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accepted to be part of my committee.

Finally, I express my thanks to my family and friends, especially to my wife
Diana and my mother Margarita. Without their care, love, moral support,
I surely could not complete my doctoral degree.

Marius BARTCUS
Université de Toulon
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Résumé

Cette thèse porte sur l’apprentissage statistique et l’analyse de données
multi-dimensionnelles. Elle se focalise particulièrement sur l’apprentissage
non supervisé de modèles génératifs pour la classification automatique. Nous
étudions les modèles de mélanges Gaussians, aussi bien dans le contexte
d’estimation par maximum de vraisemblance via l’algorithme EM, que dans
le contexte Baéyesien d’estimation par Maximum A Posteriori via des tech-
niques d’échantillonnage par Monte Carlo. Nous considérons principalement
les modèles de mélange parcimonieux qui reposent sur une décomposition
spectrale de la matrice de covariance et qui offre un cadre flexible notam-
ment pour les problèmes de classification en grande dimension. Ensuite,
nous investigons les mélanges Bayésiens non-paramétriques qui se basent
sur des processus généraux flexibles comme le processus de Dirichlet et
le Processus du Restaurant Chinois. Cette formulation non-paramétrique
des modèles est pertinente aussi bien pour l’apprentissage du modèle, que
pour la question difficile du choix de modèle. Nous proposons de nouveaux
modèles de mélanges Bayésiens non-paramétriques parcimonieux et dérivons
une technique d’échantillonnage par Monte Carlo dans laquelle le modèle de
mélange et son nombre de composantes sont appris simultanément à partir
des données. La sélection de la structure du modèle est effectuée en utilisant
le facteur de Bayes. Ces modèles, par leur formulation non-paramétrique
et parcimonieuse, sont utiles pour les problèmes d’analyse de masses de
données lorsque le nombre de classe est indéterminé et augmente avec les
données, et lorsque la dimension est grande. Les modèles proposés validés
sur des données simulées et des jeux de données réelles standard. Ensuite,
ils sont appliqués sur un problème réel difficile de structuration automa-
tique de données bioacoustiques complexes issues de signaux de chant de
baleine. Enfin, nous ouvrons des perspectives Markoviennes via les proces-
sus de Dirichlet hiérarchiques pour les modèles Markov cachés.

Mots-clés: Apprentissage non-supervisé, modèles de mélange, classification
automatique, mélanges parcimonieux, modèles de mélanges bayésiens non-
paramétriques, processus de Dirichlet, sélection Bayésienne de modèle



Abstract

This thesis focuses on statistical learning and multi-dimensional data anal-
ysis. It particularly focuses on unsupervised learning of generative models
for model-based clustering. We study the Gaussians mixture models, in the
context of maximum likelihood estimation via the EM algorithm, as well
as in the Bayesian estimation context by maximum a posteriori via Markov
Chain Monte Carlo (MCMC) sampling techniques. We mainly consider the
parsimonious mixture models which are based on a spectral decomposition
of the covariance matrix and provide a flexible framework particularly for
the analysis of high-dimensional data. Then, we investigate non-parametric
Bayesian mixtures which are based on general flexible processes such as the
Dirichlet process and the Chinese Restaurant Process. This non-parametric
model formulation is relevant for both learning the model, as well for dealing
with the issue of model selection. We propose new Bayesian non-parametric
parsimonious mixtures and derive a MCMC sampling technique where the
mixture model and the number of mixture components are simultaneously
learned from the data. The selection of the model structure is performed
by using Bayes Factors. These models, by their non-parametric and sparse
formulation, are useful for the analysis of large data sets when the number
of classes is undetermined and increases with the data, and when the dimen-
sion is high. The models are validated on simulated data and standard real
data sets. Then, they are applied to a real difficult problem of automatic
structuring of complex bioacoustic data issued from whale song signals. Fi-
nally, we open Markovian perspectives via hierarchical Dirichlet processes
hidden Markov models.

Keywords: Unsupervised learning, mixture models, model-based cluster-
ing, parsimonious mixtures, Dirichlet process mixtures, Bayesian non-parametric
learning, Bayesian model selection



Contents

Notations xi

1 Introduction 1

2 Mixture model-based clustering 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The finite mixture model . . . . . . . . . . . . . . . . . . . . 10

2.3 The finite Gaussian mixture model (GMM) . . . . . . . . . . 11

2.4 Dimensionality reduction and Parsimonious mixture models . 12

2.4.1 Dimensionality reduction . . . . . . . . . . . . . . . . 14

2.4.2 Regularization methods . . . . . . . . . . . . . . . . . 14

2.4.3 Parsimonious mixture models . . . . . . . . . . . . . . 14

2.5 Maximum likelihood (ML) fitting of finite mixture models . . 18

2.5.1 ML fitting via the EM algorithm . . . . . . . . . . . . 20

2.5.2 Illustration of ML fitting of a GMM . . . . . . . . . . 22

2.5.3 ML fitting of the parsimonious GMMs . . . . . . . . . 24

2.5.4 Illustration: ML fitting of parsimonious GMMs . . . . 25

2.6 Model selection and comparison in finite mixture models . . . 27

2.6.1 Model selection via information criteria . . . . . . . . 27

2.6.2 Model selection for parsimonious GMMs . . . . . . . . 28

2.6.3 Illustration: Model selection and comparison via in-
formation criteria . . . . . . . . . . . . . . . . . . . . . 29

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Bayesian mixture models for model-based clustering 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 The Bayesian finite mixture model . . . . . . . . . . . . . . . 34

3.3 The Bayesian Gaussian mixture model . . . . . . . . . . . . . 35

3.4 Bayesian parsimonious GMMs . . . . . . . . . . . . . . . . . . 37

3.5 Bayesian inference of the finite mixture model . . . . . . . . . 37

3.5.1 Maximum a posteriori (MAP) estimation for mixtures 38

3.5.2 Bayesian inference of the GMMs . . . . . . . . . . . . 39

vii



3.5.3 MAP estimation via the EM algorithm . . . . . . . . . 39

3.5.4 Bayesian inference of the parsimonious GMMs via the
EM algorithm . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.5 Markov Chain Mote Carlo (MCMC) inference . . . . . 43

3.5.6 Bayesian inference of GMMs via Gibbs sampling . . . 45

3.5.7 Illustration: Bayesian inference of the GMM via Gibbs
sampling . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.8 Bayesian inference of parsimonious GMMs via Gibbs
sampling . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.9 Bayesian model selection and comparison using Bayes
Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.10 Experimental study . . . . . . . . . . . . . . . . . . . 53

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Dirichlet Process Parsimonious Mixtures (DPPM) 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Bayesian non-parametric mixtures . . . . . . . . . . . . . . . 61

4.2.1 Dirichlet Processes . . . . . . . . . . . . . . . . . . . . 62
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Notations

For more understanding we shall list the notations that are used in this
thesis. A vector will be written in bold. (e.g, x, y, z . . . ). I will assume
that all vectors are column vectors, so that the transpose of a column vector
x, noting xT is a row vector. Matrices are also notated in a bold manner
(e.g, X, Y, Z . . . ). The transpose of a matrix X is notated as XT . Future
we shall suppose that a matrix have n rows and d columns. An identity
matrix with size n is noted by I.

General Notations

L(X|θ) the likelihood of the function of parameter vector θ for the data X

Lc(X|θ) the complete likelihood of the function of parameter vector θ for
the data X

tr(A) trace of A

diag(A) diagonal terms of matrix A

Multidimensional Data

X = (x1, . . . ,xn) a sample with n observations, each sample having d fea-
tures.

xi ith observation

z = (z1, . . . , zn) hidden class vector

K number of components (clusters)

zi = k ∈ {1, . . . ,K} class label for xi

Probability distribution

p(.) generic notation of a probability density function (p.d.f)

I an inverse distribution

N Gaussian (normal) distribution

xi



W Wishart distribution

G Gamma distribution

Mult(.) Multinomial distribution

Dir(.) Dirichlet distribution

Graphical model representation Figure 1 gives the convention for the
probabilistic graphical models in this thesis. The gray circles will denote
observed continuous variables, the dots denote deterministic variables and
the circles will denote observed continuous variables. The arrows describe
the conditional dependence between variables. Finally, the rectangle denotes
the variable repetitions, with the specified number of repetitions.

Observed continuous variable

Random variable

Conditional dependence

N x Observations i.i.d

Variable repetitions

Deterministic parameters

Figure 1: Graphical model representation conventions.



- Chapter 1 -

Introduction

Le travail présenté dans cette thèse s’inscrit dans le cadre général de l’apprentissage
statistique (Mitchell, 1997; Vapnik, 1999; Vapnik and Chervonenkis, 1974)
à partir de données complexes. En particulier, nous nous sommes intéressés
à l’apprentissage de modèles génératifs (Jebara, 2001, 2003) pour l’analyse
de données multidimensionnelles dans un contexte non-supervisé. Dans ce
contexte, les observations sont souvent incomplètes et il y a donc nécessité
de reconstruire l’information manquante. C’est le cas en classification au-
tomatique qui est au coeur de cette thèse. En apprentissage génératif non-
supervisé, les modèles à variables latentes, en particulier les modèles de
mélange (Frühwirth-Schnatter, 2006; McLachlan and Basford, 1988; McLach-
lan and Peel., 2000; Titterington et al., 1985) ou leur extension pour les
données séquentielles, tel que les modèles de Markov cachés (Frühwirth-
Schnatter, 2006; Rabiner, 1989), fournissent un cadre statistique pertinent
pour une telle analyse de données incomplètes. Nous nous sommes focalisé
sur le problème de modélisation de données hétérogènes, se présentant sous
forme de sous-populations, à travers des modèles de mélanges de densités.
Les modèles de mélange offrent en effet un cadre pertinemment flexible
pour la classification automatique “clustering”, l’un des principaux sujets
d’analyse traité dans cette thèse. Le clustering est un problème largement
étudié en statistique et en apprentissage automatique ainsi que dans beau-
coup d’autres domaines connexes. Le problème de la classification automa-
tique est abordé ici en utilisant des mélanges (Banfield and Raftery, 1993;
Celeux and Govaert, 1995; Fraley and Raftery, 1998a; McLachlan and Bas-
ford, 1988; Scott and Symons, 1981).

La classification automatique à base de modèles de mélange, en anglais
”model-based clustering”, consiste en l’estimation de densité et nécessite
donc la construction de bon estimateurs. Ce problème d’apprentissage des
modèles est étudié aussi bien dans le paradigme fréquentiste en reposant
sur l’estimation par maximum de vraisemblance en utilisant l’algorithme
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Espérance-Maximization (EM) (e.g voir McLachlan and Krishnan (2008)),
que dans le cadre bayésien (e.g voir Stephens (1997)), en se basant sur
l’estimation par maximum a posteriori en utilisant les techniques d’échantillonnage
par Monte Carlo (MCMC) (Diebolt and Robert, 1994; Marin et al., 2005;
Neal, 1993).

Nous avons étudié le problème d’inférence des modèles de mélanges à
partir des deux points de vue, mais nous nous sommes concentrés princi-
palement sur le paradigme bayésien. En effet, l’apprentissage des mélanges
par maximum de vraisemblance peut avoir quelques instabilités en pratique
en raison des singularités ou des dégénérescences lors de l’estimation de
paramètres (Fraley and Raftery, 2007a, 2005; Ormoneit and Tresp, 1998;
Snoussi and Mohammad-Djafari, 2000, 2005; Stephens, 1997). La régularisation
bayésienne offre une bonne alternative, même si elle est également confrontée
à des difficultés pratiques, liées principalement à un coût de calcul qui peut
être très significatif en particulier à grande échelle. L’estimation bayésienne
offre aussi dans son extension non-paramétrique (Hjort et al., 2010; Navarro
et al., 2006; Neal, 2000; Orbanz and Teh, 2010; Rasmussen, 2000), un cadre
bien établi à d’autres problématiques pour les modèles de mélange, en
particulier la sélection et la comparaison des modèles. L’approche non-
paramétrique offre en effet une bonne alternative au problème de sélection
de modèle en estimant simultanément le modèle et le nombre de ses com-
posantes à partir des données. Ceci est une alternative à ce qui est classique-
ment utilisé dans les mélanges finis en choix de modèle, à savoir l’utilisation
de critères d’information tels que le critère d’information bayésien (BIC)
(Schwarz, 1978), le critère d’information d’Akaike Akaike (1974) ou le critère
de la vraisemblance classifiante intégrée (ICL) (Biernacki et al., 2000) dans
une approche à deux étapes afin de sélection un modèle parmi plusieurs
candidats pré-estimés. Dans ce contexte, nous avons étudié l’utilisation de
modèles non-paramétriques qui reposent sur des processus généraux flexibles
comme a priori, que les processus de Dirichlet (Antoniak, 1974; Ferguson,
1973) ou par équivalence les processus du restaurant chinois (Aldous, 1985;
Pitman, 2002; Samuel and Blei, 2012).

D’autre part, il est connu que les mélanges standards, en particulier le
mélange Gaussien, comme beaucoup d’autres approches de modélisation,
peuvent conduire à des solutions non satisfaisantes, dans le cas de données
de grande dimension (Bouveyron, 2006; Bouveyron and Brunet-Saumard,
2014). Le nombre de paramètres à estimer en effet augmente rapidement
lorsque la dimension est élevée, ce qui peut rendre l’estimation problématique.
Cela a été étudié notamment dans les mélanges parcimonieux qui se basent
sur une décomposition spectrale de la matrice de covariance, et qui ont
montré leur performance, en particulier classification automatique en anal-
yse fréquentiste (Banfield and Raftery, 1993; Bensmail and Celeux, 1996;
Celeux and Govaert, 1995), ainsi qu’en analyse bayésienne paramétrique
(Bensmail and Meulman, 2003; Bensmail et al., 1997; Bensmail, 1995; Fra-



ley and Raftery, 2002, 2007a, 2005). Nous avons étudié ces modèles, par-
ticulièrement dans le cadre bayésien. Ensuite, nous avons dérivé une ap-
proche bayésienne non-paramétrique pour les mélanges parcimonieux ou
l’apprentisage du modèle est effectué dans un contexte bayésien non-paramétrique
avec des priori flexibles tels que le processus du restaurant chinois, et où le
choix du modèle s’effectue par le facteur de Bayes.

Dans le Chapitre 2 dédié à l’état de l’art, nous décrivons les modèles
de mélanges pour la classification automatique ainsi que l’estimation des
mélanges par maximum de vraisemblance en utilisant l’algorithme EM (Celeux
and Govaert, 1995; Dempster et al., 1977; McLachlan and Krishnan, 2008).
Nous considérerons le cas général du mélange et nus nous focalisons sur
les mélanges Gaussiens, qui sont largement utilisés en analyse statistique.
Nous étudions et discutons également des modèles parcimonieux, dérivés du
modèle de mélange Gaussien standard. Enfin, nous discutions la problématique
classique de la sélection de modèle qui est généralement traitée par des
critères de choix sélectionnant un modèle parmi une collection de modèles
candidats pré-estimés.

Ensuite, dans le Chapitre 3, nous étudions les mélanges pour la classifi-
cation automatique dans une contexte bayésien où le but est de traiter les
limites de l’approche décrite précédemment. Nous étudions deux approches
pour l’apprentissage Bayésien des mélanges. La première consiste à utiliser
un algorithme EM bayésien (Fraley and Raftery, 2007a, 2005; Ormoneit
and Tresp, 1998; Snoussi and Mohammad-Djafari, 2000, 2005). La seconde
consiste quant à elle en la construction d’un estimateur du MAP en util-
isant les techniques d’échantillonnage MCMC (Diebolt and Robert, 1994;
Geyer, 1991; Gilks et al., 1996; Marin et al., 2005; Neal, 1993; Stephens,
1997). Une attention particulière est portée sur les modèles parcimonieux
pour lesquels nous mettons en œuvre plusieurs modèles et effectuons une
étude expérimentale comparative pour les évaluer. Aussi, nous étudions le
problème de sélection et de comparaison de ces modèles parcimonieux en
utilisant des critères d’informations y compris le facteur de Bayes.

Dans le Chapitre 4, nous développons une formulation bayésienne non-
paramétrique pour les modèles de mélanges parcimonieux (DPPM). En
s’appuyant sur les mélanges de processus de Dirichlet, ou par équivalence les
mélanges de processus du restaurant chinois, nous introdusons des modèles
parcimonieux de processus de Dirichlet qui fournissent un cadre flexible pour
la modélisation de différentes structures des données ainsi qu’une bonne al-
ternative pour résoudre le problème de sélection de modèle. Nous dérivons
un échantillonnage de Gibbs pour estimer les modèles et nous utilisons le
facteur de Bayes pour la sélection et la comparaison des modèles (Bartcus
et al., 2014, 2013; Chamroukhi et al., 2015, 2014b,a).

Ensuite, le Chapitre 5 sera dédié aux expérimentations afin d’évaluer
nos modèles. Nous évaluons les modèles bayésiens non-parametriques parci-
monieux proposés, ainsi que ceux du cas paramétrique, sur plusieurs jeux



de données simulées et réelles. Une application de traitement non-supervisé
de signaux bioacoustiques est aussi étudiée.

Dans le Chapitre 6, nous ouvrons de futures extensions possibles de notre
approche DPPM pour l’analyse de séquences. Nous montrons des résultats
expérimentaux en appliquant les modèles récents de l’état de l’art de proces-
sus Dirichlet hiérarchique pour les mélanges de Markov caché (HDP-HMM)
(Beal et al., 2002; Fox, 2009; Fox et al., 2008; Teh and Jordan, 2010; Teh
et al., 2006) qui sont bien adaptés aux données séquentielles. Les résultats
obtenus mettent en évidence que le cadre bayésien non-paramétrique est
bien adapté pour ces données.

Enfin, dans le Chapitre 7 est dédiée à une conclusion et discussions, ainsi
que de futures perspectives de recherche possibles liées aux DPPMs.



Introduction

The work presented in this thesis lies in the general framework of statisti-
cal learning (Mitchell, 1997; Vapnik, 1999; Vapnik and Chervonenkis, 1974)
from complex data, particularly, the generative part of statistical learning
(Jebara, 2001, 2003) for multivariate data analysis, that is, to learn from
samples of individuals described by vectors in Rd. We are indeed interested
in understanding the process generating the data, through the construction
of probabilistic models and deriving algorithms for such analysis. We fo-
cus on the paradigm in which the analysis is performed in an unsupervised
way, that is, in a missing data framework, where the observed individu-
als are incomplete or require recovering possible hidden information. In
such a context, latent data models particularly mixture models (Frühwirth-
Schnatter, 2006; McLachlan and Basford, 1988; McLachlan and Peel., 2000;
Titterington et al., 1985) or their extensions to sequential data, that is,
hidden Markov models (Frühwirth-Schnatter, 2006; Rabiner, 1989) provide
a well-established statistical framework for such analysis in an incomplete
data context. In particular, we focus on the problem of modeling data which
present heterogeneities in the form of several sub-populations. To this end,
mixture models, thanks to their flexibility and their sound statistical back-
ground, are one of most popular and successful models in this context of
analysis. One main topic of analyses, under this mixture modeling context,
is cluster analysis, an unsupervised widely studied problem in statistics and
machine learning as well as in many other related area. The problem of
clustering is tackled here by using mixtures, that is, the so-called mixture
model-based clustering framework (Banfield and Raftery, 1993; Celeux and
Govaert, 1995; Fraley and Raftery, 1998a; McLachlan and Basford, 1988;
Scott and Symons, 1981).

In cluster analysis with mixtures, the analysis consists in density estima-
tion, which therefore requires the construction of desirable estimators. This
is the problem of fitting mixtures, which is classically addressed from two
different, but also related paradigms, that is the frequentist one which relies
on the maximum likelihood estimator by using Expectation-Maximization
(EM) algorithms (e.g see McLachlan and Krishnan (2008)), and the Bayesian
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one (e.g see Stephens (1997)), which provide distributions over the model
rather than a point estimation as in the frequentist approach, by relying
on the so-called maximum a posteriori (MAP) estimator by using Markov
Chain Monte Carlo (MCMC) (Diebolt and Robert, 1994; Marin et al., 2005;
Neal, 1993).

We study the problem of fitting mixtures from the two points of view but
we mainly focus on the Bayesian paradigm. Indeed, the maximum likelihood
fitting of mixtures may be subject to some instabilities in practice due to
the singularities or degeneracies of parameter estimates (Fraley and Raftery,
2007a, 2005; Ormoneit and Tresp, 1998; Snoussi and Mohammad-Djafari,
2000, 2005; Stephens, 1997). The Bayesian regularization may offer a good
alternative, but also is subject to practical difficulties, mainly related to an
important computational load. The Bayesian framework offers, also, under
non-parametric extensions (Hjort et al., 2010; Navarro et al., 2006; Neal,
2000; Orbanz and Teh, 2010; Rasmussen, 2000), a well-established frame-
work to other issues in mixture modeling, that is those of model selection
and comparison. They offer a well established alternative to the problem of
model selection, which is general equivalent to the one of choosing the num-
ber of mixture components, by relying on general adapted priors. This is an
alternative to the one generally used in finite mixture by using information
criteria such as the Bayesian Information Criteria (BIC) (Schwarz, 1978),
the Akaike Information Criteria (AIC) Akaike (1974) or the Integrated Clas-
sification Likelihood (ICL) (Biernacki et al., 2000) etc. in a two-fold scheme.
In this context, we investigate the use of non-parametric models that rely
on general flexible priors such as Dirichlet Processes (Antoniak, 1974; Fer-
guson, 1973) or by equivalence their Chinese Restaurant Process (Aldous,
1985; Pitman, 2002; Samuel and Blei, 2012).

On the other hand, it is known that the standard mixtures, particularly
Gaussian mixtures, may lead to non accurate solutions, as many other mod-
eling approaches, in the case of high dimensional data (Bouveyron, 2006;
Bouveyron and Brunet-Saumard, 2014). The number of parameters to be
estimated may grow up rapidly with the number of components especially
when the dimension is high. This was investigated by proposing the par-
simonious mixtures by parameterizing the component specific covariance
matrix by an eigenvalue decomposition, and which have shown their perfor-
mance in particular for cluster analysis in the maximum likelihood fitting
context (Banfield and Raftery, 1993; Bensmail and Celeux, 1996; Celeux
and Govaert, 1995) as well as in parametric Bayesian model-based clustering
(Bensmail and Meulman, 2003; Bensmail et al., 1997; Bensmail, 1995; Fraley
and Raftery, 2002, 2007a, 2005). We revisit these models from mainly the
Bayesian prospective. We investigate the Bayesian parametric case. Then
we derive them within a full Bayesian non-parametric approach where both
the fitting is tackled in a principled way within a Bayesian formulation by
relying on general flexible priors such as Chinese Restaurant Process and



the Dirichlet Process, and the issue of model selection and comparison takes
benefit of the well-tailored Bayes Factors.

The outline and the contributions of this thesis are summarized as fol-
lows.

In Chapter 2, we provide an account of the state of the art approaches
in model-based clustering. We describe the maximum likelihood fitting for
mixtures with the Expectation-Maximization (EM) algorithm (Celeux and
Govaert, 1995; Dempster et al., 1977; McLachlan and Krishnan, 2008). We
consider the general case of mixture and focus on the Gaussian mixture,
which is widely used in statistical analysis. We also study the parsimonious
models derived from the standard Gaussian mixture model and discuss them.
Finally, the classical issue of model selection is discussed in this context
where it is in general addressed by external criteria to select a model from
a previously fitted collection of model candidates.

Then, in Chapter 3, we investigate the problem of mixture model-based
clustering from a Bayesian point of view where the aim is to deal with limi-
tations of the previously described approach. We study the case of Bayesian
mixture fitting by examining two ways. The first one consists in using a
Bayesian EM (Fraley and Raftery, 2007a, 2005; Ormoneit and Tresp, 1998;
Snoussi and Mohammad-Djafari, 2000, 2005), and the second one consists
in the construction of a full MAP estimator by using Markov Chain Monte
Carlo (MCMC) sampling (Diebolt and Robert, 1994; Geyer, 1991; Gilks
et al., 1996; Marin et al., 2005; Neal, 1993; Stephens, 1997). An attention
is given to the parsimonious models, for which we implement several mod-
els and perform a comparative experimental study to assess them. We also
investigate the problem of model selection and comparison of these parsi-
monious models by using criteria including Bayes Factors (Basu and Chib,
2003; Carlin and Chib, 1995; Gelfand and Dey, 1994; Kass and Raftery,
1995; Raftery, 1996).

In Chapter 4 we develop a Bayesian non-parametric formulation for the
parsimonious mixture models. By relying on Dirichlet Process mixtures,
or by equivalence the Chinese Restaurant Process mixtures, we introduce
Dirichlet Process Parsimonious Mixture (DPPM) models, which provide a
flexible framework for modeling different data structures as well as a good
alternative to tackle the problem of model selection. We derive a Gibbs
sampler to infer the models and use Bayes Factors for model selection and
comparison (Bartcus et al., 2014, 2013; Chamroukhi et al., 2015, 2014b,a).

Then Chapter 5 is dedicated for experiments to assess the models. We
implemented the presented Bayesian non-parametric parsimonious mixture
models, as well as those in the parametric case, and evaluated them on
simulated datasets, benchmarks and a real-world data set issued from a
bioacoustic signal processing application.

In Chapter 6 in order to open possible future extensions of the proposed
Dirichlet Process Parsimonious Mixture models, we show the experimental



results obtained by applying the quiet recent state of the art Hierarchical
Dirichlet Process for Hidden Markov Models (HDP-HMM) (Beal et al., 2002;
Fox, 2009; Fox et al., 2008; Teh and Jordan, 2010; Teh et al., 2006) which
are tailored to sequential data. The obtained results highlight, that the
Bayesian non-parametric framework is adapted for such data as it provides
encouraging results. Thus, the DPPM which also provide an interesting and
encouraging results in such a context of sequential data modeling, are likely
to more improve the results if they are extended to the sequential context.

Finally, in Chapter 7 we draw concluding remarks and open possible
future research perspectives related to the DPPMs.
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2.1 Introduction

In this chapter we describe state of the art approaches for clustering based
on the finite mixture model. The mixture models (Pearson, 1894; Scott and
Symons, 1971), in particular the finite mixture models are also named in
literature as the parametric model-based clustering (Banfield and Raftery,
1993; Böhning, 1999; Fraley and Raftery, 1998a, 2002; Frühwirth-Schnatter,
2006; Lindsay, 1995; McLachlan and Basford, 1988; McLachlan and Peel.,
2000; Titterington et al., 1985).

2.2 The finite mixture model

The finite mixture model is a probabilistic model used in machine learn-
ing and statistics to model distributions over observed data organized into
groups. It has shown great performance in cluster analysis.

Let X = (x1, . . . ,xn) be a sample of n i.i.d observations in Rd. The finite
mixture model decomposes the density of the observed data as a weighted
sum of a finite number of K component densities. The density function of
the data is given by the following mixture density:

p(xi|θ) =

K∑
k=1

πkpk(xi|θk), (2.1)

where the πk’s, given by πk = p(zi = k) are the mixing proportions which
represent the probabilities that the data point xi belongs to component
k. They are non-negative πk ≥ 0,∀k = 1 . . .K and sum to one, that is∑K

k=1 πk = 1, pk(xi|θk) is the density function for the kth component with
parameters θk and θ = {π1, . . . πK ,θ1, . . . ,θK} are the model mixture pa-
rameters

From a generative point of view, the process for generating data from the
finite mixture model can be stated as follows. First, a mixture component zi
is sampled independently according to a Multinomial distribution given the
mixing proportions π = (π1, . . . , πK). Then, given the mixture component
zi = k, and the corresponding parameters θzi , the data xi are generated
independently from the supposed distribution pk(xi|θzi). The process is
repeated n times, with n the number of observations. This generative process
for the finite mixture model is summarized by the two steps:

zi ∼ Mult(1;π1, . . . , πk),
xi|θzi ∼ pk(xi|θzi).

(2.2)

Generally, pk are distributions from the same family with different param-
eters. For instance they can all be Poisson distributions (see Rau et al.



(2011)); Gamma distributions (see Almhana et al. (2006); Mayrose et al.
(2005)); Bernoulli distributions (see Juan and Vidal (2004); Juan et al.
(2004)); Multinomial distributions (see Novovičová and Maĺık (2003)); Student-
t distributions (see McLachlan and Peel. (2000); Peel and McLachlan (2000);
Svensen and Bishop (2005); Wang and Hu (2009)); skew normal and skew
t-distributions (see Azzalini (1985); Gupta et al. (2004); Lee and McLachlan
(2013); Pyne et al. (2009)); the Gaussian (normal) distributions (see Ban-
field and Raftery (1993); Celeux and Govaert (1995); Day (1969); Fraley and
Raftery (1998a); Marriott (1975)). This generative process is summarized
by the probabilistic graphical model shown in Figure 2.1.

Figure 2.1: Probabilistic graphical model for the finite mixture model.

This thesis will focus on mixtures for multivariate real data and the
Gaussian mixture which is one of the suited models to multivariate data.
The Gaussian Mixture Model (GMM) has also shown a great performance
in clustering applications. It is discussed in the next subsection. Several
extensions, namely parsimonious ones, have been derived from the stan-
dard Gaussian mixture to accommodate more complex data, which are also
considered in this thesis.

2.3 The finite Gaussian mixture model (GMM)

One of the used distributions to generate the observed data, that showed
great performance in cluster analysis (Banfield and Raftery, 1993; Celeux
and Govaert, 1995; Day, 1969; Fraley and Raftery, 1998a; Ghahramani and
Hinton, 1997; Marriott, 1975; McLachlan et al., 2003; McNicholas and Mur-
phy, 2008; Scott and Symons, 1981) are the normal distributions.

Each component of this mixture model has a Gaussian density. It is
parametrized by the mean vector µk and the covariance matrix Σk and is
defined by:

pk(xi|µk,Σk) =
1

(2π)d/2|Σk|
1
2

exp

{
−1

2
(xi − µk)TΣ−1

k (xi − µk)
}

(2.3)

The Gaussian density pk(xi|θk) can be denoted asN (µk,Σk) orN (xi|µk,Σk)
where θk = (µk,Σk). Thus, the multivariate Gaussian mixture model given



as

p(xi|θ) =
K∑
k=1

πk N (xi|µk,Σk), (2.4)

is parametrized by the parameter vector θ = (π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK).

The generative process for the Gaussian mixture model can be
similarly stated, by the two steps, as in the generative process for the general
finite mixture model (Equation (2.2)). However, for the GMM case, for
each component k, the observation xi is generated independently from a
multivariate Gaussian with the corresponding parameters θk = {µk,Σk}.
This is summarized as:

zi ∼ Mult(π1, . . . , πk),
xi|µzi ,Σzi ∼ N (xi|µzi ,Σzi).

(2.5)

In the same way as for the mixture model, Figure 2.2, shows the probabilistic
graphical model for the finite multivariate GMM.

Figure 2.2: Probabilistic graphical model for the finite GMM.

An example of three component multivariate GMM in R2 with the follow-
ing model parameters: π = (0.5 0.3 0.2), µ1 = (0.22 0.45), µ2 = (0.5 0.5),

µ3 = (0.77 0.55) and Σ1 =

(
0.018 0.01
0.01 0.011

)
, Σ2 =

(
0.011 −0.01
−0.01 0.018

)
, and

Σ3 = Σ1, is shown in Figure 2.3.
In modeling multivariate data, the models may suffer from the curse of

dimensionality problem, causing difficulties in high-dimensional data. We
refer the reader, for example, to a discussion on the curse of dimensional-
ity problem in mixture modeling and model-based clustering in Bouveyron
(2006); Bouveyron and Brunet-Saumard (2014), for further we also discuss
it in the following subsection.

2.4 Dimensionality reduction and Parsimonious

mixture models

One of the most important issues in modeling and clustering high-dimensional
data is the curse of dimensionality. This is due to the fact that in model-
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Figure 2.3: Example of the three components multivariate GMM in R2.

based clustering, an increase in the dimension, in general results an increase
in the parameter space dimension. For example, for a multivariate Gaus-
sian mixture model, with K components, the number of free parameters to
estimate, for a d dimensional data is given by the following:

ν(θ) = ν(π) + ν(µ) + ν(Σ), (2.6)

where ν(π) = (K−1), ν(µ) = Kd and ν(Σ) = Kd(d+1)/2 which represent,
respectively the number of mixing proportions, the mean vectors and the
different values of symmetric covariance matrices. One can see in Equation
(2.6), that the number of parameters to estimate for the GMM is quadratic
in d, meaning that a higher-dimensional data generates a larger number
of model parameters to estimate. Another issue for the Gaussian mixture
model estimation arises when the number of observations n is smaller then
the dimension d, this producing a singular covariance matrices, thus the
model-based clustering being useless. Hopefully, the model-based clustering
approaches can deal with this problem of curse of dimensionality by some
approaches known in literature as: dimensionality reduction, regularization
methods and parsimonious mixture models. We discuss them in the next
subsections.



2.4.1 Dimensionality reduction

A first solution is to select useful characteristics from the original data,
that are sufficient to represent at best the original data, that is, without no
significant loss of information. For example in clustering on can cite Hall
et al. (2005); Murtagh (2009).

In this formulation of dimensionality reduction different linear and non-
linear data dimensionality reduction techniques are proposed for optimiza-
tion of the representation space. One of the most popular approaches for
dimensional reduction, the Principal Component Analysis (PCA) is a linear
method firstly introduced by Hotelling (1933); Pearson (1901), or it’s prob-
abilistic version, that is Probabilistic PCA (PPCA) introduced by Tipping
and Bishop (1999). We can cite also other linear dimensional reduction like
Independent component analysis (ICA) (Hérault et al., 1985), Factor Anal-
ysis (FA)(Spearman, 1904), or nonlinear dimensionality reduction methods
such as, Kernel Principal Component Analysis (Schölkopf et al., 1999), Rel-
evance Feature Vector Machines (Tipping, 2001), etc.

2.4.2 Regularization methods

Another way to deal with the problem of high-dimensionality is regulariza-
tion. For example, for the GMM, the issue of the curse of dimensionality
is mainly related to the covariance matrix Σk needs to be inverted. This
can be tackled with some numerical treatment namely the regularization
methods, that consist in adding a numerical term to the covariance matrix
before it is inversed. For example, one simple way is to add a positive term
to the diagonal of the covariance matrix is given as follows:

Σ̂k = Σ̂k + σkI

This is ridge regularization, often used in Linear Discriminant Analysis
(LDA). To generalize the ridge regularization, the identity matrix can be
replaced by some regularization matrix (Hastie et al., 1995). We do not fo-
cus on the regularization methods, however the reader can consider Mkhadri
et al. (1997) paper for more details over the different regularization methods.

2.4.3 Parsimonious mixture models

Another way to tackle the curse of dimensionality issue are the parsimonious
mixture models (Banfield and Raftery, 1993; Bensmail, 1995; Bensmail and
Celeux, 1996; Celeux and Govaert, 1995; Fraley and Raftery, 1998b, 2002,
2007a,b, 2005), where the main idea is reducing the number of parameters
to estimate in the mixture, by parameterising the component covariance
matrices. In this work we focus on these multivariate parsimonious Gaussian
mixture models for modeling and clustering high-dimensional data.



Constrained Gaussian Mixture Models One of traditional way that
introduces the parsimonious Gaussian models reducing the number of pa-
rameters to estimate is to consider constraints for the covariance matrix.
The most frequent used constraints for Gaussian mixture models are listed
as follows:

1. the GMM itself consisting of the full covariance matrices Σk, for all the
components ∀k = 1 . . .K, which is abbreviated of Full-GMM,

2. the Com-GMM assume that the Gaussian mixture model consists of com-
ponents with equal covariance matrices Σk = Σ, ∀k = 1 . . .K.

3. the Diag-GMM in which all the components have diagonal covariance
matrices: Σk = diag(σ2

k1, . . . , σ
2
kd),

4. the Com-Diag-GMM model, have a common diagonal covariance for all
components ∀k = 1 . . .K of the model: Σk = Σ = diag(σ2

1, . . . , σ
2
d),

5. the Sphe-GMM suppose spherical covariances for all the components ∀k =
1 . . .K of the model: Σk = σ2

kI,
6. the Com-Sphe-GMM model is a spherical model with equal covariances,

for all the components ∀k = 1 . . .K, that is: Σk = Σ = σ2I.

The number of mixture parameters related to the covariance matrices, for
these six constrained GMMs, is summarized in Table 2.1.

Constrained GMM ν(Σ)

Full-GMM Kd(d+ 1)/2

Com-GMM d(d+ 1)/2
Diag-GMM Kd
Com-Diag-GMM d
Sphe-GMM K
Com-Sphe-GMM 1

Table 2.1: The constrained Gaussian Mixture Models and the corresponding
number of free parameters related to the covariance matrix.

To illustrate the effect of the constraints on the model dimension, con-
sider the Full-GMM and the Com-GMM with equal number of components
K = 3. Figure 2.4 shows the number of free parameters ν(θ) as function of
the data dimension. One can see that, the number of free parameters to es-
timate for the general Full-GMM gets significant larger, than the constraint
Com-GMM, as the data dimension grows. We refer the reader on the paper
of Bouveyron and Brunet-Saumard (2014); McNicholas and Murphy (2008)
for more detailed description of these constrained models.

Parsimonious mixture models via eigenvalue decomposition of the
covariance matrix A similar way of extending the finite GMM to parsi-
monious GMM (PGMM), (Banfield and Raftery, 1993; Celeux and Govaert,
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1995) consists in exploiting an eigenvalue decomposition of the group co-
variance matrices, which provides a wide range of very flexible models with
different clustering criteria. The group covariance matrix Σk for each cluster
k, in these parsimonious models, is decomposed as

Σk = λkDkAkD
T
k (2.7)

where the scalar λk = |Σk|1/d determines the volume of cluster k, Dk is an
orthogonal matrix of eigenvectors of Σk determines the orientation and Ak

that is the shape of cluster k, is a diagonal matrix with determinant 1 whose
diagonal elements are the normalized eigenvalues of Σk in a decreasing or-
der (Celeux and Govaert, 1995). This decomposition leads to several flexible
models, going from the simplest spherical models, to the complex general
one, and hence is adapted to various clustering situations. Table 2.2 enumer-
ates the 14 parsimonious GMMs that can be obtained by the decomposition
(2.7). They are implemented in the MCLUST software Fraley and Raftery
(1998b, 2007b). Notice that their names consists of three different letters E,
V and I that encodes the geometric characteristics: volume, orientation and
shape. The letter E means equal, V means varying across components and
clusters, and I refers to the identity matrix specifying the shape or orienta-
tion. Giving an example we may refer to a VEI model where the volume
clusters may vary (V), the shape of the clusters are equal (E), and the ori-
entation is the identity (I). Indeed this model refers to the diagonal model
λkA. For example, the Full-GMM model corresponding to the λkDkAkD

T
k

decomposition is named VVV since it has varying volume, shape and ori-
entation. Note that the models flagged with the star in Table 2.2 are not
available in the MCLUST application.

Also one can see that Table 2.2 distinguishes between three different



Model Name Number of free parameters

λI EII υ + 1
λkI VII υ + d

λA EEI υ + d
λkA VEI υ + d+K − 1
λAk EVI υ +Kd−K + 1
λkAk VVI υ +Kd

λDADT EEE υ + ω
λkDADT VEE* υ + ω +K − 1
λDAkD

T EVE* υ + ω + (K − 1)(d− 1)
λkDAkD

T VEE* υ + ω + (K − 1)d
λDkADT

k EEV υ +Kω − (K − 1)d
λkDkADT

k VEV υ +Kω − (K − 1)(d− 1)
λDkAkD

T
k EVV* υ +Kω − (K − 1)

λkDkAkD
T
k VVV υ +Kω

Table 2.2: The Parsimonious Gaussian Mixture Models via eigenvalue de-
composition, the model names as in the MCLUST software, and the cor-
responding number of free parameters υ = ν(π) + ν(µ) = (K − 1) + Kd
and ω = d(d + 1)/2, K being the number of mixture components and d the
number of variables for each individual.

families, that are the spherical family, the diagonal family, and the general
family.

Figure 2.6 illustrates the geometrical representation of all the fourteen
possible parsimonious models, issued from the decomposition (2.7) of the
covariance matrix. One can see how the volume, orientation and the shape
can vary between all 14 models.

These models will consist the bases of our contributions. Later, we
will provide both the Bayesian parametric formulation, as well as the full
Bayesian non-parametric derivations.

In model-based clustering using GMMs, the model parameters are usu-
ally estimated into a maximum likelihood estimation (MLE) framework by
maximizing the observed data likelihood. This is usually performed by the
Expectation-Maximization (EM) algorithm (Dempster et al., 1977; McLach-
lan and Krishnan, 2008) or EM extensions (McLachlan and Krishnan, 2008),
such as the CEM algorithm (Celeux and Govaert, 1992, 1995; Samé et al.,
2007), or stochastic EM version as in Celeux and Diebolt (1985); Celeux
et al. (1995, 1996).

In the next section, we describe the maximum likelihood (ML) fitting of
the finite mixture, using the EM algorithm, and focusing on the GMM and
parsimonious GMMs.
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Figure 2.5: 2D Gaussian plots of a spherical, diagonal and full covariance
matrix, representing all three families of the parsimonious GMM.

2.5 Maximum likelihood (ML) fitting of finite

mixture models

The model parameters θ are estimated from an i.i.d dataset X = {x1, . . . ,xn}.
For example, for the multivariate GMM, the parameter vector to be esti-
mated is θ = (π1, . . . πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK). One of the main frame-
work that is used for estimation of these model parameters are the Maximum
Likelihood (MLE) framework (Banfield and Raftery, 1993; McLachlan and
Basford, 1988; McLachlan and Krishnan, 2008; Samé et al., 2007). In this
framework, the model parameters θ are estimated by maximizing the fol-
lowing observed data log-likelihood.

logL(θ) =

n∑
i=1

log

K∑
k=1

πkN (xi;µk,Σk). (2.8)

This log-likelihood can not be maximized in analytic way. The standard way,
to do this, is to do it iteratively, via the EM algorithm. The complete data
log-likelihood, needed to derive the EM where the complete data (X, z), z
being the allocation variables, with zi the label of the component generating
the observation xi, is given by:

logLc(X, z|θ) =
n∑
i=1

K∑
k=1

zik log πkN (xi;µk,Σk) (2.9)
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Figure 2.6: The geometrical representation of the 14 parsimonious Gaus-
sian mixture models with the eigenvalue decomposition (2.7).



where zik are indicator variables such that zik = 1 if zi = k and zik = 0
otherwise.

2.5.1 ML fitting via the EM algorithm

The maximum likelihood estimation framework is usually performed by the
Expectation-Maximization (EM) algorithm (Dempster et al., 1977; McLach-
lan and Krishnan, 2008). The EM for the finite GMM is recalled in the
following.

Suppose, the initial vector parameters values for the GMM are given

by θ(0) = (π
(0)
1 , . . . , π

(0)
K ,µ

(0)
1 , . . . ,µ

(0)
K ,Σ

(0)
1 , . . . ,Σ

(0)
K ). The Expectation-

Maximization (EM) clustering algorithm is an iterative algorithm, that con-
sists of two main steps: the Expectation E-step and the Maximization M-
step.

E-Step First, the E-step, computes the expectation of the complete data
log-likelihood (2.9) given the observations X and the current value of the
model parameters vector (θ(t)), (t) being the current iteration number. This
conditional expectation is known as the Q-function:

Q(θ,θ(t)) = E[logLc(X, z|θ)|X;θ(t)]

=

n∑
i=1

K∑
k=1

E[zik|xi,θ(t)] log πkN (xi;θ)

=
n∑
i=1

K∑
k=1

p(zik = 1|xi,θ(t)) log πkN (xi;θ)

=
n∑
i=1

K∑
k=1

τ
(t)
ik log πkN (xi;µk,Σk), (2.10)

where

τ
(t)
ik = p(zik = 1|X;θ(t)) =

π
(t)
k N (xi;µ

(t)
k ,Σ

(t)
k )

K∑
k=1

π
(t)
k N (xi;µ

(t)
k ,Σ

(t)
k )

, (2.11)

is the posterior probability that xi is generated from the kth component
density.

M-Step The M-step consists in updating the parameter vector θ by max-
imizing the function Q(θ,θ(t)) with respect to θ, that is

θ(t+1) = arg max
θ
Q(θ,θ(t)). (2.12)



The parameter vector update in the GMM (see for example McLachlan and
Krishnan (2008); Redner and Walker (1984)) are given by:

π
(t+1)
k =

1

n

n∑
i=1

τ
(t)
ik , (2.13)

µ
(t+1)
k =

1

n
(t)
k

n∑
i=1

τ
(t)
ik xi, (2.14)

Σ
(t+1)
k =

W
(t)
k

n
(t)
k

, (2.15)

where

n
(t)
k =

n∑
i=1

τ
(t)
ik , (2.16)

is the expected number of observations that belong to the kth component.

and W
(t+1)
k is the expected scattering matrix of kth component given by:

W
(t+1)
k =

n∑
i=1

τik(xi − µ
(t+1)
k )(xi − µ(t+1)

k )T (2.17)

EM initialization One of the crucial steps in EM algorithm is the initial-
ization step, because that EM maximizes locally the log-likelihood. There-
fore the quality of the estimation and the speed of the convergence depends
directly on the initialization step. To solve this issue some methods where
discussed in the literature, in particular Biernacki (2004). One of the most
used method, is running the EM algorithm many times with different ini-
tializations, and then the maximum log-likelihood solution of those runs to
be selected. The EM algorithm initializations can be done with:

• random initialization,
• by computing the initial parameter vector by other clustering algorithms

like K-means (MacQueen, 1967) , one of the EM extensions (McLach-
lan and Krishnan, 2008) like the Classification EM (Celeux and Diebolt,
1985), Stochastic EM (Celeux and Govaert, 1992), etc,

• initialization by some EM steps itself.

For future discussion on the subject, the reader is referred to Biernacki et al.
(2003); Biernacki (2004).

EM stopping rule One of the main properties of the EM algorithm is that
the likelihood must increment in each step (McLachlan and Krishnan, 2008;
Neal and Hinton, 1998; Wu, 1983). So the convergence, can be supposed



to be reached when the log-likelihood improvement from one iteration to
another is less then a prefixed threshold, that is:∣∣∣∣∣ logL(θ)(t+1) − logL(θ)(t)

logL(θ)(t)

∣∣∣∣∣ ≤ ε.
The Pseudo-code 1 summarizes the Expectation-Maximization algorithm for
ML fitting of the GMM.

Algorithm 1 Expectation-Maximization via ML estimation for Gaussian
Mixture Models
Inputs: Data set (x1, . . . ,xn), # of mixture components
K

1: Fix threshold ε > 0 t← 0
2: Initialize θ(0) = (π

(0)
1 , . . . , π

(0)
K ,µ

(0)
1 , . . . ,µ

(0)
K ,Σ

(0)
1 , . . . ,Σ

(0)
K )

3: while increment in log-likelihood > ε do
4: E-Step
5: for k ← 1 to K and i← 1 to n do
6: Compute τ

(t)
ik using Equation (2.11).

7: end for
8: M-Step
9: for k ← 1 to K do

10: Compute π
(t+1)
k using Equation (2.13)

11: Compute µ
(t+1)
k using Equation (2.14)

12: Compute Σ
(t+1)
k using Equation (2.15)

13: end for
14: t← t+ 1
15: end while

Outputs: The Gaussian parameter vector θ̂ = θ(t) and the fuzzy partition

of the data τ̂ik = τ
(t)
ik

Once the GMM model parameters θ̂ML are estimated, a partition of
the data into K clusters can then be obtained by maximizing the posterior
component probabilities τ̂ik, that is, by computing the cluster labels:

ẑi = arg max
1<k<K

τ̂ik. (2.18)

2.5.2 Illustration of ML fitting of a GMM

To illustrate the EM, we consider the well-known bivariate Old Faithful
Geyser dataset (Azzalini and Bowman, 1990) composed of n = 252 observa-
tions in R2 shown in Figure 2.7. Note that a normalization pre-processing
step was performed. The GMM partition, as well as the mixture component
ellipse densities, obtained by the EM algorithm, and the stored log-likelihood
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Figure 2.7: Old Faithful Geyser data set.

values for each EM step are shown in Figure 2.8. The mixture model, with
two Gaussian components is learned with the EM algorithm. The initializa-
tion of the model parameters was made by K-means algorithm (MacQueen,
1967). We used two components, as several model-based clustering methods,
in the literature, that infer two components for this dataset.
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Figure 2.8: GMM clustering with the EM algorithm for the Old Faithful
Geyser. The obtained partition (left) and the log-likelihood values at each
EM iteration (right).

We also give an illustrative example for clustering the Iris data set stud-
ied by Fisher (1936). The Iris dataset contains n = 150 samples of Iris
flowers covering three Iris species: setosa, virginica and versicolor, that is
K = 3, with 50 samples for each specie. Four features were measured for
each sample (d = 4): the length and the width of the sepals and petals, in
centimetres. Figure 2.9 shows the true partition of the Iris data set in the
space of the components 3 (petal length) and 4 (petal width).
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Figure 2.9: Iris data set in the space of the components 3 (x1: petal length)
and 4 (x2: petal width)

We cluster the data set by learning a three components GMM with the
EM algorithm. The obtained partition as well as the density ellipses and
the log-likelihood for each of the EM step are given in Figure 2.10.
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Figure 2.10: Iris data set clustering by applying the EM algorithm for
the GMM, with the obtained partition and the ellipse densities (left) and the
log-likelihood values at each iteration (right).

2.5.3 ML fitting of the parsimonious GMMs

Celeux and Govaert (1995) introduces the parsimonious Gaussian mixture
by the eigenvalue decomposition of the covariance matrices, which provides
14 different models given in Table 2.2. These 14 models can be estimated
by the EM clustering algorithm.

The EM scheme for the parsimonious models is as follows. The eigen-



value decomposition of the covariance model can be choosen a priori and
is given as an input by the user. The E-step of the EM algorithm outlined
in Pseudo-code 1 does not change. However, because parsimonious Gaus-
sian mixture models vary by the eigenvalue decomposition of the covariance
matrix for each cluster, the derivation of the M-step is computed according
to it. As a result we have the same estimation of the mixture proportions
(Equation (2.13)) and the mean vectors (Equation (2.14)). However, the co-
variance matrix is estimated according to it’s chosen decomposition. More
details on the M-step for the ML fitting of the parsimonious GMMs can be
found in Bensmail and Celeux (1996); Celeux and Govaert (1995).

As EM maximizes locally the likelihood, the initialization step of the EM
remains always one of the crucial steps that can produce not a satisfactory
output. Therefore it is consigned to make the initialization as possible near
to the expected parameter values. A restriction of each of the eigenvalue
decomposition models, given in Table 2.2, is considered for the initialization
step. For instance, the spherical model λkI have the spherical initialization
where the volume of the cluster varies between clusters.

2.5.4 Illustration: ML fitting of parsimonious GMMs

To illustrate the EM algorithm for the parsimonious Gaussian mixture mod-
els we first investigate three different family of models (spherical, diagonal
and general) by varying the cluster volume while the orientation and the
shape remain unchanged for all clusters.

First, we apply the parsimonious GMM with the EM algorithm on the
Old Faithful Geyser data set for illustration. We used two Gaussian com-
ponents (K = 2) for this dataset. We considered three parsimonious GMM
models, which are the spherical model λkI, the diagonal model λkA and
the general model λkDADT . These models are considered so that the clus-
ters have different volume, but equal orientation and shape. Figure 2.11
shows the obtained partitions, the component ellipse densities, as well as
the log-likelihood values for the EM iterations.

Now we apply the parsimonious GMM with the EM algorithm on the
Iris data. We consider three other models, which are the spherical model
λI, the diagonal model λA and the general model λDADT . These models
are constrained so that the clusters have the same volume, orientation and
shape. Figure 2.12 shows the obtained partitions, the component ellipse
densities, as well as the log-likelihood values during the EM iterations.

In the next section, we discuss the model selection and comparison in
the parametric mixture models. This answers the problem of selecting the
number of mixture components. For the parsimonious models, the additional
feature, that is the choosing of the models structure is also investigated.
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Figure 2.11: Clustering the Old Faithful Geyser data set with the EM
algorithm for the Parsimonious GMM. The obtained partition and the ellipse
densities (top) and the log-likelihood values for each EM step (bottom). The
spherical model λkI (left), the diagonal family model λkA (middle) and the
general model λkDADT (right).
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Figure 2.12: Clustering the Iris data set with the EM algorithm for the
Parsimonious GMM. The obtained partition and the ellipse densities (top)
and the log-likelihood values for each EM step (bottom). The spherical model
λI (left), the diagonal family model λA (middle) and the general model
λDADT (right).



2.6 Model selection and comparison in finite mix-

ture models

The number of mixture components is usually assumed to be known for the
parametric model-based clustering approaches. Another issue in the finite
mixture model-based clustering approach is therefore the one of selecting
the optimal number of mixture components. This problem, generally called
model selection, is in general performed through a two-fold strategy by se-
lecting the best model from pre-established inferred model candidates. The
selection task is made by choosing a model from a set of possible models,
that fits at best the data, and thus in the sense of a model selection criterion.
Notice that, for the parsimonious models, which have different structures,
the model selection contains an additional feature, that is the one of choosing
the best model structure (i.e., the decomposition of the covariance matrix
Σk).

A common way for model selection, is to use an overall score function
that is represented by two terms. The first one represents the goodness of the
specified model (how well the selected model fits the data), and the second
one, is a penalty term that governs the model complexity. In consequence,
the model selection procedure in general aims at minimizing the following
score function:

score(model) = error(model) + penalty(model). (2.19)

The complexity of some model M being directly related to the number of
it’s free parameters ν(θ)

Letting {M1,M2, . . .MM} be a set of considered models from which
we wish to choose the best one. The choice of the optimal model can be
performed via penalized log-likelihood criteria such as the Bayesian Infor-
mation Criterion (BIC) (Schwarz, 1978), the Akaike Information Criterion
(AIC) (Akaike, 1974), AIC3 (Bozdogan, 1983), the Approximate Weight of
Evidence (AWE) criterion (Banfield and Raftery, 1993), or the Integrated
Classification Likelihood criterion (ICL) (Biernacki et al., 2000), etc. More
information on the model selection with information criteria, see for exam-
ple Biernacki (1997); Biernacki and Govaert (1998); Claeskens and Hjort
(2008); Konishi and Kitagawa (2008). In this work, we consider some of
them, which are widely used in the literature.

2.6.1 Model selection via information criteria

Assume that the modelM1 is parametrized by the parameter vector θm. θ̂m
is the maximum likelihood estimator (respectively the maximum complete
likelihood estimator of θm). The most used information criteria for model
selection are the Akaike Information Criteria (AIC) (Akaike, 1974), the AIC3



(Bozdogan, 1983), the Bayesian Information Criteria (BIC) (Schwarz, 1978),
the Integrated Classification Likelihood (ICL) (Biernacki et al., 2000), and
the Approximate Weight of Evidence (AWE) (Banfield and Raftery, 1993).
They are respectively defined as:

AIC(Mm) = logL(X|θ̂m)− νm, (2.20)

AIC3(Mm) = logL(X|θ̂m)− 3νm
2
, (2.21)

BIC(Mm) = logL(X|θ̂m)− νm log(n)

2
, (2.22)

ICL(Mm) = logLc(X, z|θ̂m)− νm log(n)

2
, (2.23)

AWE(Mm) = logLc(X, z|θ̂m)− (νm(
3

2
+ log(n))). (2.24)

where logL(X|θ̂m) is the maximum value of the observed data log-likelihood
and logLc(X, z|θ̂m) is the maximum value of the complete data log-likelihood.

These information criteria, can also be seen as approximations of the
Bayes Factor (Fraley and Raftery, 1998a; Kass and Raftery, 1995). Because
Bayes Factor is considered a fully Bayesian method form model selection
and comparison between models, we will be discussed it in Chapter 3 and
Chapter 4.

For the parsimonious models, the model selection answers not just to
the question: ”how much clusters (components) are in the data?”, but also
allows to provide the best model structure (Fraley and Raftery, 1998a). The
strategy for the parsimonious finite mixture models regarding the estimation
of the number of clusters and the best model structure is investigated in this
work.

2.6.2 Model selection for parsimonious GMMs

For the parsimonious finite Gaussian mixture models, the model selection
task can be separated into two issues to investigate. First, the selection
of components number (i.e. clusters K) in the mixture, and second, what
parsimonious model fits at best the data. Let Kmax be the maximum num-
ber of components in the mixture and (M1, . . . ,MM ) a set of parsimonious
Gaussian mixture models with different eigenvalue decomposition of the co-
variance matrix. We derived the Pseudo-code 2 for the model selection
strategy of the parsimonious GMMs that was found to be effective in the
literature (Dasgupta and Raftery, 1998; Fraley and Raftery, 1998a, 2007a,
2005).

Thus the number of mixture components (classes) and the the eigen-
value decomposition of the covariance matrix that fit at best the data are
determined in one run.



Algorithm 2 Model selection for parsimonious Gaussian mixture models

Inputs: Kmax, specified model structure (M1, . . . ,MM ).

1: for k ← 1 to Kmax do
2: for m← 1 to M do
3: Compute the MLE θ̂km (e.g. via EM);
4: Compute IC(θ̂km) where IC(θ̂km) is the Information Criterion value

given the estimated model parameters θ̂km for model structure m
and k components (e.g. for BIC (2.22)).

5: end for
6: end for
7: Choose the model having the highest information criterion value M̂

Outputs: The selected model M̂

2.6.3 Illustration: Model selection and comparison via infor-
mation criteria

We consider the Old Faithful Geyser and Iris datasets to investigate the
model selection for six parsimonious Gaussian mixture models, that are,
two models from each family: λI and λkI for the spherical case, λA and
λkA for the diagonal case, and λkDADT and λkDkAkD

T
k for the general

case. The EM algorithm is used and initialized by K-means. The BIC (2.22),
ICL (2.23) and AWE (2.24) criteria are computed for this model selection
experiment.

The top plot of Figure 2.13 illustrates the model selection for the Old
Faithful Geyser dataset.

The BIC criterion selects: 5 clusters for the spherical models and there-
fore overestimates the number of clusters, 4 clusters for the diagonal model,
which has different cluster volume, that is, λkA, 3 clusters for the diagonal
model, which has equal cluster volume λA, and for the general model, which
has different cluster volume λkDADT , 2 clusters for the Full-GMM model.
The highest BIC criterion value, that selects the best model, was obtained
by the λkDADT model.

The ICL criterion selects: 4 clusters for the spherical model, which has
different cluster volume λkI, therefore overestimating the number of clusters,
3 clusters for the spherical model, which has equal cluster volume λI, 2
clusters for the rest of the model candidates. The highest ICL criterion
value, that selects the best model, was obtained by the Full-GMM, that is
λkDkAkD

T
k model.

Finally, the AWE criterion is investigated. One can see that, for this
dataset, the AWE criteria does not overestimates the number of components
for the model candidates. AWE criterion selects 3 clusters for the diagonal
model λA, while for the rest of the models 2 clusters are selected. The high-
est AWE criterion value, that selects the best model, was obtained by the



λkDADT model. Highlight, that in Figure 2.13, the descending values for
the studied information criterion, the AWE criteria descends more sharply
then the BIC and ICL criteria meaning a more decisive model selection.
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Figure 2.13: Model selection for Old Faithful Geyser dataset with BIC
(left), ICL (middle) and AWE (right). The top plot shows the value of the
IC for different models and different mixture components (k = 1, . . . , 10).
The bottom plot show the selected model partition and the corresponding
mixture component ellipse densities.

The top plot of Figure 2.13 illustrates the model selection for the Iris
dataset. The BIC, ICL and AWE criterion are investigated. For all of these
information criterion, the highest value that selects the best model was the
Full-GMM model. However, we can see that the AWE criterion selects the
true number of clusters equal to 3, for the general model, that is, λkDADT .

2.7 Conclusion

In this chapter, we presented state of the art approach on mixture model-
ing for model-based clustering. We focused on the Gaussian case and the
parsimonious mixture models. We discussed the use of the EM algorithm
which constitutes the essential feature for model fitting. Then we showed
how the model selection and comparison can be performed in this ML fitting
framework.

In the next chapter, we will address the problem of model-based cluster-
ing from a Bayesian prospective and implement several alternative Bayesian
parsimonious mixtures for clustering.
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Figure 2.14: Model selection for Iris dataset with BIC (left), ICL (middle)
and AWE (right). The top plot shows the value of the IC for different models
and different mixture components (k = 1, . . . , 10). The bottom plot show the
selected model partition and the corresponding mixture component ellipse
densities.
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3.1 Introduction

In this chapter, we investigate the mixture models in a Bayesian framework,
rather than a ML fitting, as described in Chapter 2. After an account on
Bayesian mixture modeling, we focus on Bayes formulation of the previ-
ously described parsimonious Gaussian mixtures. We present the Maximum
A Posteriori estimation using in particular Markov Chain Monte Carlo sam-
pling. The model selection and comparison is addressed from a Bayesian
point of view by using Bayes Factors. Gibbs sampling technique is imple-
mented for the various parsimonious GMMs, which we apply and assess in
different simulation scenarios.

3.2 The Bayesian finite mixture model

Described earlier in Chapter 2, the parametric model-based clustering have
shown great performances in density estimation and model-based clustering
(Banfield and Raftery, 1993; Celeux and Govaert, 1995; Day, 1969; Fraley
and Raftery, 1998a; Marriott, 1975; Scott and Symons, 1981). However, a
first issue for the ML parameter estimation of the mixture models, is that
it may fail due to singularities or degeneracies as highlighted in Fraley and
Raftery (2007a, 2005); Ormoneit and Tresp (1998); Snoussi and Mohammad-
Djafari (2000, 2005); Stephens (1997).

The Bayesian formulation of the finite mixture models allows to avoid
these problems by replacing the MLE by the maximum a posterior (MAP)
estimator. This is namely achieved by basically giving some penalization
term, namely regularization, to the observed data likelihood function. The
estimation of the Bayesian mixtures via the posterior simulations goes back
to Evans et al. (1992); Gelman and King (1990); Verdinelli and Wasserman
(1991). The Bayesian estimation methods for mixture models have lead to
intensive research in the field for dealing with the problems encountered
in MLE for mixtures. One can cite for example the following papers on
the subject: Bensmail and Meulman (2003); Bensmail et al. (1997); Diebolt
and Robert (1994); Escobar and West (1994); Gelman et al. (2003); Marin
et al. (2005); Richardson and Green (1997); Robert (1994); Stephens (1997).
Bayesian approaches allow to avoid these problems by replacing the MLE
by the maximum a posterior (MAP) estimator.

Suppose the mixture model, given in Equation (2.1), with parameters
θ = {π1, . . . , πK ,θ1, . . . ,θK}. The Bayesian mixture model incorporates
prior distribution on these parameters. In this thesis we focus on conjugate
priors, for which the posterior are easy to derive. The generative process of
the Bayesian mixture models is given as follows.

The first step is to sample the model parameters from the prior, that is,



for example, to sample the mixing proportions from their conjugate Dirichlet
prior distribution. The parameters θk are sampled according to a prior base
distribution noted G0. This can be summarized as follows:

π|α ∼ Dir
(
α1
K , . . . ,

αK
K

)
,

zi|π ∼ Mult(1;π1, . . . , πk),
θzi |G0 ∼ G0,
xi|θzi ∼ pk(xi|θzi).

(3.1)

where α = (α1, . . . , αk), the concentration hyperparameters of the Dirichlet
prior distribution, pk(xi|θzi) is a conditional component density function
with parameter θzi . The labels zi are sampled according to multinomial
distribution with parameters being the mixing proportions π, which are
sampled according to the Dirichlet distribution. The probabilistic graphical
model for the finite Bayesian mixture model is shown in Figure 3.1.

Figure 3.1: Probabilistic graphical model for the Bayesian mixture model.

In the next section, we discuss the Bayesian mixture model when data
is considered to be Gaussian distributed.

3.3 The Bayesian Gaussian mixture model

The Bayesian GMM is also one of the most successful and popular models
in the literature. It has also shown great performances in density estima-
tion and cluster analysis. For additional to review on Bayesian GMMs,
we refer the reader to the following key papers: Bensmail et al. (1997);
Diebolt and Robert (1994); Fraley and Raftery (2007a, 2005); Ormoneit
and Tresp (1998); Richardson and Green (1997); Robert (1994); Snoussi
and Mohammad-Djafari (2000); Stephens (1997, 2000).

The generative process for the Bayesian GMM is given by Equation (2.3),
where the parameters and the priors are those corresponding to the Gaus-
sian case. Using conjugate priors1 is commonly used in Bayesian mixture
models. For the GMM case, the Gaussian parameter model priors are a

1In Bayesian statistics if the posterior distribution p(θ|X) is in the same family as the
prior distribution p(θ), than this prior is considered to be a conjugate distribution.



multivariate Normal distribution for the mean vector parameter µk and an
inverse-Wishart distribution for the covariance matrix Σk. Thus, the base
measure, G0, from Equation (3.1), corresponds to the following prior:

Σzi ∼ IW(ν0,Λ0),

µzi |Σk ∼ N (µ0,
Σk
κ0

).
(3.2)

with H = {µ0, κ0, ν0,Λ0}, the hyperparameters for the model parameters.
Thus, the generative process for the Bayesian Gaussian mixture model, is
rewritten as follows:

π|α ∼ Dir (α1, . . . , αK) ,
zi|π ∼ Mult(1;π1, . . . , πK),
Σzi ∼ IW(ν0,Λ0),

µzi |Σzi ∼ N (µ0,
Σzi
κ0

),

xi|µzi ,Σzi ∼ N (xi|µzi ,Σzi).

(3.3)

Figure 3.2 shows the probabilistic graphical model for the finite Bayesian
multivariate GMM.

Figure 3.2: Probabilistic graphical model for the finite Bayesian Gaussian
mixture model.

A detailed description of these densities is given in Gelman et al. (2003).
The hyperparameters ν0 and Λ0 describe the degrees of freedom and the
scale matrix for the for the inverse-Wishart distribution on Σ. The re-
maining hyperparameters are the prior mean, µ0, and the number of prior
measurements, κ0, on the Σ scale. Generally these assumptions are given
a priori by the user and are not learned from the data. However, there ex-
ists in literature hierarchical Bayesian mixture models (see Richardson and
Green (1997); Stephens (1997)) which infer the hyperparameters from the
data, making the models more flexible and adaptive for a larger applications
variation.

In the next section, we investigate the Bayesian formulation of the par-
simonious GMMs, previously described in a ML estimation framework.



3.4 Bayesian parsimonious GMMs

As for the finite Gaussian mixture model, it was natural to derive parsi-
monious models from the Bayesian GMM, by parametrising the covariance
matrix. Fraley and Raftery (2007a, 2005) introduced a Bayesian method by
giving prior over the mean vector and the constrained covariance matrix.
The authors also discussed the parsimonious Gaussian mixture models ex-
tension with the eigenvalue decomposition of the group covariance matrix,
Σk = λkDkAkDk, that was proposed by Banfield and Raftery (1993) and
has lead to fourteen models as in Celeux and Govaert (1995). As given in
Table 2.2, 14 different flexible Bayesian models were proposed, allowing to
vary the volume, orientation and shape of the cluster. Fraley and Raftery
(2007a, 2005) provided the priors needed for each of the model parameters,
in particular the volume λ, the orientation matrix D and the shape matrix
A. Table 3.5 outlines 14 possible parsimonious Gaussian mixture models,
and their respective prior distribution.

Model Name Prior Applied to

λI EII IG λ
λkI VII IG λk
λA EEI IG each diagonal element of λA
λkA VEI IG and IG λk and each diagonal element of A
λAk EVI IG and IG λ and each diagonal element of A
λkAk VVI IG each diagonal element of λkAk

λDADT EEE IW Σ = λDADT

λkDADT VEE IG and IW λk and Σ = DADT

λDAkD
T EVE IG each diagonal element of λAk

λkDAkD
T VVE IG each diagonal element of λkAk

λDkADT
k EEV IG each diagonal element of λA

λkDkADT
k VEV IG and IW each diagonal element of λkA and Dk

λDkAkD
T
k EVV IG and IW λ and Σk = DkAkD

T
k

λkDkAkD
T
k VVV IW Σk = λkDkAkD

T
k

Table 3.1: Parsimonious Gaussian Mixture Models via eigenvalue decom-
position with the prior associated to each model. Note that I denotes an
inverse distribution, G denotes a Gamma distribution and W denotes a
Wishart distribution

3.5 Bayesian inference of the finite mixture model

The Bayesian formulation for mixtures inference is based on estimation of
the posterior distributions of the unknown mixture parameters θ, giving the



observed data X and the prior parameter distribution p(θ). The posterior
distribution of the parameters are calculated by Bayes’ rule:

p(θ|X) =
p(θ)p(X|θ)∫

θ p(θ)p(X|θ)dθ
(3.4)

where the posterior p(θ|X) is computed by the fraction of the likelihood
p(X|θ) penalized by the prior p(θ), and the evidence (

∫
θ p(θ)p(X|θ)dθ).

The Bayesian mixture estimation maximizes the posterior (3.4). This is the
Maximum A Posteriori (MAP) estimation framework.

The MAP estimation for the Bayesian Gaussian mixture can still be
performed, in some situations, by Expectation-Maximization (EM) as in
Fraley and Raftery (2007a, 2005); Ormoneit and Tresp (1998); Snoussi and
Mohammad-Djafari (2000, 2005). However, the common estimation ap-
proach in the case of Bayesian mixtures is Bayesian sampling such as Markov
Chain Monte Carlo (MCMC), namely Gibbs sampling (Bensmail et al., 1997;
Diebolt and Robert, 1994; Robert, 1994; Stephens, 1997) when the number
of mixture componentsK is known, or by reversible jump MCMC introduced
by Green (1995) as in Richardson and Green (1997); Stephens (1997). The
flexible eigenvalue decomposition of the group covariance matrix described
previously was also exploited in Bayesian parsimonious model-based clus-
tering by Bensmail and Meulman (2003); Bensmail et al. (1997); Bensmail
(1995) where authors used a Gibbs sampler for the model inference.

3.5.1 Maximum a posteriori (MAP) estimation for mixtures

The Maximum A Posteriori (MAP) estimation framework seeks to estimate
the parameters by maximizing the posterior p(θ|X). Let’s denote this pos-
terior distribution function by:

MAP(θ) = p(θ|X).

then the MAP estimator framework can be summarized as follows:

θMAP = arg max
θ

MAP(θ)

= arg max
θ

p(θ|X)

= arg max
θ

p(θ)p(X|θ)

One can see, that in Equation (3.4), the denominator, namely the evidence,
that is,

∫
θ p(θ)p(X|θ)dθ, is dropped. This is due to the fact that it doesn’t

depends directly on the parameters θ on which the maximization is done.
Because of numerical computation reasons, the MAP estimator is computed



by maximizing the following logarithm of the posterior parameter distribu-
tion:

θMAP = arg max
θ

log-MAP(θ)

= arg max
θ

(log p(θ) + log p(θ|X)) , (3.5)

where log p(θ|X) corresponds to the log-likelihood.

3.5.2 Bayesian inference of the GMMs

For the Bayesian Gaussian mixture model, the MAP estimator framework
is then given by the following:

arg max
θ

(log p(θ) +

n∑
i=1

K∑
k=1

πkN (xi|µk,Σk)) (3.6)

where the p(θ) is the prior distribution of the model parameters:

p(θ) = p(π|α)
K∏
k=1

p(θk), θk = (µk,Σk). (3.7)

A common choice for the GMM is to assume conjugate priors, that is, a
Dirichlet distribution for the mixing proportions π (Ormoneit and Tresp,
1998; Richardson and Green, 1997), and a multivariate normal inverse-
Wishart prior (NIW) distribution for the Gaussian mixture parameters
(Fraley and Raftery, 2007a, 2005; Snoussi and Mohammad-Djafari, 2000,
2005). Thus,

p(θ) = p(π|α)
K∏
k=1

p(µk|Σk,µ0, κ0)p(Σk|µk,Λ0, ν) (3.8)

= Dir(α1, . . . , αK)

K∏
k=1

NIW(µk,Σk|µ0, κ0,Λ0, ν)

This work investigates two approaches for estimation the model param-
eters in the MAP framework: via the Bayesian Expectation-Maximization
algorithm and via the Markov Chain Monte Carlo simulation algorithms.

3.5.3 MAP estimation via the EM algorithm

The Expectation-Maximization algorithm can still be performed for Maxi-
mum A Posteriori estimation (MAP) of the Bayesian mixture as in Fraley
and Raftery (2007a). Consider the Bayesian Gaussian mixture model dis-
cussed previously (3.3). For the Bayesian GMM, the E-step is still the same



as for the ML framework. However, the M-step, depends directly on the
penalization term added to the function Q(θ,θ(t)). Thus, the M-step for
MAP estimation framework updates the mixture parameters by maximizing
the following penalized Q function:

θ(t+1) = arg max
θ

[
Q(θ,θ(t)) + log p(θ(t))

]
(3.9)

This provides the following estimate for the mixture parameters, consid-
ered for the M-step (Fraley and Raftery, 2007a, 2005). First, the mixture
proportions are updated according to the following:

π̂
(t+1)
k =

n
(t)
k + αk − 1

n+ 1−K
, (3.10)

with n number of observations in data X, n
(t)
k the expected number of ob-

servations that belongs to the kth component (Equation (2.16)), and K the
number of components in the mixture. The mean vector should be updated
by it’s posterior as follows:

µ̂
(t+1)
k =

n
(t)
k x̄

(t)
k + κ0µ0

n
(t)
k + κ0

, (3.11)

where x̄
(t)
k represents the mean of the data associated to class k, given by

the following:

x̄
(t)
k =

n∑
i=1

τ
(t)
ik xi

n
(t)
k

.

Finally the covariance matrix updated to it’s posterior as follows:

Σ̂
(t+1)
k =

Λ0 + W
(t)
k +

κ0n
(t)
k

n
(t)
k +κ0

(x̄
(t)
k − µ0)(x̄

(t)
k − µ0)T

ν + n
(t)
k + d+ 2

, (3.12)

Recall, W
(t)
k is the scattering matrix of a cluster k given by Equation (2.17).

The Bayesian Expectation-Maximization algorithm for the finite mixture
model is outlined in the Pseudo-code 3. For a detailed information on the
derivation of the EM algorithm in the MAP framework we refer to Fraley and
Raftery (2007a, 2005); Ormoneit and Tresp (1998); Snoussi and Mohammad-
Djafari (2000, 2005).

3.5.4 Bayesian inference of the parsimonious GMMs via the
EM algorithm

As for the MLE framework, where Celeux and Govaert (1995) discussed
the EM algorithm for the parsimonious GMMs, it was natural to extend



Algorithm 3 MAP estimation for Gaussian Mixture Models via EM

Inputs: Data set X = (x1, . . . ,xn), # of mixture components
K

1: Fix: the threshold ε > 0, iteration t← 0 and log-MAP← −∞
2: Initialize θ(0) = (π

(0)
1 , . . . , π

(0)
K ,µ

(0)
1 , . . . ,µ

(0)
K ,Σ

(0)
1 , . . . ,Σ

(0)
K )

3: Initialize the hyperparameters (α,µ0, κ0,Λ0, ν0).
4: while increment in log-MAP > ε do
5: I. E-Step
6: for k ← 1 to K do
7: Compute τ

(t)
ik ∀i = 1, . . . , n using Equation (2.11).

8: end for
9: Compute log-MAP(θ) using Equation (3.6).

10: II. M-Step
11: for k ← 1 to K do
12: Compute π

(t+1)
k using Equation (3.10).

13: Compute µ
(t+1)
k using Equation (3.11).

14: Compute Σ
(t+1)
k using Equation (3.12).

15: end for
16: t← t+ 1
17: end while

Outputs: The Gaussian model parameter vector θ̂ = θ(t) and the fuzzy

partition of the data τ̂ik = τ
(t)
ik

the MAP framework estimation via the EM algorithm for the parsimo-
nious GMMs, thus avoiding singularities and degeneracies of the MLE ap-
proaches and simultaneously reduce the number of components to estimate.
The Maximum A Posteriori (MAP) estimation approach via the EM algo-
rithm presented by Fraley and Raftery (2007a, 2005), discuss the univariate
GMMs, as well as the multivariate parsimonious GMMs. The models in
Fraley and Raftery (2007a, 2005), are integrated in the existing MCLUST
software Fraley and Raftery (1998b, 2007b), which gives the possibility of
learning the Bayesian GMMs with the EM algorithm, by taking the eigen-
value parametrization of the covariance matrix Σk = λkDkAkD

T
k . Thus,

we implemented the MAP estimation via the EM algorithm for the Parsi-
monious GMMs. Conjugate prior distributions for the model parameters
are used (see for instance Fraley and Raftery (2007a, 2005); Gelman et al.
(2003); Ormoneit and Tresp (1998); Snoussi and Mohammad-Djafari (2000,
2005)). The used prior distributions for the decomposed covariance matrix
parameters are provided later in Table 3.5.

As the prior distribution does not influence the E-step of the EM algo-
rithm, this step proceeds exactly in the same way as for the MAP framework
for the full-GMM model, outlined by Pseudo-code 3. However, the M-step of



the Bayesian EM algorithm varies according to the chosen parametrization
of the covariance matrix.

In the M-step of the MAP estimation via EM for parsimonious Bayesian
GMMs, the mixture proportions updates are given by Equation (3.10) and
the mean vector updates are given by Equation (3.11). However, the M-step,
for the covariance matrix, depends on the restricted form of this one. For
instance, suppose Σk = λI, when the spherical covariance matrix with equal
volumes is used. In this case, in order to estimate the covariance matrix, the
M-step updates only the cluster volume parameter λ. Fraley and Raftery
(2007a, 2005) introduces two spherical model, two diagonal model and one
general models of the parsimonious multivariate GMMs, that can be easily
computed in the MAP framework estimation via the EM. We summarize
these models in Table 3.2.

Model MAP update of Σk

λI Com-Sphe-GMM
ς20+

K∑
k=1

tr[
κ0nk
nk+κ0

(x̄−µ0)(x̄−µ0)T+Wk]

ν0+(n+K)d+2

λkI Sphe-GMM
ς20+tr[

κ0nk
nk+κ0

(x̄−µ0)(x̄−µ0)T+Wk]

νp+(nk+1)d+2

λA Com-Diag-GMM
diag(ς20 I+

K∑
k=1

[
κ0nk
nk+κ0

(x̄−µ0)(x̄−µ0)T+Wk])

ν0+n+K+2

λkAk Diag-GMM
diag(ς20 I+[

κ0nk
nk+κ0

(x̄−µ0)(x̄−µ0)T+Wk])

ν0+nk+3

λDADT Com-GMM
Λ0+

K∑
k=1

[
κ0nk
nk+κ0

(x̄−µ0)(x̄−µ0)T+Wk]

ν0+n+d+K+1

λkDkAkD
T
k Full-GMM

Λ0+[
κ0nk
nk+κ0

(x̄−µ0)(x̄−µ0)T+Wk]

νp+nk+d+2

Table 3.2: M-step estimation for the covariances of multivariate mixture
models under the Normal inverse Gamma conjugate prior for the spherical
models (λI, λkI) and the diagonal models (λA, λkAk), and Normal inverse
Wishart conjugate priors for the general models (λDADT , λkDkAkD

T
k ).

The hyperparameters are usually chosen a priori by the user and not
learned from the data. This is also the case in the study of Fraley and Raftery
(2007a, 2005). Thus, choosing good values for hyperparameters that are
adaptive to a particular data is one important issue in this Bayesian learning
framework. The following choices for hyperparameters of the multivariate
Bayesian GMMs were found effective in the experimentations of Fraley and
Raftery (2007a, 2005):

• µ0 is considered to be equal to the mean of the data.
• κ0 is considered to be equal to 0.01. The posterior of the mean can be

viewed as adding κ0 observations to the µ0 value of each group of data.



• ν0 which can be interpreted as the degrees of freedom of the model, is
chosen to be the minimum integer value for the degrees of freedom, that
is equal to νp = d+ 2 (Schafer, 1997).
• ς2

0 that we need to calculate in the case of spherical covariances models

are assumed to be equal to ς2
p = sum(diag(cov(X)))/d

K2/d .

• Λ0, used for the general models, is computed by Λ0 = cov(X)

K2/d .

When the posterior distributions can not be analytically computed, Markov
Chain Monte Carlo (MCMC) methods can be used. Next, we investigate
the Bayesian inference via the MCMC methods.

3.5.5 Markov Chain Mote Carlo (MCMC) inference

The common estimation approach in the case the Bayesian mixture models
described above, is the one using Bayesian sampling such as Markov Chain
simulations, also called in literature as Markov Chain Monte Carlo (MCMC)
sampling techniques (Bensmail and Meulman, 2003; Bensmail et al., 1997;
Diebolt and Robert, 1994; Escobar and West, 1994; Geyer, 1991; Gilks et al.,
1996; Neal, 1993; Richardson and Green, 1997; Robert, 1994; Stephens,
1997).

The Markov chain is known as a sequence of random variables, θ(t),
such that t ≥ 1, where each of tth variable distribution depends only on the
previous t − 1 variable distribution. So the basic idea of the Markov chain
Monte Carlo inference methods is to obtain the ergodic Markov chain by
drawing sequentially the mixture parameters θ from an approximate distri-
butions p(θ(t)|X), to better approximate the expected posterior distribution
E[p(θ|X)].

E[p(θ|X)] =

∫
θ

p(X|θ)p(θ)dθ

≈ 1

ns

ns∑
t=1

p(θ(t)|X) (3.13)

The starting point θ(0) influences directly the MCMC convergence speed.
Also, the approximation of the posterior distribution, given in Equation
(3.13), becomes more precise when the number of samples ns, goes to in-
finity (Meyn and Tweedie, 1993), so a big number of samples ns provide
a better posterior approximation. The idea of using such MCMC meth-
ods, dates back to early Physics literature Metropolis et al. (1953) when the
computational power was not even available. This provides a generic sam-
pling method, namely the Metropolis-Hashing algorithm Hastings (1970);
Metropolis et al. (1953).

A widely used method for MCMC sampling is the Gibbs sampling. This
work investigates the Gibbs sampling algorithm, for the Bayesian inference



of the Gaussian mixture model. In particular, the inference of the Bayesian
parsimonious GMMs via the Gibbs sampling is presented and discussed. The
Gibbs sampling takes it’s name referencing to the name of Gibbs random
fields used by Geman and Geman (1984), that was proposed in a framework
of Bayesian image restoration. A very close form to it was also introduced by
Tanner and Wong (1987) under the name of data augmentation for missing
data problems, and shown in Gelfand and Smith (1990). For more details
on Gibbs sampling we also refer to Casella and George (1992); Diebolt and
Robert (1994); Gelfand et al. (1990); Gilks et al. (1996); Marin and Robert
(2007); Robert (1994).

Suppose a hierarchical structure of the model where the posterior can
be given by:

p(θ|X) =

∫
p(θ|X,H)p(H|X)dH (3.14)

where H are the hyperparameters of the model parameters θ. The idea of
Gibbs sampling is then to simulate from the joint distribution p(θ|X,H)p(H|X),
to approximate better the posterior p(θ|X). Assuming that these distribu-
tions are known, the parameters θ and hyperparameters H, shall be drawn
respectively by the p(θ|X,H) and p(H|X). However, more generally the hy-
perparameters H are supposed to be known and given a priori by the user,
so that only the parameters θ are sampled.

The general Gibbs sampling algorithm for the mixture models, there-
fore simulates the joint distribution p(θ1, . . . ,θK) from the full conditional
distribution p(θk|{θ}\θk ,X) as outlined in Pseudo-code 4.

Algorithm 4 Gibbs sampling for mixture models

Input: The data set X = (x1, . . .xn), # of mixture components K and
# of samples ns.
Initialize the model parameters θ(0).
for t = 1 to ns do

for k = 1 to K do
Sample θ

(t)
k from the posterior distribution p(θk|{θ}

(t−1)
\θk ,X)

end for
end for
Outputs: The Markov chain parameters vector of the mixture Θ̂ =
θ(t), ∀t = 1, . . . , ns.

One debate for the MCMC methods (e.g. Gibbs sampling), is the conver-
gence. The speed of the convergence depends directly on the initialization
step. Also having a good initialization of the model parameters tackle a
smaller burn-in period. The initialization step, that computes the initial
parameter vector, can be done by:



• running itself the Gibbs sampling, this can be investigated by running
many short chains as in Gelfand and Smith (1990) or few long chains as
in Gelman and Rubin (1992),
• random initialization, this usually needs one vary long chains as in (Geyer,

1992) and a long burn-in period,
• running other clustering algorithms like K-means initialization (MacQueen,

1967), that is the case of this work.

Later in our experiments we see that, usually 10-20 chains with 2000
Gibbs samples is sufficient. Also, because the first simulations depend di-
rectly on the initialization θ(0), normally they are not fitting very well the
mixture model. Therefore, a burn-in period can be considered, that gen-
erally takes 10% for the number of samples. Also, in practice it is usually
proposed to run multiple Gibbs samplings where different initialization for
the model parameters θ(0) are proposed.

3.5.6 Bayesian inference of GMMs via Gibbs sampling

Here we investigate the Gibbs sampling for the multivariate Gaussian mix-
ture model that we examine in detail for this work. Suppose the Bayesian
GMM given in Equation (3.3), where the mixture parameters are θ =
(π,θ1, . . . ,θK) with θk = µk,Σk, ∀k = 1, . . . ,K. The Gibbs sampler for
GMMs is the following Pseudo-code 5. One can see, in Pseudo-code 5,
that the labels zi and the mixture parameters πk,µk,Σk are sampled re-
spectively by Mult(.), Dir(.), N (.) and IW(.), that are the Multinomial,
Dirichlet, Normal and inverse Wishart distributions. Their detailed mathe-
matical computation can be found in Appendix (B). Also, {µn, κn, νn,Λn}
are the respective posterior for the hyperparameters {µ0, κ0, ν0,Λ0}. As
proposed by Gelman et al. (2003), the computation of the hyperparameters
posterior is then given by:

µn =
nkx̄k + κ0µ0

nk + κ0

κn = κ0 + nk

νn = ν0 + nk

Λn = Λ0 + Wk +
nkκn
nk + κn

(x̄k − µ0)(x̄k − µ0)T (3.15)

Note that, the parameter vector is obtained by averaging the Gibbs samples
after removing a burn-in period.

3.5.7 Illustration: Bayesian inference of the GMM via Gibbs
sampling

We implement the Gibbs sampling approach and show it’s effectiveness for
estimating the Gaussian mixture model. First, we considered a two-class



Algorithm 5 Gibbs sampling for Gaussian mixture models

Input: The data set X = (x1, . . .xn), # of mixture components K, # of
samples ns.

Initialize: The hyperparameter H(0) = (α(0),µ
(0)
0 , κ

(0)
0 ,Λ

(0)
0 , ν

(0)
0 ),

the mixture probabilities π(0), and the component parameters θ
(0)
k =

{µ(0),Σ(0)}
for t = 1 to ns do

for k = 1 to K do
1. Sample the labels z

(t)
i |τ

(t)
ik ,π

(t−1)
k ,θ

(t−1)
k ∼ Mult(1, τ

(t)
i1 , . . . , τ

(t)
iK )

conditional on the posterior probabilities τ
(t)
ik =

π
(t−1)
k Nk(xi|θ

(t−1)
k )

K∑
k=1

π
(t−1)
k Nk(xi|θ

(t−1)
k )

.

end for
end for
2. Sample the mixture probabilities according to the posterior distribution

π(t)|τ (t)
ik ,µ

(t−1)
k ,Σ

(t−1)
k ,X ∼ Dir(α1 + n1, . . . , αK + nK).

for t = 1 to ns do
for k = 1 to K do

3. Sample the mean vector µ
(t)
k according to the posterior distribution

µ
(t)
k |τ

(t)
ik ,π

(t)
k ,Σ

(t−1)
k ,X ∼ N (µn,Σk/κn).

4. Sample the covariance matrix Σ
(t)
k according to the posterior dis-

tribution Σ
(t)
k |τ

(t)
ik ,π

(t)
k ,µ

(t)
k ,X ∼ IW(νn,Λn).

end for
end for
Outputs: The parameters vector chain of the mixture Θ̂ =
{π(t),µ(t),Σ(t)}, ∀t = 1, . . . , ns.

situation identical to the one in Bensmail and Meulman (2003); Bensmail
et al. (1997); Bensmail (1995) where parametric parsimonious mixture ap-
proach (see Subsection 3.5.8) is proposed. The data consist in a sample of
n = 200 observations from a two-component Gaussian mixture in R2 with
the following parameters: equal mixture proportions π1 = π2 = 0.5, the
mean vectors µ1 = (8, 8)T and µ2 = (2, 2)T , and two spherical covariances
with different volumes Σ1 = 4 I2 and Σ2 = I2. An illustration of this dataset
can be seen in the Figure 3.3. For this experiment, we sampled 2000 Gibbs
samples, ten times, with 10% burn-in, for the finite Bayesian Gaussian mix-
ture model. The obtained partition is given in Figure 3.4. The estimated
model parameter values are π̂ = (0.5285, 0.4715)T µ̂1 = (7.9631, 8.0156)T

and µ̂2 = (1.8890, 2.0389)T , and Σ2 =

(
4.9511 −0.1054
−0.1054 3.3794

)
, and Σ2 =(

1.2585 0.2583
0.2583 1.2250

)
. The estimates are close to the actual parameters.
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Figure 3.3: A simulated dataset from a mixture model in R2 two compo-
nent Gaussian.

In order to evaluate our clustering, we use the error rate that is the error
computed between the true (simulated) and the estimated labels of the data.
On the other hand, we evaluate our clustering with the Rand index (Rand,
1971) values. For a more variety of the different clustering indexes and their
mathematical computation we refer to Desgraupes (2013). In Figure 3.4,
one can see the error rate (on middle) and respective the Rand index (on
right) values are computed for each sample of the Gibbs method. Highlight
the fact that the best obtained value for the error rate is equal to zero,
meaning that all the estimated labels are equivalent to the true labels, while
the best value for the Rand index is equal to one.

−5 0 5 10 15

−4

−2

0

2

4

6

8

10

12

14

x1

x
2

 

 

1

2

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

error rate

fr
e

q
u

e
n

c
y

0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand index

fr
e
q
u
e
n
c
y

Figure 3.4: The Gibbs sampling for the Full-GMM model of the dataset
shown in Figure 3.3, with the estimated partition (left), the obtained error
rate (middle) and the Rand Index (right).

In order to compare with future results, obtained by the Parsimonious
GMMs, discussed in Subsection 3.5.8, we give, in Table 3.3, the resulted val-
ues for the marginal likelihood (ML), log-MAP, Rand index (RI), error rate
(ER) values, the number of parameters to estimate and the Gibbs sampler



time processing (in seconds). Note that the marginal likelihood is mostly
needed for the Bayes factor computation, that offers a Bayesian comparison
and selection of the models. We discuss this in detail in Subsection 3.5.9.

ML log-MAP RI ER # parameters Cpu time (s)

-861.6041 -855.38 1 0 11 145.72

Table 3.3: The obtained marginal likelihood (ML), log-MAP, Rand index
(RI), error rate (ER) values, the number of parameters to estimate and the
time processing (in seconds) for the Gibbs sampling for GMM for the two
class simulated dataset.

We also applied the Gibbs sampler with two components Full-GMM to
the Old Faithful Geyser and Iris dataset. The obtained results are given in
Figure 3.5.
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Figure 3.5: Gibbs sampling partitions and model estimates for a two-
component full-GMM model obtained for the Old Faithful Geyser dataset
(left) and Iris dataset (right).

A numerical computation for the Old Faithful Geyser, and Iris dataset
obtained by learning the two component Full-GMM with the Gibbs sampling
approach, is given by the marginal likelihood (ML), log-MAP, Rand index
(RI), error rate (ER) values, the number of parameters to estimate and the
Gibbs sampler time processing (in seconds). This is provided in Table 3.4.

Data et ML log-MAP # parameters Cpu time (s)

Old Faithful Geyser -428.60 -409.83 11 146.46
Iris -272.88 -223.38 29 68.52

Table 3.4: The obtained marginal likelihood (ML), log-MAP, the number
of parameters to estimate and the time processing (in seconds) for the Gibbs
sampling GMM on the Old Faithful Geyser and Iris dataset.



Naturally, the Gibbs sampling for Parsimonious GMMs was investigated,
and we study it in the next subsection.

3.5.8 Bayesian inference of parsimonious GMMs via Gibbs
sampling

As outlined in Bensmail et al. (1997), the approach of Banfield and Raftery
(1993) that infers the parsimonious mixture with EM algorithm has some
limitations, for example: no assessment of the uncertainty about the clas-
sification, as it gives only point estimation, the shape matrix has to be
specified by the user, prior group probabilities are assumed to be equal,
etc. Thus, Bensmail and Meulman (2003); Bensmail et al. (1997); Bensmail
(1995) proposed a new Bayesian approach which overcomes these difficulties.
This approach consists in exact Bayesian inference via Gibbs sampling and
the calculation of Bayes Factors that is used for simultaneously choosing
the models and the number of groups. The computation of the Bayes Fac-
tor is based on the Laplace-Metropolis estimator (Lewis and Raftery, 1994;
Raftery, 1996), where the marginal likelihood is computed via the posterior
simulation output.

Consider the Bayesian inference for the multivariate parsimonious Gaus-
sian mixture model, with the eigenvalue decomposition of the covariance
matrix. Recall that the MCMC approaches provide methods for estimating
the model consisting of: the partitions z = {z1, . . . , zn} and the mixture
parameters θ = {π,θ1, . . . ,θK} where for each group k we have the mean
vector and the covariance matrix: θk = {µk,Σk}. Bensmail and Meulman
(2003); Bensmail et al. (1997); Bensmail (1995) used conjugate priors for
the model parameters π and θ as in Diebolt and Robert (1994); Tanner and
Wong (1987), where the prior distributions over the mixture proportions π
is a Dirichlet distribution, π ∼ Dir(α), with α = {α1, . . . , αk} and the prior
distribution for the mean vector, conditional on the covariance matrix is a
multivariate normal distribution, µk|Σk ∼ N (µ0,Σk/κ0). The prior for the
covariance matrix Σk depends on the selected parsimonious GMM. There-
fore, the simulation step for this parameter varies according to the given
priors. Table 3.5 gives the prior for the different parsimonious GMMs used
in Bensmail and Meulman (2003); Bensmail et al. (1997); Bensmail (1995),
where eigenvalue decomposition for the covariance matrix is considered.

Also, the model selection problem was considered in Bensmail and Meul-
man (2003); Bensmail et al. (1997); Bensmail (1995), where the approximate
Bayes Factors from the Gibbs sampler output using the Laplace-Metropolis
estimator was used to simultaneously choose the number of groups and the
eigenvalue decomposition of the parsimonious GMM. On the other hand,
in order to facilitate the task of computing the marginal likelihoods, in-
formation criteria can be also used in the Bayesian inference, like MCMC
algorithms, to compare performance of the different competitive models (see



Model Prior Applied to

λI IG λ
λkI IG λk

λDADT IW Σ = λDADT

λkDADT IG and IW λk and Σ = DADT

λDAkD
T IG each diagonal element of λAk

λkDAkD
T IG each diagonal element of λkAk

λDkADT
k IG each diagonal element of λA

λkDkADT
k IG each diagonal element of λkA

λDkAkD
T
k IG and IW λ and Σk = DkAkD

T
k

Table 3.5: Bayesian Parsimonious Gaussian mixture models via eigenvalue
decomposition with the associated prior as in Bensmail and Meulman (2003);
Bensmail et al. (1997); Bensmail (1995).

for example Biernacki and Govaert (1998)).
In the next section, we present the model selection and comparison in the

Bayesian formulation and investigate it’s use for mixture models, including
Gaussian mixtures and their parsimonious counterparts.

3.5.9 Bayesian model selection and comparison using Bayes
Factors

For the non-Bayesian parametric approach, one important task is the esti-
mation of number of components in the mixture. This issue is also encoun-
tered in the Bayesian context, referred to as the Bayesian model selection
(Wasserman, 2000). We discussed that for the MAP approach where, the
choice of the optimal number of mixture components and the best model
structure, can still be performed via modified penalized log-likelihood cri-
teria such as a modified version of BIC as in (Fraley and Raftery, 2007a)
computed for the posterior mode. In this section, we discuss a more general
Bayesian approach that is the Bayes Factors (Kass and Raftery, 1995).

The problem of the model selection in the finite Bayesian mixture model-
based clustering can be tackled by generally using the Bayes Factors (Kass
and Raftery, 1995), as in Bensmail et al. (1997); Bensmail (1995). Bayes
Factors provide a general way to select and compare the models in (Bayesian)
statistical modeling by comparing the marginal likelihood of the models.
They have been widely studied in the case of mixture models (Basu and
Chib, 2003; Bensmail et al., 1997; Carlin and Chib, 1995; Gelfand and Dey,
1994; Kass and Raftery, 1995; Raftery, 1996).

Suppose that we have two models candidates, M1 and M2, the Bayes
factor is given by:

BF12 =
p(X|M1)p(M1)

p(X|M2)p(M2)
. (3.16)



In this work, we assume that the two models have the same prior probability
p(M1) = p(M2). The Bayes factor (3.16) is thus given by

BF12 =
p(X|M1)

p(X|M2)
, (3.17)

which corresponds to the ratio between the marginal likelihoods of the two
models M1 and M2. It is a summary of the evidence for model M1 against
model M2 given the data X. Note that, often, for numerical computational
reasons, the logarithm of the Bayes Factor is considered:

logBF12 = log p(X|M1)− log p(X|M2). (3.18)

The marginal likelihood p(X|Mm) for model Mm, m ∈ {1, 2}, also called
the integrated likelihood, is given by

p(X|Mm) =

∫
p(X|θm,Mm)p(θm|Mm)dθm (3.19)

where p(x|θm,Mm) is the likelihood of model Mm with parameters θm and
p(θk|Mm) is the prior density of the parameters θm of model Mm. As we
can see in Equation (3.19), the existence of the integral, makes difficult the
analytic calculation of the marginal likelihood. Therefore, several MCMC
approximation methods have been proposed to estimate the marginal likeli-
hood. One of the simplest, is by sampling the parameters θ from the prior
distribution and approximating the marginal likelihood as:

p̂PR(X|Mm) =
1

ns

ns∑
t=1

p(X|Mm,θ
(t)
m ) (3.20)

where ns is the number of MCMC samples, the model parameters θ
(t)
m are

sampled according to the prior distributions. This computation can be seen
as the empirical mean of the likelihood values (Hammersley and Handscomb,
1964). However, this is an unstable and inefficient method, that needs a lot
of running time (Bensmail, 1995). Therefore, a wide number of alternative
methods were proposed to compute the marginal likelihood according to
the posterior distribution, instead of the prior distribution (M. and Roberts,
1993; Newton and Raftery, 1994; Rubin, 1987; Tanner and Wong, 1987). The
harmonic mean of the likelihood values computes the marginal likelihood
(Newton and Raftery, 1994) as follows:

p̂HM (X|Mm) =

{
1

ns

ns∑
t=1

p(X|θ(t)
m )−1

}−1

. (3.21)

This converges practically in a correct value of marginal likelihood p(X|Mm)
as the number of MCMC samples becomes high. However, it can lead to



unstable results. A modification of Equation (3.21), was than proposed, to
give more accurate solution for the resulting estimated marginal likelihood
(Gelfand and Dey, 1994). The approximation of the marginal likelihood, in
this case, is given by

p̂GD(X|Mm) =
1

ns

ns∑
t=1

{
p(θ

(t)
m |X)

p(X|θ(t)
m )p(θ

(t)
m )

}
. (3.22)

Another estimation of the marginal likelihood with Gibbs sampling from the
posterior was proposed by Chib (1995), where he uses directly the Bayes rule,
to get the marginal likelihood. The resulting approximation of the marginal
likelihood is then given by

p̂Chib(X|Mm) =
p(X|θ̂m)p(θ̂m)

ns∏
i=1

p(θ̂
(i)

m |x, θ̂
(j)

m (j < i))

. (3.23)

Finally, one more accurate approximation of the marginal likelihood,
by estimating consecutively the posterior of the model parameters with
the Gibbs sampling, is the Laplace-Metropolis approximation (Lewis and
Raftery, 1994; Raftery, 1996). This method shown to give accurate results
in (Lewis and Raftery, 1994; Raftery, 1996) and then used as the Bayesian
model selection in Bensmail and Meulman (2003); Bensmail et al. (1997);
Bensmail (1995) giving appropriate results for the parsimonious models that
we assume in this work, thus we investigated it more in details future in our
experimentations. The equation computing the marginal likelihood can be
summarized by:

p̂Laplace(X|Mm) = (2π)
νm
2 |Ĥ|

1
2 p(X|θ̂m,Mm)p(θ̂m|Mm) (3.24)

where θ̂m is the posterior estimation of θm (posterior mode) for model Mm,
νm is the number of free parameters of the model Mm as given, for example
Table 4.1 for the mixture case, and Ĥ is minus the inverse Hessian of the
function log(p(X|θ̂m,Mm)p(θ̂m|Mm)) evaluated at the posterior mode of
θm, that is θ̂m. The matrix Ĥ is asymptotically equal to the posterior
covariance matrix (Lewis and Raftery, 1994), and is computed as the sample
covariance matrix of the posterior simulated sample.

Once the estimation of Bayes Factors is obtained, it can be interpreted
as described in Table 3.6 as suggested by Jeffreys (1961), see also Kass and
Raftery (1995).

Bayes factors are indeed the natural Bayesian criterion for model selec-
tion and comparison in the Bayesian framework and for which the criteria
such as BIC, AWE, etc represent approximations. The computation of these
criteria, namely the information criteria, are more simple and doesn’t need
the computation of the marginal likelihood.



BF12 2 log BF12 Evidence for model M1

< 1 < 0 Negative (M2 is selected)
1− 3 0− 2 Not bad
3− 12 2− 5 Substantial

12− 150 5− 10 Strong
> 150 > 10 Decisive

Table 3.6: Model comparaion and selection using Bayes factors.

3.5.10 Experimental study

The parsimonious models Celeux and Govaert (1995), where some of them
have been described in the Bayesian framework in Bensmail and Meulman
(2003); Bensmail et al. (1997); Bensmail (1995), have been all derived in a
Bayesian framework in this thesis and all implemented in MATLAB. In this
section, we experiment the Bayesian parsimonious models on simulations in
order to assess them in terms of model estimation selection and comparison.
We also consider application on a Old Faithful Geyser dataset.

Generally the Bayesian mixture model, which we investigate here, is not
a hierarchical model, the hyperparameters being known and given a priori
by the user. It is important and a challenging problem to find the best
hyperparameters values that fit at best the data. In this experimental study
we investigate the influence of changing the hyperparameter values on the
final result. This can be seen, somehow, as a model selection problem. The
final partitions are also assessed for the Gibbs sampling for the parsimonious
GMMs.

Consider the two spherical class dataset presented in subsection (3.5.7),
where the true model parameters are π1 = π2 = 0.5, µ1 = (8, 8)T and
µ2 = (2, 2)T and two spherical covariance matrices with different volumes:
Σ1 = 4 I2 and Σ2 = I2. We use the implemented Gibbs sampling algorithm
for parameter estimation. In order to assess the stability of the models with
respect to the values of the hyperparameters, we consider four situations
with different hyperparameter values. These are as follows. The hyperpa-
rameters ν0 and µ0 are assumed to be the same for the four situations and
their values are respectively ν0 = d+2 = 4 (related to the number of degrees
of freedom) and µ0 equals the empirical mean vecotr of the data. We variate
the two hyperparameters, κ0 that controls the prior over the mean and s2

0

that controls the covariance. The considered four situations are shown in
Table 5.12.

The Gibbs sampler is run to sample 2000 Gibbs samples, for each of these
models, ten times, with 10% burn-in, for the finite parsimonious Gaussian
mixture models. We also vary the number of components in the mixture,
from one to five, K = 1, . . . , 5. The best model, that fits at best the data,
that includes the best number of components and the best model structure,



Sit. 1 2 3 4

s20 max(eig(cov(X))) max(eig(cov(X))) 4 max(eig(cov(X))) max(eig(cov(X)))/4

κ0 1 5 5 5

Table 3.7: Four different situations the hyperparameters values.

is then selected according to the maximum marginal log-likelihood (Bayes
Factors). We consider and compare the four following models the spherical,
diagonal and general models, which correspond to, respectively, λI, λkI, λA
and λkDADT .

Figure 3.6 shows the model selection results for the four hyperparameters
varying situations and for a number of components varying from one to five,
(K = 1, . . . , 5). One can see that the actual spherical model λkI with the
three number of components, was selected for the four situations. Another
model, that can be considered to be the most competitive one, is the general
model with different volumes and the same orientation and shape between
the clusters (λkDADT ).
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Figure 3.6: Model selection with marginal log-likelihood for the two com-
ponent spherical dataset represented in Figure 3.3.



Table 3.8 shows the obtained marginal log-likelihood values for the four
models for the for situations of varying the hyperparameters shown in Ta-
ble 5.12. One can see that, according to the marginal log-likelihood, for all
the situations, the selected model is λkI, that is the one that corresponds to
the actual model, and has the correct number of mixture components (two).
Also, the models with the model structure with varying volumes (λkI and
λkDADT ) estimate a good number of clusters for the four situations, mean-
ing a stability over the variation of the hyperparameters.

Model λI λkI λA λkDADT

Sit. K̂ log ML K̂ log ML K̂ log ML K̂ log ML

1 3 -900.4241 2 −863.5121 3 -896.5311 2 -866.0787
2 2 -901.8706 2 −857.9103 2 -894.2924 2 -864.4517
3 2 -891.2702 2 −865.9100 2 -906.4263 2 -887.0174
4 3 -905.0301 2 −856.2335 2 -899.5766 2 -868.6876

Table 3.8: The marginal log-likelihood values for the finite and infinite parsimo-

nious Gaussian mixture models.

Additionally, Figure 3.7 shows the obtained partition for the fourth hy-
perparameter settings of Table 5.12 for different models. One can see differ-
ent geometrical forms corresponding to the different parsimonious models.
On top left the spherical covariance with equal volumes. On top right, the
best selected model that also corresponds to the actual model with spherical
covariance and different volumes. On bottom left, the diagonal model with
equal volume and the same shape, is represented. Finally the general model
with different volume but the same shape and orientation of the covariance
matrix structure can be observed on the bottom right of the figure.

In addition to the simulated data experiment discussed previously, we
also apply the implemented Gibbs sampling for the parsimonious GMMs on
the well known dataset, the Old Faithful Geyser data, shown in Figure 2.7.
The hyper-parameters for the treated parsimonious GMMs are set as follows:
κ0 = 5, ν = d + 2, Λ0 is equal to the covariance of the data and s2

0 is the
maximum eigenvalue of the covariance of the data. We vary the number of
clusters K from 1 to 10 for model selection. Five models, with the following
eigenvalue covariance decomposition, are studied in this experiment: λkI,
λkA, λDADT , λkDADT and the Full-GMM λkDkAkD

T
k .

First, Figure 3.8 shows the model selection results by using the marginal
log-likelihood given in Equation (3.24). One can see that, except the Full-
GMM that overestimates the number of components (K̂ = 5), the other
models select the number of components (K̂ = 2). The best model that is
the one with the covariance decomposition λkDADT (a different volumes
but equal orientations and shapes for the components).

As previously mentioned, the computation of the marginal likelihood can
be simplified by computing approximations for Bayes Factors, namely infor-
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Figure 3.7: The obtained partitions of the Gibbs sampling for the parsimo-
nious GMMs over two component spherical dataset represented in Figure 3.3.
The fourth hyperparameter setting of Table 5.12 is used.

mation criteria. In this experiment, we compute the following information
criteria: BIC, AIC, ICL and AWE. The corresponding results are shown in
Figure 3.9. It shows that, for the Bayesian inference using Gibbs sampling,
the values computed for the AWE criteria, descend also more sharply then
the BIC, ICL or AIC criteria meaning a more decisive model selection for
the parsimonious GMMs.

3.6 Conclusion

Up to here, the traditional Bayesian and non-Bayesian parametric mixture
modeling approaches were discussed. In this chapter, we first described
the general Bayesian GMM modeling, and then investigated the Bayesian
parsimonious GMMs, which offer a great modeling flexibility. We focused on
the inference using MCMC, and implemented, and assessed dedicated Gibbs
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Figure 3.8: Model selection using the Bayes Factors for the Old Faithful
Geyser dataset. The parameters are estimated with Gibbs sampling.

sampling algorithm. We provided a way to answer the main questions: how
many components are needed and what is the best model structure to fit at
best the data. The Bayes Factor, or some approximation of it have outlined
to be one solution to this issue: the optimal number of components (e.g.
clusters) and the best model structure (that is the eigenvalue decomposition
of covariance matrix) for the parsimonious models.

However, this extra step, for selecting the number of clusters, can be
omitted by using one alternative approach, that treats this problem of
model selection in a different way (Hjort et al., 2010). This is the Bayesian
non-parametric (BNP) alternative. In the next chapter, the Bayesian non-
parametric (BNP) model that provides a flexible alternative model to the
Bayesian, and non-Bayesian, parametric mixture models, is introduced. We
propose new Bayesian non-parametric mixture models by introducing par-
simony for the standard Bayesian non-parametric approach.
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Figure 3.9: Model selection for the Old Faithful Geyser dataset by using
BIC (top left), AIC (top right), ICL (bottom left), AWE (bottom right). The
models are estimated by Gibbs sampling.



- Chapter 4 -

Dirichlet Process Parsimonious Mixtures (DPPM)

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 60

4.2 Bayesian non-parametric mixtures . . . . . . . . 61

4.2.1 Dirichlet Processes . . . . . . . . . . . . . . . . . . 62
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4.1 Introduction

In the previous chapters, we addressed the problem of model-based cluster-
ing by fitting finite Gaussian mixture, first in a MLE framework by relying
on the EM algorithm, and then by mainly Bayesian MCMC sampling. We
therefore tried to answer the question of how to fit at best a model to a
complex data structure, while providing the well suited number of mixture
components, and the more adapted model structure, in particular for the
Bayesian parametric parsimonious GMMs. The analysis scheme was mainly
two fold, that is, the selection of a model from previously estimated model
candidates with different model structures, and in particular with different
number of components. However, often, in a complex data, the scientist may
not well select the good models (by supposing a bad number of components
(clusters)) to fit the data, and as a result, they may not be well adapted.

In this chapter we will tackle the problem of model-based clustering,
this is the one of Bayesian non-parametric mixture modeling. We discuss
the Bayesian non-parametric approach of the Gaussian mixture model. We
also propose a new Bayesian non-parametric (BNP) formulation of the par-
simonious Gaussian mixture models, with the eigenvalue decomposition of
the group covariance matrix for each component mixture which has proven
its flexibility in cluster analysis in the parametric case (Banfield and Raftery,
1993; Bensmail and Meulman, 2003; Bensmail et al., 1997; Bensmail, 1995;
Bensmail and Celeux, 1996; Celeux and Govaert, 1995; Fraley and Raftery,
2002, 2007a, 2005).

We develop new Dirichlet Process mixture models with parsimonious
covariance structure, which results in Dirichlet Process Parsimonious Mix-
tures (DPPM). DPPMs represent a Bayesian non-parametric formulation of
both the non-Bayesian and the Bayesian parsimonious Gaussian mixture
models (Bensmail and Meulman, 2003; Bensmail et al., 1997; Bensmail,
1995; Bensmail and Celeux, 1996; Celeux and Govaert, 1995; Fraley and
Raftery, 2002, 2007a, 2005). The proposed DPPM models are Bayesian
parsimonious mixture models with a Dirichlet Process prior and thus pro-
vide a principled way to overcome the issues encountered in the parametric
Bayesian and non-Bayesian case and allow to automatically and simultane-
ously infer the model parameters and the optimal model structure from the
data, from different models, going from simplest spherical ones to the more
complex standard general one. We develop a Gibbs sampling technique for
maximum a posteriori (MAP) estimation of the various models and provide
an unifying framework for model selection and models comparison by us-
ing namely Bayes factors, to simultaneously select the optimal number of
mixture components and the best parsimonious mixture structure. The pro-
posed DPPM are therefore more flexible in terms of modeling and their use
in clustering, and automatically infer the number of clusters from the data.



We first provide an account on BNP mixture modeling in the next section
and introduce some concepts needed for the developed Dirichlet Process par-
simonious mixture models. Also, in order to validate our new approach, in
the next chapter we discuss an experimental protocol for the generated data
sets and real world data sets. The Bayesian parametric approach experi-
mental protocol was also investigated in this chapter to make comparisons
with the new proposed Dirichlet Process Parsimonious mixture approach.

4.2 Bayesian non-parametric mixtures

The Bayesian and non-Bayesian finite mixture models, described in the pre-
vious chapters, are in general parametric and may not be well adapted
to represent complex and realistic data sets. Recently, the Bayesian non-
parametric (BNP) formulation of mixture models, that goes back to Fergu-
son (1973) and Antoniak (1974), took much attention as a non-parametric al-
ternative for formulating mixtures. The Bayesian non-parametric approach
fits a mixture model to the data in a one fold scheme, rather then compar-
ing multiple models that vary in complexity (regarding mainly the number
of mixture components in a two fold strategy). The BNP methods (Hjort
et al., 2010; Navarro et al., 2006; Orbanz and Teh, 2010; Robert, 1994; Teh
and Jordan, 2010) have indeed recently become popular due to their flexible
modeling capabilities and advances in inference techniques, in particular for
mixture models, by using namely MCMC sampling techniques (Neal, 2000;
Rasmussen, 2000) or variational inference ones (Blei and Jordan, 2006).
BNP methods for clustering (Hjort et al., 2010; Robert, 1994), including
Dirichlet Process Mixtures (DPM) and Chinese Restaurant Process (CRP)
mixtures (Antoniak, 1974; Ferguson, 1973; Pitman, 1995; Samuel and Blei,
2012; Wood and Black, 2008) represented as Infinite Gaussian Mixture Mod-
els (IGMM) Rasmussen (2000), provide a principled way to overcome the
issues encountered in standard model-based clustering and classical Bayesian
mixtures for clustering. BNP mixtures for clustering are fully Bayesian ap-
proaches that offer a principled alternative to jointly infer the number of
mixture components (i.e clusters) and the mixture parameters, from the
data, rather than in a two-stage approach as in standard Bayesian and
non-Bayesian model-based clustering (Hjort et al., 2010; Rasmussen, 2000;
Samuel and Blei, 2012). By using general processes as priors, they allow
to avoid the problem of singularities and degeneracies of the MLE, and to
simultaneously infer the optimal number of clusters from the data, in a one-
fold scheme, rather than in a two-fold approach as in standard model-based
clustering. They also avoid assuming restricted functional forms and thus
allow the complexity and accuracy of the inferred models to grow as more
data is observed. They represent a good alternative to the difficult problem
of model selection in parametric mixture models.



From the generative point of view, the Bayesian non-parametric mix-
ture assumes that the observed data are governed by an infinite number of
components, but only a finite number of them does actually generate the
data. The term of non-parametric here does not mean that there are no pa-
rameters, but rather means that the number of parameters grows with the
number of data, in such a way that only a (small) finite number of clusters
will be actually active. This is achieved by assuming a general process as
prior on the infinite possible partitions, which is not restrictive as in clas-
sical Bayesian inference, in such a way that only a (small) finite number of
clusters will be actually active. Dirichlet Process (Antoniak, 1974; Ferguson,
1973; Samuel and Blei, 2012) are commonly used as prior for the Bayesian
non-parametric models.

In order to understand better the generative process for the Bayesian
non-parametric mixture models, in the next section, we discuss the Dirich-
let Process and some of it’s possible equivalence as the Polya Urn scheme
(Blackwell and MacQueen, 1973; Hosam, 209), the Stick Breaking construc-
tion (Sethuraman, 1994), and the Chinese Restaurant Process (CRP) (Al-
dous, 1985; Pitman, 2002; Samuel and Blei, 2012). Then the Dirichlet Pro-
cess mixture models and the generative process are introduced.

4.2.1 Dirichlet Processes

Bayesian non-parametric priors were developed (Ferguson, 1974; Freedman,
1965), however in this work we are mostly focused on the Dirichlet Process
prior.

Suppose a measure space Θ with a probability distribution on that
space G0. A Dirichlet Process (DP) (Ferguson, 1973) is a stochastic pro-
cess, defining distribution over distributions, and has two parameters: the
scalar concentration parameter α > 0 and the base measure G0. Each draw
from a Dirichlet Process is a random probability measure G over Θ, such
that for a finite measurable partition (A1, . . . Ak) of Θ, the random vector
(G(A1), . . . G(Ak)) is distributed as a finite dimensional Dirichlet distribu-
tion with parameters (αG0(A1), . . . , αG0(Ak)), that is:

(G(A1), . . . G(Ak)) ∼ Dir(αG0(A1), . . . , αG0(Ak)).

We note that G is distributed according to a Dirichlet Process with base
distribution G0 and the concentration parameter α, that is:

G ∼ DP(α,G0). (4.1)

The Dirichlet Process in Equation (4.1), has therefore two parameters: the
base measure G0, which can be interpreted as the mean of the DP, meaning
that, the expected measure, for any set A ⊂ Θ, of the random sample of the
Dirichlet process and equals to E[G(A)] = G0(A), and the concentration



parameter α. This parameter can be interpreted as an inverse variance
V [G(A)] = G0(A)(1−G0(A))/α+ 1. Larger the α parameter is, smaller the
variance will be, and the Dirichlet Process will concentrate more of it’s mass
on the mean. As a result, this parameter controls the number of clusters that
appear in the data. The parameter α is also named the strength parameter
or mass parameter (Teh, 2010).

The Dirichlet process has very interesting properties for the clustering
perspective, as it provides the possibility of estimating the mixture com-
ponents and respectively their number from the data. Assume there is a
parameter θ̃i following a distribution G, that is θ̃i|G ∼ G. Modeling with
DP means that we assume that the prior over G is a DP, that is, G is it-
self generated from a DP G ∼ DP(α,G0). Thus, generating parameters and
thus distributions from a DP can be summarized by the following generative
process:

θ̃i|G ∼ G, ∀i ∈ 1, . . . , n,
G|α,G0 ∼ DP(α,G0)· (4.2)

Note that the resulting random distribution G drawn from the Dirichlet
Process, is from the same space as the base measure G0. For example, if G0

is univariate Gaussian then G will result a distribution over R, as well as G
is multivariate Gaussian if the base measure G0 is a multivariate Gaussian
distribution.

One of the main property of DP says that, draws from DP are discrete.
With this consideration, there is a strictly positive probability that multiple
observations θ̃i, takes identical values within the set (θ̃1, · · · , θ̃n). The DP
therefore places its probability mass on a countability infinite collection of
points, also called atoms θk, ∀ k = 1, 2, . . ., that is an infinite mixture of
Dirac deltas (Ferguson, 1973; Samuel and Blei, 2012; Sethuraman, 1994):

G =

∞∑
k=1

πkδθk θk|G0 ∼ G0, k = 1, 2, ..., (4.3)

where πk represents the probability assigned to the kth atom which satisfy∑∞
k=1 πk = 1, and θk is the location or value of that component (atom).

These atoms are drawn independently from the base measure G0. Hence,
according to the DP process, the generated parameters θ̃i exhibit a cluster-
ing property, that is, they share repeated values with positive probability
where the unique values of θ̃i shared among the variables are independent
draws for the base distribution G0 (Ferguson, 1973; Samuel and Blei, 2012).
The Dirichlet process therefore provides a very interesting approach for clus-
tering perspective, when we do not have a fixed number of clusters, in other
words having an infinite mixture saying K tends to infinity.

Different representations of the Dirichlet Process can be found in the
literature. We describe the main representations, that is, the Pólya Urn



representation, the Chinese Restaurant Process and the Stick-breaking con-
struction. These representations can then be used for the developed Dirichlet
Process mixtures models.

4.2.2 Pólya Urn representation

Suppose we have a random distribution G drawn from a DP followed by
repeated draws (θ̃1, . . . , θ̃n) from that random distribution, Blackwell and
MacQueen (1973) introduced a Pólya urn representation of the joint distri-
bution of the random variables (θ̃1, . . . , θ̃n), that is

p(θ̃1, . . . , θ̃n) = p(θ̃1)p(θ̃2|θ̃1)p(θ̃3|θ̃1, θ̃2) . . . p(θ̃n|θ̃1, θ̃2, . . . , θ̃n−1), (4.4)

which is obtained by marginalizing out the underlying random measure G:

p(θ̃1, . . . , θ̃n|α,G0) =

∫ ( n∏
i=1

p(θ̃i|G)

)
dp(G|α,G0) (4.5)

and results in the following Pólya urn representation for the calculation of
the predictive terms of the joint distribution (4.4):

θ̃i|θ̃1, ...θ̃i−1 ∼ α

α+ i− 1
G0 +

i−1∑
j=1

1

α+ i− 1
δθ̃j (4.6)

∼ α

α+ i− 1
G0 +

Ki−1∑
k=1

nk
α+ i− 1

δθk (4.7)

where Ki−1 = max{zj}i−1
j=1 is the number of clusters after i− 1 samples, nk

denotes the number of times each of the parameters {θk}∞k=1 occurred in the
set {θ̃}ni=1.

The DPPM model implements the Chinese Restaurant process represen-
tation of the Dirichlet Process, that provides a principled way to overcome
the issues in standard model-based clustering and classical Bayesian mix-
tures for clustering.

4.2.3 Chinese Restaurant Process (CRP)

Consider the unknown cluster labels z = (z1, . . . , zn), where each value zi is
an indicator random variable that represents the label of the unique value
θzi of θ′i such that θ′i = θzi for all i ∈ {1, . . . , n}. The CRP provides a
distribution on the infinite partitions of the data, that is a distribution over
the positive integers 1, . . . , n. Consider the following joint distribution of
the unknown cluster assignments (z1, . . . , zn):

p(z1, . . . , zn) = p(z1)p(z2|z1) . . . p(zn|z1, z2, . . . , zn−1)· (4.8)



From the Pólya urn distribution (Equation (4.7)), each predictive term of
the joint distribution (Equation (4.8)) is given by the following:

p(zi = k|z1, ..., zi−1;α) =
α

α+ i− 1
δ(zi,Ki−1 + 1) +

Ki−1∑
k=1

nk
α+ i− 1

δ(zi, k)·

(4.9)
where nk =

∑i−1
j=1 δ(zj , k) is the number of indicator random variables tak-

ing the value k, and Ki−1 + 1 is the previously unseen value. From this
distribution, one can therefore allow assigning new data to possibly pre-
viously unseen (new) clusters as the data are observed, after starting with
one cluster. The distribution on partitions induced by the sequence of condi-
tional distributions in Equation (4.9) is commonly referred to as the Chinese
Restaurant Process (CRP).

The CRP name relates the following interpretation. Suppose there is
a restaurant with an infinite number of tables and in which customers are
entering and sitting at tables. We assume that customers are social, so that
the ith customer sits at table k with probability proportional to the number
of already seated customers nk (k ≤ Ki−1 being a previously occupied table),
and may choose a new table (k > Ki−1, k being a new table to be occupied)
with a probability proportional to a small positive real number α, which
represents the CRP concentration parameter.

In clustering with the CRP, customers correspond to data points and
tables correspond to clusters. A representation of the Chinese Restau-
rant Process can be seen in the Figure 4.1. In CRP mixture, the prior

Figure 4.1: A Chinese Restaurant Process representation.

CRP(z1, . . . , zi−1;α) is completed with a likelihood with parameters θk for
each table (cluster) k (i.e., a multivariate Gaussian likelihood with mean
vector and covariance matrix in the GMM case), and a prior distribution
(G0) for the parameters. For example, in the GMM case, one can use a con-
jugate multivariate normal Inverse-Wishart prior distribution for the mean
vectors and the covariance matrices. This corresponds to the ith customer
sits at table zi = k chooses a dish (the parameter θzi) from the prior of that
table (cluster). The CRP mixture can therefore be summarized according



to the following generative process:

zi ∼ CRP(z1, . . . , zi−1;α)
θzi |G0 ∼ G0

xi|θzi ∼ p(.|θzi),
(4.10)

where the CRP distribution is given by Eq. (4.8), G0 is the base measure
(that can be also seen as the prior distribution) and p(xi|θzi) is a cluster-
specific density. Two examples of draws from the CRP with 500 data points
can be seen in Figure 4.2. One can see the difference when we vary the
concentration parameter α. On left of Figure 4.2 α = 10 and on right
α = 1. This clearly shows the property of the concentration parameter, that
is, when it is higher, more tables (or components when modeling with the
mixture model) will be generated. However, when α is small only a few
number of tables (cluster) will be visited.
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Figure 4.2: A draw from a Chinese Restaurant Process sampling with 500
data points and α = 10 (left) and α = 1 (right). For α = 10, 31 components
are generated, and for α = 1 only 6 components are visited.

4.2.4 Stick-Breaking Construction

The fact that draws from the Dirichlet Process are discrete with probability
1 (Ferguson, 1973) is explicitly highlighted in the stick-breaking construc-
tion by (Sethuraman, 1994). The Stick-Breaking constructing is derived as
follows. Suppose the base measure G0 on the space Θ, it was showed that
the random measure G can be defined as an infinite sum of weight point
masses:

G =

∞∑
k=1

πkδθk ,

where the Dirac δθk being the probability measure concentrated at θk, and
πk ∀k = 1, 2, . . . being the weights. In the Stick-Breaking construction



the weights are assumed to be sampled from the infinite sequence of beta
distributions.

πk = π̃k

k−1∏
l=1

(1− π̃l). (4.11)

The independent sequence of the i.i.d random variables (π̃k)
∞
k=1 and (θk)

∞
k=1

being sampled as:

π̃k|α,G0 ∼ Beta(1, α),
θk|α,G0 ∼ G0,

(4.12)

where the sequence (πk)
∞
k=1 satisfies

∑∞
k=1 πk = 1 with probability 1. The

stick breaking process is noted by π ∼ GEM(α) (”GEM” stands for Griffiths,
Engen, and McCloskey (Pitman, 2002; Teh, 2010)). Example of samples for
the stick breaking process is showed in Figure 4.3 with respectively α =
1, 2 and 5.
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Figure 4.3: A Stick-Breaking Construction sampling with α = 1 (top),
α = 2 (middle) and α = 5 (bottom).

Because of it’s richness, computation ease and interpretability, the Dirich-
let Process (DP) is one of the most important random probability measures
that are mostly used for the Bayesian non-parametric models. The result-
ing Bayesian non-parametric mixture using DP prior is called the Dirichlet
Process mixture models. In the next section, we rely on the DP formulation
of mixture models to develop DP parsimonious mixture models.

4.2.5 Dirichlet Process Mixture Models

The idea of DP mixture models is to incorporate the Dirichlet Process prior
into the Bayesian mixture model shown in Equation (3.1). Clustering with



DP, adds a third step to the DP generative model (4.2), that is, the random
variables xi, given the distribution parameters θ̃i which are generated from
a DP, are generated from a conditional distribution p(.|θ̃i).

This is the DP Mixture model (DPM) (Antoniak, 1974; Escobar, 1994;
Samuel and Blei, 2012; Wood and Black, 2008). The generative process
DPM, is therefore given by:

G|α,G0 ∼ DP (α,G0)

θ̃i|G ∼ G

xi|θ̃i ∼ p(xi|θ̃i)
(4.13)

where p(xi|θ̃i) is a cluster-specific density. Figure 4.4 shows the graphical
representation of the DPM model.

Figure 4.4: Probabilistic graphical model representation of the Dirichlet
Process Mixture Model (DPM). The data are supposed to be generated from
the distribution p(xi|θ̃i) parametrized with θ̃i which are generated from a
DP.

When K tends to infinity, it can be shown that the finite Bayesian
mixture model (4.15) converges to a Dirichlet process mixture model (Ish-
waren and Zarepour, 2002; Neal, 2000; Rasmussen, 2000). The Dirichlet
process has a number of properties which make inference based on this non-
parametric prior computationally tractable. It has a interpretation in term
of the CRP mixture (Pitman, 2002; Samuel and Blei, 2012). It has the
property that random parameters drawn from a DP exhibit a clustering
property, which connects the DP to the CRP. Consider a random distribu-
tion drawn from DP G ∼ DP (α,G0), followed by a repeated draws from
that random distribution θ̃i ∼ G , ∀i ∈ 1, . . . , n. The structure of shared
values defines a partition of the integers from 1 to n, and the distribution of
this partition is a CRP (Ferguson, 1973; Samuel and Blei, 2012). The Chi-
nese Restaurant process construction used in the Infinite Gaussian mixture
model introduced by Rasmussen (2000), where the cluster specific density
p(xi|θ̃i) was considered to be a univariate normal density.



4.2.6 Infinite Gaussian Mixture Model and the CRP

Rasmussen (2000) developed the infinite mixture of the univariate GMMs,
defining Normal-Gamma prior distribution as base measure (prior) over the
corresponding mixture components, that is the mean µk and the variance σ2

k

for component k. However, this work focuses on the multivariate data, as
in Wood and Black (2008); Wood et al. (2006). Thus, the base measure G0

may be a multivariate normal Inverse-Wishart conjugate prior distribution
as in Wood and Black (2008); Wood et al. (2006).

G0 = N (µ0, κ0)IW(ν0,Λ0), (4.14)

where (µ0, κ0, ν0,Λ0) are the Bayesian Gaussian mixture hyperparameters
discussed in Section 3.3.

The generative process for the infinite Gaussian mixture model based on
the Chinese Restaurant Process (CRP) can be summarized as:

zi|α ∼ CRP(z1, . . . , zi−1;α),
µzi |µ0, κ0 ∼ N (µ0, κ0),
Σzi |Λ0, ν0 ∼ IW(ν0,Λ0),

xi|θzi ∼ N (xi|µzi ,Σzi).

(4.15)

Figure 4.5 shows the probabilistic graphical model for the Chinese Restau-
rant Process mixture model. Note that, in the Dirichlet Process mixture

Figure 4.5: Probabilistic graphical model for Dirichlet Process mixture
model using the Chinese Restaurant Process construction.

representation using CRP, the independence of the labels and the mixture
parameters are made explicitly apart. The data partition results from the
CRP, while the model parameters are drawn from the base measure, that
is, the Normal inverse-Wishart distribution followed by generating the data
from the cluster specific density, for example a multivariate Gaussian distri-
bution in the GMM case.

4.2.7 Learning the Dirichlet Process models

Given n observations X = (x1, . . . ,xn) modeled by the Dirichlet process
mixture model (DPM), the aim is to infer the parameters θ = (θ1, . . . ,θK),



the number K of latent clusters underlying the observed data and the latent
cluster labels z = (z1, . . . , zn).

The Dirichlet Process mixture models can not be analytically estimated.
This is performed by sampling inference techniques like MCMC sampling
methods, that are easily adapted to the non-parametric models. Here we
investigate the Gibbs sampling approach of the MCMC. This can be per-
formed similarly as in the Bayesian parametric mixture models described
in the previous chapter. The main idea of this sampling approach, is to
upgrade the model parameters, including the cluster labels, conditioned on
the rest of the model parameters and the observed data. Conjugate priors
are used in this work, however, we mention that in literature one can found
developed MCMC algorithms with non-conjugate priors on the DPM mod-
els Green and Richardson (2001); Görür and Edward Rasmussen (2010);
Maceachern (1994).

Given an initial mixture parameters θ(0), and a prior over the missing
labels z (here a conjugate Chinese Restuarant Process prior), the Gibbs
sampler, instead of estimating the missing labels z(t), simulates them from
their posterior distribution p(z(t)|X,θ(t)) at each iteration t. Recall that
the posterior is obtained by combining the prior with the likelihood. So, the
cluster labels zi are sampled from the posterior distributions given by:

p(zi = k|z−i,X,Θ, α) ∝ p(xi|zi; Θ)p(zi|z−i;α) (4.16)

where z−i = (z1, . . . , zi−1, zi+1, . . . , zn), and p(zi|z−i;α) is the prior predic-
tive distribution which corresponds to the CRP distribution computed as in
Equation (4.9). Then, given the completed data and the prior distribution
p(θ) over the mixture parameters, the Gibbs sampler generates the mixture
parameters θ(t+1) from the posterior distribution

p(θk|z,X,Θ−k, α;H) ∝
∏
i|zi=k

p(xi|zi = k;θk)p(θk;H) (4.17)

where Θ−k = (θ1, . . . ,θk−1,θk+1, . . . ,θKi−1) and p(θk;H) is the prior dis-
tribution for θk, that is G0, with H being the hyperparameters of the model.
Generally, these hyperparameters are specified a priori by the user, and are
not learned from the data. However, when using hierarchical methods they
are sampled from the data, making the model more flexible and adaptive.
This Bayesian sampling procedure produces an ergodic Markov chain of
samples (θ(t)) with a stationary distribution p(θ|X). Therefore, after initial
M burn-in steps in N Gibbs samples, the variables (θ(M+1), ...,θ(N)), can
be considered to be approximately distributed according to the posterior
distribution p(θ|X).

The DPM Gibbs sampling is derived in Pseudo-code 7.
Pseudo-code 7 can further be also simplified by integrating over the

model parameters θ and eliminating them from the Markov chain state,



Algorithm 6 Gibbs sampling for the conjugate priors DPM models

Inputs: Data set (x1, . . . ,xn) and # Gibbs sam-
ples

1: t← 1
2: Initialize the Markov chain state that consists of the labels z(t) =

(z
(t)
1 , . . . z

(t)
n ) and the model parameters θ

(t)

z(t)
.

3: for t = 2, . . . ,#samples do
4: for i = 1, . . . , n do

5: Sample a cluster label z
(t)
i from according to its posterior that is the

product of the likelihood and the prior over the cluster label, that
is a Chinese Restaurant Process prior distribution (see Equation
(4.16)).

6: For z
(t)
i , sample the a new model parameter θ

(t)

z(t)
for this component

according to the base distribution G0 (see Equation (4.14)).
7: end for
8: Select the represented components Ki−1 that is the number of unique

values of θ
(t)
z , thus removing the non representative model parameters

from the modeling representation.
9: for k = 1, . . . ,Ki−1 do

10: Sample the parameters θ
(t)
k from the posterior distribution condi-

tional on the data, cluster labels and hyperparameters (see Equation
(4.17)).

11: end for
12: end for

Outputs: The parameters vector chain of the mixture Θ̂ =
{π(t),µ(t),Σ(t)}, ∀t = 1, . . . , ns.

thus the sampling procedure reduces only to sampling the indicator labels
z. This algorithm is known as Rao-Blackwellized MCMC sampling or col-
lapsed Gibbs sampling (Andrieu et al., 2003; Casella and Robert, 1996;
Görür, 2007; Neal, 2000; Sudderth, 2006; Wood, 2007). However, the need
of estimating the model parameters in our developed parsimonious models,
described in the next section, makes this case not appropriate of this work.
We have therefore concentrated on the purpose of estimating all the mix-
ture parameters as well as the hidden cluster indicators. The parsimonious
models are discussed in the following section.



4.3 Chinese Restaurant Process parsimonious mix-

ture models

We previously saw how finite parsimonious mixture models were derived
from the finite mixture models framework. Clustering with parsimonious
models gives different opportunities, like reducing the number of parameters
to estimate in the model and giving different flexible models that control the
clusters structure in the data. Thus, to take benefit of these advantages in
the BNP framework, we develop parsimonious BNP models. We introduce
infinite multivariate Gaussian mixture model with the Chinese Restaurant
Process prior over the hidden labels z. The parsimony considered in the
eigenvalue decomposition of the covariance matrix is introduced for each
model component. We name this approach the Dirichlet Process Parsimo-
nious mixture (DPPM) model, that is equivalent to the Chinese Restaurant
Process Parsimonious Mixture Models or more generally the Infinite Parsi-
monious Gaussian Mixture Models.

Suppose the Chinese Restaurant Process Mixture, where the metaphor
of CRP is used to sample the labels. As in the Chinese Restaurant Process,
the clients visiting the restaurant are social, so that the ith customer will
sit at table k with probability proportional to the number of already seated
customers nk, and may choose a new table with a probability proportional
to a small positive real number α, which represents the CRP concentration
parameter. This is given by:

p(zi = k|z1, ..., zi−1) = CRP(z1, . . . , zi−1;α)

=

{ nk
i−1+α if k ≤ Ki−1
α

i−1+α if k > Ki−1
(4.18)

where k ≤ Ki−1 is a previously occupied table and k > Ki−1, k is a new
occupied table.

Suppose that, the data are Gaussian, then, the model parameters are
sampled according to the base distribution G0 that is a Normal distribution
for the mean vector and an inverse-Wishart distribution for the covariance
matrix.

We use the eigenvalue value decomposition described in section 2.4.3
which till now has been considered only in the case of parametric finite mix-
ture model-based clustering (Banfield and Raftery, 1993; Celeux and Gov-
aert, 1995), and Bayesian parametric finite mixture model-based clustering
(Bensmail and Meulman, 2003; Bensmail et al., 1997; Fraley and Raftery,
2007a, 2005). Recall that for the GMM we have the following prior form:

p(θ) = p(π|α)p(µ|Σ,µ0, κ0)p(Σ|µ, ν,Λ0)



where (α,µ0, κ0, ν,Λ0) are hyperparameters that can be tuned from the
data. A common choice is to assume conjugate priors, that is Dirichlet
distribution for the mixing proportions π as in Richardson and Green (1997)
Ormoneit and Tresp (1998), and a multivariate normal Inverse-Wishart prior
distribution for the Gaussian parameters, that is a multivariate normal for
the means µ and an Inverse-Wishart for the covariance matrices Σ as in
Fraley and Raftery (2007a, 2005) Bensmail et al. (1997).

The used priors on the model parameters depend on the type of the
parsimonious model (see Table 4.1). Thus, sampling the model parameters
varies according to the considered parsimonious mixture model. Indeed, yet
we investigated nine parsimonious models, covering the three families of the
mixture models: the general, the diagonal and the spherical family. The
parsimonious models therefore go from the simplest spherical one to the
more general full model. Table 4.1 summarizes the considered models and
the corresponding prior for each model used in Gibbs sampling. We note
that the resulting posterior distributions for the considered models are close
to those in Bensmail et al. (1997). The base distribution G0(µk) will be a
normal distribution (N ) for all the models.

# Decomposition Model-Type Prior Applied to

1 λI Spherical IG λ
2 λkI Spherical IG λk
3 λA Diagonal IG each diagonal element of λA
4 λkA Diagonal IG each diagonal element of λkA
5 λDADT General IW Σ = λDADT

6 λkDADT General IG and IW λk and Σ = DADT

7 λDAkD
T * General IG each diagonal element of λAk

8 λkDAkD
T * General IG each diagonal element of λkAk

9 λDkADT
k General IG each diagonal element of λA

10 λkDkADT
k General IG each diagonal element of λkA

11 λDkAkD
T
k * General IG and IW λ and Σk = DkAkD

T
k

12 λkDkAkD
T
k General IW Σk = λkDkAkD

T
k

Table 4.1: Considered Parsimonious GMMs via eigenvalue decomposition, the

associated prior for the covariance structure and the corresponding number of free

parameters where I denotes an inverse distribution, G a Gamma distribution and

W a Wishart distribution.



4.4 Learning the Dirichlet Process parsimonious

mixtures using Gibbs sampling

Given n observations X = (x1, . . . ,xn) modeled by the proposed Dirich-
let process parsimonious mixture (DPPM), the aim is to infer the num-
ber K of latent clusters underlying the observed data, their parameters
Ψ = (θ1, . . . ,θK) and the latent cluster labels z = (z1, . . . , zn). Note that,
in DPPM, the components are Gaussian so θk = {µk,Σk} where the co-
variance takes the eigenvector parametrization, so that according to each
parsimonious model we can have the following parameters: {λk,Dk,Ak},
representing respectively the volume, orientation and the shape for each
cluster. These parameters can also be constrained, to be equal, for each of
the component, obtaining that way a more parsimonious model.

In this section, we developed an MCMC Gibbs sampling technique, as
in Neal (2000); Rasmussen (2000); Wood and Black (2008), to learn the
proposed Bayesian non-parametric parsimonious mixture models. The first
form of Gibbs sampler goes back to Geman and Geman (1984) and was
proposed in a framework of Bayesian image restoration. A version very
close to it was introduced by Tanner and Wong (1987) under the name of
data augmentation for missing data problems, and was shown in Gelfand
and Smith (1990) and Diebolt and Robert (1994). The idea of the Markov
chain based on the Gibbs sampling relies on updating the parameters, the
hyperparameters, and the cluster labels for the proposed model. Updating
all these model variables are made according to their posterior distribution
conditional on all other variables. A summary of such a method can be
given as follows.

• Update the cluster labels conditional on the other indicators, all the pa-
rameters and hyperparameters of the model and the observed data.
• Update the mixture parameters: the mean vector and the covariance ma-

trix taking the eigenvector decomposition, conditional on the observed
data, class labels and the hyperparameters.
• Update the model hyperparameters, particularly the concentration hy-

perparameter α of the Dirichlet Process.

Sampling the hidden cluster labels The cluster labels zi are sampled
from the posterior distribution, which is given by:

p(zi = k|z−i,X,Θ, α) ∝ p(xi|zi; Θ)p(zi|z−i;α)

is calculated by multiplying the likelihood term p(xi|zi; Θ) with the prior
predictive distribution corresponding to the CRP distribution computed as
in Equation (4.18). Here the likelihood term would be a Gaussian distri-
bution N (xi;µi,Σi) where the specific family model: the spherical, the



diagonal or the general one, parametrizes the covariance matrices according
to the eigenvector decomposition. Note that the likelihood term is given for
each of the data point xi that is associated to it’s class label zi, and ac-
cording to the Dirichlet Process clustering property (Antoniak, 1974), when
grouping equal parameters θi we obtain the unique values that are the ac-
tive components θk. That is, when we choose to assign a data point xi
to the existing components, or a new active component will be created by
sampling according to the base distribution G0 that will be conditioned on
the eigenvalue decomposition of the covariance matrix.

Sampling the mixture parameters When the number of active com-
ponents in the mixture is known, the Gibbs sampler consists therefore in
sampling the mixture parameters from their posterior distribution. The pos-
terior distribution for θk given all the other variables is given by the product
of the likelihood distribution and p(θk;H) the prior distribution for θk, that
is a conjugate base distribution G0, with H the model hyperparameters.

p(θk|z,X,Θ−k, α;H) ∝
∏
i|zi=k

p(xi|zi = k;θk)p(θk;H)

where Θ−k = (θ1, . . . ,θk−1,θk−1, . . . ,θKi−1) are all the active model pa-
rameters except the one that is sampled θk.

Sampling the concentration hyperparameter The number of mixture
components in the models depends on the hyperparameter α of the Dirichlet
Process (Antoniak, 1974). Therefore it is natural to sample this hyperpa-
rameter, to make the model more flexible, avoiding fixing it an arbitrary
value for it. The method introduced by Escobar and West (1994) consists
in sampling α hyperparameter, by assuming a prior Gamma distribution
α ∼ G(a, b) with a shape hyperparameter a > 0 and scale hyperparam-
eter b > 0. Then, a variable η is introduced and sampled conditionally
on α and the number of clusters Ki−1, according to a Beta distribution
η|α,Ki−1 ∼ B(α+ 1, n). The resulting posterior distribution for the hyper-
parameter α is given by:

p(α|η,K) ∼ ϑηG (a+Ki−1, b− log (η))+(1− ϑη)G (a+Ki−1 − 1, b− log (η))
(4.19)

where the weights ϑη = a+Ki−1−1
a+Ki−1−1+n(b−log(η)) . The retained solution is the

one corresponding to the posterior mode of the number of mixture compo-
nents, that is the one that appears the most frequently during the sampling.

The MCMC Gibbs sampling technique, to learn the proposed Bayesian
non-parametric mixture models is derived in Pseudo-code 7.

Note that, the parameter vector is obtained by averaging the Gibbs sam-
ples for the partition that appears the most frequently during the sampling,
after removing the burn-in period.



Algorithm 7 Gibbs sampling for the proposed DPPM

Inputs: Data set (x1, . . . ,xn) and # Gibbs sam-
ples

1: Initialize the model hyperparameters H.
2: Start with one cluster K1 = 1,θ1 = {µ1,Σ1}
3: for t = 2, . . . ,#samples do
4: for i = 1, . . . , n do
5: for k = 1, . . . ,Ki−1 do
6: if (nk =

∑N
i=1 zik)− 1 = 0 then

7: Decrease Ki−1 = Ki−1 − 1; let {θ(t)} ← {θ(t)} \ θzi
8: end if
9: end for

10: Sample a cluster label z
(t)
i from the posterior:

p(zi|z\zi ,X,θ
(t), H) ∝ p(xi|zi,θ(t))CRP(z\zi ;α)

11: if z
(t)
i = Ki−1 + 1 then

12: Increase Ki−1 = Ki−1 + 1 (We get a new cluster) and sample a

new cluster parameter θ
(t)
zi from the conjugate prior distribution

NIW(µ0, κ0, ν0,Λ0).
13: end if
14: end for
15: for k = 1, . . . ,Ki−1 do

16: Sample the parameters θ
(t)
k from the posterior distribution.

17: end for
18: Sample the hyperparameter α(t) ∼ p(α(t)|Ki−1) from the posterior

(4.19)
19: z(t+1) ← z(t)

20: end for

Outputs: The parameters vector chain of the mixture Θ̂ =
{π(t),µ(t),Σ(t)}, ∀t = 1, . . . , ns.

Complexity of the algorithm The method complexity is mainly related
to the label zi and model parameters θi simulations, therefore it depends on
the number of components or classes in data and the dimension of model pa-
rameters. Therefore, the complexity of each Gibbs sampler is proportional
to the actual number of components (active components Ki−1 being esti-
mated automatically, as the data is learned), and randomly varies from one
iteration to another, depending on the posterior distribution of the number
of classes. Asymptotically, K tends to α log(n) when n tends to infinity
(Antoniak, 1974). Therefore, each sampler requires O(αn log(n)) operations
for sampling the class labels zi. The parameter simulation (the mean vector
and the covariance matrix), requires in turn, in the worst case (when the
covariance matrix takes the full mode) approximatively O

(
α log(n) d3

)
that



gives us a total complexity equal to O
(
α log(n)

(
n+ d3

))
.

Label switching problem Compared to the frequentist case, in particu-
lar due to the label switching problem when simulating the label indicators
does not effect the likelihood and the goodness of the model remains Red-
ner and Walker (1984), the problem of label switching has to be addressed
during the Bayesian inference, particularly in the MCMC techniques, when
the prior distribution is symmetric in the components of the mixture. This
phenomenon can produce unexpected results when label switching appears
during the MCMC samples. To deal with this problem, different strategies
were discussed in the literature.

One of the simplest way to deal with label switching is to use a constraint
on the model parameters, so that the MCMC algorithm will be forced to use
a unique labeling. For example suppose the model parameters θ1, . . . , θK .
One possible constraint is to enforce an increasing order on the parameters
like θ1 < . . . < θK . This strategy is used in Marin et al. (2005); Richard-
son and Green (1997). However, Celeux et al. (1999) showed that using
constrains on model parameters to deal with label switching can lead to
unsatisfactory result.

Celeux (1998) recommended to deal with the label switching problem
without using any constrains on the parameters and then using a clustering-
like algorithm at the end of the MCMC sampling when component label
switchings appear. A similar approach was used by Stephens (1999).

So what is suggested is that either to relabel the samples upon a visual
inspection or, what is suggested here, to cluster the obtained Gibbs samples
and to see when the label switching appears in order to possibly relabel the
samplers as suggested by Celeux (1998); Stephens (1999).

Model Selection and comparison for the DPPM This section pro-
vides the used strategy for model selection and comparison, that is the se-
lection of the best model from different parsimonious models of DPPM. We
use Bayes factors, described in Section 3.5.9. We approximate the marginal
likelihood by Laplace-Metropolis approximation that gives appropriate re-
sults for the parsimonious models that we assume in this work. We note
that, in the proposed DPPM models, as the number of components K is
itself a parameter in the model and is changing during the sampling, which
leads to parameters with different dimension, we compute the Hessian ma-
trix Ĥ in Equation (3.24) by taking the posterior samples corresponding to
the posterior mode of K. We performed experiments over the simulated and
real datasets in order to validate our Dirichlet Process Parsimonious Mix-
ture approach. The detailed results for the model selection with the Bayes
Factor is discussed in the next chapter.



4.5 Conclusion

In this chapter we presented Bayesian non-parametric parsimonious mixture
models for clustering. It is based on an infinite Gaussian mixture with an
eigenvalue decomposition of the cluster covariance matrix and a Dirichlet
Process, or by equivalence a Chinese Restaurant Process prior. This allows
deriving several flexible models and avoids the problem of model selection
encountered in the standard maximum likelihood-based and Bayesian para-
metric Gaussian mixture. We also proposed a Bayesian model selection an
comparison framework to automatically select, the best model, with the best
number of components, by using Bayes factors.

In the next chapter we investigate experiments over the simulated and
real world data sets.



- Chapter 5 -

Application on simulated data sets and real-world
data sets
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5.1 Introduction

This chapter is dedicated to an experimental study of the proposed models.
We performed experiments on both simulated and real data in order to
evaluate our proposed DPPM models. We assess their flexibility in terms
of modeling, their use for clustering and inferring the number of clusters
from the data. We show how the proposed DPPM approach is able to
automatically and simultaneously select the best model with the optimal
number of clusters by using the Bayes factors, which is used to evaluate the
results. We also perform comparisons with the finite model-based clustering
approach (as in Bensmail et al. (1997); Fraley and Raftery (2007a)), which
will be abbreviated as PGMM approach. We also use the Rand index to
evaluate and compare the provided partitions, and the misclassification error
rate when the number of estimated components equals the actual one.

For the simulations, we consider several situations of simulated data,
from different models, and with different levels of cluster separations, in or-
der to assess the efficiency of the proposed approach to retrieved the actual
partition with the actual number of clusters. We also assess the stability of
our proposed DPPMs models regarding the choice of the hyperparameters
values, by considering several situations and varying them. Then, we per-
form experiments on several real data sets and provide numerical results in
terms of comparisons of the Bayes factors (via the log marginal likelihood
values) and as well the Rand index and the misclassification error rate for
data sets with known actual partition. In the experiments, for each of the
compared approaches and for each model, each Gibbs is run ten times with
different initializations. Each Gibbs run generates 2000 samples for which
100 burn-in samples are removed. The solution corresponding to the highest
Bayes factor, of those ten runs, is then selected.

5.2 Simulation study

5.2.1 Varying the clusters shapes, orientations, volumes and
separation

In this experiment, we apply the proposed models on simulated data sim-
ulated according to different models, and with different level of mixture
separation, going from poorly separated mixtures to very-well separated
mixtures. To simulate the data, we first consider an experimental proto-
col close to the one used by Celeux and Govaert (1995) where the authors
considered the parsimonious mixture estimation within a MLE framework.
This therefore allows to see how do the proposed Bayesian non-parametric
DPPM perform compared to the standard parametric non-Bayesian one.
We note however that in Celeux and Govaert (1995) the number of com-



ponents was known a priori and the problem of estimating the number of
classes was not considered. We have performed extensive experiments in-
volving all the models and many Monte Carlo simulations for several data
structure situations. Given the variety of models, data structures, level of
separation, etc, it is not possible to display all the results in the paper. We
choose to perform in the same way as in the standard paper Celeux and
Govaert (1995) by selecting the results display, for the experiments on sim-
ulated data, fo six models of different structures. The data are generated
from a two component Gaussian mixture in R2 with 200 observations. The
six different structures of the mixture that have been considered to gener-
ate the data are: two spherical models: λI and λkI, two diagonal models:
λA and λkA and two general models λDADT and λkDADT . Table (5.1)
shows the considered model structures and the respective model parameter
values used to generate the data sets. Let us recall that the variation in

Model Parameters values

λI λ = 1
λkI λk = {1, 5}
λA λ = 1; A = diag(3, 1/3)
λkA λk = {1, 5}; A = diag(3, 1/3)

λDADT λ = 1; D =
[√

2
2 −

√
2

2 ;
√

2
2

√
2

2

]
λkDADT λk = {1, 5}; D =

[√
2

2 −
√

2
2 ;
√

2
2

√
2

2

]
Table 5.1: Considered two-component Gaussian mixture with different
structures.

the volume is related λ, the variation of the shape is related to A and the
variation of the orientation is related to D. Furthermore, for each type of
model structure, we consider three different levels of mixture separation,
that is: poorly separated, well separated, and very-well separated mixture.
This is achieved by varying the following distance between the two mixture
components %2 = (µ1 − µ2)T (Σ1+Σ2

2 )−1(µ1 − µ2). We consider the values
% = {1, 3, 4.5}. As a result, we obtain 18 different data structures with
poorly (% = 1), well (% = 3) and very well (% = 4.5) separated mixture
components. As it is difficult to show the figures for all the situations and
those of the corresponding results, in Figure 5.1, we show for three models
with equal volume across the mixture components, different data sets with
varying level of mixture separation. Respectively, in Figure 5.2, we show for
the models with varying volume across the mixture components, different
data sets with varying level of mixture separation.

We compare the proposed DPPM to the parametric PGMM approach in
model-based clustering (Bensmail et al., 1997; Bensmail, 1995; Bensmail and
Celeux, 1996), for which the number of mixture components was varying in
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Figure 5.1: Examples of simulated data with the same volume across the
mixture components: spherical model λI with poor separation (left), diagonal
model λA with good separation (middle), and general model λDADT with
very good separation (right).
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Figure 5.2: Examples of simulated data with the volume changing across
the mixture components: spherical model λkI with poor separation (left),
diagonal model λkA with good separation (middle), and general model
λkDADT with very good separation (right).

the range K = 1, . . . , 5 and the optimal number of mixture components was
selected by using the Bayes factor (via the log marginal likelihoods). For
these data sets, the used hyperparameters was as follows: µ0 was equal to
the mean of the data, the shrinkage κn = 5, the degree of freedom ν0 =
d+ 2, the scale matrix Λ0 was equal to the covariance of the data, and the
hyperparameter for the spherical models s2

0 as the greatest eigenvalue of Λ0.

5.2.2 Obtained results

Tables 5.2, 5.3 and 5.4 provide the obtained approximated log marginal
likelihoods obtained by the PGMM and the proposed DPPM models, for,
respectively, the equal (with equal clusters volumes) spherical data structure
model (λI) and poorly separated mixture (% = 1), the equal diagonal data
structure model (λA) and good mixture separation (% = 3), and the equal
general data structure model (λDADT ) and very good mixture separation
(% = 4.5). Tables 5.5, 5.6 and 5.7 provide the obtained approximated log
marginal likelihoods obtained by the PGMM and the proposed DPPM mod-
els, for, respectively, the different (with different clusters volumes) spherical



data structure model (λkI) and poorly separated mixture (% = 1), the dif-
ferent diagonal data structure model (λkA) with good mixture separation
(% = 3), and the different general data structure model (λkDADT ) with
very good mixture separation (% = 4.5).

DPPM PGMM

Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 2 -604.54 -633.88 -631.59 -635.07 -587.41 -595.63
λkI 2 -589.59 -592.80 -589.88 -592.87 -593.26 -602.98
λA 2 -589.74 -591.67 -590.10 -593.04 -598.67 -599.75
λkA 2 -591.65 -594.37 -592.46 -595.88 -607.01 -611.36

λDADT 2 -590.65 -592.20 -589.65 -596.29 -598.63 -607.74
λkDADT 2 -591.77 -594.33 -594.89 -597.96 -594.49 -601.84

Table 5.2: Log marginal likelihood values obtained by the proposed DPPM
and PGMM for the generated data with λI model structure and poorly sep-
arated mixture (% = 1).

DPPM PGMM

Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 2 -730.31 -771.39 -702.38 -703.90 -708.71 -840.49
λkI 2 -702.89 -730.26 -702.30 -704.68 -708.43 -713.58
λA 2 -679.76 -704.40 -680.03 -683.13 -686.19 -691.93
λkA 2 -685.33 -707.26 -688.69 -696.46 -703.68 -712.93

λDADT 2 -681.84 -693.44 -682.63 -688.39 -694.25 -717.26
λkDADT 2 -693.70 -695.81 -684.63 -688.17 -694.02 -695.75

Table 5.3: Log marginal likelihood values obtained by the proposed DPPM
and the PGMM for the generated data with λA model structure and well
separated mixture (% = 3).

DPPM PGMM

Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 2 -762.16 -850.66 -747.29 -746.09 -744.63 -824.06
λkI 2 -748.97 -809.46 -748.17 -751.08 -756.59 -766.26
λA 2 -746.05 -778.42 -746.32 -749.59 -753.64 -758.92
λkA 2 -751.17 -781.31 -752.66 -761.02 -772.44 -780.34

λDADT 2 -701.94 -746.11 -698.54 -702.79 -707.83 -716.43
λkDADT 2 -702.79 -748.36 -703.35 -708.77 -715.10 -722.25

Table 5.4: Log marginal likelihood values obtained by the proposed DPPM
and PGMM for the generated data with λDADT model structure and very
well separated mixture (% = 4.5).

From theses results, we can see that, the proposed DPPM, in all the
situations (except for the first situation in Table 5.2) retrieves the actual
model, with the actual number of clusters. We can also see that, except



DPPM PGMM

Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 3 -843.50 -869.52 -825.68 -890.26 -906.44 -1316.40
λkI 2 -805.24 -828.39 -805.21 -808.43 -811.43 -822.99
λA 2 -820.33 -823.55 -821.22 -825.58 -828.86 -838.82
λkA 2 -808.32 -826.34 -808.46 -816.65 -824.20 -836.85

λDADT 2 -824.00 -823.72 -821.92 -830.44 -841.22 -852.78
λkDADT 2 -821.29 -826.05 -803.96 -813.61 -819.66 -821.75

Table 5.5: Log marginal likelihood values and estimated number of clusters
for the generated data with λkI model structure and poorly separated mixture
(% = 1).

DPPM PGMM

Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 3 -927.01 -986.12 -938.65 -956.05 -1141.00 -1064.90
λkI 3 -912.27 -944.87 -925.75 -911.31 -914.33 -918.99
λA 3 -899.00 -918.47 -906.59 -911.13 -917.18 -926.69
λkA 2 -883.05 -921.44 -883.22 -897.99 -909.26 -928.90

λDADT 2 -903.43 -918.19 -902.23 -906.40 -914.35 -924.12
λkDADT 2 -894.05 -920.65 -876.62 -886.86 -904.45 -919.45

Table 5.6: Log marginal likelihood values obtained by the proposed DPPM
and PGMM for the generated data with λkA model structure and well sep-
arated mixture (% = 3).

DPPM PGMM

Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 2 -984.33 -1077.20 -1021.60 -1012.30 -1021.00 -987.06
λkI 3 -963.45 -1035.80 -972.45 -961.91 -967.64 -970.93
λA 2 -980.07 -1012.80 -980.92 -986.39 -992.05 -999.14
λkA 2 -988.75 -1015.90 -991.21 -1007.00 -1023.70 -1041.40

λDADT 3 -931.42 -984.93 -939.63 -944.89 -952.35 -963.04
λkDADT 2 -921.90 -987.39 -921.99 -930.61 -946.18 -956.35

Table 5.7: Log marginal likelihood values obtained by the proposed DPPM
and PGMM for the generated data with λkDADT model structure and very
well separated mixture (% = 4.5).

for two situations, the selected DPPM model, has the highest log marginal
likelihood value, compared to the PGMM. We also observe that the solutions
provided by the proposed DPPM are, in some cases more parsimonious than
those provided by the PGMM, and, in the other cases, the same as those
provided by the PGMM. For example, in Table 5.2, which corresponds to
data from poorly separated mixture, we can see that the proposed DPPM
selects the spherical model λkI, which is more parsimonious than the general
model λA selected by the PGMM, with a better misclassification error (see



Table 5.8). The same thing can be observed in Table 5.6 where the proposed
DPPM selects the actual diagonal model λkA, however the PGMM selects
the general model λkDADT , while the clusters are well separated (% = 3).

Also in terms of misclassification error, as shown in Table 5.8, the pro-
posed DPPM models, compared to the PGMM ones, provide partitions with
the lower miscclassification error, for situations with poorly, well or very-well
separated clusters, and for clusters with equal and different volumes (except
for one situation).

PGMM 48± 8.05 9.5± 3.68 1± 0.80

DPPM 40± 4.66 7± 3.02 3± 0.97

Table 5.8: Misclassification error rates obtained by the proposed DPPM
and the PGMM approach. From left to right, the situations respectively
shown in Table 5.2, 5.3, 5.4

PGMM 23.5± 2.89 10.5± 2.44 2± 1.69

DPPM 20.5± 3.34 7± 3.73 1.5± 0.79

Table 5.9: Misclassification error rates obtained by the proposed DPPM
and the PGMM approach. From left to right, the situations respectively
shown in Table 5.5, 5.6, 5.7

On the other hand, for the DPMM models, from the log marginal likeli-
hoods shown in Tables 5.2 to 5.7, we can see that the evidence of the selected
model, compared to the majority of the other alternative is, according to
Table 3.6, in general decisive. Indeed, it can be easily seen that the value
2 log BF12 of the Bayes Factor between the selected model, and the other
models, is more than 10, which corresponds to a decisive evidence for the
selected model. Also, if we consider the evidence of the selected model,
against the more competitive one, one can see from Table 5.10 and Table
5.11, that, for the situation with very bad mixture separation, with clusters
having the same volume, the evidence is not bad (0.3). However, for all the
other situations, the optimal model is selected with an evidence going from
an almost substantial evidence (a value of 1.7), to a strong and decisive evi-
dence, especially for the models with different clusters volumes. We can also
conclude that the models with different clusters volumes may work better
in practice as highlighted by Celeux and Govaert (1995). Finally, Figure
(5.3) shows the best estimated partitions for the data structures with equal
volume across the mixture components shown in Fig. 5.1 and the posterior
distribution over the number of clusters. One can see that for the case of
clusters with equal volume, the diagonal family (λA) with well separated
mixture (% = 3) and the general family (λDADT ) with very well separated
mixture (% = 4.5) data structure estimates a good number of clusters with



M1 vs M2 λkI vs λA λA vs λDADT λDADT vs λkDADT

2 log BF 0.30 4.16 1.70

Table 5.10: Bayes factor values obtained by the proposed DPPM by com-
paring the selected model (denoted M1) and the one more competitive for it
(denoted M2). From left to right, the situations respectively shown in Table
5.2, Table 5.3 and Table 5.4

M1 vs M2 λkI vs λkA λkA vs λkDADT λkDADT vs λDADT

2 log BF 6.16 22 19.04

Table 5.11: Bayes factor values obtained by the proposed DPPM by com-
paring the selected model (denoted M1) and the one more competitive for it
(denoted M2). From left to right, the situations respectively shown in Table
5.5, Table 5.6 and Table (6) 5.7
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Figure 5.3: Partitions obtained by the proposed DPPM for the data sets in
Fig. 5.1.

the actual model. However, the equal spherical data model structure (λI)
estimates the λkI model, which is also a spherical model. Figure (5.4) shows
the best estimated partitions for the data structures with different volume
across the mixture components shown in Fig. 5.2 and the posterior distri-
bution over the number of clusters. One can see that for all of different data
structure models: different spherical λkI, different diagonal λkA and differ-
ent general λkDADT , the proposed DPPM approach succeeded to estimate
a good number of clusters equal to 2 with an actual cluster structure.
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Figure 5.4: Partitions obtained by the proposed DPPM for the data sets
in Fig. 5.2.

5.2.3 Stability with respect to the hyperparameters values

In order to illustrate the effect of the choice of the hyperparameters values of
the mixture on the estimations, we considered two-class situations identical
to those used in the parametric parsimonious mixture approach proposed in
Bensmail et al. (1997). The data set consists in a sample of n = 200 obser-
vations from a two-component Gaussian mixture in R2 with the following
parameters: π1 = π2 = 0.5, µ1 = (8, 8)T and µ2 = (2, 2)T , and two spherical
covariances with different volumes Σ1 = 4 I2 and Σ2 = I2. In Figure (5.5)
we can see a simulated data set from this experiment with the correspond-
ing actual partition and density ellipses. In order to assess the stability of
the models with respect to the values of the hyperparameters, we consider
four situations with different hyperparameter values. These situations are
as follows. The hyperparameters ν0 and µ0 are assumed to be the same for
the four situations and their values are respectively ν0 = d+ 2 = 4 (related
to the number of degrees of freedom) and µ0 equals the empirical mean
vecotr of the data. We variate the two hyperparameters, κ0 that controls
the prior over the mean and s2

0 that controls the covariance. The considered
four situations are shown in Table 5.12. We consider and compare four mod-

Sit. 1 2 3 4

s20 max(eig(cov(X))) max(eig(cov(X))) 4 max(eig(cov(X))) max(eig(cov(X)))/4

κ0 1 5 5 5

Table 5.12: Four different situations the hyperparameters values.

els corresponding to the spherical, diagonal and general family, which are
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Figure 5.5: A two-class data set simulated according to λkI, and the actual
partition.

λI, λkI, λkA and λkDADT . Table 5.13 shows the obtained log marginal
likelihood values for the four models for each of the situations of the hy-
perparameters. One can see that, for all the situations, the selected model
is λkI, that is the one that corresponds to the actual model, and has the
correct number of clusters (two clusters). Also, it can be seen from Table

Model λI λkI λA λkDADT

Sit. K̂ log ML K̂ log ML K̂ log ML K̂ log ML

1 2 -919.3150 2 -865.9205 3 -898.7853 3 -885.9710

2 3 -898.6422 2 -860.1917 2 -890.6766 2 -885.5094

3 2 -927.8240 2 -884.6627 2 -906.7430 2 -901.0774

4 2 -919.4910 2 -861.0925 2 -894.9835 2 -889.9267

Table 5.13: Log marginal likelihood values for the proposed DPPM for 4
situations of hyperparameters values.

5.14, that the Bayes factor values (2 log BF), between the selected model,
and the more competitive one, for each of the four situations, according to
Table 3.6, corresponds to a decisive evidence of the selected model. These

Sit. 1 2 3 4

2 log BF 40.10 50.63 32.82 57.66

Table 5.14: Bayes factor values for the proposed DPPM computed from
Table 5.13 by comparing the selected model (M1, here in all cases λkI), and
the one more competitive for it (M2, here in all cases λkDAD).

results confirm the stability of the DPPM with respect to the variation of



the hyparameters values. Figure 5.6 shows the best estimated partitions
obtained by the proposed DPPM for the generated data. Note that, for the
four situations, the estimated number of clusters equals 2 for all the situa-
tions, and the posterior mode of the distribution of the number of clusters
is very close to 1.
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Situation 1 Situation 2 Situation 3 Situation 4

Figure 5.6: Best estimated partitions obtained by the proposed λkI DPPM
for the four situations of of hyperparameters values.

5.3 Applications on benchmarks

To confirm the results previously obtained on simulated data, we have con-
ducted several experiments freely available real data sets: Iris, Old Faithful
Geyser, Crabs and Diabetes whose characteristics are summarized in Table
5.15. We compare the proposed DPPM models to the PGMM models.

Dataset # data (n) # dimensions (d) True # clusters (K)

Old Faithful Geyser 272 2 Unknown
Crabs 200 5 2
Diabetes 145 3 3
Iris 150 4 3

Table 5.15: Description of the used real data sets.

5.3.1 Clustering of the Old Faithful Geyser data set

The Old Faithful geyser data set (Azzalini and Bowman, 1990) comprises
n = 272 measurements of the eruption of the Old Faithful geyser at Yel-
lowstone National Park in the USA. Each measurement is bi-dimensional
(d = 2) and comprises the duration of the eruption and the time to the next



eruption, both in minutes. While the number of clusters for this data set is
unknown, several clustering studies in the literature estimate at two, often
interpreted as short and long eruptions.

We applied the proposed DPPM approach and the PGMM alternative
to this data set (after standardization). For the PGMM, the value of K was
varying from 1 to 6. Table 5.16 reports the log marginal likelihood values
obtained by the PGMM and the proposed DPPM for the Faithful Geyser
data set. One can see that the parsimonious DPPM models estimate 2 clus-

DPPM PGMM

Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

λI 2 -458.19 -834.75 -455.15 -457.56 -461.42 -429.66 -1665.00
λkI 2 -451.11 -779.79 -449.32 -454.22 -460.30 -468.66 -475.63
λA 3 -424.23 -781.86 -445.23 -445.61 -445.63 -448.93 -453.44
λkA 2 -446.22 -784.75 -461.23 -465.94 -473.55 -481.20 -489.71

λDADT 2 -418.99 -554.33 -428.36 -429.78 -433.36 -436.52 -440.86
λkDADT 2 -434.50 -556.83 -420.88 -421.96 -422.65 -430.09 -434.36
λDkADT

k 2 -428.96 -780.80 -443.51 -442.66 -446.21 -449.40 -456.14
λkDkADT

k 2 -421.49 -553.87 -434.37 -433.77 -439.60 -442.56 -447.88

Table 5.16: Log marginal likelihood values for the Old Faithful Geyser data set.

ters except one model, which is the diagonal model with equal volume λA
that estimates three clusters. For a number of clusters varying from 1 to 6,
the parsimonious PGMM models estimate two clusters at three exceptions,
including the spherical model λI which overestimates the number of clus-
ters (provides 5 clusters). However, the solution provided by the proposed
DPMM for the spherical model λI is more stable and estimates two clusters.
It can also be seen that the best model with the highest value of the log
marginal likelihood is the one provided by the proposed DPPM and corre-
sponds to the general model λDADT with equal volume and the same shape
and orientation. On the other hand, it can also be noticed that, in terms of
Bayes factors, the model λDADT selected by the proposed DPMM has a
decisive evidence compared to the other models, and a strong evidence (the
value of 2 log BF equals 5), compared to the most competitive one, which is
in this case the model λkDkADT

k .

Figure 5.7 shows the the optimal partition and the posterior distribution
for the number of clusters. One can namely observe that the likely partition
is provided with a number of cluster with high posterior probability (more
than 0.9).

Table 5.17 shows the mean computer running time, measured in seconds,
for the Gibbs inference of each DPPM models.
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Figure 5.7: Old Faithful Geyser data set (left), the optimal partition ob-
tained by the DPPM model λDADT (middle) and the empirical posterior
distribution for the number of mixture components (right).

Model λI λkI λA λkA λDADT λkDADT λDkADT
k λkDkADT

k

CPU time (s) 953.86 785.36 999.91 964.86 901.44 717.28 1020 810.23

Table 5.17: The DPPM Gibbs sampler mean CPU time (in seconds) for
each parsimonious model on Old Faithful Geyser data set.

5.3.2 Clustering of the Crabs data set

The Crabs data set comprises n = 200 observations describing d = 6 mor-
phological measurements (Species, Frontal lip, Rearwidth, Length, Width
Depth) on 50 crabs each of two colour forms and both sexes, of the species
Leptograpsus variegatus collected at Fremantle, W. Australia Campbell and
Mahon (1974). The Crabs are classified according to their sex (K = 2). We
applied the proposed DPPM approach and the PGMM alternative to this
data set (after PCA and standardization). For the PGMM the value of K
was varying from 1 to 6. Table 5.18 reports the log marginal likelihood values
obtained by the PGMM the proposed DPPM approaches for the Crabs data
set. One can first see that the best solution corresponding to the best model

DPPM PGMM

Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

λI 3 -550.75 -611.30 -615.73 -556.05 -860.95 -659.93 -778.21
λkI 3 -555.91 -570.13 -549.06 -538.04 -542.31 -577.22 -532.40
λA 4 -537.81 -572.06 -539.17 -532.65 -535.20 -534.43 -531.19
λkA 3 -543.97 -574.82 -541.27 -569.79 -590.48 -693.42 -678.95

λDADT 4 -526.87 -554.64 -540.87 -512.78 -525.19 -541.93 -576.27
λkDADT 3 -517.58 -556.73 -541.88 -515.93 -530.02 -550.71 -595.38
λDkADT

k 4 -549.78 -573.80 -564.28 -541.67 -547.45 -547.13 -526.79
λkDkADT

k 2 -499.54 -557.69 -500.24 -700.44 -929.24 -1180.10 -1436.60

Table 5.18: Log marginal likelihood values for the Crabs data set.



with the highest value of the log marginal likelihood is the one provided by
the proposed DPPM and corresponds to the general model λkDkADT

k with
different volume and orientation but equal shape. This model provides a
partition with a number of clusters equal to the actual one K = 2. One
can also see that the best solution for the PGMM approach is the one pro-
vided by the same model with a correctly estimated number of clusters. On
the other hand, one can also see that for this Crabs data set, the proposed
DPPM models estimate the number of clusters between 2 and 4. This may
be related to the fact that, for the Crabs data set, the data, in addition
their sex, are also described in terms of their specie and the data contains
two species. This may therefore result in four subgroupings of the data in
four clusters, each couple of them corresponding to two species, and the
solution of four clusters may be plausible for this data set. However three
PGMM models overestimate the number of clusters and provide solutions
with 6 clusters. We can also observe that, in terms of Bayes factors, the
model λkDkADT

k selected by the proposed DPMM for this data set, has a
decisive evidence compared to all the other potential models. For example
the value of 2 log BF for this selected model, against to the most competitive
one, which is in this case the model λkDADT equals 36.08 and corresponds
to a decisive evidence of the selected model.

The good performance of the DPPM compared the PGMM is also con-
firmed in terms of Rand index and misclassification error rate values. The
optimal partition obtained by the proposed DPPM with the parsimonious
model λkDkADT

k is the best defined one and corresponds to the highest
Rand index value of 0.8111 and the lowest error rate of 10.5 ± 1.98. How-
ever, the partition obtained by the PGMM has a Rand index of 0.8032 with
an error rate of 11± 2.07.

Figure 5.8 shows the partition for Crabs data.
Figure 5.9 the optimal partition and the posterior distribution for the

number of clusters. One can observe that the provided partition is quite
precise and is provided with a number of clusters equal to the actual one,
and with a posterior probability very close to 1.

Table 5.19 shows the mean computer running time, measured in seconds,
for the Gibbs inference of each DPPM models.

Model λI λkI λA λkA λDADT λkDADT λDkADT
k λkDkADT

k

CPU time (s) 263.39 318.06 423.51 412.29 399.91 399.50 445.67 442.29

Table 5.19: The DPPM Gibbs sampler mean CPU time (in seconds) for
each parsimonious model on Crabs dataset.

5.3.3 Clustering of the Diabetes data set

The Diabetes data set was described and analysed in (Reaven and Miller,
1979) consists of n = 145 subjects, describing d = 3 features: the area under
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Figure 5.8: Crabs data set in the two first principal axes and the actual
partition.
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Figure 5.9: The optimal partition obtained by the DPPM model λkDkADT
k

(middle) and the empirical posterior distribution for the number of mixture
components (right).

a plasma glucose curve (glucose area), the area under a plasma insulin curve
(insulin area) and the steady-state plasma glucose response (SSPG). This
data has K = 3 groups: the chemical diabetes, the overt diabetes and the
normal (nondiabetic). We applied the proposed DPPM models and the
alternative PGMM ones on this data set (the data was standardized). For
the PGMM, the number of clusters was varying from 1 to 8.

Table 5.20 reports the log marginal likelihood values obtained by the
two approaches for the Crabs data set. One can see that both the proposed
DPPM and the PGMM estimate correctly the true number of clusters. How-
ever, the best model with the highest log marginal likelihood value is the one
obtained by the proposed DPPM approach and corresponds to the parsimo-



nious model λkDkADT
k with the actual number of clusters (K = 3). Also,

DPPM PGMM

Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

λI 4 -573.73 -735.80 -675.00 -487.65 -601.38 -453.77 -468.55 -421.33 -533.97
λkI 7 -357.18 -632.18 -432.02 -412.91 -417.91 -398.02 -363.12 -348.67 -378.48
λA 8 -536.82 -635.70 -492.61 -488.55 -418.51 -391.05 -377.37 -370.47 -365.56
λkA 6 -362.03 -638.69 -416.27 -372.71 -358.45 -381.68 -366.15 -385.73 -495.63

λDADT 7 -392.67 -430.63 -418.96 -412.70 -375.37 -390.06 -405.11 -426.92 -427.46
λkDADT 5 -350.29 -432.85 -326.49 -343.69 -325.46 -355.90 -346.91 -330.11 -331.36
λDkADT

k 5 -338.41 -644.06 -427.66 -454.47 -383.53 -376.03 -356.09 -355.03 -349.84
λkDkADT

k 3 -238.62 -433.61 -263.49 -248.85 -273.31 -317.81 -440.67 -453.70 -526.52

Table 5.20: Obtained marginal likelihood values for the Diabetes data set.

the evidence of the model λkDkADT
k selected by the proposed DPMM for

the Diabetes data set, compared to all the other models, is decisive. Indeed,
in terms of Bayes factor comparison, the value of 2 log BF for this selected
model, against to the most competitive one, which is in this case the model
λDkADT

k is 111.86 and corresponds to a decisive evidence of the selected
model. In terms of Rand index, the best defined partition is the one obtained
by the proposed DPPM approach with the parsimonious model λkDkADT

k ,
which has the highest Rand index value of 0.8081 which indicates that the
partition is well defined, with a misclassification error rate of 17.24 ± 2.47.
However, the best PGMM partition λkDkADT

k has a Rand index of 0.7615
with 22.06± 2.51 error rate.

Figure 5.10 shows the Diabetes data partition.
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Figure 5.10: Diabetes data set in the space of the components 1 (glucose
area) and 3 (SSPG) and the actual partition.

Figure (5.11) shows the optimal partition provided by the DPPM model



λkDkADT
k and the distribution of the number of clusters K. We can observe

that the partition is quite well defined (the misclassification rate in this case
is 17.24± 2.47) and the posterior mode of the number of clusters equals the
actual number of clusters (K = 3).
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Figure 5.11: The optimal partition obtained by the DPPM model
λkDkADT

k (middle) and the empirical posterior distribution for the number
of mixture components (right).

Table 5.21 shows the mean computer running time, measured in seconds,
for the Gibbs inference of each DPPM models.

Model λI λkI λA λkA λDADT λkDADT λDkADT
k λkDkADT

k

CPU time (s) 1471.7 1335 1664 1386.8 1348.6 715.01 1635 1454.4

Table 5.21: The DPPM Gibbs sampler mean CPU time (in seconds) for
each parsimonious model on Diabetes data set.

5.3.4 Clustering of the Iris data set

The first data set is Iris, well-known and was studied by Fisher Fisher (1936).
It contains measurements for n = 150 samples of Iris flowers covering three
Iris species (setosa, virginica and versicolor) (K = 3) with 50 samples for
each specie. Four features were measured for each sample (d = 4): the
length and the width of the sepals and petals, in centimetres. We applied
PGMM models and the proposed DPPM models on this data set. For the
PGMM models, the number of clusters K was tested in the range [1; 8].

Table 5.22 reports the obtained log marginal likelihood values. We can
see that the best solution is the one of the proposed DPPM and corresponds
to the model λkDkADT

k , which has the highest log marginal likelihood value.
One can also see that the other models provide partitions with two, three or
four clusters and thus do not overestimate the number of clusters. However,
the solution selected by the PGMM approach corresponds to a partition



with four clusters, and some of the PGMM models overestimate the number
of clusters.

DPPM PGMM

Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

λI 4 -415.68 -1124.9 -770.8 -455.6 -477.67 -431.22 -439.35 -423.49 -457.59
λkI 3 -471.99 -913.47 -552.2 -468.21 -488.01 -507.8 -528.8 -549.62 -573.14
λA 3 -404.87 -761.44 -585.53 -561.65 -553.41 -546.97 -539.91 -535.37 -530.96
λkA 3 -432.62 -765.19 -623.89 -643.07 -666.76 -688.16 -709.1 -736.19 -762.75

λDADT 4 -307.31 -398.85 -340.89 -307.77 -286.96 -291.7 -296.56 -300.37 -299.69
λkDADT 2 -383.72 -401.61 -330.55 -297.50 -279.15 -282.83 -296.24 -304.37 -306.81
λDkADT

k 4 -576.15 -1068.2 -761.71 -589.91 -529.52 -489.9 -465.37 -444.84 -457.86
λkDkADT

k 2 -278.78 -394.68 -282.86 -451.77 -676.18 -829.07 -992.04 -1227.2 -1372.8

Table 5.22: Log marginal likelihood values for the Iris data set.
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Figure 5.12: The optimal partition obtained by the DPPM model
λkDkADT

k (middle) and the empirical posterior distribution for the number
of mixture components (right).

We also note that, the best partition found by the proposed DPPM,
while in contains two clusters, is quite well defined, and has a Rand index
of 0.7763.

Table 5.23 shows the mean computer running time, measured in seconds,
for the Gibbs inference of each DPPM models.

Model λI λkI λA λkA λDADT λkDADT λDkADT
k λkDkADT

k

CPU time (s) 144.04 261.34 342.48 352.81 293.91 382.0401 342.85 196.66

Table 5.23: The DPPM Gibbs sampler mean CPU time (in seconds) for
each parsimonious model on Iris data set.

The evidence of the selected DPPM models, compared to the other ones,
for the four real data sets, is significant. This can be easily seen in the
tables showing the log marginal likelihood values. Consider the comparison



between the selected model, and the more competitive for it, for the four real
data. As it can be seen in Table 5.24, which reports the values of 2 log BF of
the best model against the second best one, that the evidence of the selected
model, according to Table 3.6 is strong for Old Faithful geyser data, and
very decisive for Crabs, Diabetes and Iris data. Also, the model selection by
the proposed DPMM for these latter three data sets, is made with a greater
evidence, compared to the PGMM approach.

Data set Old Faithful Geyser Crabs Diabetes Iris

DPPM λDADT vs λkDkADT
k λkDkADT

k vs λkDADT λkDkADT
k vs λDkADT

k λkDkADT
k vs λDADT

2 log BF 5 36.08 199.58 57.06

PGMM λkDADT vs λDADT λkDkADT
k vs λDADT λkDkADT

k vs λkDADT λkDADT vs λkDkADT
k

2 log BF 14.96 25.08 153.22 7.42

Table 5.24: Bayes factor values for the selected model against the more
competitive for it, obtained by the PGMM and the proposed DPPM for the
real data sets.

5.4 Scaled application on real-world bioacous-

tic data

In this section, we will apply the DPPM models on a further real dataset
in the framework of a challenging problem of humpback whale song decom-
position. The objective is the unsupervised structuration of these bioacous-
tic data. Humpback whale songs are long cyclical sequences produced by
males during the reproduction season which follows their migration from
high-latitude to low-latitude waters. Singers of one geographical population
share parts of the same song. This leads to the idea of dialect (Helweg et al.,
1998). Different hypotheses of these songs were emitted (Baker and Herman,
1984; Frankel et al., 1995; Garland et al., 2011; Medrano et al., 1994; Mer-
cado and Kuh, 1998), even as used as sonar (Au et al., 2001; Frazer and
Mercado, 2000).

Data description

The data consist in whale song signals in the framework of unsupervised
analysis of bioacoustic data. This humpback whale song recording has been
produced at few meters distance from the whale in La Reunion - Indian
Ocean, by the ”Darewin” regroup in 2013, at a Frequency Sample of 44.1kHz,
32 bits, mono, wav format.

They consist of MFFC features of 8.6 minutes that have been extracted
using Spro 5.0, with pre-emphasis: 0.95, hamming window, fft on 1024 points
(nearly 23ms), frameshift 10 ms, 24 Mel channels, 12 MFCC coefficients
and energy and their delta and acceleration, CMS (mean normalisation)



and variance normalization, for a total of 39 dimensions as detailed in the
SABIOD NIPS challenge : http://sabiod.univ-tln.fr/nips4b/challenge2.html
where the signal and the features are available.

A spectrum of this whale of around 20 seconds of the given song can be
seen in Figure 5.13. The data comprises 51336 observations with 39 features.

Figure 5.13: Spectrum of around 20 seconds of the given song of Humpback
Whale (start from about 5’40 to 6’). Ordinata from 0 to 22.05 kHz, over
512 bins (FFT on 1024 bins), frameshift of 10 ms.

A dimension reduction pretreatment with a PCA technique was made. We
therefore choose to retain 13 features of the data, since it was sufficient to
capture more then 95% of the cumulative percentage of the variance.

The analysis of such complex signals that aims at discovering the call
units (which can be considered as a kind of whale alphabet), can be seen as
a problem of unsupervised call units classification as in Pace et al. (2010).
Another analysis of the humpback whale song by clustering approach can be
found in Picot et al. (2008). The authors in Picot et al. (2008) implemented
a segmentation algorithm based on Payne’s principle to extract sound units
of a whale song. In their application, six song units (pattern intonations)
were found. We therefore reformulate the problem of whale song decom-
position as an unsupervised data classification problem. Contrary to the
approach used in Pace et al. (2010), in which the number of states (call
units in this case) has been fixed manually, or Picot et al. (2008) where the
unsupervised algorithm K-means was performed for automatic classification
and then automatically define the optimal number of classes by maximiz-
ing the Davies Bouldin criterion. here, we first apply the proposed DPPM
models to learn the complex bioacoustic data, to find the classes (states) of
the whale song, and automatically infer the number of classes (states) from
the data.



Unsupervised structuration of whale song data with the pro-
posed DPPM models

We applied our proposed DPPM approach, into the challenging problem of
Whale song decomposition NIPS4B challenge (Bartcus et al., 2013).

The Gibbs sampling runs 10 times with 4000 samplers and a burn-in
period equal to 10%, by selecting the one with the highest MAP. Covering
the three families, from the simplest one, which are the spherical models
(λI and λkI), the diagonal models (λA and λkA), to the more complex
general models (λDADT , λkDADT and λkDkAkD

T
k ) are applied in this

application.

In Figure 5.14 we show the posterior distributions of the numbers of
components provided by the Gibbs sampler for the spherical model λI, the
diagonal model λkA and the general model λkDkAkD

T
k . We can see that

model λI retrieves 9 clusters, the model λkA retrieves 11 clusters and model
λkDkAkD

T
k retrieves 15 clusters.
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Figure 5.14: Posterior distribution of the number of components obtained
by the proposed DPPM approach, for the whale song data.

Because of the length of 8.6 minutes of the signal, for a more detailed
information, we show separate parts of 15 seconds of the whole signal of
the humpback whale. Some examples of the humpback whale song with
15 seconds duration each are presented. First, in Figure 5.15, we show
two different signals with top, the signal starting at 45 seconds and it’s
corresponding partition obtained by the proposed DPM model λkDkAkD

T
k

(general), and bottom those for the part of the signal starting at 60 seconds.
Then in Figure 5.16, we show the two different signals with top, the signal
starting at 240 seconds and it’s corresponding partition obtained by the
proposed DPM model λkDkAkD

T
k (general), and bottom those for the part

of the signal starting at 255 seconds. Finally, in Figure 5.17 we show the
two different signals with top, the signal starting at 280 seconds and it’s
corresponding partition obtained by the proposed DPM model λkDkAkD

T
k

(general), and bottom those for the part of the signal starting at 295 seconds.

Next, we illustrate the obtained results for the two proposed DPPM



Figure 5.15: Obtained song units by applying or DPM model with the
parametrization λkDkAkD

T
k (general) to two different signals with top: the

spectrogram of the part of the signal starting at 45 seconds and it’s corre-
sponding partition, and bottom those for the part of signal starting at 60
seconds.

models, that corresponds to the parsimonious spherical model λI with equal
cluster volumes and the parsimonious diagonal model λkA with different
cluster volumes. As for the general model λkDkAkD

T
k , we show separate

parts of 15 seconds duration of the whole signal of the humpback whale song
in order to visualize the signal in a more detail.



Figure 5.16: Obtained song units by applying or DPM model with the
parametrization λkDkAkD

T
k (general) to two different signals with top: the

spectrogram of the part of the signal starting at 240 seconds and it’s corre-
sponding partition, and bottom those for the part of signal starting at 255
seconds.

First, in Figure 5.18, we show two different signals with top, the signal
starting at 45 seconds and it’s corresponding partition obtained by the pro-
posed DPPM model λI (spherical), and bottom those for the part of the
signal starting at 60 seconds.

Figure 5.19, shows two different signals with top, the signal starting



Figure 5.17: Obtained song units by applying or DPM model with the
parametrization λkDkAkD

T
k (general) to two different signals with top: the

spectrogram of the part of the signal starting at 280 seconds and it’s corre-
sponding partition, and bottom those for the part of signal starting at 295
seconds.

at 240 seconds and it’s corresponding partition obtained by the proposed
DPPM model λI (spherical), and bottom those for the part of the signal
starting at 255 seconds. Finally, Figure 5.20, shows two different signals
with top, the signal starting at 280 seconds and it’s corresponding partition
obtained by the proposed DPM model λI (spherical), and bottom those for



Figure 5.18: Obtained song units by applying or DPPM model with the
parametrization λI (spherical) to two different signals with top: the spectro-
gram of the part of the signal starting at 45 seconds and it’s corresponding
partition, and bottom those for the part of signal starting at 60 seconds.

the part of the signal starting at 295 seconds.

The spherical λI model fit well the whale song data set with 9 song units.
In this situation, it is noticed that the sixth state represents the silence, that
can be filled with state 7 and 8. The state 4 is a very noisy and broad sound.

We also show the several parts of 15 seconds duration each, obtained by
the proposed DPPM model λkA (diagonal). Figure 5.21, shows the signal



Figure 5.19: Obtained song units by applying or DPPM model with the
parametrization λI (spherical) to two different signals with top: the spectro-
gram of the part of the signal starting at 240 seconds and it’s corresponding
partition, and bottom those for the part of signal starting at 255 seconds.

starting with 45 seconds and it’s corresponding obtained partition (top),
and those for the part of the signal starting with 60 seconds (bottom).
Figure 5.22, shows the signal starting with 240 seconds and it’s correspond-
ing obtained partition (top), and those for the part of the signal starting
with 255 seconds (bottom). Figure 5.22, shows the signal starting with 280
seconds and it’s corresponding obtained partition (top), and those for the



Figure 5.20: Obtained song units by applying or DPPM model with the
parametrization λI (spherical) to two different signals with top: the spectro-
gram of the part of the signal starting at 280 seconds and it’s corresponding
partition, and bottom those for the part of signal starting at 295 seconds.

part of the signal starting with 295 seconds (bottom).

The DPPM diagonal model, with different cluster volumes, that corre-
sponds to the covariance matrix decomposition λkA fit well the data with
11 song units. It can clearly be seen that the state 9 is the silence. State 1,
2, 8 and 11 is the up and down sweeps. The seventh state is also the silence
that generally ends the ninth state. The state 4 is a very noisy and broad



Figure 5.21: Obtained song units by applying or DPPM model with the
parametrization λkA (diagonal) to two different signals with top: the spec-
trogram of the part of the signal starting at 45 seconds and it’s corresponding
partition, and bottom those for the part of signal starting at 60 seconds.

sound. The obtaining results highlighted the interest of using parsimonious
Bayesian non-parametric modeling such that, even if they are not derived
for sequential data.



Figure 5.22: Obtained song units by applying or DPPM model with the
parametrization λkA (diagonal) to two different signals with top: the spectro-
gram of the part of the signal starting at 240 seconds and it’s corresponding
partition, and bottom those for the part of signal starting at 255 seconds.

5.5 Conclusion

This chapter was dedicated to experiments of simulated and real-world
data sets. It highlighted that the proposed DPPM represent a good non-
parametric alternative of the model selection problem to the standard para-



Figure 5.23: Obtained song units by applying or DPPM model with the
parametrization λkA (diagonal) to two different signals with top: the spectro-
gram of the part of the signal starting at 280 seconds and it’s corresponding
partition, and bottom those for the part of signal starting at 295 seconds.

metric Bayesian and non-Bayesian finite mixtures. They simultaneously and
accurately estimate accurate partitions with the optimal number of clusters
inferred from the data. The optimal data structure is selected with using the
Bayes Factor. The obtained results show the interest of using the Bayesian
parsimonious clustering models and the potential benefit of using them in
practical applications.



We applied the models on the challenging problem of humpback whale
song decomposition. Despite the fact that the dataset are by nature sequen-
tial, and DPPMs models assume an exchangeability property, the models
arrive to fit quiet satisfying partition of the data. This application opens
a perspective on the extension of the previously discussed DPPMs mod-
els, from the i.i.d case to sequential data. Hence this may provide a good
perspective for further integrating the parsimonious DPM models into a
Markovian framework.

In the next chapter we investigate the Bayesian non-parametric extension
of the standard Markovian framework proposed by (Beal et al., 2002; Teh
et al., 2006). These Bayesian non-parametric HMM model, being tailored to
sequential data, opens great perspective for future extensions of the DPPM
models.
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6.1 Introduction

In Chapter 4, we proposed an extension for the BNP modeling for GMMs
to the parsimonious BNP modeling. In Section 5.4, we applied the proposed
approach on the complex bioacoustic signal. The obtained results fit the
data despite the fact that the data is by nature sequential. Hidden Markov
Models (HMM) (Rabiner, 1989) being one of the most successful models for
modeling sequential data will open a Markovian perspective for the BNP
modeling of the HMM.

In this chapter, we rely on the Hierarchical Dirichlet Process for Hid-
den Markov Models (HDP-HMM) proposed in (Beal et al., 2002; Teh et al.,
2006) to investigate the challenging problem of unsupervised learning from
bioacoustic data as in (Bartcus et al., 2015). Recall that this problem of
fully unsupervised humpback whale song decomposition, as previously de-
scribed in Section 5.4, consists in simultaneously finding the structure of
hidden whale song units, and automatically inferring the unknown number
of the hidden units from the Mel Frequency Cepstral Coefficients (MFCC) of
bioacoustic signals. The experimental results shows very good performances
of the proposed Bayesian non-parametric approach and opens new insights
for unsupervised analysis of such bioacoustic signals. We use Markov-Chain
Monte Carlo (MCMC) sampling techniques, particularly the Gibbs sampler,
as in Fox (2009); Fox et al. (2008); Teh et al. (2006), to infer the HDP-HMM
from the bioacoustic data.

This chapter is organized as follows. Section 6.2 describes the model and
the inference technique using Gibbs sampling. The Section 6.3 is dedicated
to it’s application to the unsupervised decomposition of bioacoustic signals.

6.2 Hierarchical Dirichlet Process Hidden Markov

Model (HDP-HMM)

Previously we saw that for the BNP modeling approach for the GMMs,
Dirichlet Process prior were sufficient to extend the GMM to the infinite
GMM case. However, for the HMM, where the transitions of states take
independent priors, that is, there is no coupling across transitions between
the different states (Beal et al., 2002). The Dirichlet Process (Ferguson,
1973) is not sufficient to extend HMM to an infinite state space model.
The Hierarchical Dirichlet Process (HDP) prior (Teh et al., 2006) over the
transition matrix (Beal et al., 2002) tackle this issue and extends the HMM
to the infinite state space model.



Hierarchical Dirichlet Process (HDP)

Recalling the Dirichlet Process (DP) (Ferguson, 1973), that is a prior distri-
bution over distributions, denoted as DP(α,G0) with two parameters, the
scaling parameter α and the base measure G0. The DP extends the finite
modeling to the infinite modeling. However DP is not sufficient to extend
HMM to an infinite state space model. In this section we refer on observa-
tions organized into groups, where it is supposed j refers to the groups and
i the observations of each group. Thus we assume xj = (xj1,xj2, . . . ,xjn)
denotes all exchangeable observations of group j. The groups observations
x1,x2 . . . are in turn exchangeable. So, in this situation, when the data has
a related but different generative process, the Hierarchical Dirichlet Process
(HDP) prior is used to extend the HMM to an infinite state space HDP-
HMM (Teh et al., 2006). A HDP assumes that the random measures

Gj |α,G0 ∼ DP(α,G0),∀k = 1, . . .K, (6.1)

are itself distributed according to the DP with the hyperparameter α and
the base measure G0 that is in turn distributed by the DP with the hyper-
parameters γ and base distribution H.

G0|γ,H ∼ DP(γ,H). (6.2)

A HDP can be used as a prior distribution for factors of the grouped
data. Suppose for each j, θj1,θj2, . . . ,θjn be i.i.d random variables dis-
tributed by the Gj . Then, θji will be the parameter corresponding to each
single observation xji. So, the following completes the hierarchical Dirichlet
process:

θji|Gj ∼ Gj ,
xji|θji ∼ F (xji|θji).

(6.3)

As a result the probabilistic graphical model for the hierarchical Dirichlet
Process mixture model can be illustrated as follows:

Chinese Restaurant Franchise (CRF)

The Chinese Restaurant Process plays a great role in the representation
of the Dirichlet Process, by giving a metophor to the existence of a restau-
rant with possible infinite tables (clusters) that customers (the observations)
are siting in that restaurant. An alternative of such a representation for
the Hierarchical Dirichlet Process can be described by the Chinese Restau-
rant Franchise process by extending the CRP to a multiple restaurants that
shares a set of dishes.

The Chinese Restaurant Franchise (CRF) gives a representation for the
Hierarchical Dirichlet Process (HDP) by extending the Chinese Restaurant
Process (CRP) (Pitman, 1995; Samuel and Blei, 2012; Wood et al., 2006) to



Figure 6.1: Probabilistic Graphical Model for Hierarchical Dirichlet Process
Mixture Model.

a set of (J) restaurants rather than a single restaurant. Suppose a patron of
Chinese Restaurant creates many restaurants, strongly linked to each other,
by a franchise wide menu, having dishes common to all restaurants. As a
result, J restaurants are created (groups) with a possibility to extend each
restaurant to an infinite number of tables (states) at witch the customers
(observations) sit. Each customer goes to his specified restaurant j, where
each table of this restaurant has a dish that shares between the customers
that sit at that specific table. However, multiple tables of different existing
restaurants can serve the same dish. Figure 6.2 represents one such Chinese
Restaurant Franchise Process for 2 restaurants. One can see the customers
xji enters the restaurant j and takes the place of a table tji. Each table has
a specific dish kjt that can be also common for different restaurants.

Figure 6.2: Representation of a Chinese Restaurant Franchise with 2
restaurants. The clients xji are entering the jth restaurant (j = {1, 2}), sit
at table tji and chose the dish kjt.

The generative process of the Chinese Restaurant Franchise can be for-



mulated as follows. For each table a dish is assigned with kjt|β ∼ β, where
β is the rating of the dish served at the specific restaurant j. The table
assignment of the jth restaurant for the ith customer is then drawn. Finally
the observations, xji, or the customers i that enters the restaurant j are
generated by a distribution F (θkjtji ). The generative process for CRF is

given by the following:

kjt|β ∼β
tji|π̃j ∼π̃j

xji|{θk}∞k=1, {kjt}∞t=1, tji ∼F (θkjtji )

(6.4)

A probabilistic graphical model of such a process can be seen in the Fig-
ure 6.3.

Figure 6.3: Probabilistic graphical representation of the Chinese Restau-
rant Franchise (CRF).

More details for derivation and inference of the Chinese Restaurant Fran-
chise (CRF) and the use of it in the Hierarchical Dirichlet Process could be
found in Teh and Jordan (2010); Teh et al. (2006) and Fox (2009); Fox et al.
(2008).

An HDP-HMM representation as an Infinite Hidden Markov
Model (IHMM)

The idea of the infinite mixture models for sequential data appears naturally
after great performances with the i.i.d data, where the number of clusters
were chosen in an automatic way instead of using some cross validation
task. Due to the fact that the HMMs are one of the most popular and
successful models in statistics and machine learning for modeling sequential
data, it was meant to be developed to the infinite Hidden Markov Model.



It was shown that, by using the Dirichlet processes theory, more exactly
the Hierarchical Dirichlet Process, it was possible to extending the Hidden
Markov models into the infinite countable hidden number of states (Beal
et al., 2002; Fox, 2009; Fox et al., 2008; Teh and Jordan, 2010; Teh et al.,
2006; Van Gael et al., 2008).

Hierarchical Bayesian formulation gives the possibility to have distri-
butions over hyper-parameters by making the models more flexible. The
coupling between transition matrix allows a higher level to DP prior over
the parameters.

β ∼ Dir(γ/K, . . . , γ/K) (6.5)

πk ∼ Dir(αβ)

πk being the transition matrix for the specific group k and β the prior
hyperparameter.

Let Gk describes both, the transition matrix πk and the emission pa-
rameters θk, the infinite HMM can be described by the following generative
process:

β|γ ∼ GEM(γ)

πk|α,β ∼ DP(α,β)

zt|zt−1 ∼ Mult(πzt−1)

θk|H ∼ H
xt|zt, {θk}∞k=1 ∼ F (θzt)

(6.6)

where it was assumed for simplicity, that there is a distinguished initial state
z0; β is a hyperparameter for the DP (Sethuraman, 1994) that is distributed
according to the stick-breaking construction noted GEM(.); zt is the indica-
tor variable of the HDP-HMM that are sampled according to a multinomial
distribution Mult(.); the parameters of the model are drawn independently,
according to a conjugate prior distribution H; F (θzt) is a data likelihood
density, where we assume the unique parameter space of θzt being equal to
θk. Suppose the observed data likelihood is a Gaussian density N (xt;θk)
where the emission parameters θk = {µk,Σk} are respectively the mean vec-
tor µk and the covariance matrix Σk. According to Gelman et al. (2003);
Wood and Black (2008), the prior over the mean vector and the covari-
ance matrix is a conjugate Normal-Inverse-Wishart distribution, denoted
as NIW(µ0, κ0, ν0,Λ0), with the hyper-parameters describing the shapes
and the position for each mixture densities: µ0 is the mean of the mixtures
should be, κ0 the number of pseudo-observations supposed to be attributed,
and ν0,Λ0 being similarly for the covariance matrix. In the generative pro-
cess given in Equation (6.6), π is interpreted as a double-infinite transition
matrix with each row taking a Chinese Restaurant Process (CRP), thus,
in the HDP formulation ”the group-specific” distribution, πj corresponds
to ”the state-specific” transition where the Chinese Restaurant Franchise



(CRF) defines distributions over the next state. As a consequence it was
defined the infinite state space for the Hidden Markov Model. The graphical
model for the infinite Hidden Markov Model is representated in figure 6.4.

Figure 6.4: Graphical representation of the infinite Hidden Markov Model
(IHMM).

Recalling that, the base idea of the Gibbs sampler is to estimate the
posterior distributions over all the parameters from the generative process of
HDP-HMM given in Equation (6.6), Beal et al. (2002) firstly considered this
two level procedure of the Dirichlet Process and developed the Markov chain
with the possible infinite number of states. Beal et al. (2002) considered
a coupled urn model while Teh et al. (2006) developed a equivalent to the
Chinese Restaurant Franchise representation of the model. Thus the infinite
HMM was developed as a HDP-HMM. The inference of the infinite HMM
by the Gibbs sampler was discussed by Beal et al. (2002); Teh et al. (2006)
and Fox (2009) and we briefly summarized it in the Pseudo-code 8 that
computes O(K) probabilities for each of t states, therefore it has a O(TK)
computational complexity. The main idea to inference the HDP-HMM is
to estimate the hidden states of the observed data z = (z1, . . . zT ). This
step needs computing two factors: the first is the conditional likelihood
p(xt|x\t, zt = k, z\t, H) and the second factor p(zt|z\t,β, α) computed as in
Equation (6.11).

p(zt = k|z\t,β, α) ∝
(nzt�1,k + αβk)

nk,zt+1
+αβzt+1

nk.+α
if k ≤ K, k 6= zt−1

(nzt�1,k + αβk)
nk,zt+1

+1+αβzt+1

nk.+1+α if k = zt−1 = zt+1

(nzt�1,k + αβk)
nk,zt+1

+αβzt+1

nk.+1+α if k = zt−1 6= zt+1

αβkβzt+1 if k = K + 1

(6.11)

where nij is the number of transitions from state i to the state j, excluding
the time steps t and t − 1; n.i and ni. is the number of transition in and
respectively out of state i and K is the number of distinct states in z\t.



Algorithm 8 Gibbs sampler for the HDP-HMM

Inputs: The observations (x1, . . . ,xT ) and the # of Gibbs samples
ns
1: Initialize a random hidden state sequence z0 = (z1, . . . , zT ).
2: for q = 1 to ns do
3: for t = 1 to T do
4: 1. Sample the state zt from

p(zt = k|X, z\t,β, α,H) ∝p(xt|x\t, zt = k, z\t, H)

p(zt = k|z\t,β, α)
(6.7)

5: 2. Sample the global transition distribution

β ∝ Dir(m.1, . . . ,m.K , γ) (6.8)

6: 3. Sample a new transition distribution

πk ∝ Dir(nk1 + αβ1, . . . nkK + αβK , α

∞∑
i=K+1

βi) (6.9)

7: 4. Sample the emission parameters θk.

θk ∝ p(θ|X, z, H,θ\t) (6.10)

8: end for
9: 4. Possibly update the hyper-parameters α, γ.

10: end for

Outputs: The states assignments ẑ and the emission parameter vector θ̂k.

Second, the global transition distribution β sampler is given by a Dirich-
let distribution where m.k represents the number of clusters k, respectively
one can say m.k =

∑K
j=1mjk (Antoniak, 1974; Teh et al., 2006). After-

wards, the transition distribution πk, is sampled according to the Dirichlet
distribution that is followed by the sampler of the emission parameters θk.

Assuming that the observed data takes a Gaussian distribution, the emis-
sion parameters to be estimated are the mean vector and the covariance
matrix, θk = {µk,Σk}. These model parameters conditional on the data
X, states z and the prior distribution p(µk,Σk) ∼ NIW(µ0, κ0, ν0,Λ0) are
sampled according to their posterior distributions.

Finally, the hyper-parameters α and γ, because of their lack of the strong
beliefs, are sampled according to a Gamma distribution Beal et al. (2002);
Teh et al. (2006); Van Gael et al. (2008).

Now that, the BNP approach for the sequential data was discussed,
in the next section we apply the HDP-HMM on the challenging problem
of humpback whale song decomposition. This, future opens directions on
deriving the HDP-HMM model to a set of parsimonious models.



6.3 Scaled application on a real-world bioacous-

tic data

We used the Gibbs inference algorithm for Hierarchical Dirichlet Process for
Hidden Markov Model which runs for 30000 samples.

For a detailed information, the whole signal of the humpback whale song
was separated by several parts of 15 seconds each. All the spectrograms of
the humpback whale song and their corresponding obtained state sequence
partitions, as well as the associated song are made available in the demo:
http://sabiod.univ-tln.fr/workspace/IHMM_Whale_demo/. This demo
highlights the interest of using the Bayesian non-parametric HMM for unsu-
pervised structuring whale signals. Three examples of the humpback whale
song, with 15 seconds duration each, are presented and discussed in this
paper (see Figures (6.5), (6.6), and (6.7)).

Figure 6.5 represents the spectrogram and the corresponding state se-
quence partition obtained by the HDP-HMM Gibbs inference algorithm,
where the selected starting time point, in the whole signal, is 60 seconds.
One can see that the state 1 corresponds to the sea noise. Another thing to
say is that the state 6 is not present in this time range.

Figure 6.5: The spectrogram of the whale song (top), starting with 60
seconds and the obtained state sequences (bottom) by the Gibbs sampler in-
ference approach for the HDP-HMM.

Figure 6.6 represents the spectrogram and the respective state sequence
partition obtained by the HDP-HMM Gibbs inference algorithm, for the
signal part starting at 255 seconds, is temporal location close to the middle

http://sabiod.univ-tln.fr/workspace/IHMM_Whale_demo/


of the humpback sound recording. The sea noise, which we can see in unit
1, is predominant noise in this time step. The song unit 2, 3 and 4 song unit
can be also seen in this song time range.

Figure 6.6: The spectrogram of the whale song (top), starting with 255
seconds and the obtained state sequences (bottom) by the Gibbs sampler in-
ference approach for the HDP-HMM.

Figure 6.7 represents the spectrogram and the respective state sequences
obtained by the HDP-HMM Gibbs inference algorithm, for a starting point
at 495 seconds, which is close to the end of the humpback sound recording.
In this time range the 6-th sound unit is the predominant one. Moreover,
the sound unit 1 remains the sea noise.

All the obtained state sequences partitions fit very well the spectral
patterns. We note that the estimated state 1 is the silence. The state 2 fits
the up and down sweeps. State 3 fits low and high fundamental harmonics
sound units, the fourth state fits for numerous harmonics sound. The fifth
state is the silence, generally continued by some another sound unit, this
can be due to the fact that there where not a sufficient number of Gibbs
samples. For a longer learning the fifth state should be merged with the first
state. Finally, the state 6 is a very well separated song unit that is a very
noisy and broad sound. The analysis is discriminative on the structure.

Unlike the DPPM models applied for this complex whale song data,
where it was noticed that there are a lot of states that are not used, the
HDP-HMM results gives a better song structure fitting the data with 6 song
units.



Figure 6.7: The spectrogram of the whale song (top), starting with 495
seconds and the obtained state sequences (bottom) by the Gibbs sampler in-
ference approach for the HDP-HMM.

6.4 Conclusion

In this chapter we investigated an extension to the sequential case, that is
the Markovian extension for the standard DPM models, in order to open fea-
ture directions to the proposed DPPM models. The infinite Hidden Markov
Model, that uses a hierarchical Dirichlet Process prior over the transition
matrix, named also the HDP-HMM model, was learned for the same bioa-
coustic data as in the previous chapter, where the DPPMs models were
investigated. Indeed the obtained results provide a better fit to the data
then the DPPMs, because of their exchangeability property. This study
provokes possible extensions of the infinite HMM or HDP-HMM to parsi-
monious models, by giving eigenvalue decomposition to the covariance of
the emission model components.





- Chapter 7 -

Conclusion and perspectives

7.1 Conclusions

In this thesis, we investigated the clustering based on the mixture model-
ing approaches. Firstly, in Chapter 2, we presented the state of the art
approach on mixture modeling for model-based clustering. We focused on
the Gaussian case. Then, in order to reduce the number of parameters in
the mixture to be estimated, and give more flexibility in modeling the data,
parsimonious mixture models were investigated. We also discussed the use
of the EM algorithm which constitutes the essential feature for model fit-
ting especially in the MLE framework. One main question also discussed in
this chapter was the model selection and comparison, that is how can it be
performed for the ML fitting framework.

Next, the traditional Bayesian parametric mixture modeling approaches
were discussed in Chapter 3. This includes general Bayesian mixture mod-
eling and then parsimonious Bayesian Gaussian mixture models. The Max-
imum A Posteriori (MAP) framework was presented as a substitution for
the ML framework, allowing to avoid the problems of singularities or de-
generacies. In such a context, we showed that the EM algorithm can still
be used for MAP fitting, however in this work we focused on the inference
using MCMC, and implemented and assessed dedicated Gibbs sampling al-
gorithms in this Bayesian parametric framework of mixtures, particularly
the parsimonious Gaussian mixtures. The Bayesian model selection and
comparison was performed by the Bayes Factor, in order to select the opti-
mal model structure.

A flexible Bayesian non-parametric alternative, to the previously inves-
tigated Bayesian and non-Bayesian parametric mixture models, was intro-
duced in Chapter 4. We discussed Bayesian non-parametric mixture mod-
els for clustering, where the number of mixture components is estimated
during the learning process. We presented our new approach, that is, the
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Bayesian non-parametric parsimonious mixture models for density estima-
tion and model-based clustering. It is based on an infinite Gaussian mix-
ture with an eigenvalue decomposition of the cluster covariance matrix and
a Dirichlet Process, or by equivalence a Chinese Restaurant Process prior.
This allows deriving several flexible models and provides a well principled al-
ternative solution of model selection encountered in the standard maximum
likelihood-based and Bayesian parametric Gaussian mixture. We indeed pro-
posed a Bayesian model selection an comparison framework to automatically
select the best model structure, by using Bayes factors.

In Chapter 5, experiments carried out on simulated data highlighted
that the proposed DPPMs represent a good nonparametric alternative to
the standard parametric Bayesian and non-Bayesian finite mixtures. They
simultaneously and accurately estimate partitions with the optimal number
of clusters also inferred from the data. We also applied the proposed ap-
proach on benchmarks and real data sets, including a real challenging prob-
lem of bioacoustic data set. The possible hidden whale song units of the
humpback whale signals were accurately recovered in a fully automatic way.
The obtained results thus show the potential benefit of using the Bayesian
parsimonious clustering models in practical applications. For example it
will be used in conjunction with sparse coding decomposition of humpback
whale voicing Doh (2014).

In Chapter 6, we applied the Hierarchical Dirichlet Process for Hidden
Markov Model in the same challenging problem of unsupervised learning
from complex bioacoustic data. Pr. Gianni Pavan (Pavia University, Italy),
who is a NATO passive undersea bioacoustic expert, has analysed these
results during his stay at DYNI in 2015. He validated our proposed seg-
mentation. The obtained results are encouraging to examine of the possible
extension of the sequential case.

7.2 Future works

A future work related to the proposal of the DPPM model may concern
other parsimonious models such us those recently proposed by Biernacki and
Lourme (2014) based on a variance-correlation decomposition of the group
covariance matrices, which are stable and visualizable and have desirable
properties.

The Bayesian non-parametric Markovian model (HDP-HMM) applied
on a challenging bioacoustic data set has showed satisfactory results and
hence opens a future direction in which we would consider the eigenvalue
decomposition for the covariance matrix for the emission density of the infi-
nite HMM. More flexible models could appear in term of different volumes,
orientations and shapes for each state.

Recently, the mixture of skew-t distributions (Lee and McLachlan, 2015,



2013) received a lot of attention, these giving great performances in the
clustering applications. Parsimonious skew mixture models for model-based
clustering were investigated in Vrbik and McNicholas (2014). In a future
work, the derivation of such models from a Bayesian non-parametric prospec-
tive would be a good alternative to deal with the problem of model selection.

Until now we have only considered the problem of clustering. A per-
spective of this work is to extend it to the case of model-based co-clustering
(Govaert and Nadif, 2013) with block mixture models, which consists in
simultaneously cluster individuals and variables, rather that only individu-
als. The nonparametric formulation of these models may represent a good
alternative to select the number of latent blocks or co-clusters.

We also mention that the computation time for the benchmarks were
reasonable due to their small number of observations, however we noticed a
long computational time for the challenging bioacoustic data which contains
more than 50000 individuals and can be considered from a statistical point
of view as a large data set. It took around one day and half for the DPPMs
and around one day for HDP-HMM. This difference may be attributed to
the fact that the DPPMs Gibbs algorithm was coded in matlab while the
HDP-HMM software was given with a lot of C++ routines. Thus one future
work could be of course to optimize the code by using C++ routines in the
DPPMs. Also different methods, to learn the DPPMs could be considered
in a future toolkit developed (for example the Approximate Bayesian Com-
putation (ABC) methods etc.) in order to reduce the learning time for the
real-world data sets.





Appendix A

A.1 Prior and posterior distributions for the

model parameters

Here we provide the prior and posterior distributions (used in the Gibbs
sampler) for the mixture model parameters for each of the developed DPPM
models. First, recall that z = (z1, . . . , zn) denotes a vector of class labels
where zi is the class label of xi. Let zik be the indicator binary variable
such that zik = 1 if zi = k (i.e when xi belongs to component k). Then, let
nk =

∑n
i=1 zik represents the number of data points belonging to cluster (or

component) k. Finally, let x̄k =
∑n
i=1 zikxi
nk

be the empirical mean vector of

cluster k, and Wk =
∑n

i=1 zik(xi − x̄k)(xi − x̄k)
T its scatter matrix.

A.1.1 Hyperparameters values

In our experiments for the multivariate parsimonious models, we choose the
prior hyperparameters H as follows: the mean of the data µ0, the shrinkage
κn = 0.1, the degrees of freedom ν0 = d+2, the scale matrix Λ0 equal to the
covariance of the data, and for the spherical models, the hyperparameter s2

0

was taken as the greatest eigenvalue of Λ0.

A.1.2 Spherical models

(1) Model λI For this spherical model, the covariance matrix, for all the
mixture components, is parametrized as λI and hence is described by the
scale parameter λ > 0, which is common for all the mixture components.
For this spherical model, the prior over the covariance matrix is defined
through the prior over λ, for which we used a conjugate prior density, that
is an inverse Gamma. For the mean vector for each of Gaussian components,
we used a conjugate multivariate normal prior. The resulting prior density

127



is therefore a normal inverse Gamma conjugate prior:

µk|λ ∼ N (µ0, λI/κn) ∀k = 1, . . . ,K (A.1)

λ ∼ IG(ν0/2, s
2
0/2)

where (µ0, κn) are the hyperparamerets for the multivariate normal over µk
and (ν0, s

2
0) are those for the inverse Gamma over λ. Therefore, the resulting

posterior is a multivariate Normal inverse Gamma and the sampling from
this posterior density is performed as follows:

µk|X, z, λ,H ∼ N (µn, λI/(nk + κn))

λ|X, z,H ∼ IG(
ν0 + n

2
,

1

2
{s20 +

K∑
k=1

tr(Wk) +

K∑
k=1

nkκn
nk + κn

(x̄k − µ0)T (x̄k − µ0)})

where the posterior mean µn is equal to nkx̄k+κnµ0
nk+κn

.

(2) Model λkI This other spherical model parametrized λkI is also de-
scribed by the scale parameter λk > 0 which is different for all the mix-
ture components. As for the previous spherical model, a normal inverse
Gamma conjugate prior is used. In this situation the scale parameter λk
will have different priors and respectively posterior distributions for each
mixture component. The resulting prior density for this spherical model is
a normal inverse Gamma conjugate prior:

µk|λk ∼ N (µ0, λkI/κn) ∀k = 1, . . . ,K

λk ∼ IG(νk/2, s
2
k/2) ∀k = 1, . . . ,K

where (µ0, κn) are the hyperparamerets for the multivariate normal over µk
and (νk, s

2
k) are those for the inverse Gamma over λk. The set of hyper-

parameters νk = {ν1, . . . , νk} and sk = {s1 . . . sk} are chosen to be equal,
throw all the components of the mixture, to ν0 and respectively s2

0. Analo-
gously, the resulting posterior is a normal inverse Gamma and the sampling
for the model parameters (µ1, . . . ,µK , λ1, . . . , λK) is performed as follows:

µk|X, z, λk,H ∼ N (µn, λkI/(nk + κn))

λk|X, z,H ∼ IG(
νk + dnk

2
,

1

2
{s2k + tr(Wk) +

nkκn
nk + κn

(x̄k − µ0)T (x̄k − µ0)}).

A.1.3 Diagonal models

(3) Model λA The diagonal parametrization λA of the covariance matrix
is described by the volume λ (a scalar term) and a diagonal matrix A.
The parametrization λA therefore corresponds to a diagonal matrix whose
diagonal terms are aj , ∀j = 1, . . . d. The prior normal inverse Gamma
conjugate prior density is given as follows:

µk|Σk ∼ N (µ0,Σk/κn) ∀k = 1, . . . ,K

aj ∼ IG(rj/2, pj/2) ∀j = 1 . . . d



where the set of parameters rj , pj are considered to be equal ∀j = 1 . . . d
to ν0 and respectively s2

k. The resulting posterior for the model parameters
takes the following form:

µk|X, z,Σk,H ∼ N (µn,Σk/(nk + κn))

aj |X, z,H ∼ IG(
n+ νk +K(d+ 1)− 2

2
,

diag(
∑K
k=1

nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T + Wk + Λk)

2
)

where the posterior mean µn = nkx̄k+κnµ0
nk+κn

.

(4) Model λkA This diagonal model, analogous to the previous one, but
with different volume λk > 0 for each component of the mixture, takes
the parametrization λkA. In this situation, the normal prior density for the
mean remains the same and the inverse Gamma prior density for the volume
parameter λk is given as follows:

λk ∼ IG(rk/2, pk/2) ∀j = 1 . . .K

where the set of hyperparamerets for the scale parameter λk, rk = {r1, . . . , rK}
and pk = {p1, . . . , pk} are considered to be equal, for all mixture compo-
nents, to respectively ν0 and s2

k. The resulting posterior distributions over
the parameters of the model are given as follows:

µk|X, z,Σk,H ∼ N (µn,Σk/(nk + κn))

aj |X, z, λk,H ∼ IG(
n+ νk +Kd+ 1

2
,

diag(
∑K
k=1 λ

−1
k ( nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T + Wk + Λk))

2
)

λk|X, z,A,H ∼ IG(
rk + nkd

2
,
pk + tr(A−1( nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T + Wk + Λk))

2
).

A.1.4 General models

(5) Model λDADT The first general model has the λDADT parametriza-
tion, where the covariance matrices have the same volume λ > 0, orientation
D and shape A for all the components of the mixture. This is equivalent, in
the literature, to the model where the covariance Σ is considered equal throw
all the components of the mixture. The resulting conjugate normal inverse
Wishart prior over the parameters (µ1, . . . ,µK ,Σ) is given as follows:

µk|Σ ∼ N (µ0,Σ/κn) ∀k = 1, . . . ,K

Σ ∼ IW(ν0,Λ0)

where (µ0, κn) are the hyperparameters for the multivariate normal prior
over µk and (ν0,Λ0) are hyperparameters for the inverse Wishart prior (IW)
over the covariance matrix Σ that is common to all the components of the
mixture. The posterior of the model parameters (µ1, . . . ,µK ,Σ) for this
general model is given by:

µk|X, z, λk,H ∼ N (µn,Σ/(nk + κn))

Σ|X, z,H ∼ IW(ν0 + n,Λ0 +

K∑
k=1

{Wk +
nkκn
nk + κn

(x̄k − µ0)(x̄k − µ0)T }).



(6) Model λkDADT The second parsimonious model from the general
family has the parametrization λkDADT , where the volume λk of the co-
variance differs from one mixture component to another, but the orien-
tation D and the shape A are the same for all the mixture components.
This parametrization can thus be simplified as λkΣ0, where the parameter
Σ0 = DADT . This general model has therefore a Normal prior distribution
over the mean, an inverse Gamma prior distribution over the scale param-
eter λk and an inverse Wishart prior distribution over the matrix Σ0 that
controls the orientation and the shape for the mixture components. The
conjugate prior for the mixture parameters (µ1, . . . ,µK , λ1, . . . , λK ,Σ0) are
thus given as follows:

µk|λk,Σ0 ∼ N (µ0, λkΣ0/κn) ∀k = 1, . . . ,K

λk ∼ IG(rk/2, pk/2) ∀k = 2, . . . ,K

Σ0 ∼ IW(ν0,Λ0)

where λ1 is supposed to be equal to 1 (to make the model identifiable), the
hyperparameters {r1, . . . , rK} and {p1 . . . pK} are supposed to be equal to
respectively ν0 and s2

k for each of the mixture components. The resulting
posterior over the parameters (µ1, . . . ,µK , λ1, . . . , λK ,Σ0) of this model is
given as follows:

µk|X, z, λk,Σ0,H ∼ N (µn, λkΣ0/(nk + κn))

λk|X, z,H ∼ IG(
rk + nkd

2
,

1

2
{pk + tr(WkΣ

−1
0 ) +

nkκn
nk + κn

(x̄k − µ0)TΣ−1
0 (x̄k − µ0)})

Σ0|X, z,H ∼ IW(ν0 + n,Λ0 +

K∑
k=1

{Wk

λk
+

nkκn
λk(nk + κn)

(x̄k − µ0)T (x̄k − µ0)}).

(7) Model λDkADT
k This other general model λDkADT

k is parametrized
by the scalar parameter (the volume) λ and the shape diagonal matrix A.
This model parametrization can therefore be summarized to the DkADT

k

parametrization, by including λ in a resulting diagonal matrix A, whose
diagonal elements a1, . . . , ad. The prior density over the mean is normal,
the one over the orientation matrix Dk is inverse Wishart, and the one over
each of the diagonal elements aj , ∀j = 1 . . . d of the matrix A is an inverse
Gamma. The conjugate prior for this general model is therefore as follows:

µk|Σk ∼ N (µ0,Σk/κn) ∀k = 1, . . . ,K

aj ∼ IG(rj/2, pj/2) ∀j = 1 . . . d

The hyperparameters rj and pj for the λA, are considered to be the same
∀j = 1 . . . d and are respectively equal to ν0 and s2

k. The resulting posterior
for the model parameters takes the following form:

µk|X, z,Σk,H ∼ N (µn,Σk/(nk + κn))

aj |X, z,H ∼ IG(
n+ νk +K(d+ 1)− 2

2
,

diag(
∑K
k=1 DT

k ( nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T + Wk + Λk)Dk)

2
).

The parameters, that controls the orientation of the covariance, Dk, have
the same inverse Wishart posterior distribution as the general covariance



matrix:

Dk|X, z,H ∼ IW(nk + νk,Λk + Wk +
nkκn
nk + κn

(x̄k − µ0)(x̄k − µ0)T )

And as mentioned above the covariance matrix Σk for this model will be
formed as diag(aj)Dk.

(8) Model λDAkD
T (*) Another general model with the λDAkD

T parametriza-
tion is given. In this situation the volume parameter λ, that is equal, and
the shape Ak, that varies for all mixture components are taken not to be
separated, thus the parametrization of this model is given by DkAkDk, with
the parameter Dk, the cluster orientation. For this model the diagonal ma-
trix Ak has the diagonal terms equal to (1, a2k, a3k, . . . , adk) ∀k = 1, . . . ,K.
The prior density for the diagonal elements of Ak is an inverse Gamma and
is supposed as follows. Suppose a inverse Gamma prior for λ.

λ ∼ IG(ν0/2, s
2
0/2)

where (ν0, s
2
0) are hyperparamerets of the inverse Gamma density. The

resulting prior for the Ak, ∀k = 1, . . . ,K can be given by:

λatk|λ ∼ IG(rtk/2, ptk/2) ∀j = 1, . . . , d ∀k = 1, . . . ,K

where the hyperparameters set (rtk, ptk) is supposed to be equal to ν0 and
respectively s2

0. The resulting posterior for the model parameters λatk and
D are similar to the general model λkDAkD

t. But for now, in place of
simulating the Ak, the λAk is simulated, thus a posterior distribution over
λ is given as follows:

λ|X, z,H ∼ (
ν0 + n

2
,
1

2
{s2

0 +
K∑
k=1

tr(Wk) +
K∑
k=1

nkκn
nk + κn

(x̄k−µ0)(x̄k−µ0)T })

(A.2)

(9) Model λkDAkD
t(*) In this case the model takes the parametrization

λkDAkD
t. This consists of different volume λk and shape Ak, but the

same orientation D over the mixture components. In this situation, the
separation between the volume and the shapes are not needed, therefore the
parametrization of this model is supposed to be DAkD

t, where the first term
of the diagonal Ak is not equal to one. The prior density over the mean is
normal, the one over the diagonal terms of the matrix Ak is inverse Gamma
and the prior density for the matrix D, that is the cluster orientation, is an
inverse Wishart. The conjugate prior for this general model is therefore as
follows:

µk|D,Ak ∼ N (µ0,DAkD
T /κn) ∀k = 1, . . . ,K

atk ∼ IG(rtk/2, ptk/2) ∀j = 1 . . . d ∀k = 1, . . . ,K

D ∼ IW(ν0, I)



where (rtk, ptk), are hyperparameters for the inverse Gamma prior density.
The hyperparameters (rtk and ptk, are considered to be the same ∀j =
1 . . . d, k = 1 . . .K and are respectively equal to ν0 and s2

k. The resulting
posterior for the model parameters takes the following form:

µk|X, z,D,Ak,H ∼ N (µn,
Σk

nk + κn
)

atk|X, z,D, H ∼ IG(
rtk + nk

2
,

diag( nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T + DTWkD)

2
)

D|X, z,Ak, H ∼ diag(DDT )−(ν0+d+1)/2 exp

−1

2
tr

K+∑
k=1

A−1
k DT [(x̄k − µ0)(x̄k − µ0)T

nkκn
nk + κn

+ Wk]


where the posterior mean µn is equal to nkx̄k+κnµ0

nk+κn
.

(10) Model λkDkADT
k The third considered parsimonious model for the

general family, is the one with the parametrization λkDkADT
k of the covari-

ance matrix, and is analogous to the previous model, but for this one, the
scale λk of the covariance (the cluster volume) differs for each component
of the mixture. The prior over each of the scale parameters λ1 . . . λK is an
inverse Gamma prior :

λk ∼ IG(rk/2, pk/2) ∀k = 1, . . . ,K.

The set of hyperparameters rk = {r1, . . . rK} and pk = {p1, . . . pK} are
considered equal between the components of the mixture and are taken
equal to respectively ν0 and s2

k. The resulting posterior distributions over
the parameters of the model are given as follows:

µk|X, z,Σk,H ∼ N (µn,Σk/(nk + κn))

aj |X, z, λk,Dk,H ∼ IG(
n+ νk +Kd+ 1

2
,

diag(
∑K
k=1 λ

−1
k DT

k ( nkκn
nk+κn

(x̄k − µ0)(x̄k − µ0)T + Wk + Λk)Dk)

2
)

Dk|X, z,H ∼ IW(nk + νk,Λk + Wk +
nkκn
nk + κn

(x̄k − µ0)(x̄k − µ0)T )

λk|X, z,Dk,Ak,H ∼ IG(
rk + nkd

2
,
pk + tr(DkA

−1DT
k ( nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T + Wk + Λk))

2
).

(11) Model λDkAkD
T
k (*) For this situation, the model has the parametriza-

tion λDkAkD
T
k . This can be simplified by the λΣ0k parametrization, with

the multivariate normal prior density for the mean vector, the inverse Gamma
prior density for λ, and the inverse Wishart prior density for the Σ0k. The
considered prior density are given as follows:

µk|λ,Σ0k ∼ N (µ0, λΣ0k/κn) ∀k = 1, . . . ,K

λ ∼ IG(nu0/2, s
2
0/2) ∀j = 1 . . . d ∀k = 1, . . . ,K

Σ0k ∼ IW(νk,Λk) ∀k = 1, . . . ,K

The resulted posterior distributions for the mean vector µk and the ma-
trix Σ0k are considered to be the same as in the full-GMM model with



λkDkAkD
T
k parametrization. Σk will be replaced by Σ0k. For the λ pa-

rameter, the posterior distribution is given as follows:

λ|X, z,Σ0k,µkH ∼ IG(
ν0 + n

2
,
1

2
s2

0+
∑
k

tr(Wk)+
∑
k

nkκn
nk + κn

(x̄k−µ0)T (x̄k−µ0))

(12) Model λkDkAkD
T
k Finally, the more general model is the standard

one with λkDkAkD
T
k parametrization. This model is also known as the full

covariance model Σk. The volume λk, the orientation Dk, and the shape
Ak differ for each component of the mixture. In this situation, the prior
density for the mean is normal and the one for the covariance matrix is
an inverse Wishart, which leads to the following conjugate normal inverse
Wishart prior density:

µk|Σk ∼ N (µ0,Σk/κn) ∀k = 1, . . . ,K

Σk ∼ IW(νk,Λk) ∀k = 1, . . . ,K

where (µ0, κn) and (νk,Λk) are respectively the hyperparamerets for re-
spectively normal prior density over the mean and the inverse Wishart prior
density over the covariance matrix. The resulting posterior over the model
parameters (µ1, . . . ,µk,Σ1, . . . ,Σk) is given as follows:

Σk|X, z,H ∼ IW(nk + νk,Λk + Wk +
nkκn
nk + κn

(x̄k − µ0)(x̄k − µ0)T ).





Appendix B

B.1 Multinomial distribution

Suppose the components θk = {0, 1} such that
∑

k θk = 1, the following
discrete distribution is given as a multivariate generalization of the Bernoulli
distribution. The pdf of multinomial distribution is given by the following:

p(θ) =
K∏
k=1

µθkk (B.1)

where θ is a K dimensional binary variable with θk components.

B.2 Normal-Inverse Wishart distribution

Suppose nether the mean vector, neither the covariance matrix of the GMM
are known. The normal inverse Wishart distribution is then supposed for
the model parameters.

Σk ∼ IW(ν0,Λ0)

= 2π

∣∣∣∣Σk

κ0

∣∣∣∣1/2 exp{−κ0

2
(xi − µ0)TΣ−1

k (xi − µ0)} (B.2)

µk|Σk ∼ N (µ0,
Σk

κ0
)

=
|Λ0|ν/2

2
νd
2 Γd(ν/2)

|Σk|−
ν+d+1

2 exp{−1

2
tr(Λ0Σ

−1
k )} (B.3)

with normal distribution N and the Inverse-Wishart distribution IW.
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The log form for this distribution is given respectively as follows:

log p(Σk|Λ0, ν) = log

(
|Λ0|ν/2

2
νd
2 Γd(ν/2)

|Σk|−
ν+d+1

2 exp{−1

2
tr(Λ0Σ

−1
k )}

)

=
ν

2
log |Λ0| −

νd

2
log(2)− log(Γd(ν/2))−

−ν + d+ 1

2
log |Σk| −

1

2
tr(Λ0Σ

−1
k ) (B.4)

where Λ0 and ν are hyperparameters representing the positive definite ma-
trix d x d and the degree of freedom ν > d− 1. Γd(.) represents the multi-
variate gamma function that is a generalization of gamma distribution and
is defined by the Equation (B.5)

Γd(x) = πd(d−1)/4
d∏
i=1

Γ[x+ (1− j)/2] (B.5)

log p(µk|Σk,µ0, κ0) = log

(
2π

∣∣∣∣Σk

κ0

∣∣∣∣1/2 exp{−κ0

2
(xi − µ0)TΣ−1

k (xi − µ0)}

)

= log(2π) +
1

2
log

∣∣∣∣Σk

κ0

∣∣∣∣−
−κ0

2
(xi − µ0)TΣ−1

k (xi − µ0) (B.6)

B.3 Dirichlet distribution

The Dirichlet distribution, that is a multivariate generalization of the beta
distribution, is parametrized by a vector α = (α1, . . . , αK) of a positive real
numbers. The pdf of the Dirichlet distribution is given by the following:

f(θ1, θ2, . . . , θK ;α1, α2, . . . , αK) =

Γ(
K∑
k=1

θk)

K∏
k=1

Γ(αk)

K∏
k=1

θαk−1
k (B.7)

where
∑K

k=1 θk = 1 and 0 < θk < 1.
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Molina. A multivariate skew normal distribution. Journal of Multivariate
Analysis, 89(1):181 – 190, 2004. 11

Dilan Görür. Nonparametric Bayesian discrete latent variable models for
unsupervised learning. PhD thesis, Berlin Institute of Technology, 2007.
71

Dilan Görür and Carl Edward Rasmussen. Dirichlet Process Gaussian
Mixture Models: Choice of the Base Distribution. Journal of Com-
puter Science and Technology, 25(4):653–664, 2010. doi: 10.1007/
s11390-010-9355-8. 70

Peter Hall, S. Marron J., and Amnon Neeman. Geometric representation
of high dimension, low sample size data. Journal of the Royal Statistical
Society Series B, 67(3):427–444, 2005. 14

John Michael Hammersley and David Christopher Handscomb. Monte Carlo
methods. Monographs on statistics and applied probability. Chapman and
Hall, London, 1964. 51

Trevor Hastie, Andreas Buja, and Robert Tibshirani. Penalized Discrimi-
nant Analysis. The Annals of Statistics, 23(1):73–102, 1995. 14

W.K. Hastings. Monte Carlo samping methods using Markov chains and
their applications. Biometrika, 57:97–109, 1970. 43

David A. Helweg, Douglas H. Cato, Peter F. Jenkins, Claire Garrigue, and
Robert D. McCauley. Geographic Variation in South Pacific Humpback
Whale Songs. Behaviour, 135(1):pp. 1–27, 1998. 97
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