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Résumé: 
 

La biomédecine et la biophotonique sont des champs de recherches en plein expansion qui 

grandissent à vive allure, constituant un secteur entier d’activités novatrices. Ce secteur, 

vraiment interdisciplinaire, comprend le développement de nouveaux nanomatériaux, de sources 

lumineuses et l’élaboration de nouveaux concepts, de dispositifs/équipements pour quantifier la 

conversion de photons et leurs interactions. L’importance décisive du diagnostic précoce et du 

traitement individuel des patients exige des thérapies soigneusement ciblées et la capacité de 

provoquer sélectivement la mort cellulaire des cellules malades. Malgré les  progrès 

spectaculaires réalisés en utilisant les points quantiques ou des molécules biologiques organiques 

pour l’imagerie biologique et la libération ciblée de médicaments, plusieurs problèmes restent à 

résoudre : obtenir une sélectivité accrue pour une accumulation spécifique dans les tumeurs et 

une amélioration de l’efficacité des traitements. D’autres problèmes incluent la cytotoxicité et la 

génotoxicité, l’élimination lente et la stabilité chimique imparfaite. Des espérances nouvelles 

sont portées par de nouvelles classes de matériaux inorganiques comme les nanoparticules à base 

de silicium ou à base de carbone, qui pourraient faire preuves de caractéristiques de stabilité plus 

prometteuses tant pour le diagnostic médical que pour la thérapie. Pour cette raison, la 

découverte de nouveaux agents de marquage et de transport de médicaments représente un 

champ important de la recherche avec un potentiel de croissance renforcé. 

Dans ce travail nous nous sommes intéressés à 5 types différents de nanoparticules du groupe IV. 

Elles ont été synthétisées de différentes manières. Le premier type de nanoparticules a été 

produit à partir de silicium poreux par anodisation électrochimique d’une plaque de silicium 

monocristallin. Cette technique très connue permet de produire des nanoparticules ayant une 

structure poreuse et une photoluminescence (PL) très intense. Les nanoparticules de silicium 

poreux sont des agglomérats de minuscules grains de silicium de 3 nm. Le second type est 

représenté par des nanoparticules de 20 nm de silicium cristallin produites par ablation laser dans 

l’eau, d’un substrat de silicium. Ces nanoparticules ne présentent pas de PL sous excitation UV, 

mais elles sont luminescentes sous excitation à deux photons. Le troisième type de 

nanoparticules sont des nanoparticules de diamant de 8 nm produites par ablation laser dans un 

liquide. Les nanodiamants sont luminescents. En solution, ils forment des agrégats de 20 nm. Le 

quatrième type est représenté par les nanoparticules de fluooroxide de carbone, non cristalline, 

semi-organique de 8 nm faisant preuve d’une forte luminescence. Elles se dispersent 

parfaitement bien dans l’eau sans former d’agglomérat. Le dernier type de particules est de 

relativement grande taille (100-200nm) de carbure de silicium produites par carboréduction du 
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silicium. Elles sont luminescentes et à la différence des autres nanoparticules elles ont une 

structure cristalline non-centrosymétrique ce qui les rend parfaitement adaptées pour une 

interaction optique non linéaires. 

Toutes les particules ont été testées pour l’imagerie sur des cellules 3T3-L1, avec 

différents modes de détection : fluorescence excitée à un ou deux photons ou la génération de 

seconde harmonique. Les nanoparticules les plus intéressantes pour la détection en microscopie 

fluorescente excitée par un photon sont les nanoparticules de silicium poreux, les nanodiamants 

et les nanoparticules de fluooroxide de carbone (CFO). Les nanoparticules de silicium poreux et 

les nanodiamants ont été observées dans le cytoplasme des cellules tandis que les CFO pénètrent 

dans le noyau des cellules. Les particules de SiC de grande taille et celles de 20 nm de silicium 

peuvent générer des signaux de seconde harmonique, de telle sorte qu’il est possible de les 

visualiser en microscopie. 

La toxicité des nanoparticules a été mesurée par une méthode non invasive basée sur 

impédancemétrie qui permet de mesurer la prolifération cellulaire en temps réel. Leur toxicité est 

inférieure de plusieurs ordres de grandeurs à celle de nanoparticules inorganiques telles que celle 

en or ou en Fe3O4. La faible toxicité des nanoparticules du groupe IV, rend leur utilisation 

parfaite pour l’imagerie cellulaire. La localisation des nanoparticules de CFO est 

particulièrement fascinante, puisqu’elles se concentrent dans le noyau des cellules quand celles-

ci se divisent. Nous avons étudié leurs caractéristiques de capture intra-cellulaire. 

L’objectif final de la mise au point des NPs est leur utilisation in vivo. Cela signifie que 

lors de leur utilisation, en injection périphérique (intraveineuse ou intraabdominale) elles seront 

en contact avec de nombreuses molécules biologiques présentent dans le sang ou le liquide 

interstitiel. L’albumine est la protéine la plus présente dans le sang. La capacité de fixation des 

nanoparticules à l’albumine a été mesurée. Les nanoparticules de CFO et de Si se fixent 

facilement à l’albumine. L’incubation préliminaire des nanoparticules de CFO avec certains 

acides aminés réduit fortement leur liaison à l’albumine. Cette observation est intéressante car la 

fixation de nanoparticules de CFO à l’albumine diminue fortement sa pénétration intra-cellulaire. 

Parce que les propriétés des nanoparticules de CFO sont très intéressantes, notamment 

leur pénétration intra-nucléaire, elles ont été testées sur des cellules cancéreuses. Nous avons 

observé que les nanoparticules de CFO sont moins toxiques pour les cellules non cancéreuses 

(3T3-L1) que pour les cellules cancéreuses (HSC, HuH7, Panc01, HepG2). Cet effet est le 

résultat d’une capture intracellulaire supérieure des nanoparticules par les cellules cancéreuses 
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que par les cellules non cancéreuses. Cette différence désigne les nanoparticules de CFO comme 

un bon candidat pour la thérapie anti-cancer. 

Par ailleurs les ultrasons (US), à une intensité 1000 fois inférieure à celle utilisée pour les 

applications médicales, détruisent les cellules qui contiennent des nanoparticules de CFO. Il est 

possible de focaliser les ultrasons avec une grande précision. Cet avantage permettrait de palier 

l’inconvénient d’une répartition non spécifique des NPs, résultant en une destruction très 

focalisée des foyers tumoraux. 

En conclusion, nos résultats montrent que les nanoparticules du groupe IV permettent de 

réaliser une imagerie cellulaire multi-modale, les différents types de nanoparticules présentant 

des avantages variés selon le type de modalité envisagé. Les nanoparticules du groupe IV sont 

moins toxiques que les autres nanoparticules inorganiques. Leur comportement en présence de 

matériel biologique suggère que certaines d’entre elles sont de bons candidats pour la thérapie 

contre le cancer. 
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Thesis structure  
This work shows the progress in research dedicated to the  applications of nanoparticles 

for cell labeling and therapy: 1st chapter is an introduction, 2nd chapter of research is a review of 

state of art on group IV nanoparticles synthesis and applications as labels for microscopy and as 

an agents for cancer therapy. 3rd chapter describes the materials and equipment used in the 

current work. 4th chapter is dedicated to the synthesis and characterization of the nanoparticles. 

5th chapter shows examples and comparisons of different nanoparticles as labels for optical 

microscopy. 6th chapter includes the investigation of utilization of carbon fluorooxide 

nanoparticles for the cancer therapy. 7th chapter is a general discussion and it contains analysis 

and comparison of different nanoparticles properties and the possibilities of their applications. 8th 

chapter is a conclusion which shows the progress made by the work and further perspectives.  
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1. Introduction 
Inorganic nanoparticles are extremely interesting object for the investigation since the 

quantum dot luminescence discovery in 1981 by Alexey Ekimov [1].  The main advantages 

using different points of view can be observed: 

1. At the “physical” point of view, the properties of crystalline NPs are different from 

the properties of the bulk material. The quantum confinement effect can be observed in relatively 

small (less than 100 nm) objects and it may cause the shift of PL bands. In case of ferromagnetic 

material, small particles can have superparamagnetic properties. Other property changes are less 

interesting into the frame of the current work.  

2. “Chemically”, the main difference between the material into the bulk form and the 

form of the nanoparticles is about 1010 -1014 times increased surface per mass unit, so the 

reactivity of the material in form of nanoparticles can be hundred billion times higher, than the 

reactivity of the less thin powder. 

3. For biologists, the main advantage of nanoparticles is the ability to penetrate through 

the cell membrane, to be carried by the blood stream and the ability to be bound by the different 

proteins.  

So, by combining all the above mentioned facts, it is possible to conclude that the 

materials in form of nanoparticles are almost perfectly fit the needs of bioresearch. Nevertheless, 

they found only limited number of applications, such as the magnetic labels for MRI and the 

labels for photoluminescent microscopy. The main problem for the bio-application of the 

nanoparticles is the low biocompatibility and high toxicity of the most common metal or 

semiconducting nanoparticles.  

There are several ways to overcome that limitation. 

 First way is the utilization of organic or polymer nanoparticles, particularly the micellar or 

lyposomic NPs. In this way the problem is evident: using the organic NPs causes the loss 

of crystallinity and, as a result loss of the most important functional properties. The 

micelles and other organic NPs are usually used as a carrier for drug delivery. Such kinds 

of NPs do not use any of the “physical” properties of nanoparticles.  

 Second way is a protection of the nanoparticle from the direct contact with any organics. 

In fact such protection usually is the coating of the particles with the polymers or 

biologically inert layer. That way is extremely promising and can be used for almost any 
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type of NPs. Nevertheless, the coverage often increases the sizes of particles too much 

and, as a result, NPs loose the “biological” advances. 

 The third way is the utilization of the common and safe inorganic compounds. The 

toxicity of carbon or silicon nanoparticles should be much lower than the toxicity of the 

metal ones. Besides, the nanocarbon and nanosilicon have great number of different 

forms. 

The present work is concentrated on the investigation of different group IV 

nanoparticles and their applications for the cell imaging and therapy. The most interesting task is 

the comparison of the nanoparticles which do not differ significantly in order to understand how 

the different factors influent the properties.  

Five different types of group IV nanoparticles were tested for bioapplications: the 

silicon particles were presented as porous silicon and 20 nm Si particles, carbon particles were 6 

nm nanodiamonds and non-crystalline carbon fluorooxide (СFO) nanoparticles, SiC particles 

were presented in form of 3-c SiC particles. 

Such set of the chosen nanoparticles allows varying the different parameters with the 

other ones remain similar. The pairs of particles for comparison are shown in Table 1.1 

Different size Different structure Different composition Different crystallinity 

Porous 

silicon  

Silicon 

20 nm 

Silicon 

20 nm  

SiC  Porous 

silicon 

Nanodiamo

nds 

nanodiamon

ds  

CFO (non-

crystalline) 

The same 

crystallic 

structure 

(diamond-like), 

same 

composition  

Similar crystallite 

sizes. 

The same structure and 

close sizes 

The same size (6-8 nm) and 

the same composition 

(carbon)  

Table 1.1: The pairs of particles for comparison  

So, by the investigation of the behavior of 5 different NPs it is possible to find out the 

influence of varying size, crystallinity, crystallic structure and composition of NPs.to the 

intercellular uptake. These specific parameters should have an effect on the physical properties 

and they could define the special ways of applications. For example, bulk silicon is not 

luminescent due to indirect bandgap structure Si in form of small crystallites is luminescent due 

to quantum confinement effect. The 20 nm Si particles are not luminescent. On the other hand, 
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the big particles due to large surface can be able to generate second harmonic (SH) signal under 

visible irradiation. The changes in structure can change the SH ability, change in composition 

with the same structure and NPs sizes causes the shift of the PL bands. The absence of 

crystallinity and specific molecular structure in case of CFO NPs allows observing them as semi-

inorganic material.  

The specific structure, size and composition of the NPs lead to the specific properties 

and, as a result, some of the nanoparticles types are preferable to be used in specific kinds of 

applications. The comparison of such properties in accordance with the applications is the main 

task of the current research. 
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2. Group IV nanoparticles for bioapplications: a review of State 
of art 

There are lots of different biocompatible inorganic materials; one of the most 

interesting among them is group IV nanoparticles. Group IV elements play crucial roles 

both in our daily life and in our bodies. The group IV elements in form of nanoparticles can 

perfectly fit some needs of bioscience. Other nanoparticles, such as group II–VI quantum 

dots contain heavy metal elements that are toxic to living cells and tissues[2, 3, 4]. In this 

respect, group IV nanoparticles bring new hopes as benign materials accompanied by the 

abovementioned properties, which favor their biological applications.  

First section of that chapter describes the variety of the synthetic methods for the 

group IV nanoparticles, such as Si, C and SiC nanoparticles. Since the surface sta te is vital 

for the behavior of such nanoparticles into the biological environment, second section 

shows the ways of the surface modifications. Than we show the current advances on the of 

group IV nanoparticles applications for the cell imaging (section 3) and cancer therapy 

(section 4).  

2.1 Fabrication of group IV nanoparticles: advantages and disadvantages 
top-down vs bottom-up technique 

There are two general strategies for the 

production of the nanoparticles. 

Nanoparticles can be produced either by 

the degradation of the bulk material or 

by the assembly of a smaller species 

(Figure 2.1.1). That group of methods 

called top-down strategies and it 

includes, such techniques, as a 

mechanical grinding with or without 

addition of special surfactant to the 

powder, electrochemical etching and 

lithographical methods. Here is the list 

with description of the most important 

top-down techniques 

 The mechanical grinding of the bulk material. Such method have also thermodynamic 

limitations – due to the high surface tension energy of free-standing surface , so the small 

 

Figure 2.1.1  The illustration of general difference 

between top-down and bottom-up synthetic 

approaches[5] 
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particles are tend to agglomerate, so it is not possible to make very small particles. That 

size limitation can be shifted down by the addition of the surfactants during grinding.  

 Second method for the formation of nanostructured material is electrochemical or 

chemical etching of bulk material. In order of better structuring of material, the etching 

catalyzer can be placed to the material before the etching. The catalyzer can be placed in 

form of special mask in order to manage the etching process. 

 The idea of masking the material before the etching leads us to the lithography technique. 

The special photo- or -electron sensitive polymer can be placed to the surface of the 

semiconductor for etching (usually silicon) and after irradiation through the special mask 

polymer change its properties and it can be removed from the non-irradiated places only. 

Than in case of etching, only non-covered places are etched.  

The second group of methods called bottom-up approach leads to the formation of the 

nanoparticles from the smaller species, such as atoms, molecules or ions. That group of 

methods includes combustion synthesis, all of the “wet” chemistry methods, which form the 

nanoparticles assembled from solutions of precursors under special conditions. The different 

kinds of chemical vapor deposition lead to the formation of the nanoparticles from gas phase.  

 The colloidal synthesis is a group of methods to produce colloids of the nanoparticles, 

usually quantum dots using reduction of metal ion or other ways of chemical technology.  

 The syntheses of nanoparticles from gas or plasma methods are the group of chemical 

vapor deposition methods. The molecules of precursor in gas phase (or ions in case of 

plasma activation) are decomposed under several conditions (temperature, catalyst, 

presence of electric field) at the plate.  

  The physical vapor deposition is the similar method, but the difference is that the 

precursor in PVD is the gas of atoms (not molecules of precursor). The free standing gas 

of atoms is not stable and they rapidly form the agglomerates. The main difference in 

methods in this group is the way of atom gas production. That can be laser ablation, 

sparking ablation, ion or electron beam ablation.  

 

2.1.1 Silicon nanoparticles 
Silicon is an essential element to sustain life [6].preliminary studies have also 

demonstrated the biocompatibility of bulk silicon. [7], Silicon also is the one of the most 

widely used semiconductors in the world. The silicon technology advances, which 

necessary to use it as a material for microelectronics allows getting massive production of 



 
16 

 

the extremely pure (99.9999999%) bulk silicon. Also, using the lithographic technology on 

the silicon wafer it is possible to get the objects with the sizes down to 10 nm. Since the 

bulk silicon has an indirect band gap it has poor photoluminescence. However, small -sized 

silicon (below 5 nm) NPs exhibit relatively strong fluorescence, showing the prospect of 

long-awaited optical applications. Therefore, intense studies have been intrigued to develop 

fluorescent silicon NPs and their optics-relative applications since the first observation of 

porous silicon-based fluorescence. In that case, the 5 nm Si particles gives a near-infrared 

photon [8].  

The silicon nanoparticles can exist in several different forms.  

Porous silicon 
One of the most widespread and abundant method to get the silicon nanoparticles 

is electrochemical production of porous silicon. 

After its discovery in 1956 by Uhlir [10], porous 

silicon has not atrracted much attention till 1990. 

In 1990 Canham [11] had discovered room 

temperature photoluminescence of porous silicon. 

After such discovery, lots of new research projects 

on porous silicon have started.  

The main preparative method for that 

material is an electrochemical etching of the bulk 

silicon in the fluoric acid-ethanol mixture, 

Other way of porous silicon production is 

electroless etching in specific conditions: it is 

possible to obtain porous silicon through stain-etching 

with hydrofluoric acid, nitric acid and water. Porous 

silicon formation by stain-etching is particularly 

attractive because of its simplicity and the presence of 

readily available corrosive reagents; namely nitric 

acid (HNO3) and hydrogen fluoride (HF). 

Depending in the initial wafer orientation 

[12], its resistivity and conductivity type, mixture 

composition, current density and illumination 

during etching, it is possible to get variety of 

porous structures with the different pores’ and particles’ sizes. So, we can get highly 

 
a 

 
b 

Figure 2.1.1.1: TEM images of non-

luminescent porous silicon film (a) 

and grinded  luminescent porous 

silicon film (b) [9] 
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controllable method to produce the nanoparticles with relatively small sizes. Nanoporous 

silicon has remarkably bright photoluminescence with quantum yield up to 50% [13].There 

are lots of researches concerning to the biomedical applications of porous silicon.  

The resulting material – porous silicon has the complicated structure of small Si 

crystallites (3-4 nm) agglomerated into the pore structure with average pore diameter from 

micrometers to several nanometers, depending of synthesis conditions. So for the 

bioapplications, porous silicon powder should be grinded for the formation of smaller 

particles According to the crystallites’ size, they can be both, luminescent or non -

luminescent [14]. The big surface area (200-300 m2/mg) provides usage of the porous 

silicon as drug carrier. Figure 2.1.1.1 shows the examples of the electrochemically etched 

silicon. It is seen, that it exists in form of film (a), which consist of small (4 -8 nm) 

crystallites (b). 

 Silicon nanocrystals 
 In recent two decades, many other 

synthetic strategies (e.g., solution-phase 

reduction, microemulsion, sonochemical 

synthesis [21], mechanochemical synthesis, 

laser ablation [22] and laser pyrolysis of 

SiH4 gas [23]) have been developed for the 

preparation of separated silicon 

nanoparticles. 

 

 For the solution-phase reduction 

synthesis proposed by Kauzlarich and 

coworkers, silicon halides (e.g., SiCl4) are 

reduced in organic solution (e.g., ethylene 

glycol dimethyl ether) to produce silicon 

nanocrystalline under mild conditions [24]. 

 Mechanochemical synthesis is a 

method of grinding of bulk silicon in 

presence of the special reagents. Those 

reagents can be described as a chemical 

surfactant that easily reacts with the silicon surface and so, prevent the agglomeration of 

nanoparticles. 

  

Si NP produced by 
the tethrachlorsilane 
precursor reduction 
[15]. 

Si NPs produced by 
the 
mechanochemical 
synthesis. [16] 

 

 

 

Si NP as a result of 
laser pyrolysis of 
SiH4. [17], [18] 

Si NP produced via 
laser ablation of 
bulk Si [19][20] 

Figure 2.1.1.2 TEM images of the Si 
nanoparticles obtained by different methods 
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 Silicon clusters and nanocrystals containing up to several thousand atoms per  cluster 

could be generated by pulsed CO2 laser-induced decomposition of SiH4 in a flow reactor 

[25] Resulting material for all of these methods is a uniform spherical non-luminescent 

well-crystalline nanoparticles with sizes from 10 to 100 nm. Depending on the method, the 

surface coverage and surface groups can vary 

 The silicon nanoparticles can be obtained by the ablation of the silicon wafer by 

laser. The ablation can be done both in vacuum [26] or in liquid [27] medium. The resulting 

nanoparticles are well crystalline and they can have the sizes from 2 to 40 nm depending 

on synthesis conditions 

Utilization of the described methods allows producing of well-crystalline silicon 

nanoparticles with the sizes ranged from 2 up to 100 nm (see Figure 2.1.1.2). The methods 

without any coverage and surface protection against oxidation gives core-shell structure 

with the amorphous silica shell around silicon core (Figure 2.1.1.2 laser pyrolysed 

particles). 

Silicon nanowires 
Silicon nanowires are the material which is a 

one dimensional silicon structures with a length of 

several microns and width up to hundred nanometers. 

Since its discovery in 1960s, by Treuting and Arnold 

was published [29, 30], they attract a lot of attention 

due to their potentially interesting semiconducting 

properties. 

The most attractive method for the production 

of nanowires for bioapplications is a metal-assisted 

etching. The predeposited metal catalyst (usually silver) causes the specific etching process 

which can lead to the formation of the arrays of nanowires (Figure 2.1.1.3). Those arrays 

can be easily removed from the substrate and used separately.  

2.1.2 Carbon nanoparticles 
Carbon is the backbone of all known life-forms on earth. In the human body, it is 

the second most abundant element by mass after oxygen. Carbon in nature exists mostly in 

the form of graphite, diamond, and amorphous carbon. The carbon nanomaterials are the  

fullerenes, single-wall and multiwall nanotubes, nanodiamonds, graphene sheet layers and 

 

Figure 2.1.1.3 The silicon 
nanowires produced by the 
metal-assisted chemical etching 
[28] 
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graphene-based materials, graphite whiskers [31]. All of these forms should be considered 

as different materials. 

Nanotubes 
Carbon nanotubes represent one of the best 

examples of novel nanostructures derived by 

bottom-up chemical synthesis approaches. 

Nanotubes have the simplest chemical composition 

and atomic bonding configuration but exhibit 

perhaps the most extreme diversity and richness 

among nanomaterials in structures and structure - 

property relations. Single wall carbon nanotubes 

(SWNTs) can be either metals or semiconductors, 

with band gaps that are relatively large (0.5 eV for 

typical diameter of 1.5 nm) or small (10 meV), even 

if they have nearly identical diameters.  

Arc-discharge, laser ablation, and chemical 

vapor deposition have been the three main methods 

used for carbon nanotube synthesis [34]. The first 

two employ solid-state carbon precursors to provide carbon sources needed for nanotube 

growth and involve carbon vaporization at high temperatures (thousands of degrees 

Celsius). Chemical vapor deposition (CVD) utilizes hydrocarbon gases as sources for 

carbon atoms and metal catalyst particles as “seeds” for nanotube growth that takes place at 

relatively lower temperatures (500 - 1000 ° C). For SWNTs, none of the three synthesis 

methods has yielded bulk materials with homogeneous diameters and chirality thus far. 

Nonetheless, arc-discharge and laser ablation techniques have produced SWNTs with 

narrow diameter distributions averaging 1.4 nm. 

   

Figure 2.1.2.1: Schematic 
honeycomb structure of a single-
walled nanotube [32] the TEM 
image of single-wall carbon 
nanotube [33] 
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 Fullerenes 
A fullerene is a molecule of carbon in the form of a 

hollow sphere, ellipsoid, tube, and many other shapes. 

Fullerenes can be synthesized in the laboratory in a 

wide variety of ways, all involving the generation of a 

carbon-rich vapor or plasma [35]. All current methods 

of fullerene synthesis produce primarily C60 and C70 

and these molecules are now routinely isolated in gram 

quantities and are commercially available. Higher-

mass fullerenes and endohedral complexes can also be 

made and isolated, albeit in substantially reduced 

amounts. At present the most efficient method of 

producing fullerenes involves an electric discharge 

between graphite electrodes in 200 torr of He gas. Fullerenes are embedded in the emitted 

carbon soot and must then be extracted and subsequently purified. The following extraction 

and purification of fullerenes uses difference in fullerenes solubility in organic solvents ore 

gase-phase separation using difference in molecular weight of different fullerenes. [36] 

Graphene 
Graphene is allotropes of carbon in the form of a two-dimensional, atomic-scale, 

hexagonal lattice in which one atom forms each vertex. It is the basic structural element of 

other allotropes, including graphite, charcoal, carbon nanotubes and fullerenes. It can also 

be considered as an indefinitely large aromatic molecule, the limiting case of the family of 

flat polycyclic aromatic hydrocarbons. 

There are 3 main methods to obtain graphene. 1st method is a separation of a single 

graphene layer from the graphite. It is possible to use an adhesive tape, sonication in 

special solvents, such as N-methylpyrrolidone or exfoliation of graphite [37]. The 

exfoliation can take place both in the solution and in the solid graphite. Graphene in form 

of epitaxial layers can be obtained using CVD on a SiC or other wafer. Partly oxidation of 

SiC at high temperatures (above 1100oC) can also give us graphene particles (Figure 

2.1.2.3). Graphene particle is a set of bound graphene sheets.  

 

Figure 2.1.2.2 The schematic 

structure of fullerenes 
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a                                                    b 

Figure 2.1.2.3 TEM images showing individual graphene sheets (a) and particle composed of 

agglomerated graphene platelets (b) [37] 
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Nanodiamonds 
 Nanodiamonds are the small crystalline carbon particles (about 5-10 nm)-with the 

crystalline structure close to one in bulk diamond. The most abundant way to produce them 

is an explosive synthesis. When an oxygen-deficient explosive mixture of TNT/RDX 

(2,4,6-Trinitrotoluene abd trini 1,3,5-Trinitroperhydro-1,3,5-triazine) is detonated in a closed 

chamber, diamond particles with a diameter of ca. 5 nm are formed at the front of 

detonation wave in the span of several microseconds [38] (Figure 2.1.2.3).  

 
a 

 

 
 

 

b 

Figure 2.1.2.3: a – Detonation synthesis of nanodiamonds scheme. After detonation, 

diamond-containing soot is collected from the bottom and the walls of the chamber.  

b –nanodiamond synthesized by detonation method [38] 

The study of Khachatryan et al. (2008) [39] shows that diamond microcrystals can 

also be synthesized by the ultrasonication of a suspension of graphite in organic liquid at 

atmospheric pressure and room temperature. 

It also was show that nanodiamonds can be stably formed in the gas phase at atmospheric 

pressure and neutral gas temperatures <100 °C by dissociation of ethanol vapor in a 

microplasma process [40]. Nevertheless; the most popular method for nanodiamonds’ 

synthesis remains detonatinal synthesis. There are also some communications about the  

other methods for nanodiamonds’ formation, such as CVD [41] or colloidal synthesis [42]. 
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Carbide-derived carbon 
 Carbide-derived carbons 

(CDCs) represent a new class of 

nanoporous carbons with 

porosity that can be tuned with 

sub-angstrem accuracy in the 

range 0.5-2 nm. CDCs have a 

narrower pore size distribution 

than single-wall carbon 

nanotubes or activated carbons; 

their pore size distribution is 

comparable with that of 

zeolites.  

Leaching in supercritical water or high-temperature treatment in halogens can be 

used to remove metals from carbides producing carbon coatings, powders or components 

(Figure 2.1.2.4). Since the rigid metal carbide lattice is used as a template and the metal is 

extracted layer-by-layer, atomic level control can be achieved in the synthesis process and 

the carbon structure can be templated by the carbide structure. Further structure 

modification and control can be achieved by varying the temperature, gas composition, and 

other process variables. Unlike carbons of organic origin, CDCs produced by chlorination 

do not contain hydrogen. 

Comparison of scattered literature data on CDCs shows that, for different carbides 

(SiC, TiC, ZrC, B4C, TaC, Mo2C and many  others) and chlorination temperatures, pores of 

any size between 0.5 and 5 nm,  determined by the structure of the carbide precursor and 

process parameters, were produced [44]. 

 

Figure 2.1.2.4: the mechanism of CDC the formation 

[43] 
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2.1.3 Silicon carbide nanoparticles 
 Silicon carbide is a 

well-known semiconductor 

with excellent 

biocompatibility [46]. Neither 

silicon nor carbon causes 

deleterious effects such as 

cytotoxicity. Therefore, 

silicon carbide is very 

promising in the biomedical 

field having many potential 

cardiovascular applications. 

In addition, luminescent 

silicon carbide nanocrystals 

may be good light emitters in 

biological imaging [45].  

SiC nanocrystals can 

be obtained by the large number of methods, such as ion implantation of carbon ions into 

the silicon matrix, laser pyrolysis of mixture of silicon and carbon-contained gases, 

chemical vapor deposition and thermoreduction of SiO2 nanoparticles, synthesis of 

amorphous SiC nanoparticles using the low pressure microwave plasma,- synthesis α-SiC 

nanocrystals by carbothermic reduction [47]. 

Since the silicon carbide nanoparticles are less investigated than the silicon  or 

carbon ones, there is no “standard” industrial method for synthesis of large quantities of 

nanoparticles. Every abovementioned method has its own advantages and disadvantages 

(see Table 2.1.3.1) 

 

 

 

 

 

 

 

 

 

Figure 2.1.3.1: TEM image of 6H SiC nanoparticles and 

enlarged image of isolated silicon carbide nanoparticle 

showing visible lattice fringes from a single SiC 

nanoparticle. [45] 
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Synthesized method Efficiency Cost ToC Diameter Catalyst 

Carbon nanotube confined reaction Low Higher 1400 20-25 No 

Arc discharge Higher Low 3000 20-60 Yes 

Laser ablation High High  20-70 Yes 

Sol-gel and carbothermal reduction Higher Low 900 40-80 No 

Chemical vapor deposition Higher Higher 1100 10-100 Yes 

High-frequency induction heating Higher Low 1450 5-25 No 

Table 2.1.3.1: the advantages and disadvantages of the different methods for SiC 

nanoparticles synthesis [48] 

Silicon carbide nanoparticles produced by etching of 6H SiC are shown on Figure 2.1.3.1. 

It is clearly seen, that the etching of 6H SiC yields well-crystallined 5 nm SiC 

nanoparticles. 

2.2 Surface chemistry of group IV nanoparticles 
 This section will describe the general methods ant techniques that can be used for 

the change of the group IV nanoparticles surface state and the chemical modifications of 

the surface. 

 The aims of the modification are varying depending on the nanoparticles 

application. The problems which can solve the surface modification are the low solubility 

of NPs or too high dissolution rate (for porous silicon). More complicated reasons are 

concerned to the functional action of NPs. For example, surface can be modif ied with so-

called vectors for specific targeting or with the drug to use the particle as a drug carrier.  

There are 2 general methods to cover the nanoparticles with some other compound. 

First one is a physical absorption on the surface, usually realized as a polymer coating [49]. 

The second is a chemical binding of the compound to the NPs. The chemical binding 

usually includes 2 steps: First is the specific reaction of the particle’s surface with the 

organic compound in order to change the “inconvenient” surface chemistry to more 

common organic one.  

After initial coating, it is easy to handle with further modification of surface. It can 

be more useful and easier to react than the initial one. The main standard coupling 

reactions for such kind of modification are shown at Figure 2.2.1 and can be used for 
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every kind of particles. But the first step – coupling to organic radicals should be described 

for each kind of particles separately. 

 

 

Figure 2.2.1: typical coupling reactions for modification of NPs surface [50] 

2.2.1 Silicon particles 
Surface of the silicon itself can be easily oxidized by the contact with water, 

producing thick (15 nm) layer of the silicon oxide. Since the nanoparticles of silicon have 

the less size, they are not stable in water suspensions. The dissolution rate of nc-Si in 

aqueous solution depends on the pH level (acidity or alkalinity) and varies from 1 nm/day 

to 1 μm/day [51]. 

The process of the silicon nanoparticles dissolution sometimes has to be more 

controllable. In case of porous silicon [52], the particles are the 100-200 nm aggregates of 

the small (2-3 nm) crystallites. Because of such structure and hydrophobicity of bulk 

silicon, it is difficult to oxidize the inner particles with water and the oxidation is 

dramatically slow down. Other way to protect the silicon from the oxidation is a 

modification of the nanoparticles’ surface with the some radicals. It can prevent the 

accessibility of the silicon core from the outer water. The bigger particles (more than 100 

nm) do not need any protection from oxidation because the silicon core still remains after 

surface oxidation.  

The chemical modification of silicon surface lies on 2 reaction types:  

First one is hydrosililation or interaction of double or triple c-c bond of non-

saturated molecule with the Si-H bond at the surface: Such kind of reaction requires initial 

nanoparticles hydrogen-terminated (Figure 2.2.1.1).  
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Figure 2.2.1.1: the reaction between the hydrogen-terminated porous silicon and non-saturated 
hydrocarbons. [53] 

 

So, the contact with water should 

be avoided before the end of the reaction 

[52]. Hydrosililation can be catalyzed by 

UV irradiation or metal (usually Pt or Pd) 

catalyzer, otherwise it requires 

temperatures above 120oC. 

Other way is protecting of partly 

oxidized particles with aminopolysilane 

(APTES) – that is reaction with Si-OH 

surface groups [54] or other kinds of silane 

derivatives (Figure 2.2.1.2). 

The non-chemical grafting with 

some biological polymers (i.e dextran) is 

also common way to change the surface 

state of the silicon particles. 

2.2.2 Carbon particles 
The surface chemistry of carbon particles is the same as for aromatic carbon 

structures in organic chemistry, so it can be modified by all of the methods, concerning to 

coupling with hydroxyl, carboxyl, ester and other common groups. In case of non-

saturated, but stable SP2 hybridized c-c bonds (in fullerenes or nanotubes), the reaction 

with Si-OH bond of silane can occur, but it requires at least tome atoms SP3 hybridized.  

  So, the most popular way to modify the carbon SP2 hybridized particles is partly 

oxidation of aromatic C-C bonds. Since the structure is stable, it is difficult to oxidize them 

without complete destruction of structure. The methods for mild oxidation of carbon are: 

 

 
 

Figure 2.2.1.2: APTES strucutre and the 

reaction between the hydroxyl-terminated 

porous silicon and aminopyrosilane.[54] 
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O2 or O3 plasma treatment, chemical oxidation with HNO3 or H2SO4 or H2O2, 

electrochemical oxidation and other ways [55] (see Figure 2.2.2.1a).  

 

a 

 

b 

Figure 2.2.2.1: the most common ways to modify the carbon nanoparticles:  

a - carbon nanotubes [55] b – nanodiamonds [56]  

SP3 hybridised C atoms of nanodiamonds or oxidized nanotube or grapheme sheet 

are much easier to conjugate with the organic compounds. Depending on synthesis method, 
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they are initially terminated with C-OH or COOH groups and very suitable for further 

modification (Figure 2.2.2.1b.) using the methods of the organic chemistry. [56] 

2.2.3 SiC particles 
 While the successful application of the SiC nanoparticles in bioimaging techniques 

is related to their bioinert and photostable properties further applications in medicine and 

drug delivery rely on the ability of engineering the desired surface properties by attaching 

different functional molecular groups. To obtain tailor-made functionalized surfaces it is 

necessary to understand the complex structure of the SiC surface. The surface of the silicon 

carbide nanoparticles can be predominantly terminated either with Si -OH groups or C-

OOH groups. The Si-OH surface groups can be modified the same way as Si-OH groups of 

silicon NPs [57, 58]. The APTES or other silane derivates can easily react with the Si-OH 

groups (Figure 2.2.3.1).  

 

Figure 2.2.3.1: the reaction scheme between the hydroxyl-terminated porous silicon and 

aminopyrosilane. [59] 

The other possibility to change the surface chemistry of such particles is reaction 

with amines (in case of initially carboxyl-terminated NPs) 
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This kind of reaction can occur under the catalyzer action in water-free medium. 

2.3 Group IV nanoparticles for cell imaging  
The term imaging can be understood in many ways imaging can be spilited to; 

optical, mechanical, spectroscopy, acoustic, or photoacoustic. Imaging is a kind of 

photography in most people’s perception. Scientific imaging goes far beyond this. Images 

can additionally be created by diverse methods such as (near) infrared and Raman 

spectroscopy, electrochemical imaging using rastering electrodes, by mechanical methods 

such as AFM, and by even more sophisticated scanning methods. It has become accepted 

that virtually any method yielding a 2-dimensional picture can be referred to as 

‘‘imaging’’. Many of these methods are destructive or require extensive sample 

preparation, but others are not and therefore well applicable to living systems or intact 

tissues. The group IV nanoparticles are most applicable for the tasks of optical imaging. 

That section is dedicated to the optical cell imaging modalities and describes the progress 

in group IV nanoparticles applications for imaging. 

Optical imaging describes various imaging techniques using visible, ultraviolet, 

and infrared light used in imaging. The process which underlies the interaction of the 

object with the light defines the optical imaging methods. The most evident optical 

imaging technique is a bright field imaging, where the interaction of the light with the 

sample can be considered as a simple reflecting, transmittance or scattering. The 

photoluminescent imaging is based on the absorbance of the light with a short wavelength 

and re-emission in a spectral range with longer wavelength. The difference in wavelengths 

allows discriminating the exciting and emitted light using filters and estimating the 

position of the fluorescent molecules or the species. Some of materials are able to 

simulteniously absorb 2 photons and emit the light with shorter wavelength. The two 

photon excited luminescence (TPEL) microscopy uses the principle of such idea. Due to 

some specificities of TPEL, TPEL microscopy is usually realized in form of sample 

scanning, where the focused laser beam scans the sample pixel by pixel. The other optical 

effect which also requires the intense laser irradiation is the second harmonic (SH) 

generation. Special materials (usually structured at atomic scale, but non-symmetric) are 

able to generate the light with half wavelength compared to the excitation light. The SH 

microscopy is an optical technique which detects the SH light. Other non-linear effect that 

can be used for imaging is Raman effect – effect of shifting of the excitation light 

wavelength due to vibrations of material. Raman imaging is also usually performed in form 

of sample scanning. One of the “hybrid” optical-ultrasound imaging techniques that 
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requires special sensitizers is a photoaccoustic imaging, where the absorbed light cause the 

irradiation of the acoustic wave in form of ultrasound. Below we describe optical imaging 

techniques and its benefits in biological imaging applications. 

2.3.1 One-photon excited photoluminescent cell imaging 
Depending on nanoparticles’ sizes, the silicon nanoparticles, nanodiamonds, 

nanotubes and carbon dots could be used both for in-vitro cell imaging or in-vivo imaging.  

Silicon particles 
 Silicon particles for imaging are usually used in form of microporous silicon, 

since lack of luminescence for bigger Si particles and fast oxidation of non-porous 

particles. Specially coated in order to prevent dissolution, they can be effectively used for 

cell imaging in vitro [60] (Figure 2.3.1.1) or even in-vivo cancer cell imaging.  

 

 
Figure 2.3.1.1 Photoluminescent image of CF2Th (dog thymus) cells with Silicon 

nanoparticles. Blue and red colors correspond to cell nuclei and SiNPs, respectively [61] 

[62] 

The emission in red-near IR spectral range, which is weakly absorbed by the body, 

allows observing the fluorescence originated from the several centimeters depth inside the 

body. Figure 2.3.1.2 shows the accumulation of the silicon nanoparticles inside the mouse 

body via photoluminescence detection. 
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Figure 2.3.1.2: Fluorescence images of a mouse bearing an MDA-MB-435 tumour. The 

mouse was imaged using a Cy5.5 excitation filter and an ICG emission filter at the 

indicated times after intravenous injection of SiNPs (20 mg/kg) [63]  

Carbon particles 
Carbon particles can be used for imaging in forms of graphene dots, nanotubes or 

nanodiamonds. Nanodiamonds and carbon or grapheme quantum dots show good ability to 

penetrate inside the cell cytoplasm (Figure 2.3.1.2) and they have similar spectral 

characteristics of photoluminescence. There is no significant difference into the NPs 

distribution inside the cells, labeled by the nanodiamonds and grapheme dots.  

 
 

a b c 

Figure 2.3.1.2:The cells labeled with carbon NPs a labeling of MG-63 cells with graphene 

quantum dots [64] b Caco-2 cells from the uptake experiment with the carbon dots, excited 

at 488 nm and detected in the 530–750 nm range c Confocal microscopy image of 

fluorescent nanodiamond swallowed by 293T human kidney cells about 33 um in size. The 

bright red spots are nanodiamonds. [65] 
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The higher quantum yield and much lower cytotoxicity of nanodiamonds compared 

to other carbon nanomaterials make them preferable material for imaging. Since broad 

luminescence peak, the nanodiamonds luminescence can be detected in red-IR range, so the 

nanodiamonds could be also used for the in-vivo imaging (Figure 2.3.1.3a). 

Some kinds of carbon nanotubes also have the luminescence in near-IR range, so 

they can be easily used for in-vivo PL imaging (Figure 2.3.1.3b). Surface modification of 

such tubes can increase the efficiency of such kind of imaging.  

Silicon carbide NPs 
Silicon carbide also can be used for the cell imaging and, as it was shown [68] that 

Nps distribution inside the cells depends on the surface state of the particles. It is possible 

 
a 

.  

b 

Figure 2.3.1.3:in vivo labeling with carbon particles  

a In vivo and lymph node imaging of a nude mouse after  injection of nanodiamonds. [66] 

b NIR photoluminescence images of nude mice treated with PEG-bound carbon 

nanotubes[67]. 
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to obtain silicon carbide images with uniform distribution inside the cells [69] [70] (Figure 

2.3.1.4). 

  

Figure 2.3.1.4: images of hFOB and Aureobasidium pulluans cells after 3C–SiC nanocrystal 

uptake excited at 420–490 nm c examined with a fluorescence microscope. First image width 93 

um [69,70] 

 The photoluminescence in green-blue spectral range of the silicon carbide does 

not allow performing any in vivo photoluminescent imaging experiments.  

2.3.2 Two-photon excited luminescence 
The concept of two-photon excitation is based on the idea that two photons of 

comparably lower energy than needed for one photon excitation can also excite a fluorophore in 

one quantum event. Each photon carries approximately half the energy necessary to excite the 

molecule. An excitation results in the subsequent emission of a fluorescence photon, typically at 

a higher energy than either of the two excitatory photons. The probability of the near-

simultaneous absorption of two photons is extremely low. This is the reason why 2PA is only 

observed in intense laser beams, particularly focused pulsed lasers, which generate a very high 

instantaneous photon density. Most of the applications for 2PA result from this intensity 

dependence. [71].  

The most commonly used fluorophores have excitation spectra in the 400–600 nm 

range, whereas the laser used to excite the two-photon fluorescence lies in the ~700–1000 nm 

(infrared) range. If the fluorophore absorbs two infrared photons simultaneously, it will absorb 

enough energy to be raised into the excited state. The fluorophore will then emit a single photon 

with a wavelength that depends on the type of fluorophore used (typically in the visible 

spectrum).  
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Porous silicon has PL signal at the red-IR range, so it can give 2-photon excited 

fluorescence signal. Under IR excitation it is possible to perform even-in vitro cell imaging [72]. 

The in vitro images are shown on the Figure 2.3.2.1.  

 

Figure 2.3.2.1: Single photon (left) and multi-photon (right) fluorescence microscope images of 

celluar uptake of SiNPs on HeLa cells. The scale bar is 20 μm in vitro cellular imaging with 

SiNP. HeLa cells were  treated with SiNP for 2 h, fixed and then imaged 

The Silicon nanoparticles are clearly observable 

inside the cells under two-photon excitation conditions as 

well as with single-photon excitation. 

Both carbon nanotubes [73] and carbon dots 

[74] are found able to luminesce in 400-550 nm 

wavelength region under IR excitation. So, such 

materials also can be used for two-photon cell imaging. 

The localization of the quantum dots inside the cells is in 

coincidence with 1 photon excited microscopy and the 

carbon dots are mainly localized into the cell’s cytoplasm 

(Figure 2.3.2.2)  

SiC QDs were found to have a strong emission 

at the 400-500 nm wavelength under two-photon 

excitation. It is possible to detect fluorescence from SiC 

QDs injected to neuron cells by a two-photon microscope (Figure 2.3.2.3). 

 

Figure 2.3.2.2: representative two-

photon luminescence image (800 

nm excitation) of human breast 

cancer MCF-7 cells with 

internalized carbon dots. [73] 
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Figure 2.3.2.3: Two-photon imaging of a neuron labeled by SiC QDs. Red fluorescence signal 

(600–700 nm, red channel) was generated at 830 nm excitation. Inset, the same neuron but 

fluorescent signal was collected from 425 to 525 nm (green channel) [75]  

2.3.3 Raman microscopy 
Raman spectroscopy is a spectroscopic technique used to observe vibrational, rotational, 

and other low-frequency modes in a system. Raman Effect is an inelastic scattering of light on 

vibrational or other modes. The energy of the scattered light is shifted, with the shift 

corresponding to the vibrational frequencies of the molecule. For spectroscopy, the down-shifted 

peak is usually used to estimate the vibrational states.  

Raman spectroscopy can be performed by the microraman setup and scanning the surface 

with the laser beam. In this case, it is possible to get the Raman “map” of the sample. Since well-

crystallized nanoparticles itself have strong Raman signal, it is possible to use them as a markers 

for Raman microscopy measurements. Carbon nanotubes could be used as markers to visualize 

the cells (Figure 2.3.3.1). The different isotopical composition of the CNT allows to 

discriminate the chemically identical CNT via raman imaging and estimate the selectivity of 

different CNT-drug conjugates. Figure 2.3.3.1 shows the possibility of selective labeling. C-13 

consisted CNT, C-13 contained CNTs and C12 CNT were conjugated to the antibodies selective 

for different cell lines. Such method leads to the specific labeling of the different cells. 
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Figure 2.3.3.1: multi-color Raman imaging with SWNTs. Deconvoluted confocal Raman 

spectroscopy images of three different cell lines after incubation with a mixture of the three-

color SWNTs (top 3 rows, red, blue, green colors are Raman intensities of C12, C12/C13 and 

C13 SWNTs respectively). In the bottom row, a mixture of three cell lines was incubated with the 

three color SWNT mixture. Those images clearly show a mixture of cells with differentiated 

Raman labeling by three types of SWNTs. Occasional co-localization of different colors could 

due to dead cells or non-specific nanotube binding. [76] 

There are no studies about Raman mapping using other group IV particles. 

2.3.4 Photoacoustics 
Photoacoustic imaging also called optoacoustic or thermoacoustic imaging has emerged 

as a promising non-invasive imaging modality, which combines the spectral selectivity of 

molecular excitation by laser light with the high resolution of ultrasound imaging. Currently, two 

photoaccoustic techniques are actively studied: photoacoustic tomography (PAT) and 

photoacoustic microscopy (PAM). PAM typically uses a raster-scanned focused ultrasonic 

detector coupled with confocal optical illumination 

The group IV nanoparticles usually used for photoaccoustic imaging are the carbon 

nanotubes [77], carbon dots [78]. Different kinds of silicon nanoparticles are also able to 

generate photoacoustic signal, but it is too weak to use it for imaging [79]. The example of PA 

imaging using carbon nanotubes is shown on Figure 2.3.4.1. With the administration of the 

carbon nanotubes in water (0.2 μM), the optical absorption of the blood was increased and the 
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contrast between the vessels and the background tissues was enhanced. Thus, in Figure 2.3.4.1 

b–e, the vasculature is seen with greater clarity in comparison to Figure 2.3.4.1a. Figure 

2.3.4.1e was acquired at 30 min post-injection of nanotubes. Due to the rapid clearance of the 

OCN from the blood, the optical absorption in the blood vessels decreased significantly. The 

differential image in Figure 2.3.4.1f is a result of the subtraction of the pre-injection image in 

Figure 2.3.4.1a from the post-injection image in Figure 2.3.4.1c. This image depicts the 

distribution of differential optical absorption in the vascular induced by the exogenous contrast 

agent. The injection of saline alone was not found to make any distinctive changes in PA signals 

 

Figure 2.3.4.1 Noninvasive PA imaging of femoral vasculature of a nude mouse employing 

carbon nanotubes as contrast agents. The PA signal from the femoral vessels was monitored 

after NT (25 vol %, 100 μL) was intravenously injected slowly through the tail vein. The laser was 

tuned to a wavelength of 650 nm. (a) PA MAP image acquired before the injection of OCN. Red 

parts represent optical absorption from blood vessels. (b)-(e) PA MAP images obtained at 1 (b), 

6 (c), 15 (d), and 30 min (e) post-injection of OCN, respectively. Red scale bar corresponds to a)-

e); (f) Differential image that was obtained by subtracting the pre-injection image from the 

post-injection image (Image f = Image c - Image a) [80] 

2.4  Cancer therapy with group IV nanoparticles 
That section contains a general description of the methods and examples of group IV 

nanoparticles used for cancer therapy. Two concepts of the NPs applications for cancer therapy 

are the utilization of nanoparticles as some kind of sensibilizators. The nanoparticles itself have 
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low toxicity, but under the excitation (with light, ultrasound, electromagnetic field etc) they can 

damage the cancer cells. The mechanism of cell damage can vary: some particles produce heat 

and can burn the tumors, other cause the oxidative stress by the catalyzing the production of 

reactive oxygen forms, also mechanical vibrations can damage the cancer cells. Other way for 

the NPs application for cancer therapy is the utilization of the nanoparticles as drug delivery 

platform. That method may include the idea of controllable drug release under special conditions 

and targeting of drug – nanoparticle conjugate. 

2.4.1 Hyperthermia 
One of the most rapidly growing 

researches of cancer therapy using 

nanoparticles bases on hyperthermia methods. 

Hyperthermia (also called thermal therapy or 

thermotherapy) is a type of cancer treatment in 

which body tissue is exposed to high 

temperatures (up to 45OC). Researches have 

shown that increased temperatures can damage 

and kill cancer cells, usually with less injury to 

normal tissues [82]. The 2 main methods of 

hyperthermia usually used in medicine: it is 

possible to heat all the body to the temperature 

close to 45oC or selectively heat the tumor and 

locally reach significantly higher temperatures 

without significant damage for surrounding 

tissues. Both methods have their advantages of disadvantages. The nanoparticles’ application for 

hyperthermia is usually means the second method. In general, the nanoparticles are used as an 

agent, susceptible to some kind of excitation, which produces the heat.  

Previously investigated thermal therapies have employed a variety of heat sources 

including laser light, focused ultrasound and microwaves [83].  

Porous silicon can be used for hyperthermia under excitation with NIR laser light [84] 

or ultrasound [85]. Incorporation of the magnetic particles inside the pores of the porous silicon 

allows using the alternating magnetic field for heating [86].  Since silicon nanoparticles in form 

of porous silicon are the easiest to produce and control their properties, all of the hyperthermia 

tests are made only on porous silicon but not the other types of Si. Both in vitro (Figure 2.4.1.1) 

 

Figure 2.4.1.1: apoptosis assay results: Flow 

cytometry profiles represent Annexin-V-FITC 

Summary of the Annexin V-FITC Apoptosis 

assay results showing the percentages of cell 

death modes: necrosis, late apoptosis, early 

apoptosis, and live cell  [81]. 
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and in vivo (Figure 2.4.1.2) tests were performed using porous silicon for hyperthermia. The in-

vitro cell viability measurements show the increasing amount of the necrotic cells after the 

combined action of the NIR light irradiation and porous silicon presence (Figure 2.4.1.2). An in 

vivo test on mice shows the absence of the cancer tumor growth in case of combined porous 

silicon and NIR irradiation action.  

 

 

Figure 2.4.1.2: Change of tumor volume of mice treated with porous silicon and NIR laser 

during time. Tumor volume CT-26 tumor cell xenografts. Tumor volumes were measured once a 

week after sample treatments. The group treated with a PSi/EtOH:PEG solution followed by NIR 

laser treatments (4 times for 2 min at 1.5 W/cm2 each time with a time interval of 2 min) shows 

efficient tumor growth inhibition compared with other experimental groups. [83] 

Also NIR excitation can be used for heating some composite nanoparticles, consisting 

of the relatively big silicon particles or wires with gold quantum dots on it. In this case gold 

absorbs the light and due to energy transfer to the silicon, the heating can occur. Figure 2.4.1.3 

shows  
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the photothermal effect of silicon-gold composite 

particles. It is seen that under NIR irradiation, 

AuNPs@SiNWs solutions showed rapid rise in temperature, 

whereas water, PBS, and RPMI 1640 medium showed little 

change in temperature upon NIR laser irradiation. 

 Due to wide absorbance spectrum, carbon nanotubes 

and graphene dots also can be used as a sensitizer for thermal 

therapy under NIR laser irradiation [88, 89]. The irradiation of 

carbon dots or the nanotubes leads to the heat production and 

can cause the cell destruction. The example of such effect for 

carbon dots is shown on Figure 2.4.1.4. First graph shows the 

heating effect, second – the cell viability during the irradiation 

and third is the images of the cells before and after treatment. 

Silicon carbide nanoparticles had never been tested as an 

agent for hyperthermia. 

  

 

Figure 2.4.1.3: Photothermal 

effect of AuNPs@SiNWs 

solution showing temperature 

increase as a function of NIR 

irradiation (2W/cm2) time and 

sample concentration. [87] 
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a 

 
b 

 
c 

 
d 

Figure 2.4.1.4 The carbon dots as a hyperthermia agent: a NIR-induced heat generation. b 

Photothermal killing of cancer cells c,d - U251 cells before and after treatment with NIR laser. 

[88] 

2.4.2 Photodynamic therapy 
The molecular oxygen O2 can be presented in several electron states. The ground state 

3O2 called triplet oxygen has much lower activity than the excited state – singlet oxygen 1O2 the 

transition between the states requires energy and due to quantomechanical symmetry principles 

cannot be excited directly by the irradiation. Nevertheless, some chemical compounds can 

activate such transition. This kind of excitation of 1O2 is usually known as photosensitization. 

The preferable material for such kind of photosensitization needs to be able to absorb the light 

and relax using radiative or non-radiative way in order to transfer part of absorbed energy to 

oxygen molecule. For the efficient energy transfer, the relaxation through the mechanism of 

singlet oxygen generation should be preferable over others. That means, the lifetime of the 

excited state of the material should be long enough in absence of oxygen and significantly 

shorter in presence of it. 
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Photodynamic therapy (PDT) can be an effective clinical treatment for certain types of 

cancer because of its relatively low systemic toxicity and its non-invasive nature. The 

operational principle for PDT involves the conversion of ground-state molecular oxygen (3O2) to 

singlet  

oxygen ( 1O2 ) by energy transfer 

from a photoexcited molecule or 

particle (a photosensitizer). Figure 

2.4.2.1 shows the energy diagram of 

the singlet oxygen excitation 

mechanism. The photosensitizer 

initially absorbs a photon that excites 

it to the first excited singlet state and 

this can relax to the more long lived 

triplet state. This triplet PS can interact with molecular oxygen in two pathways, type I and type 

II, leading to the formation of reactive oxygen species (ROS) and singlet oxygen respectively. 

The highly reactive 1O2 causes lethal damage to cancer cells and destruction of tumor 

vasculature. Despite the advantages of the therapy itself, photosensitizers in use today display 

toxic or other side effects that limit their use. Recent studies using nanoparticle hosts containing 

conventional organic photosensitizers have demonstrated improved water solubility and 

biocompatibility. However, most of these approaches use non-functional silica or polymer-based 

nanomaterials as the carriers, and there is still a risk of the photosensitizer payload leaking from 

the carriers into the body before reaching the target. Nanomaterials which can intrinsically 

generate 1O2 when photoexcited could overcome such problems. However, concerns regarding 

biodegradability, toxicity of degradation by-products and relatively low 1O2 quantum yield of 

such materials have impeded their clinical application.  

According to [91], excitons in nanocrystalline silicon can transfer the energy to molecular 

oxygen adsorbed on the nc-Si surface. The photosensitization of singlet oxygen by nc-Si is now 

a subject of numerous studies, because nanoparticles possess several advantages for targeted 

PDT [92]. The interaction between excitons in nc-Si and O2 results in formation of a singlet 

oxygen with efficiency several times higher than traditional organic synthesizers [93,94]. 

Some kinds of carbon nanotubes were found to have weak 1O2 sensitizing effect, which 

can be only detected by not-direct observations [95].Carbon dots in any form were not found to 

 

Figure 2.4.2.1: Schematic illustration of photodynamic 

therapy including the Jablonski diagram [90].  
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be used as photosensitizers for PDT, but they can be conjugated with the organic PDT drugs and 

used for their delivery [96].  

Silicon carbide does not luminesce in near-IR range and it have not any significant 

interest for using in PDT. 

2.4.3 Destruction of cancer due to cavitation effect 
Other interesting way for cancer treatment using the group IV nanoparticles is the 

utilization of the nanoparticles for the mechanical stress generation. For example carbon 

nanotubes inside the cancer cells under irradiation can generate sound wave (photoacoustic 

effect) which can destroy the cells [97]. Figure 2.4.3.1 shows the scheme of the destruction of 

the cells using photoaccoustic wave.  

 

Figure 2.4.3.1 Targeted destruction of cancer cells by SWNT photoacoustic effect. 

It is seen, that combined action of the nanotubes and laser treatment can cause the 

complete cell destruction, while neither nanotubes itself nor laser irradiation alone do not 

produce such effect.    

2.4.4 Drug delivery 
Other way to treat the cancer with the nanoparticles bases on a drug delivery. The drug 

delivery concept lies on the construction of multi-purpose agent. There are 2 parts of such agent: 

first is responsible to the accumulating to the right place of the human organism (in tumor for 
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cancer treatment) and called vector, other is the drug, which slows down or stops the cancer 

growth and which is able to kill the tumor cells.  

There are 3 main approaches for the construction of drug delivery system: 

 First one is the covalent binding of the drug to the nanoparticle. That approach 

arises from the molecular drug engineering. In this case, the nanoparticle-drug 

conjugate will work as a new multifunctional agent.  

 Second way is the incapsulation of the drug inside the nanoparticle. The shell 

protects the drug till it will be delivered, so the higher local concentration can be 

achieved at the target. In this case very important is the drug release kinetics and 

possibility of the drug release control using outer excitation. 

 Third approach is the electrostatic binding – for example, the negative drug is 

preferable to bound to positively charged nanoparticle. That binding is weak and 

it is easy to detach the drug. Almost always the electrostatics should be taken in 

account during the drug load into the porous structure. 

Group IV nanoparticles are one of the least toxic inorganic particles, so there are some 

researches dedicating to the drug delivery using them. Group IV nanoparticles can be engineered 

as nanoplatforms for effective and targeted delivery of drugs and imaging labels by overcoming 

the many biological, biophysical, and biomedical barriers.  

An emerging theme in porous Si as applied to medicine has been the construction of 

microparticles (“mother ships”) with sizes on the order of 1–100 μm that can carry a molecular 

or nanosized payload, typically a drug. With a free volume that can be in excess of 80%, porous 

Si can carry cargo such as proteins, enzymes, drugs, or genes. [98].  

Carbon materials, i.e carbon nanotubes and graphene are widely investigated for the 

purpose of drug delivery. Their main advantage of carbon nanotubes is that CNTs are chemically 

inert and there is a lot of ways to bind some drugs to their surface. Depending on the surface 

modification of the CNT there are several ways to enter the cell [99]. Non-modified CNTs are 

able to pin the cell membrane and they can be used as nano-needles for delivery [100]. 

Unfortunately, after pinning the cell, they stuck into the membrane and often cause the cell 

death. So, despite of the chemical inhercy, they are highly cytotoxic. Nanodiamonds and 

graphene dots are less cytotoxic and they are very perspective for the drug delivery via chemical 

coupling due to very flexible and well-known surface chemistry.  
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Nanodiamond–doxorubicin complexes  (ND–Dox) were used to treat drug-resistant 

breast cancer (4T1)  and liver cancer (LT2-M) models. The nanodiamond reduced the capacity of 

the tumours to expel the doxorubicin, and  the circulation half-time of the ND–Dox complexes 

was found to  be 10 times that of unmodified doxorubicin [101]. Both carbon and silicon porous 

particles could be used as drug carriers for delivery. There is no data about SiC nanoparticles 

utilization for drug delivery. 

2.5  Conclusion of chapter 2 
The Table 2.5.1 shows the information about utilization of the different nanoparticles as 

labels for different imaging techniques. 

Imaging modality 
 

Si C SiC 

One-photon excited 
PL 

Porous silicon Carbon dots 
Nanotubes 
Graphene 
Nanodiamonds 

SiC nanoparticles 

Two-photon excited 
PL 

Porous silicon Carbon dots SiC NPs 

Raman mapping - nanotubes - 
Photoaccoustics - Carbon dots 

nanotubes 
- 

Table 2.5.1 The comparison of the nanoparticles by the possibilities of the utilization for 
imaging. 

Each of the empty cells corresponds to the unknown but potentially interesting 

application. The silicon carbide had not ever been considered as for 2 photon excited 

photoluminescence agent since under the same conditions it produces the bright second 

harmonic signal, which is more suitable for practical applications. The empty cells are the 

utilization of Silicon nanoparticles as second harmonic agents for imaging. That idea can be 

promising since theoretical studies show that relatively big (20 nm) Si nanoparticles can 

effectively produce second harmonic. So, the same idea can be considered also for the carbon 

particles, in case of carbon NPs that is necessary to have the 20-40 nm particles of well-

crystalline carbon (probably diamond-like). The Raman mapping is a sophisticated technique 

and for bioimaging it needs to presence of specific vibrations of NPs at the spectral range which 

excludes the coincidences of Raman shifts for NPs and for the organic compounds presented into 

the cell. The ordinary spectral range for such molecules is 200-3000 cm-1. Other possibility is the 

utilization of the NPs which yield the Raman signal several orders of magnitude higher than the 

signal of organics usually presented inside the cell. The CNT have strong Raman signal peak at 

1500-1600 cm-1 depending on the environment of the CNT. The Si and SiC NPs have the Raman 

peak at the similar ranges so potentially they can be used as Raman imaging agents.  
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It is seen that there is a lot of ways for the utilization of group IV nanoparticles for 

different kinds of optical imaging. Despite of the great biocompatibility and low cytotoxicity, 

there are some approaches for several NPs are not well-studied. 

Group IV nanoparticles as agents for sensibilisation could be used in different ways. 

There is a large number of cancer therapy methods with the NPs used as sensibiliztion agents. 

The NPs can be used for different kinds of hyperthermia, photoaccoustic and photodynamic 

therapy. 

The group IV nanoparticles fit such application since their biocompatibility and low 

toxicity. Since the big particles (more than 100 nm) under ultrasound treatment cause the 

heating, the smaller particles should be used for the mechanical motion effect examination. 

Despite the huge amount of studies concerning the utilization of the goup IV NPs as 

sensibilizators and drug carriers, the effect of “bare” nanoparticles, nanoparticles without 

modification or any extra excitation is not well – studied. Nevertheless, nanoparticles itself can 

be selectively absorbed by some kinds of tumors.  
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3. Materials and methods 

3.1 Methods used for nanoparticles characterization 
That section describes the main physical principles of the methods used for the 

characterization of the nanoparticles in the current work. The basic information about the 

photoluminescence, the dynamic light scattering and scanning microscopy is given in this 

section. Also there is a description of the setups and equipment used for such measurements into 

the current research.  

3.1.1 Size distribution analysis 
The size distribution of the 

nanoparticles in form of colloids can be 

obtained by the dynamic light scattering 

method (DLS). It bases on the next principles: 

A monochromatic light source, usually a laser 

is shot through a polarizer and into a sample. 

The scattered light then goes through a second 

polarizer where it is collected by a 

photomultiplier. 

All of the particles in the solution are 

being hit with the light and all of the molecules 

diffract the light in all directions. The diffracted 

light from all of the particles can either 

interfere constructively (light regions) or destructively (dark regions). This process is repeated at 

short time intervals and the resulting set of speckle patterns are analyzed by an autocorrelator 

that compares the intensity of light at each spot over time.  

When light hits small particles, the light scatters in all directions (Rayleigh scattering) 

as long as the particles are small compared to the wavelength (below 250 nm). If the light source 

is a laser, and thus is monochromatic and coherent, the scattering intensity fluctuates over time. 

This fluctuation is due to the fact that the small molecules in solutions are undergoing Brownian 

motion, and so the distance between the scatterers in the solution is constantly changing with 

time. This scattered light then undergoes either constructive or destructive interference by the 

surrounding particles, and within this intensity fluctuation, information is contained about the 

time scale of movement of the scatterers. In general, the smaller are the particles, the more 

frequent are the changes into the scattered signal (Figure 3.1.1.1). The quantative alalysis of the 

 

Figure 3.1.1.1: Hypothetical dynamic light 

scattering of two samples: Larger particles 

on the top and smaller particles on the 

bottom [102] 
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intensity-time dependences is possible in terms of autocorrelation function. The autocorrelation 

function is 

 

That function shows the correlation between the intensities at the times differ at . In 

case of correlation function close to 1 means the passing of single particle through the beam. 

Zero – time of passing of several particles through beam. The time of the nanoparticles passing 

through the beam allows the calculation of the size distribution of the samples. 

The DLS method is acceptable for the measurement of the dispersed particles with size 

from 0.1 nm to 10um. Nevrtheless, it has quiet low resolution (the relative size observation error 

may reach 30%). Other problem is that the small quantity of small size particles can easily be 

“hidden” in a much larger quantity of large size particles. So, the measurement givus us 

disproportionally information in case of relatively big particles.  

DLS measurements were performed using zetasizer z-nano equipement. Dynamic light 

scattering (also known as photon correlation spectroscopy or quasi-elastic light scattering) is a 

technique in physics that can be used to determine the size distribution profile of small particles 

in suspension or polymers in solution.  

3.1.2 Zeta potential analysis 

It is also possible to estimate z-potential of the particles using the same setup. Every 

particle can bind some solvent molecules which will preferentially move with the particle. The 

slipping plane is a relative to a point in the bulk fluid away from the interface.  
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Z-potential is a potential of the slipping 

plane. Since the particle moves with the “shell”, 

(Figure 3.1.2.1) the potential of such shell is vital 

for behavior under application of electrical field. 

The positively charged nanoparticles will move 

along the electric field, the negative ones – in 

opposite direction. The value of potential and the 

liquid viscosity will define the speed of such 

particle under electric field. Under application of 

alternating electrical field and measurement the 

nanoparticles’ average speed in such conditions 

by DLS, z-potential can be measured.   

High Z-potential is an important 

characteristic for the colloid solution stability. 

Colloids with high zeta potential (negative or positive) are electrically stabilized while colloids 

with low zeta potentials tend to coagulate or flocculate as outlined in the Table 3.1.2.1[104]. 

Zeta potential [mV] Stability behavior of the colloid 

from 0 to ±5, Rapid coagulation or flocculation 

from ±10 to ±30 Incipient instability 

from ±30 to ±40 Moderate stability 

from ±40 to ±60 Good stability 

more than ±61 Excellent stability 

Table 3.1.2.1: The table showing colloidal suspension electrostatic 

stability characteristics. 

For zeta potential measurements Zetasizer Nano Z zeta potential analyzer had been 

used. All the measurements were applied at 220 C in water solution. The zetameter is able to 

measure the sizes from 3.8 nm up to 100 microns ad zeta potential in range from -250 mV to 

+250 mV [105]  

 

Figure 3.1.2.1: diagram showing the ionic 

concentration and potential difference as a 

function of distance from the charged 

surface of a particle suspended in a 

dispersion medium.[103] 
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3.1.3 X-ray diffraction 
The XRD technique is one of the most commonly used for inorganic material analysis. 

The X-rays can interact with the electrons into the crystal. The electrons are worked as a re-

emitter of the x-ray not only into the direction of initial wave, but also in all the other sidections. 

Since the wavelength of the x-rays (usually about 1.5 angstroms) is close to the lattice parameter 

for most of inorganic crystals, (several angstroms) it is possible to observe the diffraction of the 

waves refracted by the different atomic layers of the crystal. In case of monocrystals, using the 

information about the diffraction peaks positions and intensity, it is possible to reconstruct 

electronic density map of the cell. In case of powder diffraction, used in this research, it is 

possible to estimate the parameters of the crystal cell, (symmetry and size). But the other method 

is just comparison of the XRD with the already existing patterns for most of materials in order to 

estimate the presence of the phase. The width of the peaks depends on several parameters: x-rays 

may be non-monochromatic, some equipement parameters and the sample parameters, such as 

irregularities due to thermal motion or presence of defects. But in case of crystallites smaller 

than 200 nm, the dominating parameter which is responsible for the peaks width is a crystallite 

size. The dependence of the peak shape and crystallite size was found by Paul Scherrer in 1912: 

 

 

D is a crystallite size, λ is a x-ray wavelength, θ is a diffraction angle, FWHM is a Full 

width at half maximum – parameter of the peak width. k is a dimensionless shape factor, with a 

value close to unity. The shape factor has a typical value of about 0.9 for spherical particles, but 

varies with the actual shape of the crystallite. The XRD in the currend work were used for the 

comparison of the NPs crystallic structure with the crystallic structure of bulk material and 

estimate the size of crystallites.  

The x-ray diffraction experiments were performed using Cu k aloha x-ray source 

(0.15418 nm), SmartLab diffractometer at the nanoparticles dried powders.  
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3.1.4 AFM 
Surface topology of the planar nanostructures can 

be measured by atomic force microscopy (AFM), whose 

schematic diagram is presented in Figure 3.1.4.1. 

 In this technique, the tip attached to a cantilever 

sweeps the surface of the material to be studied, following 

the relief. The cantilever may be deflected under the action 

of different types of forces, such as Van der Waals, 

electrostatic, magnetic, etc. The relative position of the tip 

to the surface is measured by a position-sensitive 

photodetector detecting a laser beam reflected by the 

cantilever carrying the tip. Through a piezoelectric ceramic, 

tip-cantilever system can be moved along the X and Y directions (in the plane of the sample) and 

Z (perpendicularly to the sample). Mapping the position of the tip gives precisely the probed 

surface topography.  

On some systems, the movement in the XY plane is through the sample and not by the 

tip-cantilever system. Lateral resolution of AFM is determined by the tip curvature radius, while 

the vertical resolution is of the order of angstrom: one can easily visualize atomic steps on a 

clean surface. Viewable surface depends on the piezoelectric ceramic, and can range from 

hundred nanometers to about 150 microns. The AFM is suitable to any surface, including the 

insulating surfaces. The AFM also offers the possibility to browse the surface without touching it 

(non-contact method), or by intermittent contact (tapping mode), to limit the possible damage of 

a fragile samples. 

AFM images were acquired by commercially available Digital 3100 (DI 3100) 

apparatus. 

 

Figure 3.1.4.1: Functional 
principle of AFM 
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3.1.5 Electron microscopy 
In electron microscopy (EM), operating 

principles are the same as in optical microscopy, but 

are based on electrons instead of light. Electron 

microscopes have a greater resolving power than a 

light-powered optical microscope, because electrons 

have wavelengths about 100,000 times shorter than 

visible light (photons), and can theoretically achieve 

better than 50 pm resolution, whereas ordinary, non-

confocal light microscopes are limited by diffraction 

to about 200 nm resolution.  

Images in EM are obtained by the focused 

electron beam, which illuminate the surface of the 

sample. Pictures can be seen in many ways - in rays 

which passed through the object, the reflected rays, 

by registering secondary electrons or X-rays. 

Focusing the beam of electrons is ensured by means 

of electrostatic or electromagnetic lenses as the lenses 

of the optical microscope.  

The schematic principle of TEM is shown in 

Figure 3.1.5.1a. The system consists of a vacuum 

chamber where the electrons are emitted by an 

electron gun. The electrons are accelerated in the 

barrel by a high voltage, which defines associated 

wavelength of the electrons. A second magnetic lens 

system is used to enlarge the image obtained. The 

final image, magnified about 10,000 times, is formed 

in the observation chamber on a fluorescent screen 

that can be observed visually. When the electron beam passes through the sample, a very large 

proportion of electrons is transmitted directly, this provides an interpretable image of the 

specimen.  

Unlike the TEM, where electrons of the high voltage beam carry the image of the 

sample, the electron beam of the scanning electron microscope (SEM) carry only part of it. The 

(a) 

(b) 

Figure 3.1.5.1: Function principle of (a) 

TEM, and (b) SEM 
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SEM produces images by probing the specimen with a focused electron beam that is scanned 

across a rectangular area of the specimen. The general principle of SEM operation is illustrated 

in Figure 3.1.5.1b. As in the TEM, the system consists of a vacuum chamber where the electrons 

are emitted by an electron gun. Deflection coils of X and Y move the electronic beam over the 

surface of the sample (XY plane). The primary electrons from the electron gun strike the surface 

of the sample. Some electrons are scattered elastically (high-energy backscattered electrons), 

while others, during the impact give part of their kinetic energy to the atoms, causing ionization 

and ejection of low-energy secondary electrons. The ionized atoms can decay by light emission 

(cathodoluminescence) or X-ray emission. The backscattered and secondary electrons emitted by 

the sample are collected by selective detectors. The image displayed by an SEM represent the 

surface morphology of the sample by corresponding variable intensity of signals from the 

detectors with the position of the beam on the specimen when the signal was generated. Despite 

the fact that the image resolution of an SEM is about an order of magnitude poorer than that of a 

TEM, SEM is able to image bulk samples and relying on surface processes rather than 

transmission can produce images that are good representations of the three-dimensional shape of 

the sample.  

TEM pictures were obtained by EM-002B (Topcon, Japan) high-resolution transmission 

electron microscope operating at 200 kV. SEM observations were performed by means of SEM 

(Tescan, Czech Republic) or Inspect S50 (FEI, USA).  

3.1.6 Steady-state and time-resolved PL 
The materials are able to absorb the energy from different sources: electromagnetic 

waves, chemical reactions, interaction with the electrons etc. After the energy absorption, the 

material turns into the excited state with the excitation of the extra energy in form of photons.  

According to the Jablonsky diagram (Figure 3.1.6.1), there is 3 steps in luminescence. 

1st is a absorption of the photon with the energy Eex from the light source (laser o lamp). That 

step is relatively short and lasts about 10-8 – 10 -10s during that time, the system get the 

conformational changes and react with the environment.  
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The fluorescence lifetime is an important parameter for 

practical applications of fluorescence such as fluorescence 

resonance energy transfer and Fluorescence-lifetime imaging 

microscopy. The semiconducting, such as QDs are usually have 

longer lifetimes, about tenth of nanoseconds. The indirect band 

gap porous silicon had the lifetime about several microseconds. 

So, using the luminescence kinetics it is also possible to 

propose the mechanism of the luminescence origin. 

All the photoluminescence characterization that have 

been done for this research were done at the INL facility at 

INSA Lyon The spectro-fluorimeter was used for such 

experiment is a commercially available PTI Fluoresence System (FeliX), which scheme is shown 

on Figure 3.1.6.2. The source of the light is a xenon 

lamp. The light produced by the lamp (1) crosses the 

adjustable windows (2) and monochromator for 

choosing the estimated excitation wavelength (3). The 

selected wavelength light enters the sample zone (4). 

The higher harmonics of the light can be cut off by the 

filters (5). The light is focused on the sample by the 

optical system (7), which also allows the emitted light to 

pass to the shutter (9) emitted light monochromator (10) 

and detector (11). For the protection the sample zone is 

covered by the lid (6). The system is connected to the 

PC and operated by the FeliX software, which can allow 

to choose the measurement type, excitation and emission measured wavelength, the step during 

spectra measurements, integration times and other parameters. 

3.2 Protocols and methods of NPs-cellular activity measurements.  
That section contains the information about the protocols of cell growth and preparation 

and about equipement and techniques used for the toxicity tests and imaging. 

3.2.1 Luminescent microscopy 
A fluorescence microscope is an optical microscope that uses fluorescence and 

phosphorescence instead of, or in addition to, reflection and absorption to study properties of 

organic or inorganic substances. The "fluorescence microscope" refers to any microscope that 

uses fluorescence to generate an image, whether it is a more simple set up like an 

 

Figure 3.1.6.1: Jablonski 

diagram 

 

Figure 3.1.6.2: spectrofluorometer 

PTI Fluorescence System (FeliX). 
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epifluorescence microscope, or a more complicated design such as a confocal microscope, which 

uses optical sectioning to get better resolution of the fluorescent image. 

The specimen is illuminated with light of a specific wavelength (or wavelengths) which 

is absorbed by the fluorophores, causing them to emit light of longer wavelengths (i.e., of a 

different color than the absorbed light). The illumination light is separated from the much weaker 

emitted fluorescence through the use of a spectral emission filter. Typical components of a 

fluorescence microscope are a light source (xenon arc lamp or mercury-vapor lamp are common; 

more advanced forms are high-power LEDs and lasers), the excitation filter, the dichroic mirror 

(or dichroic beamsplitter), and the emission filter. The filters and the dichroic are chosen to 

match the spectral excitation and emission characteristics of the fluorophore used to label the 

specimen. In this manner, the distribution of a single fluorophore (color) is imaged at a time. 

Multi-color images of several types of fluorophores must be composed by combining several 

single-color images: 

Most fluorescence microscopes in use are epifluorescence microscopes, where 

excitation of the fluorophore and detection of the fluorescence are done through the same light 

path (i.e. through the objective). These microscopes are widely used in biology and are the basis 

for more advanced microscope designs, such as the confocal microscope and the total internal 

reflection fluorescence microscope. 

The luminescent microscopy images were obtained by means of Leica DMI 4000B 

microscope with the following filter combination: UV/violet excitation band: 354 – 424 nm and 

observation spectral range: >470 nm. The multicolored images obtained used the next 

ex/emission filters: 379-401/435-485nm for blue color, 400-418/ 478-495 nm filters for green 

color, and 530-560/ 573-648 nm for the red one. 

The images of alive cells and were performed in PBS using Cytation 3 cell imaging 

multi-mode microplate reader. The temperature during measurements remained 37o C.  

Cells were seeded at low density on glass coverslips at 12 well plates. After growing for 

48 h, the nanoparticles were added. Cells were fixed with ethanol for PL microscopy 

examination. 

3.2.2 Second harmonic generation and two-photon excited microscopy 
Multiphoton microscopy is well suited for high-resolution imaging of intrinsic 

molecular signals in living specimens. It provides convenient excitation of the characteristic UV 

absorption bands of intrinsic fluorophores using IR illumination, leaving a broad uninterrupted 

spectral region for efficient multicolor fluorescence collection. The ability of multiphoton 
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microscopy to produce images deep in optically thick preparations is crucial for intravital tissue 

microscopy. In addition, second harmonic generation (SHG) enables direct imaging of 

anisotropic biological structures possessing large hyperpolarisabilities, such as collagen. Signal 

on that technique depends on the second power of the excitation light intensity, so requires 

intense excitation in order to reach the best signal/noise ratio. The non-linear dependence on 

excitation also gives a great potential to improve the spatial resolution by the focusing the 

excitation light beam on the sample. Second harmonic generation of the material is possible only 

in case of non-linear response of induced polarization. These imaging modalities are easy to 

implement simultaneously and differ only in optical filterselection and detector placement.  

SHG requires intense laser light passing through a material with a non-centrosymmetric 

molecular structure. Second-harmonic light emerging from an SHG material is exactly half the 

wavelength (frequency doubled) of the light entering the material. While two-photon-excited 

fluorescence (TPEF) is also a two photon process, TPEF loses some energy during the relaxation 

of the excited state, and SHG is energy conserving. Though SHG requires a material to have 

specific molecular orientation in order for the incident light to be frequency doubled, some 

biological materials can be highly polarizable, and assemble into fairly ordered, large non-

centrosymmetric structures. Biological materials such as collagen, microtubules, and muscle 

myosin can produce SHG signals [106]. Nevertheless. The efficiency of generation in solid state 

nanoparticles is hundred times higher, then for organic compounds.  

Since bulk silicon has diamond-like (centrosymmetrical) crystalline structure, it is not 

able to generate second harmonic signal. Nevertheless, in form of nanoparticles, the surface 

effects can lead to non-linear response of polarization. There are some researches concerning to 

the possibility of the usage of Silicon nanocrystalls as a 2-photon excited fluorescent microscopy 

with small nanoparticles (crystallite sizes are about 4 nm), but no second harmonic signal was 

observed [107].It was also found that small 2 nm crystallites of silicon are able to generate the 

weak second harmonic signal [108].Theoretical studies [109] show, that in case of bigger 

particles (about 20 nm), the SH signal should increase several orders compared to the 2nm ones. 

So, the Si nanoparticles can be used for SH imaging. The main criterion of the signal intensity is 

a size of particles.  

According to the wurtzite (non centrosymmetric) crystalline structure of cubic silicon 

carbide, it is popular material for SHG both in bulk form and in form of nanoparticles, so there is 

a lot of works on this topic of SHG by SiC. Silicon carbide particles are able to generate 
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remarkable strong SH signal under IR laser irradiation [110].  So, the relatively big Si and SiC 

NPs can be used as SHG imaging agents. 

The SHG pattern is mainly determined by the phase matching condition. A common 

setup for an SHG imaging system will have a laser scanning microscope with a titanium sapphire 

mode-locked laser as the excitation source. The SHG signal is propagated in the forward 

direction.  

For optical nonlinear imaging we employed a Nikon A1R multiphoton upright 

microscope (NIE-Nikon) coupled with an Insight Deepsee tunable laser oscillator (Spectra-

Physics, 120 fs, 80 MHz, 680 - 1300 nm). The nonlinear signals were epi-collected by a Nikon 

25  water immersion objective (CFI75 APO, N.A.1.1) spectrally filtered by tailored pairs of 

dichroic mirrors and interference filters and acquired in parallel either by a normal 

photomultiplier (600 - 655 nm) or a GaAsP photomultiplier (385 - 492 nm). 

3.2.3 Impedance-based cell number measurements (xCelligence) 
Cell number measurements were 

performed using non-destructive 

impedance-based method (xCELLigence). 

The cells were grown on special plate with 

electrodes on its bottom. The system 

measures electrical impedance across 

interdigitated microelectrodes situated at 

the bottom of culture wells. The 

measurements are done by applying an 

alternative excitation signal (20 mV control 

voltage amplitude) at three different 

frequencies (10, 25 and 50 kHz) through 

the microelectrodes in the E-plates while monitoring the voltage drop across the electrodes 

where the quotient voltage/current yields the impedance Software shows cell index as a result of 

processing impedance data as a time function. Cell index is proportional to the cell number, 

single cell surface area and adhesion factor.  The scheme of the setup work is shown on Figure 

3.2.3.1. 

For a given cell line under basal conditions, cell number is the main factor affecting cell 

index. Doubling time and cell index slopes on normalized curves were measured to compare the 

 

Figure 3.2.3.1: the scheme of the xCelligence 

setup principle [111]  
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effects of increasing concentrations of SiC on the proliferation speed of different cell lines. Each 

curve is the mean of cell index measured on 8 wells. 

Usually in case of cytotoxicity tests the parameters are chosen for the toxicity are the 

cell viability in percent for the estimated concentration of NPs and the exposure time. Other way 

to measure cytotoxicity is to check the concentration, which kills the defined part of the cells (i.e 

LD50 parameter shows the concentration causes 50 % cell death) during estimated time. In 

general, there are 3 correlated parameters: the concentration of the toxic reagent, time of 

exposure and the number of the dead cells. 

The presence of 3 parameters, 2 of which are independent from the third makes the all 

toxicity measurements strongly protocol-dependent. For example, the estimated LD 50 value will 

be the true only for the definite exposure time. If we are measuring the exposure time for which 

the toxic effect will be evident, we should choose both concentration of the reagent and the 

criteria of “evidence” of toxicity (how much cells should be dead).  

If we got the cell number evolution curves for the different concentration of particles, it 

is possible to get from this data all of abovementioned toxicity parameters. It is possible to have 

an information of number of cells on any desirable time and concentration, so the raw 

xCELLigence data gives much more information, than any of the other toxicity parameters.  

The real time proliferation measurement allows solving the problem of such protocol 

standardization. Nevertheless, for the proper comparison it is more convenient to get only 1 

value that indicates the toxicity of Nps. In the current research I use the term “toxic dose” which 

shows the minimal concentration which causes cell death. It can be seen at the xCelligence 

graphs as a negative cell index slope.  

An example of cell proliferation test is shown at the Figure 3.2.3.1. We can see 2 

curves with cell index value, representing the cell proliferation dynamics. The cells are growing 

and there is no significant change in cell proliferation behavior until the 48h. After the 48 hours 

of proliferation, some nanoparticles in toxic concentration had been added at some samples. 

After the NPs addition, we can see the decrease of the cell index, while the control sample 

proliferation rate remains unchanged.  
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Figure 3.2.3.1 The cell index evolution curves for 3T3-L1 cells. The time of nanoparticles addition 
is 48 h 

3.2.4 Bioimaging measurements statistics and cell coloring protocol  
All cell lines were initially grown in flasks containing Dulbecco’s modified Eagle’s 

medium supplemented with 10% newborn calf serum 100 IU penicillin, 100 μg streptomycin, 

and 0.25 g/mL amphotericin B at 37°C in a water saturated atmosphere with 5% CO2 in air, in 

a Heraeus incubator. Cells were trypsinized by 0.05% trypsin. Cells concentrations were 

measured using Sceptor pipet (Millipore). Cells were seeded at 2500 per well in a 96 wells plate 

– RTCA xCelligence plate for cell proliferation measurements. The same concentration of cells 

was seeded on quartz glass coverslips for photo acquisition. For cell toxicity experiments the 

3T3-L1, HuH7, Panc1, HSC, HepG2 and Hek 293 cell lines were chosen. 3T3-L1 and HEK293 

are non-cancer cells while other cell lines are cancer cell lines. During the first 48 h cells were 

growing under basal conditions into the cell medium inside the xCelligence setup. Then the 

nanoparticles were added to cell cultures for 24 h at the concentrations 1.5, 1, 0.5, 0.25 and 0.1 

mg/mL of culture medium. After that, particles were washed out and replaced by fresh culture 

medium. Cell proliferation rates were measured over the 24 hours following after washing out 

the NPs. 
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4 Synthesis and characterization of the nanoparticles 
That chapter describes the synthesis method and characterizes the most important for 

the current research physical properties. Generally, there are 3 subdivisions for each kind of NPs. 

First subdivision is the method and conditions of the synthesis. Second is a structural 

characterization of the nanoparticles – it contains the data about the NPs size, crystallinity and 

agglomeration ability. The last subdivision summarizes the properties of nanoparticles, which are 

interesting for current research. Usually, it is photoluminescent characteristics and second 

harmonic generation ability.  

4.1 Porous silicon 

Synthesis 
The layers of anodized porous silicon were formed by standard electrochemical etching into the 

Teflon cell with the platinum counter electrode. The HF-EtOH –OH solution has been used as an 

electrolyte. The working electrode was the bulk monocrystalline silicon wafer. The scheme of 

the etching setup is shown on the Figure 4.1.1.  

 

Figure 4.1.1: The experimental setup for porous silicon production 

During the etching process the next electrochemical reactions are appeared on the silicon wafer 

anode: 

 

And on Pt cathode:  

 

Porous silicon films were prepared by electrochemical etching of boron-doped (100) c-Si wafers 

(specific resistivity of 12 Ohm*cm) in a mixture of HF (48%):C2H5OH (1:1) under etching 

current density 60 mA/cm2 for 40 min. The etching was done in a Teflon cell with a platinum 

counter electrode at room temperature. 
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In order to obtain free-standing PSi films, a short pulse of the etching current 

approximately 600 mA/cm2 was applied. The free-standing films were rinsed in deionized water 

and dried in air. 

Structure 
As a result, porous silicon layer had been obtained. According to the literature data [112], 

the abovementioned method leads to the silicon layer with the complicated porous structure with 

lots of small crystallites, bound together. The porous silicon was hand grinded for 10 minutes. 

The resulted powder was used for further experiments and x-ray diffraction analysis. XRD 

studies of the powder (Figure 4.1.2) shows that crystallite size, which can be calculated from the 

half-width of the peaks using Scherrer equation, is close to 3.0±0.8 nm; Sharp peaks correspond 

to the little amount of crystalline (not nano) Si phase left. That can be the traces of the wafer.  
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Figure 4.1.2: the XRD pattern of the porous silicon powder. The XRD peak position 

corresponds to the bulk silicon structure (inset)  

After dissolution of porous layer in water and sonication into ultrasonic bath for better 

dispersion, it was possible to reach the particles with average size is about 100 nm (Figure 4.1.3) 
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Figure 4.1.4: SEM images of porous silicon powder  after dispersion in water 

DLS measurements also confirm that we got 100 nm-sized agglomerates (Figure 4.1.3). 
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Figure 4.1.4: size distribution of the nanoparticles’ number obtained using the DLS of water 

suspensions of porous silicon powder. 

All of the tests allows to propose that porous silicon samples used for the experiments are the 

small crystallites (3-4nm), agglomerated into the bigger (about 100 nm) particles, which do not 

separate in water solutions. 

Properties 
Unlike to the bulk silicon, porous silicon has bright photoluminescence under UV or green 

excitation. The photoluminescent spectrum of porous silicon under 511 nm excitation is on the 

Figure 4.1.5. 
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Figure 4.1.5: the photoluminescence (red) and absorbance (black) spectra of the porous silicon  

The maximum of its luminescence is in the near-IR range (760 nm), but since this spectrum is 

relatively wide, the light in visible orange-red spectral range can be easily detected. Such wide 

peak shape concerned to the presence of crystallites with different sizes in porous silicon. After 

the exciting pulse, the luminescence intensity decreases during relatively long time – 20-30 

microseconds depending on the emission wavelength. It also can be seen that relaxation time 

depends on measured the emission wavelength (Figure 4.1.6). Such fact can be described by the 

different behavior of the particles with different sizes. The bigger ones have less surface defects 

which can be used for radiative exciton recombination. Also such long relaxation times can be 

caused indirect bandgap in the bulk silicon and, as a result impossibility of intergap mechanism 

of recombination. 
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Figure 4.1.6: The luminescence kinetics for porous silicon and different emission wavelengths. 

Excitation wavelength – 337 nm (pulsed nitrogen laser) 

4.2 NanoSilicon 

Synthesis 
The silicon nanoparticles were obtained by and laser ablation of Si in water. Samples of the 

silicon nanocrystals were prepared by the laser fragmentation of the microcrystallic silicon 

dispersed in the deionized water after 3h of degasation under Ar flow. The fragmentation of the 

solution were performed during the 1 h using Ti-saphire laser with 800nm wavelength. The pulse 

duration was 130 fs, pulse energy – 300 J, The pulse frequency was 1000 Hz. Laser irradiation 

was focused with the lens into the cuvette center. During the fragmentation, solution was stirred 

with a magnetic stirrer. 

Structure 
After production, we got well-crystallized spherical nanoparticles (TEM at Figure 4.2.1) 
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Figure 4.2.1: 

a The TEM image of the silicon nanoparticles obtained by the laser ablation. The size 

distribution obtained from the TEM image b Size distribution of the nanoparticles’ number 

obtained using the DLS of water suspensions of Si NPs 

Particles size distribution obtained from the TEM images processing is shown on the Figure 

4.2.1. Average size of such nanoparticles is about 20 nm.  

The XRD analysis show that the resulted silicon nanoparticles are monocrystalline (calculated 

crystallite size is 15 nm) and they have the same crystal structure as a bulk silicon (Figure 

4.2.2).  
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Figure 4.2.2: the XRD pattern of the nanodiamonds powder. The XRD peak position 

corresponds to the bulk silicon structure (inset) 
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Properties 
It was found that 20 nm silicon nanoparticles, as shown in supplementary section (Figure 8.3), 

do not luminesce under UV excitation. Nevertheless, under intense irradiation they can generate 

second harmonic signal at doubled energy or half excitation wavelength (Figure 4.2.3) 
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Figure 4.2.3: Second harmonic generation ability of Si nanoparticles under IR excitation. The 

spectra shows that under strong IR irradiation the silicon particles with sizes about 20 nm are 

able to generate second harmonic response 

Also two-photon excited luminescence signal can be observed for all of the excitation 

wavelengths. For the applications described in this manuscript the SH signal of Si NPs is much 

more useful, than two-photon excited photoluminescence. 

4.3 Nanodiamonds 

Synthesis 
Nanodiamonds with the sizes about 8 nm were ordered at Ray Techniques Ltd. The synthesis 

method of such nanodiamonds is Pulse Laser Ablation in Liquid (PLAL).  

Structure 
The nanodiamonds are the uniformly sized crystalline particles with diamond-like crystallic 

lattice. TEM measurements on Figure 4.3.1 show that they exhibit in the form of the 

agglomerates of sub-10 nm particles.  
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Figure 4.3.1: TEM images of the nanodiamonds deposited from the solution. It is seen that near-

10 nm nanodiamonds form the agglomerates inset shows the electron diffraction pattern. 

DLS measurements (Figure 4.3.2) show that in water solution they either present in form of 

near-40 nm aggregates or their hydrodynamic diameter is much bigger, than the size of particles 

itself. 
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Figure 4.3.2: Size distribution of the nanoparticles’ number obtained using the DLS of water 

suspensions of nanodiamonds shows that the hydrodynamic diameter in solution is close to 30 

nm 

XRD studies (Figure 4.3.3) show that nanodiamonds generally have the same crystalline 

structure as bulk diamonds (diffraction peaks at the same positions). The Scherrer equation 

allows estimating the crystallite sizes of the nanodiamonds. It is close to 8 nm  
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Figure 4.3.3: XRD pattern of the nanodiamonds powder. The XRD peak position corresponds to 

the bulk diamond structure (inset) 

So, the nanodiamonds are the small 8 ±0.9 nm crystallites, which are slightly agglomerate in 

water supensions. The average agglomerate size is 30 nm. 

Properties 
Nanodiamonds are able to produce luminescence in green range under UV excitation. Figure 

4.3.4 shows optical properties of the diamonds. Blue curve is an absorbance spectrum of the 

nanodiamonds, black one is a luminescence spectrum and the red is a PLE spectrum (intensity of 

PL at 490 nm under different excitation). The excited state lifetime is below 10 ns. 
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Figure 4.3.4: the photoluminescence and absorbance  spectrum of the nanodiamonds (black and 

blue). PLE spectrum of the nanodiamonds (emission at 490 nm) 
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4.4 Carbon fluroxide (CFO) 

Synthesis 
Procedure of CFO production is similar to the porous silicon production, but instead of Si, 

polycrystalline 3-c silicon carbide wafer has been used.  

Fluorescent CFO NPs were formed by means of electrochemical anodization of a low resistivity 

grade (<1 Ohm*.cm) bulk 3C-SiC polycrystalline wafer. The etching process took place for 3 

hours at a current density of 25 mA/cm2 using a 1:1 HF (50%)/ethanol electrolyte. Despite the 

similar to the porous silicon production conditions, the etching of SiC is less evident process and 

it do not leads to the formation of the porous silicon carbide. During the anodisation, the silicon 

atoms are preferentially bound to the fluorine and dissolved. The rest C atoms rearrange. Such 

selectivity of etching is similar to the process occurs during carbon-derived carbons production 

process. The anodic reaction was 

 

The prepared porous layer was dried in air for several hours. The dried layer was removed from 

the SiC wafer and then mechanically grinded and dispersed in a Krebs buffer solution. The 

formed colloidal suspension was centrifuged at 10,000×g for 20 minutes in order to collect only 

its top part containing very small (<10 nm) and homogeneously dispersed NPs 

Structure 
Since the CFO is mainly composed from low-structured and light carbon, the other methods of 

visualization than TEM are preferable. Such particles can be visualized on an atomic force 

microscopy image as shown in Figure 4.4.1-a. The AFM images of the CFO on the mica surface 

(Figure 4.4.1a) allow to see plenty of the NPs with a shape of thin (0.4 – 3 nm, i.e. from one to 

few atomic layers) disks with radius ranging from 2 to 15 nm. Size distribution of the obtained 

NPs was estimated from dynamic light scattering measurements 

(see Figure 4.4.1-b) and the average NPs size is found to be in the range: 4-6 nm.  
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Figure 4.4.1: size characterizations of the CFO nanoparticles.  

a - AFM Image of the CFO NPs deposited on mica 

b – Size distribution of the nanoparticles’ number obtained using DLS technique 

Fourier transform infrared spectrum shown in Figure 4.4.2 gives an idea about dominant 

chemical bonds. (C-H, C=O and C-O) taking place in the fabricated NPs. Thus, the NPs surface 

is supposed to be mainly covered by carboxylic and ester groups. In order to check such propose, 

the NPs were hydrolised with NaOH at pH 13 in order to observe the surface bonds change. As 

predicted, the C-F and C-OOEt bonds were mainly replaced with C-OH, C-OOH and COONa 

bonds correspondingly.  
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Figure 4.4.2: the infrared absorbance spectrum of the CFO nanoparticles. Arrows show the 

vibrations of the specific groups.  

CFO nanoparticles were found to be XRD-amorphous (see supplementary Figure 8.4), which 

means they have not got strict crystalline structure. The structural composition of the CFO 

nanoparticles was estimated in [113] The preposition of the NPs structure is shown on Figure 

4.4.3 

 

Figure 4.4.3: the structure of the CFO NPs [112] 

The CFO nanoparticles can be described as non-crystalline semi-inorganic structures with the 

large amount of carboxyl groups at the surface and small average size (8 nm). They do not form 

agglomerates in water suspensions. 
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Properties 
Absorbance and one-photon excited luminescence spectra of the CFO NPs are shown in figure 3. 

As one can see, the CFO NPs have a strong absorbance in the UV spectral range, and their 

photoluminescence, excited at 400 nm, is centered near 550 nm. The shape of the spectra is 

excitation-dependent, so we can propose the presence of different emission centers, which are 

excited preferentially by the different wavelengths. 
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Figure 4.4.4: the photoluminescent properties of the CFO nanoparticles 

a – absorbance and emission spectra of the CFO nanoparticles water solution. Excitation 

wavelength – 360 nm 

b – The excitation dependence of the PL spectrum of CFO nanoparticles 

4.5 Silicon carbide 

Synthesis 
Silicon carbide nanoparticles were provided by the KM labs (Kiev) [114], and were obtained by 

carbothermal reduction from the amorphous silica, sucrose and citric acid (only for water 

quantity reduction). All the precursors were mixed in deionized water for 1 hour and dried to 

white pellets, that have been carbonized at 240o C. The dark brown powder has been obtained. 

Finally, SiC nanopowder was obtained using high temperature treatment in furnace at 1420 C in 

mid vacuum under Ar flow. The reactions, followed by the treatment are the next: 

1st step  
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2nd step 

 

Structure 
The sizes of the SiC particles were evaluated by the 3 different methods. SEM shows the 

relatively big particles with sizes about 300 nm. (Figure 4.5.1) 

 

Figure 4.5.1: the TEM image of the silicon carbide particles 

DLS measurements in water were in accordance with the TEM and shows the similar size 

(Figure 4.5.2) 
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Figure 4.5.2: the size distribution of the SiC particles obtained using DLS method 

Nevertheless, the other XRD shows that the average crystallite size is close to 70 nm (Figure 

4.5.3). Also it was found the trace amount of hexahonal silicon carbide. 
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Figure 4.5.3: the XRD pattern of the nanodiamonds powder. The XRD peak position 

corresponds to the bulk 3c-SiC structure (inset) 

The SiC particles have relatively big average size (250 nm) and have the structure of bulk 3c-

SiC. Crystallite size, calculated from XRD pattern is about 70 ± 6 nm. That means SiC 

nanoparticles are not single-domained and they are consist of the several crystalline domains. 

The such domains do not deagglomerate in water. 

Properties 
The SiC nanoparticles are luminescent in a green range under UV excitation. Absorbance and 

emission spectra are shown on the Figure 4.5.4. The band gap of the bulk 3c-SiC is 2.3 eV, 

which corresponds to the luminescence maximum at 540 nm. One can see, that the measured 

luminescence maximum lies at 800 nm. That can be attributed to the recombination of confined 

photogenerated charge carriers at the surface defects of the particles. 
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Figure 4.5.4: Absorbance and emission spectra of the SiC particles in water suspensions. 

Excitation wavelength for PL graph – 360 nm. 

4.6 Conclusion of chapter 4 
It was found that the group IV nanoparticles used in this work have various physical parameters. 

The particles’ size is ranged from 8 up to 300 nm. The photoluminescent properties are also 

varying. Some types of the particles are non-luminescent, other have luminescence in different 

ranges. The comparison of the nanoparticles is shown in Table 4.6.1 

NPs type Size of 

crystallites 

Size of 

agglomerates 

PL properties Crystalline structure 

Porous Si ~3 nm ~150nm Broad peak at 

800 nm 

Centrosymmetric diamond-like 

structure 

NanoSi ~ 20 nm ~20 nm Not luminescent Centrosymmetric diamond-like 

structure 

Nanodiamonds ~6 nm ~30 nm Sharp peak at 

475 nm 

Centrosymmetric diamond-like 

structure 

CFO  8 nm Broad peak at 

550 nm 

Not crystalline 

SiC 40 nm ~300 nm Broad peak at 

800 nm 

Non- centrosymmetric 

sphalerite-like structure 

Table 4.6.1: the comparison of the physical properties of the NPs 
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The different values in 2nd and 3rd columns for porous silicon, silicon carbide and nanodiamonds 

allows to propose that for these kinds of particles we have got the agglomerates in water 

solutions. 

We obtained 2 types of silicon particles, with 3 nm crystallites and 20 nm ones. The 3 nm NPs 

are agglomerated and form porous silicon structure. They are brightly luminescent under UV 

excitation. The 20 nm particles are not luminescent.  

The carbon particles are presented as fluorescent nanodiamonds with average size about 6 nm 

and also fluorescent CFO particles, which have complicated macromolecular structure. 

Finally, SiC nanoparticles are presented as a relatevily big (300 nm) agglomerates of the 

fluorescent 40 nm nanocrystals.  

The silicon and diamond particles have the same diamond-like cubic crystalline structure. Silicon 

carbide particles have non-centrosymetrical cubic sphalerite-like lattice.  

Since the sphalerite structure, in comparison with the diamond one is not centrosymetrical, the 

3c-SiC nanoparticles can be promising for second harmonic microscopy imaging. All of the 

luminescent particles can be used for imaging experiments. 
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5 Interaction of the NPs with the cells 
It is possible to detect the particles inside the cells using different modalities. Some particles can 

be detected with one photon excited PL microscopy, other are seen using SH or TPEF 

microscopy. All the abovementioned nanoparticles have been tested on 3T3-L1 mouse 

fibroblasts in order to detect their intra-cellular localization (section 5.1) and to measure their 

cytotoxicity (section 5.2). At section 5.3 it is shown that some kind of particles are bound to 

proteins of the culture medium. A method to avoid such binding was proposed.  

5.1 Nanoparticles’ uptake  
All of the particles have been tested on the 3T3-L1 cell line. Using the microscopy 

techniques it is possible to localize the particles inside cells. For CFO nanoparticles, porous 

silicon and nanodiamonds ordinary fluorescent microscopy can be used. Since SiC and bigger 

particles do not luminesce under UV excitation, but they are able to produce SH signal or 2-

photon excited PL. Non-linear microscopy has been used for examination of these NPs 

distribution.  

Porous silicon  
Since porous silicon particles have sizes about 200 nm, weak cellular uptake was 

expected. Nevertheless, photoluminescent microscopy (the excitation/emission conditions were 

at the Section 3.2.1) of the 3T3-L1 cells after 4 hours of incubation with 0.25 g/L of porous 

silicon nanoparticles shows a strong labelling suggesting that a significant quantity of these NPs 

have been uptaken by cells (Figure 5.1.1).  

 

a 

 

b 

Figure 5.1.1: (a) Fluorescent image of 3T3-L1 cells labeled with 0.25 mg/mL of 

porous silicon particles. (b) Control sample without porous silicon exposure. Green, 

blue, and red colors correspond to the PL of cell membrane, cell nucleus, and SiNPs, 
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respectively. Cell nuclei were imbued with 5 mg Hoechst dye.  

Porous silicon does not produce any second harmonic signal, but it can be used for 2 photon 

excited imaging (Figure 5.1.2).  

 

Figure 5.1.2: 3T3-L1 cells labeling with porous silicon Yellow dots inside the cell cytoplasm 

correspond to the porous silicon particles. Control sample without porous silicon is in the inset. 

The multichannel image with IR laser excitation (800 nm). Green channel corresponds to 500-

600 nm fluorescence, blue channel is a second harmonic signal (400 nm) control sample is at the 

insert.  

Two-photon excited PL microscopy image shows the same localization of the 

nanoparticles as single photon one – the particles are inside the cytoplasms. All porous silicon 

particles can be seen as separated luminescent dots. That means, the porous silicon nanoparticles 

are present into the cytoplasm of cells in form of the relatively big agglomerates. 

Nanosilicon 

Typical bi-modal images of the 3T3-L1 fibroblasts cells labeled with Si nanoparticles 

(20nm) are shown in Figure 5.1.3. General healthy look of the cells, corroborating the non-toxic 

impact of the chosen nanoparticles’ concentration (0.25 mg/mL, toxicity measurements at 

section 5.2), can be remarked. On the presented pictures, blue color corresponds to the second 

harmonic (SH) signal while green, yellow and red colors – to the two-photon excited 
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photoluminescence (TPEL) one. As it can be seen from the cell image shown in Figure 5.1.3-a 

where the signals from all detection channels are mixed together, cytoplasms of the labeled cells 

clearly appear mainly in yellow color accompanied by slight red tones. Since auto-fluorescence 

intensity of the non-labeled cells is too weak under these excitation/detection conditions (see 

inset in Figure 5.1.3-a), the observed TPEL of the labeled cells can be attributed to the smallest 

Si nanoparticles (with crystalline core diameters <10 nm) accumulated inside the cellular 

cytoplasm and ensuring its quite bright staining. The recorded high TPEL emitted by the Si NCs 

can be explained by their enhanced non-linear absorption due to quantum confinement and 

dielectric mismatch phenomena. Indeed, the non-linear absorption coefficient of Si NPs defining 

their third-order non-linearity and depending on the NPs size can be two orders of magnitude 

higher than the bulk Si value.  

A special attention must be paid to numerous bright white spots with violet contours 

decorating the cell images. They are especially well seen in Figure 5.1.3-b showing a single cell 

from the previous picture. In particular, their localization outside the cell membranes is 

demonstrated by 3D image shown in Figure 5.1.3-c. White color of the spots means that they 

provide both SH and multicolor TPEL signals. For example, the picture given only by the SH 

channel is presented in Figure 5.1.3-d. The clear granular shape of the spots generating the most 

intensive SH emission indicates that they correspond to an aggregation of the NCs. Indeed, the Si 

NCs are known to be able to easily aggregate in a water containing solutions via van der Waals 

forces appearing between their silica shells. Being too big, the aggregated species cannot 

penetrate inside the cells. Nevertheless, they ensure very efficient bi-modal cell labeling. Smaller 

separate blue spots can be also visible in Figures 5.1.3-b and 5.1.3-d. They are provided by SH 

signals generated by individual and relatively large Si NCs with diameters ≥20 nm.  
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(a) 

 
(b) 

(с) 
 

(d) 

Figure 5.1.3: (a) Non-linear optical image of the 3T3-L1 cells labeled with Si NCs (inset 

shows image of non-labeled control cells); (b) non-linear optical image of a single cell from 

the previous picture; (c) 3D image of the single cell from previous 2D picture; (d) second 

harmonic image of the single cell from the picture (b). 

Nanodiamonds  
Nanodiamonds are oftenly proposed as an agent for the PL labeling for cell 

visualization. In our case, extremely small nanodiamonds (8 nm) were used for the labeling 

(Figure 5.1.4 and 5.1.5) 
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Figure 5.1.4: PL microscopy image of the 3T3-L1 cells labeled with 0.25 mg/mL of 

nanodiamonds for 24h.  

The Figure 5.1.4 shows the uniform distribution of the nanodiamonds inside the 

cytoplasms of cells. Moreover, it can be also seen, that there is almost no luminescence inside 

the nuclei of the cells. 

 

a 

 

b 

Figure 5.1.5: 2-photon excited PL microscopy image of the (a) 3T3-L1 cells labeled 

with 0.25 mg/mL of nanodiamonds for 24h (b) control sample of 3T3-L1 under the 

same excitation end detection conditions. 
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The Figure 5.1.5 shows that due to high 2 photon absorption, the nanodiamonds also 

can be used for non-linear microscopy labeling. The 800 nm excitation leads to the generation of 

the TPEL signal from the nanodiamonds. Nanodiamonds localization inside the cells is in 

coincidence with the one observed using 1 photon excited PL microscopy.  

CFO  
As-prepared CFO nanoparticles can be used for the cell fluorescent labeling. It was 

found, that such particles predominantly accumulate inside the cell nuclei (Figure 5.1.6) 

 

a 

 

b 

Figure 5.1.6: single channel photoluminescent images of the (a) 3T3-L1 cells labeled with 

0.25 mg/mL of CFO nanoparticles for 24h. (b) non labelled 3t3-l1 cells under the same 

conditions. CFO NPs are predominantly accumulated inside the cells nuclei 

The Figure 5.1.6 clearly highlights selective incorporation of the fluorescent SiC NPs 

inside the cell. Under UV/violet excitation, the cells marked by the NPs are very bright while the 

autofluorescence of unmarked cells is not observed at all. In particular, the cells labeled with the 

CFO NPs appear to be extremely bright, with the most intense fluorescence signal coming from 

the nuclei. It can be seen, that small particles (below 10 nm) uniformly label the cell and, as a 

result, it is possible to see a lot of details inside the cell. Figure 5.1.6 shows the increased good 

contrast inside the nuclei. 
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Figure 5.1.7: non-linear optical image of the 3T3-L1 cells labeled with CFO nanoparticles 

(inset shows image of non-labeled control). 

Red channel corresponds to the higher wavelength, than the green one. So the orange 

nuclei mean an increased concentration of the nanoparticles and self-absorbance effect. As a 

result of absorbance of short wavelength and re-emission of longer ones, the final photon energy 

is lower, than in less concentrated regions, which confirms the fact of predominant nuclei uptake. 

Since the high z-resolution of the TPEL microscope we can conclude that the CFO NPs are 

accumulated inside the nuclei.  

Silicon carbide nanoparticles  
SiC nanoparticles had never been used as labels for the second harmonic imaging 

before. Figure 5.1.8 demonstrates the possibility of using SiC nanoparticles for cell labeling. In 

this case laser excitation was set at 790 nm. The blue color corresponds to the second harmonic 

emission (395 nm) and three other colors (green for 485 nm channel, yellow for 525 channel and 

red for 607 nm channel) correspond to the 2photon excited fluorescence of the SiC nanoparticles 

and the cells. The morphology of the cell can be seen by the autofluorescence represented in 

green.  

It can be noticed, that second harmonic signal (blue color) does not always colocalize 

perfectly with the 2photon excited PL at the Figure 5.1.8. The fact that some particles can be 

detected by the TPEF signal only can be explained by the size dependence of the second 

harmonic emission. Since TPEF signal is proportional to the 3rd grade of the radius of NPs and 

SH signal is proportional to the 6th grade, the smaller particles might yield the stronger TPEF 

than second harmonic signal. It can be seen that the bigger particles (yelding SH signal) are 
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mainly present on the cell membrane, while the smaller ones (yellow channel) are able to 

penetrate inside the cell cytoplasm. 

 

(a) 

 

(b) 

Figure 5.1.8: a non-linear optical image of the 3T3-L1 cell labeled with 0.1 mg/mL of SiC 

particles for 4 h. Blue channel is a second harmonic channel and corresponds to relatively big 

SiC particles, the yellow dots show the TPEL signal from small SiC particles b control sample of 

the 3T3-L1 cell under the same excitation and emission conditions 

5.2 Toxicity of nanoparticles. 

CFO NPs 
Since the CFO nanoparticles are able to enter the cell nuclei and seem to be most promising for 

the cell imaging, their toxicity has been studied in great details using xCELLigence system 

which allows to measure the real-time cell number in response to increasing concentrations of 

nanoparticles.  Such measurements are expressed as a cell index (which is proportional to the 

cell number) on time plots. The results presented here concern the effect of CFO on HepG2 

cancer cells.  
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Figure 5.2.1: cell index evolution curves for the HepG2 cells in presence of increasing CFO NPs 

concentrations. Arrows show the time of the CFO NPs addition and washout out time, 

corresponding to the change of the culture medium. The effect of uptaken NPs on cell 

proliferation can then be measured. Inset shows the photoluminescent microscopy image of the 

CFO NPs inside the HepG2 cells. Each curve is the average of the 8 simultaneous measurements  

HepG2 cells were allowed to grow without any treatment during 48 hours. At that time, 

increasing concentrations of CFO NPs were added to the wells for 24 hours (n=8).  The highest 

dose of NPs is the most toxic and causes fast decrease of the cell index. The effects of CFO NPs 

are fast and can be seen rapidly on the cell index curves. Figure 5.2.1 shows a dose-response 

effect after addition of the nanoparticles. After washing out the NPs, the cells can either restart 

proliferating (concentration 0 - 0.5 mg/mL) or not (1 and 1.5 mg/mL).  

Although we have tested a wide range of NPs concentrations, it was not possible to 

measure all the concentrations. Nevertheless it can be interpolated that the effects of intermediate 

NPs concentrations would be intermediate to the results measured. For example, although we did 

not measure the effect of CFO NPs at 0.75 mg/mL we may reasonably expect that the cell index 

curve would have been between the ones observed in response to 0.5 and 1 mg/mL of CFO NPs 

(Figure 5.2.2). 
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Figure 5.2.2: example of approximation for plotting the 0.75 mg/mL cell index line. 

Using the linear interpolation of the measured data, cell index curves for all of the 

intermediate concentrations can be obtained. We can use the measured curves as a basis for 

intermediate concentrations cell index plot. For the representation of such proposal, 3D surface 

in the time-concentration-cell number coordinates was plotted (OriginPro software, gridding 

using Renka and Cline method [115]). It is possible to perform such experiment using 

xCelligence and such plot gives all available information about toxicity. An example of such plot 

is given in Figure 5.2.3a, which shows dose-time-cell index curve of HepG2 cells incubated 

with different amount of CFO nanoparticles (50 hours is the time of NPs addition). Using the 

cross sections of such plot (Figure 5.2.3 b) the evolution curves of the cell index (Figure 5.2.3 b 

upper graph), the dose response curves on the selected time (Figure 5.2.3 b) left graph were 

obtained. The section with horizontal plane give for example IC80 values for different time 

frames. In Figure 5.2.3 b (central plot), yellow line shows the horizontal plane cross-section at 

level 0.2. In other words, that line shows IC80 value for different exposure times.  
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Figure 5.2.3: a – 3D plot of the cell index – concentration – time dependence. (plotted using 
OriginLab 8.1) 

b – Colored map of the same representation, red line shows the example of cross-section plane 
at 70 h, left Figure is cell index profile at this time, black line at central plot – cross section 
plane at constant concentration (1.1mg/mL), cell index evolution curve corresponded to that 
concentration is the upper graph. Yellow line is a constant cell index plane cross-section line at 
height 0.2 (corresponds to IC80).  

Other interesting idea on data representation is to show not the cell index itself, in some 

cases the showing of the cell growth or cell death speed can be more interesting. Cell growth 

parameter can be calculated as a relative slope (slope of cell index evolution curves, normalized 
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on cell index at the same moment). Figure 5.2.4 shows such a plot for HepG2 cells. Looking at 

Figure 5.2.4 we can notice the normal growth (red color). After addition of NPs cell proliferation  

slows down (color changes to green or darker ones). Depending on NPs concentrations in the 

medium one can see the different effects, from slowing down (orange) cell index growth (green) 

and the cell index decrease (blue-violet).  It can be clearly seen on such kind of plot that cells 

start responding the NPs not instantly, it takes about 5 h from cell addition (first black line) to 

observe an effect (red dash line). After washing out, high concentration (1 mg/mL) change the 

cells proliferation speed. So, the particles left inside the cells after washout can change the 

proliferating ability of the cells. 
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Figure 5.2.4: colored map of the HepG2 cell index growth speed under exposure with CFO NPs. 
(plotted using OriginLab 8.1)   

The main advantage of such a representation is that it rapidly indicates the effects of 

NPs on cell index. Limitations are that it is may be not so easy to understand and  it does not 

contain any statistical error bars. So the next plots are given as a curves, corresponding to 

different NPs concentrations at the same plot.  
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Figure 5.2.5: cell index curves evolution of 3T3-L1 cells in response to increasing 

concentrations of CFO NPs and after washing out. Arrows show the time of the carbon 

fluorooxide addition and changing of the medium (wash out). 

The CFO nanoparticles are found to be toxic at 1 mg/mL. The slope of the cell index 

curve significantly changes after washing out. That fact means that the NPs left inside the cells 

affect their proliferation rate. 

Kinetics of the CFO nanoparticles cellular uptake. 
In order to get the average time necessary for the 3T3-L1 cells to uptake NPs, the  average 

luminescence of the cells was measured under real time conditions. The graph with the PL 

intensity on time is shown on the Figure 5.2.6. Since measurements were done in medium, 

which produces photoluminescent background signal at the same wavelength as a CFO NPs, the 

measurements were performed using red filter (excitation 580-600 nm, emission 620-680 nm).  
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 b 

Figure 5.2.6: time dependence of the penetration of the CFO NPs into the cells. 

a – the typical images used for processing and fluorescence intensity calculations. During time, 
there is an increasing amount of NPs inside the cells. 

b – the evolution of the luminescence intensity of the cells during exposure with 0.25 mg/mL of 
CFO nanoparticles. 

High initial baseline is caused by the NPs into the PBS solution. Since the microscope is focused 

on the plane with the cells, the local increase of NPs concentration inside the cells will cause 

increase of the PL intensity. According to this model: 

where Isat PL intensity in case of saturation with NPs, tuptake is a characteristic uptake time. That 

time shows the time needed for the cells to reach the saturation inside the nanoparticles solution.  

The results of such measurements show that the average time necessary for the significant uptake 

is close to 5 h. So the both data from the cell index analysis and luminescent particles uptake 

kinetics shows that the characteristic time of the nanoparticles uptake is 5h.  

Other nanoparticles toxicity. 
The dose response cell index curves of the 3T3-L1 cells under exposure with the porous silicon, 

20 nm silicon, nanodiamonds and SiC particles is shown on Figure 5.2.4 The nanoparticles were 

added (first arrow) after cell proliferation period, 24 hours later the medium was changed 

(second arrow). 
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Figure 5.2.7: Cell index evolution curves for the 3T3-L1 cells. Arrows show the time of the NPs 

addition and changing of the medium 

a – porous silicon, b- 20 nm silicon particles, c – nanodiamonds, d – SiC particles. 

The only concentration of porous silicon that significantly affects the cell proliferation behavior 

is 2 mg/mL (Figure 5.2.7a): The lower concentrations do not change the cells proliferation rate.  
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It was found, that the toxic concentration of Silicon NPs (20nm) is about 0.5 mg/mL, the smaller 

concentrations are also able to stop the cell proliferation (Figure 5.2.7b). The porous silicon was 

found to be less toxic than the 20 nm particles. Such effect can be explained by the lower 

penetration ability of the above-100 nm porous silicon agglomerates inside the cells compared to 

20 nm ones. 

Cell index evolution curves for nanodiamonds are shown at Figure 5.2.7c. The toxic dose for 

nanodiamonds is 2 mg/mL.  

Silicon carbide nanoparticles are shown to have an effect on 3T3-L1 cells proliferation at the 

concentrations higher than 0.25mg/mL (Figure 5.2.7d), The proliferation does not restart after 

washing the particles out, so the SiC at concentrations above 0.25 mg/ml cause the cell death. 

5.3 Binding of NPs to serum albumin 
 

The final objective about NPs is their in vivo utilization, which means intravenous or intra-

abdominal injection which means in both cases that before reaching their target, NPs will react 

first with biological molecules present in the medium either blood on interstitial liquid. Almost 

any compound or drug used in medical application interacts with the proteins located into 

biological liquids. Serum albumin is the most abundant plasma protein. It is produced in the liver 

and forms a large proportion of all plasma proteins. In Human, serum albumin represents about 

50% of human plasma proteins [116]. 

Albumin binds water, cations (such as Ca2+, Na+ and K+), fatty acids, hormones, bilirubin, 

thyroxine (T4) and pharmaceuticals. Since large abundance and high binding ability of albumin, 

the hypothesis of binding of NPs bovine serum albumin (BSA) was studied in the next 

experiments. 

All of the tested NPs solutions absorb the light in visible range. Albumin solutions are 

transparent. The albumin can easily be precipitated by addition of ethanol to the solution. 

Addition of EtOH to NPs solution does not affect the stability of the tested colloids. So, in case 

of albumin binding, the NPs should co-precipitate with albumin.  

A 40 mg/mL solution of bovine serum albumin (A9418 Sigma) in PBS was used. Mixtures were 

heated at 37°C for 90 min. After 18h Ethanol absolute was added to all of the solutions (final 

EtOH concentration is 25%). The albumin precipitates. After centrifugation at 2000g for 5 

minutes, the  albumin-contained samples have dark pellet and the supernatant became clearer, 

than control samples, suggesting that nanoparticles were bound to albumin. As one can see on 
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the Figure 5.3.1 the CFO NPs, porous silicon and ablated Si samples are able to bind albumin 

and they precipitate with it.  The nanodiamonds are not able to bind serum albumin. 

 

 
a 

 
b 

 
c 

 
d 

Figure 5.3.1 NPs solutions after albumin precipitation with ethanol (left) and control (right) 
a – CFO NPs, b – Nanodiamonds, c – porous silicon, d – ablated Si. 
 

Albumin is the most abundant protein in blood and therefore the most important way of 

combination  with the nanoparticles through reactions with amino or carboxyl terminating 

groups. In that case, if the binding is strong enough and irreversible, the preincubation of the 

nanoparticles with any aminoacid should decrease the binding rate due to the concurrent process. 

So, in case of non-site-specific albumin-binding preincubation of nanoparticles with any other 

amino acid (such as glutamine) can saturate the binding ability of CFO nanoparticles and 

decrease further albumin binding. So, the preincubation of the CFO, porous silicon and ablated 

Si NPs with 5mM glutamine followed by addition and precipitation of albumin gives the result 

on Figure 5.3.2.  
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b 

 
C 

Figure 5.3.2 NPs solutions after albumin precipitation with ethanol (left samples preincubated 

with glutamine before the albumin addition). a – CFO NPs,b – porous silicon, c –, ablated Si 

Left sample is the NPs preincubated with glutamine for 90 min at 37oC before the albumin 

binding. The most important difference can be seen at the figure 5.3.2a. The CFO nanoparticles 

after glutamine preincubation after albumin precipitation remains into the solution. It means that 

glutamine preincubation decreases the ability of the albumin binding of CFO nanoparticles. The 

absorbance studies of the CFO samples at 450 nm show that 100% of NPs left into the 

supernatant in control sample, 24% in case of albumin binding and 64% in case of glutamine 

preincubation of the samples. In order to check if protein binding plays a positive or negative 

role into the uptake of nanoparticles inside the cells, the next experiment on 3T3-L1 cells was 

performed. The uptake of CFO NPs was measured in PBS (contains neither proteins nor 

aminoacids), DMEM (contains aminoacids) and medium with serum (both aminoacids and 

proteins). 

The quantitative analysis of luminescence intensities of the NPs inside the cells (Figure 5.3.3) 

shows that cells uptake more NPs in case of absence of serum. That proofs that all of the 

particles are able to penetrate inside the cells, but in case of albumin binding, the NPs lose their 

penetration ability. 
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Figure 5.3.3: photoluminescence intensity analysis based on PL microscopy images for the 3T3-

L1 cells exposed with 1g/L of CFO NPs for 4 hours in different media. The data are shown with 

subtracted background ± SD. There is no significant difference between the PBS and DMEM or 

medium and DMEM, but according to unpaired t-test the cells in PBS uptake more particles than 

in medium (99%). 

The uptake of NPs in PBS is similar to the one in DMEM. The NPs in albumin-containing 

medium cannot enter the cells with the same efficiency as in pure DMEM. That proves that the 

binding prevents the uptake of the NPs by the cells. 

5.4 Discussion. 

Comparison of NPs properties for cell imaging. 
The all investigated group IV nanoparticles are able to be visualized inside the cells using the 

optical microscopy techniques. The CFO, nanodiamonds and porous silicon nanoparticles were 

observed using ordinary fluorescence microscope. Other particles, such as SiC can generate 

second harmonic. Bulk silicon are not able to produce SH signal, but 20-100 nm particles are 

able to generate weak SH signal due to surface effects (see chapter 1.3.3). So, the 20 nm Si and 

SiC nanoparticles can be observed using SH microscopy technique. Important properties for cell 

imaging are summarized in Table 5.4.1. All of the luminescent samples can be excited in 

2photon way.  
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NPs Size, 
nm 

localization lumine
scence 

2-
photon 
excited 
PL 

2nd 
harmonic 
generation 

Nanodiamonds 6 Cytoplasm, uniform distribution + + - 

CFO 8 localized in nuclei (uniform 
distribution) 

+ + - 

Porous Si 150 Mainly cytoplasm, not uniform + + - 

Ablated Si 20 Cytoplasm, not uniform - + + 

SiC 300 Mainly in membrane, few in 

cytoplasm, single particle can be 

seen 

-+ + + 

Table 5.4.1: comparison of the imaging properties of the tested nanoparticles for cell labeling. 

CFO and nanodiamonds can be used instead of ordinary organic dyes for labeling. Low toxicity 

at concentrations below 0.5 mg/mL for all of the tested nanoparticles, show the possibility to 

label the nuclei of the alive cells (proper labeling requires concentrations from 0.05 for SiC to 

0.25 mg/mL for nanodiamonds CFO concentration should be above 0.1 mg/mL).  

Toxicity of different NPs 
The all of the abovementioned particles have relatively low toxicity compared to the other 

fluorescent dots, such as, for example Au dots. The dose, which causes the decrease of cell 

number, is shown on Table 5.4.2. Toxic concentrations of literature data are taken as IC50 

concentrations. 

NPs Size, 

nm 

toxic 

concentration, 

g/mL 

NPs Size, 

nm 

toxic 

concentration, 

g/mL 

Nanodiamonds 6 1000  SiC  300 >2000 

CFO 8 1000 Au NPs 

[117] 

20 10 

Porous Si 150 2000 Carbon 

nanotubes 

20 20 
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[118] 

Ablated Si 20 500 Fe3O4 

nanopartic

les [119] 

5 100 

Table 5.4.2: toxic dose of the tested group IV nanoparticles (green) The red cells 

show the literature data on toxicity of most abundant inorganic NPs used in 

biology.  

Interesting, that the toxicity of silicon NPs does not depend on their size. The gold NPs, Fe3O4 

and carbon nanotubes are added as a most frequently used for biological research inorganic 

particles. So, all of the particles investigated in this research (silicon carbon and SiC NPs) are 

hundreds times less cytotoxic. As it was shown in this research the typical time of the CFO 

nanoparticles uptake by the 3T3-L1 cells is 5 hours, which is typical time for the saturation of 

the cell by the some kinds of organic and inorganic nanoparticles. Panyam et al. investigated the 

dynamics of polymer nanoparticles uptake by the cells using endocytosis mechanism. They 

found that the typical time necessary to the uptake is close to 5 h, which corresponds to the value 

obtained into the current research [120]. Nevertheless, the particles which are uptaken by 

endocytosis mechanism, such as for example 40 nm silica particles [121] usually require more 

time (tenth of hours) to reach saturation. Fast kinetics is typical for the smaller particles, which 

penetrate the cell using passive diffusion mechanism. Also endosomal mechanism of uptake 

usually leads to the concentration of the particles inside endosomes and does not allow uniform 

distribution. 

Albumin binding. 
It was also found that all of the tested particles except nanodiamonds are able to bind 

plasma albumin. The CFO-albumin binding rate can be decreased by the preincubating of CFO 

nanoparticles with glutamine. That fact means that the nanoparticles surface can be saturated 

with other than albumin compounds. The interaction both with albumin and glutamine allows 

proposing that the CFO nanoparticles can bind unspecifically to albumin (protein) or glutamine 

(amino acid). We can propose that the CFO NPs can be easily conjugated not only with albumin 

but also with wide range of proteins. The strong protein binding usually leads to the 

accumulation of the particles into the liver or spleen [122]. Nevertheless, the preincubation of 

nanoparticles with some aminoacids, such as glutamine can open the interesting way for the drug 

delivery. 
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6 CFO nanoparticles for cell therapy. 
 

Based on the interactions of NPs with cells, in-vitro experiments for cancer treatment 

with NPs were performed. Section 6.1 shows the different toxicities of CFO NPs for various 

cancer and non-cancer cell lines. It contains the quantification of such effect for CFO NPs. 

Section 6.2 demonstrates the possibility of application of CFO NPs as a sonosensitizer for 

ultrasound-assisted therapy.  

6.1 Toxicity of the CFO particles on different cell lines 
 

Figures 6.1.1 to 6.1.6  show the evolution of cell number curves of different cell lines 

during the 48 hours of the control period, the following 24 hours in presence increasing 

concentrations of CFO NPs and the following 24 hours after washing out NPs. Cell index values 

have been normalized at the time of CFO NPs addition. There was no slope change under basal 

conditions while there was a dose response effect of CFO NPs on cell index slopes, whatever are 

the cell lines tested. A stimulatory effect in presence of the lowest CFO NPs concentrations was 

observed only on 3T3-L1 cells. On all the other cell lines tested, the lowest concentrations had 

either no effect (HEK293, Panc01, HepG2) or decreased cell proliferation (HSC, HuH7). CFO 

NPs concentrations above 0.25 mg/mL reduced the cell proliferation. Generally, the higher is the 

CFO NPs concentration, the higher the decrease in cell index slope. The highest concentration of 

nanoparticles (1.5 mg/mL) significantly decreased cell proliferation in all the cell lines tested. 

Dose response histograms of the effects of CFO NPs on cell index are shown in Figures 6.1.1 to 

6.1.6 (left histogram). 

Thanks to the xCELLigence system which allows the realtime analysis, it is also 

possible to study the effect of CFO NPs after washing them out. In that case, only the effects of 

uptaken CFO NPs are observed.  We compared the slopes of cell proliferation during exposure 

and after washing out (Figures 6.1.1 to 6.1.6, right histograms). Interestingly, after washing out, 

since cell proliferation did not restart and cell values index were close to zero, it appears that the 

highest concentration of CFO NPs killed the cells in all the cell lines except in 3T3-L1 (Figure 

6.1.1, cell index). In most cell lines, cells restarted to proliferate after washing out at 

concentrations equal or lower to 1 mg/mL. A dose response effect of CFO NPs on cell 

proliferation after washing out can be observed in HSC, Panc01 and HepG2 (Figures 6.1.3, 

6.1.5, 6.1.6 lower histogram). 
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Figure 6.1.1: the cell index curves for 3T3-L1 cells in presence of increasing concentrations of 

CFO NPs. Arrows show the time of NPs addition and washing out. Inset shows the 

photoluminescent image of the cells exposed with 0.25mg/mL CFO NPs for 4h. Histograms 

represent the cell index curves slope in response to increasing CFO NPs concentrations (from 

52h to 64h) (left) and after washing out (from 90h to 102h) (right). 
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Figure 6.1.2: the cell index curves for Hek293 cells in presence of increasing concentrations of 

CFO NPs. Arrows show the time of NPs addition and washing out. Inset shows the 

photoluminescent image of the cells exposed with 0.25mg/mL CFO NPs for 4h. Histograms 

represent the cell index curves slope in response to increasing CFO NPs concentrations (from 

52h to 64h) (left) and after washing out (from 90h to 102h) (right). 
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Figure 6.1.3: the cell index curves for HSC cells in presence of increasing concentrations of 

CFO NPs. Arrows show the time of NPs addition and washing out. Inset shows the 

photoluminescent image of the cells exposed with 0.25mg/mL CFO NPs for 4h. Histograms 

represent the cell index curves slope in response to increasing CFO NPs concentrations (from 

52h to 64h) (left) and after washing out (from 90h to 102h) (right). 
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Figure 6.1.4: the cell index curves for HuH7 cells in presence of increasing concentrations of 

CFO NPs. Arrows show the time of NPs addition and washing out. Inset shows the 

photoluminescent image of the cells exposed with 0.25mg/mL CFO NPs for 4h. Histograms 

represent the cell index curves slope in response to increasing CFO NPs concentrations (from 

52h to 64h) (left) and after washing out (from 90h to 102h) (right). 
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Figure 6.1.5: the cell index curves for PANC1 cells in presence of increasing concentrations of 

CFO NPs. Arrows show the time of NPs addition and washing out. Inset shows the 

photoluminescent image of the cells exposed with 0.25mg/mL CFO NPs for 4h. Histograms 

represent the cell index curves slope in response to increasing CFO NPs concentrations (from 

52h to 64h) (left) and after washing out (from 90h to 102h) (right). 
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Figure 6.1.6: the cell index curves for HepG2 cells in presence of increasing concentrations of 

CFO NPs. Arrows show the time of NPs addition and washing out. Inset shows the 

photoluminescent image of the cells exposed with 0.25mg/mL CFO NPs for 4h. Histograms 

represent the cell index curves slope in response to increasing CFO NPs concentrations (from 

52h to 64h) (left) and after washing out (from 90h to 102h) (right). 

The statistical significance of the mean difference of the histograms is shown at 

supplementary materials (Tables 8.1-8.6) at the end of thesis. It is seen on Figures 6.1.1-6.1.6 

that CFO nanoparticles in small concentrations are able to stimulate the growth 3T3-L1 cells. 

There is no such effect on cancer cell lines. Other interesting observation is that after washing 

out CFO NPs from 3T3-L1 and Hek293, these cells restarted their proliferation even after 

exposure at the highest concentrations (1.5 mg/mL) which was not the case for cancer cell lines. 

In order to quantify the difference in behavior of the cells response to NPs we use the initial 

evolution curves at the constant concentrations.  
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Generally, the higher is the CFO NPs concentration, the higher the decrease in cell index slope. 

The highest concentration of nanoparticles (1.5 mg/mL) significantly decreased cell proliferation 

in all the cell lines tested. It can be seen in the insets on Figures 6.1.1 to 6.1.6, that in 

accordance with the previous researches, they predominantly accumulate inside the nuclei of 

either cancer or non-cancer cells [123].  

In order to compare the toxicity of nanoparticles for different cell lines, the cell death factor 

(CDF) parameter has been chosen. CDF is a relative decrease of the cell index slope 

 

So, CDF=0 means no effect of nanoparticles, CDF=1 is complete stop proliferation, CDF>1 

shows the relative cell death rate.  

To test our experimental hypothesis that CFO NPs toxicity is higher when the proliferation rate 

is higher, we plot the doubling time versus CDF after addition of NPs chart (Figure 6.1.7). The 

CDF on Figure 6.1.7 was measured for different cell lines for the highest concentration of 

nanoparticles (1,5 mg/mL). X axis represents the initial proliferation growth speed, which is a 

characteristic of the cell line. The dash line is a tendency curve. It can be easily noticed that there 

is correlation between the cell death factor and the doubling time. Generally, the faster is cell 

proliferation, the more toxic are the nanoparticles for such cell line. That effect can be explained 

by the increased uptake of NPs and, as a result the higher susceptibility to the NPs exposure.  
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Figure 6.1.7: correlation between cell death factor (= the toxicity of CFO NPs at 1.5 mg/mL) 
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and doubling time. Dashed line is a tendency curve. Each point is the average of 8 

measurements ± SEM. 

The present study emphases the fact that it is important to study, not only the effect of addition 

of NPs on cell culture but also the behavior of cells after washing out the NPs. That difference is 

important for the extrapolation from in vitro to in vivo studies. Indeed, under in vivo experiment, 

the extracellular concentration of NPs is not supposed to remain high for a long time. NPs will 

be uptaken by cells, more or less rapidly; it is only the uptaken NPs that will change the behavior 

of exposed cells. Thanks to the xCELLigence system which allows the realtime analysis, it is 

also possible to study the effect of CFO NPs after washing out. In that case, only the effects of 

uptaken CFO NPs are observed. 

For such observation, the cell index behavior after washing out was measured for different cell 

lines. The cell index evolution after washing NPs out is shown on the Figure 6.1.8a. All of the 

values are normalized at the time of NPs wash out. In the present case, there is a striking 

difference after washing out in 3T3-L1 and the other cell lines. 

Since the differences in cytotoxicity after washout is supposed to rely on different capacities to 

uptake NPs, the relative amount of the nanoparticles uptaken by the cells should be measured. As 

have been seen in the chapter 5 CFO NPs are mainly localized inside the cell nuclei. This 

confirms our previous studies [124]. NPs uptake is not related to the temporary disappearance of 

the nuclear membrane during cell division. Indeed, significant NPs uptake are observed in only 3 

hours of exposure, while a complete cell division cycle requires around 20 hours to be 

completed. The reason why CFO NPs concentrate inside cell nuclei only when cells divide is not 

yet known. The mean size of CFO NPs is very small (lower than 10 nm) which may explain why 

there can easily migrate inside cell nuclei. Nevertheless the small size is not a sufficient criterion 

to allow nuclear uptake. Indeed, we have recently shown that the surface charges are equally 

important, since strongly positive surface charged CFO NPs cannot penetrate inside cell nuclei 

[65]. 

The luminescence images were made using the same conditions to compare the uptake of 

nanoparticles by different cell lines by comparing the luminosity per cell. The results of such 

comparison, based on measurements of at least 20 cells are shown in Figure 6.1.8 b. It can be 

seen that the 3T3-L1 cells uptake much less nanoparticles, than the other cell lines (Statistical 

significance analysis is given at the supplementary section). For the comparison of the cell 

proliferation after washout for different cell lines, cell recovery factor (CRF) was calculated. 

CRF is a relative recovery of the cell index slope after wash out. 
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ℎ
 

For proper comparison, all the slopes were measured on normalized on the cell index 

immediately after washout curves.  

There is an evident correlation between the NPs uptake rate and the toxicity of the particles 

inside the cells (Figure 6.1.8 c). The 3T3-L1 cells do not uptake much NPs, and, as a result their 

cell proliferation restarted after washout. PANC01, Hek293 and HSC cells uptake more 

nanoparticles and cell proliferation restarted with much lower rate than the one of 3T3-L1. 

HepG2 and HuH7 cancer cells uptake more NPs than other cell lines and as a matter of fact, their 

cell proliferation did not restart after washout. Since nanoparticles cause a selective toxic effect 

for cancer cells compare to control cell lines, they can be useful for cancer therapeutics.  
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Figure 6.1.8: a – cell index evolution for different cell lines after washing out the 1.5 
mg/mL of nanoparticles. Cell indexes were normalized at the time of washout. b - Average 
amount of the NPs uptaken by the cells, measured by the luminescence per cell for 
different cell types exposed to NPs for 4 h at 0.25 mg/mL. Each column is a result of 
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averaging at least 20 cells. Data are shown with ± SEM. c- Correlation between the 
luminosity per cell (relative uptake) and slope of cell index curve after washing out. 

6.2 CFO nanoparticles for ultrasound-assistant therapy. 
CFO NPs can be used as very efficient theranostic agents both for one- and two-photon 

excited luminescence cell imaging and as sonosensitizers for ultrasound-assisted therapy. 

Since the NPs can be used as both fluorescent probes and sonosensitizers, they are very 

attractive agents for imaging and therapy of cancer. As it has been shown previously, 

localization of the NPs inside the cells depends on their surface charges [122]. Indeed, if the 

main therapeutic factor is related to the destruction of chromosomes, the NPs accumulated inside 

the nuclei will ensure the strongest killing effect compared to those accumulated into the 

cytoplasm. Fluorescence of the NPs allows non-destructive estimation of their localization 

before the ultrasound treatment. 

3T3-L1 (fibroblasts) and HuH7 (hepatocarcinoma) cells were grown in culture medium. 

The cells were trypsinized and 2500 cells were added to each well of a xCELLigence 96-well 

plate for cell proliferation measurements. Then the cells were incubated for 48 h. CFO NPs with 

concentration of 0.25 mg/mL were added to the cell cultures which were additionally incubated 

for 24 h. Before acquisition of fluorescent image of the cells, the NPs were washed out from the 

extracellular environment with phosphate-buffered saline.  

The preferential accumulation of the CFO NPs in the cell nuclei was confirmed once again. 
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(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 6.2.1: 3T3-L1 cells labeled with CFO NPs (1 mg/mL) before (a) and after (b) ultrasound 

treatment. Non-labeled 3T3-L1 cells before (c) and after (d) ultrasound treatment are shown for 

comparison. 

As it is illustrated in Figure 6.2.1, ultrasound treatment (40 kHz, power density: 0.4 

W/cm3, time: 10 min) of the cell cultures labeled with the luminescent CFO NPs leads to their 

complete destruction (Figures 6.2.1 a and 6.2.1 b) while the non-labeled cells remain 

undamaged (Figures 6.2.1 c and 6.2.1 d). Thus, the CFO NPs are shown to be able to play a 

double role of one- or multi-photon excited fluorescent labels as well as of ultrasonic sensitizers 

selectively destroying only the labeled cells.  

In order to check the effects of NP toxicity as well as of ultrasound treatment on the 

labeled and non-labeled cells, time evolution of the cell numbers was studied by means of 

xCelligence system. Figure 6.2.2 shows time dependence of cell index. Arrows indicate the 
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moments when the CFO NPs are added to cells and ultrasound treatment is switched on for 10 

minutes. Red lines correspond to the cells labeled with the fluorescent CFO NPs and blue ones – 

to control cell lines (without NPs). After ultrasound treatment, number of the labeled 3T3-L1 

cells goes down rapidly because of their significant destruction described above while 

proliferation velocity of a control (non-labeled) cell line is completely restored. The similar 

effects are observed in the case of cancer cells (Figure 6.2.2 b). Thus, one can conclude that the 

NPs and ultrasound treatment alone have no toxic or damage effect on the cells, while their 

combined action provokes significant cell injuring which can be efficiently used for theranostic 

purposes. 
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(b) 
Figure 6.2.2: in-time evolution of the cell number: (a) 3T3-L1 cell line; (b) HuH7 cancer cell 

line. Arrows show when the CFO NPs are added and ultrasound treatment is switched on. 
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6.3 Discussion of chapter 6. 
 

We have investigated the toxicity of CFO nanoparticles on different cell lines. We think that the 

measure of the direct cytotoxicity of NPs on cells is a too far simplistic estimation of NPs 

toxicity. Indeed, the in vivo utilization of NPs means that the extracellular NPs concentration 

will be increased for a limited period of time. Cellular uptake of NPs will take place only when 

the extracellular concentration of NPs is high enough. One can estimate that 24 hours is a 

reasonable in vivo washout time, suggesting that after one day most of the NPs have disappeared 

from the extracellular compartment. Under these conditions, most of the toxic effect of the NPs 

will result from the intracellular accumulation of NPs. In consequence, it is of major importance 

to test the NPs toxicity after their washout from the culture medium because it represents their 

true cytotoxicity. Also, that toxicity is directly dependent on the cellular uptake of NPs.  

In general, the higher is the proliferation rate, the more toxic are the particles. But in case of 

short exposure with the nanoparticles and washing them out, which is more similar to the 

physiological conditions, we can see the other behavior; the cell recovery rate after exposure 

correlates with the number of the uptaken particles, but not with the initial cell proliferation rate. 

(Table 6.3.1).  

CFO nanoparticles are less toxic for control cells (3T3-L1) than for the cancer cell lines ((HSC, 

HuH7, Panc01, HepG2). That effect mainly results from a lower uptake capacity by control cell 

lines compared with the one of cancer cell lines. Although the reason why CFO NPs uptake is 

increased in cancer cell lines, is yet unknown, these results support the utilization CFO 

nanoparticles for anti-cancer therapy. 

 

Parameter Correlated with 

Doubling time CDF (toxicity during exposure) 

Uptake  Recovery of proliferation after washout 

Table 6.3.1: toxicity during exposure and after NPs washout is 

correlated with different cellular parameters 

Interesting results concern to the different action of CFO NPs on cancer and non-cancer cell 

lines. It was found that CFO nanoparticles are more toxic for cancer cell lines, than for non-

cancer ones.  
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That result seems to be promising, but the different toxicity could be caused by reasons 

independent of cancer, for example by the origin of the cell lines. Indeed, hepatocytes may be 

more susceptible for the NPs, than fibroblasts. Moreover, under physiological conditions, it will 

be very difficult to not reach the high NPs concentrations.  

The second main achievement is that in vitro cell tests were carried out to investigate the 

feasibility of ultrasound-assisted (40 kHz) treatment for cancer therapy based on the use of the 

CFO NPs. In particular, the ultrasound treatment of cell lines labeled with fluorescent NPs leads 

to cell death, contrary to the non-labeled cells. The cell lines labeled with an 0.25 mg/mL of the 

CFO NPs can even provoke a complete destruction of the cells under the ultrasound treatment. 

However, an in vivo systematic administration of NPs on specific sites still remains an important 

challenge for this therapeutic approach.   

The experiments show the high in vitro efficiency of ultrasound-treatment combined with the 

CFO nanoparticles. The efficiency of ultrasound destruction greatly increases with the presence 

of NPs than without of them. Even the relatively small amount of CFO NPs is enough to 

sensitize the ultrasound. So, method of ultrasound-assistant cancer treatment can provide the 

higher selectivity than the intrinsic selectivity of the nanoparticles for cancer cells. Very small 

labeling is possible to reach inside the organism without of any toxic effect. The ultrasound can 

be applied directly to the tumor. The localization of the strong ultrasound wave inside the body is 

widely used for the ultrasonic lithotripsy method or the High-intensity focused ultrasound 

technique, ordinary used for cancer treatment. 

Therefore, the non-invasive localization of ultrasound is an already solved task. The ultrasound 

power densities usually reached inside the body during medical cancer treatment are up to 

500W/cm2 [125] which is more than 1000 times higher than the power density used in our 

experiments. That shows the great potential for the ultrasound-assisted treatment and using CFO 

NPs for cancer therapy.  
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7. Conclusion. 
Aim of this research was to compare the possibilities of bioapplications for different types of 

group IV nanoparticles and to understand which properties can define the specific applications of 

those particles.  

All of the tested nanoparticles confirm their advantages as agents for bioapplications. They all 

have low cytotoxicity rate, the difference in size can be used for the specification of the 

applications. The group IV nanoparticles have flexible surface chemistry which can be easily 

manipulated. The nanoparticles can effectively interact with the light. They have high absorption 

rate into the UV range and several kinds of them have strong photoluminescence ability. Some 

of the nanoparticles are able to produce non-linear response on excitation both in terms of 2-

photon excitation or second harmonic generation. Particularly, the multifunctionality of group IV 

nanoparticles can be shown by the comparison of different pairs of nanoparticles. 

1. The comparison of porous silicon and 20 nm silicon NPs shows that the small particles 

have better penetration ability to the cells and due to high PL efficiency, they can be used 

as a luminescent labels. The bigger particles have lower uptake but due to their size some 

non-linear properties can be observed. So the 20 nm silicon particles can be used for SH 

microscopy contrast agents.  

2. Comparison of SiC and Si particles show the different efficiency of group IV 

nanoparticles for imaging in different modalities. SiC nanoparticles were found 

extremely efficient as non-linear agents but they have weak photoluminescence. The Si 

nanoparticles are less efficient second harmonic generators. That difference is defined by 

the different structure of silicon and silicon carbide. 3c-SiC nanoparticles and silicon 

nanoparticles have similar crystal lattices, but half of the Si atoms in case of the 3c-SiC is 

changed by carbon ones, which causes non centrosymmetrisity and, as a result –increase 

of nonlinear characteristics. 

3. The porous silicon particles and nanodiamonds have the same crystalline structure and 

similar crystallite sizes. Due to different agglomeration ratio, the porous silicon particles 

are less permeable through the cell membrane than nanodiamonds. The significant 

difference is also the PL spectral range, which is close to infrared for porous silicon and 

green in case of nanodiamonds. 

4. The comparison of crystalline and non-crystalline forms of nanocarbons- nanodiamonds 

and carbon fluorooxide particles show small difference in the PL spectral characteristics. 

Both nanodiamonds and CFO nanoparticles can absorb the IR light using 2photon 

absorption mechanism. The strict difference was found into localization of the 
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nanodiamonds and CFO particles inside the cells. Nanodiamonds label the cell 

cytoplasm, while the CFO nanoparticles are predominantly accumulated inside the nuclei 

of cells. The localization of the CFO nanoparticles inside the nuclei of cell shows the 

potential of their utilization for specific bioapplications, such as cancer therapy.  

So, the CFO nanoparticles were chosen as an agent for possible cancer therapy. It was found that 

the nanoparticles itself have the selectivity for cancer cells.  

Other way for cancer treatment uses the localization of CFO NPs inside the cells. The CFO NPs 

can be used as a sonosensitizers for the ultrasound. Despite the low concentration of 

nanoparticles (4 times less than toxic one) inside the cells, they can be activated using weak 

ultrasound treatment. The ultrasound power with 1000 times less intensity than the US used for 

medical applications can cause the destruction of the cells with the nanoparticles inside. Since 

there is no problem to localize the ultrasound inside the body with very good precision, that 

method can be very effective for cancer treatment. The predominant localization of CFO in 

cancer cells can increase selectivity of that cancer treatment method. 

Nevertheless there are some challenges concerning the current topic that have to be overcome. 

Complicated molecular structure of CFO nanoparticles leads to the problem of standardization. 

That is difficult to estimate its exact composition. That reason can also lead to low 

reproducibility in the CFO composition.  The method of the CFO production can be improved. 

The ultrasound action was checked on the NPs inside the cell nuclei and absence of NPs in 

medium. It is possible to determinate if the particles outside the cells will have the same 

destructive effect under ultrasound irradiation or not. 

The mechanism of NPs migration to the nuclei remains unclear and the penetration of the 

nanoparticles into the nuclei can help to understand the mechanisms of nuclear transport. 
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8. Supplementary data 
 

The toxicity surfaces plotted in the coordinates of Time-concentration – cell index for different 

cell lines and CFO nanoparticles is shown at figure 8.1. Arrows show the time of the NPs 

addition and washing out. 

 
Figure 8.1 The toxicity surfaces of the CFO NPs (based on figures 6.1.1-6.1.6) 
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Figure 8.2 The toxicity surfaces of the different nanoparticles on 3t3-L1 cells (based on figure 
5.2.5) 
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Figure 8.3 The relative PL intensities of the porous silicon particles, ablated particles and CFO 
nanoparticles The excitation wavelength is 511 nm 

The XRD pattern of CFO nanoparticles is shown at Figure 8.4 
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Figure 8.4 XRD pattern of CFO nanoparticles 

Tables 8.1-8.6 show the significance of the difference in slopes based on histograms 6.3.1-6.3.6. 

The cells filled with red should not be considered as statistically significant with p>0.95.  
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