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Chapter 2 :

Transistor's drain current compact modeling

Moore's law predicted that it will take two years to step from a technological node to the next one. Even though this pace has been kept until recently, the trend starts to slow down as declared by Intel CEO in 2015 [START_REF] Pirzada | Intel Hints At New 2.5 Year ‗Tick Tock Tock' Cadence -Confirms 14nm Kaby Lake Intermediary Platform and 10nm Cannonlake Delay to[END_REF]. Thus, pursuing MOSFET scaling trend becomes harder as the time passes. This loss of speed is due to many factors. First, the length associated with the technological node is supposed to reflect the average half-pitch of a memory cell, which is the size of a pattern in an array of transistor used to build memory cells. In fact, what it has been observed between the 90 and the 30 nm nodes is that each time a node is crossed, the area of the chip is scaled by ½, but the gate pitch is actually scaled by 0.7 and the physical gate length by only 0.9. In the meantime, source-drain junction optimization succeeded to reduce sufficiently the overlap distance so that the effective channel length did not change at all between the 90 nm down to the 30 nm technology node as shown in Figure 1-1 [START_REF] Moroz | Transition from Planar MOSFETs to FinFETs and its Impact on Design and Variability‖[END_REF]. So by reducing the gate pitch and the gate length with a proper source drain junction engineering, it has been possible to keep the same effective length (L eff ) down to the 30 nm node. However, in order to go forward, this condition could not hold and L eff had to be reduced, inducing new challenges such as increased short channel effect due to the loss of control of channel's electrostatic. These challenges are part of the reason why the development time is longer.

In addition variability is increasing and becomes a greater challenge. Indeed, the number of variability sources and their impact increase as shown by R. Sitte comparing 1.5 µm and 0.1 µm bulk MOSFETs [START_REF] Sitte | Device parameter changes caused by manufacturing fluctuations of deep submicron MOSFET[END_REF] [START_REF] Sitte | Sensitivity of 0.1 µm MOSFET's to manufacturing fluctuations‖[END_REF], by Fu-Liang Yang comparing 45, 32, 22 and 16 nm technology node [START_REF] Yang | Electrical characteristic fluctuation in Sub-45nm CMOS Devices‖[END_REF] and by Samar K. Saha using ITRS roadmap [START_REF] Saha | Compact MOSFET modeling for process variability-Awar VLSI circuit design‖[END_REF] [START_REF] Cheng | Evaluation of Intrinsic parameter fluctuation on 45, 32 and 22 nm technology node LP n-MOSFETs‖[END_REF]. However performance uniformity of elementary devices like transistors is a priority for microelectronic manufacturers. Indeed, any dispersion in this performance will be propagated on the next circuit level (e.g. SRAM). From one circuit level to the other the impact of performance dispersion is often increased. As a consequence, a small dispersion of performance at the lowest architecture level can jeopardize the highest circuit level functionality. Large dispersions lead to large yield loss and an increase in the circuit production cost. This is why huge effort is done to bring MOSFET performance dispersion down to a reasonable range.

Considering variability, its sources are differentiated depending on their autocorrelation length and their statistical nature [START_REF] Laurent | TCAD Modeling of variability in 28-nm CMOS technologies based on Impedance Field Method‖[END_REF] [START_REF] Qian | Variability Modeling and Statistical Parameter Extraction for CMOS Devices‖[END_REF]. In particular we distinguish global from local variability (considering the autocorrelation length) [START_REF] Lin | Performance-Aware Corner Model for Design for Manufacturing[END_REF][17] [START_REF] Asenov | Modeling and simulation of transistor and circuit variability 140 and reliability[END_REF] and statistical from systematic variability (considering the statistical nature) [START_REF] Strojwas | Cost-Effective Variability Reduction Approaches to Enable Future Technology Nodes‖[END_REF]:


Global variability encompasses every sources of variability that has a larger autocorrelation length than die dimension. Hence, it comprises within-wafer, wafer-to-wafer, lot-to-lot and across-factory variability (e.g. deposited insulating layer thickness across the wafer, anneal temperature …).



Local variability only encompasses within-die variability sources (e.g. Random Discrete Dopant (RDD), Line Edge Roughness (LER), transistor orientation with respect to crystalline orientation, well proximity effect)…  Systematic variability arises from sources that can be predicted (e.g. transistor orientation with respect to crystalline orientation, well proximity effect …).  Statistical variability, in contrast with systematic variability, is characterized by its stochastic nature. It can only be comprehended using statistical modeling (e.g. anneal temperature, Random Discrete Dopant, Line Edge Roughness…).

Typical source of local random variability are RDD, LER, polysilicon and metal gate granularity (PSG/MGG), Trapped Interface Charges (TIC) and interface roughness. Local random variability can hardly be controlled by process adjustment because of its stochastic nature. Indeed corresponding sources are stochastic phenomena that impact each device independently one from another at the atomistic scale. Since these phenomena are random, it is neither possible to accurately predict their impact at the device level nor to counteract them by process optimization. Only stochastic variability model can be used to predict the dispersion of the transistor's performance. Even though a lot of work has been done to limit its impact by circuit design optimization [START_REF] Yakupov | Analysis of Selected Methods for CMOS Integrated Circuit Design for Yield Optimization‖[END_REF] [START_REF] Zhang | Bai -Process Variability-Induced Timing Failures -A Challenge in Nanometer CMOS Low-Power Design‖[END_REF], this source is intrinsic to the technology used. This is why it is considered as the bottom line in terms of variability. Thus, adopting new architectures or using advanced process techniques like extreme UV are the only ways to reduce local random variability. Consequently, a large amount of work has been dedicated to systematically investigate local random variability sources for every technology node [START_REF] Cheng | Evaluation of Intrinsic parameter fluctuation on 45, 32 and 22 nm technology node LP n-MOSFETs‖[END_REF]- [START_REF] Rahhal | A comparative mismatch study of the 20 nm Gate-Last and 28 nm Gate-First bulk CMOS technologies‖[END_REF]. In order to meet both local random variability and gate length reduction requirement, new architectures and techniques have been introduced like Fully Depleted Silicon on Insulator (FD-SOI) [START_REF] Colinge | Recent Advances and Trends in SOI CMOS Technology‖[END_REF], FinFet [START_REF] Yu | FinFET scaling to 10 nm gate length‖[END_REF], double gate [START_REF] Wong | Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel‖[END_REF] or Gate All-Around (GAA) MOSFETs [START_REF] Colinge | Silicon-on-insulator 'gate-allaround device[END_REF], extreme UV etching, SiGe and III-V components. As an example, we show the case of FD-SOI MOSFET in Figure 1-2 comparing the FD-SOI and bulk architecture.

This architecture meets the gate length reduction requirement by improving significantly the electrostatic control of the channel thanks to the buried oxide layer (BOx) beneath the channel. To another extend, it enables controlling the threshold voltage by tuning the back interface voltage, enabling low power applications. FD-SOI technology addresses local random variability issue using intrinsic channel. In addition, it has been shown to be less sensitive to Line Edge Roughness (LER) [START_REF] Cheng | Evaluation of Intrinsic parameter fluctuation on 45, 32 and 22 nm technology node LP n-MOSFETs‖[END_REF]. So this technology enables reducing significantly the impact of local random variability. Due to these advantages, it has been chosen by STMicroelectronics for the 28 nm technological node and beyond.

Global variability also limits the yield. Indeed, large process dispersion at wafer or lot scale can compromise the functionality of a large number of die. Thus process and device performance should be monitored at the die scale. In order to fulfill this task, performance indicators have been determined. These indicators are continuously controlled with in-line measurements called Parametric Tests (PT). A reasonable dispersion of performance is then obtained if every one of these indicators lie within predetermined boundaries called Statistical Process Control (SPC). Performance indicators are chosen as critical quantities that will limit the next circuit level performance. For example cell current is a performance indicator for SRAM circuits. This cell current is directly related to the saturation current of the transfer (access) transistor and pull-down (driver) transistor [7][8]. This is why SPC have been created for the saturation drain current (I Dsat ). Another example is the frequency of ring oscillator at operating voltage. This frequency is linked to the switching speed of CMOS inverters that are themselves related to the peak current obtained during inverter switching, commonly defined as the average between I H and I L, where I H =I D (V G =V DD , V D =0.5V DD ) and I L = I D (V G =0.5V DD , V D =V DD ) [START_REF] Na | Effective Drive Current in CMOS Inverters‖[END_REF]. V G , V D and V DD are the gate, drain and operating voltage respectively. I D is the drain current. Consequently SPC includes I H and I L as well. Similarly to performance control, process control is carried continuously using Fault Detection and Classification (FDC). This technique continuously monitors equipment parameters against preconfigured limits using statistical analysis techniques to provide proactive and rapid feedback on equipment health.

However new architectures and techniques are more complex solutions. It requires more process steps and thus more photo-lithography masks. Extreme UV lithography requires specific tools that are more expensive. These options are very different from the tradition way used to build transistors. Increased process complexity also induces larger global variability. For example, the SOI thickness variability, absent in bulk architecture, is a new contribution to the global variability. All these facts tend to increase the time and investment required to develop and optimize the next generation of device. In order to limit the development cost and ensure the profitability and competitiveness of these new devices it is mandatory to rely on more efficient approach for the device development and optimization at industrial stage. This thesis aims at offering a determinist and robust approach able to meet these expectations.

Indeed its goal is to demonstrate how it is possible to model the relationships between process parameters (accessible to tool engineers) and the transistor performances. Such a model is called Process Compact Model (PCM). A sufficiently robust and predictive PCM can be used for optimizing the performance and global variability of the transistor thanks to an appropriate optimization algorithm. This approach is different from traditional methods that heavily rely on expert knowledge and successive trials in order to improve the device since it brings a deterministic and robust mathematical frame to the problem.

The task is not trivial and faces many constraints. First, there are hundreds of process steps required only for the front-end-of-line and at least as much process parameters can be distinguished from this. This implies dealing with a large amount of data. Thus robust and adapted statistical tools are required to manage this issue. Second, the physical relation between process and electrical parameters are complex. Many models describing the MOSFET electrical parameters exist in the literature, but since we deal with a large amount of data and intend to use it for optimization, only simple compact analytical model can be used.

The PCM investigated in this thesis copes with these constraints. It is composed of two stages. Starting from process parameters, the first stage is formed of multiple polynomial formulas that relate process with the model parameters of a typical threshold based compact model. The second stage is the compact model. Using model parameters as inputs, it yields electrical parameters as output. An input/output scheme of this two-stage PCM is presented in Figure 123. This manuscript starts by introducing the compact model used. Analytical formulation of linear and saturation drain currents are drawn from the physics of semiconductors. This stage aims at splitting a complicated global parameter that is drain current into simpler and physically meaningful sub parameters such as access resistance, threshold voltage, carrier mobility and so on. Theoretical derivation of the model is done in chapter 2 where the physics of the transistor is developed with an emphasis on the specificity of FD-SOI technology.

Using a compact model for drain current implies to rely on an extraction procedure in order to get model parameters and calibrate the model. An extraction procedure is proposed in chapter 3, based on a nonlinear optimization algorithm. The method robustness is tested against data sample size and range as well as the effect of noise. Then, in the same chapter, the extraction procedure is tested on a TCAD simulated Design Of Experiment (DOE). This DOE exhibits process parameters variations in order to investigate their effects on extracted model parameters. This is a first approach to examine the link that we miss yet to model the process and electrical parameters relations. The physical relevance of the model parameters sensitivity to process variation is demonstrated to ensure that model parameters are physically meaningful and that extraction procedure is robust.

Extractions are then performed on silicon (using 28 nm FD-SOI and 14 nm FD-SOI technologies) in chapter 4. Lots have been processed with various kinds on process variations. These lots have been measured and from these measurements, model parameters have been extracted. It is then shown how results can be interpreted to give insights into the device characteristics. While being a simple approach, this method can already produce valuable results and indicate how to optimize the device efficiently.

In order to complete the PCM construction, a map of the process and model parameters relationships are required. This topic is investigated in chapter 5. Model parameters are much more elementary than drain current. This advantage enables us to build simple model such as empirical polynomial model. However, process parameters are numerous and all of them have not necessarily a significant impact on model parameters. Moreover, the impact of noise in measurements and local stochastic variability in devices induces an increased uncertainty in model parameters. This is why statistical methods are introduced in order to efficiently build polynomial model dealing with ill-posed problem and noisy observables. These methods are tested against synthetic data and applied on TCAD extractions to build PCMs. The impact of noise and local stochastic variability is discussed and solutions to deal with those issues are investigated.

Finally, based on this PCM, a methodology to optimize both electrical performances and variability is suggested. It has been applied using TCAD simulation to indicate how to reduce drain current global variability efficiently.

This chapter is devoted to detail the compact model used for the PCM. It derives the drain current equations, starting with the derivation of inversion carrier concentration and threshold voltage of Metal Oxide Semiconductor (MOS) capacitance in §2.1. Carrier mobility is investigated in §2.2. Paragraphs 2.3 and 2.4 introduce the linear and saturation drain current approach respectively. Access resistance effect is introduced in §2.5. The drain current equations derived here will be reused for the model extraction procedure detailed in Chapter 3.

The MOS capacitance and its electrostatics

In this section we derive the MOS capacitance equations of the inversion carrier charge and the threshold voltage (V t ) in the case of the Bulk structure. Then we discuss the case of Fully Depleted Silicon On Insulator (FD-SOI) with doped and undoped channel and show to which extent the same compact equations for can be used. Only the threshold voltage dependence should be adapted and we will show how and why. Notice that in further derivation, interface and oxide charges are neglected. However considering it would add only small corrections and the derivation would still hold.

Inversion in bulk MOS transistors

The MOS capacitance is first treated in order to derive the inversion charge density in the long channel bulk transistor. The corresponding band diagram is shown in Figure 2-1 where elements are isolated: Left part of the MOS structure in this figure is the metal gate. It is separated from the p-doped silicon bulk (right part) by an insulating layer (gate oxide). In Figure ,,, , and are respectively the metal and silicon Fermi energy, the intrinsic, conduction band, valence band and vacuum energies for isolated parts. E g is the semiconductor gap energy ( -). and are the silicon and metal work functions. The gate and bulk biases are and V B . Every voltage are referenced to a hypothetical unbiased neutral body where there is no band bending. This reference potential is and, in this case, is equal to V B . Later we will see that in the case of transistor, this potential reference depends on the position in the channel and is no longer equal to V B . This diagram shows that, when taken separately, Fermi levels of metal and semiconductor are not matched.

Thus when building a MOS structure, charges (holes for p-doped silicon) will be repealed at the Si/SiO 2 interface, creating a potential drop across the insulator and a space charge region in the silicon channel in order to reach the equilibrium state where Fermi levels of metal and silicon are aligned (see Figure 2-2). Thus without applying any bias between the gate and the back electrode (

), there already is a potential drop across the MOS structure that is equal to work function difference between metal and silicon (

). Space charge region in silicon contains no free carrier but ionized dopants. The total charge density in this case is called the depletion charge density.

If now, for the case of p-doped silicon, a positive bias between gate and bulk is applied, then decreases and the bands bend even more until a certain point where minority carrier concentration equals majority carrier concentration at the interface. This point characterizes the beginning of the inversion regime where free carriers appear at the interface (see Figure 2-3 left). In that case the total charge density is the sum of inversion and depletion charge (

).

On the contrary if a negative bias is applied to the gate, tends to compensate the built-in voltage across the oxide capacitance and the silicon bands bend less. If then the MOS structure reaches the flat band condition (see Figure 2-3 right), no potential drop occurs across the structure and the channel is electrostatically neutral. 

Driving further

toward negative values will accumulate holes at the interface. This is the accumulation regime. This qualitative approach enables a global understanding of the relationship between and carrier concentration in the channel. The quantitative and rigorous derivation of the carrier density depending on gate voltage and doping concentration in the channel has been done by R. H. Kingston and S. F. Neustadter [START_REF] Kingston | Calculation of the Space Charge, Electric Field, and Free Carrier Concentration at the Surface of a Semiconductor‖[END_REF]. However, here, we will use an alternative approach sufficiently accurate for our purpose. First the potential drop in the structure is the sum of the potential drop in the oxide plus the potential drop in the silicon [START_REF] Hu | MOS Transistor‖[END_REF]:

(

where is the flat band voltage, is the surface potential at the interface referenced to a hypothetical unbiased neutral body where there is no band bending (as depicted in Figure 2-2 Figure 23). The electric field in the oxide is constant because there is no charge in the oxide:

(

) 2 
where t ox is the insulating layer thickness. At the Si/SiO 2 interface, in the silicon but before reaching any charge, the displacement field is constant and the electrical field E s , at the silicon interface is:

(

Then we can write as a function of : [START_REF] Sitte | Sensitivity of 0.1 µm MOSFET's to manufacturing fluctuations‖[END_REF] where is the gate oxide capacitance. In absence of any interfacial charges, using Gauss theorem over an area going from Si/SiO 2 interface up to in the silicon bulk where the reference is taken, we get the following relation: [START_REF] Yang | Electrical characteristic fluctuation in Sub-45nm CMOS Devices‖[END_REF] Thus the inversion carrier density reads: [START_REF] Saha | Compact MOSFET modeling for process variability-Awar VLSI circuit design‖[END_REF] The threshold is reached when the minority carrier concentration equals the majority carrier one. This is achieved when the band bending reaches 2 [START_REF] Sze | Physics of Semiconductor Devices[END_REF] where is the difference between the intrinsic silicon Fermi level and quasi Fermi level of doped silicon. From this we can deduce V t from [START_REF] Saha | Compact MOSFET modeling for process variability-Awar VLSI circuit design‖[END_REF] where Q i = 0:

| | √ | | (7) 
Then above threshold is deduced from equation [START_REF] Saha | Compact MOSFET modeling for process variability-Awar VLSI circuit design‖[END_REF] where and becomes:

| | √ | | (8) 
It can be expressed in terms of V t as:

(9)

Inversion in FD-SOI MOS transistors

FD-SOI denomination is employed for transistors built on SOI substrate and that has a fully depleted channel at operating condition. This is the kind of structure that is used by STMicroelectronics for their 28 and 14 nm technological nodes. In this structure the simple MOS capacitance cannot be used to calculate the charge density in the channel since the Buried Oxide (BOx) adds another capacitance contribution that shall be taken into account when applying gauss law. The following paragraph explains the SOI structure and derives the necessary conditions to have a FD-SOI structure. Then we will adapt previous derivation of inversion charge and threshold voltage to FD-SOI structure. The results will depend on the characteristics of the device. First, for the derivation of bulk MOS capacitance we consider a doped channel but state-of-the-art industrial FD-SOI devices have intrinsic channel. It implies that the surface potential is no longer clamped to 2 in strong inversion regime and that Q d can be neglected. Second, FD-SOI devices built by STMicroelectronics are made of ultrathin substrates and BOx. We will see that ultra-thin SOI induces front to back super coupling effect that does not allow inversion at one interface along with accumulation at the other. Finally, with ultrathin BOx, we will see that the ground plane regime also affects the threshold voltage, depending on its doping concentration.

Structure presentation

The capacitance structure we consider is a cross section of the FD-SOI MOSFET in the middle of the channel. This structure is shown in Figure 234: Basically we see that SOI capacitance is no more than one MOS and one semiconductor-oxidesemiconductor capacitance (assuming that gate and BOx oxide thicknesses can be different) assembled head to tail sharing the same FD substrate. Thus in the following we will talk about front and back interface to designate the gate oxide/SOI and the SOI/BOx interface respectively. Considering a thick SOI layer for the channel, corresponding band diagram is shown in Figure 2345. This is the case of Partially Depleted Silicon On Insulator (PD-SOI) MOSFET. In Figure 2-5 t dep Ox and t dep BOx are the maximum depletion thickness at the front and back gate. The difference between PD-SOI and FD-SOI lies in the silicon channel thickness. Indeed, in order to have a fully depleted silicon channel the silicon channel thickness (T si ) should be lower than t dep-Ox +t dep-BOx . Thereafter, we derive the critical channel thickness that differentiates PD-SOI from FD-SOI structure. t dep Ox and t dep BOx quantities are derived from the expression of the depletion charge [START_REF] Muller | Metal semiconductor contact‖[END_REF]:

√ ( 10 
)
where N a is the acceptor concentration. Let's focus on the front gate depletion thickness (t dep Ox ). From equation ( 2) to [START_REF] Saha | Compact MOSFET modeling for process variability-Awar VLSI circuit design‖[END_REF] we have the following relationship between V ox and t dep at onset of strong inversion (where Q i =0):

√ (11) (12) 
and between and t dep : [START_REF] Colinge | Silicon-on-insulator 'gate-allaround device[END_REF] where is the flat band voltage of the MOS capacitance. On the other hand, the flat band voltage of BOx capacitance will be labeled V FBB . Then replacing V ox and in [START_REF] Colinge | Silicon-on-insulator 'gate-allaround device[END_REF] by their expression in [START_REF] Colinge | Recent Advances and Trends in SOI CMOS Technology‖[END_REF] and [START_REF] Yu | FinFET scaling to 10 nm gate length‖[END_REF], t dep is deduced as a function of and the doping concentration:

(√ ) (14) 
t dep-BOx formulation is identical to [START_REF] Laurent | TCAD Modeling of variability in 28-nm CMOS technologies based on Impedance Field Method‖[END_REF] except that , and should be replaced by C BOx , and . If t si < , the unbiased region in the middle of the channel disappear and the device becomes fully depleted. Critical silicon thickness to have a fully depleted device is calculated from the following formula: We see from this plot that the back interface goes from depletion to inversion depending on V B . Figure 2-7 shows the minority carrier concentration depending on the position in the SOI for many V B

(√ ) (√ ) (15) 
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ranging from -10 up to 10V. In this case the SOI is lightly p-doped (5.10 15 atoms/cm 3 ) and the BOx is 25 nm thick. is still set to 1.5V. This figure shows that the inversion layer is not concentrated at the front interface as it was the case for bulk devices. Now we have to consider the possibility of having a back interface inversion layer induced by V B . In any case we see that the electrostatics of one interface is influenced by the other one through back to front interface coupling.

Inversion charge density and threshold voltage derivation

In the following paragraph we will investigate the expression of Q i and V t for the case of back interface accumulation, depletion and inversion. Following derivations assume the delta-depletion approximation, that is, any inverted charge is at the Si surface in a Dirac delta function as depicted in Figure 2-4. In order to adapt bulk inversion charge density and threshold voltage derivation to FD-SOI structure, we consider a doped channel FD-SOI structure with thick SOI (but thin enough to deal with FD-SOI structure, that is SOI thickness < as mentioned in ( 14)) and BOx. We will see in the next paragraphs the effect of thin BOx and channel and intrinsic channel. This investigation has been conducted by H-K Lim and J. G. Fossum [START_REF] Lim | Threshold Voltage of Thin-Film Silicon-on-Insulator (SOI) MOSFET‗s[END_REF]. Following the same approach as for bulk MOS capacitance we can derive the potential drop across both front and back oxide (as in (1)):

(16) [START_REF] Kanno | Empirical Characteristics and Extraction of Overall Variations for 65-nm MOSFETs and Beyond[END_REF] where and are the flat band voltages of front and back gates respectively. and are the surface potentials at the front and back Si/SiO 2 interfaces respectively, referenced to a hypothetical unbiased neutral body. Solving the Poisson equation across the silicon film yields: [START_REF] Strojwas | Cost-Effective Variability Reduction Approaches to Enable Future Technology Nodes‖[END_REF] where is the potential drop across the SOI film, is the field at the front interface of the SOI, is the silicon film thickness, is silicon dielectric permittivity, N A is the doping concentration in the channel. The field in the front oxide is: [START_REF] Yakupov | Analysis of Selected Methods for CMOS Integrated Circuit Design for Yield Optimization‖[END_REF] Then, applying Gauss theorem across the front oxide, taking the inversion charge into account, yields: [START_REF] Zhang | Bai -Process Variability-Induced Timing Failures -A Challenge in Nanometer CMOS Low-Power Design‖[END_REF] where is the inversion layer at the front side. Equation ( 18) to ( 20) can be adapted for the back interface. To sum up, the four following equations are available (following Lundström [START_REF] Lundström | Lecture 25: -SOI Electrostatics‖[END_REF]):

(21) (22) (23) (24) 
where is the inversion layer at the back side. Combining [START_REF] Cheng | Evaluation of Intrinsic parameter fluctuation on 45, 32 and 22 nm technology node LP n-MOSFETs‖[END_REF] with ( 23) and ( 22) with (24) yields the general equations that rule the electrostatic of the SOI capacitance with doped SOI: (25) [START_REF] Bindu | Parameter set and data sampling strategy for accurate yet efficient statistical MOSFET compact model extraction[END_REF] where and is the depletion-region areal charge density. Combining these two equations yields the back and front coupling equation. Then the total inversion carrier concentration is simply the sum of and :

( ) (27) 
Replacing and by their expression (23)(24) yields:

( ) (28) 
Let's now discuss the expression of the threshold voltage. In order to derive it we need a clear definition of this threshold voltage. The subtlety we are facing here is that there are two gates. Thus considering one electrode with a fixed bias, the threshold voltage is the other electrode voltage required to switch the transistor from off to on state (or from on to off). Notice that this is not the definition used by Lim and Fossum [START_REF] Lim | Threshold Voltage of Thin-Film Silicon-on-Insulator (SOI) MOSFET‗s[END_REF]. Instead they defined the threshold voltage as for which no matter the back interface regime. This definition fails to match ours when the back interface is inverted. However our definition reflects the threshold voltage that is extracted by most of the extraction procedure, which is not the case of Lim and Fossum definition.

A consequence of this definition is that at threshold, Q i = 0. Thus considering V B fixed, the threshold voltage can be deduced from expression [START_REF] Asenov | Modeling and simulation of transistor and circuit variability 140 and reliability[END_REF], depending on and , where Q i = 0.

(

) 29 
From this definition, Q i expression can be simplified using V t .

(

) 30 
So we see that expression is similar to bulk one [START_REF] Na | Effective Drive Current in CMOS Inverters‖[END_REF] except for the definition of V t and is valid whatever the value of and , hence whatever V B value. Next, V t expression is developed, clarifying and , depending on V B and whether the back interface is accumulated, depleted or inverted.



Threshold voltage when the back interface is accumulated

In the case of an accumulated back interface, accumulated charges screen the back bias and is virtually pinned at 0. Threshold at front interface is then reached when as in bulk case. Then is small and V t is deduced from [START_REF] Asenov | Modeling and simulation of transistor and circuit variability 140 and reliability[END_REF]:

( * (31) 
Vt does not depend on the back potential in this case.



Threshold voltage when the back interface is inverted

If the back interface is assumed inverted, then equals and a conducting back channel exists. The current flows if . Thus V t is the required gate bias to suppress the back channel inversion.

If when

, the front interface is depleted, is deduced from [START_REF] Bindu | Parameter set and data sampling strategy for accurate yet efficient statistical MOSFET compact model extraction[END_REF]:

( * (32) 
Then V t is deduced from ( 25):

If, when equals , the front interface is accumulated, then and V t is clamped to:

 Threshold voltage when the back interface is depleted

In the case of a depleted back interface, depends on V B and ranges from 0 up to corresponding to the limit case of back interface accumulation and inversion respectively as we have seen previously. Isolating from [START_REF] Bindu | Parameter set and data sampling strategy for accurate yet efficient statistical MOSFET compact model extraction[END_REF] and introducing it in [START_REF] Asenov | Modeling and simulation of transistor and circuit variability 140 and reliability[END_REF], letting and , we get:

(35)



Threshold voltage summary depending on back bias

To conclude there are four cases to consider as reported by F. Andrieu [START_REF] Andrieux | Transistor CMOS decananométriques à canaux contraints sur silicium massif ou sur SOI fabrication, caractérisation et étude du transport[END_REF] (see Figure 2-8): When the back interface is accumulated, V t does not depend on V B and is expressed as [START_REF] Hu | MOS Transistor‖[END_REF]. When the back interface is depleted, V t -V B slope is (see equation [START_REF] Lim | Threshold Voltage of Thin-Film Silicon-on-Insulator (SOI) MOSFET‗s[END_REF]). When the back interface is inverted, there are two options: i) either the front interface is depleted, then V t is expressed as [START_REF] Muller | Metal semiconductor contact‖[END_REF] and the V t -V B slopes shift to or ii) the front interface accumulated and then V t does not depend on V B (as expressed in (34)).

Effect of intrinsic instead of doped channel

In order to reduce random dopant fluctuations and enable a better scalability of FD-SOI technology [START_REF] Trivedi | Scaling Fully Depleted SOI CMOS‖[END_REF], intrinsic channel has been preferred and is the actual option used by STMicroelectronics. The main difference is that the depletion charge is now almost zero and the depletion approximation that implies is not valid anymore. V. P. Trivedi et al. [START_REF] Trivedi | Threshold voltage and bulk inversion effects in nonclassical CMOS devices with doped ultra-thin bodies‖[END_REF] have refined H-K Lim and J. G. Fossum [START_REF] Lim | Threshold Voltage of Thin-Film Silicon-on-Insulator (SOI) MOSFET‗s[END_REF] approach (developed in §2.1.2.2) and made it suitable for undoped channel. In particular, they showed that for subthreshold condition | | is smaller than | | and the influence of subthreshold or weak inversion charge on can be neglected irrespective of the channel doping condition. Thus, simplification used thanks to depletion approximation still holds for intrinsic channels. The master equations ( 25) and ( 26) are identical except that and becomes negligible in weak inversion.

Another consequence of the lack of impurity in the channel is that the quasi Fermi level in silicon is close to the intrinsic Fermi level, dropping to 0. Thus at threshold, is substantially greater than and a better definition of should be found. Lee and Young [START_REF] Lee | Submicrometer Near-Intrinsic Thin-Film SOI Complementary MOSFET's‖[END_REF] and V. P. Trivedi et al. [START_REF] Trivedi | Threshold voltage and bulk inversion effects in nonclassical CMOS devices with doped ultra-thin bodies‖[END_REF] have adapted Lim and Fossum [START_REF] Lim | Threshold Voltage of Thin-Film Silicon-on-Insulator (SOI) MOSFET‗s[END_REF] approach by defining a critical surface electron concentration needed for the channel to be conductive. Then yields:

Where if and ( ) otherwise. While being simple and efficient, this approach requires to arbitrarily set to a specific value. This approach is similar to the constant current threshold voltage definition and has been reported by Q. Chen et al. [START_REF] Chen | A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs[END_REF]. Another approach similar to maximum of transconductance criterion has been suggested by J. Lacord et al. [START_REF] Lacord | -and Efficient MASTAR Threshold Voltage and Subthreshold Slope Models for Low-Doped Double-Gate MOSFET‖[END_REF] and yields:

( * (37) 
if the inversion layer thickness is equal to the silicon film thickness. Here are two examples of threshold surface potential definition but many others have been published.

Beside the fact that should be replaced by and that can be neglected, Trivedi et al. [START_REF] Trivedi | Threshold voltage and bulk inversion effects in nonclassical CMOS devices with doped ultra-thin bodies‖[END_REF] showed that the general Vt expression is similar to the case of doped channel for depleted back interface.

BOx and channel thickness limiting effects: the case of Ultra-Thin Body and

BOx (UTBB) structure.

Previous derivations hold if the back to front coupling is weak enough to enable inversion at one interface and accumulation at the other. However S. Eminente [START_REF] Eminente | Ultra-thin fully depleted SOI MOSFETs: Special charge properties and coupling effects‖[END_REF] showed that for ultra-thin t si , due to the strong back to front electrostatic coupling, the required electric field in the BOx to induce accumulated charges at the back interface while having the front interface inverted would not be supported by the BOx oxide. Thus the back accumulation regime is not worth investigating. Figure 2-9a shows that even for thick BOx (that sustains higher voltage), considering front channel at threshold, back interface accumulation is reached only when V B <-40V and back interface inversion (with front interface accumulation) when V B >60V. These voltages are very far from the operating voltage, making it unusable. 

Effect of substrate depletion on threshold voltage

Another difference in the case of Ultra-Thin Body and BOx (UTBB) is the influence of substrate regime. In the case of ultra-thin BOx, it appears that the BOx/substrate interface regime has a noticeable influence on the threshold voltage. S. Burignat [START_REF] Burignat | Substrate impact on threshold voltage and subthreshold slope of sub-32 nm ultra-thin SOI MOSFETs with thin buried oxide and undoped channel‖[END_REF] showed this effect using double derivative method to extract V t depending on V B on both Ultra-Thin Body (UTB) and UTBB devices.

Result is shown in Figure 2-9b. From this figure we see that V t is almost constant when the substrate is depleted. In this case the back bias sweep is partially compensated by the variation of the potential drop in the substrate depletion region, flattening the V t -V B curve.

Inversion charge summary

After deriving Q i and V t for the bulk case, we have then adapted the approach for the case of FD-SOI.

We showed in all cases that we can model Q i according to the equation below in strong inversion: [START_REF] Trivedi | Scaling Fully Depleted SOI CMOS‖[END_REF] We have investigate the impact of using intrinsic or doped channel, the effect of BOx and channel thickness as well as the substrate depletion for the case of UTBB devices. The V t -V B behavior of FD-SOI UTBB structure with intrinsic channel has five different regimes with two that are not physically reachable (only mathematical derivation and numerical simulations can assess it). These are the case of front inversion with back accumulation and front accumulation with back inversion. Regimes that are physically feasible are depicted by S. Burignat [START_REF] Burignat | Substrate impact on threshold voltage and subthreshold slope of sub-32 nm ultra-thin SOI MOSFETs with thin buried oxide and undoped channel‖[END_REF] equivalent capacitance model in Figure 2-10: In this figure, the three regimes are distinguished by the position of the inversion layer in the silicon channel. The charge centroïd moves from the front to back side when V B goes from negative to positive values. This is modeled by considering the charge centroïd Y mean in the channel and the silicon capacitance film on both sides of it ( and ). Thereafter we summarize V t equation depending on these regimes.



Front channel, back interface depletion, substrate inversion.

In this case the inversion layer is confined at the front interface and the back interface is depleted. This situation is depicted in Figure 2-10 (left side) and V t is deduced from [START_REF] Lim | Threshold Voltage of Thin-Film Silicon-on-Insulator (SOI) MOSFET‗s[END_REF] where is replaced by and is neglected:

(39)



Channel in the middle of the silicon film, back and front interface depletion, substrate depletion When the substrate is depleted, and are replaced by equivalent capacitance. The equivalent BOx capacitance yields: [START_REF] Lee | Submicrometer Near-Intrinsic Thin-Film SOI Complementary MOSFET's‖[END_REF] and the equivalent oxide capacitance yields: [START_REF] Chen | A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs[END_REF] Where . C sub is the substrate depletion. V t equation is deduced from [START_REF] Trivedi | Threshold voltage and bulk inversion effects in nonclassical CMOS devices with doped ultra-thin bodies‖[END_REF] where C ox and C BOx are replaced by their equivalent formulation and :

 Back channel, front interface depletion, substrate accumulation

In this case the inversion layer is confined at the back interface and the front interface is depleted. This situation is depicted in Figure 2-10 (right side) and V t is deduced from [START_REF] Muller | Metal semiconductor contact‖[END_REF] where is replaced by and is neglected:

(43)
To conclude, expected dependence of threshold voltage on back bias for UTBB devices is shown in This figure represents the three physically common regimes (white areas) and the two physically unreachable regimes (shaded areas).

Channel carrier mobility

In previous section we have investigated the inversion layer carrier concentration in both bulk and FD-SOI transistors. It will be the basis for drain current formulation. But before, this section is devoted to the effective mobility experienced by inversion layer carriers. We will go through the main physical phenomenon that limit the mobility and then propose a compact model to address it, which will be used for the drain current formulation in section 2.3 and 2.4.

The effective mobility

Carrier mobility is limited by scattering phenomenon of different natures. Each phenomenon is characterized by a scattering time and can be written under the form: where is the effective mass. Resulting effective mobility of all these scattering mechanisms is expressed following the Mathiessen rule:

∑ ( 44 
)
The three main scattering mechanisms are phonon, Coulomb scattering and surface roughness limited mobility. The limiting scattering mechanism is the one that has the smallest intrinsic mobility and each of them depends on the effective transversal field and/or on the inversion charge density. This formulation leads to the well-known universal mobility as illustrated in Figure 2-12: Phonon limited mobility has the following formulation [START_REF] Takagi | On the Universality of Inversion Layer Mobility in Si MOSFET's: Part I-Effects of Substrate Impurity Concentration‖[END_REF]: [START_REF] Takagi | On the Universality of Inversion Layer Mobility in Si MOSFET's: Part I-Effects of Substrate Impurity Concentration‖[END_REF] where T is the temperature and E eff the effective transversal electric field and . Surface roughness limited mobility has the following formulation [START_REF] Takagi | On the Universality of Inversion Layer Mobility in Si MOSFET's: Part I-Effects of Substrate Impurity Concentration‖[END_REF]: [START_REF] Boeuf | Impact of Coulomb scattering on the characteristics of nanoscale devices[END_REF] A and B are experimental fitting parameters and . Finally Coulomb limited mobility is usually experimentally extracted from measured effective mobility and universal mobility that accounts for surface roughness and phonon scattering, following [START_REF] Takagi | On the Universality of Inversion Layer Mobility in Si MOSFET's: Part I-Effects of Substrate Impurity Concentration‖[END_REF]: [START_REF] Fenouillet-Beranger | FD-SOI devices with Thin BOX and Ground plane integration for 32nm node and below‖[END_REF] There are two types of Coulomb scattering to be considered: scattering with ionized dopants located in the channel and scattering with charges located in the gate stack or at the interface between materials, also called Remote Coulomb Scattering (RCS). Since we are working with undoped SOI MOSFET, we expect the first mechanism to be of little importance. However UTBB devices involve thin silicon channel and thus increase the effect of RCS limited mobility as shown by D. Esseni [START_REF] Boeuf | Impact of Coulomb scattering on the characteristics of nanoscale devices[END_REF] and C. Fenouillet-Beranger [START_REF] Fenouillet-Beranger | FD-SOI devices with Thin BOX and Ground plane integration for 32nm node and below‖[END_REF]. In these publications, the carrier mobility is almost only impacted by remote Coulomb scattering. A compact formulation for RCS limited mobility has been proposed by G. Hiblot [START_REF] Hiblot | Compact modeling of MOSFET transistors with III-V channels and thin films for advanced CMOS applications[END_REF] that is a trade-off between J. Koga [START_REF] Koga | A comprehensive study of MOSFET electron mobility in both weak and strong inversion regimes[END_REF] and F. Boeuf [START_REF] Boeuf | Impact of Coulomb scattering on the characteristics of nanoscale devices[END_REF] approaches:

√ √| | √| | (48) 
where is the RCS mobility due to interface charge, D it is the surface density of interface charges, and is the unscreened interface traps mobility.

To conclude, the mobility can be expressed as a function of the effective field following Matthiessen rule and neglecting Coulomb limited mobility: [START_REF] Koga | A comprehensive study of MOSFET electron mobility in both weak and strong inversion regimes[END_REF] where

√| |
is a fitting parameter.

Mobility compact modeling

As we are considering the FD-SOI transistors, effective field is expressed as [START_REF] Sherony | SOI MOSFET effective channel mobility‖[END_REF]:

can be neglected considering undoped channel. equals 1/2 for electrons and 1/3 for holes [START_REF] Takagi | On the universality of inversion layer mobility in Si MOSFET's: Part I-Effects of substrate impurity concentration‖[END_REF].

Considering constant, a second order expansion of 1/µ as a function of Q i yields: [START_REF] Takagi | On the universality of inversion layer mobility in Si MOSFET's: Part I-Effects of substrate impurity concentration‖[END_REF] where D, E and F are factors that depend on E sb and . Then knowing that , µ yields: [START_REF] Rideau | Mobility in High-K Metal Gate UTBB-FD-SOI Devices: from NEGF to TCAD perspectives‖[END_REF] where is the low field mobility and and account for effective field dependent mobility correction. These parameters depend on C ox , E sb , and . This formulation will be kept for later model since it is compact and handy. However a rigorous derivation of this effective mobility can be performes analytically. Replacing by [START_REF] Trivedi | Scaling Fully Depleted SOI CMOS‖[END_REF], by [START_REF] Asenov | Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs[END_REF], the transverse electric field reduces to:

Then is replaced by its expression derived from [START_REF] Bindu | Parameter set and data sampling strategy for accurate yet efficient statistical MOSFET compact model extraction[END_REF] at threshold (Q i =0 and Q d is neglected):

( * (54) 
can be expressed as a function of V t following [START_REF] Trivedi | Threshold voltage and bulk inversion effects in nonclassical CMOS devices with doped ultra-thin bodies‖[END_REF] and ( 43).

(

) 55 
Where when the channel is at the front interface and the back interface is depleted and when the back interface is inverted and the front is depleted. Finally inserting [START_REF] Pappas | Backscattering coefficient and drift-diffusion mobility extraction in short channel MOS devices‖[END_REF] and ( 54) into ( 53), reduces to:

( ( *+ (56) 
where r depends on capacitances and the back interface regime. r formulas are written below depending on the back interface regime:

(back interface depleted) (57) 
(back interface inverted) [START_REF] Shin | Magnetoresistance mobility characterization in advanced FD6SOI n-MOSFETs‖[END_REF] and s depends on flatband voltages, and the back channel regime:

(back interface depleted) ( * (59) 
(back interface inverted)

( ) (60) 
To conclude, the effective mobility depends on E eff that is proportional to ( )V t as shown in [START_REF] Guarnay | Monte Carlo study of effective mobility in short channel FD-SOI MOSFETs‖[END_REF] and Q i that is proportional to . This conclusion has been verified by simulation [START_REF] Rideau | Mobility in High-K Metal Gate UTBB-FD-SOI Devices: from NEGF to TCAD perspectives‖[END_REF] where we can see a universal behavior of mobility depending on Q i (on E eff ) only where Coulomb scattering dominates (is negligible). So, the compact model for µ in ( 52) is a rough approximation and considering E eff expression [START_REF] Guarnay | Monte Carlo study of effective mobility in short channel FD-SOI MOSFETs‖[END_REF] and the mobility expression [START_REF] Koga | A comprehensive study of MOSFET electron mobility in both weak and strong inversion regimes[END_REF], it can be shown that , and µ 0 fitting parameters in expression [START_REF] Rideau | Mobility in High-K Metal Gate UTBB-FD-SOI Devices: from NEGF to TCAD perspectives‖[END_REF] depend on C ox , C si , C box , V FBF and V t . Thus and have neither universal behavior nor physical meaning.

Mobility degradation for short channel devices

Mobility degradation of short channel devices has been widely investigated in literature. Multiple explanations have been proposed for that phenomenon. First, Ghibaudo [START_REF] Ghibaudo | Electrical transport characterization of nano CMOS devices with ultra-thin silicon film‖[END_REF], Barral [54], Pappas [START_REF] Pappas | Backscattering coefficient and drift-diffusion mobility extraction in short channel MOS devices‖[END_REF] and Guarnay [START_REF] Guarnay | Monte Carlo study of effective mobility in short channel FD-SOI MOSFETs‖[END_REF] investigated the effect of ballistic transport on the effective mobility in linear regime. Carriers experience ballistic transport if no scattering mechanism affects their transport. It occurs in very short channel devices. Indeed, considering that scattering events occur periodically, if time needed for the carriers to cross the channel is smaller or comparable to the relaxation time of scattering mechanisms, then carriers can experience no scattering. Ghibaudo [START_REF] Ghibaudo | Electrical transport characterization of nano CMOS devices with ultra-thin silicon film‖[END_REF] addresses ballistic transport using quantum mechanics. His ballistic drain formulation yields: [START_REF] Ryder | Mobility of Holes and Electrons in High Electric Fields‖[END_REF] where

√ ( 62 
)
is the injection velocity. is the transverse electron mass ( where is the free electron mass), is the Boltzmann constant and T the temperature. In this case, equivalent mobility formulation yields: [START_REF] Duh | Electron Drift Velocity in Avalanching Silicon Diodes‖[END_REF] where L is the channel length. Equation [START_REF] Duh | Electron Drift Velocity in Avalanching Silicon Diodes‖[END_REF] shows that is proportional to L, thus the shorter is the channel, the lower is the apparent mobility. However Ghibaudo [START_REF] Ghibaudo | Electrical transport characterization of nano CMOS devices with ultra-thin silicon film‖[END_REF], Fleury [START_REF] Fleury | New Experimental insight into ballistic of transport in strained bulk MOSFETs‖[END_REF], Barral[54], Pappas [START_REF] Pappas | Backscattering coefficient and drift-diffusion mobility extraction in short channel MOS devices‖[END_REF] and Shin [START_REF] Shin | Magnetoresistance mobility characterization in advanced FD6SOI n-MOSFETs‖[END_REF] showed that the proportion of ballistic transport is rather low even for the shortest devices and ballistic mobility cannot explain the entire apparent mobility degradation. Finally recent Monte-Carlo studies [START_REF] Guarnay | Monte Carlo study of effective mobility in short channel FD-SOI MOSFETs‖[END_REF], [START_REF] Zilli | On the experimental determination of channel backscattering in nano MOSFETs[END_REF] and [START_REF] Huet | Monte Carlo study of apparent mobility reduction in nano-MOSFETs‖[END_REF] suggested that ballistic transport contribution could be underestimated depending on the extraction method used for the backscattering coefficient extraction from mobility measurements. The second explanation for mobility degradation is saturation velocity. It limits the mobility at high lateral field (thus more important for short channel devices). Carrier may reach the saturation velocity v sat if the lateral field is high enough (E lat >E crit =10 4 V/cm). Indeed, when the carrier reaches v sat it has sufficient energy to generate a phonon. The energy required to create the phonon is taken from the carrier, reducing its velocity. Average carriers velocity is then clamped to v sat . Experimental saturation velocity measurements have first been done by Ryder [START_REF] Ryder | Mobility of Holes and Electrons in High Electric Fields‖[END_REF]. Further investigations to reach v sat have been done on P-N junctions by Norris and Gibbons [START_REF] Norris | Papers on Carrier Drift Velocities in Silicon at High Electric Field Strengths‖[END_REF], Duh, Moll [START_REF] Duh | Electron Drift Velocity in Avalanching Silicon Diodes‖[END_REF] and Rodriguez, Ruegg and Nicolet [START_REF] Rodriguez | Measurement of the drift velocity of holes in silicon at highfield strengths‖[END_REF]. Average values are v sat =10 7 cm/s for electrons and 6.10 6 cm/s for holes in silicon crystal.

However this phenomenon appears at equilibrium state. Indeed, the carrier velocity is only constant when averaged over a time much longer than the scattering time ( ). In short devices, the time required for an electron to cross the channel is comparable to . Thus the carrier can cross the channel in a transient state enabling a velocity larger than v sat , this phenomenon is called velocity overshoot. Ruch [START_REF] Ruch | Electron Dynamics in Short Channel Field-Effect Transistors‖[END_REF] used Monte Carlo simulations to demonstrate this effect on GaAs transistors. Recent investigations done by Kim et al. [START_REF] Kim | Extraction of Effective Carrier Velocity and Observation of Velocity Overshoot in Sub-40 nm MOSFETs‖[END_REF] showed experimental observations of carrier reaching velocity overshoot.

Lundstrom [START_REF] Lundstrom | Elementary Scattering Theory of the Si MOSFET‖[END_REF] suggested that drain saturation current can be modeled easily using barrier scattering theory. Moreover he suggests that velocity overshoot should not be the prominent effect in ultimately scaled MOSFET since carrier are cold injected at the source and may only overshoot v sat if the channel is sufficiently long. His drain current formulation yields: [START_REF] Rodriguez | Measurement of the drift velocity of holes in silicon at highfield strengths‖[END_REF] where is the maximum potential barrier height at the virtual source and √ His interpretation is close to Natori's one in [START_REF] Ryder | Mobility of Holes and Electrons in High Electric Fields‖[END_REF] that addresses ballistic transport. Thus distinguishing ballistic transport and velocity saturation is not easy. The relevance of these approaches is discussed by Yang et al. [START_REF] Yang | The Evolution of Theory on Drain Current Saturation Mechanism of MOSFETs from the Early Days to the Present Day, Solid State Circuits Technologies[END_REF]. They showed some contradictions with experiments in particular about temperature dependencies. To overcome this, they investigated which saturation effect intervenes depending on the device geometries and the operating conditions and proposed a unified model for saturation velocity and ballistic transport, mixing Lundstrom [START_REF] Lundstrom | Elementary Scattering Theory of the Si MOSFET‖[END_REF] (64) and Natori's one [START_REF] Natori | Ballistic metal-oxide semiconductor field effect transistor‖[END_REF] (61) that yields:

√ √ (65)
Where is the product of the lowest valley degeneracy and the reciprocal of the fraction of the carrier population in the lowest energy level. In their study it is shown that determining whether the drain current is v inj , v sat , velocity overshoot or pinch off limited is a tricky task and requires comprehensive characterization including temperature dependence.

In order to meet our goal we only need phenomenological approach. Thus saturation velocity effect is accounted for by introducing it through the mobility such as: [START_REF] Kim | Extraction of Effective Carrier Velocity and Observation of Velocity Overshoot in Sub-40 nm MOSFETs‖[END_REF] where is the mobility as formulated in [START_REF] Rideau | Mobility in High-K Metal Gate UTBB-FD-SOI Devices: from NEGF to TCAD perspectives‖[END_REF] and is the lateral field. This approach has been reported in many compact models as in [START_REF] Hu | MOS Transistor‖[END_REF]- [START_REF] Ghibaudo | A simple model of the drain saturation voltage dependence with gate voltage for short channel MOSFETs‖[END_REF]. As mentioned previously, ballistic and velocity saturation limited currents have the same form, thus can account for both and as suggested by Fleury [START_REF] Fleury | New Experimental insight into ballistic of transport in strained bulk MOSFETs‖[END_REF].

Another effect involves extra scattering mechanisms induced by neutral or charged defects at the S/D channel junction. These defects are induced by S/D dopants implantation. For long channel devices, most of the channel is defect free but for short channel devices, S/D junction is a significant part of the transport region thus apparent mobility is driven by neutral defects scattering mechanism. Ghibaudo [START_REF] Ghibaudo | Electrical transport characterization of nano CMOS devices with ultra-thin silicon film‖[END_REF] used temperature dependent mobility extraction on FD-SOI, double gate and gate-all-around MOSFET as well as FinFET transistors. This approach enables distinguishing the contribution of neutral defects scattering from other scattering mechanisms, revealing its dominant effect. Pham-Nguyen [START_REF] Pham-Nguyen | Direct comparison of Si/High-K and Si/SiO2 channels in advances FD SOI MOSFETs‖[END_REF] confirmed these results using different gate stacks, Cassé [START_REF] Cassé | Mobility of strained and unstrained short channel FD-SOI MOSFETs: new insight by magnetoresistance‖[END_REF] and Chaisantikulwat [START_REF] Chaisantikulwat | ‖Magnetoresistance technique for mobility extraction in short channel FD-SOI transistors‖[END_REF], Shin [START_REF] Shin | depth characterization of electron transport in 12nm FD-SOI CMOS‖[END_REF][58] confirmed it using magnetoresistance measurements. Finally, Barral [54] and Pappas [START_REF] Pappas | Backscattering coefficient and drift-diffusion mobility extraction in short channel MOS devices‖[END_REF] confirmed it by extracting the backscattering coefficient from mobility measurements. It should be noted that recent extraction done on 14 nm FD-SOI MOSFETs with in situ doped raised source drain technology showed the same gate length mobility roll-down [START_REF] Morvan | Efficiency of mechanical stressors in planar FD-SOI n and p MOSFETs down to 14nm gate length‖[END_REF] [START_REF] Shin | Low temperature characterization of mobility in advanced FD-SOI n-MOSFETs under interface coupling conditions‖[END_REF]. However, in situ doping is expected to reduce the formation of neutral defect since there is no implantation during the process. Thus the mobility reduction cannot be explained only by the presence of neutral defects.

As a conclusion, quantifying precisely the contribution of each physical mechanism to the channel length mobility roll down is a tricky task. However Shin [START_REF] Shin | Magnetoresistance mobility characterization in advanced FD6SOI n-MOSFETs‖[END_REF] showed that the apparent mobility degradation measured using magnetoresistance can be modeled as: [START_REF] Lundstrom | Elementary Scattering Theory of the Si MOSFET‖[END_REF] Where is expressed as in [START_REF] Rideau | Mobility in High-K Metal Gate UTBB-FD-SOI Devices: from NEGF to TCAD perspectives‖[END_REF] and is the critical length at which is half the long channel mobility . This empirical model fit well the apparent mobility. Combining ( 52), ( 67) and ( 66) yields the effective mobility accounting for remote Coulomb and phonon scattering, surface roughness, velocity saturation, ballistic transport and neutral defects:

( ) ( ) (68) 

Linear regime model

In this section we derive the linear drain current equation based on previously investigated quantities like V t , Q i and µ eff . The transistor structure is depicted in Figure 2-13. In our case the transistor is in strong inversion regime (

). An inversion layer is created in SOI. Considering the case of nMOS where , if , electrons start to drift toward the drain end with a mobility as described in §2.2. A current flows through the MOS. The total current is constant along the y direction. Then at a point y in the channel, the inversion charge is and the mobility is µ eff (y). The potential drop across an infinitesimal section dy induces a current expressed as: [START_REF] Natori | Ballistic metal-oxide semiconductor field effect transistor‖[END_REF] with being the electric field in the y direction. The current is conserved along the channel, thus, integrating the expression along the width direction, the drain current yields: [START_REF] Hu | MOS Transistor‖[END_REF] where W is the width of the transistor, µ eff is the effective carrier mobility reported in [START_REF] Yang | The Evolution of Theory on Drain Current Saturation Mechanism of MOSFETs from the Early Days to the Present Day, Solid State Circuits Technologies[END_REF] and is the inversion layer carrier density and dV c is the potential drop across the channel section, V c being the quasi Fermi potential along the channel. If we assume that and do not explicitly depend on y but only on V c , then y and V c variables can be separated following: [START_REF] Ghibaudo | Analytical modeling of the MOS transistor‖[END_REF] This assumption is valid if is constant along the channel, that is true in linear regime. The drain current is then obtained by integrating [START_REF] Ghibaudo | Analytical modeling of the MOS transistor‖[END_REF] from the source to the drain:

∫ ∫ (72) 
Equation [START_REF] Ghibaudo | A simple model of the drain saturation voltage dependence with gate voltage for short channel MOSFETs‖[END_REF] shows that calculation requires the inversion carrier concentration . To use previously derived equation for in §2.1, a variable change should be operated. Indeed and biases were referred to a hypothetical unbiased neutral body that was E f /q=V B in the case of MOS capacitor. Here E f /q=V c is no longer equal to the back bias but is driven by the source-drain bias and goes linearly (for the case of strong inversion) from V S up to V D . From now on, we will use V S as the reference potential. Thus shall become and become . Depending on whether we consider or not and parameters, yields the formulas listed in Table 2-1. Notice that I Dlin formulation when and are not null, yields only real values if .

( * (73) 
( ( * * (74) 
( ) (75) 
( √ , ( ) √ ( ) √ (76) 
In above formulas [START_REF] Morvan | Efficiency of mechanical stressors in planar FD-SOI n and p MOSFETs down to 14nm gate length‖[END_REF] In order to simplify these expressions, µ eff can be assumed independent of the position along the channel and replaced by its average value in the channel [START_REF] Sze | Physics of Semiconductor Devices[END_REF]. Initially, µ eff is expressed as in [START_REF] Yang | The Evolution of Theory on Drain Current Saturation Mechanism of MOSFETs from the Early Days to the Present Day, Solid State Circuits Technologies[END_REF], including the variable change for :

( ) ( ) (78) 
A good approximation of the average mobility along the channel is obtained by replacing by V DS /2. It can then be taken out from the integral (72) and the drain current yields:

∫ ( 79 
)
Integrating (79) yields:

( * (80) 
In this formula the effective mobility has been replaced by [START_REF] Yang | The Evolution of Theory on Drain Current Saturation Mechanism of MOSFETs from the Early Days to the Present Day, Solid State Circuits Technologies[END_REF] where has been replaced by . The potential drop is the average of along the channel. The lateral electric field E lat in [START_REF] Yang | The Evolution of Theory on Drain Current Saturation Mechanism of MOSFETs from the Early Days to the Present Day, Solid State Circuits Technologies[END_REF] has been replaced by its average E lat =V DS /L. This equation is valid in strong inversion regime ( ) and a second order high field mobility reduction formulation is assumed here. This equation does not take into account the effect of access resistance. This restriction will be discussed in §2.5.

We shall see later for the parameters extraction that the linearized formulation of I Dlin [START_REF] Merckel | An Accurate Large-Signal MOS Transistor Model for se in Computer-Aided Design‖[END_REF] is more convenient and will be preferred over [START_REF] Shin | depth characterization of electron transport in 12nm FD-SOI CMOS‖[END_REF]. The error between I Dlin approximated in [START_REF] Merckel | An Accurate Large-Signal MOS Transistor Model for se in Computer-Aided Design‖[END_REF] and not approximated in [START_REF] Shin | depth characterization of electron transport in 12nm FD-SOI CMOS‖[END_REF] is shown in Figure 2-14 against with different channel lengths. We see that the error in the right plot is low (below 0.1%) and depends slightly on L.

(a) (b) Notice that saturation velocity effect is driven by the lateral field. Thus its effect will only be significant at high V DS , in saturation regime. Hence, contribution is neglected in linear regime. To conclude, the general formulation for the linear drain current we will use is:

( ) ( ) ( * (81) 
This formulation is derived using simplification but these are fully justified, as shown in Figure 2-14.

Saturation regime model

In this section we will introduce the saturation mechanism that occurs at high V D . We will show that in the case of long channel devices, the saturation is caused by pinch-off phenomenon. From the linear drain current model we will derive a saturation drain voltage V Dsat and deduce the saturation drain current.

Effect of high drain voltage: pinch off saturation

In the case of long channel transistors, the saturation mechanism that occurs is called pinch-off [START_REF] Hofstein | Insulated-gate field effect transistor‖[END_REF]. This phenomenon can be explained with the help of Figure 2-15. In linear ( ) and strong inversion ( ) regimes, the inversion layer is uniform in the channel. The channel acts as a resistor and the drain current verifies equation [START_REF] Suciu | Experimental Derivation of the Source and Drain Resistance of MOS Transistors‖[END_REF]. Then, as the drain voltage rises, the depletion area around the drain increases, reducing Q inv at the drain end. When V DS = V Dsat the inversion charge is null at the channel drain junction. This is the pinch off point. Then if V DS is even more increased, the inversion layer continues to shrink and the pinch off point drifts from the drain channel junction toward the source side. Any increase in drain voltage is compensated by a voltage drop across the depletion region at the drain end and not by an increase of the current. This is why the current saturates beyond the pinch off point. is the inversion charge. [START_REF] Yang | The Evolution of Theory on Drain Current Saturation Mechanism of MOSFETs from the Early Days to the Present Day, Solid State Circuits Technologies[END_REF] Mathematical formulation of the saturation drain current is derived from the linear one [START_REF] Ghibaudo | A simple model of the drain saturation voltage dependence with gate voltage for short channel MOSFETs‖[END_REF] where is accounted in the effective mobility since V DS and E lat are high in this case. I Dlin reaches a maximum at as shown in Figure 2 However V Dsat formulation is not analytical making I Dsat time consuming to compute, thus we shall find an analytical approximation. This is done following the same approach but starting with the simplified I Dlin expression as expressed in equation ( 81) instead of [START_REF] Shin | depth characterization of electron transport in 12nm FD-SOI CMOS‖[END_REF]. If and and L c effects are neglected (long transistors), and the saturation drain current I Dsat yields:

For the general case, V Dsat yields:

√ ( * ( 84 
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where and is the threshold voltage at the operating voltage V DS =V DD .

To conclude the general formulation for the saturation drain current yields:

( ) ( ) ( * (85) 
This equation is valid in strong inversion regime ( ) with no access resistance. This restriction will be discussed in §2.5.

Notice that if saturation velocity, ballistic transport and neutral defects effects are small (long transistors), then tends to have quadratic dependence with as in (83) (pinch off saturation mechanism). However if saturation velocity limits the current, then has a linear dependence with . This agrees with theory, following equations ( 64)-( 65) for velocity saturation and ballistic transport and (83) for pinch off saturation. Hence, expression (85) is suited for saturation. L c account for neutral defects and accounts for velocity saturation and ballistic transport.

2.5

Effect of access resistance… 2.5.1 …in linear regime

In the previous paragraph, the drain current equation has been derived considering no effect of source drain (S/D) and contacts region. This assumption is valid for long channel devices (case where the access resistance is small compared to channel resistance). In this section we will investigate the impact of access resistance in short channel devices and include it into our model.

The first studies used to consider constant access resistance [START_REF] Merckel | An Accurate Large-Signal MOS Transistor Model for se in Computer-Aided Design‖[END_REF]- [START_REF] Cabon-Till | Influence of source drain series resistance on MOSFET Field-effect mobility‖[END_REF]. Including a constant access resistance in the drain formulation is done by substituting and respectively by and where and are the S/D resistance. Considering equation [START_REF] Suciu | Experimental Derivation of the Source and Drain Resistance of MOS Transistors‖[END_REF] for the access resistance free linear drain current, with access resistance yields:

( ) ( ( ) ( ) ) ( ) (86) 
With and . In terms of resistance, the width normalized total MOS resistance is: Other studies have claimed that access resistance has a dependence [START_REF] Hu | Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFET's‖[END_REF]- [87][88]. The subtlety between these two hypotheses mostly lay in the definition of channel and access region. In order to demonstrate it, let's consider two cases. One case is where the channel is the region that encompasses all silicon regions where where is the maximum inversion carrier density that could be induced by electric field. [START_REF] Ng | Analysis of the Gate-Voltage-Dependent Series Resistance of MOSFET's‖[END_REF]. The other case is where the channel is considered to be the intrinsic region of the channel that lies below the gate. These two situations are illustrated in Figure 2 Let's consider the first limit case. Here the access region carrier concentration can't be modulated by the gate bias and the access resistance is constant. In this case, the channel region can spread much beyond the physical gate length, encompassing lightly doped regions (LDR) and the average mobility in the channel will depend on the channel length due to Coulomb scattering at both ends of the channel.

( ( ( ) ( *, ) (87) 
In the second case the lightly doped regions are part of the access resistance where carriers will be accumulated as increases, reducing its resistivity. Thus in this case the access region is modulated by the gate voltage.

Figure 2-18 shows the local resistivity variation of the silicon at position y along the current path with respect to a small gate voltage variation (left axis). This curve shows where the silicon electrostatic is modulated by the gate potential. Obviously the silicon electrostatic is strongly dependent on the gate potential wherever the doping concentration is lower than 10 19 atoms/cm 3 . Doping concentration is shown in dark, referenced on the right vertical axis. This figure also shows that the physical gate extension, the intrinsic channel and the region under the gate electrostatic influence are not of the same size because the junctions are not perfectly sharp and aligned with the gate. Thus depending on the channel length that is considered, the access resistance will depend or not on the gate voltage. If we consider that L is smaller than the region under the gate electrostatic influence, then the access resistance is made of three contributions. The contact resistance, the highly doped source and drain resistance and the LDR resistance. Only the last contribution depends on . Kim [START_REF] Kim | Advanced Model and Analysis of Series Resistance for CMOS Scaling Into Nanometer Regime-Part I: Theoretical Derivation‖[END_REF] and Taur [START_REF] Taur | MOSFET channel length: extraction and interpretation‖[END_REF] showed that the carriers in this region are accumulated and their concentration can be expressed as: [START_REF] Sheu | Source-and-Drain Series Resistance of LDD MOSFET's‖[END_REF] is null if we are considering that carriers are ideally accumulated. However in the LDR, the doping concentration is not constant and depending on the position along the conduction path this will range from 0 (close to the highly doped region) up to V t (close to the channel), as explained by Taur [START_REF] Taur | MOSFET channel length: extraction and interpretation‖[END_REF] and Sheu [START_REF] Sheu | Source-and-Drain Series Resistance of LDD MOSFET's‖[END_REF]. Nevertheless, this conclusion can be shaded. Indeed, this is true if we consider that the gate electrostatic field is uniforme along the conduction path up to the highy doped region. However in practical cases, lightly doped region can spread away from the gate (if the transistor is underlaped). In this configuration, LDR becomes hard to invert since it benefits from a weaker gate field. Consequently Vt LDR can becomes higher than V t . While Hu [START_REF] Hu | Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFET's‖[END_REF] considers when extracting and depending on (what was justified considering the technology used at this time), Kim [START_REF] Kim | Accurate extraction of effective channel length and source/drain resistance on ultrashort channel MOSFETs by iteration method‖[END_REF] showed that for more recent technologies, this simplification does not hold anymore. The consequence is that L eff calculated using R tot -L poly curves gives unphysical effective channel length. This emphasizes the necessity to use for the extraction. Thus the width normalized access resistance yields: [START_REF] Kim | Advanced Model and Analysis of Series Resistance for CMOS Scaling Into Nanometer Regime-Part I: Theoretical Derivation‖[END_REF] with R 0 the width normalized contact resistance, L LDR and the extension and the average carrier mobility of the LDR. Here is the LDR average threshold voltage. For our study we consider that L is the physical gate length, thus the width normalized total resistance yield:
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To simplify the equation we used averaged over the lightly doped region. is small if the MOS is overlapped and large otherwise. This access resistance formulation has been reported and justified using TCAD simulation by Monsieur [START_REF] Monsieur | ‗The importance of the spacer region to explain short channels mobility collapse in 28 nm Bulk and FD-SOI technologies[END_REF].

…in saturation regime

In order to derive I Dsat rigorously, we consider I Dsat formula (82). Then and are accounted for by substituting by in equation (82). is then found by solving this complex equation. Here , thus we do not add access resistance through but instead is substituted by in expression.

There is no analytical expression for , making it time consuming to compute. However it can be simplified by assuming equation [START_REF] Reddi | Source to Drain Resistance Beyond Pinch-Off in Metal-Oxide-Semiconductor Transistors (MOST)‖[END_REF] for the intrinsic saturation drain current . Then effect is added using a first order expansion following: [START_REF] Kim | Accurate extraction of effective channel length and source/drain resistance on ultrashort channel MOSFETs by iteration method‖[END_REF] Where is the expression of intrinsic saturation drain current (see equation [START_REF] Reddi | Source to Drain Resistance Beyond Pinch-Off in Metal-Oxide-Semiconductor Transistors (MOST)‖[END_REF]) and .

Analytical formulation of yields:

( ( * ) (92) 
where is the effective mobility as described in (78) and . V Dsat is used in expression instead of V DS in order to get I Dsat expression [START_REF] Kim | Accurate extraction of effective channel length and source/drain resistance on ultrashort channel MOSFETs by iteration method‖[END_REF].

and V Dsat values from [START_REF] Kim | Accurate extraction of effective channel length and source/drain resistance on ultrashort channel MOSFETs by iteration method‖[END_REF] have been compared with the numerical solution of using formula [START_REF] Ghibaudo | A simple model of the drain saturation voltage dependence with gate voltage for short channel MOSFETs‖[END_REF] with access resistances. Results are shown in Figure 2-19. A good match is obtained using realistic model parameters. This comparison shows that approximating the effect of access resistance using [START_REF] Kim | Accurate extraction of effective channel length and source/drain resistance on ultrashort channel MOSFETs by iteration method‖[END_REF] and considering a constant mobility along the channel are suited approximations. 

Conclusion

This chapter has provided an introduction to the basic equations that describe the drain current of MOSFET transistors. These equations will be used for further parameters extraction of our compact model. Firstly, the MOS capacitance structure has been investigated to derive the inversion carrier concentration as well as the threshold voltage for the case of bulk devices. Then these equations have been adapted for the case of UTBB devices. The effects of channel doping concentration, ultra-thin channel and box on and inversion charge density have been treated. A compact model for carrier mobility has been suggested, where surface roughness, remote Coulomb and phonon scattering as well as neutral defects, ballistic transport and saturation velocity are accounted for. Then linear drain current formulation has been introduced, based upon proposed mobility, threshold voltage and inversion carrier concentration formulations. We have then reviewed the major saturation effects, as pinch off for long channel transistor and velocity saturation, injection velocity and ballistic transport for short channel devices. A compact model of saturation drain current that accounts for theses phenomena has been proposed afterward. In real devices, compact models have to account for access resistance. Hence this aspect has been treated and analytical compact models for linear and saturation regimes have been adapted. Further extraction will thus be based on the following formulation for linear drain current: [START_REF] Chen | A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs[END_REF] where the width normalized total transistor resistance is:
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The total resistance is simply the sum of contact and source-drain resistance represented by R 0 term, the LDR resistance and the channel resistance.

Saturation drain current is expressed as: [START_REF] Wong | Booth -Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFETs‖[END_REF] where , is the intrinsic saturation drain current:

( * (96) 
G m is the derivative of :

( ( * ) (97) 
where ( ) and is the effective mobility as described in (78), accounting for scattering mechanisms, velocity saturation and ballistic transport:

( ) ( ) (98) 
and V Dsat is the drain saturation voltage and is derived as where is the intrinsic linear drain current. yields:

√ ( * (99) 
where . These formulations are valid in strong inversion regime. Advantages of this formulation are that it is analytical and fast to compute. This is required to make it applicable at industrial scale and to extract parameters on a large amount of devices with very limited measured data. However, simplifications have been required in order to meet these constraints. Impacts of these simplifications have been shown to be acceptable compared to numerical calculations.

Previous formulations of drain current are reformulated here without the contribution of and :



For linear regime (from (94)):

( ) ( ) (100) 



For saturation regime (from (95), ( 97) and (99)):

(101)

( ) (102) 
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Chapter 3 :

Compact modeling: Extraction procedure and application to TCAD simulations

The aim of the compact model developed in previous chapter is to model the drain current in order to investigate device properties and their relationships with process parameters. To do so, the model will be used to fit silicon measurements and TCAD simulations in chapter 4. This step requires a method to extract model parameters. This method is detailed in paragraph §3.1. It will be applied on both TCAD simulations (in order to validate the model and the extraction method) and silicon measurements (in order to investigate devices properties). Different types of measurements are regularly performed on silicon. Modeling team performs comprehensive characterizations of transistors in order to calibrate their model. Since these measurements are time consuming, they are performed on few lots only. These characterizations include full I D -V G measurements on devices with different gate lengths. In the meantime, Parametric Tests (PT) are performed in line for every wafer of every lot, each wafer being measured on 17 sites. These parametric tests consist in a reduced number of measurements (few drain current measurements) in order to reduce the measurement time down to a reasonable threshold.

In order to ensure that the extraction method is robust and reliable, we use full I D -V G measured on silicon. Accuracy of the extraction method is check considering the fitting quality and the uncertainty about model parameters. This is the purpose of paragraph §3.2.

Monitoring process fluctuations using parameter extraction requires measurements that include all wafer and all lots. Thus full I D -V G characterizations from modeling team cannot be used for this purpose. Instead we will use PT. Extraction method being validated using full I D -V G , the influence of data sample size and range is then tested before any application on PT data. 

Model parameter extraction method

In the previous chapter we have derived the linear drain current equation and we have seen that there are a limited number of model parameters that are to be extracted (R 0 , , , , , and , L c ). Linear drain current equation is recalled here for convenience: [START_REF] Hao | ‗Experimental determination of shortchannel MOSFETs parameters[END_REF] With R tot expressed as:
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Model parameters will be extracted based on drain current data. This section describes the extraction method that will be used. In term of model parameter extraction, two different approaches exist: direct extraction (involving linear regression, derivation or integration of electrical characteristics such as C G -V G and I D -V G ) and nonlinear optimization algorithms where an objective function, that is the error between model and measurements, is being minimized as the model parameters converge toward there optimal value through an iterative procedure. Our approach relies first on linear least square fit in order to get a first approximation of model parameters. Then these values are used as input to a nonlinear optimization algorithm to refine their value. §3.1.1 and §3.1.2 explain the procedure to extract Vt lin and the other linear parameters respectively, using least square regression. §3.1.3 and §3.1.4 details the nonlinear optimization algorithm used to finalize the extraction in linear and saturation regime respectively.

Threshold voltage

In literature, the threshold voltage definition is quite ambiguous and there are at least as many extraction methods as definitions of V t available. Most common ones are Hamer's method [START_REF] Hamer | First-order parameter extraction on enhancement silicon MOS transistors‖[END_REF], constant current or constant charge method [START_REF] Chen | A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs[END_REF], I D -V G linear extrapolation [START_REF] Tsividis | Operation and Modeling of the MOS Transistor‖[END_REF], maximum of transconductance derivative [START_REF] Wong | Booth -Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFETs‖[END_REF] that is equivalent to the maximum of capacitance derivative [START_REF] Lacord | -and Efficient MASTAR Threshold Voltage and Subthreshold Slope Models for Low-Doped Double-Gate MOSFET‖[END_REF] and the Y function [START_REF] Balestra | A new method for the extraction of MOSFET parameters at ambient and liquid helium temperatures‖[END_REF]. A comprehensive study of extraction methods has been done by Ortiz-Conde [START_REF] Ortiz-Conde | A review of recent MOSFET threshold voltage extraction methods‖[END_REF].

For our purpose we will choose a method that is suitable considering linear drain current equations ( 104)- [START_REF] Monsieur | ‗The importance of the spacer region to explain short channels mobility collapse in 28 nm Bulk and FD-SOI technologies[END_REF] and that requires as less measurement points as possible. Every method mentioned above requires full I D -V G or C G -V G measurements in order to extract the threshold voltage (making them unsuitable for process monitoring at industrial scale) except Hamer's method. Thus, in the following section, we will adapt Hamer's method to extract the threshold voltage that suits equations ( 104)-

Hamer's method brings the solution of a, b and c considering the following equation: [START_REF] Hu | Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFET's‖[END_REF] where are the drain currents and are the gate voltages with . If we consider the case where R sd is constant and , then I Dlin [START_REF] Hao | ‗Experimental determination of shortchannel MOSFETs parameters[END_REF] can be rearranged to match (106):

Then , , and . Knowing b we can then deduce V t . The other parameters cannot be extracted though since there are 4 unknowns ( , , and ) and only 3 equations provided by Hamer's method. If now we consider that depends on with then I Dlin equation ( 104)-( 105) can be rearranged to match [START_REF] Hu | Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFET's‖[END_REF] as: [START_REF] Chem | A new method to determine MOSFET channel length‖[END_REF] and , , and . Then knowing b, V t can be easily deduced.

Although this adaptation of Hamer's method is not the state-of-the-art method to extract threshold voltage, this approach is perfectly consistent with our formulation of drain current if is neglected and Vt LDR equals Vt lin . This consistency is the critical point for this kind of task as discussed by McAndrew and Layman [START_REF] Mcandrew | MOSFET Effective Channel Length, Threshold Voltage, and Series Resistance Determination by Robust Optimization‖[END_REF].

If and , Hamer's method cannot be used to extract accurately V tlin but it can be used to have an approximation of its value. In order to get an accurate value of V tlin and , a nonlinear optimization algorithm will be used as a successive step of linear least square regression.

Access resistance, effective channel length and mobility extraction

In this section, a review of published extraction method based on the same linear drain equation as ( 104)-( 105), knowing Vt lin , is reported. Their differences will be analyzed in order to determine the method to be used for our purpose.

In our model, the concept of access resistance is linked to parameters R 0 and . In contrast, , , , and Lc are related to channel conductivity. In order to extract these parameters we review the different methods published in the literature. Brews [START_REF] Ng | Measuring the effective channel length of MOSFETs‖[END_REF] and McAndrew [START_REF] Mcandrew | MOSFET effective channel length, threshold voltage and series resistance determination by robust optimization‖[END_REF] made a review of the main characterization methods (up to eleven of them) to extract and . Among them we find Suciu and Johnston [START_REF] Suciu | Experimental Derivation of the Source and Drain Resistance of MOS Transistors‖[END_REF], peak gm [START_REF] Cabon-Till | Influence of source drain series resistance on MOSFET Field-effect mobility‖[END_REF][104],

, R lin -L [105] [START_REF] Hu | Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFET's‖[END_REF] (that is similar to TMC [107] [START_REF] Chem | A new method to determine MOSFET channel length‖[END_REF]), De La Moneda [START_REF] De La Moneda | Measurement of MOSFET Constants‖[END_REF], Peng [START_REF] Peng | An Improved Method to Determine MOSFET Channel Length‖[END_REF], Sheu [START_REF] Sheu | Source-and-Drain Series Resistance of LDD MOSFET's‖[END_REF], Peng and Afromowitz [START_REF] Peng | Basic Parameter Measurement and Channel Broadening Effect in the Submicrometer MOSFET‖[END_REF], Whitfield [START_REF] Whitfield | A Modification on ‗An Improved Method to Determine MOSFET Channel Length‖[END_REF] and Chang and Berg [START_REF] Chang | A Derivative Method to Determine a MOSFET's Effective Channel Length and Width Electrically‖[END_REF] methods. To that list we can add Ghibaudo's Y function [START_REF] Balestra | A new method for the extraction of MOSFET parameters at ambient and liquid helium temperatures‖[END_REF]-[120], Taur's shift and ratio [START_REF] Taur | A New -Shift and Ratio‖ Method for MOSFET Channel-Length Extraction‖[END_REF], Biesemans [START_REF] Biesemans | Accurate determination of Channel Length, Series Resistance and Junction Doping Profile for MOSFET 170ptimization in deep submicron technologies‖[END_REF], Sanchez [START_REF] Sanchez | A method to extract mobility degradation and total series resistance of fully depleted SOI MOSFETs‖[END_REF] and Jeppson and Karlsson's [START_REF] Jeppson | Static characterization and parameter extraction in MOS transistors‖[END_REF][125] methods. All these methods are direct extraction methods based on derivatives and linear regression of I D -V G characteristics. The difference between them lies in the assumptions made beforehand and the regression they use to extract parameters, but drain current equations are equivalent. Table 3-1 provides a summary in term of assumptions and extracted parameters. Y function [START_REF] Balestra | A new method for the extraction of MOSFET parameters at ambient and liquid helium temperatures‖[END_REF]- [START_REF] Subramanian | Parameter Extraction of Nano-Scale MOSFETs Using Modified Y Function Method‖[END_REF] is constant in the first papers. Generalization of the method canceled this assumption.

, , , .

Taur's shift and ratio [START_REF] Taur | A New -Shift and Ratio‖ Method for MOSFET Channel-Length Extraction‖[END_REF] , independent of V GS , Brut [START_REF] Brut | New approach for the extraction of the gate voltage dependent series resistance and channel length reduction in CMOS transistors[END_REF], Yamaguchi [START_REF] Yamaguchi | A new variational method to determine effective channel length and series resistances of MOSFET's‖[END_REF],

Biesemans [START_REF] Biesemans | Accurate determination of Channel Length, Series Resistance and Junction Doping Profile for MOSFET 170ptimization in deep submicron technologies‖[END_REF] µ constant with L ,

The two first methods of Table 1-1 have inappropriate assumptions since nowadays, access resistance represents up to 70% of the total resistance for shortest devices [START_REF] Denis | New compact model for performance and process variability assessment in 14nm FD-SOI CMOS technology‖[END_REF]. In line 3, all the proposed methods assume a constant access resistance and extract whereas line 4 (to which our approach belongs to if it is assumed that V tLDR =V tlin and ) assumes and L constant.

However, these formulations are equivalent. Indeed, in linear regime, the width normalized total resistance formula yields:
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In this expression, is not distinguishable from . So even if their physical meaning is different, these parameters are the same considering extraction. In the particular case where and is neglected, cannot be distinguished from L c either. Indeed, R lin expression [START_REF] De La Moneda | Measurement of MOSFET Constants‖[END_REF] where Lc=0 and can be rearranged as:

( ( ) ) (110) 
In this expression is similar to the constant access resistance term and . Thus, extracting R sd and using method of line 3 is equivalent to extract and using methods of line 4. Thus these methods only differ from the extraction method used. This equivalence of and makes simultaneous extraction of R SD (V GS ) and , as proposed by Hu [START_REF] Hu | Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFET's‖[END_REF], Brut [START_REF] Brut | New approach for the extraction of the gate voltage dependent series resistance and channel length reduction in CMOS transistors[END_REF] and Yamaguchi [START_REF] Yamaguchi | A new variational method to determine effective channel length and series resistances of MOSFET's‖[END_REF] meaningless unless a clear and physical definition of the channel length is provided (involving for example critical carrier density as mentioned by Biesemans [START_REF] Biesemans | Accurate determination of Channel Length, Series Resistance and Junction Doping Profile for MOSFET 170ptimization in deep submicron technologies‖[END_REF] or the metallurgical junction as mentioned by Lou [129]). In other words, if Vt LDR =V tlin , using linear regression, these parameters can't be distinguished mathematically and any workaround would yield highly correlated parameter values as demonstrated by Brut [START_REF] Brut | New approach for the extraction of the gate voltage dependent series resistance and channel length reduction in CMOS transistors[END_REF]. TMC [START_REF] Terada | A new method to determine effective MOSFET channel length‖[END_REF][108], Peng and Afromowitz [START_REF] Peng | Basic Parameter Measurement and Channel Broadening Effect in the Submicrometer MOSFET‖[END_REF], Taur's shift and ratio [START_REF] Taur | A New -Shift and Ratio‖ Method for MOSFET Channel-Length Extraction‖[END_REF] and Whitfield [START_REF] Whitfield | A Modification on ‗An Improved Method to Determine MOSFET Channel Length‖[END_REF] methods at least assumes that R SD is constant, thus their model are equivalent to ours.

More recent publications have proposed iterative procedures in order to extract both Rsd(V GS ) and µ(V GS ) (Fleury [START_REF] Fleury | New Y -Function-Based Methodology for Accurate Extraction of Electrical Parameters on Nano-Scaled MOSFETs‖[END_REF][119] and Subramanian [START_REF] Subramanian | Parameter Extraction of Nano-Scale MOSFETs Using Modified Y Function Method‖[END_REF]) or Rsd(V GS ) and (Kim [91]). However we have seen that Lc accounts for both and µ(L) roll down. Moreover, there is an equivalence between Lc and if V tlin =V tLDR and . Thus extracting both and µ (or ) depending on the gate voltage, without alleviating the ambiguity about the access/channel region splitting, leads to results that are strongly dependent on the initial guess (that will determine the access/channel region splitting).

Thus for our extraction we will test whether L c and can be distinguished (depending on the discrepancy between V tLDR and V tlin ). If they are, equation ( 105) will be used for parameter extraction. If not, the equation will be simplified (by either using only or L c or even removing both of these terms if access resistance is constant and Lc close to 0).

Linear model parameter extraction method

Let us now introduce the method of our own [START_REF] Monsieur | ‗The importance of the spacer region to explain short channels mobility collapse in 28 nm Bulk and FD-SOI technologies[END_REF][128] [START_REF] Denis | A new approach for modeling drain current process variability applied to FD-SOI technology‖[END_REF]. The extraction procedure is based on the linear drain current equation ( 105). This formulation does not allow any linearization for a direct extraction procedure and Hamer's method cannot be used -as is‖ as discussed in §3.1.1. In order to alleviate this difficulty, we first consider and and extract Vt lin using Hamer's method. Then every other parameter is extracted at once using the following system of linear equation [START_REF] Denis | A new approach for modeling drain current process variability applied to FD-SOI technology‖[END_REF]:
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This first step yields an initial guess for the model parameters. Then we use it as input to a nonlinear optimization method to extract the suited values of , , , , , , L c and . Nonlinear optimization algorithms have been first used by McAndrew [START_REF] Mcandrew | MOSFET effective channel length, threshold voltage and series resistance determination by robust optimization‖[END_REF] who showed that this approach is more robust than typical direct extraction method. It is nowadays widely spread and used for complex compact model parameter extraction such as BSIM4 [START_REF] Li | Intelligent BSIM4 Model Parameter Extraction for Sub-100 nm MOSFET Era‖[END_REF] or PSP [START_REF] Zhou | Parameter extraction for the PSP MOSFET model by the combination of genetic and Levenberg-Marquardt algorithms‖[END_REF]- [START_REF] Li | Hybrid Differential Evolution and Particle Swarm Optimization Approach to Surface-Potential-Based Model Parameter Extraction for Nanoscale MOSFETs‖[END_REF]. Nonlinear optimizer we use is a built-in Matlab function based on trust-region-reflective and conjugate-gradient algorithm [136]- [138]. An excerpt of the code is available in Appendix A.

The strength of nonlinear optimization method compared with direct extraction methods (apart from being able to handle nonlinear problem) is that they are less sensitive to ill-conditioned problems. In our case, depending on the chosen V GS and L values, column two, three and four of equation [START_REF] Sheu | Source-and-Drain Series Resistance of LDD MOSFET's‖[END_REF] matrix can be more or less correlated. For extreme cases, this can lead to singularity of the matrix and make [START_REF] Sheu | Source-and-Drain Series Resistance of LDD MOSFET's‖[END_REF] unsolvable. The other drawback of linear least square problem [START_REF] Sheu | Source-and-Drain Series Resistance of LDD MOSFET's‖[END_REF] is that it minimizes the square of the difference between measured and modeled R lin and this resistance is larger for long transistors than short ones. Thus, extracted parameters will advantageously fit long transistors at the expense of the short ones (that are actually the one of interest), biasing the extraction. On the contrary, nonlinear optimization methods can either optimize the drain current model error or the resistance model error. It can even be used to optimize the normalized error between model and measurements, leading to a uniform model error across the whole range of V G and L data.

Saturation model parameter extraction method

This section explains the method used to extract model parameters in saturation regime. Saturation drain current introduced in chapter 2 is recalled here: [START_REF] Peng | Basic Parameter Measurement and Channel Broadening Effect in the Submicrometer MOSFET‖[END_REF] where and is the intrinsic saturation drain current:
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G m is the V G derivative of :
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where and is the effective mobility, accounting for scattering mechanisms and velocity saturation:
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and V Dsat is the drain saturation voltage and is derived as the where is the intrinsic linear drain current. V Dsat yields:
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where .

Saturation drain current equation is not linearizable. Thus nonlinear optimization is used as the only step for extracting saturation parameters. Saturation parameters are and V tsat . Hopefully is a fairly stable parameter and its value is close to saturation velocity or injection velocity. Both of these quantities have been accurately measured and reported in literature and are very close to each other. Thus we can safely use it as first guess for the optimizer. First guess for is set to cm/s for nMOS and cm/s for pMOS. C ox is calculated knowing the equivalent gate oxide thickness deposited during the process. For nMOS, and for pMOS . V tlin is chosen as the first guess for V tsat extraction.

Summary of the extraction method

To sum up, the extraction procedure starts with linear regime measurements. R 0 , , , , and V tlin parameters are first approximated using a linear least square regression and Hamer's method.

Then these values are used as a first guess of a nonlinear optimizer to refine these model parameters and extract L c , V tLDR . Based on these extracted parameters, saturation model parameters and V tsat are extracted using the same nonlinear optimizer. Values from literature and V tlin are taken as first guess of and V tsat respectively.

Extraction on full I D -V G curves measured on silicon

In order to assess the functionality of the extraction method as well as the validity of the model, in this paragraph we perform extraction on silicon measurements of 28 and 14 nm FD-SOI devices. Here, extraction is performed using full I D -V G in strong inversion regime. Extraction method efficiency is assessed by the fitting quality and the uncertainty about extracted parameters. Depending on each device type, different gate length as well as gate biases are used to measure drain current. Data samples are detailed in Table 3-2. Extraction results are detailed for 28 nm FD-SOI nMOS devices. Figure 3-1 shows the measured and modeled I D -V G curves in linear and saturation regime for every gate lengths. Extracted parameters are gathered in Figure 3-2 and Table 3 The quality of fit is appropriate. In order to estimate the uncertainty about extracted parameters and the robustness of extracted parameters, a cross validation method is applied. This method consists in withdrawing few measurements from the data sample and performing the extraction procedure again. The higher the discrepancy between the two results, the more uncertain the extraction results are. The last step can be repeated many times, each time withdrawing a different subset of data, in order to estimate this uncertainty (see chapter 5 for more information about cross validation methods). Along with histograms, the root mean square model error is plotted in Figure 3-3. This error is calculated using equation ( 117) where is the synthetized drain current and is the modeled one. This error is calculated over the full data sample (including withdrawn data subset for extraction). It evaluates the predictability of the model depending on the parameter value. Error bars represents the standard deviation of the model error. In each plot, the green line represents the value extracted using the whole data set. Studying carefully the different plots we see that results are gathered around 2 distinct solutions. The most observed solution yields and whereas the most accurate solution (with the lowest model error) is the one found using the whole dataset for extraction and has non zeros and with a lower R 0 . Thus we see that in the first case the V G dependent access resistance has been substituted by a constant access resistance. However this results is less accurate than the second where access resistance depends on the gate voltage. This V G dependent access resistance seems touchy to extract properly. This is partly due to the fact that its influence on model error is limited since it only drops it from µA/µm down to µA/µm. Moreover the error is located on the short channel devices drain current at low V G . Thus removing one measurement point from these devices can easily bias the extraction and steer the nonlinear solver to converge toward the local minimum where access resistance does not depend on gate voltage. This extraction issue will be investigated in §3.3.

As a counterexample, the case of 28 nm FD-SOI pMOS devices is studied and results shows that the access resistance does not depends on V G and the results are robust. Measurements against model are shown in Figure 3-4 for linear and saturation regime. A good fit is obtained. Model parameters are gathered in Figure 3-5 and Table 3 Cross validation test results are shown in Figure 3456. Extracted parameters are all regrouped around the solution found using the whole dataset. Model error also shows that the best solution is close to the one extracted using the whole dataset.
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The reason why nMOS has an access resistance that depends on V G contrary to the pMOS is that pMOS is overlapped and nMOS underlapped in the considered devices. This point is confirmed by TCAD simulation calibrated on 28 nm FD-SOI devices (see Figure 3-24 in §3.4). The V G dependent access resistance region lies at both channel ends. In overlapped devices, these ends are highly doped, thus the corresponding resistance is low. This is the case of pMOS. The contrary occurs for nMOS. A summary of model parameters extracted on 28 and 14 nm FD-SOI devices using full I D -V G measurements is shown in Figure 34567. In this figure, the error bars represent the parameter dispersion calculated using cross validation test. These results emphasize the fact that model parameters depend on the technology used. An enhanced mobility with lower parameters has been found for 14 nm FD-SOI devices. This can be due to the in-situ doped epitaxial raised source drain that induces fewer defects compared with sputtering implanted dopant used for 28 nm FD-SOI devices. It can also be due to SiGe mobility booster for the case of pMOS devices. R 0 is higher for pMOS than nMOS since hole's mobility is lower than electron's mobility and source drain are less doped for pMOS devices because of silicon solubility limit. For 14 nm FD-SOI technology, physical gate length is estimated using the drawn gate length corrected by systematic effect like OPC enabling the most accurate estimation of the physical gate length. Moreover, for 14 nm FD-SOI technology, in situ doped source drain technology prevents neutral defects formation. This is why Lc is globally close to 0. An exception is to be noticed for 14 nm FD-SOI pMOS technology where Lc is significant. This is due to the presence of SiGe source drain boosters that induces stress in the channel. This stress is not uniform in the channel due to stress relaxation mechanisms and the average stress over the channel depends on the channel length [139][140]. Finally, as it has been discussed previously, pMOS 28 nm FD-SOI devices have no V G dependent access resistance since they are overlapped.

To conclude we have extracted model parameters on different technologies. The model has shown its accuracy. Model parameters are dependent on the technology considered. In some cases, model parameters can be neglected. In addition, the extraction has also shown to be robust against cross validation test for the case of 28 nm FD-SOI pMOS device. However nMOS device extraction is quite unstable and two distinct solutions are found. Cross validation is required in order to discriminate the most accurate solution.

Test for extraction procedure robustness depending on data sampling

In order to monitor model parameters sensitivity to process variations, the extraction procedure should be applied on every wafer of every lot that includes process variations, using PT (spotted data) instead of full I D -V G curves in order to reduce measurement time. Before doing so, we must verify that the extraction procedure is still adapted using a limited amount of measurements. In this section we test the ability of the code to extract the proper model parameters values based on synthetic data depending on the data sampling. Synthetic data are artificial data created using the drain current equation and arbitrary model parameter values. This procedure is trivial but required in order to verify that:  The method is properly implemented (no bug)  Parameters are extractible (no redundant parameters and data sample size and range are large enough)

 The nonlinear algorithm converges properly. That is to say, it enables verifying if the termination tolerance is small enough to enable an accurate extraction of model parameters.

There are two termination criterions: the minimum change in the value of the objective function during a step and the minimum size of a step in the model parameters space.

One of the major constraints of the work is that data sample size is small since PT only includes few points per curves. Data sampling is defined in §3. 

Definition of data sampling

Influence of data sampling

This section focuses on the influence of data sampling. We demonstrate the requirements about the model and data sample to be used in order to ensure an accurate extraction. It will be demonstrated that model extraction using synthetic data with a large data sample works. However extraction is not robust against sample range variations. We will show how to discriminate redundant parameters that can be fixed in order to improve significantly the extraction robustness without compromising the model accuracy.

Influence of data sample size and range

In order to illustrate the influence of data sample size and range, we first focus on 14 nm FD-SOI nMOS case. Results will be generalized to other technologies afterward. Synthetic data are generated using parameters close to those found for 14 nm FD-SOI nMOS devices. Values are regrouped in Table 3- In order to investigate the influence of the sample size and which one is required to extract properly model parameters, a test has been performed. It consists in running extraction using different sample size with a fixed range (the range used above). The size goes from the 800 data points (corresponding to 20 gate lengths and 20 gate biases in linear and saturation regimes) down to 24 data points (4 gate lengths measures at 3 different gate biases in both regimes). In order to test whether silicon data sample range is large enough to ensure a proper extraction, extraction is performed with various sample ranges. For each sample range, the sample size is constant (20 V G and 20 L). Results in Figure 3-10 show that the extraction is unstable and depending on the data sample considered two solutions can be found. This problem is similar to the one revealed in §3.2 when performing cross validation tests on 28 nm nMOS device extractions.

Model parameters

Relative error from extraction [%]

The problem mainly stems from and Lc parameters. In fact, if is in the range of Vt lin , then it can be difficult to distinguish one from another, leading to noisy extractions. Moreover, in this case, Lc becomes hardly distinguishable from sigma as well, making them redundant (see §3.1.2 and equation ( 110)). Thus, in this condition, extracting , Vt LDR and L c leads to unstable results. To demonstrate that numerically, Figure 3-11 shows the extraction accuracy depending on the value of chosen for synthetic data generation. In this case Vt lin has been set to 0.35V for all gate lengths. Figures shows that, considering this synthetic dataset, when reaches V tlin , the error rises and , Lc and cannot be extracted anymore if . This case study does not prove that extraction will systematically fail if Vt LDR is greater or equal to Vt lin but in some case, this can pose problems and cause extraction to fail. In these cases, the problem that is faced is that some parameters are partially redundant. The best way to cope with this issue is to

√∑ [ ] (118) 
Vt LDR = Vt lin [V]
remove or fix the redundant parameters. However, simplifying the model leads to make approximations. In order to minimize the error created, the importance of each parameter in the model is evaluated by running test on synthetic data. The test consists in reducing the model complexity by removing each parameter one by one and calculating each time the discrepancy between the full and the reduced model. Based on model parameters obtained applying extraction on full I D -V G measurements on every technology, the root mean square error between full and reduced models is shown in Figure 3-12:

(a) (b) Depending on the technology, model parameters are more or less important. However we see that , , Vt LDR and Lc are the least important one considering both linear and saturation regime. Thus fixing some of these parameters will improve the robustness of the extraction procedure while inducing a minimum bias in the result. Considering the silicon data sample size and range, extractions have been performed using 5 different cases. In the first case, all parameters are considered. This is the model as described in chapter 2. In the second case, Lc has been set to 0 and is not extracted. In the third case, we assume that access resistance is constant and thus is set to 0. In the fourth case, access resistance is considered inversely proportional to as suggested by Hu [START_REF] Hu | Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFET's‖[END_REF], thus Vt LDR is replaced by and is not extracted. Lc is set to 0 as well. In the last case access resistance is considered constant and Lc=0. corresponding to the noise level. Model parameters are then extracted and error between the modeled and the synthetized current is calculated as well as the error between extracted model parameters and the one used as input for synthetic data generation. The extraction is performed using silicon data sample.

In practical situation, noise can arise from different sources. One source is directly linked to the measurement setup. PT uses short time measurements (few milliseconds). It means that the measure is averaged over this period of time. Thus every high frequency noises (F > 1 MHz) are deleted. Low frequency noise (LFN) [START_REF] Francisco | Parametric model calibration and measurement extraction for LFN using virtual instrumentation‖[END_REF] only remains. In our setup and considering our technology, measurement noise does not exceed 1% of the measure. Another source that can be assimilated to -noise‖ is the local variability. Indeed, in our extraction, we assume that every model parameters are common for all transistors of the same die (except threshold voltage). This is only true if the local variability is neglected. In this paragraph we only focus on measurement noise. Impact of local variability effect will be treated in chapter 4 and 5. 
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In order to illustrate the extraction robustness of such a compact model, we simulate the mobility against gate voltage using TCAD tool on nMOS FD-SOI device. Figure 3-16 shows the inverse of the electron mobility half way between source and drain, against the gate overdrive. TCAD simulated mobility has been averaged across the SOI layer thickness, weighted by the inversion carrier density in order to get the effective mobility. Equation used to calculate this mobility is shown below: Considering the whole gate bias range of strong inversion regime, we see that the mobility has a square dependence with respect to . This conclusion is obvious considering the whole range of gate bias in strong inversion. However extraction will only benefit from a reduced gate bias range (0.4V) and a reduce sample size. Thus depending on the position of this range, Figure 3-16 shows that effective mobility model can be simplified using only either or . Moreover there are 3 model parameters to be extracted and 3 drain currents measured. The problem is square but extraction results can be very noisy. Thus, considering a second order model involves too many parameters. It shall be reduced to 2 model parameters, removing either or . It should be noted that even if the fitting accuracy is acceptable, respective values of , and strongly depend on the model used. It emphasizes the fact that these parameters are only fitting parameters. Thus removing either or would make the model extraction more robust without making the parameter less meaningful. It should be noted that the limited range used for extraction also induces a correlation between µ 0 and parameters. Figure 3-18 show the correlation plot between µ 0 and , extracted with 20 different data samples. A correlation is observed between them. The error made on the modeled drain current remains now below 7%. The improvement brought by removing in the model is important. This emphasizes the need to remove . Error on extracted model parameter is also well controlled.

∫ ∫ (120) 
In order to generalize these results, we have run the same test considering model parameters extracted on all technologies and considering four different models. These models are those considered in previous paragraph. Errors on model parameters are gathered in Figure 3-22. In these plots, we show the standard deviation of the error. Considered noise level is set to 1% and is set to 0. Results show that generally speaking, the more complex the model is, the noisier results are. Serious issues arises, when considering the first model (Lc=0) used to extract 14 nm pMOS FD-SOI model parameters. In this case, extraction diverges and yields unphysical results due to the noise. Otherwise, noise results remain reasonable.

(a) (b) (c) (d) (e) (f) (g) (h)

Conclusion about model parameter extraction method

The study of extraction robustness against synthetic data has revealed that the full model proposed in previous chapter cannot be used as is, considering redundant parameters and the limited amount of data measured in line. Redundant parameters like Vt LDR and Vt lin or Lc and have been found to be tricky to extract.

It has been shown on silicon model that fixing these parameters leads to a minimum increase of the model error on silicon extraction. This extraction test has been run considering model parameters extracted on full I D -V G of nMOS and pMOS devices of 28 and 14 nm FD-SOI technologies. It has revealed that the model cannot be extracted if all parameters are considered. However as soon as a one parameter is removed, the extraction works fine. An exception must be mentioned for 28 nm pMOS FD-SOI technology where model parameters are badly extracted if only Lc is fixed.

Following that study the effect of artificial noise has been investigated. It revealed that, a small amount of noise can lead to strong error in model extraction. TCAD investigation of the mobility compact model showed that using both and in the model can lead to a high uncertainty about extraction results. Removing allow more robust extractions against noise without making the parameter less meaningful. Noise test has been conducted considering model parameters extracted on full I D -V G of nMOS and pMOS devices of 28 and 14 nm FD-SOI technologies and setting to 0. Results showed reasonable level of noise in extracted model parameters considering 1% of noise in electrical parameters.

To sum up, attention must be paid to the model used for extraction. If available data for extraction is those of the silicon data sample, we first suggest setting to 0 in order to reduce the impact of noise in measurements. Then, depending on the device, one or two parameters must be removed. In order to verify the validity of such simplifications, extraction results must be checked. Extraction robustness can be assessed by running the sample size and range test with synthetique data, as it has been done in §3.3.2.1. Then, performing extraction on TCAD simulations, the physical coherence of the results will be checked against the process variations. This will be done in next paragraph. Considering silicon extraction, since many dies are extracted on the same wafer, correlation plots will be performed. Uncorrelated extracted parameters ensure the robustness of the extraction and enable drawing inferences of model parameter's variation impact on drain current. This approach will be used in Chapter 4.

Finally, in order to improve the robustness of the approach, we recommand using a larger data sample size, using more gate biases. This will reduce the effect of noise measurements.

Application to TCAD simulations

In this paragraph, extractions have been applied on TCAD simulated I Dlin and I Dsat where different process variations have been considered. Results are discussed. The aim of this study is to illustrate, using simulations, how a process variation impacts model parameters. We will demonstrate that model parameters variations can be explained by their physical meaning. The doping profile for pMOS and nMOS devices is plotted in Figure 3-24. In this plot we see that nMOS device is rather underlapped in contrast with pMOS that is overlapped. We will see later the consequence on extracted model parameters. Based on this geometry, other simulations have been run with small process parameters variations including:

 Raised source drain epitaxial height (Tepi) [START_REF] Wong | Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel‖[END_REF][START_REF] Laurent | TCAD Modeling of variability in 28-nm CMOS technologies based on Impedance Field Method‖[END_REF][START_REF] Lin | Performance-Aware Corner Model for Design for Manufacturing[END_REF] TCAD data sampling used for extraction is gathered in Table 3-5 and Table 3-6 in §3.3.1. This choice of bias conditions is based on available silicon data, in order to keep coherence between both silicon measurements and simulations conclusions. In these simulations, Philips unified model proposed by Klaassen [142] is used for the mobility in combination with high field saturation and thin layer Lombardi model [START_REF] Lombardi | A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices[END_REF]. Neither ballistic transport nor velocity overshoot is simulated here. However mobility model accounts for velocity saturation.

Influence of process variation on extracted model parameters

In this paragraph we present the result of the extraction routine for all experiments of the DOE presented in §3.4.1. We will show that process related model parameters variations are expected based on physical reasoning. Then we will be able to quantify these dependencies using extraction results.

Case of nMOS

For the case of nMOS devices Vt LDR , Lc and are not considered for data extraction. This model has been chosen for extraction since it yields the most physically coherent results regarding process variations. Using data sample exposed in Table 3-5 andTable 3- parameter is related to the V G dependent part of the access resistance. It is shown in that plot that depends on every parameter except the external resistance. In chapter 2 we have seen that gate voltage dependent access resistance depends on LDR doping level. Consequently, the more the transistor is underlapped, the greater . Thus when Tepi or Wsp is large, the junction is moved away from the gate. The transistor becomes underlapped and rises. Tsi influences as well. The dopant dose used for implant (f dose) acts directly on the LDR doping concentration thus the lower the dose, the higher . Thick T il reduces the field from the gate. Thus the higher is T il , the higher is . When the anneal temperature is increased, dopants migrate farther. Thus LDR becomes more doped and diminishes. However does not depend on external resistance since this resistance does not impact the LDR. This enphasises the robustness of the extraction and is a validation about physical interpretation. It validates its implementation. As it has been discussed in Chapter 2, µ 0 and are complex functions that depend on C ox , C si (and thus on V B and Tbox). Consequently µ 0 .C ox and depend on Tsi and T il . In addition and depend on Qhk that are the charged defect at the high K interface. This is the effect of remote Coulomb that could be captured through and/or . The most influent process parameter is T il , that is inversely proportional to C ox , thus to µ 0 .C ox . SCE reflects the loss of electrostatic control on the channel with decreasing gate length. It depends on the source-drain junction position. If the transistor is overlapped, electrostatic control will be lost more quickly with decreasing gate length. Indeed in this case, the distance between the junctions is shorter. Thus, considering the same gate length, an overlapped transistor will have less electrostatic control than a transistor with junctions well aligned with the gate. As a consequence, narrow spacers induce greater negative SCE by overlapping the transistor. SCE also depends on Til and and Qhk. Indeed, a thick Til reduces the gate electrostatic field in the channel, thus the electrostatic control of the channel is weaker. Interfacial charges Qhk shield the gate electrostatic and increase SCE as well. 

v * .C ox should only depend on T il through parameter. However it is also slightly sensitive to other parameters. This inconsistency could be due to the fact the self-heating is not taken into account in our model while it is simulated in TCAD. The same consideration holds for Vt sat and DIBL. v * .C ox could not be extracted when R ext is greater than 500 . Indeed when , the external resistance drives the saturation drain current and has no significant impact anymore and cannot be extracted properly.

In order to investigate the self heating effect, POR has been simulated with and without self-heating. Extraction has then been performed for both cases. The difference between model parameters without and with self heat has been calculated. Results shown in Figure 3-30 reveal that self-heating mostly reduces and by a non-negligible amount. Thus self-heating does not impact linear model parameters extraction but only saturation model parameters. Figure 3-31 shows modeled and simulated saturation drain current against V G for different gate length with and without self heating. We see that self-heating tends to reduce drain current at high V G . In presence of self-heating, the second derivative of I Dsat with respect to V G is negative but the model cannot account for such a behavior. Thus self-heating effect is accounted for though and V tsat parameters. 

Case of pMOS

In this paragraph we expose the results of model parameters extraction on pMOS devices. The main difference between nMOS and pMOS devices is the carrier mobility (that is lower for pMOS since holes effective mass is greater than electrons) and the doping profile (for our case); see Figure 3-24.

We will see how these differences affect model parameters.

The equation used to model pMOS TCAD simulation is the same than nMOS. Thus Vt LDR , Lc and are not considered for data extraction. Using data sample exposed in Table 3-5 and Table 3-6, extraction has been performed on simulated pMOS devices drain current. First of all, Figure 3-34 (a) shows the extracted R 0 . Again here we see that R ext drives R 0 value, and the highly doped source-drain resistance can be extrapolated from R 0 against R ext plot. This resistance is much higher than the one of nMOS devices (147.7 compared to 44.4

). Indeed we can see from Figure 3-24 that doping concentration in this region is lower in pMOS than nMOS ( for pMOS compared to for nMOS). Moreover, hole mobility is lower than electron ones. 

Conclusion

Following the introduction of the compact model in chapter 2, a method to extract model parameters has been introduced in this chapter. The method is decomposed into 3 steps. First step consists in extracting linear model parameters using linear least square fit. Then these values are used as a first guess for a nonlinear optimizer that refines parameters value. Finally, saturation model parameters are extracted using nonlinear least square fit.

This method has been tested to assess its robustness before applying it on PT silicon measurements. To sum up, attention must be paid to the model used for extraction. First we suggest setting to 0 in order to reduce the impact of noise in measurements. Then, depending on the device, one or two parameters must be removed. In order to verify the validity of such simplifications, extraction results must be checked. Considering TCAD simulations, the physical coherence of the results will be checked against the process variations. Considering silicon extraction, since many dies are extracted on the same wafer, correlation plots will be performed. Uncorrelated extracted parameters ensure the robustness of the extraction and enable drawing inferences of model parameter's variation impact on drain current.

The extraction procedure has been run on a TCAD simulated DOE. The DOE account for different process parameters (External resistance, epitaxial thickness, SOI thickness, spacer width, implanted dose, annealing temperature, insulating layer thickness and defects at the high K interface). We have shown that model parameters response to process variations is physically coherent, testifying on model parameters physical meaning and extraction robustness. Extractions have been run for nMOS and pMOS enabling a quantification of the impact of active dopant dose in the source-drain region as well as the junction profile on the drain current and model parameters.

Chapter 4 :

Compact modeling: application to [START_REF] Rahhal | Ghibaudo -Mismatch trends in 20nm gate-last bulk CMOS technology‖[END_REF] In order to model the device drain current we use equations developed in chapter 2 where Lc and have been set to zero. Contrary to extractions performed on TCAD simulations, here we extract parameter as well. We will show that extraction performe well using this model thanks to correlation plots of model parameters. The extraction robustness using this equation will be tested using correlation plots of extracted model parameters. As a reminder, we recall here the model that will be used in further extraction for linear drain current:

(123)
where the total width normalized transistor resistance is:

( ( ) ( *, (124) 
The total resistance is simply the sum of contact and source-drain resistance represented by R 0 term, the LDR resistance and the channel resistance.

Saturation drain current is expressed as:

(125)
where , is the intrinsic saturation drain current:

( * (126) 
G m is the V G derivative of :

( ( * ) (127) 
where ( ) and is the effective mobility, accounting for scattering mechanisms, velocity saturation and ballistic transport:

( ) (128) 
and V Dsat is the drain saturation voltage and is derived as :

√ ( * (129) 
where . In Figure 4-1 POR stands for Process Of Reference. There is one POR for each lot. PORs are not identical since they belong to different lots that have not been treated at the same time. Thus, a POR is to be compared with process variation within the same lot. S-D implant stands for source-drain implant dose and energy. It refers to the last step in Figure 4-1 schematic when the dopants are implanted in the source and drain region. DSA stands for Dynamic Surface Anneal and is a rapid laser annealing treatment done after dopant implant [START_REF] Bidaud | High-activation lase anneal for the 45 nm MOS technology platform‖[END_REF]. Its aim is to activate implanted dopants without diffusing them. POR is exempted of this step.

Process flow and design of experiment

Every process variation has been tested on several wafers (between one and three) and each wafer has been probed at least on 17 dies. Each site embeds many devices with different gate lengths. Each device drain current is probed a different gate biases. Gate length and probing biases of each device are summarized in Extraction is performed site by site. Thus we obtain for each wafer a distribution of model parameter. This dispersion gives an idea about the model parameters uncertainty at wafer scale.

Inference on process parameters effects on performance variations 4.1.2.1 Impact of source-drain implant energy and dose

Here we investigate the effect of source-drain implant energy and dose variations, focusing on the results yield by lot A for nMOS devices. Changing the dose and energy of source-drain implant should only influence access region. Indeed, since transistor are built with a gate first process, implant only reaches the source and drain region. We might see a shift in the threshold voltage and in the carrier mobility if the dopants penetrate the metal gate as shown in [START_REF] Onishi | Dopant Penetration Effects on Polysilicon Gate HfO2 MOSFET's‖[END_REF]. These hypotheses will be discussed along with the extraction results. 

( ( ) ( )) (130) 
Isolated dots are outliers. Data is spot as outlier if its distance to the median is larger than -, where q 1 and q 3 are the 25 th and 75 th percentiles, respectively. In order to go deeper in the understanding of the impact of this process parameters, Figure 4-4 shows the distribution of R 0 and for each wafer. As expected, R 0 is clearly impacted by source-drain implantation and varies from 270 for lightly doped source-drain, down to 200 for heavily doped source-drain region. is impacted as well (from about 30 down to ). Vt LDR distribution for each wafer is presented in Figure 456. We see that it slightly depends on process variation, indicating that the LDR doping concentration has changed. This is coherent with process variation, thus for this case Vt LDR extraction seems working. Again we see that parameters are uncorrelated except for µ 0 .C ox and . Thus these parameters will not be distinguished in later analysis. Figure 4-9 shows I Dlin variations against process variations. DSA tend to increase linear drain current. Figure 4-10 shows , σ, and variation against process variation. R 0 is significantly reduced thanks to DSA meaning that all implanted dopant have not been activated during regular anneal steps. DSA helps activating them significantly. is not sensitive to DSA meaning that the junction did not move as expected and LDR dopants are already activated. Channel parameters are not sensitive to DSA either. Figure 4-11 shows Vt LDR distribution for each wafer. Vt LDR is steady confirming the hypothesis that the junction has not moved. Since DSA does not induce dopant migration, it is expected. This is to be compared with Figure 456where Vt LDR changed due to higher implant does and energy. 

Conclusions about extraction on 28 nm FD-SOI devices measurements

In paragraph 4.1.2, we have applied the extraction procedure using 28 nm FD-SOI silicon devices measurements including variation of source-drain implant dose and energy as well as DSA. We have seen that extractions yield physically coherent results. R 0 is lowered by higher dose and energy implant and by DSA. Both of these process parameters directly influence the active dopant concentration. only depends on dose and energy implant. If the dose is increased, the LDR is more doped. Moreover higher energy might have moved down the pic concentration of implanted dopants in the source drain region. This pic becomes then closer to the channel and dopants diffuse farther under the spacer and gate considering the same anneal treatment. Vt LDR extraction has evidenced that the junction position is sensitive to implant energy and dose. On the contrary, DSA does not change the junction position and LDR doping concentration. This has been evidenced showing constant and Vt LDR no matter if a DSA has been applied or not. Finaly, we can notice in both cases that Vt LDR >Vt lin . This suggests that LDR requires higher gate voltage to be inverted as discussed in §2.5.1. Thus the transistor could be underlapped.

Application to 14 nm FD-SOI technology

In this section, the extraction method is applied on 14 nm FD-SOI technology. For this work, a 16wafers lot has been investigated. Process Of Reference (POR) wafer has been probed on 68 sites and the others are probed on 17 sites. First the model accuracy is assessed with correlation plots and model error evaluation in §4.2.1. The DOE along with the experimental setup are detailed in §4.2.2 along with the results and their interpretation.

Extraction accuracy assessment

In order to validate the capability of the extraction method to properly extract model parameters independently of each other, Figure 4 

Inference on process parameters effects on performance variations

The impact of some specific process parameters on device performance is investigated here. To do so we use the extraction method introduced previously. Figure 4-17 (a) shows that drain current is rather sensitive to carbon and phosphorous dose. HF clean may induce a decrease in device performance but the effect is limited. Epitaxial thickness shows no major impact on drain current. 

Conclusion about 14 nm FD-SOI technology extraction

The model has been used to evaluate the impact of process variations on average MOS performance (R on ) over 16 wafers. A good fitting quality, as well as uncorrelated and physically relevant model parameter values, validates the model accuracy. Process variations considered are HF clean before epitaxial, carbon and phosphorous dose in source-drain region and epitaxial height. We have seen that considered process variations mainly affect R 0 and parameters (i.e. access resistance). Poor HF clean tends to act as a dopant sink, preventing them from migrating toward the channel. Thus it tends to make underlapped transistors and raises parameter. Carbon raises R 0 since it slows down the dopant migration, whereas phosphorous dose reduces it by increasing the carrier concentration in the access region. 

Forward propagation of variance

Using Monte Carlo, the standard error of electrical parameters statistics is inversely proportional to the square root of the number of experiments. In other words, the larger the number of experiments, the more accurate the results is. This can lead to time consuming calculations. On the contrary, FPV formalizes Monte Carlo approach, giving the mathematical expression of electrical parameters statistics, knowing the model parameters statistics. We recall the basic equation of variance propagation here. Let's first call e j the linear drain current (with j going over the 7 different channel lengths measured at 4 different gate voltages) and m i the model parameters (with i going from 1 to 11 accounting for parameters R 0 , σ, µ 0 .C ox , θ 2 and the 7 Vt lin of each channel length). Equation [START_REF] Li | Intelligent BSIM4 Model Parameter Extraction for Sub-100 nm MOSFET Era‖[END_REF] relates model parameters covariance matrix to electrical parameters covariance matrix : [START_REF] Li | Intelligent BSIM4 Model Parameter Extraction for Sub-100 nm MOSFET Era‖[END_REF] where J is the sensitivity matrix of e with respect to m: [START_REF] Zhou | Parameter extraction for the PSP MOSFET model by the combination of genetic and Levenberg-Marquardt algorithms‖[END_REF] This method propagates model parameters standard deviation using a first order expansion of the model. Thus model parameters variations should be small enough so that the model can be linearly approximated around the model parameters average. In addition, this limitation can be overcome by using second order sensitivity matrix. This approach has been investigated by McAndrew et al.

[153][154], however we will see that, in our case, a first order approximation is sufficient by comparing it with Monte Carlo which do not suffer from this drawback.

Backward propagation of variance

The two previous methods assumed that model parameters statistics are known with sufficient accuracy. Indeed, it can be accessed using extraction procedure introduced previously, based on full wafer electrical measurements. However, extracted statistics can be biased by the imperfection of extraction procedure. BPV is an alternative solution to estimate the statistic distributions of model parameters based on electrical parameters statistics without relying on extraction procedure. BPV provides by mean of least square fit following ( 134):

(
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This equation is simply the inverse function of ( 132), thus BPV require the same assumptions than FPV. This calculation is straight forward but depending on the size and condition number of J, the results can be numerically unstable. Thus, the results will be checked against Monte Carlo that does not suffer from such a problem. First we see that nonlinear least square fit improves the results significantly compared to linear least square fit. It illustrates the bias that a poor extraction method can induce. Then Monte Carlo yields the same results than FPV. This means that model parameters dispersion is small enough to enable the first order approximation of the model done by FPV and BPV and the computational complexity is well handled. Comparing modeled and measured R lin variability shows that the model makes systematical underestimation. Indeed the whole variability is not taken into account with this method. First the channel length is assumed to not suffer from any variability source. Second, using extraction procedure, within-die variability is not accounted for because all model parameters except V t are unique and fixed for every devices of each site. The second point is not relevant for BPV because it does not rely on extraction procedure.

Saturation regime

Previous method has been applied here with measured saturation drain current to model R on variability. In this case, BPV has been applied using R lin and R on measurements in in order to compute that includes . The system is poorly conditioned compared with the case of linear regime. Indeed, singular value decomposition had to be applied to solve (134) because becomes singular. R on variability model results are shown in Figure 4-21 (a) where error bars represents the standard error of measured R on standard deviation. We see here that the fit between model and measurements is much better, suggesting a reduced impact of local variability on the saturation resistance. BPV yields poorer results compared to MC. This discrepancy arises from the calculation complexity.

Vt sat standard deviation is plotted against gate length in Figure 4-21 (b). We see that again BPV method is not equivalent to extraction method.

Addressing channel length and local variability

In this section we investigate the influence of channel length and local variability on the different methods using synthetic data. To do so, three dataset of synthetic R lin are randomly generated based on model parameters statistics found using nonlinear extraction over the POR wafer. The first set considers neither channel length nor local variability. The second considers channel length die-to-die variability ( ) and the last consider both intra-die variability for all model parameters except V tlin and die-to-die channel length variability. For intra die variability, device to device model parameters have been modulated by 100% of the within-wafer variability. 

Conclusion

Following the introduction of model parameter extraction procedure in chapter 3, we have applied it on silicon measurements. 28 nm FD-SOI and 14 nm FD-SOI technologies have been investigated. It has been shown that model parameters variations depending on process variations are coherent and have been physically interpreted. A clear quantification of the impact of process variations has been enabled, showing that the method is efficient and robust while requiring only few measurements, making it suitable for industrial application.

Studying 28 nm FD-SOI using model parameter extraction enabled quantifying the impact of source drain implant dose and energy as well as DSA step. We have seen that extractions yield physically coherent results. Highly doped source-drain region resistance R 0 is lowered by higher implant dose and energy and by DSA. Both of these process parameters directly influence the active dopant concentration. This means that highly doped source-drain region has remaining inactivated dopant before DSA. DSA activates them successfully. On the contrary LDR resistivity represented by is only dependent on implant dose and energy. Indeed DSA does not induce dopant migration and thus doesn't move the junction further toward the channel. Moreover this means that LDR dopants are already well activated before DSA and DSA has no activation effect. However Vt LDR extraction has evidenced that the junction position is sensitive to implant energy and dose. , and Vt lin have been shown to be constant, meaning that dopant does not penetrate into the metal gate or channel. All these sensitivities can be quantified easily using this technique, bringing valuable information in terms of device optimization.

Studying 14 nm FD-SOI technology, it has been possible to evaluated the impact of HF cleaning time before epitaxy, carbon and phosphorous dose during in situ doped raised source-drain epitaxial as well as epitaxial thickness. Carbon has shown to increase R 0 by reducing dopant migration whereas increased phosphorous dose decreases R 0 by raising the active dopant in the highly doped source drain region. Poor HF clean tends to act as a dopant sink, preventing them from migrating toward the channel. Thus it tends to make underlapped transistors and raises parameter In a second step, within-wafer variability has been investigated on 14 nm FD-SOI technology. Monte Carlo, forward and backward propagation of variance have been conducted in order to model this variability. It has been shown that linear model linear drain current variability is slightly underestimated. BPV and direct extraction showed close results in term of linear drain current variability however corresponding model parameters variability yield different results. It has thus been suggested that local variability and channel length variability are responsible for these discrepancies (that are not properly taken into account using direct extraction or BPV). This interpretation has been reinforced by the fact Monte Carlo draws used to forward propagate the model parameters variability extracted using BPV and direct extraction gives the same results than FPV. This leads to infer that the discrepancy does not come from a violation of normality and linear local approximation hypothesis. In order to verify that channel length and local variability are responsible for observed discrepancies between measurements and model, their impact on the model has been assed using synthetic data and showing that it induces errors and can thus explain it.

Chapter 5 :

Process compact model

In the previous chapter we have successfully built the required tools to map the relation between model parameters and electrical performances. We have shown how to draw all the benefits of these tools. In particular it has been possible to get valuable insights into the device characteristics and understanding of process variations impact on the device functionalities. One last step is required in order to complete the model construction that relates electrical and process parameters. Indeed we miss the link between model parameters and process parameters (see the first stage of the PCM diagram in the introduction chapter of this manuscript Figure 123). The aim of this chapter is to show how to build this kind of model that is called Process Compact Model (PCM) in our context. Three methods to build PCM will be tackled: i) stepwise regression, ii) LASSO and iii) LARS. PCM construction is a thorny task and should be carried out cautiously. A misuse of these methods can lead to strongly biased and unreliable PCM. Indeed, in order to ensure a proper output, each of these methods requires to be calibrated before use. In order to calibrate and test the model efficiency, we will use cross validation tests. We have kept three variants of this kind of test: k-fold Cross-Validation (k-fold CV), Leave-One-Out Cross-Validation (LOOCV) and bootstrap. These methods give an estimate of the PCM accuracy and propensity to be predictive. Thus calibrating stepwise regression, LARS or LASSO consists in running these tests using different calibrations. The best calibration is the one that optimizes both accuracy and the propensity to be predictive. PCM construction process is depicted in Figure 5-1. PCM will first be defined in §5.1. We will see in which context this tool can be useful. Strategies to calibrate and test the robustness of PCM such as K-fold CV, LOOCV and bootstrap are introduced in §5.2. PCM construction methods like stepwise regression, LASSO and LARS will be detailed in §5.3. In §5.4 we will build PCM to link extracted model parameters using TCAD, introduced in previous chapter, with process parameters. In this paragraph we will show that using the PCM construction process flow (see Figure 5-1) is mandatory for silicon applications. Simpler approach would fail in this task because it implies dealing with ill-posed problem that requires variable selection and dealing with noise and variability. Using this PCM construction procedure, in §5.5, we will construct a PCM at the wafer scale and show that it can model efficiently within-wafer variability. This model will be used afterward in order to give guidelines to optimize within-wafer variability. We will see that wafer scale PCM can only account for process parameters that exhibit large dispersion at wafer scale. In order to build PCM that includes larger process variations, the same procedure will be carried on a full DOE, in §5.6, with process parameters variations. The impact of local random variability, within wafer variability and measurement noise will be investigated using synthetic data. Recommendations will be given about the experimental setup required in order to build PCM with sufficient robustness and minimum error. A summary of this chapter is proposed in §5.7.

Process compact model (PCM) definition and context of use

Definition

Traditionally, definition of PCMs are models that relate process and device electrical parameters through a set of analytical functions, allowing manufacturing engineers to gain insights into device electrical parameters sensitivity to process variability in an extremely fast and robust manner [155]. This is agreement with the aim of this thesis. However, in the context of this chapter, -PCM‖ will also be used to designate the model that maps the relationships between process and model parameters. The simpler concept of PCM is illustrated in Figure 5-2: As depicted, this PCM relates process and model parameters through analytical functions. This is not to be confused with compact model that relates electrical parameters with model parameters, where model parameters are not necessarily process parameters. Indeed compact models often relie on model parameters such as threshold voltage, DIBL, or subthreshold slopes that can have complex relationships with process. On the contrary, process parameters are geometrical or physical quantities that can be straightforwardly accessed through process adjustment (i.e. the epitaxial layer thickness Tepi can be modulated simply by varying the deposition time during the process). As well, PCM should not be confused with process and electrical simulation tool such as TCAD which use finite element algorithm to compute the physics and the electrical properties of the device. These simulations rely on numerical computation of complex physical models whereas PCM only use analytical fast computing models. This kind of model (its construction and application) belongs to a mathematical field called data mining or statistical learning. In order to introduce properly the different mathematical tools used in this work, we provide some definitions here.

 Observations (noted ̂):

They are what we want to model. Depending on the model considered, it can be either electrical measurements or simulations or quantities issued by extraction procedure (e.g. R 0 , , , V t ,…). These quantities are not known unless measured, simulated or extracted. In our case observations are extracted model parameters.

 Responses (noted ): They are outputs of the model. They are the same quantities as observations and supposed to be as close as possible to them.  Variables or predictors (noted P): They are inputs of the model (i.e. process parameters). They are known beforehand and set by the user.  PCM coefficients (noted ): Fixed parameters used to calibrate the PCM in order to fit observations. These parameters are determined during the PCM building phase.

Following the mathematical formalism, parameters to be modeled called -observations‖ (noted ̂) and process parameters called -predictors‖ (noted P) are related via the PCM (noted f) that satisfies:

̂ (135) And ( 136 
)
where e is the residual between responses and observations. Residual can be due to model deficiency or noise induced by measurements ̂.

Applications and benefits

PCM have not been extensively used in literature. Thus it can be difficult to understand its benefits and applications. In order to illustrate this, two studies found in literature are developed here. They use different kind of PCM in order to model electrical parameters.

Considering the complexity of physical and electrical mechanisms underlying state-of-the-arts MOSFETs, simple analytical functions are not suited for PCM. Literature reports the use of Feed-Forward Neural Network (FFNN) to overcome this complexity and build suitable PCM for emerging devices [START_REF] Mohammadi | A fast TCAD-based methodology for variation analysis of emerging nano-devices‖[END_REF]. This study was based on TCAD simulations and aimed at investigating process variability in nanowire FinFets. The technology being not mature enough, only TCAD simulations can provide a good prediction of electrical and process relationships for this kind of device. However statistical investigations require a large amount of experiments and TCAD simulations are too much time consuming to give timely answers. In this context PCM has been used since they can meet the expectations. Their PCM could predict full I D -V G 's starting from model parameters such as channel length, gate length and oxide thickness.

In another context, Kakehi et al. [START_REF] Kakehi | An efficient manufacturing technique based on process compact model to reduce characteristic variation beyond process limit for 40nm node mass production‖[END_REF] have applied PCM to model the relationship between gate length, halo dose, RTA spike and the threshold voltage. Although they did not explain precisely how the PCM is built, it might be simpler than FFNN since it only relates 4 parameters. Moreover V t is simpler to model that full I D -V G . They used it in combination with feed-forward process control in order to reduce die-to-die, wafer-to-wafer and lot-to-lot V t variability. In Feed-Forward Process Control [158][159], process conditions at n+1 step are varied so that the impact of the n th step variability is minimized. Determining process variation at n+1 step is done using PCM.

To conclude, PCM provides a powerful tool for statistical analysis and process optimization. These two cases introduced above showed that, depending on the context and which parameters are supposed to be related, the strategy to build the PCM changes. In the first case the PCM is able to predict the full I D -V G but is based on model parameters that cannot be straightforwardly accessed through process adjustment (like electrical channel length). In the second case, PCM's input parameters are truly process parameters but its capability is limited to V t prediction. In our study we will see how we can combine the efficiency of our compact model with a user friendly PCM that relates process and model parameters to get the full mapping of the device, from process to electrical parameters.

Methods to evaluate the accuracy of a model

Different methods to build PCMs will be introduced further. These methods need to be calibrated and will not lead to the same results in most cases. Thus a method should be determined to select the best model. Efficiency of the model is evaluated using two criterions: the mean square error (MSE) between model and observations and the model variance (that is the variance on extracted model coefficients ). This paragraph introduces some basic methods to evaluate the model efficiency.

Validation test

Considering a set of observations ̂ composed of n elements, the most straight forward way to evaluate model error is to build the model using ̂ and then calculate the model error following:

∑( ̂) ( 137 
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where Y is the model response and n the number of observations. However, using this technique, the same observation set is used to build the model and to calculate the model error. 

Cross-validation [160]

Cross validation is an alternative to validation test. It consists in splitting the observation dataset into a training and validation dataset many times to improve the estimation of model error and allow estimation of model variance.

There are two common way to proceed. The first method is called Leave-One-Out Cross-Validation (LOOCV) and the other is k-fold Cross-Validation (k-fold CV). These methods are explained in the following paragraphs.

Leave-One-Out Cross-Validation (LOOCV) [160]

Considering n observations, LOOCV method assigns all but one observation to the training dataset.

Test dataset is composed of only one observable. This method ensures building the best model out of available observations but leads to high uncertainty on model error since it is calculated on only one observation. In order to get the most accurate model error estimate, the procedure is repeated n times, each time choosing a different observation for the test dataset. The LOOCV estimates for the mean square error is the average of these n error estimates, n being the number of observations:

∑( ̂) (138) 
Although the first aim of LOOCV is not to evaluate the model variance, it can be used to do so. Indeed, at each iteration, the training test is different thus the method yields n models. It is then possible to evaluate the model variance on this set of n models. To do so, the total model variance is calculated as the average of each coefficient variance as:

∑ ( 139 
)
where Var stands for variance. LOOCV MSE and LOOCV Model Variance are not used to build a model by estimating values but they are used to evaluate the model accuracy and variance. The lower they are, the more accurate and less variable the model is.

K-fold Cross-Validation (k-fold CV) [160]

An alternative for LOOCV is k-fold CV. In this approach, the entire observation dataset is split into k subset of the same size. One of them, called , is taken as the test dataset and the other are regrouped to form the training dataset. As LOOCV method, this procedure is repeated k times, each time using a different subset for test dataset. The k-fold CV estimate of the mean square error is the average of these k error estimates:

k-fold ∑ ( ̂) (140) 
If k=n then this method is perfectly identical to LOOCV, however choosing ensure less uncertainty in model error estimation. Meanwhile the model variance might increase significantly if k becomes very small. In practice k-fold CV is applied using k=5 or k=10.

Model variance can be estimated using k-fold CV as well, following the same approach than LOOCV. Here there are only k model generated thus, the model variance estimate is less accurate. The model variance formula yields:

k-fold ∑ (141) 

Bootstrapping [161]

Bootstrapping is a resampling method that aims at estimating properties of an estimator (e.g. mean, variance, confidence interval, standard error …) without assumption about the distribution. Considering a sample ̂ of n observations, the method consists in resampling many times ̂ by successively drawing n elements in ̂ with replacement. Bootstrap sample can have the same element more than once. Thus every bootstrap sample can be different. For each new sample generated, the estimator is calculated. This operation yields an empirical distribution for the estimator whose properties can be estimated. For example, population mean can be estimated as the average of the bootstrap samples means, and standard error about population mean can be estimated as the standard deviation of the bootstrap samples means.

If the population has a normal distribution, then bootstrap is just a more complicated way to derive properties of the estimator distribution. However bootstrapping provides results that hold even if the distribution is unknown.

In the context of building a PCM, bootstrap method will provide estimation about the model variance.

To do so let's consider a dataset of k predictors P and n observations ̂:

̂ ( 142 
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with i going from 1 up to n and k the number of different predictors. Model parameters can be estimated building the PCM using z. Following bootstrap method, the observation can be resampled B times. Bootstrap samples are collected and named with b going from 1 up to B. Model coefficients are then computed for each of the bootstrap samples, producing B set of bootstrap model parameters, named . Using the model parameters distribution we can evaluate their standard error.

However, directly resampling z implicitly treats the model parameters P as random rather than fixed. We may want to treat it as fixed since we choose it beforehand and it is not subject to any uncertainty. To do so the method consists in:



Estimating the model parameters and calculate the response Y and residual E i for each observation.

̂

 Generating bootstrap samples of residual , ,.., .



Calculating the bootstrap observation subtracting to ̂ .



Extracting the bootstrap model parameters from and P.

Standard errors on model parameters are then calculated from distributions. This alternative is valid only if the functional form of the model is correct and if residues are identically distributed over P.

Methods to build PCM

In this paragraph, different approaches to build PCM are introduced. These methods consist in two steps, first selecting the relevant predictors that will enter the model, second the model is created by fitting observations with these predictors. The global approach is detailed in §5.3.1, then two categories of methods are investigated, first subset selection in §5.3.2 and then shrinkage method in §5.3.3. More recently developed approach using hybridization of the two previous methods are introduced in §5.3.4. These methods are systematically tested against synthetic data in order to investigate their different behavior, strengths and weaknesses.

Global approach

Building a PCM consists in finding a model that relates output parameters with process parameters. The most straightforward way to build empirical linear model based on observation is ordinary least square fit. This approach is adapted only if predictors are all relevant (i.e. they are actually correlated with the observation) and not correlated between each other, the problem is not ill-posed (i.e. there are much more observations than predictors) and observations are not subject to significant amount of noise or uncertainty. However this is not our case since there are more than 300 process steps for the Front-End-Of-Line (and thus at least as much process parameters). Moreover not all of these steps have an impact on electrical properties. For example, different dopant implantations are used for nMOS and pMOS devices. When pMOS source-drain implant is processed, nMOS devices are protected. Thus considering the pMOS source-drain doping implantation energy or dose as an input process parameter for nMOS device PCM is a mistake. This kind of selection is based on expert knowledge and is the first selection that should be made. Then, if we consider only relevant process parameters (those that actually play a part in the considered device building process), only a few of them will have a significant impact on the output parameters. Considering that the amount of observation is very limited the problem is ill-posed and ordinary least square is not an appropriate method. Thus variable selection must be performed. There are different methods to achieve this kind of task. Among them we distinguish two main categories: subset selection and shrinkage method. These methods are introduced in the next paragraphs.

In order to test their ability to successfully find relevant predictor despite the presence of noise and correlated parameters in an ill-posed problem, we build a predictor matrix P composed of 50 randomly generated predictors and 25 observations. The polynomial formula that links P and Y is arbitrarily set to:

Only 5 predictors are used to generate the observation. The others are fake predictors. Noise is then simulated by adding a normally distributed amount to the observation. The noise level (i.e. the standard deviation of noise signal) is set to 10% of the observation. All of these PCM construction methods will be used on synthetic observations in order to check if they are able to find back the polynomial formula. These methods rely on user defined parameters that must be calibrated. To do so we will use cross validation and bootstrap methods introduced previously. It will also be used to compare the efficiencies of each method. [START_REF] James | Linear Model Selection and Regularization‖ in An Introduction to Statistical Learning[END_REF] This approach consists in determining the minimum set of predictor that explains the observation variance. Following approaches will be introduced: best subset selection, forward and backward selection as well as a hybrid method that relies on both backward and forward selection.

Subset selection

Best subset selection [162]

Considering that our problem is to build the best PCM composed of p predictors, the most straightforward way to do so is to compute every possible model and compare their efficiency. The most efficient model will contain only relevant predictors. This technique is called best subset selection. If the investigation is limited to linear model only, then the number of possible model depending on p is given by the following formula:

∑ ( ) (145) 
In this formula i is the number of parameters included in the model. Considering all cases, i ranges from 1 parameter (a constant for example) up to p parameters (the complete model that includes every parameters). Then, if the model has i parameters, there are ( ) possible combinations and as much possible model. Thus, for 10 predictors (including the constant) there are 1023 possible models. This is already large if the model is time consuming to compute and test. If we want to consider second order polynomial models, then the possible number of models increases drastically and yields:

∑ ( * (146) 
where is the sum of the linear (p) and quadratic (p²) parameters. Again, if p=10, there are possible models. The problem is too large to be treated in a reasonable amount of time. This is why this method will not be used in practice. [START_REF] James | Linear Model Selection and Regularization‖ in An Introduction to Statistical Learning[END_REF] In order to alleviate this problem, the stepwise regression has been proposed in the 60's. We distinguish forward and backward stepwise regression. Forward stepwise regression starts by the simplest possible model that is a constant. Then predictors are added one by one, each time selecting the one among the remaining predictors that best explains the residue (in other words that gives the greatest additional improvement to the fit). There are many ways to determine the best predictors to be included in the model. Usually, this takes the form of a sequence of F-tests or t-tests, but other techniques are possible, such as adjusted R-square, Akaike information criterion, Bayesian information criterion, Mallows's Cp, PRESS, or false discovery rate [163]. In our case we will use Ftest.

Forward stepwise regression

In order to compute F-test, three quantities related to the model are required: the Sum of Square Error (SSE), the Sum of Square Regression (SSR) and the degree of freedom (df):

∑( ̂ ) (147) 
∑ ( ( ̂)) (148) 
In ( 147) and [START_REF] Haon | Fully Depleted SOI: Achievements and Future Developments‖[END_REF], n is the number of observations and p the number of predictors. At the i th step of the model construction, there are i predictors included in the model and p-i predictors not yet included. SEE, SSR and df are calculated for the model with i parameters and for the model with i+1 parameters. The model with i+1 parameters is the model with i parameters to which we added a selected predictor among the one not yet included in the model. These quantities are called SSE 1 , SSR 1 , SSE 2 , SSR 2 , df 1 , df 2 . Subscripted indices 1 and 2 stand for the model with i and i+1 parameters respectively. Then the F value is calculated as [START_REF] Li | Statistical Modeling With PSP MOSFET Model‖[END_REF] This F value is calculated p-i times, each time using a different predictor for the model with i+1 parameters. This is how a F value can be associated with each parameter not in the model. The predictor to be added for the next step is the one that yields the smallest F value.

A criterion is needed in order to determine whether the next predictor to be added is relevant or not. This is the stopping criterion. The simplest stopping criterion consists in comparing the smallest F value with a critical F value F crit . F crit is calculated as the inverse cumulative probability distribution of Fisher statistic for a probability set by the user. Usually the probability is taken between 0.85 and 0.95. if F<F crit the algorithm can continue otherwise it stops because the predictor does not significantly improve the model prediction. This probability threshold can be set using cross-validation method.

Backward stepwise regression [162]

As an alternative, F-test can be applied to decide which parameter to remove instead of being added. This is called backward stepwise regression. This method starts by creating the most complete model (that includes all the p predictors). Then for each predictor of the model, F-test is calculated considering the full model and the one where the predictor under consideration is removed. The larger F value designates the predictor to be removed.

In this case stopping criterion is reached if F<F crit (where F crit is calculated with a probability chosen between 0.05 and 0.15). Alternatively it can be also checked using cross-validation.

Hybrid approach between forward and backward stepwise regression [162]

The main flaw of forward stepwise regression is that, adding a predictor to the model changes the F value of every predictor already in the model. Thus, at the n th step, a predictor that has been previously added to the model can, at this step, yield an F value larger than F crit . Even though this predictor used to be the one that best explained the observation variance (at the step i < n), it might not explain it anymore.

To overcome this kind of problem, based on forward stepwise regression, hybrid approach consists in checking the F value of every predictor (including the one already in the model) at each step and deciding whether to add or remove predictor depending on their respective F values. Different approaches have been proposed to formalize this decision process. In our case, the predictor which has the larger difference between its F value and F crit is chosen to be either removed (if F> F crit ) or added (if F<F crit ).

Matlab implemented stepwise algorithm [164] [START_REF] Draper | Applied Regression Analysis‖[END_REF] has been used to perform stepwise regression on synthetic data, using the whole dataset as a training dataset. In order to illustrate the behavior of this method, Figure 5-3 shows the estimated predictor coefficient depending on parameter F crit .

Figure 5-3: values depending on chosen F crit value for stepwise regression algorithm

In this picture, lines with marker represent coefficients of predictor that have been used to generate synthetic data. Other coefficients are represented with black line. Dotted and solid lines with markers represent the true and extracted values respectively. We see that for small values of F crit (below 0.07) only relevant predictors are selected. Thus F crit should lies in the interval ]0;0.07]. If F crit is above 0.07 the method starts to extract non zero coefficient for predictor that are not in the model. Using a suitable value for F crit doesn't lead to extract the correct coefficients since we see discrepancies between doted and solid lines. This is due the artificial noise added to the response before performing stepwise regression. Bias in values due to noise depends on the noise level and the model itself. It can be noticed that bootstrap yields noisier results that LOOCV and k-fold CV. This can be explained by the fact that bootstrap method randomly draws the bootstrap samples. Indeed, there are too much possible bootstrap samples to compute all of them within a reasonable amount of time. With 25 observations, the number of different bootstrap combinations is . We have limited the computation to 150 bootstrap samples. However this noise also comes from the fact that stepwise regression is a bit cumbersome as a method, making it strongly dependent on the training set used to build the model. Thus for this method bootstrap is not suited to determine F crit value.

To conclude, stepwise regression has been successfully calibrated using LOOCV, k-fold CV and bootstrap. Using the calibration, stepwise regression found the five relevant predictors among the 50 ones with only 25 observations impacted by 10% of noise.

Conclusion about stepwise regression

Compared to best subset selection, stepwise regression offers an easy way to find a good model within a reasonable amount of time. Indeed if the final model totalizes p-1 predictors among the p available, then the number of model to be calculated is: [START_REF] Drennan | Understanding MOSFET mismatch for analog design‖[END_REF] Thus for p=50, the algorithm will test 1327 models instead of if we used best subset selection.

The main drawback of this method is that the final model is not guaranteed to be optimal in any specified sense. Moreover the procedure yields a single final model, although in practice there are often several equally good models. Many alternatives have been proposed involving a mixture of forward and backward stepwise regression but there are no convincing solutions since they yield different results without bringing more confidence on the result accuracy. Moreover this technique has been highly criticized in literature [START_REF] Flom | Stopping stepwise: Why stepwise and similar selection methods are bad, and what you should use[END_REF] [START_REF] Chatfield | Model uncertainty, data mining and statistical inference[END_REF]. Thus this method should be used with care. [START_REF] James | Linear Model Selection and Regularization‖ in An Introduction to Statistical Learning[END_REF] As explained in previous paragraph, subset selection has drawbacks. In order to provide more robust methods, another approach called shrinkage method has been developed. Instead of adding or withdrawing successively variables from the model, this approach gradually reduces model coefficients value of least significant predictors. The approach is more robust because the results does not depends on any strategy chosen for the method (unlike stepwise regression) and is fast computed since only a limited amount of model construction is needed (unlike best subset selection). [START_REF] James | Linear Model Selection and Regularization‖ in An Introduction to Statistical Learning[END_REF] Ridge regression has been introduced by A. N. Tikhonov [START_REF] Tikhonov | Solutions of Ill-Posed Problems[END_REF]. This method is directly derived from ordinary least square regression. In least square regression, the solution minimizes the sum of square error between model and observations, that is, it finds the set of predictor coefficients that minimizes SSE, recalled here for convenience:

Shrinkage method

Ridge regression

∑ ( ∑ ) (152) 
In above equation, x are the predictors. is the intercept.

To that equation, ridge regression adds a second constrain that forces the coefficients to be as small as possible. This constraint is introduced as a penalty called shrinkage penalty, calculated as the sum of square times a constant that is set by the user. The ridge regression coefficient estimates are the values that minimize

∑ (153)
Thus, if is set to 0, ridge regression is perfectly equivalent to ordinary least square. As increases, coefficients reduce and ultimately, if , then . Since equation ( 153) is no more a linear problem, it is usually minimized using Levenberg-Markard algorithm This method is probably one of the most widely used for ill-posed problems. However, even if irrelevant predictor coefficients are quickly shrunk toward zero, these values cannot reach exactly zero. Thus it does not perform a practical variable selection, thus its investigation is out of the scope of this work.

Least Absolute Shrinkage and Selection method (LASSO)

This method has been introduced by R. Tibshirani [START_REF] Tibshirani | Regression shrinkage and selection via the LASSO‖[END_REF]. It proposes an alternative to ridge regression that enables setting irrelevant predictor coefficient to exactly zero. The principle of LASSO is the same as ridge. The difference lies in the equation to be minimized. In this method the penalty is calculated using norm instead of norm of predictor coefficient. The function to be minimized becomes then:

∑ | | (154) 
Again, in this method, coefficient has to be chosen by the user. Typically this parameter is determined using cross-validation or bootstrap methods.

In this work we used the Matlab implemented LASSO method [172] [START_REF] Zou | Regularization and variable selection via the elastic net‖[END_REF]. In order to illustrate the behavior of this method, Figure 567shows the estimated predictor coefficient depending on parameter . Using LASSO, the number of eliminated predictor is proportional to . We see that for , the model succeed to only select the relevant predictors. However including also biases the extraction of coefficient, reducing their values. Thus, the method provides a powerful way to select predictor but coefficient should be carefully chosen in order to optimize variable selection and minimize coefficient bias. Again, the optimal can be deduced from a tradeoff between MSE and model variance. However this time, the optimum is not obvious and strongly depends on the chosen tradeoff. Thus in this case k-fold CV and LOOCV would be preferred over bootstrap.

To conclude, it has been possible, using LASSO, k-fold CV and LOOCV, to extract only the 5 relevant predictors among the 50 ones. Using the average of the optimal value found using k-fold CV and LOOCV leads to a reasonable choice.

Hybrid approaches

The two previous approaches that are subset selection and shrinkage method are very different at first glance but there is actually a bond between them. Some hybrid algorithm have been developed that are able (with a slight modification) to perform both these approaches. In this paragraph we introduce two of them called stagewise and least angle regression.

Forward stagewise regression [174]

Forward stagewise regression is based on the same principle as forward stepwise regression. It starts with all coefficients equal to zero, and iteratively updates the coefficient of the variable that achieves the maximal absolute inner product with the current residual by a small amount . This variable is called -best candidate‖. Thus the main difference with stepwise regression is that, at each step, variable coefficients that are in the model are not calculated by OLS but instead the method only increases one coefficient (making the approach continuous). It makes the approach less cumbersome and avoids biased decision about variable inclusion and deletion. This procedure has an interesting connection to the LASSO: under some conditions, it is known that the sequence of forward stagewise estimates exactly coincide with the lasso path, as the step size goes to zero. This method, also being more robust than stepwise regression, needs much more step to yield the final results. Moreover since it is identical to LASSO method if , advantages of this approach are limited, thus its investigation is out of the scope of this thesis.

Least angle regression [175]

Least Angle Regression (LARS, S suggesting LASSO) is based on forward stagewise regression. In stagewise regression the amount to be added to the best candidate is fixed. It is necessary to fix small in order to detect precisely when the best candidate changes. In LARS algorithm, the sum of increment that should be added to the best candidate, before the best candidate shifts, is calculated at once. This strongly reduces the computation time and makes it as efficient as stepwise regression. Applying a simple modification of the algorithm enables LARS to perform either stagewise regression or LASSO. LARS is thus an intermediate approach between LASSO and stagewise regression.

In this work we used the Matlab implemented LARS method [175][176] by Xiaohui Chen. In order to illustrate the behavior of this method, Figure 5-11 shows the estimated predictor coefficient depending on the number of step .

Using LARS, the more steps the algorithm makes, the more predictors enter the model. If not stopping criterion is set, then the algorithm yield a model that comprises every predictors. Hopefully it is possible to set a maximum limit for the L 1 norm of predictor coefficients. This criterion is the calibration parameter and it is quite similar to the inverse of LARS parameter. Figure 5-11 shows that the L 1 norm of predictor coefficients is a critical parameter and should be calibrated in order to determine which model comprises only the relevant predictors. In this particular case, a correct number of steps (that leads to only select relevant predictors) should be comprised between 13 and 22. In this case even if the correct predictors are selected to enter the model, we see that their coefficients are far from the exact value. This is due to the -least angle approach‖ that does not calculate using least square fit but instead it increments them gradually. However it is suited to perform variable selection. can then be calculated using least square fit after variable selection. This figure shows that bootstrap can be used to determine the optimal the L 1 norm value through a tradeoff between MSE and model dispersion. However, as in the case of LASSO, the results will strongly depend on the chosen tradeoff. Thus it is safer to rely on k-fold CV and LOOCV.

To conclude about LARS algorithm, it has been successfully applied to extract the relevant predictors as LASSO and stepwise regression.

(a) (b) 

Conclusion about variable selection methods

In this paragraph we have introduced and tested three methods to select relevant variables among a large number of irrelevant one using a limited amount of noisy observations. Application showed that k-fold CV and LOOCV method have been able to calibrate parameters for each method. The 5 relevant predictors used in the model to compute synthetized data have been discriminated by the three methods among 50 variables using 25 observations impacted by 10% of artificial noise. This application addresses the 2 main issues that one can face when building a PCM: ill-posed problem and noise in the observable. It should be noted that even though predictor values have been randomly drawn, the limited number of observation leads to correlations between some predictors (up to 0.51 for the correlation factor between predictor and ). Thus the three models also deal with moderately correlated predictors.

Every PCM construction method works fine in this case but the cross-validation methods can lead to slightly different results. The best practice is to use the three cross-validation tests to calibrate the PCM construction method, comparing their results. For example if k-fold CV test suggests the same calibration than LOOCV but a different calibration compared to bootstrap, then results drawn from kfold CV and LOOCV can be considered more reliable and should be used instead of bootstrap results. Considering PCM construction methods, there is no general rule in order to decide which one to use. However it can be noticed that stepwise is the fastest, followed by LASSO and then LARS. However, stepwise regression will fail more easily than LASSO and LARS if a large amount of noise is considered. Moreover LARS and LASSO give a continuous trend of against the calibration parameter. Thus it is possible to rank predictors in term of relevance. This is not possible with stepwise regression since any predictor can enter or leave the model at any F crit increment. In practice every PCM construction method should be tested in order to find the best model.

Application to TCAD simulations

In previous paragraphs we have introduced all the required tools on order to model build PCM according to Figure 5-1. This paragraph aims at demonstrating that these tools are required in order to build robust PCM. Indeed, the strategy is to use a two-stage PCM, as it has been shown in the introduction (PCM scheme is recall in Figure 5-15 for convenience). First, one could think of a more simple approach that directly relates process and electrical parameters without using a compact model (avoiding stage two). We will show that this simplification is less advantageous than the two-stage PCM by comparing them in §5.4.1 and §5.4.2. In particular we will show that building PCM that directly links electrical and process parameters is not handy and efficient. Using the two-stage PCM in §5.4.2, we will be able to model the linear and saturation drain current over the whole strong inversion range of V G . In these two paragraph, every PCM will constructed using TCAD simulations DOE introduced in §3.4 and Ordinary Least Square (OLS). Moreover, within wafer variability, local variability and noise will not be considered.

Thereafter will demonstrate that, in practical case, using OLS is not efficient at all and variable selection methods (stepwise regression, LASSO and LARS) should be used instead with the PCM construction flow as depicted in Figure 5-1. This will be shown with a set of TCAD simulations that mimics silicon measurements at die level across a wafer, including within-wafer process variability. PCM construction using OLS with these data will not work at all since it will not be able to select variables. Variable selection methods will be applied afterward on the same dataset, building proper PCM successfully.

Building TCAD simulated I Dlin and I Dsat PCM using OLS

In this paragraph, we investigate the simple approach that directly relates process and electrical parameters without using a compact model. We build a PCM for I Dlin and I Dsat using OLS and the TCAD simulated DOE introduced in chapter 3. The DOE is a factorial design. Details about the DOE are recalled here for convenience, listing each process parameter included in the DOE and their related experimental values:  Epitaxial height (Tepi) [START_REF] Wong | Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel‖[END_REF][START_REF] Laurent | TCAD Modeling of variability in 28-nm CMOS technologies based on Impedance Field Method‖[END_REF][START_REF] Lin | Performance-Aware Corner Model for Design for Manufacturing[END_REF] nm  Channel thickness (Tsi) [5, 6, 6.6, 8] This figure shows that, in the current application, we directly relate process parameters thanks to polynomial formula. These polynomial formula are constructed using OLS.

(a) (b) I Dlin and I Dsat are sensitive to every process parameter included in the DOE. Thus, their PCM account for all of them. In Figure 5-17, results shows that the PCM is quite accurate although some process parameter dependences are not linear in the considered range (especially for R ext Tspike and Tsi). However this approach is not satisfying since it provides a PCM that is suited for only one gate and drain bias and one gate length. Thus, modeling the whole strong inversion regime in linear and saturation regime for every channel length would require a large number of PCM, making the global model discontinuous and not easy to handle. I Dlin and I Dsat PCM coefficients are gathered in 

Building PCM for TCAD simulated model parameters using OLS

A solution to the issue raised in previous paragraph is to build a two-stage PCM as introduced in Figure 5-1. This alternative is investigated here, where analytical model is created for the model parameters introduced in chapter 2 (such as R 0 , , , , Vt lin , Vt sat , ) instead of drain current. Modeling these parameters would enable modeling the whole strong inversion regime in saturation and linear regime using only 7 PCMs.

Figure 5-18 shows the relations between process and electrical parameters depending if we are constructing the PCM or if we exploit it. An overview of Figure 5-19 plots shows that PCMs are accurate. It can be noted that T il and Tspike effects are not very well approximated with linear dependence. For example , , and dependence on T il is not very accurate. As well , Vt sat , , and R 0 dependence on Tspike is not very accurate. A closer look at the last example shows that model parameters have an exponential dependence on Tspike rather than a linear one. A empirical fit of against Tspike with an exponential formulation is shown in Figure 5-20.

(155) Thus PCM built using OLS are accurate except for modeling the impact of anneal temperature and insulator layer thickness. However, impact of these two process parameters on model parameters can be corrected using nonlinear empirical formula and variable shift (i.e. using exp(0.021.T spike ) instead of T spike as predictor for the PCM). and modeled using the compact model and PCMs for model parameters. We see that both models are very close. I Dlin PCM using the compact model is more accurate in the range of R 0 . Thus using a twostage PCM has two advantages: i) it is slightly more accurate, ii) it enable a continuous modeling of the full strong inversion regime in linear and strong inversion regime with only 7 PCM whereas a one stage PCM would require as much PCM as gate biases making the model cumbersome and discontinuous.

Even though, this simple approach works fine using TCAD simulations, it is not able to select variables. And the constructed PCMs suggest some unphysical relationships. In order to get a more reliable model, variable selection should be applied.

Building PCM in a silicon-like case, based on within wafer variability

In this section we demonstrate that OLS used in previous approach are not suited to build PCM. Indeed, it has already shown limitations, as mentioned in previously. In addition, we will show that this technique is even more limited if we want to apply it on silicon measurements. Indeed, went processing an experiment on silicon, we have to face within wafer variability. This means that every process parameters fluctuates more or less depending on the position on the wafer. This variability strongly impact the drain current as it has been shown in chapter 4, where wafer level drain current box plot displayed large dispersion. Hence, using OLS to build PCM with process and electrical parameters averaged over each wafer would lead to a large uncertainty in the resulting PCM. Another solution consists in monitoring parameters (electrical and process ones) at die level. The uncertainty about monitored parameters will thus be limited to local variability. This leads to consider every process parameter for PCM construction. Since the number of process parameters is large and only a limited part of them are actually relevant, variable selection should be made. This is what we demonstrate here, using TCAD simulations that mimics a wafer measured a die level. Simulations include within-wafer variability for process parameters. Process parameters statistics are shown in The simulation setup consists in 100 sites simulated with random variations of Tepi, Wsp, Tsi, T il , fdose, Tspike, Rext and Qhk. Each site contains 5 channel lengths ranging from 30 nm up to 1 µm. Average values and standard deviations of process parameters are regrouped in Table 5-3.

Before building PCM, -fake‖ process parameters have been added to the predictor matrix in order to simulate a more realistic situation where a large number of process parameters are accounted for. Fake parameters represent process parameters that have no influence on drain current. Since they are as much process parameters (predictors) than observations, the problem becomes ill-posed. -Fake‖ process parameters are simply randomly generated predictors. They are in no way related with the observation, but chance correlations can occur between them.

We will first attempt to build PCM using OLS and show that the approach completely fails because of the issue mentioned before. Then we will build PCM using variable selection methods and show that the approach is more efficient. Compared to previous approach, here we use variable selection methods instead of OLS. Since these methods can handle ill-posed problem and perform variable selection, it will be more suited to build PCM upon measurements at die level including a large amount of process parameters. Figure 5-25 shows the result of R 0 PCM construction. Each subplot represents the results of one method against its calibration parameter. The optimum value of calibration parameter is indicated by the blue shaded area. This area has been determined using K-fold CV and LOOCV. Related plots are available in Appendix B. We see that the three methods have selected Wsp, Tepi, Rext, T il and f dose as predictors for R 0 . LASSO has included also 2 non relevant predictors. So comparing the results of the three methods enable a clear distinction between the relevant and irrelevant predictors. It should be noted that Tspike does not appear in the model but T il does. T il is not physically related to R 0 and we expect it to not enter the model. However we have seen in Figure 5-19 (a) that T il slightly impacts R 0 because of the flaws in the model related to its simplification (see chapter 3). The reason why T il is accounted in the model and no Tspike is because of the relative dispersion of these parameters. Indeed T il dispersion in these simulations represents 15.6% of the total dispersion simulated in TCAD DOE. This is large in comparison with Tspike dispersion that only represents 0.67% of Tspike total variation simulated in TCAD DOE. V tlin PCM construction results for short channel device are shown in Figure 5-29. We have seen that V tlin is strongly dependent on T il and Qhk. In addition, short channel V tlin also slightly depends on Wsp. All these parameters are included in stepwise regression, LASSO and LARS PCMs. Tepi has been also included in the PCMs although its influence is limited regarding the results of TCAD simulated DOE. On the contrary, Tsi is not accounted in the model although its influence is not negligible as suggested by TCAD simulated DOE results. This is due to the very limited variance of Tsi in these simulations. LASSO and LARS may also mistakenly include fake predictors. Similarly to V tsat , depends on every process parameters as shown in Figure 5-19 (g). In these simulations, only fdose, Tepi Wsp and T il have been included. These parameters are the most influent one. Although its influence is significant, Qhk is not present in the models because its dispersion is limited in these simulations. LASSO includes again fake predictors but with very low coefficients. To conclude this studie about PCM construction using data gathered over a single wafer, we have seen that using stepwise regression, LASSO and LARS algorithm, it is in most cases possible to distinguish process parameters that actually influence the considered model parameters from those who don't. LASSO is more prone to mistakenly include fake process parameters compared to stepwise regression. However LASSO has the advantage to yield continuous results depending on parameter. Consequently, predictors included in the model can be ranked from the most to the least likely related to observation variance. Considering this ranking and comparing the results of the three methods it is easy to find out if a predictor has been mistakenly introduced to the PCM. This likelihood ranking is not possible using stepwise regression. This is why it is recommended to compare the results of the three methods.

Compared to OLS, variable selection methods are much more efficient in order to build PCM. Indeed, variable selection successfully removed fake predictors whereas OLS included all of them in the model.

It should be noted that even if the variable selection works properly, PCM that results from observation at die scale over a wafer with small variation of process parameters across the wafer are different from those obtained from DOE observations. Indeed, the observation range being different, some process parameters have no significant impact on model parameters and are omitted in the PCM.

In order to be able to construct PCM that includes all relevant process parameters, PCM construction should be carried on using a DOE where each experiment are process on a wafer. Each wafer should then be measured at die scale. A full DOE processed with one wafer per experience would provide sufficient process parameter variance and die scale observations would limit the uncertainty about observations.

Using PCM to model and optimize within-wafer variability

In previous paragraph, we have seen that our PCM construction procedure is able to model process and electrical parameters relationships at wafer level. In this paragraph we will use PCM previously obtained in §5.4.3.2 to model within-wafer variability. We will show its accuracy against TCAD simulations and then exploit it in order to investigate the process origin of within-wafer variability and give guidelines for variability optimization.

For the sake of demonstration, we have propagated process parameters variability using Monte Carlo draws and the constructed PCM in §5.4.3.2. The results are compared with drain current dispersion obtained by TCAD simulations following the simulation setup developed in §5.4.1. In order to propagate process parameters dispersion and model electrical variability we have used 1000 Monte-Carlo draws. Considered process parameter dispersions are the one used in the simulation setup (see . Comparison between predicted and simulated I Dlin and I Dsat within-wafer variability is shown in Figure 5 

where e and m denote electrical and model parameters respectively. Index i and j go through the number of considered model and electrical parameters respectively. and stand for the covariance matrix of electrical and model parameters respectively. J is the sensitivity matrix with respect to model parameters. This expression can be reformulated following:

∑ ∑ (158) 
Since model parameters are now modeled by their respective PCM, can be further developed, replacing model parameters in [START_REF] Ruegsegger | Feedforward Control for Reduced Runto-Run Variation in Microelectronics Manufacturing‖[END_REF] by process parameters:

∑ ∑ (159) 
In this expression, we can see that the total within-wafer variability depends on drain current sensitivity to process parameters and on the process parameters dispersions. Thus optimizing consists in either reducing process parameters variance or reducing . Reducing process parameters variance relies on process tool optimization. Consequently we need to rank process parameters according to their contribution to drain current variability, so that we can draw the best benefits with a minimum effort in tool optimization. In order to rank process parameters we have run a statistical test.

The test consists in estimating the drain current variability with 1000 Monte Carlo shots while setting one process parameter variance to zero at a time. The test is repeated for each process parameter. Estimated drain current variability is then compared to the actual one (where all process parameters are variable). Figure 5-33 shows the reduction in drain current variability depending on the process parameter whose variability has been suppressed. We see that a large gain in variability can be obtained by reducing Tepi and Wsp variability for both I Dlin and I Dsat . On the contrary it is useless to work on Tsi, Tspike, Qhk or contact resistance (Rext) variability since their contributions are small.

(a) (b) A warning should be put while considering this plot. One should not deduce that drain current does not depend on Tsi, Tspike, Qhk or Rext. Actually it does but the considered variability for these parameters is so small that it does not impact significantly the drain current variability.

However, studying and optimizing drain current sensitivity to process parameters can help reducing drain current variability as well. Indeed, this sensitivity is modeled by the term in [START_REF] Li | Intelligent BSIM4 Model Parameter Extraction for Sub-100 nm MOSFET Era‖[END_REF]. Reducing it relies on two options. Since it depends on the model and physics underlying the device, the first option is to investigate other technologies, with drain current less sensitive to process parameters. However it is a tedious option. The other option is to shift the device operating point by shifting process parameters values. Indeed depends on considered average p values (the operating point).

However, shifting process parameters values will change the average drain current value as well (and maybe not in a good way). In order to reconcile variability and performance targets, a two-objective optimization task should be carried out. To do so, the objectives function is the electrical parameter and its variability. Then SPC can be used in order to define a penalty function in order to run optimization algorithm [START_REF] Smith | Penalty functions Handbook of Evolutionary Computation‖[END_REF].

Effect of local random variability and measurement noise

As it has been discussed in §5.4.3.2, so far we, have built PMC at the wafer level. In order to get a PCM that includes all relevant process parameters with significant dispersion, we suggested building PCM using a full DOE processed on silicon. Each experiment would be run on one wafer. Each wafer would be monitored at die scale in order to reduce uncertainties about process and electrical parameters. In this paragraph we investigate this application using synthetic data. The critical point that will limit the efficiency of the method, while applying it on silicon measurements, is the residual noise or uncertainty in the observations. Indeed, electrical measurements are impacted by local variability and noise. This uncertainty will first propagate through the model extraction procedure and then bias the PCM construction results. This noise should be low enough to ensure robust results.

Here, we investigate this question using synthetic data where local variability, within-wafer variability and noise are simulated. The test method is described in Figure 5-34 as a flow chart. First it consists in generating synthetic data for process parameters. The dataset is constructed such that it mimics the kind of dataset that would be measured if experiments are run on silicon. In other words, process parameters values are generated following a specified DOE. Each experiment is run using one wafer and each wafer is composed of many sites. Then within-wafer variability is simulated by adding a random signal to these process parameters. This signal is centered on each experiment value and dispersed over dies of the corresponding wafer. Within-wafer dispersion is set at 2% of the averaged values of process parameters. Since process parameters are known at die scale, within-wafer variability does not contribute as a source of uncertainty.

Then, considering extracted PCM in §5.4.2, model parameters are calculated for each experiment.

Local variability is simulated adding a random signal to these model parameters, according to values found in literature. Using the drain current model, I Dlin and I Dsat are then calculated. In order to simulate measurement noise, a random signal is added to I Dlin and I Dsat values according to predefined noise threshold.

The second step consists in going backward using synthetized I Dlin and I Dsat to find the PCM used initially to create synthetic data. Using the extraction procedure, I Dlin and I Dsat model parameters are extracted for each experiment. Then PCM are built on these extracted model parameters. In order to test if variable selection is efficient, extra process parameters are added to the PCM building method input. These extra parameters are randomly drawn, independently to the other process parameters. If variable selection method is sufficiently robust, it will rule these extra parameters out of the PCM.

In order to accurately reproduce the experimental conditions, the star points of a central composite DOE are considered for process parameters effect investigation. This design considers 3 levels for each process parameter and comprises 17 experiments. Noting the different level -1, 0 and 1, this DOE is represented in . Correspondence between the level and process parameters values are shown in Table 5-5. Considering that each experiment is run using one wafer, a lot would be sufficient to run this DOE. Each wafer contains many sites. In order to simulate their impact, we consider that 9 of them will be monitored. Each of these dies is probed independently, so process and electrical parameters are known at die scale. Global variability is simulated with a normally distributed random signal with applied on process parameters. Then local variability contribution is accounted through model parameters. Local variability mostly impact Vt, and Rsd variability. Considering devices studied here, an average value of is √ √ and . These values have been found in recent publications [START_REF] Ioannidis | Impact of source-drain series resistance on drain current mismatch in advanced Fully Depleted SOI n-MOSFETs‖[END_REF]. Finally, measurement noise is added through I Dlin and I Dsat values. Noise in electrical measurements depends on the integration time used for measurements. Typical measurement time for in line parametric test is about few milliseconds. Associated noise does not exceed 1%.

Experiment\Parameter Tepi Wsp

Tsi T il Fdose Tspike Rext Qhk 1(reference) 0 0 0 0 0 0 0 0 2 -1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 4 0 -1 0 0 0 0 0 0 5 0 1 0 0 0 0 0 0 6 0 0 -1 0 0 0 0 0 7 0 0 1 0 0 0 0 0 8 0 0 0 -1 0 0 0 0 9 0 0 0 1 0 0 0 0 10 0 0 0 0 -1 0 0 0 11 0 0 0 0 1 0 0 0 12 0 0 0 0 0 -1 0 0 13 0 0 0 0 0 1 0 0 14 0 0 0 0 0 0 -1 0 15 0 0 0 0 0 0 1 0 16 0 0 0 0 0 0 0 -1 17 0 0 0 0 0 0 0 1
For There are two solutions in order to reduce the impact of noise in measurements: i) increasing the integration time during measurement, ii) increasing the number of measurement points (more L and/or more V G ).

The second test has been run considering no measurement noise but local variability going from 0 up to 100% of noise reported in recent publication [START_REF] Ioannidis | Impact of source-drain series resistance on drain current mismatch in advanced Fully Depleted SOI n-MOSFETs‖[END_REF]. Error made on constructed model parameters is shown in Figure 5 Impact of local variability on PCM RMS error is much stronger than the effect of noise in measurements but variable selection performance is similar. This is due to the fact that -fake‖ predictor included in the PCM have much stronger coefficients and induce larger error. Again, saturation parameters are less sensitive than linear ones. In order to reduce the impact of local variability, the solution consists in measuring arrays of transistors instead of isolated transistors. Following this procedure, local variability is averaged over the whole array's area rather that a single transistor area. Generally speaking, local variability is proportional to √ . This means that using a 20x20 array of transistors, the impact of local variability would be divided by 20. Moreover, measuring multiple transistor in the same time reduce the measurement noise significantly. Indeed, considering 400 transistors instead of one, the equivalent number of integration points for one measurement is multiplied by 400. Following the Standard Error (SE) of the mean formula [START_REF] James | Resampling Methods‖ in An Introduction to Statistical Learning[END_REF], the noise level is inversely proportional to the square root of the measurement sample size (for a fixed integration time).

√

In [START_REF] James | Resampling Methods‖ in An Introduction to Statistical Learning[END_REF], s and n are the standard deviation and the size of the sample. Thus accounting for 400 transistors would divide the noise by 20.

Thus using array of transistor and increased number of measurements and integration time can significantly reduce the local variability and noise burden.

To investigate this option we have run the same test as before considering this time an array of 20x20 transistors. Measurement noise and local variability have been both accounted for, dividing their amplitude by 20. Results are shown in Figure 5-37. Performances are much better, reducing the maximum PCM error below 2%. Variable selection is improved but fake variable are still included in the PCM. However here, their coefficients are very low, limiting the PCM error. 

Conclusion

In this chapter, we have introduced the concept and benefits of PCM. Different approaches to build PCM have been investigated, namely stepwise regression, LASSO and LARS, along with method to test the predictability of the results and to calibrate the methods. These methods are K-fold CV, LOOCV and bootstrap. Stepwise regression, LASSO and LARS combined with K-fold CV, LOOCV and bootstrap methods have been tested against synthetic data. Their ability to perform variable selection and to find back the proper polynomial formula used to generate synthetic data has been tested against artificial noise with ill-posed problems. It has shown to be able to handle 5% of noise with only 25 observations against 50 predictors.

Then we have applied stepwise regression, LASSO and LARS to build PCM based on simulation results. First we have seen that building a polynomial formula that directly link electrical parameters (I Dlin and I Dsat ) with process parameters is not appropriate since it would require building one PCM per V G and gate length, making the model cumbersome. Moreover the model quality is not satisfying.

As an alternative, PCM have been built for model parameters (R 0 , , , , Vt lin , Vt sat , ). Using this approach we only need one PCM per model parameter to be able to model linear and saturation drain current over the entire strong inversion regime. In addition to this advantage, PCMs have shown to be more accurate for these parameters. Indeed, these model parameters are more elementary compared with I Dlin and I Dsat and their dependence with process parameters are thus simpler. Using OLS, we have then shown that linear polynomial formulas are suited for those PCM except for T il and Tspike that have nonlinear relationships with model parameters. This problem can be solved either by considering a reduced range for process parameters or by using empirical nonlinear formula along with variable shift for the model. This has been exemplified modeling and Tspike relationship with an exponential formula. However, OLS does not perform variable selection and obtained PCM included unphysical dependences. Moreover, it has been pointed out that dealing with silicon measurements induces two 20x20 transistors array 20x20 transistors array extra issues. Frist, we have to deal with within-wafer variability and, second, there are a large number of uncontrolled process parameters. In order to improve the accuracy, process and electrical parameters should be monitored at the die level. However, this lead to deal with randomly distributed process parameters and ill-posed problems (since there can be more process parameters than observations) instead of a regular DOE. In order to test the applicability of PCM construction method on silicon measurements, we have simulated experiences with randomly distributed process parameters. Using OLS to build PCM has shown to be a poor solution since -fake‖ predictors are included in the PCM and those could have non negligible coefficients. Alternatively, using stepwise regression, LASSO and LARS algorithm, we have seen that it is possible to obtain good results even in the presence of randomly drawn -fake‖ predictors. Thus the method is efficient in selecting relevant process parameters to build PCM even if the problem is ill-posed. However we have seen that some process parameters are not sufficiently dispersed to have a significant impact and are not included in the final PCM. Thus we suggest using both DOE and die scale observation in order to build proper PCM.

In order to assess the impact of local variability and measurement noise on PCM construction robustness, tests have been run using synthetic data. Starting with a DOE that includes different process parameters, model parameters and drain currents have been synthetized using the drain current model and PCMs built on TCAD results. Local variability and measurement noise have been simulated through a random signal added to the synthetic model parameters and drain current values. These synthetized data drain currents have then been used as input to the extraction method. Extracted model parameters have in turn been used to build PCMs. The error between PCM used as input and the one extracted revealed the impact of local variability and measurement noise. The PCM construction is compromised by the impact of noise and local variability considering a single transistor measured with short measurement time. However, we have shown that this problem can easily be bypassed using array of transistors. We recommend using 20x20 transistors array, without increasing the measurement time in order to reach a proper noise level. Of course increasing the measurement time would increase the PCM construction robustness as well.

As a perspective I shall note that, although different methods to build PCM and to calibrate these methods have been investigated, this study is not comprehensive. Indeed, domain of variable selection and machine learning are highly active research area and many alternatives (probably more efficient one) can be found in literature. Methods developed here have been chosen because they are widely used, well documented and reliable. For information purpose only, other interesting work related to this area can be mentioned. In term of variable selection, one can found random forests method introduced by L. Chapter 6 :

Conclusion

Technological node succession has been slowing down recently [START_REF]Transistors CMOS decananometriques à canaux contraints sur silicium massif ou sur SOI. Fabrication, caracterisation et etude du transport‖[END_REF] due to new technological challenges involved. Among these barriers we find an increased impact of process and local random variability due to the increased complexity of fabrication process and dimension scaling, in addition to the difficulty to reduce the channel length. Some of these challenges require the adoption of new architectures that are very different from the traditional one (bulk transistors). However these new architectures involve more efforts in order to be industrialized. Increase of complexity and development time imply larger financial investments. Even though the semiconductor market is large and its sales rising continuously as shown in Figure 6-1, the industry growth display less convincing trends, strongly dependent on global economic climate [194]. Consequently, investment margin shortens and R&D sector (that requires large funding with long term payback period) will have to deal with this chance. A recent survey asked semiconductor executives around the world what they see as the biggest issues facing the semiconductor industry during the next three years. The first answer is the increase in R&D costs followed by technology breakthroughs and high cost for plant and equipment [198]. Thus there is a real need for improving development and optimization of device fabrication. This work gives some leads in order to meet these expectations. In order to develop and optimize new transistors, engineers heavily rely on successive trials and expert knowledge. This approach appeared to be the most efficient and reliable until now. However, with the increasing complexity of new architectures and higher variability, this approach tends to require more and more trials, increasing dramatically the development cost. In order to address this issue, the idea is to minimize the number of trial in order to find the optimal fabrication process. The optimal process is the one that would lead to a device whose electrical performances and dispersion match predefined targets.

A way to find this optimal process without heavily relying on silicon processing is to use models and TCAD simulations. Indeed an accurate and fast-to-compute model that maps the relationships between process and electrical parameters can be used as an input to an optimization algorithm which in turn can find the optimal process. TCAD is a physically based and reliable tool. However each simulation is time consuming (in the order of magnitude of an hour). Since most of the optimization algorithms require a large number of evaluations (more than ), relying only on TCAD would never yield timely answers. Moreover TCAD calibration is a tedious task, requiring large physical investigations. On the contrary, compact model (such as BSIM, PSP, …) are fast to compute and require only a full electrical characterization of the device to be calibrated. However most of model parameters are not directly linked to process parameters, per say, some parameters have a complex physical interpretation. For example, the physical interpretation of effective channel length (that is widely used Thus, using compact model to optimize electrical performances cannot yield any accurate process flow.

The idea that has been developed in this thesis is to combine both TCAD and compact model in order to build and calibrate what is called Process Compact Models (PCM). PCM is an analytical model that maps the relationships between MOSFET's process and electrical parameters. It draw the benefits of both TCAD (since it relates electrical and process parameters) and compact model (since it is analytic and thus fast-to-compute). Our PCM is decomposed in two stages. Starting from process parameters, the first stage is formed of multiple polynomial formulas that relate process with the model parameters of a typical threshold voltage based compact model. The second stage is the compact model, yielding electrical parameters as output. An input/output scheme of this two-stage PCM is presented in Figure 6-2. A large part of this thesis has been devoted to provide the right procedure to build and calibrate this PCM. It can be done using TCAD and/or silicon measurements. The procedure requires few drain current measured or simulated on transistors with different gate lengths, at different gate voltages. Using these data, model parameters are accessed using a specific extraction procedure developed in chapter 3. This method relies on few measurements for comprehensive monitoring of the production line. The method is decomposed into 3 steps. First step consists in extracting linear model parameters using linear least square fit. Then these values are used as a first guess for a nonlinear optimizer that refines parameters values. Finally, saturation model parameters are extracted using nonlinear least square fit. This method has been tested to assess its robustness. Tests have been conducted on synthetized data against sample size and range. We have seen that data sample ranges and sizes available in silicon measurements are too small to properly extract all model parameters. Removing successively each parameters from the model showed that , Vt LDR and Lc are the least significant model parameters. Extraction test has been run once again considering cases where some of these parameters have been fixed. It showed that as soon as one parameter is removed, the extraction works fine. Thus removing one parameter allows robust extraction with a minimum bias in the model. Following that study, the effect of measurement noise in the extraction procedure has been investigated. It revealed that a small amount of noise can lead to strong errors in model extraction. TCAD investigation of the mobility compact model showed that using both and in the model can lead to a high uncertainty about extraction results. Removing allow more robust extractions against noise without making the parameter less meaningful. Noise tests have been conducted considering model parameters extracted on full I D -V G of nMOS and pMOS devices of 28 and 14 nm FD-SOI technologies and setting to 0. Results showed reasonable level of noise in extracted model parameters considering 1% of noise in electrical parameters.

These test showed that attention must be paid to the model used for extraction. First we suggest setting to 0 in order to reduce the impact of noise in measurements. Then, depending on the device, one or two parameters must be removed (Vt LDR and/or Lc). In order to verify the validity of such simplifications, extraction results must be checked. Considering TCAD simulations, the physical coherence of the results has been checked against corresponding process variations. Considering silicon extraction, correlation plots have been performed, showing that model parameters are mostly uncorrelated. Uncorrelated parameters ensure the robustness of the extraction and enable drawing inferences of model parameter's variation impact on drain current.

The extraction procedure has been run on a TCAD simulated DOE. The DOE account for different process parameters (External resistance, epitaxial thickness, SOI thickness, spacer width, implanted dose, annealing temperature, insulting layer thickness, high-K thickness). We have shown that model parameters response to process variations is physically coherent, testifying on model parameters physical meaning and extraction robustness. Extractions have been run for nMOS and pMOS enabling a quantification of the impact of active dopant dose in the source-drain region as well as the junction profile on the drain current and model parameters.

Following the introduction of model parameter extraction procedure in chapter 3, we have applied it on silicon measurements in chapter 4 where 28 and 14 nm FD-SOI technologies have been investigated. It has been shown that model parameters variations depending on process variations are coherent and have been physically interpreted. A clear quantification of the impact of process variations has been enabled, showing that the method is efficient and robust while requiring only few measurements, making it suitable for industrial application.

Studying 28 nm FD-SOI using model parameter extraction enabled quantifying the impact of source drain implant dose and energy as well as DSA step. We have seen that extractions yield physically coherent results. Highly doped source-drain region resistance R 0 is lowered by higher implant dose and energy and by DSA. Both these process parameters directly influence the active dopant concentration. This means that highly doped source-drain region has remaining inactivated dopant before DSA. DSA activates them successfully. On the contrary LDR resistivity represented by is only dependent on implant dose and energy. Indeed DSA does not induce dopant migration and thus doesn't move the junction further toward the channel. Moreover this means that LDR dopants are already well activated before DSA and DSA has no activation effect in this region. However Vt LDR extraction has evidenced that the junction position is sensitive to implant energy and dose. , and Vt lin have been shown to be constant, meaning that dopant does not penetrate into the metal gate or channel. All these sensitivities can be quantified easily using this technique, bringing valuable information in terms of device optimization.

Studying 14 nm FD-SOI technology, it has been possible to evaluate the impact of HF cleaning time before epitaxy, carbon and phosphorous dose during in situ doped raised source-drain epitaxial as well as epitaxy thickness. Carbon has shown to increase R 0 by reducing dopant migration whereas increased phosphorous dose decreases R 0 by raising the active dopant in the highly doped source drain region. Poor HF clean tends to act as a dopant sink, preventing them from migrating toward the channel. Thus it tends to make underlapped transistors and raises parameter.

In a second step, within-wafer variability has been investigated on 14 nm FD-SOI technology. Monte Carlo, forward and backward propagation of variance have been conducted in order to model this variability. It has been shown that linear drain current variability is slightly underestimated. BPV and direct extraction showed close results in term of linear drain current variability however corresponding model parameter variability yield different results. It has thus been suggested that local variability and channel length variability are responsible for these discrepancies (that are not properly taken into account using direct extraction or BPV). This interpretation has been reinforced by the fact that Monte Carlo draws used to forward propagate the model parameter variability extracted using BPV and direct extraction gives the same results than FPV. This leads to infer that the discrepancy does not come from a violation of normality and linear local approximation hypothesis. In order to verify that channel length and local variability are responsible for observed discrepancies between measurements and model, their impact on the model has been assessed using synthetic data and showing that it induces errors and can thus explain it.

Chapter 5 introduces the procedure to build and calibrate polynomial formulas that relate process and model parameters (the first stage of our PCM depicted in Figure 6-2). Since process parameters are numerous and some of them are irrelevant depending on the considered model parameters, the task of building polynomial models faces two issues: i) the problem is ill-posed and ii) relevant variables should be selected. These issues are addressed using appropriate statistical method like stepwise regression, LASSO and LARS. It has been shown using synthetic data that these methods are able to perform variable selection with ill-posed problems and noisy observations. The procedure has been applied on TCAD simulated DOE in order to test its reliability. Accurate results have been obtained. TCAD simulated within-wafer variability has been modeled using the PCM, showing a good agreement. Process parameters have then been ranked regarding their contribution to drain current variability. The model showed that Tepi and Wsp are mainly responsible for I Dlin and I Dsat variability. Thus we suggested optimizing these parameters in order to draw the best benefits in term of drain current variability.

In order to ensure the robustness of model building process, resources must meet specific requirements in term of amount and uncertainty of measurements. The limitations of the approach considering these requirements have been discussed. We have shown that the model construction is compromised by the impact of noise and local variability if only a single transistor is measured with short measurement time. However, we have shown that this problem can easily be overcome using array of transistors. We recommend using 20x20 transistors array, without increasing the measurement time in order to reach a proper noise level. Of course increasing the measurement time would increase the PCM construction robustness as well.

Application and perspectives

To sum up, this work is a feasibility study about PCM construction and shows how to benefit from extensive model parameters extractions in order to speed up the development process. We have shown that, with very little investments, the approach yields valuable results. Indeed, only few measurement points have been used instead of full I D -V G traditionally used for model calibration and no specific test structure. Every algorithm has been run using a laptop with average processing power associated with the flexible but rather slow Matlab software. Based on that, inferences about process effect on electrical performance have been drawn and PCM have been build based on TCAD simulated DOE. The PCM has been able to provide guidelines in order to optimize drain current variability.

The quality and quantity of drawn benefits are proportional to the amount of invested resources. In fact, there is a smooth trade-off between robustness and flexibility of the model and the required amount of resources to invest. In the following sections we investigate the potential benefits that could be drawn using PCM with some advanced features.

Optimizing the process flow

Variability optimization using PCM has been investigated on silicon, TCAD and synthetic data. However it has been suggested that this procedure can be applied to optimize performance and variability at the same time, provided that the model is well calibrated. In order to achieve this, we propose here, as an application, a general procedure aimed at optimizing performances and variability. This procedure also enables calibrating TCAD simulation tool. Description of the procedure is shown in Figure 6-3. In this procedure, we extract model parameters using TCAD and silicon measurements. Comparing electrical and model parameters of TCAD and silicon devices enable assessing the accuracy of TCAD calibration. If TCAD is not properly calibrated, then the mismatch between TCAD and silicon model parameters can indicate how to re-calibrate TCAD properly. For example if there is a good match between every TCAD and silicon model parameters with the exception of µ 0 C ox , then TCAD mobility model and/or equivalent oxide thickness should be investigated for TCAD calibration.

As soon as TCAD is calibrated, the PCM should be constructed (following Figure 6-3 flow chart). PCM construction procedure is detailed in Figure 6-5 flow chart. The procedure consists in simulating a DOE, extracting model parameters from simulated drain currents and building the PCM following instructions detailed in Chapter 5. Optimal process flow is then found using the PCM and an optimization algorithm. Relevance of the results must be checked just afterward. Indeed, if we considered the PCM build in Chapter 5, we can see that R 0 is linearly proportional to the implant dose. Thus if we would like to optimize the process flow such that it maximizes the drain current, then the solution would suggest to increase implanted dose indefinitely such that R 0 is minimized. In practice we know that there is a maximum dopant concentration above which no gain in access resistance can be expected, since there is a saturation effect in dopant concentration. In other words, the PCM domain of validity is too narrow and optimal solutions found are not bounded.

In order to correct this flaw, the device must be investigated when process parameters reach extreme values. For this example, simulations must be run with high enough implant doses in order to capture the concentration saturation effect. When the new DOE is designed, the simulations and PCM construction procedure must be run before optimizing the process flow once again. This loop should be repeated until a physically relevant and bounded solution is found for the process flow. Following Figure 6-3 flow chart, a last check must be performed in order to determine if the process flow found by optimization is actually the optimal one. This test consists in running the optimal process flow on silicon. Results found using PCM and silicon measurements should be compared. If the model does not match silicon, it means that either TCAD is badly calibrated (considering this new process flow) or PCM is not predictive enough. The whole procedure should be run once again focusing now on this new process flow for model and TCAD calibration.

The entire procedure as shown in Figure 6-3 is iterative and little iterations could be required in order to come up with a consistent model and optimal process flow. It only requires to process one wafer per iteration, making the approach very cost effective. Moreover, a fully automated procedure can make the iteration very quick (in the order of magnitude of few hours). The only step that cannot be automated is TCAD calibration since it requires expert knowledge. However insight provided by model parameter extraction can greatly ease this task.

Advanced feature for future PCM studies

As a perspective, we propose here some guidelines in order to improve the approach developed in this work and draw full benefits of the technique. Figure 6-6 shows the PCM scheme like the one presented in introduction (see Figure 123). However here we have added advanced features that could be investigated in future studies. Moreover, nonlinear process dependence like sigma vs Tspike (see , where tricky to model with linear polynomial. Finally, in order to find the optimal process flow, we have seen that the PCM should be valid for large process parameters variations and thus account for nonlinear relations between model and process parameters (such as saturation of the doping concentration for very high implant doses). This cannot be accounted for using linear polynomial but nonlinear formulas can account for it.

FFNN and SVM can also account for it. In addition these methods can deal with discontinuous parameters (e.g. Boolean variables). As a consequence it can deal with some shifts in the process flow (suppression or addition of steps, tool change). Considering FFNN, it should be noted that, even though this method is less transparent compared with polynomials, it is actually very easy to handle and to train. As well, it is very powerful in modeling complex systems, no matter its nature. This is why it is often called -universal approximation method‖. Today, artificial neural network find an increasingly large number of application, going from facial or speech recognition to game-playing and decision making, to medical diagnosis, just to name a few. Aforementioned advanced features also includes a more flexible and accurate compact model. I suggested in Figure 6-6 using a charge based compact model but it can be surface potential based. The main guideline I would provide is to use a compact model with parameters that have a clear and elementary physical meaning. This asset would greatly simplify the PCM first stage and makes the whole PCM much more robust. In addition we can hope modeling the full I D -V G characteristic, even the C G -V G characteristic. Of course the main limitation is to have a limited number of model parameters (around 10) in order to be able to extract them with few measurements.

Finally, the last feature to be investigated is to extend the model by adding a third stage. This stage would take the transistor and standard cell electrical characteristic as input and output respectively (e.g. SNM for SRAM or switching speed for ring oscillators). This third step can be extremely valuable. Indeed in this thesis we have focused on optimizing I Dlin and I Dsat performances and variability. Targets to be reached (in term of drain current) are set so that it ensures the circuit functionalities. However, with a PCM able to model standard cell performances, it would be possible to directly optimize standard cell performances. This approach would provide more freedom and a broader range of solutions in term of optimal process flow. To another extend, it would be also possible to consider the effect of layout with this kind PCM. Thus optimization would not be limited to find the optimal process flow but also the optimal circuit layout. This kind of global optimization procedure would yield highly value-added solutions. Another feature that would improve the technique is to use global optimization methods in order to improve the extraction procedure. In our approach we used a trust-reflective-region with conjugate gradient algorithm. It is very efficient considering our problem but it cannot ensure finding the global optimum of the problem, especially if the first guess is bad. In this work, we have circumvented this issue by using first guess found with linear least square fit. This approach ensures to have a first guess close enough to the global optimum. Moreover the extraction robustness has been tested in a great extent. So considering our case, the optimization method works fine. But if a more accurate compact model is used for which no first guess can be provided before running the optimization step, then a global optimization algorithm could be beneficial. A wide range of solutions exist and some of them 

Unexplored application

In term of unexplored applications we have already mentioned the possibility to optimize standard cell instead of transistors performances. Some other application can be suggested. Up to now, we have described a technique to finding the optimal process flow. However, during the process, performance and variability can be impacted by calibration drift of processing tools. In other word, tools calibration can drift with time and slightly modify process parameters mean values over the wafer. In the end, there will be some discrepancies between the optimal process flow and the one that was actually processed. The same problem can be observed at die scale. Indeed, process parameters are not uniformly distributed over the wafer, due to within wafer variability. Often, there is a wafer signature (e.g. radial or linear gradient) of process parameters dispersion. Thus, the process observed at die scale can be different from the optimal process flow. In order to counteract this issue, a study has implemented in situ process adjustment, in order to reduce the effect of process drift [START_REF] Kakehi | An efficient manufacturing technique based on process compact model to reduce characteristic variation beyond process limit for 40nm node mass production‖[END_REF]. The method consists in making real time, in line, process monitoring in order to estimate the process drift at die scale with respect to the optimal process flow. Then at some critical step of the flow, the process can be adjusted thanks to tool recalibration or wafer reorientation in order to counteract the effect of tool calibration drift and wafer signature of process parameters. This process requalification can be done using the PCM. At the critical process step, instead of optimizing the entire process flow as we suggested in previous application, only the remaining process steps would to be optimized, knowing the process history. This real time, in situ process optimization thanks to PCM would allow yield and performance maximization.

%Following line launch the nonlinear optimizer. The function to be optimized is %Rlinfun that takes (x,data,L,thetaswitch,model,Vdlin) as parameters where x is %the model parameter guess (it changes from one iteration to another). %xdata is the matrix of Vg-L combination called "data". %ydata are the measurements %lower and upper bound are specified via parameter 'lb' and 'ub' %'options' specify the options chosen before and stored in the object called %"opts". BSIM, PSP, …) sont rapide à calculer et ne requière qu'une caractérisation électrique complète du dispositif pour être calibré. Cependant la plupart des paramètres modèles ne sont pas directement reliés à un paramètre du procédé, c'est-à-dire, quelques paramètres ont une interprétation physique complexe. Par exemple, l'interprétation physique de la longueur de canal effective (qui est largement utilisé dans les modèles compacts) a été le sujet de nombreuses investigations [START_REF] Sherony | SOI MOSFET effective channel mobility‖[END_REF] L'idée qui a été développé dans cette thèse est de combiner la TCAD avec un modèle compact dans le but de construire et calibrer ce qu'on appelle un Du procédé Compact Model (PCM). Un PCM est modèle analytique qui lie les paramètres du procédé et électriques du MOSFET. Il tire les bénéfices à la fois de la TCAD (dans la mesure où il lie les paramètres électriques aux paramètres du procédé) et du modèle compact (puisque le modèle est analytique et rapide à calculer). Notre PCM est décomposé en étages. En commençant par les paramètres du procédé, le premier étage est formé de plusieurs polynômes qui relient les paramètres du procédé avec les paramètres modèles d'un modèle compact typiquement basé sur la tension de seuil. Le second étage est le modèle compact, qui donne les paramètres électrique en sortie. Un schéma d'entrée/sortie du PCM est présenté dans la Figure 9. 
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La résistance total est simplement la somme des résistances d'accès constantes (noté R 0 ), des résistances d'accès dépendant de V G (représenté par le terme ) et de la résistance canal.

L'expression du courant de drain en saturation est donnée comme suit:

Où et est le courant de drain intrinsèque en saturation:

( * (164) 
G m est la dérivée du courant de drain par rapport à V G et s'exprime comme suit :
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Dans cette expression, ( ) et est la mobilité effective prenant compte des mécanismes d'interaction avec les porteurs (rugosité de surface, interaction Coulombiennes et interaction avec les phonons), la vitesse de saturation des porteurs ainsi que le transport balistique:

( ) ( ) (166) 
De même, V Dsat est la tension de drain en saturation et est déduit comme étant la tension V DS tel que où est le courant de drain linéaire intrinsèque. L'expression de est la suivante:

√ ( * (167) 
Où . Ces formulations sont valides en régime de forte inversion. L'avantage de ces formulation est qu'elles sont analytiques et donc rapide à calculer. Ces atouts sont de rigueur pour permettre une application industrielle et pour extraire les paramètres sur une grande quantité de dispositifs mesurés avec un échantillon de tension très réduit. Cependant des simplifications ont été nécessaires pour atteindre ces objectifs. Il a été montré que l'impact de ces simplifications est acceptable en comparaison avec des calculs numériques rigoureux.

Une large partie de cette thèse est dévouée à la procédure de construction et de calibration de ce PCM. Cela peut être fait avec l'aide de la TCAD et/ou des mesures silicium. La procédure requière quelques valeurs de courant de drain mesurées ou simulées sur des transistors de différentes longueurs, à des tensions de grille différentes. Sur la base de ses données, les paramètres modèles sont accessibles via une procédure d'extraction spécifique développée dans le chapitre 3. Cette méthode fait appel à un nombre limité de mesures, ce qui rend possible le contrôle continu et exhaustif de la ligne de production. La méthode est décomposée en en trois étapes. La première étape consiste à extraire les paramètres du modèle linéaire via un ajustement des moindres carrés linéaire. Ensuite, ces valeurs sont utilisées comme une première estimation en entrée d'un optimiseur non linéaire qui affine les valeurs des paramètres. Enfin, les paramètres du modèle de saturation sont extraits via un ajustement des moindres carrés non linéaire.

Cette méthode a été testée pour évaluer sa robustesse. Des tests ont été effectués avec des données synthétiques pour valider la taille et l'étendue de l'échantillon de mesure. Nous avons vu que l'étendue et la taille de l'échantillon de données disponibles dans les mesures silicium sont trop petites pour extraire correctement tous les paramètres du modèle. Les résultats sont donnés dans la Figure 3 Ces tests ont montré qu'une attention particulière doit être portée au modèle utilisé pour l'extraction. Nous suggérons d'abord la mise en à 0 afin de réduire l'impact du bruit dans les mesures. Ensuite, en fonction de l'appareil, un ou deux paramètres doivent être enlevés (Vt LDR et / ou L c ). Afin de vérifier la validité de ces simplifications, les résultats d'extraction doivent être vérifiés. Pour les simulations TCAD, la cohérence physique entre variation de paramètre modèle et du procédé a été vérifiée. Quant aux extractions sur données silicium, des courbe de corrélation ont été faites montrant que les paramètres du modèle sont la plupart du temps décorrélées. L'absence de corrélation entre paramètre modèle assure la robustesse de l'extraction et permet de tirer des conclusions sur l'impact de la variation des paramètres modèle sur le courant de drain.

La procédure d'extraction a été exécutée sur un plan d'expériences simulé en TCAD. Le plan d'expériences prend en compte différents paramètres du procédé (résistance externe, épaisseur d'épitaxie, épaisseur du SOI, largeur des éspaceurs, la dose implantée, la température de recuit, l'épaisseur de la couche isolante, épaisseur de diélectrique à haute permittivité). Ce plan d'expérience est donnée dans le Table 5-4 où les valeurs -1 0 et 1 correspondent à celles données dans le Table 5 L'étude de la technologie 14 nm FD-SOI a permis d'évaluer l'impact du temps de nettoyage HF avant épitaxie, la dose de carbone et de phosphore lors de l'épitaxie des régions source-drain dopées in situ ainsi que l'épaisseur d'épitaxie. Le carbone a induit une augmentation de R 0 en limitant la migration des dopants alors que l'accroissement de la dose de phosphore diminue R 0 en augmentant la dose de dopant actif dans la région source-drain fortement dopée. Un nettoyage court à l'HF avant l'épitaxie induit plus défauts qui agissent comme un puits de dopant, les empêchant de migrer vers le canal. La jonction est de fait éloignée du canal et la résistance de la région faiblement dopée augmente.

Dans une deuxième étape, la variabilité intra-wafer a été étudiée sur la technologie 14 nm FD-SOI. La méthode Monte Carlo ainsi que la propagation de variance avant (FPV) et arrière (BPV) ont été menées afin de modéliser cette variabilité. Les résultats sont montrés dans la Figure 4 Toute la procédure, comme le montre la Figure 26, est itérative et quelques itérations pourraient être nécessaires afin d'arriver à un modèle cohérent et un du processus de fabrication optimal. Il n'est nécessaire de traiter que quelques plaques par itération, ce qui rend l'approche très rentable. En outre, une procédure entièrement automatisée peut effectuer une itération très rapidement (de l'ordre de grandeur de quelques heures). La seule étape qui ne peut pas être automatisé est calibration TCAD car elle nécessite l'expertise d'ingénieurs qualifiés. Cependant les indications fournies par l'extraction des paramètres du modèle peuvent grandement faciliter cette tâche. En outre, la dépendance non linéaire entre certains paramètres comme sigma vs Tspike, ou difficile à modéliser avec des polynômes linéaires. Enfin, afin de trouver le procédé de fabrication optimale, nous avons vu que le PCM doit être valable sur de larges variations de paramètres du procédé et doit donc prendre en compte les relations non linéaires entre le modèle et les paramètres du procédé (tels que la saturation de la concentration de dopants pour les doses d'implants très élevés). Cela ne peut pas être pris en compte par l'utilisation de polynômes linéaires mais des formules non linéaires peuvent prendre en compte ce genre de comportement.

Les méthodes FFNN et SVM peuvent également prendre en compte ces non linéarités. En outre, ces méthodes peuvent travailler avec des paramètres du procédé discontinus (par exemple des variables booléennes). En conséquence, il peut gérer des changements dans le procédé de fabrication (suppression ou addition d'étapes, changement d'outil). Cependant, considérant la méthode FFNN, il convient de noter que cette méthode est moins transparente par rapport aux polynômes, bien qu'elle soit très facile à manipuler et à former. De plus, c'est une méthode très puissante capable de modéliser des systèmes complexe, de nature très variée. Voilà pourquoi elle est souvent appelée «méthode d'approximation universel». Aujourd'hui, le réseau de neurones artificiel trouve un nombre croissant d'applications, allant de la reconnaissance faciale ou de la parole, au diagnostic médical, pour n'en nommer que quelques-unes.

Les fonctionnalités avancées citées précédemment incluent également l'utilisation d'un modèle compact plus souple et précis. Ceci est suggéré sur la Figure 29 en utilisant un modèle compact basé sur la charge ou sur le potentiel de surface. La principale ligne directrice que je fournirais est d'utiliser un modèle compact avec des paramètres qui ont une signification physique claire et la plus élémentaire possible. Cet atout simplifierait grandement la première étape du PCM et rend l'ensemble du PCM beaucoup plus robuste. En outre, nous pourrions espérer modéliser les caractéristiques I D -V G complètes, voir même les caractéristique C G -V G . Bien entendu, la limitation principale est d'avoir un nombre limité de paramètres modèle (environ 10), afin de pouvoir les extraire avec peu de mesures. Enfin, la dernière option à étudier est d'étendre le modèle en ajoutant une troisième étape. Cette étape modéliserait les caractéristiques électriques de cellules standards à l'aide de celles du transistor isolé (par exemple la SNM pour la SRAM ou la vitesse de commutation pour un oscillateur en anneau). Cette troisième étape peut être extrêmement précieuse. En effet, dans cette thèse, nous avons mis l'accent sur l'optimisation des performances et de la variabilité des paramètres électriques I Dlin et I Dsat .

Les cibles à atteindre (en termes de courant de drain) sont définies de sorte qu'il assure les fonctionnalités de circuit. Cependant, avec un PCM capable de modéliser les performances des cellules standards, il serait possible d'optimiser directement les performances de la cellule standard. Cette approche offrirait une plus grande liberté et une étendue plus large de solutions en termes de procédé de fabrication optimal. Dans une autre mesure, il serait également possible de considérer l'effet du tracé du circuit avec ce type PCM. Ainsi l'optimisation ne serait pas limitée à trouver le procédé de fabrication optimal, mais aussi le tracée du circuit optimal. Ce type de procédure d'optimisation globale donnerait des solutions à forte valeur ajoutée.

Figure 30 expose un du processus pour la construction de PCM avec des fonctionnalités avancées qui méritent d'être étudiées dans les travaux futures. Recently, the race for miniaturization has seen its growth slow because of technological challenges it entails. These barriers include the increasing impact of the local variability and processes from the increasing complexity of the manufacturing process and miniaturization, in addition to the difficult of reducing the channel length. To address these challenges, new architectures, very different from the traditional one (bulk), have been proposed. However these new architectures require more effort to be industrialized. Increasing complexity and development time require larger financial investments. In fact there is a real need to improve the development and optimization of devices. This work gives some tips in order to achieve these goals. The idea to address the problem is to reduce the number of trials required to find the optimal manufacturing process. The optimal process is one that results in a device whose performance and dispersion reach the predefined aims. The idea developed in this thesis is to combine TCAD tool and compact models in order to build and calibrate what is called PCM (Process Compact Model). PCM is an analytical model that establishes linkages between process and electrical parameters of the MOSFET. It takes both the benefits of TCAD (since it connects directly to the process parameters electrical parameters) and compact (since the model is analytic and therefore faster to calculate). A sufficiently robust predictive and PCM can be used to optimize performance and overall variability of the transistor through an appropriate optimization algorithm. This approach is different from traditional development methods that rely heavily on scientific expertise and successive tests in order to improve the system. Indeed this approach provides a deterministic and robust mathematical framework to the problem. The concept was developed, tested and applied to transistors 28 and 14 nm FD-SOI and to TCAD simulations. The results are presented and recommendations to implement it at industrial scale are provided. Some perspectives and applications are likewise suggested.

Résumé:

Récemment, la course à la miniaturisation a vu sa progression ralentir à cause des défis technologiques qu'elle implique. Parmi ces obstacles, on trouve l'impact croissant de la variabilité local et process émanant de la complexité croissante du processus de fabrication et de la miniaturisation, en plus de la difficulté à réduire la longueur du canal. Afin de relever ces défis, de nouvelles architectures, très différentes de celle traditionnelle (bulk), ont été proposées. 
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 11 Figure 1-1: Transistor Size Evolution: ITRS 2009
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 12 Figure 1-2: Comparison between Bulk and FD-SOI architecture.
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 13 Figure 1-3: Scheme of the two-stage PCM
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 21 Figure 2-1: Energy band diagram of a classical MOS structure with a P doped silicon layer. Shaded area represents the electron populated energy levels.
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 22 Figure 2-2: Energy band diagram of a classical MOS structure at equilibrium for grounded electrodes (metal and silicon)
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 23 Figure 2-3: MOS band diagram in inversion (left) and flat band (right) regime
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 24 Figure 2-4: MOS SOI capacitance structure considered for inversion carrier concentration derivation. E sf and E sb are front and back Si/SiO 2 interfaces electric field respectively.
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 25 Figure 2-5: Band diagram of a partially depleted SOI MOSFET at equilibrium. and are the front and back interface potential respectively.

-

  Figure 2-6: MOS SOI band diagram for and (a), (b) and (c). Band diagram has been generated using UTOXPP Poisson-Schrödinger solver [34].
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 27 Figure 2-7: Minority carrier concentration in the SOI for going from -10 up to 10V at . Charge concentration has been calculated using UTOXPP Poisson-Schrödinger solver [34].
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 28 Figure 2-8: Theoretical V t -V B curve with the different channel regimes.
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 29 Figure 2-9: Threshold voltage extracted for different gate lengths as a function of the substrate bias voltage and for two BOX thicknesses: (a) for UTB and (b) for UTBB . V B is varying from -3 V to +3 V for UTBB and from -80 V to +80 V for UTB.[44]
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 210 Figure 2-10: Schematic presenting the effective capacitances for the three main substrate regimes.[44]
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 2 Figure 2-11:
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 211 Figure 2-11: Theoretical Vt-VB curve with the different channel regimes for UTBB devices.
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 212 Figure 2-12: Universal mobility depending on effective field strength.
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 213 Figure 2-13: Basic element of FD-SOI MOSFET architecture.
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 215 Figure 2-15: NMOS transistor operating in (a) the linear model, (b) the onset of saturation, and (c) beyond saturation where the effective channel length is reduced. and are the linear threshold voltage and the saturation threshold voltage, respectively.
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 216 Figure 2-16: Width normalized I D -V D curves from equation (81) with . L=[0.024, 0.031, 0.078, 0.105, 0.267, 0.897] µm. , , . Effects of and L c are neglected here.
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 217 Figure 2-17: TCAD simulated MOS scheme with dopant concentration in silicon regions

  -17 and Figure 2-18.
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 218 Figure 2-18: Local resistivity variation w.r.t against the position along the current path. Sq refers to the W/L normalization of the resistance.
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 31 Figure 3-1: Modeled and measured 28 nm FD-SOI nMOS I Dlin (a) and I Dsat (b) against gate voltage for different gate length.
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 32 Figure 3-2: Extracted V tlin and V tsat against gate length for 28 nm FD-SOI nMOS devices measured on silicon.
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 33 Figure 3-3: Histograms of extracted parameter distribution using cross validation method.
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 34 Figure 3-4: Modeled and measured 28 nm FD-SOI pMOS I Dlin (a) and I Dsat (b) against gate voltage for different gate lengths.
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 35 Figure 3-5: Extracted V tlin and V tsat against gate length for 28 nm FD-SOI pMOS devices measured on silicon.
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 3637 Figure 3-6: Histograms of extracted parameter distribution using cross validation method.
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 38 Parameter extraction is tested using a large data sample, similar to the one provided by full I D -V G measurements, harnessed in §3.2.Synthetic data generation and model parameter extraction have been done using I Dlin calculated for 20 gate lengths ranging from 22 nm up to 3 µm and 20 gate biases for each gate length ( V). First guess for nonlinear extraction is provided by linear extraction as described in §3.1 for parameters R 0 , , µ 0 .C ox , , and Vt lin . First guess for Vt LDR and Lc are arbitrarily set to 1 mV and 1 nm. Figure3-9shows synthetic data and model against gate voltage. A perfect match is obtained and errors on model parameters are small. Thus in this case, data sample size is sufficient for extraction, model parameters are not redundant and the nonlinear algorithm converges properly.
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 38 Figure 3-8: Vt lin and Vt sat as extracted on measurements along with those used for synthetic data generation.
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 39 Figure 3-9: Id lin modeled and synthetized against gate length, using Table 3-7 model parameters.
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 3310 Figure 3-10: Error on extracted model parameters depending on the data sampling size (a) and range (b).
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 311 Figure 3-11: Extracted model parameters using synthetic data, depending on Vt LDR .
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 312 Figure 3-12: RMS error between reduced and full model, removing one parameter at a time.
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 3133314 Figure 3-13: Error on extracted model parameter, using synthetic data, depending on the model used

Figure 3 -

 3 Figure 3-15: (a) RMS error against artificial noise induced in the synthetized data.

Figure 3 -

 3 Figure 3-15 (a) shows I Dlin RMS error against the noise level for each extraction. We see that the error rarely exceeds 20% with noise level up to 1%.Figure 3-15 (b) shows the worst fit obtained with 1% noise on synthetic data. This error is large and can lead to build strongly biased compact model. This is due to the limited size and range of the sample (the silicon data sample). The uncertainty about model parameter extraction mainly arises from the mobility reduction factors . Indeed, in linear regime (where velocity saturation and ballistic transport is neglected), the mobility compact model

Figure 3 -

 3 Figure 3-15 (a) shows I Dlin RMS error against the noise level for each extraction. We see that the error rarely exceeds 20% with noise level up to 1%.Figure 3-15 (b) shows the worst fit obtained with 1% noise on synthetic data. This error is large and can lead to build strongly biased compact model. This is due to the limited size and range of the sample (the silicon data sample). The uncertainty about model parameter extraction mainly arises from the mobility reduction factors . Indeed, in linear regime (where velocity saturation and ballistic transport is neglected), the mobility compact model used is expressed as a second order expansion of . The inverse of the mobility is thus fitted as a second order polynomial expression following:
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 316 Figure 3-16: Inverse of the mobility half way between source and drain, TCAD simulated and modeled using first and second order model.

Figure 3 - 17 :

 317 Figure 3-17: Effective mobility simulated and modeled using first and second order approximation.

Figure 3 -

 3 Figure 3-17 shows first and second order effective mobility model along with the simulated one against gate overdrive. The range of gate overdrive is restricted to the extraction range. The best fit against the mobility curve is used to decide which parameter to remove. Model with only is slightly better considering the fitting quality but very close to the model with only . Values of extracted , and are regrouped in Table 3-9 depending on the extraction range.
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 318 Figure 3-18: Correlation plot of µ 0 and , extracted using different data samples.
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 3 Figure 3-19: RMS error against artificial noise induced in the synthetized data.
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 320 Figure 3-20: RMS error on (a) R 0 , (b) sigma, (c) µ 0 .C ox , (d) (e) Vt lin , (f) Vt sat against artificial noise level.

Figure 3 -

 3 Figure 3-12 show that has less impact on the model than . Removing in the model, the effect of noise on extraction accuracy using synthetic data has been investigated and shows reduced impact on noise compared to the model with and as shown in Figure 3-19, Figure 3-20 and Figure 3-21.
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 3 Figure 3-21: RMS error on against artificial noise.
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 322 Figure 3-22: Standard deviation of error on extracted model parameters with 1% noise in measurements, depending on the model and technology considered.
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 41 Simulation setup and DOE presentation TCAD simulations deck is calibrated on 28 nm FD-SOI MOS technology provided by STMicroelectronics. The geometry of the Process Of Reference (POR) is shown in Figure 3-23.
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 323 Figure 3-23: Simulated structure using TCAD tools with dimensions in nm

Figure 3 - 24 :

 324 Figure 3-24: Absolute doping level depending on the position along the current path for nMOS and pMOS simulated devices.
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 3 Figure 3-25: (a) R 0 extracted on TCAD simulated I D -V G including experiment with process variations. (b) Extracted R 0 against added external resistances on TCAD simulations. In Figure 3-25 (a), we see that, as expected, R 0 is mostly sensitive to external resistance. Quantitative variations of R 0 against added external resistance are shown in Figure 3-25 (b). It is shown that
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 3 Figure 3-26: extracted on TCAD simulated I D -V G including experiment with process variations.

Figure 3

 3 Figure 3-27: (a) and (b) extracted on TCAD simulated I D -V G including experiment with process variations.

Figure 3 -

 3 Figure 3-27 presents µ 0 .C ox and extracted for all the simulated experiments.As it has been discussed in Chapter 2, µ 0 and are complex functions that depend on C ox , C si (and thus on V B and Tbox). Consequently µ 0 .C ox and depend on Tsi and T il . In addition and depend on Qhk that are the charged defect at the high K interface. This is the effect of remote Coulomb that could be captured through and/or . The most influent process parameter is T il , that is inversely proportional to C ox , thus to µ 0 .C ox .
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 33 Figure 3-28 (a) and Figure 3-28 (b) represent Vt lin for short and long channel transistors respectively.These two parameters essentially depend on channel related process parameters (Tsi, T il and Qhk). In contrast with long channel Vt lin , short channel Vt lin is slightly impacted by access related process parameters. Indeed, since the access plays a major role in the current drain characteristics of short channel devices, it induces parasitic effects in the extraction.
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 3 Figure 3-37 shows Vt lin against process variations for long channel devices as well as Short Channel Effect (SCE) coefficient. SCE coefficient is calculated according to the following equation.
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 329 Figure 3-29: extracted on TCAD simulated I D -V G including experiment with process variations.

Figure 3 -

 3 Figure 3-29 (a), (b) and (c) show the variations of v * .C ox , Vt sat and Drain Induced Barrier Lowering (DIBL) respectively. DIBL has been calculated following:
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 330 Figure 3-30: Discrepancies between model parameters extracted with and without self-heating (SH)

Figure 3 - 31 :

 331 Figure 3-31: Saturation drain current simulated and modeled with (a) and without (b) self-heating (SH).

Figure 3 -

 3 Figure 3-32 (a) and Figure 3-32 (b) show simulated and modeled linear and saturation drain current respectively. A good fit is obtained. Linear drain current is slightly overestimated for short channel devices at high gate voltage. This is due to the simplification of the model (no Vt LDR , no Lc and no).
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 3332333 Figure 3-33 plots the relative error made by the model depending on the experiment considered. Even though the error is experiment dependent, it remains relatively low, assessing the robustness of the approach.

Figure 3 -Figure 3 -

 33 Figure 3-34: (a) R 0 extracted on TCAD simulated I D -V G including experiment with process variations. (b) Extracted R 0 against added external resistances on TCAD simulations.R 0 is also sensitive to some other parameters. Increasing implant dose or increasing the annealing temperature reduces R 0 since it increases the amount of active dopants in the highly doped sourcedrain regions. Increasing Tepi or Wsp increases R 0 since it lengthen the path from the silicide contact point to the entry of the channel.
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 33  shows extracted against process variations. pMOS is much more overlapped that nMOS, thus LDR is more sensitive to the gate properties. This explains the strong dependence on T il compared to other parameters. However R ext does not influence value as expected. As it has been explained previously, in linear regime, there is a perfect equivalence between and Lc if . and variations are shown in Figure3-36. Process dependence is similar to the case of nMOS: T il , Tsi and Qhk are the only parameters that impact and as expected.
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 3 Figure 3-37 shows Vt lin against process variation for long channel devices as well as SCE coefficient. SCE is weaker in nMOS () than pMOS ( ). Indeed, pMOS is more overlapped than nMOS. Considering long channel threshold voltage, channel related process parameters (T il , Tsi and Qhk) are by far the most influent process parameters.
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 33 Figure 3-38: (a), Vt sat (b) and DIBL extracted on TCAD simulated I D -V G including experiment with process variations.
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 33403 Figure 3-39 shows modeled and simulated drain currents against channel length for reference experiment. We see a very good fit. The model simplifications does not impact the fitting accuracy, thus Lc and Vt LDR are not influent model parameters in this case.

For this work, 2

 2 lots have been studied. They all carry different process variations. Process flow of 28 nm FD-SOI technology is detailed in Figure 4-1.
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 41 Figure 4-1: Schematic process flow of tested devices Experiments focus on source-drain implant and anneal temperature. DOE summary is given in Figure 4-1: Lot A B Process Low S-D implant POR (800°C)
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 42 Figure 4-2: nMOS linear drain current against gate length (a) and gate voltage (b).

First, inFigure 4 - 3 :

 43 Figure 4-3: Distribution of channel resistance (a), access resistance (b) and short channel device linear drain current at V G = V dd (c) for each wafer of lot A.

Figure 4 -

 4 Figure4-3 shows the box plot of access resistance, channel resistance and linear drain current for each wafer of lot A. Channel resistance is the length dependent part of the total resistance whereas access resistance is what remains. This splitting of the total resistance is illustrated in[START_REF] Kim | Accurate extraction of effective channel length and source/drain resistance on ultrashort channel MOSFETs by iteration method‖[END_REF] 
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 444 Figure 4-4: R 0 (a) and (b) distribution for each wafer of lot A.

Figure 4 -

 4 Figure 4-5 shows distribution of , long and short channel Vt lin for each wafer. As suggested by Figure 4-3 (a), channel model parameters are not affected by the process variation. Especially, Figure 4-5 (c) shows that long channel Vt lin does not vary with process varaitions. Thus, dopants don't go through the gate to reach the channel.
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 46 Figure 4-6: Vt LDR distribution for each wafer of lot A.
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 4 Figure 4-7 shows the correlation between linear model parameters. The strong correlation between and implies that we cannot distinguish their contribution to electrical parameters variations. This correlation has been explained by the extraction range in §3.3.3. Since these parameters are not
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 47 Figure 4-7: Linear model parameters correlation plot extracted over lot A. 4.1.2.2 Impact of DSA
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 48 Figure 4-8: Model parameters correlation plot extracted over lot B.
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 494 Figure 4-9: Short channel linear drain current distribution for each wafer of lot B.
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 411 Figure 4-11: Vt LDR distribution for each wafer of lot B.
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 4412 Figure 4-12 shows the results of I Dsat and extraction for each wafer. I Dsat is only slightly impacted by DSA.seems to not be impact by DSA and there is no physical reason for or to depend on the DSA. R 0 has a limited impact on I Dsat but since it strongly depends on the DSA, it can explain the small I Dsat dependence on DSA.

  -13 shows correlation plot of model parameters as well as access and channel resistance. In this figure, only the most strongly correlated couple of parameters are shown. Low correlation coefficients are found, emphasizing the robustness of the approach.
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 4134 Figure 4-13: Correlation plot between channel and access resistance on POR wafer.
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 4415 Figure 4-14 (a) shows the linear drain current model accuracy over the POR wafer for nMOS devices. Measured drain current is plotted against gate length for all V G . Error bars show the standard deviation of the model error calculated over the 68 dies. In the same way as Figure 4-14 (a), Figure 4-14 (b) shows the saturation drain current model accuracy over the POR wafer for nMOS devices. Error is small confirming the ability of the model to predict measurements.
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 4 Figure 4-15 (a) shows the threshold voltage against the gate length, averaged over the POR wafer. A rough approximation of drain induced barrier lowering has been calculated using the following equation.
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 22 Process flow and design of experimentProcess parameters have been varied from wafer to wafer.
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 4416 Figure 4-16: (a) Schematic process flow of tested devices [148]. (b) Wafer number related with process parameters modulation from POR
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 4 17 (b) and

Figure 4 -Figure 4 - 17 :Figure 4 - 18 :

 4417418 Figure 4-17 (c) focus on access resistance response with parameters R 0 and . Figure 4-17 (d) and Figure4-17 (e) focus on channel resistance. We clearly see that R 0 is by far the first parameter that drives Id lin wafer-to-wafer variation. Channel resistance is not much sensitive to process variations as expected since all process variations affect mainly the access region. Observed variations are in the range of wafer-to-wafer variability extraction accuracy. However the trend is clear for access resistance. Carbon raises R 0 since it slows down the dopant migration, whereas phosphorous dose reduces it by increasing the carrier concentration in the access region. seems only correlated to HF clean, indicating that it influences the junction position and the under spacer region. Short HF clean tends to degrade the contact quality between SOI and epitaxial raised source drain [149] creating silicon-oxide residues at the SOI/epitaxial interface. These residues act as defect sinks and can fix a large number of dopant and may induce cluster creation. Since these defects are fixed, they do not induce TED. Thus we expect dopants migration to be degraded. In our case, we see that shorter HF clean increases . TCAD extraction has shown that an increase of is due to a displacement of the junction away from the gate. Thus, it seems that shorter HF clean tends to move the junction away from the gate. This agrees with the hypothesis of enhanced cluster formation or sink for dopants, preventing them to diffuse toward the channel.
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 4 Figure 4-18 shows that and I Dsat variations are different depending on the process. In addition I Dsat response to process variations is really close to I Dlin response and v * C ox is not correlated to R sd as shown in Figure 4-13. Thus I Dsat, as well as I Dlin variations are mostly driven by R 0 variations.

  -wafer variability modelingIn this section, we attempt to understand the relation between electrical and model parameters withinwafer variability. In order to address the within-wafer variability challenge, we will investigate three approaches: Monte Carlo draws, Forward and Backward Propagation of Variance (MC, FPV and BPV respectively). The last two methods have been widely investigated by McAndrew et al. [150]-[151] on BJT devices and MOSFET using PSP SPICE model [152]. We here apply them to model the transistor total resistance standard deviation on the POR wafer based on previously introduced device model. Results yield by different methods will then be compared. 4.3.1 Definition 4.3.1.1 Monte Carlo In previous paragraph, we have introduced the analytical model and calibrated it on silicon based on the results yield by parameter extraction. Knowing the variability of model parameters, Monte Carlo method predicts the variability of electrical parameters (i.e. drain currents) by successively drawing normally distributed random sets of model parameters and computing electrical parameters using the analytical model. If the normality assumption is verified and the model parameters statistics is sufficiently accurate, electrical parameters statistics obtained by Monte Carlo should match silicon data.

4. 3 . 2

 32 Results of Monte Carlo vs FPV vs BPV vs silicon 4.3.2.1 Linear regimeIn this section we compare the results yield by previously introduced methods in linear regime. Results are regrouped in Figure4-19, where measurements are shown in blue. First, Monte Carlo method is applied using 10 5 draws of model parameter set. Random draws are based on model parameters statistics extracted using nonlinear extraction method (red symbols), using BPV (green symbols) and using linear least square fit (avoiding the second step of the extraction procedure: dark symbols). Statistics includes cross correlation between model parameters. Then FPV is applied with parameters statistics obtained using nonlinear extraction (red line), and using BPV (green line). Error bars represents the standard error about R lin standard deviation.
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 4 Figure 4-19: R lin nMOS standard deviation over the POR wafer against gate length. Results include Monte Carlo, FPV based on parameters statistics extracted with nonlinear and linear least square fit and BPV.
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 4420 Figure 4-20: Model parameters standard deviation extracted using nonlinear optimization method and BPV.
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 4 Figure 4-21: R on (a) and Vt sat (b) standard deviation depending on channel length using Monte Carlo and FPV and BPV against measurements.
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 422 Figure 4-22: Synthetic R lin variability against channel length. Synthetic data are generated with, (a) neither local nor gate length variability, (b) die-to-die gate length variability and (c) local and gate length variability.

Figure 4 -

 4 Figure 4-22 shows synthetics R lin variability against L along with the predicted variability using MC, FPV and BPV methods as in Figure 4-19.Figure 4-23 shows V tlin variability used as input to the synthetic data generation along with the one predicted by extraction and the one predicted by BPV
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 4423 Figure 4-22 shows synthetics R lin variability against L along with the predicted variability using MC, FPV and BPV methods as in Figure 4-19.Figure 4-23 shows V tlin variability used as input to the synthetic data generation along with the one predicted by extraction and the one predicted by BPV

Figure 4 -

 4 Figure 4-24 shows the error on extracted model parameters using the three set of synthetic data. We see that without variability, model parameters are perfectly extracted as expected. Gate length variability only biases extraction of R 0 , and Vt lin . Local variability biases extraction of all model parameters. Thus local and gate length variability along with the simplicity of the model can explain the small discrepancies observed between measurements and model in Figure 4-19 and Figure 4-21 (a).

Figure 4 - 24 :

 424 Figure 4-24: Root mean square error on extracted model parameters using synthetic data. Error is plotted in percentage of the input model parameters.
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 51 Figure 5-1: PCM construction process flow

Figure 5 - 2 :

 52 Figure 5-2: Illustration of the basic concept of PCM
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 5 [START_REF] Sitte | Sensitivity of 0.1 µm MOSFET's to manufacturing fluctuations‖[END_REF] shows the k-fold CV MSE and model variance depending on parameter F crit .

Figure 5 - 4 :

 54 Figure 5-4: MSE (a) and model variance (b) extracted using k-fold CV test K-fold CV test shows an optimal point for. This optimal point minimizes both model variance and MSE. This is a good result in view of Figure5-3. K-fold CV test shows also that using increases the average MSE and model variance. This implies that the method fails more often in distinguishing relevant from irrelevant predictors. The result is more dependent on the training test used. If (especially if F crit > 0.07), MSE does not rise significantly but model error does. It suggests that relevant predictors are included in the model but as F crit rises, the probability to include an irrelevant predictor in the model rises as well, leading to overfit.
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 555 Figure 5-5 shows the LOOCV MSE and model variance depending on parameter F crit .
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 556 Figure 5-6 shows the bootstrap MSE and model variance depending on parameter F crit .
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 57 Figure 5-7: values depending on chosen value for LASSO algorithm.
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 58595510 Figure 5-8: MSE (a) and model variance (b) extracted using k-fold CV test Figure 5-8 shows the k-fold CV MSE and model variance depending on parameter . This figure shows that a good tradeoff between MSE and model variance leads to an optimal value of 1.5 that a correct value since it would lead to select only relevant parameters.
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 5 Figure 5-10 shows the MSE and model variance calculated bootstrap depending on parameter .Again, the optimal can be deduced from a tradeoff between MSE and model variance. However this time, the optimum is not obvious and strongly depends on the chosen tradeoff. Thus in this case k-fold CV and LOOCV would be preferred over bootstrap.
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 5 Figure 5-11: values depending on chosen L 1 norm value for LARS algorithm.
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 512 Figure 5-12: MSE (a) and model variance (b) extracted using k-fold CV test Figure 5-12 shows the k-fold CV MSE and model variance depending on number of step . From this figure, we see that enabling more or less 25 steps leads to a good trade of between MSE and model variability. It is a bit too much in order to select only relevant predictors. But at this step, the selected irrelevant predictors have very small coefficient. Thus their impact in the model is limited.
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 5 Figure 5-13 shows the LOOCV MSE and model variance depending on number the L 1 norm of predictor coefficients. Using LOOCV the same kind of trend is obtained compared to k-fold CV method. Here the optimal value is rather around 22, what is satisfying since it would lead to select only relevant predictors.
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 5 Figure5-14 shows the bootstrap calculated model variance depending on the L 1 norm of predictor coefficients. This figure shows that bootstrap can be used to determine the optimal the L 1 norm value through a tradeoff between MSE and model dispersion. However, as in the case of LASSO, the results will strongly depend on the chosen tradeoff. Thus it is safer to rely on k-fold CV and LOOCV.
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 5514 Figure 5-13: MSE (a) and model variance (b) extracted using LOOCV test.
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 515 Figure 5-15: Scheme of the two-stage PCM
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 5 Figure 5-16 shows the relations between process and electrical parameters depending if we are constructing the PCM or if we exploit it.
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 516 Figure 5-16: Flow chart of process and electrical relations
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 5 Figure 5-17: I Dlin and I Dsat simulated and model using OLS for transistor of nominal gate length with V G =V DD .
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 518519 Figure 5-18: Flow chart of process and electrical relationsThis figure is to be compared with Figure5-16. It shows that, in this current application, we relate process parameters via the compact model instead of relating them directly as we did in previous paragraph. Figure5-19 shows the PCM obtained using OLS for model parameters R 0 , , , , Vt lin , Vt sat and .
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 5 Figure 5-20: extracted from simulations and modeled depending on anneal temperature.

Figure 5 - 21 :

 521 Figure 5-21: Comparison between I Dlin and I Dsat model with PCM straightforwardly build upon I Dlin and I Dsat or build upon model parameters.

Figure 5 -

 5 Figure 5-21 shows I Dlin and I Dsat modeled using OLS (same results have been shown in Figure 5-17)and modeled using the compact model and PCMs for model parameters. We see that both models are very close. I Dlin PCM using the compact model is more accurate in the range of R 0 . Thus using a twostage PCM has two advantages: i) it is slightly more accurate, ii) it enable a continuous modeling of the full strong inversion regime in linear and strong inversion regime with only 7 PCM whereas a one stage PCM would require as much PCM as gate biases making the model cumbersome and discontinuous.
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 431 Using OLS PCM construction is first done using OLS, as we did in §5.4.2. The flow chart of process and electrical parameters relationship is shown in Figure5-22.

Figure 5 - 22 :

 522 Figure 5-22: Flow chart of process and electrical relations One PCM is built for each model parameter. Figure 5-23 shows the value of the different PCM coefficients for each PCM.

Figure 5 - 23 :

 523 Figure 5-23: PCM coefficient of model parameters R 0 (a), (b), (c), (d), (e), V tlin (f) and V tsat (g).

Figure 5 -

 5 Figure 5-23 shows that using OLS, every predictor are included in the model. Moreover, fake predictors are accounted for with non-negligible coefficients. It means that in this situation OLS solution leads to overfit. The predictability and interpretability of such a model is very poor. Thus we cannot use OLS to exploit measurements at die scale, accounting for a large number of process parameters.
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 524 Figure 5-24: Flow chart of process and electrical relations
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 5 Figure 5-25: R 0 PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their respective calibration parameter.
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 5526 Figure 5-26 shows the results of PCM construction. All 3 model includes T il , Wsp, Tepi and fdose.This is in agreement with the PCM built using the TCAD simulated DOE. Again Tspike is missing in the model because of its low dispersion. LASSO method includes 3 extra ‗fake' predictors to the model but their coefficients are very low compared to the others and these errors can be spotted by comparing this result with the other methods.
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 5527 Figure 5-27 presents the results of PCM construction. Stepwise regression and LARS method only includes T il predictor, that is by far the most influent parameter on as shown in Figure 5-19 (c). LASSO mistakenly includes Tepi. K-Fold CV and LOOCV indicate a large optimal area, such that Tsi can be justifiably included in the model whereas stepwise regression and LARS considered the effect of Tsi negligible.
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 5528 Figure 5-28 shows the result of PCM building. It is very similar to µ 0 .C ox as suggested by the extraction of model parameters on the TCAD simulated DOE in Figure 5-19 (c) and (d). PCM only includes T il parameter. Compared to µ 0 .C ox ,extracted on TCAD simulated DOE strongly depends on Qhk. This dependence is not accounted for by the PCM here. This is because of the small variance of Qhk. Indeed in these simulations, Qhk dispersion represents only 2% of Qhk variation simulated in the DOE.
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 529 Figure 5-29: V tlin PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their respective calibration parameter.
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 55 Figure 5-30 shows the results of V tsat PCM construction. V tsat depends more or less on every process parameters as discussed previously. Constructed PCMs only includes Tepi, Wsp, Qhk, fdose and T il . These are the most influent parameter as shown in Figure 5-19 (f). Again LASSO and LARS mistakenly includes fake predictors in the model with very low coefficients.
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 531 Figure 5-31: PCM constructed using stepwise regression (a), LASSO (b) and LARS (c) depending on their respective calibration parameter.

Figure 5 - 32 :

 532 Figure 5-32: Within-wafer distribution of I Dlin and I Dsat modeled and simulated using TCAD Using this variability model, it is then possible to diagnose its process origins and optimize it. Indeed, following propagation of variance developed in Chapter 4, if the model can be locally linearized in the model parameters dispersion range, within-wafer variability yields:

Figure 5 - 33 :

 533 Figure 5-33: Expected drain current variability reduction by suppressing the variability of one process parameter at a time.

Figure 5 - 34 :

 534 Figure 5-34: Test flow used to check PCM construction procedure robustness to noise and variability

Figure 5 - 35 :

 535 Figure 5-35: RMS error made on drain current (a) build from synthetic data and error on selected variables (b).

Figure 5 -

 5 Figure 5-35 (a) shows the RMS error made on model parameters depending on the simulated noise level. Figure 5-35 (b) shows the number of variables mistakenly added or omitted in the PCM. We see that PCM for saturation regime, model parameters ( , and Vt sat ) are fairly insensitive to noise. Variable selection works perfectly and error on PCM coefficient is rather low. However a small amount of noise already compromises PCM construction for linear model parameters. Error on variable selection stems from the inclusion of -fake‖ predictors or omission or relevant predictor, if those have a negligible contribution to the PCM.

Figure 5 - 36 :

 536 Figure 5-36: RMS error made on PCM coefficient (a) build from synthetic data and error on selected variables (b).

Figure 5 - 37 :

 537 Figure 5-37: RMS error made on PCM (a) build from synthetic data and error on selected variables (b).
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 61 Figure 6-1: International semiconductor market sales per year from 1988 up to 2015 [195][196][197].

  in compact model) has been the subject of many studies [50][83][91][99]-[101][106][114][127][130].

Figure 6 - 2 :

 62 Figure 6-2: Scheme of the two-stage PCM 6.1 Summary of the thesis

Figure 6 - 3 :

 63 Figure 6-3: Flow chart of performance and variability optimization procedure

Figure 6 -

 6 Figure 6-3 shows the flow chart of performance and variability optimization procedure. First, it consists in setting the target for the device in terms of electrical performance and variability. Then

Figure 6 - 4 :

 64 Figure 6-4: Flow chart of TCAD calibration procedure using compact model

Figure 6 - 5 :

 65 Figure 6-5: Flow chart of PCM construction and calibration

  Advanced features include a new type of model to link process and model parameters. It can be either Feed Forward Neural Network (FFNN) [156][186][187], Support Vector Machine (SVM)[START_REF] Cortes | Support-vector networks[END_REF] or simply user defined nonlinear function. In this study we used linear polynomial formula, but we have seen that it has the drawback to not include second order and cross effects.

Figure 6 - 6 :

 66 Figure 6-6: Flow chart of a three-stage PCM for standart cell

Figure 6 -

 6 Figure 6-7 exposes a flow for PCM construction with advanced features that are worth investigating in future studies.

Figure 6 - 7 :

 67 Figure 6-7: Simplified PCM construction flow with advanced feature In this figure, the construction flow starts by building a proper DOE aimed at investigating process parameters effects. Depending on the model we are trying to buit (especially for the PCM first stage), different type of DOE can be used. Techniques to build optimal designs have been widely investigated. Common criterions (based on Fisher Information Matrix) to build optimal designs have been introduced by Wald (1943), Elving (1952), Kiefer (1959) and Kiefer(1975). A large and comprehensive literature can be found on this subject[START_REF] Goos | Optimal Design of Experiments: A Case Study Approach[END_REF]. Choosing the right DOE minimizes the chance to build inaccurate PCMs and increases its robustness. For example, in order to build a second order polynomial model, a central composite design of experiment would be preferred to the DOE exposed in Table5-4, that was used for linear polynomial model.
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 01020304050607 Figure 0-1: K-fold CV (1) and LOOCV (2) MSE and model dispersion test for R 0 PCM against the calibration parameter of stepwise regression (a), LASSO (b) and LARS (c) method.

  [START_REF] Hu | Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFET's‖[END_REF][START_REF] Kim | Accurate extraction of effective channel length and source/drain resistance on ultrashort channel MOSFETs by iteration method‖[END_REF][99]-[START_REF] Mcandrew | MOSFET effective channel length, threshold voltage and series resistance determination by robust optimization‖[END_REF][106][START_REF] Chang | A Derivative Method to Determine a MOSFET's Effective Channel Length and Width Electrically‖[END_REF][127][START_REF] Kim | Accurate extraction of effective channel length and source/drain resistance on ultrashort channel MOSFETs by iteration method‖[END_REF]. De fait, utiliser un modèle compact pour optimiser les performances électriques ne pourra conduire à un du procédé optimal.

Figure 9 :

 9 Figure 9: Schéma du PCM à deux phases 6.3 Résumé de la thèse

(

  

Figure 10 :

 10 Figure 10: Erreur sur les paramètres du modèle extrait à partir de données synthétiques avec différentes taille (a) et étendue (b) d'échantillon. La totalité des paramètres ont été considéré pour l'extraction. En supprimant successivement chacun des paramètres modèle a permis de montrer que , et sont les paramètres modèle les moins significatifs. Les tests d'extraction ont été exécutés de nouveau dans les cas où certain paramètres modèle ont été retirés. Il a été montré que dès lors qu'un paramètre est supprimé, l'extraction fonctionne très bien. Ainsi, la suppression d'un paramètre permet une extraction solide avec un biais minimal dans le modèle.

Figure 11 :

 11 Figure 11: Erreur sur les paramètres du modèle extrait à partir de données synthétiques avec différentes taille (a) et étendue (b) d'échantillon. Lc n'est pas extrait ici (Lc=0).À la suite de cette étude, l'effet du bruit de mesure dans le procédé d'extraction a été étudié. Il a révélé qu'une petite quantité de bruit peut conduire à de fortes erreurs dans l'extraction du modèle. Une étude TCAD du modèle compact de mobilité a montré que l'utilisation simultanée de et dans le modèle peut conduire à une forte incertitude sur les résultats de l'extraction. Retirer rend les extractions plus robustes face au bruit. En fixant à 0, des tests de bruit ont été effectuées sur la base de données synthétiques, construites à partir des paramètres modèle extraits sur des caractéristiques I D -V G en forte inversion, mesurées sur les dispositifs nMOS et pMOS des noeuds technologique 28 et 14 nm FD-SOI. Les résultats ont montré un niveau raisonnable de bruit dans les paramètres modèle extraits, avec 1% du bruit sur les paramètres électriques comme le montre la Figure3-19.

Figure 12 :

 12 Figure 12: RMS error against artificial noise induced in the synthetized data.

Tableau 2 :Figure 13 :

 213 Figure 13: (a) R 0 extrait sur le plan d'expérience simulé en TCAD sur le pMOS. (b) R 0 extrait en fonction de la résistance R ext ajouté aux contacts.

Figure 14 :Figure 15 :Figure 16 :

 141516 Figure 14: Courant de drain linéaire (a) et saturé (b) simulé et modélisé pour le dispositif pMOS en fonction de L et V G . Les différentes longueurs et tension V G sont celles utilisées pour l'extraction.Après l'introduction de la procédure d'extraction des paramètres modèle et son application sur des simulations TCAD dans le chapitre 3, nous l'avons appliqué sur des mesures sur silicium dans le chapitre 4, où les technologies 28 et 14 nm FD-SOI ont été étudiées. Il a été montré que les variations de paramètres modèles en fonction des variations du procédé sont cohérentes et ont été interprétées physiquement. Une quantification précise de l'impact des variations de du processus a été possible, ce qui montre que la méthode est efficace et robuste tout en ne nécessitant que peu de mesures, ce qui convient pour une application industrielle.L'étude du 28 nm FD-SOI via l'extraction de paramètres du modèle a permis de quantifier l'impact de la dose implantée dans la région source-drain et de l'énergie d'implantation (voir Figure4-3) ainsi que l'impact du DSA.
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Figure 17 :

 17 Figure 17: Ecart type de la résistance linéaire R lin du nMOS sur la plaque de référence en fonction de la longueur de grille. Les résultats incluent l'étude Monté-Carlo, la FPV basée sur la dispersion des paramètres extraits par la méthode des moindres carrés linéaire et non linéaire ainsi que la BPV. Il a été démontré que la variation de courant de drain linéaire est légèrement sous-estimée. La méthode BPV et l'extraction directe ont montré des résultats proches en termes de variabilité de courant de drain linéaire cependant la variabilité des paramètres modèle correspondants sont différents. Il a ainsi été suggéré que la variabilité locale et de la longueur du canal sont responsables de ces écarts (qui ne sont pas correctement pris en compte par extraction directe ou par BPV). Cette interprétation a été renforcée par le fait que la différence ne vient pas d'une violation des hypothèses normalité des distributions et de linéarité locale de la fonction. En effet, la méthode Monte Carlo a été utilisée pour propager la variabilité des paramètres modèle extrait en utilisant la méthode BPV et l'extraction directe, conduisant aux même résultats. Afin de vérifier que la longueur du canal et la variabilité locale sont responsables des écarts observés entre les mesures et le modèle, leur impact sur le modèle a été évalué à l'aide des données synthétiques, montrant qu'il induit des erreurs et peut donc expliquer ces écarts. Ces résultats sont montrés dans la Figure 4-22.

Figure 18 :

 18 Figure 18: Variabilité des données synthétiques de résistance linéaire. Les données sont générées avec (a) ni la variabilité locale ni la variabilité de la longueur de grille, (b) la variabilité intra plaque de la longueur de grille et (c) la variabilité locale et la variabilité de la longueur de grille.Le chapitre 5 présente la procédure pour construire et calibrer les polynômes qui lient les paramètres du procédé et modèle (la première étape de notre PCM, présentée sur la Figure9). Dans le mesure où les paramètres du procédé sont nombreux et certains d'entre eux ne sont pas pertinents en fonction du paramètre modèle considéré, construire des modèles polynômiaux se confronte à deux problèmes: i) le problème est mal conditionnés et ii) il faut sélectionner les variables pertinentes. Ces problèmes sont adressés en utilisant des méthodes statistique appropriées, comme la régression pas à pas, la méthode LASSO ou LARS. Il a été démontré, en utilisant des données de synthèse, que ces méthodes sont en mesure d'effectuer la sélection de variables dans le cas de problèmes mal conditionnés et observations bruitées. L'exemple de l'application de la méthode LASSO est montrée sur la Figure5-7:

Figure 19 :

 19 Figure 19: Valeurs de extraites en fonction du paramètre choisie pour la méthode LASSO L'application de la méthode LASSO donne les résultats montrés sur la Figure 5-9:
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 205 Figure 20: Erreur moindre carré (a) et estimation de la variance (b) du modèle en fonction de la valeur du paramètre de calibration de la méthode LASSO.L'application de la méthode LASSO suggère une valeur de calibration pour le paramètre de 1. Cette valeur est celle qui minimise à la fois l'erreur et la variance du modèle. Elle permet à la fois de supprimer les prédicateurs factices tout en gardant les prédicteurs pertinents avec des valeurs de coefficients proches de celles exactes.La procédure a été appliquée sur les résultats d'un plan d'expériences simulé en TCAD afin de tester sa fiabilité. Les modèles obtenus donnent des résultats précis et fiables comme le montre la Figure5-21.

Figure 21 :

 21 Figure 21: Comparaison entre I Dlin et I Dsat modélisés par le PCM (avec et sans la phase modèle compact) et simulés en TCAD sur le plan d'expérience. Ensuite, la variabilité intra-wafer simulée en TCAD a été modélisée en utilisant le PCM, montrant un bon accord comme le montre la figure Figure 5-32. Ces résultats montrent que le PCM est capable de modéliser la dispersion intra-plaque.

Figure 22 :

 22 Figure 22: Within-wafer distribution of I Dlin and I Dsat modeled and simulated using TCAD Les paramètres du procédé ont ensuite été classés en fonction de leur contribution sur la variabilité du courant de drain (voir Figure 5-33).
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 2324 Figure 23: Expected drain current variability reduction by suppressing the variability of one process parameter at a time.Le modèle a montré que les paramètres Tepi et Wsp sont principalement responsables de la variabilité de I Dlin et I Dsat . Ainsi nous avons suggéré de réduire autant que possible la variabilité de ces paramètres afin de tirer le maximum de bénéfice en termes de variabilité de courant de drain.Afin d'assurer la robustesse du processus de construction de PCM, les mesures électriques doivent répondre à des exigences spécifiques en termes de quantité et sur l'incertitude des mesures. Les limites de cette approche vis-à-vis de ces exigences ont été discutées. Nous avons montré que la construction du modèle est compromise par les effets du bruit et des variations locales, si un seul transistor est mesuré avec un court temps de mesure. Ces résultats sont montrés sur la Figure24 :

Figure 25 :

 25 Figure 25: Erreur sur les paramètres modèles entre le PCM construit sur les données synthétiques et celui utilisé pour générer les données synthétiques en considérant le bruit de mesure et la variabilité locale 6.4 Applications et perspectives

Figure 26 :

 26 Figure 26: Organigramme de la procédure d'optimisation de la performance et de la variabilité La Figure 26 montre l'organigramme de la procédure d'optimisation de la performance et de la variabilité. Dans un premier temps, cette procédure consiste à définir des objectifs en termes de performance et de variabilité sur les paramètres électriques. Ensuite, les paramètres du simulateur TCAD doivent être calibrés. Cette procédure peut être faite en utilisant le modèle compact ainsi que sa procédure d'extraction. Elle est détaillée dans la Figure 27.

Figure 27 :

 27 Figure 27: Organigramme de la procédure de calibration de l'outil TCAD Dans ce mode opératoire, on extrait les paramètres du modèle à l'aide de la TCAD et de mesures sur silicium. La comparaison des paramètres électriques et modèles obtenus sur la TCAD et le silicium permet d'évaluer la précision de la calibration TCAD. Si la TCAD n'est pas correctement calibrée, le décalage entre les paramètres du modèle de la TCAD et du silicium donne des indications pour recalibrer la TCAD correctement. Par exemple, s'il y a une bonne adéquation entre tous les paramètres du modèle sur la TCAD et le silicium à l'exception de μ 0 .C ox , alors le modèle de mobilité de la TCAD et/ou l'épaisseur d'oxyde équivalente du dispositif devraient être étudiées pour la calibration de la TCAD.Lorsque la TCAD est calibré, le PCM doit être construit (suivant l'organigramme de la Figure26). La procédure de construction du PCM est détaillée sur l'organigramme de la Figure28. La procédure consiste à simuler un plan d'expériences, extraire les paramètres du modèle à partir des courants de drain simulés et construire le PCM suivant les instructions détaillées au chapitre 5. Le procédé de fabrication optimal est alors trouvé grâce à un algorithme d'optimisation non linéaire se basant sur le PCM. La pertinence des résultats doit être vérifiée après coup. En effet, si l'on considère le PCM construire au chapitre 5, nous pouvons voir que R 0 est linéairement proportionnel à la dose de l'implant. Ainsi, si nous tenons à optimiser le procédé de fabrication de tel sort qu'il maximise le courant de drain, alors la solution suggèrera d'augmenter la dose implantée indéfiniment de telle sorte que R 0 est minimisée. En pratique, on sait qu'il y a une concentration de dopant maximale au-dessus de laquelle aucun gain en résistance d'accès n'est attendu, car il y a un effet de saturation de la concentration en dopant. En d'autres termes, le domaine de validité du PCM est trop étroit et non convexe. De fait la solution optimale trouvée peut ne pas être bornée.Pour corriger ce défaut, le dispositif doit être étudié lorsque les paramètres du procédé atteignent des valeurs extrêmes. Pour cet exemple, les simulations doivent être exécutées avec des doses d'implants suffisamment élevées afin de capturer l'effet de saturation de la concentration de dopants actif. Lorsque le nouveau plan d'expériences est conçu, la procédure de simulations et de construction du PCM doit être exécutée avant d'optimiser le procédé de fabrication une nouvelle fois. Cette boucle doit être répétée jusqu'à ce qu'une solution physiquement pertinente et bornée soit trouvée pour le procédé de fabrication.

Figure 28 :

 28 Figure 28: Organigramme de construction et de calibration du PCMSuivant l'organigramme de la Figure26, une dernière vérification doit être effectuée de manière à déterminer si le du processus de fabrication trouvé par l'optimisation est en fait la solution optimale. Ce test consiste à exécuter le du processus de fabrication optimal sur silicium. Les résultats trouvés en utilisant le PCM et les mesures silicium doivent ensuite être comparées. Si le modèle ne correspond pas à silicium, cela signifie que, soit la TCAD est mal étalonnée (compte tenu de ce nouveau du processus de fabrication) ou le PCM n'est pas suffisamment prédictif. Toute la procédure doit être exécutée une fois de plus en se concentrant maintenant sur ce nouveau du processus de fabrication pour l'étalonnage du modèle et de la TCAD.
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 42 Fonctionnalités avancées pour les futures études basée sur l'outil PCM En perspective, nous proposons ici quelques lignes directrices afin d'améliorer l'approche développée dans ce travail et de tirer pleinement profit de la technique. La Figure29représente le schéma du PCM comme celui présenté dans l'introduction. Cependant ici, nous avons ajouté des fonctionnalités avancées qui pourraient être étudiées dans les applications futures.Les fonctionnalités avancées incluent l'utilisation de nouveaux types de modèle pour relier les paramètres du procédé aux paramètres modèle. Parmi ces nouveaux types on trouve, les réseaux de neurones (Feed Forward Neural Network)[START_REF] Mohammadi | A fast TCAD-based methodology for variation analysis of emerging nano-devices‖[END_REF][186][START_REF] Rojas | Neural Networks: A Systematic Introduction[END_REF], le Support Vector Machine (SVM)[START_REF] Cortes | Support-vector networks[END_REF] ou simplement un modèle physique (possiblement non-linéaire) défini par l'utilisateur. Ces nouvelles approchent contrecarrent les limitations de l'approche actuelle, basée sur des polynômes linéaires, qui n'incluent pas de deuxième ordre et ni les effets croisés des paramètres du procédé.

Figure 29 :

 29 Figure 29: Organigramme du PCM pour cellules standard

Figure 30 :

 30 Figure 30: Organigramme simplifié de la construction du PCM avec les fonctionnalités avancées Dans cette figure, le flux de construction commence par la construction d'un plan d'expériences approprié visant à étudier les effets des paramètres du procédé. Selon le modèle que nous essayons de construire (en particulier pour la première étape PCM), différents type de plan d'expériences peuvent être utilisés. Les méthodes de construction de plan d'expériences optimal ont été largement étudiées. Les critères universels (basés sur la matrice d'information de Fisher) pour construire des plans d'expériences optimaux ont été introduites par Wald (1943), Elving (1952), Kiefer (1959) et Kiefer (1975). Une littérature vaste et complète peut être trouvée sur ce sujet [311]. Choisir le bon plan d'expériences minimise la chance de construire des PCMs inexactes et augmente sa robustesse. Par exemple, afin de construire un modèle polynômial du second d'ordre, un plan d'expériences composite centré serait préférable au plan d'expériences qui a été utilisé pour les modèles polynômiaux linéaire.

  

  

  

  

Table 2 -1: I Dlin formulation for long channel devices with and without θ1 and θ2 parameters.

 2 

Figure 2-14: I Dlin against using the approximated (72) and the not approximated (76) formula for µm. For the calculation, the following parameters have been used: µ=200 cm²/V/s, C ox =3*10 -6 F/cm², Vt = 0.3 V, , . V DS =0.05V.

  

		x 10 -4									0.1							
			No approximated						0.09							
			Approximated														
											0.08							
		2								[%]	0.07							
	I Dlin [A/µm]	1								Error on I Dlin	0.04 0.05 0.06							
											0.03							
											0.02							
		0.5 0	0.6	0.7	0.8	0.9 V G [V]	1	1.1	1.2	1.3	0.5 0.01	0.6	0.7	0.8	0.9 V G [V]	1	1.1	1.2	1.3

  Dsat formulation can be found by taking I Dlin formula in Table2-1 and replacing V DS by V Dsat derived from . This yield:

	the saturation drain current can be found. A first approximation consists in replacing	by	. Then
	I ∫		(82)
		-16. Thus, a common practice to derive	is to calculate
	and find V D where	. Using I Dlin equation (76), no analytical formula for V Dsat and

Figure 2-19: I Dsat (a) calculated numerically using equation (85) with access resistance against simplified analytical expression (91). Model error in percentage is shown in (b). Model parameters used to compute I Dsat are gathered in Table (c).

  

	Rs=Rd	
	µ 0	100 cm²/V/s
	vsat	10 7 cm/s
	V D	1 V
	W	1 µm
	L	[1, 0.3, 0.12, 0.09, 0.038, 0.028] µm
	Vt	0.3 V
		-0.5 V
		0.5 V
		(c)

  These tests are gathered in §3.3. They include tests about the influence of noise on measurements as well. Their purpose is to evaluate the uncertainty about extracted parameters depending on the considered sample size, range and noise level. It brings insights into the data amount and quality required to ensure a proper extraction.

	The extraction method being set, it is then applied on TCAD simulations in §3.4. A design of
	experiment has been simulated in order to investigate the influence of critical process parameters on
	model parameters. To this end, simulation results are used for model parameters extraction. Model
	parameters responses to process variations are investigated and we will see if they are consistent with
	the physics underlying model parameters, as introduced in chapter 2.

Table 3 -1: Model parameter extraction method summary

 3 

	Method	Assumptions	Extracted parameters
		, µ constant with L	µ( ),	
	Chang and Berg [114]	, constant	µ,	
	Suciu and Johnston [102]			
	Jeppson and Karlsson's method			
	[124][125] Sanchez [123] peak g m [103][104]	, µ 0 constant with L	, µ 0 , ,
	De La Moneda [109]			
	R lin -L [105][106] Sheu [88]	µ constant with L,	, ,	
		constant with V G .		
	Hu [106]	constant	,	
	TMC [107][108]	, µ constant with L		, ,
	Peng [110]	, µ constant with L	,	,
	Peng and Afromowitz [112]	, I D .R SD << V DS ,	,	
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		Gate length [µm]					
	28 FD-SOI	14 FD-SOI				
	(Silicon)	(Silicon)				
	nMOS	pMOS	nMOS	pMOS				
	0.024	0.024	0.022	0.022				
	0.0276	0.0276	0.024	0.024				
	0.0312	0.0312	0.026	0.026				
	0.078 0.105	0.078 0.105	0.028 0.03	0.028 0.03		Gate voltage [V] 28 FD-SOI 14 FD-SOI
	0.447	0.447	0.032	0.032		(Silicon)	(Silicon)
	0.897	0.897	0.034	0.034		nMOS pMOS nMOS pMOS
	8.997	8.997	0.038	0.038	Min [V]	0.55	0.7	0.614 0.614
			0.042	0.042	Step [mV]	27.5	20	26	26
			0.064	0.064	Max [V]	1.1	1.1	0.9	0.9
			0.104	0.104				
			0.154	0.154				
			0.164	0.164				
			0.504	0.504				
			1.004	1.004				
			2.004	2.004				
			3.004	3.004				
			(a)				(b)	

Table 3 -2: Gate length and biases used to measure I Dlin and I Dsat depending on the device type considered.
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Table 3 -3: Extracted model parameters for 28 nm FD-SOI nMOS transistors measured on silicon.

 3 

Table 3 -4: Extracted model parameters for 28 nm FD-SOI pMOS transistors measured on silicon.

 3 

Table 3 -

 3 5 gathers the device gate lengths for which data are available depending on the technology considered. TCAD simulations have been designed such that data sample is comparable to available silicon data sample. For each of these gate lengths, drain currents has been measured in linear and saturation regimes at different gate voltages. These gate voltages are summarized in Table3-6. The smallest data sample is available for 28 nm FD-SOI technologies where linear and saturation drain

	Technology	28 nm FD-SOI	14nm FD-SOI	TCAD
		0.028	0.02	0.030
		0.030	0.024	0.034
		0.034	0.03	0.038
		0.12	0.06	0.090
		0.3	0.1	0.1
		1	0.3	0.12
			1	0.15
				0.3
				1

currents are measured on 6 devices with different gate lengths, each devices being measured at 3 different gate voltages. It will be refered to as -silicon data sample‖.

Table 3 -5: Device gate lengths for which data are available (for nMOS and pMOS).

 3 

	Technology	28 nm FD-SOI	14nm FD-SOI	TCAD	
	Drain bias	V Dlin	V Dsat	V Dlin	V Dsat	V Dlin	V Dsat
	Gate	0.7	0.7	Vt lin +0.3	0.4	0.7	0.7
	voltages for	1	1	Vt lin +0.5	0.8	1	1
	which data are	1.1	1.1	0.8		1.1	1.1
	available [V]			Vt lin +0.7			

Table 3 -6: Absolute device gate voltages for which data are available (for nMOS and pMOS).

 3 

Table 3 -7: Model parameters values for synthetic data generation. L is the gate length in nm.

 3 

Table 3 -8: Relative error made on model parameters from extraction.

 3 

  Conditions about the minimum data sample range and size required for a proper extraction have been set in previous paragraph. Now, considering a proper data sample for extraction, we investigate here the effect of artificial noise. To illustrate this test, we use synthetic data generated thanks to the compact model with Lc=0 and and with model parameters extracted on 14 nm FD-SOI nMOS technology. These parameters are regrouped in Table 3-7 and Figure 3-8. A generalization of the method to other technologies is done afterward. In order to model noise, the drain current values are modulated by a normally distributed random amount (the noise) with dispersion (3 )

3.3.3 Robustness against artificial noise

Table 3 -

 3 [START_REF] Na | Effective Drive Current in CMOS Inverters‖[END_REF] depending on the extraction range.

		Extraction using	Extraction with	Extraction with	Extraction with
	Parameters	the whole Vg	0.7<Vg<1.1 V	0.7<Vg<1.1 V	0.7<Vg<1.1 V
		range	using and	using	using
		173	225	440	333
		-1.88	-1.26	1.3	0
		2.16	1.76	0	0.92

Table 3 -9: Extracted parameters for mobility compact model, using first and second order, depending on the extraction range.
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  We have seen that data sample ranges and sizes available in silicon measurements are too small to properly extract all model parameters. Removing successively each parameters from the model showed that , Vt LDR and Lc are the least significant model parameters. Extraction test has been run once again considering cases where some of these parameters have been fixed. It showed that as soon as one parameter is removed, the extraction works fine. An exception must be mentioned for 28 nm pMOS FD-SOI technology where model parameters are badly extracted if Lc is the only fixed parameter. Thus removing one parameter allows robust extraction with a minimum error in the model. Following that study, the effect of artificial noise has been investigated. It revealed that, a small amount of noise can lead to strong errors in model extraction. TCAD investigation of the mobility compact model showed that using both and in the model can lead to a high uncertainty about extraction results. Removing allows more robust extractions against noise without making the parameter meaningless. Noise test has been conducted considering model parameters extracted on full I D -V G of nMOS and pMOS devices of 28 and 14 nm FD-SOI technologies and setting to 0. Results showed reasonable level of noise in extracted model parameters considering 1% of noise in electrical parameters.

Tests have been conducted on synthetized data against sample size and range considering model parameters extracted on full I D -V G of nMOS and pMOS devices of 28 and 14 nm FD-SOI technologies.

  nm and 14 nm FD-SOI technologies In this chapter, the extraction method developed in previous chapter is applied to 28 and 14 nm FD-SOI silicon devices measurements. Model parameters variations with process variations are investigated and we will see how model extraction helps getting more insights into the device characteristics and help interpreting the relation between process parameters and device performances. The chapter starts with extraction on 28 nm FD-SOI technology in § 4.1. Effect of Dynamic Surface Anneal (DSA) and source drain implant dose and energy are studied. In the same trend, in §4.2, we apply extraction method on 14 nm FD-SOI silicon data. Effect of source-drain dopant concentration, HF clean before epitaxy and epitaxial thickness are investigated. In addition, within-wafer variability is addressed in §4.3. Forward and backward propagation of variance as well as Monte Carlo draws are used to model this variability.4.1 Application to 28 nm FD-SOI technologyIn this paragraph, we show the results of extraction applied to 28 nm FD-SOI devices measurements. Extractions are carried on several wafers with process variations. Details of the DOE and experimental setup is discussed in §4.1.1. In §4.1.2 the extraction accuracy will be assessed and we will see how the extraction enables a clear quantification of the process impact on device characteristics. We will then bring a physical interpretation of the variations and we will see that model parameters variations depending on process variations are well correlated with extraction results based on TCAD simulations.

Table 4 -1: Lot name related with process parameters modulation from POR
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Table 4 -

 4 2 and Table 4-3.

	Technology	28 nm FD-SOI	14 nm FD-SOI
		0.028	0.02
		0.030	0.024
		0.034	0.03
		0.12	0.06
		0.3	0.1
		1	0.3
			1

Table 4 -2: Device gate length for which data are available.
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	Technology	28 nm FD-SOI	14 nm FD-SOI
	Drain bias	0.05 V	1 V	0.05 V	1 V
	Gate	0.7	0.7	Vt lin +0.3	0.4
	voltages for	1	1	Vt lin +0.5	0.8
	which data are	1.1	1.1	0.8	
	available [V]			Vt lin +0.7	

For each of these gate lengths, drain currents have been measured in linear and saturation regimes at different gate voltages. These gate voltages are gathered in Table

4

-3.

Table 4 -3: Device gate voltages for which data are available.
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Table 4 -

 4 

	Parameters	Values
		103
		37.4
		0.46

4 regroups the average model parameters extracted over the POR wafer. v * value is close to v sat value found in literature

[START_REF] Sze | Physics of Semiconductor Devices[END_REF]

. A good mobility value is found as well.

Table 4 -4: Extracted model parameters averaged over the POR wafer.
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  Thus model error does not reflect the ability of the model to predict observations not used to build the model within the observation domain. Model efficiency estimation is thus strongly biased using only MSE as indicator.

The alternative is to split the observation set into a training dataset and a validation dataset. The model is then built on the training dataset and the model error is calculated on the validation dataset, which is different from the training dataset. This approach is called validation test. The training dataset domain is similar to the test dataset domain in order to ensure a proper coherence of test with the model. The respective size of training and validation dataset is set by the user. This choice leads to a tradeoff. Indeed if the validation set is small then, the model is built upon almost all the observation set, minimizing the model variability but model error estimation is subject to a large uncertainty. On the other hand, if the validation test is large, the uncertainty about model error is minimized but model variance increases.

  To this factorial design we have added some cross terms. Corresponding experiments are detailed in Table5-1. These experiences are referenced as -Mixed‖ in Figure5-17. This simulation setup does neither account for local or within-wafer variability nor for measurement noise. In order to model I Dlin and I Dsat dependence on process parameters we built their PCM upon simulation results using OLS. OLS only accounts for process parameters included in the DOE. Since there is no variability, other process parameters are fixed and thus cannot play any role in I Dlin and I Dsat variations. Of course, in practical cases, these assumptions do not hold. We shall see later the consequences.

		Process parameters
	Experience	Wsp (nm)	Tsi (nm)
	1	8		5
	2	8		8
	3	12		5
	4	12		8
				nm
	 Spacer width	(Wsp) [8, 10.35, 12] nm
	 Implanted dopant dose	(f dose) [0.5, 0.7, 1, 1.2, 1.5] (All source-drain and
	LDD implant dose are multiplied by this factor)
	 Insulating layer (IL) thickness	(T il )	[0.8, 1.05, 1.2, 1.8, 2.5, 4] nm
	 IL/High K interfacial charges	(Qhk) [10 10 , 10 11 , 10 12 , 3.10 12 , 10 13 ] cm -2
	 Contact resistance	(Rext) [20, reference, 200, 500] Ω (Reference values
	are 90 and 212 Ω for nMOS and pMOS respectively)
	 Spike anneal	(Tspike) [800, 1000, 1052, 1100]

Table 5 -1: Cross terms experiences simulated by TCAD
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Table 5 -

 5 2. 

	Associated predictor with coefficient unit	I Dlin Coefficients	I Dsat Coefficients
	Constant	0.35	2.30
		-9.03	-60.4
		-12.9	-91.2
		2.27	15.2
		-12.1	-101
	f_dose [µA/µm]	3.68	0.228
	Tspike [µA/µm/°C]	6.63	4.22
	Qhk [µA.µm]	-1.29	-7.41
		-2.62	-8.37

Table 5 -2: I Dlin and I Dsat PCM coefficients.
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Table 5 -

 5 3. 

	Process Parameters	Tepi [nm] Wsp [nm] Tsi [nm]	T il [nm]	f_dose	Tspike [°C]	Qhk
	Average	14	10.35	7	1.2	1	1050	22.5
	Standard deviation	1.3	1.3	0.5	0.25	0.24	2	2.25

Table 5 -3: Process parameters average and dispersion over the set of simulations
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Table 5 -4: Face centered composite DOE with process parameters.
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	Variable Level	Tepi	Wsp	Tsi	Til	fdose	Tspike	Qhk	Rext
	-1	12	8	5	0.8	0.5	900	10 10	70
	0	14	10	6.5	1	1	1000	10 12	100
	1	16	12	8	2	1.5	1100	10 13	130

Table 5 -5: Process parameters values used in the DOE depending on the level.
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  Brieman [179]. This method, as well as those investigated in this work, only deals with linear polynomial models. In case one wants to test nonlinear model, other methods are more appropriate [180]-[186]. In term of PCM, we have investigated the use of linear polynomial formula.

	However, more flexible and efficient alternatives can be mentioned like, Kernel Nearest Neighbor
	(KNN) [185], Feed-Forward Neural Network [186][187], Suport Vector Machine (SVM) [188].
	Considering PCM evaluation and calibration of PCM construction method, we extensively used cross-
	validation methods. Other approaches are available like S p criterion, Akaike Information Criterion
	(AIC), Final Prediction Criterion (FPE), C p criterion of Mallows or the small-sample corrected version
	of AIC. A more recent publication [189] briefly reviews these methods and proposes its own method
	inspired by Beran and Dümbgen [190]-[192].

133][134][200][201]. Different

  have been investigated in literature for parameter extraction [algorithms have been tested during this thesis (like genetic algorithm and levenberg-marquardt), and we recommend using derivative based optimization algorithm since compact models are continuous, derivable and fast-to-compute. These methods appear to be quicker and more accurate. In this perspective we can mention the Multi-levels Coordinate Search (MCS) as a global optimization alternative to our approach[START_REF] Huyer | Global Optimization by Multilevel Coordinate Search‖[END_REF]. More information about global optimization can be found in literature[START_REF] Panos | Handbook of global optimization[END_REF]. one was to use FFNN, SVM or nonlinear analytical formula for the PCM first stage, then specific methods should be used for variable selection and model calibration. FFNN and SVM do not explicitly requires variable selection, but it can improve its efficiency for training and computing. Literature reports multiple methods to perform variable selection, in accordance with these methods [

	If

204]-[208].

  In case one wants to test nonlinear model, other methods to perform variable selection are more appropriate [180]-[186]. These methods also serve at calibrating nonlinear functions.

  Une autre caractéristique qui permettrait d'améliorer la technique consiste à utiliser des méthodes d'optimisation globale afin d'améliorer la procédure d'extraction. Dans notre approche, nous avons utilisé la méthode dite « trust-reflective-region » avec l'algorithme du gradient conjugué. Il est très efficace compte tenu de notre problème, mais il ne peut pas assurer de trouver l'optimum global du problème, surtout si la première hypothèse est mauvaise. Dans ce travail, nous avons contourné ce problème en utilisant la première estimation trouvée avec un ajustement par moindres carrés linéaire. Cette approche garantit d'avoir une première estimation assez proche de l'optimum global. En outre, la robustesse de l'extraction a été largement testée et éprouvé. Donc, compte tenu de notre cas, la méthode d'optimisation fonctionne très bien. Mais si un modèle compact plus précis est utilisé pour lesquels aucune première estimation ne peut être fournie avant l'exécuter de l'étape d'optimisation, alors un algorithme d'optimisation globale pourrait être avantageux. Une large gamme de solutions existe et certains d'entre eux ont été étudiés dans la littérature pour l'extraction de paramètres [133][134][314][315]. Différents algorithmes ont été testés au cours de cette thèse (comme algorithme génétique et Levenberg-Marquardt), et nous vous recommandons d'utiliser les méthodes basées sur la dérivée de la fonction objective, car les modèles compacts sont continus, dérivables et rapide à calculer. Ces méthodes semblent être plus rapides et plus précises. Dans cette perspective, nous pouvons mentionner la méthode « Multi-levels coordinates search » (MCS) comme alternative à notre

approche [317]. Plus d'informations sur l'optimisation globale peut être trouvée dans la littérature [318]. Si l'on devait utiliser les méthodes FFNN, SVM ou des formules analytiques non linéaires pour la première étape du PCM, alors des méthodes spécifiques doivent être utilisées pour la sélection de variables et l'étalonnage du modèle. Les méthodes FFNN et SVM n'exigent pas explicitement Abstract:

  Cependant ces nouvelles architectures demandent plus d'efforts pour être industrialisées. L'augmentation de la complexité et du temps de développement requièrent de plus gros investissements financier. De fait il existe un besoin réel d'améliorer le développement et l'optimisation des dispositifs. Ce travail donne quelques pistes dans le but d'atteindre ces objectifs. L'idée, pour répondre au problème, est de réduire le nombre d'essai nécessaire pour trouver le processus de fabrication optimal. Le processus optimal est celui qui conduit à un dispositif dont les performances et leur dispersion atteignent les objectifs prédéfinis. L'idée développée dans cette thèse est de combiner l'outil TCAD et les modèles compacts dans le but de construire et calibrer ce que l'on appelle un PCM (Process Compact Model). Un PCM est un modèle analytique qui établit les liens entre les paramètres process et électriques du MOSFET. Il tire à la fois les bénéfices de la TCAD (puisqu'il relie directement les paramètres process aux paramètres électriques) et du modèle compact (puisque le modèle est analytique et donc rapide à calculer). Un PCM suffisamment prédictif et robuste peut être utilisé pour optimiser les performances et la variabilité globale du transistor grâce à un algorithme d'optimisation approprié. Cette approche est différente des méthodes de développement classiques qui font largement appel à l'expertise scientifique et à des essais successifs dans le but d'améliorer le dispositif. En effet cette approche apporte un cadre mathématique déterministe et robuste au problème. Le concept a été développé, testé et appliqué aux transistors 28 et 14 nm FD-SOI ainsi qu'aux simulations TCAD. Les résultats sont exposés ainsi que les recommandations nécessaires pour implémenter la technique à échelle industrielle. Certaines perspectives et applications sont de même suggérées.

Appendices : Nonlinear optimization Matlab code excerpt Appendix A

The following code has been used for linear model parameter extraction.

function guessopt = FitIdlin(Idlin,Vg,guess,L,MSshot,Vdlin,thetaswitch,u,v,Maxit,Tol,model) %Idlin is the linear drain current %Idsat is the saturation drain current %Vg is the list of linear gate voltages %L is the list of gate length %MSshot is the number of starting point used to find the global minima (in the %context of multi-start problem solver algorithm) %Vdlin is the linear drain current %thetaswitch is a parameter that enable switching between a model with either no %theta, theta 1 only theta 2 only or both theta 1 and theta2. %u is the lower boundaries for model parameter to be extracted %v is the upper boundaries for model parameter to be extracted %Maxit is the maximum number of function evaluation allowed for extraction. %Tol is the minimum variation of objective function and model parameter step size %tolerated. : Résumé en Français Appendix D La vitesse de succession des noeuds technologiques s'est ralentie récemment [START_REF]Transistors CMOS decananometriques à canaux contraints sur silicium massif ou sur SOI. Fabrication, caracterisation et etude du transport‖[END_REF] à cause des nouveaux défis technologiques rencontrés. Parmi ces obstacles, on trouve la part croissante de la variabilité du procédé et local stochastique, due à une complexité croissance du processus de fabrication et à la miniaturisation, en plus de la difficulté à réduire la longueur du canal. Certains de ces obstacles requièrent l'adoption de nouvelles architectures, différente de celle traditionnelle (Bulk). Cependant, ces nouvelles architectures requièrent de plus lourds investissements pour être industrialisées. L'augmentation de la complexité et du temps de développement induit une augmentation des investissements financiers. Bien que le marché du semi-conducteur soit large et que les ventes augmentent continument, comme montré dans la, la croissance de l'industrie donne des tendances moins convaincantes, fortement dépendantes de la conjecture économique [194]. Par conséquent, les marges d'investissement diminuent et le secteur de la R&D (qui requière de larges financements avec une durée de rentabilisation de l'investissement long) devra faire face à ce problème. Une étude récente a demandé aux chefs d'entreprise du secteur du semi-conducteur du monde entier, quel sera le plus gros problème auquel l'industrie devra faire face pendant les 3 prochaines années. La première réponse est l'augmentation des coûts de R&D, suivit des ruptures technologiques puis le prix élevé des nouvelles installations et équipements [198]. De fait il y a un réel besoin d'améliorer le développement et l'optimisation de la fabrication des dispositifs. Ce travail donne quelques pistes pour atteindre ce but. Dans le but de développer et optimiser un dispositif, les ingénieurs font largement appel à des essais successifs et à l'expertise scientifique. Cette approche est apparu être la plus efficace et fiable jusqu'à maintenant. Cependant, avec l'accroissement de la complexité des nouvelles architectures et de la variabilité stochastique, cette approche demande de plus en plus d'essais, accroissant dramatiquement le coût de développement. Dans le but de résoudre ce problème, l'idée est de minimiser le nombre d'essais nécessaire pour obtenir le du processus de fabrication optimal. Le du processus de fabrication optimal est celui qui permet d'obtenir le dispositif dont les performances électriques et leur dispersion atteignent les objectifs prédéterminés.

Un moyen de trouver le du procédé optimal, sans faire appel à de nombreux essaies sur silicium, est d'utiliser des modèles compacts couplé à l'outil de simulation TCAD. En effet, un model précis et rapide à calculer qui établit les relations entre les paramètres du procédé et électrique peut être utilisé en entré d'un algorithme d'optimisation qui, à son tour, peut trouver un du procédé optimal. L'outil TCAD fait appel à une calibration physique précise et fiable. Cependant les simulations sont longues (de l'ordre de quelques heures). Dans la mesure où la plupart des algorithmes de simulation requièrent un grand nombre d'évaluations (plus de 1000), faire uniquement appel à la TCAD ne pourra pas donner de résultats dans un temps raisonnable. De plus, la calibration d'une simulation TCA est une tâche difficile qui requière de larges études physiques. Au contraire, les modèles compacts (comme