] . (1.22)

If H is a positive function, determining this optimal density is equivalent to know the quantity
to be estimated.

57



1.4.2 Application to probability estimation

Assume now H = 1{g≤0}. Equations (1.17) and (1.19) become respectively

ÎIS
n =

1
n

n∑

i=1

1{g(Yi)≤0}
fX(Yi)
fY(Yi)

, (1.23)

(
σ̂IS

n

)2
=

1
n− 1

n∑

i=1

(
1{g(Yi)≤0}

f2
X(Yi)

f2
Y(Yi)

− ÎIS
n

)2

, (1.24)

and the optimal probability density function is

fY =
1{g≤0}fX

p
, (1.25)

which depends on p.

Remark 1.3 The estimator ÎIS
n in (1.23) is unbiased if

{x ∈ Rd, g(x) ≤ 0} ⊂ supp(fY).

An alternative to importance sampling is the weighted importance sampling estimator [10,
97]:

ÎW IS
n =

n∑

i=1

H(Yi)L(Yi)

n∑

i=1

L(Yi)

, (1.26)

where L = fX/fY. It can be useful to introduce these weights when the constant of normalisation
of the importance density is difficult to obtain. Indeed, if

fY = hY/

∫

Rd
hY(y)dy,

then (1.26) becomes

ÎW IS
n =

n∑

i=1

H(Yi)fX(Yi)/hY(Yi)

n∑

i=1

fX(Yi)/hY(Yi)

.

Finally, the estimator can be expressed as

ÎW IS
n =

n∑

i=1

W (Yi)H(Yi), (1.27)

where W (Yi) = L(Yi)/
∑n

j=1 L(Yj). This estimator is biased, but since the weights are in
[0, 1], the estimator ÎW IS

n is comprised between the minimum and the maximum of H. Then,
it is bounded which is not guaranteed by (1.17). In [45], conditions on the weights are given to
have a consistent estimator with asymptotic normality. The choice of the importance density is
widely studied in [19].
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1.5 Conditional Monte Carlo

Conditional Monte Carlo is a variance reduction technique which consists in rewriting the stan-
dard Monte Carlo estimator by conditioning some variables. This method was generalized in [63].
Let H : Rd → R and X be a random vector in Rd such that it can be split in a couple of random
vectors (Y, Z). Define I = E[H(X)] = E[H(Y, Z)] and conditioning according to, for example,
Z it comes I = E[E[H(Y, Z)|Z]]. Let (Xn)n≥1 = ((Yn, Zn))n≥1 be an independent and identi-
cally distributed sequence of random vectors distributed as X. A Monte Carlo estimator of I
is

Îcond
n =

1
n

n∑

i=1

E[H(Y, Zi)|Zi]. (1.28)

The variance of (1.28) can be compared with the standard Monte Carlo estimator

Var
(
Îcond

n

)
=

1
n

Var(E[H(Y, Z)|Z]),

=
1
n

(
E(E2[H(Y, Z)|Z]) − E2[H(X)]

)
,

≤ 1
n

(
E(E[H2(Y, Z)|Z])− E2[H(X)]

)
, (1.29)

=
1
n

(
E[H2(Y, Z))− E2[H(X)]

)
,

= Var
(
ÎMC

n

)
.

Equation (1.29) is obtained by Jensen inequality, recalled below, applied to the function
t 7→ t2.

Definition 1.2 (Jensen inequality). Let f : J ⊂ R→ R be a convex functions and X a random
variable taking its values in J . Then

f(E[X]) ≤ E[f(X)].

Finally, this estimator has a lower variance than the one obtained from the standard Monte
Carlo. The conditioning is efficient since the conditional expectation E[H(Y, Zi)|Zi] is easy to
compute. Otherwise, this expectation must be also estimated. In particular case, this expecta-
tion can be estimated without using standard Monte Carlo (see Section 1.7). Figure 1.4 provides
an illustration of such a conditioning in dimension d = 2.

1.6 First and Second Order Reliability Method

Methods FORM/SORM (First/Second Order Reliability Method) are completely different from
Monte Carlo methods and are dedicated to probability estimation. This class of methods was
developed in a structural reliability context [77]. A general problem is to consider a structure
that is subjected to a solicitation and its resistance. If these two quantities are represented by
two random variables S and R, the probability of the event {R ≤ S} is a quantity of interest.

In this section, the estimation of such a probability does not use Monte Carlo (or importance
sampling) techniques. The problem is seen as an optimisation problem and it is decomposed
in three stages. The first one transforms the input random variables in independent standard
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Figure 1.4: Illustration of conditional Monte Carlo in dimension d = 2. Assume that H takes
its values in the disk and takes as input the random vector X = (X1, X2) ∈ [0, 1]2. Red and
black points represent a sample distributed as X1. Each red line represents E[H(X1, X2)|Xi

1].

Gaussian random variables. The second one consists in getting the so-called design point on
the limit state Γ = {x ∈ U, g(x) = 0}, and approximating this surface by a hyperplane (resp.
quadratic surface) for FORM (resp. SORM). The last stage consists in estimating p as the
probability that the standard normal distribution is below the hyperplane (or the quadratic
surface). These three stages are detailed in the following paragraphs.

Nonetheless, the estimation cannot be controlled and depends strongly on Γ and g. In prac-
tice, the design point can be used to create an importance density which provides a controllable
estimator [84]. This construction is also described in Section 1.6.4.

1.6.1 Transformation to the Gaussian space

To simplify the development of some reliability methods, the random variables used as inputs of
the numerical code are transformed to independent and identically distributed random variables.
Such a transformation is used also in Section 1.7.

Rosenblatt’s transformation [77] modified each component of X to a standard Gaussian
random variable. This transformation is defined recursively by

T : Rd 7−→ Rd

x = (x1, . . . , xd) −→ (T1(x1), . . . , Td(xd)), (1.30)

with

T1(x1) = Φ−1(FX1(x1))

Ti(xi) = Φ−1(FXi(xi|x1, . . . , xi−1)) for i = 2, . . . , d,
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where FXi is the cumulative distribution function of Xi conditionally to Xj for j < i. When the
random variables are independent, the transformation (1.30) becomes for i = 1, . . . , d

Ti(xi) = Φ−1(FXi(xi)),

where Φ−1 is the inverse of the function Φ. Let Y = T (X) ∼ Nd(0d, Id), the probability p can
be rewritten as

p = P
((

g ◦ T −1
)

(Y) ≤ 0
)

.

Alleviating the notation, until the end of this section, the function g is now equal to g ◦T −1 and
X ∼ Nd(0d, Id) then p = P(g(X) ≤ 0).

1.6.2 Searching for the design point

The key issue of this method is to obtain the most probable point in the limit state Γ = {x ∈
Rd, g(x) = 0}, called the design point. The design point is interpreted as the nearest point of
the origin which belongs to the limit state Γ. It is the solution of the following optimisation
problem





min
u∈Rd

(
utu

)
,

g(u) = 0.
(1.31)

There exists several algorithms to solve Problem (1.31). These algorithms consists in getting,
from a starting point u0, the best descent direction as well as the best distance to get a new
point. From step (k) to (k + 1), define

u(k+1) = u(k) + α(k)S(k).

The following algorithms are based on gradient descent. They can be found in [77].

Hasofer-Lind-Rackwitz-Fiessler algorithm HLRF

It is an algorithm constructed by Hasofer-Lind-Rackwitz-Fiessler [64, 99] specific to Problem
(1.31). Denote u(k) obtained at step k. The point u(k+1) is given by

u(k+1) = u(k) − α(k)

g(u(k))

‖∇g(u(k))‖
, (1.32)

where α(k) = ∇g(u(k))/‖∇g(u(k))‖. Indeed, let u(k) such that g(u(k)) ≤ 0, the second order
Taylor polynomial is

g(u) = g(u(k)) +∇g(u(k))
t(u− u(k)) + O(u− u(k))

2.

The point u(k+1) must verify:

g(u(k+1)) = g(u(k)) +∇g(u(k))
t(u(k+1) − u(k)) = 0,

dividing by the norm of the gradient, it comes

g(u(k))

‖∇g(u(k))‖
+
∇g(u(k))t(u(k+1) − u(k))

‖∇g(u(k))‖
= 0. (1.33)
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Set α(k) = ∇g(u(k))/‖∇g(u(k))‖, Equation (1.33) becomes :

g(u(k))

‖∇g(u(k))‖
+ αt

(k)(u(k+1) − u(k)) = 0,

or

αt
(k)u(k+1) = αt

(k)u(k) −
g(u(k))

‖∇g(u(k))‖
.

Finally, since ‖α(k)‖ = 1 Equation (1.32) is verified.
The convergence of this algorithm is not assured since it highly depends on the limit state.

Remark 1.4 There exists a refined version of the HLRF algorithm, which consists in finding
at each step the optimal step size [113].

Second order algorithm

For the second order algorithms, the Hessian of g must be computed. However, for high dimen-
sion it cannot be used in practice if g is time-consuming. Abdo-Rackwitz algorithm [77] is based
on the rewriting of the Hessian matrix.

Remark 1.5 All these algorithms require to start with an initial point u0. A possible choice is
to take u0 = 0 ∈ Rd, the mean or a quantile of the inputs on the initial space.

1.6.3 FORM/SORM approximation

In this subsection FORM and SORM approximations are considered. The first one estimates
the limit state by a linear surface whereas the second uses a quadratic surface.

First order approximation

Assume u∗ is a solution of Problem (1.31). FORM approximation method consists in approxi-
mating Γ by a hyperplane passing through u∗. This hyperplane h is defined by

h(x) = ∇g(u∗)t(x − u∗).

The numerical code g is approximated around u∗ by h, then the probability p = P(g(X) ≤ 0) is
estimated by

P(h(X) ≤ 0) = P(∇g(u∗)t(X− u∗) ≤ 0)

= P

(
∇g(u∗)tX
‖∇g(u∗)‖ ≤

∇g(u∗)tu∗

‖∇g(u∗)‖

)
.

Notice that ∇g(u∗)tX/‖∇g(u∗)‖ ∼ N (0, 1), and denoting Φ the cumulative density function of
a standard normal distribution, it comes

P(h(X) ≤ 0) = Φ(−β∗),

with β∗ = −∇g(u∗)tu∗/‖∇g(u∗)‖.
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Second order approximation

The SORM approximation depends on the curvature of the limit state Γ = {x ∈ Rd, g(x) = 0}.
For a given solution u∗ of Problem (1.31), denote β = ‖u∗‖. This quadratic approximation
comes from [18] and needs the main curvatures (κ1, . . . , κd−1) of Γ at u∗. The probability is
then estimated by

Φ(−β)




d−1∏

j=1

(1 + βκj)−1/2


 .

This method is called asymptotic since this approximation holds for β → +∞.
In practice, the search for the design point requires few calls to the function g, but a good

precision of the approximation depends on g. Indeed, g must to be a differentiable function,
have a linear or quadratic limit state, and have a unique design point. In [42], a method was
developed if many design points exist. In [50], a criterion is established to check the uniqueness
of the design point. However, the estimator cannot be controlled even if these hypotheses are
verified.

1.6.4 FORM/SORM-Importance sampling

To overcome the lack of control of the estimator, it seems natural to couple the search for the
design point with importance sampling techniques [84]. Indeed, assume that the solution of
Problem (1.31) is u∗. Then, simulating close to u∗, there is a high probability to get simulations
in {x ∈ Rd, g(x) ≤ 0}. Choosing the importance density as

fY(u) =
1

(2π)d/2
exp−‖u− u∗‖2/2,

Equations (1.17) and (1.19) become respectively

p̂F/S−IS
n =

1
n

n∑

i=1

1{g(Yi)≤0} exp
(
‖Yi‖2/2−Yt

iu
∗
)
,

σ̂F/S−IS
n =

1
n− 1

n∑

i=1

(
1{g(Yi)≤0} exp

(
‖Yi‖2/2−Yt

iu
∗
)
− p̂F/S−IS

n

)2
.

where Yi ∼ Nd(u∗, Id). As for Monte Carlo or importance samplings methods, it can be deduced
a confidence interval at level 100(1 − α)%

CIα = [p̂F/S−IS
n − Φ−1(1− α/2)σ̂F/S−IS

n , p̂F/S−IS
n + Φ−1(1− α/2)σ̂F/S−IS

n ]. (1.34)

1.7 Directional Sampling

1.7.1 General description

Conditional Monte Carlo methods require some information about the function H. If the condi-
tional expectation is difficult to estimate (e.g. a standard Monte Carlo approach) the gain of this
method will decrease. In the particular case where H = 1{g≤0} with g a black-box function, such
methods cannot be used without modifications. The directional sampling method [13, 43] pro-
vides an estimation of such expectations. Assume that p = P(g(X) ≤ 0) with X = (X1, . . . , Xd)
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Figure 1.5: Directional sampling: representation of the method in dimension 2. The random
vectors A1, A2 are uniformly distributed on S2. For i = 1, 2, once the solution of gi(R) = 0 is
found, the plain curve delimits the set {gi(R) ≤ 0}.

a random vector. Conditioning by X2, . . . , Xd is equivalent to estimate P(g(X) ≤ 0|X2, . . . , Xd)
or to find the solutions of g(X1, X2, . . . , Xd) = 0 knowing X2, . . . , Xd.

Simplifying the description, consider that the transformation T described in Section 1.6.1 has
been applied to X and then X ∼ Nd(0, Id). Denote χ2

d the chi-squared distribution with d degrees
of freedom and Sd = {x ∈ Rd, ‖x‖ = 1} the unit d-sphere. The random vector X can be defined
as RA where R ∼ χ2

d and A ∼ U(Sd) and then p = P(g(RA) ≤ 0) = E[P(g(Ra) ≤ 0|A = a)].
Since R is a real random variable, if A is known it remains to find the solutions of g(RA) = 0.

Let (Ai)i≥1 be an iid sequence of random vectors uniformly distributed on Sd. The condi-
tional Monte Carlo method allows to estimate p as follow

p̂DS
n =

1
n

n∑

i=1

P(g(RAi) ≤ 0|Ai).

This estimator has the same form than the one given in (1.28). If P(g(RAi) ≤ 0|Ai) is known
then its variance is lower than the variance of the Monte Carlo estimator. Otherwise, the
quantity P(g(RAi) ≤ 0|Ai) must be estimated.

Knowing Ai, gi(R) = g(RAi) is a real valued function and estimate P(g(RAi) ≤ 0|Ai) is
equivalent to find the solutions of gi(R) = 0. Denote 0 ≤ αi,1 ≤ · · · ≤ αi,mi the solutions of
gi(R) = 0, then

P(gi(R) ≤ 0|Ai) =
mi∑

j=1

(−1)j+1(1− Fχ2
d
(αi,j)),

where Fχ2
d

is the cumulative distribution function of a χ2
d (see Figure 1.5). It remains to find

for all i the solutions gi(R) = 0 (e.g. using dichotomic algorithm or Newton-Raphson methods).
Many methods of roots finding can be found in [89].
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1.7.2 Adaptive Directional Sampling

This method was developed in [90] and combines stratified simulation with directional sampling.
Denote p = P(g(X) ≤ 0) with X ∼ N (0, Id). As said in Section 1.7.1, X can be rewritten as
RA where R ∼ χ2

d and A ∼ U(Sd). The first stage of this method consists in making a partition
S1, . . . , Sm of Sd. Assume there are n simulations available to estimate p and ni = ⌊nωi⌋
simulations drawn on Si with

∑m
i=1 ωi = 1. The probability p can be defined as

p =
m∑

i=1

P(A ∈ Si)E[P(g(RAi) ≤ 0|Ai)],

where Ai is a random vector uniformly distributed on Si. Let (Ai
j)j≥1 be an iid sequence of

random vectors distributed as Ai, p is estimated by

p̃n =
m∑

i=1

P(A ∈ Si)
1
ni

ni∑

j=1

P(g(RAi
j) ≤ 0|Ai

j)],

where P(g(RAi
j) ≤ 0|Ai

j)] is estimated as described in Section 1.7.1. The variance of p̃n is equal
to

Var(p̃n) =
1
n

m∑

i=1

ρ2
i σ2

i

ωi
, (1.35)

with

ρi = P(A ∈ Si),

σi = Var(P(g(RAi) ≤ 0|Ai)).

In this construction, the value of ωi must be estimated. Minimising the variance of p̃n, the
optimal allocations are given by

ωi =
ρiσi

m∑

j=1

ρjσj

,

and (1.35) becomes

Var(p̃n) =

(
m∑

i=1

ρiσi

)2

. (1.36)

Two estimators based on this method can be defined: the non-recycling Inr and recycling Ir

adaptive directional stratified estimator. These estimators are expressed as

Ir =
∑

i=1m

ρi
1

N r
i

Nr
i∑

j=1

P(g(RAi
j) ≤ 0|Ai

j),

Inr =
∑

i=1m

ρi
1

Nnr
i

Nnr
i∑

j=1

P(g(RAi
ni+j) ≤ 0|Ai

ni+j).
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Figure 1.6: Illustration of the splitting method. Left: A first sample is simulated according to
the initial distribution of X. A first subset F1 is determined from the sample (black points).
Middle: The black points are distributed as L(X|X ∈ F1). As for the first step, this sample
defines a new subset F2. Right: The last step consists in simulating according to L(X|X ∈ F2).

The recycling estimator uses the sample simulated on each strata Si to estimate the probability
p. The non recycling estimator uses new simulations independent of the simulations drawn in
the first step.

These two estimators have several advantages and shortcomings. The non-recycling estimator
requires less simulations than the recycling one, but suffers from a bias which can be difficult to
estimate. The recycling estimator requires more runs of the numerical code g, but is unbiased
which can be more important for some studies. Finally, for these two estimators, a central limit
theorem was provided also in [90].

1.8 Multilevel method

Multilevel splitting methods is a general class of methods which takes benefit of describing
p = P(g(X) ≤ 0) as a product of greater probabilities. It was developed in [25, 61] and in [3]
under the name Subset Simulation. This class of methods was also studied in [74] where the
model is represented by a branching process. These methods are detailed in the following
paragraph and a general illustration is provided on Figure 1.6.

1.8.1 Subset Simulation

Let F be a set containing {x ∈ Rd, g(x) ≤ 0}, for example F = {x ∈ Rd, g(x) ≤ S} with
S > 0. Then p = P(g(X) ≤ 0) = P(g(X) ≤ 0)|X ∈ F )P(X ∈ F ). Since these two quantities are
respectively greater than p, it will be easier to estimate each of them (e.g. by a standard Monte
Carlo). If the conditional probability is still too small to be easily estimated, this step can be
repeated with a sequence of sets F1, . . . Fn such that

Rd = F0 ⊃ F1 ⊃ . . . ⊃ Fn−1 ⊃ Fn = {x ∈ Rd, g(x) ≤ 0},

and by induction:

p =
n∏

k=1

P(X ∈ Fk|X ∈ Fk−1). (1.37)

For instance assume that the sets (Fk)k≥1, and the value of n are known as well as simulating
according to L(X|X ∈ Fk−1). For all k ≥ 1, the probability pk = P(X ∈ Fk|X ∈ Fk−1) can be
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estimated by standard Monte Carlo

p̃k =
1

nk

nk∑

i=1

1{
X

(k−1)
i ∈Fk

}, (1.38)

where
(
X(k−1)

i )i≥1

)
is a sequence of iid random vectors distributed as L(X|X ∈ Fk−1). Once

each pk is estimated according to (1.38), p is estimated by

p̂Sub
n =

n∏

k=1

p̃k.

The choice of each Fk can be made using a decreasing sequence of real values (Sk)k≥1 such
that Sn = 0 and for all 1 ≤ k ≤ n, Fk = {x ∈ Rd, g(x) ≤ Sk}. The value of Sk must be well
chosen since this choice influences the number of steps n. Indeed, if estimating each pk needs a
few simulations, it implies that pk is largely greater than p and the number n of steps is large.
If n is too small this implies that pk is small too and it will be difficult to estimate it. It is
proposed in [3] to choose adaptively each Sk+1 as one of the quantile of the random variable
g
(
X(k−1)

)
.

Assume now that p = 10−n. Using a standard Monte Carlo sampling it is necessary to make
approximately 10n+2 calls to the numerical code to get a coefficient of variation equal to 10%.
Assume besides that the subset simulation method can split the probability p in n probability
equal to 10−1. Estimating all of these probabilities, with a coefficient of variation equal to 10%,
needs approximately n× 103 calls to the numerical code, which is lower than 10n+2 for all n.

How to simulate according to the conditional law?

In (1.38) it is assumed that a sample distributed as L(X|X ∈ Fk−1) is easy to obtain. In practice,
when the numerical code is a black box, such information is generally unknown. The original
Metropolis algorithm consists in simulating according to a so-called instrumental distribution.
Then, the produced sample is tested if it could be sample according to the target distribution.
This approach can be ineffective when the dimension increases. A modified Metropolis algorithm
is provided in [3] which reduces the influence of the dimension. These two algorithms can be
summarised in two steps : 1) generate a candidate according to the condition to be, at step k,
in Fk−1; 2) accept this candidate if it is in Fk.

Instead of simulating a candidate x = (x1, . . . , xd), the modified Metropolis algorithm
simulates independently each component xj of a candidate. This type of simulation is sim-
ilar to the Gibbs sampling. This algorithm is described below. Let x = (x1, . . . , xd) and
f(.|x) =

∏d
j=1 fj(.|xj) be the proposal probability density function centred in x and assume it

is symmetrical.

1.8.2 Splitting method

The splitting method, developed in [25, 61], provides an estimation of a rare event probability. As
said in Section 1.8.1, choosing the values Sk can be difficult. The idea of this method consists in
choosing the "worst" simulation obtained at each step. In other words, at step 1 let X(1)

1 , . . . , X(1)
N

be a sample distributed as X. The first threshold is given by S1 = max(g(X(1)
1 ), . . . , g(X(1)

N )).
The sample which defines the threshold S1 is simulated according to L(X|g(X) ≤ S1). At step
k, let X(k)

1 , . . . , X(k)
N be a sample distributed as L(X|g(X) ≤ Sk−1). As for the first step, a
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Algorithm 1.1 Modified Metropolis algorithm

k ≥ 1; X(k−1)
1 , . . . , X(k−1)

i

1) Generate a candidate X̃ = (X̃1, . . . , X̃d):
for j = 1, . . . , d do

simulate X̃j according to fj(.|X(k−1)
i,j )

Let rj = fj(X̃j)/fj(X(k−1)
i,j ) and

X̃j =

{
X̃j with probability min(1, rj)

X
(k−1)
i,j with probability 1−min(1, rj)

end for
1) Accept or reject X̃ as X(k−1)

i+1 :
if X̃ ∈ Fk then

X(k−1)
i+1 = X̃

else
X(k−1)

i+1 = X(k−1)
i

end if

new threshold is defined by Sk = max(g(X(k)
1 ), . . . , g(X(k)

N )). The "worst" simulation is then
simulated according to L(X|g(X) ≤ Sk). Let k ≥ 1, knowing the threshold Sk, there is a
proportion 1 − 1/N of the sample X(k)

1 , . . . , X(k)
N which verified g(.) ≤ Sk. The probability

P(g(X) ≤ Sk|g(X) ≤ Sk−1) is estimated by 1− 1/N . The algorithm is defined below.

Algorithm 1.2 Splitting algorithm

Set N ≥ 1
Let X(1)

1 , . . . , X(1)
N be a sequence of iid random vectors distributed as X

for k = 1, 2, . . . do
set Sk = max

(
g(X(k)

1 ), . . . , g(X(k)
N )

)

for i = 1, . . . , N do

X(k+1)
i =





X(k)
i if g(X(k)

i ) < Sk

X(k+1) ∼ L(X|g(X) < Sk) if g(X(k)
i ) = Sk

end for
end for
Stop algorithm at step K when SK ≥ 0 and SK+1 < 0

Repeating the algorithm on K steps, the probability p is estimated by

ÎSplitt =
(

1− 1
N

)K

,

where K is distributed as a Poisson distribution of parameter (−N log p). In [61], it is assumed,
in a first description of the algorithm, the conditional sample can be made perfectly with no
more calls to the numerical code and is called the idealized algorithm. Since, the ÎSplitt takes
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discrete values :
(
(1− 1/N)k

)
k≥1

, it comes

P
(
ÎSplitt = (1− 1/N)k

)
= P(K = k) =

pN (−N log p)k

k!
,

and its variance is equal to

Var
(
ÎSplitt

)
= p2(p−1/N − 1).

Let α ∈ [0, 1], a 100(1 − α)% confidence interval is [CI−
α , CI+

α ] where

CI±
α = ÎSplitt exp



±

Φ−1(1− α/2)√
N

√

− log ÎSplitt +
(Φ−1(1− α/2))2

4N
−
(
Φ−1(1− α/2)

)2

2N



 .

1.8.3 Importance splitting method

This approach [74, 75] describes the splitting techniques as a branching process. Remind that

p = P(g(X) ≤ 0) =
M+1∏

k=1

P(X ∈ Fk|X ∈ Fk−1) =
M+1∏

k=1

pk

with Rd = F0 ⊃ F1 ⊃ · · · ⊃ FM+1 = {x ∈ Rd, g(x) ≤ 0}. Let us start with N random vectors
distributed as X. The first subset can be defined as F1 = {x ∈ Rd, g(x) ≤ q1} where q1 is a
quantile of the sample. Then, there is a proportion L1/N that reaches F1 and p1 is estimated by
p̂1 = L1/N . Each of this L1 simulations is replicated R1 times and distributed as L(X|X ∈ F1).
At step 2, there are L1R1 simulations, and a proportion L2/(L1R1) of the total number of
simulations reaches the set F2. As for p1, the probability p2 is estimated by p̂2 = L2/(L1R1).
Repeating M + 1 times the algorithm, the probability p is estimated by

Îbranching = p̂1 · · · p̂M+1 =
LM+1

NR1 · · ·RM
,

with LM+1 the number of simulations in the set FM+1 = {x ∈ Rd, g(x) ≤ 0} (see Figure 1.7).
The estimator Îbranching has no bias and its variance is equal to

Var(Îbranching) =
p2

N

M∑

k=0

1
R1 · · ·Rk

(
1

p1 · · · pk+1
− 1

p1 · · · pk

)
.

Let h be a function which represents a cost of simulation depending on the transition prob-
ability, then the average cost of the algorithm is equal to

C = N
M∑

k=0

(R1 · · ·Rkp1 · · · pkh(pk+1)) .

It is shown in [74] that the parameters which minimise the variance Îbranching are given by




M = ⌊ log p
y0
⌋

pi = p1/(M+1)

Ri = p−1/(M+1)

N = C
(M+1)h(P 1/(m+1))

,
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Figure 1.7: Illustration of the importance splitting method. Left: circles represent a sample
distributed as X. Black dots represent the simulations which have reach the set F1. Middle:
squares represent the replications of black circles and are distributed according to L(X|X ∈ F1).
Black squares represent the simulations which have reach the set F2. Right: triangles represent
a sample distributed as L(X|X ∈ F2).

where y0 is solution of the following equation

(2(1 − ey) + y)h(ey)− y(1− ey)eyh′(ey) = 0.

In the particular case h = 1 (like the Idealized Last Particle Algorithm seen in Section 1.8.2), it
comes M = ⌊−0.6275 log p⌋, Ri ≈ 5 and pi ≈ 1/5.

1.9 Sequential Monte Carlo

Standard Monte Carlo does not use the previous simulations to learn about the rare event.
Sequential Monte Carlo can be seen as a generalisation since the current sample depends on the
past. Recall that p = P(g(X) ≤ 0) can be estimated by 1

n

∑n
k=1 1{g(Xk)≤0}, where (Xk)k≥1 is an

iid sequence of random vectors distributed as X. Denoting Fk = σ{Xj , 1 ≤ j ≤ k}. Assume
now that Xk is (Fk−1)-measurable with probability density function fk−1. Let h be a function,
f be the probability density function of X and denote I = h(X). A general importance sampling
estimator is provided by

In =
1
n

n∑

k=1

h(Xk)
f(Xk)

fk−1(Xk)
. (1.39)

This estimator has no bias if for all k ≥ 1, supp(f) ⊂ supp(fk−1). In the case where h = 1{g≤0},
the conditions becomes {x ∈ Rd, g(x) ≤ 0} ⊂ supp(fk−1) for all k ≥ 1. It comes

nE[In] = E

[
n−1∑

k=1

h(Xk)
f(Xk)

fk−1(Xk)
+ E

[
h(Xn)

f(Xn)
fn−1(Xn)

∣∣∣∣Fn−1

]]
,

= E

[
n−1∑

k=1

h(Xk)
f(Xk)

fk−1(Xk)

]
+ I,

= (n− 1)E[In−1] + I,
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and by induction E[In] = I.
As in Section 1.4, the importance density can be difficult to build in practice. The importance

density which minimises the variance of the estimator depends on the original probability density
function and the quantity of interest. In [82], weighted sampling is introduced with the aim to
be proportional to this ideal probability density function. In [27], this estimator is modified with
the aim to obtain a central limit theorem which is generalised in [45].

1.10 Meta-modelling techniques

All methods provided in previous sections consider that only the numerical code g should be used
to simulate a rare event. Statistical methods can be used to estimate the set {x ∈ Rd, g(x) ≤ 0}
or the function g. Once such an estimation is conducted, it becomes easier to simulate close to the
set of interest {x ∈ Rd, g(x) ≤ 0}. Such estimators are called meta-models since the numerical
code g is already a model of a real physical phenomenon. For example, FORM/SORM are based
on a meta-model since they use an approximation of {x ∈ Rd, g(x) = 0}.

1.10.1 2SMART

The method 2SMART [15] consists in rewriting the probability as in (1.37) where each threshold
is determined by a meta-model which reproduces the value of g. Recall that p = P(g(X) ≤ 0)
with X ∼ Nd(0, Id). As seen in Section 1.8.1, this probability can be expressed as

p =
n∏

k=1

P(X ∈ Fk|X ∈ Fk−1),

with Rd = F0 ⊃ F1 ⊃ · · · ,⊃ Fn = {x ∈ Rd, g(x) ≤ 0}. The main difficulties encounter in subset
simulation is to find each subset Fk and to simulate according to L(X|X ∈ Fk). Let (Sk)k≥1

be a decreasing sequence of real values, and consider now that each subset can be defined as
Fk = {x ∈ Rd, g(x) ≤ Sk}. Estimating the probability pk = P(X ∈ Fk|X ∈ Fk−1) can be
time-consuming (requires a lot of runs to numerical code g) if Sk is not well chosen.

The method 2SMART uses Support Vector Machine (SVM) [110], a learning tool which can
be used as binary classifier or as regression model that mimics the numerical code g. The use of
this meta-model helps to determine each threshold Sk, to simulate according to L(X|X ∈ Fk−1)
and to estimate each probability pk. It is composed by three main stages.

For the first one, an initial sample is drawn and a first threshold S1 (e.g. the quantile at
0.1% of the sample) is deduced. Then, a SVM is built to estimate the sets {x ∈ Rd, g(x) = S1}
and F1 = {x ∈ Rd, g(x) ≤ S1}. For the second one, a second SVM is built from a sample made
on the margin of the estimation of {x ∈ Rd, g(x) = S1} (determined by the first SVM). This
strategy improves the accuracy of the estimation of {x ∈ Rd, g(x) = S1}. For the last stage:
using this second SVM, the estimation of p1 can be obtained by the standard Monte Carlo.
Finally, a new sample is made conditionally to be in the estimation of F1.

Finally, these steps are repeated until the current threshold is lower or equal to 0. Let n be
the number of steps. Each conditional probability pk is estimated by p̃k and p is then estimated
by

p̂(2SMART ) =
n∏

k=1

p̃k.

For instance, neither the convergence of this estimator neither its asymptotic normality has not
been proved.
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1.10.2 Gaussian process based probability estimation

In this section, two probability estimation methods, based on Gaussian process meta-modelling
(kriging) are summarised. The first one approximates the optimal probability density function
of importance sampling. The second one provides a sequential design of experiments to estimate
a rare event. Before continuing, the construction of Gaussian process meta-modelling, which
becomes one of the most powerful meta-modelling techniques, is quickly recalled.

Consider that g is the realisation of a Gaussian stochastic process G. It takes the following
form

G(x) = Ht(x)β + Z(x),

where Ht(x)β is the deterministic part of the meta-model and Z is is its stochastic part defined
by a Gaussian process with a zero-mean and and a covariance function K(., .). When Z is
assumed to be stationary, its covariance function is rewritten as follow

K(x, y) = C(|x− y|, θ),

where θ is a vector of parameters to be estimated. The estimation of these parameters is not
detailed here, for more precisions see [105].

Consider a design of experiments Dn = (xi, g(xi))1≤i≤n and let x0 not in {x1, . . . , xn}.
Knowing Dn, the function G can be estimated by

Ĝ(x0) ∼ N (m̂(x0), σ̂2(x0)),

where m̂ and σ̂ are two functions to be estimated which depends on θ. The main advantage
of Gaussian processing is that the meta-model interpolates the design of experiments. In other
words for all i = 1, . . . , n, G(xi) = g(xi)

For this section, the following function is useful to estimate the probability p. Denote

πn(x) = Φ
(

0− m̂(x)
σ̂(x)

)
,

where Φ represents the cumulative distribution function of standard Gaussian random variable.

Meta-modelling and importance sampling techniques

The importance density defined in (1.25) is intractable since it depends on the probability p.
Moreover, simulating according to the importance distribution is not feasible in practice since the
set {x ∈ Rd, g(x) ≤ 0} is unknown. In [47], Gaussian processes are used to build a meta-model
ĝ of g then to approximate the ideal importance density given in (1.25), estimated by

f̂ =
1{Ĝ≤0}fX

pε
,

where

pε =
∫

Rd
πn(x)fX(x)dx.

Let Y be a random vector with probability density function f̂ . The probability p is rewritten
as follow

p = pεE
[
1{g(Y)≤0}

πn(Y)

]
.
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The expectation term is a correction factor that represents the accuracy of the meta-model to
predict the value of g: it is equal to 1 if ĝ = g. Finally, the two quantities pε and the correction
factor are both estimated by a Monte Carlo estimator. The estimation of the correction factor
requires to simulate according to the estimation of the optimal density function. It is suggested
in [47] to use Markov Chain Monte Carlo (MCMC) sampling to do it.

Nonetheless, this method does not take into account the previous simulations to update the
meta-model by updating the estimation of hyper-parameters. In the following subsection, a
sequential design of experiments is built to estimate rare event probabilities.

Stepwise Uncertainty Reduction (SUR) for probability estimation

Sequential methods seem to be more appropriate to estimate failure probabilities. As for
2SMART methods, a meta-model is refined at each step of an algorithm to increase the accuracy
of a probability estimator. In this section, the method proposed in [8], which uses Gaussian-
process meta-modelling to build a sequential design of experiments, is briefly recalled. In [8] it is
said that such criteria are especially efficient for probability estimation when Gaussian-process
meta-modelling is used.

A design is produced to build a first Gaussian-process meta-model. At any following step, a
set of points arising from the initial distribution is sampled to be a candidate for new evaluated
point. Choosing a new point depends on a SUR criterion sampling defined by

J(x) = E
[
(p− p̂n+1)2 |Xn+1 = x

]
,

where p̂n+1 =
∫
Rd πn+1(x)fX(x)dx and πn+1 built from the previous evaluated points. Then, the

meta-model is updated and the procedure is repeated until the budget of run of the numerical
code g is used. The SUR criterion cannot be used in practice but it is replaced by an adapted
form which uses the design of experiments and the meta-model. Finally, the probability is
estimated as follow

p̂n =
∫

Rd
πn(x)fX(x)dx.

1.11 Conclusion

An aspect almost not evoked in this chapter is the usability of these methods in function of the
allowed number of runs of the numerical code and the dimension of the inputs. For example,
methods based on meta-modelling become difficult to use in practice when the size of the design
of experiment increases. The efficiency of FORM/SORM depends on the dimension. If the
derivative of g is approximated, 2d runs of the numerical code are required at each step of
the search for the design point. Moreover, they can be applied only if the derivative of the
numerical code exists. The low-discrepancy sequences suffer from dimension also, pattern can
appear in high dimension (see [79], Chapter 5). Moreover, Quasi-Monte Carlo estimator cannot
be controlled.

Many constraints should definitely guide the choice of one or several techniques: the dimen-
sion, the number of runs allowed, the hypothesis on the numerical code and the control of the
estimator. In practice, it is difficult to compare these methods since each of them can be used
exclusively in a particular case of constraints. For example, the use of standard Monte Carlo
is a good choice if the numerical code is not time-consuming, if the dimension is very high and
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Figure 1.8: Methods presented in this chapter are placed in function of the dimension and the
require number of runs to the numerical code. This figure was graciously provided by Bertrand
Iooss.

if a confidence interval is required. In Figure 1.8, the methods are placed in function of the
dimension and the number of runs of the numerical code needed for the estimation.

If regularity constraints (e.g. continuity) are often underlying evoked, they can be difficult
to check in the reliability industrial computer codes. Discontinuity (edge effects) can appears
(e.g. discontinuities of physics) that limits the varieties of possible approaches. To be liberate
from these constraints, the numerical code can be considered binary, for example, it represents
a decision rule.

The monotony is partially exploited in [89] but requires to calibrate many parameters (see
Section 1.7.2). Moreover, monotonic constraints become to be a topic of interest. For example,
for meta-modelling in [33] or for probability estimation in [100].
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Chapter 2

Adaptation of classical methods to
rare event estimation under
monotonicity constraint

Résumé On introduit dans ce deuxième chapitre les hypothèses de monotonie ansi que les
avantages qu’elles apportent. Après une présentation des méthodes existantes pour l’estimation
de probabilité, on s’intéresse à l’adaptation de méthodes classiques d’estimation sous les hy-
pothèses de monotonie.

Abstract The monotonic hypothesis is introduced in this second chapter and its immediate
benefits are examined. After a description of existing methods for probability estimation, the
adaptation of classical methods under the monotonicity hypothesis is carried out.

2.1 Introduction

In general for probability estimation studies, the numerical code g is considered black-box.
Nonetheless, the physical phenomenon associated to g is in general totally or partially known.
In such situations, some hypotheses on the behaviour of g can be made. In this thesis, the
monotonic hypothesis is studied. Recall the intuitive idea that leads to such constraints. If a
configuration leads to a safe (resp. undesirable) event, it is reasonable to say that a less (resp.
more) restrictive configuration leads also to a safe (resp. undesirable) event.

The following section formalises this property in a more general case. Taking into account
the monotonicity, the method developed in [16] to estimate a probability is detailed. In the
last sections of this chapter, classical method (Standard Monte Carlo, splitting methods) are
adapted with the aim to make the best use of monotonicity.

2.2 Introduction of monotonicity constraints

In this first section, the benefits of monotonic properties for probability estimation are provided.
First, recall the definition of a globally monotonic function.

Definition 2.1 Let g : U ⊂ Rd → R, g is said globally monotonic if g is monotonic relatively
to xi for all i = 1, . . . , d.
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Definition 2.2 Let x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd such that for all i = 1, . . . , d, xi ≤
yi. This relation is the partial order and is denoted by x � y.

As seen in Sections 1.6 and 1.7, it can be more convenient to transform the input space. To
facilitate the understanding the function g is transformed in a globally increasing function by
the following mechanism. Denote X = (X1, . . . , Xd) the input random vector with independent
components. To have a globally increasing function it is required to transform X almost as in
Section 1.6.1. Let Fi be the cumulative distribution function of Xi and denote

T : Rd 7−→ Rd

x = (x1, . . . , xd) −→ (T1(x1), . . . , Td(xd)), (2.1)

with

Ti(xi) =

{
xi ← Fi(xi) if g increasing relatively to xi

xi ← 1− Fi(xi) if g decreasing relatively to xi

.

Hence, the function g ◦ T : [0, 1]d → R is a globally increasing function and takes as input a
random vector uniformly distributed on [0, 1]d. Alleviating the notations, g represents now the
initial numerical function transformed in a globally increasing function and X ∼ U([0, 1]d). If
the probability to estimate is

p = P(g(X) ≤ q),

without loss of generality consider that g becomes g(.)−q and then p = P(g(X) ≤ 0). Exploiting
the monotonicity of g is very informative. Indeed, let t ∈ R, then for all x, y ∈ [0, 1]d such that
x � y, it comes

g(x) ≥ t⇒ g(y) ≥ t, (2.2)

g(y) ≤ t⇒ g(x) ≤ t. (2.3)

This means that if y leads to an undesirable event then x leads also to this event. This infor-
mation is obtained without any new run to the numerical code.

2.3 Monotonic constraints for probability estimation

2.3.1 Monotonic reliability method (MRM)

The advantages of monotonicity for probability estimation are examined in this section. Then,
the accelerated Monte Carlo method developed in [16], dedicated to probability estimation, is
presented.

From (2.1) consider that g : [0, 1]d → R is a globally increasing function and denote p =
P(g(X) ≤ 0) with X ∼ U([0, 1]d). To alleviate the notations, denote

U− := {x ∈ [0, 1]d, g(x) ≤ 0},
U− := {x ∈ [0, 1]d, g(x) > 0},

and the limit state

Γ := {x ∈ [0, 1]d, g(x) = 0}.
Moreover, assume that Γ is simply connex and µ(Γ) = 0. Proposition 2.1 provides a property

on Γ.
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Proposition 2.1 Let x ∈ Γ. There is no y ∈ Γ such that y ≻ x or y ≺ x.

From Equations (2.2) and (2.3) if g(x) ≤ 0 then for all y � x, g(y) ≤ 0. This means that
from one evaluation of g on a point x, the probability p can be rewritten as follow

p =
∫

[0,1]d
1{g(y)≤0}dy,

=
∫

[0,1]d
1{y�x}dy +

∫

[0,1]d
1{g(y)≤0; y�x}dy.

The first term of the integral does not depends of g and a lower bound for p is obtained:

p ≥
∫

[0,1]d
1{y�x}dy.

More generally, let A ⊂ [0, 1]d, and denote

U−(A) :=
⋃

x∈A∩U−

{u ∈ [0, 1]d, u � x},

U+(A) :=
⋃

x∈A∩U+

{u ∈ [0, 1]d, u � x},

with U−(∅) = {0}d = (0, . . . , 0) and U+(∅) = {1}d = (1, . . . , 1). Denote µ the Lebesgue measure
on Rd. Then, the limit surface Γ and p can be surely bounded by:

U−(A) ⊂ U− ⊂ [0, 1]d\U+,

µ(U−(A)) ≤ p ≤ 1− µ(U+(A)).

Taking into account the monotonicity property, a method provided in [16] to get two non
trivial bounds for p is provided in the following paragraph.

2.3.2 Initialisation

The monotonic hypothesis allows to get two deterministic bounds for p. Indeed, Proposition 2.1
allows to say that there exists u and v in

∆ := {x = (x1, . . . , xd) ∈ [0, 1]d : x1 = · · · = xd},

such that g(u) ≤ 0 and g(v) ≥ 0. In [16], it is assumed that g takes its values in {−1, 1}. Then,
it is proposed to apply a dichotomy procedure on ∆ to get these bounds (see Algorithm 2.1).
In a more general case, roots finding method can be also used (see [89]).

Algorithm 2.1 Bounding p

xold, xnew ← {1/2}d = (1/2, . . . , 1/2) ∈ [0, 1]d

yold, ynew ← g(xold)
while ynew > 0 do

xold ← xnew

yold ← ynew

xnew ← xold/2
ynew ← g(xnew)

end while
return (xold, yold, xnew, ynew)
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2.3.3 Estimating a probability by sequential uniform sampling

In this section, an accelerated Monte Carlo method, proposed in [16], devoted to probability
estimation under monotonicity constraints is presented. Assume that (x−, x+) ∈ U− × U+ has
been obtained by Algorithm 2.1. Denote

U−
0 = U−(x−),

U+
0 = U+(x+),

and

p−
0 = µ(U−

0 ),

p+
0 = 1− µ(U+

0 ).

From construction, if (x, y) ∈ U−
0 × U+

0 then (x, y) ∈ U− × U+ (see Figure 2.1a). From now
denote the non-dominated set the subset of [0, 1]d where the sign of g is unknown. At this step,
the non-dominated set is denoted

U0 = [0, 1]d\(U−
0 ∪U+

0 ).

The strategy of simulation consists in simulating sequentially in this non-dominated set.
The first step of the algorithm is detailed (see Figure 2.1b). At step 1, let X1 be uniformly
distributed on U0, then

P(X1 ∈ U−) =
p− p−

0

p+
0 − p−

0

,

and

U−
1 = U−(X1) ∪ U−

0 ,

U+
1 = U+(X1) ∪ U+

0 ,

U1 = [0, 1]d\(U−
1 ∪ U+

1 ).

Finally,

µ(U−
1 ) = p−

1 ≤ p ≤ p+
1 = 1− µ(U+

1 ).

For all k ≥ 1, let Xk be uniformly distributed on the non-dominated set Uk−1 and denote
Fk−1 = σ(Xj , 1 ≤ j ≤ k) with F0 = {∅,P([0, 1]d)}. It comes

U−
k = U−({X1, . . . , Xk}) ∪ U−

0 ,

U+
k = U+({X1, . . . , Xk}) ∪ U+

0 ,

Uk = [0, 1]d\(U−
k ∪ U+

k ),

and

µ(U−
k ) = p−

k ≤ p ≤ p+
k = 1− µ(U+

k ).

All these properties are summarised in Figure 2.1. At step n, it is proposed to estimate p as the
maximiser of the likelihood function given by

Ln(r) = Ln(x1, . . . , xn|r) =
n∏

k=1

(
r − p−

k−1

p+
k−1 − p−

k−1

)
1{Xk∈U−}

(
p+

k−1 − r

p+
k−1 − p−

k−1

)1−1{Xk∈U−}

, (2.4)
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and p is estimated by

p̂n = arg max
r∈]p−

n−1,p+
n−1[

Ln(r).

Maximizing Ln is equivalent to maximize ln = log(Ln). Since ln is a concave function, find
the maximum of ln is equivalent to find the root of its derivative. Denoting

ωk(r)−1 = (r − p−
k−1)(p+

k−1 − r),

pk = p−
k−1 + (p+

k−1 − p−
k−1)ξxk

,

the maximum of ln is given by

p̂n =

n∑

k=1

ωk(p̂n)pk

n∑

k=1

ωk(p̂n)
.

In practice, p̂n is obtained by maximizing (2.4), and the Fisher information associated to p̂n

is defined by

Jn(p) =
n∑

k=1

E[ωk(p)].

The following theorem [16] provides conditions to ensure that the estimator p̂n is asymptotically
normal.

Theorem 2.1 Let (λn)n≥1 be a deterministic sequence in ]0, 1[ such that λn −→
n→+∞

1. If

(i) 1
nδ

n∑

k=1

(ωk(p)− E[ωk(p)]) P−→
n→+∞

0 for all δ > 0.

(ii) p+
n −p

p−p−
n

P−→
n→+∞

0.

(iii) p̄n−p

p+
n −p

P−→
n→+∞

0 and p̄n−p

p−p−
n

P−→
n→+∞

0 with p̄n = (1− λn)p̂n + λnp,

then

J1/2
n (p)(p̂n − p) L−→

n→+∞
N (0, 1).

In this theorem, the quantity Jn(p) is unknown, but the following proposition provides an
asymptotic approximation.

Proposition 2.2 Denote Ĵn(p) =
n∑

k=1

ωk(p). If (ii) and (iii) of Theorem 2.1 hold and if:

(iv) hypothesis (i) holds for all δ ≥ 1/2.
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Figure 2.1: Illustration in dimension 2. Up-Left: the two points x−, x+ are provided by
Algorithm 2.1. The gray squares represent U−

0 and U+
0 . Up-Right: X1 is uniformly distributed

on the non-dominated set U0 then U−
0 is updated. Down-Left: X2 is uniformly distributed on

the non-dominated set U1 then U+
1 is updated. Down-Right: after six simulations, it comes

U−
6 = U−({x−, X1, X4, X5}) and U+

6 = U+({x+, X2, X3, X6}).

(v) ∄n <∞, p =
1

2n

n∑

k=1

ωk(p)(p+
k−1 + p−

k−1)

n∑

k=1

ωk(p)
,

then

Ĵn(p)5/2

|Ĵ ′
n(p)|

(
Ĵ−1

n (p̂n)− J−1
n (p)

) L−→
n→+∞

N (0, 1).

As discussed in Chapter 3, the rate of convergence of the bounds depends on the dimension.
Since the variance of p̂n depends on the bounds, it increases with the dimension for a given n.

80



2.4 Adaptation of classical methods to rare event estimation
under monotonicity constraint

2.4.1 Monotone Monte Carlo

Assume that p = P(g(X) ≤ 0) with X ∼ Unif([0, 1]d). Let (Xk)k≥1 be an iid sequence of
random vectors uniformly distributed on [0, 1]d. The standard Monte Carlo method provides
the following estimator of p

p̂n =
1
n

n∑

k=1

1{g(Xk)≤0}.

Let X1, . . . , Xn be n random vectors uniformly distributed on [0, 1]d, If at step n there exists
a point X0 in {X1, . . . , Xn} ∩ U− (resp. {X1, . . . , Xn} ∩ U+) such that Xn+1 � X0 (resp.
Xn+1 � X) then without more calls to g it is known that Xn+1 ∈ U− (resp. Xn+1 ∈ U+).
Finally, the sign of g is known on n + 1 points but only n runs have been made. Assume there
is n calls to g available, then the probability p can be estimated by

1
Nn

Nn∑

k=1

1{g(Xk)≤0}, (2.5)

where Nn is a random variable equals to the total number of simulations drawn until g was
called n times. It must be noticed that Nn is random since at each step k, the probability to
save an evaluation is equal to 1− E[p+

k−1 − p−
k−1].

The difficulty to know the distribution of Nn makes difficult to have theoretical results. Such
methods have been previously studied in [100].

2.4.2 Monotone Subset Simulation

As indicated in Section 1.8, the main difficulty in subset simulation is to determine the intermedi-
ate subsets. The monotonicity hypothesis is helpful to have information on these subsets. Recall
that p can be rewritten as p =

∏n
k=1 P(X ∈ Fk|X ∈ Fk−1) with X ∼ Unif([0, 1]d), F0 = [0, 1]d

and for all k ≥ 1, Fk ⊂ Fk−1. As said in the previous section, a non-dominated set is provided
by two points given by Algorithm 2.1:

U−
0 = U−(x−),

U+
0 = U+(x+),

U0 = [0, 1]d\(U+
0 ∪ U−

0 ).

Denote

p−
0 = µ(U−

0 ),

p+
0 = 1− µ(U+

0 ).

For instance, the only subset including U− is F0 = [0, 1]d\U+
0 . Then p can be rewritten as

p = P(X ∈ U−|X ∈ F0)P(X ∈ F0),

= P(X ∈ U−|X ∈ F0)p+
0 . (2.6)

81



The conditional probability P(X ∈ U−|X ∈ F0) can be estimated by a standard Monte Carlo
method. Nonetheless, Equation (2.6) does not take into account the lower bound p−

0 . Replacing
F0 by U0, the probability p becomes

p = p−
0 + (p+

0 − p−
0 )P(X ∈ U−|X ∈ U0),

and can be generalised at any step n by

p = p−
n−1 + (p+

n−1 − p−
n−1)P(X ∈ U−|X ∈ Un−1).

Finally, let (X(n)
k )k≥1 be an independent sequence of random vectors uniformly distributed on

the non-dominated set Un−1, then p can be estimated by

p̂N = p−
n−1 +

p+
n−1 − p−

n−1

N

N∑

k=1

1{X
(n)
k

∈U−}. (2.7)

Nevertheless, this strategy is not optimal. If one of the simulations is in the non-dominated set
then the bounds cannot be updated. Moreover, estimator (2.7) does not take advantage of these
new bounds contrary to the estimator provided in Section 2.3.1.

The subset simulation adapted to monotonic situations can be summarized in two mains
stages. The first one consists in making a sample from any distribution and build the deter-
ministic bounds as well as the non-dominated set. The second one is a standard Monte Carlo
procedure restricted to the non-dominated set which provide the estimator (2.7).

Another approach is to make the first stage with all the simulations available, then the
second stage consists in estimating the sign of the numerical code g by g̃. Since it is sufficient
to know the sign of g, this is a problem of binary classification. The estimator becomes

p̃N = p−
n +

p+
n − p−

n

N

N∑

k=1

1{g̃(X
(n)
k

)≤0},

with (X(n)
k )k≥1 an iid sequence of random vectors uniformly distributed on the non-dominated

set Un.
Chapter 3 provides more precise results on the rate of convergence of the bounds obtained

from a Monte Carlo or a sequential framework.

2.4.3 Parallel MRM

From the beginning it is assumed that only one evaluation at a time by the numerical code is
available. If the numerical code can be applied to a design of experiments, an estimator can be
easily adapted from [16]. For k ≥ 1, let (X(k)

j )j≥1 be a sequence of independent random vectors
uniformly distributed on the non-dominated set Uk−1. Assume at each step k the size of the
sample is equal to mk. The conditional likelihood function becomes

Ln(r) =
n∏

k=1

mk∏

j=1

(
r − p−

k−1

p+
k−1 − p−

k−1

)1
{X

(k)
j

∈U−}

(
p+

k−1 − r

p+
k−1 − p−

k−1

)1−1
{X

(k)
j

∈U−}

. (2.8)

The following proposition provides the maximum of (2.8).
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Proposition 2.3 The conditional maximum likelihood estimator is equal to

p̂n =

n∑

k=1

mk∑

j=1

ωk(p̂n)pk,j

n∑

k=1

mkωk(p̂n)

,

where ωk(p̂n)−1 = (r − p−
k−1)(p+

k−1 − r) and pk,j = p−
k−1 + (p+

k−1 − p−
k−1)1{X

(k)
j ∈U−}.

Equivalent results than (2.1) can be obtained by replacing condition (i) by

1
nδ

n∑

k=1

mk (ωk(p)− E[ωk(p)]) P−→
n→+∞

0 for all δ > 0.

Proof of Proposition 2.3. Define ln(r) = log(Ln(r)), then

ln(r) =
n∑

k=1

Nk∑

j=1

1{X
(k)
j ∈U−} log

(
r − p−

k−1

p+
k−1 − p−

k−1

)
+ (1− 1{X

(k)
j ∈U−}) log

(
p+

k−1 − r

p+
k−1 − p−

k−1

)
,

and its derivative is

l′n(r) =
n∑

k=1

Nk∑

j=1

p−
k−1 + (p+

k−1 − p−
k−1)1{X

(k)
j ∈U−} − r

(r − p−
k−1)(p+

k−1 − r)

=
n∑

k=1

Nk∑

j=1

ωk(r)(pk,j − r),

where

ωk(r)−1 = (r − p−
k−1)(p+

k−1 − p)

pk,j = p−
k−1 + (p+

k−1 − p−
k−1)1{X

(k)
j ∈U−}.

The maximum likelihood estimator verifies

n∑

k=1

mk∑

j=1

ωk(p̂n)(pk,j − p̂n) = 0,

then it can be expressed as

p̂n =

n∑

k=1

mk∑

j=1

ωk(p̂n)pk,j

n∑

k=1

mkωk(p̂n)

.

�
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2.5 Empirical improvement of the deterministic bounds

In this section, an empirical method to improve the convergence of the bounds is presented.
The results of this section comes from [88]. The aim is to choose a point in the non-dominated
set which maximises a criterion in the aim to reduce the upper bound. They are based on the
volume contribution of the upper bound. Denote for all x ∈ [0, 1]d

V−(x) := {u ∈ [0, 1]d, u � x},
V+(x) := {u ∈ [0, 1]d, u � x}.

These notations will be used further in Chapter 5. For n ≥ 1 , these two criteria, the so-called
volume-maximin (V-Maximin) and classification-maximin (C-Maximin) criteria, are respectively
defined by

V (x) = min
[
µ(U−(X1, . . . , Xn−1) ∪ V−(x))− p−

n−1, p+
n−1 − µ(U+(X1, . . . , Xn−1) ∪ V+(x))

]
,

C(x) = [p+
n−1 − µ(U+(X1, . . . , Xn−1) ∪ V+(x))]π1(x),

where π1(x) is the weight that x is in U+ obtained from monotonic neural networks recently
developed in [111]. The criterion V represents the volume contribution of a point for the deter-
ministic bounds (see Figure 2.2). The minimum in the definition of V can be seen as a binary
classifier of Γ. Let x be a point in the non-dominated set Un−1. It can be reasonable to say that
if its volume contribution to p−

n−1 is lower than its contribution to p+
n−1 then it is assumed that

x is in U−. Finally, the aim is to maximise this volume contribution to find a point as close as
possible to Γ. The criterion C represents the contribution of a point to the upper deterministic
bounds according to a classification weight.

Finding the maximum of these criteria on the non-dominated set is difficult since they are
not expressed in a closed form. Moreover, the computation of the contribution to the upper
bound involved in these criteria is time-consuming. Then, the maximum has been chosen among
a sample uniformly distributed on the non-dominated set.
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Figure 2.2: Illustration of the criterion V . The black dots represent some candidates to be the
maximiser of V . Left: dashed and dotted lines delimit respectively the volume contribution to
the lower and upper deterministic bounds. Right: the minimum of these contributions for each
candidates is retained. The encircled point is chosen as the maximiser of V .
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Criteria Deterministic bounds (3, 10−4, 200) (5, 10−4, 250) (6, 10−3, 300)

Uniform
p−

n (×p) 0.44 0.14 0.70
p+

n (×p) 3.68 14.7 24

V-maximin
p−

n (×p) 0.43 0.02 0.02
p+

n (×p) 4.88 15.4 22.9

C-maximin
p−

n (×p) 0.20 0.1 0.03
p+

n (×p) 2.1 6.0 11.9

Table 2.1: Comparison of the influence of different criteria to reduce the upper bound of p.

The numerical example used in this comparison is now presented. Let d ≥ 2 and x =
(x1, . . . , xd) in [0, 1]d, the function is defined by

g(x) =
x1

∑d
i=1 xi

.

Let X = (X1, . . . , Xd) be a random vector such that Xi ∼ Γ(i+1, 1). Then, g(X) ∼ Beta(2, (d+
1)(d + 2)/2 − 3). Let qd,p be the p-quantile of g(X), then the probability p is defined by
p = P(g(X) − qd,p ≤ 0). Results obtained are summarised in Table 2.1 for different value of
(d, p, n). It is also compared the value of the bounds obtained for a uniform sampling within
the non-dominated set. This first exploration shows that a deterministic framework can reduce
significantly one of the two deterministic bounds.

As for the FORM/SORM coupled with importance sampling, the maximiser of such a cri-
terion can be used to calibrate an importance density. For example, a Gaussian distribution
truncated on the non-dominated space, centred on such point with a small variance.

2.6 Conclusion

In this chapter, some existing methods for probability estimation have been adapted in the
monotonic cases. Except for the parallel MLE construction, they do not totally exploit the
information provided by the monotonic hypothesis. The numerical code studied in this thesis
cannot be called in parallel then the parallel MLE is not usable in this thesis. The next chapter of
this thesis aim to improve the understanding of the behaviour of these bounds. More particularly,
their rate of convergence, in some sense, is studied for different strategy of sampling: a standard
Monte Carlo based sampling and a sequential sampling in the non-dominated set. The obtained
results will be more deeply investigated in Chapter 4 to control a probability estimator.
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Chapter 3

Approximation of limit state surfaces
in monotonic Monte Carlo settings

This chapter has been submitted as a research article in 2015 under the same title.

Résumé Ce chapitre étudie les propriétés théoriques de convergence d’estimateurs produits
par un plan d’expérience d’une fonction monotone ayant pour entrée un vecteur. La quantité
à estimer est une probabilité associée à un événement indésirable et la fonction étudiée est un
code de calcul. Comme décrit dans le chapitre 2, deux bornes déterministes de cette probabilité
peuvent être obtenues. Deux types de plan d’expériences sont étudiés pour étudier la vitesse
de convergence de ces bornes. Le premier est construit de manière indépendante et le second
séquentiellement. De plus, un estimateur consistant de la surface (ou état limite) séparant les
ensembles, sous des hypothèses isotoniques et de régularités, peut être construit. Sa vitesse
de convergence vers le vrai état limite peut être déterminée. Cet estimateur est construit par
l’agrégation de Machine à Vecteur Support (SVM) utilisé comme classifieur binaire. Les résultats
numériques obtenus sur des exemples jouets mettent en lumière que la construction est plus
rapide que celle proposée par les réseaux de neurones monotones récemment développés mais
avec une même qualité de prédiction.

Abstract. This chapter investigates the theoretical convergence properties of the estimators
produced by a numerical exploration of a monotonic function with multivariate random inputs
in a structural reliability framework. The quantity to be estimated is a probability typically as-
sociated to an undesirable (unsafe) event and the function is usually implemented as a computer
model. As said in Chapter 2, two deterministic bounds of this probability can be obtained. Two
frameworks have been considered to study their rate of convergence. Moreover, a consistent
estimator of the (limit state) surface separating the subsets under isotonicity and regularity
arguments can be built, and its convergence speed can be exhibited. This estimator is built by
aggregating semi-supervized binary classifiers chosen as constrained Support Vector Machines
(SVM). Numerical experiments conducted on toy examples highlight that they work faster than
recently developed monotonic neural networks with comparable predictable power.

3.1 Introduction

Due to the increasingly powerful computational tools, so-called computer models g are developed
to mimic complex processes (e.g., technical, biological, socio-economical, etc. [23, 37]). The
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exploration of multivariate deterministic black-box functions x 7→ g(x) by numerical designs of
experiments has become, over the last years, a major theme of research in the interacting fields
of engineering, numerical analysis, probability and statistics [108]. Numerical investigations
based on Monte Carlo variance reduction techniques [103] are often needed since, on the one
hand, the complexity of g restricts the use of intrusive explorations, and in the other hand each
run of the computer model can be very costly. A number of studies have for common aim
to delimit the set of input situations x dominated by a limit state surface Γ defined by the
equation g(x) = 0, where the dominance rule is defined by a partial order. In multi-objective
optimization frameworks, where g is assimilated to a decision rule, Γ can be viewed as a Pareto
frontier delimiting a performance space [55]. In structural reliability it is often wanted to assess
the measure of the set U− = {x ∈ Rd, g(x) ≤ 0}, which can be interpreted as the probability p
of an undesirable event when the input vector x is randomized [77].

The Pareto dominance between the inputs x is the natural partial order needed to formalize
an assumption of monotonicity placed on g. This hypothesis corresponds to a technical reality in
numerous situations encountered in engineering [38] or decision-making [14], or a conservative
approximation to reality in reliability studies. Therefore the exploration of monotonic time-
consuming computer models by numerical means has been investigated by a growing number of
researchers [16, 33, 59]. The most immediate benefit of monotonicity is surrounding the isotonic
limit state surface Γ by two Pareto-dominated sets delimited by the elements of the numerical
design, the measures of which defining deterministic bounds for the probability p [38]. Recent
works focused on the estimation of these bounds and the computation of statistical estimators
of p based on Monte Carlo numerical designs [16].

While random designs appear as powerful tools for surrounding Γ and building estimators
of p, the stochastic behaviour of the associated random sets and their measures has not been
investigated yet. The aim of this chapter is to fill in this gap by establishing first convergence
results for these objects from random set theory. A corollary of these results, under a convexity
argument, is the consistency of an estimator of Γ built from the hull of the numerical design,
accompanied with its convergence rate. Such an estimator is proposed by a combination of
Support Vector Machines (SVM). It appears as a faster alternative in large dimensions to neural
networks specifically developed for isotonic situations [111], while both techniques are usual in
structural reliability frameworks [68].

This chapter is organized as follows. Section 3.2 details the main concepts and notations.
The convergence of a dominated set is examined in Section 3.3. First we study conditions leading
to convergence. Then, under some regularity assumption on the limit state, a rate of convergence
for an estimator of Γ is provided in term of Hausdorff distance. Lastly, more precise results are
given for two particular cases. Taking into account monotonicity properties, Section 3.4 focuses
on a sequential sampling strategy. A non naive acceptance-rejection method to simulate in the
so-called non-dominated set is provided . Then the convergence rates of bounds is compared
numerically with a standard Monte Carlo and a sequential sampling. These theoretical results
are derived in Section 3.5 to build a consistent semi-adaptive SVM-based classifier of the limit
state surface Γ respecting isotonic and convexity constraints. Numerical experiments conducted
in Section 3.5.2 complete this analysis by comparing the properties of the classifier with the
recently developed monotonic neural networks. The proofs of the new technical results are
postponed to Section 3.7.
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3.2 Framework

Recall the definitions given in Chapter 2.
Let X be a random vector uniformly distributed on [0, 1]d and g be a measurable application

from [0, 1]d to R. The function g discriminates two sets of input situations, leading to undesirable
and safe events, respectively. These classes are denoted U− = {x ∈ [0, 1]d : g(x) ≤ 0} and
U+ = {x ∈ [0, 1]d : g(x) > 0}, with [0, 1]d = U− ∪ U+. Hence the probability p that an
undesirable event may occur is

p = P(g(X) ≤ 0) = P(X ∈ U−).

Estimating p by a minimum number of calls to g is a prominent subject of interest in engineering.
This number can be drastically diminished when g is assumed to be monotonous. Characterizing
the monotonicity of g requires to use the Pareto dominance between two elements of Rd, recalled
in next definition.

Definition 3.1 Let u = (u1, . . . , ud) and v = (v1, . . . , vd) ∈ Rd. We say that u is (resp. strictly)
dominated by v, denoting u � v (resp. u ≺ v), if for all i = 1, . . . , d, ui ≤ vi (resp. ui < vi).

Assumption 3.1 Let g : [0, 1]d ⊂ Rd → R. It is assumed that g is globally increasing, i.e. for
all u, v ∈ [0, 1]d such that u � v, then g(u) ≤ g(v).

Remark 3.1 As pointed in Chapter 2 and [16], any monotonic function can be reparametrized
to be increasing with respect to all its inputs.

This property has for consequence to simplify the exploration of U− and U+ and provide
deterministic bounds on p. Let x ∈ U− (resp. U+) and y ∈ U. Since g is increasing, if y � x
(resp. y � x) then y ∈ U− (resp. U+). More generally, consider a set A of elements on [0, 1]d

(for instance a design of numerical experiments) and define

U−(A) =
⋃

x∈A∩U−

{u ∈ [0, 1]d : u � x}, (3.1)

U+(A) =
⋃

x∈A∩U+

{u ∈ [0, 1]d : u � x}. (3.2)

Then the monotonicity property implies the following result, since U−(A) ⊂ U− ⊂ [0, 1]d\U+(A).

Proposition 3.1 Denote µ the Lebesgue measure on U. For any countable set A,

µ(U−(A)) ≤ p ≤ 1− µ(U+(A)).

Remark 3.2 In general, the set A will be {X1, . . . , Xn}, the sets U−(A) and U+(A) would then
be random sets and the inequality becomes an almost sure inequality.

The non-dominated subset U(A) = [0, 1]d\(U−(A) ∪ U+(A)) contains necessarily Γ and is the
only subset of [0, 1]d for which a deeper numerical exploration is needed in view of estimating Γ
and p. Formally

Γ =
(
U

−\Ů−
)
∩
(
U

+\Ů+
)
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Figure 3.1: Illustration for d = 2 of the designs U−(x1, x2, x5, x6) and U+(x3, x4, x7, x8).

where E and E̊ are respectively the closure and the interior of a set E. Next (mild) assumption
is required to view the problem of estimating Γ as a binary classification problem with perfectly
separable classes, and is needed to study the convergence of the dominated sets to U− and U+

when the number of elements of the design increases. A two-dimensional illustration is provided
on Figure 3.1.

Assumption 3.2 Assume that µ(Γ) = 0 and Γ is simply connex.

In the remainder of the chapter, a design of numerical experiments {Xi, g(Xi)}i=1,...,n is consid-
ered. To alleviate the notations denote for all n ≥ 1,

U−
n = U− {X1, . . . , Xn} ,

U+
n = U+ {X1, . . . , Xn} ,

and the non-dominated set Un = [0, 1]d\(U−
n ∪ U+

n ). The Lebesgue measures (or hypervolumes)
of sets (U−

n ,U+
n ) are then denoted p−

n and 1− p+
n , such that, from Proposition 3.1, we have with

probability one

p−
n ≤ p ≤ p+

n . (3.3)

These two bounds can be computed using a sweepline algorithm described in [16] at an exponen-
tial cost. A faster approximation method is provided in Section 3.4. Two situations are further
investigated from the point of view of the convergence of dominated sets and bounds. First,
the design is chosen static in [0, 1]d (usual Monte Carlo sampling). Then a sequential Monte
Carlo approach is explored, assuming U0 = [0, 1]d and Xi being sampled within the current
non-dominated set Ui−1 for all i > 0. The convergence of the sets U−

n and U+
n will be studying

via the Hausdorff distance defined as follows.

Definition 3.2 Let ‖·‖q be the Lq norm on Rd, that is for 0 < q < +∞, ‖x‖q = (
∑d

i=1 |xi|q)1/q,
and for q = +∞, ‖x‖∞ = max

i=1,...,di=1,...,d

xi. Let (A, B) be two non-empty subsets of the normed
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vector space ([0, 1]d, ‖ · ‖q). The Hausdorff distance dH,q is defined by

dH,q(A, B) = max(sup
y∈A

inf
x∈B
‖x− y‖q; sup

x∈B
inf
y∈A
‖x − y‖q).

It is always finite since (A, B) ⊂
(
[0, 1]d

)2
are bounded. The usual form of the Hausdorff

distance is defined for q = 2. To alleviate notations, it is now denoted dH(., .) = dH,2(., .) and
‖.‖ = ‖.‖2.

3.3 Convergence results

3.3.1 Almost sure convergence for general sample strategy

The sequences (p−
n )n and (p+

n )n are respectively increasing bounded from above and decreasing
bounded from below. Hence, there exists two random variables p−

∞ and p+
∞ such that almost

surely p−
n −→ p−

∞, p+
n−→p+

∞ and p−
∞ ≤ p ≤ p+

∞. In this section we provide general conditions
on the design of experiments that ensures that p−

∞ = p+
∞ = p.

Proposition 3.2 [Independant Sampling] Let (Xk)k≥1 be a sequence of independent random
vectors on [0, 1]d. If there exists ε1 > 0 such that for all x ∈ Γε1 = {u ∈ [0, 1]d, d(u, Γ) < ε1}
there exists ε2 > 0 such that

∑

n≥1

P(Xn ∈ B(x, ε2)) = +∞,

then (p−
n , p+

n ) a.s.→
n→+∞

(p, p).

Corollary 3.1 Under Assumption 3.2 and the conditions of Proposition 3.2, then

(
dH(U−

n ,U−), dH(U+
n ,U+)

)
a.s.−→

n→+∞
(0, 0).

Example 3.1 If a sequence (Xn)n∈N∗ that is i.i.d. and uniformly distributed on [0, 1]d then it
satisfies the assumption of Proposition 3.2. More generally any sequence of iid random variables
with bounded from below densities on [0, 1]d satisfies the assumption of Proposition 3.2.

Since the only useful experiments are those which fall into the non-dominated set Un, a
sequential Monte Carlo strategy can be carried out, as detailed in next proposition.

Proposition 3.3 [Sequential sampling] Let (Yn)n≥1 be a sequence of iid random variables uni-
formly distributed on [0, 1]d. Let (Tn)n≥1 be a sequence of random variables on N defined by
T1 = 1 and for all n ≥ 1

Tn+1 = min{j > Tn, Yj ∈ UTn}.

Let (Xn)n≥1 be the sequence of random variables defined for all n ≥ 1 by Xn = YTn. Then, con-
ditionally to X1, . . . , Xn−1, Xn ∼ U(UTn−1), and (p−

n , p+
n )a.s.→(p, p), where (p−

n , p+
n ) are obtained

from the sequence (Xn)n≥1.

It is now natural to quantify the rate of convergence. While it seems difficult to provide an
explicit rate in the general case. We will then provide some explicit rate in particular cases.

91



3.3.2 Rate of convergence under some regularity assumptions

In this section convergence in Haussdorf distance sense of (U−
n )n towards U− is proven, and

under regularity assumption for the set U− a rate of convergence is provided. The regularity
considered here is the (α, γ)-regularity introduced in [4].

Definition 3.3 A set K is said (α, γ)-regular if there exist α, γ > 0 such that for all 0 < ε ≤ γ
and for all x ∈ K one has

µ(B(x, ε) ∩K) ≥ αµ(B(x, ε))

where B(x, r) is the open ball with center x and radius r.

This notion was introduced in [4] to prove minimax rates in classification problems. It has also
been considered in [22, 32] in order to state convergence rate when estimating sets. In particular
Proposition 3.4 below can be seen as an application of Theorem 2 in [22].

Roughly speaking, this condition excludes pathological sets U−, as those having infinitely
many sharper and sharper peaks or presenting a jagged border Γ. For instance, it is indirectly
proved in [48] that if U− is convex and has non-empty interior then it is regular. In a structural
reliability framework this condition is conservative since it traduces the hypothesis that any
combination of inputs located between two situations leading to an undesirable event leads also
to such an event. Described in [112], so-called r−convex sets that generalize the notion of
convexity are also regular [22]. It is traduced in U− by the assumption (or “rolling condition",
cf. [112]) that for each boundary point x ∈ Γ, there exists y ∈ U− such that x ∈ B(y, r). In
practice the assumption of r−convexity appears mild, as small values of r can produce a large
variety of limit state surfaces presenting irregularities [22].

Proposition 3.4 Let (Xk)k≥1 be a sequence of iid random variables uniformly distributed on
[0, 1]d and (X̃k)k≥1 be a sequence of iid random variables uniformly distributed on U−. Denote
Ũ−

n = U−(X̃1, . . . , X̃n). Let (Fn)n≥1 be a sequence of measurable subsets of [0, 1]d such that for
all n ≥ 1,U−

n ⊂ Fn ⊂ [0, 1]d\U+
n . Then

(1) dH(Fn,U−) a.s.−→
n→+∞

0 and µ(Fn) a.s.−→
n→+∞

p.

(2) If U− is regular, then almost surely

dH(Ũ−
n ,U−) = O

(
(log n/n)1/d

)
.

(3) Furthermore, if U+ is also regular, and if g is continuous, then almost surely

dH(Fn,U−) = O
(
(log n/n)1/d

)
. (3.4)

Remark 3.3 Note, that if in (2), we replace (Ũ−
n ) by (U−

n ), the a.s. bound becomes

O
(
(log N1/N1)1/d

)
,

where N1 is the number of points Xi such that g (Xi)) < 0 and follows the binomial distribution
with parameter n and p. Moreover the continuity assumption in (3) can be weakened, it is
enough (see the proof) that one can cut [0, 1]d following g−1({0}) and glue it.
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3.3.3 Convergence results in dimension 1

In dimension 1, we provide a complete description of the rate of convergence, in particular we
prove that n(p− p−

n ) and n(p+
n − p) are asymptotically exponentially distributed.

Proposition 3.5 Let (Xn)n≥1 be an iid sequence of random variables uniformly distributed on
[0, 1] and p ∈ [0, 1]. Define p−

n = maxi=1,...,n(Xi · 1{Xi≤p}) and p+
n = 1{maxi=1,...,n(Xi)≤p} +

mini=1,...,n(Xi · 1{Xi>p}). Then

n(p− p−
n ) L−−−−−→

n→+∞
Exp(1),

n(p+
n − p) L−−−−−→

n→+∞
Exp(1),

E[p+
n − p−

n ] =
2

n + 1
− 1

n + 1

(
pn+1 + (1− p)n+1

)
, (3.5)

where Exp(λ) is the exponential distribution with density fλ(x) = λ exp(−λx)1{x≥0}.

The cost of adopting a naive sequential strategy to decrease the volume of the non-dominated
set, by sampling a new design element within [0, 1]d, can be appreciated by coming back to the
unidimensional case (d = 1). In this framework, denote Wn = min{j ≥ 1 : Xn+j ∈]p−

n , p+
n [}

where (Xn+j)j≥1 is an iid sequence of random variables uniformly sampled on [0, 1]. For all
r ≥ 1, one has

P(Wn = r) = P(Xn+1 /∈]p−
n , p+

n [, . . . , Xn+r−1 /∈]p−
n , p+

n [, Xn+r ∈]p−
n , p+

n [),

= E[P(Xn+1 /∈]p−
n , p+

n [, . . . , Xn+r−1 /∈]p−
n , p+

n [, Xn+r ∈]p−
n , p+

n [|X1, . . . , Xn)],

= E[(1 − (p+
n − p−

n ))r−1(p+
n − p−

n )].

From linearity of the expectation and Jensen inequality, it comes

E[Wn] = E[(p+
n − p−

n )−1],

≥ E[p+
n − p−

n ]−1,

≥ n + 1
2

from (3.5) (3.6)

which is (as expected) a prohibitive cost for large values of n.
More accurate results can be only obtained in some particular case. The following proposition

provides a result of the expected Lebesgue measure of the non-dominated set for d = 1.

Proposition 3.6 Let p−
0 = 0, p+

0 = 1, X1 ∼ U([p−
0 , p+

0 ]), ξ1 = 1{X1≤p} and F1 = σ{X1}. For
all n ≥ 1 define conditionally to Fn = σ{Xk, 1 ≤ k ≤ n}:

Xn+1 ∼ U([p−
n , p+

n ]),

ξn+1 = 1{Xn+1≤p}

p−
n+1 = p−

n + (Xn+1 − p−
n )ξn+1,

p+
n+1 = p+

n − (p+
n −Xn+1)(1− ξn+1).

Then, for n ≥ 1,

1
2n
≤ E[p+

n − p−
n ] ≤

(
3
4

)n

.
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Corollary 3.2 If p ∈ {0, 1}, E[p+
n − p−

n ] = 2−n.

Remark 3.4 The shrinking convergence rate, which is inversely linear in n in a static Monte
Carlo strategy, is significantly improved by becoming exponential when opting for a sequential
strategy.

3.3.4 Asymptotic results when Γ = {1}d

Equivalent results are difficult to obtain for greater dimension and for a general limit state Γ.
The followings proposition provides asymptotic results in the particulare case Γ = {1}d.

Proposition 3.7 Assume Γ = {1}d. Let (Xk)k≥1 be a sequence of iid random variables uni-
formly distributed on [0, 1]d. For 0 < q < +∞ denote A(1, q) = 1 and for d ≥ 2,

Ad,q =
1

dqd−1

d−1∏

i=1

B(i/q, 1/q),

with B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt. For all n ≥ 1, let U−
n = U−(X1, . . . , Xn).

(1) If 0 < q < +∞ then

(Ad,qn)1/ddH,q

(
U−

n , [0, 1]d
) L−−−−−→

n→+∞
W(1, d).

(2) If q = +∞ then

n1/ddH,∞
(
U−

n , [0, 1]d
) L−−−−−→

n→+∞
W(1, d),

where W(1, d) is the Weibull distribution with scale parameter 1 and shape parameter d having

cumulative density function F (t) = 1− e−td
for all t ≥ 0.

Proposition 3.8 Under the assumptions and notations of Proposition 3.7 we have

E[µ([0, 1]d\U−
n )] ∼

n→+∞
log(n)d−1

n(d− 1)!
.

Remark 3.5 Denoting C∞(K) the convex hull of a set K, the result of Proposition 3.8 is
tantamount to the following result provided in [5]:

E[µ([0, 1]d\C∞({X1, . . . , Xn}))] ∼
n→+∞

log(n)d−1

n
.

When d = 1, the convergence order obtained in Proposition 3.5 is retreived.

3.4 Sequential sampling

Using a naive methods to simulate in a constrained space can be time-consuming. Indeed,
Equation 3.6 gives the expected number of simulation needed to simulate in the non-dominated
set in dimension 1. A method to simulate in the non-dominated set is provided in the first part
of this section. In a second part, the measure of the non-dominated set is compared in function
of the strategies of simulation adopted: standard Monte Carlo or sequential sampling.
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3.4.1 Fast uniform sampling within the non-dominated set

Simulating uniformly on [0, 1]d can be time-consuming when the aim is to simulate in the non-
dominated set. The strategy provided in this section involves to build a subset of [0, 1]d contain-
ing the non-dominated set then to simulate uniformly within this subset. After n calls to g let
x in U+

n . From construction, the non-dominated set is in [0, 1]d\U+
n (x), it remains to simulate

uniformly on this subset of [0, 1]d. The choice of x is described further in this section. The
proposed method use the following lemma coming from a simple acceptance-rejection method.

Lemma 3.1 Let A be a measurable subset of [0, 1]d with µ(A) > 0 and such that A = A1∪ · · · ∪
Am with Ai∩Aj = ∅ if i 6= j. Let (Xk)k≥1 be an iid sequence of random vectors satisfying for all
i, P(Xk ∈ Ai) = µ(Ai)\µ(A). Let C be a measurable subset of A, and T = inf{k ≥ 1, Xk ∈ C}
then XT is uniformly distributed on C.

The construction involves to split up [0, 1]d in hyper-rectangles (see Figure 3.2) which are
defined for all i = 0, . . . , 2d − 1 by

Qi(x) = I1
i × I2

i × · · · × Id
i ,

with

Ij
i =

{
[xj , 1] if bi

j = 0,

[0, xj ] if bi
j = 1,

where bi = (bi
1, . . . , bi

d) is equal to i coded in base 2. Since 0 is coded as 00 · · · 0 in base 2 with
d numbers, one deduce that Q0(x) = [x1, 1]× [x2, 1]× · · · × [xd, 1] = U+(x). Let (Xk)k≥1 be an
iid sequence of random vectors satisfying for all i = 1, . . . , 2d − 1

P(X ∈ Qi(x)) =
µ(Qi(x))

1− µ(Q0(x))
. (3.7)

Define T = inf{k ≥ 1, Xk ∈ Un}.Applying Lemma 3.1 with A = Q1(x) ∪ · · · ∪Q2d−1(x) and C
the non-dominated set Un, one deduce that XT is uniformly distributed on the non-dominated
set. The point x is chosen in order to maximise the quantity in Equation (3.7). It must be
noticed that more p is close to 0 more the points of Ξ+

n are close to {0}d then the probability to
have a simulation in the non-dominated set increases.

3.4.2 Suboptimal sequential framework

As said in the previous paragraph, the rate of convergence of the bounds is difficult to obtain in
a sequential framework. In the following paragraphs, two sequential frameworks are described.
The first one is built especially for the case d = 2 and the second one is a generalisation.

First framework for d = 2.

A first framework of sampling is now described for d = 2 and Γ = {1}. Let X1 be uniformly
distributed on [0, 1]2 then p−

1 = µ(U−(X1)). Following Figure 3.3, the set U1 = [0, 1]2\U−(X1)
is split in two disjoints hyper-rectangles E2,1 and E2,2. Let X2,1, X2,2 be uniformly distributed
on each of them. Each of these two random vectors allows to split E2,1 and E2,2 in two hyper-
rectangles (see Figure 3.3 up right). Repeating on n steps, the lower bound p−

n is defined by

p−
n = µ(U−(X1)) +

n∑

k=2

2k∑

j=1

µ(U−(Xk,j) ∩ Ek,j),
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{1}d

{0}d

x∗

Q4(x∗)

Q2(x∗)

Q3(x∗)

Figure 3.2: Splitting up [0, 1]d from x∗ in dimension 2. The hyper-rectangle Q0(x∗) is in U+.

where Xk,j is uniformly distributed on Ek,j. The following proposition provides the expectation
of p−

n .

Proposition 3.9 Let d = 2 and Γ = {1}2. Let k ≥ 1 be the step of the framework of simulation.
Then n = 2k − 1 random vectors have been simulated and

E[p−
n ] = 1− 1

(n + 1)log (4/3)/ log 2
.

Second framework for d ≥ 2.

Instead to split in two subsets the non-dominated set, it is now split in 2d − 1 disjoints hyper-
rectangles as described in Figure 3.4. In this case, the lower bound is defined as follow

p−
n = µ(U−(X1)) +

n∑

k=2

(2d−1)k∑

j=1

µ(U−(Xk,j) ∩ Ek,j).

The expectation of p−
n is given in the proposition below.

Proposition 3.10 Let d ≥ 2 and Γ = {1}d. Let k ≥ 1 be the step of the framework of

simulation. Then n = (2d−1)k−1
2d−2

random vectors have been simulated and

E[p−
n ] = 1− 1

((2d − 2)n + 1)log (2−2−d)/ log (2d−1)
.

96



��

{1}2

{0}2

X1

[0, 1]2\U−(X1)

E2,1 E2,2

��

��

��

{1}2

{0}2

[0, 1]2\U−(X1)

X1

X2,1

X2,2

��

�
�
�
�

����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

{1}2

{0}2

[0, 1]2\U−(X1)

Figure 3.3: Illustration of the framework of sim-
ulation in dimension 2. The Lebesgue measure
of the set in gray represents the value of p−

n . Up-
left: First step: a random vector is uniformly
distributed on [0, 1]d. The dashed lines repre-
sents the frontier of the two subsets E2,1 and
E2,2. Up-right: Second step: two random vec-
tors are uniformly distributed on E2,1 and E2,2.
These points split E2,1 and E2,2 in two subsets.
Down: Third step of the framework.

97



��

{1}2

{0}2

[0, 1]2\U−(X1)

X1

��

��
��
��
��

�
�
�
�

����

{1}2

{0}2

[0, 1]2\U−(X1)

X1

��

��
��
��
��

����

��

��
��
��
��

��

��
��
��
��

��
��
��
��

��
��

��
��
��
��

�
�
�
�

�
�
�
�

{1}2

{0}2

[0, 1]2\U−(X1)

X1

Figure 3.4: Illustration of the framework of sim-
ulation in dimension 2. The Lebesgue measure
of the set in gray represents the value of p−

n . Up-
left: First step: a random vector is uniformly
distributed on [0, 1]d. The dashed lines repre-
sents the frontier of the two subsets E2,1, E2,2

and E2,3. Up-right: Second step: a random
vector uniformly distributed on E2,1, E2,2 and
E2,3. Each of these sets are split in three sub-
sets. Down: Third step of the framework.

The rates of convergence provided in Propositions 3.9 and 3.10 are greater than the one
provided in Proposition 3.8. Since a sequential framework must accelerate the convergence of
the lower bound, these results state that these constructions are suboptimal compared to a
sequential scheme.

3.4.3 Numerical study

To complete the previous theoretical studies, a brief numerical comparison of convergence rates
obtained for some static and sequential strategies is conducted in this paragraph. The impact
of design strategies on the mean measure of the non-dominated set Un is examined through two
repeated experiments conducted over the following model, defined such that U− = [0, 1]d, p = 1
and Γ = {1}d for various dimensions d ∈ {1, 2, 3, 4, 5, 10}. That means, after n simulations, the
volume of

⋃

x∈{X1,...,Xn}
{u ∈ [0, 1]d : u � x},

is compared, where X1, . . . , Xn are respectively obtained from a uniform and a sequential sam-
pling strategy. The model is run n = 100 times per experiment and repeated 100 times. The
results of these experiments are summarized on Table 3.1. As expected, the remaining volume
is lower with a sequential Monte Carlo than a standard Monte Carlo. Nonetheless, this differ-
ence decreases when the dimension increases and the remaining volume is nearly equal to 1 in
dimension 10 for the two Monte Carlo simulations.
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Dimension 1 2 3 4 5 10
Monte Carlo strategy 9.9 × 10−3 0.052 0.145 0.28 0.43 0.937
Sequential strategy 7.89 × 10−31 4.17× 10−5 0.017 0.14 0.33 0.935

Table 3.1: Mean measures (volumes) of non-dominated set Un after n = 100 runs.

Remark 3.6 Table 3.1 shows that the gain provided by a sequential sampling strategy decrease
as the dimension increase. For d = 10, the remaining volume obtain with the two strategies of
simulations are close.

3.5 Application : estimating Γ using Support Vector Machines
(SVM)

The previous sections provide convergence results for different strategies of simulations without
the estimation of the limit state Γ. This section provide an estimator of the sign of g under
some convexity assumption on U−. The proposed estimator is in fact a classifier based on linear
SVMs. It will then be compared on a toy example, with the monotonic neural networks recently
developed in [111].

3.5.1 Theoretical study

Dominated sets (U−
n ,U+

n ) surrounding Γ can be improved by sampling within the non-dominated
set Un. In view of improving a naive Monte Carlo approach to estimate p, as in [16], usual
techniques like importance sampling or subset simulation should aim at targeting input situations
close to Γ [15]. Such approaches can be guided by a consistent estimation of Γ, under the form
of a supervised binary classification rule calibrated from (U−

n ,U+
n ). This classifier has to agree

with the following (isotonic) ordinal property of the limit state surface Γ.

Proposition 3.11 Under Assumption 3.2 For all u, v ∈ Γ such that u 6= v, u is not strictly
dominated by v.

Respecting this constraint a monotonic neural network classifier was recently proposed in
[111] and applied in [16] to structural reliability frameworks. While consistent, its computational
cost remains high or even prohibitive when the size of the design X1, . . . , Xn defining (U−

n ,U+
n )

increases. Benefiting from a clear geometric interpretation, Support Vector Machines (SVM)
offer an alternative to neural networks by their robustness to the curse of dimensionality [68]. A
semi adaptive solution can be build from a combination of SVM when U− is convex. Conversely,
it can be easily adapted when U+ is a convex set.

Assuming U− is convex, any points x of U+ can be separated from U− by a hyperplane
hx(u) = α + βT

x u (see [101] Theorem 11.5) that maximises the minimal distance of hx to x and
U−. It is also possible to construct h satisfying the ordinal property on Assumption 3.1 (see
Appendix 3.8.2 for more details).

Given the numerical experiment Dn = (Xi, yi)1≤i≤n ∈ U×{−1, 1}} where yi = 1 if g(Xi) > 0
and −1 otherwise. Let Ξ+

n = {X1, . . . , Xn} ∩ U+ and Ξ−
n = {X1, . . . , Xn} ∩ U− and for any

x ∈ Ξ+
n define hx as the hyperplane separating x from Ξ−

n . The proposed classifier fn is defined
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by

fn : [0, 1]d → {−1, +1}

y 7→
{
−1 if for all X ∈ Ξ+

n , hX(y) ≤ 0

+1 otherwise.

Denote

Fn = {x ∈ [0, 1]d, fn(x) = −1}

the set of all inputs classified as leading to undesirable events by fn.

Theorem 3.1 Assume U− is convex, then

(1) fn is globally increasing.

(2) For all X ∈ {X1, . . . , Xn}, sign(g(X)) = fn(X).

(3) The set Fn is a convex polyhedron.

(4) Furthermore if (Xk)k≥1 is a sequence of independent random vectors uniformly distributed
on [0, 1]d, then

dH(Fn,U−) a.s.−→
n→+∞

0,

and almost surely,

dH(Fn,U−) = O
(
(log n/n)1/d

)
.

Updating the classifier given a new design element Xn+1 found in U+ can be done by a
partially (semi) adaptive principle, illustrated on Figure 3.5 in dimension 2. To get fn+1 it is
enough to build the hyperplane hXn+1 which separates Xn+1 from Ξ−

n+1 = Ξ−
n (unfortunately, if

Xn+1 ∈ U− all hyperplanes must be rebuild, but this occurs rarely with low probability p− p−
n

when the design is sampled uniformly on [0, 1]d). If Xn+1 � x for all x ∈ Ξ−
n , the support

vectors and the hyperplanes will not be modified.

3.5.2 Numerical experiments

This section examines first the gain of including the constraint of monotonicity in the calibration
of SVM (detailed in Appendix 3.8.2), with respect to usual SVM and the constrained neural
networks proposed in [111] when the associated code is globally monotonic.

First, the case of a linear limit state is studied. Next, the comparison will be made on a
function which verifies the monotonicity and convexity properties. The rate of good classification
obtained with the monotonic classifier and the monotonic neural networks are compared at each
step of the algorithm.
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Figure 3.5: Construction of the classifier based on SVM. The plain line represent Γ and black
(resp. white) points are in U− (resp. U+). The dotted lines represents {x : hX(x) = 0} for
some X in U+. Left: there is one point in U+ then the dashed line is both {x : hX(x) = 0} and
the frontier of the classifier. Right: Dotted lines represent the two sets {x : hX(x) = 0} for X
represented by the two white points. Dashed line represent the frontier of the classifier.

Linear case.

Investigating the efficiency of the new classifier, let us start the numerical experiments with the
linear case. The function g is a hyperplane defined by

h(x) = β0 + βT x,

with positive parameters which are, in dimension d, uniformly distributed on the unit sphere

S+
d = {x ∈ Rd

+ : ‖x‖ = 1}.

Various sample size N are used to examine the rate of good classification when the monotonicity
is taking into account or not. For each ordered pair (d, N), a hyperplane is build with parameters
uniformly distributed on S+

d . Then, 200 data are simulated on the unit sphere to be predicted.
The rate of good classification is compared for linear SVM and linear monotonic SVM. That
step is repeated 100 times for each hyperplane, and also repeated with 100 differents hyperplane.

The results are summarised by Table 3.2 where there is respectively a proportion 0.1, 0.2,
0.3, 0.4 and 0.5 among N which are in {x : g(x) ≤ 0}. In general, taking account of the
monotonicity provides better results. As expected, more N is great and d is low more the rate
of good classification increase for the two methods. Results are comparable for d = 2 but for a
fixed N the difference grows when d increase. Finally, the constrained SVM provides significantly
better results for small N .

Convex case.

In this section section, the classifier given in Theorem 3.1 is tested on a toy example. Let
U = (U1 . . . , Ud) be uniformly distributed on [0, 1]d, and denote

Zd = (U1U2 · · ·Ud)2.
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d = 2 d = 10 d = 20 d = 40 d = 50 d = 100

N = 10 78.24/78.40 58.14/62.72 53.05/57.65 50.80/53.53 50.49/52.32 50.09/50.88

N = 20 84.04/84.19 63.77/68.99 56.66/62.20 52.37/56.83 51.80/55.85 50.40/52.83

N = 40 91.22/91.34 71.65/74.13 62.64/67.38 56.25/61.44 54.59/59.91 51.68/55.75

N = 50 93.04/93.07 73.92/76.41 65.04/70.05 57.43/63.04 56.16/61.65 52.36/56.87

N = 75 92.57/92.74 78.72/80.34 68.95/72.59 60.24/66.02 58.71/63.99 53.73/58.58

N = 100 94.41/94.41 83.36/84.43 73.66/76.95 64.50/69.03 62.11/67.26 55.54/60.96

N = 200 97.09/97.09 88.87/89.30 82.09/83.55 72.83/76.07 69.55/73.22 61.24/66.50

N = 10 84.86/85.73 62.79/68.05 57.78/63.67 53.08/58.46 52.75/57.92 50.95/54.41

N = 20 90.41/90.44 70.27/74.69 61.98/68.49 57.64/63.62 55.88/62.30 52.56/57.87

N = 40 93.65/93.67 78.89/80.90 70.51/74.88 62.48/68.38 60.23/66.30 55.44/61.93

N = 50 95.51/95.51 82.06/83.78 72.30/76.28 64.84/70.50 62.62/68.35 57.01/63.39

N = 75 96.28/96.29 85.36/86.99 77.63/80.25 69.12/73.65 66.41/71.86 59.88/66.15

N = 100 96.87/96.87 88.44/89.18 81.04/82.94 72.39/76.21 69.71/74.30 62.02/67.80

N = 200 98.48/98.49 93.37/93.63 88.37/89.19 81.10/83.18 78.02/80.40 69.65/74.13

N = 10 86.55/87.42 67.76/73.2 60.98/68.26 56.49/63.74 55.67/62.95 52.86/59.30

N = 20 92.39/92.68 74.94/78.36 67.68/73.32 61.13/68.43 58.87/66.38 55.40/62.69

N = 40 95.27/95.40 83.20/85 75.22/78.75 66.73/72.70 65.15/71.56 59.24/66.67

N = 50 95.35/95.37 85.12/86.46 77.81/81.04 69.39/74.81 66.72/72.89 61.00/68.37

N = 75 97.06/97.06 88.88/89.42 82.24/84.51 73.64/78.11 71.40/76.19 63.80/70.19

N = 100 97.90/97.90 91.55/91.79 85.68/86.71 77.47/80.77 74.69/78.78 66.59/72.88

N = 200 98.73/98.73 95.16/95.26 91.53/91.94 85.40/86.99 82.95/85.09 74.62/79.08

N = 10 88.53/89.14 68.99/74.31 64.20/71.35 59.36/67.83 58.06/66.78 55.23/64.17

N = 20 92.10/92.22 77.54/81.02 70.60/75.69 63.92/71.54 62.88/70.56 58.04/66.88

N = 40 95.25/95.26 85.06/86.52 77.75/81.31 70.62/76.28 68.48/74.74 62.33/70.43

N = 50 97.20/97.20 87.02/87.74 80.91/83.52 72.58/77.60 70.60/75.88 63.98/71.50

N = 75 97.51/97.51 90.99/91.54 84.84/86.84 76.90/80.92 74.86/79.32 67.58/74.37

N = 100 97.98/97.99 92.86/93.06 87.65/88.57 80.11/83.03 77.88/81.74 70.57/76.39

N = 200 98.81/98.81 95.95/96.07 93.50/93.83 88.27/89.44 86.55/88.18 78.6/82.36

N = 10 88.91/89.52 70.12/75.03 64.23/71.39 59.93/68.41 59.17/67.97 56.88/66.48

N = 20 93.44/93.59 77.65/80.22 71.63/76.71 65.03/72.34 63.77/71.59 59.74/68.46

N = 40 95.85/95.85 86.33/87.23 78.95/81.88 71.58/77.11 69.16/75.35 64.00/71.87

N = 50 96.28/96.36 88.25/89.00 81.36/84.56 74.22/79.23 71.72/77.56 65.78/73.53

N = 75 97.51/97.51 91.01/91.61 85.96/87.60 78.60/82.51 75.85/80.09 69.66/76.18

N = 100 98.04/98.04 93.18/93.46 89.03/89.81 81.92/84.43 79.55/82.73 72.08/78.06

N = 200 99.07/99.08 96.18/96.27 93.57/94.12 89.05/90.12 87.16/88.70 80.09/83.76

Table 3.2: Rate of good classification for usual SVM (left) and monotonic SVM (right) in
function of d and N . From up to down, there is respectively a proportion of 0.1, 0.2, 0.3, 0.4,
0.5 in the set {x : g(x) ≤ 0}.

102



Let qd,p be the p-quantile of Zd and define the function g(U) = Zd − qd,p. This quantile can be
deduced from Equation (3.15) in Section 3.7. Indeed, let t ∈ [0, 1], then

P(Zd ≤ t) = P(U1U2 · · ·Ud ≤
√

t) =
∫ √

t

0

(− log(x))d−1

(d− 1)!
dx.

The function g is globally increasing and the set {u ∈ [0, 1]d, g(u) > 0} is convex. The SVM-
based classifier and the constrained neural networks are built from the points of a sequential
design used to delimit the non-dominated set. At step n, the number of points which delimits
this non-dominated set is denoted Nn.

The comparison is conducted as follows. At each step n ≥ 1, M = 500 random vectors
are uniformly distributed on the non-dominated set Un−1. The rate of good classification on
these M random vectors and the time needed to build the two classifiers are stored. Then non-
dominated set is updated with a random vector uniformly distributed on it. The comparison is
conducted for different dimensions: 2, 3 , 4 and 5 and for p = 0.01 and have been averaged on
40 independent experiments.

In Figure 3.6 the rate of good classification is compared in function of Nn. The red values
represent the number of times the situation where the non-dominated set is delimited by Nn

points. For some n ≥ 1, this number is greater than 40. Indeed, the sequence (Nn)n≥1 is not
monotonic: at any step n, a new simulation employed to update the non-dominated set Un−1

can dominate one of the point of its frontier. Then the value of Nn can be lower than Nn−1. At
step n, having Nn = n means no points of the sequential design is dominated by one another.
The results show that the mean rate of good classification is equivalent for the two classifier and
for the tested dimension. But, when the dimension increases the SVM-based classifier is more
stable than the constrained neural networks.

Denote (T SV M
n )n≥1 and (T NN

n )n≥1 respectively the cumulative time needed to build the
SVM-based classifier and the constrained neural networks until step n. The ratio T NN

n /T SV M
n

of time needed to construct these estimator are compared on Figure 3.7. It is shown in this ex-
ample that the semi-adaptive SVM-based classifier is less time-consuming than the non-adaptive
constrained neural networks for different dimensions. Nonetheless, when the dimension increases
the gain of time decrease.

3.6 Conclusion

This chapter initiates a theoretical counterpart to the increasing developments linked to the
exploration of computer models that make use of their geometrical properties. The original
framework is related to structural reliability problems, but the obtained results can be adapted to
multi-objective optimisation contexts, characterized by strong constraints of monotonicity. The
main results presented here are the consistency and law convergence of the main ingredients
(random sets, deterministic bounds, classification tools) used to solve such problems in the
common case where the numerical design is generated by a Monte Carlo approach. Therefore
such results should be understood as benchmark objectives for more elaborated approaches. For
example, use the monotonic estimation of the limit state surface proposed in this chapter which
presents good theoretical and practical properties.

These more elaborated approaches are, obviously, based on sequential sampling within the
current non-dominated set and will be investigated in Chapter 4.

Monotonicity of computer models can be exploited to get deterministic bounds of output
quantiles. A preliminary result is given beneath in dimension 1, in corollary of Proposition 3.5,
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Figure 3.6: Boxplots of the rate of good classification for d ∈ {3, 4, 5, 6}, in function of n. In red
are the sample size used for each boxplot. Left: Monotonic SVM. Right: Constrained neural
networks. The results have been averaged on 40 independent experiments.
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Figure 3.7: Ratio of time construction of the SVM-based classifier and the constrained neural
network in function of n. The results have been averaged on 40 independent experiments.

to introduce this theme, which will be investigated in Chapter 5.

Corollary 3.3 Assume that g is continuous, strictly increasing and differentiable at p. Denote
qp = infq∈R (P(g(X) ≤ q) = p) the p-order quantile of g(X) and g′ the derivative of g. Then

n(qp − g(p−
n )) L−−−−−→

n→+∞
Exp(1/g′(p)),

n(g(p+
n )− qp) L−−−−−→

n→+∞
Exp(1/g′(p)).

3.7 Proofs

Proof of Proposition 3.2. Set U−
∞ =

⋃
k≥1 U

−
k , U+

∞ =
⋃

k≥1 U
+
k and the non-dominated set

U∞ = [0, 1]d\ (U−
∞ ∪ U+

∞
)
. We define p−

∞ = µ(U−
∞) and p+

∞ = µ([0, 1]d\U+
∞). By inclusion and

closure, the bounded sequences (p−
n )n≥1 and (p+

n )n≥1 are respectively increasing and decreasing,
then p−

n
a.s.→ p−

∞ and p+
n

a.s.→ p+
∞. Assume U∞ is a non-empty open set such that µ(U∞) =

p+
∞ − p−

∞ > 0. There exist ε1 > 0 and x0 ∈ [0, 1]d such that

B(x0, ε1) ⊂ U∞. (3.8)

Hence no element of the sequence (Xk)k≥1 belongs to B(x0, ε1). Now, we introduce the events
An = {Xn ∈ B(x0, ε1)}, the are independent by construction and

∑

n≥1

P(AN ) =
∑

n≥1

πd/2εd

Γ(d/2 + 1)
= +∞.
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We can then apply to Borel-Cantelli’s lemma that ensures that P(lim supn An) = 1. Therefore
it exists almost surely at least one Xk ∈ B(x0, ε1), which is contradictory with (3.8). Hence
µ(U∞) = 0 and necessarily p−

∞ = p+
∞ = p almost surely. �

Proof of Corollary 3.1. From construction, one has U−
n ⊂ U− then from Proposition 3.2

dH(U−
n ,U−) = sup

x∈U−
n

inf
y∈U−

‖x− y‖ ≤ µ(U−)− µ(U−
n ) = p− p−

n , −→
n→+∞

0.

�

Proof of Proposition 3.3. It is an alternative proof to the consistency result given in [16].
For any measurable set A ⊂ [0, 1]d. If (Yn)n is an i.i.d. sequence of variable uniformly distributed
on [0, 1]d and T = inf{n, Xn ∈ A}. Then, it is a well known fact that YT is uniformly distributed
on A. Hence conditionnaly to Conditionally to X1, . . . , Xn−1 one has

Xn ∼ U(UTn−1).

Denote (q−
n )n≥1 and (q+

n )n≥1 the sequences of bounds obtained from (Yn)n≥1. By construction,
the sequences (p−

n )n≥1 and (p+
n )n≥1 are subsequences of (q−

n )n≥1 and (q+
n )n≥1. Then

p+
n − p−

n ≤ q+
n − q−

n
a.s.→

n→+∞
0.

�

Proof of Proposition 3.4. Proof of (1). By triangle inequality, one has

dH(Fn,U−) ≤ dH(Fn,U−
n ) + dH(U−

n ,U−),

≤ dH([0, 1]d\U+
n ,U−

n ) + dH(U−
n ,U−), since U−

n ⊂ Fn ⊂ [0, 1]d\U+
n

≤ dH([0, 1]d\U+
n ,U−) + 2dH(U−

n ,U−), by a second triangle inequality.

We know from Corollary 3.1, that

dH([0, 1]d\U+
n ,U−

n ) a.s.−→
n→+∞

0,

dH(U−
n ,U−) a.s.−→

n→+∞
0,

hence dH(Fn,U−) a.s.−→
n→+∞

0. Besides µ(U−
n ) ≤ µ(Fn) ≤ µ([0, 1]d\U+

n ) by construction, then

p−
n ≤ µ(Fn) ≤ p+

n , and from Corollary 3.1, it can be deduced that

µ(Fn) a.s.−→
n→+∞

p,

that concludes the proof of (1). The proof of (2) and (3) are based on the following Theorem
due to [22].

Theorem 3.2 ( [22], Theorem 2). Let K be a compact set on Rd and standard with respect to
a measure ν. Let (Xk)k≥1 be a sequence of i.i.d. random variables uniformly distributed on K,
and Kn be a set such that for all n large enough one has almost surely (X1, . . . , Xn) ⊂ Kn ⊂ K.
Then almost surely

dH(Kn, K) = O

((
log n

n

)1/d
)

.
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The notion of standard set generalizes the notion of (α, γ)-regularity that is used here. Hence
any (α, γ)- regular set is also standard in the sense of Theorem 3.2.
Proof of (2). It is a direct consequence of Theorem 3.2.
Proof of (3). Application of Theorem 3.2. In order to do so, we will cut [0, 1]d following g−1({0})
and glue it on [0, 1]d−1 in the following way. Set

G : [0, 1]d−1 −→ [0, 1]

x 7→
{

inf{t ∈ [0, 1], g(x, t) = 0} if {t ∈ [0, 1], g(x, t) = 0} 6= ∅,
0 if {t ∈ [0, 1], g(x, t) = 0} = ∅,

and define Γ̃ as the graph of the application x 7→ G(x) − 1. Now let

Ψ : [0, 1]d −→ Rd

(x, y) 7→
{

(x, y) if g(x, y) ≤ 0,
(x, y − 1) if g(x, y) > 0.

.

We define now Ũ = Ψ([0, 1]d)
⋃

Γ̃ (we have cut the space [0, 1]d following g−1({0}) and glue
together [0, 1]d−1 ×{0} and [0, 1]d−1 × {1}, see Figure 3.8). Now by assumption Ũ is a compact
set and the random variables (Ψ(Xi))i are i.i.d uniformly distributed in Ũ. The result follows
applying Theorem 3.2. �

Proof of Proposition 3.5. Let x ∈ [0, p]. Then

P(p−
n ≤ x) = P( max

i=1,...,n
(Xi1{Xi≤p}) ≤ x) = P(X11{X1≤p} ≤ x)n

=
(
1− P(X11{X1≤p} > x)

)n
= (1− P(p ≥ X1 > x))n = (1− p + x)n. (3.9)

Then for all x ∈ [0, 1],

P(p−
n ≤ x) =





0 if x < 0,

(1− p + x)n if 0 ≤ x ≤ p,

1 if x > p.

(3.10)

Let x > 0 and n be large enough such that x ∈ [0, np], then

P(n(p− p−
n ) < x) = 1− (1− x/n)n −−−−−→

n→+∞
(1− e−x),

hence n(p− p−
n ) L−−−−−→

n→+∞
Exp(1). From (3.10), it comes:

E[p−
n ] =

∫ 1

0
P(p−

n ≥ x)dx = p− 1
n + 1

[1− (1− p)n+1].

Denote p−
n (p) a random variable such that for all x ∈ [0, 1],

P(p−
n (p) ≤ x) =





0 if x < 0,

(1− p + x)n if 0 ≤ x ≤ p,

1 if x > p.

.
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{1}d

{0}d

x6

x1

x5

x2

x8

x4

x7

x3

Γ

{0}d

Γ

Ψ(x8)

Ψ(x4)

Ψ(x7)

Ψ(x3)

Γ̃

Ψ(x2)

Ψ(x5)

Ψ(x1)

Ψ(x6)

Figure 3.8: Illustration of the cut given in proof of Proposition 3.4. Left: Illustration of [0, 1]d

after some simulations. Right: Representation of Ũ delimited by the set in gray, Γ and Γ̃.
Ψ(xi) = xi for i ∈ {3, 4, 7, 8}.

Then, p+
n have the same distribution as 1− p−

n (1− p). For all x ∈ [0, 1], one has

P(p+
n > x) = P(p−

n (1− p) ≤ 1− x) =





1 if x < p

(1 + p− x)n if p < x ≤ 1

0 if x > 1.

,

and

E[p+
n ] = E[1− p−

n (1− p)] = p +
1

n + 1
[1− pn+1].

It can be deduced that for all n,

E[p+
n − p−

n ] =
2

n + 1
− 1

n + 1

(
pn+1 + (1− p)n+1

)
.

�

Proof of Proposition 3.6. Fn will denote the natural filtration. One has p−
n+1 + p+

n−1 =
(p+

n − p−
n )ξn+1 + Xn+1 + p−

n . Since for all k ≥ 1, Xk is uniformly distributed on [p−
k−1, p−

k−1] if
Fn denotes the natural filtration associated to this sequence, it comes that

E[p−
n+1 + p+

n+1|Fn] = (p+
n − p−

n )E[ξn+1|Fn] + E[Xn+1|Fn] + p−
n ,

= p + E[Xn+1|Fn] = p + (p−
n + p+

n )/2,
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the last equality holds since E[Xn+1|Fn] = (p−
n + p+

n )/2. By recursion, it can be deduced that

E[Xn+1] =
1
2
E[p−

n + p+
n ] =

1
2

(p + E[Xn]) =
p

2
+

p

22
+

E[Xn−1]
22

,

= p

(
1− 1

2n

)
+

1
2n+1

.

Since Xn+1 ∈ [0, 1], it comes that Var[Xn+1] ≤ E[X2
n+1] ≤ E[Xn+1] = p(1− 1

2n ) + 1
2n+1 . Besides

E[p+
n+1 − p−

n+1|Fn] = (p+
n + p−

n )E[ξn+1|Fn]− 2E[Xn+1ξn+1|Fn] + E[Xn+1|Fn]− p−
n ,

=
(p+

n + p−
n )(p− p−

n )
p+

n − p−
n

− p2 − (p−
n )2

p+
n − p−

n
+

p+
n + p−

n

2
− p−

n ,

=
p+

n − p−
n

2
+

(p+
n − p)(p− p−

n )
p+

n − p−
n

. (3.11)

Since E[p+
n+1 − p−

n+1] ≥ 1
2E[p+

n − p−
n ], it comes by recursion that

E[p+
n+1 − p−

n+1] ≥ 1
2n+1

.

Since (p+
n − p)(p − p−

n ) is lower than (p+
n − p−

n )2/4, it can be deduced from (3.11) that

E[p+
n+1 − p−

n+1|Fn] ≤ 3
4

(p+
n − p−

n ).

By recursion, it comes that E[p+
n − p−

n ] ≤
(

3
4

)n
. �

Proof of Corollary 3.2. Let p = 0, then E[p+
n+1|Fn] = E[Xn+1|Fn]. Since Xn+1 ∼ U([0, p+

n ]),
it comes that

E[p+
n+1|Fn] = p+

n /2,

by recursion E[p+
n ] = 2−n. For p = 1, using Xn+1 ∼ U([p−

n , 1]) proves the result. �

The proof of Proposition 3.7 relies on the following Lemma that gives the value of the
probability density function of a sum of independent beta distributed random variables.

Lemma 3.2 Denote fd the probability density function (pdf) of
∑d

i=1 Bi, supported over [0, d],
where the Bi are iid random variables following the Beta(1/q, 1) distribution. Then for all
x ∈ [0, 1]

fd(x) = Cd,qxd/q−1 (3.12)

with C1,q = 1 and for d ≥ 2, Cd,q = 1
qd

d−1∏

i=1

B(i/q, 1/q).

Proof of Lemma 3.2. We proceed by induction. For d = 1, the density given by (3.12) is
the density of Beta(1/q, 1) distribution, that is

f1(x) =
1
q

x1/q−1
1{0≤x≤1}.
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Assume there exists k ∈ N∗ such that for all 1 ≤ j ≤ k, fj is the density of
∑j

i=1 Bi (only for
x ∈ [0, 1]). Denote f ⋆ g the convolution of functions f and g. Then, for x ∈ [0, 1],

fk+1(x) = (fk ⋆ f1)(x) =
∫ x

0
fk(t)f1(x− t)dt,

=
∫ x

0

1
qk

[
k−1∏

i=1

B(i/q, 1/q)

]
tk/q−1 1

q
(x− t)1/q−1dt,

=
1

qk+1

k−1∏

i=1

B(i/q, 1/q)
∫ x

0
x1/q−1tk/q−1(1− t/x)1/q−1dt,

= Ck+1,qx(k+1)/q−1

which proves the validity of (3.12). �

Proof of Proposition 3.7. Set Xi = (X1
i , . . . , Xj

i ). Since U−
n ⊂ U−, one has

dH,q(U−
n ,U−) = max( sup

y∈U−
n

inf
x∈U−

‖x− y‖q; sup
x∈U−

inf
y∈U−

n

‖x− y‖q),

= sup
x∈U−

inf
y∈U−

n

‖x− y‖q = inf
y∈U−

n

‖{1}d − y‖q,

= inf
y∈{X1,...,Xn}

‖{1}d − y‖q.

(1). Assume 0 < q < ∞. For t ∈ [0, d1/q ], using the fact that if X is uniformly distributed on
[0, 1] so is 1−X we have

P(dH,q(U−
n ,U−) ≤ t) = 1−


1− P




d∑

j=1

(Xj
1)q ≤ tq






n

.

Let (αn)n≥1 be a sequence of real numbers such that αn → +∞ as n→ +∞. Hence,

P(αndH,q(U−
n ,U−) ≤ t) = 1−

(
1− P

(
d∑

i=1

Bi ≤
tq

αq
n

))n

(3.13)

where each Bi = Xq
i

L∼ Beta(1/q, 1). From Lemma 3.2, for u ∈ [0, 1],

P

(
d∑

i=1

Bi ≤ u

)
=
∫ u

0
Cd,qxd/q−1dx =

q

d
Cd,qud/q,

where Cd,q = 1
qd

d−1∏

i=1

B(i/q, 1/q). Therefore, for n large enough

P(αndH,q(U−
n ,U−) ≤ t) = 1−

(
1− q

d
Cd,q

td

αd
n

)n

.

Denoting A1,q = 1 and for d ≥ 2, Ad,q = 1
dqd−1

d−1∏

i=1

B(i/q, 1/q), and choosing αn = (nAd,q)1/d it

comes

P
(
(Ad,qn)1/ddH,q(U−

n ,U−) ≤ t
)
−→

n→+∞
1− e−td

.
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(2). Assume now q = ∞. Let (βn)n≥1 be a sequence of real numbers such that βn → +∞ as
n→ +∞. Then for all t ∈]0, 1[

P(βnd∞
H (U−

n ,U−) > t) = (1− P(‖X1‖∞ ≤ t/βn))n =
(

1− P( max
j=1,...,d

Xj
1 ≤ t/βn)

)n

,

=
(
1− td/βd

n

)n
,

choosing βn = n1/d, it comes P(n1/dd∞
H (U−

n ,U−) > t) −→
n→+∞

e−td
, and

n1/dd∞
H (U−

n ,U−) L−−−−−→
n→+∞

W(1, d).

�

Proof of Proposition 3.8. Let (Xn)n≥1 be a sequence of iid random variables uniformly
distributed on [0, 1]d. Let U = (U1, . . . , Ud) be uniformly distributed on [0, 1]d and independent
of the sample (Xn)n≥1, then

E[µ([0, 1]d\U−
n )] = E[E[1U∈Un |U]],

= E[E[1U�X1,...,U�Xn
|U]], = E[E[1U�X1

|U] · · ·E[1U�Xn
|U]],

= E[E[1U�X1
|U]n] = E[

(
1− (1− U1) · · · (1− Ud)

)n
],

= E[
(
1− U1 · · ·Ud

)n
]. (3.14)

Using the fact that − log(U i) L∼ Exp(1), it is easy to see that
∏d

i=1 U i L= exp(−Gd), where
Gd ∼ Gamma(d, 1) with density function

f(x) =
xd−1e−x

(d− 1)!
.

We then easily get that the density function of
∏d

i=1 U i is given by

fd(x) =
(− log(x))d−1

(d− 1)!
1{x∈[0,1]}. (3.15)

From (3.14) and (3.15), it comes

E[µ([0, 1]d\Un)] = E[
(
1− U1 · · ·Ud

)n
] =

∫ 1

0
(1− u)n (− log(u))d−1

(d− 1)!
du.

One has
n(d− 1)!
log(n)d−1

E[µ([0, 1]d\Un)] =
n

log(n)d−1

∫ 1

0
(1− u)n(− log(u))d−1du,

and the substitution u = x/n gives

n

log(n)d−1

∫ 1

0
(1− u)n(− log(u))d−1du =

1
log(n)d−1

∫ +∞

0
(1− x/n)n(− log(x/n))d−1

1{x≤n}dx,

=
∫ +∞

0
(1− x/n)n(1− log(x)/ log(n))d−1

1{x≤n}dx,

−→
n→+∞

1.

The last equation holds by the dominated convergence theorem apply to fn(x) = (1−x/n)n(1−
log(x)/ log(n))d−1

1{0≤x≤n} ≤ exp (−x)1{x≥0}.
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Proof of Proposition 3.9. At step k ≥ 1 denote p̃−
k = µ(U−(X1))+

k∑

j=2

2j∑

l=1

µ(U−(Xj,l)∩Ej,l).

Conditionning to Fk−1 = σ(Xj,l, 1 ≤ j ≤ k − 1, 1 ≤ l ≤ 2j) it comes

E[p̃−
k |Fk−1] = µ(U−(X1)) +

k−1∑

j=2

2j∑

l=1

µ(U−(Xk,l) ∩ Ek,l) +
2k∑

l=1

E[µ(U−(Xk,j) ∩Ek,j)|Fk−1],

= p−
k−1 +

2k∑

l=1

E[µ(U−(Xk,l) ∩ Ek,l)|Fk−1],

= p−
k−1 +

2n∑

j=1

1
4
E[µ(Ek,l)|Fk−1],

= p−
k−1 +

1
4

(1− p−
k−1),

and then E[p̃−
k ] = 1

4 + 3
4E[p̃−

k−1]. By induction, it comes

E[p̃−
k ] =

1
4

k−1∑

j=0

+(3/4)j ,

= 1− (3/4)k.

Since n = 2k − 1, it comes

E[p−
n ] = E[p̃−

2k−1
] = 1− (3/4)

log (n+1)
log 2 ,

= 1− 1
(n + 1)− log (3/4)/ log 2

.

�

Proof of Proposition 3.10. Following the proof of Proposition 3.9, the results is straight-
forward. �

Proof of Proposition 3.11. Let u ∈ Γ and v ∈ [0, 1]d such that u ≺ v. Assume v ∈ Γ.
There exist ε > 0 such that B((u + v)/2, ε) ⊂ Γ. That implies µ(Γ) > 0, which is impossible by
Assumption 3.2. Then v /∈ Γ. �

Proof of Theorem 3.1. (1). Obvious since hX(u) ≤ hX(v) for all X ∈ Ξ+
n and for all

u, v ∈ [0, 1]d such that u � v.
(2), (3). By construction U−

n ⊂ Fn ⊂ [0, 1]d\U+
n .

(4). Since U− is regular (by convexity) and U+ is regular (by Lemma 3.3 below), the result is
a consequence of Equation (3.4).

Lemma 3.3 Let K be a compact, convex subset of [0, 1]d such that for all y ∈ K there is no
x ∈ Kc = [0, 1]d\K such that x � y. Then Kc is (α, γ)-regular.
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Proof of Lemma 3.3. Since K is a compact convex set, there exists α, γ > 0 such that K
is (α, γ)-regular [4]. Given x ∈ Kc, since K is closed convex the projection of x on K, denoted
PK(x), is unique. Let 0 ≤ ε ≤ γ and x ∈ Kc, then

µ(B(x, ε) ∩Kc) ≥ µ(B(PK(x), ε) ∩Kc),

≥ µ(B(PK(x), ε) ∩K), since K is convex

≥ αµ(B(PK(x), ε)), since K is (α, γ)-regular

≥ αµ(B(x, ε)),

then Kc is (α, γ)-regular. �

Proof of Corollary 3.3. Since g is differentiable at p, the Delta method and Proposition 3.5
imply that

n(g(p)− g(p−
n )) L−−−−−→

n→+∞
Exp(1/g′(p)),

n(g(p+
n )− g(q)) L−−−−−→

n→+∞
Exp(1/g′(p)).

Since qp is the p-order quantile of g(X), it comes that P(g(X) ≤ qp) = p. Since g is continuous
and strictly increasing, then

P(g(X) ≤ qp) = P(X ≤ g−1(qp)).

Moreover X ∼ U([0, 1]), then P(X ≤ g−1(qp)) = g−1(qp) = p. It can be deduced that qp = g(p).
Then, the two last equations becomes

n(qp − g(p−
n )) L−−−−−→

n→+∞
Exp(1/g′(p)),

n(g(p+
n )− qp) L−−−−−→

n→+∞
Exp(1/g′(p)).

�

3.8 Appendix

3.8.1 Computing hypervolumes (deterministic bounds)

The computation of bounds (p−
n , p+

n ) defining in (3.3) can be conducted exactly or using simu-
lation, in function of the dimension.

An exact method in dimension d = 2

Consider a design x1, . . . , xn ∈ [0, 1]2. The first stage is to order the element according to their
first (or second) coordinate, such that x1

1 < · · · < x1
n. Since no design element is dominated by

another one, then x2
i > x2

i+1 for i ∈ {1, . . . , n − 1}. The point x1 delimit a first rectangle P1

with the following vertices:



0 0
x1

1 0
0 x2

1

x1
1 x2

1


 ,
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such that µ(P1) = x1
1x2

1. For all i ∈ {2, . . . , n} a new rectangle Pi can be defined with the
following vertices:




x1
i−1 0

x1
i−1 x2

i

x1
i 0

x1
i x2

i


 ,

such that µ(Pi) = (x1
i − x1

i−1)x2
i . The second stage consist to compute the volume of each

rectangles:

p−
n = x1

1x2
1 +

n∑

i=2

(x1
i − x1

i−1)x2
i .

To compute p+
n it is enough to transform each xi into 1− xi, to compute p̃+

n with the previous
approach. Then p+

n = 1− p̃+
n .

An accelerated Monte Carlo method in upper dimensions

A sweepline algorithm described in [16] allows to compute the bounds in any dimension, but at
an exponential cost. An alternative approach is using a Monte Carlo method. Considering an
iid uniform sample ŪN = U1, . . . , UN over [0, 1]d, (p−

n , p+
n ) can be estimated by

p̂−
n =

1
N

N∑

i=1

1{Ui∈U−
n },

p̂+
n = 1− 1

N

N∑

i=1

1{Ui∈U+
n }.

The computation can be strongly accelerated by adapting the order of evaluation to the mono-
tonic context, using the following algorithm (easily adaptable to estimating p+

n ).

Algorithm 3.1 Estimation of p−
n by accelerated Monte Carlo

p̃−
n ← 0, V = Ūn, Ū−

N = Ūn ∩U−
n

for i : 1 to Card(Ū−
N ) do

u ∈ arg max
x∈Ū

−
N

d∏

j=1

xj

Ξ−
n ← Ξ−

n \u
p̃−

n ← p̃−
n + Card({U ∈ V : U � u})

V← V\{U ∈ V : U � u}
end for
return p̃−

n /N

3.8.2 Adapted Support Vector Machines

Usual situations: a reminder

Linear situation. Consider a situation where some available data Dn = (Xi, yi)1≤i≤n where
Xi ∈ [0, 1]d and yi = sign(h(Xi)), with sign(x) = 1 if x > 0 and −1 otherwise, can be perfectly
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separated according to y by an hyperplane h defined by

h(x) = β0 + βT x, (3.16)

with (β0, β) ∈ R×Rd. In this linear framework, an infinity of hyperplanes can separate perfectly
the data. Therefore it is needed to add some constraints to make a unique (optimal) choice of
hyperplane. Define the distance of x from Γ :

∆(x, Γ) = inf
y∈Γ
‖x− y‖ = |β0 + βT x|/‖β‖,

from (3.16). The chosen hyperplane is the solution of the following problem:





max
β0,β

mβ0,β

min
i=1,...,n

|β0 + βT Xi|
‖β‖ ≥ m.

(3.17)

After the substitution w = β
m‖β‖ and w0 = β0

m‖β‖ [65], the problem (3.17) becomes:





min
w0,w

1
2
‖w‖2

for i = 1, . . . , n yi(w0 + wT Xi) ≥ 1.
(3.18)

A number d + 1 of parameters associated to n linear constraints has to be estimated. Since the
problem (3.18) is quadratic with linear constraints, a unique solution can be found. The dual
form of the problem is given by the following optimisation problem





max
a

n∑

i=1

ai −
1
2

n∑

i,j=1

aiajyiyjxT
i xj

n∑

i=1

aiyi = 0

a � 0.

(3.19)

where a = (a1, . . . , an) is a Lagrange multiplier. Let a = (a1, . . . , an) be the solution of problem
(3.19). The computer model g can be estimated by

ĝn(x) = w0 +
n∑

i=1

aiyiXT
i x. (3.20)

Table 3.3 suggest to solve the primal problem if d ≤ n, and the dual problem in the other case.

primal dual
Number of parameters d + 1 n
Number of constraints n n + 1

Table 3.3: Numbers of constraints and dimension of parameters to be estimated for the primal
and dual problems in the usual SVM framework.
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Nonlinear situation. Assume now that Dn cannot be separated by a hyperplane but by a
nonlinear surface. Let K be a symmetrical positive definite kernel. From Mercer’s theorem there
exists a transformation h : [0, 1]d →H where H is an Hilbert space with the inner product

〈h(x), h(y)〉H = K(x, y). (3.21)

such that the data can be linearly separated. Then g can be written as

g(x) = β0 + βT h(x),

and using (3.20) and (3.21), it can be estimated by:

ĝn(x) = w0 +
n∑

i=1

aiyiK(Xi, x).

The optimization problem (3.19) becomes




max
a

n∑

i=1

ai −
1
2

n∑

i,j=1

aiajyiyjK(Xi, xj)

n∑

i=1

aiyi = 0

a � 0

or




min
a

1
2aT K̂a − dT a

Aa
∗
≥ c,

where the symbol
∗
≥ means that the first constraint is an equality constraint and the other are

inequalities constraints, and

A =

(
y1 · · · yn

In

)
, c =




0
...
0


 ∈ Rn+1, d =




1
...
1


 ∈ Rn

and K̂i,j=1,...,n = yiyjK(Xi, Xj), with In the identity matrix.

Monotonic SVM

Let g be defined by (3.16) and assume now that g is globally increasing. Let x = (x1, . . . , xd) ∈
[0, 1]d and xi = (x1, . . . , xi−1, xi + η, xi+1, . . . , xd) with η > 0, then x � xi and g(x) ≤ g(xi). It
comes that

g
(
xi
)
− g(x) ≥ 0⇒ βi ≥ 0,

for all i = 1, . . . , d. The problem (3.18) becomes:




min
w0,w

1
2
‖w‖2

for i = 1, . . . , n yi(w0 + wT Xi) ≥ 1

for i = 1, . . . , d wi ≥ 0

. (3.22)
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The associated Lagrangian M(w, w0, a, b) can be written as

M(w, w0, a, b) =
1
2
‖w‖2 −

n∑

i=1

ai[yi(w0 + wT Xi)− 1]− bT w,

where a and b are the Lagrangian multipliers. The dual problem becomes





max
a,b

n∑

i=1

ai −
1
2

n∑

i,j=1

aiajyiyjXT
i Xj − bT

n∑

i=1

aiyiXi −
1
2
‖b‖2

n∑

i=1

aiyi = 0

a � 0

b � 0.

.

Table 3.4 shows there is always less constraints and parameters to estimate in the primal problem
than in the dual problem. In practice, it is more interesting to solve the primal problem.

primal dual
Number of parameters d + 1 d + n
Number of constraints d + n d + n + 1

Table 3.4: Numbers of constraints and dimension of parameters to be estimated for the primal
and dual problems in the monotonic SVM framework.

The problem (3.22) can then be rewritten.





min
w0,w

1
2
‖w‖2

AW ≥ c

where

A =

(
A1,1

A2,1

)
, W =

(
w
w0

)
, c =

(
1n

0d

)
∈ Rn+d,

with

A1,1 =




y1XT
1 y1

...
...

ynXT
n yn


 ∈Mn×(d+1)(R), A2,1 =

(
Id 0d

)
∈Md×(d+1)(R),

and Id the identity matrix in Rd, 1T
n = (1, . . . , 1) ∈ Rn and 0T

d = (0, . . . , 0) ∈ Rd.
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Chapter 4

Sequential adaptive estimation of
limit state probability in a
monotonic Monte Carlo framework

Résumé Dans ce chapitre, on considère le problème d’estimation de la probabilité de dépasse-
ment de seuil définie par p = P (g(X) ≤ 0) où g est une fonction monotone, coûteuse en temps
de calcul et de type boîte noire et X un vecteur aléatoire d dimensionnel. Ce cadre est typique
des problèmes rencontrés en fiabilité structurale. Tirant parti de la propriété de monotonie,
des bornes déterministes pour p peuvent être calculées à partir d’un échantillon. Un estimateur
statistique de p a été étudié dans [16], qui présente une forte réduction de variance par rapport
à une approche Monte Carlo direct. En revanche, cet estimateur est biaisé et est basé sur un
tirage séquentiel naïf. Dans ce chapitre, une nouvelle famille d’estimateurs de p est construite à
partir d’un tirage d’importance adaptatif.

Abstract In this chapter, the estimation of a limit state probability defined by p = P (g(X) ≤
0) is considered, where g is a monotonic, time-consuming black-box function and X is a d-
dimensional random vector. This framework occurs typically in structural reliability problems.
Based on the monotonicity property, deterministic bounds around p can be computed from
designs of numerical experiments. A statistical estimator of p was investigated in [16]. It leads
to high variance reduction compared to an usual Monte Carlo approach. However, it suffered
from bias and was based on naive nested uniform sampling. In this chapter, a new family of
sequential estimators of p is built from an adaptive importance sampling scheme.

4.1 Introduction

A situation frequently occurring in structural reliability studies is the estimation of a so-called
limit state probability [77], or failure probability, defined by

p = P (g(X) ≤ 0), (4.1)

where g is a deterministic function and X is an input random vector of dimension d. Most often, g
is a time-consuming, black-box computer model. The parameter p should be estimated in a non-
intrusive way, by means of a well-tailored design. In this context, Monte Carlo variance reduction
techniques are currently used to decrease the size of the design and limit the computational
burden. See [86] for a recent survey of such techniques.
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The use of form constraints on g may improve the convergence rate of the estimate. When g is
assumed to be monotonic according to Definition 2.1, it can be shown that the limit state surface
Γ := {x ∈ Rd, g(x) = 0} can be contoured by two simply connected sets [38]. As discussed in
Chapter 2, two bounds for p can be obtained from a sequential sampling scheme. Properties
of these bounds have been obtained in Chapter 3. This present chapter aims at improving this
approach by adopting an adaptive importance strategy in the sequential sampling of each Xi.
A family of unbiased estimators of p is provided and studied.

This chapter is organised as follows. In Section 4.2, it is recalled the framework and the
main results previously obtained as well as a general estimate of p. A theoretical discussion
on this general estimate is conducted in Section 4.3. An optimal choice of each importance
distributions, is conducted. Numerical experiments are discussed in Section 4.4. The technical
proofs are postponed to the end of the chapter.

4.2 Framework and previous results

Recall the following assumptions.

Assumption 4.1 The function g is globally increasing, that is for all u, v ∈ [0, 1]d such that
u � v, then g(u) ≤ g(v).

Assumption 4.2 The input random variable X is uniformly distributed on [0, 1]d.

Assumption 4.3 The limit surface Γ = {x ∈ [0, 1]d, g(x) = 0} is simply connex and µ(Γ) = 0
with µ the Lebesgue measure on Rd.

Further, recall the notations given in Chapter 3.

U− := {x ∈ [0, 1]d : g(x) ≤ 0},
U+ := {x ∈ [0, 1]d : g(x) > 0},

and p = P(X ∈ U−) ∈]0, 1[. Let A ⊂ [0, 1]d, define

U−(A) :=
⋃

x∈A∩U−

{u ∈ [0, 1]d : u � x}, (4.2)

U+(A) :=
⋃

x∈A∩U+

{u ∈ [0, 1]d : u � x}. (4.3)

Obviously

U−(A) ⊂ U− ⊂ [0, 1]d\U+(A) (4.4)

and µ(U−(A)) ≤ p ≤ 1− µ(U+(A)).

Definition 4.1 Let S ⊂ [0, 1]d. The set S is monotonic if for all u, v ∈ S, u is not strictly
dominated by v.

Remark 4.1 Any limit state surface defined by {x ∈ [0, 1]d, g(x) = q}, (q ∈ R) is a monotonic
surface. This feature will appear as an important constraint further in the text.
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Figure 4.1: Illustration for d = 2. Left: let A be a set of points in [0, 1]d represented by the
black dots. Right: Below (resp. above) the limit state Γ, the set in gray represents U−(A)
(resp. U+(A)).

To estimate accurately the probability of {g(X) ≤ 0}, a sequential strategy are well-tailored
when the total number of evaluations by g is limited by a predetermined computational budget.
The pioneer [16] studies the simple case of a sequence of random vectors (Xk)k≥1 uniformly

distributed on the non-dominated set Uk−1 = [0, 1]d\
(
U−

k−1 ∪ U+
k−1

)
, where

U−
k−1 = U−({X1, . . . , Xk−1}),

U+
k−1 = U+({X1, . . . , Xk−1}).

Although this first approach may have interest in a rough exploring step of [0, 1]d. It leads to
to a consistent estimator p̌n of p. The variance of p̌n is significantly smaller than the variance
of the usual Monte Carlo estimator. This variance is given by

V ar[p̌n] = 1/
n∑

k=1

E [ω̃k(p)] , (4.5)

where ω̃k(p) = [(p − p−
k−1)(p+

k−1 − p)]−1 and

p−
k−1 = µ(U−

k−1),

p+
k−1 = 1− µ(U+

k−1).

From (4.4), it comes p−
k−1 ≤ p ≤ p+

k−1. In [16], it is proved that p̌n is a biased asymptotically
normal estimator of p. In addition, the bias increases with d and a bootstrap procedure is
studied in order to decrease the bias.

Denote Fn = σ(X1, . . . , Xn). As discussed in Section 2.3.2, an initialisation step provides
U0 ( [0, 1]d and p−

0 , p+
0 in ]0, 1[.
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Following [16], a general unbiased estimator of p can be easily constructed. Denote by
(ω̃k)k≥1 a sequence of positive weights and for all n ≥ 1 and for all 1 ≤ k ≤ n denote

ωk,n =
ω̃k

n∑

j=1

ω̃j

.

Let fk−1 be the probability density function of Xk. Set

p̃n =
n∑

k=1

ωk,n

(
p−

k−1 +
1

fk−1(Xk)
1{Xk∈U−}

)
. (4.6)

It comes

E[p̃n] =
n∑

k=1

ωk,nE[p−
k−1 + E[

1
fk−1(Xk)

1{Xk∈U−}|Fk−1]],

=
n∑

k=1

ωk,nE[p−
k−1 +

∫

[0,1]d
1{x∈U−∩supp(fk−1)}dx].

Hence, if for all k ≥ 1 and for all x ∈ U− ∩ Uk−1, fk−1(x) > 0 then p̃n is unbiased. Since this
condition cannot be checked, it is sufficient to have fk−1(x) > 0 for all x ∈ Uk−1.

Remark 4.2 Using classical results on importance sampling [102], Var[p̃n] vanishes if for all
k ≥ 1,

fk−1(x) =
1{x∈U−∩Uk−1}

p− p−
k−1

. (4.7)

Of course this naive sampling scheme is not tractable as p is the unknown parameter. In a
field testing point of view, the previous approach is not satisfactory. Indeed, it only provides a
lower bound for p and a practitioner would expect an upper bound. In the next subsection, the
previous approach is extend in order to avoid this drawback.

4.3 Sequential importance sampling-based estimation

In this section, a symmetrical construction of estimator (4.6) is considered. Set

p̂n =
n∑

k=1

ωk,n

(
p+

k−1 −
1

fk−1(Xk)
1{Xk∈U+}

)
. (4.8)

If fk−1 is the uniform distribution on Uk−1, then estimators p̃n and p̂n coincide. The analogous
of (4.7) is stated in the following proposition.

Proposition 4.1 If for all k ≥ 1 and for all x ∈ Uk−1 ∩ U+, fk−1(x) > 0 then E [p̂n] = p.
Moreover, if for all k ≥ 1,

fk−1(x) =
1{x∈U+∩Uk−1}

p+
k−1 − p

, (4.9)

then V ar[p̂n] = 0.
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As discussed before, as U+ is unknown the optimal density is useless. Nevertheless, the last
proposition give us a practical guideline to perform a sampling density. For this, an estimate
Û+

k−1, based on response surface, of the unknown set Uk−1 ∩ U+ is proposed (see Figure 4.2).
Further, it is important for practitioner to work with unbiased estimate. An heuristic method
aiming to decreasing the bias is provided. To check the unbiasedness condition stated in Propo-
sition 4.1, the set Û+

k−1 must be such that for all k ≥ 1, Û+
k−1 ⊂ U+ ∩ Uk−1.

To overcome this obstacle, we proposed at step k ≥ 1 to simulate Xk uniformly in Û+
k−1 with

probability 1− εk−1 and uniformly in Uk−1\Û+
k−1 with probability εk−1. In other words

Xk−1 ∼
{
U(Uk−1\Û+

k−1) with probability εk−1,

U(Û+
k−1) with probability 1− εk−1.

(4.10)

So that, conditionally to Fk−1 and εk−1, the density of Xk−1 is

fk−1(x) =
εk−1

µ(Uk−1\Û+
k−1)

1{x∈Uk−1\Û+
k−1

} +
1− εk−1

µ(Û+
k−1)

1{x∈Û+
k−1

}. (4.11)

Alleviating the notations, denote

p̄k = p+
k−1 −

1
fk−1(Xk)

1{Xk∈U+}. (4.12)

Proposition 4.2 The conditional variance of p̄k is equal to

V ar(p̄k|Fk−1) =
ak−1

εk−1
+

bk−1

1− εk−1
−
(
p+

k−1 − p
)2

,

where

ak−1 = µ(Uk−1\Û+
k−1)µ

(
U+ ∩ Uk−1\Û+

k−1

)
,

bk−1 = µ(Û+
k−1)µ

(
U+ ∩ Û+

k−1

)
.

The variance V ar(p̄k|Fk−1) goes to infinity while εk−1 goes to 0 or 1. This can be explained by
the role of εk−1 that is, for instance, to ensure that p̄k is unbiased. If εk−1 goes to 0 or 1, the
density fk−1 is not sufficiently counterbalanced by the uniform distribution.

Remark 4.3 If the value of εk−1 is fixed to 0 or 1, the estimator p̄k can be biased. Nonetheless,
its quadratic error can be expressed:

E[(p̄k − p)2|Fk−1] =





(p+
k−1 − p)2 − bk−1 − 2(p+

k−1 − p)µ
(
U+ ∩ Û+

k−1

)
if εk−1 = 0,

(p+
k−1 − p)2 − ak−1 − 2(p+

k−1 − p)µ
(
U+ ∩ Uk−1\Û+

k−1

)
if εk−1 = 1.

How to built an estimate Uk−1 ∩ U+? For example: i) the monotonic multi-layer percep-
trons neural networks (MNN) published in [35]. ii) the combination of linear support vector
machines (LSVM) described in Section 3.5 in the specific case where U− or U+ is a convex set.

Under mild assumptions, both approaches provide consistent and comparable estimators
of Γ (see Theorem 3.1). However, their computational cost can strongly differ: while MNN
must be entirely calibrated from a static design of experiments (updated at each iteration), the
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{1}d

{0}d

U
+

k−1

U
−
k−1

Û
+

k−1

Figure 4.2: Illustration of the sequential sampling strategy in dimension 2. At step k, an
estimator (dashed line) of Γ is proposed as well as an estimation of Uk−1 ∩U+ denoted Û+

k−1.

calibration of LSVM is conducted in situ (dynamically). This last technique is more appropriate
for our problem.

The asymptotic properties of p̂n are now discussed. Recall that for all k ≥ 1, Xk is distributed
as in (4.10) and denote fk−1 its probability density function. Then

p̂n =
n∑

k=1

ωk,n

(
p+

k−1 −
1

fk−1(Xk)
1{Xk∈U+}

)
. (4.13)

Recall that p̂n is an unbiased estimator of p. The graal in the study of asymptotic properties of
p̂n would be a result like

p̂n − p√
V ar [p̂n]

L−→
n→+∞

N (0, 1). (4.14)

Following the construction in [62] (Chapter 3), (p̂n − p)/
√

V ar [p̂n] can be expressed as a
martingale array. Let us start by the construction of the underlying martingale. Recall that

p̄k = p+
k−1 −

1
fk−1(Xk)

1{Xk∈U+}.

Lemma 4.1 Define for all k ≥ 1

Mk =
k∑

j=1

ω̃j(p̄j − p).

Then {Mk,Fk, k ≥ 1} is a zero-mean square-integrable martingale with

V ar(Mn) =
n∑

k=1

ω̃2
kV ar (p̄k) .
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Denote Mk,n = Mk√
V ar[Mn]

and Fk,n = Fk, then {Mk,n,Fk,n, n ≥ 1, k = 1, . . . , n} is a

martingale array. Hence, the graal (4.14) is equivalent to Mn,n
L−→

n→+∞
N (0, 1).

Let Zk,n := Mk,n −Mk−1,n. Corollary 3.1 in [62], states that if

(i) Fk,n ⊂ Fk,n+1 for 1 ≤ k ≤ n, n ≥ 1,

(ii)
n∑

k=1

E[Z2
k,n|Fk−1,n] P−→

n→+∞
1,

(iii) for all ε > 0,
n∑

k=1

E[Z2
k,n1{|Zk,n|>ε}|Fk−1,n] P−→

n→+∞
0 (Lindeberg condition),

then Mn,n
L−→ N (0, 1).

Proposition 4.3 If there exist c > 0 such that for all k ≥ 1, |V ar [p̄k] − V ar [p̄k|Fk−1] | ≤ c
almost surely, and if

n∑

k=1

ω̃4
k

(
n∑

k=1

ω̃2
kV ar [p̄k]

)2 −→
n→+∞

0, (4.15)

then (ii) holds.

Remark 4.4 A necessary condition for (4.15) is

n∑

k=1

V ar [p̄k] −→
n→+∞

+∞. (4.16)

The Azuma-Hoeffding inequality was used in the proof of Proposition 4.3. The quantity
V ar [p̄k]− V ar [p̄k|Fk−1] must be bounded by a deterministic constant. In general, it is difficult
to know exactly the variance of p̄n and then Condition (4.15) is difficult to check. Nonetheless,
using results in Section 3.3, the necessary condition (4.16) can be studied in a particular case.

Let d = 1 and assume that for all k ≥ 1, Xk is uniformly distributed on the non-dominated
set. Then p̄k = p−

k−1 + (p+
k−1 − p−

k−1)1{g(Xk)≤0} and V ar [p̄k] = E[(p+
k−1 − p)(p − p−

k−1)]. Using
Proposition 3.6, it comes V ar [p̄k] ≤ (3/4)k which does not verify (4.16).

Another example is discussed. Consider that fk−1 is given by (4.11) and recall that the
variance of p̄k goes to the infinity as εk−1 goes to 0 or 1. Then, εk−1 can be chosen such that the
variance of p̄k is bounded. If so, the upper bound is useful to verify the condition of Proposition
4.3 whereas the lower bound is helpful to check (4.16).

To conclude on this section, an estimator which converges too fast towards p implies it cannot
be controlled by a central limit theorem.
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4.4 Numerical experiments

In this section, the two estimators described below are compared on the following example
described in [16]. Let x = (x1, . . . , xd) ∈ Rd and denote

g(x) =
x1

∑d
i=1 xi

.

Let U = (U1, . . . , Ud) be a random vector where U i ∼ Γ(i + 1, 1). Let

Zd = g(U) = U1/
d∑

i=1

U i ∼ Beta(2, (d + 1)(d + 2)/2 − 3).

Further, let qd,p be the p-quantile of Zd. The aim of this section is to estimation the probability
given by p = P(g(U) ≤ qd,p). The function g is increasing according to its first argument and
decreasing according to the other one. Denote Fi the cumulative distribution function of U i.
Set

X1 = F1(U1),

Xi = 1− Fi(U i) for all i = 2, . . . , d.

So that, X = (X1, . . . , Xd) is a random vector uniformly distributed on [0, 1]d. Hence

p = P
(
g
(
F −1

1

(
X1
)

, F −1
2

(
1−X2

)
, . . . , F −1

d

(
1−Xd

))
− qd,p ≤ 0

)
,

where F −1 is the inverse function of F .
The numerical experiments are conducted on two strategies of simulations. The first one

is a uniform sampling on the non-dominated set Uk−1. This strategy provides two estimators:
the maximum likelihood estimator (MLE) built in [16] and the estimator (4.6) with constant
weights ωk,n = 1/n for all k = 1, . . . , n. The second strategy uses the optimal density (4.9):
at step k, a random vector is uniformly distributed on Uk−1 ∩ U+. The estimator obtained is
almost surely equal to p, and of course only the upper bound is discussed.

Denote for all n ≥ 1

Ln(r) := Ln(x1, . . . , xn|r) =
n∏

k=1

(
r − p−

k−1

p+
k−1 − p−

k−1

)
1{Xk∈U−}

(
p+

k−1 − r

p+
k−1 − p−

k−1

)1−1{Xk∈U−}

.

The two estimators are

p̂MLE
n := arg max

r∈]p−
n−1,p+

n−1[

Ln(r),

p̂n :=
1
n

n∑

k=1

p−
k−1 + (p+

k−1 − p−
k−1)1{Xk∈U−}. (4.17)

One of the main objective of this numerical study is to compare both the role of the dimension
d and the magnitude of p on these two estimators. The comparison is conducted on the following
couples (d, p):

(
3, 10−3

)
,
(
4, 10−3

)
,
(
5, 10−3

)
,

(
3, 10−5

)
,
(
4, 10−5

)
,
(
5, 10−5

)
.
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The quadratic errors and the bias of the estimators as well as the quadratic error of the upper
bound are computed. The relative quadratic error and the relative bias are defined as follow

E[(cn − c)2]
c

,
E[cn − c]

c
,

where cn is one of the examined quantities and c the true quantity.
Figures 4.3 and 4.4 provide the results obtained with the two estimators and different values

of p. From left to right the dimension is respectively equal to 3, 4 and 5.
For p = 10−3, the two estimators (represented in blue plain line for the MLE and in red

dashed line for the other one) seems to have equivalent performance in terms of bias and
quadratic error. Their bias seems to increase with the dimension.

Nonetheless, the properties of the MLE are degraded when p becomes very small. As studied
in Chapter 3, this can be explained by the increasing distance of the deterministic bounds with p
when the dimension increases. But p̂n seems not to suffer from the dimension or the magnitude
of p.

The rate of convergence of the upper bound is compared on Figure 4.5 with a uniform
sampling strategy and using the optimal density (4.9). Even if this ideal importance density
cannot be used in practice to estimate p, it can be used to make such a comparison. A simple
rejection method on the non-dominated set is used. The considered sample size is the number of
non-rejected simulations. The upper bound obtained from a uniform (resp. optimal) sampling is
represented in a blue plain line (resp. green dotted line). The upper bound appears to be slightly
influenced by the strategy of simulation. It must be noticed that simulating uniformly on the
non-dominated set is equivalent to choose Û+

k−1 = U+∩Uk−1 and εk−1 = (p+
k−1−p)/(p+

k−1−p−
k−1).

In this example, the probability P(Xk ∈ Uk−1 ∩ U+) = E[εk−1] is close to 1 (see Figure 4.5).
These two remarks allow to say that the uniform distribution is close the optimal one.

To conclude on this example, it seems that the most tractable method in practice is the
uniform simulation method provided in [16]. It does not require to make an estimation of the
limit state or g and allows to build an unbiased estimator of p. Moreover, first numerical studies
show that it is difficult to get both an unbiased estimator and a significant reduction of the
deterministic upper bound. The use of the optimal density does not improve significantly the
convergence of the upper bound on this example.

4.5 Conclusion

The aim of this chapter was twofold. First, to obtain an unbiased estimator of p with a lower
quadratic error than the MLE proposed in [16]. Second, to provide a sharper deterministic upper
bound. Despite a complicated construction, the use of an optimal density does not provide a
significantly improvement.
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Figure 4.3: Toy example for p = 10−3 in function of n = 1, . . . , 300. For the figure in left and in
the middle, the estimation obtained by the optimal density is not represented since it is almost
surely equal to p. From left to right: d = 3, 4, 5. First line: Comparison of the quadratic
error obtained with the two different estimators. Second line: Comparison of the bias obtained
with the two different estimators. Results have been averaged on 210 independent experiments.
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Figure 4.4: Toy example for p = 10−5 in function of n = 1, . . . , 300. For the figure in left and in
the middle, the estimation obtained by the optimal density is not represented since it is almost
surely equal to p. From left to right: d = 3, 4, 5. First line: Comparison of the quadratic
error obtained with the two different estimators. Second line: Comparison of the bias obtained
with the two different estimators. Results have been averaged on 132 independent experiments.
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Figure 4.5: Toy example for p ∈ {10−3, 10−5} in function of n = 1, . . . , 300. Comparison of the
quadratic error of the upper bound for the two different strategies of simulation. From left to
right: d = 3, 4, 5. From up to down: p = 10−3, 10−5. Results have been averaged on 210
(resp. 132) independent experiments for p = 10−3 (resp. p = 10−5).
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Figure 4.6: Toy example for p ∈ {10−3, 10−5} in function of n = 1, . . . , 200. Representation of
P(Xn ∈ Un−1 ∩U+) with Xn uniformly distributed on the non-dominated set Un−1. From left
to right: d = 3, 4, 5. From up to down: p = 10−3, 10−5. Results have been averaged on 210
(resp. 132) independent experiments for p = 10−3 (resp. p = 10−5).
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4.6 Proofs

Proof of Proposition 4.2. Since p̄k is unbiased, it remains to compute E[p̄2
k|Fk−1].

E[p̄2
k|Fk−1] = (p+

k−1)2 − 2p+
k−1E

[
1

fk−1(Xk)
1{Xk∈U+}|Fk−1

]
+ E

[
1

f2
k−1(Xk)

1{Xk∈U+}|Fk−1

]
,

= (p+
k−1)2 − 2p+

k−1(p+
k−1 − p) + E

[
1

f2
k−1(Xk)

1{Xk∈U+}|Fk−1

]
,

= 2pp+
k−1 − (p+

k−1)2 + E

[
1

f2
k−1(Xk)

1{Xk∈U+}|Fk−1

]
.

It comes

V ar(p̄k|Fk−1) = E
[
p̄2

k|Fk−1

]
− E2 [p̄k|Fk−1] ,

= 2pp+
k−1 − (p+

k−1)2 + E

[
1

f2
k−1(Xk)

1{Xk∈U+}|Fk−1

]
− p2,

= E

[
1

f2
k−1(Xk)

1{Xk∈U+}|Fk−1

]
− (p+

k−1 − p)2.

But

E

[
1

f2
k−1(Xk)

1{Xk∈U+}|Fk−1

]
= E

[
1

f2
k−1(Xk)

1{Xk∈U+}1{Xk∈Uk−1\Û+
k−1

}|Fk−1

]

+ E

[
1

f2
k−1(Xk)

1{Xk∈Û+
k−1

}|Fk−1

]
,

=
∫

U+∩Uk−1\Û+
k−1

µ(Uk−1\Û+
k−1)

εk−1
dx +

∫

U+∩Û+
k−1

µ(Û+
k−1)

1− εk−1
dx,

=
µ(Uk−1\Û+

k−1)
εk−1

µ
(
U+ ∩ Uk−1\Û+

k−1

)

+
µ(Û+

k−1)

1− εk−1
µ
(
U+ ∩ Û+

k−1

)
,

which conclude the proof. �

Proof 4.1 (Lemma 4.1.) Let k ≥ 1 and define Mk =
k∑

j=1

ω̃j(p̄j − p). It comes

E[Mk] =
k∑

j=1

ω̃jE[p̄j − p],

= 0,

since p̄j is unbiased estimator of p.

E[Mk|Fk−1] =
k−1∑

j=1

ω̃j(p̄j − p) + ω̃kE[p̄k − p|Fk−1],

= Mk−1,
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since p̄k is an unbiased estimator of p. Moreover,

M2
k = ω̃2

k(p̄j − p)2 + 2
k−1∑

i,j=1
i<j

ω̃iω̃j(p̄i − p)(p̄j − p),

then

E[M2
k ] =

k∑

j=1

ω̃2
jE[(p̄j − p)2] + 2

k−1∑

i,j=1
i<j

ω̃iω̃jE[(p̄i − p)(p̄j − p)],

=
k∑

j=1

ω̃2
jE[(p̄j − p)2].

Indeed, E[(p̄i − p)(p̄j − p)] = E[(p̄i − p)E[p̄j − p|Fj−1,n]] = 0. Finally, it comes

E[M2
k ] =

k∑

j=1

ω̃2
j V ar [p̄j] < +∞,

and then {Mk,Fk, k ≥ 1} is a zero-mean square-inegrable martingale. �

Proof of Proposition 4.3. Denote

Zk,n = Mk,n −Mk−1,n,

=
ω̃k(p̄k − p)




n∑

j=1

ω̃2
j V ar (p̄j)




1/2
,

then

Z2
k,n =

ω̃2
k(p̄k − p)2

n∑

j=1

ω̃2
j V ar (p̄j)

, (4.18)

and
n∑

k=1

E[Z2
k,n] = 1. (4.19)

Let ε > 0, using (4.19) then (4.18), it comes

P

(∣∣∣∣∣
n∑

k=1

E[Z2
k,n|Fk−1,n]− 1

∣∣∣∣∣ > ε

)
= P

(∣∣∣∣∣
n∑

k=1

(
E[Z2

k,n|Fk−1,n]− E[Z2
k,n]
)∣∣∣∣∣ > ε

)
,

= P




∣∣∣∣∣
n∑

k=1

ω̃2
k (V ar [p̄k| Fk−1,n]− V ar [p̄k])

∣∣∣∣∣
n∑

k=1

ω̃2
kV ar (p̄k)

> ε




.
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Define by

An =
n∑

k=1

ω̃2
k (V ar [p̄k| Fk−1,n]− V ar [p̄k]) ,

a zero-mean martingale. From hypothesis, it comes

|An −An−1| = ω̃2
n|V ar [p̄n| Fn−1,n]− V ar [p̄n] |,

≤ cω̃2
n.

Azuma-Hoeffding inequality states that if there exists a sequence of non negative real values
(cn)n≥1 such that P(|An −An−1| ≤ cn) = 1 for all n ≥ 1, then for all λ > 0

P(|An| ≥ λ) ≤ 2 exp

(
−2λ2/

n∑

k=1

c2
k

)
.

Let ε > 0 and set λ =
∑n

k=1 ω̃2
kV ar (p̄k) ε. Then

P

(∣∣∣∣∣
n∑

k=1

E[Z2
k,n|Fk−1,n]− 1

∣∣∣∣∣ > ε

)
≤ 2 exp


−2ε2

(
n∑

k=1

ω̃2
kV ar (p̄k)

)2

/
n∑

k=1

c2ω̃4
k


.

Now, let us study the necessary condition:

n∑

k=1

ω̃4
k

(
n∑

k=1

ω̃2
kV ar [p̄k]

)2 ≥

n∑

k=1

ω̃4
k

(
max1≤k≤n ω̃2

k

)2
(

n∑

k=1

V ar [p̄k]

)2 ,

≥

n∑

k=1

ω̃4
k

n∑

k=1

ω̃4
k

(
n∑

k=1

V ar [p̄k]

)2 ,

≥ 1
(

n∑

k=1

V ar [p̄k]

)2 .

�
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Chapter 5

Quantile estimation under
monotonicity constraint

Résumé. Ce chapitre traite de l’estimation d’un quantile d’ordre p de la variable aléatoire
g(X) définie par q = inf{t ∈ R, P(g(X) ≤ t) > p}. On reprend les hypothèses du chapitre
précédent: g est une fonction de type boîte noire, coûteuse en temps de calcul et globalement
monotone. À partir d’un plan d’expérience donné vérifiant une contrainte géométrique, des
bornes déterministes de ce quantile sont obtenues. Comme pour l’estimation de probabilité,
l’utilisation de ces bornes permet de mener une exploration séquentielle de l’espace d’entrée du
code numérique et de proposer un estimateur consistant de q.

Abstract. This chapter deals with the estimation of a p-quantile of the random variable g(X)
defined by q = inf{t ∈ R, P(g(X) ≤ t) > p}. Keeping the assumptions of the previous chapter:
g is a black-box function, time-consuming and globally monotone. From a design of numerical
experiments that satisfy a geometric constraint, two deterministic bounds of this quantile are
obtained. As for probability estimation, the use of these bounds allows to make a sequential
exploration of the input space and provide a consistent estimator of q.

5.1 Introduction

As before, g is a measurable globally increasing function on [0, 1]d. Without loss of generality
it is consider that X is uniformly distributed on [0, 1]d. Denote F the cumulative distribution
function of g(X), and let p ∈]0, 1[. The p-quantile of g(X) is defined by

q = inf{t ∈ R, F (t) ≥ p}. (5.1)

Most non-intrusive methods of quantile estimation are based on the computation of the inverse
of the cumulative distribution function F [36, 58, 85]. A general estimator of q is defined by

q̂ = inf{t ∈ R, F̂ (t) ≥ p}, (5.2)

where F̂ is an estimator of F . Monte Carlo methods require to produce a large sample and to
use the empirical cumulative distribution function built from this sample. Variance reduction
techniques are usually applied to estimate the cumulative distribution function. One of them
is importance sampling method [58]. In general, finding the importance sampling distribution
can be difficult. Taking into account of information given by the simulations, adaptive methods
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must be used [52, 85]. The splitting method introduced in [3] and developed in [61] consists in
simulating closer and closer to the limit surface Γ = {x ∈ Rd, g(x) = q}. Another way to limit
the number of calls of the numerical code is to use a meta-modelling method in order to mimic
the output [20].

The main advantages of monotonicity is to provide deterministic information on q and to
build a subset in the input space where the sign of g(.)− q is known. Following [16] and Chapter
4, a local estimator of F (q), useful for quantile estimation, is provided.

The chapter is structured as follows. Section 5.3 provides an initialisation step to get two
bounds for q requiring only two runs of g. Besides, a method to bound a quantile from a set of
points is proposed. In Section 5.4 an estimator of F (q) is built. It has the same form as (4.6),
then the quantile is estimated as described in (5.2). Finally, the method is tested on a numerical
example and compared with different classical quantile estimators in Section 5.5. Proofs are
stated in Section 5.7.

5.2 State of the art for rare quantile estimation

In this section some classical methods of quantile estimation is discussed.
The empirical quantile estimator is built from a iid realisations. From this sample an unbiased

estimator F̂ of F is built and then q is estimated as in (5.2). Let (Zk)k≥1 be a sequence of
iid random variables with common cumulative distribution function F and probability density
function f such that f(q) > 0. Let t ∈ R, the cumulative distribution F of Z can be estimated
by the empirical cumulative distribution function

F̂n(t) =
1
n

n∑

k=1

1{Zk≤t}.

Obviously E[F̂n(t)] = F (t). Let Z(1), . . . , Z(n) be the order statistic of Z1, . . . , Zn. That is Z(1) ≤
· · · ≤ Z(n). Since ⌊np⌋/n ≤ p ≤ (⌊np⌋+1)/n and using that for all k = 1, . . . , n, F̂n(Z(k)) = k/n,
it comes

F̂n(Z(⌊np⌋)) ≤ p ≤ F̂n(Z(⌊np⌋+1)).

The empirical estimator is given by

q̂emp
n = Z(⌊np⌋+1).

A central limit theorem on q̂emp
n can be found in [1]:

√
n(q̂emp

n − q) L−→
n→+∞

N
(

0,
p(1− p)

f(q)2

)
.

Equivalent results have been proposed in [58] for quantile estimation using importance sam-
pling. Let (Yk)k≥1 be a sequence of iid random variables distributed according to the density
fY . For all t ∈ R

F̃n(t) =
1
n

n∑

k=1

f(Yk)
fY (Yk)

1{Yk≤t},
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is an unbiased estimator of F (t). As in the standard case, a central limit theorem can be
obtained (see Theorem 1 in [58]):

√
n(q̃n − q) L−→

n→+∞
σN (0, 1),

with σ =
(
E
[

f2(Yk)
f2

Y
(Yk)

1{Yk≤t}

]
− p2

)
/f(q)2.

Quantile regression [73] is a variational way to built an estimate of q. Let

ρp(u) = |u(p − 1{u<0})|,

a loss function. If q is the p-quantile, then q is also the minimiser of minu E[ρp(Z − u)]. Since
the law of Z is unknown, the quantile regression is estimated from an iid sample Z1, . . . , Zn.
Finally, q is estimated by

q̂reg
n = arg min

u∈R

n∑

i=1

[ρp(Zi − u)].

An alternative way to construct an estimator of q is possible using a particle algorithm.
Indeed, an estimator q̂last

N is provided in [61] and verified the central limit theorem (5.3) (see
Proposition 3 in [61]).

√
N(q̂last

N − q) L−→
n→+∞

N
(

0,
−p2 log p

F ′(q)2

)
. (5.3)

The non-parametric adaptive importance sampling (NAIS) is a sequential importance sam-
pling developed in [85]. In general, such construction aims to produce an importance density
close to the optimal one using a non-parametric sequential tools.

5.3 Quantile deterministic bounding

In this section, the monotonicity of g is exploited to get non-trivial bounds for q. As usual,
assume 4.1, 4.2 and

Assumption 5.1 Assume that Γ := {x ∈ [0, 1]d, g(x) = q} is simply connex and µ(Γ) = 0.

Denote

U− :=
{

x ∈ [0, 1]d, g(u) ≤ q
}

,

U+ :=
{

x ∈ [0, 1]d, g(u) > q
}

.

Since g(.) is not transformed in g(.)− q, we use the same notations as in the previous chapters.
To bound the quantile q, we will used geometric arguments. The following definition is useful

to alleviate the notation.

Definition 5.1 Let A ⊂ [0, 1]d. Define

V−(A) :=
⋃

x∈A

{u ∈ [0, 1]d : u � x}, (5.4)

V+(A) :=
⋃

x∈A

{u ∈ [0, 1]d : u � x}. (5.5)
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{1}d

{0}d

A

V
−(A)

Figure 5.1: Illustration of a dominated set for d = 2. Let A be a subset of [0, 1]2. V−(A) is the
union of A with the set represented in gray.

It must be noticed that Equations (5.4) and (5.5) are slightly different from Equations (4.2) and
(4.3) since they do not depend on the set U−. See Figure 5.1 for an illustration of V−(A).

Definition 5.2 Let α ∈]0, 1[ and S be a set in [0, 1]d. The set S is said α-monotonic if for all
u, v ∈ S, u is not strictly dominated by v and if µ(V−(S)) = α.

Remark 5.1 A consequence of the monotonicity of g is that the set {x ∈ [0, 1]d, g(x) = α} is
F (α)-monotonic. In particular, the limit surface Γ is p-monotonic.

5.3.1 Initialisation

Without any call of g, the initialisation step provides two sets where the sign of g(.)−q is known.
The dichotomy procedure described in Section 2.3.2 cannot be applied since it depends on the
sign of g(.) − q. The main ideas of this section are based on the following proposition.

Proposition 5.1 Let Sp be a p-monotonic set then

min
x∈Sp

g(x) ≤ q ≤ max
x∈Sp

g(x). (5.6)

A monotonic set verifying properties of Proposition 5.1 can be difficult to build in practice.
For instance, let us start this initialisation step with only one point x = (x1, . . . , xd) ∈ [0, 1]d.
Since g is globally increasing, its maximum on V−(x) is reached in x (see Figure 5.2 left). Since
µ(V−(x)) = x1 · · · xd, choosing xi = p1/d for all i = 1, . . . , d verify the constraint µ(V−(x)) = p,
and from Proposition 5.1, q ≤ g(x).

Using a symmetrical approach a lower bound can be easily obtained. Let x = (x1, . . . , xd) ∈
[0, 1]d, if µ(V+(x)) ≥ 1 − p then the minimum of g on V+(x) is reached on x and g(x) ≤ q.
Since µ(V+(x)) = (1 − x1) · · · (1 − xd), it is sufficient to choose xi = 1 − (1 − p)1/d (see Figure
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Figure 5.2: Illustration of the initialisation step with one point x = (x1, . . . , xd) for d = 2. Left
(resp. Right): initialisation for the upper (resp. lower) bound. The point x is chosen such that
for all i = 1 . . . , d, xi = p1/d (resp. xi = 1− (1− p)1/d). The dashed line represents the frontier
of V−(x) (resp. V+(x)) and its Lebesgue measure is equal to p (resp. 1 − p). For all u in the
gray square g(u) ≥ q (resp. g(u) ≤ q).

5.2 right). Finally, let

x− =
(
1− (1− p)1/d, . . . , 1− (1− p)1/d

)
, (5.7)

x+ = (p1/d, . . . , p1/d), (5.8)

then g(x−) ≤ q ≤ g(x+).

Remark 5.2 For d = 1, it comes x− = x+ = p, then g(x−) = g(x+) = g(p) = q. In the
remainder of the chapter it is always assumed that d ≥ 2.

The intuition behind this construction comes from Proposition 5.2 below. This proposition
states that the extremal elements of the convex set of a globally decreasing function is the set
of indicator functions.

Proposition 5.2 Denote C = {f : [0, 1]d−1 → [0, 1], f is globally decreasing}. The set of ex-
tremal elements of C is

{
f : [0, 1]d−1 → [0, 1], f(x) = 1{x∈∪k≥1Pk}, Pk ∈ P

}
,

where P is the set of hyper-rectangles in [0, 1]d−1 containing 0.

As said above, the volume constraint can be difficult to verify. Nonetheless this constraint
can be relaxed as explained in Proposition 5.3.

Proposition 5.3 For all α ∈]0, 1[ assume that Sα is an α-monotonic set. Let (p−, p+) ∈
[0, p[×[p, 1[, then

min
x∈Sp−

g(x) ≤ q ≤ max
x∈Sp+

g(x). (5.9)
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The main advantage of Proposition 5.3 is that p− and p+ can be unknown. Indeed, it is sufficient
to build a monotonic set S such that µ(V−(S)) ≥ p or µ(V−(S)) ≤ p. Proposition 5.4 (see also
Figure 5.3) provides two subsets of [0, 1]d such that the value of g is either lower than q or
greater than q. This construction depends only on the monotonicity and p. It does not require
any evaluation by the numerical code.

Proposition 5.4 Let p ∈]0, 1[ and d ≥ 2. Denote

W−(p) =

{
u = (u1, . . . , ud) ∈ [0, 1]d,

d∏

i=1

(1− ui) ≥ 1− p

}
,

W+(p) =

{
u = (u1, . . . , ud) ∈ [0, 1]d,

d∏

i=1

ui ≥ p

}
.

For all (u, v) ∈W−(p)×W+(p) it comes

g(u) ≤ q ≤ g(v).

Denoting W(p) = [0, 1]d\(W−(p) ∪W+(p)), then

µ(W(p)) = (1− p)
d−1∑

k=0

[
(− log(1− p))k

k!

]
+ p

d−1∑

k=0

[
(− log(p))k

k!

]
− 1.

Remark 5.3 The function hd(p) = µ(W(p)) is increasing for p ∈ [0, 1/2] and decreasing for
p ∈ [1/2, 1]. Indeed,

h′
d(p) =

1
(d− 1)!

[
1−

(
log(1− p)

log(p)

)d−1
]

.

This means that the construction of W(p) is very informative for p close to 0 or 1 and the
quantity of information is minimal for p = 1/2.

It must be noticed that the choice of (x−, x+) ∈W−(p)×W+(p) is independent of µ(W(p)).
Then, without more information on g, Equations (5.7) and (5.8) provides only an arbitrary
choice for x− and x+.

Corollary 5.1 Let p ∈]0, 1[ and let q be the p-quantile of g(X) , it comes

W−(p) ⊂ U− ⊂ [0, 1]d\W+(p).

Corollary 5.2 At most one point of Γ is in W+(p).

Remark 5.4 The measure of W(p) tends to 1 as the dimension goes to the infinity. For all
p ∈]0, 1[, µ(W(p)) increases as d increases and converges toward 1 while d goes to infinity.

In Figure 5.3, the set W(p) is represented for different values of p in dimension 2. Recall,
this set is built without any call to the numerical code g and depends only on p. Indeed, the
delimitation of W(p) is based only on the volume constraint given by Proposition 5.3.
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Figure 5.3: The set W(p) is represented in gray for different values of p in dimension 2.

5.3.2 Updating deterministic bounds

In the previous section, the non-dominated set W(p) is delimited and two bounds can be obtained
by the evaluation of g on two points belonging to the boundary of W(p). This initialisation
is based on the construction of a monotonic set built from a single design point. Following
Proposition 5.3, a method to update these bounds is provided in this section. Consider a set of
points x̄n = {x1, . . . , xn} in [0, 1]d. As for the initialisation step, the boundary of V−(x̄n) (resp.
V+(x̄n)) is a monotonic set, and then

max
x∈V−(x̄n)

g(x) ∈ {g(x1), . . . , g(xn)},

min
x∈V+(x̄n)

g(x) ∈ {g(x1), . . . , g(xn)}.

The following proposition establishes a condition on x̄n to get respectively an upper and lower
bounds for q.

Proposition 5.5 Let {x1, . . . , xn} in [0, 1]d.

(i) If µ(V−(x1, . . . , xn)) ≥ p, there exists at least one m ∈ [1, n] and i1, . . . , im ∈ [1, n] such
that q ≤ maxx∈{xi1

,...,xim} g(x).
(ii) If µ(V+(x1, . . . , xn)) ≥ 1 − p, there exists at least one m ∈ [1, n] and i1, . . . , im ∈ [1, n]

such that q ≥ minx∈{xi1
,...,xim } g(x).

Unfortunately, Proposition 5.5 is not constructive since it does not provide neither the value
of m nor the set {xi1 , . . . , xim}. Moreover, if the two volume constraints are verified, Proposition
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5.5 states that q can be bounded by the minimum and the maximum of g on this numerical
design.

The main result of this section is now presented. It consists in choosing a subset ū of the
numerical design {x1, . . . , xn} such that µ(V−(ū)) (resp. µ(V+(ū))) is greater and as close as
possible to p (resp. 1 − p). To do this, each points of ū are chosen sequentially as follows: a
point is taken from the numerical design such that the contribution of the volume µ(V−(ū))
(resp. µ(V+(ū))) for the lower (resp. upper) bound is minimum. This procedure is detailed in
Algorithms 5.1 and 5.2, and is illustrated on Figure 5.4.

Algorithm 5.1 Getting a lower bound for q from a set of points x̄n = {x1, . . . , xn}
1. Initialisation step : choose ū = arg min

x=(x1,...,xd)∈x̄n

∏d
i=1(1− xi)

Set x̄n = x̄n\ū and vol = µ(V+(ū))
2. Choose the next point as u = arg min

x∈x̄n

µ(V+(x̄n ∪ x))− µ(V+(x̄n))

3. Set ū = ū ∪ u, x̄n = x̄n\u and vol = µ(V+(ū))
4. If vol ≥ 1− p, repeat steps 2 and 3.
5. Return minu∈ū g(u).

Algorithm 5.2 Getting a greater bound for q from a set of points x̄n = {x1, . . . , xn}
1. Initialisation step : choose ū = arg min

x=(x1,...,xd)∈x̄n

∏d
i=1 xi

Set x̄n = x̄n\ū and vol = µ(V−(ū))
2. Choose the next point as u = arg min

x∈x̄n

µ(V−(x̄n ∪ x))− µ(V−(x̄n))

3. Set ū = ū ∪ u, x̄n = x̄n\u and vol = µ(V−(ū))
4. if vol ≥ p, repeat steps 2 and 3 .
5. Return maxu∈ū g(u).

5.4 Sequential quantile estimation

In this section, a consistent estimator of q is provided. The framework follows the one proposed
in [16] (see also Section 2.3.1): an initialisation step provides a non-dominated set. This non-
dominated set is updated from simulations. This allows to build F̂ a local estimator of F .
Finally, q is estimated as in (5.2).

Notice that for probability estimation, only one run to g is required to update the bounds.
Indeed, it is enough to know that if g is greater or lower than a given value q. For quantile
estimation the situation is more complicated. As seen in Section 5.3.2, the sample must verify
one of the two volume constraints stated in Proposition 5.5, which are summarised in Definition
5.3.

Definition 5.3 Let A ⊂ [0, 1]d. The set A is said p-dominant if one of the two followings
properties is verified:

µ(V−(A)) ≥ p,

µ(V+(A)) ≥ 1− p.
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Figure 5.4: Illustration of Algorithm 5.2 for d = 2.
Up: the encircled point xi1 minimises the contribution
of the volume. Down: the algorithm is stopped when
µ(V−(xi1 , . . . , xik

)) ≥ p. It is required to compute the
value of g only on the encircled points.

Assume that the initialisation step described in 5.3.1 is done. Set (x−, x+) respectively in
W−(p) and W+(p). For example, choose x− and x+ as in (5.7) and (5.8). From these two
points, the initial bounds for q are defined as follow

g(x−) = q−
0 ≤ q ≤ q+

0 = g(x+).

Moreover, let U0 = W(p),U−
0 = W−(p) and U+

0 = W+(p) as defined in Proposition 5.4 and
denote p−

0 , p+
0 respectively the Lebesgue measures of U−

0 and [0, 1]d\U+
0 .

The framework is detailed for the first step then at a general step. Let X1 be uniformly
distributed on U0. Let us start this step by updating the non-dominated set. If g(X1) ≤ q−

0

(resp. g(X1) ≥ q+
0 ), from the monotonicity of g it is deduced that X1 ∈ U− (resp. X1 ∈ U+).

The non-dominated set is then updated as follow

U−
1 =

{
U−

0 ∪ V−(X1) if g(X1) ≤ q−
0 ,

U−
0 if g(X1) > q−

0 ,

U+
1 =

{
U+

0 ∪ V+(X1) if g(X1) ≥ q+
0 ,

U+
0 if g(X1) < q+

0 ,

U1 = [0, 1]d\
(
U−

1 ∪ U+
1

)
,

and p−
1 = µ(U−

1 ), p+
1 = 1− µ(U+

1 ).
Unfortunately, the bounds of the quantile cannot be updated at this first step. Indeed, at

least two points in the non-dominated set are required to verify the p-dominant property. Since
the point X1 cannot be used to update the bounds of q, it is kept for the following steps. Let
X̄1 = {X1} ∩ U1 the remaining points in the non-dominated set. Thus, q−

1 = q−
0 and q+

1 = q+
0 .

Concluding on this first step, an estimator of q is now described. Denote

F̂1(t) = p−
0 + (p+

0 − p−
0 )1{g(X1)≤t}.
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Using the same argument as in Section 4.2, it comes E
[
F̂1(q)

]
= F (q) and q is estimated as

follow

q̂1 = inf{t ∈ [q−
1 , q+

1 ], F̂1(t) ≥ p}.

At step n ≥ 1, denote

Fn−1 = σ(Xj , 0 ≤ j ≤ n− 1),

and let Xn be a random vector uniformly distributed on Un−1. If g(Xn) is in ]q−
n−1, q+

n−1[ then
the non-dominated set is updated as described in step 1. Otherwise, it must be checked if the set
X̄n−1∪{Xn} is p-dominant. If so, Algorithms 5.1 and 5.2 are applied and the bounds q−

n−1, q+
n−1

are updated as well as the non-dominated set. Denote, X̄n = {X1, . . . , Xn} ∩ Un. An unbiased
estimator of F (q) becomes

F̂n(q) =
1
n

n∑

k=1

(
p−

k−1 + (p+
k−1 − p−

k−1)1{g(Xk)≤q}
)

, (5.10)

and finally, q is estimated by

q̂n = inf
{

t ∈ [q−
n , q+

n ], F̂n(t) ≥ p
}

. (5.11)

The two following propositions provide some properties of the estimator of the cumulative
distribution function and ensure that the bounds and the estimator of the quantile converge
towards q.

Proposition 5.6 Let (q−
n , q+

n )n≥1 be the sequence of bounds obtained from the method. Almost
surely

(q−
n , q+

n ) −→
n→+∞

(q, q),

and consequently q̂n
a.s.−→

n→+∞
q.

Proposition 5.7 For all t ∈ R, F (min(t, q)) ≤ E
[
F̂n(t)

]
≤ F (max(t, q)) and

E
[
F̂n(t)

]
−→

n→+∞
F (q).

The main difference with probability estimation framework, is that the Lebesgue measure
of the non-dominated set is not strictly decreasing. Indeed, it cannot be updated after each
evaluation by g since either the set of simulations must be p-dominant or the value of g on these
simulations is between the bounds of q.

As a central limit theorem on the probability estimator is not available, showing a central
limit theorem for q̂n seems difficult. Another important point is the rate of convergence of the
deterministic bounds of q. Nonetheless, this rate depends on Algorithms 5.1 and 5.2, it is not
obvious therefore difficult to get precise results in a general case.
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5.5 Numerical results

In this section, the method described in this chapter is compared with other classical quantile
estimators. The comparison is conducted on an analytic example where the dimension and the
probability can be chosen. Let d ≥ 2 and x = (x1, . . . , xd) in [0, 1]d, the function is defined by

g(x) =
x1

∑d
i=1 xi

.

Let X = (X1, . . . , Xd) be a random vector with independent coordinates such that Xi ∼ Γ(i +
1, 1). Then g(X) ∼ Beta(2, (d + 1)(d + 2)/2 − 3). Denote qd,p the p-quantile of g(X). The
quantile estimator is compared on six different couples (d, p) ∈ {2, 5, 7} × {10−2, 10−4}.

The comparison is conducted with two different estimators based on an iid sample and the
sequential framework. The first two criteria are the relative error defined by E[|α − qd,p|/qd,p]
and the mean quadratic error defined by E[(α − qd,p)2] where α is one of the estimators. The
last two criteria are the bias and the length of the empirical confidence interval at 95%. Even
if the function is analytic, consider that the total number of evaluations by g is very limited.
Arbitrary, a budget of n = 200 simulations have been chosen.

First, the method is tested for p = 10−2. Figure 5.5 displays the results obtained for p = 10−2

in function of n = 1, . . . , 200 and averaged on 800 independent experiments. From left to right
these results are obtained respectively for d = 2, 5, 7. The sequential estimator is better, but its
performance seems to decrease while the dimension increases. The sequential quantile estimator
depends on an estimation of the cumulative distribution function of g(X) which depends itself
on the distances between each bounds p−

k−1, p+
k−1 and the probability p. As discussed in the

previous chapter, this distance between the bounds increases with the dimension.
The rate of convergence of the quantile bounds depends also on the value of g. Indeed, if

g(X) is uniformly distributed on [0, 1], the two bounds obtained by the initialisation, described
in Section 5.3.1, are both equal to q. The sequential estimator is still efficient for d = 7. Let us
look now how the sequential estimator behave when p is smaller.

Table 5.1 provides the same quantities as Figure 5.5 for n = 200 and p = 10−4, here the
results have been averaged on 137 independent experiments. The sequential estimator is still
efficient for a low probability. This can be explained by Remark 5.3: the initialisation step
is more informative when p becomes far from 1/2. The quadratic error of the two estimators
decreases when the dimension increases. This can be explained by the difficulty to estimate
the cumulative distribution function of g(X). Indeed, this becomes more and more difficult
when the dimension increases. The constructions of these estimators are very different and this
reduction can be explained by the value taken by the numerical code around the limit state.
Finally, the accuracy of the estimator based on a sequential framework seems consistent when
the probability becomes small.

In addition to compare the estimators, Table 5.2 provides the value of E[(qn − q)2] where qn

is the lower or the upper bound obtained by standard Monte Carlo or the sequential strategy for
the different couples (d, p). When the dimension increases, the gain obtained from a sequential
strategy strongly diminishes for p = 10−4.

To conclude on this example, for each couple (d, p) the sequential strategy provides more
information than standard Monte Carlo: the estimator is more accurate and the exact bounds
converge faster. Nonetheless, the construction of this estimator requires the computation of
the volume of the dominated set. This computation becomes more and more difficult when the
dimension increases. When the budget of simulations is very limited and when the q is a very
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Methods d = 2 d = 5 d = 7

Relative error
Seq 0.15 0.60 1.67
MC 5.53 5.26 5.70

Quadratic error
Seq 2.00 × 10−6 3.62 × 10−7 8.18 × 10−7

MC 7.39 × 10−4 2.41 × 10−5 8.14 × 10−6

Bias
Seq 3.71 × 10−4 2.96 × 10−4 6.76 × 10−4

MC 2.26 × 10−2 4.02 × 10−3 2.41 × 10−3

Length of the empirical confi-
dence interval at 95%

Seq 3.99 × 10−3 1.85 × 10−3 1.91 × 10−3

MC 5.18 × 10−2 1.13 × 10−2 1.12 × 10−2

Table 5.1: Toy example for p = 10−4 at step n = 200. Comparison of the relative error, the
quadratic error, the bias and the length of the empirical confidence interval at 95% of different
estimators. Results have been averaged on 137 independent experiments.

Methods d = 2 d = 5 d = 7

p = 10−2
Lower bound

Seq 7.41× 10−5 4.56 × 10−5 1.46 × 10−5

MC − − −
Upper bound

Seq 5.75× 10−5 1.82 × 10−4 2.39 × 10−4

MC 1.29× 10−3 6.72 × 10−4 5.28 × 10−4

p = 10−4
Lower bound

Seq 6.64× 10−6 4.67 × 10−7 1.46 × 10−7

MC-low − − −
Upper bound

Seq-up 8.80× 10−7 8.69 × 10−6 1.80 × 10−5

MC-up 9.17× 10−4 6.44 × 10−5 3.82 × 10−5

Table 5.2: Toy example for p = 10−4 and at step n = 200. Quadratic error defined by E[(qn−q)2]
with qn the lower or the upper bound obtained by a Monte Carlo sample or by a sequential
framework. The symbol "−" means that the bound is not available with the sample obtained.

low quantile, a sequential framework appears clearly more adapted than an independent and
identically distributed sample.

5.6 Conclusion

This chapter provides a first method to bound exactly a quantile under monotonic assumption.
Using this bounding method a consistent estimator of the quantile has been obtained from a
sequential Monte Carlo sampling. First, numerical results show that the sequential framework
decreases significantly the bias and the quadratic error of the estimator and accelerate the
convergence of the quantile bounds. Since the quantile estimator depends on the bounds of p,
the accuracy of the estimator decreases while the dimension increases. When the probability
goes to 0, the initialisation step reduces the volume of the non-dominated set. The sequential
estimator is more adapted for low probability.

The main limit of this work is that only one quantile may be estimated at a time. The
simulations used to estimate one quantile can be exploited as an initialisation step to bounds
any other quantile. Controlling the estimator by a central limit theorem seems difficult since it
has not been obtained for probability estimation. In this chapter, a p-monotonic set has been
obtained from a set of points. Building a more regular surface is not usable to get an upper
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Figure 5.5: Toy example for p = 10−2, from left to right d = 2, 5, 7. Comparison of the relative
error, the quadratic error, the bias and the length of the empirical 95% confidence interval of
different estimators in function of n = 1, . . . , 200. Results have been averaged on 800 independent
experiments.
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bound for q since a finite number of g is possible. Nonetheless, the use of a meta-model to
estimate Γ allows to guide the construction of a design of experiment. Controlling the rate of
convergence of the quantile for different framework can be useful to control the estimator.

5.7 Proofs

Proof of Proposition 5.1. Let Sp be p-monotonic set. If Sp = Γq the proof is straightforward.
Assume that Sp 6= Γq. Since V−(Sp) = p, the set Sp is not strictly contained in U−

q . Then, there
exist x, y in Sp such that (x, y) ∈ U−

q × U+
q . Thus, g(x) ≤ q ≤ g(y). The proof is complete

choosing the minimum and the maximum of g on Sp. �

Proof of Proposition 5.2. Let f ∈ C such that for all x ∈ [0, 1]d−1, f(x) ∈]0, 1[. The
functionf is not an extremal element of C since there exist ε > 0 such that for all x ∈
[0, 1]d−1, f(x) = f(x)+ε

2 + f(x)−ε
2 .

Let f ∈ C and such that f ∈]0, 1]. Denote λ = f(0) ∈]0, 1] and let g, h ∈ C such that

g(x) =

{
f(x)/λ if f(x) > 0,

0 otherwise
,

h(x) = 0.

The function f is not an extremal element of C since f = λg +(1−λ)h. Symmetrically, if f ∈ C
and such that f ∈ [0, 1[ then f is not an extremal element of C.

Let f ∈ C such that for all x ∈ [0, 1]d−1, f(x) ∈ {0, 1}. Then f is an indicator function on
a monotonic set S. There exists a sequence (Pi)i≥1 of elements of P such that S = ∪i≥1Pi. It
comes f = 1∪i≥1Pi . Let g, h ∈ C such that g = 1A and h = 1B.

Assume there exist λ ∈]0, 1[ such that f = λg + (1 − λ)h. Let x ∈ ∪i≥1Pi then 1 =
λg(x) + (1 − λ)g(x). Since g, h ∈ {0, 1}, g(x) = h(x) = 1 and then x ∈ A ∩ B. If x /∈ ∪i≥1Pi

then 0 = λg(x) + (1− λ)g(x) and then x /∈ A ∪B. Finally, A = B = ∪i≥Pi and f = g = h.
Since any monotonic can be expressed an union of elements of P the proof is complete. �

Proof of Proposition 5.4. Let p ∈]0, 1[ and U = (U1, . . . , Ud) ∼ U([0, 1]d), then µ(W+(p)) =
P(U ∈W+(p)) = P(U1U2 · · ·Ud > p). The probability density function of U1U2 · · ·Ud is defined
for all u ∈ [0, 1] by

fd(u) =
(− log u)d−1

(d− 1)!
1{u∈[0,1]}.

Let t ∈]0, 1[ and denote Id(t) = µ(W+(t)) =
∫ 1

t fd(u)du. By the substitution v = − log u and an
integration by parts, it comes

Id(t) =
∫ 1

t

(− log u)d−1

(d− 1)!
du,

=
∫ − log t

0

vd−1e−v

(d− 1)!
dv,

= Id−1(t)− (− log t)d−1t

(d− 1)!
.
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By recursion, it comes

Id(t) = 1− t
d−1∑

k=0

(− log t)k

k!
.

Since µ(W(p)) = 1− Id(p)− Id(1− p) the proof is completed. �

Proof of Proposition 5.6. The proof uses the same argument than the proof of Proposition
3.2. Let (Yk)k≥1 be a sequence of independent random vectors in [0, 1]d such that there exists
ε1 > 0 such that for all x ∈ Γε1 = {x ∈ [0, 1]d, d(u, Γ) < ε1} there exists ε2 > 0 such that

∑

n≥1

P(Yn ∈ B(x, ε2)) = +∞. (5.12)

(1). For all n ≥ 1, let q−
n and q+

n be the bounds of q obtained from Algorithms 5.1 and 5.2
applied to Y1, . . . , Yn. The sequences (q−

n )n≥1 and (q+
n )n≥1 are respectively increasing and

decreasing and for all n ≥ 1, q−
n ≤ q ≤ q+

n almost surely. From construction, there exists two
random variables q−

∞, q+
∞ such that almost surely

q−
n −→

n→+∞
q−

∞ ≤ q,

q+
n −→

n→+∞
q+

∞ ≥ q.

For all n ≥ 1, q−
n , q+

n ∈ {g(Y1), . . . , g(Yn)}} and then Yk /∈ Γ = {x ∈ [0, 1]d, g(x) = q} for all
k. Denote for all n ≥ 1

U−
n =

⋃

x∈{Y1,...,Yn}, g(x)≤q−
n

U−(x),

U+
n =

⋃

x∈{Y1,...,Yn}, g(x)≥q+
n

U−(x).

Assume that q−
∞ < q < q+

∞, then

U−
∞

⋃

x∈{Y1,...,Yn,...}, g(x)≤q−
∞

U−(x) ( U−,

U+
∞

⋃

x∈{Y1,...,Yn,...}, g(x)≥q+
∞

U−(x) ( U+,

and denote U∞ = [0, 1]d\(U−
∞ ∪U+

∞) ⊃ Γ. From assumption on the sequence (Yk)k≥1 and from

Borel-Cantelli Lemma, the event Ak = {Yk ∈ U∞} occurs infinitely often. Denote (Y(∞)
k )k≥1

the subsequence of (Yk)k≥1 which are in U∞ and

M∞ = inf{k ≥ 1, µ(U−(Y(∞)
1 , . . . , Y(∞)

k )) ≥ p}.

Since {M∞ = +∞} = {∀k ≥ 1, Y(∞)
k ∈ U−\Γ}, the Borel-Cantelli lemma applied to Bk =

{Y(∞)
k ∈ U∞ ∩ U+} states that P(M∞ = +∞) = 0. This means the sequence (Y(∞)

k )k≥1 is
almost surely p-dominant and then the upper bound q+

∞ can be updated and then q+
∞ = p.

Using the same argument for the sequence q−
∞ the sequence of bounds (q−

n , q+
n ) −→

n→+∞
q almost

surely.
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(2). For the sequential case, denote T0 = 0 and for all n ≥ 1, Tn = inf{k ≥ Tn−1, Yk ∈ UTn−1}.
The bound obtained in a sequential framework are given by q̃−

n = q−
Tn

, q̃+
n = q+

Tn
and converges

towards q . From construction, q̃−
n ≤ q̂n ≤ q̃+

n then q̂n −→
n→+∞

q almost surely.

The proposition is proven if for all k ≥ 1, Yk uniformly distributed on [0, 1]d. Condition
(5.12) is verified and apply (1) and (2) to the sequence (Yk)k≥1 conclude the proof. �

Proof of Proposition 5.7. Let us start with t > q.

E
[
F̂n(t)

]
=

1
n

n∑

k=1

E
[
p−

k−1 + (p+
k−1 − p−

k−1)1{g(Xk)≤t}
]

,

=
1
n

n∑

k=1

E
[
p−

k−1 + (p+
k−1 − p−

k−1)E[1{g(Xk)≤t}|Fk−1]
]

,

=
1
n

n∑

k=1

E

[
p−

k−1 + (p+
k−1 − p−

k−1)
µ({x, g(x) ≤ t} ∩ Uk−1)

p+
k−1 − p−

k−1

]
,

=
1
n

n∑

k=1

E
[
p−

k−1 + µ({x, g(x) ≤ t} ∩ Uk−1)
]

.

Since t > q, it comes

E
[
F̂n(t)

]
≤ 1

n

n∑

k=1

E
[
p−

k−1 + µ
(
{x, g(x) ≤ t} ∩

(
Uk−1 ∪ U+

k−1

))]
,

=
1
n

n∑

k=1

E
[
p−

k−1 + F (t)− p−
k−1

]
,

= F (t).

Moreover,

E
[
F̂n(t)

]
≥ 1

n

n∑

k=1

E
[
p−

k−1 + µ ({x, g(x) ≤ q} ∩ Uk−1)
]

,

=
1
n

n∑

k=1

E
[
p−

k−1 + F (q)− p−
k−1

]
,

= F (q).

Since

E [µ({x, g(x) ≤ t} ∩ Uk−1)] ≤ E [µ(Uk−1)] ,

= E[p+
k−1 − p−

k−1],

−→
n→+∞

0,

and E
[
p−

k−1

]
−→

k→+∞
p from Proposition 5.12. Toeplitz lemma proves that E

[
F̂n(t)

]
−→

n→+∞
F (q).

Using the same arguments for t < q and that E
[
F̂n(q)

]
= F (q) finish the proof. �
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Chapter 6

Industrial case study

In this section, the industrial numerical that has motivated this work is described. It is con-
sidered a non-replaceable component of a pressurized water vessel. Such component is subject
to different physical constraints. For example, the irradiation from the nuclear reaction leads
to a loss of matter. Of course, this loss of matter has a harmful effect on the reliability of the
component. Moreover, the extreme temperature and pressure of its environment could cause
some deformation of it. Manufacturing defects must be taking into account.

The numerical model associated to this component represents the reliability according to
the propagation of a flaw. In such extreme condition, this flaw may spread in the component.
It must be justified that this eventual spreading does not involve the loss of integrity of the
component.

Some characteristics are taking into account in this study and are summarized in Table 6.1.
This numerical code is considered black-box, but it is not so time-consuming. Approximately

one second is required to make one run. The input of this numerical code depends on many
parameters, but most of them are fixed variables. Determine the monotonicity of g has not been
studied in this thesis. Nonetheless, a first work has been recently conducted in [9] to provide
information on the monotonicity of a function. Finally, the knowledge of the monotonicity has
been obtained by expert opinions. It is then considered that the monotonic properties of the
numerical code are totally known.

In this study, four inputs are considered as independent random variables. They are denoted
X = (X1, X2, X3, X4) with a known probability density function given in Table 6.1

In order to compare the reliability of different situations, two cases are studied. In the first
one, it is considered that only X1 and X2 are represented by a random vectors and X3, X4

are fixed to their nominal value. In the second one, X = (X1, X2, X3, X4) is represented by a
random vector. As the monotonicity of g is known as well as the probability density function of
its input, it is transformed to a globally increasing function (see Section 2.2).

In Figure 6.1 the value of the numerical code is represented on a sample distributed as

Input Distribution parameters Physical representation

X1 truncated Weibull (1.8, 0.00309 , 0.00005, 0.05) depth of a flaw
X2 Log-normal (-1.516, 0.504) Ratio height/length
X3 Normal (0,1) Resistance
X4 Normal (0,1) Constraints

Table 6.1: Input of the industrial numerical code.
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Figure 6.1: Representation of the outputs of the real case study in dimension 2.

(X1, X2). It must be noticed that this figure has been obtained after the transformation (2.1).
Each set of different colours delimits one of the ten decile of g(X).

As studied in this thesis, two indicators are examined. The first one is the probability that
the numerical code is lower than a given threshold q:

P(g(X) ≤ q).

The second indicator is a quantile q of the values taken by the numerical code. The value
of q increases with the reliability of the component. As for probability estimation, if there is
a reference value q0 for this quantile, it must be proved that q is greater than q0. Under the
monotonic hypothesis, if the deterministic lower bound is greater than q0 then an estimator of
q is no more informative. This ensures that the reliability have been proven.

Probability and quantile estimations are studied in the two following sections.

6.1 Probability estimation

In this section, the MLE and the estimator (4.17) obtained in Chapter 4

p̂n =
1
n

n∑

k=1

p−
k−1 + (p+

k−1 − p−
k−1)1Xk∈U− ,

are compared. For each dimensions d considered, two thresholds qd,1 < qd,2 are given and then
two probabilities must be estimated.
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6.1.1 Two dimensional case

Figure 6.2 provides results obtained from a sequential uniform distribution strategy. The values
of the deterministic bounds, the expectation of estimators and their coefficient of variation
defined by

CV (p̂n) =

√
V ar(p̂n)
E[p̂n]

,

CV
(
p̂MLE

n

)
=

√
V ar(p̂MLE

n )

E[p̂MLE
n ]

,

are computed in function of n.
For the two thresholds, the MLE and p̂n seem to have the same expectation. Since p̂n

is unbiased, it can be deduced that the MLE has a low bias. In term of variance the MLE
outperforms p̂n for the two thresholds. This can be explained by the low dimension. Indeed,
the bounds seem to be symmetric around the estimate.

6.1.2 Four dimensional case

Consider now the four dimensional case. As for the previous subsection, the bounds obtained as
well as the expectation and the coefficient of variation of the two estimators are compared. As
before, the two thresholds q4,1, q4,2 are given and are such that q4,1 < q4,2. For different values

of n, CV
(
p̂MLE

n

)
is lower than CV (p̂n). The two estimators provide equivalent estimation for

q = q4,2. Nevertheless, for q = q4,1 they are slightly different. In this case, the deterministic
bounds are symmetric around the estimate. Then, the bias of the MLE can be explained by the
low probability to be estimated and the increasing dimension. As seen in Chapter 4, the MLE is
no longer efficient when the dimension increases and p decreases. To conclude, p̂MLE

n seems to
be more appropriate to use in practice when the dimension is low. Its bias seems smaller in such
situations. Nonetheless, the performance of p̂n seems to be less influenced by the dimension and
the magnitude of p.

6.2 Quantile estimation

In this section, quantile estimation proposed in (5.11) is compared with the estimator based
on the standard Monte Carlo sampling. For the deterministic bounds, it is compared the gain
of a sequential design experiments with an iid sample. The comparison is conducted for p ∈
{10−5, 10−3}. A reference value of qp with p = 10−3 is provided by the standard Monte Carlo
estimator. Getting such reference value, a sample of size 105 has been produced. For p = 10−5,
too many simulations are required to have an accurate estimation of qp by a standard Monte
Carlo method. This case is studied to see how to performs the estimator with a very small
quantile. Moreover, all results have been normalised to be in [0, 1].

6.2.1 Two dimensional case

Estimation of a p = 10−3-quantile

In Figure 6.3, the bias, the quadratic error and the variance of the studied estimators are
illustrated in function of the number of evaluations n made by the numerical code. The sequential
estimator is significantly better than the other ones for different quantities of interest. The bias
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Figure 6.2: Industrial case for d = 2. It is compared the mean of each estimators and their
coefficient of variation in function of n. In left for q2,1 and right for q2,2.
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Methods n = 100 n = 200 n = 300

q4,1

p−
n × 10−4 0.0046 0.0062 0.0087

p+
n × 10−4 442 240 160

p̂MLE
n × 10−4 1.23 1.25 1.25
p̂n × 10−4 0.724 0.798 0.799

CV
(
p̂MLE

n

)
1.694 0.860 0.603

CV (p̂n) 3.208 1.622 1.163

q4,2

p−
n × 10−3 0.015 0.028 0.045

p+
n × 10−3 8.30 4.83 3.31

p̂MLE
n × 10−3 1.10 1.044 1.097
p̂n × 10−3 1.10 1.056 1.087

CV
(
p̂MLE

n

)
1.084 0.665 0.414

CV (p̂n) 1.148 0.715 0.492

Table 6.2: Industrial case study for d = 4. The deterministic bounds, the two estimates and
their coefficient variations are given for different values of n. Up (resp. right) the estimation
has been made for q = q2,1 (resp. q = q2,2 ).

of estimator (5.11) is lower than the bias of the empirical estimator. In down and right of Figure
6.3, the upper bound obtained from a sequential strategy of simulation is more precise than the
empirical quantile estimator. It is also illustrated that the initialisation step provides a more
precise upper bound than the Monte Carlo-based estimator.

In down and right, supplementary information on the strategy of simulation is provided.
First, a standard Monte Carlo approach does not provide a lower bound for q in this case. This
can be easily explained by the geometric criterion used to build such lower bound. Recall that
the set of points must verify the following constraint

µ(V+(x1, . . . , xn)) ≥ 1− p.

This constraint becomes more and more difficult to verify while p goes to 0 and d increases.
Then, a design of experiments based on crude Monte Carlo seems not to be adapted to obtain
such lower bounds.

Estimation of a p = 10−5-quantile

As said before, there is no value of reference for the p-quantile with p = 10−5. Then, the mean
and the variance of the estimators are compared (Figure 6.4) as well as the deterministic bounds
(Figure 6.5).

Since there is no reference value for q, the deterministic bounds are helpful to compare
the estimations obtained. First, the upper bound obtained from a sequential framework is
significantly lower than the one obtained from a Monte Carlo strategy. As for the p = 10−3

case, a lower bound has not been obtained from the identically distributed sample. Moreover,
from Figures 6.4 and 6.5, the empirical estimator is not informative since it is almost equal to
its upper bound.
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Figure 6.3: Industrial case for p = 10−3 and d = 2. It is compared the bias, the quadratic
error and the variance of the estimators in function of n. Down-right: Representation of the
deterministic bounds obtained respectively from a sequential framework and a standard Monte
Carlo sample. No lower bound has been obtained from a Monte Carlo sample.
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Figure 6.4: Industrial case for p = 10−5 and d = 2. It is compared the mean of the deterministic
bounds in function of n.
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Figure 6.5: Industrial case for p = 10−5 and d = 2. It is compared the mean and the variance
of the estimators in function of n.
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Figure 6.6: Real case study for p = 10−3 and d = 4. The quadratic error (left) and the bias
(right) is compared with the standard Monte Carlo and the sequential estimator in function of
n. Results have been averaged on 100 independent experiments.

6.2.2 Four dimensional case

Estimation of a p = 10−3-quantile

Figure 6.6 provides the quadratic error and the bias of the standard Monte Carlo and the
sequential estimator in function of n. The sequential estimator outperforms the standard Monte
Carlo estimator. The upper bound, represented by a plain line, has equivalent quadratic error
than the Monte Carlo estimator. The estimation of the cumulative distribution function of
g(X) is represented in Figure 6.7. The curve in blue represents the empirical estimation of the
cumulative distribution function obtained with a sample of size 105. The curve in red represents

E
[
F̂n(t)

]
=

1
n

n∑

k=1

E
[
p−

k−1 + (p+
k−1 − p−

k−1)1{g(Xk)≤t}
]

,

for all t ∈ [0, 1] and n = 200. The two plain lines represent respectively E[q−
n ] and E[q+

n ]. It
must be noticed that F̂n(t) seems to be unbiased for t ∈ [q−

n , q+
n ]. Since a quantile is deduced

from the cumulative distribution function, all quantiles in [q−
n , q+

n ] can also be estimated.

Estimation of a p = 10−5-quantile

Figure 6.8 provides the variance and the mean of the standard Monte Carlo and the sequential
estimator in function of n. Figure 6.8b displays the values of E[q̂n],E[q+

n ] and E[q̂emp
n ]. It must

be noticed this comparison is not fair since 200 simulations is not sufficient to make a good
estimation of a small quantile. Nonetheless, the upper bound is smaller than the empirical
estimator. This indicates that a sequential sampling is more appropriate to bound a quantile
for this numerical code. Results provided by Figure 6.8b has been normalised to be in [0, 1] as
well as results represented in Figure 6.9. This figure illustrates the estimation of the cumulative
distribution function of g(X) between the bounds provided by the sequential framework. As for
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Figure 6.7: Real case study for p = 10−3 and d = 4. Results have been averaged on 100
independent experiments. Left: Representation of the estimation of the cumulative distribution
function of g(X). Vertical lines represent the bounds obtained by the sequential estimator.
Right: The same figure as in left but around the estimation of qp. The red and orange dashed
lines represent the estimation of the quantile respectively by Monte Carlo method and the
sequential method. Results have been averaged on 100 independent experiments.

p = 10−3, the sequential estimator seems to provide an unbiased estimator of the cumulative
distribution function close to the deterministic bounds.
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Figure 6.8: Real case study for p = 10−5 and d = 4. Results have been averaged on 24
independent experiments.
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Figure 6.9: Real case study for p = 10−5 and d = 4. Results have been averaged on 24
independent experiments. Left: Representation of the estimation of the cumulative distribution
function of g(X). Vertical lines represent the bounds obtained by the sequential estimator.
Right: Representation of the estimation of the cumulative distribution function around the
estimation of qp. The red dashed line represents the estimation of the quantile obtained from
the sequential method.
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Conclusion

The first chapter of this thesis has provided a state of the art of probability estimation meth-
ods. In a first part, Monte Carlo methods are presented. Even if they do not suffer from the
dimension they are not adapted for rare event probability estimation. Dedicated method for low
probability estimation has been developed in an engineering context. FORM/SORM require to
much hypotheses on the numerical code and since the estimator is deterministic it cannot be
controlled. Nonetheless, it can be coupled with importance sampling techniques. In multilevel
splitting, the searched probability can be expressed as a product of different quantities. In a
standard context a sample must be produced at each step. This is not optimal in a monotonic
context since each runs of the numerical code allow to update the non-dominated set.

In the second chapter classical methods for probability estimation have been adapted to
the monotonic case. In general, such methods are not optimal since the information provided
by the monotonic hypothesis is not totally used. It has been highlighted that each simulation
must be drawn in the non-dominated set. Indeed, the deterministic bounds of the probability
bring already all the information. However, sequential methods seem to be more efficient to
estimate the probability of a rare event. Sequential importance sampling seems to be the most
suitable method to estimate such probability. Indeed, at each evaluation by the numerical code
the importance density must be updated. The use of a criterion can be useful to accelerate
the convergence of the upper bound. Nonetheless, to couple such a criterion with importance
sampling seems to produce an uncontrollable estimator.

The third chapter focuses on the deterministic bounds provided by the monotonic hypothesis.
The condition to ensure their convergence has been established. Moreover, their rate of conver-
gence has been studied for different strategies of simulation. As expected a sequential framework
accelerates significantly such convergence. A monotonic binary classifier based on Support Vec-
tor Machines was constructed under the hypothesis that the numerical code is monotone and
convex or concave. The main interest of this classifier is that it can be update sequentially. In
a monotonic context, such property is particularly useful. A non-naive reject method has been
developed to simulate uniformly in the non-dominated space. This is particularly helpful when
the probability to be estimated becomes small.

In chapter four, a more general sequence of importance density has been built to estimate a
probability. Moreover, the use of some criteria, used to reduce the upper deterministic bound,
can be exploit to calibrate an importance density. Nonetheless, the estimator obtained from such
densities could has very large variance. Indeed, these importance densities are too far, in some
sense, to the initial distribution. Finally, a compromise must be made between the reduction of
the upper deterministic bound and the possibility to have an estimator. The simplest sequential
framework of simulation has been chosen. It is unbiased and the upper bound obtained from this
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Figure 6.10: This figure is an update of Figure 1.8. Methods based on monotonicity hypothesis
have been added.

framework and the optimal one are close. Unfortunately, it cannot be controlled by a central
limit theorem.

The fifth chapter focuses on quantile estimation under monotonicity constraints. An initial-
isation step has been produced to determine a non-dominated set. This set is independent with
the numerical code, it depends only on the value of p. Moreover, the information provided by
this initialisation becomes more and more important while p becomes small. As for probability
estimation, two deterministic bounds of a quantile can be obtained from a set of points. Using
these two constructions, a sequential framework can be employed to estimate a quantile. Since
a central limit for probability estimation is not available, such convergence result is also not
available.

The main limit of monotonic hypothesis to estimate a probability and a quantile comes from
the dimension. Indeed, the cost to compute the deterministic bounds increases exponentially
with the dimension. But this cost depends also on the size of the sample. In practice the use
of such methods implies that the total available number of evaluations by the numerical must
be small. To represent these constraints Figure 6.10 compares such methods with the existing
one. When the monotonic hypothesis is used, such class of methods are so-called Monotonic
Reliability Method (MRM).

Perspectives

In chapter 3 the rate of convergence of the deterministic bounds in a sequential framework has
not been deeply studied. A unsuccessful attempt to study such framework has been made.
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Numerical studies have shown that this rate decreases while the dimension increases. There
should be a dimension d such that the use of monotonic property is no more informative to
bound a probability. The rate of convergence of the deterministic bounds of a quantile has not
been studied. Since it depends on two algorithms, such rate seems to be difficult to obtain in
practice.

Many thematics have not been studied in this thesis. When the dimension increases, there
is no reason that the numerical code is still totally monotone. In this case, the lower and upper
bounds are no longer available. Conditionally to the non-monotone inputs, the numerical code
is monotone. Then, usual monotonic based method can be applied. It must be studied if a
method inspiring by conditional Monte Carlo (see Section 1.5) is useful in practice.

Another theme is the influence of the input on a function of the numerical code. For example,
sensitivity analysis to probability estimation has been recently developed in [78]. Since such
methods require many evaluations by the numerical code, the use of the monotonic hypothesis
can be useful.

In this thesis, it was assumed that the input are independent. It has not been studied the
influence of a dependence relation and if the model can be also reduced to a globally increasing
function.

Some of the methods provided in this thesis have or will be implemented in a package so-
called MISTRAL coded in R and available on CRAN [98].
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Résumé

Cette thèse se place dans le contexte de la fiabilité structurale associée à des modèles numériques
représentant un phénomène physique. On considère que la fiabilité est représentée par des
indicateurs qui prennent la forme d’une probabilité et d’un quantile. Les modèles numériques
étudiés sont considérés déterministes et de type boîte-noire. La connaissance du phénomène
physique modélisé permet néanmoins de faire des hypothèses de forme sur ce modèle. La prise
en compte des propriétés de monotonie dans l’établissement des indicateurs de risques constitue
l’originalité de ce travail de thèse. Le principal intérêt de cette hypothèse est de pouvoir contrôler
de façon certaine ces indicateurs. Ce contrôle prend la forme de bornes obtenues par le choix d’un
plan d’expériences approprié. Les travaux de cette thèse se concentrent sur deux thématiques
associées à cette hypothèse de monotonie. La première est l’étude de ces bornes pour l’estimation
de probabilité. L’influence de la dimension et du plan d’expériences utilisé sur la qualité de
l’encadrement pouvant mener à la dégradation d’un composant ou d’une structure industrielle
sont étudiées. La seconde est de tirer parti de l’information de ces bornes pour estimer au mieux
une probabilité ou un quantile. Pour l’estimation de probabilité, l’objectif est d’améliorer les
méthodes existantes spécifiques à l’estimation de probabilité sous des contraintes de monotonie.
Les principales étapes d’estimation de probabilité ont ensuite été adaptées à l’encadrement et
l’estimation d’un quantile. Ces méthodes ont ensuite été mises en pratique sur un cas industriel.

Mots-clefs Apprentissage séquentiel; Expérience numériques; Fiabilité; Incertitudes; Mono-
tonie; Probabilité; Quantile

Abstract

This thesis takes place in a structural reliability context which involves numerical model im-
plementing a physical phenomenon. The reliability of an industrial component is summarised
by two indicators of failure,a probability and a quantile. The studied numerical models are
considered deterministic and black-box. Nonetheless, the knowledge of the studied physical
phenomenon allows to make some hypothesis on this model. The original work of this thesis
comes from considering monotonicity properties of the phenomenon for computing these indica-
tors. The main interest of this hypothesis is to provide a sure control on these indicators. This
control takes the form of bounds obtained by an appropriate design of numerical experiments.
This thesis focuses on two themes associated to this monotonicity hypothesis. The first one is
the study of these bounds for probability estimation. The influence of the dimension and the
chosen design of experiments on the bounds are studied. The second one takes into account the
information provided by these bounds to estimate as best as possible a probability or a quantile.
For probability estimation, the aim is to improve the existing methods devoted to probability
estimation under monotonicity constraints. The main steps built for probability estimation are
then adapted to bound and estimate a quantile. These methods have then been applied on an
industrial case.

Keywords Sequential learning; Computer experiments; Reliability; Uncertainties; Monotonic-
ity; Probability; Quantile
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