Monsieur Florian De Vuyst

Monsieur Olivier Coulaud

Monsieur Christophe Denoual

Monsieur Laurent

Keywords: Unit. 36, 37 API Application Programming Interface. 38, 42, 43, 45, 57 APIC Advanced Programmable Interrupt Controler. 37 AS Architectural State. 37, 38 BLAS Basic Linear Algebra Subprograms. 53 . 59 34 UPC Unified Parallel C. 43, 53 Retrive local distribution., void spawn setSubDomainCosts (spawn subDomain *u, const size t nCosts, const double *const costs, const Update local cost

Et oui, on est pas tout seul quand on passe une Thèse, alors un grand Merci à tous ceux qui m'ont accompagné pendant ces trois ans. Pour commencer, j'aimerai remercier l'ensemble des membres de mon jury :

•

Table Of Contents

Introduction

List of Algorithms

Résumé

La puissance de calcul des plus grands calculateurs ne fait qu'augmenter : de quelques centaines de coeurs de calculs dans les années 1990, on en est maintenant à plusieurs millions ! Leur infrastructure évolue aussi : elle n'est plus linéaire, mais complètement hiérarchique. Les applications de calcul intensif, largement utilisées par la communauté scientifique, doivent donc se munir d'outils permettant d'utiliser pleinement l'ensemble de ces ressources de manière efficace. La simulation numérique repose bien souvent sur d'importants calculs dont le coût, en terme de temps et d'accès mémoire, peut fortement varier au cours du temps : on parle de charge de calcul variable. Dans cette Thèse, on se propose d'étudier les outils actuels de répartition des données et des calculs, afin de voir les raisons qui font que de tels outils ne sont pas pleinement adaptés aux fortes variations de charge ainsi qu'à la hiérarchie toujours plus importante des nouveaux calculateurs. Nous proposerons alors un nouveau modèle d'ordonnancement et de partitionnement, basé sur des interactions physiques, particulièrement adapté aux applications basées sur des maillages réguliers et présentant de fortes variations de charge au cours du temps. Nous validerons alors ce modèle en le comparant à des outils de partitionnement de graphes reconnus et largement utilisés, et verrons les raisons qui le rendent plus performant pour des applications aussi bien parallèles que distribuées. Enfin, nous proposerons une interface nous permettant d'utiliser cette méthode d'ordonnancement dans des calculateurs toujours plus hiérarchiques. The High Performance Computing Context T he need for computing capabilities has become more and more important since the democ- ratization of numerical simulations in the 50's. At that time, they were mainly used for military concerns. Nowadays, they are widely used by the whole scientific community (physics, astrophysics, biology and so forth) since they help to produce and reproduce complex phenomena often inaccessible by experimentations (galaxy formation, epidemic propagation and so forth). The most well-known application is probably the meteorology science, where parts of the Earth are simulated by using several specifically positioned sensors that gather comprehensive information (temperature, pressure, humidity and so forth).

Introduction Contents

The exploitation of these data was no longer possible by using only human resources, thus complex and large computing resources are now involved. The first years after the apparition of numerical simulation concepts, one could feel the emergence of large super-computers: the Cdc-1604 in 1960 (a single Central Processing Unit (CPU) with 1,536 Kio of memory), the Cray-1 in 1976 (the first vector machine), and the Cray-Y-MP, an eight-processor machine. Besides the fact that these super-computers were mainly used in large research centers (Cea, Llnl and so forth) and principally for military interests, they became more and more popular, and the interest for such machines, and more generally for high performance computing was growing.

The technology evolving, super-computers became larger in size and in capacity: during the 90's the usage of several interconnected Personal Computers (PCs) has shown better performance (Intel R Paradigm in 1993, with 2,048 interconnected i860s CPU) for a limited cost and a better long-term maintainability. Such infrastructures mark the beginning of the distributed computing area: general purpose computing resources are interconnected through high-speed networks, and new computing paradigms (e.g. Multiple Instruction Multiple Data (MIMD)), software tools and interconnect technologies were designed. For years, CPU efficiency was mainly increased INTRODUCTION through the CPUs complexity and frequency: from 80MHz in 1976, we were in 2000's at nearly 3GHz (Intel R Pentium 4 Amd R Athlon). As a consequence of technology limitations (heating, manufacturing), the frequency race has been transformed into the multi (and later many) core race. With the apparition of several computing cores inside a single processor, computing nodes, and therefore, clusters of computers, became highly hierarchical: a single computing node might contain several computing units, gathered with a set of caches inside several processors, on different sockets.

Such computing resources have contributed to the emergence of new research area: as example, we can cite the strong evolution of the artificial intelligence science since 90's, with the apparition of the machine learning [START_REF] Langley | The changing science of machine learning[END_REF] and later, with the Deep Learning [4] science (2000). Limits of computing challenges are continuously pushed back: in may 1997, the Deep Blue program (Ibm) defeated the world chess champion Garry Kasparov with a set of 32 Ibm RS/6000 machines. Later, in march 2016, the AlphaGo program, developed by the DeepMind project 1 , beat the second-rank international Go player Lee Sedol by using heterogeneous distributed computing resources (280 Graphical Processing Units (GPUs), 1,920 CPUs).

The use of such resource distribution, heterogeneity, and evolution is hence a challenge itself: the parallel usage of computing resources require to distribute work among them, and therefore, to distributed data among them as well. Inappropriate work distribution will induce the inactivity of some computing units and a wrong data distribution will lead to numerous costly data transfers. These problems are known as work scheduling and data partitioning and are present in every parallel application.

Objectives & Contributions

This thesis was carried out in the Physics of Condensed Matter department at the Commisariat à l' Énergie Atomique et aux Énergies Alternatives (CEA), a French state-funded research center, where numerical simulations are widely used. With the emergence of many core devices, data partitioning and work scheduling are more than ever a critical challenge. Typical simulations rely on large meshes that must be distributed among several computing nodes. Strong computing load variations can occur on the mesh at runtime, either on parts of it or on the whole mesh. Therefore, for the resources utilization to be optimal, the mesh partitioning must be dynamically adjusted during runtime.

We will first analyse actual data partitioning and work scheduling tools and find the reasons that make them not fully adapted for mesh based applications in the case of many core platforms. We will notably see that such platforms are connected through a PCI-E bus, leading to bus contention when several distributed processes are executed on the platform. We will also see some limitations of the task based parallelism within the case of mesh usage in numerical simulations.

We will then present our main contribution: a scheduling library that can either be used as a data partitioning tool or as a task scheduling framework for such numerical applications in a shared memory environment (inside a single computing node). This scheduling library is based on physics interactions: we transform the scheduling problem into a Molecular Dynamics (MD) minimization problem. This model allows us to compute forces between computing units and to make them move inside the mesh we want to partition. A sub-mesh, that depends on the position of the computing unit inside the mesh, is then assigned to each computing unit.

Since we target mesh scheduling for both shared memory and distributed memory, we will introduce a peer-to-peer inspired distributed version of our scheduling method. While using the same MD concepts, this distributed version exposes an interesting way of computing forces between computing nodes (with only neighbors-to-neighbor communications), and also brings new challenges (information diffusion, distributed minimization).

Lastly, we will present the way we can use both libraries at the same time to perform a distributed level scheduling and a shared memory level scheduling. This last typical usage is widely used in distributed software since it drastically reduces the number of remote communications. The solution simply resides in an interface between the two versions of the library: it takes the sub-mesh as an input parameter, and assign it among computing units.

In order to validate this model, we will therefore compare it against well known sequential and distributed graph partitioning tools (Scotch [START_REF] Pellegrini | Scotch and libScotch 5.1 User's Guide[END_REF], Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF], Zoltan [START_REF] Devine | Design of dynamic load-balancing tools for parallel applications[END_REF]), by analysing both the quality of the partitions and the computing time needed to compute partitions. We will also evaluate its performance against various scheduling heuristics integrated in the StarPU [START_REF] Augonnet | StarPU: a unified platform for task scheduling on heterogeneous multicore architectures[END_REF] runtime.

Organisation

This thesis is organised as follows: chapters 1 and 2 present actual computing resources that we can find in largest computing centers, and the way the tools have been designed to both facilitate their usage and to increase performance of numerical applications. We will notably explore the task based parallelism and the graph partitioning problem. Chapter 3 presents a typical numerical method, the Finite Element Method (FEM), that is widely used in physics simulations. We will see in particular, the way such simulations strongly depend on the involved parallelism. This chapter also makes the link between numerical simulation problems and the scheduling problem exacerbated by complex computing resources. Contributions of this thesis are then developed in the following chapters. Chapter 4 presents the scheduling library that we have designed, by using concepts from MD simulations, its validation and performance in both shared and distributed memory environment. Chapter 5 presents the distributed version of this method, again with a model validation and performance analysis. Lastly, chapter 6 presents final works on the library: a multi-level interface that allows us to perform scheduling at both the distributed memory level and the shared memory level. Discussions and conclusions of the work achieved during this thesis are then presented in the last chapter. F rom the very first super-computer (Cdc-6600 in 1964), which was a single Central Processing Unit (CPU) with a few kilo-bytes of memory, to the latest most powerful one (Tianhe-2, more than 3 millions of CPUs, and 1,024 terabytes of memory), the architecture of the supercomputer has evolved a lot. Where computing resources were strongly centralized (a single supercomputer), they are now composed of a large set of classical computers. Computing resources (processors, cores, etc.) are now organized in hierarchical layers, and their use strongly depends on their characteristics. Due to the distributed structure of actual super-computers, the most critical one is probably the memory. Accessing memory has a cost that depends on the distance required to reach it. This notion of distance (expressed by a time lapse) depends on material capabilities (optimal throughput, direct/indirect memory accesses, etc.), on material usage (many simultaneous accesses can lead to a material saturation) and eventually, depends on the number of distinct material devices needed to pass by (number of network routers, of computer buses, etc.). We can distinguish three levels of parallelism: cluster-level, node-level and core-level parallelism. Each of these parallelism levels is described in the following sections.

Clusters

A cluster is an aggregation of several computing nodes. As for November, 2015, largest computing centers have clusters of 16,000 computing nodes 1 . To face this number, a specific network interconnect system must be involved to both reduce the network latency and to offer scalable remote network access. This requires both specific material solutions (with high throughput and a low latency), and software solutions to be able to manage efficiently remote accesses.

Overview

A cluster gather several general purpose computers (see figure 1.1). Nodes are interconnected together with a high capacity network, and the whole bay is itself interconnected to other bays. Every single node runs its own operating system and manages its resources. Thus, nodes are totally independent from each other. This also means that when working with multiple nodes, one must execute as many instances of a given program as computing nodes. But the more important point is that the total amount of available memory is distributed among the different computing nodes. Since we use several instances of a program, each of them must communicate with others, to progress together. This requires the use of specific data exchange and synchronization tools. With such tools specific issues and problematics arise:

• Scalability: when the number of computing nodes increases, the amount of communications increases as well, and thus, reduces the amount of effective computing time.

• Network Contention: with an increasing number of computing nodes, the use of network buses increases, and can saturate.

• Synchronisation slowness: Synchronisation is often used, and its cost depends on the number of computing nodes.

Consequently, the interconnect network system (both inside and between bays) must be efficient and carefully sized to the cluster dimensions (the number of nodes, bays).

Network Interconnection

Multiple technologies for high performance network communications exist. While personal-range local area networks (also known as ethernet networks) offer a rate of about 0.1-10Gbit/s, with a latency of about 0.5 millisecond, high performance local-area networks can achieve rates of about 300Gbit/s with a very low latency (less than 1 microsecond). One can cite the most used technology, the InfiniBand [6] network standard 2 , defined by the IBTA 3 comity (MellanoX, Ibm, Intel, Oracle, Microsoft, Cray, HP). Other available technologies include the Fibre Channel architecture (64Gbit/s), the RapidIO system (10Gbit/s per lane, 4 lanes per node) and the high-speed Ethernet (10-30Gbit/s).

The strength of the InfiniBand technology resides in its specific software stack (kernel level) and network stack (similar to the OSI network stack). See figures A.4 in appendix A.1 for details on these stacks. The involved transport layer (similar to the TCP/UDP layer in the OSI model), support the Remote Direct Memory Access (RDMA) technology. Traditional way to transmit data implies the usage of synchronization procedures (rendez-vous problem, see figure 1.2). Because of the synchronization step, such paradigm requires the application to explicitly interrupt their work to check for any pending receive or send request. With technology (see figure 1.3), memory transfers are achieved without notifying the remote host of any action (either for a READ or a WRITE action). This feature requires two important points: a mechanism to bypass the virtual address translation, and a mechanism to allow direct access to memory. This is precisely the role of the InfiniBand software stack A.4 (operating at a kernel level). The InfiniBand software stack provides kernel modules to manage HCA 4 (see software stack A.4 in appendix). A HCA is a programmable DMA entity that allows local and remote DMA accesses, by adding special protections. Detailed information can be found in the InfiniBand standard [6] and in an overview of the kernel modules implementation [START_REF] Woodruff | Introduction to the infiniband core software[END_REF].

Computing Nodes

In 1965, Gordon E. Moore observes that the number of transistors in a dense integrated circuit doubles approximately every two years [START_REF] Moore | Cramming More Components onto Integrated Circuits[END_REF] (Moore's law). At that time, the way to increase CPUs performance was to increase their frequency by decreasing the size of transistors that compose them. This was possible due to the evolution of the To further improve performance of computing units, new technologies have been introduced. The first one was the Instruction Pipeline: the execution of instructions is divided into stages, allowing the execution of multiple instructions simultaneously, and thus, to efficiently use internal logical units. In the 70's [START_REF] Espasa | Vector architectures: past, present and future[END_REF], the Single Instruction Multiple Data (SIMD) paradigm is introduced through the data vectorization concept: it was possible to execute one instruction over a set of data at the same time. Nevertheless, one problem that appears with these technologies was to being able to fill these vectors and to produce enough instructions to fill the instruction pipeline. Because of memory latencies and dependencies, logical units could be underused, leading to inefficiency. Therefore, the ability to execute instructions in a non-static order (out-of-order execution) and to execute multiple instruction streams at the same time have been introduced. By doing so, the out-of-order execution should reduces the memory latencies and dependencies (instructions are reordered so that memory dependencies/latencies are hidden by the execution of other instruction). The multi-threading should improve logical unit usage by providing more instructions to execute and therefore, when combined with an out-of-order execution, should also reduces instruction memory issues. However, not all applications were able to exploit those technologies, because of specific and complex code enhancement requirements: data vectorization requires to carefully allocate and use memory (which can involve algorithm modifications) and multi-threading was not so popular when it was first introduced [START_REF] Bulpin | In the third annual workshop on duplicating, deconstructing and debunking[END_REF] (in 2002 with Intel R Xeon and Pentium 4 processors). The other solution, and the one that disconcerts many end-users, is the multiplication of the number of processors and/or cores inside processors. Rather than increasing the core frequency, due to physical limitations, computer industry chose to multiply computing units and first parallel multicore processors were released (Ibm R Power4 in 2001, Intel R Core2Duo in 2007 and Amd R Opteron in 2005).

Today, the actual number of cores into a single socket is still increasing: figure 1.5 presents the evolution of the average number of cores integrated into processors over the time. These results are extracted from the Top500 [2] database. This database gathers system information and performance of several machines5 (LINPACK [START_REF] Dongarra | The linpack benchmark: An explanation[END_REF] benchmark). One can note an impressive increase of the number of cores per processor in 2014-2015. This period marks the apparition of accelerator units: special computing nodes, that are directly connected to a machine, with a significant number of cores (Many Integrated Cores (MIC) devices -like the Intel R Xeon Phi -, Graphical Processing Unit (GPU), FPGA). While this is suited for a performance gain, it involves a larger complexity to exploit, and specific tools have been designed for this purpose.

Multi-Processor

A multi-processor machine runs a unique Operating System even if it has multiple processors. Every processor shares the whole amount of memory with other processors: this kind of system is known as a shared memory system (they share the same address space). Two types of multiprocessor machines exist: the ones that use Unified Memory Access (UMA), and the ones using Non Unified Memory Access (NUMA). The difference resides in the way they access memory.

In a UMA (see figure 1.6), each processor is directly connected to a single and unique memory slot (Random Access Memory (RAM)). Such interconnect is often achieved through a crossbar, a kind of electrical matrix that connects every processor to every slot of the memory. This kind of technology, where every processor has a direct access to the memory, leads to very good access times. Unfortunately, such interconnection is not suitable for a large number of processors: besides the financial cost, connecting several thousands of processors is more than challenging. On the other side, in a NUMA machine, each processor is directly connected to its own memory slot (see figure 1.7 and indirectly to other memory slots by an interconnection bus. In this configuration, memory accesses to a block of data located in the connected memory slot are more efficient than memory accesses to a remote memory slot. This technology has been introduced in order to reduce the number of accesses to memory slots (each processor must primarily use its own memory node).

Memory

Memory Slot

Memory Slot

Memory Slot

Memory Slot Cache

Cache Cache Cache P #1 P #2 P #3 P #4

Figure 1.7 -A four-processor NUMA machine. Each processor is directly connected to its own memory slot. When a processor requires data located on an other memory slot, it has to submit a request to another processor memory subsystem.

In both cases, caches have been introduced. A cache is a small-but-effective memory. Different cache levels exist with different capacities (starting from 32Kio to few Mio) and different latencies (from 1 to 30 nano-second). The basic role of a cache is to store the last recently used block of memory in order to reduce data transfer from the memory node (more than 100 nano-second).

Multi-core

Since 2010's, processors now contain multiple cores (see figure 1.8). Therefore, in a NUMA machine, where every processor is connected to a specific memory slot, each processor forms a UMA system (see previous section). A processor is a complex system and contains all physical units needed to fetch, decode and execute instructions. When a core executes an instruction, it first has to fetch it from memory, decode it and fetch required data from memory. Because global memory accesses are way slower (see table 1.1) than the execution speed of instruction, a cache hierarchy has been introduced inside cores (see figure 1.9). Caches are very efficient and fast memories: they provide really low latency in comparison to the one of the global memory. These different and shared (L3) caches and is directly connected to a memory slot.

Level

Typical Size Latency (number of CPU clock cycles)

L 1 32+32Kio 6 3-5 L 2 256Kio -2Mio 8-12 L 3 2Mio -16Mio 30-90 RAM Several Gio > 150
Table 1.1 -Cache levels and their properties.

cache levels will store most recently used data. When a core is about to execute an instruction that requires a piece of memory (either for a READ or a WRITE operation), it first looks for the data into the L 1 data cache. If the piece of data is present in the cache, a Cache Hit occurs. Otherwise, a Cache Miss occurs. In case of a Cache Hit the piece of data is accessed without any data transfers. Otherwise, in case of a Cache Miss, the core looks for the piece of data into the higher cache level (until reaching the RAM slot) and fetch data into the L 1 data cache. Several smart data transfers between caches and RAM slots are involved to improve cache efficiency. As a simple example, when a piece of data must be fetched from memory, since it is costly, not only the requested data is transferred but the full cache line (64 bytes on an Intel processor) that contains the requested data. A core can also prefetch data before they are requested by using some prediction metrics (on regular memory access patterns -array -for example). Eventually, when a cache gets full, some memory pieces must be flushed out. To choose which memory pieces to evict, different data eviction strategies exist (also known as cache eviction policies). The Least Frequently Used (LFU), removes the less used cache lines. The major issue of this algorithm is that old cache lines tend to stay in the cache while incoming new cache lines are evicted quickly. Another policy, the Least Recently Used (LRU), removes oldest cache lines, and thus, gives priority to the data locality.

L 1 Instructions Cache Fetch/Decode Execute L 1 Data Cache L 2 Data Cache L 3 Data Cache Global Memory Slot Cache

Inside the Core

At the lowest level, we have the core, the computing unit responsible for executing instructions. A core is defined by an Instruction Set Architecture (ISA). Many different ISA exist depending on targeted computing area (Atmel Avr and Arm for embedded devices, x86, Risc and Mips for general-purpose computing). Probably, the most widespread architecture is the x86 architecture, designed by Intel in 1978. This ISA has evolved a lot since and a description of this evolution is beyond the scope of this thesis. Nevertheless, next sections describe some important properties that have been introduced.

A Bit of Efficiency...

Because instructions may depend on data, they can be stalled for a variable number of clock cycles, depending on the time needed to fetch data from caches and/or global memory. During this time lapse, integrated execution units (Arithmetic and Logic Unit (ALU), internal registers, etc.) are unused, thus a performance opportunity exists. In order to address these performance gaps, a multi-staged pipeline has been introduced. Before the Intel R i486 processor, the whole execution process (fetching the instruction, decoding it, fetching required data, executing instruction and then writing back the result) was achieved in one single step. With instruction pipeline, the execution process is divided into successive stages (see table 1 easy, with a pipelined execution, gaps can appear: if an instruction requires more than 1 cycle to go through the next stage, a gap appears and all following instructions are stalled. In the integration of an out-of-order instruction execution paradigm, gaps are reduced. In the out-oforder paradigm [START_REF] Smith | Implementation of precise interrupts in pipelined processors[END_REF][START_REF] Tomasulo | An efficient algorithm for exploiting multiple arithmetic units[END_REF], by opposition the in-order paradigm, instructions wait in a queue until all their input dependencies are available. Thus, ALU are used only when instructions, and their dependencies, are ready. SIMD allows 1-clock cycle operation on large vectors of different type (integer, double, float). Such SIMD operation requires to use specific data type that are defined by the register that is used.

A 0 = B 0 + C 0 A 1 = B 1 + C 1 A 2 = B 2 + C 2 A 3 = B 3 + C 3 A 0 B 0 C 0 A 1 B 1 C 1 A 2 B 2 C 2 A 3 B 3 C 3 = +
the number of elements that fits inside a single register depends on the type. Various operations can be applied to registers (depending on the type of registers) from classical arithmetic and trigonometric operations or bit manipulation, to logic-based and cryptography operations. These operations can be applied on the full register or on a subset by using a selective mask.

...and Multi-Threading

First research on the Simultaneous Multi-Threading (SMT) technology, also known as Multi-Threading or Hyper-Threading (HT) (by Intel), appeared at Ibm [START_REF] Smotherman | End of the ibm asc project[END_REF] in 1968 (Asc-360 supercomputer). However, the first general public processor with SMT capabilities was the Intel R Pentium 4 (Northwood and Prescott architectures). In order to enable multiple and simultaneous instruction streams, a physical core gathers two (2-Way SMT, but 4-Way and 8-Way SMT also exists) or more logical cores (see figure 1.11). Each of these logical cores consists in private set of registers (data registers, segment registers, etc.) and a private Advanced Programmable Interrupt Controler (APIC), responsible for handling hardware interrupts. All these elements constitute the Architectural State (AS). The rest of the cores (caches, ALU, etc.) is shared between the two logical cores. The purpose of duplicating the AS is to hide or overlap memory latency, by preventing an execution unit to be stalled: since multiple instruction streams can be fetched at the same time, if one instruction stream requires non-available data, another instruction stream can be executed by the ALU. By doing so, ALU usage is maximized and overall performance is in theory increased. But a number of studies has shown [START_REF] Leng | An empirical study of hyper-threading in high performance computing clusters[END_REF][START_REF] Bulpin | In the third annual workshop on duplicating, deconstructing and debunking[END_REF][START_REF] Saini | The impact of hyper-threading on processor resource utilization in production applications[END_REF] that SMT requires a more strict memory usage. Indeed, since for a physical single core, caches are shared among all logical cores, one has to take care of data usage and re-usage to prevent data eviction by caches (see previous section).

Externally-Connected Accelerators

At the beginning of 2000's, newest OpenGL and DirectX Application Programming Interface (API) offer to developers the ability to program vertex shaders, used to produce light and shadow effect in 3D modeling and animation, directly on the GPU, instead of computing them on the CPU before the GPU-transfer stage. Since computing vertex shaders on the GPU implies the usage of matrices and are performed by using parallel resources on the GPU, researchers had quickly sensed the opportunity to use GPUs to solve their matrix-based problems. Therefore, specific API (OpenCL7 , Nvidia Cuda, Amd R App 8) and evolved GPUs devices that both provide better graphical performance and parallel resources (GPU card without any graphical outputs) have appeared.

The GPUs architecture is different from the one of CPUs: they offer a lot of simpler cores, gathered into blocks of cores. The name of these elements varies: in the Nvidia terminology, cores are known as Streaming Processors (SPs), blocks of cores as warps. On Nvidia Maxwell architecture, a block of four warps is a Streaming Maxell Multiprocessor (SMM). All cores inside a warp share the same instruction stream, thus, cores execute the same instruction at the same logical time. A SMM (see figure 1.12) contains two L 1 data caches (one for a pair of warps) and a memory buffer shared by all warps of the SMM. However, GPU processing requires specific algorithms and data management, leading to implementation difficulties. Concurrent companies (Intel, Kalray) chose to use the GPU complexity argument to promote their own massively-parallel devices. This is how many-core devices have appeared: they offer a large number of classical (but simpler) CPUs embedded in an extension card (like GPUs). As example, the Intel R Xeon Phi9 (see figure 1.13) integrates 72 cores divided into 36 tiles. A tile gathers two cores, a shared cache, and two vectorization units. These integrated cores are similar to classical cores: reduced frequency, larger vectorization registers, and so forth. All these tiles are interconnected by a high-speed 2-dimension grid and have several access points to the different memory controller (classical RAM and MCD-Ram). Each core is 4-way multi-threaded and has a 64 Kio L 1 cache (32 + 32 Kio), a 512 Kio L 2 data cache and a 512-bit wide SIMD unit.

MCD-RAM, IO, ... MCD-RAM, IO, ...

Ddr-4

Ddr-4

Figure 1.13 -Intel many-core architecture example (Knight-Landing). Up to 36 tiles are interconnected by 2-dimension mesh. Cores are really similar to the one we can find in personal range computer (x86 architecture), but have a limited frequency.

Summary

Computing systems have evolved a lot and major changes are coming because of new constraints: power consumption, heating factor and of course, the still increasing computing power demand. At the time of writing, and since several decades, the tendency is the horizontal-scalability: instead of increasing the CPU frequency in order to do one thing faster, manufacturers multiply the number of CPUs to do more things in parallel. New parallel architectures have appeared (GPU, Intel R Xeon Phi, Kalray Mpaa) to provide more and more computing resources. While the average number of cores was about 8 to 10 per computing node, we now have extension cards with hundreds of cores.

But this material evolution requires software evolutions. However, software can not be rewritten at every major architecture evolution. Dedicated tools and libraries must be adopted to abstractly manage material resources. The way we access memory is critical, and with the increase of computing cores, it will become more and more penalizing. Next chapter focuses on tools and libraries that have been designed to handle current and upcoming parallel architectures in the context of the Finite Element Method (FEM)-based simulation software. W hen, at the same time, a set of computers (or computing units) work together to achieve a common task, we say that they work in parallel. This team-work is founded on parallel algorithms specially designed to express independent properties of such programs. The previous section has presented parallel computer architecture, and we have seen that they have evolved a lot: we are now using not only clusters of computers, but clusters of heterogeneous computing resources (GPUs and MIC devices and so forth). Hence, the complexity of using these computing resources must reside on specific tools and libraries instead of being handled directly by software itself.

Such tools aim distributing work among computing units, this is referred to as a work-load distribution. Therefore, we must consider the targeted machine characteristics when choosing a parallel tool. Large distributed computing grids, i.e, cluster-of-clusters (Grid'5000 [START_REF] Balouek | Adding virtualization capabilities to the Grid'5000 testbed[END_REF], Boinc [5], Open Science Grid [START_REF] Pordes | The open science grid[END_REF]) generally integrate heterogeneous computers (different CPU type, frequency, available memory and so forth) and clearly rely on wide-range networks (with all specificities that this implies, i.e., network bandwidth, latency, resilience and so forth). On the other hand, local -and usually private -computing clusters offer several homogeneous nodes (with a large number of cores and/or accelerators), interconnected with a high-speed network system (see chapter 1). In next sections, we provide a review of actual concurrency models, parallel libraries and how we can evaluate their respective efficiency in a given parallel environment (in either a distributed or in a shared memory environment).

Physical Distributed Memory Paradigms

Distributed memory systems require to work across the network. Thus, with specific interconnection materials vendor-specific tools and libraries came (InfiniBand [6], Myrinet [START_REF] Boden | Myrinet: A gigabit-per-second local area network[END_REF], Ra-pidIO [7]). Standardization projects have therefore been initiated to create generic communication APIs in order to build portable software. Parallel communication tools provide point-to-point as well as collective operations (all-to-one, one-to-all, all-to-all), while some other libraries extend programming languages (Partitioning the Global Address Space (PGAS) libraries) in order to hide communication directives and to let user focus on data and algorithms. These tools constitute a parallelism class: the Single Process Multiple Data (SPMD) paradigm. A single program that uses different sets of data.

Message-Based Methods

Within this approach, the user has to describe an explicit communication scheme between computing nodes, i.e., by using a set send/receive functions (see figure 2.1). Such operation can operate between two (point-to-point operation) or several nodes (collective operation). Typical parallel communication libraries offer both blocking and non-blocking message transfers. A blocking transfer is simply a call to a transfer function (send, receive and so forth) that will hang until the transfer is complete. Therefore, it requires that both communicating nodes try to communicate together at the same time. If it is not the case, nodes can indefinitely get stuck by the time the other node tries to communicate. With non-blocking transfer, one has to create a transfer request (send, receive and so forth). The transfer is then handled by specific hardware (a Direct Memory Access (DMA) unit) and the user can check for the transfer completion whenever he wants. This DMA unit is responsible for fetching data from/to global memory to/from network card buffers (see figure 2.2). The CPU emits a transfer request to the DMA unit, and lets the DMA manage the transfer. During this time lapse, the CPU continues its work. While blocking transfers are easier to use, non-blocking data transfers offer better performance opportunities. Probably, the most interesting one is the communication overlapping (see figure 1.2 in chapter 1): a process initiates a non-blocking transfer and can then continue its computations while the transfer proceeds.

Historically, the first widely-used parallel communication library, Parallel Virtual Machine (PVM), was released in 1989 [START_REF] Sunderam | Pvm (parallel virtual machine): A framework for parallel distributed computing[END_REF] at the Oak Ridge National Laboratory. PVM was designed to enable communications between heterogeneous computing nodes (different brand, different architectures), operating systems and networks. This was possible due to the virtual-machine of PVM: on every machine, a pvmd daemon was in charge of serializing exchanged data in a standard way (e.g. data endianness). Hence, in the case of heterogeneous computing nodes, multiple versions of the program has to be built for every different node. Later, in 1992, a concurrent interface is designed by a group of researchers and industry in order to standardize the use and capabilities of networking resources. The Message Passing Interface (MPI) [START_REF] Forum | Mpi: A message-passing interface standard[END_REF] was born and further major revisions were since added in 1992 [START_REF] Geist | Mpi-2: Extending the message-passing interface[END_REF] and more recently in 2012 [START_REF] Forum | A message-passing interface standard[END_REF]. Right at the same period, another standard, PARallel MACroS (PARMACS), was designed [START_REF] Calkin | Message passing interfaces portable programming with the parmacs message-passing library[END_REF] and supported by a German company (Pallas GmbH), but did not have success in the scientific field. In 1996, in a comparison of PVM features against MPI [START_REF] Geist | Pvm and mpi: A comparison of features[END_REF], Geist et al., put in evidence the superiority of the MPI API (point-to-point operations as well as collectives operations and a large set of reduction operations), the ability to define custom data types, a higher communication performance at the cost of no heterogeneous computing and fault tolerance support. Nowadays, actual versions of MPI libraries2 support heterogeneous computing nodes, but the fault tolerance feature is still an active research field [START_REF] Buntinas | Scalable distributed consensus to support mpi fault tolerance[END_REF].

PGAS Libraries

While Message-passing interfaces require the user to design explicit and specific data transfers, other tools like Unified Parallel C (UPC) [START_REF] Lab | Upc language specifications, version 1.3 upc required library[END_REF] or Fortran Co-Array [START_REF] Numrich | Co-array fortran for parallel programming[END_REF][START_REF] Eachempati | An open-source compiler and runtime implementation for coarray fortran[END_REF] try to partition the global address space among several instances of a program. This parallelism model was first introduced in 1997 by Robert W. Numrich [START_REF] Numrich | F --: a parallel fortran language[END_REF][START_REF] Numrich | F --: a parallel extension to cray fortran[END_REF] as an extension, named F --, of the then actual Cray Fortran implementation (Fortran 77 standard). In 1998 Numrich ports this extension to the Fortran 95 language and the CoArray feature is eventually integrated in the Fortran 2008 standard [START_REF] Reid | The new features of fortran[END_REF]. Since, many language extensions, or even full language specifications, have been designed : UPC [START_REF] Lab | Upc language specifications, version 1.3 upc required library[END_REF] for the C language, Titanium [START_REF] Hilfinger | Titanium language reference manual[END_REF] for the Java language, X-10 [START_REF] Saraswat | X10 language specification[END_REF] and Chapel [START_REF] Chamberlain | Parallel programmability and the chapel language[END_REF] as full language specification. This concept emulates a shared memory data representation in a distributed memory environment: each process has a single view on shared arrays. Internally, shared arrays are divided into subsets, each replicate of the program containing a subset (see figure 2.3). As in the SPMD model, programs access to array subsets with thE unique key when accessing data (see the par- As seen in chapter 1, distributed computing nodes are now the standard when designing computing centers. They allow both better maintainability (if a node goes down, it can be easily replaced) and limit costs since, in the end, a cluster is simply a set of standard, but high-end, computer. Nevertheless, since the network is a limited resource (i.e., network contention), the trend is to favour shared memory computations. For this specific memory environment, dedicated tools and library have also been designed and are described in the next section.

Shared Memory Tools

As with the distributed memory environment, the architecture complexity requires developers to use specific tools in order to exploit all computing resources. With the grow of the number of cores (and SMT cores) on chips, Operating Systems (OSs) have evolved to support these technologies: the initial Simultaneous Multi-Processor (SMP) support was added in the Linux kernel 2.0 (1996) and a Linux SMT-aware kernel is released in 2005 [START_REF] Siddha | Chip multi processing aware linux kernel scheduler[END_REF]. Multiple programming tools and language extensions have hence been designed to allow programmers to express multiple instruction streams (threads) inside a single program.

Libraries and Extension of Languages

Probably, the most low-level library that allows the expression of multiple instruction streams is the Posix Thread (pThread) API (standardized in 1995 [START_REF]Information Technology -Portable Operating System Interface (POSIX) -System Application Program Interface (API) Amendment 2: Threads Extension (C Language)[END_REF]). This standard offers user threads4 management (creation, destruction, join operation and so forth) and synchronization (barrier, mutex, semaphores). The first implementation was the LinuxThreads [60] library, which was based on kernel-threads (one thread was implemented as one process). Further work was done (especially on thread creation) and many other libraries were designed. In 2003, (IBM) releases the Next Generation Posix Threads (NGPT) library, with support of user threads (lighter than processes). After a short period of time, mid-2003, the Native Posix Thread Library (NTPL) was released by Red Hat. This library is still used in the Linux kernel. Other more specific libraries, like Marcel [START_REF] Namyst | Une bibliothèque de processus légers[END_REF] which provides NUMA-aware thread scheduling, have been designed to better handle newest architectures in the context of High Performance Computing (HPC). Nevertheless, the creation and management of a pool of threads, as well as using complex synchronization systems remain a complex task that is possibly to complicated for the usual scientific community.

Therefore, on top of such Linux kernel improvements, language extensions have been designed to simplify multi-thread parallelism. One can cite the OpenMP [START_REF]Openmp application program interface 3.0. Tech. rep[END_REF], that extends the traditional C language with pragma directives (see listing 2.2). These directives hide the thread creation and destruction, their synchronization, the loop parallelization and so forth. It is somehow possible to explicitly manage these aspects through an API. OpenMP is a standard, and thus relies on various implementations. Because of the pre-processing code requirement (pragma directives), these implementations are designed into compilers (GOMP for the GCC compiler) and all the parallelism deduction (work distribution) is achieved during the application runtime.

Task-based Runtimes

Sometimes parallelism does not come from array decomposition but from a set of functions to call. In this case, we no longer focus on data, but on the computing flow. A function is associated to a set of required data, and the whole constitutes a task. The task-based parallelism appeared short after the ability for OS to execute multi-threaded programs (in 1992, with the LinuxThreads implementation [START_REF] Leroy | The linuxthreads library. The glibc GNU C library[END_REF]): a task (a function) was executed by a thread independent to the one that executes the program. The task object definition has then be improved and is now well defined: it is allowed to have dependencies (see figure 2.4), i.e, it may need the result of one or multiple other tasks. These dependencies will define task priorities, and thus, an execution order. Such execution dependencies can be assimilated to a Directed Acyclic Graph (DAG) and are scheduled by a parallel runtime. These runtimes are responsible for executing a task when it is appropriate (availability of resources, task dependencies, internal scheduling policies and so forth). § ¤ The Cilk [88] runtime extends the C language with some keywords (cilk, inlet, spawn, sync, abort, see figure 2.4), making Cilk programs requiring a specific Cilk compiler. In the same way, the OpenMP runtime extends the C language by adding specific pragma directives. With these tools, tasks are scheduled by taking into account their readiness status, i.e, they are executed when all their parent tasks have finished their execution. Therefore, to get advantage of computing resources, a trade-off between task size (amount of computations, amount of data) and the amount of available computing cores is necessary: we call this the task granularity. Too few tasks lead to a starvation of computing cores (they remain idle), while too high number of tasks increases the scheduling overhead, and therefore, reduces the effective computation time.

1 c i l k i n t f i b (const i n t n) { 3 i f (n < 2) return n ; 5 e l s e { 7 i n t x , y ; x = spawn f i b (n -1) ; 9 y = spawn f i b (n -2) ; s y n c ; 11 return x + y ; } 13 } ¦ ¥ f ib(3) f ib(2) f ib(1) f ib(1) f ib(0)
Moreover, since tasks contain both function to call and a set of data, scheduling a task is not an easy thing regarding the complexity of the actual machines (memory hierarchy, interconnection and so forth). As an example, in a NUMA machine, data transfer between NUMA nodes are costly and certainly limit performance (see table 1.1 chapter 1). In the same way, tasks can share data, or can require data of other tasks, therefore, executing tasks on different NUMA nodes requires smart tasks placement to limit the number of data transfers.

More evolved and plainly customizable runtimes exist (Xkaapi [START_REF] Gautier | Xkaapi: A runtime system for dataflow task programming on heterogeneous architectures[END_REF], Open Community Runtime [START_REF] Mattson | Ocr: The open community runtime interface version 1[END_REF]). One can cite the StarPU [START_REF] Augonnet | StarPU: a unified platform for task scheduling on heterogeneous multicore architectures[END_REF] runtime (Inria Bordeaux Sud-Ouest project), a C library that provides a way to schedule tasks on heterogeneous platforms (multi-CPU, multi-GPU machines) by taking into account tasks priority (DAG scheduling), data locality and of course that uses scheduling policies that try to reduce the overall execution time.

Summary

Many efforts have been made to offer a standard and portable way to distribute and exchange information between computing nodes and inside a node. In a distributed memory environment, message-based libraries offer real performance opportunities (when combined to specific hardware and specific software stack) while PGAS-based tools offer a portable way to parallelize software by focusing only on data. Nevertheless, such tools do not offer a way to distribute fairly, in terms of computing time, the amount of work between computing nodes. They only give a way to exchange data (explicitly or implicitly) between computing nodes.

In a shared memory environment, things are way different: explicit communication tools can be avoided thanks to OS multi-threading capabilities and specific tools. Multi-threading allows a program to execute multiple threads, all of them sharing the same address space. Nevertheless, with the increasing processor complexity, exploiting all cores in an efficient way is not an easy task, and language extensions or specific tools have been designed. Task-based parallelism, through the runtime usage, offers a way to efficiently use computing resources by taking into account heterogeneous resources and data locality inside specific scheduling strategies. N umerical Simulations have been -and are still -developed to reproduce real complex physics phenomena, by using mathematical and computer tools, and thus, for many reasons: experimental cost, inaccessible phenomena (galaxy formation, epidemic propagation and so forth). Perhaps, the most known usage of numerical simulation resides in the meteorology science, but many other scientific fields (from car-crash simulations to astrophysics) make an intensive use of this concept. One strength of numerical simulations is the ability to perform multiple and reproducible simulations with different initial configurations (i.e. pressure, velocities, ...). Roughly, an observation of the natural phenomena is made and a preliminary mathematical model is deduced. Further virtual experimentations, by using computer resources, can then be achieved by using this mathematical model and will be compared to experimental results, whenever possible, to improve -or invalidate -the current model (see figure 3 Within the framework of this thesis, we focus on material modeling applications. This specific field targets physical behaviors (mainly plasticity and phase transitions) of a modeled material, subject to various constraints (mainly deformations). Design of new materials, or their use in a specific context, requires an accurate knowledge of their performance and thus of their properties.

In order to characterize materials, complex partial differential equations are involved. In general, such equations are difficult or impossible to solve analytically, and a numerical approach is thus necessary. For such applications, and actually many others, the Finite Element method is used. This method spatially discretizes the material into interconnected cells that match the original material shape, and a partial approximated solution is computed in every cell. The following part describes this discretization method.

Finite Element Method

Exact solutions of Partial Differential Equations (PDE) are in general too complex to solve exactly and we usually use a numerical approximation. Several discrete element methods exist (Finite differences, Finite Elements, Finite Volumes, ...), and their usage strongly depends on the modeled material. In the following, we focus on the Finite Element Method, but the hereafter described steps can be applied to other methods.

Discretization

Within the FEM, the domain (the material surface or volume) is divided into cells: finite elements. To construct the global mesh, we use a set of nodes (interpolation points): their interconnection defines the mesh (see figure 3.2). Since the domain discretization induces a bias, the dimension of cells (related to the number of interpolation points) should tend to zero to improve the accuracy of the solution. Each finite element represents a part of the global PDE approximation and is characterized by a system of equations that depends on the nodes that define its shape. As said previously, a node is an interpolation point, thus, its properties (applied forces, induced displacement vector, ...) are known. The next part introduces a method to construct this system of equations.

Interpolation Functions

Let us denote a 0 , a 1 , a 2 the triangle nodes (see figure 3.3), and {u 1 }, {u 2 }, {u 3 } their respective displacement vector. We want to build a continuous shape function u, that passes through the displacement vectors ({u 1 }, {u 2 } and {u 3 }) of our three interpolation points a 0 , a 1 and a 2 of respective coordinates (x 0 , y 0), (x 1 , y 1) and (x 2 , y 2). One simple solution is to build a function by using system of linear polynomials. Of course, more complex functions can be built (quadratic or cubic functions), but this is beyond the scope of this introduction to the FEM. In two dimensions, the general form is:

u(x, y) = α + βx + γy (3.1)
We can then define the three functions that pass through our three nodes:

u i (x, y) = α + βx i + γy i , i = 0, 1, 2 (3.2)
α, β and γ terms are determined and substituted into equation 3.1. After collecting all terms, we have:

u(x, y) = N 0 u 0 + N 1 u 1 + N 2 u 2 (3.3)
Where N stands for interpolation functions defined as follows:

N 0 (x, y) = 1 2∆ (x 1 y 2 -x 2 y 1) + (y 1 -y 2)x + (x 2 -x 1)y N 1 (x, y) = 1 2∆ (x 2 y 0 -x 0 y 2) + (y 2 -y 0)x + (x 0 -x 2)y N 2 (x, y) = 1 2∆ (x 0 y 1 -x 1 y 0) + (y 0 -y 1)x + (x 1 -x 0)y
And where ∆, is the area of the triangle:

∆ = 1 2 (x 1 y 2 -x 2 y 1) + (x 2 y 0 -x 0 y 2) + (x 0 y 1 -x 1 y 0)

Element Matrices

The previous shape function u is then developed to determine the evolution of individual elements. This consists of a system of linear algebraic equations that can be expressed in a matrix form:

[K]{u} = {F } (3.4)
Where [K] is the rigidity matrix (element properties), {u} is a vector of unknown variables at the node and {F} is a vector of external applied forces at the node. Since [K] is a symmetric matrix, we can compute the local approximation {u} to the solution by:

{u} = [K] -1 {F } (3.5)
This is the most resource consuming step of the method since it requires to compute the inverse matrix

[K] -1 .
This previous shape function is used to define the relationship between displacement and forces for one element:

[K]{u} = {F } (3.6)
This relationship can be extended to a mesh of elements (see Belytschko et al [START_REF] Belytschko | Element-free galerkin methods[END_REF]) by gathering displacements and forces into single large vectors

{u} = {u 1x , u 1y , ..., u nx , u ny } {F } = {F 1x , F 1y , ..., F nx , F ny } (3.7)
for n elements, to have

[K]{u} = {F } (3.8)
with K the so called rigidity matrix, of dimension (2 n x 2 n) for a 2D problem. When inertia is taken into account, we have:

{M } d 2 dt 2 {u} + [K]{u} = {F } (3.9)
with M the mass matrix of the nodes. For the sake of simplicity, it is usual to lump the mass matrix into a diagonal matrix M*, so that the previous equation can be expressed into a much simpler one:

d 2 dt 2 {u} = {M * } -1 {F } -[K]{u} (3.10)
without calculating the inverse of M which is a very large matrix (eg, 15 e 6 x 15 e 6 in the example figure 3.8). This equation is the master equation of all explicit schemes in Finite Element methods

Assembly & Final Solution

Last steps consist in the assembly of individual element matrices and some other mathematical steps: curve fitting, boundary conditions, and so forth.

Since shape functions are linear and thus continuous inside an element (linear polynomials) and they are defined at each of the element nodes, the global solution u is also continuous. Thus, the final solution is of the same form as the one of eq. 3.4 and can be solved by using standard linear algebraic methods (Lu decomposition) by using efficient tools (see the Basic Linear Algebra Subprograms (BLAS) [START_REF] Lawson | Basic linear algebra subprograms for fortran usage[END_REF] standard).

Summary

As described in this section, the Finite Element Method approximates the solution by using a domain discretization. Obviously, the more finite element cells, the more accurate the problem solution will be. Thus, programmers typically use several billions of finite elements used for a given modeled material, and we now use computers to solve these large systems of equations. As we saw, each cell is strongly connected to its neighboring cells. Interpolation points are shared and thus, all associated information (applied forces, displacement vector and so forth) is also shared.

In terms of parallel computing, one cannot distribute cells without taking into account the shared information, which, in the end, defines dependencies. A good way to distribute cells, and therefore, the computing work, is to divide the set of finite element cells into compact sets, so that we maximize the shared information. This partitioning problem can be transformed into a graph partitioning problem so that one can use efficient existing tools. Nevertheless, even if actual computers are more and more powerful and efficient (in terms of number of instructions per Watt), scientists require an ever greater computing time and use not only a single workstation, but a set of computers. With a still increasing computing units number, efficient and scalable parallel partitioning methods must be involved, but more importantly, those methods must be designed to handle strong and diffused load cost variations as the ones that can occur with FEM based applications.

Load Balancing for the Finite Element Method

Unlike parallel libraries and languages extensions (MPI, UPC, pThreads), parallel runtimes offer a way to schedule the work in order to reduce the overall execution time of the application. The last chapter shows that task-based work-flow decomposition enables to use large machine resources, and even heterogeneous machines: in this model, programmers have to express actions on data to define tasks. Work scheduling is actually a critical point for high performance parallel applications, and is a Np-Complete problem (1975, Ullman [START_REF] Ullman | Np-complete scheduling problems[END_REF]). FEM based applications are not immune to this rule, and should rely either on graph partitioning tools or on parallel runtime to distribute the computing work. In this section, we describe how specific Graph partitioning tools and parallel runtimes (StarPU) make use of these criteria to build scheduling strategies. Eventually, we present the way FEM-based application can exploit parallelism of tasks and we analyse criteria that enables efficient task scheduling.

A Scheduling Criteria: The Task Cost

To deal with load balancing, we need to establish a cost for objects we are about to schedule. This cost represents several constraints: computing time, data transfer time, data transfer penalty, and so forth. Obviously, computing resources (computing unit, network interconnection, capabilities and occupancy) have an effect on this cost that must be taken into account during the scheduling step. With a regular application, i.e. all objects have a constant cost, a way to well balance the work flow is to create N subsets (N , the number of available computing units) from the whole set (S) of objects to compute:

cost(S) = 1 N O∈S cost(O) (3.11)
This is actual behavior of the Cilk and the OpenMP runtimes (see chapter 2). Within the Cilk runtime, tasks are executed by a thread when the task is ready, regardless of its computing cost. In OpenMP, loop-based and task parallelism are distributed among all available OpenMP threads.

For the specific case of loop-based parallelism, the OpenMP runtime is able to dynamically redistribute array subset to OpenMP threads that are inactive. Equation 3.11 shows at least two constraints:

• If all objects have the same computing cost, optimal distribution can only be obtained if the number of objects in S is a multiple of N .

• Different computing costs of objects might lead to non-optimal subsets: an imbalance appears.

In addition to these observations, an efficient task scheduling strategy should take into account the targeted computing node properties (i.e., bus throughput, bus occupation and so forth), the task associated data locality, the cost to move them, and thus integrate this cost in the previous equation. Some heuristic or approximation methods exist to schedule large amount of tasks, and especially large amount of tasks for which the cost may vary over time. The next section focuses on these methods by presenting graph partitioning methods as well heuristics involved in task scheduling policies.

Static & Dynamic Workflow Evolution

Many scientific applications generate a variable amount of work over time. By opposition to a stable load evolution, where the load is constant, a dynamic load evolution might appear randomly, or after an event, on different tasks. Therefore, accurate scheduling methods must be as reactive as possible to redistribute these tasks among computing resources. Because of the cost of scheduling, and the involved methods, handling the task scheduling with a variable computing cost is a real challenge since most of the numerical simulations aim to reproduce time-evolving physics phenomena.

Graph Partitioning

Graph partitioning tools like Scotch [71] (LaBRI1), Metis [START_REF] Karypis | Parallel multilevel k-way partitioning scheme for irregular graphs[END_REF] (Karypis Lab) or Zoltan [START_REF] Devine | Design of dynamic load-balancing tools for parallel applications[END_REF] (Sandia National Laboratory), are known to be efficient for partitioning large regular and non regular graphs [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] and offer a wide range of partitioning algorithms. Among them, we can cite the multilevel partitioning method [START_REF] Hendrickson | A multi-level algorithm for partitioning graphs[END_REF]. This method (see figure 3.4) successively approximates an input graph by a smaller graph (coarsening phase). The resulting graph is then partitioned, and the partition is extended back to parent graphs up to the original graph (Un-coarsening phase). As

G 0 G 1 G2 G3 G2 G 1 G 0
Coarsening Phase Un-coarsening Phase described by Hendrickson Et Al. [START_REF] Hendrickson | A multi-level algorithm for partitioning graphs[END_REF], two main algorithms are involved: the coarsening/uncoarsening algorithm and the partitioning algorithm. The first one (see algorithm 1) merges two matching edges into a vertex. Thus, the first step is to find all matching edges, leading to linear search (O(n), with n the number of edges in the graph). Eventually, the un-coarse step is made simple since we can memorize which original set of vertices (from the larger graph) a vertex of the coarse graph has been associated to.

Algorithm 1 Coarsening Algorithm [START_REF] Hendrickson | A multi-level algorithm for partitioning graphs[END_REF] for all matching edge (i, j) do Contract edge to form new vertex v Vertex weight (v)← weight (i) + weight (j) if i and j are both adjacent to a vertex k then Edge weight (v, k) ← weight (i, k) + weight (j, k) end if end for On the other side, we have a partitioning algorithm able to create as many subsets of the graph as requested. Many algorithms exist [START_REF] Fiduccia | A linear-time heuristic for improving network partitions[END_REF][START_REF] Gibbs | A comparison of several bandwidth and profile reduction algorithms[END_REF][START_REF] Laguna | A greedy randomized adaptive search procedure for the two-partition problem[END_REF] and are used as black boxes into the multilevel graph partitioning process. Eventually, a final graph refinement [START_REF] Karypis | Multilevel graph partitioning schemes[END_REF] step can be added after every un-coarsening step to improve partition quality (reducing edges that move, increasing partition quality and so forth). This partitioning-by-reducing-the-graph-size approach has the advantage of enabling large graphs to be partitioned (since the complexity is incrementally reduced) and is known to produce high quality partitions [START_REF] Hendrickson | A multi-level algorithm for partitioning graphs[END_REF][START_REF] Karypis | Multilevel graph partitioning schemes[END_REF]. Nevertheless, due to the initial matching edge search step that requires a lot of communications, such algorithms present scalability issues (the complexity of this step is in O(log(v) • e • log(e)), with v, the number of vertices and E, the number of edges).

Another way to partition a graph is to make use of the geometric properties of the graph. When graph nodes have Cartesian coordinates, specific and more efficient algorithms, like the Recursive Coordinate Bissection (RCB) [START_REF] Berger | A partitioning strategy for nonuniform problems on multiprocessors[END_REF] one, can be used. This algorithm recursively divides the graph into two subsets of equal weight, by using an orthogonal plane to one of the graph axes (see figure 3.5), until the requested number of parts is obtained. While this algorithm provides a faster partitioning step [START_REF] Simon | Partitioning of unstructured problems for parallel processing[END_REF], it might produce non-optimal partitions, due to the geometric partitioning, when several constraints are applied (multi-weighted edges and/or vertices).

X -axis Y -axis Figure 3.5 -Recursive Coordinate Bisection algorithm. A 2-dimension graph is
recursively divided into sets of equal load until it reaches the requested number of parts (4 in this case). First partitioning step divides the plane in two left and right sub planes while the second partitioning step, applied on both sub planes, divides them into two other sub planes.

Graph Refinement

Upon cost variations over time, one must compute a new task (or nodes in case of a graph) distribution across computing units. If not, strong load imbalances might appear, and the overall execution time is thus limited by the computing resource that is the most overloaded. When using graphs, specific algorithms must be involved to compute a graph refinement. Such algorithms use the actual node distribution to compute the newest one: i.e., they take into account the recent node distribution and try to adapt load changes into a new distribution that is as close as possible from the actual node distribution. Actually, not all graph partitioning tools support graph refinement, and, parallel algorithms involved into distributed versions of these tools might not support refinement either. As an example, the Scotch library supports refinement in its sequential version [START_REF] Pellegrini | Scotch and libScotch 5.1 User's Guide[END_REF], but not in the distributed [START_REF] Chevalier | PT-Scotch: A tool for efficient parallel graph ordering[END_REF] version. As another example, the sequential Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] library does not support refinement, but its distributed version [START_REF] Karypis | Parallel multilevel k-way partitioning scheme for irregular graphs, department of computer science[END_REF] does support graph refinement.

Two main methods to refine a graph exist: scratch-remap [START_REF] Oliker | Parallel load balancing for adaptive unstructured meshes[END_REF] and diffusion methods [START_REF] Kernighan | An efficient heuristic procedure for partitioning graphs[END_REF][START_REF] Schloegel | Wavefront diffusion and lmsr: Algorithms for dynamic repartitioning of adaptive meshes. Parallel and Distributed Systems[END_REF]. The first one computes a new graph partition and adapts the difference between the actual and newest graph partitions by minimizing vertex migration cost. The other method migrates vertex at the domain frontier to neighboring domains until an acceptable or null imbalance is found. Graph refinement is exactly like graph partitioning, an Np-Complete [START_REF] Ullman | Np-complete scheduling problems[END_REF] problem, and thus, these two methods are heuristics. Hence, they might not perform well in every configuration. In their publication [START_REF] Schloegel | Dynamic repartitioning of adaptively refined meshes[END_REF], Schloegel Et Al. explain that scratch-remap methods perform well upon a high local imbalance, but induce a lot of vertex migration when the imbalance is global. In the same way, diffusion methods work well with a global imbalance and are not efficient with a local imbalance since they need to propagate the refinement. Lastly, these algorithms, and especially scratch-remap methods, require iterative communications of vertex that are about to be moved between graph partitions. While these tools provide high quality partitions, they only use the actual computing cost of vertices (and/or edges). Therefore, a new partition is computed by using the information of the previous one, and might not correspond to the next optimal load distribution. Other tools, like parallel runtime, try to estimate the future cost of the task, so that they can schedule it where it will have a reduced execution time. Next section details one of such tools, the StarPU runtime.

Task Scheduling: Overview of the StarPU Runtime

Task-based parallelism can be used to handle load-variations when combined with scheduling strategies. Scheduling strategies assign tasks to computing units by taking into account several criteria: task dependencies, actual computing cost, data locality, migration cost (when using remote computing resources like GPUs) and so forth. As described in section2.2.2 of Chapter 2, many task-based parallel systems exist. In this thesis, we focus on the StarPU runtime since it has been designed to be easily extensible in order to work both on actual and upcoming computing architectures.

The StarPU runtime offers a way to use heterogeneous computing resources (x86 CPUs, Ibm R Cell, OpenCL and Cuda devices) with a task-based parallelism. We can split the StarPU architecture in four different layers: the user API layer, the scheduling layer, the driver layer and the worker layer (see figure 3.6). Within StarPU, a worker is the abstract representation of a computing unit (either a CPU, a GPUs or an OpenCL device). The API layer offers to users a way to express tasks. Inside StarPU, a task is a set of data (with specific access rules) associated to a codelet that contains all the computing function implementations (potentially covering multiple device types). When a task is submitted to the StarPU runtime, it is forwarded to the scheduling layer. This layer transmits the task to the actual scheduling policy: either a user-specified one or the default one (StarPU comes with a set of pre-defined scheduling policies).

Once at the scheduling layer, the scheduling policy has a specific API to access workers. This API allows to push (assign) a task to a worker, but also to retrieve information about a specific worker (type, memory node and so forth). When a task is pushed to a worker, the driver layer is involved. All associated data are moved to the worker if needed. When working on a CPUonly node, data might move from one NUMA node to another but not necessarily: it depends whether the scheduling policy is able to improve data locality or not. On a heterogeneous node, data might move from the host memory to another device memory (i.e. a GPU), and thus, data transfer penalty must be taken into account when pushing a task to a StarPU worker. On this particular point, StarPU comes with an interesting feature: its automatic performance modeling of computing unit capabilities. When StarPU is executed on a computing node that it does not know, it automatically starts some performance benchmarks in order to evaluate memory bus bandwidth, computing capabilities, and so forth. These performance information are then used for the task scheduling step. The StarPU starpu codelet C-structure (see code example of figure 3.1) proposes several fields to define computation function properties. Fields from line 3 to 9 define the different function implementations. For a given target device, many functions can be provided. This is useful when we have several implementations for different generations of the same device (i.e. Avx-compatible node, SSE-only node, Cuda compute capabilities and so forth). Next fields from line 11 to 13 define data accesses rules: read-only (STARPU R), write-only (STARPU W), read-write (STARPU RW) and so forth. Eventually, last fields permit user to specify performance models associated to a given codelet.

The other central structure is the starpu task that actually defines a task. The first field contains the associated codelet. Fields defined from line 5 to 7, represent the associated task data buffers. § ¤ Task data can be managed by StarPU through a Distributed Shared Memory (DSM) system. The DSM systems offer a unique view of data regardless of the locality of the task. Since address space is not the same whether the task is executed on a GPU or on one of the CPUs of the host machine, the DSM provides a single way to access data, and is responsible for managing data movements between memory devices. Last fields (from line 9 to 10) represent the task arguments that are forwarded to the tasks when it is executed, and the task priority (line 12). This priority field defines dependencies between tasks.

Scheduling Policies

The role of scheduling policy is to organize task executions so that their execution time on StarPU workers is minimized. Each StarPU worker pulls a task from its private task queue; therefore, the scheduling policy has to push tasks into each worker queue. All the intelligence of the scheduling policy resides into this particular step: pushing a task to the queue that minimizes the execution time of a particular task. The StarPU runtime integrates several pre-defined scheduling policies, among them:

Eager -Uses a central queue, shared by all StarPU workers. Each worker pulls tasks from this queue as soon as it finishes a task. Task priority is partially supported: when a non-zero priority task is submitted to StarPU, it is pushed to the queue front. Thus, this task will be the next one to be executed, and the order of priority does not apply.

Prio -Uses also central queue, shared by all StarPU workers. Like with Eager, each worker pulls tasks from this queue. The difference is that tasks are sorted by taking into account their priority.

Deque Model (DM) -With this policy, tasks are scheduled by taking into account their performance models (execution time). Tasks are pushed to the worker queue where their termination time is minimal. Priorities are not handled since task scheduling is achieved as soon as tasks are submitted.

Deque Model Data Aware (DMDA) -This policy is the same as the DM one, but also takes into account the possible data transfer time. This is useful when using a heterogeneous machine.

Many other scheduling policies are defined (DMDDAR, DMDAS, PHEFT, PEager and so forth). However, they are best used when using heterogeneous nodes, and thus are out of the scope of this thesis.

Task Scheduling for the Finite Element Method

The FEM involves a lot of small objects (Finite Elements, see section 3.1) that require a variable amount of computation.

The application code of this thesis, Cod2 ex, 2 is dedicated to the modeling of plasticity and phase transformation under transient loadings (i.e, explicit scheme). Based on a formalism called Element Free Galerkin, very comparable to the FEM, this code represents the material through elements and interpolation nodes, gathered into a set of Verlet boxes (introduced by Loup Verlet [START_REF] Verlet | Computer" experiments" on classical fluids. i. thermodynamical properties of lennardjones molecules[END_REF]) and we call this a set of cells, a domain. In the following, we use the terminology Finite Element instead of Element free Galerkin node since all the proposed methods can be used in the well known framework of the explicit FEM. Finite elements also contain several tensors (small matrices of dimension 3x3 or 6x6 in Cod 2 ex), that describe behavior of the finite element (e.g., the F tot tensor that describes material transformation or the F p tensor that describes the plastic deformation). Evaluation of a given tensor requires to interpolate over a set of other and neighboring tensors:

T 1 (x) = i f (T i (x)). (3.12)
With f , an interpolation function, and T 1 and T i two tensors. Hence, we see that on this domain, each Verlet box has a dependency to all its direct neighbors and to all its second-hand and its thirdhand neighbors (see figure 3.7). This software is parallelized by using MPI librairies for the domain and thus, data locality problems. Common and widely used solutions exist to get performance on this kind of problems. The general idea is to maximize data locality in order to increase cache usage. The Cache Blocking technique [START_REF] Lam | The cache performance and optimizations of blocked algorithms[END_REF] is a well known method where computations operate on a block of data instead of successive index of a row/column of an array. In 2009, Kaushik Datta et al. explored [START_REF] Datta | Optimization and performance modeling of stencil computations on modern microprocessors[END_REF] typical stencil cache optimizations for finite difference applications on different computer architectures (Intel R Itanium, AMD R Opteron, and Ibm R Power5). The conclusion is that cache blocking techniques are no longer so efficient because of memory evolutions (bigger caches and memory throughput) and other optimizations, like data prefetching, inter-iterations cache optimizations (data retention), must now be involved. On this particular last point, task-based parallelism can help to increase cache usage between simulation iterations: since tasks are associated to a set of data, a better cache usage can be achieved when tasks are scheduled near the same cache or memory node.

In case of Cod 2 ex, each Verlet box is treated by a task. For this specific usage, tasks are more like blocks of data on which we apply the same set of functions. Dependencies between Verlet boxes define links between tasks. This doesn't define execution dependencies (all tasks are independent), but this defines a communication pattern. The computing cost of Verlet boxes can strongly vary at different points of the material. An example of a large calculation on a material undergoing a phase transition is presented in figure 3.8, where small boxes on the left part of the figure represent the previously named Verlet boxes that contain material elements.

Different colors represent different lattice structures. During the simulation, the phases are moving to better minimize the energy. Thus, elements at the boundary between two phases experience a rapid evolution, leading to an important calculation cost. Conversely, elements into homogeneous zones are expected to be stable, and therefore, to have a minimal CPU cost. Interfaces between phases are thus where the computing time is focused. This actually defines our problem: a lot and intense computing variation (both local and difused) can appear between computing steps. Scheduling tasks in such a context must fulfill some rules: 1. Distribute tasks into compact sets: due to Verlet boxes data dependencies, scheduling tasks into compact sets improves data cache usage and reuse and also reduces inter-task communications.

2. Handling dynamic and progressive load variation: two successive task distributions must be close to each other. Moving a lot of data between computing units is harmful to cache and memory usage.

3. Efficient to compute: time spent into task scheduling must be minimal.

4. Scalable: actual trends aim at increasing the number of cores. Thus, the scheduling must be efficient when distributing tasks among a large number of cores.

On this particular first point, graph partitioning tools can be used to divide the whole domain into sub-graphs of equal computing cost while minimizing data transfer. However, while they provide really efficient and good quality algorithms, their parallel implementations lack scalability: internal algorithms (coarsening/un-coarsening phase, refinement phase) require to iterate through edges and vertices leading to an important number of communications. Geometric algorithm applied to graph can improve performance at the price of quality (regular shapes). Since Cod 2 ex and FEM-based applications can generate strong load variations, either local or diffused, on a really large number of nodes, we need to perform a load balancing step between nearly each computing iteration (point number (2)). Thus, parallel partitioning tool scalability is a serious issue and point number (3) and (4) might not be guaranteed.

On the other hand, parallel runtimes are able to schedule tasks in a way to minimize the overall computing time of applications. However, they have some limitations regarding Cod 2 ex, and more generally, with FEM-based applications. Parallel runtime like StarPU do not take task properties (coordinates, domain and communication patterns) into account when performing task scheduling (this observation applies to any other parallel runtime). Since task performance strongly depends on the place (CPU, memory node) where a task will be executed, but more importantly, depends on the ability for a task to communicate quickly with its neighboring tasks, performance models and predictions are broken.

We need a way to quickly schedule a large set of elements (tasks, cells and so forth), over an also large set of computing units. This model must be able to schedule elements into compact sets in order to preserve data locality, and must be easily and cheap to refine in order to quickly take into account load evolution over time.

Summary

In this chapter, we saw how graph partitioning tools and parallel runtime can help applications (like Cod 2 ex or any FEM-based application) to exploit available computing resources with explicit task creation or by using graph decomposition. Nevertheless, they are not well suited for the typical case of using FEM-based applications (like Cod 2 ex) in the case of many-core devices: the number of cores per card is to high regarding the communication capabilities of the card (network, bus), and we cannot use only MPI based tools. Parallel runtimes do not take into account the implicit communication pattern of such applications: finite elements need to exchange data with their neighboring cells, thus scheduling cells into compact sets is a critical point. Instead, they schedule tasks by using efficient heuristics that try to minimize overall execution time. Graph partitioning tools, while offering domain decomposition capabilities, suffer from scalability issues, and using such tools on many-core devices must be reconsidered since they are based on distributed libraries and involve a lot of communications.

The complexity of modern computer takes a step forward with respect to the scheduling complexity because of the hierarchical organisation and the still increasing number of cores per chip. Data locality and usage is more than ever a critical point. Numerical simulations need therefore to face a new challenge since they are based on time evolving computing load. New scheduling tools and library must therefore be designed to both handle the hierarchical view of computing resources and to face the many-core challenge. Next part of this thesis is devoted to the design of a new scheduling model, based on the interactions between physics particles, on its parallel implementation and a multi-level usage that is particularly suited for many-core devices. I n previous chapters we saw how computing resources could be hierarchical and complex and more importantly how we can use and fully exploit these resources. We have also seen that application constraints have a strong impact on the choice of parallel tools (i.e., the case of Cod 2 ex). This choice becomes more and more critical as machine complexity and parallelism capabilities increase: efficient tools like graph partitioning suffer from scalability issues when used over a large number of computing units. More generally, scheduling or partitioning heuristics involved in actual tools are becoming too demanding regarding the increasing number of cores and the increasing size of computing problems. Partitioning tools have been improved with the multilevel graph reduction (see chapter 3). By recursively reducing the graph to a lower graph, we obtain a small graph that can be partitioned with several graph partitioning heuristics. However, this method increases the amount of communication of parallel implementation of such tools: the graph reduction process requires to select and merge vertices, which requires to select vertices through distributed computing nodes, and thus, communications.

In this chapter we present an original scheduling model, based on force interactions, that transforms the scheduling problem into a physics minimization problem. This model has numerous advantages: it is efficient to compute, it reduces complexity regarding other heuristics involved in graph partitioning tools or in parallel runtime, automatic-refinement and strong data locality properties.

Contribution Overviews

We target regular domains: a set of nodes (our tasks to compute) with coordinates in the Euclidean space (x, y, z) either in two or three dimensions. We saw in chapter 3 that FEM-based applications can produce either random and diffused load variations or progressive load variations over time (see figure 4.1). We have designed Spawn, a task scheduling library that can also be used as a regular graph partitioning tool. This C/C++ library (a C interface with a fully C++ core) is a combination of two fundamental aspects: a compact shape and a method to refine these shapes. Using compact configurations is a strict requirement to efficiently handle communication patterns between cells in FEM-based applications. Partition refinement is also a major criterion: load variations imply numerous task re-scheduling. Because of the large and still increasing number of cells and computing units, it is preferable to avoid computing a new partition from zero that can induce numerous data transfers. Partition refinement is therefore a way to reduce data transfers, and thus, to improve data locality.

t = 0 t = 1 t = 2 Random Shock-Wave

Targeting the Optimal Decomposition Shape

Finding the optimal decomposition is Np-Complete [START_REF] Ullman | Np-complete scheduling problems[END_REF]. Geometric and regular decompositions have proven [3] their efficiency, but also bring constraints. With Spawn, we target a regular-butflexible shape that maximizes local surface compactness, has a stable number of neighboring domain, and maximizes the per-neighbor interface (leading to efficient communications).

Common Decomposition

In chapter 3, we saw that graph partitioning tools can be improved by using geometric properties (Euclidean coordinates). To this end, geometric partitioning tools use regular domain decomposition. Regular shapes induce several constraints like wrong or far-from-optimal decomposition when refinement is required: after a load variation, actual partitions must be improved to better distribute newest cell cost. This refinement is achieved by moving partition boundaries in one or multiple directions (see figure 4.2): this eventually leads to a lot of data movements since it can be impossible to produce new partitions from the actual ones that equitably distribute the load. In this case, a new domain partition is computed from zero. Moreover, such decomposition induces an unstable number of neighbors over successive scheduling: within a two-dimension domain, moving upper and lower boundaries modify the number of connected neighbors too. This issue is obviously exacerbated in higher dimensions. Upon refinement, partition might not be of equal load due to shape constraints: in this case a full partition is computed from zero.

t = 0 t = 1

Voronoï Decomposition

Within the Spawn library, we use a Voronoï [START_REF] Okabe | Spatial tessellations : concepts and applications of Voronoï diagrams[END_REF] tessellation to assign cells to the underlying computing units. A Voronoï tessellation is a geometric partitioning based on distances between points. Voronoï diagrams gather a set of points around a central point: the site of a Voronoï cell (see figure 4.3). In our case, sites of Voronoï cells are our computing units, and cells of the domain are our set of tasks (or node graph) to compute. Thus, distributing tasks to computing units is as easy as computing distances between set of points. Naturally, this can lead to an important complexity: computing distances between points have a linear complexity (n • O(m), with n, the number of sites, and m, the number of cells), and specific methods can dramatically reduce this complexity to O(log(n)). We chose to use Voronoï diagrams since they offer an improved per- neighbor communication ratio, compact sets and have geometric stability [START_REF] Reem | The geometric stability of voronoï diagrams with respect to small changes of the sites[END_REF]. They are used in many scientific applications (e.g., in physics [START_REF] Brostow | Construction of voronoï polyhedra[END_REF], geography [START_REF] Rhynsburger | Analytic delineation of thiessen polygons*[END_REF] and biology [START_REF] Blura | Biological shape and visual science[END_REF]). Figure 4.4 shows advantages of Voronoï diagrams regarding square-like shapes in terms of interconnections. With a square-like shape, a corner induces three neighboring connections: two induced from the square sides, and one from the peak of the angle. One can notice that this last neighboring connection is highly inefficient: it requires to create a communication request for a single element. In a two-dimension domain, square-like shapes imply four inefficient and four normal neighboring connections while Voronoï shapes, if sites are uniformly distributed, have only normal neighboring connections.

Workflow Scheduling with Potentials

The ability to refine such partitions is a critical step since it minimizes memory displacements.

With the Voronoï shapes, we can consider cell refinement by moving boundaries: in this case we can face the same issues as geometrical partitions have, i.e, difficulties or even impossibility to reach partitions of equal load.

The major contribution of this thesis is the integration of concepts coming from Molecular Dynamics (MD) simulations [START_REF] Frenkel | Understanding Molecular Simulation[END_REF] into work-flow scheduling. The aim of MD simulations is to compute the evolution of a set of physics particles (N-Body system) over time until, for example, they reach an optimal distribution that minimizes particle properties. This optimal distribution, also known as equilibrium position, can minimize several per-particle properties: heating, energy and so forth. MD simulations rely on an iterative model (see algorithm 3) where each iteration represents a fraction of the simulated time. One iteration gathers two steps: force computation and position integration. The first step computes forces between all pairs of particles (they thus Algorithm 3 Molecular Dynamic algorithm. Two main steps are involved: force computation between all pairs of particles, and motion integration. This iterative algorithm evolves over time (∆t).

t ← 0 while t < t max do

Compute Forces Integrate Positions t ← t + ∆t end while have effects on each other) by using a potential that models the way particles interact. The second step then determines newest positions of particles by integrating Newton's equation of motion with the previously computed forces. The system of particles is considered as stable when the system no longer changes (equilibrium of positions).

Spawn uses MD concepts by making an analogy between MD concepts and task scheduling concepts. We introduce a virtual representation of a computing unit, that we call a vCore, and we use it as the Voronoï site of each partition. Therefore, when computing task distribution, we simply compute distance between underlying tasks and vCores (see section 4.1.1.2). Task scheduling is, since we use MD concepts, the result of vCores displacements: we use them as particles and, by moving, they change their Voronoï surfaces (the set of attached tasks is modified), which in turn, changes their local computing load. Figure 4.5 resumes our scheduling concept and introduces Q, the vCores load. This load is local to each vCore and characterizes the computing cost of the attached Voronoï domain.

Q 0 Q 1 Q 2 Q 4 Q 3 Q 5 Q 6 F F F F F F

Physics Background

The aim of this section is to provide a physics background that might be useful to fully master the following sections since we introduce MD concepts into task scheduling and graph partitioning problems. Therefore, we first take the well-known Coulomb's law as a basis to present how particles interact with each other, and we then present the way we compute particle evolution over time.

In the following sections, we use the bold notation for vectors, i.e, F denote the mathematical vector F. Moreover, the F ij vector denotes the force on particle i due to the interaction with particle j.

Particle Interactions: the Coulomb's law

In 1784, Charles-Augustin Coulomb published [START_REF] Coulomb | Premier-[troisième] mémoire sur l'electricité et le magnétisme[END_REF] its electromagnetism research, focused on electrical particle interactions, by using its self-made torsion balance (known as the Coulomb's balance). Coulomb has then argued that the force between two points of charges, is directly proportional to the product of charges, and inversely proportional to the square of the distance between these two points . Hence, two parameters are involved when two distinct particles interact: their respective load, and the distance between them. In the following, we consider two particles i and j, with a respective electrical charge C i and C j , separated by a vector r ij = x ix j . For a given pair of particles i and j, the force between these two particles defined by the Coulomb's law is:

F ij = λ r ij |r ij | 2 . with λ = C i C j (4.1)
One can note that different charge signs lead to negative (and thus attractive) forces whereas charges with the same sign produce positive (repulsive) ones. Figure 4.6 presents these two different cases: the blue curve when particles have the same signs (repulsive forces) and the red curve when particles have opposite signs (attractive forces). Many other potentials exist and are used when particle interactions are more complex: Lennard-Jones [59] with neutral particles, Eam [START_REF] Timonova | Optimizing the meam potential for silicon[END_REF] or Meam [START_REF] Liu | Eam potential for magnesium from quantum mechanical forces[END_REF] for metallic materials. ticles i and j. When particles have the same electrical sign (positive/negative), they repulse each other (blue curve). When they have opposite signs, they attract each other (red curve). The force becomes infinite as the distance approaches to be null, and null when the distance increases.

Force Computation

Now that we have an equation that defines force interactions between two particles (see equation 4.1), we can compute forces between the whole set of particles. We can use the particle symmetry (third Newton's law) to compute applied forces on both i and j particles at the same time in order to remove unnecessary force computations:

F ij = -F ij (4.2)
We can furthermore avoid doing unnecessary force computation by adding a cutting-radius: two distinct particles interact only if their distance is less than a specific value, the radius (see figure 4.7). Indeed, since forces between two particles tend to be null as the distance between them increases (see figure 4.6), long-range interactions have no impact, and we can avoid computing them. Eventually, algorithm 4 summarizes the way we compute forces between all particles. for j ← i + 1; j < particles.size(); j ← j + 1 do 5:

d ij ← distance(particle i , particle j) 6: if d ij <= rcut then 7:
F ← computeF orce(particle[i], particle[j])

8:

particle i .addF orce(F) end for 12: end for

Evolution of a Set of Particles

In this section, we use previously computed forces in the particle motion computation. Particle evolutions are governed by mechanical equations (Newton equations of motion), and we need to integrate them over the time. The time is described by using a discrete time step: a fraction of the simulated time. For each time step, we compute the position of particles.

Newton Equations of Motion

The second law of Newton equations, for a given particle i, is defined by:

F i = m i • a i , (4.3)
where m i is the mass of the particle i, and a i , its acceleration. In our case, we face a N-Body system with zero-mass particles, and thus, several forces are applied on each particle:

F i = n j =i F ij = n j =i a ij (4.4)
We can then deduce the acceleration of the particle i (we recall that we have zero-mass particles):

a i = F i = n j =i F ij = n j =i a ij (4.5)
The successive positions (x) of a particle i can be calculated by integrating Newton's equations of motion. Here, we use Verlet integration algorithm [START_REF] Verlet | Computer "experiments" on classical fluids. i. thermodynamical properties of lennardjones molecules[END_REF]:

x i (t + ∆t) = 2x i (t) -x i (t -∆t) + a i (t) • ∆t 2 (4.6)
This equation defines the position of a particle (i), subject to an acceleration of a, for a given time step ∆t. While this equation is suited when the whole evolution of the system of particles is needed, in our specific case, it involves unnecessary calculations: we are only interested in the final position of particles. Such optimisation methods exist, like the gradient descent method, and are widely used in physical minimization problems. Next section presents how we can use it to accelerate motion calculations.

The Gradient Descent Method

In order to get the relaxed state only, we minimize the potential by using a gradient descent algorithm (also known as steepest descent algorithm). This optimisation algorithm ensures a convergence to a local minimum of a given function. In our case, we want to converge as fast as possible to the best vCore position on the task domain.

For a given time step t, applied forces on the vCore i give it a direction and an intensity of displacement (velocities). This force vector, F, is thus used as a linear function to minimize. We express velocities as a factor of applied forces:

v i = dx i dt = -αF ij (4.7)
with α, a positive scalar. We also lump α with time increment into a simple scalar k:

x i (t + ∆t) = x i (t) -k j F ij (4.8)
We rescale k for every step so that the distance x(t)x(t -∆t) is a fraction of the cell box dimension, which ensures convergence to stable or metastable states.

With this method, we make particles move directly where their properties (e.g., energy) will be minimized. The combination of our three optimization methods, force symmetry, cutting radius, and this gradient descent optimization, dramatically reduces the amount of required computations. This is in our case particularly interesting since, as described in the following section, we are going to compute forces between a large set of particles in order to schedule tasks.

Scheduling with Force Interactions

The purpose of this thesis is to design a scheduling method based on physics interactions by using an original analogy with Molecular Dynamic methods. The previous section has described the associated physical background required to fully appreciate the following sections. It is now clear that forces are the basis of any particle interaction. Those forces are defined by a potential: it describes the way two distinct particles interact with each other. With these concepts in mind, this section deals with the design of a specific potential, which aims at regulating the load. A necessary previous step is however required to define the abstract model that we use: because of the analogy with MD methods (see section 4.1.2), we need to clearly define model characteristics and application domains.

Abstract Model

The overview described in section 4.1 has briefly presented the way we use MD into task scheduling. In Spawn, we mainly use two concepts: the grid, either a task domain, a set of graph nodes, and, the set of vCore objects, used as computing unit abstraction.

MD terminology Analogy Description

Potential Potential Defines forces, and thus system behavior.

Particle vCore A computing unit.

Particle charge vCore load The load of a computing unit.

Table 4.1 -Analogy between molecular dynamic simulation and task scheduling.

The Grid

We define the elements to schedule between computing units as a grid of objects. Objects can be of different nature (atoms, finite element, computing task or graph node). The only two important properties of the grid are its dimensions (x, y, z, with x, y, z ∈ N) and its definition in the Euclidean space, allowing distance computations. While these two properties seem restrictive, they are very common in FEM-based applications (e.g. see the Cod 2 ex application in the previous chapter). Each cell of the grid has thus a specific coordinate (x, y, z, with x, y, z ∈ N) on the grid and a specific computing cost (see figure 4.8). Because of the geometric properties of the grid, neighboring cells of the grids can be seen as interconnected cells: a neighboring relation can be assimilated to a connection between two distinct tasks or graph nodes.

Xaxis Y -axis

Particles and Computing Units: the vCore

Table 4.1 summarizes the analogy between the MD simulations and the task scheduling problem made in this thesis. We have therefore designed a specific virtual representation of a computing unit: a vCore. When seen from the MD side, a vCore is a particle: it has coordinates (in the Euclidean space too, with x, y, z ∈ R), an electric load, a velocity vector and force vector. Because of its coordinates, a vCore can be positioned on the previously-defined grid. When seen as a computing unit, a vCore has a computing load. This computing load is in fact the electrical load of the particle and is used during force computation. We distribute tasks of the grid into vCore through a Voronoï tessellation. As explained in section 4.1.1.2, we only need to compute distances to assign tasks to vCores. Indeed, the Voronoï graph is implicitly given by the position of our vCores on the grid since we use each vCore as a Voronoï site. Thus, to distribute tasks among vCores, we iterate through every task (see algorithm 5), and we compute the minimal distance between tasks and all vCores. This step is the most time-consuming part of our scheduling method and an efficient f indClosest(...) method must be involved. Finally, with the cell distribution, we can set the vCore load: it is simply defined as the sum of the computing cost q of each task k inside the Voronoï Domain of the vCore i:

Q i = k∈V oronoi(i) q k . (4.9)
With this definition, a slight cell cost variation has a direct influence on the corresponding vCore load.

Iterative Model

The particle motion implies computing successive particles positions step-by-step: we face an iterative model. A common problem with iterative models is to decide when to stop iterations.

In our case, we obviously want to stop the convergence process when the global system, the set of vCores, have reached positions that satisfy the load distribution. We have two elements that preclude an automatic detection iteration stop: the Voronoï shape, that implies geometric constraints, and, the task granularity: we cannot divide tasks. To efficiently handle these two constraints, we have introduced two input parameters, P and I, that respectively characterize the requested precision and the maximum number of iterations used to reach this precision. The precision is a percentage that represents the maximum allowed imbalance.

Lastly, one can notice that the iterative system requires to set an initial position to each vCore. Obviously, these initial positions will have a non negligible impact on the first convergence step: a far from optimal initial position will require more iterations to reach the optimal cell distribution. Therefore, with Spawn, we want to distribute vCores as uniformly as possible on the cell domain. This requires to divide the surface (or volume) by the number of vCores. While this problem seems obvious, it is not, and depends on many parameters (domain dimensions, number of vCores, divisibility and so forth). Nevertheless, the initial distribution is not critical, and we can approximate it without any serious complication other than the number of iterations. To approximate positions, we consider that a Voronoï domain is a regular box (or surface) of dimension α. In a 2-dimension cell domains, we can deduce the α value by:

α = 2 size x * size y) N vCores (4.10)
Or, within a 3-dimension cell domain:

α = 3 size z * size x * size y) N vCores (4.11)
With this α value, one can easily compute the vCore position by putting each vCore in the middle of every bloc of α size.

Targeting the Optimal Decomposition

All the behavior of our scheduling method resides in the potential: it governs all the particle interactions, and therefore, the way they move. Since we use vCores as particles, their displacement has a direct influence on the underlying cell distribution (Voronoï tessellation). In order to design our potential, we have designed several tools and automatic test-cases simulations to both evaluate the behavior of our potential, but also to analyse the partitioning quality and the force interactions between vCores. More details are given in section 4.4.3.

Our potential should minimize the overall computing time, and for this purpose, our first potential was able to create repulsive-only forces (see eqation 4.12). This potential is based on the following assumption: a vCore repulse its surrounding vCores according to its local overload. By doing so, vCores should find an equilibrium since they repulse they neighboring vCores only when they are overloaded.

F ij = λ r ij |r ij | 3 , with λ = Q i • Q j . (4.12)
Unfortunately, such potential definition leads to continuous oscillations: vCores are always moving in several different directions because of the repulsive-only forces.

For our second potential, we took the Coulomb's force definition between two electrically charged particles (see equation 4.1). As previously described, this definition produces both repulsive and attractive forces whether the signs of particles are the same of not. We define the optimal vCore load m as the sum of the load of all vCores, which is by definition the cost of the whole cell grid, and we divide it by N , the number of vCores. Therefore, m is the average computing load of the whole computing domain:

m = 1 N N i=0 Q i (4.13)
This m value represents the load, at the instant t, targeted by all vCores. Here, the difference m -Q i represents the difference between the load of a particle i and the average (optimal) load m. For two interacting VCores i and j, we take a force proportional to the sum of two distances (m -Q i and m -Q j) instead of the product of charges C i C j in Coulomb's force definition (see equation 4.1).

F ij = λ r ij |r ij | 3 , with λ = 1 - Q i + Q j 2m . (4.14)
This force definition, referred to as the MediumLoad potential, produces three kinds of forces:

positive, negative and null forces. For two vCores i and j, when the Q i + Q j sum is smaller than the 2m term, the whole fraction Qi+Qj 2m is smaller than 1, and the whole λ is positive, leading to positive forces. Similarly, when the Q i + Q j sum is larger than the 2m term, the whole fraction is larger than 1, thus, the λ term is negative leading to negative forces. Lastly, when the Q i + Q j sum is equal to the 2m term, the λ is null, and forces are null.

With two particles, the Q i +Q j sum is smaller than the 2m term only when the two vCores are under-loaded, and is larger than the 2m term only when the two vCores are over-loaded. When an under-loaded vCore repulses neighboring vCores through repulsive forces, its own Voronoï domain grows by collecting cells. In the same way, when an over-loaded vCore attracts its neighbors through attractive forces, other vCores grab cells from it. With more than two particles, the global behavior (λ term) of a particle depends on the interaction of its neighboring particles. Figure 4.9 resumes this behavior with two and three particles.

Eventually, we have added a repulsive term to our force equation 4.14 to avoid dipole formations (see figure 4.10. A dipole formation is characterized by two too close particles. In our case, with the potential defined by equation 4.14, two vCores can be really close each other. This brings two major issues: vCores spinning and, when the distance moves towards zero, to infinite force (vCores explosion). We have then added a repulsive term, also known as a short repulsive term, ensures a minimal distance between two vCores:

F ij = λ r ij |r ij | 3 + r ij |r ij | 5 , with λ = 1 - Q i + Q j 2m . (4.15)

Implementation Details

This section presents some specific aspect of the library: algorithms and design choice made during this thesis.

Performance Improvements: Voronoï Tessellation

As explained in section 4.3.1.2, the most time-consuming part of our algorithm relies on the distance computations: we assign every task to the closest vCore (see algorithm 5). Beside the fact that we need to iterate over every cell (O(n), with n, the number of cells), we need to find the closest vCore among all vCores. Linear search is not acceptable since search time increases with the number of vCores. Tree-based data structures are known to be efficient at search (generally, in O(log(n)), with n, the number of elements).

In our case, we need a specific search method based on spatial search. We need to perform a large number of search requests (the number of cells), therefore, the required time to perform a single request must be minimal. Moreover, since, our vCores are moving after every force computation, we need a data structure that has a construction (or update) time that is also minimal. Spacial search has been widely studied in computer imaging (pattern recognition [START_REF] Dasarathy | Nearest neighbor (nn) pattern classification techniques[END_REF]) and is often designed as the KNN-search [START_REF] Kuan | Fast k nearest neighbour search for r-tree family[END_REF] problem (K-nearest-neighbors search). The Boost geometric library implements spacial search by using R*Trees [START_REF] Guttman | R-trees: a dynamic index structure for spatial searching[END_REF][START_REF] Cheung | Enhanced nearest neighbour search on the r-tree[END_REF], a self-balanced data structure, and, in its article [START_REF] Yianilos | Data structures and algorithms for nearest neighbor search in general metric spaces[END_REF], Peter Yianilos presents a self-balanced tree data structure that stores objects in relation to their distance to a given point, the vantage point. Figure 4.11 compares these two data structures: R*Tree (from the 1.60 Boost library) and the Vantage-Point (VP)-tree [START_REF] Yianilos | Data structures and algorithms for nearest neighbor search in general metric spaces[END_REF] (implemented in Spawn). We can note that, for our problem size, VP-trees offer an interesting building time (2 seconds faster than Boost R-Tree for a set of 65,536 nodes) for limited search time overhead (1-4 µs slower). For higher configuration however, the VP-tree data structure becomes slower than R-Tree. In the end, and because of our problem size, the Spawn library uses the VP-tree since its building time is more interesting and the search time penalty is not so penalizing (few µs per search query).

Fully Adjustable Potential

Computer architectures are subject to numerous evolutions over time (see chapter 1). Therefore, a specific heuristic which has a good performance at specific time on a given computing architecture, has no guaranty to be efficient on the newest computing architecture. We might, for example, want to consider external accelerators (GPUs, Intel R Xeon Phi) when scheduling tasks. Due to their connection bus (PCI-E), these devices have a strong latency in comparison to the one between the CPU and a memory node (see table 1.1 in chapter 1). They also offer massive-parallelism capabilities (hundred of computing units), but with either a reduced subset of instruction or a reduced frequency or limited capacities. This implies considering a computing unit as a set of computing specifications. In Spawn, all the scheduling intelligence resides in a potential, and the way we have designed this library simplify any further potential definition. In the Spawn library, a potential is a simple object that inherit from a specific abstract interface (see A.5 in annex). This allows us to deal with abstract objects. Spawn is not aware which potential is in use: it simply calls functions on the abstract object. This well-known design has been introduced in order to simplify further potential definition: the user is not required to look into the source code of the library. As one can see in listing 4.12, once the potential has been created, one just has to register it in a potentialsBox object (an implementation of the Singleton design pattern [START_REF] Jahnke | Rewriting poor design patterns by good design patterns[END_REF]). More details on how to define a new potential and the way the user uses it are given in the Spawn User Manual integrated in the source code. § ¤

// R e t r i e v e t h e p o t e n t i a l s box f o r r e g i s t r a t i o n

Helping Tools

Because the design of a potential is not an easy exercise, various tools have been developed in order to have a direct and comprehensive visual representation of the behavior of the currently developed potential. These tools, a simulation tool and a monitoring tool, have been developed on top of the library: they simply provide a visual representation of every Spawn internal object (tasks, vCores).

Simulation Tool

Simu is a small simulation tool that generates a 2-dimension grid of cells of a specific weight (the cell cost). This cost can be randomly generated, or by using a Perlin noise [START_REF] Perlin | Perlin noise web site[END_REF]. We can also generate specific load diffusion shapes (see figure 4.14): this is highly useful when evaluating the library on exotic and complex situations. Lastly, load shapes can evolve over time: this tool allows to generate load variations over time. As a simple example, the Perlin noise-based load shape, can be animated by alternating the frequency of the generated noise (see library manual for details [START_REF] Bevins | Libnoise: a portable, open-source, coherent noise-generating library for c++[END_REF]).

Monitoring Tool

When the potential design phase is over, one has to evaluate it in real situation: the Spawn library is then embedded in a specific application (see figure 4.15). Therefore we have designed a monitoring application that can be connected to the library through a Shared Memory (SHM) (an Inter-Process Communication (IPC) structure). The full domain information (task cost, task distribution) as well as vCore positions are serialized through the SHM upon a client request. The monitoring client is then in charge of fetching and presenting this information. In the current version of Spawn, the monitoring client produces a Qt-based visual interface. The library serializes internal structures upon a client request. This allows to visualise the behavior of any application that uses the Spawn library.

Results

This section presents results of our scheduling library (Spawn). We first validate the model by analyzing partition quality and the required computing time to compute a partition. We compare these results to the ones obtained with well known graph partitioning tools (Scotch [START_REF] Pellegrini | Scotch and libScotch 5.1 User's Guide[END_REF] and

Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF]). Once the model validation is done, we analyze induced performance of a given application that uses our Spawn library. Performance is measured in both shared and distributed environment.

In order to evaluate our scheduler, we have developed two representative stencil-like model applications (see table 4.2). The first one, uses a virtual cell domain, where every cell has a given cost generated by a random Perlin noise [START_REF] Perlin | Perlin noise web site[END_REF]. We don't do any computation with cells. This allows us to compare the partition quality and the required time to partition the domain. The second one uses a real cell domain (with evolutive load, see figure 4. [START_REF] Bulpin | In the third annual workshop on duplicating, deconstructing and debunking[END_REF]) and provides an intensive memory usage with data exchanges between cells. Every cell has 4 direct neighbors (four cardinal directions), and requires data (a matrix of double) from its neighbors to compute its own matrix. These exchanged matrices are the result of the previous iteration. In a distributed memory (see section 4.5.2.1), this allows us to evaluate the number of MPI communications induced after the new domain decomposition and during computation (data exchange between meshes). We evaluate our scheduler with sequential partitioning tools and parallel partitioning tools (with partitioning refinement enabled). In section 4.5.2.2, we evaluate the same application, but in a shared memory, by comparing our scheduler against common task scheduling strategies. Thus, our analysis focuses on cache miss rates.

Model Validation: Application #1

This section focuses on the time required to compute one partition, and on the quality of the resulting partition. We compare our scheduler against two graph partitioning tools: Scotch [START_REF] Pellegrini | Scotch and libScotch 5.1 User's Guide[END_REF] and Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF]. With Spawn, we compute the domain of each vCore, and with Scotch or Metis, we compute a partition with [number of vCores] parts. For every single configuration (dimension show results for a grid of 256x256 cells, with a variable number of vCores. For our algorithm, we set both the P (requested precision) and the I parameters (maximum number of iterations) to 20. These two tables present the time required to compute a partition of a given quality. Two partitioning tools are used (Scotch, Metis) and compared with our Spawn library. The quality of the partition is the distance (in percentage) to the optimal configuration in the interval [optimal, 2 × optimal]. They both contain results of a partitioning with a given initial configuration and after a load variation on the task domain. Scotch and Metis perform at least twice faster than Spawn when computing the initial partition. This is related to our iterative model and to the initial vCore position that can be far from the optimal one. On the other hand, Spawn shows better results after a load variation. This is a consequence of the model, we use the previous decomposition to compute the new one. Thus, if the previous decomposition is relatively close to the new optimal one, after a load variation, we only need a few iterations to reach the new optimal task distribution. If we decrease the P parameter (in order to reach a better task distribution), the benefit vanishes and requires a higher computing time (see the Spawn* line in tables 4.3 and 4.4).

We can notice a significant computing time and a far-from-optimal partitioning when using 512 vCores. We explain this behavior by an over demanding P parameter, 20% in this case, with respect to the configuration. Since we use a Voronoï tessellation, when vCores move, they exchange more than one task, and possibly a full boundary. Consequently, the 20% imbalance parameter represents a cost that is lower than the cost vCores could exchange. Requested imbalance (%) Time (s) 256x256 300x300 512x512

Figure 4.18 -Required time to reach a given vCore imbalance, within at most 1,000 iterations, for different domain sizes. 0% of imbalance means perfect task distribution while a 100% of imbalance means that we can have one cell that has at most twice the optimal load. We can see that, for a given imbalance, say 20%, different domain sizes will have different computing time. This is due to the shape restrictions.

Partitioning Quality (%) observation: we compare the required time (y-axis) to reach a given requested imbalance degree (x-axis), within at most 1,000 iterations (I parameter). We can see that for the same number of vCores, but for a variable domain size, we are unable to go further a given imbalance. In conclusion, this approach produces a task distribution with a quality comparable to the one produced by Scotch or Metis, with a slight overhead. However, due to the geometric shape of Voronoï cells, reaching the optimal task distribution might be difficult in regard to the system configuration (size and number of vCores) and input parameters P and I. Nevertheless, our way of using our scheduler tackles this limitation since we compute task distribution in background and as long as an imbalance exists. More details are given in sec. 4.5.2.2.

Method

Shared Memory: Application #2a

In a shared memory environment, memory access is a serious performance bottleneck. Due to hierarchical memory organisation (several NUMA nodes, several cache levels, see chapter 1), the data locality, usage and re-usage are some of requirements for performance. In this sections, we compare performance and data cache misses ratio and how the Spawn library improves this ratio in both static and dynamic load evolution (see figure 4.16). Scotch supports graph refinement and following experiments make use of it. Left figures refer to the static load case while right charts refer to the dynamic load evolution case, and, upper charts refer to the speedup while the bottom ones refer to the average number of L 1 data cache misses per thread for one iteration.

Spawn VS Graph Partitioning Tools

Here, all partitioning strategies produce compact sets, minimizing data transfers between tasks, but Spawn has better performance in both static and dynamic load variations. As explained in chapter 3, graph partitioning tools may not support graph refinement (e.g. Metis) and thus, produce a new and totally different task distribution after a task cost variation. Due to hardware and Operating System behavior, a task cost may vary over time, even if it's the same task and it does the same things. Hence, such partitioning tools produce different task distributions after each iteration. This involves data displacements between sockets and higher cache miss rates (see bottom charts in figure 4. [START_REF] Carlson | Programming in the partitioned global address space model[END_REF]). Furthermore, even if in section 4.5.1 we saw that Spawn has a higher computing cost, figure 4.19 puts in evidence that this cost is fully hidden by the quality and benefits of the resulting scheduling.

StarPU

We have extended the StarPU [START_REF] Augonnet | StarPU: a unified platform for task scheduling on heterogeneous multicore architectures[END_REF] runtime with our scheduler to evaluate the quality of the Spawn performance against common task scheduling policies. Data block of tasks are managed by StarPU through the specific starpu block data register routine, which enables automatic and backgrounded data transfers. We evaluate our scheduler on a two-socket Intel R Xeon E5-2680 (IvyBridge, 2x10 cores, 2.8GHz) machine. We did a hundred of runs with a domain of 100x100 tasks, where each task contains a matrix of 8x8 doubles. We evaluate performance in both static and dynamic load variations over time.

Integration StarPU comes with a variety of scheduling policies, but also offers the capability to define new ones. This permits to manage StarPU workers (abstract representation of computing units, see chapter 3) directly. Spawn is used by StarPU through an intermediate meta-scheduler that implements interfaces required by StarPU (the starpu sched policy C-structure). When tasks are submitted to StarPU, they are forwarded to the scheduling layer, and thus, to our metascheduler. This meta-scheduler asks our library to which worker this task should be assigned (more precisely, to which Voronoï domain this task is attached).

Regular grids or random positions are used to initialize the vCore set, and therefore the first task distribution. Once tasks are distributed among StarPU workers, their execution (e.g. the computing time) is monitored and then sent to our library. The scheduling is computed with Time nearly no additional cost (see figure 4.20): it is computed by the first inactive StarPU worker, and as long as another worker is still working. Thus, we only compute a task distribution when an imbalance exists. This has also the advantage to allow us to set P = 1 and I = 1 as parameters of our algorithm (which can be interpreted as "as long as an imbalance exists, do one iteration to reach the most optimal distribution"). As explained, a new task distribution is based on the task information (i.e. computing cost) of the previous task execution. Therefore, the first two load balancing steps are not optimal. Left charts refer to the static load case while right charts refer to the dynamic load case. Upper charts refer to the speedup while the bottom ones refer to the ratio of L 1 data cache misses per thread (per iteration) in comparison with Spawn. We use three internal StarPU schedulers: Eager, DM and DMDA since other schedulers should be mostly used with heterogeneous machines. Eager uses a simple FIFO-based greedy policy to schedule tasks. DM and DMDA use performance models allowing them to perform smart task placement, with the objective to minimize the overall execution time. DMDA works like DM, but takes into account data transfer time during task placement. More information on this can be found in the StarPU HandBook [START_REF]Runtime, I. Starpu handbook[END_REF].

Results

In both static and dynamic load variation cases, Spawn is close to StarPU schedulers performance and outperforms them with the growth of the number of threads. Bottom parts of figures show that Spawn dramatically reduces the number of L 1 cache misses with a factor between two and four. This is due to the Spawn ability to provide geometrically compact sets of tasks, reducing data transfers between threads. On the other side, if we compare task cache misses with Eager, DM and DMDA, we note that Eager doubles the number of cache misses that DM and DMDA induce, but has better performance. This is related to the behavior of these schedulers: by using a task queue, Eager naturally maximizes StarPU workers activity, in opposition to DM and DMDA that distribute tasks in advance as soon as they are ready in order to minimize overall execution time. Since our application uses intensive memory accesses, the execution time is strongly related to memory accesses, and task execution time depends on the place where tasks are executed. There- fore, assigned tasks by DM or DMDA constitute a set of non-related tasks, like they would have been assigned with Eager. Hence, with DM or DMDA, StarPU workers are imbalanced, since the execution time of assigned tasks does not reflect their real execution time. A deeper analysis of StarPU execution trace (FxT [1] traces, see fig 4.22) confirms this point. With this information, it appears that common task schedulers are unable to perform well with such task configurations (neighboring and data dependencies).

Distributed Memory: Application #2b

Distributed memory implies to send data over a transfer bus (a network, a Pci-E bus, and so forth). Therefore, a high contention can occur upon a large data transfer, and especially when several computing nodes exchange data at the same time. In this section, we evaluate Spawn performance against sequential and distributed graph partitioning tools. Our measure focuses on speedup and on the number of exchanged cells. Xeon X7650 nodes, interconnected with an Infiniband QDR network. Figure 4.23 shows the average number of exchanged tasks on the MPI network (in percentage of the entire domain) and the resulting application speedup. Metis involves an important data exchange since it is not designed for dynamic partitioning: nearly the entire task domain is exchanged for each iteration while less than 5% of the domain is exchanged with Scotch and Spawn.

Sequential Partitioning Tools

Distributed Partitioning Tools

Tools like PTScotch [START_REF] Chevalier | PT-Scotch: A tool for efficient parallel graph ordering[END_REF] and ParMETIS [START_REF] Karypis | Parallel multilevel k-way partitioning scheme for irregular graphs, department of computer science[END_REF] can perform parallel graph partitioning. ParMETIS supports refinement graph partitioning, i.e., it takes into account the actual partition to produce a new partition with the newest task costs. Scotch does not. Zoltan [START_REF] Devine | Design of dynamic load-balancing tools for parallel applications[END_REF] is another partitioning tool that can use not only its internal algorithms but also Scotch/PTScotch or ParMETIS to compute a graph partitioning. One limitation of these tools is that they need to know the identifier of each node that owns every local task and every neighboring local or remote task. This implies to maintain on each MPI node, and after every call to a partitioning routine, the list of neighboring nodes, and the list of tasks they share.

The evaluation focuses on Zoltan and ParMETIS (with Zoltan) tools. We evaluate Zoltan with PHG and RCB partitioning algorithms. PHG is the internal Parallel Hypergraph and Graph partitioning method. It supports initial partitioning, refinement and re-partitioning operations. Both repartitioning and refinement operations reuse the current partition, but refinement operation is stricter. With the RCB method we use one internal algorithm option, RCB REUSE, that indicates whether previous cuts should be used as initial guesses for the current RCB partition. Figure 4.24 shows data transfer rates and speedups of Zoltan (with PHG, RCB and ParMETIS) in comparison with Spawn. We can see that Spawn performance is similar to graph partitioning and geometric algorithms when the network is not used (i.e. one computing node used). For a few number of MPI nodes, Spawn is still better than Zoltan or ParMETIS, while, for a higher number of MPI nodes, RCB algorithm outperforms other algorithms. More precisely, if we compare the RCB algorithm to Spawn, we can see (left chart), that Spawn produces less data transfers (1-3% of the entire domain versus 5-35% for RCB). This explains that our algorithm involves a better speedup when the network is not used (time spent on internal communication is regained by the time not spent on exchanging data). On the other hand, with a higher number of nodes, the centralized behavior of Spawn, i.e., the knowledge of the average load and its single-thread implementation, is penalizing and collective MPI operations considerably slow down the global computation.

This observation is however incomplete if we compare Spawn to the PHG method or to ParMETIS. In comparison with Spawn, data transfer rates are more important for PHG, and really similar to ParMETIS. Thus, we could expect better results for, at least, ParMETIS. Considering that partitioning tools have scalability limitations because of internal synchronizations, exacerbated by the network, we can consider that data transfers are less penalizing than scalability limitations, which explains PHG and ParMETIS results in figure 4.24.

Summary

This force-based model applied to the task scheduling (or graph partitioning) domain has proven, in the case of FEM-based (stencil) application, a significant efficiency. Besides a higher computing cost (due to the initial convergence) and a possible limitation in some cases due to the shape restriction, induced performance outperforms actual scheduling heuristics. Our iterative and force-based model implies an automatic and cheap partition refinement. This has numerous advantages, among them a better cache usage and reduced data transfers upon distributed applications. Nevertheless, the actual implementation is sequential and can not be used in a distributed environment. Even if this version shows better performance up to 256 MPI nodes, centralized properties (one node centralized all information) prevent us from getting satisfying behavior with a higher number of MPI nodes.

Therefore, the next chapter is devoted to the distributed version of our scheduling method, by taking inspirations from peer-to-peer communication models. We will see that the challenge of distributed version is now on force computation, and on all its consequences (information propagation, global and local minimization and so forth).

CHAPTER

Distributed Scheduling

Spawn once, Spawn everywhere! A s developed in previous chapters, numerical simulations have an intense use of computing resources, and thus, of distributed computing resources (clusters of computers, see chapter 1). We saw in the previous chapter that the actual Spawn library sequential implementation, while offering interesting performance for a limited number of computing nodes, lacks scalability over large sets of computing node. Moreover, since we target large computing clusters, we cannot consider computing all the task scheduling on a single node: besides the fact that it is too complex for a single node, it also represents too large amount of data. This chapter is therefore devoted to the design of a distributed version of Spawn, called PSpawn. As for every parallel tool, specific algorithms must be designed in order to face distributed-related challenges. In PSpawn, we base all our algorithm on a peer-to-peer model, insuring only local communication by opposition to global communications that drastically limit performance and scalability.

Spawn Challenges

Previous chapter has presented the way we have introduced MD concepts into the task scheduling and graph partitioning problem. We can summarize these concepts in three elementary steps: the force computation between vCores, the cell assignment through a Voronoï tessellation, and the convergence toward an optimal distribution. Within a distributed context, each of these concepts brings a specific challenge.

Scalability -Scalability is a critical point for parallel algorithms. It defines the ability, for a given algorithm, to work efficiently on both a few number of computing nodes as well as a large (and possibly extremely large) number of nodes. We saw in chapter 1 actual computing resources are both hierarchical (NUMA), and interconnected (either by a network or by a communication bus). Handling such resources requires to exchange data, and thus, requires synchronization steps. Minimizing such steps is therefore critical, and in PSpawn, we tackle this limitation by using a local peer-to-peer model: computing nodes communicate only with their direct neighbors.

Global communications -

The Spawn sequential version has two main centralized properties: the force computations and the deduction of the optimal targeted load (the m term in equation 4. [START_REF] Brostow | Construction of voronoï polyhedra[END_REF], that requires the knowledge of the cost of cells of the entire domain. Using the exact same model requires global communications: to exchange vCore information (positions, force, velocities) and the local Voronoï cell cost (to deduce the m term). As a consequence of the local peer-to-peer model, we can easily compute forces locally by using the fact that long-range particle interactions have a very limited impact. However, the second point is not obvious and requires to design a specific potential that do not rely on the global domain cost.

Partition quality, and convergence speed -As a consequence of the two previous points, convergence speed can be penalized: the local peer-to-peer model propagates information with neighbor-to-neighbor communications. Moreover, the use of a potential that does not rely on the global cost information might have an impact on the partition quality.

To summarize, the Spawn distributed version brings interesting challenges, both on performance and quality aspects. The peer-to-peer model is now used in many fields where network integrity is critical: the Torrent [START_REF] Pouwelse | The bittorrent p2p file-sharing system: Measurements and analysis[END_REF] file transfer protocol, the bitCoin [START_REF] Donet | The bitcoin p2p network[END_REF] digital currency network, as well as in streaming [START_REF] Jiang | Gnustream: a p2p media streaming system prototype[END_REF] protocols. In their publication [START_REF] Kermarrec | Want to scale in centralized systems? think p2p[END_REF], Anne-Marie Kermarrec and Franc ¸ois Taïani analyse the reasons that make peer-to-peer networks reliable and why every large distributed application should rely on such technology. Next section presents the way we integrate the properties of this communication model, such as local information and local decisions.

Distributed Conception & Algorithms

This section presents internal algorithms involved in the distributed version of Spawn. This version makes use of MPI libraries since we target mainly distributed memory systems. We first introduce an overview of the distributed model, and, since it involves specific challenges, we describe main algorithms such as the one involved in the Voronoï tessellation and in the force computations.

Overview of the Peer-To-Peer Approach

The sequential version of the Spawn library has introduced an iterative model that uses MD simulation concepts to distribute load among computing units. Computing units were virtually represented by a vCore (see chapter 4).

Within PSpawn, each MPI node is a vCore, and has therefore a position on the global cell domain, a local load and can be moved as a particle. We add to each vCore, a list of direct neighbors and a list of second-rank neighbors (see figure 5.1). A vCore communicates only with its direct-neighbors. The second-rank neighbor list is used only to detect when a new direct neighbor arrives or when a direct neighbor leaves our direct-neighbor list. A communication between two directly-connected nodes consists of exchanging local information: local computing load (a single double), the actual position (three doubles), and, when necessary, the local list of neighbors, which consists in sending previously described information plus an integer for the node id. This is actually the way we retrieve the second-rank neighbors list: a vCore receives a direct-neighbor list from all its own direct-neighbors, and can afterward, deduce all its second-rank neighbors.

With all this information, one can compute locally applied forces (a node is aware of the computing load of its neighboring nodes), and can also compute independently its local Voronoï domain since it is in possession of the position of all its direct and second-rank neighbors. Eventually, after the newest local Voronoï computation, one needs to exchange the cost of tasks that have been moved between domains. Algorithm 6 summarizes the main steps of the PSpawn model.

Algorithm 6 PSpawn Main Convergence Loop. We first need to synchronize (line 2) neighbor information (due to the newest local computing load). Local force and thus, new local position can be computed (lines 3 and 4). We then need to synchronize (line 5) position information before computing the local Voronoï domain (line 6). The last step (line 7) exchanges costs of tasks that leave/arrive into the local domain.

1: for all Convergence Step do 2:

synchronizeNeighbors ()

3:
computeLocalForce ()

4:
ComputeNewLocalPosition ()

5:
synchronizeNeighbors ()

6:
computeLocalVoronoï ()

7:
exchangeCosts () 8: end for

Local Force Computation

As for the sequential Spawn version, force computation relies on a potential (see algorithm 4 in chapter 4). Here, the peer-to-peer model used for the distributed version allows us to avoid to compute forces between all pairs of particles inside a cutting radius, and to only compute forces that are locally applied by surrounding direct neighbors (see algorithm 7). The actual Algorithm 7 Distributed force computation: we compute only interaction on local node from direct neighbors. resetForce (local vCore) for all directNeighbors do F ← computeForce (local vCore, directNeighbors) local vCore.addForce (F) end for force definition (see equation 4.15 in chapter 4) relies on the global load knowledge, leading to an MPI AllReduce operation before doing any force computation. We have therefore designed another potential, DistMediumLoad, based on the actual one, that uses only the computing load of the local vCore and the load of neighboring vCores, which requires to exchange a single double value with all neighbors. Nevertheless, with such a potential, every single vCore tries to converge through a local optimal load. We therefore expect to see two distinct behaviors: oscillations and a slower global convergence. The first issue can be fixed by adjusting the time step used during the gradient descent (see equation 4.8) method (leading to a reduction of the convergence speed), and the second one, by increasing the number of iterations to converge (leading to an increase of the partition time).

Local Voronoï Tessellation

With all the information that a vCore (MPI node) has, it is possible to compute the local Voronoï distribution without any other communication. Indeed, since a vCore is aware of the position of its direct neighbors, it is possible to determine, through a simple distance computation, if a given cell is in the local Voronoï domain or in the one of a neighbor. The critical point here, is to iterate over all possible cells. Here we do not want to iterate over all the domain cells, but over a limited set of cells that might be assigned to the local Voronoï domain. We have therefore designed two different algorithms: one that discovers cells from the site of the local Voronoï domain (the vCore position) and, one other that iterates over all cells inside the bounding box of the actual local Voronoï domain. Each of these algorithms has advantages and drawbacks. Details are presented in the two following sections and an evaluation of their respective performances is shown in section 5.3.1.

Neighbor Discovery Algorithm

This algorithm (see figure 5.2 and algorithm 8) successively iterates over a set of candidate cells. A candidate cell, is a cell for which we still do not know whether it is a local cell or not. This algorithm starts from a cell, the Voronoï site, checks if this cell is local, and, if it is a local cell, generates all neighboring cells (either in 2 or 3 dimensions), and pushes them into the list of candidate cells. The iteration stops when the set of candidate cells is empty. The interesting property of this algorithm is that upon a non-local cell, it detects a Voronoï frontier, and thus, a direct neighboring connection, which is required for our peer-to-peer communication model. Nevertheless, as we can see on figure 5.2, this algorithm, through the neighboring cell generation, might iterate several times over the same cells. A solution is to search for already seen cells and to add only newest cells, but this implies a lot of call to search and sort methods and strongly penalizes performance when the local Voronoï set is large. local voronoï ← cell

(0) (1) (2) (3) (4) Figure 5
direcNeighbors set ← closest 10:

end if 11: end while

Bounding Box Algorithm

This algorithm iterates over all cells inside the bounding box of the actual local Voronoï domain (see figure 5.3 and algorithm 9). Because Voronoï domains are evolving between two convergence iterations (see algorithm 6 in chapter 4), we need to add an extra margin so that the bounding box is bigger than actual Voronoï domain. In comparison with the previous algorithm (see algorithm 8), this one has the advantage of iterating over cells only once. However, due to the bounding box, it also iterates over several non-local cells, and thus, induces several useless closest node searches. This behavior is exacerbated upon non-compact local Voronoï domains (i.e., elongated zones). Moreover, while algorithm 8 offers an automatic way to discover direct neighbors, this algorithm does not, and we need to manually check possible shared frontiers, which implies to iterate over non-local discovered cells a second time.

Results

This section presents and analyzes performance of the PSpawn library. We first analyze performance and impact of the choice of the local Voronoï computation algorithm. We then analyze convergence capabilities of the distributed peer-to-peer model, and the resulting quality by using both the MediumLoad and the DistMediumLoad potentials. Experiments are achieved on a cluster of 32 Intel R Xeon Xeon E5-2698v3 nodes (Haswell architecture, 2x16 cores, 128 Gio of RAM, for a total of 1,024 cores), interconnected with an Infiniband QDR network. We use the same application set as presented in table 4.2 in chapter 4.

Local Voronoï Performance

Same as for the Spawn sequential version, the most-consuming part of the library resides in the cell assignment. The previous section has described the two algorithms we have designed. The first one iterates over successively discovered cells, while the second one iterates over cells inside the bounding box of the previous local Voronoï domain. Due to the way it discovers cells, the first algorithm requires to search over already seen cells. An efficient way to search, is to search over a sorted set. Therefore, we use tree-based data structures (C++ Standard Template Library (STL) ordered and unordered maps) to store the local set of cells. Figure 5.4 compares performance of these two algorithms. As expected, upon a local Voronoï domain (the case when we use a few vCore), the first algorithm has poor performance and dramatically reduces initial performance (negative speedup of -10). On the other side, the bounding box algorithm performs well but has limited performance. With the bounding box, we need to iterate over all cells of the bounding box to find the newest local Voronoï domain, and we also need to iterate a second time over the non-local cells in order to find cells at the frontier, and thus, to detect direct-neighbor connections. Experiments have shown (see the right chart of figure 5.4) that the computation of the local Voronoï domain through the cell discovery algorithm has better performance with sets of a size lower than 2,300 elements. Therefore, we are able to use both algorithms in the PSpawn library, and to switch between one or the other depending on the actual local Voronoï domain size. Right: speedup regarding the size of the Voronoï domain. The first algorithm has a strong overhead for a few MPI nodes, since each MPI node works on a large local Voronoï domain. However, performance is better with an increasing number of MPI nodes. The bounding box algorithm, while offering a limited overhead for a few MPI nodes, has limited performance since it iterates over a large number of cells.

Convergence & Partition Quality

In this section we validate the partitioning quality of the distributed PSpawn library. As for the comparison with sequential graph partitioning tools (see chapter 4), we evaluate the quality by a distance for a given vCore to the optimal load distribution. For all experiments, we generate a grid of 512x512 cells using a Perlin-based [START_REF] Bevins | Libnoise: a portable, open-source, coherent noise-generating library for c++[END_REF] cost. We measure both the computing time to compute a partition and the resulting quality of this partition. We compare the computing time (left) required to compute a partition and the quality of the partition (right). Both MediumLoad (ML) and DistMediumLoad (DML) potentials are evaluated.

Zoltan partitioning tool (with the RCB, PHG internal algorithms), the ParMetis graph partitioning tool and our PSpawn library (with both MediumLoad and DistMediumLoad potentials). For our library, we try to compute a partition in at most 20 iterations (I parameter) and we set the P parameter, that influences the resulting quality, to zero so that we try to reach the optimal partitioning. As we can see, the PSpawn library can achieve a partitioning in a similar computing time than other graph partitioning tools. We would expect significantly less computing time and the next section investigates this issue. The other point that we can note, is the quality: either with the MediumLoad or the DistMediumLoad potential, the resulting quality is far from the one computed by graph partitioning tool, and this is related to our peer-to-peer model that uses only neighboring computing load. Even if this quality is far from the others, it is still really interesting: only at low percents of the optimal distribution. Moreover, we do not want a perfect cell distribution (since it can really change between two computing iterations of the application), we want to reach a cell distribution that handles as most as possible the dynamic load variations.

Overall Performance

Within this section, we compare performance of the PSpawn library in relation with other parallel graph partitioning tools. As in section 4.5. model. The first one presents speedup of our benchmark application over an increasing number of MPI nodes and with an increasing number of PSpawn convergence iterations (I parameter). The second one presents the time spent in main parts of our distributed algorithm. We can first see that the application speedup, while greatly enhanced with our PSpawn algorithm, strongly depends on the number of iterations: we lose nearly 35% speedup points with 40 iterations regarding the one with one single iteration. We can also notice that we have a brutal drop of performance when using 512 (and more) MPI nodes. This is due to the way our benchmark application is designed: it has a few computing ratio regarding its communication volume (each cell requires data from its 4 direct neighbors) and it computes a new cell distribution between each of its computing iteration. Therefore, the scheduling step is limiting. In order to confirm this point, figure 5.7 presents a speedup over 1,024 MPI nodes with the same domain size (512x512 cells) but with a more important amount of computation (x5 factor). We can clearly see that the scheduling step is less penalizing than before. .6 shows that most part of the computing cost (more than 80%) of our algorithm remains in the Voronoï tessellation, and since we need to compute a Voronoï tessellation for every single iteration, this explains why the speedup is penalized when we increase the number of iterations. We also see that, as we increase the number of MPI nodes, the part of communications is more important (for both force neighbor communications and for the force computations). On the Figure 5.8, that shows the real time values, we see (left chart) that the Voronoï tessellation cost dramatically decreases with the increase of the number of MPI nodes. With better Voronoï algorithms, we have no doubts that we will improve per-iteration performance, but, as presented in table 5.1, with 20 iterations, we have already achieved a fairly good distribution. Therefore, we can expect that 10-20 iterations will produce interesting results. The time spent in neighbor-to-neighbor communication (middle chart) slightly increases for a small number of processes (between 1 and 16) but remains however constant for a higher number of MPI nodes. This is a consequence of our peer-to-peer model: when using a higher number of nodes, communications are limited by the nearly constant number of neighbors.

We can also compare the impact of the centralized property of the MediumLoad potential: it requires, during the force computation step, to know the whole task cost of the cell domain, leading to an All-to-all MPI communication. Even if figures 5.6 and 5.8 show that we clearly reduce the communication cost during the force computation with the DistMediumLoad potential, figure 5.5 shows that removing the global communication required by the MediumLoad potential does not have a significant impact on overall performance. As seen in table 5.1, the DistMediumLoad potential is unstable (non-constant quality) and induces several cell movements between each application computing iteration (see figure 5.9). Finally, figure 5.9 presents the average number of exchanged tasks after the computation of new partition. As one can notice, this number slightly increases within the number of iterations. This is an expected behavior since vCores move more when increasing the number of iterations. This number is however really similar to one induced by using graph and geometric partitioning tools. We can also notice the instability of the DistMediumLoad potential: since vCores do not target a global computing load, they have independent local displacements, leading to oscillations during displacements. In the end, these oscillations induce a lot of non-desirable cells, and therefore data displacements between computing nodes.

Summary

The distributed and peer-to-peer based algorithm, provides interesting performance opportunities. With carefully chosen algorithm input parameters that are well adapted to the application cell domain, the PSpawn library at least twice performance factor in comparison with other tools. However, we saw that internal Voronoï tessellation has, as in the sequential Spawn library, a critical cost that has negative impact because of the iterative model: we need to compute a Voronoï tessellation between each application iteration. But, because of the peer-to-peer model, they are good prospects that overall performance will be increased with a more efficient local Voronoï tessellation algorithm. Eventually, experiments have shown that the DistMediumLoad T he previous chapter has presented a distributed version of the Spawn library that makes use of peer-to-peer concepts: a node communicates only with its direct neighbors. While this offers interesting scalability opportunities, due to a limited communication and synchronization factor, with actual and upcoming computing resources and their hierarchical structures and interconnections, it involves a lot of useless communications. One cannot use only remote MPI processes to fully exploit computing cores: communications should only be used between remote computing nodes. This chapter hence focuses on the last property of the Spawn library: its ability to handle hierarchical resources by providing a hierarchical task domain management.

Hierarchical Resource: The many-core Example

Like many other computing centers, the Très Grand Centre de Calcul (TGCC), a computing center under the Commisariat à l' Énergie Atomique et aux Énergies Alternatives (CEA) supervision, is going to embed many-core platforms along with classical computing nodes. Due to the high number of embedded computing cores, an efficient resource usage of such devices is a critical point for upcoming numerical simulations.

As explained in chapter 1, many-core devices offer a large set of computing units with a limited power consumption due to a limited frequency and a reduced ISA. Actual boards are connected to the host machine through the Pci-E bus, but this might change in the future 1 . The targeted platform of this thesis is the Intel R Xeon Phi 5120D. This many-core family exposes 60 computing cores (1.053GHz) with an L 2 cache of 30 Mio and 8 Gio of memory (Gddr-5). Lastly, the whole device is connected through the Pci-E (revision 2.0) bus (10GT/s and 500Mio/s per lane). For this particular kind of devices, using distributed algorithms and library is inefficient. MPI library have been designed in order to exploit distributed resources by using heavy explicit synchronization and communication mechanisms. Inside a computing node (either a classical one or a many-core one), one could exploit shared memory performance, and therefore avoid using any explicit communication or synchronization mechanisms, by using Multi-Threading. An efficient way to use hierarchical computing nodes, is to reduce the number of distributed processes (MPI processes) by using a pool of threads inside a computing node. We therefore use a single distributed process per computing node, and several threads inside this node to exploit available computing cores. Hence, we want to avoid to use the PSpawn library within a shared memory environment in favour of using Posix Threads (or any other multi-threading library). Instead, we want to use the sequential library (Spawn), and to connect it to the PSpawn distributed version in a way that we schedule tasks at the distributed level, and tasks at the node level.

A K.I.S.S solution

Within the Spawn library, both the sequential and the distributed versions, we use a regular cell domain. This cell domain is divided by using a Voronoï tessellation (see chapter 4 and 5). Therefore, if we want to use threads instead of MPI processes in a shared memory environment, a natural solution is to use the local Voronoï domain computed by the PSpawn library into a Spawn library instance, so that we use it to schedule tasks among cores. This is what we call multi-level scheduling (see figure 6.1). Scheduling is achieved at two distinct levels: between MPI nodes, and between cores in a single computing node. By doing so, we dramatically reduce the number of remote processes, and we allow applications to fully exploit shared memory. The drawback of this approach is that we increase the required time to compute a Voronoï distribution since we reduce the parallelization factor of the main cell domain partitioning. Previous chapter (chapter 5) has presented how we compute the Voronoï tessellation: this is an independent per-node work, and is therefore achieved quicker as the number of MPI nodes increases.

In order to interconnect these two libraries, we simply transform the local Voronoï-shaped partition into a bigger bounding-box (see figure 6.2) with a regular size (extra cells have a zero cost): this allows us to use our sequential Spawn library without any modifications. This domain transformation implies translating cell information (global identifier, global coordinates and global cost) into information understandable by the sub-domain interface. Therefore, while both of the Spawn and PSpawn libraries rely on the spawn domain structure, the multi-level interface relies on the spawn subDomain structure that encapsulates all the required translation information (starting cell index, bounding box dimensions), as well as a link to the parent Voronoï set so that the specific sub-domain interface can retrieve and translate cost and cell identifier from/to the parent distributed Voronoï domain. With this multi-level approach (with a sub-domain and a translation step), one needs to create a new sub-domain after each global (i.e. at the distributed level) partitioning steps: per-node cells are subject to movements, and therefore, per-node Voronoï domain as well, which requires the construction of a new subdomain. One can notice that when creating a new sub-domain, we lose previous internal vCore information (position, load, assigned cells). Hence, an equilibrium between distributed load balancing and local load balancing must be found. Note that this behavior is common with every load balancing methods, when both distributed and local load balancing is achieved. Eventually, we can summarize the multi-level library usage with the algorithm 10.

Algorithm 10 Multi-level library usage: we create a sub-domain (that contains all locally assigned cells) so that we can partition it in order to schedule tasks between computing units.

Results

This section presents results of the multi-level usage of the SPawn library. Experiments are achieved on two kinds of clusters (see table 6 Xeon, a pre-production cluster of 32 Intel R Xeon Phi and a small cluster of heterogeneous CPUs with old and new CPUs generations. Figure 6.3 presents performance on the cluster #1.

As said previously, with the multi-level usage, we reduce the number of MPI processes, and thus, we increase the global partitioning time. In order to fully understand the scheduling impact, this figure presents performance for a variable number of global scheduling steps (every 1, 2, 4 and 8 application steps). It also presents performance when the amount of work is increased (bottom figures) by a factor of 5. Hence, the scheduling step is less penalising. The experiments use chapter that performance of the Voronoï tessellation strongly depends on the number of processes that are involved in the computation: this partially explains the performance drop. The other reason is the amount of work regarding the amount of time spent on the partitioning step: since we have an important partitioning time due to the few number of MPI processes, the application spent most of the time on the partitioning process. Bottom charts of figure 6.3 show that when increasing the amount of work, benchmark application presents better scalability.

The next experiment uses the cluster with 32 Intel R Xeon Phi devices (cluster #2). As seen in chapter 1, such many-core platforms impose to use a large number of threads per card to efficiently use execution units. Therefore, our experiment, presented in figure 6.4, shows performance for a variable number of threads: 60, 120, 240 and 480. The top left figure presents performance when performing a scheduling step between every application computing iteration, while, in the next charts simply increase the number of steps between each scheduling step (every 2, 4 and 8 application iteration). We clearly see that performing scheduling between every application computing iteration is also limiting with many-core devices: performing a scheduling every height application steps provides a speedup improvement of nearly three (a speedup of 30 versus a speedup of 11). Because of the actual behavior of many-core boards (i.e., the strict need to use at least two threads per core) to use efficiently computing cores, the partitioning step is more penalising on such devices than with classical computing nodes since it uses only one thread per MPI process. Moreover, even if every core is can execute up 4 concurrent threads (4-way multithreaded cores), we can note that using more than 120 threads (i.e., 2 threads per core) per card does not improve performance: with 240 and more threads per card reduces performance. This behavior is particularly visible when performing a partitioning every height application steps. Besides these observations, we can observe a good scalability of our multi-level Spawn usage and we can deduce from this experiment that this approach requires to carefully chose the way we use the library: a too high number of partitioning step will leads to a serious drop of performance.

Finally, we evaluate the behavior of our scheduling library when using heterogeneous computing nodes (cluster #3). With this experiment, our aim is to evaluate the ability for our scheduling to distribute cells according to the node capacities. Hence, we use a cell grid with a constant and uniform load. As described in table 6.1, cluster #3 has two 16-cores and two dual-core nodes and we therefore expect to see bigger nodes with a larger set of cells than the ones assigned to the weaker nodes. Instead, we can see a totally equal cell distribution (see left part of figure 6.5), exactly as if computing nodes were of the same range . This denotes an actual limitation of our potentials: they only use the computing cost of cells, and not the computing time required to compute local Voronoï sets. Indeed, since the time to compute a cell is slightly the same on these different cores (the frequency of Core CPUs catches up the intelligence of SandyBridge cores), the cost of the whole set of cells is also nearly the same, leading to equal distribution between nodes. To better handle heterogeneous nodes, we must take into account the time to compute the Voronoï cell. This can be achieved by defining a new potential that better handles node capabilities. Another option, that is really easy to evaluate, is to resize the cell cost by applying computing capabilities (e.g., dividing the cell cost by the number of available computing units). This allows us to validate the fact that a potential that takes into account computing capacities will produce better partitioning. The right part of the figure 6.5 show results when applying this option: we can see that Voronoï cells better fit with node capacities (top Voronoï cells correspond to the one of the weaker nodes). Nevertheless, this solution is not efficient and it has just been presented to evaluate the ability to schedule over heterogeneous nodes when using node capacities.

The design of a specific potential is required. :

Summary

In this last chapter, we have introduced a simple interface that allows us to perform a multi-level scheduling: a global scheduling between MPI nodes, and once inside a node, a scheduling between computing units of the node. This allows us to reduce communication between nodes, and to better use shared memory capacities. It also reduces the memory footprint induced by the use of MPI libraries. Nevertheless, because of the reduction of the number of MPI processes, the required time to perform a cell distribution increases. Indeed, performance of our algorithm (especially the Voronoï tessellation step) strongly depends on the number of involved MPI processes. Experiments with the Intel R Xeon Phi have shown a good scalability: we are able to use efficiently all the cards of the cluster #2. Nevertheless, due to the reduced core performance, using such device has a negative impact on performance, and especially upon sequential execution: communications between cards has a significant cost that reduces performance and this cost is exacerbated by the mono-threaded MPI process executed on each card. Therefore, one need to use a reasonable number of partitioning computation (e.g. one every heigh application step in our example) to obtain good scalability. Lastly, the last experience has shown a limitation of our potential: it cannot distribute cells over heterogeneous nodes. Instead, it schedules cells as if all computing resource were of the same range. This is due to the potential that considers that all computing units can compute set of cells in the same amount of time. To cope with nodes with different numbers of cores, we plan to add this information to our potential. More generally, we must integrate computing capabilities into the definition of our potentials in order to enable scheduling and partitioning over heterogeneous nodes. F inite Element applications, and more generally, every stencil-like application, are subject to the data partitioning challenge since computing resources are now distributed. This difficulty is furthermore exacerbated by dynamic computing load variations. Within the framework of this thesis, we have targeted a physical modelling software that has strong load variations over the time, that can be either diffused or local.

CHAPTER

Conclusions & Perspectives

Several tools, like graph partitioning tools have therefore been designed to help developers to efficiently distribute cells among computing units. Partitioning algorithms have been intensively studied because of the importance and the need from the scientific community. But because it is a Np-Complete problem, best graph partitioning algorithms rely on a multi-level method, that allows to use heuristics during the partitioning step. On the other hand, geometric partitioning offers better performance, especially over distributed computing units, because of the use of geometric properties. Nevertheless, the complexity of the partitioning problem is not expected to decrease. Instead, with bigger machines, scientific community executes numerical simulations of increasing system size: either increasing the simulation time, or by increasing the precision of numerical schemes and so forth. To this even more complex numerical simulations, we must add the still increasing number of cores and the way computing clusters evolve: even if they were already hierarchical, with the combination of several NUMA nodes embedded in several computing nodes, actual trends and constraints, like power consumption and thermal limitations, transform them into a computing cluster where a single node is itself a cluster of computing cores.

Data partitioning as well as work scheduling are therefore more than ever a challenge. One cannot afford to compute a global scheduling by using a single computing node: it requires too much computing time and more memory resources that are available. Instead, we have to use all resources, but by taking into account their hierarchical topology: it is inefficient to use many-core devices as classical computing nodes by using processes. Beside the fact that they are less powerful than classical X86 cores, it also involves passing through several hardware components (host Pci-E bus, host network card and so forth). Scheduling must therefore be computed hierarchi-cally, thus limiting communications and reducing the scheduling time by reducing the number of computing units.

Contributions

This thesis explores an original approach to the scheduling and partitioning problems as well as a way to take into account the computing resource hierarchy: we transform the scheduling problem into a MD minimization problem: we compute repulsive and attractive forces between computing units (vCores).

By combining these force interactions with a tessellation, based on Voronoï Diagrams, we have designed a new and original way to schedule a global set of cells into several subsets. This model is based on a potential that clearly generates forces that move vCores so that they target the optimal load. It also has numerous advantages, and probably, the most valuable is its automatic refinement capability. Potentials involved in our scheduling method have been carefully designed so that they produce equal load distribution. A lot of scheduling evaluations have been done in order to establish the final potential equation (see equation 4.15 in chapter 4) and specific tools that greatly help to understand interactions induced by the potential have been developed to this end. However, a lot of optimizations were required in order to improve the algorithm execution time. Numerically, we reduce the number of force computations by using Newton's law properties (i.e. symmetry), and we use a fast convergence algorithm that permits to skip non-interesting motion steps. Lastly, and since most of the computing time resides in the Voronoï tessellation step, we have considerably improved performance by using fast closest-neighbor search algorithms. This model has been validated through several stress-test load configurations (complex load diffusion shapes as well as time evolving ones) and its induced performance have been evaluated through different benchmark applications (in both shared and distributed memory environment). Results have shown better induced performance in both shared or distributed memory, with a factor between 10 to 40 percent of gain, by a comparison with available graph partitioning tools and well known scheduling heuristics.

Finally, because this scheduling and partitioning model can be used by numerous numerical simulation applications, we have introduced this model into a C/C++ library, divided into three distinct components:

The Spawn library: this is the core of the project. It provides a C interface to perform domain partitions and update cell cost. Partitioning is achieved with sequential algorithms and by using the previously defined MediumLoad potential. This library is particularly suited for shared memory environment: partitioning can be performed by any idle thread upon a load imbalance. This library comes with an integration component (i.e. a patch to apply to the source code) for the StarPU runtime, that allows to use our Spawn library to schedule tasks upon a load imbalance.

The PSpawn library: because resources are distributed and computing domains are too big to fit on a single node, the sequential library can not be used and we provide a distributed version of our scheduling library. This version features a peer-to-peer communication model ensuring only neighbor-to-neighbor communications leading to an improved scalability regarding other partitioning tools. It also embeds a new potential, that uses only neighboring load information, ensuring the zero-global communication challenge.

The Multi-level interface: our solution to hierarchical scheduling. Since many-core devices should not be involved in global partitioning, we provide a way to schedule and partition domains by levels: a global partitioning is made between MPI nodes, and then each Voronoï domain is again divided into sub-Voronoï domains in order to distribute work between cores.

Lastly, since computing architectures are subject to numerous evolution, we have made the definition of new potential really simple. We have also designed several tools to help developers create and clearly understand the behavior of potentials in either a real application, or a simulated load environment.

Perspectives

Within this thesis, we provide a solution to the scheduling and partitioning problem for stencil like applications within the framework of the many-core usage. While already providing interesting performance for actual computing resources, it also provides a basic component to handle the future computing clusters and therefore opens several perspectives and challenges.

Performance improvement Along with this thesis, we saw that, in either the sequential and the distributed library, most of the computing time resides in the Voronoï tessellation. Such improvement will have a direct impact on the required time to compute one iteration of our model, and therefore, with a reduced computing time, we can increase the number of iteration, leading to better partitions. The PSpawn library has presented a way to parallelize this tessellation: by providing each node with a minimal set of information, it can easily compute its own set of cells. Therefore, a possible line of research is in multi-threading actual sequential tessellation algorithm. Nevertheless, by using several threads, one can penalize the host application: it can be already multi-threaded, and therefore, can already use the Spawn library in an efficient way (like we did with the integration into the StarPU runtime). Hence, we can think about extending the interface by providing a way to set the number of internal threads, the thread-pining restriction and so forth.

Design new potentials

The model involved in this thesis strongly depends on the behavior of the potential. Especially within the distributed library experiments, we saw that using a peer-topeer model implies a local vision of the environment (neighbors, cell load). The DistMediumLoad potential has shown that we can clearly improve the force computation process by removing the global communication involved in the MediumLoad potential. Unfortunately, this potential leads to several vCore oscillations since they target different local computing loads. Therefore, for optimal scalability, we need to design a potential that provides both good partition quality and a reduced amount of computation. This is actually very challenging since it deals with the information diffusion problem. Moreover, actual potentials embedded in our library only deal with classical computing units (CPUs). We can think of designing new potentials that make use of heterogeneous node, like GPUs, possible. For this purpose, we need to add transfer penalty inside the potential definition. An open question is therefore whether we need to rely on the user information or on an automatic transfer benchmark.

Heterogeneous CPU Actual many-core platforms run their own operating systems. Therefore, we can use a device as if it was a single computing node. Nevertheless, the computing performance of a single core is far from the one of a classical processor. Therefore, we must integrate a way to handle different kinds of processors in our library. As seen in the last experiment of the multi-level usage of the library, we need to take into account not only the computing cost of cells, but also the time a computing unit will take to compute its own set of cells. More generally, it would be a great enhancement to support different kinds of properties (bus throughput and occupation, time to transfer data and so forth).

Domain generalization

The current implementation relies on a regular grid of cells. While this constraint fits well with several simulation software, a generalization of the input set of cells would be a good enhancement and would allow better compare performance against graph partitioning tools (i.e.Scotch, Zoltan and so forth). A simple solution would be to insert the graph inside a bounding box. By doing so, we can use geometric properties and all the previously validated models. Nevertheless, this might induce several useless computations: this method implies to iterating also over cells of the bounding box that are outside the graph. Generalizing the input set of cells is also very challenging, but it is a required step if we want to make this library easier to use by the scientific community. C e manuscrit de thèse est divisé en trois parties : une première sur la simulation numérique et les challenges du parallélisme qu'elle apporte, une seconde sur les contributions apportées et développées tout au long de cette thèse, et, pour finir, une partie regroupant les documentations annexes de cette thèse. Ce présent chapitre se propose de résumer ce manuscrit, tout en restant le plus exhaustif possible.

Part III

Introduction

Depuis ses premières heures dans les années 60, le domaine du calcul intensif, High Performance Computing (HPC) en Anglais, s'est vu doté de machines de calculs de plus en plus puissantes : alors que le premier super-calculateur (Cdc-1604 dans les années 60) n'avait que quelques Kio de mémoire et une seule unité de calcul pouvant atteindre quelques Flop (nombre d'opérations flottante) par seconde, les plus gros calculateurs actuels comportent plusieurs millions de coeurs de calcul et plusieurs Pio (Peta-octets) de mémoire, le tout pour plus de 50 000 TFlop/s. Cette puissance de calcul a pu être atteinte en combinant la puissance de plusieurs milliers d'ordinateurs classiques : même si chaque unité centrale est une machine pouvant délivrer une grande puissance de calcul, cela reste techniquement une machine classique accessible par le grand public. Alors que les premiers super-calculateurs reposaient sur une seule et unique grosse machine, entrainant un coût de construction et de maintenance important, la combinaison de plusieurs petits ordinateurs a permis de réduire de façon drastique ces coûts et d'offrir une maintenance aisée : si un noeud de calcul est défaillant, il suffit de le remplacer. Les grappes de calculs étaient nées. Néanmoins, le fait d'utiliser plusieurs machines impose de les faire communiquer entre elles. Cela se fait par le biais d'un réseau qui peut être de différente nature (pile réseau Tcp/Ip ou autre) mais surtout avoir différentes capacités en terme de débit et de bande passante. Même si de formidables réseaux à haute performances existent (cartes de type Infiniband [6] entre autres), communiquer reste un critère limitant : cela requiert de la synchronisation dont le coût, en terme de temps, s'accroît à mesure que le nombre de machines communicantes entre elles augmente.

À cette multiplication des machines s'accompagne l'accroissement de leurs performances pures, c'est-à-dire, leur capacité à exécuter les instructions de plus en plus vite. Jusque dans les années 2000, la performance des machines était majoritairement lié à l'accroissement de la fréquence du processeur de calcul, avec des fréquences allant jusqu'à 3GHz (Intel R Pentium 4, Amd R Athlon). Mais l'accroissement de la fréquence entrainant une augmentation de la température du processeur, les constructeurs ont dû trouver d'autres moyens pour toujours augmenter la puissance de calcul tout en restant dans des limites de température acceptables par le matériel.

C'est ainsi que sont apparus les processeurs multi-coeurs et les machines multi-processeurs. Plutôt que de monter en fréquence, on augmente le nombre de processeurs par machines, avec des machines pouvant aller jusqu'à quatre voir huit processeurs (cartes mères SuperMicro), ce qui théoriquement, multiplie les performances par le nombre de processeurs. Le nombre de coeurs par processeur peut lui aussi être multiplié : on a vu apparaitre des puces multi-coeurs des les années 2010 avec les puces Intel R Core2 et Amd R Opteron. Et ce n'est pas fini ! La tendance actuelle est de fournir un toujours plus grand nombre de coeurs sur une même puce, tout en réduisant la fréquence des coeurs, réduisant ainsi l'enveloppe thermique associée. On retrouvera ce type de puces dans des cartes accélératrices de calculs de type many-core que l'on peut directement intégrer dans une machine de calcul classique.

Ainsi, on voit clairement que les machines deviennent de plus en plus hiérarchiques : un calculateur est un ensemble de machines communicantes entres elles, lesquelles étant composées de plusieurs processeurs, eux même composés de plusieurs coeurs, etc. Et on l'a vu, ce n'est pas près de s'arrêter avec l'apparition des accélérateurs fournissant un toujours plus grand nombre de coeurs. Les applications pouvant pleinement tirer parti de cette puissance de calcul doivent donc être en mesure d'à la fois exploiter les ressources mémoire (distribuées entre les machines, les processeurs et les coeurs) et les ressources de calculs. Dans le cas idéal, on souhaiterait que tous les coeurs de calculs aient une somme de travail égale, c'est-à-dire, qu'ils finissent tous en même temps. Dans la pratique, ceci est difficilement atteignable : les applications peuvent générer une charge de travail non uniforme et surtout variable au cours du temps. À cela se rajoute toutes les contraintes liées à l'interconnexion des machines (débit, latence et saturation du réseau) et aux accès mémoire (dont le temps d'accès varie en fonction de l'affinité mémoire propre des processeurs et des coeurs). Le problème est donc de distribuer à la fois le calcul entre l'ensemble des coeurs de calcul (problème d'ordonnancement) et les données (problème de partitionnement) de façon à minimiser les déplacements de données et les communications. Ces deux problèmes ont été classifiés comme étant Np-Complet [START_REF] Ullman | Np-complete scheduling problems[END_REF] : on ne peut trouver une solution qui distribue de manière optimale (égale entre les coeurs) l'ensemble des calculs et des données en un temps polynomial. Néanmoins, de nombreux outils basés sur des heuristiques peuvent fournir des solutions permettant d'approximer cette distribution. On trouvera parmi eux, les outils de partitionnement de graphes (Scotch [START_REF] Pellegrini | Scotch and libScotch 5.1 User's Guide[END_REF], Metis [START_REF] Karypis | A fast and high quality multilevel scheme for partitioning irregular graphs[END_REF] et Zoltan [START_REF] Devine | Design of dynamic load-balancing tools for parallel applications[END_REF]) et les supports d'exécutions parallèles à base de tâches (StarPU [START_REF] Augonnet | StarPU: a unified platform for task scheduling on heterogeneous multicore architectures[END_REF], Intel R Tbb [START_REF] Kukanov | The foundations for scalable multi-core software in intel threading building blocks[END_REF] et Xkaapi [START_REF] Gautier | Xkaapi: A runtime system for dataflow task programming on heterogeneous architectures[END_REF]).

Les applications de simulation numérique, et spécialement celles développées dans le laboratoire d'accueil de cette thèse, ont des temps de calculs de l'ordre du centaine de milliers d'heures de calcul, et reposent sur des maillages ayant de fortes variations du coût de calcul au cours du temps. De ce fait, l'ordonnancement est un point critique puisque toute erreur d'ordonnancement peut engendrer d'importantes différences de temps de calcul. Les outils actuels d'ordonnancement à base de tâches ne sont pas adaptés à la répartition de calculs sur des maillages dans la mesure où ils ne font pas le lien entre le temps de calcul de la maille et le temps passé à échanger les données entre cette maille et ses voisines, qui sont nécessaires pour le calcul de cette maille. Les outils de partitionnement de graphe eux, offrent un moyen d'ordonnancer les mailles en ensembles compacts de mailles minimisant ainsi les échanges entre les mailles. Néanmoins, les algorithmes parallèles impliqués dans ces outils sont pénalisés à mesure que le nombre de coeurs augmente : même s'ils sont basés sur des algorithmes reconnus très efficaces et de grande qualité, ils induisent beaucoup de communications ce qui, avec l'apparition des carte accélératrices de type manycore limite fortement les performances. Sachant que les applications visées génèrent de fortes variations de charge de calcul au cours du temps, il est nécessaire de faire souvent appel à ces outils de partitionnement. Néanmoins, au vu de leurs limitations actuelles de passage à l'échelle, de nouveaux modes de partitionnement doivent être étudiés permettant à la fois d'équilibrer la charge de calcul entre un grand nombre de coeurs et de fournir des ensembles compacts (particulièrement adaptés aux applications à base de maillage), tout en étant rapides à calculer et limitant les communications.

Résumé des Travaux

Le Chapitre 4 de cette thèse propose un modèle de partitionnement et d'ordonnancement pour maillages réguliers, basé sur la combinaison d'interactions physiques et d'un pavage de Voronoi. L'idée est la suivante : nous associons à chaque coeur de calcul, une représentation virtuelle de ce coeur que l'on nomme le vCore. Cette entité est en fait une particule physique : elle dispose d'une charge (qui peut être associée à sa charge de calcul), d'un vecteur de forces et d'un vecteur de vitesses lui permettant de se déplacer à l'intérieur du maillage. Le déplacement de ces vCores résulte du calcul de forces entre chaque paire de vCores.

Le lien entre ce modèle inspiré des simulations de dynamique moléculaire et les problèmes d'ordonnancement et/ou de partitionnement, est rendu possible via l'utilisation du pavage de Voronoï. Étant donné un ensemble de points, que nous appellerons site de Voronoï, un pavage de Voronoï est un découpage de l'espace attachant tout point de l'espace à son plus proche site de Voronoï. La figure 8.1 présente une telle construction. Dans notre modèle, les sites des cellules de Voronoï sont en fait les vCores, et l'ensemble des mailles du maillage à partitionner représente notre ensemble de points de l'espace à attacher à chaque site. Du fait de ce partitionnement calculé, on peut en déduire la charge des vCores : c'est simplement la somme du coût de calcul de chacune des mailles présentes dans les cellules de Voronoï. Avec cette information de charge, on peut alors envisager de faire bouger les vCores. L'idée simple est de les faire bouger en fonction de leurs charges de calcul de façon à trouver un équilibre de charge. Pour cela, on définit un potentiel, que l'on nome MediumLoad, capable de générer trois types de forces : des forces positives qui vont repousser les vCores voisins, des forces attractives qui vont attirer les vCores voisins et des forces nulles qui n'engendrent aucun déplacement : Ce modèle de partitionnement et d'ordonnancement est intégré dans une bibliothèque C, nommée Spawn, et la section 4.5 présente une validation de celle-ci, en la comparant à des outils de partitionnement de graphes reconnus, ainsi que les performances qu'elle induit sur différentes applications-test. On pourra notamment voir que la première étape de convergence vers des partitions proches de l'optimal peut prendre plus de temps par rapport aux outils de partitionnement, et cela notamment dans le cas où l'on est loin de l'optimal (les vCores doivent faire un long trajet ce qui requiert plus d'itérations). En revanche, lorsque les vCores sont assez proches, le nombre d'itérations est minimal et l'on est bien plus rapide que les outils de partitionnement de graphes. C'est particulièrement intéressant dans le cas de variations dynamiques de charge : notre méthode permet de s'adapter très rapidement à la nouvelle distribution des charges de calcul. Les applications d'évaluations des performances montrent, quant à elles, un gain significatif de performances : par rapport aux heuristiques d'ordonnancement intégrées dans StarPU, une forte réduction des défauts de cache est observable, ce qui accompagne un gain en terme d'accélération. Ceci est notamment dû au fait que notre bibliothèque crée des ensembles compacts de mailles, réduisant ainsi toute sorte d'effets mémoire (caches et Non Unified Memory Access (NUMA) notamment). La comparaison avec des outils de partitionnement montre, là aussi, une réduction des défauts de cache entrainant une accélération du programme. Même si ce gain est moins important, car ici, toutes les méthodes forment des ensembles compacts de mailles, il reste intéressant (de l'ordre de 10%). Enfin, à la section 5.3, une comparaison de performance est faite face à des outils de partitionnement de graphe parallèles (Zoltan et ParMetis [START_REF] Karypis | Parallel multilevel k-way partitioning scheme for irregular graphs, department of computer science[END_REF]). Dans ce cas, avec notre bibliothèque, l'ensemble du partitionnement est fait sur un seul noeud de calcul, et par un seul coeur. Il est évident que cette approche n'est pas possible pour des maillages à grandes dimensions (consommation mémoire trop importante) et pour un grand nombre de coeur (temps de calcul trop important), mais néanmoins, on constate que pour un nombre de coeurs compris entre 1 et 256 (soit 8 machines de tests), notre ordonnancement fournit de bien meilleures performances et minimise les communications engendrées par les dépendances de données entre les mailles.

F ij = λ r ij |r ij | 3 + r ij |r ij | 5 with λ = 1 - Q i + Q j 2m . (8
Le Chapitre 5 de cette thèse étend ce modèle en fournissant une version distribuée permettant d'exploiter plusieurs noeuds de calculs via les bibliothèques de communications Message Passing Interface (MPI). Pour cette version, l'ordonnancement est basé sur des communications noeuds-ànoeuds (peer-to-peer en Anglais), où à chaque noeud de calcul est associé un vCore et une cellule locale de Voronoï (son ensemble de mailles). Le calcul des forces, de la zone de Voronoï ainsi que du déplacement de chaque vCore est totalement local : nous n'échangeons que des informations de charge, de position et de coût des mailles entre chaque itération de déplacement des vCores. Le calcul de la zone locale de Voronoï est rendu totalement local par la connaissance de la position des voisins dans le maillage : tout comme pour la version séquentielle, cela repose sur un calcul de distance, et, connaissant l'ensemble des voisins directs et la position du noeud local dans le maillage, on peut facilement déduire l'ensemble des mailles les plus proches du noeud local. En fait, le point le plus complexe reste l'énumération des mailles pour lesquelles on veut faire un calcul de distance : naturellement, on ne souhaite pas faire ça pour toutes les mailles, et l'on souhaite restreindre cet ensemble à celles possiblement dans la zone locale de Voronoï. Nous avons donc développé deux algorithmes en ce sens : un premier qui se base sur des découvertes successives de mailles candidates, et un second, qui parcourt toutes les mailles contenues dans la boîte englobante de la précédente zone de Voronoï. Ces deux algorithmes ayant des performances bien différentes qui dépendent à la fois de la dimension du maillage et du nombre de noeuds de calculs, nous avons déterminé expérimentalement les meilleurs cas d'utilisation de ceux-ci dans la section 5.3.1. Le calcul des forces, et donc du déplacement engendré, est lui aussi rendu local via l'échange des charges des noeuds voisins : nous ne ne considérons que les interactions directes (entre voisins). De ce fait, on s'attend à avoir une convergence beaucoup plus lente vers des partitions de tailles proche de l'optimal, et cela en raison du temps de propagation de l'information de noeuds en noeuds. Un point important à noter est celui du potentiel : dans notre version séquentielle, le potentiel requiert de connaître la charge totale du maillage. Dans un environnement distribué, une telle contrainte induit une communication globale de type ALL-to-ALL (tout le monde échange avec tout le monde). On comprend donc qu'un nouveau potentiel doit être pensé et mis en place afin de lever cette contrainte. Nous avons ainsi développé un autre potentiel (DistMediumLoad), qui n'utilise que le coût des mailles locales et le coût des mailles des cellules de Voronoï voisines. Cela a une conséquence forte : les vCores ne visent plus un optimal global de partitionnement, mais un optimal local de partitionnement. La section 5.3 présente une comparaison de la qualité de partitionnement avec, là encore, des outils de partitionnement de graphes, mais aussi une étude des performances induites, et surtout une étude de coût, en terme de calcul et de communications, de notre algorithme. Nous voyons notamment que la qualité obtenue, à temps de calcul égal, est inférieure à celle obtenue avec les outils de partitionnement de graphes, mais qu'elle reste tout de même bien acceptable au regard de la différence par rapport au partitionnement optimal (quelques pourcentages). On notera par ailleurs, que le second potentiel (DistMediumLoad), engendre une qualité inférieure, et cela en raison d'oscillations induites par les minimums locaux. Enfin, on peut constater que le modèle de communications de noeuds-à-noeuds participe grandement à améliorer les performances, en terme d'accélérations, par rapport aux outils de partitionnement : on notera un facteur de deux d'amélioration. Les communications sont, quant à elles, soit similaires à celles engendrées par ces outils, soit réduites. Néanmoins, on peut aussi noter qu'une grande partie du temps de notre algorithme est concentré dans le calcul local du Voronoï : près de 80% du temps total d'une itération. Même si ce temps tend à décroitre avec l'augmentation du nombre de noeuds de calcul (les cellules sont plus petites, et donc, plus rapides à calculer), il y a fort à parier que les performances globales peuvent êtres grandement améliorées avec un meilleur algorithme de calcul de la zone locale de Voronoï.

Finalement, le Chapitre 6 propose une interface d'ordonnancement multi-niveaux permettant d'opérer un ordonnancement entre des noeuds distribués et, une fois au sein d'un noeud, entre les différents coeurs de calculs. Cette méthode, particulièrement utile pour utiliser efficacement la hiérarchie des ressources, permet de grandement réduire le nombre de communications mais aussi de profiter de la mémoire partagée entre les coeurs.

En utilisant un seul processus par noeud, l'ordonnancement entre noeuds distribués nous fournit des ensembles de mailles de tailles relativement conséquentes, et il est donc intéressant voire nécessaire de pouvoir à nouveau distribuer les mailles entre les différents coeurs de calculs. Nous fournissons donc une simple interface nous permettant de lier les sous-domaines, produits par le partitionnement entre les noeuds, à notre première version de Spawn : on partitionne ainsi un domaine global en macro cellules de Voronoï, puis, chaque cellule en plusieurs sous-cellules de Voronoï. Ces dernières sont alors attribuées à chacun des coeurs du noeud. L'ensemble de ce processus de partitionnement et de sous-partitionnement est présenté dans la section 6.2 du chapitre 6, et l'évaluation des performances sur 3 grappes de calculs (avec noeuds homogènes, hétérogènes et des Intel R Xeon Phi) est présenté à la section 6.3.

Parmi l'ensemble des résultats, on notera notamment que, du fait de la réduction du nombre de noeuds MPI, l'étape du calcul des cellules de Voronoï locales est plus coûteuse. En effet, puisque le nombre de processus MPI diminue, la taille des cellules augmente ce qui entraine un coût plus important. Aussi, dans nos expériences, nous montrons que le nombre de partitionnement doit être lié à la quantité de travail : les applications à forte dépendance de la mémoire devraient limiter le nombre de partitionnement puisqu'elles passent la majorité du temps dans les étapes de partitionnement et d'échange des données. Les expérimentations sur un ensemble de carte de type Intel R Xeon Phi montrent par ailleurs une bonne efficacité : du fait de la fréquence réduite des coeurs, le temps passé dans les étapes de partitionnement et de transfert des données est moins pénalisant que le temps passé dans les étapes de calculs. En revanche, l'étape de partitionnement est rendue plus coûteuse, là aussi en raison de la puissance des coeurs, notamment car l'étape de partitionnement n'utilise qu'un seul flux d'instructions (mono-thread). Enfin, l'évaluation des performances sur un ensemble de noeuds hétérogènes (2 noeuds Intel R SandyBridge et 2 noeuds Intel R Core) montrent que notre potentiel ne prend pas en compte les différentes propriétés des noeuds : un noeud ne disposant que de deux coeurs de calculs (noeuds Intel R Core) sont considérés de la même manière que les autres noeuds de 16 coeurs. Cela est dû au fait que l'on ne prend en compte que le coût de calcul des tâches. Celles-ci ont un coût nominal relativement similaire, ce qui entraîne des cellules de Voronoï de taille équivalente, et donc une somme de calcul équivalente. Ceci étant dit, nous montrons, toujours au chapitre 6, que l'intégration de certaines propriété matérielles (i.e., nombre de coeurs) permet de grandement améliorer les choses.

Conclusions

Dans cette thèse, nous nous sommes attachés à étudier un nouveau modèle d'ordonnancement basé sur des interactions physiques couplées à un pavage de Voronoï, permettant d'ordonnancer et de partitionner une masse de calculs (graphes, tâches) en vue des nouvelles architectures matérielles de type many-core. Cette approche, et notamment la mise en place du potentiel, a nécessité un long travail et le développement de certains outils comme un module de visualisation afin de pouvoir bien appréhender les comportements induits par les potentiels. Le potentiel défini produit des forces permettant d'attirer ou de repousser les vCores en fonction de leur charge : un vCore sous-chargé aura tendance à repousser ses voisins de façon à leur prendre du travail, alors qu'un vCore sur-chargé aura lui tendance à attirer ses voisins pour perdre du travail. De nombreuses optimisations, à la fois numériques et algorithmiques, ont été mises en place afin d'accélérer au mieux le calcul de l'évolution du déplacement des vCores. L'ensemble des travaux ont été validés via l'établissement de configurations de tests sous fortes contraintes, c'est à dire, avec une évolution complexe de la charge de calcul (formes régulières, répartition aléatoire). Les performances induites ont par ailleurs été analysées via des applications de tests induisant de fortes contraintes d'accès mémoire dans des environnements à mémoire partagée et distribuée. On notera, par exemple, une augmentation des performances de l'ordre de 10 à 40% par rapport aux outils de partitionnement et aux heuristiques intégrées dans le support d'exécution étudié (StarPU). La bibliothèque PSpawn : du fait de la disparité des ressources et de la taille des domaines de simulation trop importante pour un seul noeud de calcul, la version séquentielle n'est pas adaptée. On fournit donc une version parallèle de notre modèle d'ordonnancement n'utilisant que des communications entre voisins directs (favorable à une meilleure utilisation des ressources distribuées). Un second potentiel est aussi fourni : il permet de n'utiliser que des informations locales de charge de calcul.

L'interface Multi-niveaux : notre solution au problème de l'ordonnancement sur machines hiérarchiques. Les périphériques d'accélération (i.e., many-core) ne devraient pas être utilisés pour un partitionnement global (trop de communications) et notre interface permet ainsi de partitionner par niveaux : le domaine de simulation global est découpé par les noeuds MPI, puis, chaque sous-domaine de Voronoï est une nouvelle fois partitionné en sous-cellules de Voronoï. Ces dernières sont alors affectées aux coeurs de calcul.

Pour finir, puisque les architectures informatiques sont vouées à évoluer, nous avons rendu la création de nouveaux potentiels relativement aisé. De plus, nous avons aussi mis en place différents outils annexes afin d'aider au mieux tout développement de nouveaux potentiels en permettant de comprendre clairement le comportement de ceux-ci dans un environnement réel (i.e., intégré dans une application) ou simulé. Keywords: task scheduling, graph partitioning, parallelism, pair potential, Abstract: Computing capability of largest computing centers is still increasing: from a few hundred of cores in the 90's, they can now exceed several million of cores! Their infrastructure also evolves: it is no longer linear, but fully hierarchical. High Performance applications, well used by the scientific community, require on tools that allow them to efficiently and fully use computing resources. Numerical simulations mostly rely on large computations chains for which the cost (computing load), either a computing time or a memory access time, can strongly vary over time: it is referred to as dynamic computing load evolution. In this thesis, we propose to study actual data partitioning and computing scheduling tools, and to explore their limitations with regards to strong and repetitive load variation as well as the still increasing cluster hierarchy. We will then propose a new scheduling and partitioning model, based on physical interactions, particularly suitable to regular mesh based applications that produce strong computing load variations over time. We will then compare our model against well-known and widely used graph partitioning tools and we will see the reasons that make this model more reliable for such parallel and distributed applications. Lastly, we will propose a multi-level scheduling interface that is specially designed to allow to use our model in even more hierarchical clusters.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

The 4

 4 High Performance Computing Context . Objectives & Contributions . Organisation . I Numerical Simulations and Parallelism Challenges 1 Multi-Level Ressources 1.1 Clusters . 1.2 Computing Nodes . 1.3 Inside the Core . 1.4 Externally-Connected Accelerators . 1.5 Summary . 2 Exploiting The Parallelism 2.1 Physical Distributed Memory Paradigms . 2.2 Shared Memory Tools . 2.3 Summary . 3 The Scheduling Challenge 3.1 Finite Element Method . 3.2 Load Balancing for the Finite Element Method .II ContributionsSpawn: A Nature-Inspired Model 4.1 Contribution Overviews . 4.2 Physics Background . 4.3 Scheduling with Force Interactions . 4.4 Implementation Details . 4.5 Results . 4.6 Summary .

Listings 2 . 1

 21 PGAS . 2.2 OpenMP . 3.1 StarPU codelet . 3.2 StarPU task structure .

 High Performance Computing Context . 23 Objectives & Contributions . 24 Organisation . 25

1 . 1 29 1. 2 32 1. 3 36 1. 4 38 1. 5

 11292323364385 Clusters . Computing Nodes . Inside the Core . Externally-Connected Accelerators . Summary . 39

Figure 1 . 1 -

 11 Figure 1.1 -Cluster of interconnected computing nodes: the Tera super-computer managed by the Cea and built by Bull. Each row contains bays of ten to twenty computing nodes.

Figure 1 . 2 -

 12 Figure 1.2 -Rendez-vous paradigm. The receiver host emits a receive request (Recv Req) while the sender host emits a send request (Send Req). Network Interface Cards (NIC) are responsible to transfer data while hosts continue their computations.

Figure 1 . 3 -

 13 Figure 1.3 -RDMA paradigm: remote reading. The targeted host creates a RDMA Window, allowing the other host to remotely access to his memory. The instructor host emits a RDMA Request and starts the remote reading from the target host memory.

Figure 1 . 4 -

 14 Figure 1.4 -Evolution of the number of transistors per processor. We can clearly notice the stagnation of the number of embedded transistors inside cores: this denotes the physical limitation apparition (thermal limitation essentially). Source: Wikipedia.

Figure 1 . 5 -

 15 Figure1.5 -Evolution of the average number of cores inside a single socket over the time. The peak at from 2014 denotes the apparition of massively parallel devices (GPUs, many-core platforms). Data extracted from the Top500 project[2]

Figure 1 . 6 -

 16 Figure 1.6 -A four-processor UMA machine. Each processor is directly connected to the memory slot through a crossbar.

7 Figure 1 . 8 -

 718 Figure 1.8 -Multi-core machine. Each core is attached to several private (L1, L2)

Figure 1 . 9 -

 19 Figure 1.9 -Simplified instruction execution cycle.

Figure 1 . 10 -

 110 Figure 1.10 -Scalar vector addition (left) versus SIMD vectors addition (right).

Figure 1 . 11 -

 111 Figure 1.11 -SMT Architecture. Each physical core gathers several logical cores (from left to right: 1-way SMT, 2-way SMT and 4-way SMT). SMT is introduced by duplicating AS.

Figure 1 . 12 -

 112 Figure 1.12 -GPU Architecture (NVIDIA). A GPU (NVIDIA Maxwell) is divided into SMM (left): 16 for the NVIDIA GeForce GTX 980. A SMM contains four warps (right) of 32 cores. A Maxwell GPU contains thus 2048 cores.

2 CHAPTER 2 . 1 42 2. 2 45 2. 3

 221422453 Physical Distributed Memory Paradigms . Shared Memory Tools . Summary . 47 "[...] since we have big problems, we need big solutions." 1

Figure 2 . 1 -

 21 Figure 2.1 -Message-parsing model: n0, n1 and n2 are nodes that communicate between themselves over time.

Figure 2 . 4 -

 24 Figure 2.4 -Task parallelism with Cilk (left). The cilk keyword defines a task while the spawn keyword indicates the runtime of a possible parallelism opportunity. The task DAG (on the right), is for a call of f ib(3).

3 CHAPTER 3 . 1 Finite 50 3. 2

 331502 Element Method . Load Balancing for the Finite Element Method 53

Figure 3 . 1 -

 31 Figure 3.1 -Numerical simulations and experimentation connections. Source: Wikipedia.

Figure 3 . 2 -

 32 Figure 3.2 -Finite-Differences (left) & Finite-Elements (right) mesh decomposition. The triangular shape produced with the Finite-Element method is much better suited for irregular domains. Other shapes can be used (squares, ...) depending on the modeled volume/surface.

2 Figure 3 . 3 -

 233 Figure 3.3 -Construction of a linear approximation function (orange plan) by using three distinct interpolation functions (gray plans).

Figure 3 . 4 -

 34 Figure 3.4 -Multilevel partitioning: an input graph is successively reduced to a smaller graph before being partitioned. The partitioned graph is then extended to it's original graph.

5 s t a

 r p u c p u f u n c t c p u f u n c s [STARPU MAXIMPLEMENTATIONS] ; s t a r p u c u d a f u n c t c u d a f u n c s [STARPU MAXIMPLEMENTATIONS] ; 7 s t a r p u o p e n c l f u n c t o p e n c l f u n c s [STARPU MAXIMPLEMENTATIONS] ; s t a r p u m i c f u n c t m i c f u n c s [STARPU MAXIMPLEMENTATIONS] ; 9 s t a r p u s c c f u n c t s c c f u n c s [STARPU MAXIMPLEMENTATIONS] ; 11 i n t n b u f f e r s ; enum s t a r p u d a t a a c c e s s m o d e modes [STARPU NMAXBUFS] ; 13 enum s t a r p u d a t a a c c e s s m o d e * dyn modes ; 15 struct s t a r p u p e r f m o d e l * model ; struct s t a r p u p e r f m o d e l * power model ; 17 } ; ¦ ¥ Listing 3.1 -Extract of the StarPU codelet C-structure. This structure allows the user to provide several implementations for a given function according to targeted device properties (GPU, CPU) and capacities (Sse, Avx).

Figure 3 . 8 -

 38 Figure 3.8 -Example of a Cod 2 ex simulation (4500 CPUs, 100 hours of calculus). Material elements (atoms, finite elements) are gathered into Verlet boxes (left). Colors define internal structure configuration after a phase transition.

4 CHAPTER 4 . 1 68 4. 2 71 4. 3 74 4. 4 78 4. 5 82 4. 6

 441682713744785826 Spawn: A Nature-Inspired Model Contents Contribution Overviews . Physics Background . Scheduling with Force Interactions . Implementation Details . Results . Summary . 90

Figure 4 . 1 -

 41 Figure 4.1 -Grid of tasks with an evolving task cost. Each square represents a task, and the color represents the cost of the task: dark cells are more costly than the white ones. Each task contains a set of the physics elements of the simulated domain.

Figure 4 . 2 -

 42 Figure 4.2 -Regular domain decomposition and evolution over time. When moving upper and lower boundaries, the number of connected neighbors evolves too.Upon refinement, partition might not be of equal load due to shape constraints: in this case a full partition is computed from zero.

Figure 4 . 3 -

 43 Figure 4.3 -Voronoï tessellation. On the left figure, Voronoï sites are positioned on the cell domain. The right figure shows the cell distribution into Voronoï cells, characterizing the task distribution over underlying computing units.

Figure 4 . 4 -

 44 Figure 4.4 -Voronoï and neighboring connections. Square-like shape imply inefficient neighboring connections (at peak angle). With Voronoï shapes, inefficient connections are minimized and per-neighbor interfaces are larger leading to more efficient data transfers.

Figure 4 . 5 -

 45 Figure 4.5 -Force-based model applied to task scheduling. A set of tasks (square cells) are distributed among vCores, our analogy between particles and computing units, by using a Voronoï tessellation. Scheduling is achieved by computing forces between vCores leading a vCores displacement, and thus to a Voronoï domain evolution. The Qi term defines the local vCore load and is used during the force computation step.

Figure 4 . 6 -

 46 Figure 4.6 -Evolution of coulomb force regarding the distance between two par-

Figure 4 . 8 -

 48 Figure 4.8 -The task grid model: the grid has a dimension (x, y, z, with x, y, z ∈ N) and is defined in the Euclidean space. Each cell has a specific coordinate and computing cost (right figure: darker cells have a more important computing cost than white cells).

Figure 4 . 9 -

 49 Figure 4.9 -The MediumLoad potential. This potential generates three kinds of forces: repulsive ones (top-left), attractive ones (top-middle) and null ones (top-right) depending on the interaction of two vCores i and j. The color of particles (circular objects) is related to their load (the number). A dark color means a more important computing load than a white color. With more than two particles (bottom figure), displacements are more complexes.

Figure 4 . 10 -

 410 Figure 4.10 -Left: dipoles formation when using the second potential in its original definition (see equation 4.14. Right: interactions when using the improved potential version (see equation 4.15.)

Figure 4 . 11 -

 411 Figure 4.11 -Nearest neighbor-search performance: we compare two specific data structures: Boost R-Tree and Vantage-Point-Tree. Building time (left) and search time are sampled over 100 experiments with a set of random points. The x-axis is in logarithmic scale and the time is in micro-seconds. Note the scaling factor (10 5) for the left chart.

Figure 4 . 13 -

 413 Figure 4.13 -Simulation tool. A 2-dimension grid of cells with a specific cost (here, a Perlin noise based cost) is generated. Several vCores are positioned on the grid and the start button (top left) initiates the partitioning.

Figure 4 . 14 -

 414 Figure 4.14 -Test cases used to evaluate convergence capabilities of the Spawn library. From top left to bottom right: static load, Perlin-based load, vertical load en circular load.

Figure 4 . 15 -

 415 Figure 4.15 -Spawn monitoring tool architecture. A SHM is created by the Spawn instance and the monitoring client communicates with the library through this SHM.The library serializes internal structures upon a client request. This allows to visualise the behavior of any application that uses the Spawn library.

Figure 4 . 16 -

 416 Figure 4.16 -Generated load evolution: each square represents a task, and the color represents the cost of the task: dark cells are more costly than the white ones, i.e, we do more computations on internal matrices.

Figure 4 . 17 -

 417 Figure 4.17 -From left to right: initial random Perlin noise, cell distribution with Metis, cell distribution with Scotch and cell distribution with Spawn.

Figure 4 .

 4 [START_REF] Buntinas | Scalable distributed consensus to support mpi fault tolerance[END_REF] shows an example of generated Perlin noise along with different generated partitions, in terms of shape, after a call to each of these tools. Tables 4.3 and 4.4

Figure 4

 4

Figure 4 .

 4 Figure 4.19 compares performance of Spawn in relation to Scotch [71] and Metis [48] libraries.Scotch supports graph refinement and following experiments make use of it. Left figures refer to the static load case while right charts refer to the dynamic load evolution case, and, upper charts refer to the speedup while the bottom ones refer to the average number of L 1 data cache misses per thread for one iteration.

Figure 4 . 19 -

 419 Figure 4.19 -Resulting speedups (top) and L1 data cache misses (bottom) with graph partitioning tools (Scotch, Metis) and with Spawn on an Intel R IvyBridge Xeon E5-2680 computing node. Scotch is used with refinement strategies (SCOTCH graphRepart routine). Task scheduling or graph partitioning is achieved after each computing iteration. The Spawn cache miss ratio is used as base on bottom charts.

Figure 4 . 20 -

 420 Figure 4.20 -Timeline representing StarPU calls (grey), task computation (green) and partitioning computation with Spawn (red). The scheduling time is fully hidden by computing imbalance.

Figure 4 .

 4 21 compares performance of Spawn in relation to predefined StarPU schedulers.

Figure 4 . 21 -

 421 Figure 4.21 -Resulting speedups (top) and L1 data cache misses (bottom) with internal StarPU schedulers (Eager, DM, DMDA) and with Spawn on an IvyBridge Xeon E5-2680 computing node. The brutal performance drop for nearly 10 core indicates the NUMA-effect. With Spawn, this effect is delayed regarding other scheduling strategies. The Spawn cache miss ratio is used as base on bottom charts.

Figures 4. 23

 23 Figures 4.23 and 4.24 present the same evaluation but in a distributed memory environment by using MPI libraries. Measurements focus on speedup and data transfer rate between each iteration. We use matrices of 128x128 doubles in a domain of 512x512 tasks. Tests run on a cluster of Intel R

 Figures 4.23 and 4.24 present the same evaluation but in a distributed memory environment by using MPI libraries. Measurements focus on speedup and data transfer rate between each iteration. We use matrices of 128x128 doubles in a domain of 512x512 tasks. Tests run on a cluster of Intel R

Figure 4 . 22 -

 422 Figure 4.22 -FxT traces with the DM scheduler. Green elements refer to task execution while red elements refer to inactivity of StarPU workers. One row symbolises the activity of one StarPU worker.

Figure 4 . 23 -

 423 Figure 4.23 -Resulting data transfer rates (left) and speedups (right) with graph partitioning tools (Scotch, Metis) and with Spawn. Scotch is used with refinement capabilities. Scheduling or partitioning is achieved after each iteration.

Figure 4 . 24 -

 424 Figure 4.24 -Resulting data transfer rates (left) and speedups (right) with Zoltan (RCB, PHG), ParMetis (through Zoltan) and with Spawn. One can notice scalability issues of graph partitioning tools (PHG and ParMETIS).

Contents 5 . 1 93 5. 2 94 5. 3

 51932943 Spawn Challenges . Distributed Conception & Algorithms . Results . 98 5.4 Summary . 102

Figure 5 . 1 -

 51 Figure 5.1 -Direct and second-rank neighbor list. With this information, every vCore can compute independently local applied forces, and its own local Voronoï domain, and can also deduce frontiers with its directs neighbors.

Algorithm 9

 9 Voronoï by the bounding box algorithm. It iterates over all cells inside the bounding box (line 2) and checks whether it is a local cell or not (lines 4 and 5).

1: for all cells do 2 :Figure 5 . 3 -

 253 Figure 5.3 -Local Voronoï with a bounding box (black dashed box). We add a ∆ margin to the actual local Voronoï cell (red dashed box) and we iterate over all cells inside this bigger box.

Figure 5 . 4 -

 54 Figure 5.4 -Comparison of two local Voronoï algorithms: the neighbor-discovery algorithm 8 and the bounding-box algorithm 9. Analysis is made with a domain of 512x512 cells, with a varible number of MPI nodes. Left: speedup (logarithmic scale).Right: speedup regarding the size of the Voronoï domain. The first algorithm has a strong overhead for a few MPI nodes, since each MPI node works on a large local Voronoï domain. However, performance is better with an increasing number of MPI nodes. The bounding box algorithm, while offering a limited overhead for a few MPI nodes, has limited performance since it iterates over a large number of cells.

3 . 2 Figure 5 . 5 -

 3255 Figure 5.5 -Cost of the PSpawn iterative model, successively increasing the number of iterations used to compute a partition. Top left: 1 iteration. Top right: 10 iterations. Bottom left: 20 iterations. Bottom right. 40 iterations.

Figure 5 . 6 -

 56 Figure 5.6 -Cost repartition in our distributed algorithm by using our two distinct potentials: the MediumLoad (top) and the DistMediumLoad (bottom). Neighboring communications consist in exchanging local node information (load, position) and in the cell cost exchange between each local Voronoï tessellation: we need to send (or receive) cost of cells that leave (or arrive in) the local domain.

Figure 5 . 7 -

 57 Figure 5.7 -PSpawn performance with a more CPU-bound application (x5 regarding other tests). In this case, scheduling is less penalizing.

Figure 5

 5 Figure 5.6 shows that most part of the computing cost (more than 80%) of our algorithm remains in the Voronoï tessellation, and since we need to compute a Voronoï tessellation for every single iteration, this explains why the speedup is penalized when we increase the number of iterations. We also see that, as we increase the number of MPI nodes, the part of communications is more important (for both force neighbor communications and for the force computations). On the Figure5.8, that shows the real time values, we see (left chart) that the Voronoï tessellation cost dramatically decreases with the increase of the number of MPI nodes. With better Voronoï algorithms, we have no doubts that we will improve per-iteration performance, but, as presented in table 5.1, with 20 iterations, we have already achieved a fairly good distribution. Therefore, we can expect that 10-20 iterations will produce interesting results. The time spent in

Figure 5 . 8 -

 58 Figure 5.8 -Cost evolution of the Voronoï tessellation, the communication ratio and the force computation steps of the distributed algorithm. Note the 10 5 scale factor for the cost of the Voronoï Tessellation chart (right). The vertical red line shows the limit after which the network is involved. Dashed lines represent the cost evolution when using the DistMediumLoad potential.

Figure 5 . 9 - 6 CHAPTERMulti-Level Scheduling Contents 6 . 1 6 . 2 A 6 . 3 6 . 4

 59661626364 Figure 5.9 -Comparison of average induced communication per MPI node after the computation of a new cell distribution with a variable number of iteration steps (I parameter). Top left: 1 iteration. Top right: 10 iterations. Bottom left: 20 iterations. Bottom right. 40 iterations.

Figure 6 . 1 -

 61 Figure 6.1 -Multi-level scheduling with Spawn. A set of cells (on the top) isscheduled into Voronoï sets by using the distributed PSpawn library. These subsets of cells are then again distributed into other Voronoï sets by using the sequential Spawn library. Those final sets of tasks are then computing by using cores of computing nodes.

Figure 6 . 2 -

 62 Figure 6.2 -Sub-domain creation: the left partition is wrapped into a bounding box where extra cells (in gray on the right figure) have a zero cost.

1 :

 1 domain ← createDomain () 2: localP artition ← partitionDomain (domain) 3: subdomain ← createSubDomain (domain) 4: subP artitions[] ← partitionSubDomain (subDomain)

10 0 10 1 10 2 10 Figure 6 . 3 -Figure 6 . 4 -

 106364 Figure 6.3 -Evaluation of the multi-level usage of the Spawn library on the cluster #1 (see table6.1). The different charts present performances with an increasing number of global scheduling. Top: with the initual amount of work. Bottom: with an increase of the amount of work (x5 factor). From left to right: scheduling step between every application step, every 2 application steps, every 4 application steps and every 8 application steps.

Figure 6 . 5 -

 65 Figure 6.5 -Scheduling on heterogeneous nodes. In this experiment, we use a constant and equal load distribution, and we schedule cells among heterogeneous nodes. We would expect different Voronoï sizes instead of this same size sets. On the right, the cell cost is divided by the number of computing units, thus reflecting node capabilities.

Contents 7 . 1

 71 Contributions . 114 7.2 Perspectives . 115

8 CHAPITRE 8 . 2

 882 . 119 Résumé des Travaux . 121 8.3 Conclusions . 124

 Enfin, et dans le but d'une meilleure diffusion et utilisation par d'autres applications de simulation numérique, ce modèle d'ordonnancement a été intégré dans une bibliothèque C/C++. Il est découpé en trois composants principaux : La bibliothèque Spawn : le coeur du projet. Cette bibliothèque fournit une interface C permettant de partitionner un domaine. L'étape de partitionnement est effectuée via des algorithmes séquentiels et repose sur le potentiel MediumLoad. Cette bibliothèque est particulièrement adaptée aux environnements à mémoire partagée : le partitionnement peut être effectué durant l'inactivité des coeurs de calculs due à un déséquilibre de charge. Un composant d'intégration (i.e., un patch à appliquer au code source) pour le support d'exécution StarPU est fourni.

AAPPENDIXFigure A. 3 - 25 I 1 30 1. 1 . 2 30 1. 2

 32513012302 Figure A.3 -Cod 2 ex internal calc d plasticity dt () function. The color defines the computing cost (red for intense computing cost, blue for limited computing cost).

F 43 G 38 H 31 I 53 M 37 N 49 O 36 P 69 R 52 S 37 T 33 U

 4338315337493669523733 Fibre Channel . 31 Finite Elements Method 50 Fortran CoArray. .GPU . High-Speed Ethernet . InfiniBand . 30, 42 Instructions Pipelining 36 Intel R Xeon Phi . 39, 109 L LU decomposition . Material Modeling . 49 MediumLoad potential 77 Molecular Dynamic . 70 Force computation 70, 71 Integration . 73 Motion integration 70 Potential . 70 MPI . 43 Multi-Core . 34 Multi-Processor . 33 Multi-Threading . Numerical Simulations Out-of-Order . Parallel Machines . 29 Partial differential equations 50 Partitioning Geometric . 55 Multilevel . 55 Voronoi . RapidIO . 31 RDMA . 31 Rigidity matrix . Shared Memory. .33 Shared Memory Tools 45 SIMD AVX . 37 AVX-512 . 37 MMX . 37 SSE . 37 SIMD, Data Vectorization 37 SMT . Task Parallelism . 46 Tensor . 60 Top500 . Unified Parallel C . 43 Titre: Modèle d'Ordonnancement et de Partitionnement pour Applications à Maillages et Calculs Réguliers dans le Cadre d'Accélérateurs de Type ManyCore . Mots-clef: Ordonnancement de tâches, partitionnement de graphes, Parallélisme, potentiel de pair, Résumé: La puissance de calcul des plus grands calculateurs ne fait qu'augmenter: de quelques centaines de coeurs de calculs dans les années 1990, on en est maintenant à plusieurs millions! Leur infrastructure évolue aussi: elle n'est plus linéaire, mais complètement hiérarchique. Les applications de calcul intensif, largement utilisées par la communauté scientifique, doivent donc se munir d'outils permettant d'utiliser pleinement l'ensemble de ces ressources de manière efficace. La simulation numérique repose bien souvent sur d'importants calculs dont le coût, en terme de temps et d'accès mémoire, peut fortement varier au cours du temps: on parle de charge de calcul variable. Dans cette Thèse, on se propose d'étudier les outils actuels de répartition des données et des calculs, afin de voir les raisons qui font que de tels outils ne sont pas pleinement adaptés aux fortes variations de charge ainsi qu'à la hiérarchie toujours plus importante des nouveaux calculateurs. Nous proposerons alors un nouveau modèle d'ordonnancement et de partitionnement, basé sur des interactions physiques, particulièrement adapté aux applications basées sur des maillages réguliers et présentant de fortes variations de charge au cours du temps. Nous validerons alors ce modèle en le comparant à des outils de partitionnement de graphes reconnus et largement utilisés, et verrons les raisons qui le rendent plus performant pour des applications aussi bien parallèles que distribuées. Enfin, nous proposerons une interface nous permettant d'utiliser cette méthode d'ordonnancement dans des calculateurs toujours plus hiérarchiques. Title: A Scheduling and Partitioning Model for Stencil-based Applications on Many-Core Devices.

1

 Coarsening Algorithm . 2 Cod 2 ex main computing loop . 3 Molecular Dynamec algorithm . 4 Force computations between pairs of particles . 5 Voronoï assignment . Voronoï by the bounding box algorithm . 10 Multi-level library usage .

6 PSpawn main convergence loop . 7 Distributed force computation . 8 Voronoï by discovery algorithm . 9

 the RDMA

			Recv Req	
	Send Req			
		Da ta tra ns fer		Time
	Send Event		
			Recv Event
	Host	NIC	NIC	Host
	Sender		Receiver	

 die fabrication technology: from 10µm in 1971 to 14nm in 2014. Since 2000's, Moore's observation rule is no longer verified due to design miniaturization limitations (thermal dissipation of components, minimal inter-atoms distance, etc.,): figure1.4 presents the number of transistors integrated into a single core: we can clearly note a settlement of the number of transistors around 2010's.

								16-Core SPARC T3
								Six-Core Core i7
		2,600,000,000						Six-Core Xeon 7400	10-Core Xeon Westmere-EX
		1,000,000,000						AMD K10 Itanium 2 with 9MB cache POWER6 Dual-Core Itanium 2 AMD K10	Core i7 (Quad) Six-Core Opteron 2400 8-Core Xeon Nehalem-EX Quad-Core Itanium Tukwila 8-core POWER7 Quad-core z196
								Itanium 2	Cell Core 2 Duo
		100,000,000						AMD K8
								Pentium 4	Barton	Atom
	Transistor count	100,000 1,000,000 10,000,000			8086 68000	curve shows transistor count doubling every two years 8088 80186 80286 80386 80486	Pentium	AMD K6-III AMD K7 Pentium II AMD K5 Pentium III AMD K6	10-Core Xeon Westmere-EX 16-Core SPARC T3 Six-Core Core i7 Six-Core Xeon 7400 AMD K10 Itanium 2 with 9MB cache Core i7 (Quad) Six-Core Opteron 2400 POWER6 8-Core Xeon Nehalem-EX Quad-Core Itanium Tukwila 8-core POWER7 Dual-Core Itanium 2 Quad-core z196 AMD K10
		10,000		8085 6800	6809		Itanium 2	Cell Core 2 Duo
			8080	Z80		
			8008	MOS 6502		
		2,300	4004	RCA 1802			
			1971	1980	1990	2000	2011
							Date of introduction

Table 1 .

 1 .2). When an instruction leaves a stage, another can enter into it. If everything goes well, and if all executions have a 1-cycle latency, this kind of technology can execute one instruction per cycle. Since things are not so

	Instr. No.				Stage		
	1	IF ID EX MEM	WB		
	2		IF ID	EX	MEM	WB	
	3			IF	ID	EX	MEM	WB
	4				IF	ID	EX	MEM
	Cycle	1	2	3	4	5	6	7
	2 -5-stages instruction pipelining: Instruction Fetch (IF), Instruction
	Decode (ID), Execute (EX), Memory accesses (MEM) and Write Back (WB).

 Many multimedia or scientific applications rely on algorithms that apply one instruction on a set of elements (multi-dimensional array). This is known as the SIMD paradigm (see figure 1.10). Specific registers have been introduced into cores, starting from the Mmx (8 registers, 64-bits wide), Sse (8 registers, 128-bits wide), Avx (8 registers, 256-bits wide) and AVX-512 (8 registers, 512-bits wide). While this technology was first introduced in 1970 (Cdc Star100), it first appeared into personal range computers in 1997 (Intel R Mmx registers) in response to an increasing multimedia demand. These registers support integer, double and float types. Obviously,

1.3.2 ...Some Vectorization Capabilities...

 vector addition in listing 2.1). Obviously, all private data remain private, and data transfers are automatically handled by the language, but synchronization step remains at the charge of the programmer. In a tutorial session[START_REF] Carlson | Programming in the partitioned global address space model[END_REF] 3 , Carlson et al. compare PGAS methods against traditional MPI-based applications, in terms of number of lines and resulting performance. As expected, PGAS-based applications are more maintainable (with a line reduction factor of two), but require optimizations (both at the compiler and at the software level) in order to perform as well as MPI-based versions. § ¤

		Shared	Shared	Shared	Shared	Shared	Shared
		data	data	data	data	data	data
		set #0	set #1	set #2	set #3	set #4	set #5
		Private	Private	Private	Private	Private	Private
		memory	memory	memory	memory	memory	memory
		Thread 0	Thread 1	Thread 2	Thread 3	Thread 4	Thread 5
	Figure 2.3 -PGAS model: the shared variables are implicitly distributed among
	all processes. Private variables remain private.	
	1	#define N 100 * THREADS		
	3	s h a r e d i n t a [N] , b [N] , c [N] ; // s h a r e d v a r i a b l e s
		i n t main ()				
	5	{				
		unsigned i ; // P r i v a t e v a r i a b l e	
	7	f o r (i = 0 ; i < N; i ++)		
		i f (MYTHREAD == (i % THREADS)	
	9	a [i] = b [i] + c [i] ;		
	11	return 0 ;				
		}				
	13 ¦						¥
	Listing 2.1 -PGAS code example (UPC): addition of two-vectors. Shared
	variables are explicitly declared shared. The THREADS and MYTHREADS
	keywords are part of the UPC language.		

allel

 .1). Those steps are referred to as model calibration, and are strongly connected to experimental results.

		Real System	
	Perform experiments		Make a Model
			Model System
		Perform Simulations	Construct Approx-
	Experimental Results	Simulation Results	imate Theories Theoretical
				Predictions
	Compare & Im-	Compare & Im-
	prove Model	prove Theory

 Task Definition & SubmissionAs said previously, a StarPU task gathers a set of data and a codelet. The central role of a codelet is to gather different implementations of the same computing function. This is the way StarPU handles heterogeneous computing: one must define as many implementations as targeted computing devices. § ¤

	1	struct s t a r p u c o d e l e t
		{
	3	u i n t 3 2 t where ;

 Extract of the StarPU task C-structure

	1	struct s t a r p u t a s k
		{
	3	struct s t a r p u c o d e l e t * c l ;
	5	i n t n b u f f e r s ;
		s t a r p u d a t a h a n d l e t h a n d l e s [STARPU NMAXBUFS] ;
	7	enum s t a r p u d a t a a c c e s s m o d e modes [STARPU NMAXBUFS] ;
	9	void * c l a r g ;
		s i z e t c l a r g s i z e ;
	11	
		i n t p r i o r i t y ;
	13	} ;
	¦	¥
		Listing 3.2 -

 Figure 3.7 -2D Verlet decomposition. The red Verlet box has 8 direct neighbors, 16 2 nd rank neighbors and 32 3 rd rank neighbors. Every Verlet box contains a set of elementary elements: finite elements within the framework of Cod 2 ex, but other elements are possible (atoms, finite difference cells).decomposition and by using the StarPU runtime for shared memory parallelism. Each MPI process receives a subset of the whole domain: the distribution is pre-computed (before the execution of the application) and does not evolve over time. The Cod 2 ex software main computing loop can be summarized by algorithm 2. Full call graphs of main involved functions (calc d2u dt2 (), calc d phase dt (), calc d plasticity dt ()) are presented in appendix A.2. Each of this function computes part of the global physics evolution on the local set of verlet boxes. Cod 2 ex main computing loop. The calc d2u dt2 () function computes the acceleration of a node displacement {u}, the calc d phase dt () computes the plasticity evolution and the calc d plasticity dt () function computes phase transitions.

	while t begin < t end do
	/* Communication step */
	exchange neighbors ghosts ()
	/* Computation step */
	calc d2u dt2 ()
	calc d phase dt ()
	calc d plasticity dt ()
	integrate velocity()
	integrate displacement()
	integrate phase()
	integrate plasticity()
	/* No global re-scheduling step */
	t ← t + 1;
	end while

Such a domain decomposition into cells is really close to typical stencil problems: updates of cells require values of neighboring cells. This exacerbates links between cells (data exchanges)

Algorithm 2

 Force computations between pairs of particles inside a specific cutting radius (rcut variable, see line 6). Particle symmetry is involved to reduce computations (lines 8 and 9).

r cut Figure 4.7 -Cutting radius (rcut) optimization. Long-range interactions have a limited if not null impact, and can therefore be scrapped.

Algorithm 4 1: resetForce (particles) 2: rcut ← 0.5 * boxSize 3: for i ← 0; i < particles.size(); i ← i + 1 do 4:

Table 4 . 2 -

 42 List of benchmark applications and their properties

	App No	Parallelism Matrix size	Memory	Focus
	#1		None	None	Shared	Computing time and partitioning quality
	#2	(2a)	pThreads	8x8	Shared	Cache misses
		(2b)	MPI	128x128	Distributed	Data transfers
		t = 0	t = 1	t = 2	t = 3	t = 4

Table 4 . 4 -

 44 Comparison of the partition quality with a random load distribution,

				Number of vCores
			64	128	256	512
		Metis	4.766	7.149	9.854	12.903
	Random Distribution	Scotch 4.607	6.534	9.242	12.229
		Spawn 10.893 19.521 12.518 73.772
		Metis	6.971 10.998 17.408 26.849
	After Load Variation	Scotch 6.707 10.357 20.049 41.077 Spawn 7.086 7.400 7.923 106.456
		Spawn * 6.337	6.404	7.708 104.607

after a load variation and after a load variation plus a modification of the P parameter. Two graph partitioning tools are used (Metis and Scotch) and compared with Spawn. This table shows values for a partitioning of a 256x256 task domain, with a variable number of vCores (or parts). The Spawn* lines present results when we decrease the P parameter.

 .2 -Local Voronoï by discovery algorithm. We increase the Voronoï surface by successively discovering new cells as long as we discover cells that are local (see algorithm 8). This algorithm isn't efficient since it requires a lot of search but has the advantages to automatically discover neighboring nodes. (1) The first candidate cell (Voronoï site) is selected. (2) It has 8 neighbors, thus 8 possible new candidates. (3) These candidates are added to the list of candidates. (4) Select the next candidate. Voronoï by discovery algorithm. It iterates over a set of candidate cells (line 2) and checks whether it is a local cell or not (lines 4 and 5).

Algorithm 8 1: neigbors set ← local vCore 2: while !empty (candidates) do 3: cell ← candidate.pop() 4: closest ← findClosest (neighbors set, cell) 5: if closest == local vCore then 6:

Table 5 .

 5 1 presents results of the

	Method	Number of nodes 64 128 256 512	Method	64	Number of nodes 128 256 512
	Zoltan (RCB)	0.89 3.2	7.3 11.5	Zoltan (RCB)	0.03 0.05	0.1	0.2
	Zoltan (PHG)	0.85 2.9	5.9 10.5	Zoltan (PHG)	0.02 0.05	0.1	0.2
	Zoltan (ParMetis) 0.84 3.1	6.1 11.8	Zoltan (ParMetis) 0.02 0.05	0.1	0.2
	PSpawn (ML)	2.06 3.03 6.2 11.6	PSpawn (ML)	1.48 1.16 2.04 5.13
	PSpawn (DML)	1.8 3.01 5.9 11.1	PSpawn (DML)	1.06 13.02 2.01 15.39
	Computing time (s)		Distance to optimal distribution (%)

Table 5 . 1 -

 51 Evaluation of the PSpawn algorithm regarding graph partitioning tools.

Table 6 . 1 -

 61 .1 for details): a classical cluster of 32 Intel R Three clusters are used for multi-level experimentations: a classical one, a really hierarchical one, with many-core devices, and a small one of heterogeneous machines.

	Property	Cluster #1	Cluster #2	Cluster #3	
	N. of Nodes	32	32	4	
	Processor (Intel)	Xeon E5-2698v3	Xeon Phi	E5-2650	E6750
	Architecture	Haswell	Knight Landing	SandyBridge	Core
	N. Of Cores	2x16+Ht	60+Htx4	2x8+Ht	2
	Core Frequency (GHz)	2.30	1.2	2.0	2.66
	Caches (L 1 /L 2 /L 3)	32+32/256/40M	32+32/1M/None	32+32/256/20M 32+32/4M/None
	Interconnect	Infiniband Qdr Infiniband Edr	Gigabit Ethernet

 Figure 8.1 -Pavage de Voronoï. À gauche, un ensemble de points, les sites de Voronoi, sont positionnés sur le maillage. À droite, chaque point de l'espace est attaché à son plus proche site de Voronoï.ainsi leur prendre des mailles, alors qu'un vCore sur-chargé va attirer ses voisins et donc perdre des mailles. Un point important à noter, est que le déplacement des vCores, repose sur un modèle itératif : on calcule les positions successives des vCores au cours du temps. Afin d'accélérer ce modèle itératif, le chapitre 4 décrit les différentes méthodes qui ont été utilisées afin de réduire à la fois le nombre de calculs de forces à effectuer, mais aussi le nombre d'itérations nécessaires pour atteindre une partition proche de l'optimal.

.1) Avec ce potentiel (voir équation 8.1), un vCore sous-chargé va repousser ses vCores voisins, et

 . 33 1.2.2 Multi-core . 34 1.3 Inside the Core . 36 1.3.1 A Bit of Efficiency... 36 1.3.2 ...Some Vectorization Capabilities... 37 1.3.3 ...and Multi-Threading . 37 1.4 Externally-Connected Accelerators . 38 1.5 Summary . 39 Physical Distributed Memory Paradigms . 42 2.1.1 Message-Based Methods . 42 2.1.2 PGAS Libraries . 43 2.2 Shared Memory Tools . 45 2.2.1 Libraries and Extension of Languages . 45 2.2.2 Task-based Runtimes . 46 A.3.2 Spawn Interface . A.3.3 Spawn Distributed Interface . A.3.4 Spawn Multi-Level Interface . BLAS . 53 C Cache Eviction LFU . 36 LRU . 36 Clusters . 29 D Distributed Memory 30, 42

	2 Exploiting The Parallelism Index Bibliography List of Publications 2.1 Table Of Content B	41 Index

Tianhe-2, China National Super Computer in Guangzhou

1 st release in 2000

Host Channel Adapter

Results are gathered and freely accessible on the website's project[2]

Open Computing Language

Knight Landing architecture

Jack Wells, Forum ORAP, 10 th of October,

At least, the OpenMPI library

SuperComputing'03, Oklahoma, USA

By opposition to kernel threads, also known as processes

Laboratoire Bordelais de Recherche en Informatique

a COde for Defaults and Discontinuities in (X) Crystals

Next-generation of Intel R Xeon Phi (Knight Landing) might be embedded directly on the motherboard as a CPU.

Remerciements

INDEX

Bibliography

a permis d'améliorer

List of Tables

Part II

Contributions

Appendix

A.1 Hardware Resources: InfiniBand stack

InfiniBand systems provide high efficient remote memory accesses by providing a direct access to memory nodes. Because of virtual memory addresses, direct memory accesses are not possible from a user-space program, and specific kernel layer must be involved. components of an InfiniBand support inside the Linux kernel: an Ip-to-Ib translation layer that ensures the network packet translation from Ip networks to Ib network, a core, that provides all the InfiniBand capabilities, and a specific Host Channel Adapter (HCA) hardware driver.

A.2 Coddex Main Functions

This section presents the call graph of three functions used within the Cod 2 ex software. The interesting point to note is the large dependency between functions (i.e., one function that depends of a large set of others functions). Every colored box correspond to a call to a function, and the line that joins two boxes defines the execution order. Labels around the lines contains the number of calls achivied by calling functions: in these functions, this number is close to one million.

A.3 Contributions

A.3.1 Spawn Potential Design

One the most important feature of the Spawn library is its force-based model, based on potentials. Internally, a potential is a C++ object that inherits from a specific interface (see figure A.5). The current version of the library embedded two kinds of potentials whether they are used in shared memory or not. In shared memory, three potentials exist: MediumLoad, the main potential used in this thesis, IdleLoad, a potential that uses the idleness of a computing core, and, localLoad, a potential that uses only the local load for interactions. For distributed memory systems, we have designed the DistMediumLoad potential that uses only neighbor information for interactions.

A.3.2 Spawn Interface

• spawn domain * spawn createDomain (const SchedulingProperty property, const unsigned

x, const unsigned y, const unsigned z, const unsigned n) : Create and return the task domain.

• void spawn deleteDomain (spawn domain *u): Delete the previously allocated domain.

• unsigned spawn getClosestCore (spawn domain *u, const unsigned indexInDomain):

Return the index of the owner of the indexInDomain task.

• void spawn getFullDistribution (spawn domain *u, unsigned *taskDistribution): Return the full task distribution.

• void spawn setCoreLoad (spawn domain *u, const unsigned VCoreId, const double percent):

Set the VCore load.

• void spawn updateTasksWeight (spawn domain *u, const double *loadArray):

Update the weight of a set of tasks.

• void spawn partition (spawn domain *u, const unsigned nIterations, const float threshold): Partition the domain.

A.3.3 Spawn Distributed Interface

A.3.4 Spawn Multi-Level Interface

• void spawn partitionSubDomain (spawn subDomain *u, const unsigned nIterations, const float threshold):

• spawn subDomain * spawn createSubDomain (const SchedulingProperty property, const unsigned n, const spawn domain *const distributedDomain): Create a sub domain from the parent domain.

• void spawn deleteSubDomain (spawn subDomain *u): Delete a sub domain.

List of Publications