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SN cartésien massivement parallèle pour la simulation neutron-
ique

Résumé : La simulation haute-fidélité des cœurs de réacteurs nucléaires nécessite une
évaluation précise du flux neutronique dans le cœur du réacteur. Ce flux est modélisé
par l’équation de Boltzmann ou équation du transport neutronique. Dans cette thèse, on
s’intéresse à la résolution de cette équation par la méthode des ordonnées discrètes (SN)
sur des géométries cartésiennes. Cette méthode fait intervenir un schéma d’itérations à
source, incluant un algorithme de balayage sur le domaine spatial qui regroupe l’essentiel
des calculs effectués. Compte tenu du très grand volume de calcul requis par la réso-
lution de l’équation de Boltzmann, de nombreux travaux antérieurs ont été consacrés à
l’utilisation du calcul parallèle pour la résolution de cette équation. Jusqu’ici, ces algo-
rithmes de résolution parallèles de l’équation du transport neutronique ont été conçus en
considérant la machine cible comme une collection de processeurs mono-cœurs indépen-
dants, et ne tirent donc pas explicitement profit de la hiérarchie mémoire et du parallélisme
multi-niveaux présents sur les super-calculateurs modernes. Ainsi, la première contribu-
tion de cette thèse concerne l’étude et la mise en œuvre de l’algorithme de balayage sur les
super-calculateurs massivement parallèles modernes. Notre approche combine à la fois la
vectorisation par des techniques de la programmation générique en C++, et la program-
mation hybride par l’utilisation d’un support d’exécution à base de tâches: PaRSEC.
Nous avons démontré l’intérêt de cette approche grâce à des modèles de performances
théoriques, permettant également de prédire le partitionnement optimal. Par ailleurs,
dans le cas de la simulation des milieux très diffusifs tels que le cœur d’un REP, la conver-
gence du schéma d’itérations à source est très lente. Afin d’accélérer sa convergence, nous
avons implémenté un nouvel algorithme (PDSA), adapté à notre implémentation hybride.
La combinaison de ces techniques nous a permis de concevoir une version massivement
parallèle du solveur SN Domino. Les performances de la partie Sweep du solveur at-
teignent 33.9% de la performance crête théorique d’un super-calculateur à 768 cores. De
plus, un calcul critique d’un réacteur de type REP 900MW à 26 groupes d’énergie mettant
en jeu 1012 DDLs a été résolu en 46 minutes sur 1536 cœurs.

Mots clés : Parallélisme, calcul distribué, HPC, multi-cœur, vectorisation, ordonnanceur
à base de tâche, SN cartésien, Sweep.
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Massively Parallel Cartesian Discrete Ordinates Method for Neu-
tron Transport

Abstract : High-fidelity nuclear reactor core simulations require a precise knowledge of
the neutron flux inside the reactor core. This flux is modeled by the linear Boltzmann
equation also called neutron transport equation. In this thesis, we focus on solving this
equation using the discrete ordinates method (SN) on Cartesian mesh. This method in-
volves a source iteration scheme including a sweep over the spatial mesh and gathering
the vast majority of computations in the SN method. Due to the large amount of compu-
tations performed in the resolution of the Boltzmann equation, numerous research works
were focused on the optimization of the time to solution by developing parallel algorithms
for solving the transport equation. However, these algorithms were designed by consider-
ing a super-computer as a collection of independent cores, and therefore do not explicitly
take into account the memory hierarchy and multi-level parallelism available inside mod-
ern super-computers. Therefore, we first proposed a strategy for designing an efficient
parallel implementation of the sweep operation on modern architectures by combining
the use of the SIMD paradigm thanks to C++ generic programming techniques and an
emerging task-based runtime system: PaRSEC. We demonstrated the need for such an
approach using theoretical performance models predicting optimal partitionings. Then
we studied the challenge of converging the source iterations scheme in highly diffusive
media such as the PWR cores. We have implemented and studied the convergence of a
new acceleration scheme (PDSA) that naturally suits our Hybrid parallel implementation.
The combination of all these techniques have enabled us to develop a massively parallel
version of the SN Domino solver. It is capable of tackling the challenges posed by the
neutron transport simulations and compares favorably with state-of-the-art solvers such
as Denovo. The performance of the PaRSEC implementation of the sweep operation
reaches 6.1 Tflop/s on 768 cores corresponding to 33.9% of the theoretical peak perfor-
mance of this set of computational resources. For a typical 26-group PWR calculations
involving 1.02 × 1012 DoFs, the time to solution required by the Domino solver is 46 min
using 1536 cores.

Keywords: Parallelism, distributed computing, HPC, multi-core, vectorization, task-
based runtime system, Cartesian SN, Sweep.
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Introduction

In today’s world, the energy demand is constantly growing. Among the various sources of energy,
the nuclear represents 11% of the overall total energy production1. Nuclear energy (actually elec-
tricity) is produced by the mean of nuclear power plants, using fissile fuel placed in reactor cores.
Since the beginning of the nuclear industry in the early 1950s, nuclear reactor core operators,
such as Electricité de France (EDF), conduct engineering studies to enhance safety and efficiency
of the nuclear power plants. Indeed, before operating the reactor, safety reports require to pre-
cisely evaluate the location and the magnitude of the maximal power peak within the reactor
core (pin peak power). This is mandatory in order to fulfill the regulatory hurdles. Efficiency
concerns will require the evaluation of the reactor longest cycle length as possible, while max-
imizing the nominal power (see [111] for more details). In order to meet these goals, nuclear
engineering studies require to achieve high-fidelity predictive nuclear reactor core simulations.
These simulations involve coupled multi-physics calculations that encompass thermal-hydraulics
and neutronic studies. In particular, the neutronic studies, or neutron transport calculations, on
which we focus in this thesis, consist in describing precisely the neutron flux distribution inside
the reactor core. This flux, which corresponds to the neutron phase-space density, depends on
seven variables: three in space ( #„r = (x, y, z)t), one in energy (E), two in direction ( #„Ω ≡ (θ, φ))
and one in time (t). Thus, the precise simulation of the neutron flux distribution in the reactor
core would require a tremendous computational effort.

Indeed, let us consider the core of a Pressurized Water Reactor (PWR) 900 MW. From the
presentation in [105], we make the following observations.

• There are 157 fuel assemblies in the core, each of which being formed of 289 pin-cells.
Each pin-cell is composed of O(10) radial zones and of O(50) axial zones.

• The large variations of the energetic spectrum of neutrons requires considering O(2 · 104)
spatial mesh points.

• We must consider O(102) angular directions for describing the traveling directions of the
neutrons.

It follows that O(1012) values of the flux should be evaluated for each timestep, which represents
a very large amount of data. Thereby, to cope with daily industrial calculations, a two-step ho-
mogenization approach [111] is generally employed. The first step of this approach leads to the
evaluation of homogenized cross-sections using a lattice code, while the second step consists in
evaluating the neutron flux in the whole reactor core using a core solver. The core solver is
generally based on a simplified model (e.g. diffusion) of the exact neutron transport problem,
and thus in fact comprises modelization errors. In order to quantify these modelization errors,

1http://www.nei.org/Knowledge-Center/Nuclear-Statistics/World-Statistics

1

http://www.nei.org/Knowledge-Center/Nuclear-Statistics/World-Statistics
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existing in core industrial solvers, it is necessary to solve the Boltzmann Transport Equation
(BTE) with a reference solver. Two main families of methods are used to perform reference
calculations: probabilistic and deterministic methods. The first ones consist in using statistical
tools to simulate the history of a large number of neutrons in the core, taking into account all
the interactions that may occur between neutrons and the matter in the core. Hence, probabilis-
tic methods enable to avoid the phase-space discretization problems, and can handle complex
geometries, which make them very attractive for reactor physics analysis [12, 14, 110]. Unfor-
tunately, the convergence of probabilistic methods allows to estimate the phase-space density
with an accuracy that converges rather slowly. The other class of methods, reference determin-
istic methods, are computationally very demanding because they require a full discretization of
the BTE to achieve acceptable levels of accuracy. For this reason, until a few years ago these
methods were impracticable for 3D cases because of the limitations on the computing power.

Computer resources have since grown in capability, and several research works are therefore
being conducted in developing reference 3D deterministic solvers [29, 63, 111, 121]. These are
based on either discrete ordinates (SN), or spherical harmonic (PN), or Method of Characteristics
(MOC) which is a special case of SN. All these methods share the same energetic discretization,
and differ on angular and spatial discretizations. The SN method consists in considering only
a finite set of angular flux components ψ( #„r , E,

#„Ωi) that corresponds to a finite set of carefully
selected angles #„Ωi. In the PN method, the transport equation is projected onto a set of spherical
harmonics, allowing to mitigate the fundamental shortcoming present in the SN method: the
“ray-effects”. The MOC uses the same energetic and angular discretizations as the SN method,
but its spatial discretization is based on the long characteristics. This discretization enables
the MOC to deal with the heterogeneity and complexity of the reactor core like probabilistic
methods. Although the MOC has been proven to be very efficient in 2D, large-scale 3D cases
are still very computationally demanding [111].

In this thesis, we consider the problem of solving accurately and efficiently the steady-state
BTE using the SN method on Cartesian mesh. As previously mentioned, this reference method
enables the validation of approximate core industrial solvers. In particular, during the reactor
core refueling process, it must be guaranteed that the optimization of a new fuel-loading pattern
(see [123]) can be done in a short period of time [111]. Consequently, a reference calculation,
involving several coupled multi-physics iterations, has to be completed in a limited amount of
time. It is therefore necessary to manage to develop highly-optimized algorithms and numerical
methods to tackle the large amount of calculations required by the SN method.

In front of this problem, the landscape of today’s parallel computers, on which the simulations
have to be executed, has dramatically shifted since the end of frequency scaling of monolithic
processors, which has motivated the advent of the multicore processor in the early 2000s [42].
Modern clusters are composed of heterogeneous computing nodes. These computing nodes are
equipped with processors having tens of CPU cores, capable of issuing vector instructions on
wide registers. A key point to note here is that the off-chip bandwidth, determining the latency
of memory accesses between the computer main memory and the CPU registers, is not growing
as fast as the computing power of these CPUs [85], leading to a “memory wall”. The consequence
of this is to put a dramatic emphasis on the sustainable peak-performance per core, since the gap
between this metric and the theoretical peak performance trends to increase for memory bound
applications. Furthermore, computing nodes may comprise accelerators like Graphics Processing
Units (GPUs) and manycore devices. This represents a huge amount of computing power that
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can be used to tackle large numerical simulations in science and engineering such as predictive
nuclear reactor core simulations. As a consequence of this hardware evolution, several projects
are dedicated in the scientific community to the improvement of the performance of numerical
simulation codes. Hence, one solution for maximizing the sustainable peak performance of a
computational kernel is to rely on highly optimized external numerical libraries. For instance,
the Trilinos project [53] aims at providing optimized packages, developed with advanced object-
oriented techniques and state-of-the-art parallel programming paradigms, which can therefore
be directly used as building blocks for solving large-scale and complex multi-physics problems.
For some specialized applications, as the neutron transport simulation problem, the solution
for achieving high-performance on emerging architectures is oriented towards computer code
modernization as justified by the large number of recent researches on this subject [11, 54, 61,
86, 87, 100, 104, 118]. This initiative is further promoted by hardware vendors such as the
“Intel code modernization enablement program”1 which provides tools and guidelines for the
development of state-of-the-art and cutting-edge numerical simulation tools, capable of scaling
on exascale machines. Moreover, the Exa2CT2 project aims at facilitating the development of
highly optimized scientific codes, capable to scale on exascale machines, through the development
of new algorithms and programming techniques, validated on proto-applications, and that can
be directly re-integrated into parent computational codes.

In the particular case of neutron transport simulations, a lot of efforts have been dedicated
for improving the efficiency of the discrete ordinates method. These efforts can be classified in
two fields: numerical methods and parallelization strategies that were developed accordingly.
The most computationally demanding portion in the SN method is the space-angle problem
called sweep operation, for each energy group. This operation acts like a wave front propagating
throughout the spatial domain, according to the angular direction. Therefore, the successive par-
allel algorithms developed for the SN method focus on the parallelization of this sweep operation.
The first parallel sweep algorithm KBA [8] is implemented in numerous early SN solvers [29, 57].
KBA splits the 3D spatial grid on a 2D process grid, enabling each process to perform the sweep
on a local subdomain in a classical fork-join mode. The efficiency of this algorithm has been
extensively studied in the literature through performance models [40, 56, 65, 113]. Moreover,
the advent of modern massively parallel computers has motivated extensions of this algorithm
to provide sufficient concurrency for an improved scalability on large number of cores. In the
unic code system [64], the authors implemented a parallel decomposition over space, energy and
angle, enabling to extract more parallelism. A similar approach has been recently introduced in
the Denovo code [35], where a new multilevel parallel decomposition allows concurrency over
energy in addition to the space-angle. Furthermore, the pdt code [1] implements an extension of
the KBA algorithm that enables a decomposition of the 3D spatial grid over a 3D process grid.
These approaches enable to tackle neutron transport problems featuring larger number of energy
groups. However, the parallelism in these codes adopts a uniform view of a supercomputer as
collection of distributed computing cores (Flat approach), without explicitly addressing all the
hierarchical parallelism provided by the modern architectures.

Recently, in the neutron transport community, some research initiatives have emerged to
cope explicitly with the hierarchical topology (cluster of multiprocessor with multiple cores)
of modern architectures. These initiatives are conducted through the development of proto-
applications. For instance, the snap code, as a proxy application to the Partisn [9] code
focuses on exploring a Hybrid programming model for the sweep operation and auto-vectorization

1https://software.intel.com/en-us/code-modernization-enablement
2http://www.exa2ct.eu/index.html

https://software.intel.com/en-us/code-modernization-enablement
http://www.exa2ct.eu/index.html
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capabilities. Similarly, kripke is a proxy application to the ardra [69] radiation transport code,
that is being developed to study the implications of new programming models and data layouts
on its parent code performances.

As we have seen, the neutron transport simulation is a large and complex research area, in
an international competitive environment. We record ourselves in this area and, in this thesis,
we give some original contributions to the field. Indeed, we considered all the issues associated
with the emerging architectures, that encompass the vectorization (SIMD), multithreading and
message-passing paradigms. We make a key point on maximizing the sustainable peak perfor-
mance of our implementation on distributed multicore-based machines using emerging software
tools and frameworks (task-based runtime systems) that enable to reach higher performance, on
today platforms, and the performance portability on future exascale architectures. More pre-
cisely we followed the trends on code modernization, and we developed highly-scalable parallel
algorithms for the Cartesian SN neutron transport simulations over distributed multicore-based
architectures. We especially tailored the discrete ordinates method to explicitly use all levels
of parallelism available on these architectures. Furthermore, our approach relies at each level
on theoretical performance models. In Chapter 1, we present background on reactor physics,
the neutron transport equation, and we describe the sweep operation. Then, in Chapter 2,
we discuss the vectorization strategies for maximizing the single-core peak performance of the
sweep operation, and we justify our approach with a theoretical performance model. In Chap-
ter 3, we discuss the design and theoretical performances of a new efficient parallel Hybrid sweep
algorithm, targeting multicore-based architectures, using a new performance model which ex-
tends existing ones. In Chapter 4, we present an implementation of our Hybrid sweep algorithm
using emerging task-based models on top of generic runtime systems. The integration of this
sweep algorithm into our SN solver Domino is then presented in Chapter 5. A key point in
this chapter is the implementation of a new efficient piece-wise acceleration method required to
speed-up the convergence of the SN method in strongly-diffusive media such as PWR cores. The
efficiency of this acceleration method is well adapted to optically thick domains and particularly
adapted to our Hybrid implementation. We conclude giving a general summary of this work
and perspectives for future research on the field.
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6 Chapter 1. An Introduction to Neutron Transport Simulation and Parallel Architectures

In this chapter, we introduce the neutron transport simulation as a requirement for enhancing
the safety, efficiency and design of nuclear reactor cores. We start by presenting how neutrons
inside a nuclear reactor core are modeled and the fundamental equation governing this process:
the Boltzmann transport equation. Then, we derive the eigenvalue form of this equation that
is used to determine the criticality of a reactor core. After that, we present the multigroup
approximation that is used for the discretization of the energy variable and we introduce the
discrete ordinates method, and the sweep operation that is used for solving the space-angle
problem. Finally, we give an introduction to the modern parallel architectures on which the
simulations will have to be executed.

1.1 Analysis of nuclear reactor cores
This section presents a general view on the reactor physics engineering and the mathematical
model describing the neutron transport in the reactor core. This presentation is inspired from
the works in [31, 78].

1.1.1 Basic concepts of nuclear reactor physics

A nuclear power plant is an industrial facility dedicated to electricity production, from the
energy generated by the fissions of heavy nuclei (e.g. 235U or 239Pu) taking place in the nuclear
reactor core. Each fission is induced by a neutron and releases an average energy of about
200 MeV [31] in the form of heat, and some additional neutrons (2 or 3 on average) which can
in turn induce other fissions, hence leading to a chain reaction (Figure 1.1). Therefore, the

Figure 1.1: The fission chain reaction (illustration inspired by the CEA web site.)

fission energy increases the temperature of the water1 circulating in the reactor core, also called
a coolant. This high temperature water, by means of a heat exchanger, generates high pressure
and high temperature steam from low temperature water. Finally, the steam is used to run
turbogenerators producing the electricity. Hence, the more neutron fission, the more energy is
released by the reactor. However, the fission probability of a nucleus is higher if the speed of
the incident neutron is slow. Thus, in order to increase this fission probability, a moderator is
generally used to slow down the neutrons2. For a Pressurized Water Reactor (PWR), on which
we will focus for the remainder of this dissertation, the coolant also acts as a moderator.

As we have seen, the neutrons play an important role in the analysis of nuclear reactor
cores, because they determine the fission process and thus the power generated by a nuclear
reactor [78]. In addition, the neutron population of the core is a fundamental information. This

1330 ◦C in the case of PWR 900 MW. The coolant is maintained in a liquid state thanks to a high pressure
(10 MPa) maintained in the core by the pressurizer.

2This process is known as thermalization or moderation of the neutrons.
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information is used to conduct safety studies and optimization of both fuel reload and reactor
core design. It is therefore of great interest to evaluate precisely the neutron population (or
neutron flux distribution) in each region of the reactor core #„r , at a given time t, as a function of
the neutron’s energy E, and according their propagation direction #„Ω. This represents therefore
a complicated problem in which the phase-space has 7 dimensions.

The distribution of neutrons inside the core is influenced by the different types of nuclear
reactions that neutrons can undergo. As already mentioned, a neutron when captured by a
heavy nucleus can induce a fission of the nucleus into lighter nuclei. This fission results in
more neutrons, energy release and some fission products. In addition, a neutron can simply
be captured (pure absorption) by the nucleus without inducing a fission; or it can scatter off
(bounce off) the nucleus. Finally the neutron can leak outside the reactor. Hence, evaluating the
neutron distribution inside the core requires taking into account all these reactions all together.
There are essentially two main families of methods used to simulate the neutron population: the
probabilistic methods (Monte-Carlo) and the deterministic ones. The former consist of using
statistical tools to characterize the life of a neutron from its “birth” to “death” (absorption by
a nucleus or leaking out of the reactor), through a simulation of the history of a large number
of particles (neutrons). The main advantage of the Monte-Carlo methods is that they avoid the
phase-space mesh problems, because no discretization is required. Unfortunately, probabilistic
methods allow phase-space density estimation with an accuracy that converges rather slowly
with the number N of particles (∝ 1/

√
N). The latter, deterministic methods, rely on finding a

numerical solution of a mathematical equation describing the flow of neutrons inside the core.
The fundamental equation governing the flow of neutrons is the Boltzmann Transport Equation
(BTE), also called the neutron transport equation.

1.1.2 Boltzmann transport equation

In a nuclear reactor core, there are basically two different situations with regard to the interaction
of a neutron with the nuclei present in the core.

• The neutron interacts with no nuclei; it therefore moves spatially at the same speed,
without shifting from its initial direction: transport without collision.

• The neutron interacts with a nucleus. In this case, it can either be scattered by the nucleus,
that is by changing its direction and its energy, or cause the fission of the target nucleus.

Therefore, the neutron transport equation or linear Boltzmann Transport Equation (BTE) is
obtained by establishing a balance between arrivals and migrations of neutrons at the spatial
position #„r , traveling with an energy E (or a speed v), toward direction #„Ω at a given time t. It
is presented in equation (1.1), where:

Σt( #„r , E, t) is the total cross-section. It characterizes the probability that a neutron of energy
E interacts with a nucleus at the position #„r .

Σs( #„r , E′ → E,
#„Ω′ · #„Ω, t) is the scattering cross-section. It characterizes the probability that

a neutron of energy E and direction #„Ω will be scattered by a nucleus and result in an
outgoing neutron of energy E′ and direction #„Ω′.

Σf ( #„r , E, t) is the fission cross-section. It characterizes the probability that an interaction be-
tween a neutron of energy E with a nucleus at position #„r results in a fission.

ν is the average number of neutrons produced per fission.
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χ(E) is the fission spectrum. It defines the density of neutrons of energy E produced from
fission.

Sext( #„r , E,
#„Ω, t) is an external source of neutrons. It is generally used to start the chain reaction.

S2 is the unit sphere.

1
v

∂ψ

∂t
( #„r , E,

#„Ω, t) = −

Transport︷ ︸︸ ︷
#„Ω · −→∇ψ( #„r , E,

#„Ω, t)

−

Collision︷ ︸︸ ︷
Σt( #„r , E, t)ψ( #„r , E,

#„Ω, t)

+

Scattering︷ ︸︸ ︷∫ ∞

0
dE′

∫
S2
d

#„Ω′Σs( #„r , E′ → E,
#„Ω′ · #„Ω, t)ψ( #„r , E′,

#„Ω′, t)

+

Fission︷ ︸︸ ︷
χ(E)
4π

∫ ∞

0
dE′

∫
S2
d

#„Ω′νΣf ( #„r , E′, t)ψ( #„r , E′,
#„Ω′, t)

+

External source︷ ︸︸ ︷
Sext( #„r , E,

#„Ω, t), (1.1)

Two different boundary conditions (BC) are generally used in reactor physics applications:
vacuum and reflective boundary conditions. They are respectively defined in equation (1.2) and
equation (1.3).

Vacuum BC: ψ( #„r , E,
#„Ω, t) = 0 when #„Ω · #„n < 0, (1.2)

Reflective BC: ψ( #„r , E,
#„Ω, t) = ψ( #„r , E,

#„Ω′, t) when #„Ω · #„n < 0 and #„Ω · #„n = − #„Ω′ · #„n , (1.3)

where Γ is the boundary of the computational domain (the reactor core in our case), and #„n an
outward normal to Γ.

Vacuum BC represents the case where there is no incoming neutron from the outside of the
core and is used when the full description of the core is given. Reflective BC is used to take
advantage of the symmetries presented by the physical problem. In this dissertation, we will
consider only the vacuum BC.

Let H and F be the transport and fission operators as defined by the following equations (1.4)
and (1.5):

Hψ( #„r , E,
#„Ω, t) = #„Ω · −→∇ψ( #„r , E,

#„Ω, t) + Σt( #„r , E, t)ψ( #„r , E,
#„Ω, t)

−
∫ ∞

0
dE′

∫
S2
d

#„Ω′Σs( #„r , E′ → E,
#„Ω′ · #„Ω, t)ψ( #„r , E′,

#„Ω′, t), (1.4)

Fψ( #„r , E, t) = χ(E)
4π

∫ ∞

0
dE′

∫
S2
d

#„Ω′νΣf ( #„r , E′, t)ψ( #„r , E′,
#„Ω′, t). (1.5)

Then, the equation (1.1) becomes:

1
v

∂ψ

∂t
( #„r , E,

#„Ω, t) = −Hψ( #„r , E,
#„Ω, t) + Fψ( #„r , E, t) + Sext( #„r , E,

#„Ω, t). (1.6)
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For a nuclear reactor core under normal operating conditions, we seek to have a self sustained
chain reaction in the absence of external sources of neutrons; this corresponds to an equilibrium
state between fission neutron production and migrations of neutrons by transport or collision. In
order to determine the state of the core in such a situation, it is necessary to find a nonnegative
stationary solution of the Boltzmann equation (1.6) without the external source S:

Hψ( #„r , E,
#„Ω) = Fψ( #„r , E).

However, for any given set of cross-sections, there generally exists no stationary solution to the
BTE [78]. One way of transforming the previous equation so that it accepts a nonnegative
solution is to adjust the average number of neutron procuced per fission, ν, so that a global
time-independant balance can be preserved. Hence, we replace ν by ν/k and we obtain the
following generalized eigenvalue problem:

Hψ( #„r , E,
#„Ω) = 1

k
Fψ( #„r , E,

#„Ω), (1.7)

for which there will be a largest value of k such that a nonnegative solution exists. The largest
such eigenvalue, which is also the spectral radius of operator H−1F , is called the effective
multiplication factor, and denoted keff . Physically, this coefficient allows to determine the
criticality of the reactor core.

• If keff < 1, (Hψ( #„r , E,
#„Ω) > Fψ( #„r , E,

#„Ω)), the neutron production from fissions is less
than migrations: the chain reaction turns off, and the reactor is said to be subcritical.

• If keff > 1, (Hψ( #„r , E,
#„Ω) < Fψ( #„r , E,

#„Ω)), the neutron production from fissions is larger
than migrations: the reactor is said to be supercritical.

• If keff = 1, there is a strict equilibrium between production and migration of neutrons: the
reactor is said to be critical.

problem (1.7) is solved using an inverse power algorithm, which leads to the computation of
the neutron flux ψ and the eigenvalue k, by iterating on the fission term as presented in equa-
tion (1.8).

Hψn+1 = 1
kn

Fψn, kn+1 = kn

√
< Fψn+1,Fψn+1 >

< Fψn, Fψn >
. (1.8)

Algorithm 1 describes the continuous form of the power iterations, also called external iterations.
The power algorithm converges slowly near the criticality. We therefore use the Chebyshev
polynomials to accelerate its convergence. This is done by evaluating the neutron flux at iteration
n+ 1 as a linear combination of the solutions obtained in the last 3 iterations [109].

Each iteration of the power algorithm involves an inversion of the transport operator (Line 3
of Algorithm 1) and a source computation (Line 5 of Algorithm 1) which requires a discretization
of the transport and fission operators. The next section describes the energetic discretization of
these operators.

1.2 Multigroup formulation of the transport equation
The discretization of the energy variable is realized according to the multigroup formalism as
described in [78]. In this formalism, the energy domain is split into a finite set of energy intervals,
called energy groups and delimited by a decreasing sequence of carefully selected energy values
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Algorithm 1: Inverse power algorithm
Input : ψ0, νΣf , Σs, Σt

Output: keff, ψ
1 S = Fψ;
2 while |k−kold|

kold ≥ ϵk or ||S−Sold||
||Sold|| ≥ ϵψ do

33 Hψ = S;
4 Sold = S;
55 S = Fψ;
6 k =

√
<S,S>

<Sold,Sold>
;

7 S = 1
kS;

E0, E1, . . . , EG. The multigroup formulation of the BTE is therefore obtained by integrating
equation (1.7) one each of the G energy groups [Eg, Eg−1] in turn. The resulting multigroup
problem is represented by the linear system (1.9):

H11 H12 · · · H1G
H21 H22 · · · H2G

...
... . . . ...

HG1 HG2 · · · HGG



ψ1
ψ2
...
ψG

 =


S1
S2
...
SG

 , (1.9)

where:
ψg( #„r ,

#„Ω) =
∫ Eg−1

Eg

ψ( #„r , E,
#„Ω)dE, (1.10)

is the multigroup angular flux of group g, and

Hggψg( #„r ,
#„Ω) = #„Ω · #„∇ψg + Σg

t ( #„r ,
#„Ω)ψg( #„r ,

#„Ω) −
∫
S2
d

#„Ω′Σg→g
s ( #„r ,

#„Ω′)ψg( #„r ,
#„Ω′ · #„Ω),

Hgg′ψg′( #„r ,
#„Ω) = −

∫
S2
d

#„Ω′Σg′→g
s ( #„r ,

#„Ω′ · #„Ω)ψg′( #„r ,
#„Ω′), g ̸= g′

Sg( #„r ) = 1
kneff

χg
4π

G∑
g′=1

∫
S2
νΣg′

f ( #„r )ψng′( #„r ,
#„Ω′)d #„Ω′, (1.11)

define the multigroup equations. The definition of the multigroup flux ψg in equation (1.10) is
justified by the energy separability hypothesis: the angular flux within the group g is approxi-
mated as a product of a function f and ψg as defined by equation (1.12).

ψ( #„r , E,
#„Ω) ≈ f(E)ψg( #„r ,

#„Ω), such that
∫ Eg−1

Eg

f(E)dE = 1. (1.12)

In the multigroup formulation (equation (1.11)), the neutron parameters (cross-sections and
fission spectrum), are group-wise defined. A comprehensive description of the evaluation of
multigroup cross-sections can be found in [17, 89]. We recall that the multigroup scattering
cross-sections Σg′→g

s are expanded on the Legendre polynomials basis (see [50]). In the following,
for the sake of clarity, all the numerical algorithms will be presented only for the order 0,
corresponding to the case of an isotropic collision. In this case, the scattered neutron has a
uniform probability to go along all directions in S2, and the scattering cross-section is given by:

Σg′→g
s ( #„r ,

#„Ω · #„Ω′) = 1
4π

Σs0( #„r ). (1.13)
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The resolution of the multigroup problem (1.9) is done using a block Gauss-Seidel (GS)
algorithm as presented in Algorithm 2. It is worth noting here that the convergence of this

Algorithm 2: Gauss-Seidel algorithm
Input : ψ, S
Output: ψ

1 while Non convergence do
2 for g ∈ J1, GK do
3 Q = Sg −

∑
g′ ̸=g

Hgg′ψg′( #„r ,
#„Ω);

4 Hggψg( #„r ,
#„Ω) = Q;

GS algorithm depends on the sparsity profile of the transport matrix, which is determined by
the scattering of the problem (presence of the coefficient Σg′→g

s in equation (1.11)). As the up-
scattering1 is only possible for some thermal groups2 (see [78]), almost all the non-zero elements
of the transport matrix are located in its lower triangular part, including the diagonal.

Hence, it is not necessary for the GS algorithm to iterate for all energy groups: the resolution
is direct for all fast groups, using a forward substitution, and the GS iteration apply only for the
thermal groups. Each one of the GS iterations involves resolutions of G one-group space-angle
problems:

Hggψ
m+1
g ( #„r ,

#„Ω) = −
∑
g′ ̸=g

Hgg′ψmg′ ( #„r ,
#„Ω) + Sg( #„r ), g = 1, . . . , G. (1.14)

We refer to these one-group problems as monokinetic equations. One should note here that,
for each Gauss-Seidel iteration, the resolutions of all the monokinetic equations are necessarily
done sequentially. This is an intrinsic property of the Gauss-Seidel algorithm. In order, for
example, to parallelize the resolutions of these equations, one could use for example the Block-
Jacobi algorithm as presented in [29]. But as our target applications do not feature many
energy groups (less than 26), and because the Jacobi iterations converge two times slower than
compared to Gauss-Seidel [77], we would rather keep using the Gauss-Seidel algorithm.

There are two major classes of resolution methods of monokinetic equations: PN and SN
methods. The PN method consists of expanding the angular flux and the scattering cross-
section on a truncated Legendre polynomials basis, whereas the discrete ordinates method (SN)
consists of discretizing the angular variable on a finite number of directions. We will focus on
the latter method in the rest of this dissertation.

1.3 Discrete ordinates method on Cartesian meshes
In this section we present the discretizations of the angular and spatial variables of the monoki-
netic equations.

1.3.1 Angular discretization

Let us consider the monokinetic transport equation (1.14), on which both group indices and
iteration indices are removed to simplify the notations. The angular dependency of this equation

1There is an up-scattering if a neutron of energy g is scattered into a neutron of g′ > g.
2Thermal groups are those having lowest energy. Fast groups are those having highest energy.



12 Chapter 1. An Introduction to Neutron Transport Simulation and Parallel Architectures

is resolved by looking for solutions on a discrete set of carefully selected angular directions
{ #„Ωi ∈ S2, i = 1, 2, · · · , Ndir}, called discrete ordinates:

#„Ωi · #„∇ψ( #„r ,
#„Ωi) + Σt( #„r ,

#„Ωi)ψ( #„r ,
#„Ωi)︸ ︷︷ ︸

Lψ( #„r ,
#„Ωi)

−

Rψ( #„r ,
#„Ωi)︷ ︸︸ ︷∫

S2
d

#„Ω′Σs( #„r ,
#„Ω′ · #„Ωi)ψ( #„r ,

#„Ω′) = Q( #„r ,
#„Ωi) ∀i, (1.15)

where Q( #„r ,
#„Ωi) gathers monogroup fission and inter-group scattering sources. Basically, the

choice of the discrete ordinates is the same as to uniformly distribute a finite number of points
on the unit sphere; which is not a trivial task because of the curvature of the sphere. In general,
these discrete ordinates are determined thanks to a numerical quadrature formula. In Domino,
we use the Level Symmetric quadrature formula, which leads to Ndir = N(N + 2) angular
directions, where N stands for the order of the Level Symmetric quadrature formula. Each
angular direction is associated to a weight wj for integral calculation on the unit sphere S2, such
that: ∫

S2
g( #„Ω)d #„Ω ≃

Ndir∑
j=1

wjg( #„Ωj), (1.16)

for any function g summable over S2. Hence, the scattering term Rψ( #„r ,
#„Ωi) in equation (1.15)

becomes:

Rψ( #„r ,
#„Ωi) ≃

Ndir∑
j=1

wjΣs( #„r ,
#„Ωj · #„Ωi)ψ( #„r ,

#„Ωj).

Using equation (1.13), we obtain:

Rψ( #„r ,
#„Ωi) = 1

4π
Σs0( #„r )ϕ00( #„r ),

where ϕ00( #„r ) is the zeroth angular flux moment defined as:

ϕ00( #„r ) =
∫
S2
d

#„Ω′ψ( #„r ,
#„Ω′) ≃

Ndir∑
j=1

wjψ( #„r ,
#„Ωj).

One should note that the major drawback of the discrete ordinates method is the problem of
so called “ray effects”. Indeed, as shown in [73], for some problems, such as those featuring a
localized fixed-source in a pure absorber media, the discrete ordinates method can give a flux
only for regions “surrounded” by the directions of the ordinates, taking their origin in the fixed-
source. To remedy this issue, one solution is to increase the order of the angular quadrature
used. However, in a nuclear reactor core, which is our focus in this work, the neutron sources are
uniformly distributed in the whole core, and thus the probability of having non-covered regions
is smaller. Therefore, our goals are not oriented towards numerical methods for eliminating
these effects.

The resolution of (1.15) is obtained by iterating on the in-scattering term R as presented
in Algorithm 3. In highly diffusive media, the convergence of this algorithm is very slow, and
therefore an acceleration scheme must be combined with this algorithm in order to speed-up
its convergence. Section 5.1 presents a new acceleration scheme used in Domino to improve
the convergence of scattering iterations. As presented in Algorithm 3, each scattering iteration
involves the resolution of a fixed-source problem (Line 3), for every angular direction. This is
done by discretizing the streaming operator which is presented in following section.
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Algorithm 3: Scattering iterations
Input : ψk
Output: ψk+ 1

2

1 while Non convergence do
2 Rψk( #„r ,

#„Ω) =
∫
S2
d

#„Ω′Σs( #„r ,
#„Ω′ · #„Ωi)ψk( #„r ,

#„Ω′);

33 Lψk+ 1
2 ( #„r ,

#„Ω) = Rψk( #„r ,
#„Ω) +Q( #„r ,

#„Ω);

1.3.2 Spatial discretization

Let us consider the fixed-source monokinetic equation along the angular direction #„Ω = (Ωx,Ωy,Ωz)
(Line 3 of the Algorithm 3):

Ωx
∂ψ

∂x
(x, y, z) + Ωy

∂ψ

∂y
(x, y, z) + Ωz

∂ψ

∂z
(x, y, z) + Σtψ(x, y, z) = B(x, y, z), (x, y, z) ∈ Vijk

(1.17)
where B gathers all neutron sources including scattering and fission; the angular variable is
omitted to lighten the notations. In this work, we focus on a 3D reactor core model, represented
by a 3D Cartesian domain D. The spatial variable of this equation is discretized using a diamond
difference scheme (DD), as presented by A. Hébert in [51]. In particular, the DD0 scheme, as
implemented in Domino, is derived by combining the moment of order 0 of the transport
equation with some closure relations.

Let us first define a map from the cell Vijk = [xi, xi+1] × [yj , yj+1] × [zk, zk+1], of size ∆xi ×
∆yj × ∆zk, to the reference mesh Vref = [−1, 1] × [−1, 1] × [−1, 1] as follows:

M : Vijk → Vrefxy
z

 7→


x̂ = 2x−(xi+xi+1)

∆xi

ŷ = 2y−(yj+yj+1)
∆yj

ẑ = 2z−(zk+zk+1)
∆zk

 .
Using this map, the equation (1.17) is rewritten in:

2Ωx

∆xi
∂ψ

∂x
(x, y, z) + 2Ωy

∆yj
∂ψ

∂y
(x, y, z) + 2Ωz

∆zk
∂ψ

∂z
(x, y, z) + Σtψ(x, y, z) = B(x, y, z) (x, y, z) ∈ Vref .

(1.18)

Moment of order 0 of the transport equation. The moment of order 0 of the transport
equation is obtained by integrating the equation (1.18) on the cell Vref :

Σt

∫ 1

−1

∫ 1

−1

∫ 1

−1
ψ(x, y, z)dxdydz

+ 2Ωx

∆xi

∫ 1

−1

∫ 1

−1
(ψ(1, y, z) − ψ(−1, y, z)) dydz

+ 2Ωy

∆yj

∫ 1

−1

∫ 1

−1
(ψ(x, 1, z) − ψ(x,−1, z)) dxdz

+ 2Ωz

∆zk

∫ 1

−1

∫ 1

−1
(ψ(x, y, 1) − ψ(x, y,−1)) dxdy =

∫ 1

−1

∫ 1

−1

∫ 1

−1
B(x, y, z)dxdydz. (1.19)
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To lighten the notations, we define 2 volumetric moments,

ψ000 = 1
8

∫ 1

−1

∫ 1

−1

∫ 1

−1
ψ(x, y, z)dxdydz,

B000 = 1
8

∫ 1

−1

∫ 1

−1

∫ 1

−1
B(x, y, z)dxdydz,

and 6 surface flux moments (3 incoming and 3 outgoing),

ψX±,00 = 1
4

∫ 1

−1

∫ 1

−1
ψ(±1, y, z)dydz,

ψY±,00 = 1
4

∫ 1

−1

∫ 1

−1
ψ(x,±1, z)dxdz,

ψZ±,00 = 1
4

∫ 1

−1

∫ 1

−1
ψ(x, y,±1)dxdy.

Then equation (1.19) becomes:

Ωx

∆xi

(
ψX+,00 − ψX−,00

)
+ Ωy

∆yj

(
ψY+,00 − ψY−,00

)
+ Ωz

∆zk

(
ψZ+,00 − ψZ−,00

)
+ Σtψ

000 = B000,

(1.20)
where ψX−,00, ψY−,00, ψZ−,00 are known thanks to the boundary conditions. However, 4 un-
knowns have to be determined according to this equation: the volumic angular flux ψ000 and the
3 outgoing surface moments ψX+,00, ψY+,00, ψZ+,00. Indeed, since it is not possible to determine
4 unknowns from a single equation, we must combine equation (1.20) with 3 other equations.
These equations are the closure relations provided by the diamond differencing scheme.

Closing relations These relations are obtained by cancelling the first term appearing in the
moment of order 1 of the transport equation. The closing relations for the DD0 scheme are
given as follows: 

ψX+,00 = 2ψ000 − ψX−,00

ψY+,00 = 2ψ000 − ψY−,00

ψZ+,00 = 2ψ000 − ψZ−,00

(1.21)

The equations (1.20) and (1.21) are solved by “walking” step by step throughout the whole
spatial domain and to progressively compute angular fluxes in the spatial cells. In the literature,
this process is known as the sweep operation. The whole SN algorithm as implemented in
Domino is presented in Algorithm 4. In this algorithm, the sweep operation (Line 15) gathers
the vast majority of computations performed. This operation is the focus of this dissertation,
and we are going to describe it in detail in the following section.

1.3.3 Cartesian transport sweep operation

Without loss of generality, we consider the example of a 2D spatial domain discretized into 6×6
cells. The DD0 scheme in this case defines 3 DoFs per spatial cell: 1 for the neutron flux and 2
for the neutron current. The sweep operation is used to solve the space-angle problem defined
by equations (1.20) and (1.21). It computes the angular neutron flux inside all cells of the
spatial domain, for a set of angular directions. These directions are grouped into four quadrants
in 2D (or eight octants in 3D). In the following, we focus on the first quadrant (labeled I in
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Algorithm 4: Discretized algorithm of the SN method as implemented in Domino
Input : νΣf , Σs, Σt

Output: keff, ψ
1 ▷ Initialization of external iterations
2 ϕ =

(
1, 1, · · · , 1

)t
;

3 C =
G∑
g=1

νΣf,g.ϕg ; ▷ Fission source computation

4 ▷ External iterations: inverse power algorithm
5 while Non convergence do

6 S =


χ1
χ2
...
χG

 · C

7 ▷ Multigroup iterations: Gauss-Seidel
8 while Non convergence do
9 for g ∈ J1, GK do

10 ▷ External sources
11 Qext = Sg +

∑
g′ ̸=g

Σg′→g
s .ϕg′ ;

12 ▷ Scattering iterations
13 while Non convergence do
14 Q = Qext + Σg→g

s ϕg ;

1515 Ω⃗k.∇⃗ψk + Σψk = Q ∀Ω⃗k ∈ SN ;
16 ϕg =

∑
Ωk

ωkψk;

17 Cold = C;

18 C =
∑
g

νΣf,g.ϕg ; ▷ Fission sources update

19 k =
√

<C,C>
<Cold,Cold>

;
20 C = 1

kC;
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Figure 1.2a). As shown in Figure 1.2b, each cell has two incoming dependencies ψL and ψB for
each angular direction. At the beginning, incoming fluxes on all left and bottom faces are known
as indicated in Figure 1.2c. Hence, the cell (0, 0) located at the bottom-left corner is the first to
be processed. The treatment of this cell allows the updating of outgoing fluxes ψR and ψT , that
satisfy dependencies of the cells (0, 1) and (1, 0). These dependencies on the processing of cells
define a sequential nature throughout the progression of the sweep operation: two adjacent cells
belonging to successive diagonals cannot be processed simultaneously. Otherwise, treatment of
a single cell for all directions of the same quadrant can be done in parallel. Furthermore, all
cells belonging to a same diagonal can be processed in parallel. Hence, step by step, fluxes
are evaluated in all cells of the spatial domain, for all angular directions belonging to the same
quadrant. The same operation is repeated for all the four quadrants. When using vacuum
boundary conditions, there is no incoming neutron to the computational domain and therefore
processing of the four quadrants can be done concurrently. This sweep operation is subject
to numerous studies regarding design and parallelism to reach highest efficiency on parallel
architectures. In Chapter 4, we will present our task-based approach that enables us to leverage
the full computing power of such architectures.

III

III IV

(a) Angular quadrature
in 2D. Directions are
grouped in quadrants.

(b) In each direction, cells have
two incoming components of the
flux (Here from the left and bottom
faces: ψL and ψB), and generates
two outgoing components of the flux
(Here on the right and top faces: ψR

and ψT ).

boundary conditions

(c) Domain decomposition and
boundary conditions. The corner
cell (0, 0) is the first to be processed
for a quadrant, and its processing
releases computations of its neigh-
bors (Here (0, 1) and (1, 0)).

Figure 1.2: Illustration of the sweep operation over a 6 × 6 2D spatial grid for a single direction.

1.4 Modern parallel computers and performance evaluation

The landscape of today’s high-performance computing capability includes a large number of dif-
ferent and powerful computing devices. These are essentially multicore processors and Graphics
Processing Units (GPUs). While the former can be considered as an evolution of the classi-
cal processors, the latter are of a new kind because of the programming model shift required.
Although the focus of this dissertation is on multicore-based architectures, one should keep in
mind that this work provides an opening towards GPU-based architectures.
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1.4.1 Architecture and design of parallel computers

The advent of the multicore processor In the area of computer architecture, Moore’s
Law [88]1 had allowed for the production of powerful monolithic processors until the beginning
of the 2000s. The increase of the computing power of the processors was thus mainly due to
the increase of the clock rate. However, as the transistors get smaller, their power density2 does
not scale down below a threshold as it was previously predicted by the Dennard scaling [30, 32].
The consequence of this “power wall” (limits on temperature of the chip and its power consump-
tion) has led processor designers to shift toward multicore processors to keep the growth of the
processor performance. Furthermore, to increase the power efficiency (Performance/Watt), pro-
cessor cores integrate new functional units that are capable of performing a Single Instruction
on Multiple Data (SIMD) that will be discussed in Chapter 2. These units, also called vector
units, are now common on all modern processors and will continue to be present on processors
henceforth.

Modern distributed memory clusters Building ever more powerful computers can be
done by aggregating either several multicore processors (sockets) in a single computing node,
sharing the main memory of the computer, or several computing nodes interconnected by a
high-speed network. In the first case, we obtain either a Symmetric Multi-Processor (SMP) if
all the CPU cores on the processor chip have the same access latency to the main memory, or
a Non Uniform Memory Access (NUMA) computing node, providing hierarchical access to the
memory. Currently, modern distributed computers are built from an interconnection of NUMA
nodes, and therefore the parallelism on these computers is decoupled into four parts:

• SIMD units in each CPU core;

• CPU cores in each socket;

• sockets in each node;

• nodes of a supercomputer.

Consequently, as already noted “the free lunch is over”3, and taking advantage of the increasing
computing power brought by multicore-based architectures, requires a deep shift on the tradi-
tional programming models used until now. Indeed, these architectures are generally addressed
by means of either multithreading or message-passing techniques. While the first solution is
limited to shared-memory systems, the second one can be used both on shared and distributed
memory systems. A combination of both approaches can also be used. In Chapter 4, we will
discuss these solutions in detail.

1.4.2 Metrics for performance evaluation

We primarily use parallel computers to speed-up the computation time required for executing a
given workload. To evaluate the performance of the workload on a given parallel computer, the
main metric is the elapsed time which allows to determine the parallel efficiency of the workload.

1The number of transistors per chip doubles approximately every two years
2Power density is the amount of power (time rate of energy transfer) per unit volume. https://en.wikipedia.

org/wiki/Power_density
3http://www.gotw.ca/publications/concurrency-ddj.htm

https://en.wikipedia.org/wiki/Power_density
https://en.wikipedia.org/wiki/Power_density
http://www.gotw.ca/publications/concurrency-ddj.htm
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Parallel efficiency This metric is related to the speed-up that can be achieved when running
an application on a parallel computer. We consider the following notations:

• Ts the serial computation time;

• Tp the parallel computation;

• P the number of parallel processing units in use.

Then, the speed-up (S) and parallel efficiency (E) are defined by:

S = Ts
Tp
, E = S

P
. (1.22)

However, even though the parallel efficiency metric determines the scalability of an application,
it does not indicate if the considered application is efficiently using the full computing power of
the computer. To achieve this, we rather use another metric.

Flop/s This metric determines the number of floating point operations (Flop) executed per
second (s) on a given machine, which can be considered as the “speed of execution” of a com-
putational kernel on a given machine. Each computational kernel is associated with a number
of Flop which evaluation can be done either by counting all the floating point operations that
exist in the kernel, or using performance monitoring tools that collect hardware performance
counter events during the execution of the computational kernel. In general, the Flop/s metric
characterizes the performance of an application on a given machine and it should be compared
to the theoretical peak performance of the target computer, which is the maximum number of
Flop that a computer can perform per second.

▶ Having defined these metrics, we will use them throughout this dissertation to quan-
titatively evaluate the performances of our implementation on the target architectures. As
mentioned, the point we made in this thesis is to tailor the discrete ordinates method for emerg-
ing architectures. In order to meet this goal, the first step in our process is the vectorization of
the sweep operation as presented in Chapter 2.
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As we mentioned in Chapter 1, on the way to designing a highly efficient massively parallel
neutron transport solver targeting modern multicore-based supercomputers, we should take care
of all the microarchitectural improvements brought by these computers. Since the early 2000s
and the advent of the multicore processor, the main processor manufacturers have designed and
introduced new vector execution units into the CPU cores, capable to apply a Single Instruction
on Multiple Data (SIMD) residing in dedicated registers. The consequence of adding vector
units to the CPU cores is a large boost of the corresponding processors peak performance. This
SIMD execution model, also called vectorization, can therefore be used to reduce the run time of
computational workloads, and thus to maximize the sustainable peak performance [76] and the
energetic efficiency of these workloads [39]. In light of this observation, there is more and more
research on designing new algorithms and re-factoring legacy scientific codes to enhance their
compatibility to vectorization. We can cite the works in [68] where the authors describe some
optimizations to help efficiently use vector units for the classic operation of sparse matrix-vector
multiply consisting in designing a vector-friendly storage format. Moreover, in [19], authors
presented a design of a vectorized implementation of the MergeSort algorithm. In [52] the
authors presented an efficient vectorized implementation of a stencil computation. For this
reason, we propose in this chapter to study the vectorization capabilities offered by the most
computational demanding operation in the discrete ordinates method: the sweep operation, in
order to maximize its sustainable single-core performance.

The remainder of this chapter is organized as follows: in section 2.1, we recall the vector (or
SIMD) programming model and how it can be used on modern multicore processors. Then, we
give in section 2.2 a theoretical analysis of the sweep operation by the means of its computational
intensity. In section 2.3 and section 2.4, we present two different strategies that can be used to
vectorize the sweep operation.

2.1 Review of the SIMD paradigm

This section recalls the SIMD programming model from early vector processors to modern
multicore processors.

2.1.1 General presentation of the SIMD paradigm

Historical trends

In Flynn’s taxonomy of computer architectures [41], Single Instruction Multiple Data (SIMD)
corresponds to a class of computers that can perform a single instruction on a set of data
stream. Such computers are also called vector processors and the process of applying a SIMD
instruction is commonly called vectorization. According to the study in [33], vector processors
can be classified into two categories: memory-to-memory and memory-to-register. In the first
category, corresponding to early vector processors, the vector functional units directly retrieves
data from the memory, process it and write back the result to memory. memory-to-register
vector processors have vector registers that are used to store data retrieved from the main
memory, and on which vector instructions operate. In practice, early vector processors used to
exhibit a high ratio of bandwidth over peak performance and the speed of vectorized algorithms
was optimal for basic BLAS1 like operations on long vectors. On modern chips, the situation is
totally different and we will see that the performance of most vectorized algorithms is bounded
to the memory-to-register bandwidth.
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SIMD on modern CPUs

Increasing the processor clock rate, or frequency, has been, until the end of the last century,
the major factor for improving the floating point performance of processors. However, since the
early 2000s this frequency scaling stalled in favor of multicore chips allowing to have powerful
processors while minimizing their power consumption. Furthermore, to increase the computing
power of a single core, processor designers tend to add larger vector units into the processor
cores. These units are capable to apply SIMD instructions, which are extensions of the processor
Instruction Set Architecture (ISA), on fixed-size vector registers. Thereby, these vector units
can be used to speed-up computations by a factor theoretically equal to the SIMD width of the
considered processor. Table 2.1 shows the evolution of the SIMD width for Intel processors.
The number of elements that fit into a SIMD register of a given architecture can also be under-

Architecture Launch date SIMD width Elements per register ISA
(bits) single precision double precision

Westmere 01/2010 128 4 2 sse
Ivy Bridge 04/2012 256 8 4 avx
Skylake 08/2015 512 16 8 avx-512

Table 2.1: SIMD width as a function of the processor architecture.

stood as the maximum theoretical speed-up attainable on that architecture. Vector instructions
comprises in addition of the classic floating point arithmetics (add/sub/mul/div), other types
of instructions such as gather and scatter, or logical operations. Each of these instructions
is characterized by a latency and a throughput1, determined by the considered architecture.
On Westmere, the load and store instructions, from CPU L1 cache to SIMD registers, have a
throughput of 16 Bytes/cycle. However, as noted in [49], on Sandy Bridge, which has doubled
the SIMD width from 128 bits to 256 bits, the load throughput has doubled to 32 Bytes/cy-
cle compared to Westmere, whereas the store throughput remains the same at 16 Bytes/cycle.
Furthermore, in [119], authors show that the Intel Sandy Bridge microarchitecture gives no per-
formance gain for the division as compared to the Intel Westmere microarchitecture, on a class
of benchmarks. Thereby, for a code bottlenecked by division, the theoretical 2-fold speed-up
when moving from Westmere to Sandy Bridge, to which one may expect, can not be observed.

On the Skylake microarchitecture2, it is possible to perform up to 16 floating point instruc-
tions using a single vector instruction. Consequently, without the usage of SIMD units, we can
only take advantage of 1/16 of the CPU peak performance. For this reason, it is essential that
scientific codes manage to make usage of these units in order to maximize their sustainable
floating point performance. However, the performance of a perfectly vectorized algorithm will
generally depend on the arithmetic intensity of this algorithm.

The critical arithmetic intensity issue

As mentioned previously, successive supercomputer generations brought a regular and impressive
improvement of their peak performance. Surprisingly enough, the computer bandwidth that

1A full list of latency and throughput of instructions is available at http://www.agner.org/optimize/
instruction_tables.pdf

2According to an Intel communication at https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=
view&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf, processors that will implement
the avx-512 ISA are: Intel Knights Landing co-processor and processors of Xeon series.

http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=view&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=view&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf
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measures the maximal data flow between the computer RAM (off-chip bandwidth) and the
floating point units (FPUs) did not increase as fast as the peak performance. The consequence
of the broadening gap between the off-chip bandwidth and the chip peak performance is to put
a dramatic emphasis on the arithmetic intensity of computational kernels and defined by:

Ia = Number of floating point operations
Main memory traffic (Read+Write)

.

It measures the average number of instructions executed by the CPU per byte read from or
written to the main memory, and should be compared to the processor-dependent constant
critical arithmetic intensity, defined by:

Ic = Peak floating point operations
Off-chip Bandwidth

.

If the arithmetic intensity Ia of a given kernel is lower than the critical value Ic, then its
performance does not depend on the computational power of the target processor, but mainly on
the system memory bandwidth: the algorithm is then said to be memory bound. Consequently,
the impact of the vectorization on such a kernel, with a low arithmetic intensity is negligible.
Contrariwise, if Ia is higher than Ic, then the computational kernel is said to be cpu bound, and
it therefore can benefit from the speed-up of computations enabled by the vectorization.

The critical arithmetic intensity of processors increases with each generation causing an ever
larger fraction of algorithms to be memory bound. Indeed, on Table 2.2 we give the values
of Ic for our test machines: the bigmem computing node (Intel Xeon E78837) and a node
of the athos platform (Intel Xeon E52697 V2). We distinguish the cases of a single-core,

bigmem athos
Stream Theoretical Stream Theoretical

Bandwidth Peak Ic Bandwidth Peak Ic
(GB/s) (GFlop/s) (F/B) (GB/s) (GFlop/s) (F/B)

single-core 5.8 21.2 3.6 12.6 43.2 3.4
single-socket 20.3 170.2 8.3 34.4 518.4 15.0
full node 76.3 680.9 8.9 67.5 1036.8 15.3

Table 2.2: Critical arithmetic intensities of Intel Xeon E78837 and Intel Xeon E52697 V2 pro-
cessors.

single-socket and the whole node, as the peak sustainable DRAM bandwidth varies with the
number of cores in use. We used the Stream benchmark [82, 83] to evaluate the bandwidth in
three cases1. We found that the single-core Ic of the considered processors are 3.6 Flop/Byte
for bigmem and 3.4 Flop/Byte for a node of the athos platform. For a single-socket these
values are of 8.3 Flop/Byte on the bigmem node compared to 15.0 Flop/Byte, on the more
recent athos platform highlighting the increase of the critical arithmetic intensity for successive
processor generations. As a consequence of this processor evolution, the whole design of our
sweep implementation aimed at maximizing the arithmetic intensity in order to exploit the full
power of modern multicore processors, thanks to the vectorization.

1It should be noted that Stream does not account for caches. It targets DRAM bandwidth.
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2.1.2 On the way for vectorization

Exploitation of vector units can be done by relying on the compiler auto-vectorizer. However,
while this may work for simple loops, it is generally not the case for complex kernels. In [79], the
authors give several reasons on why the compiler fails in generating vector code. For instance,
compilers generally lack accurate interprocedural analysis, which would help to enable important
transformations such as changing the memory layout of data structures needed to vectorize the
code. For example, such a memory layout change is required when data are accessed with non-
unit stride accesses. Meanwhile, by explicitly using assembly instructions or compiler intrinsics
corresponding to the target architecture, one can exploit these vector units with the expense of
some hardware constraints specific to vector instructions. In fact, vector instructions operate
on packed data loaded inside specialized registers of fixed size. To perform fast load and store
operations, data items need to be well aligned on cache boundary: 16 bytes for sse, 32 bytes
for avx and 64 bytes for avx-512. Sometimes we have to resort to padding to satisfy this
requirement. As an example, when loading 256 bits packet data with Intel avx in a contiguous
memory region of size 256+32×3 = 352 bits, we need to extend this region with 512−352 = 160
bits at the memory allocation stage. Attention should be paid to padding as it increases global
memory consumption and useless computations. The drawback of inlining compiler intrinsics
into the code is that it degrades the readability of the code and is error prone. To overcome this,
one can rely on C++ generic programming concepts by overloading the arithmetic operators to
call the corresponding compiler intrinsics.

2.1.3 Generic programming and tools for the vectorization

One solution to get a vectorized code is to use external libraries offering optimized instructions
for a given architectures. Examples of these libraries include Intel MKL [120] or ACML [3].
However, these libraries are especially designed and tuned for linear algebra routines and thus
can not be easily used in other contexts. It is also possible to rely on the compiler auto-vectorizer,
which can enforce the vectorization of loops via a set of hints dictated by the programmer. Thus,
the pragma simd extension, firstly introduced by Intel Cilk Plus [84, 108] and integrated in gcc
and icc compilers, tells the compiler that a given loop can be vectorized. The performance that
can be obtained from such an approach depends on the compiler in use [34]. There are also some
SIMD-enabled languages which feature some extensions for writing explicit vectorized code. This
is the case with the Intel Cilk array notations [84, 108] where A[:] states that an operation
on the array A is a vector instruction. The Intel SPMD Compiler (ISPC) [94], an LLVM-based
language and compiler similar to CUDA/OpenCL, allows to automatically vectorize a C-based
code, by mapping several SPMD program instances to SIMD units.

On the other hand, one can use an external library that calls to the compiler intrinsics of
the target architecture, and providing a classical API to the application developer that enhances
the portability of the code. For instance, Boost.SIMD [34] is a C++ template library which
provides a class holding packed data residing in a SIMD register, along with a set operations
overloaded to call the corresponding compiler intrinsics. Eigen [48] is a similar library, but unlike
Boost.SIMD, it provides a Map object that can be used to interface with raw buffers. Thereby,
it is possible to easily and elegantly take advantage of the vectorization of operations offered by
Eigen, in a code using other containers than those of Eigen. This is the case for our Domino
code, which uses the Legolas++ [66], a generic C++ library internally developed at EDF. This
library provides basic constructing blocs to build Linear Algebra Solvers. In particular, it allows
to write algorithms that apply indifferently on arrays of scalar and on arrays of packs of scalars.
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Legolas++ is built on top of Eigen for SIMD issues and Intel TBB [95] for multi-threading.
Hence, in the following, we rely on the Eigen library to vectorize the sweep kernel, allowing

us to benefit from new vector instructions of the next generation of processors without having
to modify the code. As an example, the same source code will automatically be compiled for
sse or avx machine instructions depending on the C++ compiler options. Note that Eigen,
internally invokes the SIMD instructions explicitly and that the vectorized binary performance
do not depends on the auto-vectorization capability of the C++ compiler.

2.2 Arithmetic intensity of the sweep kernel

In this section, we evaluate the arithmetic intensity of the sweep operation, as a function of
the spatial and angular discretizations, in order to characterize the performance of the sweep
operation. We first consider the case of a single cell with a single direction.

2.2.1 Memory traffic and flops per cell and per direction

We recall that in the sweep operation, the processing of a single spatial cell cijk for a single
angular direction #„Ω, consists in updating: the scalar flux at the cell-center and the neutron
current on outgoing faces. This processing is depicted on Figure 2.1 (in DD0) and described on
Algorithm 5, where ψ0

u and ψ1
u represent incoming and outgoing neutron current along the u

dimension (u = x, y, z).

Figure 2.1: Sweep of a single spatial cell (in DD0) in 2D, with a single angular direction.

To evaluate the arithmetic intensity of Algorithm 5, we need to determine the flops and the
number of memory accesses per cell, per angular direction.

Memory accesses According to the Algorithm 5, on each spatial cell, for each angular direc-
tion, the update of the outgoing neutron current requires to load:

• 12 input scalar values according to the quadrature formula used: inverse of the mesh
steps δu, u = x, y, z; source term S; total cross-section Σt; outgoing neutron current
ψ0
u, u = x, y, z; coordinates and weight of the angular direction (ν, η, ξ), ω;

• 1 input/output value: scalar flux ϕ;
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Algorithm 5: Sweep of a single spatial cell (in DD0), for a single angular direction
In : δx = 2

∆x ; δy = 2
∆y ; δz = 2

∆z ; S; Σt; ϕ; {ψ0
u|u = x, y, z}; #„Ω ≡ {(ν, µ, ξ), ω}

Out: ϕ; {ψ1
u|u = x, y, z};

1 ϵx = ν δx; ϵy = η δy; ϵz = ξ δz;

2 ψ = ϵxψ0
x+ϵyψ0

y+ϵzψ0
z+S

ϵx+ϵy+ϵz+Σt
;

3 ψ1
x = 2ψ − ψ0

x;
4 ψ1

y = 2ψ − ψ0
y ;

5 ψ1
z = 2ψ − ψ0

z ;
6 ϕ = ϕ+ ψ · ω;

• and 3 output values: outgoing neutron current ψ1
u, u = x, y, z.

This amounts to a total of 16 read/write memory accesses. As a matter of fact, the storage of
the neutron current is not necessary for a stationary computation. This reduces the drop of the
number of memory accesses to 13. In this case, the neutron currents will simply be denoted by
ψu, u = x, y, z.

Flops The floating point operations performed on a cell consist of 7 additions, 3 subtractions,
10 multiplications and 1 division. Note that the quantities 2

∆u
, u = x, y, z are pre-evaluated,

allowing to save 3 divisions and 3 multiplications per cell. On modern processors, each of add/-
sub/mul operation account for 1 flop. The question of how many flops to count for one floating
point division is a debatable one as the answer depends on how this operation is implemented
on the target architecture. There exist however some tools that can help in evaluating the exact
number of flops of a given kernel for a given architecture. Some of these tools, as likwid1 or
papi2, monitor events occurring in hardware performance counters of the target processor, in
order to determine actual flops executed by the processor in a laps of time. Some other tools
evaluate the flops with extended benchmarks. For instance, Lightspeed 3 is a library featuring
a set of routines for accurate flops counting of operations other than add/sub/mul. With this
library, the number of flops of such an operation is equal to average value of the ratio between
the execution time of the considered operation and the execution time of a multiplication (which
counts as 1 flop), on the same architecture. According to our experiments with Lightspeed,
we found that the division operation costs 4.8 flops (resp. 5.8 flops) on bigmem (resp. athos).
However, for our studies, we want an architecture-independent measure of the flops of our sweep
kernel, in order to compare its performance on the different architectures. Consequently, we
have conventionally set the number of flops of a division to be 5. Therefore, the processing of a
single spatial cell for a single angular direction cost 25 flops.

Thus, in single precision, the arithmetic intensity of the sweep of a single cell with one
angular direction is 25

4×16 ≈ 0.39 if the neutron currents are stored, and 25
4×13 ≈ 0.48 otherwise.

Therefore, it is found that these values are below Ic of our target machines (see Table 2.2),
indicating that it is not efficient to sweep a single cell with a single direction. We are going to
increase it by grouping the cells into a MacroCell object.

1https://code.google.com/p/likwid/
2http://icl.cs.utk.edu/papi/
3http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/

https://code.google.com/p/likwid/
http://icl.cs.utk.edu/papi/
http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
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Definition 1 (MacroCell). A MacroCell is a structure that represents a 3D block of contiguous
spatial cells, and some physical data associated to these cells as described on Listing 2.1. The
number of cells aggregated into the x, y and z dimensions is respectively denoted by nx, ny, and
nz.

2.2.2 General formula of the arithmetic intensity of the sweep

We consider the sweep of a MacroCell of size nx×ny×nz, using a quadrature formula having D
angular directions. In the previous section, we have shown that there are 25 Flop/cell/direction.
Therefore, in a general case, the number of flops is 25Dnxnynz, and the associated number of
memory accesses is given on Table 2.3. The sizes of variables are detailed as follows.

Storage of the currents Variable Size
(×4 Bytes)

{δu|u = x, y, z} nx + ny + nz
S nxnynz
Σt nxnynz
ϕ nxnynz

(ν, µ, ξ) 3D
ω D

No {ψu|u = x, y, z} D(nxny + nxnz + nynz)
Yes {ψlu|u = x, y, z and l = 0, 1} D(3nxnynz+nxny+nxnz+nynz)

Table 2.3: Memory accesses required to perform a sweep over a MacroCell of size nx × ny × nz
using a quadrature formula comprising D angular directions.

• δu: There are nu cells along the dimension u = x, y, z; each cell being associated to a mesh
step. Thus, the total number of mesh steps are the sum of the number of cells for the
three dimensions (x, y, z): nx + ny + nz.

• S,Σt, ϕ: For each spatial cell, there is one of each; thus, the size of each of these variables
is equal to the total number of cells in the MacroCell: nxnynz.

• For each angular direction, there are:

– 3 + 1 values which represent the coordinates and the weight associated with the
direction.

– 1 value per incoming face of the MacroCell, for the neutron currents, if they are
not stored. The size of each MacroCell face is either nxny, or nynz or nxnz. If the
neutron currents are stored, we must use 3 additional values per cell.

Hence, the general formula evaluating the arithmetic intensity for a sweep of a MacroCell, if all
the neutron currents are stored, Isa is given by equation (2.1).

Isa = 25Dnxnynz
4((nx + ny + nz) + 3nxnynz +D(3nxnynz + nxny + nxnz + nynz) + 4D)

(2.1)

However, as mentioned in section 2.1.1, flops are cheaper than memory accesses on modern
processors because of the gap between the processor peak performance and the off-chip memory
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Listing 2.1: The MacroCell structure.
template <class RealType >
class MacroCell {

private :

// total section
Legolas :: MultiVector <RealType ,3> sigma_ ;

// mesh steps
Legolas :: MultiVector <RealType ,2> steps_ ;

// inverses of the mesh steps
Legolas :: MultiVector <RealType ,2> invSteps_ ;

// total source ( fission + scattering )
Legolas :: MultiVector <RealType ,3> source_ ;

// scalar flux
Legolas :: MultiVector <RealType ,4> phi_;

// angular quadrature
VectorizedQuadrature <RealType > quadrature_ ;

// number of angular directions per octant
int directionPerOctantNumber_ ;

// number of cells in the MacroCell
int nx_;
int ny_;
int nz_;

public :

MacroCell (){
// Ctor

}

~ MacroCell (){
// Dtor

}

void computePhi ( int forwardX , int forwardY , int forwardZ ,
Legolas :: MultiVector <RealType ,3> & psiX ,
Legolas :: MultiVector <RealType ,3> & psiY ,
Legolas :: MultiVector <RealType ,3> & psiZ ){

/*
Executes the sweep over this MacroCell . forwardX defines the
sweep direction along the x-axis: if forwardX =0 (resp. 1), then
the sweep moves from the cell (0 ,. ,.) to (nx_ -1 ,. ,.)
(resp. (nx_ -1 ,. ,.) to (0 ,. ,.)). A similar definition holds for
forwardY and forwardZ .

*/
}

};
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bandwidth. Thus, to take advantage of all the power of modern processors, it is essential to save
the memory bandwidth by reducing the unnecessary number of memory accesses. We consider
this requirement and we do not store the neutron currents. In this case, the arithmetic intensity
is given by equation (2.2).

Ia = 25Dnxnynz
4((nx + ny + nz) + 3nxnynz +D(nxny + nxnz + nynz) + 4D)

(2.2)

A numerical evaluation of these formulas is presented in Figure 2.4 on page 33.

Algorithm 5 shows that the computations performed on a single cell is similar for any two
angular directions and for any two cells. The full sweep algorithm in 3D is presented on Al-
gorithm 6, where the angular directions are grouped in octants (Line 1). Each octant has M

Algorithm 6: The general sweep algorithm
1 forall o ∈ {1, . . . , 8} do
2 forall c ∈ Cells do
3 ▷ c = (i, j, k)
4 δx = 2

∆x ; δy = 2
∆y ; δz = 2

∆z ;

5 forall #„Ω ∈ { #„Ωo
d, d = 1, . . . ,M} do

6 ▷ #„Ω ≡ {(ν, µ, ξ), ω}
7 ϵx = ν δx; ϵy = η δy; ϵz = ξ δz;
8 ψ = ϵxψx+ϵyψy+ϵzψz+S

ϵx+ϵy+ϵz+Σt
;

9 ψx = 2ψ − ψx;
10 ψy = 2ψ − ψy;
11 ψz = 2ψ − ψz;
12 ϕ = ϕ+ ψ · ω;

angular directions such that D = 8M . While the processing of a cell for all angular directions
belonging to a single octant can be done once, the processing of two cells in a single step is only
possible when the cells belong to a same diagonal plane. Therefore, two different strategies can
be used to parallelize the sweep operation. The first strategy leads to parallelize the computa-
tions over angular directions (Line 5), while the second one leads to parallelize the computations
over the cells on the same diagonal (Line 2). In the following, we are going to illustrate how to
efficiently exploit both strategies in order to maximize the single-core performance of the sweep
kernel, by vectorizing the computations.

2.3 Vectorization over spatial domain
In this section, we discuss the design and implementation issues of the spatial vectorization
through performance modeling. We will use the following definitions.

Definition 2 (Front). For a fixed octant, we define a front of order f as the list of all cells
(a, b, c) such that a+ b+ c = f .

Definition 3 (Step). A step processes a set of cells with a set of angular directions in a single
instruction. Each of these sets may be reduced to a singleton.
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In the remaining of this section, without loss of generality, we focus on sse for which the
SIMD width is packSize = 4. For the sake of clarity, we first consider a 2D spatial domain,
which size is defined by nx = 5 and ny = packSize, as depicted in Figure 2.2.

Figure 2.2: Sweep over a 5 × 4 2D spatial domain. It requires 20 scalar steps to go through the
whole domain in scalar mode.

2.3.1 The algorithm

Figure 2.2 shows a sweep moving from the bottom-left corner of the 2D grid to the upper-
right, where all the cells on the same front can be processed at once. Our aim here is to use
vector instructions to parallelize the processing of all the cells belonging to the same front.
However, the number of cells on the fronts is not constant. Hence, we cannot directly use vector
instructions as they operate on fixed-size registers. For this reason, we must add padding cells
to the fronts 0, 1, 2 and 5, 6, 7 in order to have fixed-size vectors that fit the SIMD width of the
target processor. This strategy is illustrated on Figure 2.3. It shows that as the sweep moves

Figure 2.3: Vectorization of the sweep operation according to the spatial variable in 2D.

from the bottom-left to the upper-right corner, each step consists in the process of a block of
packSize cells in vector mode. The neutron currents along the x dimension ψx have the same
size as in the scalar algorithm. Thus, they can be read once and kept in the SIMD registers
until the sweep is finished. One should note that, as we do not store the neutron currents, ψx is
overwritten after each step, and thus it must be reset to the correct value before the processing
of fronts of order 1, 2 and 3:

ψx[packSize − 1 − f ] = 0, f = 0, . . . , packSize − 1,
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where f is the front order. The situation is a little different along the y dimension. Indeed, the
processing of the block of cells at step 0 requires to load data indexed by 0, 1, 2 and 3 from the
ψy buffer. This can be done using an aligned load provided that the buffer is correctly aligned to
cache boundary. However, at the step 1, we have to load data indexed by 1, 2, 3 and 4: we cannot
use anymore an aligned load to retrieve that data. This is a first limitation of this algorithm as
an unaligned load operation has an overhead relative to an aligned load operation1.

2.3.2 Maximum theoretical speed-up

The considered example requires nxny = 20 scalar steps to process the sweep for one quadrant,
in scalar mode. In vector mode, the number of steps is equal to the number of fronts, that is
nx + ny − 1 = 8. Thus, the maximum theoretical speed-up brought by this spatial SIMD is
smax = 20/8 = 2.5. In general, the formula giving the speed-up is given by equation (2.3).

smax = packSize nx
nx + packSize − 1

, (2.3)

If nx is large, then the theoretical speed-up reaches its optimal value of packSize. In general,
if ny > packSize, then the domain is split in slices of width equal to packSize along the y
dimension. In this case, the efficiency formula becomes:

smax = nxny

(nx + packSize − 1)
⌈

ny

packSize

⌉ , (2.4)

where the ceiling takes into account the padding that should be used along the y dimension.

The generalization of the spatial SIMD algorithm in 3D is relatively straightforward. Indeed,
we just need to loop over all the planes along the z dimension, and to vectorize the computations
on each of these planes, which is exactly a 2D sweep as presented in section 2.3.1. Thus the
theoretical efficiency in 3D remains also the same as in 2D (equation (2.4)).

To summarize, the spatial sweep algorithm as presented in this section, has only two limi-
tations that are limiting its efficiency: unaligned load/store and additional padding cells. The
performance results from a preliminary implementation were disappointing and have therefore
confirmed the identified limitations. In the following section, we will present the angular vec-
torization strategy that allows us avoiding these limitations.

2.4 Vectorization over the angular variable

2.4.1 The algorithm

We consider that the neutron currents are not stored for maximizing the arithmetic intensity of
the sweep. The vectorization of a cell processing during the sweep, along the angular directions,
requires to move the loop over directions into the innermost level as presented Algorithm 6.
Inside each spatial cell, we compute simultaneously several angular directions belonging to the
octant currently being swept (the forall loop on Line 5 of Algorithm 6), using SIMD instructions
which operate on packs of directions. Handling any angular quadrature order requires us to
set up a padding system: for example, S16 Level Symmetric angular quadrature formula gives

1It is expected that the penalty cost for an unaligned load/store operation is going to decrease for next
generations of processors.



2.4. Vectorization over the angular variable 31

16(16 + 2) = 288 angular directions or 288/8 = 36 directions per octant. When using single
precision with Intel avx, as 36 is not a multiple of 8, we perform 40 angular directions processing
per spatial cell corresponding to an efficiency of 36/40 = 0.9 (see Table 2.4). Except in the case

Ndir Directions per octant (M) Sustainable speed-up
w/o w/

padding padding
sse avx sse avx

S2 8 1 4 8 1 1
S4 24 3 4 8 3 3
S8 80 10 12 16 3.3 5
S12 168 21 24 24 3.5 7
S16 288 36 36 40 4 7.2

Table 2.4: Impact of the padding on the vectorization efficiency in single precision. The sus-
tainable speed-up gives the maximum attainable speed-up taking into account the padding.

of S2, where the vectorization does not give any improvement, the padding performance penalty
is acceptable even for a quadrature formula featuring a small number of directions. For instance,
using a S4 quadrature, it is theoretically possible to speed-up the computations by a factor of 3
with sse. In addition, using product quadrature formulas such as Gauss-Legendre, we have more
flexibility to reduce the efficiency loss due to the padding. Indeed, one can choose a combination
of the number of azimuthal and polar directions that gives a total number of directions divisible
by packSize.

As mentioned in section 2.1.2, we use vectorized instructions provided by the Eigen li-
brary [48] to enforce the vectorization of the sweep kernel while maintaining the readability
of the code. Listing 2.2 shows a snapshot of this vectorization, which features some constructs
of Eigen. Eigen::Array is a class representing a matrix. The type of the matrix elements is
defined by the first template parameter. In our case, we use this matrix class for representing
a block of contiguous data, which size is equal to the SIMD width packSize of the target ar-
chitecture. As mentioned previously, Eigen::Map is a class mapping an existing array of data
which can be declared as well-aligned.

In the following, we discuss the performance the sweep operation vectorized over angular
directions on Intel Westmere and Ivy Bridge microarchitectures. The performance measurements
were carried out on the bigmem and athos platforms (see Appendix A).

2.4.2 Study of the arithmetic intensity of the sweep

To assess the advantage of not storing the neutron currents, we have numerically evaluated the
arithmetic intensity of the sweep operation, defined by equations (2.1) and (2.2), as a function
of the MacroCell size and for a different angular quadratures. The results are presented on
Figure 2.4. It shows the variation of the arithmetic intensity of the sweep as a function of
the MacroCell size and for different angular quadratures. The first observation that should
be made here is that when the neutron currents are stored (Figure 2.4a), then independently
of the angular quadrature used, the arithmetic intensity of the sweep operation is below the
critical threshold Ic of both platforms. Thus, is this case, the sweep kernel is memory bound:
its performance depends only on the sustainable bandwith of the target platform, and the
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Listing 2.2: The SIMD implementation of the sweep algorithm using Eigen.
// BlockArray is a type representing an array of packed data
typedef Eigen :: Array <RealType , packSize , 1> BlockArray ;

/* BlockArrayView maps a BlockArray expression
to an existing array of data */

typedef Eigen ::Map < BlockArray , Eigen :: Aligned > BlockArrayView ;
typedef Eigen ::Map < const BlockArray , Eigen :: Aligned > ConstBlockArrayView ;

const BlockArray sijk( BlockArray :: Constant ( source [k][j][i]));

const int nblocks = directionPerOctant / packSize ;
for (int b=0; b< nblocks ; b++){

const int dir=b* packSize ;

BlockArray denom( sigmaIJK );

BlockArray epsX= ConstBlockArrayView (& omegaX [dir ])* twoInvStepX ;
BlockArray epsY= ConstBlockArrayView (& omegaY [dir ])* twoInvStepY ;
BlockArray epsZ= ConstBlockArrayView (& omegaZ [dir ])* twoInvStepZ ;

BlockArrayView psiX (& psiXd[dir ]);
BlockArrayView psiY (& psiYd[dir ]);
BlockArrayView psiZ (& psiZd[dir ]);

BlockArray psiOut00 (sijk );
psiOut += epsX*psiX+epsY*psiY+epsZ*psiZ;

BlockArray denom( sigmaIJK );
denom += epsX;
denom += epsY;
denom += epsZ;

psiOut /= denom ;

// Update of the scalar flux
phi += psiOut * ConstBlockArrayView (& weight [dir ]);

}
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Figure 2.4: Single precision arithmetic intensity as a function of the MacroCell size (nx = ny =
nz) and angular quadrature.
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vectorization will provide no performance gain. Contrariwise, when the neutron currents are
not stored (Figure 2.4b), the arithmetic intensity of the sweep dramatically improves. Starting
from a MacroCell of size 3×3×3, Ia is over the critical treshold Ic for both processors: the sweep
kernel is then cpu bound, and its performance depends on the theoretical peak performance of
the considered CPU. In this case, it makes more sense to vectorize the computations over angular
directions. In the following, we are going to study the actual performance obtained on the test
machines, showing the impact of vectorization.

2.4.3 Actual performances vs Roofline model

In this section, we first discuss the speed-up brought by the vectorized implementation of the
sweep operation on Intel Westmere and Intel Ivy Bridge microarchitectures. Then, we compare
the performances of the vectorized implementation against a theoretical performance model
determined by the processor architecture: the Roofline model, as presented in [122].

Performances of the angular vectorization

SSE Table 2.5 shows the performances of both scalar and angular-vectorized single-core im-
plementations of a sweep, using the sse-enabled computing node bigmem. The performance

S4 S8 S12 S16
nx Tscalar Tsse (×) Tscalar Tsse (×) Tscalar Tsse (×) Tscalar Tsse (×)

(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)
1 0.048 0.042 1.14 0.033 0.032 1.03 0.036 0.032 1.12 0.031 0.032 0.96
2 0.036 0.035 1.02 0.041 0.035 1.17 0.048 0.036 1.33 0.053 0.036 1.47
4 0.056 0.043 1.30 0.092 0.051 1.80 0.149 0.060 2.48 0.204 0.069 2.95
8 0.210 0.103 2.03 0.499 0.154 3.24 0.938 0.242 3.87 1.374 0.326 4.21
16 1.555 0.730 2.13 3.857 1.111 3.47 7.377 1.808 4.08 10.88 2.472 4.40
32 11.04 4.501 2.45 29.43 7.567 3.88 57.42 14.30 4.01 86.05 18.94 4.54
64 82.21 34.22 2.40 222.3 58.70 3.78 436.8 103.2 4.23 649.9 146.2 4.44

Table 2.5: Illustration of the speed-up brought by the angular vectorization of the sweep, as a function
of the MacroCell size (nx = ny = nz), and for different angular quadrature orders. The performance
measurements were carried-out on an Intel Xeon E78837 processor.

measurements were obtained by averaging the computation time of ten successive runs. We
observe that: first, when the spatial computational domain has a single cell, then the speed-up
brought by the vectorization is only 1.14 using a S4 quadrature, which is below the sustain-
able speed-up of 3 that is expected in single precision (see Table 2.4) because of the padding
we used. This slow speed-up is justified by the fact that for a MacroCell of size 1 × 1 × 1,
as mentioned in section 2.2.2, the sweep kernel is memory bound and thus the computational
gain brought by the vectorization is overshadowed by a slower DRAM bandwidth. The same
observation applies to the cases of a sweep on a single cell with S8, S12 and S16 quadratures. As
expected, the speed-up brought by the angular vectorization increases with the MacroCell size,
or equivalently with the arithmetic intensity, and reaches 2.4, 3.78, 4.23, 4.44 respectively for
the four angular quadratures, when the MacroCell size is 64 × 64 × 64 cells. One should note
that the speed-up of 3.78 in the case of S8 with nx = 64 is larger than 3.3 which was expected
(see Table 2.4). Indeed, by vectorizing the computations, the number of integer calculations
required for loop indexing, for instance, are reduced in the same time, which can then lead to
the observed superlinear speed-up.
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AVX We performed the same study as in the previous paragraph, changing only the target
architecture to use an Intel E52697 V2 processor and the results are reported on Table 2.6.

S4 S8 S12 S16
nx Tscalar Tavx (×) Tscalar Tavx (×) Tscalar Tavx (×) Tscalar Tavx (×)

(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)
1 0.038 0.043 0.8 0.027 0.032 0.84 0.027 0.032 0.84 0.028 0.032 0.87
2 0.031 0.035 0.8 0.032 0.034 0.94 0.037 0.035 1.05 0.041 0.035 1.17
4 0.043 0.043 1.0 0.066 0.045 1.46 0.105 0.049 2.14 0.140 0.059 2.37
8 0.144 0.108 1.33 0.342 0.140 2.44 0.638 0.171 3.73 0.934 0.239 3.90
16 1.062 0.761 1.39 2.635 0.985 2.67 5.004 1.243 4.02 7.362 1.779 4.13
32 7.335 4.806 1.52 19.90 6.671 2.98 38.76 8.684 4.46 57.67 13.13 4.39
64 59.28 37.00 1.62 157.3 51.85 3.03 308.3 68.09 4.52 458.5 105.9 4.32

Table 2.6: Illustration of the speed-up brought by the angular vectorization of the sweep, as a function
of the MacroCell size (nx = ny = nz), and for different angular quadrature orders. The performance
measurements were carried-out on an Intel Xeon E52697 V2 processor.

We observe that the computation time in scalar mode on the Intel Xeon E52697 V2 is slower
than that was obtained on the Intel Xeon E78837. For instance, the sweep in scalar mode an a
MacroCell of size 64 × 64 × 64 with a S4 angular quadrature takes 82.21 ms on the Intel Xeon
E78837 processor compared to 59.28 ms on Intel Xeon E52697 V2 processor, which represents an
improvement of a factor of 27.8%. To justify this factor, one should consider the improvements
brought by Ivy Bridge microarchitecture, including: higher DRAM bandwidth, larger cache
sizes and the new µop cache for storing the decoded instructions1. These new capabilities of
the Ivy Bridge could therefore boost the throughput of instructions and thus the performances
of a computational kernel. Although we have not quantified the individual effects of each of
these features, the improvement we observed complies with the study in [60], where the authors
observed an average speed-up of 33% over a series of benchmarks, between Westmere and Sandy
Bridge architectures.

The second observation is that, as on the Westmere node, the speed-up brought by the
vectorization increases with the MacroCell size and the angular quadrature. However, this
speed-up is lower than expected. For instance, let us consider the performance of a sweep of a
MacroCell of size 64 × 64 × 64 with a S16 quadrature. Using avx we got a speed-up of 4.32,
relative to a scalar execution, which is less than the expected speed-up of 7.2 (see Table 2.4).
One should keep in mind that, as explained in [119], a floating point division performs slightly
worse on Sandy Bridge than on a Westmere. Thus, if a avx-vectorized code uses floating
point divisions, then its performance may not correspond to the optimal speed-up that could be
expected.

Roofline model

Here, we compare the actual single-core performance of the vectorized implementation of the
sweep operation against the Roofline model [122] which defines the maximum performance at-
tainable on a given multicore architecture. This Roofline model uses two parameters (the sus-
tainable DRAM bandwidth B, and the theoretical peak performance P of the target processor)
to evaluate the maximum attainable performance by a kernel, as a function of its arithmetic

1A comprehensive study on processor microarchitecture is available from http://agner.org/optimize/
microarchitecture.pdf.

http://agner.org/optimize/microarchitecture.pdf
http://agner.org/optimize/microarchitecture.pdf
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intensity Ia. The evaluation of this Roofline model is defined by equation (2.5).

Performance = min (P, Ia ∗ B) . (2.5)

In the following, as we are focusing on the single-core performances, we consider a particular
case of the Roofline model by evaluating its parameters for a single core.

Figure 2.6 shows the performance variation of the vectorized implementation of the sweep on
the Intel Xeon E78837 processor, as a function of the arithmetic intensity Ia, and for different
quadrature order. As mentioned previously, we observe that the performance of the sweep in-

 0.01

 0.1

 1

 10

 100

 0.1  1  10  100  1000

G
fl
o

p
/s

Ia (Flops/Byte)

Roofline
S16
S12
S8
S4

Figure 2.5: Roofline model for an Intel Xeon E78837 processor and measured performances of
the sweep operation as a function of the arithmetic intensity Ia. The variation of Ia is obtained
by varying size of MacroCells as in Figure 2.4b.

creases with Ia and the order of angular quadrature used. Furthermore, the actual performances
follow the same trend as the predicted performance from the Roofline model, and reach a plateau
the value of which depends on the quadrature: for a S16, the plateau is 13.6 Gflop/s, correspond-
ing to 62.9% of the theoretical peak performance per core of the bigmem node. One should note
that the saturation of actual performances occurs a little later after the ridge point indicated by
the Roofline model. In addition, the discrepancies between actual performances and the upper
bound given by the Roofline model, are larger for lower values of Ia (< 20 Flop/Byte). For
instance, using a S16 quadrature, the ratio between the prediction of the Roofline model and the
actual performance of the sweep is 20.9 for Ia = 0.89 and of 1.5 when Ia = 154.6. Indeed, our
evaluation of the flops for the sweep operation (25 flops per cell per angular direction) takes into
account only floating point operations performed in the computational kernel, and thus ignores
all the remaining operations performed in the code. This hypothesis is valid, provided that the
MacroCell in use is large enough to provide a large amount of computations in the kernel to
counterbalance the remaining operations in the code. Consequently, for low values of Ia the
flops are underestimated which explains the large discrepancy between the Roofline model and
actual measurements.
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The same study was performed on the Intel Xeon E52697 V2 processor (Figure 2.6), and
yields similar conclusions. One should note that the saturation of the performances on the Intel
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Figure 2.6: Roofline model for an Intel Xeon E52697 V2 processor and measured performances of
the sweep operation as a function of the arithmetic intensity Ia. The variation of Ia is obtained
by varying size of MacroCells as in Figure 2.4b.

Xeon E52697 V2 processor occurs nearly for the same value of Ia as on the Intel Xeon E78837
processor. Indeed, the critical arithmetic intensities of both processors are approximately the
same (respectively 3.4 and 3.6 Flop/Byte), which justify the similarity of the observed trends.

▶ In this chapter, we presented a first parallel implementation of the sweep operation
targeting modern SIMD-enabled multicore processors. We first studied the arithmetic inten-
sity of the sweep operation depending on whether the neutron currents are stored or not, for
different order of the angular quadrature and for different spatial mesh resolution. We found
out that when the neutron currents are not stored, then the arithmetic intensity is dramati-
cally improved which allowed us to efficiently vectorize the sweep operation. While the spatial
vectorization is a promising algorithmic strategy, its efficiency is theoretically limited by the
required padding to enforce data alignment. Meanwhile, the angular vectorization gives good
performances on our test machines. For instance, on the SSE-enabled Intel Xeon Westmere
processor, the angular-vectorized implementation of the sweep achieves 13.6 Gflop/s when us-
ing a S16 angular quadrature and MacroCell of size 100 × 100 × 100, corresponding to 62.9%
of the theoretical peak performance per core of that processor. In practice, we intend to use
vectorized kernels in parallel. We will see in following sections that this additional level of par-
allelism is applied to other MacroCells that can be processed in parallel. Indeed, the smallest
the MacroCells are, the biggest the parallelism potential. Hence, the optimal macrocell size is
a trade-off between the kernel performance and the parallel efficiency.

Comforted with this high performance per core, we are going to present in Chapter 3, a
theoretical study of the sustainable performance of the sweep operation on clusters of multicore
processors.
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Our goal is to develop a highly efficient parallel neutron transport solver on massively parallel
architectures. To achieve this goal, we rely on the discrete ordinates method (SN) for solving the
neutron transport equation. The vast majority of computations, within the SN method, is spent
in the sweep operation. Therefore, it is essential to first design a highly efficient parallel sweep
algorithm. Considering this requirement, we adopted a bottom-up process by first answering the
question on how to maximize the floating point performance of the sweep operation on a single
computing core. In Chapter 2, we found that for today and future architectures, to maximize
the performance per core, it is essential to make use of the current SIMD vector units. In this
chapter, we move to the upper-level to study the parallel performance of the sweep operation
on distributed multicore-based architectures.

A substantial amount of work on the neutron transport theory, for the last decade, was
focused on the development of sweep algorithms that are capable of maintaining a high efficiency
on large number of cores. In section 3.1, we will introduce basic notations that are going to be
used to develop the theoretical performance models. Then, we present some previous work on the
modelization of the sweep operation (section 3.2) before presenting the two major contributions
we made on this performance modelization (section 3.3 and section 3.4):

1. a new performance model of the sweep, targeting distributed multicore systems;

2. a simulator of an asynchronous implementation of the sweep.

A comparative study of the theoretical models is given in section 3.5, where all performance
measurements were carried-out using vector instructions corresponding to target architectures.

3.1 Preliminary definitions

We consider a 3D spatial domain D, discretized into Nx, Ny, Nz cells along the x, y and z axis:

D = J1, NxK × J1, NyK × J1, NzK,
and a 3D angular discretization comprising Ndir = 8 ×M directions, where M is the number of
directions per octant. The sweep problem is defined as following:

Problem 1 (Parallel Sweep). Find the minimal execution time of a parallel implementation
of the sweep, over a spatial domain D, along Ndir angular directions, on distributed multicore
supercomputers.

The vast majority of computations performed during the resolution of the neutron transport
problem, according to the SN method, is concentrated in the sweep operation. Thereby, for the
last decades, a substantial part of the researches on neutron transport simulations was dedi-
cated to the development of scalable and efficient sweep algorithms. Successive works proposed
different approaches to overcome the sweep problem, and focused mainly on the development of
new strategies aiming to maintain high parallel efficiency on large number of cores. However, as
presented in section 1.4, the architecture of today and future parallel computers has shifted from
traditional machines. Thus, algorithms and traditional parallel programming models should be
adapted accordingly. From a performance point of view, the efficiency metric must be used in
addition with a complementary metric: the “speed of execution” of a given kernel, or Flop/s.
Indeed, this latter metric characterizes how much an application uses the power of a given
computer (see section 1.4.2).
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Let us first give some definitions and present notations that are going to be used to describe
the theoretical models. For convenience, all the notations are reported in Table 3.1, where the
following variables are used:

• Ax, Ay and Az are the number of cells along the x, y, z dimensions of a single MacroCell
(see Definition 1);

• Sx = Nx/Ax, Sy = Ny/Ay and Sz = Nz/Az, the global number of MacroCells along each
axis of the spatial domain;

• P , Q and R, the number of processes along x, y and z axis;

• Lx = Sx/P , Ly = Sy/Q, and Lz = Sz/R the local number of MacroCells on each process,
along each axis of the spatial domain.

Definition 4 (Task). A task represents the computation of all neutron fluxes on a single
MacroCell, of Cartesian coordinates (a, b, c), for a subset of angular directions, Am (belong-
ing to a single octant o), and for a subset of energy groups Ag. We denote this task as T o,a,b,c,g.

In the remaining of this chapter, we consider only a sweep for one group. Thus, for the sake
of clarity a task will be simply denoted by T o,a,b,c.

Definition 5 (Front). A front of order f , for a given octant o denoted Uo
f , is the set defined as

following:
Uo
f =

{
T o,a,b,c | a+ b+ c = f

}
.

∀o, F = Sx+Sy +Sz − 2 is the number of diagonal planes (front) of MacroCells per octant,
on the whole domain. This allows us to define the list of tasks belonging to the front f, for all
the octants,

Uf =
8∪
o=1

Uo
f ,

and the total number of tasks available in the sweep problem,

U =
F∪
f=1

Uf .

Proposition 1. Assume that Sx ≥ Sy ≥ Sz. Then:

∀o, ∀f,
∣∣∣Uo
f

∣∣∣ ≤ Sy × Sz.

Proof. The map defined as:

F : Uo
f → J1, SyK × J1, SzK

T o,a,b,c 7→
(
b
c

)
,

is an injection. Therefore, it follows that the number of elements in the set Uo
f is less than that

of J1, SyK × J1, SzK ■

In the remaining of this chapter we will assume that Sx ≥ Sy ≥ Sz.
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Adams et al. Hybrid Hybrid-Async

Problem
definition

Size of spatial domain Nx ×Ny ×Nz

Number of angular directions Ndir
Number of nodes Nnodes
Number of cores per node Ncores

Task
granularity

MacroCell sizes Ax ×Ay ×Az
Directions Am M
Energy groups G 1
Sizes of faces Dx, Dy, Dz

Partitioning Process grid P ×Q×R
Number of MacroCells per process Lx × Ly × Lz

Useful
variables

Number of stages Nstages
Global communication time Tcomm T ∗

comm
Computation time per task Ttask
Grind time Tgrind
Makespan TAdams THybrid THybrid-Async
Number of fronts F

Table 3.1: Notations used in the performance models of the sweep operation.

3.2 Literature review on performance models of the sweep

The BTE resolution represents a significant portion in the main applications targeted by the
DOE’s Advanced Simulation Computing1, formerly known as ASCI [72]. This initiative led to
numerous research activities on the resolution of BTE. An important part of these researches
concerns the development of efficient parallel sweep algorithms, and can be categorized in two
different classes: Flat and Hybrid models. The first class corresponds to models implemented
by assuming a uniform view of a parallel computer as a collection of independent computing
cores. Flat models are usually implemented by using the standardized message-passing interface
MPI [47]. The second class integrates the hierarchy of modern distributed memory clusters
as described in section 1.4.1, and are implemented using several parallel programming models
together (message-passing and threading for instance). This section reviews some previous works
on performance modelization of the sweep operation using Flat and Hybrid models.

3.2.1 Flat models

In [8], Koch, Baker, and Alcouffe have proposed the KBA algorithm which decomposes the 3D
Cartesian grid onto a 2D process grid. This reference algorithm, in the field of SN Cartesian
neutron transport simulation, is also used in the neutron transport code Denovo [29], developed
at ORNL2. Moreover, the codes Pentran [27] and unic [64] partition the global problem onto
a 3D virtual grid of S × A × G processes, where S, A, and G represent respectively the number
of processes allocated for the spatial, angular and energy decompositions. The KBA algorithm
served as a basis for a large majority of parallel sweep algorithms on structured meshes.

1http://www.lanl.gov/asc/
2Oak Ridge National Laboratory

http://www.lanl.gov/asc/
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Structured meshes

For structured meshes, Hoisie et al. [56] extended the KBA algorithm parallel performance
model, by taking into account both communications and computations that fit the SWEEP3D1

MPI based application. Chaussumier in [113] studied the impact of software pipelining in the
overlap of communications by computations. In [40], Azmy et al. give a method for finding the
best way to decompose a given fixed-size problem, between angular and spatial decompositions,
through performance models.

Recently in [1], Adams et al. proposed a generalization of the KBA algorithm on structured
meshes. As opposite to the KBA algorithm which parallelizes the sweep operation over planes,
Adams et al. model defines a volumetric decomposition of the spatial domain according to the
x, y and z axis. Indeed, they introduced a 3D spatial domain decomposition onto a 3D process
grid. They have also presented scheduling algorithms, for the sweep operation, proved optimal.
In the following, we will refer to this model as Adams et al. model. Its general description is
given as following. Let G be the number of energy groups; Am and Ag the numbers of angular
directions and energy groups per task; Az the number of z-planes each process needs to compute
before a communication step occurs. Nk = Lz/Az gives the number of communication steps per
process. Hence, each task carries the computation of angular flux for Am directions, Ag energy
groups and Lx × Ly × Az cells. Note that the number of cells per task, according to the x and
y dimensions, can be modified through aggregation factors Ax and Ay. According to Adams et
al. model, the makespan of the the whole sweep is therefore:

TAdams = Nstages (Ttask + Tcomm), (3.1)

where Ttask is the cost of a computation step; Tcomm the time needed by a process to communicate
its outgoing angular flux to its neighboring processes after each computation step; and Nstages
the total number of computation steps required to perform the whole sweep:

Nstages = 2
(⌈

P

2

⌉
− 1 +

⌈
Q

2

⌉
− 1 +Nk

(⌈
R

2

⌉
− 1

))
︸ ︷︷ ︸

Nfill

+

Np
tasks︷ ︸︸ ︷

8MGNk/(AmAg) . (3.2)

Nfill is the minimum number of stages before a sweep front can reach the center-most processors,
and Np

tasks is the number of tasks per process.
A key point to note here is that this Adams et al. model is able to predict the multigroup

sweep computation time rather than just for a single-group.

Unstructured meshes

Flat performance models for the sweep operation, on unstructured meshes, have been largely
studied. Thus, Kerbyson et al. in [65] presented the first performance model for transport sweeps
on unstructured meshes. A similar work has been carried out by Plimpton et al. as described
in [98]. In [4], Kumar et al. explored scheduling strategies for a generalized sweep algorithm.
Their algorithm is applicable to more general cases than radiation transport problems as it uses
no geometric information about the mesh. In [22], the authors presented new algorithms for
the sweep operation on unstructured meshes by designing algorithms that achieve overlap of
communications by computations, as well as message buffering to reduce cost associated with
the latency of parallel machines used.

1http://wwwc3.lanl.gov/pal/software/sweep3d/sweep3d_readme.html

http://wwwc3.lanl.gov/pal/software/sweep3d/sweep3d_readme.html
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Recent advances on parallel computer architectures motivated the research community to
develop new strategies to leverage the full power of these modern architectures. This evolution
trend, in the SN neutron transport community, has led to the development of Hybrid sweep
algorithms.

3.2.2 Hybrid models

In [124], Yan et al. proposed a performance model of the sweep operation for unstructured
meshes, targeting multicore-based clusters. Their model favors the overlap of communications
by computations by explicitly dedicating a single thread (master) per process to handle all
communications performed locally by the parent process, while the remaining threads (workers)
keep doing computations. To develop this model, they first represent the sweep algorithm as a
Direct Acyclic Graph (DAG), before partitioning it into sets of vertices. Finally, these sets are
evenly mapped on processes. According to this model, the sweep execution time is decided by the
maximum running time of the master and workers. Their communication model is proportional
to the number of processes, and does not integrates a dynamic overlap of communications by
computations according to the problem size.

Except for the recent release of Partisn1, as presented in [9], which features a parallel
implementation of the sweep using both MPI and OpenMP; and the Yan et al. sweep model,
all the previously listed codes and theoretical models (see section 3.2.1) follow the classical Flat
parallel programming model. Even if modern MPI implementations can directly take advantage
of shared memory to synchronize two processes on the same node [46], it remains that some extra
memory is used by MPI for managing communications [15] due to the double-buffering strategy.
Moreover, as mentioned in section 1.4, each node of modern distributed multicore machines
comprises an increasingly large number of cores. In addition, the main memory capacity per
core is dropping by a factor of 30% every two years (see [91]), and on-chip memory bandwith
is not increasing as fast as the available computational power. Thus, it is essential to employ
a programming model capable of taking into account these constraints. From this perspective,
with a Hybrid model, that combines the use of MPI to manage inter-node communications,
and threads within a multicore node to synchronize local data, we can benefit of lower memory
latency and data movement on each node, as synchronizations can be done via the shared
memory without extra copies. Bearing this idea in mind, we introduce in the next section a
new performance model targeting distributed multicore machines. We will refer to this model
as Hybrid model.

3.3 New performance model of a parallel sweep

Considering the need to shift the parallel programming models from Flat to Hybrid, we aim
at designing and implementing a new hybrid sweep algorithm for modern architectures. The
algorithm we propose is given as following: loop over all fronts, and perform the following actions
on each front f .

1. On each node, a single multithreaded process executes all local tasks that belong to the
front f ; each thread being bounded to a unique core. Thus, data-transfers between the
tasks are achieved through shared-memory accesses.

1Partisn is a Cartesian SN neutron transport code developed at LANL.
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2. On each node, a single communication thread is dedicated to process all communications
involving that node. Each communication step, occurring on the front f , can be processed
while that node executes the tasks of the front f + 1. Such a strategy enhances overlap of
communications by computations as will be shown in section 3.3.2.

The Adams et al. model does not apply for such implementations. Thereby, we aim at extend-
ing this model to take into consideration the two levels of parallelism available on distributed
multicore systems. The goal is twofold:

• validate the need for such an approach;

• provide us insight on the ideal process grid for a given problem and architecture.

To derive this model, we need to evaluate the new number of computation steps Nstages, and
a new global communication time T ∗

comm. Indeed, in this model not all steps induce a commu-
nication step anymore thanks to the shared memory accesses. Furthermore, in this model, the
constraint on the coupling between computation and communication steps is released, allowing
to minimize explicit global synchronizations. Thus, the makespan of the sweep operation in this
Hybrid model is given by:

THybrid = NstagesTtask + T ∗
comm. (3.3)

(a) Illustration of the blocked data distribution.
MacroCells of similar colors belong to the same process.

(b) Communication pattern of the sweep for a 6 × 6
MacroCell grid, over a 3 × 3 process grid (Ax = Ay = 7;
Sx = Sy = 6; Lx = Ly = 2; F = 11).

Figure 3.1: 2D blocked data distribution and communication pattern of the simulateneous sweep
of all quadrants.

3.3.1 Computation steps

A computation step is defined as the execution of a set of tasks in parallel. This set may be
reduced to a singleton. To derive the formula giving the total number of computation steps, let
us consider the following notations:
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• For a given process grid (or domain partitioning) defined by (P,Q,R), N (p, q, r) is the
node to which belongs the process of rank r × P ×Q+ q × P + p. For the Hybrid model,
there is a one-to-one mapping from the process list to the node list. Therefore, unless
explicitly stated otherwise, we will use interchangeably process and node namings in the
description of the Hybrid model

•
N =

∪
(p,q,r)∈J1,P K×J1,QK×J1,RK N (p, q, r),

is the set of all nodes

• T (p, q, r) is the set of all tasks belonging to the node N (p, q, r):

T (p, q, r) =
{

T o,a,b,c ∈ U | ao
Lx

= p,
bo
Ly

= q,
co
Lz

= r

}
,

where (ao, bo, co) represents the coordinates of the MacroCell (a, b, c) relative to the oc-
tant o

• Wf is the set of all nodes having at least one task of the front f , for all octants:

Wf =
{

N (p, q, r) | ∃o, Uo
f ∩ T (p, q, r) ̸= ∅

}
;

we will call each of those nodes a working node

• Nw
f is the number of tasks of the front f , for all octants, on the node w = N (p, q, r) ∈ Wf :

Nw
f = |{Uf ∩ T (p, q, r)}|

• Nf is the number of computation steps to process all tasks of the front f

• Ncores is the number of cores per node

These notations are defined in a general 3D case, but in the following, for the sake of clarity, we
will rather use 2D figures.

Figure 3.1 shows the evolution of the sweep for all the four quadrants of a 2D spatial grid of
6 × 6 MacroCell. The computer used in this example is a cluster comprising nine nodes; each
node having two computing cores dedicated to execute the tasks. For this example, there are
eight nodes involved to process the front f = 2:

W2 = {N (0, 0), N (0, 1), N (0, 2), N (1, 0), N (1, 2), N (2, 0), N (2, 1), N (2, 2)} .

The largest number of ready tasks on a single node, for the front f = 2, is maxw∈W2(Nw
2 ) = 2.

Therefore, the number of computation steps required to process all tasks belonging to this front
is N2 = ⌈2/2⌉ = 1. In general, for a given working node w, if Nw

f is a multiple of Ncores − 11,
then the number of computation steps required to process all tasks of the front f on the node w

1Note here that, as previously said, we do not use the full number of cores per node for task computations;
rather a single core is entirely dedicated for communications.
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is exactly equal to the quotient of Nw
f by Ncores − 1. Otherwise, we could at least give an upper

bound on the number of computation steps according to the equation (3.4).

Nf =
⌈

maxw∈Wf
(Nw

f )
Ncores − 1

⌉
. (3.4)

According to the Proposition 1, we have

Nf ≤ Ny ×Nz

Ncores − 1
.

Actually, considering the nearest superior integer when evaluating the number of computation
steps is somewhat restrictive, as it overestimates this number, by implicitly requiring to finish
all tasks of a given front before moving to the next. As an example, consider the sweep of the
quadrant 0, over a 6 × 6 regular grid, using 2 parallel threads, as depicted in Figure 3.2. In
this case, according to the equation (3.4), the complete sweep requires 21 steps. However, if we
allow processing of tasks on U0

f+1, even if all tasks on U0
f have not been yet finished, the same

sweep takes 19 steps. This issue is solved by a simulator that will be presented in section 3.4.

(a) Upper bound: 21 steps (b) Lower bound: 19 steps

Figure 3.2: Illustration of the formula giving the number of computation steps, for a single
quadrant sweep, over a 2D spatial grid of 6 × 6 MacroCells. This sweep is performed on a
dual-core computing node.

By summing up the equation (3.4) over all fronts, we obtain an upper bound of the number
of computation steps required to process the whole sweep:

Nstages =
F−1∑
f=0

Nf . (3.5)

Figure 3.3 shows a verification procedure of this formula, by counting the number of computation
steps in a 2D case.

Evaluating the total number of the computation steps required to process the whole sweep
algorithm is the first step toward a full modelization of the sweep execution time. Indeed,
communications costs should be evaluated according to the process grid partitioning and the
network characteristics of the target computer. The section 3.3.2 details strategies we developed
to handle communications cost in the Hybrid model of the sweep.
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3.3.2 Communication steps

We define a communication step as a data transfer, from a process sender A to a remote process
receiver B. The amount of data sent is equal to the size of a MacroCell face: Du, u = x, y, z,
times the number M of angular directions per octant, as presented by equation (3.6).

Dx = Ay ×Az ×M

Dy = Ax ×Az ×M

Dz = Ax ×Ay ×M

(3.6)

Communication time on a single front

Let us first assume that every working node, w = N (p, q, r) ∈ Wf , has finished processing its set
of ready tasks, T (p, q, r)∩Uf . These nodes can therefore start processing tasks in T (p, q, r)∩Uf+1,
while local communication threads perform data transfer toward neighboring nodes.

Patterns of communications We assume that all nodes communicate in parallel, as depicted
in Figure 3.1b. Let us define:

• T ∗
comp(w, f) the time required to process all the Nw

f tasks;

• T ∗
comm(w, f) the time required by the node w for communications, when all its Nw

f tasks
have been processed.

Then the global communication time for the front f is given by equation (3.7).

T ∗
comm(f) = max

w∈Wf

T ∗
comm(w, f). (3.7)

Due to our hypothesis, requiring to finish processing all tasks of the front f before a commu-
nication step can occur, T ∗

comm(f) should be evaluated on a node having executed the highest
number of tasks. In the following, this node is denoted by wmax:

wmax ∈
{
w ∈ Wf | T ∗

comm(w, f) = T ∗
comm(f) and T ∗

comp(w, f) = max
wi∈Wf

T ∗
comp(wi, f)

}
.

Proposition 2. For a given front, the set of nodes performing the highest number of commu-
nications and computations can be considered as a singleton.

Proof. Let w1, w2 be two nodes belonging to this set. Recall that in this Hybrid model, it is
required to finish all tasks in Uf before moving to the next front. Also we assume that any two
different nodes can communicate in parallel, with their respective neighbors; and that there is no
network contention on the message delivery. According to these requirements, communication
times for the nodes w1 and w2 shall not change. Consequently, no matter on which node, from
this set, we evaluate the communication time on the front f . ■

Cost of a single data transfer For a given front f , let Mw
f (u)|u ∈ (x, y, z) be the number

of MacroCell faces sent by the node w towards the u direction. Hence:

T ∗
comm(w, f) =

∑
u∈(x,y,z)

Mw
f (u)τu, (3.8)
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where τu u ∈ (x, y, z) is the time to required to complete the communication of a single face of
a MacroCell, along the u direction. Estimating the communication time of a message over a
distributed memory computer represents a tremendous research area. The linear communication
model (see [55, 112]) is widely used. It is defined by equation (3.9).

τu = α+ Du

β
, (3.9)

where α and β are respectively the latency and bandwidth of the network interconnect, measured
between any two nodes. This model is a good approximation of the communication time for
two any computing nodes directly interconnected. However, on a typical cluster, the topology
of the network interconnect may introduce a significant variation on this model. Indeed, in
such an environment, the communication cost may be different depending on the considered
pair of nodes as explained in [20], especially due to the message routing issues and the network
contentions. A more elaborated communication model that takes into account concurrency over
the network resources on nodes, useful to cope with large messages, is presented in [81, 80].

For our study, we altered the linear communication model as following:

τu =


oc ·Du + Tcr(Du), Du < d0

oc ·Du + α+ Du

β
, Du ≥ d0

(3.10)

where Tcr(d) returns the measured communication time between two nodes for a message of size
d; and oc (expressed in seconds per byte) is a fixed communication overhead per transferred
byte. We use the network benchmarking utility NetPIPE [114], for evaluating Tcr(u). d0 is
experimentally set to the message size from which the messages are transferred with the bandwith
of the communication network, so that the linear communication model can be used to predict
the communication cost.

Global communication time

The global communication time for the sweep operation is finally given by equation (3.11).

T ∗
comm =

F−1∑
f=0

(1 − kf ) max
w∈Wf

T ∗
comm(w, f) (3.11)

A part of them can be overlapped by computation threads. To take this effect into account, it
is necessary to introduce an overlap rate, depending on the front being processed kf .

Evaluating the overlap rate on a given front f , and on a given node w, requires to determine
the amount of tasks on the front f + 1. This overlap rate is evaluated on the node wmax as
defined in section 3.3.2. If T ∗

comp(wmax, f + 1) > T ∗
comm(wmax, f) then all communications on

the node wmax could be hidden. Otherwise, the amount of communications that could not be
overlapped by computations is:

T ∗
comm(wmax, f) − T ∗

comp(wmax, f + 1).

Consequently, the overlap rate is:

kf =
max

(
T ∗

comm(wmax, f) − T ∗
comp(wmax, f + 1), 0

)
T ∗

comm(wmax, f)
, f = 0, · · · , F − 2. (3.12)

Indeed, we do not evaluate kf on the last front because there is no communication at this step.
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3.4 Asynchronous simulator of the sweep

The Hybrid theoretical performance model presented in the section 3.3, under-exploits the avail-
able parallelism in the sweep operation. Indeed, this model requires to execute all tasks on a
given front before moving to the next one. Such a procedure imposes an explicit synchronization,
which can therefore leads to an under-utilization of the computational resources. To overcome
this issue, we propose a new theoretical model having the following properties:

• On each node, a multithreaded process executes local tasks asynchronously

• On each node, a dedicated thread handle all local communications, as for the Hybrid
model, hence enhancing the overlap of communications by computations

• A task can be processed as soon as it has received all its dependencies

Such a model allows to leverage more parallelism from an algorithm, and thus maximizes the
occupation of computational resources. To study the efficiency and the performance of this
parallelization strategy, we need to evaluate the number of computation steps, as well as the
communication costs, by integrating the ability for a node to execute several tasks belonging to
successive fronts. As one may observe, this model can not be easily described using a closed-form
expression as we did for the Hybrid model.

There are some existing tools aiming to simulate the execution of an application on dis-
tributed multicore systems. For instance, SimGrid, presented in [18], allows to have an abstract
model of a large-scale distributed system, so that the execution of a parallel application can
be simulated on that system. However, such tools are more generic and versatile, and thus do
not explicitly take into account specific particularities of a given algorithm, which can afford
to simplify the simulation. Thereby, to simulate the execution of Hybrid sweep on distributed
multicore systems, we rather designed a simulator that mimics the behavior of an asynchronous
scheduler, that keeps executing tasks at earliest time, and tailored for the sweep algorithm. Such
a simulator is exploited in modern task-based runtime systems (see Chapter 4). This section
presents the design of this simulator, referred as Hybrid-Async in the following. Without loss
of generality, the simulation algorithm is presented in a 2D case.

3.4.1 General presentation of the simulation algorithm

The theoretical performance model presented here predicts the computation time of the sweep
operation on a distributed memory computer. This is achieved by simulating the execution of
an asynchronous implementation of the sweep operation on such a computer, according to the
problem size and the characteristics of computational resources used (number of nodes; number
of cores per node; latency and bandwidth of the network interconnect). Such a strategy has the
potentiality of better estimating the computation time, compared to a formula-based model as
presented in section 3.3.

Preliminary considerations

Let us consider:

• a discretization of the time variable into intervals of length equal to the computation time
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of a single task, Ttask: 
Il = [l · Ttask, (l + 1) · Ttask[ , l ≥ 0

[0,+∞[=
∪
l≥0

Il
(3.13)

• a global time, clock, common to all nodes, and set to 0 at the beginning of the simulation;

• a local time for the communication thread, t(p,q)c , giving the date at which the communi-
cation thread on the node N (p, q) is available for performing next communications.

A task T q,a,b is represented by equation (3.14){
T q,a,b := {start, end, dep, Ttask}
T q,0,0.start = 0.0

, (3.14)

where start and end represent the beginning and finishing execution dates of this task; dep is the
number of dependencies1 for this task. One should note here that this modelization corresponds
to a simultaneous sweep of all quadrants. In fact, the beginning execution dates for the the four
corner tasks (T q,0,0, q = 0, 1, 2, 3), are set to 0.0. Consequently these tasks could be executed
at the beginning of the simulation.

Definition 6 (Task scheduling and execution). A task T q,a,b is scheduled if all its dependencies
have been removed:

T q,a,b.dep = 0.

If clock ≥ T q,a,b.start, then we say that the task T q,a,b is ready to be executed. The execution
of a ready task T q,a,b allows to set its finishing execution date according to the equation (3.15):

T q,a,b.end = clock + Ttask. (3.15)

The simulation algorithm

The simulation engine encapsulates the behavior of an asynchronous implementation of the
sweep operation, over a multicore distributed machine: local tasks are executed by a set of
working threads (we assume one thread per computing core), and communications are carried
out sequentially by a separate thread per node. Proposition 3 defines the main idea behind the
simulation algorithm.

Proposition 3. On each time spacing Il, a given node could execute a maximum of Ncores − 1
tasks.

Proof. Let w be a node with a set of n tasks ready to be executed at time clock, and assume
that n > Ncores − 1. On this node, there are Ncores parallel threads, including a single one
dedicated to communications. By assuming that the computation time of tasks is uniform, and
equal to Ttask, it follows therefore that Ncores − 1 tasks, among the n ready tasks, are going to
be executed by clock + Ttask /∈ Il. The remaining tasks could not be executed since the global
time is out of Il. ■

1A dependency D of a task T is a task that has to be processed before the processing of T.
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The main idea of the simulation algorithm (see Algorithm 7) is then to keep moving forward in
time, and to perform the following action on each node: execute ready tasks on each node (Line 5)
and update dependencies of adjacent ones; realize data transfers and schedule ready tasks for
execution (Line 7 and Line 8). This process continues until all tasks are executed. The value of
clock at the end of the simulation gives the sweep time.

Algorithm 7: General simulation algorithm of an asynchronous sweep in 2D
In :

• Latency (α)

• Bandwidth (β)

• Scheduling overhead (δ)

• Communication overhead (oc)

Out: Sweep execution time (clock)
1 clock = 0.0; ▷ Global clock
2 RemainingTasks = 4 × Sx × Sy;
3 while RemainingTasks > 0 do
4 for w = N (p, q) ∈ N do
5 ▷ Execute n ready tasks on N (p, q): T q,a,b

1 , · · · , T q,a,b
n (n ≤ Ncores − 1)

6 RemainingTasks − = n;

7 ▷ Update the clock of the communication thread t(p,q)c

8 ▷ Perform communications and schedule ready tasks
9 clock+ = Ttask;

10 return clock;

Scheduling and execution of tasks We recall that, as the sweep goes through the grid from
a given corner to the far opposite corner, each processed task removes one dependency to one
of its adjacent tasks. When all dependencies of a given task have been removed, then this task
is scheduled for execution. It is worth to note here that for a sequential execution, only a single
task can be released for execution per time step. In this case, the makespan of the problem is
simply the total number of tasks times the computational cost of a single task. Opposingly, for
a parallel execution, we can have more ready tasks to be executed than available computational
resources. It therefore raises the following problem:

Problem 2 (Scheduling). Let an algorithm described by a task graph and a set of computational
resources. Given a set of ready tasks at some execution time, find the most efficient way to
schedule those tasks in order to minimize the makespan.

This scheduling problem is a more general concept and it is subject to numerous studies in
the parallel computing area. For the particular case of the Hybrid-Async model, the available
parallelism during the sweep operation is dynamically discovered as the sweep moves throughout
the spatial grid. We state the following requirements to achieve an optimal scheduling:

1. The execution of a set of ready tasks should contribute to release the highest number of
tasks that can be released at this step;
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2. Locally executed tasks should contribute to minimize idle time of neighboring nodes.

In the Hybrid-Async model, tasks are sorted in respect to these requirements. However, for a real
implementation implementation on top of a generic runtime system (see section 4.3) for instance,
such scheduling policies may introduce an overhead per task, depending on the heuristics used
internally in the runtime in order to decide which tasks should be scheduled for next execution.
We integrate this property in the simulator as following: once a given task T q,a,b has received all
its incoming dependencies from tasks T q,a,b−1 and T q,a−1,b (see Figure 3.4), at a given time tr,
then it can be scheduled at the time ts = tr + δ, where δ is the average scheduling overhead per
task. This scheduling overhead can be interpreted as the delay needed by the runtime system

Figure 3.4: Dependencies for the execution of a task in 2D.

to select the task for execution according to a given scheduling policy. Hence, the beginning
execution date of the task T q,a,b is updated using the equation (3.16):

T q,a,b.start = max
(
T q,a−1,b.end, T q,a,b−1.end

)
+ δ. (3.16)

It is important to note here that this scheduling overhead per task induces some requirements
on the task granularity: a task should be coarse enough such that the value of the scheduling
overhead can be negligible compared to the task computation time. Otherwise, the performance
of the implementation can be very poor. By the same time, the granularity of the task should
allow to extract a large number of tasks, from the considered problem, to maximize occupation
of computational resources. We will discuss the impact of this scheduling overhead on the
performance in section 3.5.

3.4.2 Communication costs

When a given node N (p, q) has processed some of its ready tasks, the global time will be
clock + Ttask. At this time, a set of communications to be processed on this node is notified
to the local communication thread. Because there may be some pending communications when
this notification is sent, and due to the fact that local communications are handled sequentially,
the communication thread can only start processing those communications at time:

t(p,q)c = max
(
clock + Ttask, t

(p,q)
c

)
.

To show how each communication is handled inside the Hybrid-Async model, let us consider a
task T 0,a,b ∈ T (p, q) which releases one dependency to its neighboring task T 0,a+1,b, along the
x dimension. A communication must occurs therefore from the node N (p, q) to the node N (p+
1, q). As said previously, a dedicated thread is going to handle sequentially all communications
initiated on each node. For this reason, the considered communication on the node N (p, q) will
be issued at time:

max
(
t(p,q)c , T 0,a,b.end

)
,
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and t
(p,q)
c is updated to this time, to handle the sequentiality of communications. Finally, the

cost of a message transmission between any two nodes follows the same communication model as
we used for the Hybrid model (see section 3.3.2). Again, the communication thread is updated
to take into account transmission of the message:

t(lp,lq)c + = τx.

Algorithm 8 presents the full Hybrid-Async model.
In this section, we presented two different but related algorithms of parallelizing a sweep, on

distributed multicore systems: the Hybrid model and the Hybrid-Async simulator. In the next
section, we present some performance studies to highlight the advantage of these two algorithms
over classical Flat approaches.

3.5 Comparative study of the performance models
The goal of this section is to compare all performance models described in previous sections.
We first explain how parameters used in the performance models are obtained, then we discuss
the efficiency and performance of each model. These studies are realized using two different 3D
test cases, and model parameters are set for the ivanoe platform (see Table A.1).

3.5.1 Parameters of the models

This section specifies measurements of the parameters used to benchmark the theoretical per-
formance models.

Computer network performances For a given machine, we use the NetPIPE [114] utility
to evaluate communication time for message of increasing sizes. This allowed us to evaluate the
network performance of the ivanoe platform, and the result is presented in Figure 3.5.

Task computing time In the neutron transport community, the computation time per spatial
cell, per angular direction and per energy group is usually called grind time, denoted as Tgrind in
the following. Thus, the computation time of a single task can therefore be evaluated according
to the number of spatial cells, angle and energy groups aggregated into it. This linear model of
computation time per task ignores cache effects and bus memory contentions due to concurrent
accesses; but it gives at least a lower limit on the task computation time.

In this study, the grind time is evaluated through experimental measurements. For each
test case, we set this value to the average computation time per spatial cell and per angular
direction, using a sequential implementation of the sweep operation. It is worth to note here
that in practice, the grind time is not a linear function of the number of cells. To assess
this hypothesis, we conduct an experiment consisting to evaluate the average performance per
MacroCell, from the performance of a sequential implementation of the sweep operation, on the
bigmem computing node (see Table A.1). To achieve this, we considered a test case featuring
5 × 5 × 5 MacroCells of increasing sizes. This study is presented on Figure 3.6. We observe that
the performance per MacroCell (or indirectly, per spatial cell) increases, non-linearly, with the
number of cells and increases slightly starting from MacroCells of size 60 × 60 × 60 cells, and
corresponding to an average performance per MacroCell of 10.6 GFlop/s. As the MacroCell
sizes (Ax, Ay and Az) define the task granularity in all the performance models, one should be
aware on the choice of the grind time. In the following, we use a single grind time per test
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Algorithm 8: Asynchronous sweep simulator in 2D
In :

• Latency (α)

• Bandwidth (β)

• Scheduling overhead (δ)

• Communication overhead (oc)

Out: Sweep execution time (clock)
1 clock = 0.0; ▷ Global clock
2 RemainingTasks = 4 × Sx × Sy;
3 while RemainingTasks > 0 do
4 for w = N (p, q) ∈ N do
5 ▷ Execute n ready tasks on w: T q,a,b

1 , · · · , T q,a,b
n (n ≤ N)

6 RemainingTasks − = n;
7 ▷ Update the clock of the communication thread Tc
8 t

(lp,lq)
c = max

(
clock + Ttask, t

(lp,lq)
c

)
;

9 ▷ Perform communications and schedule ready tasks
10 for T q,a,b ∈

{
T q,a,b

1 , · · · , T q,a,b
n

}
do

11 ▷ Communications
12 if T q,a,b.commx then
13 t

(lp,lq)
c + = τx;

14 T q,a+1,b.start = max
(
T q,a+1,b.start, t

(lp,lq)
c

)
;

15 if T q,a,b.commy then
16 t

(lp,lq)
c + = τy;

17 T q,a,b+1.start = max
(
T q,a,b+1.start, t

(lp,lq)
c

)
;

18 ▷ Scheduling
19 if T q,a+1,b.ready then
20 T q,a+1,b.start + = δ

21 if T q,a,b+1.ready then
22 T q,a,b+1.start + = δ

23 clock+ = Ttask;
24 return clock;
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Figure 3.5: Performance of the network interconnect of the ivanoe platform. Measurements are
obtained using NetPIPE utility, compiled with OpenMPI 1.6.5. The two vertical lines define
the range to which belong messages sent through the network for the benchmarks considered in
this study.

case, obtained by averaging the computation time for a sequential run of sweep operation (see
Table 3.2).
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Figure 3.6: Average performance of the sweep operation per MacroCell, as a function of the
MacroCell size. This experiment was carried out using a sequential implementation of the sweep
operation on the bigmem computing node.
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Communication and scheduling overheads

For a given computer, we choose the best values of these parameters that fit the sweep models to
real execution times. It is worth to note that the scheduling overhead (δ) is strongly dependent
on the runtime being used. We will use different values of δ to illustrate its impact on the
performance when the task granularity is not quite large enough to amortize it.

We will first evaluate the performance models by considering that scheduling overhead per
task, and communication overhead, are null.

3.5.2 Evaluation of the performance models

We consider two different test cases: small and big as described in Table 3.2. These test cases
differ on their spatial mesh sizes; the total number of angular directions remain the same, and
corresponds to a S16 Level Symmetric quadrature (288 angular directions). The small test case
is intended to stress the behavior of theoretical performance models when there is not enough
parallelism; while the big test case allows to perform a strong scalability study on large number
of cores.

3.5.2.1 Optimizing process grid and task-granularity

We recall that the main goal of the developed performance models is to optimize the process grid
partitioning for a set of computational resources and for a given test case. Thereby, for all the
theoretical models, for a given test case and a given number of nodes (or processes), we select
the optimal process grid partitioning that minimizes the global sweep time by exploring all the
possible configurations. Furthermore, for the Adams et al. model, we select the best value of Az
that minimizes the total number of stages (equation (3.2)), by solving the Problem 3 (notations
are defined in Table 3.1).

Problem 3 (Optimal sweep). The minimal computational time for the sweep operation for a
given test case and a set of computational resources is reached for a given domain partitioning
(P opt, Qopt, Ropt), and a given aggregation factors (Aopt

x , Aopt
y , Aopt

z ) such that for all domain
partitioning (P,Q,R) and for all MacroCell size (Ax, Ay, Az):

Tsweep
{

(P opt, Qopt, Ropt, Aopt
x , Aopt

y , Aopt
z )

}
≤ Tsweep {(P,Q,R,Ax, Ay, Az)} .

Adams et al. model It is worth to note here that, for the Adams et al. model, for a given
process grid partitioning, the MacroCell sizes along the x and y dimensions are set respectively
to Nx/P and Ny/Q as the authors did. Indeed, optimizing Ax and Ay makes more sense when
the local subdomain has to be processed by a multithreaded process, as for Hybrid and Hybrid-
Async models, in order to adjust the amount of local tasks, for efficiency purposes.

Hybrid model and Hybrid-Async simulator To determine the optimal MacroCell size
for the Hybrid model and the Hybrid-Async simulator, we must have a measure of the scheduling
overhead per task. Indeed, assuming that the task scheduling is negligible, it is clear that the
best decomposition is therefore the one that will extract a large amount of parallelism from
the considered problem. Therefore, the optimal MacroCell will be a single cell, which does not
correspond to our experimental studies as we are going to see in Chapter 4. This suggests that
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there is an optimal lower bound for the MacroCells, which can be determined for instance by an
estimatation of the scheduling overhead per task. Without having to define this overhead, we can
meanwhile compare the performance predictions from our models (Hybrid model and Hybrid-
Async simulator) with that of Adams et al. model, by searching for the optimal MacroCell size
to be not less than the optimal task size returned by the Adams et al. model, and defined by
optimal aggregation factors (Aopt

x , Aopt
y , Aopt

z ).

3.5.2.2 Performance comparisons of the models

In this section we propose a comparative study of theoretical models presented in previous sec-
tions, regarding performance and scalability using both small and big test cases (see Table 3.2).
Experiments are carried out using settings for ivanoe platform.

small big
Ndir 288 288
Discretizations Nu|u ∈ (x, y, z) 120 480
Tgrind (ns) 2.12 1.92
GFlops 12.44 796.26

Table 3.2: Characteristics of the test cases used. GFlops is the number of floating point oper-
ations required for one complete sweep. We count 25 floating point operations per spatial cell
per angular direction (see section 1.3.3).

Hybrid model Figure 3.7 shows the performance of the sweep operation as predicted by the
Hybrid model, described in section 3.3, using the small test case. This experiment was carried
out using parameters of the ivanoe platform, and Ncores −1 computing cores per node; 1 core is
set free for the communication thread. This figure presents the performances of the sweep oper-
ation for three different settings, regarding the overlap rate of communications by computations.
The first case corresponds to an implementation where there is no overlap of communications
by computations, which underestimates the performances. In this case, the predicted perfor-
mance when using 768 cores is 1.96 Tflop/s, corresponding to a parallel efficiency of 23.8%,
relative to the performance on a single node (12 cores). In the second case, where we assume a
full overlap of communications by computations, the predicted performances are overestimated.
More precisely, the performance and the efficiency become respectively 3.5 Tflop/s and 42.3%
representing an improvement of a factor of 1.7. However, it is not always possible in practice
to overlap all communications by computations. Indeed, as explained in section 3.3.2, this is
only possible when there are enough computational tasks per node to hide the progress of data
transfers through the network interconnect. To illustrate this, let us consider the Hybrid model
prediction with an adaptive overlap rate for 64 nodes (768 cores), which slightly underestimates
the performances because the computation steps is overestimated (see 3.3.1). For that number
of nodes, the Hybrid model found that (15, 10, 5) is the optimal size of the MacroCell (see Ta-
ble 3.4), which gives a total of 18432 tasks, and thus only 288 tasks per node to be shared by
11 computation cores (≈ 26 tasks per core). Bearing in mind that these tasks are not ready at
the same time, it is therefore not possible to achieve a high overlap rate when the number of
cores is large. This is what is shown by the predicted performances from Hybrid model with an
adaptive overlap rate. Up to 96 cores (960 tasks per core), all communications are hidden; and
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beyond that point, the overlap rate decreases until 37.5% at 768 cores. Indeed, for this point,
there are only 18 tasks per core.
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Figure 3.7: Performance of the Hybrid model using the small test case on ivanoe. This figure
illustrates how the Hybrid model integrates the overlap of communications by computations.

Note 1. Considering the results of Hybrid using the small test case on 768 cores, we observe
that when using MacroCells of size (5, 5, 5) there are 216 tasks per process, that is ≈ 20 tasks per
core, which is largely enough to keep busy all the computing cores. However, even without taking
into account scheduling overhead, the Hybrid model returned (15, 10, 5) as the best MacroCell
size, which corresponds to 36 MacroCells per process. The reason is that communications are
much more dominant at this point, and therefore by decreasing task granularity, the amount of
communications is larger.

In the following, all results with the Hybrid model are evaluated using an adaptive overlap
rate.

Adams et al., Hybrid and Hybrid-Async models Figure 3.8 shows a comparison of the
performance as predicted by the Adams et al., Hybrid and Hybrid-Async models on the small
test case. On a single node, the performances of all the three models are similar. Up to 96
cores, Hybrid and Hybrid-Async achieve nearly the same performances. Indeed, as explained
previously, when the number of tasks per core is relatively high, the Hybrid model can perfectly
overlap almost all communications by computations. For the same number of cores, we observe
that the performance of Hybrid and Hybrid-Async is 1.4 times faster than the performance of
Adams et al. model. This is due to the fact that the Adams et al. model involves much more
communications than our models. Beyond 384 cores, the Adams et al. model is faster than
the Hybrid because the latter overestimates the number of computation steps, as explained in
section 3.3.1. However, in the Hybrid-Async model, those constraints are removed and no explicit
synchronization exists anymore. For this reason, the predicted performances from the Hybrid-
Async simulator is higher that those of Hybrid and Adams et al. models. At 768 cores, the
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Partitioning Aggregation Ntasks Message size (KB)
Ncores P Q R Ax Ay Az sx sy sz

12 3 2 2 40 60 15 384 126.5 84.3 337.5
24 6 2 2 20 60 15 768 126.5 42.2 168.7
48 6 4 2 20 30 10 2304 42.2 28.1 84.3
96 8 6 2 15 20 10 4608 28.1 21.1 42.2
192 12 8 2 10 15 10 9216 21.1 14.0 21.1
384 24 8 2 5 15 5 36864 10.5 3.5 10.5
576 24 12 2 5 10 5 55296 7.0 3.5 7.0
768 24 8 4 5 15 5 36864 10.5 3.5 10.5

Table 3.3: Optimal domain partitioning and aggregation factors for the Adams et al. model
using small test case on the ivanoe platform.

Partitioning Aggregation Ntasks Message size (KB)
Ncores P Q R Ax Ay Az sx sy sz

12 1 1 1 5 5 5 110592 3.5 3.5 3.5
24 2 1 1 5 5 5 110592 3.5 3.5 3.5
48 2 2 1 5 5 5 110592 3.5 3.5 3.5
96 2 2 2 6 5 5 92160 3.5 4.2 4.2
192 4 2 2 10 10 5 27648 7.0 7.0 14.0
384 4 4 2 10 10 5 27648 7.0 7.0 14.0
576 6 4 2 10 10 5 27648 7.0 7.0 14.0
768 8 4 2 15 10 5 18432 7.0 10.5 21.1

Table 3.4: Optimal domain partitioning and aggregation factors for the Hybrid model using
small test case on the ivanoe platform.



62 Chapter 3. Performance Modelization of a Parallel Sweep

predicted performances from Hybrid-Async simulator is 1.41 times higher than Hybrid model,
and 1.05 times than Adams et al. model. This is due to the fact that the asynchronous approach
is more suitable to leverage more parallelism compared to Adams et al. and Hybrid models.

It is worth to note that the Hybrid model is simpler than Hybrid-Async simulator, mainly
because it does not take into account asynchronous execution of tasks and evaluates the compu-
tation steps using a closed-form expression. Consequently, it is able to quickly predict the sweep
computation according to parameters given as input. Opposingly, the Hybrid-Async simulator
is more complex and gives better performances, at a cost of the run time of the simulation which
is higher than that of Hybrid model (by a factor of ten in average).
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Figure 3.8: Comparison of Adams et al., Hybrid and Hybrid-Async models using the small test
case using parameters of the ivanoe platform.

We performed the same study on the big test case, which is based on a larger spatial mesh.
We observe that the Hybrid model is able to hide almost all communications (Figure 3.9), and the
predicted performances is slightly higher than that of the Adams et al. model (Figure 3.10), by a
factor of 1.02 at 768 cores, even with the overestimation of the computation steps. The Hybrid-
Async exploits better the available parallelism, and is able to achieve a very good scalability.
The predicted performances from this model is higher than Hybrid and Adams et al. models,
respectively by ×1.13 and ×1.16 at 768 cores.

3.5.2.3 Impact of the scheduling overhead in the Hybrid-Async model

Figure 3.11 presents a sensitivity study, of the Hybrid-Async model, to the scheduling overhead.
This study is carried out with the small test case, using 64 nodes of the ivanoe platform. We
fixed the task granularity and the process grid partitioning to the optimal values obtained from
a run without any scheduling overhead (see Table 3.4). We made the following observations:
the performance of the sweep operation decreases as the scheduling overhead increases, with a
large drop of performance (from 2.1 Tflop/s to 1.6 Tflop/s) when using δ = 57.43 µs. This
value coincides with the computation time of a single task for the considered task granularity.
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Figure 3.9: Performance of the Hybrid model using the big test case on ivanoe.
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Figure 3.10: Comparison of Adams et al., Hybrid and Hybrid-Async using the big test case on
ivanoe.



64 Chapter 3. Performance Modelization of a Parallel Sweep

This behavior is related to the fact that our simulation algorithm executes tasks by time spacing
equal to Ttask.
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Figure 3.11: Impact of the scheduling overhead on the small test case, using 64 computing nodes.
Process grid partitioning and MacroCell sizes are fixed to the optimal values obtained from the
run without any overhead (see Table 3.4). The vertical line corresponds to the computation
time of a single task.

▶ In this chapter, we have theoretically studied the performance of the sweep operation on
multicore distributed systems, predicted by different classes of models. The classical Flat model,
which assumes a parallel computer as a collection of independent computing cores, is widely used
for designing parallel algorithms. We reviewed one such model, namely Adams et al. model,
providing optimal results for parallel sweeps. Due to the shift on parallel computer architec-
tures, moving from uniprocessor-based clusters to multi/many-core based clusters, traditional
approaches are not anymore suited to leverage the full power of today computers. Given this
situation, we developed two new performance models that take better into account architectures
of hybrid machines: these are Hybrid and Hybrid-Async models. We found the predicted per-
formances from the Hybrid model, acting as an implementation using explicitly a combination
of message-passing and threading, is higher than that of the Adams et al. model when the con-
sidered test case provides enough parallelism to overlap communications by computations. The
Hybrid-Async simulator, which simulates the execution of an asynchronous implementation of
the sweep algorithm, removes all explicit synchronizations and thus is able to better exploit the
available parallelism. This latter strategy increases the occupation of computational resources,
and we found that the predicted performances from this simulator remains higher than predicted
performances from Adams et al. and Hybrid models.

These results justify our strategy to design a Hybrid implementation of the sweep operation,
targeting distributed multicore-based machines. In Chapter 4, we will present an implementation
of the sweep operation, following the Hybrid-Async simulator, and using a generic task-based
runtime system. We will see that the predicted performances with Hybrid-Async simulator are
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closer to the measured performances as compared to the Hybrid model. However, the latter
model is nevertheless capable to quickly predict the optimal process grid partitioning, and thus
it can be used to parametrize a sweep run in production contexts.
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To design an efficient massively parallel neutron transport solver, we considered the discrete
ordinates method for solving the neutron transport equation (see Chapter 1). The vast majority
of computations performed with this method are spent in the sweep operation. In Chapter 3,
we have theoretically studied the performances of that operation on distributed multicore ar-
chitectures, through the Hybrid model and the Hybrid-Async simulator. We established that
the predicted performances of the Hybrid-Async simulator are higher than that by the classical
Flat approaches such as the Adams et al. model. In this chapter, we will present a practical
implementation of the Hybrid-Async model, using three different task-based runtime systems:
PaRSEC [13], StarPU [5] and Intel TBB [103] frameworks.

4.1 The emergence of generic task-based runtime systems

As presented in section 1.4, modern parallel computers are built as an interconnection of several
heterogeneous computing nodes, each of which comprises a number of computing devices such
as multicore processors, accelerators such as Graphics Processing Units (GPUs) or manycore
devices. Each of these devices must be addressed with a specific programming paradigm, or
using extensions of computer programming languages. Consequently, such an approach implies
mixing several programming paradigms together in the same application, through the well known
MPI+X programming model.

4.1.1 The traditional MPI+X model

MPI+X is the most popular programming model for modern parallel computers. It consists in
using the Message Passing Interface (MPI)1 standard to handle inter-nodes communications;
while computing devices on each node are explicitly addressed via programming models specif-
ically tuned for considered node architectures. For instance, to write a computational kernel
targeting a computing node equipped with traditional multicore processors, X can be either
OpenMP [28], Intel TBB [103] or PThreads. On the other hand, if the computing node
comprises GPUs, X can be NVIDIA CUDA [93] or OpenCL [115].

This MPI+X programming model generally follows a fork-join model, which is no longer
relevant for today’s parallel computers. Indeed, with this model, computation and communica-
tion phases are usually serialized, and thus global synchronizations are implicitly introduced in
the execution flow. Thereby, the available parallelism inside an algorithm is underutilized, and
computational resources are not efficiently exploited. Indeed, some workers go to idle state while
they could be making progress on some other work (e.g. for MPI+OpenMP: master thread per-
forms communications while other threads are waiting). These issues motivated the emergence
of task-based models on top of generic runtime systems.

4.1.2 Task-based models

Generic concepts of task-based runtime systems

Regarding modern heterogeneous clusters, many initiatives have emerged in previous years to
develop efficient runtime systems. Most of these runtime systems use a task-based paradigm to
express concurrency and dependencies by employing a task dependency graph to fully represent
the application to be executed. This graph is a directed acyclic graph (DAG) where nodes are

1http://www.mpi-forum.org/
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computational tasks and edges represent data flows and dependencies. The major interest of
this approach is the separation of major concerns arising when designing parallel programs:

• Description of the algorithm

• Writing optimized computational kernels

• Efficient scheduling of the tasks over the underlying hardware

These task-based models offer an elegant and efficient way to express parallelism inside an
algorithm, while avoiding the cumbersome hand-coding of all the communication primitives
needed to realize data transfers. Such models allow the removal of all unnecessary and global
synchronizations between tasks; hence exposing a larger number of parallel tasks.

State-of-the-art on task-based models

The past decade has witnessed the development of several approaches of task-based models on
top of generic runtime systems. The main differences between these approaches are related to
their representation of the graph of tasks, whether they manage data movements between com-
putational resources, the extent to which they focus on task scheduling, and their capabilities
of handling distributed and heterogeneous systems. Runtime systems such as Quark [125],
StarPU [5], or StarSS [7] propose an insert task paradigm where a sequential code submits
all computational tasks. In this case, the dependency graph is dynamically discovered at run-
time according to how the data is used, which is indicated through keywords such as INPUT,
OUTPUT or INOUT. Intel TBB is another framework which also allows the use of a task-
based approach. Within this framework, the task dependency graph is constructed according
to high level programming paradigms, or algorithms such as parallel_for, parallel_do or
parallel_reduce. Another framework is Charm++ [62] which is a parallel variant of the
C++ language, and allows the writing of programs where a flow of tasks is applied to each piece
of data. In addition, it provides sophisticated load balancing and a large number of commu-
nication optimization mechanisms. Intel CnC [16] and PaRSEC [13] construct an abridged
representation of the DAG (with its tasks and their dependencies) with a structure agnostic
to algorithmic subtleties, where all intrinsic knowledge about the complexity of the underlying
algorithm is extricated, and the only constraints remaining are annotated dependencies between
tasks [23]. However, as noted in [117], the Intel CnC framework which is built on top of Intel
TBB incurs some overhead compared to Intel TBB.

For designing and implementing our sweep operation on top of generic task-based runtime
systems, we compare the following approaches: hand-written (Intel TBB), parametrized DAG
(PaRSEC) and insert task (StarPU). In the following, we will present the implementation of
the sweep on top these frameworks. For the sake of clarity, the following presentation will be
given in a 2D case, and we consider the case of vacuum boundary conditions which enables a
concurrent sweep of all the quadrants.

4.2 Implementation of the sweep algorithm with Intel TBB

To implement the sweep operation with Intel TBB, we rely on the parallel_do primitive [107],
that enables a dynamic scheduling of the parallel tasks. This parallel function allows a pool of
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threads to execute the tasks from a list, which is dynamically updated at runtime. At the
beginning of the sweep, the task list is composed of four tasks, one for each quadrant:

{T q,0,0, q = 0, 1, 2, 3}.

Some of the running threads process these tasks and update the task list to:

{T q,1,0, q = 0, 1, 2, 3} ∪ {T q,0,1, q = 0, 1, 2, 3}

and so on. The Intel TBB parallel_do primitive we used, dynamically explores, executes and
updates the list of ready tasks. The computations performed inside a task consist in updating
the outgoing angular fluxes in one quadrant (or octant in 3D), for a single MacroCell. These
computations are vectorized over angular directions thanks to the generic C++ library Eigen [48]
and was presented in Chapter 2.

Note 2. It is worth noting that each MacroCell object encapsulates a scalar flux field, common to
all quadrants. Therefore, for a concurrent sweep of all quadrants, each MacroCell must possess
a mutex, to prevent two threads from processing the same data simultaneously. When a thread
starts processing a given task T q,a,b, it acquires the mutex corresponding to the MacroCell(a, b).
When that processing is finished, the mutex is released, so that another thread can start working
on that MacroCell.

4.3 Implementation of the sweep algorithm with PaRSEC
PaRSEC is a framework intended to develop parallel applications on distributed heterogeneous
architectures. It features a generic data-flow runtime system, supporting a task-based imple-
mentation and targeting distributed hybrid systems. This framework relies on the dynamic
scheduling of a directed acyclic graph of the considered algorithm: the nodes represent the
computational kernels (tasks), and edges represent data transfers between tasks. Thanks to an
algebraic description of the task dependencies, the scheduling is completely asynchronous and
fully distributed. Moreover, it takes into account user defined priorities and overlaps communi-
cations by computations.

As mentioned above, the programming model exploited in PaRSEC enables the separation
of the major concerns in distributed computing: the kernels, the algorithm, and the data dis-
tribution. Here, the computational kernel is the same as for the Intel TBB implementation:
update of angular fluxes in one quadrant (or octant in 3D) for a single MacroCell.

4.3.1 Task-graph of the sweep operation

To use the PaRSEC framework, the algorithm must be described as a DAG using the sym-
bolic representation specific to PaRSEC in a Job Data Flow (JDF) file. In this file, all tasks
of the algorithm are defined by their execution space; their data placement or affinity; their
input, output or in-out data-flows; and body. Each data-flow has incoming and outgoing edges
connecting them to other tasks of DAG, or directly to memory accesses. The body specifies
the computations carried out by the task. This file is later compiled into a C code with a set
of functions that will submit the tasks to runtime system, check the dependencies, release the
data to the following tasks, and execute the body. The Cartesian sweep operation, either 2D
or 3D, by its geometric structure, is a natural and simple candidate for this formalism. A sim-
plified version of the 2D sweep operation, without boundary cases and one single quadrant, is
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Listing 4.1: JDF file of the 2D sweep for one quadrant
ComputePhi (a, b)
/* Execution space */
a = 1 .. ncx
b = 1 .. ncy

/* Parallel partitioning */
: mcg(a, b)

/* Parameters */
RW PSIX <- (a != 1) ? PSIX ComputePhi (a-1, b) : psi_x(b)

-> (a != ncx) ? PSIX ComputePhi (a+1, b) : psi_x(b)
RW PSIY <- (b != 1) ? PSIY ComputePhi (a, b -1) : psi_y(a)

-> (b != ncy) ? PSIY ComputePhi (a, b+1) : psi_y(a)

RW MCG <- mcg(a, b)
-> mcg(a, b)

/* Priority of this task */
; priority (a, b)

BODY
{

computePhi_CPU ( MCG , PSIX , PSIY );
}
END
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given in the Listing 4.1. Only one task ComputePhi, described by its position on the grid (a, b),
composes the algorithm. The execution space specifies that there are as many tasks as cells on
the grid of size ncx × ncy. The parallel partitioning argument instructs the runtime to run the
task ComputePhi(a,b) on the node where the data mcg(a, b) is located (see section 4.3.2). mcg is
the structure describing the data distribution, and it is called data descriptor in the PaRSEC
taxonomy. Thus, mcg(a, b) represents here the data structure of the MacroCell of coordinates
(a, b). Each task ComputePhi has three in-out data dependencies:

• PSIX and PSIY are aliases that correspond to the neutron current associated to one
MacroCell, respectively along the x and y dimensions. These two variables are labeled
as read/write (RW) to indicate that the neutron current on the incoming faces are over-
written by those on the outgoing faces, that is the neutron currents are not stored. PSIX
is the current along the x dimension. It comes from the previous task on this dimension
ComputePhi(a − 1, b), and is forwarded to the next task ComputePhi(a + 1, b). PSIY
is the current on the second dimension, and its flow is similar to that of PSIX. On the
initial border of the domain, they are directly read from the main memory, and on the
final border of the domain, they are written to the initial storage space. In the case of
non reflecting nor periodic boundaries, they are directly initialized through a set of initial
tasks at the beginning, and destroyed at the end.

• MCG is the alias on the address of the MacroCell object associated to the considered task.
It is directly read from the main memory using the data descriptor mcg. This alias is used
to discover some physical data encapsulated inside the MacroCell structure and needed
to execute the computational kernel.

The priority line allows the developer to provide a hint to the scheduler helping it to prioritize
the most important tasks. We use this feature to optimize the scheduling of the sweep operation
(see section 4.3.3). Finally, The BODY section contains the computational task itself exploiting
the parameters and flow aliases of the task to access the data.

4.3.2 Data distribution

Once the algorithm has been described in the PaRSEC language, the runtime needs to know
how the data is distributed. A simple API must be implemented to provide this information to
the scheduler. This is shown in Listing 4.2 for the case of a 2D block distribution of ncx × ncy
spatial grid over a P × Q grid of processes, as shown in Figure 3.1a. The rank_of() function
is used by the scheduler to know to which process data the belongs to, but also, in our case,
for task mapping over the node as previously shown. Two tasks on different nodes can then be
detected by the locality of the data they use, and communications are automatically generated:
through direct accesses in the case of shared memory, or MPI asynchronous communications on
distributed memory. This separation between algorithm and data, specific to PaRSEC, allows
a quick evaluation of several data distributions for the same algorithm. Note that it is also
possible to have data distribution depending upon subgroup of threads, useful for minimizing
the data traffic on NUMA architectures. But for the experiments that will follow, we did not
use this feature1. The data_of() function returns the pointer to the MacroCell object when
this one is local. Addresses of transferred objects are internally handled by the runtime.

1In the future, we will add another level of parallelism by the mean virtual processes to take advantage of
“highly” NUMA nodes.
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Listing 4.2: Blocked data distribution of the MacroCell grid over the P ×Q grid of processes.
// Rank of the process owning MacroCell (a,b)
int rank_of ( Parameters & param , int a, int b ) {

int lp = a / (param.ncx / param.P);
int lq = b / (param.ncy / param.Q);

return lq * param.P + lp;
}

// Address of the object MacroCell (a,b)
void * data_of ( Parameters & param , int a, int b,

DataType & mcgData ) {

int aa = a % (param.ncx / param.P);
int bb = b % (param.ncy / param.Q);

return mcgData [bb][aa];
}

4.3.3 Optimization of the scheduling through priorities

The PaRSEC runtime implements several schedulers, which may impact the order of task
processing and the performance. The default scheduler, Local Flat Queue (LFQ), favors the
memory affinity by maximizing memory reuse, by following the dependencies of tasks as defined
in the JDF file (Listing 4.1). Tasks released by a dependency are added to the local queue of the
working thread. In the case of the 3D sweep, it leads to a prioritization of the sweep per columns
of cells (Figure 4.1a). Such a scheduling is not an efficient policy for the sweep since it does
not try to maximize the wave front, and thus the number of parallel tasks available. To tackle
this problem, we considered the Priority Based Queue (PBQ) scheduler. This scheduler, similar
to LFQ, adds ordering of the tasks in the local queue based on optional user defined priorities.
We have studied two different priorities: PlaneZ and Front. The first favors tasks belonging
to the same z-plane (Figure 4.1b), while the latter favors a progression by front (Figure 4.1c).
The first one gives good results when the number of process over z, R, is equal to 2, because it
reduces the idle time of processors in the same (x, y) plane; while the second is more generic as
it frees tasks quickly along the 3 dimensions.

4.4 Implementation of the sweep algorithm with StarPU

Basic concepts

There are two different ways to implement an algorithm on top of StarPU: either using C
extensions (pragmas) to annotate a sequential code, or directly using the StarPU’s API. In the
following, we will focus on the latter. Thus, the implementation of an algorithm with StarPU
is relatively straightforward and consists of the following two steps:

1. Create a codelet for each computational kernel in the considered algorithm. A codelet is a
structure that holds various implementations of the kernel that it represents, and buffers
manipulated by that kernel.
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(a) LFQ

(b) PBQ – PlaneZ

(c) PBQ – Front

Figure 4.1: Animation snapshots showing the behavior of various scheduling strategies on the
sweep progress throughout the spatial domain for one single direction. Data is distributed over
a 2 × 2 × 2 process grid. Threads of similar colors belong to the same node. Brightest colors are
used to show what MacroCells are processed during the snapshots.
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2. Create and submit sequentially all tasks to the runtime system; the runtime can then infer
the whole task-graph corresponding to the algorithm. Each task is an association of a
codelet and a set of parameters manipulated by the kernel corresponding to that task.

For implementing the sweep operation with StarPU, we consider a single codelet, which corre-
sponds to the update of the angular fluxes on a single MacroCell, for one octant. The MacroCell
object associated with the codelet, and the process to which it belongs, is discovered using the
same data descriptor we used in the PaRSEC implementation: mcg. In 2D, this codelet defines
two read/write buffers, each of which being attached to a single MacroCell face. These are
similar to the PSIX and PSIY aliases we used in the PaRSEC implementation (see Listing 4.1).
Each buffer is registered to the StarPU runtime with a data handle, which is an opaque pointer
that designates an array. As in the PaRSEC implementation, we declare that each of these
buffers is allocated on-the-fly at runtime. This codelet defines one computational kernel, which
is the same as in the PaRSEC implementation.

Submission of tasks

Let us consider the basic implementation of the sweep operation with StarPU, in 3D, as
described in Listing 4.3. This implementation submits all tasks of the first octant, before sub-
mitting those of the next one, and so on. Moreover, the submission of tasks for a single octant
favors the tasks in the same column (z dimension). However, this implementation has two issues.
Firstly, if the number of tasks per octant is large and exceeds the size of the window of visible
tasks defined by StarPU, then the octants are going to be processed sequentially, because the
StarPU runtime will not be able to visualize all the available parallelism. Thereby, the discov-
ery of the available parallelism is limited, and the computational resources are underexploited.
Secondly, due to the fact that StarPU considers the tasks according to their submission order,
the considered order of tasks submission (column-wise) does not guarantee that the execution
will maximize the front exploration which is the optimal evolution of the sweep as mentioned in
section 4.3.3.

Thus to enforce the discovery of the available parallelism and to enforce the front exploration,
it is essential to submit (or prioritize) the execution of tasks by following the sweep front. To
this end, we loop over all fronts and we successively submit tasks belonging to each front for all
octants. The Listing 4.4 illustrates this strategy.

4.5 Experiments

This section presents the performances of the PaRSEC, StarPU and Intel TBB imple-
mentations of the sweep operation, on shared and distributed multicore systems. Performance
measurements were carried out in single precision, on the ivanoe and athos clusters (see Ta-
ble A.1), using the 3D test cases small and big (see Table 3.2). All the experiments were
performed with a concurrent sweep over all octants.

To evaluate the efficiency of the task-based implementations of the sweep operation, we will
rely on the theoretical performance models presented in Chapter 3. From this perspective, it is
necessary to first calibrate those models for the target architectures.
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Listing 4.3: Basic submission of the sweep task-graph with StarPU.
// ncx , ncy and ncz : number of MacroCells along the x, y and z axes
const int nfront =ncx+ncy+ncz -2;

// An octant o is defined by (fx ,fy ,fz) such that o=fx +2* fy +4* fz
for(fx =0; fx <2; fx ++) {

int xinc = 1 - 2*fx;
int xbeg = fx * (ncx -1);
int xend = ((1+ fx )%2)* ncx+fx*xinc;

for(fy =0; fy <2; fy ++) {

int yinc = 1 - 2*fy;
int ybeg = fy * (ncy -1);
int yend = ((1+ fy )%2)* ncy+fy*yinc;

for(fz =0; fz <2; fz ++) {

int zinc = 1 - 2*fz;
int zbeg = fz * (ncz -1);
int zend = ((1+ fz )%2)* ncz+fz*zinc;

for(x=xbeg; x!= xend; x+= xinc) {
for(y=ybeg; y!= yend; y+= yinc) {

for(z=zbeg; z!= zend; z+= zinc) {

void * data_mcg =NULL;

if ( rank ==mcg -> rank_of ( mcg , x, y, z ) ){
data_mcg = mcg -> data_of ( mcg , x, y, z );

}

/* Create and submit the task T o,x,y,z to StarPU */
starpu_task_insert
( cl_solve ,
STARPU_VALUE , &data_mcg , sizeof (void *),
STARPU_VALUE , &CS , sizeof (void *),
STARPU_VALUE , &fx , sizeof (int),
STARPU_VALUE , &fy , sizeof (int),
STARPU_VALUE , &fz , sizeof (int),
STARPU_VALUE , &lnx , sizeof (int),
STARPU_VALUE , &lny , sizeof (int),
STARPU_VALUE , &lnz , sizeof (int),
STARPU_RW , mcg -> getPsi ( mcg , 0, fx , fy , fz , 0, y, z ),
STARPU_RW , mcg -> getPsi ( mcg , 1, fx , fy , fz , x, 0, z ),
STARPU_RW , mcg -> getPsi ( mcg , 2, fx , fy , fz , x, y, 0 ),
STARPU_EXECUTE_ON_NODE , mcg -> rank_of ( mcg , x, y, z ),
0 );

}
}

}
}

}
}
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Listing 4.4: Front-like submission of the sweep task-graph with StarPU.
// ncx , ncy and ncz : number of MacroCells along the x, y and z axes
const int nfront =ncx+ncy+ncz -2;

// An octant o is defined by (fx ,fy ,fz) such that o=fx +2* fy +4* fz
for (int f=0; f< nfront ; ++f){

for (int z=0; z<min(ncz ,f+1); ++z){
for (int y=max (0,f-ncz ); y<min(ncy ,f+1-z); ++y){

const int x=f-y-z;

// Loop over octants
for (int fx =0; fx <2; fx ++){

for (int fy =0; fy <2; fy ++){
for (int fz =0; fz <2; fz ++){

void * data_mcg =NULL;

if ( rank ==mcg -> rank_of ( mcg , x, y, z ) ){
data_mcg = mcg -> data_of ( mcg , x, y, z );

}

/* Create and submit the task T o,x,y,z to StarPU */
starpu_task_insert
( cl_solve ,
STARPU_VALUE , &data_mcg , sizeof (void *),
STARPU_VALUE , &CS , sizeof (void *),
STARPU_VALUE , &fx , sizeof (int),
STARPU_VALUE , &fy , sizeof (int),
STARPU_VALUE , &fz , sizeof (int),
STARPU_VALUE , &lnx , sizeof (int),
STARPU_VALUE , &lny , sizeof (int),
STARPU_VALUE , &lnz , sizeof (int),
STARPU_RW , mcg -> getPsi ( mcg , 0, fx , fy , fz , 0, y, z ),
STARPU_RW , mcg -> getPsi ( mcg , 1, fx , fy , fz , x, 0, z ),
STARPU_RW , mcg -> getPsi ( mcg , 2, fx , fy , fz , x, y, 0 ),
STARPU_EXECUTE_ON_NODE , mcg -> rank_of ( mcg , x, y, z ),
0 );

}
}

}

} // y
} // z

} // f
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4.5.1 Task-granularity selection and parameters of the performance models

Task-granularity

To determine the best task-granularity using the Hybrid model or the Hybrid-Async simulator, it
is necessary to have a good estimation of the scheduling overhead associated with the runtime in
use. Moreover, it is also required to model the cache effects of the target processors, because the
performance of the sweep kernel depends on whether or not the MacroCells fit into the processor
cache memory. Such a strategy will introduce some low level details into the performance models.
Recalling that our goal is to design a simple performance model capable of returning optimal
domain partitioning, as a function of the problem size and target machine parameters, we choose
to rather adopt an experimental process for evaluating the optimal task-granularity.

Figure 4.2 presents the single-core performances per MacroCell, of the PaRSEC, StarPU
and Intel TBB implementations of the sweep operation. There are 5 MacroCells along each
dimension, whose size varies from 5 × 5 × 5 to 100 × 100 × 100 (we consider a cubic MacroCell).
This experiment was conducted on the athos platform. We observe that for a MacroCell of size
5 × 5 × 5, the performance of the Intel TBB implementation is better than that of PaRSEC
and StarPU, and reaches a plateau of 16.8 Gflop/s, starting from MacroCell of size 10×10×10.
However, the performance of the PaRSEC implementation increases quickly and stabilizes at
18.1 Gflop/s starting from a MacroCell of size 20×20×20. Surprisingly, the performance of the
StarPU implementation is lower than that of PaRSEC, up to MacroCell of size 50 × 50 × 50.
As the computational kernel used in both implementations is the same, this result shows that
the scheduling overhead per task for StarPU and Intel TBB is larger than that of PaRSEC,
and thus StarPU is suited to schedule coarser tasks. In the following of this study, for all the
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Figure 4.2: Single-core performances of the PaRSEC, StarPU and Intel TBB implemen-
tations of the sweep operation, averaged by the number of MacroCells: 25 (there are five
MacroCells along each dimension). This experiment was conducted on a computing node of the
athos platform (Intel Xeon E5-2600 V2 processors). The angular discretization is a S16 Level
Symmetric quadrature (288 directions).
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three implementations, we will use MacroCells of size 20 × 20 × 20 for the big test case, and
10 × 10 × 10 for the small test case.

Parameters of the performance models

On a given machine, we recall that the input parameters to be used for the performance models
are the following:

• The average computation time per spatial cell, per angular direction and per energy group,
obtained from a sequential run of the sweep on the target machine: Tgrind

• The scheduling overhead per task, associated with the considered runtime: δ

• The network performance of the target machine and the communication overhead (oc)

The evaluation of Tgrind has been presented in section 3.5.1. Here, we recall its value for the
ivanoe machine and we give its value for the athos machine (see Table 4.1). The scheduling
and communication overheads are obtained from a fit of the Hybrid-Async model to real mea-
surements. The network performance is given by a NetPIPE benchmark on the target computer.
Figure 4.3 presents the network latency of the ivanoe and athos computers.

small big
Ndir 288 288
Discretizations Nu|u ∈ (x, y, z) 120 480
MacroCell size 10 × 10 × 10 20 × 20 × 20

Tgrind (ns) ivanoe 2.12 1.92
athos 2.28 1.57

GFlops 12.44 796.26

Table 4.1: Characteristics of the test cases used. GFlops is the number of floating point oper-
ations required for a single complete sweep. We count 25 floating point operations per spatial
cell per angular direction (see section 1.3.3).

4.5.2 Shared memory performances

We have conducted a comparative study of the performances obtained with the three imple-
mentations of the sweep, using respectively Intel TBB, PaRSEC and StarPU. This study
was realized using a single computing node of the athos machine, and the result is presented
on Figure 4.4. The following comparison will be on 23 cores. Indeed, StarPU allocates one
thread per process for its internal runtime management which causes a performance drop when
using all the 24 cores of the computing node.

The three implementations of the sweep were run with the same task-granularity: 20×20×20
cells per MacroCell. We evaluated the Hybrid-Async simulator, without any scheduling over-
head, and using Tgrind obtained from a sequential run of the PaRSEC implementation. The
maximum performance predicted by the Hybrid-Async simulator is 404.2 Gflop/s at 23 cores.
This performance gives an upper-bound on the performance that can be obtained from an imple-
mentation of the sweep operation, on the considered computing node. All three implementations
of the sweep achieve nearly the same performances for a run on a single core. This is unsur-
prising because only a single task is processed; and consequently neither the scheduling policy
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Figure 4.3: Performance of the network interconnect of the ivanoe and athos platforms. Mea-
surements are obtained using NetPIPE utility, compiled with OpenMPI 1.6.5. The two vertical
lines define the range to which messages sent through the network belong to, for small and big
test cases, according to task granularity.

nor the data locality can impact the performances. However, we found that the performance
of the PaRSEC implementation of the sweep, for a run using 23 cores, reaches 367.6 Gflop/s.
This corresponds to 90.8% of the predicted performance by the Hybrid-Async simulator, and to
35.45% of the theoretical peak performance of the considered computing node. Moreover, the
parallel efficiency of the PaRSEC implementation is 90.9% using 23 cores, and it is respectively
6.76% and 13.06% faster than the implementations with Intel TBB and StarPU. The parallel
pattern being constant, we interpret this improved speed-up as a sign for a reduced scheduling
overhead for the PaRSEC framework. Indeed, with the PaRSEC framework, the graph of task
is not unfolded in memory, thanks to the parametric representation of the DAG: only ready
tasks to be executed exist in the system (see [13]). In addition, the PaRSEC implementation
does not have any additional cost associated with insertion of tasks as in StarPU.

The results presented in this section show that the PaRSEC runtime is able to give good
performances per core, even when the task granularity is small, as compared to StarPU. A small
MacroCell size allows to extract a larger number of tasks from the sweep operation, which is a
necessary condition for maintaining a good strong-scalability on large number of cores. For this
reason, we are going to focus on the PaRSEC framework for distributed memory performance
studies.

4.5.3 Distributed memory performances

On a distributed memory machine, the performance of the sweep operation depends strongly
on the domain partitioning. Using Hybrid and Hybrid-Async performance models, we want to
determine the optimal process grid partitioning, according to the problem size and the charac-
teristics of the target computer. In this section, we present the performances of the PaRSEC
implementation of the sweep operation on distributed multicore architectures, using optimal
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Figure 4.4: Performances of the implementations of the sweep operation using big test case (see
Table 3.2), on a single 24-cores computing node of the athos supercomputer. All measurements
were obtained using the same task-granularity of 20 × 20 × 20 cells per task.

process grid partitioning.

4.5.3.1 Optimal partitioning of the spatial domain

For each number of cores, we use the Hybrid model and Hybrid-Async simulator to give us
the optimal data distribution (P,Q,R) that minimizes the sweep execution time. Figure 4.5
compares the experimental results against the predicted results from Hybrid model and Hybrid-
Async simulator, running the big test case with MacroCells of size 20 × 20 × 20, on 48 nodes
of the ivanoe platform. We first set the communication overhead to oc = 0 and the scheduling
overhead to δ = 0. We found that the predicted performances by the Hybrid-Async follows
the same trend as actual measurements from PaRSEC, except for the partitioning (24, 2, 1).
Moreover, the PaRSEC implementation and Hybrid-Async simulator gave the same optimal
partitioning: (12, 2, 2). Then, we fitted the Hybrid-Async data to the experimental measure-
ments and we found that oc = 1.8 · 10−10 s/Byte is the value of the communication overhead
that minimizes the discrepancy between the Hybrid-Async data and actual measurements. Us-
ing this value of oc, the predicted performances comply with actual measurements for each of
the partitioning. However, the predicted performances by the Hybrid model, while following
the same trend as actual measurements, remain lower than actual measurements. This is un-
surprising because, this Hybrid model overestimates the computation step number as explained
in section 3.3.1.

The experiment we conducted here has shown that both Hybrid model and Hybrid-Async
simulator are able to give optimal data distribution. Thus, all the performance measurements
that we will present in the following, are obtained using optimal domain partitioning.
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Figure 4.5: Sensitivity of Hybrid and Hybrid-Async performance models to data distributions
using 48 nodes (576 cores) of the ivanoe cluster, and the big test case. Predicted performances
by the Hybrid model and Hybrid-Async simulator are obtained using a scheduling overhead
value of δ = 0 s.

4.5.3.2 Comparison of Hybrid and Flat approaches

In order to compare Hybrid and Flat approaches, we would have needed a hand-written MPI
implementation of the sweep. Nonetheless, we can mimic its behavior with the PaRSEC im-
plementation. To achieve this, we used as many processes as available cores to perform the
experiment; each process being bound to one core. In reality, the PaRSEC framework runs an
extra thread per process to manage the communications. Thus, for preventing the communica-
tion thread from disrupting the computation progress, we dedicated two cores per process: one
for the computation, and one for the communication. Therefore, to run the Flat experiments
with PaRSEC, the number of processes started on a node is equal to half the number of cores
on the node. To ensure a fair comparison of Hybrid and Flat approaches, Hybrid performance
measurements were performed by launching one process per node and a number of computa-
tional threads equal to half the number of cores. Hence, with both models, the same amount of
data is going through the interconnection network.

We performed this experiment on the ivanoe machine, and the result is presented on Fig-
ure 4.6. In this particular case, 6 computation cores are being used on each node. Performance
measurements using two nodes, that is 12 cores, show that the Hybrid implementation is 30%
times faster than the Flat one. To justify this discrepancy, first it must be noted that although
intra-node MPI communications can be done via shared memory, it remains that they conduct
to a poor usage of caches and saturation of the memory buses. In contrast, these effects are
much reduced when using threads in shared memory, and this may justify the observed differ-
ence. At 384 cores, the Hybrid implementation is 1.9 times faster than the Flat one. These
results confirm that the Hybrid approach is more efficient than the Flat one.
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Figure 4.6: Comparison of Hybrid and Flat approaches using small test case on the ivanoe
cluster. We used 64 nodes and 6 computations cores per node. The performance measurements
were obtained using optimal partitioning, according to predictions of Hybrid and Adams et al.
models.

4.5.3.3 Hybrid-Async simulator using small test case

Figure 4.7 shows the experimental results of the PaRSEC implementation of the sweep, com-
pared to the predicted performance from the Hybrid model and the Hybrid-Async simulator.
This experiment was conducted by running the small test case on the ivanoe platform. By
setting δ = 0 and oc = 0, we observe that up to 96 cores (8 nodes partitioned into (2, 2, 2)), the
predicted performance from Hybrid-Async simulator complies well with the actual measurements
from the PaRSEC implementation. For this number of cores, the Hybrid-Async simulator pre-
dicts a performance of 1.01 Tflop/s, while the PaRSEC implementation achieves 0.84 Tflop/s
and corresponds to a parallel efficiency of 81.91%. At 768 cores the PaRSEC performances is
1.56 Tflop/s and the corresponding parallel efficiency drops to 18.85%. Moreover, the perfor-
mance predicted by the Hybrid-Async simulator, for 768 cores, is 2.54 Tflop/s corresponding
to a theoretical parallel efficiency of 30.68%, which is 1.6 times more efficient than actual mea-
surements. However, one should be aware that when using 768 cores with the small test case
and MacroCells of size 10 × 10 × 10, the average number of tasks per core is 18; and thereby
the runtime scheduling overhead is not negligible. To assess this hypothesis, we performed a
fit of the experimental data to the simulator data. We found that using δ = 8.1 · 10−6 s and
oc = 4.2 · 10−10 s/Byte, the predicted performances agrees well with actual measurements. Note
that this value of the communication overhead is different from that which was obtained in the
big test case (oc = 1.8 · 10−10 s/Byte).

We used this value of oc to run the Hybrid model. We observe that the optimal partitioning is,
each time, the same as that of Hybrid-Async, but the predicted performance is lower. Moreover,
starting from 384 cores, predicted performance from the Hybrid model is less than that which is
obtained from actual measurements. As already discussed previously, this behaviour is related
to overestimation of the computation steps in Hybrid model.
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Figure 4.7: Performance comparison of the PaRSEC implementation of the sweep against
predicted performances by Hybrid model and Hybrid-Async simulator. This experiment was
conducted on the ivanoe cluster, using the small test case. Using δ = 8.1 · 10−6 s, oc =
4.2 · 10−10 s/Byte, the prediction of the Hybrid-Async complies with actual measurements.

4.5.3.4 Hybrid-Async simulator using big test case

Figure 4.8 presents the same study as presented in the previous paragraph, but using the big
test case. The computer used is the same ivanoe platform. This test case comprises 110592
tasks, that is 8 times larger than the number of tasks in the small test case, and the average
number of tasks per core when using 768 cores is 144. In addition, the larger MacroCell size used
for this test case, 20 × 20 × 20, improves the performance per core of the sweep kernel. Thus,
on a single computing node, the performance of the PaRSEC implementation reaches 143.9
Gflop/s when using 12 cores, and corresponds to 51.1% of the theoretical peak performance of
the node. This high performance per node is explained by the usage of SIMD units and a good
data locality exposed by our sweep kernel, thus improving the arithmetic intensity. When using
768 cores, the performance of the sweep implementation with PaRSEC is 6.1 Tflop/s, which
corresponds to 33.9% of the theoretical peak performance of the 64 nodes of ivanoe, and the
parallel efficiency is 68%.

To assess the PaRSEC performances on this test case, we ran both the Hybrid model and
Hybrid-Async simulator using the same value of the communication overhead as used when
we studied the optimal partitioning: oc = 1.8 · 10−10 s/Byte. Unsurprisingly, the predicted
performances from the Hybrid-Async model are close to actual measurements and at 768 cores
the PaRSEC performances is 88.3% of the predicted value.

▶ In this chapter, we have presented a massively parallel implementation of the sweep
operation, using task-based models on top of generic runtime systems: Intel TBB, PaRSEC
and StarPU. We compared actual performances obtained from these implementations to the
performances predicted by the theoretical models.
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Figure 4.8: Performance of the PaRSEC implementation of the sweep using big test case on
the ivanoe cluster.

First, we found that the single-core performance of the StarPU implementation is lower
than that of PaRSEC, suggesting that the internal cost of the StarPU runtime is higher than
that of PaRSEC. Moreover, on a 24-cores NUMA node based on Intel Ivy-Bridge processors, the
performance of the PaRSEC implementation reaches 367.6 Gflop/s, corresponding to 35.4% of
the theoretical peak of the node. This performance is higher than those of StarPU and Intel
TBB implementations (358.7 Gflop/s and 287.57 Gflop/s respectively).

On distributed multicore machines, we assessed that our Hybrid-Async simulator and Hybrid
model are capable to predict the optimal partitioning as a function of the machine parameters
and the test case in use. However, the time required to run the Hybrid-Async simulator is higher
than that is required to run the Hybrid model because the simulator is more precise, and thus
better predict the sweep computation time. Therefore, we will use Hybrid model for evaluating
the optimal partitioning and the Hybrid-Async simulator for evaluating the maximum sustain-
able performances. Using 64 nodes of ivanoe platform, based on Intel Nehalem processors,
the PaRSEC implementation with optimal partitioning, achieves 6.1 Tflop/s corresponding to
33.9% of the theoretical peak of the considered nodes.

Having assessed the performance of the sweep operation on modern massively parallel archi-
tectures, we can therefore build a massively parallel neutron transport solver on these architec-
tures. This solver presented in Chapter 5.
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In this thesis, we consider the discrete ordinates method for solving the neutron transport
equation as presented in Chapter 1. We have seen that this method involves iterating over
the scattering source for solving the monokinetic neutron transport equations. Each scattering
iteration (also referred to as source iteration) involves a sweep over the spatial domain for a
set of angular directions. As mentioned, this sweep operation gathers the vast majority of
computations within the discrete ordinates method. In Chapter 4, we presented a massively
parallel implementation of this sweep operation on distributed multicore-based supercomputers,
using the PaRSEC task-based runtime system. We have shown that the efficiency of this
implementation compares well with the predicted performances from theoretical performance
models. In this chapter, we consider the whole SN algorithm as implemented in the Domino
solver which integrates our task-based implementation of the sweep.

In section 5.1, we first recall the source iteration (SI) scheme and its convergence acceleration
using the classical DSA in order to deal with strongly diffusive problems. Then, after recalling
some limitations of the DSA in a parallel context, we present an implementation of a new
acceleration scheme: PDSA, which extends the DSA scheme. In section 5.2, we present a
validation study to assess the accuracy of the SN method and its performance on a class of
benchmarks including 3D PWR full-core models.

5.1 Acceleration of source iterations (SI)

As mentioned in section 1.3.1, the convergence of the scattering iterations (Algorithm 3) is very
slow in highly diffusive media (Σs ≈ Σt), and an acceleration scheme must be used to remedy
this issue. One of the widely used acceleration scheme in this case, is the Diffusion Synthetic
Acceleration (DSA) [70].

5.1.1 Diffusion Synthetic Acceleration (DSA) method

General presentation of the DSA

Here we just recall the basics of this method, and the reader can refer to the paper [70] for
more details regarding its effectiveness and the Fourier analysis characterizing its convergence
properties. Let us define ϵk+ 1

2 = ψ−ψk+ 1
2 as the error on the solution obtained after the k+ 1

2
th

iteration of the source iterations (SI) scheme, relative to the exact solution ψ, as defined by
equation (1.15). By subtracting the equation on Line 3 of the Algorithm 3 in equation (1.15),
the error ϵ on the angular flux satisfies the following transport equation:

Lϵk+ 1
2 ( #„r ,

#„Ω) =
∫
S2
d

#„Ω′Σs( #„r ,
#„Ω′ · #„Ω)ϵk+ 1

2 ( #„r ,
#„Ω′) + Σs0

(
ϕk+ 1

2 − ϕk
)
, (5.1)

which is as difficult to solve as the original fixed-source transport problem (1.15). However, if
an approximate solution ϵ̃k+ 1

2 of this equation was available, the scalar flux could be updated
to:

ϕk+1 = ϕk+ 1
2 + ϵ̃k+ 1

2 .

The idea of the DSA method is to use a diffusion approximation instead of solving transport
equation (5.1). In Domino, the diffusion approximation relies on the simplified PN (SPN)
method. This method was firstly introduced in [44], but in our case we focus on the mixed-dual
formulation as presented in [75]. The choice of the diffusion approximation is firstly motivated
by the simplicity of the diffusion operator, hence allowing to solve more easily the transport
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equation on the error (5.1). The second advantage of using this approximation is related to the
error attenuation between successive iterations of the SI scheme. Indeed, the Fourier analysis
performed in [70] shows that DSA attenuates low-frequency errors left by the transport sweep
operation. The latter operation attenuates almost only high-frequency errors in highly diffusive
problems.

Solution of the diffusion problem

Equation (5.1) is approximated by a monogroup SP1 problem with an isotropic cross-section
(Σs0), as presented by the following problem in mixed dual formulation:

Problem 4. Find (ϵ, #„

J ) ∈ L2(D) ×H(D, div) such that:
div

#„

J ( #„r ) + Σaϵ( #„r ) = S( #„r ) in D
#„∇ ϵ( #„r ) + 1

D

#„

J ( #„r ) = #„0 in D

ϵ = 0 on ∂D

(5.2)

where:
S( #„r ) = Σs0

(
ϕk+ 1

2 ( #„r ) − ϕk( #„r )
)

is the source term; Σa = Σt − Σs0 the absorption cross-section, and D = 1
3Σa

the diffusion
coefficient.

The complete description of the SPN method is beyond the scope of this dissertation, but
rather we just give its main characteristics as implemented in our SPN solver Diabolo [97]. Let
us consider the general case of Problem 4 where the flux at the boundary is defined as:

ϵ = ϵb on ∂D.

Thus, multiplying the first line of equation (5.2) by v ∈ L2(D), the second by #„w ∈ H(D, div), and
finally applying the Green formula, we obtain the following mixed-dual variational problem [24]:

Problem 5. Find (ϵ, #„

J ) ∈ L2(D) ×H(D, div) such that:
∫

D
div( #„

J ( #„r )) v( #„r )d #„r +
∫

D
Σa( #„r )ϵ( #„r )v( #„r )dD =

∫
D
S( #„r )v( #„r )d #„r , ∀v ∈ L2(D)∫

D

1
D( #„r )

#„

J ( #„r ) · #„w( #„r )d #„r −
∫

D
ϵ( #„r )div( #„w( #„r ))d #„r = −

∫
∂D
ϵb( #„r ) #„w( #„r ) · #„ndΓ, ∀ #„w ∈ H(D, div),

(5.3)
where #„n is the unit normal vector to the boundary ∂D.

Then, the Problem 5 is discretized spatially using the RTk mixed-dual finite element de-
scribed in [92, 101]. To apply the DSA, computations are made with the RT0 element, which
has 7 (resp. 4) degrees of freedom (DoFs) per cell in 3D (resp. 2D): 1 DoF for the scalar
unknown and 6 (resp. 3) DoFs for the vector unknown (see Figure 5.1).

The DSA acceleration scheme [2] was proven effective, provided that the spatial discretization
of the transport equation is consistent with the spatial discretization of the diffusion solver [71].
In [51], the author proved that this consistency requirement is lifted when using a Diamond
Differencing scheme of order k for the transport equation, and RTk finite elements as a dis-
cretization scheme for the diffusion solver. As our SPN solver uses also RTk finite elements, we
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Figure 5.1: RT0 finite element in 2D: 5 DoFs (4 for the current and 1 for the scalar flux).

are assured of the stability of the DSA scheme. However, when integrated into a parallelized
transport solver, DSA may become a bottleneck for the scalability of the transport solver if,
for instance, a serial implementation of the diffusion solver is used. On the other hand, if the
diffusion solver is parallelized, as presented in [10, 59] using a domain decomposition method,
the iteration count to the solution increases with the number of subdomains, and can lead to
a poor global scalability [126]. To remedy this issue, a variant of the DSA has been recently
proposed by F. Févotte in [38].

5.1.2 Piecewise DSA method (PDSA)

The general presentation and the convergence proof of the PDSA method are given in [38].

General algorithm

We assume that the spatial domain D is split, along the 3 dimensions of the space, into N =
P ×Q×R non-overlapping subdomains DI such that: D = ∪I∈IDI , where

I = J1, P K × J1, QK × J1, RK.
We set: ΓIJ = ∂DI ∩ ∂DJ the non-empty interfaces between subdomains of index I and J ;
ΓI = ∂D ∩ ∂DI ; and #„n I the unit normal vector to ∂DI .

The first step of the PDSA method is, as in the case of the DSA method, an SN transport
sweep operation on the whole spatial domain. The second step, consisting of setting an approxi-
mation of the error on the scalar flux, is split in two sub-steps: we successively solve two diffusion
problems, on each subdomain, respectively with homogeneous Neumann boundary conditions
(equation (5.4)), and non-homogeneous Dirichlet boundary conditions (equation (5.5)).

div
#„

J IN ( #„r ) + Σaϵ
I
N ( #„r ) = SI( #„r ) in DI

#„∇ ϵIN ( #„r ) + 1
D

#„

J IN ( #„r ) = #„0 in DI

ϵIN = 0 on ∂ΓI
#„∇ϵIN · #„n = 0 on ΓIJ

(5.4)



div
#„

J ID( #„r ) + Σaϵ
I
D( #„r ) = SI( #„r ) in DI

#„∇ ϵID( #„r ) + 1
D

#„

J ID( #„r ) = #„0 in DI

ϵID = 0 on ΓI

ϵID = ϵIN + ϵJN
2

on ΓIJ

(5.5)
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This is a major shift from the classical DSA method, as we are no longer required to get
the solution of the diffusion problem on the whole spatial domain. The first advantage of this
method is that the explicit global synchronizations between the resolutions of the piecewise
diffusion problems are largely reduced, hence allowing to fully parallelize the DSA method
without efficiency loss. In addition, as we are going to see in section 5.2.3, the effectiveness of
the PDSA method is comparable to that of the classical DSA method on a class of benchmarks.

The accelerated SN flux is finally given by:

ϕaccel = ϕ+ ϵD.

Treatment of boundary conditions

The Neumann boundary conditions in equation (5.4) correspond to a reflective boundary condi-
tion #„∇ϵ · #„n = 0, and its implementation poses no difficulty. However, as noted in [6], imposing
non-homogeneous Dirichlet boundary condition such as in equation (5.5), represents several
numerical challenges. Meanwhile, thanks to the mixed-dual variational formulation (5.3) we
are able to bypass this issue. Indeed, considering the particular case of the second line of this
variational formulation with the Dirichlet boundary conditions of equation (5.5), we obtain:∫

DI

1
D( #„r )

#„

J ( #„r )· #„w( #„r )d #„r−
∫

DI

ϵD( #„r )div( #„w( #„r ))d #„r = −
∫

ΓIJ

ϵb( #„r ) #„w( #„r )· #„n IdΓ, ∀ #„w ∈ H(D, div),

(5.6)
where

ϵb( #„r ) = ϵIN ( #„r ) + ϵJN ( #„r )
2

.

The functions ϵIN , which come from the first SPN resolution, are naturally expanded on the RT0
finite element basis of as follows:

ϵIN =
∑
i

Ei
Ivi,

where EiI is the unknown vector of the flux over the subdomain, and vi are the basis functions
for the flux (see Figure 5.2). On the other hand, equation (5.6) is also discretized using RT0

Figure 5.2: Correspondance between flux and current DoFs.
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finite elements. The test functions for which it is evaluated are thus basis functions for the
current unknown, hereafter denoted by ( #„wj)j . Without loss of generality, we suppose that the
interface ΓIJ is vertical (as seen for example on Figure 5.2). Therefore, #„wj · #„n = wxj on ΓIJ ,
and the integral in the right-hand side of equation (5.6) becomes:

Bj =
∫

ΓIJ

ϵb( #„r )wxj ( #„r )dΓ

Due to the expression of RT0 basis functions, we can notice that Bj = EiI , where indices i and
j are related as shown on Figure 5.2: the flux DoF indexed by i is associated to the cell whose
boundary supports the current DoF indexed by j.

An illustration of the processing of the boundary conditions in the case of two subdomains
is on Figure 5.3.

Figure 5.3: Illustration of the PDSA method on a domain split in two. The first step consists of
solving two diffusion problems in parallel on D1 and D2, with Neumann boundary conditions.
The second step solves also two diffusion problems with non-homogeneous Dirichlet boundary
conditions: null flux boundary conditions on the external boundary of the domain and an average
value of the flux at the inner interface.

Parallelization of the PDSA Method

Figure 5.4 illustrates a parallel implementation of the PDSA method in 2D, when the global
domain is partitioned in two subdomains. The partitioning of the global domain uses the same
block data distribution as for the sweep operation. As we mentioned previously, the diffusion
problem on each subdomain is solved using our SPN solver Diabolo which is parallelized on
shared memory system using Intel TBB framework.

Hence, by mapping each subdomain to a single process, the resolution of the diffusion prob-
lems on D1 and D2, when applying the PDSA method, is naturally done in parallel. Moreover,
for the first step, the use of Neumann boundary conditions requires no communications with
the neighboring processes. However, in the second step, each process needs to have the average
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Figure 5.4: Illustration of the communication pattern in PDSA method on a domain split in
two. Two point-to-point communications are needed to exchange flux at the interface between
the two subdomains.

value of the scalar flux at the interfaces between its neighbors. Therefore, each process must
perform send and receive operations to exchange data with its neighbors. These data exchanges
are point-to-point communications as only two processes are involved for each data exchange.
To achieve this, we allocate two extra buffers per process: the first one is dedicated to store the
extracted scalar flux at the interface between the subdomains which is then communicated to
the neighboring process; while the second one is used as a reception buffer. We use asynchronous
MPI communication primitives to exchange the flux at the interfaces.

5.2 Validation and performances of Domino

We assessed both the accuracy of the discretizations used in Domino and the efficiency of the
PDSA method. This section presents experiments carried out to this end. We first start by
presenting the different benchmarks used to perform our experiments.

5.2.1 Benchmarks

We used three different benchmarks to assess the accuracy and parallel performance of the
Domino solver.

Kobayashi benchmarks [67] These one-group benchmarks are used to assess the accuracy
of the flux distribution, on geometries having void regions, in a highly absorbing medium. A full
description of these benchmarks is available in [67]. Among these benchmarks, we considered
the Problem 1 as depicted on Figure 5.5, and the case ii characterized by 50% of scattering.
Table 5.1 recalls the values of the cross-sections and neutron source used.

Takeda benchmarks [116] These benchmarks, consisting of four core models, are widely
used for checking the validity of 3D neutron transport solvers. We considered the Model 1,
which corresponds to a small Light Water Reactor (LWR) core. This model can be used with
control rods inserted or not. In this study, we consider the former case, as depicted on Figure 5.6
(case 2). The two-group cross sections used in this model are characterized by a high scattering
ratio (c ≃ 0.98765). Therefore, this model is a good candidate to show the effectiveness of the
scattering acceleration methods.
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Figure 5.5: Configuration of the kobayashi benchmark [67] (Problem 1).

Region S Σt Σs

(n cm−3s−1) (cm−1) (cm−1)
Problem i Problem ii

1 1 0.1 0 0.05
2 0 10−4 0 0.5 × 10−4

3 0 0.1 0 0.05

Table 5.1: One-group cross-sections and source strength S for the kobayashi benchmark.
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(a) XY (b) XZ

Figure 5.6: Core configuration the takeda benchmarks [116].

The boundary conditions associated with kobayashi and takeda benchmarks are reflective.
However, since we consider only vacuum boundary condition in this study, we have replicated
the spatial domain for both benchmarks in order to use vacuum boundary conditions.

PWR 900 MW benchmarks These benchmarks correspond to a PWR 900 MW core, and
enable to perform 2, 8 and 26 energy groups calculations. A full description of these benchmarks
is available in [25]. It corresponds to a simplified 3D PWR first core loaded with 3 different types
of fuel assemblies characterized by a specific Uranium-235 enrichment (low, medium and highly
enriched uranium). There are no control rods inserted in this core model. Along the z-axis, the
360 cm assembly is axially reflected with 30 cm of water which results in a total core height of 420
cm. The 3 types of fuel assemblies appear on Figure 5.7 where the central assembly corresponds
to the lowest enrichment, while the last row of fuel assemblies has the highest enrichment to
flatten the neutron flux. Each fuel assembly is a 17×17 array of fuel pins, with a lattice pitch of
1.26 cm that contains 264 fuel pins and 25 water holes. The boundary condition associated with
this benchmark problem is a pure leakage without any incoming angular flux. The associated
nuclear data, 2-group, 8-group and 26-group libraries, derive from a fuel assembly heterogeneous
transport calculation performed with the cell code dragon [43].

Table 5.2 summarizes the discretization parameters for the considered benchmarks.

• For the kobayashi benchmark, we considered a uniform 2-cm mesh step, leading to a
spatial mesh of 100 × 100 × 100 cells. We set the MacroCell sizes to 20 × 20 × 20, and we
considered a S16 angular quadrature.

• The spatial mesh size for the takeda benchmark is the same as that of the small test
case we used in Chapter 4, and we use the same MacroCell size. The angular quadrature
used for the takeda benchmark is a S8 (80 angular directions).

• The spatial mesh used for the PWR benchmarks is based on a pin-cell mesh in the x− y
plane. Each pin-cell is then subdivided into 70 (resp. 84) for the 26-group (resp. 2-group
and 8-group) along the z axis. The spatial mesh is then refined by 2×2×2 for the 8-group
and 26-group, and by 2 × 2 × 9 for the 2-group. The larger spatial mesh for the 2-group
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Figure 5.7: Radial view of a PWR 900 MW model [25].

kobayashi takeda PWR
(Problem 1) (Model 1)

NG 1 2 2 8 26
Nx 100 120 2 × 289
Ny 100 120 2 × 289
Nz 100 120 9 × 84 2 × 84 2 × 70
Ndir 288 80 168 80 288

Ndof
864.0 829.44 254.58 107.76 1.05
×106 ×106 ×109 ×109 ×1012

Flops 7.2 6.91 2.12 898.0 8.75
×109 ×109 ×1012 ×109 ×1012

Ax 20 10 20
Ay 20 10 20
Az 20 10 20
ϵkeff − 10−6 10−6 10−6 10−5

ϵψ − 10−5 10−6 10−5 10−5

Ig 1 1 1 5 4

Table 5.2: Description of benchmarks and calculation parameters.
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case enables to study the strong scalability of our implementation at high core count. For
all the three benchmarks, we use MacroCells of size 20 × 20 × 20.

The calculation of DoF numbers consider 3 DoFs per cell, per energy group and per angular
direction. ϵkeff and ϵψ define the thresholds used to check the stopping criteria at iteration n+ 1
of the power algorithm, respectively on the eigenvalue and on the fission source as follows:

|kn+1
eff − kneff|
kneff

< ϵkeff ,
||Fψn+1 − Fψn||

||Fψn||
< ϵψ. (5.7)

The following experiments were conducted by launching one MPI process per computing
node and as many threads as available cores; keeping one core per node for the communication
thread. All experiments were conducted in single precision. Computation times do not include
setup (reading of cross-section files from the hard disk), but include all communications and
stopping criterion checks. For all the experiments presented in the following sections, the setup
time is less than a minute.

5.2.2 Validation and performances of the source iterations scheme

In this section, we present the performances of the source iterations scheme (SN-only), without
using the acceleration.

Kobayashi benchmark

To check the accuracy of the source iterations as implemented in Domino, we first consider the
Problem 1ii of the kobayashi benchmarks. The computation settings are defined in Table 5.2.
We ran this benchmark on a single 24-cores computing node of the athos platform, and the
convergence was reached in 20 iterations. Figure 5.8 presents solutions obtained from Domino
and the extracted reference results from [67]. The reference fluxes are defined for three set of
points: A (Figure 5.8a and Figure 5.8b), B (Figure 5.8c and Figure 5.8d) and C (Figure 5.8e
and Figure 5.8f). We observe that the flux obtained from Domino follow the same trend as
reference values. However, the relative errors on the flux are higher: 0.9 along the line x = y = z
(Figure 5.8d), at the mesh point defined by x = 95 cm. This observation is explained by the
ray-effects as shown in [67]. It is possible to mitigate the ray effects using for example first-
collision source approximation methods or the Gauss-Legendre (GL) quadrature formula with
large number of directions. Such a strategy is implemented in the radiation transport code
Denovo [37], enabling to get accurate solutions. Meanwhile, for our target applications (PWR
core simulations), the ray-effects are negligible. Indeed, in a reactor core the neutron sources are
uniformly distributed inside the reactor core, enabling to dramatically mitigate the ray effects.

Table 5.3 presents the computation time of the kobayashi problems. The computation time
required to solve problem 1ii with Domino is 0.67 s, using a single 24-cores computing node
of the athos supercomputer. For the same problem, Denovo code requires 3.1 s to get the
solution using 16 processors [37] of the Jaguar XT5 supercomputer. Meanwhile, one should keep
in mind that because we do not take into account symmetry boundary conditions, the spatial
mesh that we used is eight times larger. In addition, the processor architectures used in both
cases are different. Therefore, the aim of this comparison is to give an order of magnitude of
how Domino compares to another existing neutron transport code.
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Figure 5.8: Comparison of the neutron fluxes for the Kobayashi problem 1ii (50% of scattering),
obtained from Domino, with reference values obtained from GMVP Monte-Carlo code [67].
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Solution time (s)
Problem 1ii

Domino 0.67
Denovo 3.1

Table 5.3: SN-only solution times for the Kobayashi problem 1ii. Domino was run on a single 24-
cores computing node (dual Intel Xeon E5-2697v2 processors) of the athos platform. Denovo
was run on 16 processors of the Jaguar XT5 supercomputer, and correspond to the case where
weighted diamond difference (WDD) spatial discretization scheme is used [37].

Takeda benchmark

The second problem we considered for studying the performance of the source iterations is the
Model 1 of the takeda benchmark. We used a spatial mesh resolution of 0.416 cm, and a S8
Level Symmetric quadrature. The resulting spatial mesh contains 120 × 120 × 120 cells. For
the external iterations, the stopping criterion on the eigenvalue and on the fission source term
are respectively set to: ϵkeff = 10−6 and ϵψ = 10−5. As there is no up-scattering in the takeda
benchmark, we set the number of Gauss-Seidel iterations (Ig) to one. Also, the number of source
iterations (Nsrc) is fixed at one. Thereby, the convergence of the source iterations is determined
by the convergence of the power algorithm on external iterations. We carried out this experiment
on a single computing node of the athos platform, and the result is presented in Figure 5.9. The
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Figure 5.9: Convergence of the inverse power algorithm, without the acceleration, using takeda
benchmark.

convergence is reached in 282 iterations and the obtained eigenvalue is 0.962386. This value is
well within the Monte Carlo reference error bar (0.9624 ± 0.0005, see [116]), therefore justifying
the convergence of the source iterations scheme. The drop point in the convergence curve of
the keff, as depicted in Figure 5.9a, highlights a non-monotonic convergence on the eigenvalue.
Indeed, the relative error on the keff decreases until the iteration 7 and then changes the sign.
In Figure 5.9b, the drop points correspond to the iterations where the Chebyshev acceleration
method is applied (more details on the implementation of this method is available in [99]).

We evaluated the region-averaged flux obtained from Domino on the Model 1 of the takeda
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benchmarks. The relative discrepancies between the Domino solution and the reference solu-
tion is presented in Table 5.4. The maximum value of the discrepancies between the Domino
solution and the reference solution is 0.44% (resp. 0.16%) on the fast (resp. thermal) group
(see Table 5.4). These lower discrepancies illustrate that the convergence on the scalar flux is
reached.

|δϕ1| (%) |δϕ2| (%)

Core 0.44 0.16
Control rod 0.33 0.20
Reflector 0.01 0.24

Table 5.4: Discrepancies on the scalar flux, between Domino and reference solution extracted
from [116], for the Model 1 of the takeda benchmark.

The study we presented in this section has validated the accuracy of the discretization
schemes and the convergence of the source iterations scheme. In the next section, we are going
to study the capabilities of the PDSA method for the reduction of the number of source iterations
number.

5.2.3 Efficiency of the PDSA scheme

As mentioned in section 5.1.2, the application of the PDSA method after each source iteration,
requires solving two successive SPN problems. The solutions to the SPN problems need to be
converged to ensure the convergence of the PDSA scheme. As explained in [38], the convergence
of the PDSA scheme can be determined using a parameter ρmax

PDSA which depends on the scattering
ratio c of the problem, and on the domain partitioning. This parameter, which represents the
amplification factor of the PDSA scheme, is defined by equation (5.8):

ρmax
PDSA = ρmax

DSA + ρ̃max
d RPDSA(θ), (5.8)

where: ρmax
DSA is the spectral radius of the DSA scheme; ρ̃max

d is an expression depending on
the scattering ratio of the problem; and RPDSA(θ) is a closed-form formula which depends on a
parameter θ, characterizing the optical thickness of subdomains and defined by:

θ =
√

3(1 − c)τ, (5.9)

where τ is the optical thickness of a subdomain1. According to the study performed in [38],
RPDSA converges towards 0 for optically thick subdomains. In this case, ρmax

PDSA ≈ ρmax
DSA , so that

the efficiency of the PDSA scheme is comparable to that of the classical DSA scheme. It should
be noted that the indicator in equation (5.8) is defined for 1D homogeneous cases. For a 3D,
heterogeneous problem, RPDSA is evaluated by considering the lowest optical thickness over all
subdomains, and over the three dimensions. The uniform optical thickness obtained in this
way is somewhat penalizing; a more precise approach would consist in evaluating the optical
thickness using a homogenized set of cross-sections per subdomain. In the following, we will
use the ρmax

PDSA indicator to highlight the efficiency of the PDSA scheme for multidimensional
partitionings. Let us first study the case of a single subdomain.

1Let a 1D domain composed of n regions, of different properties; Σi, li, for i = 1, 2, . . . , n being respectively
the total cross-section and length of each region. Then the optical thickness of the whole domain is defined by
τ = Σ1l1 + Σ2l2 + · · · + Σnln.
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Case of a single subdomain

When there is only a single subdomain, then the PDSA scheme is equivalent to the classical
DSA scheme, except that the former requires one extra SPN resolution. Figure 5.10 shows the
variation of outer iterations (Nouter) as a function of the number of SPN iterations (NSPN), using
the Model 1 of the takeda benchmarks (see section 5.2.1). We observe that by imposing one SPN
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Figure 5.10: Convergence of the PDSA scheme using a partitioning of (1, 1, 1).

iteration, the convergence is reached in 38 outer iterations. Furthermore, Nouter decreases when
NSPN increases, and reaches a minimal value of Nouter = 14 from NSPN = 4, suggesting that the
convergence of the SPN solver is reached with this value of NSPN. The corresponding eigenvalue
is 0.962437 (see Table 5.5), which is slightly different (0.962386) than that was obtained without
using the acceleration method.

Figure 5.10 also shows the total computation time as a function of NSPN. As expected, the
computation time follows the same trend as Nouter for the first four iterations, and reaches a
minimal value of 2.43 s. However, after NSPN = 4 the total computation time increases because

keff keff Nouter Time (s)
(Ref. Monte Carlo) w/ PDSA w/o PDSA w/ PDSA w/o PDSA

0.962437 0.9624 ± 0.0005 14 281 2.43 27.46

Table 5.5: Eigenvalue and computation time for the Model 1 of the takeda benchmark, on a
24-cores computing node of the athos platform. For this experiment, we fixed the number of
SPN iterations to NSPN = 4.

the number of outer iterations is then constant. This study illustrates that for a given problem,
there exists an optimal value of NSPN which minimizes the total computation time.
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Multidimensional case

According to a preliminary experimental study, we found that in a multidimensional case, the
optimal value of NSPN required to minimize Nouter may be greater than that obtained in the
case of a single domain. Therefore, for the following study, we used NSPN = 15 to ensure the
convergence of the SPN solver. The goal of this study is to assess the convergence of the PDSA
scheme for multidimensional partitionings. We considered the takeda benchmark presented in
section 5.2.1 and we evaluated the convergence of the solver for several partitionings (between
(1, 1, 1) to (10, 10, 10)) of the global domain. For each partitioning, we evaluated ρmax

PDSA, and
Nouter. The result is depicted in Figure 5.11. Each point corresponds to a given partitioning
and thus is associated with a specific value of ρmax

PDSA. The gradient colors are used to indicate
the value of P + Q + R, for a partitioning (P,Q,R). For all the considered partitionings, the
PDSA scheme converges and enables to reduce Nouter as compared to the source iteration (SI).
Furthermore, each value of ρmax

PDSA is associated with several partitionings. Partitionings with
larger values of P +Q+R are those giving larger number of iterations. This latter observation
suggests that the ρmax

PDSA indicator does not capture 3D effects. However, it seems to conservatively
indicate partitionings where PDSA will converge.

Important remark. For a fixed number of cores, the partitioning of a spatial domain according
to a Flat implementation will feature a larger number of subdomains as compared to that of a
Hybrid approach. Therefore, the sum P +Q+R will be larger, and consequently the convergence
of a Flat implementation will be slower (Figure 5.11) than that of a Hybrid implementation.

Figure 5.12 presents the convergence of the PDSA scheme for a multidimensional partitioning
of (4, 4, 2). For this partitioning, we found that NSPN = 3 iterations for the SPN solver minimizes
the total computation time which is 2.38 s, and the corresponding number of outer iterations
is Nouter = 62. According to this observation, the following results are obtained by selecting
optimal values of NSPN.

5.2.4 Full-core 3D PWR calculations

In this section, we present full-core keff computations using the 3D PWR core models described
in section 5.2.1. The calculation parameters are defined in Table 5.2. From a preliminary study
with a single subdomain, we found that the optimal number of SPN iterations is one, for each
of the three benchmarks. Therefore, all the following results are obtained using this value.

2-group PWR core model

Table 5.6 presents a strong scalability study on the athos platform, using the 2-group PWR core
model. As expected, for this benchmark characterized by a high scattering ratio (c ≈ 0.97), the
convergence of the source iterations is very slow. For instance, without using the PDSA scheme,
2116 external iterations are required to reach the convergence with a partitioning of (2, 2, 1). The
total computation time associated with this partitioning is 7724.4 s, of which 81.1% represents
the time spent in the sweep operation, highlighting that the sweep operation is still dominant for
the considered benchmark. Using the PDSA scheme, the number of external iterations is largely
reduced to 92 corresponding to an acceleration of 23. Indeed, for this benchmark ρmax

DSA ≈ 0.21
which is similar to the value of ρmax

PDSA associated with the partitioning (2, 2, 1). Thereby, the
convergence of the PDSA scheme is optimal. Furthermore, the total computation time drops to
451.6 s representing a speed-up (relative to the case without PDSA) of 17.1. It should be noted
that this speed-up is less than the optimal value of 23, even if this is the case for the sweep
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Figure 5.11: Convergence of the PDSA scheme as a function of ρmax
PDSA.
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Partitioning (2, 2, 1) (2, 2, 2) (4, 2, 2) (4, 4, 2)
Ncores 96 192 384 768

ρmax
PDSA 0.21 0.21 0.21 0.21

w/o PDSA
Nouter 2116 2120 2116 2125
Tsweep (s) 6270.2 3831.0 2609.3 2289.8
Ttotal (s) 7724.4 4543.6 2974.2 2479.0
% sweep 81.1 84.3 87.7 92.3

w/ PDSA

Nouter 92 95 97 81
Tsweep (s) 279.9 144.6 77.0 41.0
Tspn (s) 47.8 24.6 12.4 5.1
T comm

PDSA (s) 35.7 30.4 15.6 7.9
Ttotal (s) 451.6 245.7 129.2 65.0
% sweep 61.9 58.8 59.5 63.0

Perf. (Tflop/s) sweep 2.7 3.5 5.3 8.3
Domino 0.8 1.6 3.2 5.3

speed-up 17.1 18.5 23.0 45.7

Table 5.6: Solution times for a S12 2-group 3D PWR keff computation on the athos platform.

operation (improvement by a factor of 22.4). This is justified by the additional computational
costs associated with the PDSA scheme: the two SPN resolutions (Tspn = 47.8 s) and the
communications required to exchange data between subdomains (T comm

PDSA = 35.7 s). Considering
the run times when the PDSA scheme is used, we obtain that the performance of the sweep
operation reaches a 2.7 Tflop/s on four computing nodes of athos, corresponding to 65.2%
of the theoretical peak performance of the four nodes. Experiments with other partitionings
yield similar trends. In particular, using 768 cores, the performance of the sweep operation is
8.3 Tflop/s, corresponding to 24.72% of the peak of the corresponding 32 nodes.

In Table 5.7, we report a performance comparison between Domino and the radiation trans-
port code Denovo on the 2-group problem. We used 64 computing nodes of the athos super-
computer, distributed into a grid of 4 × 4 × 4 processes. The corresponding global computation
time for the whole solver is 0.8 min. As a comparison, the Denovo code solves a slightly dif-
ferent version of this 2-group benchmark in 2.05 min on the Jaguar XT5 supercomputer [29]
(18688 compute nodes, each with dual 2.6 GHz AMD 6-core Istanbul processor). One should
note that this machine differs from athos and as a consequence the performance comparison
is not very precise. In addition, the axial meshes used in Domino and Denovo are slightly
different (756 vs 700). Nonetheless, we hope that this comparison provides a correct trend on
how Domino compares to Denovo.

8-group PWR core model

Table 5.8 presents performance results of a S12 8-group 3D PWR keff computations using 64
computing nodes of the athos cluster partitioned into (4, 4, 4). As in the 2-group benchmark
presented previously, ρmax

PDSA with this partitioning is similar to ρmax
DSA . The convergence on this

benchmark is reached in 65 external iterations, and the obtained eigenvalue is keff = 1.009408.
This number of external iterations is similar to that was obtained for a run with a single subdo-
main. The total computation time is 128.85 s of which 91.53 s comes from the sweep operation,
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Denovo [29] Domino
PWR 2g PWR 2g

Computer Jaguar XT5 athos

Nx ×Ny 578 × 578 578 × 578
Nz 700 756
Ndir 168 168
NG 2 2
ϵkeff 1 × 10−3 1 × 10−6

Ndof (×109) 78.6 84.9

Ncores 20400 1536
SP Rpeak (Tflop/s) 424.3 66.3

keff − 1.019573

Ttotal (min) 2.05 0.8

Table 5.7: Domino-Denovo comparison for a S12 2-group 3D PWR keff computation.

(P,Q,R) ρmax
PDSA Nouter Tsweep (s) Tspn (s) T comm

PDSA (s) Ttotal (s)

(4, 4, 4) 0.19 65 91.53 7.84 0.86 128.85

Table 5.8: Solution times for a S12 8-group 3D PWR keff computation.

illustrating that the sweep operation is still dominant (71% of the total time).

26-group PWR core model

Figure 5.13 presents the convergence of a keff computation on the 26-group 3D PWR core model,
using the PDSA scheme. We used 64 computing nodes of the athos cluster partitioned into
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Figure 5.13: Convergence of Domino using the 26-group PWR benchmark. We used 64 com-
puting nodes partitioned into (4, 4, 4).
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(4, 4, 4). As in Figure 5.9b, the drop points in Figure 5.13b correspond to the iterations where
the Chebyshev acceleration method is applied. The detailed computing times for this benchmark
are reported in Table 5.9. The convergence is reached in 126 outer iterations, for a global solver

(P,Q,R) ρmax
PDSA Nouter Tsweep (s) Tspn (s) T comm

PDSA (s) Ttotal (s)

(4, 4, 4) 0.14 126 2226.42 56.56 147.2 2763.52

Table 5.9: Solution times for a S16 26-group 3D PWR keff computation.

time of 2763.52 s (46 min). The obtained eigenvalue is keff = 1.008358. As in the case of 8-group,
we did not observe any increase on the number of external iterations as compared to a run with
a single domain. This is a remarkable result, highlighting the perfect efficiency of the PDSA
method on representative benchmarks of our target applications.

▶ In this chapter, we studied the accuracy and the performances of our massively parallel
approach for solving the neutron transport equation according to the discrete ordinates method.
We first integrated our task-based implementation of the sweep with PaRSEC in the Domino
solver, then we integrated a new acceleration method to speed-up the convergence of the scat-
tering iterations in strongly diffusive media as PWR cores. All the experiments were carried-out
using Domino solver, and we used three classes of benchmarks.

We then considered one of the kobayashi benchmarks series in order to assess the accuracy of
the discretization schemes and to study the performances of the source iterations. We considered
the case with 50% of scattering. We found that for some regions, the discrepancies between the
flux obtained from Domino and the reference solution are particularly large (rel. error of 2.4)
due to ray-effects. However, one should note that for our target applications, which are PWR
core simulations, the ray-effects are not present. Indeed, the PWR core corresponds to a strongly
diffusive medium where the neutron sources are uniformly distributed, enabling to dramatically
mitigate the ray effects. The runtime performances of the Domino solver compares favorably
with the Denovo on the considered kobayashi problem.

The second benchmark that we studied is the takeda benchmark where the control rods
are inserted. On this benchmark with a high scattering ratio, we assessed both the accuracy of
the solution and the performances of the PDSA scheme. We highlighted the correlation between
the convergence of PDSA scheme with an indicator, ρmax

PDSA, depending on the partitioning of the
domain. The lower bound of this indicator is the spectral radius of the classical DSA method.
Therefore, we have found that the convergence of the PDSA scheme improves for partitionings
with lower values of this indicator. According to our study, we found that even though ρmax

PDSA is
defined for 1D cases, it enables us to conservatively predict the convergence of 3D heterogeneous
problems.

Finally, we have studied the performances of Domino on 3D PWR core models. For these
benchmarks, the convergence of PDSA scheme is optimal and requires roughly the same number
of iterations as a global DSA scheme to reach the convergence. Thereby, the performance
of the Domino solver is very satisfactory. For instance, on a 2-group keff computation, the
performance of the sweep operation reaches 8.3 Tflop/s using 768 cores of the athos platform.
This performance corresponds to 24.72% of the the theoretical peak of the considered nodes.
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Conclusion

The goal of the research presented in this thesis was to study, and to propose a suitable solution,
to the challenges posed by the use of hierarchical massively parallel computers, for solving the
neutron transport equation according to the discrete ordinates method (SN). The addressed
challenges were manifold: design of efficient algorithms capable to handle the SIMD paradigm
on modern CPUs; efficient utilization of multicore-based clusters by means of emerging task-
based models on top of generic runtime systems; and the use of efficient numerical methods.

From this perspective, we have designed theoretical performance models of the sweep oper-
ation intended to bound its performances both on a single CPU and on hierarchical multicore-
based architectures. These performance models have been used to establish a strategy that we
have adopted to meet the above mentioned challenges.

At the processor core level, we have shown that the SIMD capabilities of modern processors
impose some constraints on the design of efficient computational kernels. In the case of the
sweep operation, we have studied different strategies for the vectorization of the computations.
We have theoretically proved that the efficiency of the vectorization over the spatial variable is
limited by the padding that must be used to ensure data alignment. However, the vectorization
over the angular variable allows to reduce the overhead due to the paddings. In order to explicitly
take advantage of the vector units, we have studied and validated the use of generic programming
models in C++ for exploiting directly the SIMD units corresponding to the target architecture.
We have shown that this strategy allows to preserve the modularity of the code and to enhance its
performance portability. On a Westmere processor, the performance of the angular vectorization
reaches a maximum of 13.6 Gflop/s on a single CPU, corresponding to 62.9% of the theoretical
peak performance of that CPU.

From this efficient single threaded implementation of the sweep kernel, we addressed the
challenges posed by the parallel execution of the sweep on multi-processor architectures. We
first built an accurate parallel sweep simulator in order to explore the different parallel spatial
decomposition of the transport sweep. Furthermore, we used our sweep simulator to justify
the need for a task-based implementation of the sweep operation in order to maximize its per-
formances on multicore-based architectures. Then, we compared different emerging task-based
models on top of generic runtime systems (Intel TBB, StarPU, PaRSEC). As a result, the
PaRSEC framework based on parametrized DAG model, produced the most efficient imple-
mentation for the Cartesian transport sweep. This PaRSEC based implementation helped us
to show that our performance model accurately predicts optimal partitionings. Using optimal
partitioning, the performance of the sweep operation reaches 6.1 Tflop/s of 768 cores of the
ivanoe supercomputer, which corresponds to 33.9% of the theoretical peak performance of this
set of computational resources.
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Finally, we addressed the challenge of converging the scatter iterations in highly diffusive
media such as the PWR cores. We have implemented and studied the convergence of a new
acceleration scheme (PDSA) that naturally suits our Hybrid parallel implementation. The
efficiency of the PDSA scheme have been investigated on the reference takeda benchmark,
according to a convergence indicator defined by the PDSA scheme. This indicator depends on
the optical thickness of the subdomains and has a lower bound equal to the spectral radius of
the classical DSA scheme. We have shown that when this indicator is similar to the spectral
radius of the classic DSA scheme, as in the case of PWR cores, the number of external iterations
required for convergence is the same as that of DSA.

The combination of all these techniques have enabled us to develop a massively parallel
version of the Domino solver. It is capable of tackling the challenges posed by the neutron
transport simulations and compares favorably with state-of-the-art solvers such as Denovo. For
a typical 26-group PWR calculations involving 1.02 × 1012 DoFs, the time to solution required
by the Domino solver is 46 min using 1536 cores. Consequently, this Domino solver can be
used by nuclear power plant operators such as EDF for improving the efficiency and safety of
nuclear power plants.

Future work

The work presented in this thesis has raised several open questions for future research.
One such question is related to the improvement of the accuracy of the spatial discretization

scheme by extending the DD0 scheme to high-order diamond differencing schemes (DD1 and
DD2), or using a Discontinuous Galerkin (DG) scheme [21, 102, 106]. The main advantage of
using these high-order discretization schemes is the possibility to obtain a comparable, or even
better, level of accuracy with a coarser spatial mesh. However, for ensuring the stability of the
PDSA scheme, the spatial discretization scheme must be consistent with the RTk finite element
used for solving SPN equations. This scheme consistency requirement is ensured for diamond
differencing scheme as shown in [51], but there exists no equivalent result for the DG scheme.

Another question is oriented towards the design of efficient kernels for accelerator-based
architectures. Early works on this topic such as in [45, 58] require the use of quadrature formula
featuring larger numbers of angular directions in order to achieve acceptable performance on
GPU-based clusters. Recently, a new multilevel decomposition in energy has been introduced
in [36], which is based on the use of Krylov methods for solving multigroup equations. This
decomposition enables to extract a larger number of parallel tasks for problems having large
number of energy groups, which is a requirement for maximizing the occupation of GPUs.
However, for problems with few angles and energy groups, a solution for maximizing the efficiency
would consists of merging the angular and spatial variables.

In Chapter 3, we have presented our Hybrid model and the Hybrid-Async simulator that can
be used to predict the computation time of the sweep operation. One of the parameters used
in these models is Tgrind: the computation time per cell, per group, and per angular direction.
This parameter was obtained through experimental measurements. A challenge raised by this
process is the sensitivity of the model predictions to Tgrind. Therefore, it is of great interest to
accurately estimate this parameter according to machine-dependent constants such as sizes and
hierarchy of caches, clock rate, instruction and the microarchitecture of the target CPU.

Furthermore, our performance models can be extended to describe the behavior of the whole
SN algorithm including the computation time required by the SPN resolutions used by the PDSA
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scheme. To achieve this, it is required to develop a performance model of the SPN method as
in [96].

In a previous study [26], on shared memory systems, we found that initializing the external
iterations of the SN algorithm by a flux obtained from a SPN calculation reduces the number of
external iterations required by the transport solver by a factor up to 2.5. Such a strategy can
therefore significantly reduce the global computation time. To efficiently take advantage of this
result, it is required to have a distributed implementation of the SPN solver as in [10, 59, 74].

Finally, in this thesis we have studied the stationary form of the neutron transport equation.
Hence, this work provides an entry point towards time-dependent neutron transport simulation
as in [90]. However, time integration requires the storage of the angular flux. As we have shown
in Chapter 2, the storage of the currents decreases the arithmetic intensity of the sweep kernel.
Therefore, efficient time-dependent neutron transport simulation represents a big challenge for
future research.
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Appendix A

Experimental platforms

We consider three computing platforms based on x86 multicore processors, as presented on
Table A.1.

Machine Name bigmem ivanoe athos

Memory per node (GB) 1024 24 64
Processor Name Intel Xeon

E7-8837
Intel Xeon

X5670
Intel Xeon
E5-2697 v2

SIMD width (bits) 128 128 256
Frequency (GHz) 2.66 2.93 2.7
Nsocket 4 2 2
Ncores/socket 8 6 12
Ncores/node 32 12 24
SP Th. peak perf./node (GFlop/s) 680.96 281.28 1036.8

Interconnect − InfiniBand
QDR

InfiniBand
FDR

MPI Version − OpenMPI 1.6.5 OpenMPI 1.6.5
Compiler gcc 5.1 gcc 4.7.2 gcc 5.1

Table A.1: Characteristics of the target machines.

bigmem is a NUMA node featuring four octo-core Intel Xeon E7-8837 processors running
at 2.66 GHz. Each CPU core on each of these processors supports Intel SSE1 extensions of the
x86 Instruction Set Architecture (ISA), allowing to perform 4 (resp. 2) floating point arithmetic
operations (add/mul/sub) in single (resp. double) precision, in a single clock. The theoretical
peak performance of this computing node is 680.96 GFlop/s in single precision (SP).

ivanoe is a distributed memory computer. Each computing node of this cluster is a NUMA
node featuring two hexa-core Intel Xeon X5670 processors running at 2.93 GHz. Each of the
CPU cores supports Intel SSE extensions, as for the bigmem computing node. Each computing
has a theoretical peak performance of 281.28 GFlop/s in single precision. The network topology
of this cluster is a fat-tree switch fabric of QDR2 InfiniBandTM (IB) type. This cluster is

1Streaming SIMD Extensions (SSE) is an SIMD instruction set extension to the x86 architecture, designed
by Intel and introduced in 1999 in their Pentium III series processors (source https://en.wikipedia.org/wiki/
Streaming_SIMD_Extensions).

2Quad Data Rate (QDR) is a communication signaling technique wherein data are transmitted at four points
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equipped with a MellanoxTM IB card whose theoretical effective throughput is 40 Gbits/s.
athos is another distributed memory computer, whose network topology is a fat-tree switch

fabric of FDR1 InfiniBandTM type, and equipped with a MellanoxTM IB card, achieving a
theoretical effective throughput of 56 Gbits/s. Each computing node of this cluster is a NUMA
node featuring two twelve-core Intel Xeon E5-2697 v2 processors. Each CPU core supports Intel
AVX2 extensions of the x86 ISA, allowing to perform 8 (resp. 4) floating point operations in
single (resp. double) precision, in a single clock. The theoretical peak performance of each
computing node is 1036.8 GFlop/s in single precision.

in the clock cycle (source https://en.wikipedia.org/wiki/Quad_data_rate).
1Fourteen Data Rate (FDR)
2Advanced Vector Extensions (AVX) https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

https://en.wikipedia.org/wiki/Quad_data_rate
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
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[6] Ivo Babuška and Manil Suri. “The Treatment of Nonhomogeneous Dirichlet Boundary
Conditions by the p-Version of the Finite Element Method”. In: Numerische Mathematik
55.1 (1989), pp. 97–121 (cited on page 91).

[7] R. M. Badia, J. R. Herrero, J. Labarta, J. M. Pérez, E. S. Quintana-Ort, and G. Quintana-
Ort. “Parallelizing Dense and Banded Linear Algebra Libraries using SMPSs”. In: Con-
currency and Computation: Practice and Experience 21.18 (2009), pp. 2438–2456 (cited
on page 69).

[8] R. S. Baker and K. R. Koch. “An SN Algorithm for the Massively Parallel CM200 Com-
puter”. In: (1998) (cited on pages 3, 42).

[9] Randal S. Baker. PARTISN on Advanced/Heterogeneous Processing Systems. Feb. 2013
(cited on pages 3, 44).

[10] M. Barrault, B. Lathuilière, P. Ramet, and J. Roman. “Efficient Parallel Resolution of
the Simplified Transport Equations in Mixed-Dual Formulation”. In: Journal of Compu-
tational Physics 230.5 (2011), pp. 2004–2020 (cited on pages 90, 109).

[11] Paul M Bennett. “Sustained Systems Performance Monitoring at the US Department of
Defense High Performance Computing Modernization Program”. In: State of the Practice
Reports. ACM. 2011, p. 3 (cited on page 3).

115

http://developer.amd.com/acml.jsp
http://developer.amd.com/acml.jsp


116 BIBLIOGRAPHY

[12] Alex F Bielajew and DWO Rogers. “PRESTA: the Parameter Reduced Electron-Step
Transport Algorithm for Electron Monte Carlo Transport”. In: Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
18.1 (1986), pp. 165–181 (cited on page 2).

[13] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Hérault, Pierre Lemarinier,
and Jack Dongarra. “DAGuE: A Generic Distributed DAG Engine for High Performance
Computing”. In: Parallel Computing 38.1-2 (2012) (cited on pages 68, 69, 80).

[14] Judith F Briesmeister et al. MCNPTM-A General Monte Carlo N-Particle Transport
Code. LA-13709-M. Version 4C. Los Alamos National Laboratory. 2000 (cited on page 2).

[15] Darius Buntinas, Brice Goglin, David Goodell, Guillaume Mercier, and Stephanie More-
aud. “Cache-Efficient, Intranode, Large-Message MPI Communication with MPICH2-
Nemesis”. In: Proceedings of the International Conference on Parallel Processing (ICPP).
IEEE. 2009, pp. 462–469 (cited on page 44).

[16] M. G. Burke, K. Knobe, R. Newton, and V. Sarkar. The Concurrent Collections Pro-
gramming Model. Tech. rep. Rice University Houston, 2010 (cited on page 69).

[17] A.D. Carlson, V.G. Pronyaev, D.L. Smith, N.M. Larson, Zhenpeng Chen, G.M. Hale,
F.-J. Hambsch, E.V. Gai, Soo-Youl Oh, S.A. Badikov, et al. “International Evaluation of
Neutron Cross Section Standards”. In: Nuclear Data Sheets 110.12 (2009). Special Issue
on Nuclear Reaction Data, pp. 3215–3324 (cited on page 10).

[18] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric Suter.
“Versatile, Scalable, and Accurate Simulation of Distributed Applications and Platforms”.
In: Journal of Parallel and Distributed Computing 74.10 (June 2014), pp. 2899–2917 (cited
on page 51).

[19] Jatin Chhugani, Anthony D Nguyen, Victor W Lee, William Macy, Mostafa Hagog,
Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey. “Efficient Im-
plementation of Sorting on Multi-Core SIMD CPU Architecture”. In: Proceedings of the
VLDB Endowment 1.2 (2008), pp. 1313–1324 (cited on page 20).

[20] Andrea Clematis and Angelo Corana. “Modeling performance of heterogeneous paral-
lel computing systems”. In: Parallel Computing 25.9 (1999), pp. 1131–1145 (cited on
page 50).

[21] Bernardo Cockburn, George E Karniadakis, and Chi-Wang Shu. The Development of
Discontinuous Galerkin Methods. Springer, 2000 (cited on page 108).

[22] Guillem Colomer, Rick Borrell, FX Trias, and I Rodrguez. “Parallel Algorithms for SN
Transport Sweeps on Unstructured Meshes”. In: Journal of Computational Physics 232.1
(2013), pp. 118–135 (cited on page 43).

[23] Michel Cosnard, Emmanuel Jeannot, and Tao Yang. “Compact DAG Representation and
its Symbolic Scheduling”. In: Journal of Parallel and Distributed Computing 64.8 (2004).
scheduling simulation of compact dag representation (ex: cholesky), pp. 921–935 (cited
on page 69).

[24] F Coulomb and C Fedon-Magnaud. “Mixed and Mixed-Hybrid Elements for the Diffusion
Equation”. In: Nuclear Science and Engineering 100.3 (1988), pp. 218–225 (cited on
page 89).

[25] T. Courau. Specifications of a 3D PWR Core Benchmark for Neutron Transport. Tech.
rep. Technical Note CR-128/2009/014 EDF-SA, 2009 (cited on pages 95, 96).



BIBLIOGRAPHY 117

[26] T. Courau, S. Moustafa, L. Plagne, and A. Ponçot. “DOMINO: A Fast 3D Cartesian
Discrete Ordiantes Solver for Reference PWR Simulations and SPN Validations”. In:
Proceedings of the International Conference on Mathematics and Computational Meth-
ods Applied to Nuclear Science & Engineering (M&C 2013). USA, May 2013 (cited on
page 109).

[27] T. Courau and G. Sjoden. “3D Neutron Transport and HPC: A PWR Full Core Calcu-
lation Using PENTRAN SN Code and IBM BLUEGENE/P Computers”. In: Progress in
Nuclear Science and Technology 2 (2011), pp. 628–633 (cited on page 42).

[28] Leonardo Dagum and Ramesh Menon. “OpenMP: An Industry-Standard API for Shared-
Memory Programming”. In: IEEE Comput. Sci. Eng. 5.1 (Jan. 1998), pp. 46–55 (cited
on page 68).

[29] Gregory G Davidson, Thomas M Evans, Joshua J Jarrell, and Rachel N Slaybaugh. “Mas-
sively Parallel, Three-Dimensional Transport Solutions for the k-Eigenvalue Problem”. In:
Proceedings of the International Conference on Mathematics and Computational Meth-
ods Applied to Nuclear Science & Engineering (M&C 2011). Brazil, May 2011 (cited on
pages 2, 3, 11, 42, 104, 105).

[30] Robert H Dennard, VL Rideout, E Bassous, and AR Leblanc. “Design of Ion-Implanted
MOSFET’s with Very Small Physical Dimensions”. In: Solid-State Circuits, IEEE Journal
of 9.5 (1974), pp. 256–268 (cited on page 17).

[31] J.J. Duderstadt and L.J. Hamilton. Nuclear Reactor Analysis. John Wiley and Sons, Inc.,
New York, Jan. 1976 (cited on page 6).

[32] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and
Doug Burger. “Dark Silicon and the End of Multicore Scaling”. In: Proceedings of the
38th Annual International Symposium on Computer Architecture (ISCA). IEEE. 2011,
pp. 365–376 (cited on page 17).

[33] Roger Espasa, Mateo Valero, and James E Smith. “Vector architectures: past, present
and future”. In: Proceedings of the 12th International Conference on Supercomputing.
ACM. 1998, pp. 425–432 (cited on page 20).

[34] Pierre Estérie, Joel Falcou, Mathias Gaunard, and Jean-Thierry Lapresté. “Boost.SIMD:
Generic Programming for portable SIMDization”. In: Proceedings of the 2014 Workshop
on Programming models for SIMD/Vector processing. ACM. 2014, pp. 1–8 (cited on
page 23).

[35] Thomas M Evans, Gregory G Davidson, Rachel N Slaybaugh, and K Clarno. “Three-
Dimensional Full Core Power Calculations for Pressurized Water Reactors”. In: Journal
of Physics: Conference Series, SciDAC. Vol. 68. 2010, pp. 367–379 (cited on page 3).

[36] Thomas M Evans, Wayne Joubert, Steven P Hamilton, Seth R Johnson, John A Turner,
Gregory G Davidson, and Tara M Pandya. Three-dimensional discrete ordinates reactor
assembly calculations on GPUs. Tech. rep. CASL-U-2015-0172-000. Oak Ridge National
Laboratory (ORNL); Oak Ridge Leadership Computing Facility (OLCF); Consortium
for Advanced Simulation of LWRs (CASL), 2015 (cited on page 108).

[37] Thomas M Evans, Alissa S Stafford, Rachel N Slaybaugh, and Kevin T Clarno. “Denovo:
A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE”. In: Nuclear
technology 171.2 (2010), pp. 171–200 (cited on pages 97, 99).



118 BIBLIOGRAPHY

[38] F Févotte. “PDSA: a Piecewise Diffusion Synthetic Acceleration Scheme”. In preparation
for submission to Journal of Computational Physics. 2015 (cited on pages 90, 100).

[39] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shihjong Kuo. Intel AVX:
New Frontiers in Performance Improvements and Energy Efficiency. Intel white paper.
Intel Corporation, 2008 (cited on page 20).

[40] James W Fischer and YY Azmy. “Comparison via Parallel Performance Models of An-
gular and Spatial Domain Decompositions for Solving Neutral Particle Transport Prob-
lems”. In: Progress in Nuclear Energy 49.1 (2007), pp. 37–60 (cited on pages 3, 43).

[41] Michael J Flynn. “Some Computer Organizations and Their Effectiveness”. In: Comput-
ers, IEEE Transactions on 100.9 (1972), pp. 948–960 (cited on page 20).

[42] John Fruehe. Multicore Processor Technology. Reprinted from Dell Power Solutions (Ob-
tained from the Internet on Mar. 23, 2012). Dell Power Solutions, 2005, pp. 67–72 (cited
on page 2).

[43] G. Marleau, A. Hébert and R. Roy. A User’s Guide for DRAGON 3.05. Tech. rep. IGE-
174 Rev.6. Institut de Génie Nucléaire, École Polytechnique de Montréal, 2006 (cited on
page 95).

[44] E.M. Gelbard. Simplified Spherical Harmonics Equations and Their Use in Shielding
Problems. Tech. rep. WAPD-T11-1182. Westinghouse Report, 1961 (cited on page 88).

[45] Chunye Gong, Jie Liu, Lihua Chi, Haowei Huang, Jingyue Fang, and Zhenghu Gong.
“GPU Accelerated Simulations of 3D Deterministic Particle Transport Using Discrete
Ordinates Method”. In: J. Comput. Phys. 230.15 (July 2011), pp. 6010–6022 (cited on
page 108).

[46] Richard L Graham, Galen M Shipman, Brian W Barrett, Ralph H Castain, George
Bosilca, and Andrew Lumsdaine. “Open MPI: A high-performance, heterogeneous MPI”.
In: Proceedings of the IEEE International Conference on Cluster Computing. IEEE. 2006,
pp. 1–9 (cited on page 44).

[47] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. “A High-Performance,
Portable Implementation of the MPI Message Passing Interface Standard”. In: Parallel
computing 22.6 (1996), pp. 789–828 (cited on page 42).

[48] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. 2010. url: http://eigen.tuxfamily.
org (cited on pages 23, 31, 70).

[49] Linley Gwennap. “Sandy Bridge Spans Generations”. In: Microprocessor Report 9.27
(2010), pp. 10–01 (cited on page 21).

[50] A. Hébert. Applied Reactor Physics. Presses internationales Polytechnique, 2009 (cited
on page 10).

[51] Alain Hébert. “High order diamond differencing schemes”. In: Annals of Nuclear Energy
33.1718 (2006), pp. 1479–1488 (cited on pages 13, 89, 108).

[52] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J Ramanujam, and
P Sadayappan. “Data Layout Transformation for Stencil Computations on Short-Vector
SIMD Architectures”. In: Compiler Construction. Springer. 2011, pp. 225–245 (cited on
page 20).

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org


BIBLIOGRAPHY 119

[53] Michael A Heroux, Roscoe A Bartlett, Vicki E Howle, Robert J Hoekstra, Jonathan J Hu,
Tamara G Kolda, Richard B Lehoucq, Kevin R Long, Roger P Pawlowski, Eric T Phipps,
et al. “An Overview of the Trilinos Project”. In: ACM Transactions on Mathematical
Software (TOMS) 31.3 (2005), pp. 397–423 (cited on page 3).

[54] Mike Heroux, Rob Neely, and Sriram Swaminarayan. ASC Co-design Proxy App Strategy.
Technical Report LA-UR-13-20460/LLNL-TR-592878. LANL,LLNL (cited on page 3).

[55] Roger W. Hockney. “The Communication Challenge for MPP: Intel Paragon and Meiko
CS-2”. In: Parallel Computing 20.3 (1994), pp. 389–398 (cited on page 50).

[56] Adolfy Hoisie, Olaf Lubeck, and Harvey Wasserman. “Performance and Scalability Anal-
ysis of Teraflop-Scale Parallel Architectures using Multidimensional Wavefront Appli-
cations”. In: International Journal of High Performance Computing Applications 14.4
(2000), pp. 330–346 (cited on pages 3, 43).

[57] Philippe Humbert. “Parallelization of PANDA Discrete Ordinates Code Using Spatial De-
composition”. In: Proceedings of the ANS Topical Meeting on Reactor Physics (PHYSOR).
2006, pp. 10–14 (cited on page 3).

[58] E Jamelot, J Dubois, JJ Lautard, C Calvin, and AM Baudron. “High performance 3D
neutron transport on petascale and hybrid architectures within APOLLO3 code”. In:
Proceedings of the International Conference on Mathematics and Computational Methods
Applied to Nuclear Science and Engineering. Vol. 18. 2011 (cited on page 108).

[59] Erell Jamelot and Patrick Ciarlet Jr. “Fast non-overlapping Schwarz domain decomposi-
tion methods for solving the neutron diffusion equation”. In: Journal of Computational
Physics 241 (2013), pp. 445–463 (cited on pages 90, 109).

[60] Sverre Jarp, Alfio Lazzaro, Julien Leduc, and Andrzej Nowak. Evaluation of the In-
tel Sandy Bridge-EP server processor. Tech. rep. CERN-IT-Note-2012-005. CERN, 2012
(cited on page 35).

[61] Adam Jundt, Ananta Tiwari, William A Ward Jr, Roy Campbell, and Laura Carring-
ton. “Optimizing codes on the Xeon Phi: a case-study with LAMMPS”. In: Proceedings
of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberin-
frastructure. ACM. 2015, p. 28 (cited on page 3).

[62] L. V. Kalé and S. Krishnan. “CHARM++: A Portable Concurrent Object Oriented Sys-
tem Based on C++”. In: Proceedings of the eighth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA). 1993, pp. 91–108 (cited
on page 69).

[63] Darshan Kaushik, A Wollaber, Brian Smith, Avivas Siegel, Won Sik Yang, et al. “Enabling
High-Fidelity Neutron Transport Simulations on Petascale Architectures”. In: High Per-
formance Computing Networking, Storage and Analysis, Proceedings of the Conference
on. IEEE. 2009, pp. 1–12 (cited on page 2).

[64] Dinesh Kaushik, Micheal Smith, Allan Wollaber, Barry Smith, Andrew Siegel, and Won
Sik Yang. “Enabling high-fidelity neutron transport simulations on petascale architec-
tures”. In: High Performance Computing Networking, Storage and Analysis, Proceedings
of the Conference on. IEEE. 2009, pp. 1–12 (cited on pages 3, 42).

[65] Darren J Kerbyson, Adolfy Hoisie, and Shawn D Pautz. “Performance Modeling of De-
terministic Transport Computations”. In: Performance Analysis and Grid Computing.
Springer, 2004, pp. 21–39 (cited on pages 3, 43).



120 BIBLIOGRAPHY

[66] Wilfried Kirschenmann. “Vers des noyaux de calcul intensif pérennes”. PhD thesis. Uni-
versité de Lorraine, 2012 (cited on page 23).

[67] Keisuke Kobayashi, Naoki Sugimura, and Yasunobu Nagaya. 3-D Radiation Transport
Benchmark Problems and Results for Simple Geometries with Void Regions. Nuclear En-
ergy Agency, 2000 (cited on pages 93, 94, 97, 98).

[68] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R Bishop. “A
Unified Sparse Matrix Data Format for Efficient General Sparse Matrix-Vector Multipli-
cation on Modern Processors with Wide SIMD Units”. In: SIAM Journal on Scientific
Computing 36.5 (2014), pp. C401–C423 (cited on page 20).

[69] AJ Kunen, TS Bailey, and PN Brown. “KRIPKE-A Massively Parallel Transport Mini-
App”. In: Joint International Conference on Mathematics and Computation (M&C), Su-
percomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method. 2015
(cited on page 4).

[70] Edward W Larsen and Jim E Morel. “Advances in Discrete-Ordinates Methodology”. In:
Nuclear Computational Science. Springer, 2010, pp. 1–84 (cited on pages 88, 89).

[71] E.W. Larsen. “Unconditionally Stable Diffusion Synthetic Acceleration Methods for the
Slab Geometry Discrete Ordinates Equations”. In: Nuclear Science and Engineering
(1982), pp. 47–63 (cited on page 89).

[72] Alexander R Larzelere et al. “Creating Simulation Capabilities”. In: Computational Sci-
ence & Engineering, IEEE 5.1 (1998), pp. 27–35 (cited on page 42).

[73] Kaye D Lathrop. “Ray Effects in Discrete Ordinates Equations”. In: Nuclear Science and
Engineering 32.3 (1968), pp. 357–369 (cited on page 12).

[74] Bruno Lathuilière. “Méthode de décomposition de domaine pour les équations du trans-
port simplifié en neutronique”. PhD thesis. Université Sciences et Technologies-Bordeaux
I, 2010 (cited on page 109).

[75] JJ Lautard, D Schneider, and A Baudron. “Mixed dual methods for neutronic reactor
core calculations in the CRONOS system”. In: Proc. Int. Conf. Mathematics and Compu-
tation, Reactor Physics and Environmental Analysis of Nuclear Systems. 1999, pp. 27–30
(cited on page 88).

[76] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, An-
thony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Ham-
marlund, et al. “Debunking the 100X GPU vs. CPU Myth: an Evaluation of Through-
put Computing on CPU and GPU”. In: ACM SIGARCH Computer Architecture News.
Vol. 38. 3. ACM. 2010, pp. 451–460 (cited on page 20).

[77] Randall J LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-State and Time-Dependent Problems. Vol. 98. Siam, 2007 (cited on page 11).

[78] E. E. Lewis and W. F. Miller, Jr. Computational Methods of Neutron Transport. New
York: John Wiley and Sons, Inc, 1984 (cited on pages 6, 9, 11).

[79] Saeed Maleki, Yaoqing Gao, Mara J Garzaran, Tommy Wong, David Padua, et al. “An
Evaluation of Vectorizing Compilers”. In: Proceeding of the International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE. 2011, pp. 372–382
(cited on page 23).

[80] Maxime Martinasso and Jean-François Méhaut. Model of concurrent MPI communica-
tions over SMP clusters. Research report. INRIA, 2006 (cited on page 50).



BIBLIOGRAPHY 121

[81] Maxime Martinasso and Jean-François Méhaut. “A Contention-Aware Performance Model
for HPC-Based Networks: A Case Study of the InfiniBand Network”. English. In: Euro-
Par 2011 Parallel Processing. Ed. by Emmanuel Jeannot, Raymond Namyst, and Jean
Roman. Vol. 6852. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011,
pp. 91–102 (cited on page 50).

[82] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. Tech. rep. A continually updated technical report. Charlottesville, Virginia:
University of Virginia, 1991-2007 (cited on page 22).

[83] John D. McCalpin. “Memory Bandwidth and Machine Balance in Current High Per-
formance Computers”. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter (Dec. 1995), pp. 19–25 (cited on page 22).

[84] Michael D McCool, Arch D Robison, and James Reinders. Structured Parallel Program-
ming: Patterns for Efficient Computation. Elsevier, 2012 (cited on page 23).

[85] Sally A McKee. “Reflections on the Memory Wall”. In: Proceedings of the 1st conference
on Computing frontiers. ACM. 2004, p. 162 (cited on page 2).

[86] J Mielikainen, B Huang, and AH-L Huang. “Intel Xeon Phi accelerated Weather Re-
search and Forecasting (WRF) Goddard microphysics scheme”. In: Geoscientific Model
Development Discussions 7.6 (2014), pp. 8941–8973 (cited on page 3).

[87] Nathalie Möller, Eric Petit, Loc Thébault, and Quang Dinh. “A Case Study on Using a
Proto-Application as a Proxy for Code Modernization”. In: Procedia Computer Science
51 (2015), pp. 1433–1442 (cited on page 3).

[88] Sally Falk Moore. “Law and Social Change: The Semi-Autonomous Social Field as an
Appropriate Subject of Study”. In: Law and Society Review (1973), pp. 719–746 (cited
on page 17).

[89] Said F Mughabghab. Neutron Cross Sections: Neutron Resonance Parameters and Ther-
mal Cross Sections Part B: Z= 61-100. Vol. 1. Academic press, 2012 (cited on page 10).

[90] Olga Mula. “Some contributions towards the parallel simulation of time dependent neu-
tron transport and the integration of observed data in real time”. PhD thesis. Université
Pierre et Marie Curie-Paris VI, 2014 (cited on page 109).

[91] Onur Mutlu. “Memory Scaling: A Systems Architecture Perspective”. In: Memory Work-
shop (IMW), 2013 5th IEEE International. IEEE. 2013, pp. 21–25 (cited on page 44).

[92] Jean-Claude Nédélec. “A New Family of Mixed Finite Elements in R3”. In: Numerische
Mathematik 50.1 (1986), pp. 57–81 (cited on page 89).

[93] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. “Scalable Parallel Pro-
gramming with CUDA”. In: Queue 6.2 (Mar. 2008), pp. 40–53 (cited on page 68).

[94] Matt Pharr and William R Mark. “ISPC: A SPMD Compiler for High-Performance CPU
Programming”. In: Proceedings of the Innovative Parallel Computing (InPar). IEEE.
2012, pp. 1–13 (cited on page 23).

[95] Chuck Pheatt. “Intel® Threading Building Blocks”. In: Journal of Computing Sciences
in Colleges 23.4 (2008), pp. 298–298 (cited on page 24).

[96] Katia Pinchedez. “Calcul parallèle pour les équations de diffusion et de transport ho-
mogènes en neutronique”. PhD thesis. Université de Paris 6, 1999 (cited on page 109).



122 BIBLIOGRAPHY

[97] Laurent Plagne and Angélique Ponçot. “Generic Programming for Deterministic Neutron
Transport Codes”. In: Mathematics & Computation, Supercomputing, Reactor Physics
and Nuclear and Biological Applications. Palais des Papes, Avignon, France, Sept. 2005
(cited on page 89).

[98] Steven J Plimpton, Bruce Hendrickson, Shawn P Burns, William McLendon, and Lawrence
Rauchwerger. “Parallel Sn Sweeps on Unstructured Grids: Algorithms for Prioritiza-
tion, Grid Partitioning, and Cycle Detection”. In: Nuclear science and engineering 150.3
(2005), pp. 267–283 (cited on page 43).

[99] Angélique Ponçot and Laurent Plagne. Note de principe du solveur SN DOMINO. Tech.
rep. H-I23-2013-00799-FR. EDF R&D, 2014 (cited on page 99).

[100] Hari Radhakrishnan, Damian WI Rouson, Karla Morris, Sameer Shende, and Stavros C
Kassinos. “Using Coarrays to Parallelize Legacy Fortran Applications: Strategy and Case
Study”. In: Scientific Programming 501 (2015), p. 904983 (cited on page 3).

[101] Pierre-Arnaud Raviart and Jean-Marie Thomas. “A Mixed Finite Element Method for 2-
nd Order Elliptic Problems”. In: Mathematical aspects of finite element methods. Springer,
1977, pp. 292–315 (cited on page 89).

[102] WH Reed and TR Hill. “Triangular Mesh Methods for the Neutron Transport Equation”.
In: Los Alamos Report LA-UR-73-479 (1973) (cited on page 108).

[103] James Reinders. Intel Threading Building Blocks. First. Sebastopol, CA, USA: O’Reilly
& Associates, Inc., 2007 (cited on page 68).

[104] James Reinders and James Jeffers. High Performance Parallelism Pearls: Multicore and
Many-core Programming Approaches. Morgan Kaufmann, 2014 (cited on page 3).

[105] Paul Reuss. Précis de neutronique. INSTN, 2003 (cited on page 1).
[106] Béatrice Rivière. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic

Equations: Theory and Implementation. Society for Industrial and Applied Mathematics,
2008 (cited on page 108).

[107] A. Robison, M. Voss, and A. Kukanov. “Optimization via reflection on work stealing
in TBB”. In: Proceedings of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE. 2008, pp. 1–8 (cited on page 69).

[108] Arch D Robison. Cilk plus: Language Dsupport for Thread and Vector Parallelism. Talk
at HP-CAST. 2012 (cited on page 23).

[109] Youcef Saad. “Chebyshev Acceleration Techniques for Solving Nonsymmetric Eigenvalue
Problems”. In: Mathematics of Computation 42.166 (1984), pp. 567–588 (cited on page 9).

[110] Francesc Salvat, José M Fernández-Varea, and Josep Sempau. “PENELOPE-2006: A code
System for Monte Carlo Simulation of Electron and Photon Transport”. In: Workshop
Proceedings. Vol. 4. 2006, p. 7 (cited on page 2).

[111] Richard Sanchez. “Prospects in deterministic three-dimensional whole-core transport cal-
culations”. In: Nuclear Engineering and Technology 44.2 (2012), pp. 113–150 (cited on
pages 1, 2).

[112] Brian K. Schmidt and Vaidy S. Sunderam. “Empirical Analysis of Overheads in Cluster
Environments”. In: Concurrency: Practice and Experience 6.1 (1994), pp. 1–32 (cited on
page 50).



BIBLIOGRAPHY 123

[113] Frédérique Silber-Chaussumier. “Recouvrement des communications et des calculs, du
matériel au logiciel”. PhD thesis. Lyon, Ecole normale supérieure, 2002 (cited on pages 3,
43).

[114] Quinn O Snell, Armin R Mikler, and John L Gustafson. “NetPIPE: A Network Protocol
Independent Performance evaluator”. In: Proceedings of the IASTED International Con-
ference on Intelligent Information Management and Systems. Vol. 6. Washington, DC,
USA. 1996 (cited on pages 50, 55).

[115] John E Stone, David Gohara, and Guochun Shi. “OpenCL: A Parallel Programming Stan-
dard for Heterogeneous Computing Systems”. In: Computing in science & engineering
12.1-3 (May 2010), pp. 66–73 (cited on page 68).

[116] Toshikazu Takeda and Hideaki Ikeda. “3-D Neutron Transport Benchmarks”. In: Journal
of Nuclear Science and Technology 28.7 (1991), pp. 656–669 (cited on pages 93, 95, 99,
100).

[117] Peiyi Tang. “Measuring the overhead of Intel C++ Concurrent Collections over Thread-
ing Building Blocks for Gauss–Jordan elimination”. In: Concurrency and Computation:
Practice and Experience 24.18 (2012), pp. 2282–2301 (cited on page 69).

[118] Robin AJ Taylor, Jaehak Jeong, Michael White, and Jeffrey G Arnold. “Code mod-
ernization and modularization of APEX and SWAT watershed simulation models”. In:
International Journal of Agricultural and Biological Engineering 8.3 (2015) (cited on
page 3).

[119] A Vladimirov. Arithmetics on Intel’s Sandy Bridge and Westmere CPUs: not all FLOPS
are created equal. Colfax International, 2012 (cited on pages 21, 35).

[120] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and
Yajuan Wang. “Intel Math Kernel Library”. In: High-Performance Computing on the
Intel® Xeon Phi. Springer, 2014, pp. 167–188 (cited on page 23).

[121] James S Warsa, Todd A Wareing, Jim E Morel, John M McGhee, and Richard B Lehoucq.
“Krylov subspace iterations for deterministic k-eigenvalue calculations”. In: Nuclear Sci-
ence and Engineering 147.1 (2004), pp. 26–42 (cited on page 2).

[122] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: an Insightful Vi-
sual Performance Model for Multicore Architectures”. In: Communications of the ACM
52.4 (2009), pp. 65–76 (cited on pages 34, 35).

[123] Akio Yamamoto. “A Quantitative Comparison of Loading Pattern Optimization Methods
for in-core Fuel Management of PWR”. In: Journal of Nuclear Science and Technology
34.4 (1997), pp. 339–347 (cited on page 2).

[124] Jie Yan, Guang-Ming Tan, and Ning-Hui Sun. “Optimizing Parallel Sn Sweeps on Un-
structured Grids for Multi-core Clusters”. In: Journal of Computer Science and Technol-
ogy 28.4 (2013), pp. 657–670 (cited on page 44).

[125] A. Yarkhan. “Dynamic Task Execution on Shared and Distributed Memory Architec-
tures”. PhD thesis. University of Tennessee, 2012 (cited on page 69).

[126] Musa Yavuz and Edward W Larsen. “Iterative Methods for Solving x-y Geometry SN
Problems on Parallel Architecture Computers”. In: Nuclear science and engineering 112.1
(1992), pp. 32–42 (cited on page 90).


	Introduction
	An Introduction to Neutron Transport Simulation and Parallel Architectures
	Analysis of nuclear reactor cores
	Basic concepts of nuclear reactor physics
	Boltzmann transport equation

	Multigroup formulation of the transport equation
	Discrete ordinates method on Cartesian meshes
	Angular discretization
	Spatial discretization
	Cartesian transport sweep operation

	Modern parallel computers and performance evaluation
	Architecture and design of parallel computers
	Metrics for performance evaluation


	On the Vectorization of the Sweep Operation
	Review of the SIMD paradigm
	General presentation of the SIMD paradigm
	On the way for vectorization
	Generic programming and tools for the vectorization

	Arithmetic intensity of the sweep kernel
	Memory traffic and flops per cell and per direction
	General formula of the arithmetic intensity of the sweep

	Vectorization over spatial domain
	The algorithm
	Maximum theoretical speed-up

	Vectorization over the angular variable
	The algorithm
	Study of the arithmetic intensity of the sweep
	Actual performances vs Roofline model


	Performance Modelization of a Parallel Sweep
	Preliminary definitions
	Literature review on performance models of the sweep
	Flat models
	Hybrid models

	New performance model of a parallel sweep
	Computation steps
	Communication steps

	Asynchronous simulator of the sweep
	General presentation of the simulation algorithm
	Communication costs

	Comparative study of the performance models
	Parameters of the models
	Evaluation of the performance models


	A Massively Parallel Implementation of the Cartesian Transport Sweep
	The emergence of generic task-based runtime systems
	The traditional MPI+X model
	Task-based models

	Implementation of the sweep algorithm with Intel TBB
	Implementation of the sweep algorithm with PaRSEC
	Task-graph of the sweep operation
	Data distribution
	Optimization of the scheduling through priorities

	Implementation of the sweep algorithm with StarPU
	Experiments
	Task-granularity selection and parameters of the performance models
	Shared memory performances
	Distributed memory performances


	Full-core SN Calculations on Massively Parallel Architectures
	Acceleration of source iterations (SI)
	Diffusion Synthetic Acceleration (DSA) method
	Piecewise DSA method (PDSA)

	Validation and performances of Domino
	Benchmarks
	Validation and performances of the source iterations scheme
	Efficiency of the PDSA scheme
	Full-core 3D PWR calculations


	Conclusion and Future Work
	Appendixs
	Experimental platforms
	Publications
	Bibliography

