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1

Introduction

1.1 Motivation

Future mobile robots such as intelligent vehicles are expected to navigate au-
tonomously in complex large scale urban environments. In fact, recent promising
examples illustrated in the figure 1.1 show that human drivers or more general
guidance will be gradually replaced by autonomous systems with their develop-
ing perception, algorithmic, computing, memory and learning capacities in the
not too distant future. The first row of figure 1.1 illustrates the development
of autonomous cars from the winner of DARPA desert challenge 1.1a to the test
vehicles on public roads 1.1b, 1.1c. The second row of figure 1.1 is a good illustra-
tion of that autonomous robots are already in our everyday life for delivering the
goods we ordered online, cleaning our houses 1.1f, carrying specimens, pharmacy
supplies, surgical equipment and other items between departments in hospitals
1.1e.

Fully autonomous cars are expected to be ready to set out on a journey as
soon as 2017 or perhaps sometime in the 2020s. Although the timing may be
uncertain, cars are already utilizing a lot of intelligent systems such as adaptive
cruise control and assisted parallel parking. In fact, these are forerunners of
future vehicle concept which can navigate from A to B while the people inside
the vehicle just enjoy their journey. The biggest attention has focused on the
sensors, other technological equipment and systems inside the cars as well as on
the legal issues such as if an autonomous car causes an accident, who is to blame?
what if the car was hacked? However, there is another crucial element: maps.
While navigating in any kind of environment, a robot needs to be constantly
computing its pose in its map of that particular environment to perform what
is known as map based navigation. In other words, either a priori map of the
environment is completely available or a map is being constructed at the same

1



Introduction

time with exploration by the robot. In both cases, the map has an essential
place in navigation or other autonomous tasks. In this work we aim to obtain a
navigation oriented map for future autonomous driving applications at large scale
urban environments by combining metric, topological and semantic information
while the robot is autonomously or manually driven through the environment. .

1.1.1 Introduction

A robot which has the ability to perform the tasks as humans do in unstructured
environments was only an utopic dream 20 years ago. However, autonomous ca-
pabilities of robots are increasing so fast as well as people’s belief and acceptance
of the integration of robots into daily life are becoming stronger nowadays. In
fact, we start experiencing the first examples of these such as automatic vacuum
cleaners, service robots, unmanned aerial vehicles and driver-less car projects etc.
Therefore, robots moving around in future everyday environment and perform-
ing time consuming tasks of the daily life turns out to be a realistic expectation
rather than an utopic dream.

The fascinating navigation and interaction capabilities of humans as well as
animals are still unreachable for a robot. Especially how they achieve this by
using noisy and partial information coming from their vision, tactile and audio
sensors is an open question. To be able to achieve this level of autonomy in robot
world, the limits of perception have been questioned in the artificial intelligence
domain since the 1950s. What to conceive from surrounding environment, how
to represent the conceived information and how computing as well as memory
resources limit the perception are essential questions for a robot on executing
simple and daily tasks (for an human or an animal) such as walking, driving,
flying, climbing and swimming.

The first step of perception is to choose on-board sensor/sensors of robot. The
most common ones are sonars, laser range finders and cameras. Among these,
cameras are the most prominent and have been becoming the primary sensors in
autonomous robotics recently as vision is our important sense for understanding
the world around us. Endowing the robots with this ability opens a vast range
of beneficial new applications because it contains rich information with a wide
field of view and gives high potential on more general 3D spatial awareness and
scene understanding. Therefore; cameras are potentially a very good choice as
the main outward-looking sensor for a mobile robot. The main challenge lies in
processing this huge amount of data to extract meaningful information in real
time (within an exposure time) where it is still relevant.

A vision sensor creates an image which is a 2D projection of a 3D scene in its
field of view over time. Computer vision is concerned for example with the inverse
problem which is recovering 3D structure of a scene from sequence of 2D images.

2



Motivation

(a) Autonomous Ground

Vehicle (b) Google car (c) The Robot Truck

(d) Amazon Drone (e) Robocourier

(f) Autonomous Floor

Cleaning Robot

Figure 1.1: Figure 1.1a: Stanley - the winner of DARPA desert challenge. Figure

1.1b: Google car - is a self driving car project by Google. Figure 1.1c: The robot

truck - that can drive itself is under the test by big truck manufacturers. Figure

1.1d: Amazon Drone is being tested to deliver goods to customers. Figure 1.1e: It

is designed for transport tasks within the hospital. Figure 1.1f: A Mint autonomous

floor cleaning robot.
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Introduction

It is known as structure from motion and there is a vast amount of work which
can be seen as a step of imitating the visual understanding ability of a human.
Solutions to the scene reconstruction and understanding are essential parts of
localization, mapping and navigation for any autonomous robot application. For
example, an autonomous car has to estimate its ego motion and then localize
itself by analyzing the complicated traffic scenes continuously and real time as a
human driver does.

Many of the complex tasks that are necessary for survival of robots in ev-
eryday life environments depend on general and fundamental capabilities such as
mapping, localization, path planning and navigation capabilities. The first two of
these are highly dependent to each other. In other words, a robot that estimates
its localization by using only its on-board sensors needs to have the map of its
environment. On the other hand, a robot that is to extend or build a map of
its environment definitely needs to have its current localization. This problem
is called as simultaneous localization and mapping (SLAM) and there is a vast
amount of work on this especially at autonomous robotics literature.

Solutions to this problem using visual sensor alone is listed under Visual SLAM
or Vision based SLAM. Although, the first solutions are concentrating on estimat-
ing camera poses and representing the structure of environment with a sparse 3D
point cloud, the proposed solutions have diverged by time. They can be grouped
as metric, topological, semantic and hybrid solutions. The main differences be-
tween them on the representation of measurement, level of abstraction and their
general purposes. While metric maps concentrate on accurate localization within
a local area, topological maps concentrate on global connectivity information.
On the other hand, semantic maps focus on assigning a predefined set of labels
to semantically describe various parts of the environment. Finally, hybrid maps
focus on turning the weak points into a strength by combining specific advantages
of the above discussed mapping strategies to solve a problem at hand.

In the remaining sections of this introduction we outline the visual solutions
to mapping and localization problem.

1.1.2 Robotic Mapping

Cartography (mapping) has been integrated with human history. From cave
paintings to 21st century, we mapped out the world and used these maps to de-
fine and navigate our way. As it is for us, mapping is also important part of
autonomous navigation for robotics. Let’s assume a robot which observes its pre-
viously unknown and uncontrolled environment by using its on-board sensor set.
Integrating these partial observations coming from its environment into a consis-
tent model is called as mapping. There are different kinds of maps developed by
researchers in the mobile robotics community. The most popular ones are listed
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as

• Metric maps

• Topological maps

• Semantic maps

• Hybrid Maps

1.1.2.1 Metric maps

Metric maps model the environment in terms of distances which corresponds to
actual real world geometry. A common and well-known example of metric maps
is a city map as it is shown in figure 1.2a in which the actual distance between two
places in a metric map of a city can be measured. In a similar way, this can be
observed from mobile robot point of view. As it is shown in figure 1.2b, a metric
map provides the relative distances between the surrounding objects and the robot
poses under a common coordinate system. Generally, the resulted map contains
3D points, planes or objects in 3D based on the level of complexity and the robot
poses given in a default Cartesian coordinate system. Metric maps are preferred
when precise self-localization and path planning are extremely important and the
size of the area is limited.

1.1.2.2 Topological maps

Topological maps model the environment in terms of its structure and connectiv-
ity independent of metrical information. In fact, it does not need metric infor-
mation and a global coordinate frame. Generally, the resulting map has a graph
structure which has nodes and edges. Nodes correspond to specific places in the
environment and edges represent their connectivity to each other which marks
the possibility to traverse from one node to another. The most common examples
of topological maps in everyday life are subway maps. As it is shown in figure
1.3a, each station is given as a node and connection information between them is
given as edges. In robotic mapping, topological maps are common for the cases
which involve searching using connectivity such as loop closure detection, path
planning and etc because they mainly focus on connectivity between places. A
toy example is shown in figure 1.3b which illustrates how an environment can
be modeled in an abstract manner by using a graph structure. The simple and
compact structure of topological maps allow efficient scalability and optimization
capabilities in robotic mapping.
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(a) A traditional example of metric maps is

a geographic city map.

(b) An example metric map (consists of 3D
point cloud) built by a robot at the university
of Freiburg (courtesy of Kai. M. Wurm) and its relative

satellite image.

Figure 1.2: Metrical maps.
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(a) A traditional example of Topological

maps is a subway map.

(b) An example topological map built by
a robot in an indoor environment. (courtesy

of Andrej Pronobis)

Figure 1.3: Topological maps.

1.1.2.3 Semantic maps

Semantic information means that the relations between spatial entities and a set
of predefined abstract concepts which are meaningful for humans. For example,
we use room, corridor bathroom, toilet, etc as abstract concepts to simplify the
layout of indoor environments. Similarly, road, turn, intersection, road bend etc
are the common examples to these for outdoor environments. Thus, semantic
mapping is a way of modeling the environment which gives the relation between
spatial world and these concepts.

For example, a home layout tagged by names such as kitchen, bedroom, cor-
ridor can be considered as semantic map 1.4a . From robotic point of view, a
semantic map similarly provides the identification of the signs, symbols, objects,
places which are meaningful concepts for humans as well as gives the relationship
between all of these. In other words, semantic maps model the world intelligently
by employing these concept as humans do. They are used for making decisions at
a high level and they provide better robot human interaction capability as well as
they endow a robot with the capacity of understanding the functionality of the
surrounding environment.

1.1.2.4 Hybrid maps

Hybrid maps are simply defined as a combination of different maps. A well known
example of that kind are topo-metric maps.Although there is not a common def-
inition of it and they are more specific to implementation, they are basically
exploiting metric and topological information under the same map. The main
reason for hybridization metric and topological maps is that they both have ad-
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(a) A traditional example of semantic maps

is a layout of an office floor.

(b) An example semantic map built by a
robot in an office. (courtesy of Andrej Pronobis)

Figure 1.4: Semantic maps.
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Figure 1.5: A traditional example of hybrid maps is given which is constructed

by adding scaled distances and geometry to a standard subway map.

vantages over each other due to their different characteristics in ontology. More-
over, what is an advantage for one approach might be a disadvantage for the
other. If we combine a standard subway map with a geographic map by adding
scaled distances and geometry between each stop, then we obtain a hybrid map
as it is illustrated in the figure 1.5. As it is seen in topo-metric map example,
hybrid maps generally focus on turning the weak points into a strength to solve a
problem at hand by connecting elements in one map to elements in another map.

Especially if mapping is investigated in terms of autonomous driving applica-
tion, they have to be reassuring.

Autonomous cars need maps that differ in several important ways from the
traditional robotic maps we use today. They should be hi-definition in the sense of
containing different types of information and models. Metric maps can be good
enough for GPS-based navigation in a limited area, however autonomous cars
will need maps that can tell them where the curb is or where the intersections
are located within a few centimeters. They also need to be updated regularly
with information about accidents, maintenance and traffic management, and lane
closures. Therefore, hybrid mapping as combining different models is a must to
achieve autonomy in real environments.
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(a) The mapping result before loop

closure.

(b) The mapping result after loop

closure.

Figure 1.6: Loop closure affect the global consistency by minimizing the drift
error. (Figure Courtesy of Brian Williams)

1.1.3 Loop Closure

Loop closure detection plays an essential role in all mapping approaches in order
to construct a consistent model of an environment. It consists in recognizing if the
robot is currently revisiting a previously mapped area. Especially for performing
large scale mapping, it is a crucial component which recovers the mapping system
from critical errors. Figure 1.6 shows the effect of loop closure detection clearly.
Figure 1.6a illustrates the result of a metrical mapping algorithm without loop
closure detection component. There is a critical level of drift error which results
with a divergence of the map in large scale. Only with adding loop closure
detection step to the same algorithm, it is shown that this error is minimized and
the map keeps the global consistency 1.6b. This effect is observed more strongly
in topological mapping. In fact, loop closure is an inevitable step of capturing
the topological structure of the environment by discovering connections between
nodes that are not explicitly adjacent.

While solving this problem, other challenges such as perceptual aliasing, mea-
surement noise and scalability issues arise. Main issue is to eliminate false posi-
tives due to the fact that even a single false can result with fatal errors in mapping
process.
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1.2 Thesis Roadmap

This thesis mainly focuses on two problems each of which are discussed in the
following subsections.

1.2.1 Loop closure for Topo-Metric Mapping

Problem Description: Appearance based loop closure detection for topological
and hybrid map building in large scale outdoor environments is proposed. Instead
of using fixed thresholds a learning algorithm for inferring the vital parameters
of loop closure is employed.

The loop closure process is defined under hierarchical map representation aim-
ing to achieve efficient detection. A hierarchical topological map builds a graph
whose nodes represent a group of images. We can understand these maps as a
two level hierarchy with the first level composed of nodes (node level) and the
second level composed of images belonging to each node (image level). In fact, it
is the last step before passing to the hybrid approach which will be explained in
chapter 4. Given a query image acquired at the current location, our algorithm
retrieves the most similar node/place(s) and then retrieves the most similar im-
age among the images that belong to the most similar place(s). The process of
retrieving the most similar node is called the Node Level Loop Closure and that
of retrieving the most similar image is called the Image Level Loop Closure. The
size of the search space for node level loop closure is the number of nodes and
that of image level loop closure is the number of images belonging to the retrieved
nodes. Both of these search spaces are far smaller than the total number of images
acquired, which is the search space size of many existing loop closure techniques
(AFDM08), (ADMF09), (CN08b), (CN09), (CN10b), (GLT11). Given that the
individual computational complexities of node and image level loop closures do
not scale linearly with the number of images acquired, our hierarchical loop clo-
sure process is bound to be faster than most of the traditional approaches that
will be discussed later in chapter 2.

In order to effectively capture visual similarity across images in a region, Om-
nidirectional/Panoramic cameras with their 360 degree field of view is a natural
choice as compared to the conventional cameras with a limited and unidirectional
field of view. Apart from that, omnidirectional cameras are also useful in detect-
ing loop closures when the robot is re-traversing the environment in a reverse
direction. This is impossible with traditional cameras. These two reasons justify
our choice of omnidirectional cameras for the present approach.

The primary contributions of this method are the following:

• A node level loop closure algorithm (section 3.3) using Vector of Locally Ag-
gregated Descriptors (chapter 3.2). The parameters required for node level
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loop closure are automatically learned as opposed to empirical evaluation.

• An image level loop closure algorithm posed as a Naive Bayes classification
problem (chapter 3.4) using four similarity metrics. This approach bypasses
the need for geometric consistency check popular with many traditional
approaches.

• Parameters for the two levels of loop closure are automatically learned from
training data. In the majority of loop closure detection approaches this
process was done empirically by studying the precision-recall graphs.

• Experimental results and analysis of accuracy of our loop closure algorithm
on various public datasets(Chapter 3.5).

1.2.2 Hybrid Mapping

Problem Description: A novel vision based hybrid mapping framework which
exploits metric, topological and semantic information is presented.

Two strategies on development of hierarchical mapping framework are pro-
posed. The first strategy is the combination of our hierarchical loop closure
algorithm and 3D reconstruction algorithm. Therefore, it is called as hybrid
topo-metric map. The second upgrades this combination by adding semantic
information into it. In other words, the semantic information allows us to tag
the environment and also to decide automatically between metric and topological
model. Therefore, it is named as hybrid semantic map.

The main contribution of the first strategy is how to combine metric and
topological information by focusing on separability of maps and hierarchy. It
proposes a hierarchical map representation which uses our image sequence par-
titioning (ISP) technique. The hierarchical map built can be understood as a
topological map with nodes corresponding to certain regions in the environment.

The main contribution of the second strategy is how to utilize the seman-
tic information into topo-metric approach. In order to make semantic domain
utilizable in outdoor environments, we need to endow robots with human point
of view. An important strategy used by humans to describe locations in a city
is to abstract high level concepts from it and then represent the environment
with them such as junctions, straight roads and turns. Especially considering ur-
ban areas and road networks, each of these concepts has significant functionality
to integrate semantic knowledge over space, however the traditional robot maps
concentrate only on how to represent the spatial structure and they miss these
important concepts. For example, a metric map may represent the structure of a
road but it does not pinpoint whether this road is straight, bent, turn or a junc-
tion. Moreover, it does not even mark that the given structure is a road. It is

12



Thesis Roadmap

Figure 1.7: Global Mapping strategy is illustrated. Our map contains three dif-

ferent (at the same time mutually connected) steps: local metric reconstruction,

topological map building and semantic path classification. Top: Topo-metric

structure is shown under the graph. Bottom: Path classification step is illus-

trated.

also similar in topological map. It gives the connection information between two
nodes but it does not indicate the type of the connection if it is through a junction
turn or a straight road. In fact, we call this extra information as semantic and
the maps which are integrating this into the traditional robotic maps as hybrid
semantic maps. Thus, we propose to use the same strategy for a large scale robot
map and we propose a multi-layer approach in which each layer corresponds to
different level of abstraction and represents the environment as precise as it is
required.

As the first layer, we construct local metric maps that are represented as 3D
point clouds while the robot traverses through the environment.These local 3D
point clouds are combined with their appearance based information to semanti-
cally label the local robot path (road in our case) as straight road, road junctions
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Figure 1.8: Three junction types examples considered in our path classification

step. Top: a left turn. Middle: 4 way junction. Bottom: T junction. Mostly

one or two lanes urban roads along buildings are considered.

etc. Meanwhile, the environment is also divided into discrete areas named as
nodes by using an appearance based similarity measure. Nodes consist of visu-
ally similar image groups in which visual appearance is almost identical and form
a topological graph as the second layer. To obtain the final layer, we use the ex-
tracted semantic information and combine the topo-metric nodes under semantic
labels which facilitate loop closure detection faster and represent the map in a
human friendly way. These layers are illustrated in the figure 1.7.

The final layer has the highest abstraction level. It is constructed by com-
bining the adjacent and semantically identical nodes under discrete places. Our
map can be understood as a graph with these places, and edges which connect
spatially adjacent places in the environment. The places are classified into three
types depending on the semantic information they carry:

1. Straight nodes, that contain images acquired on a straight road.

2. Curved nodes, that contain images acquired on a road that is curved.

3. Junction nodes, that contain images acquired at a junction of roads. The
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junction types which are considered in our map is also illustrated in the
figure 1.8.

In the map, straight nodes are represented with 2D features extracted from
images. In addition to the 2D information, 3D information is also used for curved
and junction nodes. The motivation behind this configuration and representation
of our map is to facilitate quick loop closure and keep the complexity under
control.

A novel map representation which exploit metric, semantic and topological
information under a common model for urban area mapping is proposed. To this
aim, local metric maps constructed in dynamically defined windows and estimated
camera path as well as 3D points are used for classification such as straight road,
bends and junction areas. This 3D reconstruction based classification step is
supported by road/curb border detection to increase the robustness of junction
detection. Especially separating the junctions and checking the loop closure only
at these areas facilitate quick and more robust loop closure detection. Finally,
it is also a suitable model for map matching and merging algorithms given well
extracted junction nodes.
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2

Literature Review

This chapter provides the necessary literature review in the lines of the work
presented in this thesis. A brief review of mobile robotic SLAM will be pro-
vided followed by a detailed review of appearance based topological mapping.
Subsequently, hybrid mapping approaches and visual memory based navigation
approaches are reviewed.

2.1 Simultaneous Localization and Mapping

Initially, mapping and localization which are the two main steps of autonomous
navigation of mobile robots were investigated separately. However, they are di-
rectly dependent which means that a correct map is necessary for localization and
similarly a precise self-localization is necessary for constructing a map. Chatila
and Laumond (CL85) and Smith et al. (SSC87) are the first works which con-
siders this dependency. Based on these works, Hugh Durrant−White and John
J. Leonard (LDW91) call this problem originally as SMAL and then change it
to SLAM for a better impact. On the other hand the same problem is called as
CML (Concurrent Mapping and Localization) by Newman et al. (NCH06) and
Andrade and Snafeliu (ACS02). SLAM or CML is concerned with the process of
building a map of an unknown environment by a mobile robot while using this
map to localize itself at the same time. Figure 2.1 visualizes the dependency of
localization and mapping.

The sensor suit of the mobile robot is quite important in order to build a
map from the environment. These sensors which are used to perceive the sur-
rounding world are grouped under exteroceptive and proprioceptive sensors. The
well−known examples of exteroceptive sensors, which determine the measure-
ments of surrounding objects relative to a robot’s frame of reference, are sonar
(TNNL02, RRTN08) , range lasers (NLHS07, TBF98), cameras (Dav03, SLL05,
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Figure 2.1: SLAM problem: Landmarks being observed at different positions
along the robot’s trajectory. Figure courtesy: Time Bailey (DWB06)

LBJL07, BRSM+09) and global positioning systems GPS (TBF05). Although
the first two aforementioned sensors provide accurate and dense information of
the surrounding world, they are impotent in highly cluttered environments as
well as they are expensive and heavy. On the other hand, a GPS sensor alone is
insufficient to update the map although it provides a global location of a robot.
The second group of sensors measure a signal originating from itself and are re-
sponsible for monitoring self maintenance as well as controlling internal status.
Encoders, accelerometers and gyroscopes are the most common examples of pro-
prioceptive sensors used in mobile robots. These provide an incremental estimate
of robot’s motion which is known as dead reckoning navigation. However, they
are insufficient to estimate the robot’s position due to the cumulative error factor.
Finally, there are some works which propose to fuse the information obtained from
different types of sensors in order to obtain an accurate and robust perception
of the surrounding environment and robot’s state (CNT01, TBF05, NWSS11).
The disadvantage of these methods are increasing cost, weight, computational
and power requirements of a mobile robot. Therefore, we concentrate on inves-
tigation of systems which can locate itself and build a map with using cameras
alone as exteroceptive sensors.

Historically, SLAM methods are divided into metric and topological approaches.
Recently hybrid and semantic methods are also added to these. Each of these
approaches will be investigated in the following sections
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2.2 Vision Based Metric SLAM

During the last decade, vision sensors become a prominent external sensor suit
of mobile robots for localization and mapping tasks (DRMS07, KM07, PT08,
PPTN08). Camera based systems provides rich amount of information such as
color, texture, appearance and structure of their field of view as well as range
information.Moreover, they are cheaper, lighter and need less power to oper-
ate compared to the other sensors. Besides these advantages which make them
popular, they have also some limits coming from sensitivity to lighting changes,
insufficient camera resolution, motion blur and so on.

Before going into the details of vision based metric SLAM approaches, we
will shortly mention about camera calibration process. Calibration which means
that estimation of intrinsic (focal length and principal point) and extrinsic pa-
rameters (rotation and translation with respect to a reference coordinate system)
of cameras is an important step for vision based systems which aims to achieve
doing SLAM. A group of images that captures a calibration pattern from dif-
ferent angles and distances are used to estimate these two group of parameters
at calibration step (Zha00). This is called as off−line calibration while it can
be also carried out online. Assuming that intrinsic parameters are fixed, offline
calibration methods are more popular in SLAM applications because it decreases
the parameters to estimate online.

The early examples of vision based navigation offers to use a binocular stereo
system (SLL02, OMSM03). The main disadvantage of using a binocular or trinoc-
ular stereo systems is its high cost. If we continue the classification based on
camera systems, there are recent multi camera based systems (KD10, CAD11).
Other ways of augmenting visual field of view are to use wide−angle (fisheye)
cameras (Dav03) and to use omnidirectional cameras (SS08). Finally, RGB-D
sensors which provides color and depth information together are used in indoor
SLAM applications (HBH+11).

Binocular, trinocular and multi camera systems except of the ones without
any overlapping between the views are grouped under stereo systems. Their main
advantage is to yield an estimation of real 3D positions of the landmarks in their
field of view. The prominent and recent examples of stereo SLAM approaches
are the work of Konologie (KA08, KBC+10) and Mei et al. (MSC+09).

On the other hand, single camera based systems are grouped under monoc-
ular SLAM or MonoSLAM (Dav03) approaches. It brings a simple, flexible and
computationally and economically low−cost solution to the SLAM problem. The
weakness of monocular SLAM is the unknown scale problem (Nis04, SMD10a)
which means that the depth of a 3D point can be estimated only up to scale. In
other words, it is a partially observable problem in which a single observation is
insufficient to calculate the depth of a landmark in the field of view. Therefore,
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Figure 2.2: Taxonomy for classifying vision based metric SLAM schemes based

on the model chosen for representing the environment.

matched features must be tracked across multiple views to be able to obtain 3D
structure of the environment.

The approaches in the literature which aim to solve the visual SLAM problem
will be given in the following sections. We mainly review a number of related
works under three title,

• Structure from Motion SFM based solutions.

• Filtering methods for SLAM.

• Biologically inspired methods for SLAM

All approaches are used for stereo vision as well as monocular vision. A graphical
description of this classification is shown in the figure 2.2.

2.2.1 Structure From Motion Methods

Structure from motion SFM is to obtain 3D scene reconstruction as well as camera
position from small sets of images (PGV+04). It is a well−studied research area
in computer vision and its principles are derived from photogrammetry. It has
mainly 4 steps such as feature extraction, matching, triangulation and a non-
linear optimization. The last step is known as Bundle adjustment BA (TMHF00)
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which performs a batch optimization over camera poses and 3D points to minimize
the re-projection error.

SFM permits precise estimation of camera pose which can be seen as local-
ization step. It does not guarantee to construct a consistent 3D structure of the
environment which can be seen as mapping step. In fact, using vanishing points
is a good example of estimating rotation of camera without 3D struture infor-
mation (BSD+12). Visual odometry (Nis04) which aims to calculate the camera
pose of each video frame and 3D positions of matched features is a good example
to this fact. By adding Local bundle adjustment step to visual odometry system,
Mouragnon et al. (MLD+09) construct trajectories up to 500 meters. While the
main advantage of visual odometry is to permit to utilize thousands of features
per frame which is a huge number compared to filter based methods, its main
disadvantage is the lack of loop closure detection ability which is an important
step to obtain consistent maps.

Instead of using point features, there are line-based SFM solutions which are
either using only line features or the mixture of line and point features (Har97,
AD03, LDVP14). Especially for spherical images and heterogeneous cameras,
line features are more stable than point features in the detection and matching
due to the severe distortion (LDVP14). Another advantage of using line features
is that they are are common in urban environments.

Parallel tracking and mapping PTaM (KM07) is a well-known recent monocu-
lar SLAM technique. The structure of the system is based on two parallel threads.
First one is to track the features and the second one is to construct 3D point maps
by using BA.

Rather than using individual 3D features, there are approaches which consist
of a non linear constraint graph between selected images. FrameSLAM (KA08)
and View−based maps (KBC+10) are implementation of this idea by using a
stereo vision based system in literature. They give promising results especially
for long trajectories passed through challenging environments thanks to their
graph based representation model and loop closure ability.

Strasdat et al. compares SFM and filter based methods (SMD10b). This work
shows that the accuracy is related with the number of matched features rather
than the number of selected images which is an essential property of SFM. Their
results show that the techniques which use BA gives more accurate result while
probabilistic filters are more convenient for the environments in which there are
high level of uncertainty.

2.2.2 Filtering Methods

Filtering approaches use probability distributions defined over extracted features
and estimated camera poses to fuse and summarize the information up to the
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current time. Extended Kalman Filter EKF, Factored Solution to SLAM Fast-
SLAM, Maximum Likelihood ML and Expectancy Maximization are the examples
of probabilistic filters that are used in SLAM solutions (TBF05). Although they
give good results in a limited environment, they are not appropriate for large
environment.

Stochastic mapping concept first introduce by Smith et al. (SSC90) as an Ex-
tended Kalman Filter based incremental solution to the SLAM. Using nonlinear
models of observation and transition EKF SLAM recursively update a state vec-
tor which consist of camera pose and 3D points. Its main assumption is that the
recursive propagation of the mean and covariance of probability density functions
which represent the uncertainty are close to the optimal solution. Therefore, it is
sensitive to the bad associations of measurements. Another weak point of EKF
SLAM is its quadratic complexity growth with the size of the map. The works
such as Atlas Framework (BNLT04), Compressed Extended Kalman Filter CEKF
(GN01), Sparse Extended Information Filter SEIF (TBF05), Divide and Conquer
(PPTN08) and Conditionally Independent Submaps CI−Submaps (PT08) focus
on this weak point by using submapping techniques.

FastSLAM (MTKW02, MTRW03) utilizes Rao-Blackwellized particles for pose
distribution and EKF for its map. The main blocks of the algorithm are a particle
generator, re sampling process which prevents the degeneration of the particles
over time. It achieves a logarithmic computational cost O(plogn) where p and n
are the number of particles and features on the map respectively. The deficiency
of the algorithm is that using many particles increase the requirement of mem-
ory and computational cost however using few particles is insufficient to obtain
accurate results. Moreover, it is impossible to determine the optimum number of
particles which is necessary beforehand.

MonoSLAM proposed by Davison (Dav03) is a first monocular EKF SLAM
system which works real time.It achieves to construct a 3D metric map and to
estimate 6 degrees of freedom camera poses simultaneously at 30 frames per
second.

A constant velocity model is used as a motion model. Although it limits cam-
era mobility because the model can not correctly deal with sudden movements,
it is good for simplicity and real time constraint. Especially for vehicles, it is a
sufficient model, however; it fails under the rapid hand held or wearable camera
movements cause severe errors due to the limits of the chosen motion model.
Moreover, it works in indoor environment in which there are a limited number of
features with a small displacement between frames due to the limits of EKF for-
mulation. Gee et al. (GCCMC08) updates the MonoSLAM by using an advanced
motion model which can deal with acceleration and also optimizes the system so
that operating speed can go up to 200 HZ. However, it can work real time only
for a few seconds due to its extremely growing computational cost and memory
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requirements.

Inspired by FastSLAM Eade and Drummond (ED06) also propose to use parti-
cle filter to increase the number of features on the map. By modifying MonoSLAM
with a hierarchical mapping technique and Geometric Constraints Branch and
Bound GCBB which allows to detect large loops, Clemente et al. (CDR+07)
propose a SLAM approach for large outdoor environments. Finally, Civera et
al. (CDM08) focuses on the feature depth initialization problem of monocular
SLAM. While Davison (Dav03) utilizes a delayed initialization technique, Civera
achieves to perform an undelayed feature initialization in an EKF-SLAM system.

2.2.3 Biologically Inspired Methods

Many animals have the ability to follow habitual routes between important lo-
cations. Although it is still not known how they achieve to encode their routes,
there are few interesting work inspired from this fact.

RatSLAM (MWP04) which use models of the hippocampus of rodents can
build consistent and accurate maps of complex environments by using a single
camera alone. Then he extends his work with adding promising results obtained in
large indoor and outdoor environments (MW08). Moreover, his work has a strong
loop closure detection capacity even using the sequences which are captured at
different hours of day.

Another interesting work investigates navigational mechanism of desert ants
(Col10). Their research focuses on understanding how ants navigate using visual
information than the implementation on a robot. However, they claim that the
proposed solution has potential to implement as a SLAM system on a robot.

2.3 Vision Based Topological SLAM

In topological SLAM approaches, the environment is modeled in an abstract
manner compared to the metrical approaches. In other words a graph consists
of discrete locations called as nodes and edges link them by modeling the rela-
tions between them to represent the environment. In contrast to the metrical
SLAM approaches, they result simple, scalable and compact representations of
the environment. Although we talk about the graphical structure of topological
SLAM approaches, it does not mean that all graphical models can be in the field
of topological methods. For example,the pose graph SLAM which represent the
environment with a graph is a metrical approach because the nodes of a pose
graph represent sampled metric positions of a robot. However, the nodes of a
topological graph represent distinct places based on appearance information.
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Figure 2.3: Classification of vision based topological SLAM is shown based on the

descriptor type chosen to model the appearance information from images.

Loop closure detection component stays in the center of topological mapping
approaches. In fact, pure topological mapping absolutely depends on this step
for accurate map generation. Given a query image, the loop closure step searches
if the image belongs to a previously mapped place. If it finds a match from map,
then the current image and the previous image are linked in the topological graph.
Wrong loop closures may have fatal impact on the accuracy of the maps. In fact,
these create false edges between nodes or create a graph of redundant nodes which
does not represent the topology of the environment. Hence an accurate loop
closure approach which focuses on obtaining zero false positives and minimizing
the number of false negatives is essential for topological SLAM algorithms.

We classify the topological SLAM approaches based on the visually describing
method. The works in the literature can be grouped under four titles such as,

• Global descriptor based methods.

• Local features based methods.

• Bag of words based methods.

• Combined methods.

A graphical description of this classification is illustrated in the figure 2.3.
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2.3.1 Global descriptor based methods

Global descriptors are used to encode the complete image in a way that allows it
to be compared and matched to other images. Although they are generally not
very robust, they are fast in computation and matching which directly accelerate
the SLAM process. Therefore, they are used in several applications such as scene
classification, image registration and retrieval and topological mapping.

First examples of global descriptor based SLAM approach are the ones which
use histograms. Histograms represent an image in a compact way by using a par-
ticular feature such as color or gradient orientation information. A topological
localization method in which each image is represented by six one dimensional
color histograms is proposed by Ulrich and Nourbakhsh (UN00). Using color
histogram in combination with a Bayes Filter, Werner et al. (WMS09) proposes
a topological SLAM approach in which the Bayes filter helps to handle places
with similar appearance. Histograms that are used for localization and mapping
systems are not only based on color information. A topological map is built by
using gradient orientation histograms as global image descriptor (KLY05). He
builds a graph structure whose nodes consist of sets of representative views and
at the navigation step histogram of each query image is compared with each node
representatives to localize the robot. Bradley et al. (BPVT05) improve this work
by using Weighted Gradient Orientation Histogram and they test their approach
in large outdoor environment. Similar to this work, Weis et al. (CAHA07) pro-
pose a topological localization approach for outdoor environments by dividing
image into grids and computing 8 × 8 histogram of integral which are invariant
features to translations and rotations. Orientation Adjacency Coherence His-
tograms which are computed based on Harris detector response are another type
used in topological localization approach (WZC06).

The global GIST descriptor which is initially developed for scene recognition
(OT01, OT+06) is another popular global descriptor used in topological SLAM
approaches. Inspired by how humans classify images, the spatial envelope of
the scene which consists of a set of perceptual dimensions namely naturalness,
openness, roughness, expansion and ruggedness is estimated by using a bank of
filters. Finally , a global descriptor whose dimension is reduced by using Principal
Component Analysis is derived.

Singh and Kosecka (SK10) are the first researchers who propose GIST based
similarity measure between panoramic images and they utilize this for loop clo-
sure detection in Manhattan world like environments. Murillo et al. (MCKG10)
proposes omni−gist which is modified version of GIST descriptor for omnidirec-
tional images and then proposes a hierarchical topological SLAM approach which
uses omni−gist. Another interesting work combines GIST and BRIEF which is a
binary feature descriptor (CLO+12) and introduce to use BRIEF−GIST descrip-
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tor in a SLAM algorithm designed for large environments (SP11). Projecting
GIST descriptors into a low dimensional space and using it in particle filter is
also proposed for efficient loop closure detection (LZ12). GIST is also tested on
spherical images but the researchers concludes that it is not suitable for this kind
of images due to lost of sphere spatial periodicity (CRF12, CRF13).

Extracting fingerprints of places and using them for topological SLAM ap-
plication (LNJS01) is a specific method developped for omnidirectional images.
A vertical edge detector is used with a color patch detector to obtain a global
descriptor and then a minimum energy algorithm is proposed to match these
descriptors. Then Tapus et al. (TS05) augment this work by adding a feature
uncertainty model in order to obtain better localization results. Similarly, Fast
Adaptive Color Tags algorithm (LSP+09) which first divides an omnidirectional
image of an indoor environment based on vertical image in order to compute the
average color value in the U−V space for each region and then connects each
region descriptor in a global vector is used for a mobile robot mapping system.
An improved version of this work using a Dirichlet Process Mixture Model is
called as DP−FACT (LZ12). Computing invariant signatures of omnidirectional
images based on Haar invariant integrals (LICM11) is the most recent method
of extracting fingerprints of places. Later on, these signatures are strengthen
against perceptual aliasing by using a different representation of omnidirectional
images and a new integrative kernel and they are used in placed recognition and
robot localization (MLIM12).

Exploiting the 360 degree FOV and the specific geometry features of omnidi-
rectional images, an active contour algorithm (MLIM11) is proposed to extract
the navigable space in the surrounding environment. Similar to the construc-
tion of local Voronoi diagram extracted from a laser range finder, this method is
utilized in extracting the topology of the environment based on omnidirectional
images (MLIM14).

Aiming to obtain robust descriptors to illumination changes and weather
changes for long term SLAM system, there are also recent works which can be
counted under global descriptor based methods. Dird is an Illumination Robust
Descriptor (LBKS13) and SeqSLAM (MW12) are recent example of these.

2.3.2 Local features based methods

A local image feature captures an interesting pattern which shows difference
within a patch of images. It is a specific structure such as a corner, edge, blob
or region. After extracting local image features, a descriptor building step which
is based on the measurements from the neighborhood of each feature starts. The
resulting descriptor can be a floating point vector or a simple binary vector as
bit strings. Local descriptors are more robust to changes, partial occlusions and
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camera rotations between the matched images. Survey on the local image fea-
ture detectors (TM08) lists the features of a good detector such as repeatability,
distinctiveness, locality, quantity, accuracy and efficiency. Among these repeata-
bility is the most important feature which proves its robustness to small changes
and its invariance against large changes.

Using local image features for topological SLAM approaches starts with the
Scale Invariant Feature Transform SIFT (Low04a). Kosecka and Yang (KLY05)
propose to use SIFT for their global localization algorithm designed for indoor
environments. They improve their work by adding a feature selection strategy
which measures the ability of each extracted SIFT features in the sense of de-
scribing places (LK06).

Extracting and matching features for each image is a costly task therefore
some researchers focus on accelerating this task by maintaining only persistent
features instead of all. In order to construct a topological map incrementally,
Rybski et al. (RZL+03) apply this idea by using Kanade−Lucas−Tomasi KLT
feature tracker. For the same purpose, manifold constraints (HZM06) are used
to find the best features for representing the topological places. Similarly, a
dense continuous topological map is proposed by Johns and Yang (JY11). By
tracking persistent features, they construct a set whose members are named as
landmarks and learn discrimination properties of each landmark in order to build
their probabilistic mapping and localization approach.

Position Invariant Robust Features PIRF which are derived by taking the
average of tracked SIFT features across multiple images are proposed to be used in
place recognition (KTH10) and SLAM algorithms (KTTH11). The environment
is divided into places in which variation of their Pirfs are negligible and based on
majority voting scheme PIRF-Nav is proposed as a SLAM method. Modifying
the PIRF dictionary management step, Tongsprasit et al. (TKH11) achieves to
accelerate the PIRF−Nav 12 times. 3D−PIRF (MYH11) which is the latest
version of PIRFs based SLAM approaches are proposed for navigational purposes
in challenging indoor environment. The performance of SIFT for indoor and
outdoor environment is investigated (VL10). This work shows that SIFT performs
better in indoor environments than in outdoor environment.

A particular version of SIFT algorithm M-SIFT is proposed for being used
with omnidirectional images. SIFT is simplified by eliminating unnecessary scale
and translation invariance feature. Therefore, it is interesting to use on naviga-
tion systems of land robots. For example, Valgren et al. (VLD06) prefers to use
M−SIFT descriptors while building image similarity matrix that represent the
environment. Then they extend their work by adding an incremental spectral
clustering algorithm which accelerates localization process (VDL07). Image simi-
larity matrix is used also by Anati and Daniilidis (AD09). A new image similarity
measure is introduced and Markov Random Field MRF model is used to detect
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loop closure.

Graph Transformation Matching GTM based topological SLAM is proposed
by Romero and Cazorla (RC10, RC12). Similar to the idea of representing an
environment with a graph, they represent each image with a graph whose nodes
attach to the image segments. In fact, each image is divided into segments and
extracted invariant features set constructs the node of the graph.

Air−ground matching localization problem for a Micro Aerial Vehicle MAV is
related with topological SLAM (MASS13). Local image feature based histogram
voting algorithm is used to match the images from Google Street View and images
captured by MAV.

Similar to the metrical SLAM Partical filters (SLA07, KKG09) are also used to
model the localization problem probabilistically for topological case. A topologi-
cal navigation system working indoor is the most recent example which employs
a particle filter using local feature matching (LSC13).

Finally, an appearance based method which defines a similarity measure be-
tween images and the places in the map (GFO15) maps out the environment.
Randomized KD trees (CL68) facilitate the matching process and using history
of mapped areas a discrete Bayes filter predicts loop candidates. Therefore, mem-
ory and computational costs are optimized.

2.3.3 Bag of Words Based Methods

The Bag of Words BoW method is first proposed as an efficient solution of in-
dexing the documents that is finding all pages of the document on which a word
occurs. Therefore, this algorithm is employed successfully in content−based im-
age retrieval (MRS08) in the computer vision community. In fact the aim is to
find all images in which a visual feature or a set of visual features occur. Recently,
the majority of appearance based SLAM approaches exploit BoW (SZ03) or BoW
based algorithms (NS06).

Local image features are quantized by using a visual vocabulary which consists
of a set of representative features in order to extract visual words in an image.
In other words, visual features are mapped to the nearest visual word in the
vocabulary. Clustering algorithms such as k−means are the most common way
of building a visual vocabulary. Figure 2.4 shows a toy example of a bag of words
training and representation. Generating visual vocabulary is done in an offline
or in online fashion. Further improvement is done by classifying the words based
on how discriminative they are. Term Frequency−Inverse Document Frequency
TF−IDF is an algorithm in order to weight visual words for this aim.
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(a) Feature extraction from train-

ing images.

(b) Visual vocabulary construc-

tion by feature clustering.

(c) Feature quantization using vi-

sual vocabulary on a query image.

(d) Visual word histogram of the

query image.

Figure 2.4: A toy example of bag of words model. How it is constructed and
how features are quantized. Figure 2.4a: Two dimensional feature descriptors are
extracted on training images on which . Figure 2.4b: K-means clustering are used
(k = 4). Figure 2.4c: Extracted feature descriptors are quantized to their closest
clusters and those cluster ids are the visual words of the corresponding descriptors.
Figure 2.4d: A histogram representation of the given image is built based on the
extracted visual words and is used for image matching. (Figure courtesy of Kristen

Grauman’s lecture notes.)
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2.3.3.1 Offline Visual Vocabulary Building

The first work which implements this idea in visual search algorithms is published
by Sivic and Zisserman (SZ03). SIFT features are extracted and then quantized
to the visual words. Inverted file structure which is a look up table and shows
the map between each word and their source images is another contribution to
accelerate the image retrieval process. Wang et al. (WCZ05) utilizes this tech-
nique in a global localization problem. The vocabulary and inverted index file
are built offline for localization step. In order to decrease the false positives, he
adds a post verification step which checks the epipolar geometry constraints.

The size of vocabulary has a direct effect on the performance of retrieval pro-
cess. The accuracy of the algorithm increases with the growing size of the vocab-
ulary however this also causes growing computational cost. Therefore, building
vocabulary like a tree structure is proposed (NS06). Each extracted descriptor of
a query image is assigned to a visual word by traversing the vocabulary tree from
the root to the leaf node. This tree structure in combination with inverted index
algorithm makes BoW scalable which can handle millions of images. Figure 2.5
illustrates a toy example of a vocabulary tree. Adding RANSAC procedure for
geometry check to this algorithm, it is implemented in vision based SLAM ap-
proaches for large environments (FEN07). Konolige et al. (KBC+10) implement
this process on a stereo vision based SLAM system and test it in indoor and
outdoor environments. The results show that high loop closure detection rates
are achieved by using this method with a geometric filter.

Fast Appearance Based Mapping FAB−MAP (CN08b) which models the oc-
currence of visual words in probabilistic manner is the most prominent work in
this category. The maximum co-occurrence probabilities defined over visual words
are estimated by a Chow Liu tree constructed by using a set of training data.
Observation likelihoods which are combined using a recursive Bayesian filter are
calculated based on these probabilities. Posterior probabilities obtained from the
Bayesian filter are then passed through geometric verification step and finally
they are used to predict loop closure candidates. However, likelihood calcula-
tion for each location in the map is a costly process. Therefore, a probabilistic
bail−out test is introduced in order to fix this problem. Moreover, they propose
a modified version of their probabilistic model which is compatible with inverted
index algorithm to accelerate their algorithm further (CN10b).

OpenFABMAP (GMMW10) is developed as an open source implementation
of FABMAP algorithm because only the binaries of FABMAP are published ini-
tially. It plays a central role in CAT−SLAM algorithm (MMW11) in which an
appearance based SLAM approach is supported with an extra odometry sensor
data. Adding the ability of handling multiple traverses of the same place to the
CAT−SLAM CAT−Graph (MMW12) is developed and tested in indoor environ-
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(a) Feature Space

(b) Hierarchical Cluster-

ing

(c) Vocabulary Tree (d) Quantization

Figure 2.5: A toy example of vocabulary tree building. Figure 2.5a: A two
dimensional feature descriptor space. Figure 2.5b: Hierarchical clustering of the
feature space with two levels(l = 2) and a branching factor(k = 3). Top level
clusters are represented by green circles and separated by green lines and similarly,
the second level by blue. Figure 2.5c: A vocabulary tree representation of the
hierarchical clusters. Figure 2.5d: The quantization of leaf nodes is shown. (Figure

courtesy of David Nister (NS06).)
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ments.

The positions of local features in Bag of Words algorithm are lost. The draw-
back of this comes across at localization step of SLAM algorithms. FAB−MAP
3D (PN10) deals with this problem by taking into consideration the word co-
occurrences as well as their pairwise distances. Another interesting work which
augments the BoW approach with spatial information is the Feature Co−occurrence
Maps (JY13b). The quantization process is done in feature and image space and
co-occurrence probabilities are calculated for different times of the day. Their
results also demonstrate that accurate long term localization can be achieved by
learning the properties of local features captured instead of representing a place
with a single image (JY13a).

To accelerate building the vocabulary process, Galvez Lopez and Tardos
(GLT11) propose to extract FAST features with binary descriptor BRIEF. They
perform loop detection with an average speed of 16 ms per image using big se-
quences by using their new direct index method which is an efficient way of finding
correspondences between images. Another online algorithm which updates the
posterior with each new measurement by using a Rao−Blackwellized particle fil-
ter (RD11). It is a sensor independent solution therefore it can be used with laser
range finder or a vision sensor. In fact their algorithm is the online version of
Probability Topological Maps (RD06) with an upgraded inference step.

Instead of using epipolar geometry based verification step Conditional Ran-
dom Fields are used for a stereo vision based place recognition system (CGLR+10).
This idea is also employed in a system which can rectify the map by eliminating
past false positive loop closures (LCN12).

Using a discriminative criterion is introduced by Ciarfuglia et al. (CCVR12).
As a part of training, weights assigned to the visual words are learned. These
learned weights facilitate and increase the precision of a loop closure detection
step. Majdik et al. (MGLLC11) uses this idea by introducing updatable weights.
In other words, weights of visual words change according to their importance
while detecting the loop closures.

There are BoW based SLAM methods which aim to work in more challenging
environment such as urban places. To be able to index images captured in cities
the training data set is used to select the most discriminative features such as the
ones that can be assigned to some specific places all the time (SBS07). A more
recent approach proposes to identify features coming from moving object in the
field of the vision sensor (AJK11). Therefore, it can handle the situation arisen
due to dense traffic or pedestrians.

Instead of extracting interest points to obtain visual words, Lee et al. (LZLS13)
utilizes lines in his indoor place recognition system. Mean Standard Deviation
Line descriptors MSLD are chosen and a hierarchical visual dictionary was con-
structed.
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2.3.3.2 Online Visual Vocabulary Approaches

Building visual vocabulary simultaneously while the robot is exploring the word
is called as online approaches. Filliat (Fil07) first proposes to build a visual vo-
cabulary dynamically. Given a local feature a simple linear search algorithm is
used to find the closest visual word in the vocabulary. If the distance between
the closest word and the given local feature is high, then a new word is added to
the vocabulary. He used this algorithm in mapping and localization tasks but for
small areas due to the limits of the linear search algorithm. Then Angeli et al.
(ADMF08) augments this approach to detect loop closures in real time. Consid-
ering the temporal coherency a discrete Bayes filter is employed to estimate the
loop closure probabilities. Using two visual vocabularies as input of Bayes filter
(AFDM08) is published as an extension of this approach and finally a topological
SLAM system which utilizes this idea is completed (ADMF09)

A long term SLAM approach which is inspired by Angeli et al. is proposed for
large environments (LM11). They develop a novel memory management system
which separates memory as working memory and long term memory. While
working memory consists of the most recent and frequently occurred words and
it is used for loop closure detection in the first case, the rest is kept in long term
memory. Besides working at real time, their results show high recall rates at 100
% of precision.

A modified agglomerative clustering algorithm is utilized to build visual vo-
cabulary simultaneously as exploration of the environment is ongoing (NG09,
NG12). Using the tracked features the preliminary clusters are formed. Then
considering the global distribution of the given features Fisher’s linear discrimi-
nant based criterion is used to merge these preliminary clusters in order to obtain
more distinctive visual words. They test their system in outdoor environments
and also in underwater environments.

2.3.4 Combined Methods

There are several works which utilize different types of image descriptors in order
to develop better topological SLAM approach. Using the combination of global
and local descriptors is a common example of this approach. The main idea
behind this is to exploit fast image matching ability of using global descriptors
and robust matching of using local descriptors at the same time.

A localization and mapping system which based on the combination of dif-
ferent descriptors is proposed by Goedeme et al. (GTV+05). That is, extracted
vertical column segments which are described with ten different descriptors are
clustered and then they are given to a kd−tree structure which is used for local-
ization step. Given a query image, loop closure candidates are first retrieved by
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using the vertical structures. Then, a matching distance is calculated among these
candidates in order to find the exact loop closure pair. Afterwords, they achieve
to develop a complete navigation system by adding SIFT features and applying
the Dempster−Shafer probabilistic theory to their approach (GNTVG07).

OACH global descriptor combined with Harris Laplace local features described
by the SIFT is proposed to be used in topological localization (WZC06). Two
databases such as the first with OACH for initial localization and the second
with SIFT for final localization steps are constructed. Finally a geometric verifi-
cation step such as a RANSAC based fundamental matrix estimation is applied
to eliminate false detection.

An outdoor localization system (WMZ07) is implemented by using a particle
filter which utilizes two global descriptors such as WGOH and WGII. Given two
images, the similarity between them is estimated based on the comparison of
each global descriptor separability. This approach obtains loop closure recall
rates which is close to the SIFT based methods while it is four times faster than
them. They further modify this combination with adding a local SIFT descriptor
in order to handle the cases in which global descriptors are insufficient to localize
the robot alone (WTMZ07).

Inspired by biological concepts Siagian and Itti (SI09) propose to use Gist as
a statistical measure of an image and salient features as measures of interest at
each image location. Then they are given to the particle filter based localization
method.

A loop closure detection algorithm which utilizes SIFT as local features and
histograms of features distribution as global features is introduced by Chapoulie
et al. (CRF11). A Bayes filter combining these representations is used to detect
loop closures in outdoor environments.

Hull Census Transform HCT based scene change detection and topological
map building algorithm for being used with omnidirectional images is proposed
by Wang and Lin (WL10). The algorithm starts with SURF extraction and the
convex hulls are computed over extracted features. Using a vector magnitude
comparison coding statistics for coding are calculated and finally binary codes
are formed. The codes are employed for scene changes detection and building
topological graph. Further, Extended HCT (LLY13) in which color information
and structure information of the convex hulls are injected to the framework is
proposed as expanded version of HCT. Another location recognition approach
which is a combination of edges, local features and color histogram is developed
by Wang and Yagi (WY12).

In our previous work (KUM13), we propose a hierarchical topological map
which represents an environment with a graph structure by using a global de-
scriptor and visual words. It utilizes Vector of Locally Aggregated Descriptors
(JDSP10b) for node level loop closure detection as a first step and then utilizes
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Figure 2.6: Semantic maps built on topological maps. Figure courtesy: A. Pronobis

(PJ12)

BoW method for image loop closure detection. It is an efficient appearance based
loop closure detection algorithm which can handle over 11000 images by using
modified inverted file structure. Another contribution is that a spatial similarity
constraint which exploits an advantage of the omnidirectional image is utilized
instead of epipolar geometry based verification step.

2.4 Vision based Semantic Mapping

Semantic mapping is a qualitative way of representing the environment which
targets to achieve better navigation and task planning as well as intersection
between humans and robots capabilities. A qualitative way of representing the
environment can be explained as identifying and keeping the track of the signs,
the symbols and the objects which involve meaningful concepts for human beings.
Therefore, semantic mapping is a hybrid mapping technique which requires com-
bination of different information models. An intuitive way of building semantic
maps is shown in figure 2.6.

We classify semantic mapping literature based on their applications in mobile
robotics. An illustrative representation of this classification of the most common
semantic mapping approaches is illustrated in the figure 2.7. First we divide the
literature into two groups. The first category consist of the ones which use 2D
or a 3D metric map of the environment. Metric model usually is utilized as a
supplementary information which facilitate the process of identification and la-
beling of the environment. Semantic mapping approaches which are constructed
on topological map is the second category. An abstraction of the explored envi-
ronment in terms of graph whose nodes are organized in a geometrical manner
is proposed to maintain conceptual knowledge about the mapped areas. These
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Figure 2.7: An illustrative representation of the classification of semantic mapping

approaches is shown.

topological graphs can further be divided into two category. The ones which
only keep geometrical features unrestrictedly or the ones which are restrained in
agreement with the semantic attributes that they enclose.

2.4.1 Semantic mapping based on Metric Approaches

The majority of the semantic mapping approaches in the literature are con-
structed on top of metric maps. They are separated into two groups. The
paradigms are designed for indoor environment and outdoor environments.

2.4.1.1 Indoor Semantic Mapping

The approaches which are designed for indoor environments are further classified
as single scene and large scale scene. The approaches which take an instance frame
into account and provides semantic concepts with respect to a local coordinate
frame is named as the single scene. On the other hand, the approaches which
progressively build a metric map with respect to a global coordinate frame at the
same time define high level concepts are named as the large scene.

A single frame snapshot technology (NRG+04) is proposed as an example of
semantic map which is considered as an interaction between robots and humans.
Real word images are captured and kept to augment a metric map. Icons or
symbols which provide importance of places and objects in the field of view are
used to augment the metric maps. Kostavelis et al. (KGBN12) is proposed to
learn if the mapped places are traversable by using an SVM based memorization
algorithm. It is designed to work in damaged indoor environments after being
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hit by a natural disaster. Further this method is implemented on a stereo vision
system and shows remarkable performance in indoor and also outdoor environ-
ments (KNG12). Visual place categorization using a single RGB−D frame can
be given as examples of this category (MMKH12, RTMF08).

On the other hand, large scale indoor semantic mapping literature can be
classified based on the sensor choice and the methods used for building the met-
ric map. Although there is a strong literature which utilizes laser scanners, we
exclude them here because we concentrate on vision based solutions. RGD−B
sensors are another popular way to construct 3D structure of the surrounding en-
vironment. In the first example of this (KG13), a support vector machine SVM
in conjunction with bag of words method is applied to identify dissimilar places
after building a 3D map. In the second example SLAM6D toolkit is modified to
register subordinate point clouds into a consistent full scene points (GWAH13).

Civeraa et al. (CGLR+11) proposes a semantic mapping approach which em-
ploys monocular SLAM and object recognition process in parallel. This can be
seen as a feature based map enhanced with different types of furniture identified
in the mapped area.

A graphical model is first built to represent semantic information by Pronobis
et al. (PJ12) and further it is augmented by introducing an SVM based cue inte-
gration to the framework (PMCJ10). Finally, a multi layered semantic mapping
approach (PJ11) which combines multiple visual and geometrical information is
presented as a final version of this work.

Stereo vision based methods which aim to obtain global and consistent met-
ric map are also good examples of the large scale indoor semantic maps. For
example, object labels are identified and they are used to augment the metric
map constructed by the SLAM module (VGNS07). The same objective for an
office environment is reached by exploiting text detection (CSCN11). In an other
work a Gaussian model is used to label the spatial regions of the metric map in
order to improve the navigation and mobile manipulation ability (NGRTC10). A
framework based on homography and context based image retrieval techniques
is another similar work proposed by Feng et al. (FRJ+12) in order to deal with
difficulties coming from viewpoint and camera position changes. A long term
metric map is used to categorize the places by Ranganathan et al. (RL11).

2.4.1.2 Outdoor Semantic Mapping

Compared to the approaches developed for indoor environments, there are less
number of semantic mapping approaches designed for outdoor environments.
Most of them deal with street images captured by a camera or multi camera
setup. The result of a recently proposed method is shown in figure 2.8 as an
example.
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Figure 2.8: As an example of outdoors semantic mapping: pixel wise labeling with
the help of dense 3D reconstruction. The top row shows the pixel wise semantic
labeling. The middle row shows the dense 3D reconstruction and the bottom one
is one of the given image to algorithm. Figure courtesy: S. Sengupta (SGST13)
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The approach proposed in (BXD+13) aims to classify scenes by using multi-
ple sensors. Similar to this work, Conditional Random Fields are used on stereo
images captured through streets in order to label them (SGST13). Another ap-
proach which is also designed for labeling of street images is developed based
on segmenting each given image (SSLT12). A large scale semantic map is con-
structed based on the segmentation of successive images as the final result of the
algorithm. As another probabilistic approach supervised multi−class Gaussian
process GP classification is applied on the 3D point cloud in order to categorize
the objects (PTRN12).

Katsura et al. (KMHS03) introduces a vision based outdoor navigation system
enforced with object detection. The main contribution of their work is that the
object recognition is robust to the weather and season changes. LadyBug multi
camera system is used by Singh and Kosecka (SK12) in order to build large scale
semantic map. The street scenes are clustered with predefined labels based on
a trained classifier. An online gradient boost algorithm which depicts concept
dependent detectors (LSS13) is utilized to build a semantic map based on the
images captured by UAV.

2.4.2 Semantic mapping based on Topological Approaches

Due to the fact that metric maps are based on spatial information, the associated
high level concepts are kept out of the sight. A topological graph which consists
of nodes and edges is a way of revealing this hidden information.

A combination of semantic and topological maps is proposed by Krishnan et
al. (KK10). A graph whose nodes assign to a label such as a room and edges
assign to transition area label such as corridor is constructed at the top of a
topological map. A similar graph is constructed as a semantic map (VMS+09)
based on clustering the recognized object with respect to their spatial informa-
tion. Again based on objects a hierarchical probabilistic representation of the
environment which consists of semantic concepts is proposed (VS08). A semanti-
cally annotated topological map is another example of augmenting a topological
map with semantic information (KG13).

Inspired by the way of human navigation a semantic mapping process which
employs global landmarks is presented in (KYS13). Bayesian model of egocentric
semantic map which consists of spatial object relationships and spatial node re-
lationships is developed. Considering that, it is also seen as a hybrid map which
contains topological, metric and semantic information.

Another type of building semantic maps is to use the constrained topological
maps. The constrained topological maps can be defined as navigation graphs
which express the connectivity and the transition feasibility among the places in
the map. An example of this process is presented by Mozos and Burgard (MB06).
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Figure 2.9: Toy example illustrating how the environment can be represented
with metric, topological and topo-metric model, respectively. Figure courtesy: Ioannis

Kostavelis (KG15)

Adaboost used for classifying the metric map into semantic classes and then the
topological map constructed as the combination of the geometric and the semantic
knowledge. In other words, a graph whose nodes and edges correspond to the
semantically annotated regions and their connections respectively is their final
result. In another work hidden Markov models HMM are used to semantically
label the nodes in the topological map (MTJ+07). Recently, HMMs are also
utilized to build a sparse topological map in which each node is accompanied by
a place label (KCG13).

For outdoors environments which is captured by UAV, topological representa-
tion of the environment is induced by using different semantic concepts (LSS13).
The second example is designed for being used in a wearable catastrophic system
for an outdoors scenario (MGGR+12). That is, grouping the Markov models is
utilized to semantically label the topological maps.

2.5 Vision Based Hybrid SLAM

Hybrid SLAM combine higher level conceptual maps and localization methods
such as topological and semantic with lower level and spatially accurate maps
and localization methods in order to maximize the advantages and minimize
the weaknesses of each alone. For example, the lack of metric information is
one limitation of the pure topological approaches. Meanwhile, the objective of
hybridization of metric maps is to extend them for large environment and obtain
better global coherency. As a toy example figure 2.9 visualizes the combination
of metric and topological maps together.

A vision based hierarchical map is built automatically by (ZBK05). First,
using SIFT features and geometrical constraints a low level map which is a graph
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is constructed. Then, a high level map is obtained by clustering the nodes. Adding
the epipolar geometry check and planar geometry constraint to this framework
a navigation system is presented by (BTZK07). Further, it is augmented with
an incremental data association algorithm which utilizes Connected Dominating
Set concept (BZK09). An efficient loop closure detection is proposed by using
this method. The same strategy is implemented on omnidirectional images along
with odometry information by (DCD11). First a dense pose graph map of the
environment is constructed by using a graph based SLAM approach. Then a two
level hybrid map such as local and global is extracted from this pose graph. A
global topological map is built by a dual clustering approach while the local level
consists of spherical views represented by the extracted features. These spherical
views are used for estimating the robot’s heading.

An alternative hybrid representation is obtained by using metric sub−mapping
approach. In other words, graph based models which divide the large environ-
ments into local metric maps are commonly used (BNL+03). Inspired by this
work, hierarchical atlas which is a multilevel and multi−resolution representa-
tion of an environment is proposed by (LMS+05). There is a topological map
at the highest level that organizes the free space into low level sub-maps while a
collection of features constructs these submaps. Using the hierarchical atlas maps
a hybrid localization approach in two steps is presented by (TMM+07). First,
the most probable map is found based on calculation of a discrete probability.
After finding the correspondent map, a metric position is estimated by using a
Kalman Filter. Later on, the same authors also present a solution for a multi
hypothesis topological loop closing problem as a part of SLAM (TKCW09). Fi-
nally, they combine all these in their recent SLAM framework (TKC12). In the
same line, Hybrid Metric Topological SLAM HTM−SLAM (BFMG08) in which
the environment is modeled with a graph. Nodes of the graph are in the form
of sub−metric maps and edges of the graph represent the coordinate transfor-
mation between these local maps. Moreover, there is also a path estimation step
which is based on an unified Bayesian approach. An extended version of this
work (BGJFM09) uses spectral techniques in order to partition the map into
sub-maps in an efficient way. Also they derive their formulation in order to use
stereo vision.

A hybrid visual navigation approach is presented by (SRDC09) in order to
map out large environments and to accurately localize using a monocular vision
sensor. 2D image features and reconstructed 3D features are used together for
performing a navigation task. In our previous work (UKR+14) a sparse topo-
logical map which estimates the loop closure likelihood hierarchically by using
Bayesian filtering (KUM13) is enhanced with metric sub-maps at the nodes in
which the utilized robotic platform is turning or passing through a bent.

Badino et al. (BHK12) proposes to integrate metric data directly into a topo-
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logical map using GPS and odometry besides the vision sensors. Each node of
the graph consists of a selected image which is also marked with its GPS tag.
Selection of the images are done at each predefined Euclidean distance. More-
over, they also build a hybrid feature database which consists of feature’s node
information and its real position information. Therefore, real metric positions
of the features extracted from these captured images are also available with the
topological structure of the environment in their map. A Bayes filter is utilized
to estimate the position while the vehicle is exploring the environment.

Another objective of hybridization is to detect loop closures which is an im-
portant constraint to keep the map globally coherent. Accumulating errors on
robot position estimation and landmarks in metric maps makes the loop closure
detection a difficult task without utilizing the topological methods. Therefore
Lim et al. (LFP12) uses an appearance based loop closure detection module with
a sparse bundle adjustment module to obtain a topo-metric map which also tries
to perceive globally metric property.

A three step hierarchical localization method approach which is designed for
omnidirectional images is proposed by (MSG+07). First, a global color descriptor
is used to find loop closure candidates and then line features are matched in order
to find the most similar image among the extracted candidates. Finally, metric
localization is also implemented by using the 1D radial trifocal tensor. Further
they augment this framework by adding SURF local invariant features (MGS07).

2.6 Conclusion

The previous sections surveyed the related literature in visual SLAM. As it is
seen, a significant number of SLAM approaches are using vision sensors due to
the fact that cameras are low cost, light, passive and low energy sensors and they
provide a rich and distinctive data. To be able to exploit the full capacity of
vision sensors needs to develop reliable methods which are robust to changes in
illumination, in appearance due to people and other moving object in the field of
view as well as in seasons. In fact, data association is still an open research area
in the field of computer vision. The choice of detector and descriptor has a direct
impact on building the consistent representation of the environment and the speed
of the system. Therefore, visual SLAM is still a challenging and developing area.

We state that these approaches can be classified based on the model used for
representing the environment such as;

• SLAM approaches which builds metric maps. They deal with the camera
pose estimation and scene structure from multiple images. They concen-
trate on accurate localization within a local area.
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• SLAM approaches which build topological maps. They deal with the struc-
ture of the environment which can be seen as building a graph with nodes
and edges. They concentrate on global connectivity information.

• SLAM approaches which build semantic maps. They deal with high level
concepts that can provide suitable information for modeling the environ-
ment to achieve the ability of human point of view. They focus on assigning
a predefined set of labels to semantically describe various parts of the envi-
ronment.

• SLAM approaches which build hybrid maps. They focus on turning the
weak points into a strength by combining specific advantages of the above
discussed mapping strategies to solve a problem at hand.

They are all active research area and researchers proposes new solutions for
SLAM regularly. We discussed the strong and weak points of each area in detail.
However, there is a lack of consensus on evaluation and comparison method in or-
der to show global efficiency and effectiveness of the proposed SLAM approaches.
Therefore we consider several parameters while discussing on their performance
such as the degree of human intervention, localization accuracy, map consistency,
computational time and so on and give importance to their results on well−known
publicly available datasets.
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3

Hierarchical Loop Closure

Detection

The accuracy of a mapping system depends on the ability of knowing if the robot
is revisiting a previously mapped area. It is called as loop closure detection and
it plays an essential role in all mapping approaches. Therefore, in this chapter
we discuss a hierarchical loop closure framework for building hybrid maps as
proposed in the following chapter.

A hierarchical loop closure framework is that given a query image acquired at
the current location, the algorithm retrieves the most similar node/place(s) and
then retrieves the most similar image among the images that belong to the most
similar place(s). The process of retrieving the most similar node is called the
Node Level Loop Closure and that of retrieving the most similar image is called
the Image Level Loop Closure. The aim of this formulation is to achieve efficient
and accurate loop detection. For instance, the size of the search space for image
level loop closure is the number of nodes and that of image level loop closure is
the number of images belonging to the retrieved nodes. Therefore, both these
search spaces are far smaller than the total number of images acquired which
means faster loop closure detection process.

Considering these advantages, we construct a hierarchical framework which
consists of VLAD (Vector of Locally Aggregated Descriptors) (JDSP10a) based
node level similarity check and image level loop closure check using visual words.
In other words, given a query image, firstly the most similar places/nodes in
the map are retrieved. Then, an exhaustive similarity analysis is performed on
the member images of the retrieved places. Here nodes/places are the structures
which contains images in which visual similarity is almost constant. As the first
phase, nodes are constructed by using Image Sequence Partitioning (ISP) which
breaks a sequence of images using VLAD descriptor. This process happens very
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fast and boils down the whole mapped area to a few important nodes. The second
phase of loop closure that aims to find the most similar images is carried out using
visual words based histogram scoring.

The main issue with the hierarchical formulation of loop closure problem is
that it involves a lot of parameters which need to be tuned with respect to a
given environment or camera type. The parameters can be reduced by enabling
the algorithms to learn the parameters using a training dataset. Therefore, we
take this hierarchical structure and modify the definition of loop closure problem
to fit a classification problem. Using this modification, the parameters required
for node level loop closure are automatically learned as opposed to empirical eval-
uation in a standard loop closure detection algorithm. Moreover, an image level
loop closure algorithm posed as a Naive Bayes classification problem using four
different similarity metrics, instead of using histogram scoring used in the first
case. This approach bypasses the need for geometric consistency check popular
with many traditional approaches. In other words, parameters for the two levels
of loop closure are automatically learned from training data.

Experimental results obtained on various publicly available datasets acquired
in challenging environments. In order to effectively capture visual similarity
across images in a region by using only appearance based 2D methods, omnidi-
rectional/panoramic cameras with their 360 degree field of view is chosen over the
conventional cameras with a limited and unidirectional field of view. Apart from
that, omnidirectional cameras are also useful in detecting loop closures when the
robot is re-traversing the environment in a reverse direction. This is impossible
with traditional cameras. These two reasons justify our choice of omnidirectional
cameras for testing the generality of our approach. The computational efficiency
and accuracy obtained is evaluated and compared between two frameworks and
also two state of the art approaches such as FAB MAP 2.0 (CN09) and the work
by D. Galvez-Lopez et al. (GLT11).

The remainder of this chapter is organized as follows. We start with an
overview of the proposed framework. Before, we go into the details of the algo-
rithm, we give an introduction of VLAD for the sake of completeness. Then we
continue with explaining each step of the proposed framework.

3.1 Framework Overview

This section discusses our loop closure framework which can be seen as pure
topological mapping framework. As discussed before, the incoming sequence of
images is partitioned and each partition is represented as a node in the topological
graph which is used to perform loop closure.

Given a newly acquired image It, the following two steps are performed:
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1. A node level loop closure (NLLC) is performed with the references nodes
N

R = {N1, N2, ...} − Nc (all nodes of the map except current place node
Nc ).

2. Up on successful NLLC, an image level loop closure (ILLC) is performed on
the reference images I

R = {
⋃

Ni∈N
∗ I

Ni}, where I
Ni is the set of images

belonging to the node Ni and N
∗ is the set of similar nodes from node level

loop closure. If image level loop closure is successful, It is added to the
corresponding node and the topological graph T is appropriately updated.

3. If either or both of the node and image level loop closures fail, the image is
compared to the current place Nc and is added to it if similar. If dissimilar,
a new place node is created to which the image is added. Since this process
decides whether to create a new node or expand an existing node, we call
it Image Sequence Partitioning (ISP).

The framework of our loop closure algorithm is given in figure 3.1.
One can note that the current place node is not included in the reference

node set N
R. The reason is that, due to temporal and spatial proximity, often

newly acquired images are highly similar to the current place node. Therefore, a
tighter similarity measure than the one used for node level loop closure has to be
employed to decide whether a new image belongs to the current node.

We make use of Vector of Locally Aggregated Descriptors (VLAD) for node
level loop closure (NLLC) and image sequence partitioning (ISP), and local im-
age descriptors (like SIFT, SURF, etc) for image level loop closure (ILLC). The
following sections discuss VLAD, NLLC, ISP and ILLC.

3.2 Vector of Locally Aggregated Descriptors

VLAD (Vector of Locally Aggregated Descriptors) (JDSP10a) is a global image
descriptor constructed from local image descriptors like SIFT (Low04b) or SURF
(BTG08). It has been successfully used for compact representation and search in
web-scale databases. The basic intuition behind VLAD descriptors is to combine
the quantization residues of the local feature descriptors into a single descriptor
to use it as a global image descriptor. To the best of our knowledge, this is the
first usage of VLAD in robotics and hence we describe it briefly here.

Algorithm 1 describes VLAD computation using local image feature descrip-
tors. The inputs for VLAD computation are an image I, a bag of words quantizer
Q (SZ03), feature descriptor length l and a PCA (Principal Component Analysis)
matrix P . The quantizer Q = {c1, c2, . . . , ck} is learned on training data, where
each ci is a cluster centroid and k is the vocabulary size. The PCA matrix P is
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Figure 3.1: Loop Closure Detection Framework
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also learned on the training data. In other words, Q and P are learned by using
big datasets and more details are given in experiments section.

Firstly, feature descriptors are extracted on image I which are then quantized
(lines 3-6) using the quantizer Q. Subsequently, quantization residues are com-
puted and cumulated for each quantized descriptor (lines 7-12). Quantization
residue is the vector difference between the feature descriptor and the centroid of
the cluster in the vocabulary Q to which it is quantized, and hence has the same
dimensionality l as the feature descriptors. Then the quantization residues of all
the descriptors assigned to each cluster are summed up and stored as column vec-
tors of a matrix d. Therefore, the matrix d will have k columns each corresponding
to a cluster in the vocabulary and l rows indicating the feature dimensionality.
In case no descriptors are quantized to a particular cluster, it simply contributes
a column vector of zeros to the matrix d. Finally, the k column vectors of d (sum
of quantization residues) are augmented to a single vector V

′ (line 13) resulting
in what we call a full VLAD descriptor of dimensionality k ∗ l which can be a
huge number. For example, in our implementation, a 128−word vocabulary (k)
and 64−dimensional (l) SURF descriptors are used and the resulting full VLAD
descriptor is 8192−dimensional. Therefore, we conserve only a few informative
dimensions by projecting to a lower dimensional space using a PCA-projection
matrix P (line 15), which is learned offline along with the bag of words vocab-
ulary Q. In the present application, PCA-projection has been used to compress
the full VLAD descriptor to a 128− dimensional VLAD descriptor V. Hereafter
in this paper, whenever a reference is made to VLAD descriptor it implies PCA
compressed VLAD descriptor.

The quantizer Q and the PCA matrix P are the input parameters which are
learned offline on the training data. It has been suggested in (JDSP10a) that
very small vocabulary sizes like k = 64 to k = 256 are sufficient for constructing
meaningful descriptors that facilitate accurate matching. A detailed description
of the quantizer and PCA matrix learning is given in section 3.5.

Since VLAD only depends on the continuous quantization residues, it has
been shown to bypass (JDSP10a) the side effects of hard quantization (PCI+08a)
to some extent.

3.3 Node Level Loop Closure

3.3.1 NLLC

Node level loop closure NLLC aims to evaluate the similarities of a given image
with each of the reference nodes (node-image similarity). We model any node
Ni as an ellipsoid whose axes are defined by a multivariate gaussian distribution
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Algorithm 1 VLAD Descriptor Computation

1: procedure Get_VLAD(I, Q, l, P )

2: ⊲ I - Image, Q - Quantizer, l - SURF descriptor dimension, P - PCA matrix

3: Fsurf =Extract_SURF(I) ⊲ Extracts SURF features

4: n =Num(Fsurf ) ⊲ Number of SURF features extracted.

5: k =Vocabulary_Size(Q)

6: Fw =Quantize(Fsurf , Q) ⊲ Quantize features into words.

7: d = [0]k×l ⊲ Initialize residue matrix with zeros.

8: for i = 1 to n do ⊲ For each SURF feature

9: ci =Get_Centroid(Q, Fw
i) ⊲ get centroid corresponding to the word.

10: d(Fw
i) = d(Fw

i) + Fsurf
i − ci

11: ⊲ Accumulate quantization residue as columns of d.

12: end for

13: V
′ = [d(1)T |d(2)T |....|d(k)T ]1×(k∗l)

14: ⊲ VLAD descriptor computation by augmenting quantization residues.

15: V = P ×V
′T

⊲ PCA-projection to compress the descriptor length.

16: end procedure

over VLAD descriptors V
Ni = {V Ni

j , V Ni

j+1, . . . } of its member images I
Ni . Hence

a node Ni can be represented by the mean vector µNi and the diagonal covariance
matrix ΣNi

d computed over the member image VLAD descriptors.

Node-image similarities are evaluated using Mahalanobis distance (Mah36)
which measures the distance between a given vector and a distribution. Given
the VLAD Vq of a query image Iq, its similarity to a given node Ni is evaluated
using Mahalanobis distance ∆Ni

Vq
.

∆Ni

Vq
=
(

Vq − µNi
)T

ΣNi

d

−1(
Vq − µNi

)

(3.1)

We consider that image Iq is similar to a node Ni if the Mahalanobis distance
∆Ni

Vq
satisfies the similarity condition in equation 3.2.

|∆Ni

Vq
− µ∆

ns| ≤ 3σ∆
ns (3.2)

Where µns and σns are the mean and standard deviation of a gaussian dis-
tribution over Mahalanobis distance thresholds that control the node similarity
measure. We enforce ∆Ni

Vq
to be within three times standard deviation such that

99% of the possibilities governed by the gaussian distribution are covered.

The nodes N
∗ that satisfy the similarity condition are the winning nodes of

the node level loop closure and represent possible places at which the query image
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Iq might have been acquired. The member images of N∗ are considered for image
level loop closure.

However, if the similarity condition is not satisfied (no similar nodes were
found), image sequence partitioning (ISP) is performed to verify if the image Iq
belongs to the current place node. Equations 3.3 and 3.4 show the ISP conditions
that determine the membership of Iq in Nc.

|∆Nc

Vq
− µ∆

isp| ≤ 3σ∆
isp (3.3)

‖C
(

V
Ni

)

− C
(

V
Ni ∪ {Vq}

)

‖ ≤ Sisp (3.4)

Equation 3.3 employs a condition similar to that of node similarity evaluation
using mean and variance of a gaussian distribution learned on training data. In
equation 3.4, C (.) is a function that calculates centroid of a set of descriptors ;
essentially this condition measures the centroid shift induced by the query VLAD
descriptor and constrains it to be within a certain threshold Sisp.

For the preliminary case the parameters µ∆
ns, σ

∆
ns, µ

∆
isp, σ

∆
isp and Sisp are fixed

manually based on experimental observations. In the second part, this is changed
with more sophisticated learning process which is discussed in detail in section
3.3.2.

3.3.2 Parameter Learning

The simplest way to automatically learn (via supervised learning) parameters
that control the determination of node similarity and the sequence partitioning is
to have an accurate ground-truth. However, it is nearly impossible to construct
ground-truth with an ideal partitioning and similarity measure even by humans.
Therefore, we propose a two-step approach to learn the parameters, using image
acquisition ground-truth (GPS readings at acquired locations). The first step
is an automatic partitioning of a training image sequence to the best possible
accuracy. The second step involves estimation of parameters that best fit the
training sequence partitioning.

For the partitioning step, training data is carved out from an original image
sequence which constitutes a set of VLAD descriptors of the training image sub-
sequence and the associated GPS coordinates(ground-truth). K-means clustering
(HW79) is performed by varying the number of clusters k on the VLAD descrip-
tor set and their GPS coordinates separately. The value of k which maximizes
correlation between the sets of VLAD and GPS clusters is considered to be the
best partitioning. Intuitively, the clustering of images is enforced to satisfy the
ground-truth. The correlation between clusterings is measured using conditional
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entropy (AR13) as in equation 3.5,

H (Gk|Vk) = −
k
∑

i=1

k
∑

j=i

pij log2
pij
pci

(3.5)

where Gk and Vk are the clusterings of ground-truth (GPS readings) and
VLAD descriptors with k clusters respectively, pij is the probability of a data
point in cluster i of Vk belonging to a cluster j of Gk, and pci is the probability
of cluster i in Vk which is the fraction of the data points in that cluster to the
total number of data points.

Conditional entropy is zero when the two clusterings perfectly agree with
each other and log2 k in case of worst cluster correlation. Since the maximum
conditional entropy depends on the value of k, the entropies should be scaled by
a factor of log2 k in order to compare different clusterings. The best clustering k∗

is the one that minimizes scaled conditional entropy (equation 3.6).

k∗ = argmink

H (Gk|Vk)

log2 k
(3.6)

Figure 3.2 shows a plot of scaled conditional entropy plotted against k values.
Vk∗ may not represent the perfect clustering of images but automatically provides
sufficient examples for the parameter estimation step.

The parameter estimation step first estimates the node similarity parame-
ters µns, σns from the clustering Vk∗. The idea is to fit a gaussian distribution
represented by these parameters over observing Mahalanobis distances ∆T =
{∆1,∆2, . . . } computed on various examples of node level loop closures from
the clustering Vk∗ . Assuming that the distances are independent and identically
distributed, the probability of all the distances are given by equation 3.7.

p
(

∆T|µ, σ2
)

=
n
∏

i=1

N
(

∆i|µ, σ2
)

(3.7)

where N
(

∆i|µ, σ2
)

=
1√
2πσ

exp

(

−(∆i − µ)2

2σ2

)

(3.8)

N (∆i|µ, σ2) is a gaussian distribution defined by mean µ and variance σ2.
The parameters µ∆

ns and σ∆
ns are those that maximize the probability in equation

3.7. From the maximum likelihood estimates, they can be calculated in closed
form as,

µ∆
ns =

1

n

n
∑

i=1

∆i σ∆
ns =

√

√

√

√

1

n

n
∑

i=1

(∆i − µ∆
ns)

2 (3.9)
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Figure 3.2: Plot of scaled conditional entropies against 100 different choices of k

with the minimum value highlighted as k∗.

The parameters µ∆
isp and σ∆

isp are estimated in a similar fashion by maximizing
the likelihood of Mahalanobis distances of descriptors farthest to the centroid
of their respective clusters. However, Mahalanobis distance just measures the
distance in standard deviations. For nodes with few member images/descriptors
mahalanobis distance could result in over-confident results.

Therefore we use the centroid shift parameter Sisp. It provides an absolute
distance between descriptors and is measured using centroid shifts. A centroid
shift is the distance by which a centroid is shifted on adding a new descriptor.
We consider centroid shifts computed between cluster centroids and their closest
descriptors in neighboring clusters from the clustering Vk∗ ; the shift parameter for
ISP, Sisp is simply the median of these centroid shifts. To elucidate, we consider
the cases where a cluster is broken and a new cluster is formed, identify the
data points that lead to segmentation of the clusters, measure the centroid shift
demanded by these data points, and finally recover the median centroid shift as
Sisp.
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3.4 Image Level Loop Closure

Image level loop closure aims to find the images most similar to the query image
Iq and determine if they actually cause loop closure. Given the set of winning
nodes N

∗ from node level loop closure, a reference image set I
R consisting of all

the member images of the winning nodes is constructed. Each reference image in
I
R is matched with the query image Iq.

For the preliminary case, image similarities are computed by combining two
similarity measures namely the VLAD descriptor similarity and the spatial simi-
larity. VLAD descriptor similarity is computed as the euclidean distance between
the query image VLAD descriptor Vq and the reference image descriptor Vr. While
algorithm 2 gives the brief structure of image similarity computation, VLAD de-
scriptor similarity and the spatial similarity which evaluates spatial similarity
between two omnidirectional images will be explained in detail as the random
variables of classification algorithm.

Algorithm 2 Image similarity computation.

1: procedure LIKELIHOOD_EVALUATION(Ir, Iq)

2: ⊲ Ir - Reference Image, lq - Query Image

3: likelihoods = [ ]

4: for i = 1 to n do ⊲ For each image i in Ir

5: vi =Euclidean_Distance(Vi , Vq) ⊲ Vi and Vq are VLAD descriptors.

6: vi =Spatial_Similarity(Zi , Zq, W, H, b) ⊲ Zi and Zq are lists of quantized words. ⊲

W and H are width and height of images, respectively. ⊲ b is bin width for shift histograms.

7: likelihoods = [likelihoods, vi ∗ si]
8: end for

9: end procedure

In the second part, we pose the image level loop closure as a classification
problem that uses four different similarity metrics. These similarity metrics are
computed between the query image and each of the reference images and used as
features for a Naives Bayes (KF09) classifier.

The structure of our Naive bayes classifier is illustrated in Figure 3.3. The
variable L is the target random variable that takes on binary values 1 and 0
indicating the presence or absence of a loop closure respectively. The remaining
random variables are called the observed random variables and are used as fea-
tures for the classifier. The random variables associated with the four similarity
metrics are:

• V is continuous and represents the similarity of an image pair using VLAD
descriptors.
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L

SV N R

Figure 3.3: Graphical model of our Naive Bayes framework.

• S is continuous and represents the spatial similarity computed using local
image descriptors on an image pair.

• N is discrete and imposes a constraint on the minimum number of matches
required for a valid loop closure.

• R is continuous and represents the measure of similarities in local odometry.

The probability of a loop closure given the observed data is given by the
conditional probability,

p (Li|X) , Li ∈ {1, 0} (3.10)

Where, Li indicates the binary state of loop closure presence or absence, and the
observed random variables (similarity metrics) are represented by X = {V, S,N,R}
for the simplicity of notation. Using bayes rule, we can rewrite equation 3.10 as

p (Li|X) =
p (Li) p (X|Li)

p (X)
(3.11)

The denominator term is just used for normalization and hence we rewrite equa-
tion 3.11 as

p (Li|X) ∝ p (Li) p (X|Li) (3.12)

The term p (Li) is called the prior probability and p (X|Li) is called the likelihood
of the observation variables. As can be seen from the graphical model in Figure
3.3 (and from naives assumption), the similarity metrics are conditionally inde-
pendent of each other given the loop closure state variable L. As a result, we can
write the likelihood term as the product of individual likelihoods as in equation
3.13.

p (X|Li) = p (V |Li) p (S|Li) p (N |Li) p (R|Li) (3.13)

55

hif_loopclosure/figures/nb_model.eps


Hierarchical Loop Closure Detection

Finally, we say that a loop closure has occurred, if the conditional probability
of loop closure exceeds the conditional probability of no loop closure (equation
3.14), and no loop closure otherwise.

p (L1|X) > p (L0|X) (3.14)

To compute these conditional probabilities, we need to evaluate the prior
probability of loop closure which we assume to be uniformly distributed (p(L0) =
p(L1) = 0.5) and the four likelihood terms (equation 3.13). The likelihoods
determine the likelihood of a particular similarity measure given the loop closure
state and can be evaluated using Conditional Probability Distribution (CPD)
functions. CPDs themselves are probability distributions that satisfy the axioms
of probability and are governed by parameters learned from training dataset. We
use gaussian CPDs to model all of our conditional distributions except p(N |Li).

Ground-truth G in the form of GPS readings at the time of image acquisition
is used to classify image pairs as loop closure or non loop closure examples that
are used as training data T = {T1, T0}.

T1 = {(Ij, Ik) | |j − k| >p and g(Ij, Ik) ≤ α} (3.15)

T0 = {(Ij, Ik) | |j − k| >p and g(Ij, Ik) > α} (3.16)

T1 and T0 are the sets of positive and negative examples for loop closures
respectively. The first condition |j−k| > p ensures that the image pair should not
be adjacent and should be separated by p frames. g(Ij, Ik) is the distance between
the locations of acquisition of the images computed from the GPS ground-truth
G, which should be less than or equal to α to be a loop closure.

The following subsections discuss each of the similarity measures and their
CPDs.

3.4.1 VLAD similarity

This similarity measure v = ‖Vj − Vq‖ is the euclidean distance between VLAD
descriptors of a reference image Ij and a query image Iq. We use a Gaussian CPD
to model the likelihood of VLAD similarity as,

p(V = v|L1) = N(v|µv1,T1, σ
2
v1,T1) (3.17)

p(V = v|L0) = N(v|µv0,T0, σ
2
v0,T0) (3.18)

The parameter sets {µv1,T1, σ
2
v1,T1} and {µv0,T0, σ

2
v0,T0} are parameters of the

Gaussian distributions that maximize the likelihood of loop closure and no loop
closure events on the training sets T1 and T0 respectively. The maximum like-
lihood estimates for parameters of a Gaussian distribution have already been
presented in equation 3.9.
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3.4.2 Spatial Similarity

This section discusses the spatial similarity measure represented by the random
variable S. We use spatial constraints to exploit the cyclic image structure of
panoramic images, to compute similarity between two images. Panoramic images
are obtained by unwrapping omnidirectional images or stitching individual images
from LadyBug cameras. In this chapter, when we refer to omnidirectional images,
we imply panoramic (unwrapped omnidirectional or LadyBug) images.

Due to the 360 degree field of view, omnidirectional image content remains
invariant to in-place rotations and minor translations. Let us consider two om-
nidirectional images acquired at approximately same location but with different
heading directions ; and the robot is assumed to move in locally planar environ-
ments. Since the omnidirectional images have a circular field of view, distances
between different objects in an image are well preserved even under a change in
heading direction and a slight translation. In other words, the spatial structure of
the objects (also applies to local image features) does not change with an in-place
rotation of the camera. Hence if two images are from the same place, all objects
in the first image should be shifted by the same amount to take their positions in
the second image. A collective zero shift in object/feature coordinates indicates
that the images are acquired in the same place and same heading direction, while
a collective non-zero shift indicates same place with different heading. In case of
a non match different objects will have different shifts and there is no notion of
a collective shift. This situation is illustrated in Figure 3.4 from which, one can
infer that the feature shifts of the true loop closure follow a converging pattern
with few outliers and those of the false loop closure look dispersed. This tech-
nique is particularly useful in discriminating true loop closures from false loop
closures which arise due to perceptual aliasing.

Let the set of features shifts between an image pair be F = {(δx1 , δy1), (δx2 , δy2), . . . }.
We use a bivariate gaussian distribution NF(µF,ΣF) to model the distribution of
the shifts. For a true loop closure, since the shifts will be concentrated around a
small area the gaussian will be narrow and peaked, and a flat gaussian otherwise.
For the distribution NF to accurately represent the shifts, outliers generated by
a few possibly wrong matches have to be eliminated (see Figure 3.4c). Compu-
tationally expensive techniques like Robust Regression can be used to get rid of
the outliers. However, to be able to quickly repeat this process for several image
pairs, a simpler heuristic is employed. The heuristic works on a fair assumption
that in case of a loop closure at least 50% of the feature matches are accurate.
Therefore, we estimate a temporary mean µt on the shift points F and then con-
sider the top 50% of the nearest shift points to µt to re-estimate the mean µF

which is more accurate. Using this µF and the nearest shifts, we also compute
the covariance matrix ΣF .
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(d) False Match Feature

Shifts

Figure 3.4: Feature Shift analysis of a true match and a false match. 3.4a shows

features matched across a pair of images which are acquired in the same place.

Matches are shown with blue lines. Shift in X and Y coordinates of a matched

feature pair is demonstrated with a red dashed line. 3.4b illustrates a false match

of a pair of images acquired at different places. 3.4c and 3.4d show the plots of

matched feature shifts ((δx, δy) in Figure 3.4a) corresponding to the true and false

match cases respectively.
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Now the task of obtaining a similarity measure by studying the structure of
the distribution NF remains. To achieve this, we first assume an ideal normal
distribution NI whose parameters {µI ,ΣI} represent (in pixels) shifts of an hypo-
thetical image match corresponding to an accurate loop closure. As we shall see,
the choice of mean µI is not important. However, we assume ΣI to be a diagonal
matrix diag(dI1, dI2) which defines the width of the gaussian in pixels. Generally
modest widths such as dI1 = dI2 = 5 or dI1 = dI2 = 10 are sufficient and larger
widths produce undesirable similarity measures.

To compute a similarity score, we compare the distributions NF obtained on
an image pair with an ideal distribution NI, using Jeffries-Matusita (JM) distance
(Jef61). JM-distance extends Bhattacharya distance (Mah36) which calculates
the distance between two distributions. JM-distance projects the Bhattacharya
distance values to a bounded interval. JM-distance between NF and NI can be
written as,

JM (NF,NI) =
√

2 (1− e−B(NF ,NI)) (3.19)

Where B(NF,NI) is the Bhattacharya distance between the distributions
which can be given as,

B(NF,NI) =
1

8
MΣ (µF , µI) +

1

4
(2 log |Σ| − log |ΣF | − log |ΣI |) (3.20)

MΣ (µF , µI) =(µF − µI)
TΣ−1(µF − µI) (3.21)

Σ =
ΣF + ΣI

2
(3.22)

Since we are comparing the distribution of shifts with what would have been an
ideal distribution on shifts, it requires us to assume a common mean. Substituting
µF = µI in equation 3.20 would leave us with the following expression (equation
3.23) for B(NF,NI) to be used in equation 3.19.

B(NF,NI) =
1

4
(2 log |Σ| − log |ΣF | − log |ΣI |) (3.23)

Thus we have our spatial similarity measure s = JM (NF,NI). To learn the
conditional distribution p(S|Li), a gaussian CPD is used which allows to estimate
the parameters that maximize the likelihood of the distributions N(s|µs1,T1, σ

2
s1,T1)

and N(s|µs0,T0, σ
2
s0,T0) from the training data.

3.4.3 Similarity of Local Odometry

This similarity metric measures the correlation of local odometry information
between the current and a previous traversal. While a robot is re-traversing a
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(a)

(b)

Figure 3.5: Figure 3.5a shows a re-traversal. Green trajectory is the previous

traversal and the red trajectory is the current traversal. Figure 3.5b shows the

components of the trajectory structure evaluation function O(.).
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previously visited area causing a series of loop closures, the structure of the re-
traversal trajectory should be the same as that of the previous visit. Figure 3.5
shows an example of a re-traversal (loop closure) which occurs over a period of
time and several image match pairs supporting loop closure. Let Ip−4 and It−4 be
the first reference and query image match pair causing a loop closure, and let It
and Ip be the current loop closure image pair. The trajectories can be compared
using the similarity metric given in equation 3.24.

r = min

(

O(Ip)

O(It)
,
O(It)

O(Ip)

)

, where O(It) =

t−h
∑

k=t

odo(It, Ik) (3.24)

Where odo(It, Ik) is the distance between image It to Ik, computed using pose
and heading information obtained from the robot odometry. The parameter h
indicates the length of the past trajectory (history) that is used for the similarity
computation. A graphical representation of the function O(.) with h = 4 can be
seen in Figure 3.5. The min operator is used such that the similarity measures are
always less than or equal to 1. This metric is used to measure the consistency of
the evolution of a sequence of loop closures. In a way, this metric discourages false
loop closures more than encouraging true loop closures. This similarity measure
is used to evaluate p(R|Li) which is modelled with a gaussian CPD learned from
training data similar to the previous two similarity measures.

3.4.4 Minimum Matches Constraint

This is a constraint rather than a similarity measure and it is not learned on train-
ing data. This constraint imposes that there be a minimum number of features
matched between a pair of images to be considered a loop closure. We employ
this constraint especially since the other similarity measures are independent of
the number of feature matches and as a result produce false loop closures.

We make use of the CPD in equation 3.25 for a true loop closure (L1) where
θmin is the minimum number of feature matches, θsuf is the sufficient number of
matches and n is the number of matches for the image pair being considered. This
CPD assigns zero probability if the number of matches are less than minimum
required and an increasingly linear probability thereafter, and finally a constant
probability if the matches are above the sufficient level. This CPD is designed
such that it follows both the probability rules Σnp(N = n|L1) = 1 and ∀n p(N =
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n|L1) ≥ 0.

if n ≤ θmin, p(N = n|L1) = 0

if n > θmin and n < θsuf , p(N = n|L1) =
2(n− θmin)

θ2

if n ≥ θsuf , p(N = n|L1) =
2

θ
θ = θsuf − θmin

(3.25)

Similarly the CPD for no loop closure is given by equation 3.26 which is
essentially the inverse of the true loop closure CPD. Figure 3.6 illustrates both
the CPDs graphically.

if n ≤ θmin, p(N = n|L0) =
2

θ

if n > θmin and n < θsuf , p(N = n|L0) =
2(θsuf − n)

θ2

if n < θsuf , p(N = n|L0) = 0

(3.26)

3.4.5 Post-Processing

Given an image pair to match for loop closure detection, we evaluate all the CPDs
as discussed in the earlier sections and evaluate the conditional probabilities of
loop closure. A loop closure is said to be detected if the conditional probabilities
of loop closure exceeds that of no loop closure as in equation 3.14. When a loop
closure occurs, the image is added to the corresponding node.

It is possible that multiple images surrounding an actual image might be
tagged as positive loop closures for any given query image. In this case, we
choose a single reference image whose conditional probability is the highest as
the final loop closure result.

3.5 Experiments

Experimental validation of our approach has been performed on four publicly
available datasets containing omnidirectional/panoramic images namely IPDS-
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(a)

(b)

Figure 3.6: Graphical representation of CPDs for conditional probability of min-

imum matches constraint.
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old1, IPDS2, NewCollege3 and Bicocca(26b)4. Various details of these datasets
can be found in Table 3.1a. The sequences of IPDS-old particularly consist of
gray-scale omnidirectional images acquired in outdoor environments and can be
quite challenging to any loop closure algorithm due to the poor image quality,
whereas the IPDS and NewCollege sequences contain good quality colored images
acquired in outdoot environments. Bicocca sequences are of average quality in
comparison and contain indoor images. High quality ground-truth information
based on Real-time Kinematic GPS (RTK-GPS) is available for IPDS-old and
IPDS datsets, while NewCollege dataset provides poor quality ground-truth from
a low cost GPS. As a result, the loop closure accuracy evaluation on NewCollege
dataset needs manual inspection. Bicocca provides extended ground-truth read-
ings obtained by laser scan matching that is more accurate and exhaustive than
the included GPS ground-truth data.

Keeping the immense amount of the data in view, we uniformly sampled the
sequences (as in Table 3.1b) for our use in experiments.

3.5.1 Features and Parameters

This section discusses the vocabulary tree learning and a few user provided pa-
rameters for our algorithms.

64−dimensional Upright SURF (USURF-64) are used as local image features.
Training data to learn vocabulary trees is formed by randomly selecting 20% of
images from each sequence; USURF features extracted on all the training images
are used in learning the bag of words vocabularies for VLAD computation and
spatial similarity evaluation. These two vocabularies are learned using a single
vocabulary tree - the first level of the tree contains 128 nodes and each of these
nodes are again split with a branching factor of 6 for 3 levels having a total of
128 ∗ 63 = 27648 leaf nodes. The vocabulary tree structure is depicted in Figure
3.7. Each USURF feature is quantized at two levels - one at the first level of the
tree (forms a 128-word vocabulary) which is used for VLAD and the other at the
leaf nodes (forms a 27648−word vocabulary) which is used for spatial similarity
analysis. Full VLAD descriptors computed on all the training images are used to
learn the PCA matrix P .

Most of the parameters used in this algorithm are learned automatically from
the ground-truth data. However, a few parameters listed in table 3.2 are set
manually. The first five parameters are related to vocabulary tree construction
and VLAD, are selected by trial and error.

1http://hemanthk.me/wordpress/datasets/
2http://ipds.univ-bpclermont.fr/
3http://www.robots.ox.ac.uk/NewCollegeData/
4http://www.rawseeds.org/rs/datasets/view//6
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Sequence #(Images) Traj. Vel. FPS

PAVIN (IPDS-old) 8002 1.3 km 2.3 m/sec 15 hz

Cezeaux (IPDS-old) 80913 15.4 km 2.5 m/sec 15 hz

PAVIN-Jonco (IPDS) 8092 2.3 km 2.12 m/sec 7.5 hz

Cezeaux-Sealiz (IPDS) 22999 7.8 km 2.5 m/sec 7.5 hz

NewCollege 7854 2.2 km 1.0 m/sec 3 hz

Bicocca 26337 1.1 km 0.5 m/sec 15 hz

(a) Datasets Description

Sequence FPS #(Images)

PAVIN (IPDS-old) 2 hz 1144

Cezeaux (IPDS-old) 2 hz 11571

PAVIN-Jonco (IPDS) 3.6 hz 3986

Cezeaux-Sealiz (IPDS) 3.6 hz 11498

NewCollege 1.5 hz 3977

Bicocca 2 hz 3763

(b) Data used for Experimentation.

Table 3.1: Datasets Description. (Traj.=Trajectory Length, Vel.=Average Acqui-

sition Velocity, FPS=Images Frames acquired Per Second)
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Figure 3.7: Two-level feature descriptor quantization structure. The first level

quantizes descriptors using a float 128 word vocabulary while the second level of

quantization further quantizes the descriptors using vocabulary tree structure.

The prior probability of a loop closure p(Li) varies for each frame and is
difficult to figure out. For example if the robot just started to build a map, the
prior probability of a loop closure is low. However, if the robot has mapped most
of the environment but is trying to ensure full coverage, the prior on loop closure
should be high. There is no simple way to estimate the prior and hence we choose
to nullify its effect on the classification result by choosing a uniform prior.

The ideal covariances dI1 and dI2 for the covariance matrix ΣI represent the
width of the gaussian distribution NI in pixels. The idea is that the covariance
should make the gaussian narrow and peaked. Unless the width is too large the
choice of these parameters does not really affect the classification performance as
a CPD is learned on top the similarity score computed using these parameters.
As a result the parameters of the CPD will be learned such that they are adjusted
to the choice of the covariances dI1 and dI2.

θmin and θsuf limit loop closure decisions with insufficient data. These val-
ues are chosen manually by observing false positives that are generated due to
insufficient data.

Finally, p aims at eliminating positive loop closure examples that are generated
by adjacent images acquired during the same traversal. The value is chosen
such that at a given image acquisition frame-rate and the velocity of the robot,
the separation of the frames is at least four times of the loop closure distance
threshold α. In turn, α is chosen such that the accuracy is sufficient to eventually
perform tasks such as SLAM. The parameter h that controls the length of historic
odometry data to compare local trajectory structure should in general be small,
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Parameter Name Variable Value

Bag of words vocabulary size for VLAD k 128

USURF descriptor size l 64

Full VLAD descriptor size k ∗ l 8192

PCA VLAD descriptor size 128

Vocabulary size for spatial similarity 27648

Prior probability of loop closure p(L1) = p(L0) 0.5

Spatial similarity Ideal Covariances dI1 = dI2 5

Minimum feature matches θmin 10

Sufficient feature matches θsuf 30

Frame separation (Training Data) p 50

Loop closure distance threshold α 5 meters

Trejectory length for Local odometry h 5

Table 3.2: Manually set Parameters

as larger values might induce odometry drift error and can lead to incorrect
similarities.

3.5.2 Node Level Loop Closure

Sparsity and accuracy of node level loop closure algorithm are discussed in this
section.

Sparsity is the measure of the number of nodes used to represent a topological
map. Fewer nodes in a map indicate higher sparsity. However, higher sparsity
does not imply map accuracy. In overly sparse maps, representative features of
a node represent huge number of images and hence become excessively gener-
alized rather than precisely representing a particular place of the environment.
As a result, missing out true loop closure candidates during node level loop clo-
sure (NLLC) is likely. Weak NLLC may cause too many reference images to be
considered for the image level loop closure (ILLC) drastically increasing the com-
putational cost. This scenario leads to loss in precision of NLLC. Another likely
scenario is that the true loop closure candidates may not even be in the reference
image set, causing a loss in recall. Hence a map with optimal sparsity is one that
ensures maximum possible recall rate in NLLC while maintaining good precision.
Recall of NLLC is calculated as the number of correct nodes retrieved out of all
correct nodes. The precision of NLLC is calculated as the ratio of the number of
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Sequence #(Nodes) #(im.)/node (Traj.)/node Precision Recall

PAVIN 64 17.8 20.3 m 29% 89%

Cezeaux 537 21.5 28.6 m 18% 78%

PAVIN-Jonco 105 37.5 21.9 m 41% 93%

Cezeaux-Sealiz 332 34.6 23.4 m 36% 87%

NewCollege 112 35.5 19.6 m 38% 92%

Bicocca 145 25.9 7.5 m 31% 84%

Table 3.3: Node Statistics with the preliminary framework. #(Nodes) - Number

of nodes of the map built on the sequence. #(im.)/node - Average number of images

represented by each node. (Traj.)/Node - Average trajectory length represented by

each node.

Sequence rn #(Nodes) #(images)/node (Traj.)/node

NewCollege 0.7 126 31.5 17.5 m

PAVIN 0.9 74 19.06 21.6 m

Cezeaux 0.9 572 20.22 26.2 m

Table 3.4: Node Statistics. #(Nodes) - Number of nodes of the map built on the

sequence. #(images)/node - Average number of images represented by each node.

(Traj.)/Node - Average trajectory length represented by each node.

reference images from the correct node (contains the loop closure image) to the
total number of reference images retrieved through NLLC. As NLLC controls the
reference images for ILLC, recall of ILLC is limited by the recall of NLLC.

For the first case in which we fix the parameters manually, node radius for
PAVIN and Cezeaux sequences was set as rn = 0.9 and that of Newcollege se-
quence as rn = 0.7. The kernel width for node similarity computation is chosen
to be σ = 1.2 ∗nr, such that it gives a slight cushion to account for noise in node
similarity evaluation. Table 3.3 shows various node statistics of the maps built
on the three sequences. It can be observed that the average number of images
represented per node is between 20 and 30.

The first three columns of Table 3.4 represent various indicators of sparsity
obtained on the six sequences by NLLC for the second case. Besides bringing
auotonomy and flexibility, learning the parameters instead of experimentally fix-
ing them improved the sparsity of the algorithm around 10%. We can see that
for Cezeaux sequence average trajectory length represented by each node stands
highest at 28.6 meters. One reason for this is that Cezeaux contains many open
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areas devoid of any obstacles. Bicocca on the other hand has the lowest trajec-
tory per node value since it is an indoor environment where obstacles are closer
to the camera and hence appearance changes across every few frames. The last
two columns show the maximum recall obtained on each sequence and the corre-
sponding precision.

The parameters of NLLC on all sequences had to be learned on parts of in-
dividual sequences. Our preliminary attempts to generalize parameter learning
for all the sequences over common data lead us to the conclusion that the NLLC
parameters strongly depend on the type of the environment and the quality of
the images used. This conclusion was based on the poor recall rates for NLLC.
All the six sequences have widely different characteristics: PAVIN has low quality
images and has been acquired in a simulated city environment where roads and
buildings are scaled down compared to a real environment ; Cezeaux contains
low quality images but is acquired on a real environment under urban and subur-
ban settings; PAVIN-old and Cezeaux-old resemble PAVIN and Cezeaux except
for the high-quality of images; NewCollege data contains mostly suburban like
environments and vegetation with high-quality images; Bicocca contains images
of moderate quality acquired in indoor settings. Therefore NLLC parameters for
each environment and camera have to be learned separately. To learn the NLLC
parameters, we select k∗ by comparing clusterings for 100 values of k as it is shown
in the figure 3.2. These values are selected from the set k = {k1, k2, . . . , k100}
where ki is equal to ⌈n(I)/i⌉ and n(I) is the number of images in the sequence.
For example, k50 for PAVIN sequence would be ⌈1144/50⌉ = 22.

3.5.3 Image Level Loop Closure

This section details the accuracies of image level loop closure (ILLC), factors
affecting the accuracy and comparison with other approaches.

Accuracy of ILLC is measured by precision/recall. In context of ILLC, preci-
sion is the ratio of true loop closures to the total number of loop closure detected
and recall is the ratio of number of loop closures detected to the total number
of loop closures in the ground truth. Loss in precision may lead to the construc-
tion of spurious links between nodes in the topological graph resulting in a faulty
map. Therefore we measure accuracy of ILLC as the maximum recall obtained
with 100% precision.

For the preliminary case, the results are obtained by varying the similarity
threshold Ts which controls the size of reference nodes (and therefore reference
images) considered for image similarity analysis. As we can see in the figure 3.8
100% precision is only possible till 35% recall for the Newcollege sequence, 24%
for the PAVIN sequence. A 100% precision was never reached on the Cezeaux
sequence. The reason is the low resolution images and the significant illumination
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variation. Spatial constraints also helped the toughest Cezeaux sequence on which
a full precision has been achieved with a 43% recall. The advantage of spatial
constraints in increasing precision is demonstrated. It should be noted that no
geometric verification has been applied to obtain the results.

More detailed analyses are done for the second framework. Figure 3.8a shows
the precision recall graphs obtained on the six sequences. As we can see, the
highest recall rates of 84% and 78% are achieved on PAVIN and PAVIN-Jonco
sequences respectively. Cezeaux sequence has the lowest recall at 53%. Bicocca
and NewCollege sequences exhibhit an interesting trend; although they have recall
rates of 63% and 71%, they are not the best possible recalls rates. Figure 3.8b
which shows precision recall graphs obtained using our algorithm without making
use of the local odometry check (i.e.∀r p(R = r|L0) = p(R = r|L1) = 1). These
graphs show that Bicocca has a recall rate of 78% which is 15% more than the
first case, and Newcollege sequence has its recall rate (75%) improved by 4%. For
the remaining sequences, the recall rate is reduced: for PAVIN and Cezeaux by
4% each, PAVIN-Jonco by 8% and Cezeaux-Sealiz by 6%. The trajectories and
the loop closures detected on each sequence are shown in Figures 3.9, 3.10, 3.11,
3.12, 3.13 and 3.14.

So the question is, what makes the NewCollege and Bicocca sequences dif-
ferent. The answer is that both of them are not acquired on well defined paths
like roads. Due to the lack of well defined paths, a loop closure can occur at a
location while the robot is navigating over a very different trajectory compared
to that of the previous visit. As a result, the odometry check rejects this case
as a mismatch leading to a true negative. Newcollege sequence has fewer situa-
tions like this whereas Bicoccoa sequence which is acquired indoors has more of
them, which is indicated by their change in recall rates when odometry check is
excluded. In conclusion, when applying this algorithm to indoor environments or
places where there is no restriction on a path to take, it is best to exclude the
odometry constraint.

We compared our accuracies to that of two other approaches: FABMAP
2.01(CN10a) and DLoopDetector2(GLT11). For FABMAP 2.0, we have used the
software provided by the authors and used the algorithm with default parameters
except for those concerned with feature extraction. Precision/recall was obtained
by varying the feature extraction threshold (varying the number of features per
image) and the loop closure posterior threshold. Similarly for DLoopDetector, we
used the author provided software with default settings and without fundamental
matrix extraction. Feature extraction threshold, number of consistent matches
(k) and similarity threshold (α) were varied to study precision/recall. Visual
word vocabularies of the same size as ours constructed using 128 dimensional up-

1http://www.robots.ox.ac.uk/ mjc/Software.htm
2https://github.com/dorian3d/DLoopDetector
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(b) Precision/Recall of ILLC algorithm without using odometry constraint

Figure 3.8: Precision Recall graphs of image level loop closure with and without

odometry constraint.
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Figure 3.9: PAVIN (Trajectory in red, loop closures in green)

right SURF descriptors and BRIEF descriptors for FABMAP and DLoopDetector
respectively. The comparison of accuracy of these approaches with ours can be
seen in table 3.5. It can be seen that our approach achieves the best recall on all
the sequences followed closely by DLoopDetector and finally by FABMAP. The
recall rates of the two other approaches might have been improved if geometric
verification of loop closure results was included but as we perform loop closure
sans geometry check, this comparison ensures fairness.

3.5.4 Computational Time

Real-time operation is one of the vital elements of loop closure. Although our
code is not optimized and we run it on a laptop with Intel Core i7 processor, we
reach to process minimum 5 frame per second.

There are five major modules in our algorithm: local feature extraction (SURF),
local feature quantization, VLAD Extraction, Node similarity analysis and image
similarity analysis. Map built on Cezeaux sequence is used in computational time
analysis since it is the longest sequence of the three. The average and the max-
imum computation time of each module is given in the table 3.6. SURF feature
extraction takes 120 milliseconds on average and this is the most time consuming
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Figure 3.10: Cezeaux (Trajectory in red, loop closures in green)

Figure 3.11: PAVIN-Jonco (Trajectory in red, loop closures in green)
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Figure 3.12: Cezeaux-Sealiz (Trajectory in red, loop closures in green)

Figure 3.13: NewCollege (Trajectory in red, loop closures in green)
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Figure 3.14: Bicocca (Trajectory in red, loop closures in green)

Sequence Our Approach FABMAP 2.0 DLoopDetector

PAVIN 84% 45% 61%

Cezeaux 53% 19% 31%

PAVIN-Jonco 78% 60% 65%

Cezeaux-Sealiz 71% 48% 58%

NewCollege 75% 43% 65%

Bicocca 78% 55% 61%

Table 3.5: Recall values on six sequences. The recalls of our approach listed above

are the best values obtained of the two variants of ILLC that are discussed.
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Process Mean time (ms.) Max. time (ms.)

SURF 120 132

Quantization 30 98

VLAD 38 66

Node Similarity 10 34

Image Similarity 6 14

Table 3.6: The computational time of each step of our algorithm is given for

the longest test sequence Cezeaux. Considering that the code is not thoroughly

optimized and the code runs on a laptop with Intel Core I7 processor.

of the five modules. Feature quantization, VLAD extraction and node similar-
ity analysis are performed within a few milliseconds as can be seen in Figure
3.15a. Figure 3.15b shows the image similarity analysis time along with the per
frame processing time without local feature extraction. We can see that the per-
frame processing time (excluding feature extraction) just reaches 40 milliseconds
at maximum with 11571 images in the map. Almost 70% of the computation
time is taken up by the local feature extraction. Including feature extraction, it
takes a maximum of around 160 milliseconds per frame providing the capability
of processing at least 5 frames per second. Such fast runtimes can even facilitate
online map building (building the map during acquisition) on the datasets con-
sidered. However, (GLT11) reports runtimes that are three times faster in the
worst case and eight times faster in the average case. This approach gains its
power by using binary descriptors.

The changed framework by modeling the loop closure detection as classifi-
cation problem neither improved nor decreased the computational performance
since we had to perform similar operations as in our preliminary framework
(KUM13). The difference in computational times comes up in the offline step
while learning the NLLC parameters. Since we have to generate different cluster-
ings of the data for various values of k to evaluate k∗, it takes almost a day per
sequence to perform all the clusterings using a python script.

3.6 Conclusion and Future Work

In the present work, we proposed a hierarchical appearance based loop closure
detection framework. The process of map building and the two phases of loop
closure have been discussed in detail. First, we manually tune the parameters
and then we change the algorithm to classification framework by proposing auto-
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Figure 3.15: Run-times for various modules of the loop closure algorithm. Figure

3.15a plots run-times for the feature quantization time, VLAD extraction time and

Node similarity analysis. Figure 3.15b shows the run-times of image similarity

analysis and the total time taken to process each image frame.
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matic parameter learning algorithms. Experimental results obtained on publicly
available sequences have been reported and analyzed. The present approach has
been compared with two state of the art approaches and also with the preliminary
version. Experimental results demonstrating the sparsity, accuracy and compu-
tational time efficiency achieved by using are presented. It has been shown to be
better in performing loop closure without geometric verification step.

Large scale operability was also shown to be possible with more than 10000
images in the sequences. The code of our algorithm will be made publicly available
soon.

Although the results seem satisfactory, there is still room for improvement
in three aspects. The first aspect is that of parameter learning for NLLC, for
which we perform 100 different clusterings on each sequence. This process is
very time consuming and can take several hours. Therefore, the first possible im-
provement is in computation time of paramater learning process of NLLLC. The
second improvement is to use an improved VLAD with Fisher encoding (JPD+12)
which is shown to offer better accuracy than plain VLAD. The third area is to
replace SURF descriptors with binary descriptors like ORB (RRKB11) or BRIEF
(CLO+12) which are faster to compute and storage efficient; VLAD/Fisher en-
coding should be adapted to binary descriptors by using Hamming distances.
Therefore, we envision to address these problems in our future work.
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4

Hybrid Mapping

This chapter discusses development of hierarchical mapping framework and pro-
poses two strategies. The first strategy utilizes our hierarchical loop closure al-
gorithm as it is presented in the previous chapter jointly with 3D reconstruction
algorithm. Therefore, it is called as hybrid topo-metric map. The second up-
grades this combination by adding semantic information into it. In other words,
the semantic information allows us to tag the environment and also to decide
automatically between metric and topological model. Therefore, it is called as
hybrid semantic map.

Our topo-metric map achieves to combine metric and topological information
by focusing on separability of maps and hierarchy. It proposes a hierarchical
map representation which uses our image sequence partitioning (ISP) technique.
The hierarchical map built can be understood as a topological map with nodes
corresponding to certain regions in the environment. Each node in turn is made
up of a set of images acquired in that region. These maps are further augmented
with metric information at those nodes which correspond to image sub sequences
acquired while the robot is revisiting the already mapped areas. Metrical infor-
mation becomes invaluable during autonomous robot navigation through these
places which contains junctions and turns. Actually, the goal is to obtain bet-
ter computational efficiency than pure metrical mapping techniques and better
accuracy as well as usability for robot guidance and navigation compared to the
topological mapping. Hence we call the resulting maps hybrid since they primar-
ily contain topological information and metrical information at places that are
important for navigation. Experimental results obtained on sequences acquired
in an outdoor environment are provided to demonstrate our approach.

The second framework exploits metric, topological and semantic information.
As it is for the first framework, a topological map is built on an input image
sequence by using a sequence partitioning technique such that each node is rep-
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resented by a set of images acquired in a particular region of the environment.
At the same time, structure from motion based metric reconstruction is also
computed over the images of each region. A Conditional Random Field based
classification on the metrical information is used to semantically label the local
robot path (road in our case) as straight, curved or junctions.

The main difference is coming from the fact that the first concentrates only
on how to represent the spatial structure and it misses these important concepts
such as junctions, straight roads and turns. Actually, it is an important missing
point for traditional robot maps. For example, a metric map may represent the
structure of a road but it does not pinpoint whether this road is straight, bent,
turn or a junction. Moreover, it does not even mark that the given structure is
a road. It is also similar in topological map. It gives the connection information
between two nodes but it does not indicate the type of the connection if it is
through a junction turn or a straight road.

In fact, we call this extra information as semantic and the maps which are
integrating this into the traditional robotic maps as hybrid semantic maps. Thus,
we propose to use the same strategy for a large scale robot map and we propose a
multi-layer approach in which each layer corresponds to different level of abstrac-
tion and represents the environment as precise as it is required. Experimental
results obtained on KITTI odometry sequences acquired in challenging urban
environments are provided to demonstrate our approach.

The remainder of this chapter is organized as follows. Section 4.1 introduces
the first framework and explanation of the each step of the algorithm is given
in following sections. Then section 4.2 explains the second framework in details.
Our experiments for the both frameworks are detailed in section 4.3.1. Finally,
we argue the nature of our research and give a summary of our contributions in
the section 4.4.

4.1 Hybrid Topo-Metric Framework

As it is shown in the flowchart figure 4.1, our mapping algorithm consists of
two main blocks as Image Sequence Partitioning (ISP) and 3D reconstruction
modules. It starts with local image feature extraction for each newly acquired
image. Any of the current local feature detectors such as SIFT, SURF, etc. can be
utilized at local image extraction step. While extracted local image features are
used for data association between related images for 3D reconstruction modules,
they are quantized into visual words by using a kd-vocabulary tree (PCI+08a)
for ISP.

The Image sequence partitioning (ISP) module, which is the modified version
of our hierarchical loop closure detection algorithm as it is explained in the pre-
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Figure 4.1: A global modular view of our hybrid topo-metric mapping framework.

NLC and ILS stand for nood level loop closure and image level loop closure detection

respectively. CN stands for current node.
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vious chapter, is to classify image sequence in a graphical structure that consists
of nodes and edges. Given each acquired frame, ISP realizes its function in three
steps .

• The first step is to search for loop closures at node level and then at image
level.

• If there is no loop closure, the second step is to compare the given frame
with the current node and to expand the current node.

• If it is not similar to the current node either, the third step is to create a
new node.

Following this strategy, a topological structure of the environment is captured
hierarchically. Instead of checking the similarity between the current frame and
each reference frame in the map, the node level loop closure downsizes the search
space by constructing a subset of candidate nodes for image level loop closure
step. The node level loop closure detection process is implemented using VLAD
(Vector of Locally Aggregated Descriptors) (JDSP10a). For the image level loop
closure detection, the combination of VLAD, local image descriptors and 3D
information is used.

Finally, we construct a globally topological map which consists of two dif-
ferent types of nodes. In other words, the environment is modeled in metric or
appearance based fashion under a global graphical model. The following sections
discuss each of the above discussed modules in detail.

4.1.1 Image Sequence Partitioning Module

The first step of our mapping algorithm is to classify image sequence in a graphical
structure that consists of nodes and edges. This strategy is adopted from the
image sequence partitioning (ISP) part that is used in our previous chapter on
hierarchical loop closure detection and an overview with the modifications is given
here for the sake of completeness.

ISP has three main functions. The first one is to detect loop closures at node
level and then at image level. If loop closure detection fails, the second function
of ISP is to create a new node or expand an existing node. The last function of
ISP module is to create a new node after the first two are eliminated respectively.

It starts with feature extraction for each frame of the video stream and then
extracted features are quantized into visual words by using a kd-vocabulary tree
(PCI+08a). Afterwards, a centroid is calculated for each feature corresponding
to the word. Meanwhile, the vector difference between the feature descriptor
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and the corresponding centroid are computed and accumulated for each quan-
tized descriptor as quantization residues. These quantization residues of all the
descriptors assigned to each word are summed up and stored as column vectors
of the matrix d. Therefore, the matrix d will have k (vocabulary size) columns
each corresponding to a word in the vocabulary and l rows indicating the feature
dimension. A full VLAD descriptor (JDSP10a) is given by augmenting d ma-
trix which needs to be projected to a lower dimensional space. For practicality,
the full VLAD is compressed to a 128 dimensional V descriptor by using PCA
projection matrix P . V descriptors are used to check the similarity between the
nodes in the map and the current image which covers node level loop closure and
deciding on expanding the current node or creating a new node.

If there is no loop closure detected, the second case of ISP is activated. The
same similarity measure with the node level loop closure detection is used between
the query image and the current node. The query image is added to the current
node if they are similar. In case of dissimilarity between them, the final case of
ISP is run to create a new node and an edge which represents a relative pose
between the last image of the previous node and the query image.

4.1.2 Loop Closure Detection

The first function of image sequence partitioning module is to detect loop closures.
Loop closure is the problem of detecting if the robot is revisiting a previously
explored area of the environment. Loop closure detection is carried out at node
level and image level respectively.

4.1.2.1 Node Level Loop Closure Detection

Measuring the similarity between each incoming frame and the reference nodes
is called as node level loop closure check. This step is using the same algorithm
with the node level loop closure detection step of the second framework given in
the previous chapter although the application is different. Therefore, we shortly
give the mathematical formulas without repeating the detailed explanation.

Each incoming frame is expressed with V vectors obtained by downsizing
the standard global image descriptor VLAD (JDSP10a). While the images are
represented by VLAD vectors, the nodes which consist in the set of visually
similar images are modeled with ellipsoids whose axes are given by a multivariate
Gaussian distribution over V Ni of its member images INi . That allows us to
represent each node Ni by the mean vector µNi and the covariance matrix ΣNi

d and
to be able to measure the similarity between the images and nodes as a distance
variable. The distance between the VLAD vector Vq of current image Iq and the
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distribution which represent the node can be calculated by using Mahalanobis
distance such that

∆Ni

Vq
=
(

Vq − µNi
)T

ΣNi

d

−1(
Vq − µNi

)

(4.1)

where ∆Ni

Vq
is the Mahalanobis distance. Current image Iq is considered as

similar to a node Ni if the similarity condition |∆Ni

Vq
−µ∆

ns| ≤ 3σ∆
ns where µ∆

ns| and

σ∆
ns are the mean and standard deviation is satisfied. The mean and standard

deviation µ∆
ns, σ

∆
ns are learned on training data which consists of image sequence,

associated GPS readings and VLAD descriptors.

If node level loop closure turns positive with a group of candidate nodes N
∗,

a reference set I
R is constructed with the member images of these nodes for the

image level loop closure detection.

4.1.2.2 Image Level Loop Closure Detection

Given that node level loop closure turns positive with a set of candidate nodes
N

∗, all the member images of these nodes constructs a reference image set I
R

for image level loop closure detection step. This step aims to find the closest
frame to particular query image Iq in the given reference set I

R by measuring
the similarities image by image. The image level loop closure problem is defined
as a classification problem as it is defined in the section 3.4 of previous chapter.
Unfortunately, some of the similarity metrics presented in that framework are
highly dependent on the physical character of omni-directional images. Moreover,
some of them use the data obtained from odometry sensor as a secondary sensor.
However, we use perspective camera images as an only sensor data which forces
us to define new similarity metrics instead of the ones used in the section 3.4
for this problem. Fortunately, our hybrid model brings us an advantage which
is the estimated relative poses as well as 3D points and facilitates the process
of defining new similarity measures. Therefore, we present modified and new
similarity metrics which are used as features for our Naive Bayes classifier (KF09)
here.

• R is a discrete random variable and is computed based on matching statis-
tics between the query and the reference image. The detailed explanation
is given in subsection 4.1.2.3.

• V is a continuous random variable and defined as the euclidean distance be-
tween the query image VLAD descriptor and the reference image descriptor.
The detailed explanation is given in subsection 4.1.2.4.
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• G is a continuous random variable and is computed based on rotation and
translation estimation between the query and the reference image. The
detailed explanation is given in subsection 4.1.2.5.

• l is a continuous random variable and is computed based on reconstruc-
tion error resulted between the query and reference image. The detailed
explanation is given in subsection 4.1.2.6.

The loop closure event is represented with a binary random variable L and
the probability of loop closure is calculated by

p (Li|X) , Li ∈ {1, 0} (4.2)

where X = {V, S,N,R} is the observed random variables set listed above.
Equation 4.2 can be reformulated by using Bayes rule

p (Li|X) =
p (Li) p (X|Li)

p (X)
(4.3)

where p (X) is normalization factor, p (Li) is the prior probability and p (X|Li)
is the likelihood function. The successful loop closure event is marked if the condi-
tion p (L1|X) > p (L0|X) is satisfied. To check this condition, the equation 4.2 is
rewritten by eliminating the denominator and using the conditional independence
of each feature;

p (Li|X) ∝ p (Li) p (V |Li) p (S|Li) p (N |Li) p (R|Li) (4.4)

Where the prior probability p (Li) is modeled with uniform distribution. The
individual likelihood terms are learned empirically. A training data set which
consists of images and their synchronous GPS readings is constructed for this
aim. The GPS distance between non-adjacent image pairs is used to classify
them as loop closure or non loop closure samples which construct the ground
truth data set.

When the image level loop closure condition is also satisfied, the metric node
construction process starts with the reference image set and query image. The
local image features which are extracted for V descriptor are called as keypoints
and used for this step. The first key frame I1 for reconstruction is always the first
query image of the loop closure set. The keypoints extracted in the query image
are matched by tracking them into the member images of the reference image
set. Given key frames and matched keypoints, the camera poses and 3D points
are computed in two different types. For the first key frame triplets {I1, I2, I3}
which consist of two images from reference set and query image, the method by
Nister (Nis04) is utilized to build a baseline construction because we only have
2D feature matches. It consists of computing the essential matrix between the
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first and last frames of the triplet using a sample of 8 point correspondences with
a RANSAC. The best hypothesis is chosen by computing the re-projection error
over the 3 views for all the matched interest points and keeping the one with the
higher number of inlier matches. These 3D points estimated through the baseline
are used to estimate the pose of upcoming loop closure image matches as well as
go backward in reference image dataset until the image Ir−n in which there are
not sufficient number of matches with Ir (reference image) and Iq (current image)
for estimating its pose.

At the end of this process, key frames are represented by relative poses:

P j
i ∈ R4×4 (4.5)

where P j
i is the camera projection matrix and i, j shows reference and current

key frames respectively. 3D points are also represented with its visibility history

Xki
i ∈ R4 (4.6)

where Xki
i is the ith 3D point’s position defined in the reference key frame and

ki is the set of key frames which observe this point. By using the relative key
frame representation, the 2D measurement of 3D points are given as

xji = P j
kX

k
i (4.7)

where xji is the re-projection of ith 3D point on the jth key frame. At each
metric partition, there is exactly one reference key-frame. This reconstruction
process continues until the detected loop closure set is completed. The last step
is a sparse bundle adjustment for optimizing the camera poses and the 3D points
by using the following cost function:

C = min

nl
∑

i=1

ni
∑

j=1

ǫ2ij (4.8)

where ǫij = d(pij, x
j
iP

j
i X

j
i ) is the Euclidean distance between the observed

image point i and its estimated projection on keyframe j and Iij is the binary
variable which shows if the i-th image point is seen by j-th keyframe. Using
LAPACK, a sparse bundle adjustment algorithm (MLD+09) is implemented and
used for each metrical part independently.

4.1.2.3 Statistical Matching Constraint

We use a minimum matches constraint which eliminates the obvious false loop
closures before going into calculation of the similarity measures. Although we
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check the similarity between images by using global image descriptor VLAD, we
employ also matching of local image features for essential matrix estimation and
3D reconstruction. Therefore, defining this constraint does not bring us extra
computational cost. In fact, it accelerates the process. We define a ratio based
on the extracted and matched local image features between reference and query
image,

r =
#Mqr

min(#Fq,#Fr)
(4.9)

where #Mqr is the number of matched features between reference and query
images and #Fq,#Fr are the numbers of extracted features in the query and
reference images respectively. Using this ratio we define a conditional probability
function



























p(R = r|L1) = 0 when r ≤ Rmin

p(R = r|L1) =
2(r −Rmin)

R2
dif

when r > Rmin and r < Rsuf

p(R = r|L1) =
2

Rdif

when r > Rsuf

(4.10)

where Rmin and Rsuf are minimum and sufficient ratio values for loop closure
event and Rdif is the absolute difference between them. Given that loop is closed,
it is a simple conditional probability density CPD which gives zero probability
if the calculated ratio by equation 4.9 is less than the minimum value and it is
modeled with a linear increasing function between minimum and sufficient ratio
values. if the calculated ratio is more than the sufficient value, it gives constant
probability. The same function is also applied for the no loop closure samples by
inverting it.

4.1.2.4 VLAD similarity

VLAD similarity is calculated based on the euclidean distance v between the
descriptors of given images. The likelihood of this similarity is modeled with a
Gaussian conditional distribution.

p(V = v|L1) = N(v|µv1,T1, σ
2
v1,T1) (4.11)

p(V = v|L0) = N(v|µv0,T0, σ
2
v0,T0) (4.12)

Where T1 and T0 are the training sets of positive and negative samples for
loop closures respectively. The parameters {µv1,T1, σ

2
v1,T1} and {µv0,T0, σ

2
v0,T0}
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which maximize the likelihood functions on the positive and negative samples of
training sets are calculated as,

µv,T =
1

n

n
∑

i=1

vi σv,T =

√

√

√

√

1

n

n
∑

i=1

(vi − µv,T )
2 (4.13)

4.1.2.5 Geometric similarity

VLAD descriptor based likelihood alone does not guarantee to find the closest
image due to the limitation of 2D appearance information. Therefore, essential
matrix estimation step which consequently gives relative rotation and translation
between given images is added. Although estimated translation vector is up
to scale, combination of rotation matrix and translation is still invaluable to
eliminate the multiple matches to one reference image and to find the closest
image to the reference.

A variable gi is defined as gi = Riq for the ith reference image and query
image. The likelihood based on this geometric orientation variable is modeled
with a Gaussian conditional distribution.

p(G = g|L1) = N(g|µg1,T1, σ
2
g1,T1) (4.14)

p(G = g|L0) = N(g|µg0,T0, σ
2
g0,T0) (4.15)

I
R = {INk : ∀kNk ∈ N

∗} (4.16)

The parameters {µv1,T1, σ
2
v1,T1} and {µv0,T0, σ

2
v0,T0} which maximize the likeli-

hood functions on the positive and negative samples of training sets.The calcula-
tion of maximum likelihood estimates for parameters of a Gaussian distribution
is given in equation 4.13 and the same strategy is followed here too.

4.1.2.6 Correlation Between Trajectories

Unidirectional loop closure means that a robot is passing through the same area
in same direction again. Therefore, the two reconstruction obtained from this
area should be consistent with each other. Using this fact, we aim to measure
the similarity between the two reconstruction obtained by the current and previ-
ous pass from the same place. Assume that Ir−8 and Iq−8 be the first reference
and query images of loop closure area. The average lateral distance between the
cameras and the 3D points above the camera height is used to measure the simi-
larity between two trajectories after fixing the scale between two reconstruction
results. We divide the segment into 20 histogram bins along the lateral axis x
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of the camera. Each bin of the histogram represents an equally divided lateral
distance interval. The frequency of each bin l gives the number of 3D points fall
into this interval. We normalize the histogram by dividing it by the total number
of samples of the histogram. The normalized histogram frequencies are used to
calculate conditional probability distribution as it is done in VLAD similarity
and Geometric similarity.

4.1.3 Adding a new node

The third case of ISP module is to create a new node after the first two are
eliminated respectively. In other words, if node level loop closure turns an empty
set or if the conditional probabilities of no loop closure event exceed that of loop
closure, then the query image is compared with the current node Nc. In case of
being dissimilar with also current node, a new node is created with that particular
query image as well as a connecting edge between the new node and the previous
current node is also constructed.

The rotation matrix and up to scale translation vector are extracted from the
estimated pose matrix P j

i ∈ R4×4

P j
i = K ×i R

j
[

I −i T̆
j
]

(4.17)

where K is the internal camera parameters matrix, iR
j is the rotation ma-

trix and iT̆
j is the relative translation vector between the related images. This

information is used for defining the edges between nodes.

4.1.4 Parameters

This subsection discusses the parameters used for hybrid topo−metric mapping.
Table 4.1 lists them all which have been introduced for this framework. Our
algorithm starts with 64−dimensional Upright SURF (USURF-64) (BTG08)
extraction for each frame of the video stream. 20% of images from each test
sequence are selected randomly to construct a training data for learning vocabu-
lary tree. The vocabulary tree has 128 nodes each of which has branching factor
of 6 and contains 3 levels. In other words, it has 128 ∗ 63 = 27648 leaf nodes.
VLAD vectors for each image are computed based on this learning process. PCA
projection matrix P which is used to compress the full VLAD vector to a 128
dimensional V descriptor vector is also learned by using this training data.

During this learning process, the conditional probability distributions are also
computed. There are only few parameters which are determined by the user based
on experiments. P which is the minimum number of images between loop closure
pair is the first parameter given by the user and fixed to 100. Another parameter

89



Hybrid Mapping

Parameter Name Variable Value

Bag of words vocabulary size for VLAD k 128

USURF descriptor size l 64

Full VLAD descriptor size k ∗ l 8192

PCA VLAD descriptor size 128

Vocabulary size for spatial similarity 27648

Prior Loop Closure Probability 0.5

Minimum number of images for loop closure pair 100

Minimum feature matching ratio loop closures Rmin 0.4

Sufficient feature matching ratio loop closures Rsuf 0.75

Table 4.1: Parameters

is the prior probability of a loop closure which is used to calculate overall image
level conditional loop closure probability. Although it can be modeled in different
ways such as increasing with the number of nodes in the map, we choose to model
it with uniform distribution due to the simplicity. Minimum Rmin and sufficient
ratio Rsuf parameters used for the calculation of statistical matching constrained
are another example to the parameters selected based on experiments.

4.2 Hybrid Map Based on Road Semantics

As it is shown in the flowchart figure 4.2, our mapping algorithm consists of
four main block. Given a new frame, we start with the 3D reconstruction part.
We extract interest points on the new frame and match them with those of the
previous frame by searching in a predefined window around each interest point.
Based on the matching score, key frames of the image sequence are selected. Then,
camera poses and 3D locations of interest points belonging to the key frames are
computed. This is followed by sparse bundle adjustment for optimizing the poses
and 3D points. We limit this 3D reconstruction process to a dynamically defined
number of key frames over robot path. It should be noted that our aim is not
to obtain a global metric map. However, we retain local metric information at
certain areas for navigation purposes and for road path classification.

The next step is robot path classification which mainly comprises of detecting
junction and geometric path orientation. The junction detection step considers
3D points and camera poses from 3D reconstruction step as its inputs and then
searches for empty spaces along the left side of the robot path. On occurrence of
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an empty space, which means that robot is probably passing through a junction,
the key frames at that area are chosen for further processing for road/curb border
detection.

Road/curb border detection uses modified version of Kim’s lane detection
algorithm (Kim08) whose input is 2D interest points extracted on the key frames
acquired over the empty areas. Using the output of this algorithm, the existence
or non-existence of a junction over the empty space is decided. Nonetheless, if this
step does not give positive results or even if there is no empty space detected, the
key frames are considered for geometric path orientation check such as straight or
curvy roads. Finally, either the current node is extended if the path orientation
is consistent with the current node’s path orientation or a new node is created
based on the changed orientation.

If the classification results in a junction detection, the corresponding key
frames are labeled as junction area. Extracted 2D features of those key frames
are quantized into visual words by using a visual vocabulary tree learned on a
training junction data set. Then a node level and image level loop closure check is
performed as it is explained in our loop closure detection chapter 3 with a design
difference which means loop closure search area is limited within the junction
nodes instead of all map. For the sake of completeness, node level loop closure
downsizes the search space by constructing a subset of candidate nodes for image
level loop closure step. Moreover, an empty set can be also produced which shows
that newly acquired image belongs to the current junction node.

Finally, we construct two different types of nodes which models the environ-
ment in metric or appearance based fashion and give us three essential semantic
features for an outdoor environment. The following sections discuss each of the
above discussed modules in detail.

4.2.1 Feature Extraction and 3D Point Cloud Generation

It starts with USURF (BTG08) extraction for each frame of the video stream
acquired by a monocular calibrated camera. The input frames are divided into a
fixed number of grids and only one feature per grid is extracted so that we could
speed up feature extraction process and increase the performance of matching
as well as 3D reconstruction process. Once the features are extracted, they are
matched within a fixed search region around the interest points from the previous
frame. When the ratio between the number of matched features and the total
number of the extracted features of the current frame is below a threshold, current
frame is considered as a new key frame.

#(di ∩ dc)
#(di ∪ dc)

≤ τ (4.18)
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Where di and dc represent the extracted descriptors of ith keyframe and the
current frame respectively. By selecting the key frames from the reference video
stream, we guarantee that there is enough camera motion between two frames for
3D reconstruction and the sparsity of our mapping algorithm is improved since
we only consider key frames instead of every incoming frame.

The rest of the process shares the same formulation with the last step of
image level loop closure detection module 4.1.2.2 of our topo-metric framework.
Therefore, we are not repeating it here one more time.

4.2.2 Robot Path Classification

The goal of this step is to classify each incoming key-frame as intersections or
non-intersections. For this, we use the 3D point cloud P3D built over the n
immediately preceding frames. The point cloud is expressed in the coordinate
system F corresponding to the camera pose of the latest key-frame.

In order to simplify the explanations, we consider only the left side however
the same can be done for the right side either. Since we assume that the vehicle
is always traversing on the right sight of the road the monocular images only
capture the environment on the left side of vehicle. Hence we use only that part
of the local environment in classification.

The local environment (w.r.t the latest key-frame) falling on the left side of
the robot’s path is used for the classification task. The local environment is
divided into a set S of n segments of uniform-length and parallel to the ground
plane as shown in figure 4.3. The label of each segment si ∈ S is represented by
a categorical random variable li which can take a value from predefined binary
label set B = {Junction,Non− junction}. The state of the environment as a
whole can be represented by a set of random variables l = {l1, l2, . . . , ln}.

Given the input X = {P3D,D2D}, we need to find a label set l that best
describes the environment and maximizes a posterior distribution P (l/X). In
order to avoid generatively modeling the complex dependencies between input
data and labels, we utilize Conditional Random Fields (CRF) to directly learn
the posterior distribution P (l/X). We estimate the maximum a posterior (MAP)
labeling l

∗ given by;

l
∗ = argmaxl∈LP (l/X) = argminl∈LE(l) (4.19)

where E(l) is an energy function which consists of unary and pairwise potentials,
L is the set of all possible (2n) labelings. The energy function E(l) is described
as

E(l) =
∑

i∈{n}

ψi(li) +
∑

(i,j)∈N

ψij(li, lj) (4.20)
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where N, ψi(.) and ψij(., .) are the set of neighboring segments, unary potential
functions and pairwise potential functions respectively. Before we give detailed
information about the unary and pairwise potential functions which are used in
the path classification, a brief description of CRF is given in the following section.

4.2.2.1 Conditional Random Fields

Conditional random field is a popular probabilistic method which combines the
ability of graphical models to compactly model multivariate data with the ability
of classification methods to perform prediction using large sets of input features.
CRFs have been used in many areas such as natural language processing, com-
puter vision, and bioinformatics.

Given a particular observation sequence x, conditional models define a condi-
tional probability p(Y | x) over label sequences. Conditional models are utilized
to find the best label set for an observation sequence x which maximizes the
conditional probability. Based on this conditional modeling, CRFs are a form of
undirected graphical model for labeling and segmenting sequential data. Basi-
cally they construct a single log-linear distribution over label sequences given a
particular observation sequence.

The probability of a particular label sequence y given observation sequence x
is first introduced as a normalized product of potential functions by Lafferty et
al. (LMP01). Each of them has the form of

exp(
∑

j

λjtj(yi−1, yi, x, i) +
∑

k

µksk(yi, x, i)) (4.21)

where tj(yi−1, yi, x, i) is a transition feature function of the entire observation
sequence x and the labels at positions i and i− 1 as well as sk(yi, x, i) is a state
feature function of the ith label and the observation sequence. Meanwhile, λj
and µk are parameters which are learned from training data.

The easiest way of defining feature functions which needs to represent the
characteristic of the empirical distribution of the training is to use real-valued
features b(x, i) of the observation.

Each feature function takes on the value of one of these real-valued observa-
tion features b(x, i) depending on the value of the current state in the case of a
state function or previous and current states in the case of a transition function.
Therefore, it is guaranteed that all feature functions are real-valued and they can
be written as

Fj(y, x) =

n
∑

i=1

fj(yi−1, yi, x, i) (4.22)
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where fj(yi−1, yi, x, i) can be a transition or a state function. Using this rep-
resentation, the conditional probability of a label sequence y given an observation
sequence x is given as;

p(y | x, λ) = 1

Z(x)
exp(

∑

j

λjFj(y, x)) (4.23)

Where Z(x) is a normalization factor. Here, estimating probability distribu-
tions from a set of training data is achieved by using maximum entropy. Entropy
of a probability distribution is defined as a measure of uncertainty. Therefore,
maximum value obtained if the distribution is close to the uniform.

Under the assumption of training data are independently and identically dis-
tributed, the products of p(y | x, λ) over all training data can be written as the
likelihood.

Maximum likelihood training is done by maximizing the the log-likelihood
function. In the case of a CRF, the log-likelihood function is defined as

L(λ) =
∑

k

[

log(
1

Z(x)
) +

∑

j

λjFj(y, x)

]

(4.24)

Which is a concave function. Therefore, it guarantees the convergence to the
global maximum.

4.2.2.2 Feature Functions

This section discusses the feature functions which construct unary and pairwise
potentials for the path classification algorithm. The used feature functions are
listed in the table 4.2 and they are classified regarding if they are used in the
calculation of unary or pairwise potentials.

For unary potentials, we choose a set of exponential functions which express
the empirical distribution of the training data and gives the cost of assigning a
particular label to each segment

ψu = e
−

∑

i

(wiFi(X))
(4.25)

where Fi(X) is the feature functions which map the measurements to the feature
space. On the other hand, the pairwise potentials represent the transition between
sectors. Given the sectors, it can be seen as a measure of how neighbor segments
i and j should interact with each other by considering spatial smoothness.

ψ = e
−
∑

ij

(O(Fi−Fj)wij)

(4.26)
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Feature Function Pairwise or Unary

Height Unary

Relative Density Pairwise

Multi Height Density Pairwise

Tracking factor Unary

Lateral Distance Unary

Relative Width Unary

Surface Estimation Pairwise

Road Border Estimation Unary

Table 4.2: The proposed feature functions are listed above and it is also marked

that they are used in calculation of unary or pairwise potential.

Where O(Fi −Fj) gives the relative change ratio between the same feature func-
tions of two neighboring segments. In fact, it basically measures the percentage
of the change in pairwise feature functions.

Height: The weighted average height of all the points in a segment are
considered. This feature FH is used as a part of unary potential computation and
is given as,

FH =
1

NSi

∑

p∈Si

e−|ph−Ch|ph (4.27)

Where NSi
is the number of points in the segment, ph is the height of each point

in the segment and Ch is the average camera height of the trajectory. Using
exponential weights, we emphasize the points around camera height and eliminate
the ones coming from ground plane and so high objects such as sky. The average
of these heights is used as the feature. Height features plays an important role in
detecting free spaces as they contain very few objects above camera level.

Relative Density: Generally buildings, trees, parked cars have a certain
density while roads, sky or free spaces have really low density. We observe that
the number of 3D points decrease while getting close to a free space. This is used
in unary potentials and is computed as,

FD = NSi
(4.28)

The absolute difference in the number of 3D points between neighboring segments
are used in pairwise potential calculation.

Multi Height Density: Each segment is divided into 12 histogram bins
along the vertical axis y of the camera. Each bin of the histogram represents an
equally divided height interval. The frequency of each bin j gives the number of
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3D points fall into this interval. We normalize the histogram by dividing it by the
total number of samples of the histogram. The normalized histogram frequencies
are used in unary potentials. Percentage of decrease or increase in the number of
points between each corresponding histogram bins of neighboring segments are
used as pairwise potential calculation.

Tracking factor: We check the visibility frequency of the 3D points. We
measure the number of frames in which each 3D point is tracked. This helps in
eliminating the points which are produced by moving objects. For instance, while
the 3D points coming from stable objects such as facade of surrounding buildings
are tracked for a long time, the ones coming from moving objects such as other
cars, buses etc, can only be seen in couple of frames. Tracking factor for each
segment is expressed as a histogram. Each bin of the histogram represents the
number of frames in which a feature has been observed. The frequency of each
bin k represents the number of features that have been observed k times. We
use a histogram of 7 bins with the last bin representing 8 or more observations.
We normalize the histogram by dividing it by the total number of samples of
the histogram. The normalized histogram features are used in unary potential
calculation.

Lateral Distance to the camera trajectory: This feature is based on
the lateral distance between camera trajectory and 3D objects in a segment.
We divide each segment into 20 histogram bins along the lateral axis x of the
camera. Each bin of the histogram represents an equally divided lateral distance
interval. The frequency of each bin l gives the number of 3D points which fall
into this interval. We normalize the histogram by dividing it by the total number
of samples of the histogram. The normalized histogram frequencies are used in
unary potentials.

Relative width: This feature gives the number of empty segments with
connection information. We mark a segment as empty if the number of 3D points
inside it is less than 60% of the average number of 3D points in all segments or the
number falls more than 40% between neighboring segments. The feature function
gets 0 if the segment is nonempty. It takes 1 or a value equal to the number of
connected empty segments if the segment is empty. Using this feature, narrow
empty spaces between buildings are eliminated from the real road junctions. It
is used in unary potential calculations.

Surface Estimation: Although the 3D point cloud, which is estimated from
a front moving monocular camera, is sparse and gives us upto scale depth esti-
mation, an approximate local surface can be calculated by using relative depths.
Such as, the 2d projections of 3D points are used and 2D Delaunay triangulation
method (She96) is performed. The relative angle of dominant normal vector for
each segment is used as unary potential. The dot products of normal vectors
between neighboring segments are used in pairwise potential.
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Road Border Estimation: Using the 3D point cloud, a rough 2D seg-
mentation of the road area in front of the car is estimated in the key-frames and
saved as image patches. These image patches are given to the lane detection
algorithm (Kim08) which is modified according to our purpose. In other words,
the classifier that is used for line detection in their algorithm is changed to de-
tect curbs and road borders. The angle between the camera trajectory and the
detected road border is calculated for each key-frame and the ones in which the
difference is more than 30 degree are marked as 1 while the others are marked
as 0. This feature added to our classifier by counting the ones and zeros in each
segment. For each 3D point Xki

j in each segment, ki i = 1, . . . , n gives us the set
of key-frames in which it is observed. A value which shows the points coming
from possible junctions is calculated as

ϑj =
1

|ki|
∑

Xki
j (4.29)

Where Xki
j can have 1 or 0 based on the feature. We sum all ϑj values for each

segment and divide it to the number of points inside the segment. Using this
feature, we give high weights to the points which can be seen only inside the
junctions while giving small weights to the rest.

4.2.2.3 Parameter Estimation & Inference

The values of potential functions are given by a linear combination of individual
features. These weights are considered as the parameters of CRF. We maximize
the log-likelihood of the conditional probability along with an l1-norm based reg-
ularization term (Goo03). Addition of the l1-norm makes the log-likelihood a
strictly concave function and hence the parameter estimation reduces to finding
the local optimum which is also the global optimum (global maximum). The solu-
tion is found using the limited memory BFGS (Broyden–Fletcher–Goldfarb–Shanno)
algorithm (AG07) which is a second degree approach approximates and compactly
stores the hessian matrix to search through the parameter space.

The inference problem involves finding the maximum a posteriori (MAP) label
vector l

∗ that maximizes the conditional probability P (l|X). We use the gener-
alized belief propagation (l-GBP) (YFW05) algorithm to find the MAP solution.

4.2.3 Loop Closure Detection

Loop closure is the problem of detecting if the robot is revisiting a previously
explored area of the environment. By definition, a robot must turn to be able
to close a loop and it can only be done by passing through junctions in modern
road network structure. Using this observation, we divide the environment into
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discrete places as it is described in section 4.2 and each place can be revisited
only by passing through a connecting junction or junctions in our map. Therefore,
loops can only be closed at junctions and we limit the search area into the nodes
created at junctions.

Each time robot enters a junction, loop closure search is also activated and
incoming keyframe is placed into the best among the three possibilities in topo-
logical level;

• it can correspond to a part which was previously visited,

• it can belong to the current topological node,

• it can lead the algorithm to create a new topological node.

For this aim, we utilize our hierarchical loop closure detection algorithm at
node level and at image level, respectively as it is seen in Figure 4.2. Moreover,
it is modified by limiting the search space with junctions and by adding metric
validation step to increase the precision rate. The current section gives the details
of the loop closure processes.

Extracted local image features of each key-frame are quantized into visual
words by using a kd-vocabulary tree (PCI+08b) learned on a training dataset.
The visual words are utilized for node and image level loop closure operations.
To achieve an optimized loop closure performance, indexing technique is used
to store visual words in the memory. Indexing is mainly used in text retrieval
applications and inverted file (MR98) is the most common data structure to
perform this task. Each key-frame is represented as a list of visual words and each
word has an associated inverted file that gives a list of references to the key-frames
in which the word is observed. In fact, inverted files gives us which key-frames
observe that particular word and how many times. In this work, we utilize an
extended version of inverted file which is compatible with our hierarchical loop
closure detection by indexing image as well as node memberships of visual words
respectively and is giving key-point locations of the visual words. This is named
as Spatial Hierarchical Inverted files Figure 4.4 and answers three main questions:

• In which nodes did a particular visual word occur?

• In which key-frames of a particular node did that particular visual word
occur?

• what are the key-point locations of a particular visual word in an image
belonging to a particular node?
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With each newly acquired keyframe in junction, a similarity criterion is cal-
culated;

p(It = i|Ft,Mt−1) =
p(Ft|It = i,Mt−1)p(It = i|Mt−1)

p(Ft|Mt−1)

= ηp(Ft|It = i,Mt−1)p(It = i|Mt−1)

= ηp(Ft|It = i,Mt−1)
∑

j

p(It = i|It−1 = j)p(It−1 = j|Mt−1)

(4.30)

Where It is the image frame acquired at time t, Ft is its feature measure-
ment and Mt−1 is the existing map. By using recursive Bayesian filter, posterior
probability of current frame can be written as multiplication of the likelihood
term p(Ft|It,Mt−1) and sum of p(It|It−1) the transition prior and p(It−1|Mt−1)
the posterior probability from the previous time step over the two neighboring
hypotheses.

This similarity criterion calculated by equation 4.30 is used to place the query
image into the best among the three possibilities based on the most distinct
matches chosen by using nearest neighbor ratio (Low04b).

The first case corresponds to the loop closure detection which is carried out in
two steps named as node level and image level. The second case corresponds to
adding new frame into current node by measuring similarity between the current
node and a newly acquired image. The third case corresponds to creating a new
node with an edge which gives the relative rotation and translation information
with the last node.

Node level loop closure downsizes the search space by constructing a subset of
candidate nodes for image level loop closure step. Moreover, an empty set can be
also produced which shows that newly acquired image either belongs to current
node or belongs to a new node. Given the node level occurrence information
which is retrieved from the associated spatial HIFs for each visual word of the
query image wi ∈ Wq, the likelihood for node similarity is calculated by using
Term Inverse Document frequency (AFDM08).

In case node level loop closure turns positive with a group of candidate nodes
N

∗, a reference set I
R is constructed with the member images of these nodes.

I
R = {INk : ∀kNk ∈ N

∗} (4.31)

Where, INk is the set of images belonging to the node Nk. For each visual word
of the query image, similarity scores based on sub-linearly scaled term frequency
and inverse document frequency STF-IDF are computed as in equation 4.32.
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The main difference between the standard TF-IDF used at node level and STF-
IDF is that the first one gives more importance to the repeating visual words.
However, common visual words between reference and query image are more
important for image level loop closure detection even if they occur only once
on the corresponding images. Likelihood values are obtained by smoothing and
normalizing these similarity scores. A posterior probability is calculated by using
the recursive Bayesian filter given by equation 4.30 and images which have higher
posterior probability than 0.8 are selected as winning images.

STF − IDF (wi, Ik) = (1 + log(n(wi, Ik))). log(
n(I)

n(wi, I)
) (4.32)

Although this hierarchical policy gives refined loop closure results, it does
not guarantee that there is only one image which has a likelihood value above
the threshold for each step and loop closures are detected at the closest robot
locations. Indeed, it contains certain level of noise and temporal inconsistencies
such as multiple matching to the same frame or they can be mapped backwardly
at some points although we know robot always move forward direction. Therefore,
an epi-polar geometry verification with RANSAC step is added. In fact, this step
is extended to pose estimation with 3D reconstruction for the region in which
robot enters and exits the loop closure.

4.2.4 Parameters

It starts with 64−dimensional Upright SURF (USURF−64) (BTG08) extraction
for each frame of the video stream acquired by a monocular calibrated camera.
The input frames are split into grids with each of them 7×4 windows and only
one feature per grid is extracted so that we could speed up feature extraction
process and increase the performance of matching as well as 3D reconstruction
process. Once the features are extracted, they are matched within a fixed search
region 50×50 around the interest points from the previous frame. When the ratio
between the number of matched features and the total number of the extracted
features of the current frame is below a threshold τ = 0.8, current frame is
considered as a new key frame. The average observed distance between keyframes
is around 2 meters. The key-frames are used for 3D reconstruction step and there
are approximately 400 new 3D points are constructed with each new key-frame.
Here, our aim is not to get the best construction results. In fact we use this
extracted metric information for path classification step and for the areas where a
robot needs metric accuracy to navigate. Therefore, we build it within maximum
80 meter long distances.

The loop closure detection consists of 2 steps such as training and testing. Al-
though, we use 3 sequences for testing, we build the training data by randomly se-
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lecting 10% of images from all 22 sequences of KITTI Odometry dataset. USURF
features extracted on all the training images are used in learning of bag of words
vocabularies. We used a vocabulary tree with branching factor (k = 6) and levels
(l = 6). During the topological map building, there are two parameters given
as node similarity cut-off θN and image similarity cut-off θI . The best results
are obtained by setting these two parameters to 0.5 and 0.7 respectively. More
detailed explanation of the parameters related with loop closure and topological
map building can be found in our previous papers (KUM13, KM14). The number
of uniform length segments n for the path classification is chosen as 20. The rest
of the classification parameters related with CRF are learned at training step.

For the training, we manually select junction and non junction urban areas
areas from odometry dataset sequences. Each of them consists of 80 frames and is
given to our 3D reconstruction algorithm . Resulting 3D point clouds are divided
into 20 uniformly length segment and each segment is labeled manually in order
to obtain ground truth. The feature functions are computed as well as normalized
for the segments. The normalized results are given to the parameter estimation
algorithm.

4.3 Experiments

PAVIN sequences which are part of the Institute Pascal data sets (IPDS) and a
part of the popular KITTI odometry dataset are used for experiments.

The PAVIN sequences are acquired by a car-like robotic platform named
VIPALAB on which there are a dozen of sensors. These sensors are an odom-
etry system, an Inertial Measurement Unit (IMU) which is supported by RTK
GPS, a front looking Lidar and several cameras. An on−board computer unit
with a Middleware software allows us to collect data from its sensor suit. The
platform has a control panel which allows us to drive the vehicle manually as
well as autonomously by using the on board computer system for data collection
and experiments. More information about the IPDS are available on the web-
site 1. For the experiments with PAVIN datasets, we use images captured by
a fish eye camera with 185 degree horizontal field of view which is mounted in
the front upper part of the Vipalab. The resolution is 1280 × 960 pixel and the
test sequences are recorded at 15 fps. The snapshots from a Pavin sequence is
shown in the Figure 4.5. We make use of perceptive images from PAVIN which
contains an artificial urban environment with 600 meters trajectory length and
the RTK−GPS is used to obtain the ground truth information.

The PAVIN sequences are utilized to test the first framework. Due to the
miniaturized scale of PAVIN, it is not suitable for testing the second framework.

1The IP datasets website is: http://ipds.univ-bpclermont.fr/
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High quality ground-truth information based on Real-time Kinematic GPS (RTK-
GPS) is available for Pavin sequences of IPDS and the selected sequences of
KITTI dataset. To demonstrate the performance of the proposed mapping strat-
egy, smaller subsets are extracted from the sequences which originally contain a
huge number of frames and then are used as input of the mapping algorithm.
The mapping performance is shown based on loop closure accuracy and sparsity
due to the global topological character of our map. To give complete idea about
our strategy, some trajectories estimated for metric nodes are also demonstrated.

On the other hand KITTI dataset is acquired in large urban areas. For test-
ing the second framework, we use a part of the popular KITTI odometry dataset
(GLSU13) which contains various urban roads and junctions. The dataset con-
sist of 22 sequences covering the trajectory of 39.2 km and contains 1241×376
undistorted images as shown in the figure 4.6. Out of these we use 3 sequences
as they contain loop closures in urban areas spanning around 8 km of trajectory.

Our main assumption is that there is a direct relationship between junctions
and the places where loops are closed. However, there is not a ground-truth
which shows the locations of loop closures and junctions in this dataset. Hence,
we prepare manually ground truth analysis of loop closures with the number of
junctions that they contain in each selected sequences and show it in the tables
4.3, 4.4, 4.5. There are 9 loop closures and each of them contains at least one
junction. Only exception to this observation is that if the sequence starts right
after a junction, then it might be missed. We deal with this kind of problem
by extending the detected junctions areas and combining the relatively close
junctions under a common junction place in our algorithm.

Table 4.3: Ground truth transcript of loop closure intervals of the Sequence 00

Loop Closure Intervals # of

Junc.

0-100 ⇐⇒ 4452-4533 1

118-196 ⇐⇒ 1570-1640 1

386-412 ⇐⇒ 2443-2460 1

386-941 ⇐⇒ 3392-3844 5

2349-2462 ⇐⇒ 3292-3418 1

Total # of Frames : 4541
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Table 4.4: Ground truth transcript of loop closure intervals of the Sequence 05

Loop Closure Intervals # of

Junc.

31-121 ⇐⇒ 2430-2512 1

565-787 ⇐⇒ 1324-1530 1

819-885 ⇐⇒ 2581-2627 1

Total # of Frames : 2761

Table 4.5: Ground truth transcript of loop closure intervals of the Sequence 07

Loop Closure Intervals # of Junc.

0-13 ⇐⇒ 1060-1067 1

Total # of Frames : 1101

4.3.1 Results

4.3.1.1 Hybrid Topo-Metric Framework

The performance of the first framework is demonstrated by using small subsets
that are extracted from the PAVIN sequences. The first performance measure for
a globally topological map is the balance between sparsity and accuracy. Sparsity
is a parameter which is inversely proportional with the number of nodes in the
map. Although higher sparsity is a preferable feature, the accuracy of the map
is an another important issue which limits the sparsity. In our case extremely
growing number of images per node causes us to miss true loop closures at node
level loop closure detection. Therefore, we take the maximum sparsity which
supplies us maximum recall rate in node level. The table 4.6 shows the sparsity
of our first frame work on PAVIN sequences. Using hybrid strategy which means
that the metric model is used at loop closures increases the average number of
images under these nodes and therefore results with higher sparsity.

On the other hand, global accuracy of the first framework is given by precision
recall curves based on loop closure detection. Figure 4.7 illustrates the precision-
recall of the loop closure decisions achieved by the first framework. More detailed
results on this part and detailed analysis on finding optimum recall and precision
rate was given in the previous chapter therefore we give it here as a performance
measure.
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Sequence #(Nodes) #(images)/node (Traj.)/node

PAVIN 68 17.6 21.15 m

PAVIN Jonco 221 19.72 22.2 m

Table 4.6: Node Statistics. #(Nodes) - Number of nodes of the map built on the

sequence. #(images)/node - Average number of images represented by each node.

(Traj.)/Node - Average trajectory length represented by each node.

Table 4.7: Structure of the topo-metric map for PAVIN.

The number of the frames 1196

The number of the nodes in the map 68

The number of the frames per node 17.6

The number of the metric nodes in the map 24

Topo-metric structure of the map is given in the table 4.7 for the first sequence
and in the table 4.8 for the second sequence.

These tables show various node statistics of the map built on the PAVIN
sequences. For the first sequence, there are 1196 images under 68 nodes in the
map while there are 4378 images under 221 nodes in the map of the second
sequence. Metric reconstruction is carried out separately for 24 nodes and 70
nodes in the maps respectively. Keeping the number of the metric nodes small
compared to the topological nodes is important in the sense of computational
efficiency as it is shown in the table 4.9.

Figures 4.8 and 4.9 show the global mapping results and also gives a detailed
view for two specific parts of the map such as the left turn and roundabout. At
the global view, the map is separated into metric and topological parts which are
shown as green and red respectively. 3D reconstruction is carried out at the red
places independently and the rest of the map is constructed based on topological
model.

Table 4.8: Structure of the topo-metric map for PAVIN-Jonco.

The number of the frames 4378

The number of the nodes in the map 221

The number of the frames per node 19.72

The number of the metric nodes in the map 70
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Table 4.9: Computational Time per frame in milliseconds.

Pose Estimation with SBA 430 ms

Similarity analysis 126 ms

4.3.1.2 Hybrid Semantic Framework

The features calculated from the 3D point cloud, camera poses and 2D features
are given to the CRF module. The figure 4.10 gives the general framework of this
step for three different junction models considered in this work. The first level
of the classification starts with key frame selection and then 3D reconstruction
is obtained. Based on this 3D point cloud and 2D features, feature functions are
calculated and they are given to the CRF module.

The figures 4.14 and 4.15 show the junction detection results for each sequence
on the trajectories of the real driving traces in the maps taken as screen-shots
of Google Maps. Except of the right turns that robot passes without turning
through, the other junction areas are detected correctly and shown on the figure
with yellow boxes. However, there is still a chance to detect right turns in the
case of multiple passes as it happens for the 15th junction of the Sequence OO
shown in the figure 4.14.It is a right turn according to robot’s direction and is
not detected at the first pass of the robot due to the fact that we limit the path
classification step with the left sight of the robot trajectory. At the second pass
from this junction, the robot turns right through it and so it is detected without
being able to associate it with its location at the first pass shown in detail in the
figure 4.11. Using the loop closure detection which happens in the succeeding left
turn, this right turn is also associated with the first pass and placed into our map
correctly. In fact, this kind of places which contains close junctions are combined
and saved as high resolution metric model with the help of multiple passes and
loop closure detection.

Another issue we observe comes from the lack of detecting bidirectional loop
closures which means traveling over a same path again in a different direction
due to the fact that monocular images can not provide a visual perception in all
direction. For instance the robot crosses the junction 4 in the first sequence 4.14
two times but with different directions which are perpendicular to each other.
Therefore, it is shown as two different junctions in our map.

The addition of junction detection in our mapping algorithm definitely en-
hances the loop closure detection performance which is an important criteria for
obtaining a concrete map. This is shown by using precision recall curves calcu-
lated for the sequence 00 and 05. The sequence 07 contains only one loop therefore
it is not considered for the calculation of precision and recall curves although it
is representative for urban junction detection case. Figure 4.13 demonstrates
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the trajectory plots of the sequences with detected loop closures highlighted.
Our method is compared with FABMAP (CN08a) as it is shown in figure 4.12.
FABMAP results are calculated by utilizing OpenFABMAP code (GMW+11)
with a standard configuration. It is trained with the same training set that we
use for our loop closure algorithm. By changing the node similarity cut-off θN ,
the image similarity cut-off θI and the size of detected junction areas, we obtain
precision recall pairs in the figure 4.12 for our algorithm.

Although precision recall curves have a strong meaning from the image re-
trieval perspective, it is not sufficient enough to evaluate performance of a loop
closure detection from mapping perspective. Missing a loop completely or finding
false loops have catastrophic results on resulting map. In other words, focusing
on recall rates which means of matching each frame in each loop can be cause
of creating false connections between impossible places or missing a part of envi-
ronment in a map. Therefore we keep false positive and false negative detection
of loop closure at zero instead of trying to increase recall rates at the frame level
in our algorithm as it is shown in table 4.10.

Table 4.10: Comparison of ground truth number and detected number of loop

closures are given. First row shows the total number of loop closures in overall

dataset. Then the following rows give the values for each sequence separately. As

it is seen our algorithm detects the loops without any false positives.

Ground truth Loop Closure # Detected Loop Closure #

Total 9 9

Seq. 00: 5 5

Seq. 05: 3 3

Seq. 07: 1 1

4.4 Conclusion

Two hybrid mapping models are proposed in this chapter. They share the global
topological structure which organizes images into places and represents them as
nodes. While the first framework is supplying only metric information at limited
areas under this global structure, the hybridization of the second framework is
more developed with the help of road semantics. Moreover, the second extends the
global maps not only with metric but also with semantic information. Therefore,
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the first framework can be seen as a preliminary work while the second is the
complete version.

Topo-metric framework introduces a new way to combine metric and topolog-
ical information in a common map for large environments. It exploits an efficient
representation built from our appearance based hierarchical loop closure detec-
tion strategy that allows instant loop closing. Hierarchical loop closure algorithm
with ISP module is augmented with geometric edges and metric partitions. We
use metric partitions for the places visited multiple times and connect these ar-
eas with topological mapping strategy. It is tested on the sequences which are
captured in an outdoor environment.

In the second framework, we have proposed another new and advanced hybrid
mapping approach which integrates spatial and semantic information for obtain-
ing a scalable and navigable representation of large urban environments. The
proposed hybrid map has had the ability to choose automatically between repre-
senting the environment only with topological model or a topo-metric model that
would not be possible without exploiting the semantic knowledge. Among the
different high level semantic concepts available in urban environment, we have
illustrated the possibility of extracting road junctions.This provides important
advantages such as acquiring well-established hybrid map, improving loop clo-
sure detection, minimizing the usage of computationally expensive metric model
without loosing the accuracy for navigation task, increasing scalibility capacity
and achieving a suitable model for map matching as well as merging algorithms.

Real world sequences have been used to test our system with certain assump-
tions. A C++ code of our algorithm will be made publicly available soon. Due
to the limited field of view offered by monocular vision, we have restricted our
classification step with the left side of the robot path. However, these can be im-
proved by using multi-camera setups which propose bigger field of view at sides
and make the depth estimation more precise and rich for extracting the semantic
information better.

In the future work we plan to test our algorithm with multi camera setup
which can lift the necessity of traversing the places again in the same direction
in order to associate them with already mapped areas. We will also focus on
further investigation of the suitability of our map to facilitate map matching and
merging with available global maps.
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Figure 4.2: Flow chart. There are four main blocks given as image sequence

partitioning ’ISP’, local 3D reconstruction ’metric’, path classification and loop

closure detection.
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Figure 4.3: Toy example illustrating how the environment (point cloud) is divided

into a set S of n = 8 segments of uniform-length and parallel to the ground plane.
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Figure 4.4: Spatial Hierarchical Inverted File models node Nj and image It mem-

bership information of visual words wi as well as gives the key-points coordinates

which constructs that particular word. In this toy example, visual word wi is

observed at the pixel coordinates x1p, y
1
p of the image Ip as well as at the pixel co-

ordinates x1t , y
1
t of the image It under the node Nk and at the pixel coordinates

x1m, y1m of the image Im under the node Nl.
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Figure 4.5: Snapshots from Pavin dataset.

Figure 4.6: Example frames from selected sequences are shown.
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(a) Precision-Recall for the

PAVIN.
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(b) Precision-Recall for the PAVIN

Jonco.

Figure 4.7: Precision-Recall graphs on the reference datasets.

Figure 4.8: The overall map of first PAVIN sequence. The green areas represent

the loop closure and therefore the metric nodes.
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(a) Global map

(b) Reconstruction of Roundabout.

(c) Reconstruction of Road bend.

Figure 4.9: The experimental results. The first figure shows the overall map. The

green areas represent the topological parts and the red areas represent the metric

parts. The second figure zooms into the roundabout while robot is turning around

more than one tour and the third zooms into the area while robot is driving into a

bend.
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Figure 4.10: Simplified level of path classification step. The first column shows

the three different type of junctions from the sequences. The second column shows

the 3D point cloud extracted while robot is traversing these junctions. The third

column shows the dominant line segments relative to the robot trajectory coming

from the road surface. The last column shows the result of our CRF model in

response of the feature functions which are using 3D and 2D available information.
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Figure 4.11: It shows that we miss the two right turns at the first passes. However,

using the loop closure detections between first and second passes as well as second

and third passes, these right turns are also added to our map.

115

vlad_loopclosure/figures/JuncZoneMultiPassv2.eps


Hybrid Mapping

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

ci
si

on
 (

%
)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Recall (%)

P
re

ci
si

on
 (

%
)

Figure 4.12: Precision Recall curve for the sequence 00 and 05 respectively. The

red curve shows the performance of our algorithm while the blue is showing the

perfomance of FABMAP.

Figure 4.13: Dataset sequence trajectories plotted in blue. The detected loop

closure regions are shown in green.
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Figure 4.14: The results of path classification are shown on the real trajectory

of sequence 00. There are 25 different junctions and some of them are visited by

robot multiple times. Yellow squares show the detected junction and the red one

shows the missed junction at which robot traverse through a straight road with a

narrow right turn.
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Figure 4.15: The results of path classification are shown on the real trajectory of

sequence 05 on the left and sequence 07 on the right. There are 12 and 7 different

junctions in each sequence respectively. Yellow squares show the detected junction

and there are no missed junctions in these sequences.
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Conclusion

To conclude, we will first give a summary of what is covered in this thesis. Then,
we will outline possible directions for future work in this area.

5.1 Summary of the Thesis

In this thesis vision based hybrid map building in outdoors is proposed. Multiple
branches from the computer vision field is brought together for developing systems
capable of visual hybrid SLAM. Local and global feature extraction, descriptors,
image matching, image retrieval, structure from motion, image understanding
and labeling can be counted among these relevant branches of research.

Our system addresses some of the problems encountered in previous ap-
proaches. We address the ability to detect previously seen places in an effi-
cient and robust manner, consistency, accuracy, and scalability when mapping
out large environments. Each of these contributions makes the final map more
useful in outdoors for applications such as autonomous driving and mobile robot
navigation.

In Chapter 2, the literature on vision based SLAM are reviewed. We classify
the field based on the model used for representing the environment seen by the
system. Particularly,the methods are investigated under metric SLAM, topologi-
cal SLAM, semantic SLAM and hybrid SLAM. We also highlighted the algorithms
utilized in our approach which have been developed by others in the field.

In Chapter 3, we proposed a hierarchical topological loop closure detection
framework. The process of map building and the two phases of loop closure
have been discussed in detail. First, we have manually tuned the parameters
of loop closure detection algorithm and then an automatic parameter learning
based algorithm has been proposed. Experimental results obtained on six publicly
available sequences have been reported and analyzed. The present approach has
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been compared with two state of the art approaches and has been shown to be
better in performing loop closure without geometric verification step.

In Chapter 4 we proposed two hybrid mapping models. In fact, they can
be seen as steps of developing a complete hybrid map. They share the global
topological structure which organizes images into places and represents them as
nodes. The loop closure algorithm which is proposed in chapter 2 is utilized for
this aim. While the first framework is supplying only metric information at lim-
ited areas under this global structure, the hybridization of the second framework
is more developed with the help of road semantics. Moreover, the second extends
the global maps not only with metric but also with semantic information. There-
fore,the first framework can be seen as a preliminary work while the second is the
complete version.

Adding metrical information between places is beneficial in robotic tasks like
navigation and planning as well as facilitation of human interaction with the map.
For example, topological maps cannot be understood by humans directly without
the introduction of at least simple metrics like directionality of nodes. In this
regard,our topo-metric framework introduces a new way to combine metric and
topological information in a common map for large environments. It exploits an
efficient representation built from our appearance based hierarchical loop closure
detection strategy that allows instant loop closing.

Hierarchical loop closure algorithm with ISP module is augmented with ge-
ometric edges which gives directionality of nodes and metric partitions. Metric
partitions can be understood as a place metrically represented using a 3D point
cloud. We use metric partitions for the places visited multiple times and connect
these areas with topological mapping strategy. Therefore; metric information
encoding is not expensive regarding to the computational complexity and mem-
ory consumption since only certain parts of the map are locally consistent and
global consistency is not demanded at all. It is tested on the sequences which are
captured in an outdoor environment.

In the second framework, we have proposed another new and advanced hybrid
mapping approach which integrates spatial and semantic information for obtain-
ing a scalable and navigable representation of large urban environments. The
proposed hybrid map has had the ability to choose automatically between repre-
senting the environment only with topological model or a topo-metric model that
would not be possible without exploiting the semantic knowledge. Among the
different high level semantic concepts available in urban environment, we have
illustrated the possibility of extracting road junctions. Using the junction infor-
mation of the environment, we can force loop closures over the whole trajectory
between two junctions, given that a few loop closures were initially detected and
the robot is moving in the same direction as the previous traversal. This provides
important advantages such as acquiring well-established hybrid map, improving
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loop closure detection, minimizing the usage of computationally expensive met-
ric model without loosing the accuracy for navigation task, increasing scalability
capacity and achieving a suitable model for map matching as well as merging
algorithms. Real world sequences have been used to test our system with certain
assumptions.

5.2 Future Work

The current hybrid mapping framework can be extended in several ways to be
useful for robot navigation, path planning and human robot interaction.

Although the loop closure results presented in this thesis show improvement
in the capability of loop closure detection approaches, there is still room for im-
provement in three aspects. The first aspect is that of parameter learning for
NLLC, for which we perform 100 different clustering on each sequence. This pro-
cess is very time consuming and can take several hours. The second improvement
is to use an improved VLAD with Fisher encoding (JPD+12) which is shown
to offer better accuracy than plain VLAD. The third area is to replace SURF
descriptors with binary descriptors like ORB (RRKB11) or BRIEF (CLO+12)
which are faster to compute and more storage efficient; VLAD/Fisher encoding
should be adapted to binary descriptors by using Hamming distances. Therefore,
we envision to address these problems in our future work.

The results present a significant improvement in the capability of robot map-
ping approach compared to earlier approaches. However, there is a lot of work
remains to make these systems suitable for using in autonomous driving applica-
tions. Regarding to the physical system setup, we plan to test our algorithm with
multi camera setup which can lift the necessity of traversing the places again in
the same direction in order to associate them with already mapped areas. We
believe that it can also improve the ability of detecting different types of intersec-
tions more robustly. We will also focus on further investigation of the suitability
of our map to facilitate map matching and merging with global available maps.
This will decrease the dependency on loops for correcting the maps and global
maps will enhance the local robot map with its available rich semantic informa-
tion. In fact, map merging can facilitate the exchange of knowledge between
robots and humans independently of their location and can result in large scale
hybrid mapping in terms of cities and countries.

Given that hybrid mapping approaches are complex systems which are the
combination of several models and algorithms, the performance evaluation of
these is ambiguous. However, each module which constructs the whole system
together can be separately assessed. For example, the recall and the precision
rates are used to show the loop closure performance. Meanwhile, the performance
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of a metric map is evaluated by comparing it with ground truth trajectory or for
indoor environments reconstructed metric map can be compared with CAD mod-
els of the buildings. A challenge for the upcoming research is to obtain a common
evaluation metric which allows to compare those hybrid mapping techniques.
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Resumé

Dans cette thèse, nous présentons une nouvelle méthode de cartogra-
phie visuelle hybride qui exploite des informations métriques, topol-
giques et sémantiques. Notre but est de réduire le coût calculatoire
par rapport à des techniques de cartographie purement métriques.
Comparé à de la cartographie topologiques, nous voulons plus de pré-
cision ainsi que la possibilité d’utiliser la carte pour le guidage de
robots. Cette méthode hybride de construction de carte comprend
deux étapes. La première étape peut être vue comme une carte
topo-métrique avec des nœuds correspondants à certaines régions de
l’environnement. Ces cartes sont ensuite complétées avec des données
métriques aux nœuds correspondant à des sous-séquences d’images ac-
quises quand le robot revenait dans des zones préalablement visitées.
La deuxième étape augmente ce modèle en ajoutant des informations
sémantiques. Une classification est effectuée sur la base des infor-
mations métriques en utilisant des champs de Markov conditionnels
(CRF) pour donner un label sémantique à la trajectoire locale du
robot (la route dans notre cas) qui peut être "doit", "virage" ou "in-
tersection". L’information métrique des secteurs de route en virage ou
en intersection est conservée alors que la métrique des lignes droites
est effacée de la carte finale. La fermeture de boucle n’est réalisée que
dans les intersections ce qui accroît l’efficacité du calcul et la précision
de la carte. En intégrant tous ces nouveaux algorithmes, cette méth-
ode hybride est robuste et peut être étendue à des environnements
de grande taille. Elle peut être utilisée pour la navigation d’un robot
mobile ou d’un véhicule autonome en environnement urbain. Nous
présentons des résultats expérimentaux obtenus sur des jeux de don-
nées publics acquis en milieu urbain pour démontrer l’efficacité de
l’approche proposée.

MOTS CLES— Cartographie Visuelle Hybride, SLAM, Fermeture
de Boucle.



Abstract

In this thesis, a novel vision based hybrid mapping framework which
exploits metric, topological and semantic information is presented.
We aim to obtain better computational efficiency than pure metrical
mapping techniques, better accuracy as well as usability for robot
guidance compared to the topological mapping.

A crucial step of any mapping system is the loop closure detection
which is the ability of knowing if the robot is revisiting a previously
mapped area. Therefore, we first propose a hierarchical loop clo-
sure detection framework which also constructs the global topological
structure of our hybrid map. Using this loop closure detection mod-
ule, a hybrid mapping framework is proposed in two step. The first
step can be understood as a topo-metric map with nodes correspond-
ing to certain regions in the environment. Each node in turn is made
up of a set of images acquired in that region. These maps are further
augmented with metric information at those nodes which correspond
to image sub-sequences acquired while the robot is revisiting the pre-
viously mapped area. The second step augments this model by using
road semantics. A Conditional Random Field based classification on
the metric reconstruction is used to semantically label the local robot
path (road in our case) as straight, curved or junctions. Metric infor-
mation of regions with curved roads and junctions is retained while
that of other regions is discarded in the final map. Loop closure is
performed only on junctions thereby increasing the efficiency and also
accuracy of the map. By incorporating all of these new algorithms, the
hybrid framework presented can perform as a robust, scalable SLAM
approach, or act as a main part of a navigation tool which could be
used on a mobile robot or an autonomous car in outdoor urban envi-
ronments. Experimental results obtained on public datasets acquired
in challenging urban environments are provided to demonstrate our
approach.

KEYWORDS— Hybrid Mapping, SLAM, Loop Closure.


