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THÈSE / UNIVERSITÉ DE RENNES 1
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Abstract

While the consumption of digital media exploded in the last decade, consequent
improvements happened in the area of medical imaging, leading to a better
understanding of vision mechanisms. More than ever, making aesthetic pictures
quickly - with or without artistic expertise - is a research topic. Different axis
of investigations remain possible: high resolution, high dynamic range or wide
color gamut. Additionally to these objective image properties, more perceptual
and artistic insights could be of benefit to any user manipulating pictures.

In such context, this thesis deals with the topic of Color Harmony . The
literature related to this topic is limited, but involves many different scientific
areas: color science, image processing, psychology, biology and so on. The valid-
ity of collected data is questionable due to their limitation to two- or three-colors
patches. The models extrapolated from these data remain non-exploitable on
natural pictures. Other models depicting rules or areas on color wheel lack sci-
entific guidelines for their utilization. Nonetheless, some algorithms employing
color harmony theory and models as a core concept showed up in the literature,
but suffered from being quantitatively tested and validated. This is typically
due to the deficiency of available ground truth.

In this thesis, two views are put in perspective in order to respond to the
previous statements: an experimental and a computational approaches. The
conducted experiment allowed observing some effects with an eye-tracking pro-
tocol, never applied before with a task on color harmony assessment. From
the collected data of our experimental work, we designed a method to gener-
ate a ground truth, which would serve to the validation of the two proposed
computational methods.

First, we improved an existing architecture for automatic color harmoniza-
tion and demonstrated exhaustively the benefit of our approach. As a second
computational contribution, a novel quality metric is introduced that integrates
the concepts of visual masking and color harmony. Thus, we may predict which
areas would be perceived harmonious regarding its neighborhood and then the
potential masking effects. As a last contribution, two editing tools made ac-
cessible the color harmony theory through a hidden formulation of it and a
user-friendly and intuitive interface.
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Résumé en Français

Contexte et Motivation

La couleur est un élément dominant de la vision humaine. Excluant la pathologie
liée au daltonisme, la plupart des êtres humains - grâce à leur système visuel
- sont capables de décoder et analyser leur environnement en interprétant les
couleurs et leurs nuances. Ainsi, depuis le plus jeune âge, la connaissance des
différentes couleurs composant notre ecosystème est transférée et la conscience
d’un monde coloré est acquise.

En même temps que les premiers philosophes grecs commencèrent à se ques-
tionner sur leur environnement et ses fonctionnalités, l’association des couleurs
et leur signification sont devenus un sujet majeur. Parce qu’il est intimement
lié au domaine artistique, différentes communautés ont étudié l’association des
couleurs, plus tard dénommée l’Harmonie des couleurs. Ainsi, des physi-
ciens, peintres, designers, publicitaires, psychologues etc montrèrent un intérêt
à la compréhension de l’harmonie des couleurs.

En 1704, Isaac Newton mis en évidence les propriétés circulaires des différentes
longueurs d’onde et proposa un aménagemennt des couleurs sous forme de roue
[181]. Consécutif à cette découverte, plusieurs personnages influents définirent
leur propre roue des couleurs qui amenèrent à une caractérisation, parfois dif-
férente, de ce que sont les meilleurs combinaisons ou associations de couleurs
[52, 177, 110, 26, 94]. C’est le début de la conceptualisation de l’harmonie des
couleurs. Alors que le rôle et l’influence des artistes restèrent prépondérants
aux 18e et 19e siècle, ce sujet fût soutenu plutôt par la communauté de color
science au 20e siècle [267].

A partir du milieu du 20e siècle, la tendance était de collecter des données
au travers de questionnaires reflettant l’opinion des participants à propos de la
bonne association des couleurs. Ainsi, des protocoles expérimentaux, s’étendant
parfois sur des années [168], ont été mis en oeuvre. Une fois collectées, ces
données ont permis de construire une représentation empirique de l’harmonie
des couleurs, malgré les limites évidentes de ce genre d’approche: diversité cul-
turelle, nombre de stimuli, temps de collecte ou d’expérience... En parallèle,
les techniques d’imagerie médicale se sont améliorées afin de mieux comprendre
les mécanismes du cerveau et plus précisément le comportement du système vi-
suel humain. Cependant, à la fin du 20e siècle, nous étions encore incapables de
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mesurer et d’expliquer la notion d’harmonie des couleurs. Dans le même sens, les
psychologues défendirent la théorie de l’idiosyncrasie rendant le problème beau-
coup plus complexe et indéterminé. Ils insistèrent sur le fait que les différences
culturelles, préférences personnelles, l’époque, l’humeur etc avaient un impact
fort sur le jugement porté à l’harmonie des couleurs [193].

A partir du 21eme siècle, le sujet revint au devant de la scène, de part
l’expansion de nouvelles technologies. Un nouveau genre d’artiste est apparu
dans les communautés de web design, photographie numérique, computer graphic.
En conséquence, ils ont eu besoin d’outils efficaces et faciles à manipuler afin
d’exploiter ces nouvelles opportunités numériques. De plus, internet et les
réseaux sociaux ont facilité le déploiement d’expériences à large échelle dont
les données sont collectées à la fois rapidement et à travers le monde.

Dans ce contexte, nous avons identifié une opportunité de contribuer à ce
monde artistique émergeant en étudiant le thème de l’harmonie des couleurs
sous une nouvelle perspective.

Une approche interdisciplinaire

Nous avons décidé d’aborder ce thème avec une approche interdisciplinaire telle
que cela a été évoqué dans l’historique précédent. Ainsi, cette vue interdis-
ciplinaire a été séparée en deux approches qui vont se rejoindre ensuite: des
algorithmes et modèles numériques ont été conçus et implémentés en prenant
en compte les observations et vérité terrain générés lors de notre approche
expérimentale. Pendant ce travail de recherche, nous avons gardé à l’esprit
les limitations existantes des outils d’édition d’image et proposer ainsi des in-
terfaces et usage qui exploitent nos algorithmes et modèles de façon transparente
pour l’utilisateur.

L’approache expérimentale

Dans cette partie, nous avons choisi de mettre en place deux protocoles distincts,
jamais explorés dans le cadre de l’harmonie des couleurs.

Dans un premier temps, nous avons abordé cette problèmatique expérimentale
localement en questionnant le rôle du système visuel humain. Il semblait
raisonnable de faire l’hypothèse que le système visuel humain est partie prenante
dans l’évaluation de l’harmonie des couleurs. Ainsi, comme l’attention vi-
suelle est principalement mesurée à l’aide d’oculomètre, nous proposons de car-
actériser l’harmonie des couleurs au travers des mouvements oculaires mesurés
avec un protocole faisant intervenir une tâche. En d’autres termes, ce qui at-
tire l’attention va vraissemblablement déterminer ou influencer notre opinion à
propos de la tâche considérée [275, 64, 248, 88].

Après avoir conclus sur les effets évalués à l’aide de mouvements oculaires,
nous exploitons ces données collectées afin de concevoir une base de données qui
servira à l’évaluation des modèles étudiés.
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Dans un second temps, nous examinons le concept d’harmonie des couleurs
globalement. Dans ce but, nous avons mis en place un protocole de type
comparaison par paires, où il était demandé aux participants d’exprimer leur
choix sur l’image la plus harmonieuse lors de la présentation de deux images côte
à côte. Ensuite, toutes ces paires annotées sont classées sur une échelle commune
d’harmonie, permettant ainsi de comparer tous les stimulis entre eux. Suivant
la même méthodologie que dans l’étude locale de l’harmonie des couleurs, ces
données collectées avaient deux objectifs: l’évaluation du facteur d’harmonie des
couleurs (la cohérence entre les annotateurs, le rôle de la distribution couleur des
stimulis...) et la constitution d’une vérité terrain pour l’évaluation des méthodes
proposées.

L’approche algorithmique

La seconde approche développée dans ce mémoire concerne la conception d’algori-
thmes et/ou modèles. Nous avons conçu et développé principalement deux
méthodes différentes dont les contributions se situent à différents niveaux:

1. un algorithme de traitement d’image dont le but est la recolorization au-
tomatique d’images,

2. un modèle perceptuel d’estimation de la qualité d’image;

tous deux basés sur les préceptes d’harmonie des couleurs.
En suivant l’hypothèse que le système visuel humain joue un rôle dans

l’évaluation de l’harmonie des couleurs, un modèle d’attention visuel a été
intégré à dessein dans la première architecture proposée dans l’état-de-l-art [54]
qui harmonise automatiquement les couleurs d’une image. D’autres contribu-
tions algorithmiques, par exemple la fonction de réajustement des couleurs,
la segmentation des zones homogènes, la fonction de coût pour le choix du
modèle d’harmonie, ont permis d’améliorer significativement les résultats de
l’état-de-l’art. Afin de démontrer ce gain, nous avons proposé une évaluation
exhaustive des différentes étapes contituant l’architecture de cet algorithme. En
plus de cela, nous avons démontré objectivement en utilisant le classement de
l’expérience paire-à-paire le bénéfice de notre méthode.

La deuxième contribution algorithmique est une métrique de qualité per-
ceptuelle prenant en compte les préceptes d’harmonie des couleurs. D’après
notre étude de l’état-de-l’art, il n’y a pas eu de tentatives antérieures à l’élabora-
tion d’une telle métrique incluant le concept d’harmonie des couleurs dans
des architectures imitant le système visuel humain. Nous avons proposé une
évaluation préliminaire de cette métrique en nous appuyant sur des cartes créées
à partir des données oculaires collectées lors de nos expériences.

En résumé, ces deux contributions algorithmiques visent à ingérer des no-
tions de perception visuelle dans les théories existantes d’harmonie des couleurs.
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Application dans des outils d’édition

Les contributions proposées ne se limitent pas à une étude expérimentale et
des méthodes algorithmiques. Un effort supplémentaire a été apporté afin
d’offrir un cadre applicatif concret à ces algorithmes. Ainsi, ils ont été mis
en oeuvre dans un contexte d’édition d’image. L’idée sous-jacente de ces outils
d’édition est que ceux-ci bénéficient à tout utilisateur, quelque soit son exper-
tise en traitement d’image, en harmonie des couleurs et son sens artistique.
Plus généralement, nous souhaitons rendre accessible les théories et règles sur
l’harmonie des couleurs à travers des interfaces intuitives et simples.

Dans cet esprit, deux outils d’édition sont décrits: le premier simplifie et
guide l’utilisateur lors d’une tâche de retouche des couleurs par zone homogène;
le second propose de biaiser ou influencer le traitement d’harmonisation automa-
tique des couleurs à partir d’une base de données définies par l’utilisateur. Le
premier outil affiche les cartes perceptuelles des zones les moins harmonieuses de
l’image, ce qui permet à l’utilisateur de retoucher en conséquence la zone con-
sidérée à l’aide de la palette de couleurs proposée (garantissant une amélioration
de l’harmonie globale). Le deuxième outil bénéficie des améliorations que nous
avons apportées à l’algorithme d’harmonisation des couleurs et permet à l’utilisa-
teur d’homogénéiser le look de toutes ses images tout en garantissant l’harmonie
de son image.

Résultats et conclusion

A partir des expériences menées sur l’harmonie des couleurs, plusieurs hy-
pothèses sont validées.

L’utilisation d’un protocole de tâche avec un oculomètre pour mesurer l’har-
monie des couleurs a conduit à une cohérence inter-observateur acceptable (con-
firmée par plusieurs métriques).

Il y a une influence non négligeable de la distribution couleur pour l’évaluation
de l’harmonie. Les images avec une large variété de couleurs se situent au bas
de l’échelle d’harmonie. Plutôt que la diversité (nombre de teintes différentes
présentes), l’agencement et l’aggregation spatiale dans l’image semblent être le
facteur influant.

Les données collectées à l’aide de l’expérience d’eye-tracking (à savoir les
mouvements oculaires sur les images et ceux sur la roue des teintes) nous ont
permis de créer une vérité terrain, c’est-à-dire des cartes avec les zones non-
harmonieuses.

Nous concluons que le concept d’harmonie des couleurs est bien compris par
les observateurs et homogène entre les utilisateurs. Ainsi, nous sommes conva-
incus que le concept est assez universel pour envisager la conception de modèles
numériques qui pourront prédire, jusqu’à un certain degré, un comportement
humain moyen.

Dans la partie analytique, un algorithme d’harmonisation automatique des
couleurs, a été développé et validé. S’appuyant sur le travail de Cohen-Or et
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al. [54], cette méthode propose trois contributions principales dont le but est de
réduire les distortions, d’obtenir un résultat visuellement cohérent et de favoriser
la fidélité au contenu original.

Premièrement, une fonction de coût mesurant la distance statistique en-
tre l’histogramme des teintes et tous les templates d’harmonie possibles a été
changé et utilisé conjointement avec l’information de saillance dans l’image. Par
conséquent, le template d’harmonie finalement sélectionné est mieux appareillé
à la distribution couleur de l’image originale.

Deuxièmement, une nouvelle fonction permet de moins contracter les teintes
lors celles-ci sont réajustées dans les zones dites harmonieuses du template.
Ainsi, une plus grande variété de teintes est préservée comparé à l’utilisation de
la fonction originale.

Troisièmement, l’algorithme de segmentation couleur que nous utilisons per-
met de générer une segmentation fine des zones avec de nombreux modes, ne
nécessitant pas de paramétrage adhoc à l’image considérée.

Egalement dans ce chapitre de la thèse, nous avons tenté de convaincre
que cet algorithme obtient de bonnes performances en investiguant différentes
pistes de validation. Nous avons fourni des résultats qualitatifs qui permettent
de visuellement apprécier l’apport de chaque étape de l’algorithme et de traiter
des cas particuliers. Cela nous a permis de résoudre les problèmes levés lors
de l’exposition des limitations de ce genre d’algorithme fournie en début de
chapitre. Une contribution majeure dans l’évaluation de ce genre d’algorithme
réside dans l’introduction du protocole d’annotation par paires. En effet, nous
avons démontré que les images harmonisées avec notre algorithme étaient objec-
tivement annotées plus harmonieuses que leur version originale sur une échelle
commune d’harmonie (19 sur 23 stimuli).

Dans un autre chapitre de la partie algorithmique, une métrique de qualité
perceptuelle guidée par l’harmonie a été conçue et proposée comme une nouvelle
caractéristique ou propriété pour évaluer la qualité des images. Elle s’appuye
à la fois sur les effets connus de masquage perceptuel qui sont des propriétés
importantes du système visuel humain et sur les templates d’harmonie couleur.
L’intégration de ces deux concepts permet de générer, en sortie du modèle, une
carte perceptuelle de zones non harmonieuses et un score associé par image. Les
résultats qualitatifs montrent que les cartes d’harmonie reflètent la perception
des utilisateurs. En effet, l’impact de certaines zones initialement annotées non
harmonieuses est minimisé par la métrique lorsque l’on en prend en compte
les effets de masquage de l’oeil humain. L’analyse quantitative a révélé une
corrélation significative entre les sorties de ce modèle et deux vérité terrain
issues des expériences menées dans l’approche expérimentale.

Finalement, dans la partie algorithmique, nous avons introduit deux outils
d’édition d’image. Ceux-ci ont rendu accessible aux utilisateurs la théorie et les
règles d’harmonie des couleurs au travers d’une formulation intuitive et cachée
de ce concept, tout en laissant une part importante de choix et de créativité à
l’utilisateur.

Ceci nous permet d’examiner le concept d’harmonie des couleurs au travers
d’un champ de recherche large: de l’expérimental vers des outils applicatifs.
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chemin de la thèse en formation continue (ou VAE) a heureusement une fin et
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participer à mon jury, Messieurs Patrick Le Callet, Frederic Devinck et Madame
Luce Morin.

Je salue aussi l’encadrement d’Olivier Le Meur, mon directeur de thèse.
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donner un vrai tournant et du souffle à ta carrière. Cette peine et cet effort, je
les ai vus, enregistrés et reproduits d’une certaine façon. Ce fut le moteur de ce
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Chapter 1

General Introduction

This thesis deals with the concept of Color Harmony . What a satisfying
feeling to choose after several years the exploration of such an elegant notion.

Color is my day-long obsession, joy and torment.

Claude Monet

1.1 Context and Problem

Color is a dominant feature of human vision. Apart from the well-studied case of
color blindness, most humans - thanks to their visual system - are able to decode
and analyze their surrounding environment by interpreting the colors and its
nuances. While some vegetables or animals develop camouflage properties to
hide from other predators, humans are instinctively sensitive to color contrasts
[238]. From the earliest days, the knowledge of the different colors composing
our surrounding is transferred to virgin minds and the awareness of a colored
world is acquired. For example, it is remarkably common that the adjectives
related to colors are present in the first hundred words pronounced by a child
[271].

Since the first Greek philosophers started to question their human environ-
ment and its functions, color association and their connotative meaning be-
came a major topic. Since it relates to the aesthetic and art domains, many
fields investigated the study of color association, being later referenced as Color
Harmony. Hence, physicians, painters, chemists, color theorists/scientists, de-
signers, advertisers and so on showed an interest in the understanding of color
harmony.

In 1704, Isaac Newton highlighted the circular properties of wavelengths
and proposed the wheel arrangement of colors [181]. Following such precursory
work, many key figures designed their own color wheels, leading to different
characterization of what are the best color combinations or associations [52,
177, 110, 26, 94]. This formed the beginning of the conceptualization of color

1



harmony. While the role and influence of artists remain fundamental in the
18th and 19th centuries, this topic was more supported by the color science
community in the 20th century [267].

From the middle of the 20th century, the trend was to collect data through
questionnaires about users’ opinion on the right color associations. Thus, exper-
imental protocols, sometimes lasting years [168], were set up and the collected
data built an empirical representation of color harmony, despite the potential
limitations of such approach (cultural diversity, number of stimuli, processing
time and so on). In the meantime, medical imaging improved to better un-
derstand the brain mechanisms and more precisely the behavior of the human
visual system. However, at the end of the 20th century, we were still far away
from measuring and explaining the notion of color harmony. Moreover, psychol-
ogists strongly supported the theory that cultural differences, preferences, time,
mood and other factors had a clear impact on color harmony assessment [193].
They argue that such concept should be carefully measured while controlling
the preceding factors.

Since the beginning of the 21st century, the cause regain attention, due to the
expansion of new computer-aided technology. New kind of artists appeared in
the digital world of web design, photography, computer graphics and so on. As a
matter of fact, they needed efficient and user-friendly tools to exploit the digital
opportunities. In addition, the internet and social networks made possible large
scale experiments with data collected quickly and from many places. Digital
consumption is now becoming a mass market. Consequently, the production of
digital media aims at charming as many people as possible or at least a specific
community, identified by its age, culture or taste.

In such a context, we identified an opportunity to contribute to this emerging
artistic world by reviving the topic of color harmony from a new perspective.

1.2 An Interdisciplinary Approach

Following the exposed legacy of color harmony approaches, we also come up to
this topic with a cross-disciplinary view. We tackle the topic by proposing an
experimental approach, as well as building computational models which bene-
fit from experimentally collected data. Along this research, we keep in mind
potential limitations of the current editing tools and propose new user-friendly
usage of such tools.

Experimental approach

Following an experimental approach, we choose to set up two distinct protocols
which were unexplored to measure the factor of Color Harmony.

First, we take up this experimental problem by involving visual attention
mechanisms. Despite the fact that other senses may contribute to the evaluation
of Harmony, we focused on the vision since color is processed at a very early
stage in the brain (already along the retina) [97]. As developed later in the
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manuscript, Color Harmony is often described as a subtle equilibrium, a balance,
a visual interest or even a correct order... These terms may be linked to the
vision field. Thus, we found reasonable to assume the human visual system
being stakeholder in the evaluation of color harmony.

Since visual attention is mainly measured by eye-trackers, we propose to
characterize color harmony by means of eye movements information measured
with a task protocol. In simple words, what catches your attention is likely to
determine or influence your opinion about the considered task [275, 64, 248, 88].
However, we are aware that this is not enough to characterize completely a
complex notion (so-called factor) as Color Harmony.

After concluding on the effects evaluated on the eye movements, we take
advantage of the collected data to design a new dataset used to evaluate our
computational models.

Second, we investigate globally Color Harmony, after exploring the local
aspect of eye fixations. To do so, we set up a pairwise protocol, where partic-
ipants were asked to express their opinion about the most harmonious picture
over the two presented stimuli. Subsequently, all pair annotations were numer-
ically ranked on a harmony scale. All involved stimuli could then be compared
with each other. Once again, the collected data serve two purposes: they are
employed to evaluate the factor of color harmony (the inter-rater consistency,
the color distribution role...) and provide a ground truth for the benchmark of
designed methods.

Computational approach

The second perspective, developed in this thesis, deals with the design of a
computational model and a harmonization algorithm. We mainly investigate
two different methods with some contributions positioned at different levels: an
image processing algorithm for automatic color harmonization and a model for
perceptual quality assessment. Those two will be referred to models or methods
indistinctly.

Following the assumption that visual attention plays a role in the assessment
of color harmony, we revisit a state-of-the-art architecture which automatically
harmonizes the colors of any picture by ingesting a visual attention model,
among other contributions. We undertake an exhaustive assessment of the dif-
ferent steps of our method. In addition, we demonstrate objectively with the
pairwise protocol the benefit of automatically harmonizing the pictures following
such method.

In the second proposed method, we design an innovative quality metric in-
volving the harmony precept. As far as we know, this is the first attempt at
merging such concepts. We propose a preliminary validation of this metric by
relying on the ground truth maps, designed from the eye movement data.

In a nutshell, these contributions aim at integrating visual perception into
existing theory of color harmony.

3



Application and Use case

On top of these experimental and computational contributions, a supplemental
effort has tead us to create a concrete framework that would benefit any user,
whatever his/her expertise in image, color and artistic manipulation. The idea
behind this approach is to make the theory and rules of color harmony more
accessible through intuitive and user-friendly interface.

In such a context, two editing tools were created: the first simplifies and
guides the user whilst retouching step-by-step the color areas of a picture, the
second proposes to bias or influence the color harmonization processing using
other user’s pictures. In the first tool, we display the computed harmony quality
map as a guidance for disharmonious areas. The second tool benefits from the
improvement we brought in the color harmonization process.

From artistic and expert to naive users which experienced and discussed
the computational methods, we observe a common feeling about such research:
the same frustration of not integrating a personal taste or touch. Hence, these
editing tools also address the need to take into account creative intent.

1.3 Organization and Contributions

As a guideline for the reader, the remaining of this thesis is structured into three
parts:

Part I: Literature Review.

Chapter 2 draws a picture of the main principles and mechanisms of visual at-
tention. In addition, it also depicts the architecture of the visual attention
model employed in the following contributions.

Chapter 3 depicts the main concept, material, data, protocols and metrics
which are involved in eye-tracking.

Chapter 4 starts with an introduction to Color Harmony, its origin and defini-
tions. Then, the theories and models, coming from the color science com-
munity, are described deeply, as they are referenced exhaustively through-
out this thesis. The chapter keeps developing in another section their
different use and implementation in the context of image processing.

Chapter 5 discusses the approaches presented in the literature. Also, it depicts
the different issues and limitations of previous work.

Part II: Experimental Approach: attention, color and harmony.

Chapter 6 introduces the experimental approach. At the end, the hypothesis
and expected conclusions regarding the experimental part are formulated.
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Chapter 7 describes the first experiment which is a preamble to the central
topic of color harmony developed in the next chapter. It studies the color
factor with eye fixations, recorded on color stimuli and their grayscale
counterpart. In addition, the prediction of two visual attention models
and their performances regarding these two conditions are provided.

Chapter 8 investigates the concept of Color Harmony by means of eye fixation
recording. More precisely, we present the gaze data statistics by propos-
ing a qualitative and quantitative dataset analysis, some statistics on eye
fixations and an analysis of the inter-observer agreement. As a second
contribution, we carefully select the involved stimuli in order to study the
behavior of specific color distributions.

Chapter 9 proposes to exploit pragmatically the collected data from the pre-
vious chapter. We aims at creating a dataset by post-processing these
previously and experimentally collected fixation data. Such dataset serves
to the validation of computational methods developed in the part III of
the manuscript.

Chapter 10 discusses the different findings of the three preceding chapters.
The different hypothesis formulated in Introduction (Chapter 6) are chal-
lenged to conclude on their validity.

Part III: Models and Applications.

Chapter 11 explains our approach by depicting the computational perspec-
tive, such as done for the experimental part. Then, it draws a picture of
the existing algorithms and finally describes the formulation used along
the three remaining chapters.

Chapter 12 describes the design and implementation of a computational method
for Color Harmonization. It brings two main contributions. First, it im-
proves the visual rendering of such method, by introducing mainly the use
of a visual attention model. Second, it proposes both a detailed evaluation
of the different steps of the method and a global evaluation of the gain
brought by harmonizing a picture.

Chapter 13 proposes a new approach for assessing what the quality of a pic-
ture is. The proposed computational method relies on perceptual masking
and color harmony models to output a no-reference perceptual harmony-
guided quality map as well as a score of disharmony. An evaluation is
proposed by means of collected data from Chapter 8.

Chapter 14 concludes the computational contributions of this thesis with two
tools that directly implement the previously proposed computational meth-
ods. These latter aim at guiding the end user and introduce some inter-
activity in a task of image editing.
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Chapter 15 concludes and summarizes the contributions of this thesis. It
explores directions for future work.

1.4 Beyond the scene

In order to complete the introduction of this thesis, we would like to establish
the context in which it took place. Even though this thesis focus on the topic
of Color Harmony through a visual attention perspective, it takes advantage of
the expertise I built for several years on different topics, related to Perception.

I started working on visual attention models aiming at measuring [48], im-
proving performances of prediction on 2D content [45, 23] and simplifying the
biological architecture [256] to ensure real-time industrial application [48, 44].
Then, I studied also the modeling and potential application of visual attention
models for stereoscopic content [47]. In such context, I developed an expertise
and a real taste for experimental protocols, always performing both the experi-
ments and algorithms in accordance. I attempted to apply this philosophy when
I addressed the topic of Color Harmony in this thesis.

Afterward, I got interested in the prediction of induced emotion through the
supervision of a phd student around this topic. Once again, the experimen-
tal approach serves the computational work and each component was equally
balanced and developed by the student in his thesis [18, 22, 20, 21, 19, 151].

Then, I also worked on image processing algorithms, more precisely color
mapping [76], such as:

• Inverse Tone Mapping of legacy content to produce High Dynamic Range
video content [212, 221, 222],

• Colorization of black and white pictures from a reference picture [135],

I am currently investigating new promising and difficult ways about percep-
tual model. Through a large campaign of different experiments, we attempt to
characterize the concept of interestingness. What makes an image interesting?
We define the notions of intra- and inter-interestingness to study more precisely
the local and global aspects of such concept. Our first experimental conclusions
[46] conduct us to model such concept for an average observer in upcoming
publications.

In such rich context of experiments and algorithms, I developed the topic of
Color Harmony while relying on my expertise in visual attention.
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Literature Review
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Chapter 2

Visual Attention

This chapter reviews the main principles of visual attention. We have not the
ambition to develop an exhaustive explanation of the literature, but we prefer
focusing on key mechanisms that are the foundations of visual attention. The
mentioned principles are a preamble to the visual attention modeling which
contributes to two proposed computational methods (Chapter 12 and 13).

2.1 Introduction

The surrounding world is evolving exponentially in terms of technology. While
the breakthrough related to the color introduction in television standard dates
back to 1960, in fifteen years many new revolutions, related to screens, devices,
portability, content, accessibility, have changed our consumption habits. This
is not untypical to observe either a person watching several screens at a time
or another one reading the news or playing a game while walking in the street.
The cognitive activity involved in daily digital consumption is getting more and
more important. Thus, we can easily imagine that the brain, the cells, the
mechanisms involved in such daily “fight” are evolving and adapting to survive.

The visual attention is challenged every day by an environment more and more
complex and a bigger offer for digital entertainment. The competition seems
unequal and the visual attention system has no other choice that being selec-
tive. Also, no doubt the visual attention is also influenced by other modalities
that only visual stimuli: the audio signal obviously plays a role in attentional
mechanisms that can not be neglected [29, 80], also internal human status or
mood as well as other senses (smell, touch, taste) are relevant [258]. The human
is full of specialized sensory receptors that transmit to the brain the sensation
of the environment. Those are influencing our perception and our attention.
In this Chapter, we will not tackle the broad and complex topic of sensation
and perception. Only the field of attention related to the visual modality is
investigated and discussed.
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By essence, the attention word sounds as the discrimination of contrasted phe-
nomena. The stimuli is partially treated by the brain that pre-processed the
most relevant features, activity or meaning to be used for the global context
understanding. The visual attention suggests the analysis of the perceived en-
vironment with or without the instruction of a specific task. Despite the main
involvement of psychologists for promoting visual attention (Section 3.5), there
is an intensive research activity where different communities has brought some
considerable contributions:

• biology: identification and role of cells (Section 2.2.2),

• neuroscience: sophisticated neuroimaging technology for measuring stim-
uli impact and identifying involved parts of the brain (Section 2.2),

• physic and optic: for providing apparatus such as eye-tracking that mea-
sure eye movements (Chapter 3),

• signal processing: for having proposed and implemented modeling of visual
attention (Section 2.3).

The scientific work on visual attention exploded from the 1980’s consistently
with the maturity and accuracy of measurement apparatus. The advances in
functional magnetic resonance imaging (fMRI), event-related potentials (ERP)
and magnetoencephalography (MEG) lead to significant breakthroughs in the
characterization of visual attention. In addition, the progress made in the ac-
curacy and reliability of the eye-tracking apparatus also contributed largely to
the understanding of visual attention deployment by studying eye movements.
Another factor favored the expansion of the research in this field: the compu-
tational modeling takes advantage of biologically-plausible brain mechanisms.
Indeed, the findings of neuroscience experiments have been purposely reused for
building biological-inspired models [42].

Many remarkable psychologists participated early to the coming of visual at-
tention theory. While William James (1842-1910) promoted the voluntary and
active features of visual attention controlled by a purpose [118], earlier Hermann
Von Helmholtz (1821-1894) rather believed in a fine and detailed observation of
objects or a precise area [97]. Both psychologists laid the foundations of con-
temporary modeling of visual attention.

Following this introduction, we introduce the main principles of visual attention
(Section 2.2) where we develop the main concepts (Section 2.2.1), the biological
concepts (Section 2.2.2), the color vision theory (Section 2.2.3) and the process-
ing inferred in the brain (Section 2.2.4). Thus, in a section dedicated to visual
attention modeling (Section 2.3), we describe the different approaches (Section
2.3.1) then we focus on cognitive models (Section 2.3.2) and finally we depict
a simplified model (Section 2.3.3) which is later used in the contributions of
this thesis. The last section summarizes the different notions presented in this
chapter (Section 2.4).
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2.2 Mechanisms of Visual Attention

2.2.1 Main concepts

The field of visual attention received a lot of attention and substantial efforts
have been made the last decades by the researchers of different communities to
understand and characterize its mechanisms. However, there is no consensus on
how visual attention works precisely. Despite that, we are introducing the most
commonly adopted principles related to visual attention.

First, the visual attention is selective. This is clearly due to the limited ca-
pacities of the human cells to process complex stimuli and information. The
visual attention selection consist of two stages: a pre-attentive and an attentive
processing [257]. Both stages are considered independent from each other and
have a different role. The pre-attentive stage has unlimited capacity and oper-
ates simultaneously or in parallel in the visual field. On contrary, the attentive
processing with limited capacity focus on one item for a better inspection of its
features. More specifically, we can say that the pre-attentive stage detects low-
level features or characteristics of the scene (such as color, edges, orientation,
motion...), that are integrated afterward in the attentive stage for a complete
understanding and awareness of the scene. Such concept referred to the Fea-
ture Integration Theory (FIT) developed in 1980 by Anne Treisman [254] and
will play a fundamental role in the computational modeling of visual attention
(Section 2.3).

In the literature, the spatial aspect of attention is also often discussed. Two
well-known models, conceptually similar, evoke a delimited spatial region where
the processing is located. The spotlight model of Posner et al. [210] describes
three areas: the focus, the fringe and the margin (Figure 2.1). Typically, in the
focus area the processing is performed at a high resolution, while in the fringe
section less receptors are involved leading to a low resolution analysis. Beyond
the margin area, the processing is not engaged. The zoom lens model from
Eriksen and Yeh [73] also relies on the same metaphor and spatial organization
(focus, fringe and margin). Their new contribution deals with the adaptation of
the region size or radius. Following the idea of a camera and having the atten-
tional resources fixed, the size of the focus area directly influences the quality
of the processing (meaning the resolution available for analysis). Then, if the
focus radius is large, the processing is likely to be less efficient. This theory has
to be linked with the notion of fixation measured by eye-tracker and discussed
in Chapter 3.

The concept of overt versus covert visual attention has to be specified, es-
pecially because eye movements data are manipulated along this manuscript.
Covert visual attention does not involve eye movements. Typically, the subject
focus on one area and monitors the surroundings in order to search for an object,
to guide its movement in space [207]. Once the covert visual attention has ful-
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Figure 2.1: Spatial representation of attention by Posner [210]. Three spatial areas are identified:
focus (high resolution), fringe (low resolution) and margin (not visible).

filled its function, it engages the eye movements in the scanning of a particular
target, this is the overt visual attention [74, 211]. This latter is characterized by
the different varieties of eye movements (fixations, saccades, smooth pursuit)
[41] and remains the center of this manuscript. A set of fixations (area which
is fixated) and saccades (amplitude of displacement between two fixations) cre-
ates a scanpath [188]. Note that these notions are discussed and illustrated in
Chapter 3.

Pioneer work of Yarbus [275] is well-known from the community: he showed the
evidence of task-related scanpaths for identical stimuli. Even if the experiment
condition as well as the conclusion have been recently revisited [64, 248, 88],
he introduced the notion of task dependency later investigated under different
conditions. From these observations, visual attention can be categorized once
again. Bottom-up (or exogenous) attention is assimilated to a reflex, an invol-
untary and unconscious movement. Usually, it is a very fast phenomena not
motivated by a task. At the opposite, the top-down (or endogenous) attention
is deployed voluntary and consciously. It is a slow action originally following a
dedicated task.

There are other categories of visual attention depicting other conditions,
environment (e.g. multi-tasks), stimuli (e.g. aesthetic pictures) or processing in
the brain (e.g. memory). However, we will not discussed these different notions
which are not related to the proposed work.

2.2.2 Biological concepts

Along the wide electromagnetic spectrum, only few wavelengths are perceptible
and translatable by the eye. These visible wavelengths are the light and the
colors as we may described them; they are spread only from 380 to 760 nanome-
ters (10−9), while at the boundary, gamma rays are around 1.10−14 and long
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waves around 1.104 meters. This short visible band is only what the specialized
receptor cells in our eye are capable to transform into a neural signal into the
brain.

At this stage, it is interesting to make the link between the physical signal
and color science. As mentioned previously, different values of wavelength de-
pict a perceived color or a hue, e.g. a wavelength around 430-460 nm is a blue
light. The amplitude of this wavelength represents the brightness, high wave
amplitude means a brighter color. Also, the noise or the interference in the
waveform shows the color purity, or its saturation. Hue, saturation and bright-
ness are directly linked to the visible spectrum of wavelengths.

The eye demonstrates some properties due to its physiological organization.
We do not detail the complete structure of the eye, since all elements are not
participating to the visual attention. However, it is interesting to focus and
notice the key role of the retina and fovea. The retina, located at the back of
the eye, is a multilayer surface that records the wavelengths entering through
the pupil. Such energy is stored and transformed on the retina into a neural
signal or response for immediate processing in the brain. By means of the mil-
lions of photoreceptors constituting its surface, the retina is able to achieve this
fundamental task.

The rods and cones are the two kinds of photoreceptors that are processing
the input wavelengths. They have complementary properties and sensitivity to
the signal. Coarsely, rods are specialized to process light and respond to low
illumination while cones are rather dedicated to color vision and respond to high
illumination. A small area, named fovea, on the retina plays a key role for the
vision. This is the place where the vision is the best and which enclose only
the cones. The rods are spread all along the retina except on the fovea (Figure
2.2). Once the transduction step has been performed by the two specialized
photoreceptors, the produced signal is transmitted to the bipolar cells and after
to the ganglion cells through the optic nerve which carries it to the brain.

2.2.3 Color vision

As mentioned in section 2.2.2, the specialized photoreceptors named cones are
in charge of translating the wavelengths into neural information related to color
vision. The explanation about the way they operate has opposed two theories
that reveal to be both valid and complementary: the trichromatic theory and
the opponent-process theory.

Color vision has a long history of psychological experiments to characterize
color perception at the eye level. Originally, the trichromatic theory has been
introduced by Thomas Young in 1802 and refined in 1852 by Hermann von
Helmholtz [97] (already mentioned in section 2.1 for his work on visual atten-
tion). They found out that there exist three classes of cone: red, green and blue.
They experienced the human capability to recreate an unique color wavelength
from three others and derived the conclusion about the existence of three vari-
eties of cones. However, such findings was not strong enough to explain some
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responses of people having color abnormalities. Later in 1892, Hewald Hering
[101] proposed the opponent-process theory that could answer some questions
raised by the trichromatic theory. He believed in four kinds of cone that work
by complementarity (red-green and blue-yellow). Thus, each cone is excited by
the color 1 and inhibited by the color 2, both forming the considered pair.

The community gave support to both theories that turned out to be correct
and complementary. Three varieties of cones - red, green and blue - (trichro-
matic theory) respond to a color difference following a three opponent mecha-
nism (opponent-process theory). Thus, the first kind measures the differences in
the response of the red and green, the second kind measures also the differences
between the blue cones and the sum of the red and green (yellow) cones and the
third kind measures the differences in luminance due to its achromatic nature.

This theory has been naturally translated in the computational models of
visual attention.

2.2.4 Processing the information

Once the light information captured from the eye has been translated into a
neuronal information, the brain role becomes predominant. A dedicated area
for visual processing has been identified at the back of skull, the visual cor-
tex. Through different areas, this latter analyzes some specific characteristics
of the visual information. These visual signal being so rich and complex, the
brain owns specialized cells, areas to decompose the signal characteristics (color,
shape, motion, face and so on). However, such processing cannot be sequen-
tial to consider a fast response and understanding of human. The processing
of information is designed in parallel, with different pathways. The two main
categories of pathways refer to the what and where pathways [231, 85, 169], also
known as the ventral stream and the dorsal stream, respectively. As their name
suggests, the what pathway deals with the stimulus features (e.g shape, color)
and the identity of an object, while the where pathway has more concerns about
the spatial information of an object (e.g motion and depth). This concept is
illustrated in Figure 2.2.
The optic nerve projects the neuronal signal to the dorsal lateral geniculate
nucleus (LGN). Mainly, this area gathers the information coming from each
eye and push them to the visual cortex and more specifically to the primary
visual cortex (also called area V1). The visual cortex is made of six layers,
whose the most well-known and studied is the area V1. This area proceeds as
detecting edge and encoding them in spatial frequencies rather than encoding
the complete received image. This is an efficient and natural compression of
the information. The area V4 has been identified to provide a high attentional
activity [175]. It deals with the following features: orientation, spatial frequen-
cies and form recognition. Additionally, it is suspected to play a key role for
color processing [83]. The cells present in V5 deal with the speed and direction
of moving stimuli. Globally, this is not obvious to split the role of each area
according to the addressed features.
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Figure 2.2: Eye and brain anatomy. what and where pathways in the brain dealing with the
processing of different features

2.3 Models of Visual Attention

2.3.1 Approaches

The computational modeling of visual attention has been widely explored in
the literature. The approaches are almost as vast as the number of techniques
used in image processing. Also, computer graphics, computer vision, machine
learning have brought their contribution in the detection of region-of-interest. A
visual attention model is an algorithm that inputs a visual stimulus, as an image
or a video sequence, and outputs a saliency map (one per frame if considering
a video source). The saliency map concept has been introduced by Koch and
Ullman in the context of their feed-forward model [131]. It describes if a pixel
is conspicuous (visually relevant) with regards to its neighborhood. In other
words, a greyscale map, having values from 0 to 255 (low to high interest) for
each pixel, is estimated. This is the prediction map computationally estimated
by the model. Note that human-made map (with homogeneous dimensions) are
usually created experimentally in order to confront the model to a ground truth
(Section 3.4).

In a complete review, Borji and Itti [30] provided to the community an exhaus-
tive classification and benchmark of the different approaches. They discussed
the prediction quality through an exhaustive list of dataset and the employed
metrics. We can differentiate the models that have a biological architecture
(meaning inspired from the findings of psychologists) from those purely compu-
tational. However, it does not mean that the “non-biological” models perform
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worse than their biological homologue. They are also based on acceptable and
intuitive arguments that statistically are good enough to compete with the sim-
plified or adapted architecture derived from biological concepts.

In [30], different two-by-two comparisons are discussed to compare the dif-
ferent approaches, e.g. the pixel- versus object-based models or the bottom-up
versus top-down approaches. Finally, the authors went for a classification re-
lated to the architecture or methods employed and pointed out eight clusters:
cognitive models, bayesian models, decision theoretic models, pattern classifica-
tion models, spectral analysis models, graphical models, information theoretic
models and a miscellaneous category. In the next section, we will focus on the
cognitive models and more specifically on Le Meur’s model [170, 144].

Despite the different methods used for predicting the salient areas, all are moti-
vated from the same theory already mentioned in section 2.2: the Feature Inte-
gration Theory [254]. In her theory, Anne Treisman distinguised two stages, the
feature search and the conjunction search that also confirm the idea of a preat-
tentive stage and an attentive stage. During the early feature search, the object
characteristics, such as color, shape, orientation and movement are detailed in-
dividually in different areas of the brain (section 2.2.4). In the late conjunction
search, the previous information are combined to make a complete perception of
the considered object through a master map of locations. This latter includes
all locations in which features have been detected. These locations point to the
multiple feature maps.
All visual attention models are based upon this theory, because they usually
proceed in two steps:

• First, they detect, extract image features. These cues may be directly
linked to the FIT: shape, color, orientation, movement...or they may be
more intuitive and high levels: face, scene classification, gist...

• Second, they integrate in a specific manner these features; e.g. either by
combining linearly independent feature maps, by learning from a dataset
and inferring a suitable feature combination or by using probabilistic
model to estimate the likelihood of a feature usability.

In the next section, we are focusing on cognitive models and more particularly
on the architecture of pioneer models that integrates only the visual modality.
However, some work also evaluated the sound influence in eye movements [59]
and introduced the audio modality as a key feature in the modeling of visual
attention [58].

2.3.2 Cognitive models

Itti et al. [113] were pioneer in implementing a complete version of the feed-
forward model designed by Koch and Ullman [131]. Moreover, this first imple-
mentation was made available to the community, then it assured his popularity
for the two following purposes: to benchmark any new implementations and
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to be used as a preprocessing or a core technology in the framework of other
algorithms, e.g. compression [69], retargeting [6], surveillance [215], robotics [8],
virtual agents [112] etc. Since we proposed a saliency-guided method in Chapter
12, we focus here on the cognitive model involved in this contribution.

The saliency model used in this work is a simplified version of Le Meur’s model
[170, 144]. His model followed the Itti’s modeling, but proposed some additional
contributions: a more biological plausible modeling [170] and a temporal mod-
eling of the attention evolution [144].

Figure 2.3: Architecture of the spatio-temporal model of visual attention by Le Meur et al. [144]

Figure 2.3 depicts the Le Meur’s model whose the main steps are:

• Color projection: the input stimulus is an image composed of three color
components. The first step of the model consists in projecting it into a
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color space that best follows the eye behavior. Inspired by the opponent-
process theory (section 2.2.3), the signal is rearranged into the Krauskopf’s
color space (A,Cr1,Cr2) [132]: the A component is the achromatic signal,
Cr1 is the red-green opponent and Cr2 is the red-blue opponent.

• Frequency thresholding: this steps consists in selecting samples visible
by the eye for the three color components. Contrast Sensitivity Functions
(CSF) have been designed by Daly [61] for the luminance and later ex-
tended by Le Callet [141, 142] for chromatic components. By means of
psychophysical experiments, they provide visibility thresholds that report
the eye sensitivity and selectivity to a set of spatial frequencies. Thus,
a perceptual subband decomposition is performed to split the image into
perceptual spatial frequencies. In this case, a Fourier transform decom-
poses the three components into amplitudes as a function of spatial fre-
quencies. Those latter are weighted according to the visibility thresholds:
if the amplitude of the considered spatial frequency is higher than its vis-
ible threshold, these one is perceived by the eye and then amplified by
means of the corresponding CSF.

• Hierarchical decomposition: In order to mimic the organization of the
visual system [232] and to also take into account eye sensitivity with its
neighborhood (called visual masking, see next step), the spatial frequencies
are sorted into spatial radial frequency and orientation. This arrangement
in channels allows simulating the functioning of cortical cells. This is
illustrated with the crowns and subbands in Figure 2.3.

• Visual masking: This processing is complementary to CSF. While CSF
describes the own perception of a spatial frequency independently of the
other one, the concept of visual masking formalizes the perception of a
spatial frequency with respect to its surrounding. A visually rich region
(e.g. the audience during a football match) tends to produce a favorable
ground for high visual masking, while an homogenous and flat region (e.g.
the grass where players are running) is easy to analyse because less infor-
mation must be processed. Several functions of visual masking have been
designed experimentally [61, 265, 141]. Le Meur considered three different
kinds of masking in [144]: intra-channel intra-component masking, inter-
channel intra-component masking and inter-component masking. These
masking refer to the interference of spatial frequencies within a channel,
between channels and between the components. More details may be
found in [170] and in Section 13 where the intra-channel intra-component
masking has been employed.

• Redundant information management: In an effort to optimize the
processing of information, an economical strategy is set up by the visual
system. The center-surround organization of the cortical cell allows se-
lecting relevant regions and removing redundant information. This human
vision concept has been implemented by a difference of gaussian function.
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• Temporal saliency: Following the findings of Itti [111], Le Meur et
al. are interested in motion contrast to measure the temporal saliency.
Rather than a plausible implementation, Le Meur et al. prefer follow the
contrast idea supported also by Itti [111]. Thus, the temporal saliency
prediction is formalized by the motion contrast. In other words, they do
the difference between the local motion and the dominant motion in a
scene. The local motion is a hierarchical block-matching algorithm, that
estimates the motion vectors for each block between two frames. The
dominant motion is the estimation of an affine (6 parameters) model from
all pixels between two frames. At this stage, all early feature maps have
been extracted. Nonetheless, a tricky step for pooling maps is required.

• Fusion or pooling: This step consists in merging all the available maps:
the three spatial maps and the temporal saliency map. This tricky step
is widely discussed in [144], where Le Meur et al. finally proposes to
hierarchically merge the available maps, first the spatial maps and then
the temporal map. They merge the maps two-by-two and derive an intra-
map and inter-map competition to normalize the map and then promote
the saliency peaks (while softening the lowest peaks). We discuss these
fusion aspect through a study of different methods in [45].

2.3.3 Simplified cognitive model

Facing complexity issues, especially for deploying such model in real-time image
processing techniques, we produced a light version of the Le Meur’s model. Note
that fast or real-time visual attention models have been investigated also in the
literature [152, 57]. While maintaining the biological modeling of the original
model architecture, we simplified most of the steps and even removed some of
them. Mainly the computational complexity was related to the different filtering
stages, thus we proposed the following adaptation of the Le Meur’s model, also
detailed in [256] and depicted in Figure 2.4:

Y

9/7 CDF Wavelet 

Transform Center-surround

U

V

Frequencies / 
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Figure 2.4: Architecture of the proposed simplified version of Le Meur’s model
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• Color transform: The YUV 4:2:0 color space replace the Krauskopf’s
color space (A,Cr1,Cr2) [132]. It separates achromatic (Y) and chromatic
(U: green-magenta and V: orange-cyan) perceptual signals, with chromatic
components having half the spatial resolution of the achromatic compo-
nent. This color space has been chosen because it takes the human visual
system into consideration and is commonly used in image and video pro-
cessing, but it remains less biologically plausible than the Krauskopf’s
color space.

• Hierarchical decomposition: A wavelet decomposition is used here as
an approximation of the original Fourier transform. In [185], Ninassi et al.
brought the evidence that a wavelet transform could be a good compromise
to approach frequentially a perceptual subband decomposition at a reduce
computational cost. A 9/7 Cohen-Daubechies-Feauveau (CDF) wavelet
transform is used to separate frequency bands and orientation ranges [12].
The wavelet transform separates frequencies with a bank of filters, i.e. low-
pass and high-pass filters followed by a critical sub-sampling. The resulting
multiscale decomposition consists of oriented contrast maps with limited
frequency range and a low-resolution image. The number of wavelet levels
is defined so that the last decomposition level contains details that can
be captured by the fovea (1.5–2 degrees of visual angle). As explained
later and depicted in Figure 3.3a, the fovea is able to analyze at a high
resolution only a centric area with a radius inferior to 2 degrees of visual
angle. Thus, there is no need to express the spatial frequencies smaller
than this level.

• Redundant information management: In the same vein as Le Meur
et al., a Difference of Gaussian (DoG) modeling the center-surround re-
sponse of visual cells is applied on each oriented contrast map (wavelet
subbands). For each location, the center-surround filter is computed as
the difference between current location and the average of surrounding.
In our implementation, the surround area is a square of 5 x 5 pixels for
each pyramid level.

• Temporal saliency: this step is similar to Le Meur et al.. The mo-
tion contrast is detected by subtracting the dominant motion to the local
(block-based) motion.

• Fusion or pooling: Two fusions are successively applied: subbands cor-
responding to the different levels and the color channels. First, the ori-
entation maps from each level are summed up together. Then, the maps
obtained at each decomposition level are up-sampled using a bilinear fil-
tering and a per-pixel addition is performed for each level to get the final
map.

We can notice that the CSF and visual masking processing have been removed
from this model. This is conceptually annoying. However, the prediction per-
formances of this model are similar to Itti’s model, such as quantified in [256]. A
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large benchmark versus state-of-the-art models is provided in Annexe A. As ex-
pected the performances of the simplified model does not reach state-of-the-art
models, especially the emerging deep learning approaches. However, regarding
the strong simplification performed in this proposed architecture, the compro-
mise between computational complexity and prediction quality is pretty good.
We consider this implementation as a fast and efficient way to produce saliency
map and we have based the contribution of Chapter 12 on this implementation.

2.4 Summary

Visual attention mechanisms have been widely explored, but the field did not
manage to achieve a consensus. Advances in side technologies (eye-tracking,
neuroimaging...) contribute substantially to the exploration of new intuition
and the development of theories (Section 2.1). However, we presented the most
commonly adopted theories: the preattentive and attentive stages of visual at-
tention, the Feature Integration Theory as well as the eye organization and cells
behavior (Section 2.2.1). This is a preamble to the topic of visual attention
modeling.

As a natural extension to the understanding of visual attention mechanisms,
the computational models of visual attention exploded the last decade (Section
2.3.1). Many approaches, biologically-inspired or not, appeared and demon-
strated high prediction of visual attention, formalized by the saliency map. A
complete review of visual attention models may be found in [30]. Focusing on
biologically-inspired or cognitive models, the understanding of human visual
system allows designing plausible architecture. While such models mimic the
information processing from the retina to the visual cortex, the performances
of these models are comparable to the one involving no biological architecture
(machine learning or probabilistic approaches). Specifically, we described the
biological-inspired architecture of the Le Meur’s model (Section 2.3.2) as well
as a simplified implementation we proposed in a strict context with real-time
issue (Section 2.3.3).

There is also a field of investigations that is developed in the next chapter:
the eye-tracking and the creation of ground truth. Obviously, the performances
of visual attention models remain dependent to both the way the human-made
saliency map are designed and the metrics used for comparison. This is discussed
in the Chapter 3.
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Chapter 3

Eye-Tracking

In this chapter, we review the topic of eye-tracking. As mentioned in the pre-
vious chapter, the advances in eye-tracking technology considerably have con-
tributed to the understanding of visual attention. Not only the understanding
of attentional mechanisms benefit from the high sampling rate and the data
(pupil size, micro-saccades amplitudes...) provided by these apparatus. But
also the ability to build up experimental saliency maps as a ground truth from
accurate eye movements data contributes significantly to the development of
visual attention models.

Nowadays, the technology constituting eye-tracking apparatus is mature and
allows proposing a set of commercial solutions addressing different communities.
We can find very accurate material for ophthalmology as well as user-friendly de-
vices for marketing analysis. Thus, the range of devices goes from head-mounted
apparatus to clinical head-constrained solution. However, the exploitation of eye
movements data requires an expertise and rules and protocols should be followed
to ensure a reliable conclusion. These aspects are discussed in the Chapter.

We propose in this thesis several contributions related to visual attention
(Section 1.2). Relying on our expertise, we employed eye-tracking as a way 1/
to measure attentional mechanisms with a task related to color harmony, 2/ to
create a ground truth for our computational model.

Consequently, we will introduce the main concepts hidden behind eye-tracking
(Section 3.1) and we will detail what are its outputs (Section 3.3), how they are
post-processed to finally produce exploitable data (Section 3.4). Also, we will
describe briefly the two apparatus used in the mentioned experiments (Section
3.2) as well as the usual protocols (Section 3.5) when designing an eye-tracking
experiment. Finally, we will introduce some metrics needed to quantify both the
inter-observer consistency of recorded eye movement data and the performances
of computational visual attention maps (Section 3.6).
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3.1 Main Concept

Eye tracking is a technique whereby an observer’s eye movements are mea-
sured so that one knows both where this person is looking at any given time and
the sequence in which his eyes are shifting from one location to another. More
specifically, it consists in measuring the point of gaze or the motion of an eye
relative to the head. The estimation of gaze direction means the head movement
in addition to eye movement is taken into consideration for estimating the area
fixated by the observer. Thus, in apparatus where the head is constrained in
a chin rest or the measure is performed directly on the head (as with Electro-
OculoGraphy or glasses), the eye and gaze directions are the same.

An eye-tracking apparatus (or eye-tracker) typically measures the overt visual
attention (Section 2.2.1) that is reflected through eye movements. The subject
by means of eye movements, typically alternates between a pause on specific
areas (fixation) and a skip to the next area of fixation (saccade). These notions
are more specifically described in Section 3.3.

The first prototypes of eye-tracker date from the beginning of the 20th cen-
tury, where more or less intrusive solutions were designed. While Huey (1908)
built a contact lens with a hole for the pupil, Buswell (around 1922) was more
concerned by the intrusiveness of any potential solutions. He used beams of
light that were reflected on the eye and then recorded on film. From mid 20th

century till now, finding a good compromise between intrusiveness and accuracy
of measures has occupied many researchers and commercial companies. There
exists large number of hardware solutions whose the selection is clearly guided
by the applicative context.

Generally speaking, there are two families of eye-tracker classified according
to their monitoring conditions: those that measure the eye movement relatively
to the head motion and those that estimate the direction of regard or the orien-
tation of eye in space. The underlying technology involved in measurement also
provides a good categorization: the Electro-OculoGraphy (EOG), the Contact
Lens and the Pupil/Corneal reflection are the main way to measure and track
eye movements.

The EOG technique expanded rapidly during the 1970s. This signal-based
technique records the electrical potential differences on the skin surrounding the
eyes. The contact lens techniques aim at originally improving the accuracy of
first corneal reflection method (dating back early 1900s). Some devices, such
as small mirrors or coils of wire, are attached to the contact lens. They count
on the physical contact with eyeball to provide highly sensitive movement mea-
surements. The main drawbacks of the two aforementioned techniques are their
intrusiveness. While pretty accurate, the way to measure eye movement in this
condition may lead to bias the occulometric behavior of the subjects. This rea-
son probably makes more popular the corneal or pupil reflection method at the
moment.
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Infrared (IR) cameras (usually one for each eye) projected on subject creates
a corneal reflection relatively measured to the pupil center. This is also known
as the Purkinje Images [56]. Over the four available Purkinje Images formed
by the eye, only two of them may be exploited by the eye-tracker. Requiring
first an appropriate calibration, the direction of regard is estimated on a sur-
face (typically the screen). Two points of reference during calibration on the
eye are needed to separate eye movements from head movements. In fact, the
measured differences between the pupil center and corneal reflection remain the
same under head movements, but vary with eye movement. In many setups,
the infra-red cameras are part of a fixed material leading to a known distance
between eye and sensors. Thus, the measurement is stable, while the eye may
scan the proposed stimuli and the subject may move his head to a certain extent.

Recently, another singular family of eye-tracking get developed by the image
processing community. No specific hardware is required, the purpose is to pro-
vide a low cost eye-tracker. This solution are purely based on image processing
and rely on any webcam signal. The face, then the eyes and finally the motion of
pupil are detected and tracked by using usual algorithms (KLT for tracking, face
detection, variance estimator...) and by being supported with visual attention
models. Obviously, the accuracy of such algorithm is worse than professional
costly solutions, but not ridiculously far. We implemented such kind of system
and end up with an accuracy of about 3 degrees of visual angle [182].

During the last decade, the eye-tracking based experiments became more pop-
ular due to the simplicity of their hardware setup, the software effort to process
the results and their accessible cost. They are not restricted anymore to the ex-
pert community dealing with vision and eye movements. Advertisers and design-
ers concretely have employed the protocol of measuring gaze and their statistics
to evaluate the potential of brand impact and product placement [154, 266].

3.2 Material

Different apparatus, measuring the eye fixations of any users for variable condi-
tions (seating in front of a screen, walking in the street...) have been designed
demonstrating different hardware setups and associated capabilities. While
portable devices record the scene viewed by the observer, the on-site apparatus
control itself the proposed stimuli. There are a bench of commercial solutions
for eye-tracking; Figure 3.2 illustrates non-exhaustively the different solutions
available on the market. We will not detail all these approaches, but rather focus
on the specifications of the two eye-trackers that we have used in the following
experiments.
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Figure 3.1: Commercial eye-trackers, a bench of solutions: head mounted devices, embedded in car
or glasses, professional and clinical solutions or non-intrusive on a regular PC.

SMI c© iView XTM RED

The SMI company proposes a large choice of eye-trackers with different hard-
ware. The iView XTM system is a dark pupil eye tracking system that uses IR
illumination and computer-based image processing. Images of the eye are ana-
lyzed in real-time by detecting the pupil, calculating the center and removing
artifacts. Once a calibration is performed, the pupil location is translated into
gaze data.

In this solution, a dark pupil approach is employed. The eye is illuminated
by IR light from a camera at a certain angle. The eye and face reflects this
illumination but the pupil will absorb most IR light and appear as a high con-
trast dark ellipse. An image-analysis software determines where the center of
the pupil is located and this is mapped to gaze position via an eye-tracking
algorithm. Dark pupil approach is versatile, so potentially unstable, and easier
to set up, but they also require some kind of head movement compensation.

The RED (Remote Eyetracking Device) model (Figure 3.2a) is the one we
used for the Experiment in Chapter 7. It is developed for absolutely contact-free
measurement of eye movements with automatic head-movement compensation.
Specifically, when compensating for head movements, it tracks the cornea reflex
(CR) in relation to the static camera. The CR location in the eye changes with
head position relative to the camera and it is used along with pupil location to
determine the gaze point in the stimulus.

The product specifications claim a gaze accuracy inferior to 0.5 degree of
visual angle.

SR c© EyeLink 1000 Remote/Head Free

This eye-tracker works on the same principles as RED. However, it provides
likely a higher accuracy due to its high sampling rate (1000 Hertz vs 50 Hertz
for the RED).
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The Remote/Head Free camera upgrade for the EyeLink 1000 system adds
the ability to use the eye tracker as a fully remote system that does not require
head stabilization (Figure 3.2b). The Remote Camera Upgrade is designed for
areas of eye tracking research where a head rest or head mount is not desirable,
but high accuracy and resolution are still important.

This system is more dedicated to quantitative eye movement analysis than
the previous eye-tracker, even if the RED provides already satisfactory results.
More sophisticated hardware allows a better accuracy. However, the calibration
of subjects proved to be long, it is more tricky to manipulate and additional
piece of software needed to be written to adequately control the environment and
the experiment. Exported raw data may be of high interest for scientists who
wish carefully to denoise and analyze the pupil movements. This eye-tracker
has been employed in the experiment described in Chapter 8.

(a) (b)

Figure 3.2: Two eye-tracking apparatus used in our experiments. (a) SMI c© iView XTM RED, (b)
Eye Link 1000 Remote/Head Free

3.3 What is measured?

Sophisticated software solutions have putting eye-tracking within everyone’s
reach; it provides post-processing of these low level data and a more exploitable
presentation of them, e.g. heat maps, scan paths..., aggregated for all users
or a subset, provided for the complete pictures or only for a pre-determined
region-of-interest. The raw outputs of an eye-tracker are eye fixation and sac-
cade. Saccade and fixation are basically the two states of eye movement such
as depicted in Figure 3.3a:

• Fixation: it occurs when the gaze direction has a stable position, per-
mitting the eye to extract, encode and process information. Typically, the
fixation duration ranges from 200 ms to 300 ms [217], but can get to 600
ms. Note that 90% of viewing time is allocated to fixations [109].

• Saccade: this is the shift or the fastest movement of the gaze between two
fixations. Typically, a saccade lasts from 10 to 100 ms and have amplitude
range from 1 to 40 degrees of visual angle (Figure 3.3b) with velocities that
can reach up to 900 degrees per second [217].
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Other kinds of eye movements have been identified in the literature, but have
less interest in the context of eye-tracking and visual attention. Convergence
is a motion of both eyes relative to each other that ensures that an object
is still foveated by both eyes when its distance to the observer is changing.
This movement can be voluntarily controlled, but is normally due to a moving
stimulus. Pursuit motion is a much smoother, slower movement than a saccade;
it acts to keep a moving object foveated. It cannot be induced voluntarily,
but requires a moving object in the visual field. Finally, microsaccades occur
during fixations and consist of slow drifts followed by very small saccades. These
movements are involuntary.

First introduced by Noton and Stark [189, 190], a scanpath refers to a tempo-
ral sequence of fixations and saccades. The properties that are usually exploited
for statistical analysis of scanpaths are: the fixation duration and location, the
saccade amplitude and duration.

fixation 

saccade 

Area of  
foveal vision 

1 to 2 ° 

A scanpath 

(a)

screen 

D 

S α 

(b)

Figure 3.3: Illustration of saccade, fixation on image and visual angle. (a) Spatial representation of
saccade and fixation. The radius of the fovea region ranges from 1 to 2 degrees of visual angle. (b)
Notations to compute the visual angle α.

When referring to vision, eye movement and eye-tracker, the indicator for
accuracy is usually expressed in visual angle (degrees), such as depicted in Figure
3.3b for the different vision areas. This measure is the trigonometric relationship
between the distance of the user to the screen and the size (radius) of the
projection on the screen (Equation 3.1). The lower the angle of dispersion, the
higher the accuracy.

α = 2 · arctan
(
S

2D

)
(3.1)

This is not uncommon to find different report on statistics about fixations
and saccades. Being not only dependent on the apparatus accuracy, the task
of the experiment influences clearly the recording and conclusion. During a
visual-search task, the involved attentional mechanisms will not be the same
as a free viewing exploration [275]. More concretely, a reading task will not
produce the same statistics as a gaming activity. While uninitiated person may
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directly exploit clean data and maps processed by a software, experts would
prefer extract raw data and post-processed them.

3.4 How to exploit the data?

In this section, we will not detail the methods used to specify and differentiate
fixations from saccades. Basically, the stationary characteristics of the measured
signal is analyzed (internally by the eye-tracking solution) in order to detect
abrupt changes (saccades). More details about all possible techniques may be
found in [226]. Nonetheless, we can notice that there exist two main approaches:
the dwell-time method of fixation determination averages the temporal signal
over time and determine based on variance statistics and empirical thresholds if
a fixation may be considered. The velocity-based method computes the velocity
of the signal measured between two successive samples and also determines the
existence of a saccade by confronting the velocity against an empirical threshold.

Denoising the data

Some apparatus also apply a denoising stage in order to eliminate abnormal
values. Whatever the internal method employed to provide raw fixation and
saccade data, it is judicious to post-process the data in order to clean them
up. When observing raw data coming out of the material, one may observe five
source of abnormal values that could be reasonably corrected.

First, negative or out of resolution range of fixation locations occur, espe-
cially when the user fixated out of the stimuli but on the screen (the stimuli has
a ratio inferior to the display, grey or black stripes fill in the remaining pixels).

Second, it may happen that experimenters remove the first fixation of each
observer from the collected data; this fixation being related to center bias (nat-
ural tendency of human to watch the center of screen).

A third post-processing of data usually consist in removing aberrant range
of values for fixations and saccades by defining a minimal and a maximal ac-
ceptable thresholds for the two data. For example, fixation duration below 100
milliseconds and above 400 milliseconds are considered atypical [226] and caused
by a bad recording of the system or the user fatigue.

Fourth, it is also usual to appreciate the scanpath characteristics. Too short
scanpaths testify to a visual fatigue or missing recorded data. A post-processing
consists in removing scanpaths having less than a determined number of fixa-
tions. In [256], we considered 5 fixations as being long enough for a complete
visual processing of categorized images.

A five post-processing may involve statistics of fixations. In order to guar-
antee consistent data and reduce measurement noise [217] due to abnormal
subjects, it may be relevant to remove fixations having duration superior to the
fixation duration average ±n×standard deviation.
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Projection to spatial map

Once the raw data have been clean up, the scanpaths characteristics can be sta-
tistically treated to end up with a conclusion on attentional mechanisms. Many
psychological studies abort at this stage. Nonetheless, a spatial representation
of scanpath is also relevant when investigating e.g visual attention modeling:
this is the concept of fixation map introduced by Wooding [272]. He argued
that the processing of eye-tracking data should not be restricted to only pure
eye movement patterns, but that regions-of-interest, coverage and similarity of
maps are also relevant for quantifying eye movement recordings. However, the
fixation maps remain computed rather in a context of visual attention modeling.

The fixation locations are projected onto the original stimulus in order to
get both aesthetic saliency map, for qualitative appreciation, and spatial 2D ex-
perimental saliency map, for quantitative appreciation. Note that some metrics
are dedicated to the comparison of spatial 2D maps when confronting ground
truth to models and others rather process the eye movement patterns (Section
3.6).

From the raw fixation data, the pixel position is formalized by one value in
horizontal direction and another one in vertical direction. In order to simulate
foveal vision, Wooding [272] approximated the fixation behavior with a Gaus-
sian representation. A 2D isotropic Gaussian filtering is applied on the pixel
coordinates of the fixation. Naturally, the Gaussian width follows the fovea
specificity (Figure 3.3a): a typical value spreads from 1 to 2 degrees of visual
angle, that should also depend on the task and stimulus according to Wooding
[272]. Then, this value is mapped in pixel domain according to the experimen-
tal setup and the equation 3.1. The contribution of all fixations f are usually
considered as being the same, even if intuitively the difference in fixation du-
ration attests to irregularities in the processing of information [100]. Also, the
fixations belonging to several observers o for a common stimulus i are usually
gathered to produce the final experimental saliency map Ei. The Equation 3.2
integrates the aforementioned concepts.

Ei (m,n) =
1

O

O∑
o=1

1

F

F∑
f=1

exp

[
− (xf,o −m)

2
+ (yf,o − n)

2

σ2

]
(3.2)

At each site (m,n) of the experimental saliency map E with m ∈ [0,M − 1] and
n ∈ [0, N − 1], M and N being respectively the width and height of the original
stimulus i, the contribution of all fixations f , having their location in (xf , yf )
are summed up for all subjects o. O and F are respectively the total number of
observers and of fixations. σ is the fovea size. Note that a third dimension could
be added to the Gaussian representation [272, 209], by setting a specific height
to the Gaussian representation; e.g. Pomplum et al. [209] vary the Gaussian
height with the fixation duration.

For visualization purpose, it is required to normalize the experimental map
according to its maximum and the capabilities of the viewer (8 bits - 0 to 255).
An interesting discussion, more related to the aesthetic or qualitative appre-
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(a) (b)

(c) (d)

Figure 3.4: Illustration of fixation maps created from eye movement patterns. (a) Original stimulus.
(b) Heat map with hot spots in red. (c) Original Luminance unmasked by the values in fixation
map. (d) Greyscale fixation map.

ciation of experimental saliency map, occurred about the graphical mode of
representation [272]. There is no ideal map, this is at the scientist’s apprecia-
tion to design the map that will better serve his purpose. Original luminance of
the stimulus may be unmasked weighted by S, while color heat map may be su-
perimposed on original luminance (Figure 3.4). Also, we can cite flooding map
that could be derived into binary region-of-interest map. The map represen-
tation used for statistical analysis is usually a one component map (greyscale)
having value from 0 to 255 (low to high conspicuous value of pixel). A recent
complete review of visualization techniques for eye tracking data may be found
in [27].

3.5 Protocols

The setup of a reliable eye-tracking experiment requires to follow a methodology.
Like for any experiment types, it is important to provide to the community
enough details to demonstrate the validity of the findings, but also to ensure
the duplication of the experiment. Previous statement of the literature in the
field supports an adaptation of existing protocols and avoids the faux pas. Thus,
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a number of decision have to be made for the following criteria: stimuli choice,
participants, subject’s guidance (task), viewing duration. But at first, it is
fundamental to formulate a research question.

Formulating a hypothesis

It consists in measuring the effect or impact of a specific variable. Typically,
the formulation of a null hypothesis is the reference for having no measured
effect under the designed conditions. Having set most of variables to a specific
statement, one can have one independent variable to which some manipulations
are applied to highlight the targeted effect. In the context of eye-tracking pro-
tocol, it may consist in asking for two tasks, or having two (or more) type of
stimuli (e.g. image categories) or two categories of observers (e.g. male versus
female) and so on. Ideally, the statistical analysis of eye movement patterns
would differentiate a behavior collected for each condition or each set of stimuli.

Subject’s task

The task asked to the participants is crucial in an eye-tracking experiment. As
widely demonstrated in literature [275, 64, 43, 171], the eye movement patterns
are task-dependent. Thus, the formulation of the question delivered to partici-
pants for a task protocol should be meticulously refined. In addition, it raises
the question of having a task or a free viewing protocol. Free viewing of a set
of stimuli let the observers exploring the scene with no specific purpose and
then less involvement of complex attentional mechanisms. Intuitively, it may
lead to a high variability between observers, but it is not that critical, since the
top-down mechanisms are minimized, especially for the first seconds of obser-
vation. A free viewing pass may sometimes serve as the way to validate the
null hypothesis. It does demonstrate an effect when confronted to a second pass
with a specific task [237].

Stimuli

An eye-tracking experiment always needs a set of visual stimuli to be presented
at each participant. Each of them has to be carefully chosen with ideally a
controlled metric that could ensure the dataset consistency. As an example, let
us have this original hypothesis: a specific range of spatial frequencies are fast
analyzed by cortical cells and cause significant different eye movement patterns.
Thus, all involved stimuli should be controlled numerically in terms of visual
frequencies, having several pools representing different spatial frequencies to be
compared to and no additional factors that could disturb the deployment of
visual attention (e.g. objects, face etc.).

Participants

The choice of participants may bias the results of an eye-tracking experiment.
The age [7, 98] and gender (first category) as well as the personal experi-
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ence/culture and mood (second category) may influence the deployment of vi-
sual attention. Age and gender attest to different physiological cells status or
organization which lead to a variability in bottom-up attention. Potentially also
dependent to these aforementioned factors, the mood and personal experience
would rather cause a bias in top-down attention, since the purpose of people
is variable regarding this criteria. For example, a person being afraid of water,
would have tendency to fixate on water part of the stimuli if any, while this
area will not attract the attention of another one. However, this second cate-
gory of parameters are difficult to control; it seems tricky to ask a person for
all details of his past life. Nonetheless, the first category of participants criteria
is straightforward to measure. But in which extent should all participants have
the same age and gender. If only men between 20 and 30 years old participate
to the experiment, the significant measured effect may be associated to only
this class and not generalized to the entire population. From another angle, the
specific and unpredictable behavior of a category could generate noise in the
analysis of the complete pool of observers.

Additionally, the number of participants of an experiment is also a point that
should not be neglected. Since the collected eye data will be processed to find out
statistically significant effects, a minimal number of participants is required to
ensure the validity of any statistical tests (t-test, ANOVA...) when performing
a power analysis. There exist some analytic demonstration to determine the
minimal number of participants when setting a fixed power. More details may
be found in book addressing this topic [219].

Viewing duration

In eye-tracking experiment, the viewing duration per stimulus should be con-
sidered carefully. Depending on the tested factor (related to bottom-up or top-
down mechanisms), this value should be adjusted. The typical viewing time
associated to the stimulus presentation ranges from 2 to 10 seconds, also de-
pending on the task. There is no clear rules for the perfect time to be associated
to the specificity of an experiment. The longer the presentation, the more vari-
able the scanpaths between participants. Usually, the viewing duration is fixed
during the design stage of the experiment, but the statistical post-experiment
analysis will guide the selection of an appropriate subset of data within this
total viewing duration.

Rule of thumbs

In addition to previous topics, we would like to remind a bunch of rule of thumbs.
There might look obvious, but “who can do more, can do less”. A black room
with no exterior light coming in is advised as well as a noise free environment.
No external stimuli should disturb the participants. Also, it is common sense
to limit the total time of the experiment. Usually, we consider that 20 to 30
minutes is a maximum duration before getting the participants bored and tired.
A way to maintain attention to the eye-tracking task is to ask the participant
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for a fictional question between some series of stimuli. Last but not least, it
is also important to get information about the correction of participants; if
they can use it for the experiment and if they do not have vision abnormalities
(color blindness...). Note that we experienced difficulties to track people with
multifocal lens.

Even if most of remote material claim for compensating head movement, it
is wise to use a chinrest in order to stabilize the subject’s head when performing
the experiment.

3.6 Metrics

In visual attention modeling, it is conventional to confront the computational
saliency map C to the experimental saliency map E obtained for one stimu-
lus i. To do so, several similarity metrics, dedicated to this context or not,
are regularly employed in the literature [143]: Linear Coefficient Correlation
(CC), Kullback-Leibler Divergence (KLD), Receiver Operating Characteristic
Analysis (ROC), Normalized Scanpath Saliency (NSS). They provide a score
of (dis-)similarity between the maps and then, they assess the relevance of the
prediction for the considered model. These attention map metrics are a first
family of metrics. We can cite two other families of metrics: the string edit
based methods and the geometric methods. These two latter manipulate eye
movement data rather than spatial maps; thus, they take advantage of the tem-
poral aspect of visual attention deployment. String edit methods focus on the
order or temporal arrangement in a sequence of fixations, while the geometric
methods exploit other dimensions inherent to the scanpaths, such as fixation
duration, shape etc.

In addition to the aforementioned map-oriented metrics, we can cite the main
contributions for these two families: String Edit method [147], Mannan’s metric
[164, 165], Cristinao’s metric (ScanMatch) [60], Mathôt’s metric (Eyenalysis)
[167] and the vector-based similarities [99, 119, 68].

The String Edit method (based on Levenstein distance) maps a fixation into
an Area Of Interest (AOI), translates the scanpath information as a string of
symbol (having a meaningfull sequential order) and assess the similarity between
two sequences by computing the editing cost through insertion, deletion, and
substitution of characters.

The ScanMatch metric builds on the Levenstein distance and improves the
alignment of strings [60]. However, the limitations raised by the community
regarding the mapping within an AOI is still present in this metric. Two fixa-
tions associated to one AOI would be always more similar than if they were in
two different AOIs but spatially closer when measured with e.g. an euclidean
distance.

Mannan’s metric attempts to escape the AOI issue. It basically computes
the euclidean distance between one fixation location and its nearest neighboring
fixation, building a similarity index. However, the metric remains also ques-
tionable, mainly about the potential mapping of several fixations of the first
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scanpath to the same fixation in the second compared scanpath. This may
overestimate the impact of the candidate fixation in the second scanpath. Also,
comparing two scanpaths of different length is an issue.

The Mathôt’s metric try to overcome these two problems. The vector-based
method is a new class of promising method that compares the spatial and tem-
poral characteristics of two scanpaths through their arrangement in geometric
vectors, later analyzed in multiple dimensions. They take into account shape,
position, duration and order in their similarity metric.

We will not detail more all these contributions, but we will focus on the
Mathôt’s metric (Section 3.6.5) that we employed in our future analysis. Since
we designed some computational methods that produce spatial maps, we have
focused on metrics that deal with a score of spatial similarity.

3.6.1 Correlation Coefficient

The most straghtforward similarity measure is the Pearson Correlation Coeffi-
cient. It expresses the linear relationship between two set of variables, by using
the covariance between the sets and the standard deviation of each set, such as
expressed in Equation 3.3. C and E are the two set of values (e.g. the saliency
map coefficients), cov() their associated covariance and σC and σE stand for
respectively the standard deviation of C and E.

SCC (C,E) =
cov (C,E)

σC σE
(3.3)

This measure ranges from -1 to 1, where -1 means a total dissimilarity, 0 no
similarity and 1 a total similarity between the two set of samples. This measure
is not sensitive to scale, thus the compared maps do not need to be normalized.
However, singular aberrant values influence considerably the score, even if most
of values are consistent. The interpretation of such metric may be tricky in
the context of saliency map. This is not rare to end up with singular fixations
(due to visual fatigue, top-down mechanism or noisy recording). Nonetheless,
we expect their contribution to be averaged and minimized when creating the
experimental saliency map.

3.6.2 Kullback-Leibler Divergence

Complementary to the correlation coefficient, the Kullback-Leibler Divergence
expresses a dissimilarity between two probability distributions. It can not be
considered as an effective distance measure (mathematically spoken), because
it is intrinsically asymmetrical. Considering the notations explained below:
SKLD (C,E) 6= SKLD (E,C). Indeed, in information theory, a model or a refer-
ence distribution is confronted to observation samples or an experimental dis-
tribution. Thus, it is expressed as the divergence of an observed distribution D
knowing the theory distribution T : SKLD (D|T ). In our case, the reference dis-
tribution and the compared samples are respectively the experimental saliency
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map E and the computational saliency map C, such as formalized in Equation
3.4:

SKLD (C|E) =
∑
i

C(i)ln

(
C(i)

E(i)

)
(3.4)

Note that the two-dimensional saliency maps may be transformed into a one-
dimension probability function or kept as a 2D distribution to maintain the
spatial information, where i is the current pixel location being processed. Also,
the two probability density have to be normalized to 1, meaning each pixel
value is divided by the sum of values, in order to satisfy the constraint on
probability density (the distribution area should be equal to 1). KLD is always
positive (0 means the two probability distributions are the same), but has no
upper boundary. This is a strong limitation in the interpretation of results.
This point is discussed also in the context of the Eyenalysis similarity (Section
3.6.5).

3.6.3 Receiver Operating Characteristic Analysis

Originally, this metric is employed to assess the performances of a binary clas-
sifier, knowing a thresholding step is required. Usually, the Receiver Operating
Characteristic (ROC) Analysis provides a curve with the true positive rate as a
function of the false positive rate. The points fitting the curve are obtained for
different values of the mentioned threshold. Good performance of the measured
data happens when the curve stands in the upper left section (tends to True
Positive Rate (TPR) = 1 and False Positive Rate (FPR) = 0).

In the context of visual attention map, these metric is popular and has been
adapted to the non-binary nature of saliency maps. The true positive (TP) and
true negative (TN) cases correspond to an agreement between the two maps:
saliency has a label equal to 1 if both pixels are fixated (or to 0 if none are
fixated) in each map. The other way around for the false negative (FN) and
false positive (FP) cases: if one label equal to 1 (salient region) and the label
in the second map is 0, there is no agreement. Also, the two saliency maps are
simultaneously binarized with a varying threshold. If the saliency value exceeds
the threshold, the pixel is labeled at 1, this for different values of threshold at
the appreciation of the scientist. To build the ROC curve, the True Positive
Rate and the False Positive Rate are expressed respectively as: TPR = TP

TP+FN

and FPR = FP
TP+FN .

At this point, we do not have a numerical value to be appreciated for assess-
ing the prediction quality of any model. Conveniently, the ROC curve is usually
translated into a unique value; more precisely the Area Under the ROC Curve
(AUC) is a good indicator of performances [78]. The higher the area, the closer
the curve to the upper boundary: a value of 1 means a perfect prediction, while
0.5 means the chance level. The area may be computed with different methods;
e.g. the well-known method of Riemann sum consist in extrapolating shapes,
e.g. a rectangle, under the curve, from true or approximate points of the ROC
curve and then to sum the rectangular area of each shape.
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This metric provides an interesting interpretation of results, since the AUC
indicator has a theoretic and meaningful limit. However, the reliability of pro-
vided results may be influenced by an inadequate setting of parameters. The
thresholds used in the ROC curve design is a tricky point that has been dis-
cussed in the literature, especially for the application in saliency map [249].
Also, the fitting model to extrapolate ROC curve, if not many samples, may
have a negative effect. Finally, the method to compute the AUC is also a ground
where an approximation is done.

3.6.4 Normalized Saliency Scanpaths

Normalized Saliency Scanpaths was first introduced by Peters et al. [205]. It
can be apprehended as a mixed method, because it compares the eye movement
data (from the experimental ground truth) to a saliency map (most likely from
a computational model). It has the advantage to normalize the salience per
scanpath: scanpaths with different number of fixations have the same weight.
In other words, every observer has the same impact on salience. Moreover, the
NSS gives more weight to areas more often fixated.

The NSS is the average value of the saliency map (represented by a set of
pixels p) at each fixation normalized per scanpath. First, the saliency map C
is normalized to have zero mean and unit standard deviation, such as described
in Equation 3.5, where µC and σC are respectively the mean and standard
deviation of map C. Then, the per-fixation salience value NSSf is computed
as the average of the saliency map on the projection of the fixation. A disk D
with a radius r of 1 to 2 degrees of visual angle is usually used to project each
fixation pf (Equation 3.6). Per-observer o NSS is computed as the average of
per-fixation salience value along the scanpath. The final NSS measure SNSS is
the average of the per observer NSS (Equation 3.7).

Cnorm(p) =
C(p)− µC

σC
(3.5)

NSS(pf ) =
∑
p∈C

Dr(pf − p) Cnorm(p) (3.6)

SNSS(o, f) =
1

O

O∑
o=1

1

F

F∑
f=1

NSS(pf ) (3.7)

F is the total number of fixations for an observer o and O is the total number
of observer. A negative value of NSS means a low correlation, i.e. the distance
is large between the considered saliency map and the averaged saliency maps.
A positive value of NSS means a good match.

Interestingly, all these mentioned metrics could be used to assess the inter-
congruency between observers [143]. Thus, by comparing the scanpath (or
saliency map) of a specific observer t (with o 6= t) to a global saliency map
extrapolated from all fixations of all the other observers SM , the likeness of an
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Figure 3.5: Illustration of the double mapping technique between two scanpaths. Also, the similarity
between the twoscanpaths is computed from Equation 3.9

observer scanpath (or map) to those of a group of individual is assessed. These
is also named leave one out technique [253].

3.6.5 Eyenalysis Similarity

This method is purely based on eye movement data and belongs to the geometric
family of methods. To circumvent the limitations of similar method, Mathôt et
al. [167] proposed the Eyenalysis metric.

Let us consider two scanpaths, S1 and S2, the idea of the method is to build
a reciprocal mapping between S1 and S2, i.e. each point u belonging to S1 is
mapped to at least one point v within S2, and reciprocally. Then, the sum of
distances related to all mappings is minimized in order to obtain the optimal
mapping, meaning the optimal pairs between S1 and S2 regarding a distance d
measure (Equation 3.8). Note that in essence the mapping may deal with any
properties i (maximum is P ) of the scanpath.

d(u, v) =

√√√√ P∑
i

(ui − vi)2
(3.8)

There is no known solution for such kind mapping. The authors went for the
double mapping technique (Figure 3.5) which is a good compromise in terms
of complexity and efficiency. Using the Euclidean distance, each point from S1
is mapped to its nearest neighbor in S2 and reciprocally. Thus, some mapping
reveals common for some points in both directions, as illustrated in Figure 3.5.
Such technique may the advantage of mapping many points to an unique one,
but as compensation, it allows mapping of sequences with different lengths.
A global distance is defined as the normalized sum of all the point-to-point
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mappings (Equation 3.9):

D(S1, S2) =

∑K
u dS1→S2v′ (u) +

∑L
v dS2→S1u′ (v)

max(K,L)
(3.9)

where dS1→S2v′ (u) is the Euclidean distance of point u in S1 to the nearest
neighbor v′ in S2 and dS2→S1u′ (v) is the euclidean distance of point v in S2 to
the nearest neighbor u′. K and L are the total number of points in respectively
S1 and S2.

This similarity metric do not have an asymptotic limit, such as the NSS
and KLD. Consequently, the values have no meaning (except the higher, the
better) if considered alone. Usually, the average similarity of a first set of
scanpaths should be compared to a second set, formalizing a reference for testing
the original hypothesis (validating or unvalidating the null hypothesis), such as
suggested by the authors [167].

3.7 Summary

Actual solutions to setup an eye-tracking experiment gain in practicality and
propose software packages to post-process the data at an accessible price. Thus,
the eye-tracking technology becomes more popular and is employed in a broad
field of applications: marketing, webpage design, human-computer interface,
gaming, mobile scrolling and so on (Section 3.1). Not only restricted to the
communities of psychology, neuroimaging, ophthalmology, any experimenters
may either define a set of stimulus to be analyzed in the friendly software in-
terface or uses a purely image processing algorithm to get informed about raw
gaze position of observers [182].

However, good practices exist and inexperienced user has to follow rules
of thumb if one wants to exploit statistically the collected eye movement pat-
terns (Section 3.5). Different outputs may be exploited from an eye-tracking
solution. While fixations and saccades are directly measured by the system
(Section 3.3), experimental saliency maps may be derived from such raw data
(Section 3.4). These latter provide qualitatively a first impression of the re-
gions watched by the observers. More quantitatively, they also are confronted
to computational saliency maps coming from visual attention models by means
of similarity metrics (Section 3.6). Interestingly, the metrics could be used to
assess the inter-congruency between observers by comparing the scanpath of a
specific observer to a global human saliency map extrapolated from all fixations
of all the other observers.
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Chapter 4

Color Harmony

Color harmony, and more precisely the rules surrounding its definition, under-
standing and modeling, has occupied the time of many artists and scientists
for the last centuries. Despite this substantial energy applied to formulate the
problem of color harmony, the concept is far from encountering a consensus in
the definition, representation and modeling domains. Although the historical
theories are based on intuitive observations, specific color space and representa-
tion, they provided the necessary basis for designing later some models. These
latter supplied the community with a comprehensive implementation for being
applied in concrete applications.

We tentatively expose in this chapter the accomplished work by dividing
the chapter into four different sections related to the future development of this
thesis. First, the origins of color harmony are introduced to provide an overview
of historical sources (Section 4.1). Second, we propose a non-exhaustive list of
models, classified into three classes (Section 4.2). Third, we rather focus on the
applications in image processing and editing that directly implement the cited
models (Section 4.3). Finally, we summarize the main points (Section 4.4).

4.1 The origins

When investigating the notion of Color Harmony, we have some questions in
mind: what is the substance behind Color Harmony? Can it be classi-
fied as a hard, pure and exact science? or Can it be described only as purely
empirical, intuitive and experimental? When searching for a strict definition of
Color Harmony, we started answering the question. Artists, psychologists, color
scientists and mathematician built and enriched the notion of Color Harmony.
Everyone has an idea, an own feeling of what is the color harmony in his/her
surrounding environment, but finally we ended up with a bench of definitions.

Later, our investigations concerning the history, the theories and the po-
tential computational models evidence the following fact: depending on the
original sensitivity composing the point of view, the color harmony definition
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flirts with the notions of aesthetic, emotion, artistic, preference, culture. De-
spite this statement, we found out full of sense and fundamental experiments
that lead to the modeling of color harmony.

In conclusion to this reflexion, Color Harmony suffers from limited but rea-
sonable investigations and needs new psychological breakthroughs to better un-
derstand the involved attentional mechanisms. Even if some attempted to design
algorithms and automatic solutions to benefit from the concept, this is still a
conceptual notion that need some clarifications to be considered as a promising
scientific field.

4.1.1 Definition(s)

All people involved in Color Harmony experiments target the same Grail: How
are colors perceived together? How do they interact? How do they harmonize?
[234]. Those questions have been the starting assumptions for many researches
in the field and highlight one fundamental point: the color cannot be perceived
alone, it is part of a global perception. This follows the findings on how the
human visual system typically behaves: color variation or contrast determines
our perception of the environment (Section 2.2.1).

Integrating such reflection, the notion of complementarity emerged to refine
the definition (Section 4.1.2). Indeed, the complementary colors intuitively re-
flects the notion of ”most beautiful as they together form a whole” [234]. Here,
the definition is refined, but having exposed this statement, have we really step
forward? There are still many objective formulations of what complementary
colors could be.

Another limitation for investigations shows up at this point: how many colors
to be involved? which attributes of colors? Quantitatively measuring colors is
already a large research problem, that may suffer from adding the notion of
color harmony as a new variable.

Beyond their numbers, also the question of color representation must be
raised. Can a circle, volume, any spatial, geometric representation support the
findings and definitions of color harmony?

Facing the difficulty of characterizing the notion of color harmony, Granville
[87] and Kuehni [134] brought another argument related to contingency: age,
gender, cultural heritage and mood probably influence the perception of color
harmony of any observers.

Despite that, the definition of color harmony raises also the question of in-
volving aesthetic or not. Historically, the aesthetic notion was at the heart of
the definition, thus scientists wondered whether color harmony is related to the
pleasing use of colors in a specific artistic analysis or if it is only a matter of
combining colors [87].

Below is a bench of definitions annotated along the different readings:

• Burchett [37], p.28: Colors seen together to produce a pleasing affective
response are said to be in harmony
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• Arnheim [13]: Visually right or wrong

• Granville [87]: Color harmony is color usage that pleases people

• Judd and Wyszecki [122]: When two or more colors seen in neighbouring
areas produce a pleasing effect, they are said to produce a color harmony.

It seems that a positive feeling and a homogeneous and balanced arrange-
ment are the key concepts behind these definitions.

4.1.2 Theories and Color wheels

Complementary to his work on electromagnetic waves, Isaac Newton (1643-
1727) plays a key role in the achievement of color theory by originating the color
circle (Figure 4.1a). He identified seven distinct spectral colors that he placed
on a hue circle. Thus, he invented the geometric color models (also referred as
Hue Wheel) that is the foundation for many models of color harmony (Section
4.2.1). By just looking at the color spectrum, he observed the logical circular
arrangement of hues and also evidence the principle of light mixtures, i.e. the
yellow results from mixing the red and green light sources.

(a) 1611 (b) 1810 (c) 1905 (d) 1961

Figure 4.1: Color wheels designed along centuries. (a) Newton’s color circle. (b) Goethe’s color
wheel. (c) Munsell’s color wheel. (d)Itten’s color wheel.

Opposed to Newton’s theory, Wolfgang Goethe (1749-1832), poet and philoso-
pher, refused strongly that science and mathematics interfere in the theory of
color. However, he contributed to the problem by conceptualizing the notion
of complementary colors [84]. Interestingly, Goethe anticipated the well-known
findings of Hering about opponent process theory (Section 2.2.3). By studying
the physiological response to opponent colors, he designed a symmetrical ar-
rangement of the colors on his wheel (Figure 4.1b): yellow opposed to purple,
green to red and orange to blue. Eugène Chevreul (1786-1889) [52] also inves-
tigated this aspect and highlighted that complementary colors are more easily
distinguishable than adjacent colors that interfere with each other [267].

This disagreement between communities on complementary color and primaries
led to a bench of color wheel representation (Figure 4.1). Following Newton’s
original idea and the current findings on subtractive or additive primary col-
ors, scientists and artists tended to accurately design color wheel whose the
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properties are the number of primaries and their proportion on this circular
representation.

The concept of color harmony has been explored through different approaches
which accompanied some adjacent scientific discoveries. In other words, each
implementation also is the reflection of the period. As mentioned previously,
this is a field where opposite communities confronted each other: painters and
color scientists, chemists, psychologists...

The vast developed theories implement different primaries, color components
relying on different wheels or volume and consider different kinds of harmony
measurement. However, we can extract common principles and methodologies
between them. First, they manipulate three color components; while two of
them remains fixed, they measure the produced harmony when having the third
one varying along a line or a plane. Second, they all identify the harmony as a
contrast or a ratio between the employed primaries. Third, they also mention
the spatial location on the hue wheel as being a key harmony identifier.

More particularly, we are focusing on Munsell’s and Itten’s theories, since
they would be the foundation of harmony models developed in the next section.

Munsell’s Perceptual Harmonies

Munsell’s vision of Color Harmony deals with the idea of balance. He intuitively
suggested the artists to balance the color strength and size in their composition.
Thus, he defined color strength as the product of value and chroma in his Color
System [177]. Then the relationship between color strength (CSn) and color
area (An), where n is the considered color, is defined as:

A2

A1
=
V1 · C1

V2 · C2
=
CS1

CS2
(4.1)

where A, V and C are the area size, value and chroma (in Munsell system) of
colors 1 and 2. Note that the area ratio is inverted against the color ratio: the
color with the weaker color strength is assigned to the larger visual area. The
Munsell’s criterion of harmony has been used widely [172] and generalized in
such way:

M∑
n=1

CSn ·An = 0 (4.2)

where M is the total number of colors in the image, CSn (the color strength of
color n) = chroma of color n x value of color n, A is the area of color n.

Itten’s Contrasts

Another popular approach is the onne originated from Johannes Itten in 1916.
His perception of color harmony took inspiration from the contrast notion. For
him, everything is always a matter of contrast. A high color harmony must
be the fact of a high contrast. However, this is not straithforward to design
which kind of contrast is relevant in the context of color harmony. He defined
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seven relevant color contrasts, as listed below, where ∆C stands for a contrast
between two quantities i and j in HSV color model (h ∈ 0◦ . . . 359◦, s ∈ <,
0 ≤ s ≤ 1 and v ∈ <, 0 ≤ v ≤ 1). The three first one relates to the contrast on
the components he used (HSV color space).

1. Contrast of value: ∆Cv = vi − vj

2. Contrast of saturation: : ∆Cs = si − sj

3. Contrast of hue: : ∆Ch = hi − hj

4. Contrast of extension (or proportion): related to the size of each com-
pared color in the picture. According to Goethe and Itten, the perfect
proportions are the followings: Yellow: 9; Orange: 8; Red: 6; Violet: 3;
Blue: 4; Green: 6; as illustrated in the work of Sauvaget et al. [227] in
Figure 4.5.

5. Contrast of warm/cool: formed by the opposition of hues considered warm
or cool, where ∆Ccw =

ωi−ωj
180◦ and ωi = |ωi − 180◦| = (hi + 60◦) mod 360◦

6. Contrast of complements: when two opposite hues on the hue circle are
confronted, where ∆Cc =

ki−kj
180◦ and ki = (hi − 180◦) mod 360◦

7. Simultaneous contrast: when two colors attract the other one to its com-
plement. It creates illusion of motion or depth within the picture.

These contrasts rely on the hue wheel purposely designed by Itten (Figure
4.1d). Such as Munsell, this theory influenced number of colorists, designers.
Some image processing algorithm translated the proposed contrasts into com-
putational method for color harmonization [227].

4.2 Models of Color Harmony

Some models emerged from the middle of the 20th century. We propose to clas-
sify them into three categories: the geometric model (first introduced by Moon
and Spencer [172]), the numerical models and a new contemporary approach,
the contingent models.

The geometric approach follows the historical wave by taking advantage of
color wheel concept and by numerically formalizing their use (Section 4.2.1).
On the other hand, the numerical approach tackles the problem completely
empirically. This last category rather perform user experiments to characterize
the degree of color harmony encountered by their stimuli; they are then able
to model, predict and finally generalize the color harmony concept (Section
4.2.2). The reliability of models is discussed in Section 5.3.

We differentiated these models from the historical color harmony theories
(such as the Munsell’ and Itten’s one) based on two observations: first, these
models have been published quite recently (after 1950); second, they have a
strong computational aspect that makes them realistically applicable to image
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processing (Section 4.3). Relevant to this purpose, Sivik and Hard wrote in
”Some reflections on Studying Color Combinations” [234]: The dream was to
be able to express the relationship between stimulus and experience in a mathe-
matical formula with few variables as possible.

In the last decade, even a new conceptual approach for color harmony mod-
eling appeared; it translates new progresses made by the psychology field. This
contingent-based modeling is described in Section 4.2.3.

4.2.1 Geometric model

Moon and Spencer, 1944

The mathematicians Moon and Spencer [172] decided to apply their knowl-
edge to aesthetics and more precisely to the topic of color harmony, originally
formulated by Munsell [177]. They proposed a mathematical interpretation of
Munsell perceptual harmonies (Section 4.1.2) that able to predict by a number
the aesthetic value of any color combinations. Their concept or model relies
with the notion of ambiguity. They considered that if the viewer is confused
by the color combination, then the feeling of color harmony is low. In other
words, their model determine the harmony likeliness in an ambiguous interval
(or color difference). More precisely, they differentiated two cases of ambiguity:
1/ when the subject is uncertain if the colors are identical or similar ; 2/ when
he hesitates whether two colors are similar or contrasting. They refined the
Munsell equation of proportion (Equation 4.1):

A2

A1
=

√
C2

1 + 64 · (V1 − 5)
2√

C2
2 + 64 · (V2 − 5)

2
(4.3)

They proposed also an understandable schematic representation of color har-
mony areas based on the aforementioned concepts and illustrated in Figure 4.2.
Their geometric model is applicable to hue, lightness and chroma and for a cho-
sen color defines quantitatively four areas on the hue wheel: Similarity, Identity
and Contrast areas are considered harmonious, while Ambiguity area is dishar-
monious. Thus, their geometric model outputs a binary decision/prediction
(harmony or non-harmony) when combining at least two colors.

Moon and Spencer acquired a lot of attention in the field, since they scien-
tifically proposes an applicable model for harmony prediction. Despite that, the
weak theoretical basis and the lack of relevance in the definition of their concept
was pointed out. However, their digest model for predicting color harmony is
still nowadays inspiring image processing techniques and user interfaces (Section
4.3).

Complementary to this work, Moon and Spencer derived a formula for rating
color harmonies which is perceived more as an aesthetic measure (M) [173]:

M =
O

C
=

O

NC +Nhdif +Nvdif +Ncdif
(4.4)
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(a) (b)

Figure 4.2: Moon and Spencer’s color harmony model. Geometric model and representation for hue,
lightness and chroma (expressed in the Munsell color system). Similarity, Identity and Contrast
areas are considered harmonious, while Ambiguity area is disharmonious. Original illustrations
are extracted from [172]. In the original cylindrical color volume, two surfaces are extracted: (A)
Regions of similarity and contrast in the plane with constant value, (B) Regions of similarity and
contrast in the plane with constant hue.

where O is the number of elements: the color identity (basic color category),
similarity, contrasts of hue, value and chroma. C is the factor of complexity
where NC is the number of colors, Nhdif the number of pairs with hue difference,
Nvdif the number of pairs with value difference and Ncdif the number of pairs
with chroma difference.

Matsuda, 1995

In the same vein as Moon and Spencer, Matsuda Color Coordination [168] is a
geometric method that formulates color harmony rules in Munsell color space.
By gathering continuously the questionnaires of students during nine years,
he could design his model on specific stimuli, mainly print clothes and dresses.
However, the applicative field has been so largely extended to other stimuli type,
that it seems to be adopted for any kind of content. A non-exhaustive review
of application in image processing and computer graphics using this model is
provided in Section 4.3.

Matsuda’s method goes one step further than the modeling of Moon and
Spencer. Although he also predicts harmonious and non-harmonious areas us-
ing Munsell color space, he proposes eight geometric representations for hue
distribution (Figure 4.3a) and ten for tone distribution (Figure 4.3b), that will
be called color harmony templates later by Cohen-Or [54]. Matsuda rather
formulates it as color scheme. A color scheme expressed the relationship be-
tween hue and tone components, then there are a total of eighty color scheme
types.

In his experiments, Matsuda observed the geometric relationship of combi-
nations, already foreseen by Munsell and Itten (Section 4.1.2): opposite, similar
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(a) (b)

Figure 4.3: Matsuda’s color harmony model. Geometric model for hue and tone components in the
Munsell color system: (A) The circular types of Hue distribution (B) The polygonal types of Tone
distribution. Black areas are the considered harmonious parts. (Original illustrations extracted
from Tokumaru [252])

and orthogonal arrangements are the key features of his color schemes.

Tokumaru, 2002

In 2002, Tokumaru [252] proposed a comprehensive version of Matsuda’s color
schemes (Figure 4.3). In addition to the english translation of the original
japanese text, he defined membership functions for 1D mathematical distribu-
tion. It has opened the way for many interpretations and implementations of
the Matsuda’s color schemes in image processing. His original intent was to
build a system for supporting color design based on harmony consideration and
user’s word.

To do so, he employs fuzzy logic that purposely catches the degree of un-
certainty around the Matsuda’s color schemes. Indeed, he defines membership
functions for each color scheme type describing the (non-)harmonious areas. For
the hue distribution, one or two trapezoids represent the color schemes depend-
ing on the number of sectors in the original color scheme. Figure 4.4 depicts
two membership functions about the hue distribution for a color scheme of one
area or two areas. For the tone distribution, their curved shape (Figure 4.3b)
makes them more difficult to be represented by a membership function. Despite
that, Tokumaru proposes a membership function about tone distribution for
nine color schemes.

When a user provides an input color C of components (hu, vu, cu) standing
for the hue, the value and the chroma, the membership function, (a trapezoid
following the design of Matsuda, with a sector width equal to N and the charac-
teristics expressed in Equation (4.5), in the case of hu), gets align on C. Then,
the system evaluates the considered color scheme by applying the fuzzy rules of
Equation (4.6):

|au− al| = |bu− bl| = 5

µh (hu +N) = µh (hu −N) = 0.6
(4.5)
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(a) (b)

Figure 4.4: Tokumaru’ membership functions about the hue distribution for the Matsuda’s color
schemes. Note that in the Munsell color space, hue goes from 1 through 100, values from 1 through
10 and chromas from 1 through 16. (A) Trapezoid and its notations for defining the membership
function. (B) Two examples of trapezoid centered on the hue 21. (Original illustrations extracted
from Tokumaru [252])

µp = µh (hi) ∧ µt (vi, ci) ∧ µt (vu, cu) (4.6)

µp is the final evaluation, while µh and µt are the local evaluation or the mem-
bershift function for the hue and tone distribution. The index u stands for the
color inputted by the user, while the index i represents all colors in the Munsell
database.

Sauvaget, 2010

Sauvaget and Boyer [227] proposed more recently a harmony formulation based
on Itten’s contrasts (Section 4.1.2) and Goethe’s theory [84]. Relying on the
Itten’s color wheel, formed of 6 distinct hues (red, orange, yellow, green, blue and
violet), they exploit ideal color proportions between hue areas; ideal meaning
that engage the most in a harmony feeling (Figure 4.5, bottom left wheel).
Thus, for example the optimal harmonious ratio between yellow and violet is 1:3.
When transferring this principle onto the 6 distonct hues located on the color
wheel, the optimal proportions are: 60 degrees for red, 40 degrees for orange, 30
degrees for yellow, 60 degrees for green, 80 degrees for blue and 90 degrees for
violet. Interestingly, Sauvaget’s model allows analyzing the reciprocal harmony
from a subset of hues, from 2 to 6 hues. In other words, the harmony analysis
can be considered for only two colors, if the user wishes it.

In addition to the formulation of color harmony from Itten’s contrasts, they
proposed to perform an automatic color harmonization of pictures. Their com-
plete framework consists in 1) measuring the original hue proportions of the
considered image following the defined range for each hue and 2) reassigning
over-proportion of pixels to the most correct sector to tend to the ideal propor-
tions for each sector. This is illustrated in Figure 4.5.

They initialized what are the usual range for the 6 distinct hues on the color
wheel, based on mean values provided by users. Thus, red stands from 340 to
10 degrees, orange from 10 to 40 degrees and so on, such as illustrated on the
right-hand side wheel of Figure 4.5 (dotted lines).
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of 6 hues on Itten’s wheel. (Sauvaget and Boyer, 2010) 
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Figure 4.5: The harmonic model of Sauvaget and Boyer [227]. The main idea is to tend to ideal
hue proportions (left-hand side wheel). The right-hand side wheel depicts the hue histogram of the
picture and the proportion (pixel histogram) for each hue sector.

Large dataset exploitation

With the arrival of new social websites dedicated to color theme design, such as
COLOURLovers [2] and Adobe Kuler [1], huge communal dataset of beautiful,
harmonious, aesthetic and consistent color palettes have been made accessible
to anyone. Those platforms propose to explore, create and share color themes.
No expertise level is required to create a theme, however the community is able
to rate the color themes. Thus, hundreds of thousands themes are available by
means of XML API and updated every day by thousands of users.

While such powerful and social information are riding a wave of success,
O’Donovan et al. designed a machine learning based model to predict color
compatibility [194]. They took advantage of the huge number of available color
themes to learn a model, but also to evidence potential bias or limitations of
existing color harmony theories (discussed in Section 5.3). They rather preferred
the term Color Compatibility to Color Harmony, but this can be considered as
very similar notions.

In the same vein, Skurowski et al. [235] investigated such huge dataset to
derive new Matsuda-like templates. By means of fuzzy logic and clustering, they
could aggregate the color themes onto the hue wheel and removed noisy samples.
On the contrary of [194], they finally confirmed the use of original Matsuda’s
templates (Figure 4.6a) and end up with new templates design (Figure 4.6b).

Recent studies kept working on the large dataset track in order to discover
the underlying principles that constitute color harmony and then infer high
aesthetic score [155, 157]. Following the approach of O’Donovan et al. [194],
they also aimed at finding the relevant color combinations that predict aesthetic
scores, but went one step further by applying such hierarchical color harmony
model on natural pictures. In [156], the same authors deal with this approach in
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(a) (b) Extracted from [235]

Figure 4.6: Large dataset exploitation has introduced new color harmony schemes. (a) Modern
representation of Matsuda’s templates, (b) New templates introduced by [235].

depth and proposed a Bayesian framework that reconciles the empirical theories
and the large scale approach. Indeed, the Matsuda’s templates as well as the
Moon and Spencer theory are employed as a prior while the color combinations
learned from the large dataset are injected as the likelihood.

4.2.2 Numerical model

Previous section introduced the geometric models that tend to define geometric
patterns on color wheel that demonstrate harmonious and disharmonious areas.
In this section, we are interested in the model whose the authors use the word,
quantitative. We rather propose to name them numerical model due to their
computational nature.

Sivik and Hard [234] as well as Burchett [36] introduced the typical attributes
that could directly derive a color harmony response. From their reflections,
they strongly encouraged scientist in investigating their design. Carefully, they
mentioned the foreseen problems, such as the choice of color stimuli and the
potential bias related to context, time, fashion, culture...

Ou and Luo, 2006

The Ou and Luo’s model [195] is well-known of the color science community.
It was precursor in the modeling of color harmony extrapolated from user ex-
periments with controlled stimuli. The problem of infinite number of colors,
conditions discouraged quantity of scientists in their investigation of color har-
mony, such as pointed out by Sivik and Hard [234]. Due to progress in modern
color science, especially about color measurement, uniform color space and color
difference formulations, a new way to design models empirically from user ex-
periments started recently.

Ou and Luo adopted a pair-wise protocol where they asked to participants
for rating the considered colors pairs from extremely harmonious to extremely
disharmonious. 1431 colors pairs were investigated and generated using 54 colors
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extrated from CIELAB color space. The color pairs were presented side-by-side
against a medium gray background on a cathode ray tube in a dark room. The
rating scale had 10 levels of appreciation. From this experiment, they found
trends (by applying regression algorithms) from which they established a com-
putational formulation for three color components: hue, lightness and chroma.

17 observers, 11 males and 6 females, participated in the experiment. Their
methodology deals with the estimation of functions for the different features,
that they isolated, such as difference and sum of lightness, hue and chroma
difference. These three functions are computed from a regression extrapolated
on the samples that they gathered from the experiment, such as illustrated in
Figure 4.7. Finally, they linearly integrated the previous functions to obtain a
final score of harmony between two colors. Complete details about the equations
of the three functions may be found in [195].

Figure 4.7: Ou’s color harmony model: estimated functions to predict features characterizing har-
mony. (Extracted from [195])

They cross-validated the model by applying another dataset of color pairs,
elaborated in different conditions (screen, color space, nationality...). They ob-
tain a good correlation on both their own dataset (R2 = 0.73) and the one of
Gurura (R2 = 0.75).
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Szabo, 2009

In the same vein as Ou and Luo [195], Szabo et al [241] investigated the rat-
ing of patches of color combinations to derive a mathematical model. They
proceeded with a similar methodology to design their model and to compare
its performances against historical color harmony theory and Ou’s model. As
an additional contribution to Ou’s model, they proposed a numerical model for
three-color combinations.

They used the CIECAM color space where they derive 2346 two-colors com-
binations, 3222 monochromatic three-color combinations and 2x2000 randomly
chosen trichromatic three-color combinations. These stimuli were presented to
a limited number of observers (less than 10 for the different experiments). They
use a 11 levels in their harmony scale for the annotation where they added the
notion of neutral color harmony impression at the middle. Such as Ou and Luo,
they assumed an additive contribution of the sums and differences of the percep-
tual color attributes. From the gathered scores, they observed tendencies that
they translated into mathematical formulae (Complete equations are presented
in [241]). More precisely, they ended up with several color harmony models de-
pending on the considered association: monochromatic two-color combinations,
dichromatic two-color combinations, monochromatic three-color combinations
and trichromatic three-color combinations.

Szabo et al found similar tendencies compared to Ou and Luo [195] except
for the hue preferences function that was not confirmed by correlation. They
credited the different ethnic origin of observers as a major factor for such analy-
sis. Satisfactory correlation around 0.70 were found regarding their dataset for
the two- and three-color models.

They evaluated their numerical model against Ou’s model [195] as well as
three color harmony theories: Munsell ([177]), Coloroid ([180]) and RAL design
[4]. Their model outperformed the Ou’s prediction slightly, but substantially
justify the introduction of numerical models. Indeed, it demonstrated much
higher skill for prediction than any previous approaches.

Solli and Lenz, 2009

Solli and Lenz [239] designed a predictive model for estimating the perceived
overall harmony in pictures by extending the two-color model originated by Ou
and Luo to a multicolored model. They applied a color segmentation algorithm
in order to set up the pair combinations that will feed the Ou’s model. Since
color segmentation is usually supervised, it seems tricky to determine a target
suitable number of color clusters. To circumvent this observation, the authors
defined a generic framework where they applied two passes of color segmenta-
tion leading to a coarse and a fine segmentation. The mean shift based image
segmentation method [55] is applied twice with two different settings and the
two sets Rsmall, Rlarge of regions r are described with a constraint on their area
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ar:

Rlarge = {r : ar ≥ 0.025q}
Rsmall = {r : ar ≥ 0.0025q}

(4.7)

where q is the number of pixels in the image. Thus, they applied two strategies
depending if they considered the large regions in Rlarge of size n or the small
regions in Rsmall of size m.

They derived the harmony score (from Ou’s model) for every unique color
combination rlarge = 1, . . . , n̂, with n̂ = n(n− 1)/2, that they stored in the vec-
tor L of length n̂. Then, the harmony score for the entire image is the minimum
of such vector: l = min

rlarge
L.

The case of small regions is more tricky since there are much more numeri-
cal values to be computed and potentially not relevant. They restricted the
evaluated pairs to the five closest neighbors N1...5 of regions rsmall = 1, . . . ,m.
They stored the results in a vector U(rsmall, N1...5). As done for the large re-
gions, the smallest value in U provides the harmony score for the entire picture:
s = min

rsmall,N
U .

In addition, they also derived another useful information for the assessment
of harmony. They assumed that a high harmony disagreement in neighbor-
ing regions means a low local harmony. Thus, they computed the variances
over the neighboring regions, formalized through the vector U : σ2 (rsmall) =
V ar (U (rsmall, N1...5)). The variance of the entire image is the maximum over
σ2 (rsmall): σ

2
s = max

rsmall
σ2.

They used a weighting combination of the previous local harmony scores for
deriving the final harmony score:

h =
[
1, l, s, σ2

s

]
·W ′ (4.8)

W ′ is determined by a linear regression from the scores annotated by users
during an experiment. Finally, they ended up with a correlation score of 0.84
between their predictive model and their dataset.

4.2.3 Contingent model

Not only the limitations of previous evoked models, but also new trends in
psychology, have gradually germinated the seed of a theory: color harmony is
not only stimuli-dependent, but could also be related to other factors, such as
environment, age, gender, origin, task...

In 1994, Sivik and Hard already mentioned the problem of having constant
responses to color harmony depending on time, fashion, culture [234]. Anat
Lechner originated the idea of color harmony contingencies [145]. More pre-
cisely, he argue for distinguishing the concepts of harmony-within and harmony-
between. While harmony-within is purely related to stimuli properties, i.e. hue,
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saturation and value components, harmony-between identifies critical elements
that correlate to color harmony evaluation. We can easily see the parallel with
human vision (Section 2.2), where exogenous (involuntarily) attention is stimuli-
driven and endogenous attention is conceptually-driven [17]; referring also to
bottom-up and top-down attentional mechanisms.

In her paper ”‘Color Harmony Revisited” [193], Zena O’Connor discussed sev-
eral aspects highly relevant to this section. First, she highlighted the well-known
problem stated around definitions and the corresponding approaches to model
and to generalize the elicitation of color harmony. She argued that the universal
and deterministic laws of color harmony can not hold up. Many previous stud-
ies made the evidence of aesthetic response (strongly related to color harmony)
changing over time, space, humans. Thus, the response to color harmony is in-
divisible, according to her, of the individual affective state, cultural differences
and also contextual, perceptual and temporal factors.

She also claimed that the contingent approach is a response to the lack of
consensus for the color harmony definition. In such context, she formulated her
color harmony conceptual model as:

Color Harmony = f (Col1,2..n))× f (Cont1,2..5)

= f (Col1,2..n))× (ID + CE + CX + P + T )
(4.9)

where basically, the color harmony response is the product of two functions, one
related to the stimulus and its constituent colors Coli, and one related to exoge-
nous factors, such as individual differences (ID: age, gender, personality and
affective state), cultural experience (CE), the context (CX: the environment),
perceptual effects (P ) and the effects of Time (T : social and design trends). No
further investigations have been done to specify the different attributes; how-
ever a general framework is installed. Any numerical models mentioned in the
previous section could feed the first term of the formula.

4.3 Derived Applications of Color Harmony

The geometric and numerical models of color harmony have been used in a
context of image processing. The most noticeable breakthrough is in the context
of automatic harmonization of pictures where a bench of papers investigated the
automatic recolorization of content based on harmony criteria (Section 4.3.1).
First, we will detail the the pioneer algorithm of Cohen-Or et al. [54], which is
in relation to the contribution of Chapter 12.

The aforementioned models also played a role in metrics and models that
involve high level and subjective notions, such as aesthetic metric, emotion
modeling (Section 4.3.2).
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4.3.1 Color harmonization

In 2006, Cohen-Or et al [54] introduced the first algorithm to automatically
harmonize a color picture. They termed this specific image processing, Color
Harmonization. This pioneer work has been later improved and extended to
video content, but without any real breakthroughs. As additional contribu-
tions, Cohen-Or et al. suggested different color rendering usecases: compositing,
foreground/background harmonization by introducing a manual mask, color de-
sign of illustrations, interior design, color transfer-like techniques...but the main
point related to their paper relies on the formulation of harmonic tem-
plates originated from both Matsuda’s color schemes [168] and the Tokumaru’s
friendly version [252].

The main idea of the automatic harmonization of colored pictures is to esti-
mate the closest template to the hue distribution of the considered image and
then, to remap the hues uncovered by the harmonious sector(s) of the candidate
template inside this(ese) latter. This can be seen as a dedicated or constraint
color mapping processing [76].

Harmony formulation

Figure 4.8a reintroduces a modern version of Matsuda’s color schemes, with the
specification on sector size, that are named harmonic templates by Cohen-Or.
There are eight templates dedicated to hue components where grey sectors de-
note the sets of harmonic hues. They consist of one or two sectors which address
different geometric arrangements of harmony: complementary for 180 degrees
opposite sectors, analogous for similar hues in one sector and orthogonal for 90
degrees distant sectors. Such as formulated by Tokumaru [252], each grey sec-
tor relates to a simple membership function. Cohen-Or employed only the hue
templates; he discarded tone harmonic schemes, certainly due to the complexity
of their membership functions (Figure 4.4b).

The template formulation is initiated by expressing the link between any hue h
to the closest sector (distance in arc length). Thus, they defined the set of tem-
plates Tm, such as m ∈ {i, I, L, T, V,X, Y,N} and the sector border ETm(α)(p)
of template Tm with orientation α the closest to the hue h of current pixel
p. In their formulation, they found more convenient to manipulate the sector
border rather than the considered sector as an unit. Note that we propose a
slightly more comprehensive formulation of the templates in our implementation
by indexing the considered sector (Section 12.3).

Given a membership function representing the different harmonic schemes
Tm for all orientations α, the idea is to determine which template would be
the most aligned on the considered picture distribution. In other words, it
consists in finding the most appropriate template to the considered picture.
The membership function or harmonic scheme is defined as the couple (m,α),
where m is the template index and α its rotation angle on hue wheel. Given
this, they defined a cost function F that measures the harmony of an image X,
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X : Ω ⊂ <2 → <3. Note that this function rather catch the disharmony, since
it is minimized afterward.

∀p ∈ Ω, F (X, (m,α)) =
∑
p∈Ω

∣∣h (p)− ETm(α)(p)
∣∣ · s (p) (4.10)

where h and s denote the hue and saturation channels, respectively. |·| refers to
the hue distance on the hue wheel measured in arc length. This distance is equal
to 0 when the considered hue is in the grey sector. This harmony distance may
be apprehended as a simple average of all pixels weighted by the saturation.

Finding the best fit B(X,Tm0
) between the harmonic schemes (m,α) and

the picture X consists in minimizing successively the two following expressions.
In other words, finding first the optimal α0 for each harmonic scheme Tm and
after that the optimal m0, knowing the optimal α0:

α0 = argmin
α
F (X, (m,α)) (4.11)

B (X,Tm0
) = (m0, α0) s.t. m0 = argmin

m
F (X, (m,α0)) (4.12)

They used Brent’s algorithm [35] to solve the minimization problem of orien-
tation α. The Brent’s method allows converging fast by choosing the most
suitable methods over three available: the secant method, the bisection method
and the inverse quadratic interpolation. The minimal distance F over m and
α reflects the highest harmonic concordance between the picture X and the
template representation.

N 

18° 93.6° (18°;79.2°) 

180° (18°;93.6°) (93.6°;93.6°) (18°;18°) 

(a) (b) from [54]

Figure 4.8: Cohen-Or ’s Color Harmonization. (a) specification of Matsuda’s templates. (b) Color
shifting issue: without color segmentation, similar hues may be shited in two different sectors.

Algorithm

Once the best template (in sense of concordance) has been determined, the
harmonization algorithm could be described by means of the aforementioned
formulation (Equations (4.11) and (4.12)). It consists in shifting the unsat-
isfactory colors of X within the candidate harmonic scheme Tm0

(α0). More
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precisely, the idea is to remap inside the candidate template the disharmonious
hue values. However, the approach of performing that only on the basis of the
hue distribution is somehow naive: if no spatial coherency is taken into account,
it may lead to different sectors (and colors) matching of original color, having
e.g. gradual variation of hue as illustrated in Figure 4.8b.

To circumvent this problem, they employ a graph-cut optimization problem
[33] for matching the hues not anymore to the closest sector, but to the one
that ensures a better spatial consistency. To each pixel p is assigned a label
v(p) which reflects the binary decision between the two potential sectors. The
optimal label assignment V =

{
v(p1), . . . , v(p|Ω|)

}
consists in minimizing the

energy E(V ):
E (V ) = λ · E1 (V ) + E2 (V ) (4.13)

where E1 (V ) stands for the distance between the hues h(p) and h(v(p)), and
E2 (V ) reflects color coherency in the neighboring pixels N (4- or 8- connected
pixels in Ω) assigned to v(p). Such as already done, the two expressions are
weighted by the saturation to promote pixels with a high saturation:

E1 (V ) =

|Ω|∑
i=1

|h (pi)− h (v (pi))| · s (pi) (4.14)

E2 (V ) =
∑

{p,q}∈N

δ (v (p) , v (q)) · smax (p, q)

|h (p)− h (q)|
(4.15)

where δ(, ) means δ(v(p), v(q)) = 1 if v(p) 6= v(q), otherwise δ(v(p), v(q)) = 0.
smax (p, q) is the maximal saturation between the points p and q. Once all pixels
p have been binary labeled to an appropriate sector edge ETm(α)(p), they can
be shifted or recolored with the appropriate hue h′(p):

h′ (p) = c (p) +
w

2
· (1−Gσ (|h (p)− c (p)|)) (4.16)

where c(p) is the central hue of the candidate sector, w is the arc width of this
latter and Gσ is a normalized Gaussian function whose the standard deviation
is σ.

Pioneer work of Cohen-Or formulates a comprehensive formulation and an ap-
plicative framework for Color Harmonization. Most of succeeding work built on
it for improving the final color rendering.

Improving the Cohen-Or’s work

There have been some work about harmonization in a wider sense, especially
authors targeted the harmonization of more features than just color: tone
[261, 242], grain and contrast [240]... We will not provide details about these
implementations, but rather focus on the one related to color feature.

55



Pursuing the work of Cohen-Or, other authors proposed some improvements
of the original formulation. All the following attempts relied on the same har-
monic templates to recolor or recompose color within a picture [228, 262, 108,
243, 90, 245, 260]. Following the Cohen-Or methodology, their first step consists
in determining the harmonious template type and its rotation angle that is the
closest to the original picture by minimizing a cost function. Then, the colors
are transformed so that the colors outside the harmonious sectors are mapped
inside a harmonious sector. Color segmentation has been identified as a crucial
pre-processing before color mapping because visible artifacts can appear when
two close colors, eventually associated to the same object, are mapped to two
different sectors. Strategies between the papers differ in terms of cost function
for template selection, color segmentation and color mapping.

Huo et al. [108] improved the original algorithm by changing the choice of the
best harmonic scheme and applying another strategy for the color shifting as
they claimed. Differently to Cohen-Or, they define the optimal angle α0 as the
one corresponding to the peak in hue histogram (weighted by saturation). Thus,
they do the same as Cohen-Or for template determination and color segmenta-
tion. They claimed also to simplify the Gaussian function used for color shifting.

Tang et al. [243] proposed more additional improvements in their implementa-
tion. A cost function is derived from the observation of the local smoothness
of the hue values. Also, a new matching function (Equation 4.17) is introduced
for the choice of the best harmonic schemes. Finally, they adapted the original
architecture by adding a new component based on a pre-harmonization strategy
to preserve the hue distribution of the harmonized images.

Following the same formulation as Cohen-Or, they defined a relative rather
than an absolute distance for the matching function than an absolute distance:

F (X,Tm,α) =
(
∑
i h(i) · Tm,α(i))

2

hmax ·
∑
i Tm,α(i)

, 0 ≤ i ≤M − 1 (4.17)

where h is the hue histogram of image X. M and hmax are the number of bins
and the peak value of the hue distribution, respectively. Tm,α(i) is the ith bin
of the harmonic scheme T or may be seen as the membership function such as
described by [252]. It is defined by a simple binary statement:

Tm,α(i) =

{
1, if i is in the gray sector(s)

0, otherwise
(4.18)

By proposing the ratio in Equation 4.17 as a matching function, the author
favored the harmonic scheme where most of the pixels fall within its gray sec-
tor(s). The bigger the ratio, the more similar the hue distribution and harmonic
scheme are.

Different from previous work of Cohen-Or, Tang et al. treat color harmo-
nization as a hue value reassigning process rather than a color shifting process.
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In such way, they solve the problem of spatial coherency and allow not changing
the hue of pixels inside the gray sectors, which may be seen as a limitation of
previous gaussian-based shifting functions (see [24] for details). They posed the
problem of color reassignment as it is done also for colorization algorithm [148],
i.e. as an objective function to be minimized by means of an affinity function
ωrs between pixels r and s (Equation 4.19)). Note that the reassignement step
only concerns the set of pixels, denoted Ω̄, that have been previously identified
as being outside the candidate template.

J (h) =
∑
r∈Ω̄

h (r)−
∑

s∈N(r)

ωrs · h (s)

2

, (4.19)

where N(r) is the neighboring pixels around r. The affinity function is defined
by:

ωrs =
1∑

s∈N(r) e
−(h(r)−h(s))2

2σ2r

· e
−(h(r)−h(s))2

2σ2r , (4.20)

where σr is the standard deviation of the hue values in a window around pixel r.

A real-time color harmonization for video has been introduced by Sawant et
al. [229] where a histogram splitting method is employed instead of a graph-
cut approach to reduce computational cost. One dedicated template per group
of frames is determined to guarantee temporal consistency. In [245], Tang et
al. perform a foreground/background detection in addition and apply the same
template determination as [229] for a coherent group of frames.

Finally, we can notice that Cohen-Or algorithm has been used in constraint
environment, such as Augmented Reality [262, 90], where simplification was
performed to be compliant with rendering issues.

Almost all works rely on the Cohen-Or approach for performing Color Har-
monization. We can notice the work of Sauvaget and Boyer [227] formulating
the color harmony principles from Itten’s contrasts (Section 4.2.1). Similarly
to Tang et al. [243], they estimate the best harmonic scheme (but based on
Itten’s ratio) and reassign the oversized or undersized hue regions. Their shift-
ing strategy is somehow sophisticated, since they let the user to choose between
four methods: basic hue attribution (hue limit of candidate sector), closest hue,
preserving ratio distance and maintaining density distribution.

4.3.2 Color Harmony as an image feature

This section describes a bench of applications where computational color har-
mony has been used as an intrinsic description characterizing the image. Color
harmony as a feature is estimated and input to infer aesthetic metrics, emotion
estimation, image indexing...
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Aesthetic Quality Assessment

Aesthetic metrics have recently attracted a lot of attention and many researchers
have published their own model. More generally, high-level semantic concepts
respond to the need of having models or metrics closer to human perception
[120]. Color harmony has been also explored in such concept. Coming from
the computer vision community, the aesthetic models rely on machine learning
approaches which build a model or a prediction based on extracted features and
annotated ground truth.

Luo et al. [158] and Li et al. [149] were precursors in aesthetic or appeal
metric. While Li’s model exploited fully the Matsuda’s templates and provided
evidence of its efficiency as a global feature in the context of machine learning,
Luo could not extract from Matsuda’s templates a numerical value or index
that could help the prediction of aesthetic as a low level feature. Thus, he
designed his own harmony feature by learning the best color combinations from
the training dataset. Li’s metric and dataset being devoted to painting material
may explain the fact that the color harmony feature is more valuable. Later,
Moorthy et al. [174] also investigated the Matsuda’s templates as a feature of
aesthetic, they were rather in accordance with Luo about the difficulties for
exploiting color harmony roles.

Last but not least about aesthetic quality metric, Nishiyama et al. [186]
completely specialized their metric based on color harmony concept. They ex-
perienced the direct exploitation of geometric color harmony models (Moon and
Spencer approach as well as Matsuda’s templates) to predict the aesthetic qual-
ity and faced, according to them, a poor prediction due to the fact they are
designed for simple color patterns, not for natural and complex pictures. Thus,
without rejecting such models, they decided anyway to apply color harmony
theory at a local scale, on small portion or areas of the pictures. The method
extracts a sample of local regions, describes each of them by color harmony de-
scriptors, quantizes these features and represents the picture as an histogram of
quantized features in order to later apply a Support Vector Machine classifier.
Their color harmony features derive from Moon and Spencer’s model.

Emotion inference

Recent works about the extraction or prediction of emotions perceived by users
or induced by stimuli get more and more attention. Basically, all these models
rely on machine learning approaches [162, 18, 153] and need to compute features.
Some of them take advantage of color harmony’s theories to compute one or
several features that could, at some extend, catch the emotion induced by the
considered stimuli. This is quite similar to aesthetic metric, where a high score
in color harmony potentially produce a positive assessment and emotion of the
stimuli. In [162, 153], the authors prefer implementing Itten’s contrast as their
harmony feature, while in [18], we contribute to the emotion prediction by means
of the Matsuda’s color coordination system.
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Image indexing

In Section 4.2.2, we described Solli and Lenz predictive model. They elaborated
an interesting extension of the Ou and Luo’s model, where they attempted to
predict the color harmony of multi-color pictures. Originating from the image
processing community, they targeted image indexing or classification as direct
application of such model. They used an user experiment to tune the weights
necessary to the combinations of several aspects of harmony (local, global).
They achieved 0.84 and 0.49 of linear correlation between their predictive har-
mony score and the same user experiment, depending if they considered a mean
observer or all observers data. Unfortunately, they did not perform additional
experiment to cross-check the strength of their model prediction on another an-
notated dataset. They provided qualitative results by means of images extracted
from their dataset on harmony score request (Figure 4.9). This qualitative ap-
preciation lets the reader uncertain about the model performances, particularly
potential bias about saturation.

(a)

(b)

Figure 4.9: Visual appreciation for the Solli’s color harmony model [239]. (A) Most harmonious
images, (B) Most disharmonious images. (Extracted from [239])

4.4 Summary

This chapter presented a status of the literature for the topic of Color Harmony.
This topic occupied many thoughts since early time: already Newton during the
18th century get interested in the color arrangement and their potential mean-
ing. Interestingly, he evidenced the circular representation of colors and their
complementarity. However, at this time many fields of thought claimed to be
more competent and authorized for investigating color harmony. Thus, poets,
philosophers and painters started implementing their vision, their color wheel
and their theory of color harmony. All these deployed energies led to diverse
interpretations, definitions, representations of color harmony as discussed in
Section 4.1.

Later, during the 20th century, some computational approaches and exploitable
models got introduced by color scientists, mathematicians, psychologists. We
classified them into three categories (Section 4.2). The geometric models build
on the historical theories of harmony by defining rules on color wheel. The nu-
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merical models are empirical and expressed the color harmony from regression
applied on experimental data. Finally, the contingent models is a psychological
approach that claims the involvement of stimuli but also the inference of other
cues in the assessment of color harmony, such as the mood, the temporal factors,
the user’s characteristics and so on.

Having these models available, some researchers from the image processing field
(Section 4.3) attempted to process automatically the colors of pictures to get
them homogeneous, this is the Color Harmonization processing introduced by
Cohen-Or et al.[54]. They proposed a harmony formulation and different frame-
works to apply such kind of algorithms. Succeeding work improved the original
implementation and proposed also to use the harmony formulation in other
contexts, e.g. as a cue for quantifying the aesthetic and emotion of pictures.
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Chapter 5

Discussion

This chapter discusses the relationships between the three previous chapters
that depict the state-of-the-art of this thesis. If the Visual Attention and Eye-
Tracking evolved in a strong partnership, Color Harmony is fairly a topic re-
served to color scientists. At a first glance, there is no relationship between
them.

In Section 5.1, we propose to decline the different color mechanisms and the
related concepts. From this big picture, we attempt to position the concept of
Color Harmony in such context (Section 5.2). In a third section, we discuss
the mentioned color harmony models, their status, validity, applicable domain
(Section 5.3). Finally, there is a big limitation in the study of color harmony:
the ground truth aspect (Section 5.4).

5.1 Color Mechanisms

This section aims at exposing that colors act at different levels of processing
in the brain. There are many concepts related to colors that are parts of hu-
man past, history, common knowledge and deals with top-down processing. In
addition, there are low-level mechanisms that tend to be common between indi-
viduals, even if biological evolution creates specificity related to the environment
and learning.

Color in the brain: low level processing

The involved processes in color vision become well-identified. The eye anatomy
has been studied, dissected and clarified through many experiments. We know
how the color are perceived when the light reaches the pupil and how this is
translated into a neuronal signal to be processed later in different areas of the
brain (Section 2.2.2) . This last point is more controversial. While the area V1
is clearly the center for vision processing, other areas may play also a role in
the analysis of color features.
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Even if V1 neurons have been identified as being the heart of color contrast
[259], it seems that V2 and V4 areas participate also to the gradual analysis
of color features. More specifically, V4 is the place where Color Constancy
mechanisms are realized. Color constancy is the ability of our brain to identify
a constant color associated to an object despite the viewing conditions (e.g.
illumination, light reflected from the surface and object). This notion is funda-
mental for any living entity as a defending mechanism. Finally, the discovery
of another area, named V8 or V4α, suggested that it is the site of neuronal
processing for color constancy and the conscious perception of color [91]. Nowa-
days, the role of each area in color vision is not distinct, it can not be split into
different tasks and concepts [102].

Additionally to theoretical and measured phenomena explained previously,
color perception is also variable between individuals [224]: this is the inter-
individual variability of color vision or observer metamerism. Proper physiolog-
ical arrangement of cones and adaptation of human to surrounding environment
lead to differences in cone functioning and performances that can be measured
and detected. Typically, color blindness (due to the absence or deficiency of
one or two category of cone(s)) is a critical pathology when measuring color
factors. Less drastically interfering, the number and repartition of the three
types of cones vary between individual [224] providing a variable perception
of colors. Despite the progress in color science for measuring objectively the
perception in color difference [5], the related experiments may be disturbed by
these aforementioned factors.

Color-related notions: high level processing

Beyond the Color Perception referring to immediate processing in the brain,
there are also higher levels of processing for the color feature. We will discuss
here some concepts that are top-down mechanisms in relation with colors. We
introduced Color Cognition, opposed to Color Perception [28].

For most of culture, colors are meaningful; they symbolize a mood, natural
elements and infer a preference related to a memory. Cognitive color [67] goes
further than color naming. It associates a semantic concept or object to a
color. In other words, the human knowledge (due to long-term memory) of
surrounding objects or our familiarity to them allows forming the following pairs:
e.g. banana-yellow, blue-sky etc. More generally, there have been substantial
research exploring both color and memory. Main hypothesis rely on the impact
of color in a memory task. Several studies agreed on a faster recognition and
higher memorability of stimuli having color properties (versus black and white
stimuli) [77, 89, 268, 201]. Color seems to facilitate the memorization process
by eliciting more attentional mechanisms. For a complete recent review of this
topic, one can refer to [72].

In the same vein, color mood or arousal has been explored. Many studies
investigated the link between colors and elicited emotions [128, 197], e.g. it is
agreed that black is associated to sadness, fear; blue to peace; yellow to happy
and so on. More specifically, Kobayashi [130] defined a taxonomy between color
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triplets and words related to high-level semantic concepts. To make the link
with the previous topic, the memory effect is also variable according to the type
of mood and thus to the considered color. For example, it has been found that
emotional elicitation created from red is very high [115].

Color preferences is not a recent topic of investigations [75], even if findings
in this area are recent. For such topic, several studies reported a variability in
preferences due to age [218], gender [196] and culture [163]. Also, related to
preferences is the notion of aesthetic. Color is known for contributing to quality
and beauty [230, 66]. Thus, high colorfulness, right color balance or proportion
may maximize the user experience. With this last high level notion related
to color, we are approaching the Color Harmony definition. The distinction
between preferences, harmony and similarity is thin [230], this requires a specific
care on experimental protocols in order to measure the right notion, if any
distinction can be done.

5.2 Color Harmony at which stage?

All the previous topics engage color processing in the brain. Thus, specific cells
analyzing the color signal are involved at different levels of the brain depending
on the color-related tasks. There are some high-level concepts engaging the
color factor and its understanding.

Intuitively, we believe the color harmony concept being related to top-down
mechanisms. Due to the no-consensus on its definition, it seems reasonable to
think that the mechanisms related to this concept are inferred at a high level,
such as it is the case for color preferences, color mood and so on.

But is Color Harmony too subjective, person-related, culture-related to be
measured? We do not think so, because we believe the concept easier to ap-
prehend than e.g. color preferences (having high inter-observer variability), or
color mood. As mentioned previously, measuring the color preferences lead to
high inter-observer variability, if not controlled. This concept is highly related
to culture, age, personal feeling. Color mood is a difficult field that requires the
mapping between two heterogeneous data: an emotion symbolized by a word
and a color (1, 2 or 3 colors can be involved). Also, we need to all agree on
emotion definitions and representations which is not ensured. However, many
experiments explored these two fields. More specifically, it seems that the study
of emotional mechanisms in the context of eye-tracking exploded recently (Sec-
tion 10.1).

We believe Color Harmony is easier to investigate than Color Preferences, be-
cause 1/ there are empirical work and geometrical representation to rely on, 2/
we think people will more agree on such concept due to the presence of more
universal rules. Regarding the topic of Color Mood, we expect Color Harmony
meeting the same levels of limitations (Figure 5.1) for the inter-observer agree-
ment.

However, this point should be monitored in any experiments to ensure that
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participants understand the concept of Color Harmony and do not formulate it
differently. Schloss and Palmer [230] having pointed out the protocol issues when
assessing the color harmony of pair combinations elaborate three different ways
of evaluating perceptual harmony: people’s aesthetic preferences, perception
of harmony and preference for a figural color when viewed against a colored
background. Thus, they distinguish the notions of preference, harmony and
similarity of color combinations (as being three different tasks), which have
been so far fully included in the concept of color harmony. They also asked for
a rate on a scale having different meaning depending on the three tasks.

Inter-Observer Variability 
(Difficulty for experimental setup) 

Top-down Modulation 
(externally driven attention) 

Color Constancy 

Color 
Preferences 

Color Mood 

Color & 
Memory 

Color Harmony 

Bottom-up Modulation 
(Internally driven attention) 

Observer 
Metamerism 

Figure 5.1: Color Harmony mechanisms: a tentative for positioning it in a 2D representation top-
down/bottom-up modulation as a function of inter-observer variability.

In Figure 5.1, we tentatively depict a graphical representation of top-down/bottom-
up modulation versus the inter-observer variability. Based on previous inputs,
we venture the hypothesis of a ”middle” positioning for the color harmony topic.

5.3 Model status

Color harmony theories over centuries inferred intuitive notions of color har-
mony that have been implemented and verified a posteriori in design and paint-
ing but mostly without rigorous scientific validation. Their implication in the
contemporary status of color harmony field is huge, because they are the basis
of existing computational models.

Validity of models

In the case of numerical models, the authors carefully controlled the input stim-
uli on which they extrapolated their mathematical functions. However, we can
point out several limitations.

First, the measure of agreement for inter- and intra-observers is open to
criticism. Ou and Szabo employed the Root Mean Square (RMS) measure
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which limits the accuracy of agreement and is difficult to interpret anyway.
Recent methods discussed the validity of how agreement should be measured
with regard to the kind of involved samples, experiments [225]. The tendency
is to include a chance factor to penalize the final agreement. We can cite the
following coefficients that tend to generalize in many experimental approaches:
Cohen’s Kappa [53], Fleiss’ Kappa [79], Krippendorff’s alpha [133], Randolph’s
multirater Kappa [216]. However, such measures may require a minimal number
of observers to exploit their power.

This leads us to another underlying limitation: the number of observers in-
volved in the experiments of Ou and Szabo. They do not exceed 10 observations,
but they asked for multiple rating of the same observers to check also the intra-
observer consistency. Another inherent limitation of such small sampling is their
origin, age and gender which may also restrict any form of generalization.

Second, even if authors carefully selected their color samples, a pair-wise or
rating protocol intrinsically limits the number of pairs that could be annotated.
Thus, the generalization of the model to other dataset is also a remaining ques-
tion. Szabo et al. [241] depicted this problem by highlighting a small correlation
(R2 = 0.30) of Ou’s model on their dataset. However, he mentioned the much
higher correlation of the two numerical models compared to historical harmony
theories. Even if they are questionable, the two numerical models of Ou and
Szabo clearly have the merit of being designed experimentally and proposed to
the community.

The geometric models are less disruptive from the tradition of color harmony
history. Relying on color wheel, they precise the areas inferring color harmony
for each specific components. However, they are open to interpretation since
they basically either offer several harmonious areas at the same time on wheel
[172] or several possible arrangements (templates) of areas on wheel [168]. While
Moon and Spencer did not really empirically validated their approaches, Mat-
suda built its template approach entirely on samples that he gathered during
several years on japanese students. A clear limitation is the bias in age, gender
and also regarding the used stimuli, since this work was dedicated to fashion
application. Despite that, some authors proposed a framework for application
in color design and image editing [252, 54].

Recently, due to the possibility of large datasets designed by the web com-
munity [1, 2], we can notice some interesting attempts [194, 235] for confirming
the relevancy or updating the design of Matsuda’s templates. O’Donovan et
al. clearly reject the interest of Matsuda’s templates. While they evidence no
correlation between Matsuda’s templates and the color themes that designers
agreed for real use, Skurowski et al. confirmed the intrinsic use of Matsuda’s
templates by designers and additionally proposed some new relevant templates.
Despite a high concordance in the material they used, both investigations did
not reach the same conclusion. We argue this is potentially due to the distance
metric they used to model the likeliness between the Matsuda’s templates and
the 5-color themes dataset.
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Applicable or not?

The numerical models take as input some features related to hue, value, chroma
and provide a prediction for two- or three-color combinations. Unfortunately,
there is no work that either extended this modeling to a higher number of
color comparisons or proposed a generalization to n number of colors. It clearly
restricts the applicative field of such model. Nonetheless, we can cite the work of
Solli and Lenz [239] who derived a predictive model for estimating the perceived
harmony of ordinary multi-colored images from Ou’s model in the context of
image indexing or classification.

On the other hand, the geometric models have been largely employed in im-
age processing application and satisfactory results were demonstrated for nat-
ural pictures (Section 4.3). Authors’ interpretation have made them applicable
and useful to concrete application having complex stimuli. Nevertheless, semi-
supervized or assisted human intervention seems more relevant to overcome the
room they let for interpretation.

5.4 Ground truth issue

Thinking about the lack of robust validation of the models, this leads us to
another limitation: the need for ground truth on complex/natural stimuli. Nu-
merical models are based on simple patterns and it is difficult to guarantee they
could be extended to complex or natural stimuli despite the attempt of Solli
and Lenz [239]. Geometric models have been translated in image processing
community, but the resulting algorithms suffer also from being quantitatively
tested and validated.

A simple reason is behind this: how can we reasonably design a perfectly
harmonious picture for any kind of content that would serve as benchmark?
Can we ensure a high agreement without bias related to age, gender and so on.
On one hand, annotations at large scale with crowdsourcing could be a solution.
On the other hand, the context of annotation is not controlled for such protocol.
Anyway, the qualitative and manual appreciation of a human remains the only
way to assess the quality of such processing. Once again, we are facing the lack
of scientific foundation at the origin of the color harmony theory.

In the field of visual attention, it is a regular practice to record eye fixations in
order to understand the attentional brain mechanisms. By varying the protocol
conditions, the stimuli, the observer’s tasks, particular behavior can be observed
and analyzed. Such mechanisms are not related to only low level actions, but
may also be related to visual search, object recognition, memory task etc. Thus,
we will intuitively turn to this technology and type of protocol to measure color
harmony-related behavior (Chapter 8) and create an associated ground truth
(Chapter 9).
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Chapter 6

Introduction

The second part of this thesis consists of three chapters and aims at dealing with
the concept of color harmony through an experimental and prospective study.
The two first chapters are purely experimental by designing two distinct experi-
ments with an eye-tracking: the first one related to the color factor (Chapter 7)
and the second one to the color harmony factor (Chapter 8). Building on them,
the third chapter (Chapter 9) aims at creating a ground truth by filtering and
post-processing the data gathered in the experiment of Chapter 8.

In this chapter, we explain our approach by depicting a short state-of-the-
art of the task protocols for the eye-tracking experiments (Section 6.1). In a
second section, we describe briefly the recent debate about the implication of
color in visual attention mechanisms (Section 6.2). In a third section, we tackle
the color factor in the context of eye-tracking (Section 6.3), e.g. the involved
protocols, tasks, stimuli. Finally, we explicitly provide the different hypothesis
that we are going to test along this part (Section 6.4).

6.1 The experimental perspective

We tackle the experimental problem of color harmony as being related to visual
attention and involving top-down mechanisms (Chapter 5.2). Since visual at-
tention is mainly measured by eye-trackers, we propose an attempted paradigm
to characterize color harmony by means of eye movements information mea-
sured with a task protocol (Chapter 8). The related works in color harmony
are not so important and the experimental field remains widely unexplored.
Main past contributions concern controlled and simple stimuli in experiments,
e.g. patches of two or three colors arranged either side-by-side or contrasting in
backward/forward presentation [195, 241, 230]. Considering such stimuli, the
application and generalization of current funding turned out to be limited for
natural and complex scenes. Consequently, substantial additional ways could
be investigated in characterizing the concept of color harmony: having more
complex stimuli for characterizing color harmony (how many colors, which pro-

68



portion? etc.), looking at the spatial combination and influence, defining a color
harmony masking and so on.

To measure purposely color harmony effects, we thought a task protocol was
necessary. In other words, would it be enough to ask participants for pointing
out the harmonious color? This is a bet; if they can point it out consistently,
we assumed they understood the concept and agreed on its assessment. On
the other hand, if they disagreed, it would be reasonable to conclude that the
concept is not universal (over our participants at least) and that such concept
infers very high level attentional mechanisms related to personal taste, experi-
ence and so on. Thus, a non-exhaustive review of task protocols in eye-tracking
experiments is provided in the following paragraphs.

Pioneer work of Yarbus [275] is well-known from the community: he showed
the evidence of task-related scanpaths for identical stimuli. Even if the ex-
perimental condition as well as the conclusion have been recently revisited
[64, 248, 88], he introduced the notion of task dependency later investigated
under different conditions. DeAngelus and Pelz [64] found clearly that eye
movements were task-dependant, but less drastically than Yarbus exposed it.
In the same vein, Tatler et al. [248] drew the same conclusion as Yarbus ex-
periment related to faces. One step further, Greene et al. [88] tentatively aim
at predicting task conditions of different scanpaths. They highlighted evidences
of differences between scanpaths but could not predict the task by using only
eye movement patterns. Recently, Borji and Itti [31] as well as Kanan et al.
[125, 124] reinterpreted the data provided by Greene et al. [88] and found that
it is possible to decode and infer from machine learning techniques the task’s
observer from eye movement, significantly above the chance level. Borji and Itti
[31] also evidenced the same conclusion on Yarbus’ stimuli and some others, but
more moderately. Yarbus’ work motivated numbers of investigations on task
role for eye gaze data. Tatler et al. [246] also investigated the task influence on
spatial statistics and found unsurprisingly clear evidences of differences between
free viewing and searching tasks on saccade amplitudes. They temperate their
results based on potential influence of task nature and highlighted the need
for complementary investigations of task bias especially in any saliency-based
models.

Other studies proposed to extend Yarbus’ conclusions to more complex tasks,
environment and stimuli. Elaborated tasks, such as walking, driving [138] or
washing hands [204] with non-static eye-tracking systems or non static scenes
have concluded that a task-dependant strategy is elicited by the visual system
and is not related to salience or conspicuity of objects in the scene. Same
conclusion appeared on gaze data for the task of copying a colored pattern of
building blocks [16]. Decision-making task reveals to be a favor ground for the
investigation of the influence of eye movement control during complex cognitive
tasks. A complete review of task diversity is proposed by Ballard and Hayhoe
in [16] where they tentatively proposed a task-dependent approach modeling of
gaze control and argue for abandon of image-based computational models.

Based on these studies, the task strategy of the visual system does exist but
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its characterization or prediction depends on the complexity and the own nature
of the task.

However, before investigating such experiment, we would like to clarify the
color role in the guidance of visual attention. In Chapter 7, a first experiment
involving the color factor in an eye-tracking experiment is detailed and serves
as a support to the second experiment proposed in Chapter 8.

6.2 Color and Visual Attention

Chromatic feature is a predominant factor in the human visual attention system.
Even if it does not represent all the information required for the understanding
of a scene, it may intuitively be considered as a major factor that impacts the
visual attention deployment.

Visual pop-out effect [254] occurs when a singular object is swamped in a
homogeneous set of distractors. Transposed to the color case, it is obvious
that a red line would attract immediately the attention when presented among
several green lines. This pop-out phenomenon happens early during the pre-
attentive stage. However, some studies [251, 238] got interested in whether
such effect really occurs due to the color contrast or if a luminance difference
between the two present colors is hidden and responsible for such attraction.
In addition, the literature highlighted a paradox: while the where stream is
recognized for carrying out attentional processing [210], these dorsal regions do
not deal with color information (Section 2.2.4). Hence, the color feature should
not be involved on its own in attentional guidance. Theeuwes [251] made an
experience to state on the parvocellular (P or what stream) involvement in
attentional guidance. They did not measure any pop-out effect between two
isoluminant colors, confirming that the what stream (processing the color) is
too slow to elicit pre-attentive mechanism. On the contrary, Snowden [238]
evidenced with a similar paradigm that a chromatic cue attracts attention,
arguing two possible reasons: either this is due to the fact that the M or where
stream is not completely color-blind or the P (what stream) stream plays a role
in attentional guidance as not assumed before.

Tatler et al. [249] studied the implication of luminance, contrast, chro-
maticity and edge-content in the visual attention deployment. Their precursor
work demonstrated carefully the contribution of such features over time. They
evidenced that discriminability between fixated and non-fixated areas is more
important for the contrast and edge-content features than for the luminance and
chromaticity. Also, they pointed out that such measured rates are surprisingly
low (63% for contrast and edge-content features and 57% for the luminance and
chromaticity features), showing that attention is far from being entirely driven
by image statistics. This may lead to reconsider the key role of such features in
the biological architecture of models (Section 2.3.2).
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6.3 Color and Eye-tracking

In this section, a focus is set on existing experiments involving the color fac-
tor or color attributes in a context of eye-tracking. The purpose of such eye-
tracking experimental methods may differ regarding their study context. How-
ever, setting-up an eye-tracking experiment is likely to be related to visual
attention deployment.

Baik et al. [15] investigated the visual attention with low level color-related
stimuli: mainly controlled patches in hue, saturation and brightness, having
potentially a small object with other controlled color attributes. Observers
had to watch randomly localized color patches. Through three eye-tracking
experiments, they end up with four interesting conclusions: 1) subjects are
more attracted by warm colors than by cool colors, 2) tone does not influence
significantly the subjects’ initial attention, 3) complementary color contrasts
greatly drive the attention and 4) background and foreground contrast is not
relevant in visual attention deployment.

Hu-Phuoc et al. [104] aims at understanding with experimental data the
impact of color as a visual feature on natural scenes. Following the Feature
Integration Theory (FIT) of Treisman and Gelade [254], they purposely want to
estimate the relevancy of integrating such cue in a visual attention model [103].
To do so, they designed a free viewing eye-tracking experiment on three stimuli
sets: color scenes, their counterparts in greyscale and abnormal colors. As first
suggested by Tatler et al. [249], their analysis revealed that color information
contribute little to eye fixations, and by contrast, high spatial frequency lumi-
nance plays a far more important role. This conclusion is also confirmed by Liu
and Heynderickx [152] who give up the color channels in their computational
model for decreasing complexity in a constraint context.

Earlier, Frey et al. [81] focused on the role of color features (saturation,
Red-Green color contrast, Blue-Yellow color contrast) on visual attention for
different image categories (Face, Rainforest, Man-made...). They also recorded
eye fixations of the selected images for each category and their greyscale ver-
sion. Since most of categories (four over seven) produced a significant difference
between the fixations locations of the two conditions, they claimed a strong
influence of color on human overt attention. Unfortunately, they did not pro-
vide any correlation numbers for the complete set of pictures. Later in [82],
the same authors focused on the Rainforest category for which they found the
highest color-contrasts at fixated locations. Going one step further, they ma-
nipulated the color properties of stimuli before presenting them to color-normal
observers and deuteranope observers. This color deficiency as well as the color
channels manipulation of stimuli allowed to evidence that Red-Green contrast
has a significant influence in overt attention, much higher than Blue-Yellow
contrast.

Recently, Amano et al. [10, 9] experimented a search and detection task,
measured by eye-tracking, where the color properties were responsible for 57-
60% of the variance in detection performance. This is reported as being as
good as gaze position in free viewing. However, the authors pointed out also a
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singular behavior of the performances related to the scene category [9].
Jost et al. [121] also investigated the contribution of color in the prediction of

a visual attention model. In the same vein, Hamel et al. [92, 93] set up recently
an eye-tracking experiment with colored and grey pictures. They measured a
higher variability between observers for eye movement positions of the color
stimuli than for those of grey stimuli [92]. One step further, they measured a
slight influence of the color factor in eye movements, i.e. the number of fixated
regions was slightly higher for the color stimuli than for the grayscale stimuli
[93]. They demonstrated that having a luminance-based model is good enough
to predict the saliency of color and grayscale stimuli.

Related to color but at a higher cognitive level, Lee et al. [146] studied
the notion of color preference. They brought a new methodology for the un-
derstanding of this concept by the introduction of an eye-tracking experiment.
They demonstrated a clear correlation between observers’ color preferences and
their return of fixation, fixation durations and fixation counts. Decorrelated
from the color preference factor, they observed that more attention was paid to
textured colors than non-textured colors.

Surprisingly, the work involving the color factor in an eye-tracking exper-
iment is not so wide. Most of them are related to visual attention and the
associated computational model. The conclusions are not shared enough to en-
sure a well-established basis on color role in viewing behavior. We decided to
conduct our own experiment in eye-tracking and to estimate first the impact
of color factor in visual attention deployment. We added another factor which
was investigated first by Nummenmaa et al. [136, 191]: the emotional category
of pictures. In addition to color factor, we would like to measure any potential
effects of emotion on eye movements. We differentiate from Nummenmaa et al.
by using other emotion categories, such as developed in Section 7.1. Based on
the findings of this first experiment, which appeared to be later consistent with
[104] about the color factor, we could set-up a second experiment with a color
harmony task.

6.4 Hypothesis and approach

As far as we know, there is no tentative work for recording eye fixations targeting
the color harmony factor. There are two goals we pursue: 1/ we want to better
understand the visual attention mechanisms related to color harmony in order
to model it; 2/ we want to create a ground truth in order to validate our model
(Chapter 13) and to exploit this latter within an image processing editing tool
(Chapter 14). To do so, we measured in a first experiment the surrounding bias
related to color and emotional factors. In a second experiment, we instructed
the observers with a color harmony task and recorded the eye fixations. Finally,
in Chapter 9, we exploited the findings and data of the second experiment
(Chapter 8) to derive a ground truth.
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Experiment 1

Hypothesis 1: The color factor influences the visual attention deployment.

Hypothesis 2: The emotion factor plays a role in visual attention deployment.

Experiment 2

Hypothesis 3: During a task protocol with eye-tracking for measuring color har-
mony, the inter-observers consistency is high.

Hypothesis 4: There is an influence of color distribution and color diversity
in the assessment of color harmony.

Ground truth

Hypothesis 5: The eye movements and individuals’ assessment of color harmony
are relevant enough to create a ground truth.

Global hypothesis: the concept of color harmony is well understood by ob-
servers, homogeneous between anyone and close to universality.
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Chapter 7

Experiment 1: Color Factor

Contribution: C. Chamaret, Color impact in visual attention deployment con-
sidering emotional images, Proc. SPIE. 8291, Human Vision and Electronic
Imaging XVII 82911T (February 9, 2012)

The proposed experiment is a preamble to the central problem of achieving
the characterization of color harmony. This experiment gets the reader more
familiar with eye-tracking experiment and lays the foundations for designing
any protocol involving both eye-tracking and color harmony (Chapter 8).

7.1 Introduction

Biological mechanisms related to colors are well-known, e.g. in the eye, it is
clearly the role of cones to translate the inputted wavelength signal into a neu-
ronal signal that could be interpreted by brain areas (Section 2.2.3). However,
it becomes less clear when studying the role of these different areas for decod-
ing the color information (Section 2.2.4 and 6.2). Related to this statement,
few experiments (in proportion to other features, such as orientation, spatial
frequency...) really investigated the role of color in visual attention. Only re-
cently, its contribution in eliciting attentional mechanisms has been debated
[249, 129, 81, 103].

Some investigations focus on differentiating a specific behavior per image
category. Thus, Parkhurst et al. [203] established that color plays a dominant
role (compared to intensity and orientation) in the fractals and home interior
category, while this is the luminance feature for the landscape and man-made
categories. In the same vein, Frey et al. [81] measured the influence of several
color features on visual attention for different image categories. They evidence
a different contribution and role of color depending on the image category. Fo-
cusing on pictures of tourist attractions, Kim [129] evidenced an effect of color
in the task of working memory, but not in visual attention.

Other investigations tackle the problem of measuring color influence in vi-
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sual attetnion by focusing on a specific task. In [10, 9], Amano et al. aimed at
determining in what extend the color properties of natural scenes play a role in
search and detection of a target. With such paradigm, they did find a significant
ability of color properties in detection performance over scenes.

In this chapter, a study on color impact has been conducted through an eye-
tracking experiment performed on color pictures and their greyscale counterpart.
The hypothesis behind this experiment is to measure and characterize the con-
tribution of color. Literature about such topic remains unclear as mentioned
previously. Our goal is to clarify it to some extend in order to avoid any poten-
tial bias for the recording of eye movements with a color harmony task (Chapter
8).

In addition, we foreseen that the emotional strength embedded in stimuli
may also create a bias in visual attention deployment, such as recently demon-
strated [126, 187, 107, 187]. In the proposed experiment, we also measure the
effect of emotion in visual attention deployment by employing pictures anno-
tated along emotional categories.

The work of Hu-Phuoc et al. [103] is probably the most related one to this
chapter. Adopting the same methodology, they recorded eye fixations for color
and greyscale stimuli from natural scenes and analyze the differences on eye
statistics. They brighten up their experiment with abnormal color stimuli to re-
inforce their conclusion about color impact in the visual attention deployment.
They end up with the counter-intuitive statement on a low contribution of the
color visual feature in driving visual attention. Liu and Heynderickx [152] also
evidence the same assessment with a similar experiment aiming at reducing the
complexity of a visual attention model by doing only luminance-based model-
ing. Having the same purpose, Hamel et al. [92] set up recently an eye-tracking
experiment with colored and grey pictures. They measured a higher variabil-
ity between observers for eye movement positions of the color stimuli than for
those of grey stimuli. Interestingly, they employed unusual metrics: the disper-
sion and the clustering of eye fixations.

Several papers have investigated the link between the deployment of visual
attention and the emotional factor. Nummenmaa et al. [136] and Calvo et
al. [40, 39] have demonstrated the attention biased potentially created by emo-
tional pictures. They presented concurrent pictures or stimuli having pleasant
and unpleasant characteristics. Then, they have measured the statistics regard-
ing the first fixations, the saccade amplitude and the proportion of viewing time
for each simultaneous stimulus. They found a significant trend to fixate first on
emotional pictures. In [105], the authors presented strongly emotional stimuli
(high-arousing erotica and mutilation) to observers and recorded ERP (Event-
Related Potential or a brain electrophysical response) activity. These measures
revealed that the interaction of attention and emotion varied for specific process-
ing stages and then it has to be specified for each stage. The problem is partially
solved for threat stimuli since the neural circuitry is now well established, but
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it remains complex for positive or reward-related cues [200].
Very recently, a high interest grew up in the visual attention community

for studying cognitive processes related to the emotional factor [126, 187, 107,
187]. In addition to emotionally-annotated stimuli, also the current emotional
states of observers has been reported as influencing visual attention deployment
[127, 126]. However, this aspect is outside of this experiment’s scope. Kaspar
et al. [126] evidenced an impact of emotion on viewing behavior through two
experiments involving positive, negative and neutral stimuli. Humphrey et al.
[107] employed stimuli with emotional objects and salient regions differently lo-
cated and reported that the first fixation had more probability to fall within the
emotional objects in the case of positive and negative pictures than in neutral
stimuli. Niu et al. [187] concluded the same for the first five fixations. These
recent findings are wider discussed in Section 10.1.

Thus, this chapter is a preamble to the central topic of color harmony developed
in the next chapter. It proposes two main contributions:

• The study of color factor regarding eye fixations, more precisely fixation
duration, saccade amplitude, as well as the prediction of visual attention
models [113, 144] and their performances regarding the two conditions.

• The study of emotion factor regarding eye fixations on the same database
where each picture has been classified into four emotional categories:
positive-passive, positive-active, negative-active or negative-passive.

7.2 Experiment

7.2.1 Protocol

The proposed eye-tracking experiment has been conducted on 200 pictures by
means of a SMI RED 50 RED IView X system with a 50 Hertz sampling (Sec-
tion 3.2). This apparatus has remote and contact-free features for eye movement
studies. Two infra-red camera record pupil reflection and extrapolate gaze po-
sition at 50 Hertz. Stimuli were presented on a screen resolution of 1280x972
pixels screen at a distance of 60 cm (35x27◦ of visual angle). Each subject
recording began with 9 calibration points. Twenty unpaid subjects have par-
ticipated in the experiments. All observers had normal or corrected to normal
visual acuity and normal color perception. All were inexperienced observers
and naive to the experiment. Before each trial, the subject’s head was correctly
positioned so that their chin pressed on a chin-rest.

Each subject watched randomly the complete dataset of two hundreds pic-
tures either in their color or greyscale version, knowing the repartition between
the number of color and greyscale stimuli was equal. Time presentation was
5000 milliseconds for each image and a grey/neutral image with a randomly
located cross was presented for one second between each image to minimize the
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centered bias. Ten subjects were recorded for each group of pictures. The sub-
jects were instructed to do natural free viewing of stimuli. Participants were
also informed that questions can be asked after the presentation of a stimulus.
The questions were only asked in order to keep the subject concentrated on
the stimuli. The questions were randomized and were about high level content
characteristics such as aesthetic, quality, etc. in order to avoid a subject search
strategy.

7.2.2 Database relevancy

The color factor is both easy to subjectively apprehend and difficult to quanti-
tatively measure. The database creation remains a key step in this experiment.
First, the pictures has been chosen from a database D annotated regarding their
emotional category [3, 162]. Second, the database has been refined by removing
“too weak” images in terms of color. Images which may be subjectively qual-
ified as dull, pale are considered irrelevant in the global experiment. Indeed,
we considered them as being too close to greyscale pictures too elicit a specific
behavior between the conditions. Also, atypical values of luminance contrast
may distract the observers’ attention to the detriment of color factor. Conse-
quently, colorfulness and contrast metrics have been selected as a measure of
color quantity or impact in an image. While the colorfulness Cf is a combina-
tion of the color variance and the chroma magnitude C in the CIE-Lab space
(L, a, b components) [96], the contrast or root mean square contrast Ct is the
standard deviation of image luminance L [192]. Equations 7.1 and 7.2 stand for
respectively the colorfulness and the contrast metrics used in the determination
of final database Df .

Cf = σCp + µCp (7.1)

Ct =

√√√√ 1

P − 1

P∑
p=1

(
L(p)− L

)
(7.2)

where Cp =
∑
p

(√
a(p)2 + b(p)2

)
, L(p) is the luminance value and L is the

mean luminance. The p index stands for the current pixel of the considered
image having a total number of P pixels.

These two metrics are computed on a image basis for the entire database
and form a numerical pair. Thus, images with extreme values of pair would
be considered as outliers and discarded from Df . Empiric thresholds (TlCt =
0.18, ThCt = 0.4, TlCf = 120) have been determined to get rid of images I with
too low contrast and colorfulness as well as too high contrast values such as
depicted in Equation 7.3:

∀Ii ∈ D, Df =
{
Ii | TlCt < Ct(i) < ThCt

⋂
TlCf < Cf (i)

}
(7.3)

Figure 7.1 illustrates numerically (a) and qualitatively (b,c) the resulting dis-
carded pictures.
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Figure 7.1: Illustration of dataset selection based on pairs of (Colorfulness;Contrast). (a) For each
picture of the original dataset, the contrast is depicted as a function of the colorfulness. Four
discarded pictures are depicted in (b) and (c). In (b), colorfulness and contrast are both too low to
be considered as a relevant stimulus for the expemeriment. In (c), the blue picture has a very low
contrast, while the yellow picture has a too high contrast.

7.3 Characterizing color influence in visual at-
tention deployment

This section proposes to evaluate the similarity of eye fixations recorded on the
color pictures and their greyscale counterparts (the two involved conditions).
The original assumption is to measure and quantify the influence of color factor
in the deployment of visual attention. A first set of results presents a qualitative
appreciation of eye fixations maps as well as the statistics reflecting the degree
of correlation between the two conditions. Then, a second analysis focuses on
saccades and fixations data in order to derive specific cues related to these two
conditions.

7.3.1 Visual and statistical similarity

Three metrics, such as the Normalized Scanpath Saliency (NSS), Linear Corre-
lation Coefficient (CC) and the ROC curve, have been computed to estimate the
similarity between eye fixations (Section 3.6) measured for color pictures and
their greyscale counterparts. The scanpath composed of less than 5 fixations
were deleted because they reflect either missing recording or too long fixations
associated to visual fatigue. Next, to keep only typical fixations, the fixation du-
ration distribution of each scanpath was computed to discard fixations outside
the range [average duration +- 2 x standard deviation]. For each pair of images
(color picture versus greyscale counterpart), the computed correlations are av-
eraged over the complete database for each metric. The numerical correlations
depicted in Figure 7.2 attest to a high similarity between the two conditions.
The higher the three metrics, the higher the correlation. A NSS value above 2
means a pretty high correlation considering a negative value means no corre-
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lation. In the same way, a correlation coefficient and the area under the ROC
curve above 0.5 means the maps are likely more correlated than taking random
samples.
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Figure 7.2: Similarity metrics computed between the color pictures and their greyscale counterparts.
For each metric, the correlation is computed pair-wise (color versus greyscale counterpart) and
averaged over the complete dataset. The standard deviation is illustrated with red bars.

Some oculometric or human saliency maps are depicted in Figure 7.8 and
7.6. The presented examples in Figure 7.8 reflect NSS values from 0.80 to 2.41
computed between the two conditions. One can appreciate qualitatively the
high correlation between the maps of the color and greyscale pictures.

For each metric, human saliency maps of color pictures versus grey pictures
are highly correlated leading to the conclusion that color does not influence
global deployment of visual attention on pictures. Qualitative results on Figure
7.8 demonstrate that semantic meaning and cognitive factors win the “visual
attention” competition in front of the low level color factor. Indeed, they are
likely responsible for guiding the deployment of visual attention.

7.3.2 Oculometric appreciation

In this section, some accurate properties of eye fixations have been studied:
fixation duration (Figure 7.3a), saccade amplitude (Figure 7.3b) and spatial
fixation localization (Figure 7.4).

For the two curves in Figure 7.3, we gathered the eye data into bins of
500 milliseconds. Two stages may be identified when appreciating the shape
of the curves: early and middle phase, respectively from 0 to 1500 ms and
from 1500 to 3000 ms [202]. Similarly to [255, 105], results demonstrate that
fixation duration strongly increases just after stimulus onset and then tend to
an asymptote around 1280 ms, whatever the condition. The curves of Figure
7.3b indicate that the saccade amplitude decreases over the time course of scene
perception. The decrease was stronger at the beginning of the viewing and then
becomes stable over time whatever the condition. These curves are consistent
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Figure 7.3: Color stimuli versus greyscale stimuli: (a) fixation duration and (b) saccade amplitude
as a function of time viewing.
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Figure 7.4: Color stimuli versus greyscale stimuli: (a) Pearson correlation and (b) Mean Square
Error on spatial coordinates. Only the second fixation is significantly inferior to other fixations for
the mean square error.

with previous studies [255, 105]. Observing closer the two conditions, there is no
significant difference (paired t-tests, p ≤ 0.05) for fixation duration and saccade
amplitude as a function of time viewing.

In addition to the previous indicator, we propose to study the correlation
between eye fixations localization for the two categories. Spatial coordinates
are potentially an interesting indicator for investigating the differences of visual
attention deployment. Pearson correlation and mean square error have been
computed for measuring differences between the spatial coordinates over the
two conditions (Figure 7.4). The first fixation is the least correlated fixations
over the five first fixations (random value close to 0.5). Whatever the context
of measure, this result would have been the same; the first fixation location is
related to the stimulus with grey cross presented before each image. At the
opposite, the second fixation of each scan path provided the highest correlation
value between the conditions. Then, the subjects focus on the same area of
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interest whatever the presence of color cue. The correlation decreases over fixa-
tion number as the competition between bottom-up and top-down mechanisms
is increasing. This observation is similar to the inter-observers congruency or
consistency [203, 249]. The difference between observers’ scanpaths is time-
dependent; the consistency in fixation locations between observers decreases
with prolonged viewing, assuming that bottom-up or stimulus-dependent mech-
anisms occurs first. The color component does not seem to influence the eye
fixation locations and focal behavior which is usually associated to the begin-
ning of the scanpath [247], but rather the cognitive process associated to later
scanning.

In conclusion, the color factor does not influence the visual attention deploy-
ment in our experiment with the employed dataset. This result can feed the
discussion about the disagreement related to this question in the community as
discussed later in Section 10.1.

7.4 Going further

This section brings an additional look on data and proposes to go further than
conventionally, looking at the statistics on eye fixations data and maps in the
context of saliency models and emotional categorization.

7.4.1 Saliency models

Most of existing computational models, whatever their approach, take advan-
tage of color information when predicting the deployment of visual attention on
stimuli. We are interested in this section on the accuracy of their prediction
regarding our dataset of color and greyscale stimuli.

The computational model of Itti [113] and the revised version of the LeMeur’s
one [256] are involved in this study. Their saliency maps have been estimated
for the two conditions. Each model has been applied to the color and greyscale
stimuli pictures leading to the following notations: Itti color, Itti grey, LeMeur
color, LeMeur grey for the considering dataset. In Figure 7.5, NSS metric has
been computed between the prediction of the considered model and the human
fixation maps. As a reference of performances, the NSS between eye fixations
from both conditions is also provided. We evidence no significative differences
of prediction performances between Itti color versus Itti grey, as well as LeMeur
color versus LeMeur grey. Only the inter-model prediction (Itti color versus
LeMeur color, and idem for grey condition) brings a significative effect (t-test,
p ≤ 0.05), that translates rather the difference of performances and design
between the models.

In order to characterize the contribution of color in the models, it was inter-
esting to cross compare the human fixation maps with prediction maps. In other
words, e.g. human fixation maps from greyscale stimuli have been correlated
with computational saliency maps computed from color pictures and the other
way around (blue bars). This mismatch between predicted and measured data
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Figure 7.5: Color stimuli versus greyscale stimuli: Saliency models prediction. Itti and Le Meur’s
models have been computed on the greyscale and color stimuli, then compared to the corresponding
human eye fixations. (*) indicates a significant difference (paired t-test, p ≤ 0.05).

does not change significantly the correlations: the blue bars are at the same
level as the black ones in Figure 7.5, advocating again for a non-influence of the
color factor.

Such observations raise the question about the integration or fusion of color
components within the computational model. Probably, it is useless to consider
the color factor due to the high correlation of original eye fixations between the
two conditionssuch as depicted qualitatively in Figure 7.6). Achieving the same
conclusion, Liu and Heynderickx [152] designed a computational model, having
originally complexity constraint, that works only on the luminance component.
They also evidence the counter-intuitive low contribution of the color factor in
the attentional mechanism that do not justify any cost effort in highly constraint
environment.

7.4.2 Emotional factor

Originally, the dataset was manually annotated into 8 discrete emotional cate-
gories: fear, anger, sadness, disgust, contentment, awe, amusement and excite-
ment. Such representation may be somehow controversial since these categories
may induce overlapping of categories. We remapped the image from the discrete
categories into 4 more conceptual categories such as positive-active (amusement,
excitement), positive-passive (contentment, awe), negative-active (fear, anger)
and negative-passive (sadness, disgust). This follows 2-dimensions representa-
tion of Arousal-Valence concept. In the literature [200, 105, 40], the visual
attention deployment has been studied on emotional stimuli classified in three
categories: pleasant/positive, neutral and unpleasant/negative. We propose a
slightly finer classification which catches the arousal dimension which has been
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maps (from [256]) and the associated NSS values.
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not intensively studied in the literature.
An evidence of inter-category difference is found regarding NSS values be-

tween color and greyscale eye fixations (Figure 7.7): the “positive-passive” cat-
egory shows up less similarity between the color and greyscale conditions. Nev-
ertheless, this distinction is not found for the other correlation criteria (CC and
ROC), then the following findings could be potentially reconsidered in other
studies. The “positive-passive” category evidences qualitatively less pictures
with clear region-of-interest, but rather “landscape” pictures, leading to less
consistency over observers between the two conditions.
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Figure 7.7: Color stimuli versus greyscale stimuli: : Emotional factor. NSS metric computed for the
emotional categories between the two conditions. Only the ”Positive-Passive” category produces
a significant lower (but still high)similarity. (*) indicates a significant difference (paired t-test,
p ≤ 0.05).

7.5 Summary

In this chapter, we propose to study mainly the impact of color feature on the
visual attention deployment. An eye-tracking experiment has been conducted
on color pictures and their greyscale counterparts. Moreover, the employed
database has been previously annotated into emotional categories. Some pic-
tures have been purposely removed from the original dataset based on objective
criteria, such as the colorfulness and contrast measures, in order to avoid any
bias.

Some correlation measures (NSS, CC and ROC) as well as oculometric statis-
tics have been computed leading to the conclusion that eye fixations recorded
for the two conditions were highly similar. In other words, the color information
does not impact the visual attention of observers; people keep fixating on the
same areas, with the same duration and change to the next area with the same
amplitude. These results are counter-intuitive, but can be also attributed to the
nature of the dataset.
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In the same vein, the computational saliency computed from two state-of-
the-art models has demonstrated no significant difference for prediction between
the color and greyscale conditions. It raises the question of the integration of
such cues in the design of visual attention model. This last point was not
a pending issue so far in the literature since it is agreed that color plays a
role in visual attention. The compromise is probably the integration of color
component within the visual attention models, but weighted by a semantic pre-
analysis of image which may determine a priori the potential impact of color
within the presented pictures. In this experiment, semantic attributes seem
more responsible of the viewing behavior.

The emotional nature of categories present in the proposed dataset was ex-
ploited to potentially evidence inter-category difference for the two conditions.
Slight category effect has been found for one metric, but not for the two others.
Globally, it is difficult to conclude about the impact of the emotion factor.
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(a) 2.41 / 0.86 / 0.91 (b) 2.24 / 0.79 / 0.86

(c) 2.21 / 0.77 / 0.85 (d) 2.12 / 0.86 / 0.89

(e) 2.04 / 0.78 / 0.88 (f) 2.11 / 0.77 / 0.89

(g) 2.03 / 0.76 / 0.85 (h) 1.78 / 0.68 / 0.90

(i) 1.39 / 0.69 / 0.93 (j) 0.80 / 0.48 / 0.83

Figure 7.8: Qualitative appreciation of human eye fixation maps: human heat map and saliency
map. For each couple of color and greyscale pictures, their similarity metrics are presented in this
order (NSS / CC / ROC).
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Chapter 8

Experiment 2: Color
Harmony

In the previous Chapter, the non-influence of the color factor in the visual
attention deployment have been demonstrated during a free-viewing exploration.
Regarding the emotion factor, it is more difficult to conclude on its influence on
visual attention deployment. We will not conduct further investigations about
this aspect. In this Chapter, we investigate the concept of Color Harmony
by means of eye fixation recording. As discussed previously, we tackle the
assessment of Color Harmony by measuring the visual attention deployment
under a particular task. In other words, we define a paradigm that could be the
inference of Color Harmony through eye patterns. The experimental setup and
the analysis of eye data are depicted along this Chapter.

8.1 Introduction

In this Chapter, we will discuss different issues related to the subjective nature
of color harmony in the context of gaze data. As far as we know there is no
previous work performing an eye-tracking experiment with a color harmony task.
In Section 6.1, we presented some work having implemented a task protocol in
the context of eye-tracking. Employed tasks and purposes are vast, thus the
experiments show that the prediction of scanpaths is related to the complexity,
the own nature of the task. Nonetheless, it is incontestable that a specific
strategy is always applied by the visual system for a given task.

As a first contribution in this Chapter, we are investigating the gaze data
statistics by proposing a qualitative and quantitative dataset analysis, some
statistics on eye fixations and an analysis of the inter-observer agreement. As a
second contribution, we carefully selected the involved stimuli in order to study
the behavior of specific color distributions. More specifically, we purposely
ingested in the dataset some harmonized pictures, processed automatically by
a software that adjusts (or remaps) disharmonious hues of a picture, as well as
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some pictures having a large color distribution.
Thus, we attempt answering the following questions: Is the harmony task

consistent over observers? Is it possible to derive or learn eye movement patterns
related to such task? Color is a low-level feature, is harmony related to it or
rather inferred at a cognitive stage? In addition, since we controlled the color
distribution of different stimuli, we also would like to know if we can characterize
a specific behavior depending on the nature of the stimuli.

As mentioned, the employed pictures have specific color distributions that
handle complementary, analogous and orthogonal properties of hues. Some of
these original stimuli have been post-processed by means of a computational
method to generate their harmonized counterpart [24] (Chapter 12). In addition,
much complex stimuli with large color distribution are also dropped in the
dataset. A two-passes protocol has been designed with such mentioned dataset;
these are the two conditions in this experiment: a free-viewing pass serves as
a control condition and a second pass measures the eye patterns under a color
harmony task.

In the following Sections, we detail the creation of the dataset and pro-
vide statistics about it (Section 8.2). Then, we explain the paradigm and the
employed protocol of the proposed experiment (Section 8.3). Afterward, we
provide three axes for the analysis of results: a focus on fixations and saccades
(Section 8.4), a measure of the inter-observer congruency (Section 8.5) and a
point about the stimuli with particular color distribution (Section 8.6). Finally,
we summarize the findings (Section 8.7) that will be discussed in Section 10.2.

8.2 Dataset Creation

Previous work about color harmony measurement usually restrict their stimuli
from having more than three different colors [195, 241, 230]. As the first work on
the characterization of the color harmony factor, these studies have purposely
limited the number of colors (and their interaction) and controlled some adja-
cent factors (i.e. luminance, spatial contrast, texture...) that could bias the
measurement of color harmony. Thus, the curves and equations fitting the data
they collected during their experiment are valid when the interaction between
colors and the side features are conform and limited to their experimental setup.

It has motivated our work to evaluate such concept on more complex stimuli.
We took care of controlling intrinsic characteristics of our stimuli, while selecting
complex images (not patterns). We constituted a dataset of 32 pictures that
cannot be qualified as natural pictures or scenes. It is more composed of abstract
and artistic pictures.

Our study on Color Harmony directly refers to hue which is the usual compo-
nent to express color harmony in most of related experiments. In order to have
a control and diversity on such parameter, we employed a color search engine
available online. The pictures were requested from the search engine TinEye
Labs1 under conditions related to Hue, Saturation, and Value (HSV). Pictures

1http://labs.tineye.com/multicolr
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are originally uploaded from Flickr c©.
In addition, three other criteria motivated our selection: picking only pic-

tures under Creative Commons license2, balancing the color distribution of pic-
tures and having the most abstract pictures (painting, art effect...) as possible.
These two last point are discussed in the next section. Figure 8.1 depicts the
pictures selected in the dataset. The two following paragraphs develop how the
pictures have been qualitatively selected and provide statistics for characterizing
the dataset.

(a) (b) (c)

Figure 8.1: Complete dataset created for the Experiment 2 on Color Harmony. It consists of (a) 32
original pictures, having different color distribution on hue wheel that matches the Matsuda’s color
theory. The seven first rows are related to the 8 Matsuda’s harmony templates depicted in (b).
Within the 32 pictures, some pictures do not have a straithforward match (unclear row) and others
have purposely a large color distribution (last row). The (c) column is the harmonized pictures
processed by an image processing tool [24] as well as their resulting color distribution.

2http://en.wikipedia.org/wiki/Creative Commons license
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8.2.1 Distribution: qualitative appreciation

Saturation and value have been requested to be set at 80% in order to favor
abstract pictures rather than natural pictures. In a natural environment, the
highly saturated pictures are usually over-exposed (leading to clipped areas).
However, this is unlikely to reach a very high mean saturation for a natural
picture. Otherwise, the pictures is completely over-exposed and unusable.

We expect that abstract pictures (like those in Figure 8.1a) would make the
assessment of color harmony possible despite the complexity of the pictures.
These pictures are at our sense easier to assess than natural scenes with many
different colors and complex elements. In other words, the abstract pictures,
such as selected here, are a good intermediary between the simple two-color
patterns used so far in color harmony experiments and any natural pictures.

Multiple manual requests have been performed to cover the complete hue
wheel, from 0 to 360◦. Our attempt is to cover a large and balanced color scale
expressed by the hue. The search engine sorts the target results according to a
given distance from the color request (manually entered either by Red, Green
and Blue components values or a point on the hue wheel) to the color histogram
of pictures. Thus, typically the first pertinent pictures have a distribution with
a hue peak around the requested hue. This is convenient for our study since we
can pick up pictures with limited and controlled number of colors. This makes
the measurement and interpretation of potential effect more reliable.

There are still many potential candidate pictures to be selected. Two addi-
tional qualitative criteria discriminate the choice of the dataset: the geometric
configuration of peaks on the hue wheel and the semantic presence/meaning
within the picture. The former is related to harmony theory dealing with com-
plementarity, orthogonality and similarity of hues, such as the Matsuda’s color
templates [168]. As detailed in Section 4.2.1 and illustrated in Figure 8.1b, the
templates through their different design, i.e. size and arrangement (i, L, T . . .),
have been qualitatively mapped into the candidate pictures. We selected those
that could balance the dataset following the Matsuda’s color theory. In other
words, the goal is to select a picture set that best balances all template natures
for different hue angles.

Additional pictures that could not match Matsuda’s templates have been
considered within the dataset. In order to investigate the influence of color
numbers and more generically the complexity of color distribution, we picked
up pictures with either several hue peaks or with continuous hue values all along
the hue wheel (last row of Figure 8.1).

Finally, since content itself could influence eye deployment by top-down
mechanisms, we qualitatively favor the picture having the fewest objects of
interest, being far from natural pictures. Thus, abstract or art pictures would
be preferred again.
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8.2.2 Statistics: quantitative appreciation

In order to apprehend potential bias of the dataset, we computed first order
and second order statistics. Figure 8.2 introduces histogram of hue, luminance
and saturation (HLS components) cumulated on all images. The depicted his-
tograms represent the number of pixels (ordinate axis) on the complete dataset
as a function of the hue, saturation, log-luminance values. All hues are repre-
sented at a certain level, with a slight bias for red values (around 0 and 360◦).
Due to the constraint on the dataset selection, high values of saturation are
more represented. The log-luminance curve is close to a normal distribution,
having a skew = -1.02 and a kurtosis = 1.32 which is consistent with other
datasets [214].

Second order statistics may be more relevant to characterize a dataset since
it may capture spatial relationship between pixels. Spatial frequencies are well-
known to be a discriminator in visual attention deployment [131]. We computed
the log-power spectrum accumulated on all images as a function of log-spatial
frequencies (Figure 8.2). Consistent with literature [223], we found that the
curve may be approximated as a line since it follows a power law modeled by
P = 1/fα where α is the spectral slope. For the proposed dataset, α was
approximated to 3.69 which is higher than usual value, between 1.8 and 2.4,
for natural scenes [214]. This difference may be explained by the fact that the
dataset does not contain any natural scenes, but rather simpler and artistic
pictures. The spectral slope has been identified as a low-level descriptor of
texture [25]. The higher the spectral slope, the coarser the texture is. Regarding
the nature of our study, this result may benefit our experiments by not biasing
eye movement patterns with potential texture attractiveness.

0 50 100 150 200 250 300 350

Hue
0

100000

200000

300000

400000

500000

600000

N
u
m

b
e
r 

o
f 

p
ix

e
ls

0 50 100 150 200 250
0

100000

200000

300000

400000

500000

600000

700000

800000

N
u
m

b
e
r 

o
f 

p
ix

e
ls

Luminance

0 50 100 150 200 250 300 350
0

200000

400000

600000

800000

1000000

1200000

1400000

N
u
m

b
e
r 

o
f 

p
ix

e
ls

Saturation

10-5 10-4 10-3 10-2 10-1 100

Spatial frequency (log10 cycles/image (")

105

106

107

108

109

1010

1011

1012

1013

1014

1015

1016

1017

1018

P
o
w

e
r 

sp
e
ct

ru
m

Average over all images

Fitting curve, slope = -3.69

Figure 8.2: Experiment 2: Statistics on the dataset. From top to bottom: luminance histogram,
hue histogram, power spectrum and saturation histogram.
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8.2.3 Particular stimuli

In addition to previously mentioned stimuli, we added the harmonized counter-
part of some original pictures (Figure 8.1c). Those harmonized pictures have
been automatically processed by our computational method [24] described in
Chapter 12. While in Section 8.2, the pictures are qualitatively associated to
one of the eight harmony templates, the computational method quantitatively
matches the original color distribution to the closest template by minimizing
an objective metric. In [24], we proposed the Kullback-Liebler divergence to
be minimized between the hue distribution of the original picture and an ap-
proximation of the templates distribution. Thus, all hue values that are found
outside the sector(s) of the candidate template are remapped into these grey
sector(s). For example, in the Figure 8.1, the flower pictures of T template has
no blue color after the automatic processing. The T template with a certain
angle provided the lowest energy when matched to the original hue distribution
and the blue hues are remapped inside the grey sector, just at the border, in
green hues. More details about this automatic harmonization processing may
be found in Chapter 12.

Also, we intentionally introduced pictures with large color distribution (last
row of Figure 8.1a). These harmonized stimuli as well as the large color distri-
bution pictures are addressed in Section 8.6.

8.3 Protocol

Participants

Twenty-seven employees from 20 to 53 years old participated to this experiment
with a median age equal to forty-two. There were nine females and eighteen
males. The enrollment for participation was organized as a challenge to find
the “golden eye” of color harmony, meaning the person that best fits average
harmony eye patterns for all images. Participants have normal or corrected to
normal vision. They were engaged to participate to an eye-tracking experiments
with two different passes on the same set of pictures.

Apparatus

We conducted the experiment with a SR Research Ltd. Eyelink 1000 Hz. The
calibration procedure was performed for each pass with an error inferior to 1◦

of visual angle. A 22-inch calibrated BT709 DELL monitor having a resolution
of 1900 x 1200 pixels displayed the stimuli. Participants were located 60 cm far
from the screen and positioned on a chinrest to avoid instability of measure due
to head movement along time. The experiment setup was located in a dedicated
user test room with dark wall and noise free.
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Stimuli

Over the thirty-two stimuli composing the dataset, two sets of eleven and one
set of ten pictures have been created, noted A, B and C. Each participant was
randomly confronted to either set AB, AC or BC, i.e. only twenty-one or twenty-
two of them were presented at each participant. This is to constraint the total
experiment time under twenty minutes and to limit any effects of fatigue or
boredom.

Procedure

Each set of pictures is presented twice to participants, denoted as the free-
viewing and task conditions. Before performing the real experiment, partici-
pants received a short training to get accustomed to the chinrest, the hue wheel
picture and the grey picture (Figure 8.3). For each pass or condition, a grey
stimuli with a randomly located cross is presented two seconds preceding the
five seconds presentation of the current stimuli in order to avoid any center bias
effect of the first fixation. The stimuli are also presented randomly within each
pass.

The first pass is a free-viewing exploration of the pictures where participants
were asked to look freely at the pictures (FV condition). After a short break, a
second pass consisted of watching the same pictures but having a specific task:
“watching the most disharmonious colors of the picture” (H condition). The
procedure is illustrated in Figure 8.3.

It seemed more relevant to ask for disharmony instead of pointing for har-
mony areas. Intuitively, harmonious areas are supposed to reflect most of pixels
or colors within the picture, while disharmonious area are inconsistent colors
that do not “go well” in the global picture. Having a free-viewing and a search-
task passes allow the study of potential harmony-guided effects under reference
eye patterns extracted from the free viewing pass. Moreover, it ensures the fea-
sibility of harmony task that is reasonably difficult in few seconds with unknown
stimuli. During the first pass, the observers get more familiar with the stimuli.

The second pass differs slightly from the first pass. An additional question
(and then stimulus) was introduced after each picture in order to both estimate
the task difficulty and maintain observer’s attention to the task. A hue wheel
picture (Figure 8.1 or 8.8) was presented following each stimulus where observers
were asked for pointing either the hue they identified disharmonious or the center
of the wheel if they could not perform the task.

Evaluation methods and preprocessing

For any evidence of significant differences in the next presented results, we
computed the Kolmogorov-Smirnov test (KS test) between two sets of data
[236]. Since it does not assume a priori knowledge of the samples distribution,
it is relevant to gaze data.
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Figure 8.3: Experiment 2: Protocol. Three steps are part of the complete experiment. First, a
training is performed to get the participant familiar with the hue wheel and grey stimuli. Second
a free viewing pass is recorded. Third, the same stimuli are proposed to the participants with a
harmony task.

Due to its ability to measure how closely artificial saliency models match
human gaze data, the Normalized Scanpath Saliency (NSS) measure [206] has
been employed for measuring the inter-observer consistency and the inter-task
similarity. More details are provided in Section 3.6.4.

Since NSS measure does not contain any temporal meaning, another inter-
esting tool is the measure of scanpaths similarity with Eyenalysis tool [167].
More details are provided in Section 3.6.5.

Even if Eyelink 1000 Hz provides efficient sampling rate for data analysis,
we chose to extract saccade amplitude and fixation data such as post-processed
in the output files of the eye-tracker. Such extracted data are preprocessed in
order to remove users with too short scanpaths (under 6 fixations) and the fix-
ations located outside the picture (Section 3.5).

As mentioned in the introduction, we aim at finding eye patterns related to
the specific task of color harmony. First, we studied usual statistics on eye gaze
related to the two conditions. Secondly, the inter-observer consistency is mea-
sured to validate the legitimacy of performing eye-tracking with a color harmony
task. Finally, we focus on particular stimuli such as large color distribution and
harmonized pictures.

8.4 Analysis of fixations and saccades

8.4.1 Frequency and shape

As usually done in the literature for eye movement, we studied fixation duration
and saccade amplitude parameters recorded over the two conditions. Figure 8.4
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depicts frequency of fixation duration and saccade amplitude for all observers
gathered for all stimuli. Consistent results with literature are found: maximum
values of fixation duration are around 200 ms, few fixations are present before
100 ms or after 400 ms [246, 104]. Also saccade amplitude curves depict a typical
shape with high number of samples around 2◦ of visual angle and few of them
after 15◦ of visual angle [14].
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Figure 8.4: Occurrence or frequency of fixation duration and saccade amplitude over the complete
dataset. The two distributions have been normalized to achieve an area equal to 1.

Additionally, we studied these two features as a function of their ordinal
number or appearance order (Figure 8.5). We may measure a common mech-
anism on saccade amplitude and fixation duration: the first element is higher
in case of fixation duration and lower in case of saccade amplitude than the
followings, whatever the condition. This supports the observations and findings
of Castelhano et al. [43] for different tasks and those of Ho-Phuoc et al. [104]
for different processing on stimuli.

8.4.2 Task effect

Having shown the consistency of behavior in Figure 8.4 and 8.5 with litera-
ture, we are considering the task condition and more precisely the distinctness
between the FV and H conditions. A significant difference was found (KS,
p ≤ 0.001) over conditions for the histogram of fixation duration (Figure 8.4).
Dorr et al. [70] and Ho-Phuoc et al. [104] evidence a different behavior for both
fixation duration and saccade amplitude in different conditions. However, there
is no consensus on such specific behavior and the differences may be highly re-
lated to the task or stimuli nature [70, 104]. Mean fixation duration per observer
over all images has been also computed leading to no significant differences over
the conditions. The curves in Figure 8.4b depicting the frequency of saccade
amplitude show evidence of highly significant difference between the two distri-
butions of respective conditions. More saccade amplitudes are present between
0.5 and 2.5◦ for the harmony condition. Then, the task pass holds more shorter
saccade amplitudes than the free-viewing pass.
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While there is a significant effect on fixation duration and saccade amplitude
over their global distribution, we did not find any task effect for the first five
fixations in ordinal number. Some studies reported increase over the initial
viewing of a scene [11, 255], while others found no difference [86] or a decrease
of values for a task pass. Once again, the main issue remains the diversity of
task and stimuli that prevents any fair conclusion and comparison.

On the contrary, the first saccade amplitude shows a significant difference:
around 6.5◦ versus 7.7◦ for H pass and FV pass (KS test, p = 0.001), respec-
tively. This is also consistent with [43] who found a task effect for saccade
amplitude distribution and saccade amplitude in ordinal number. It seems that
the strategy associated to harmony task is deployed at the beginning of eye
movement patterns.
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Figure 8.5: Fixation duration (a) and saccade amplitude (b) as a function of ordinal number (ap-
pearance order). They are depicted for the two conditions.

8.5 Analysis of Inter-observer Consistency

This section aims at quantifying the agreement between subjects in terms of
eye movements. More precisely, we are interested in the differences between
the free viewing and the harmony task. Is the harmony task as consistent as
the free viewing pass (or less or more)? This answer could validate the use of
eye movements for the design of human fixation maps in the context of color
harmony (Chapter 9). In addition, we also had a look at the agreement for the
self-assessment on hue wheel.

We employed two metrics to evaluate the inter-observers consistency. While
the inter-observer NSS (Section 8.5.1) evaluate only the spatial characteristics
of eye movements, the second metric of similarity (Section 8.5.2) involves the
temporal characteristics of the scanpaths and will allow to confirm or not the
conclusion of the spatial metric.
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8.5.1 Spatial data: Inter-observer NSS

NSS metric provides quantitative measure of similarity between scanpaths and
maps. It is intrinsically a convenient way to handle the inter-observer consis-
tency by competing the scanpaths of each observer against the fixation maps
from all other observers (Section 3.6.4).

Figure 8.6a illustrates the mean of inter-observer NSS for each stimulus as
well as the associated standard deviation considering the two conditions. All
results are positive (better than chance level) and even close or superior to
1 (Figure 8.6b) leading to the conclusion that a high consistency exists be-
tween observers for each condition independently. Since the distributions of
inter-observer NSS over the dataset can be assimilated to a normal distribution
(Figure 8.6b), we evaluate by means of a t-test whether the distributions are
significantly different. Specifically, we applied a paired t-test since our observa-
tions deal with the same set of subjects, but for two different conditions. We
found that the consistency values from H condition are significantly higher than
those for FV condition (paired t-test, p ≤ 0.001). These values are consistent
with previous work on variability of inter-observers eye movement for various
stimuli [70].

In addition to the consistency over the two conditions, we computed the
average inter-observer NSS for the hue wheel stimulus asked for cross-checking
the harmony task. The agreement is sometimes much higher than for the two
conditions since basically observers do agree on their harmony interpretation.
Otherwise, it is comparable or lower than those of the two conditions. Its
dynamic level is more remarkable.
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Figure 8.6: Inter-observer Consistency measured with Inter-Observer NSS. (a) Mean values per
stimulus for the two conditions as well as for the hue wheel agreement. (b) Histogram of mean
values for all pictures and for the two conditions as well as for the hue wheel.

8.5.2 Temporal data: Eyenalysis c© similarity

We employed another measure of inter-observer consistency that takes into ac-
count temporal features of gaze data. By means of Eyenalysis c© tool [167] (Sec-
tion 3.6.5), we computed the mean similarity of scanpaths per stimuli over the
two conditions having as input data the fixation coordinates, starting time (or

97



timestamp) and fixation duration. Such input vector enables the introduction
of temporal information in the similarity measure.

An interesting behavior can be appreciated in Figure 8.7. While FV and
H conditions have comparable values of scanpaths similarity (KS, p ≥ 0.001),
the set containing all scanpaths of the two passes leads to significantly (KS,
p ≤ 0.001) lower similarity values. The degree of similarity between the two
conditions is comparable, leading to the conclusion that the search-task related
to harmony is as reliable as a free-viewing task.

This conclusion does not confirm the previous findings, when using only
the spatial characteristics of the eye movements (inter-observers NSS). It seems
that the observers agree more on the spatial characteristics of the fixations for
the harmony task than for the free viewing task. However, the introduction of
temporal characteristics in addition to the spatial locations of fixations set the
similarity between the two tasks at the same level. Nonetheless, it is important
to notice (in relation to the work developed in Chapter 9) that the eye move-
ments data for the harmony tasks are at least as similar as the one of the free
viewing task.
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Figure 8.7: Scanpaths similarity including temporal information per stimuli from Eyenalysis tool
[167]. The similarity is computed for three sets of scanpaths: from the free viewing, the harmony
conditions and all aggregated scanpaths.

In addition, we check out whether eye movement patterns can be classified
into two conditions. In other words, is there a specificity carried by the scanpath
that can characterize a task? Greene et al. [88] make the evidence that task
cannot be predicted only from eye movement pattern. We tested the same as-
sumption by applying a k-means clustering (2 clusters and 10 iterations) on all
scanpaths. Unfortunately, we ended up with the same conclusion. The classifi-
cation results in free-viewing or harmony task was purely random. This aspect
is discussed in Section 10.2 with recent insights using sophisticated machine
learning techniques.
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8.5.3 Qualitative appreciation of fixation maps

In addition to these statistics, Figure 8.8 depicts a visual assessment of fixations
maps for several stimuli recorded during the Harmony condition. In this section,
we focus on the three top sets of pictures depicting the original dataset without
the large color distribution pictures. Even if the statistical tests are satisfy-
ing to validate the consistency of observers for the complete dataset, there are
some stimuli that are not following the global tendency. We identified qualita-
tively three sets of pictures based on results observed from the self-assessment
of observers on hue wheel: observers do agree on pointing the center of hue
wheel (they do not know which color is disharmonious), obervers disagree on
the disharmonious colors, they either point out the center and a color or two
different colors, and finally observers do agree on the disharmonious color (most
of pictures).
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(a) Observers do not know which color to point out

(b) Observers do not agree on disharmonious color

(c) Observers do agree on disharmonious color

(d) Harmonized pictures

(e) Pictures with large color distribution

Figure 8.8: Harmony pass: Qualitative appreciation of fixation maps for stimuli classified in different
pictures subsets. The three top sets (a-c) depicts the fixation maps of original pictures into three
groups: (a) the observers highly agreed on center of hue wheel, (b) the observers disagrees between
colors or/and center and (c) the observers agreed on disharmonious colors. The two last sets are
the (d) harmonized and (e) large color distribution pictures.
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8.6 Analysis of Particular stimuli

8.6.1 Harmonized set

Figure 8.9 depicts the inter-observer and inter-condition NSS measures specif-
ically for the five harmonized stimuli and their counterparts. We make the
following assumptions for eye movement pattern of such stimuli:

1) in the case of free viewing pass (dark and light blue bars), the visual at-
tention deployment should be more consistent over observers for the harmonized
stimuli due to the reduction of involved colors (see Figure 8.1 and the histogram
depicted on the hue wheel);

2) in the case of harmony pass (dark and light red bars), it should be the
other way around, since the specific task of pointing out disharmonious areas
should be somehow disconcerting for observers on harmonious pictures.

3) Considering assumptions 1) and 2) verified, we tentatively assume the
original pictures would be more consistent over conditions and then have a
higher inter-condition NSS measure (dark green bars). This could be related
to a very high disagreement during harmony pass for the harmonized pictures
(involving noisy maps with no specific areas being fixated) that avoids any ap-
propriate matches between the scanpaths of the FV and H conditions (light
green bars). It is actually difficult to predict.

Figure 8.9 depicts the data related to these three assumptions. The second
assumption about the H condition (red bars) is partially validated, all NSS
measures of the original pictures are slightly higher to those of the harmonized
pictures and significantly superior for two pictures (as depicted with a star on
the Figure). However, we observed a counter-intuitive behavior when focus-
ing on the FV condition: the inter-observer NSS (blue bars) provided a slightly
lower consistency on harmonized pictures versus their original counterparts, sig-
nificantly only for the T85 picture. This is actually not obvious that observing a
harmonized picture in free viewing leads to more consistency between observers
than observing the same picture with more colors (not harmonized picture).

Focusing on the inter-conditions NSS (dark and light green bars), we did
not find any significant differences between each condition. These correlation
between conditions for such specific stimuli are more tricky to analyze.

We qualitatively observed spatial fixation maps recorded on the hue wheel for
the harmonized pictures (Figure 8.8d) and their original counterparts (Figure
8.8a and Figure 8.8c). Four pictures (T85, T317, V357, T18) over the five har-
monized pictures involved in the experiment lead us to qualitatively classify
them into a category where observers do agree on disharmonious colors (Fig-
ure 8.8c). In other words, the disharmonious color of those pictures was easy
to point out. When presenting the harmonized version of these four pictures,
the observers get disconcerted by the harmony task. The wheel fixation maps
evidence several colors pointed out or the center of the hue wheel (Figure 8.8d).
At the opposite, the fifth stimulus (T15) evidence a different behavior. While
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Figure 8.9: Statistics of the harmonized pictures: the data of the five harmonized pictures (light
bars) as well as their original counterpart (dark bars) are used to compute the inter-observer NSS
measures of the free-viewing pass (blue bars), the harmony pass (red bars) and the inter-condition
(green bars) NSS measures. (*) means the difference is significant (t-test, p ≤ 0.05).

the observer did not know which color is disharmonious on the original stimu-
lus, they tentatively pointed out several areas on the harmonized counterpart.
This behavior is probably related to the large color distribution of this partic-
ular stimuli: reducing the involved colors supported the harmony task, nut not
enough to reach a consensus between observers. This particular kind of stimuli
is discussed in the next section.

In summary, corresponding hue wheels highlight in Figure 8.8d that harmo-
nious pictures disconcert observers. They either don’t know the color to point
out or they highly disagree on candidate, although the disharmonious area was
clear on the original version of picture.

8.6.2 Large distribution set

Regarding the pictures with a large variety of color modes, we assumed that
they would be difficult to be assessed by observers (following our eye-tracking
protocol) during the Harmony condition and that it would be confirmed by the
hue wheel assessment. Previous work [195, 230] have employed reduced number
of color combination (two or three) to avoid any ambiguity in their experiment
of harmony rating. NSS measure reveals for inter-observer (blue and red bars)
and inter-condition (green bar) cases a lower agreement than the average on the
complete dataset except for X39 stimuli (Figure 8.10).

When comparing qualitatively the characteristics of the concerned stimuli
(Figure 8.1), it seems that a large color distribution is not a differentiable factor
in the task of harmony assessment, but rather the way the color are spatially
grouped. Indeed, the two stimuli where an agreement on disharmonious color
is reached (the O200 and X39 pictures in Figure 8.8e) have clear uniform color
areas, while for the “dont’ know” stimuli (people point out the center of hue
wheel in Figure 8.8), colors are more spatially mixed. Additionally, one can de-
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duce that distribution with several peaks (or clear modes) (Figure 8.1) is easier
to assess than continuous large distribution of hues. We assumed that there
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Figure 8.10: Large color distribution pictures: inter-observer and inter-condition NSS. Dotted lines
are the average NSS over all pictures for each condition and inter-condition case.

is a relationship between the color distribution and the inter-observer agree-
ment: the larger the color distribution, the lower the agreement due to more
choices in fixation locations. We expressed the color distribution by computing
the histogram of hue values and by thresholding it according to the number of
pixels having a certain hue. Thus, we computed the linear correlation between
the hue width (the number of hue values in the histogram having more than T
pixels (T=500, representing 0.1 % of pixels for a 800x600 picture) and the inter-
observer NSS measure for the H condition. As expected, there is a slight link
between these two parameters (R2 = 0.12) that verifies the mentioned assump-
tion. Note for comparison that the same correlation computation between the
inter-observer NSS measures for the FV condition and the hue width provided
a very low score (R2 = 0.01).

8.7 Summary

In this chapter, we propose to study mainly the eye movement recorded under
a task related to harmony assessment. An eye-tracking experiment has been
conducted on color pictures, their harmonized counterparts and pictures with
large color distribution. Two different conditions are confronted: a free viewing
protocol and a search task protocol are recorded using the same dataset.

Some correlation measures (NSS, CC and ROC) as well as eye movements
statistics have been computed leading to the conclusion that eye fixations recorded
for the two conditions differ, being consistent with task protocols in state-of-
the-art studies. More concretely, the distributions of saccade amplitude and
fixation duration are significantly different for the two conditions. Also, the
first saccade amplitude is significantly higher for the harmony condition than
for the free viewing condition.
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To ensure the task of harmony assessment is consistent over observers, two
metrics have been employed for that purpose: the NSS and the scanpath simi-
larity computed from Eyenalysis tool. These metrics demonstrated a high cor-
relation between scanpaths and similarly for each condition. These results are
more deeply discussed in Section 10.2.
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Chapter 9

Ground Truth Creation

Contribution: Chamaret, C.; Urban, F., Lepinel, J., Creating experimental
color harmony map, Proc. SPIE 9014, Human Vision and Electronic Imaging
XIX, 901410 (25 February 2014).

This chapter proposes to exploit pragmatically the collected data from the eye-
tracking experiment described in Chapter 8. In this latter, we statistically
demonstrated a high agreement between observers during a task of harmony
assessment. Thus, we aims at creating a dataset by post-processing these hu-
man and experimental fixation maps. Such dataset serves to the validation of
computational methods developed in the next part of the manuscript.

9.1 Introduction

As exposed previously, the exploration of Color Harmony topic deals either with
simple controlled patterns constituted of two or three different colors [195, 241]
or with natural pictures, but then assessing the concept of Color Harmony glob-
ally [239]. In other words, there is no work that locally both predicts and
assesses the Color Harmony. One cause could be the lack of ground truth and
the difficulty to create it. This is the main contribution of this Chapter.

In the previous experiment (Chapter 8), the self-assessment of observers on
hue wheel provides a cross-validation of the harmony task. In the harmony con-
dition, they were asked for pointing out the most disharmonious colors (on the
hue wheel) that they previously identified for the current stimulus. Thus, they
should confirm the areas they have fixated. If they did not identify any colors,
they could point out the center of the hue wheel picture. Some fixation maps on
hue wheel are depicted in Figure 9.1c. Before starting this protocol, we did not
have a clear view if the task of “pointing out the most disharmonious colors”
was understandable and doable in few seconds for our specific stimuli set.

In Section 8.5 and more specifically on the Figure 8.6, we appreciated the
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high agreement between observers when computing the NSS measure over scan-
paths of all observers per image. This latter is pretty high (> 1) and demon-
strates by itself a high consistency between observers. The way is opened to
exploit these data in order to obtain an exploitable ground truth.

In this Chapter, we discuss the employed methodology (Section 9.2), then we
describe the different steps to split the original dataset into different clusters
(Section 9.3) and finally we explain the applied processing (Section 9.4).

9.2 Methodology

A deeper analyze of the data collected during the previous experiment lead us to
suspect two different behaviors especially when confronting the Inter-Observer
NSS coming from the hue wheel and from the human fixation maps (Figure 8.8):
1) the agreement is partly due to visual features different from color harmony,
2) there are different stimuli classes where the agreement may be balanced and
interpreted.

In Chapter 7, we discussed the unexpected non-influence of color components
in visual attention deployment for a free viewing exploration. These conclusions
have been relayed by other references in the literature [104, 152]. However, even
if we can make the assumption that the color factor does not influence the visual
attention deployment, at least other low-level features (luminance component,
texture, spatial frequencies...) do. In which extent, the agreement is related
to color harmony factor and not to these mentioned low-level features? This is
difficult to quantify. In other words, it is difficult to decorrelate the bottom-
up mechanisms from higher level mechanisms; both are competing after several
milliseconds [71].

When having a look on particular stimuli (Figure 8.6a), we appreciate differ-
ent values range, e.g. some stimulus have similar NSS values for human fixation
maps (whatever the condition), while not for the hue wheel. The other way
around for others, their NSS measures on hue wheel are similar, but not those
for human fixation maps on stimulus. Clearly, these observations could be more
investigated in order to identify the cause of such differences. It seems that
these different behaviors could lead to categorize stimuli.

In Figure 8.8c, we introduce two complementary representations for appre-
hending qualitatively the human fixation maps: the heat map and the trans-
parency map. While this former clearly point out the majority areas of fixations
(red spots), this latter gives a feedback on the spatial dispersion of fixations.
For the T85 picture, observers pointed out mostly the pink colors on hue wheel,
but also a bit of green such as revealed by the transparency map. Also, their
choice is split between the blue and green colors for the L355 picture.

More concretely, we have qualitatively observed three different cases (also
mentioned in Figure 8.8a, 8.8b, 8.8c):

1. observers do agree on disharmonious color,
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2. observers do agree they cannot identify any disharmonious colors,

3. observers do not agree, they point either different colors or a color and
the center of the hue wheel.

In addition to this statement, it seems tricky to directly derive some color
(dis)harmony maps from the human fixation for playing the role of ground truth.
These latter are noisy; even if they contain the areas that observers wanted to
point out, there are parasite fixations that result from a more global exploration
or analysis of the picture. From all these observations, the main idea developed

T317 T85 T15X39L355 V357 T10 O234 X178 T58

(a)

(b)

(c)

Figure 9.1: Qualitative appreciation of observers’ fixation maps: (a) Original stimulus and hue
distribution of original stimulus, (b) free-viewing human fixation maps (top row) and human fixation
maps for harmony task (bottom row), (c) observers’ hue wheel assessment: heat map (top row) and
transparent luminance representation (bottom row).

in this Chapter is 1) to computationally find three classes of stimuli that would
report from the agreement uncertainty, 2) to design a specific post-processing in
order to treat each data subset according to the reliability associated to data.
In other words, we propose in the following section to cluster objectively the
pictures into three different classes and then to apply a post-processing specific
to each class.

9.3 Pictures Clustering based on Agreement

A high agreement of fixation locations on the hue wheel (measure by Inter-
Observer NSS) does not mean that observers have clearly and easily identified
disharmonious colors. Indeed, the agreement may be high if everybody point
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Figure 9.2: Dataset clustering into three categories reflecting the degree of agreement for color
harmony assessment. (a) Expected categories from the employed dimensions. (b) Result of the
dataset clustering for color harmony agreement into three categories: low agreement (LA), high
agreement (HA) and high agreement on hue wheel center (WC). Note that the axis of clustering
correspond to whitened data and not to the original values of each axis. The dotted ellipse depicts
some ambiguous classification case.

out the center of hue wheel, although it indicates that observers did not find
out an answer to the task. Also, more than one hue could be potentially not
harmonious at different degree but each of them could be pointed independently
by different observers. Three categories defining the level of agreement will be
quantitatively identified by a clustering method.

For each fixation map from the hue wheel, we computed the center of mass
that indicates how far the fixations are from the picture center. It provides
a first input to know if observers tend to agree on center of hue wheel or on
one or several colors of hue wheel. We coupled this information with the mean
of inter-observer NSS computed from the hue wheel stimuli, since it gives an
information on global agreement for a given picture. Figure 9.2a illustrates the
three expected cases that we expect to highlight with the clustering method. If
the distance from the center of mass to the wheel center is low, there are two
possible configurations: either most of eye fixations are located on the wheel
center (meaning the agreement between observers is also high) or there are
several colors pointed out on the hue wheel and spread around that lead to
a center mass located in the center of the wheel (meaning also the agreement
between observers is low). The last ideal case is encountered when most of
eye fixations are located on one area of the hue wheel (meaning the agreement
between observers is also high).

Following these expectations, a k-means clustering function has been applied
on these two dimensions for each stimulus: the number of requested clusters has
been set to 3, the number of iterations to 50 and finally the centroids have been
initialized with a value located in one quadrant (Figure 9.2a). The result allowed
us to separate the images into high agreement case (HA), low agreement case
(LA) and high agreement on the hue wheel center (WC), such as depicted in
Figure 9.2b.
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We found fourteen pictures with high agreement (HA cluster) on disharmo-
nious color, twelve pictures for low agreement (LA) on disharmonious color and
two pictures having a high agreement for no identified color (WC). As expected,
there is no pictures located in the right lower corner. This result is pretty close
to our qualitative appreciation performed on hue wheel fixation maps (Section
8.5.3). However, there are pictures at the cluster’s intersection that could be
misclassified, such as circled on Figure 9.2b.

Having found such clustering, we aim at creating some experimental color
harmony maps out of 1/ human fixation maps on stimuli and 2/ human fixation
maps on hue wheel, recorded during the harmony condition of Experiment 2.

9.4 Designing Color DisHarmony Maps

We propose in this section to post-process data collected from two different
sources of information: 1/ the fixation maps recorded on the original stimuli
and 2/ the fixation maps recorded on the hue wheel picture during the harmony
condition of the Experiment 2 (people were asked to point out the most dishar-
monious colors in the picture). We aim at designing consistent color disharmony
maps that would be reliable as a ground truth.

As discussed in Section 10.2, the stimuli have different color distributions
(similar hues, opposite hues, orthogonal hues or even large distribution) that
impact the confidence in the observers assessment. Following this fact, the
stimuli have been clustered depending on the inter-observer agreement (Figure
9.2b). Thus, we keep employing the clusters determined in the previous section
for which a dedicated method is empirically determined in order to end up with
color disharmony maps from eye fixations.

Figure 9.1 depicts some fixation maps recorded during the harmony pass.
Color disharmony maps could have been the direct use of such map, since the
observers usually point out accurately the color in relation with the task. How-
ever, there are clear limitations to employ such simple protocol:

1. All eye fixations are not be related to the task, some low-level processing
are probably involved and parasite a purely eye fixations map created from
a Harmony task.

2. The Harmony task is not straightforward and observers may hesitate or
look for target colors during the beginning of stimuli scanning.

3. Even if the disharmonious color is easily identified by observers, these
latter can not fixate all pixels having the target color. Moreover, a hue is
not involved alone in the disharmony perception but it is rather a range
of similar hues.

Based on this statement, we define three ways in accordance to the three
picture clusters to design the experimental disharmony maps.
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9.4.1 Method

Fixation maps Distribution

First, we derived the two 1D distributions of fixation map values as a function
of hues.

The first distribution is computed from the fixation map recorded on the
stimulus FMS , where the value at each site u = (x, y) of the fixation map are
accumulated for each hue h:

S(h) =
∑

u|h(u)=h

FMS(u)) (9.1)

The second distribution is computed from the fixation map recorded on the hue
wheel FMW , by accumulating the value of the fixation map also for each hue:

W (h) =
∑

u|h(θ,r)=h

r(u) ∗ FMW (u), (9.2)

where θ(u) and r(u) are respectively the angle and the radius of the pixel loca-
tion in polar coordinates. Note that the contribution of FM is weighted by r,
i.e. the distance between the hues crown and the wheel center.

Analysis of Distributions

We are interested in the match between these two kind of information. Are they
consistent, complementary, antagonist for some hue values?

Figure 9.3 provides qualitative appreciation for these two distributions. We
can observe that the distribution are not well aligned. Even if the hue peaks
are located in the same regions, they may not be aligned enough to evidence
a good consistency. We argue that it is due to the inaccuracy on hue wheel
assessment. Indeed, several observers reported after the experimentation, a
discomfort to match the “right” blue or green on hue wheel. The saturation
or luminance values influence the hue perception. They were annoyed by the
static hue wheel stimuli (medium luminance and saturation) that did not match
exactly the stimuli perception.

Additionally, the inaccuracy of fixation maps on original stimuli may be also
reported. Observers do not realistically fixate all the time on disharmonious
colors. Thus, when a background colors is very important with regards to the
disharmonious colors, its hue may parasite the 1D distribution computed on
original stimuli. This is typically the case for the i211 picture on Figure 9.3; the
blue sky report fixations that creates a peak around 200.

A method for each cluster

The HA set clustered in Section 9.3 is basically the one with the highest confi-
dence measured on observers. Thus, we simply decided to reuse such information
alone. TheW distribution is remapped in the 2D stimuli space to design the final
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disharmony map DHA of such category of stimuli, meaning DHA(u(h)) = W (h).
Some examples are provided in Figure 9.3.

The LA set of stimuli needs more information to get reliable disharmony
map. We propose to merge information coming from the two available source of
information: fixation maps on original stimuli and on hue wheel. More specif-
ically, the final disharmony map is computed from W distribution and refined
with the S distribution from fixation map on original stimuli:

DLA(h) =

(
W (h) +

W (h)

|W (h)− S(h)| .G

)
.

255

[W (h)]
+ (9.3)

G is a gain empirically set to 3000. [.]
+

represents the maximal value of the
distribution. If the information between W and S coincide at a given hue, the

ratio W (h)
|W (h)−S(h)|.G ) tends to infinite, DLA is very high. On contrary, if W and

S are not aligned for a given hue, meaning S or W are close to 0 but not the

other quantity, then the ratio W (h)
|W (h)−S(h)|.G is close to 0 and DLA is equal to

W (h) as in the HA case.
The obtained 1D distributions D(h) are remapped into 2D image space

DM(u(h)). Several qualitative disharmony maps for the different category are
depicted in Figure 9.3.

The disharmony maps of WC dataset are more tricky to design. Even if a
majority of observers pointed out the center of hue wheel for such stimuli, few
of them may have discriminated a color over the distribution. However, it is not
reliable enough to design a way to create color harmony maps for such stimuli.

9.4.2 Maps Appreciation

The examples of Figure 9.3 depict the final harmony maps for the two categories
of stimuli as well as one example of maps for the WC dataset. As appreciated for
the HA dataset, the hue wheel map provides more reliable results than fixation
map from original stimuli. Indeed, the 1D distribution is not confused by the
fixations of the dominant color (pictures i211, V16, V357). Moreover, the hue
wheel provides more focused and relevant colors; few colors are selected. On
contrary of fixation maps from original stimuli, few colors may interfere with
disharmonious colors (pictures T18, T85).

For the LA dataset, where the agreement is less obvious between observers,
both fixation maps bring interesting inputs for computing the final disharmony
map. In picture L355, the blue and green lines are intuitively the disharmonious
colors to be identified. However, the green color is not identified from the hue
wheel, but the use of fixation map from the original stimulus allows enhancing
this color in the final disharmony map.

The last row evidences the high uncertainty in the establishment of rules for
creating disharmony map for the WC dataset from fixation maps of hue wheel
and of original stimuli.
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Figure 9.3: Disharmony maps designed for the HA and LA categories from the eye fixation maps
recorded on both hue wheel and original stimuli. On the right-hand side, the two 1D distributions
in hue domain are depicted to appreciate the potential match. Red squares are the final disharmony
maps: the witter, the more disharmonious the pixels.
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9.5 Summary

The main idea developed in this Chapter is 1) to computationally find three
classes of stimuli that would report from the agreement uncertainty, 2) to design
a specific post-processing in order to treat each data subset according to the
reliability associated to data.

We analyzed the inter-observer agreement on such data and derived three
categories of pictures: the “high agreement”, “low agreement” and “do not
know” cases. Based on such clustering, different strategies are proposed to
design the final disharmony maps. The fixation maps recorded on the original
stimuli as well as those on hue wheel are combined to catch different colors and
to remap the disharmony values of all pixels. This is a first attempt to provide
a ground-truth in the context of color harmony in order to help people applying
this principle. This partially answers the need and current limitations of color
harmony field mentioned in Section 5.4.
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Chapter 10

Discussion

This chapter proposes to discuss the different findings of the three preceding
chapters. This is the place to come back to the different formulated hypothesis
in the introduction (Section 6.4).

10.1 Experiment 1

This experiment (Chapter 7) introduces the second experiment (Chapter 8)
dealing with the specific problem of color harmony. While color is a low level
factor, that can be objectively measured (colorfulness, 3D histogram of color
components...), the emotion associated to a picture are likely related to high
level cognitive factors that are difficult to quantify and to apprehend. The link
between emotion and color is not straightforward to characterize.

In Section 6.4, we formulate two hypothesis:

• Hypothesis 1: The color factor influences the visual attention deployment.

• Hypothesis 2: The emotion factor plays a role in visual attention deploy-
ment. We refute these two assumptions, sometimes in accordance with
state-of-the-art or in discordance with recent studies.

We demonstrated that color has no influence on visual attention deployment as
a low level factor for our dataset. In addition, emotional categorization can not
be differentiated from eye movement data for the two color conditions, except for
one category. Nonetheless, this result is not supported by all employed metrics.

Color factor

We could split the studies around color factor into two balanced teams (Section
6.3): pros and cons of color influence in visual attention deployment. For-
tunately, we obtain the same conclusion as Ho-Phuoc et al. [104] who used a
similar protocol. Other work did report an influence of color on visual attention,
but to a lesser extent [249, 10, 9]. Tatler et al. [249] reported that the luminance
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and chromaticity features discriminate 57% of fixated areas, meaning that the
remaining percentage is induced by other factors, unrelated to image statistics.
Amano et al. [10, 9] also found a comparable influence of color properties during
a search and detection task.

More globally than color, the low level features are being reconsidered in the
literature as a relevant factor of visual attention. Their role in visual attention
deployment is controversial and more generally the role of stimulus-driven at-
tention seems more and more minimized to the favor of task-driven mechanisms.
This leads to the questionable validity of low level cues in the design of visual
attention models.

On the other hand, some studies reported a concrete influence of chromatic-
ity on visual attention [81, 82, 238]. In these studies, the authors carefully
controlled their stimuli. Either they employed isoluminant patterns with the
color being the only changing factor [238] or they have strict image categories
with similar statistics [81]. We did not control so much the potential factor
of bias in our dataset, since the goal was also to measure the influence for the
emotional factor in parallel. Thus, our stimuli are semantically very rich and
emotionally laden (faces, knifes, children, blood...). This aspect could have
taken the lead as a mechanism in the selection of pointed areas. If verified, this
is also an indicator of the low implication of the color feature in visual attention
deployment.

Emotional factor

Kaspar et al. [126] set up two experiments to measure the impact of emotional-
laden stimuli on viewing behavior under natural conditions. They employed
pictures from the IAPS database [140] at the extremity of the valence scale. In
other words, very high and very low valence ratings guided their selection for
positive and negative pictures. They also introduced in their two experiments
some neutral emotional stimuli (fractal images) as well as target images with a
negative, neutral and positive context. In the second experiment, they had a
look also on scene categories (nature, urban and fractal types). Globally, they
found an influence of emotion on visual attention deployment. More specifically,
the negative pictures evidenced shorter fixation durations, longer saccades and
more spatially spread fixation distribution than positive stimuli. This was en-
countered when having a emotionally-randomized presentation of stimuli, but
not when the stimuli were grouped emotionally during the presentation. This
suggests that watching such strong emotional stimuli influences the inner emo-
tional states of the observer leading to a different attention strategy. Finally,
they also evidenced an impact of image category on viewing behavior, e.g. urban
scenes did not provided the same evidence as nature scene.

In our experiment, we did find an impact for one emotional category. How-
ever, when using different metrics we could not met again the same effect be-
tween the two conditions. The experimental conditions of Kaspar et al. differ
from our pioneer work on emotional pictures. We described the emotion along
four categories involving also the arousal notion. The finer categorization we
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employed may explained why we did not reach the same conclusion. In addition,
there is likely an effect due to the employed database. While Kaspar et al.’s
experiment relies on very emotional-laden stimuli, we employed a database po-
tentially less controlled in terms of annotation and more questionable regarding
the categorization.

10.2 Experiment 2

In the previous experiment, we found that color should not interfere as a stand-
alone factor on eye fixation statistics, when designing a task-related protocol.
This is also the same conclusion for the emotional content of pictures. Assuming
color harmony stands at a higher level of brain mechanisms, it makes sense to
design an eye-tracking experiment with a color harmony task or instruction
without exposing ourself to any bias from the color choice or arrangement.

In Section 6.4, we formulate two hypothesis:

• Hypothesis 3: during a task protocol with eye-tracking for measuring color
harmony, the inter-observer consistency is high.

• Hypothesis 4: there is an influence of color distribution and color diversity
in the assessment of color harmony.

We attempt to confirm these hypothesis through the analysis of data recorded
from the experiment described in Chapter 8. Below is a discussion related to it.

Is the color harmony task realistic?

The inter-observer agreement makes the evidence that people can reasonably
point out the color (dis)harmony within a picture at a spatial and local level.
The inter-observer NSS measured in the experiment is significantly superior
for the harmony condition compared to the free-viewing condition. Observers
agreed on the assessment of disharmonious areas. The slight increase in harmony
condition may be also related to the fact that observers have already seen the
stimuli during the free-viewing condition. However, directly assessing the color
harmony appeared to us a too difficult task, leading to the introduction of the
first free-viewing condition. Consistent with the previous metric, the similarity
of scanpaths is in the same range for both free-viewing and harmony conditions.

In addition, we investigated qualitatively and individually the different stim-
uli. We toned down the previous evidence, computed globally, by studying the
disharmonious color pointed out on the hue wheel stimuli. We found three sets
of agreement: when observers agreed on the hue center (they do not know which
color to point out), when they disagree by pointing out two colors or also the cen-
ter of hue wheel, when they agreed on a disharmonious color. Fortunately, most
of pictures are in the last category, but we investigated an objective method
to automatically classify the pictures into one of the categories (Chapter 9).
Assessing the color harmony locally is reasonable with eye-tracking.
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Any evidence of eye patterns related to color harmony?

Eye features such as saccade amplitude and fixation duration are usually rele-
vant for characterizing eye movement patterns in specific conditions. Processing
such data allows including temporal effects of visual attention deployment that
cannot be caught with purely NSS and spatial statistics. Multiple studies high-
lighted a task effect on fixation duration factor [137, 246, 43]. Over the complete
dataset, fixation duration and saccade amplitude provided evidence of signifi-
cant differences for their global distribution (KS, p ≤ 0.001) between the two
conditions (free viewing and harmony conditions). In the same vein, task-effect
is reported for the first saccade amplitude in ordinal number, but neither for the
first five fixation durations nor the nine following saccade amplitudes in ordinal
number.

If the task was carried by eye movement patterns, it would have been possible
to classify blindly all scanpaths from the free-viewing and harmony conditions
into two corresponding distinct categories. Clearly, it does not work that way for
our stimuli and conditions, such as found also by Greene et al. [88]. Scanpaths
born of harmony task are not statistically separable from those of free-viewing
pass, meaning that low level processing (typically involved in free viewing scan)
is still involved and competes with any cognitive processing that could interact
for such task. Rather than splitting the global set of scanpaths into two balanced
categories, we handle with widely unbalanced clusters (using k-means clustering)
that seem to point out potential outliers for both conditions. This result is
consistent with Greene et al. [88] and demonstrates that the color harmony
task is not differentiable by only eye movement patterns, at least by using a
simple clustering method. Recently, Borji and Itti [31] evidence the power of
using more sophisticated machine learning techniques (e.g. k-nearest-neighbor
and boosting) in order to predict a task from eye movements. This promising
approach has not been investigated with our data.

Is the color distribution playing a role?

Studying color distribution of involved stimuli also brings new understanding.
We assumed that the color distribution, defined by either its hue variety or
its hue width, could be a factor influencing the reliability and perception of
harmony within a picture [230]. We evidence a correlation between the inter-
observer NSS and the color distribution width computed per stimulus (R2 =
0.12). This conclusion has been refined by showing that many peaks in the hue
distribution are not responsible for low agreement, but rather moderate hue
levels spread around the hue wheel. In addition, the close spatial repartition of
hue allows a better and faster understanding of the harmony.

The particular behavior of observers on post-processed pictures [24], i.e.
harmonized stimuli related to color harmony theory [168], has been carefully
studied. The agreement measured on hue wheel, where observers pointed out
the disharmonious color, drops when confronted to harmonious pictures. The
specific task of assessing the disharmonious color on harmonious pictures discon-
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cert the observer, while he successfully agreed on pointed out one disharmonious
color on the original stimuli. This is a first step toward the validation of the
image processing algorithm performing the automatic color harmonization of
picture (developed in Chapter 12).

In conclusion, we strongly believe there is an agreement for spatial assess-
ment of color harmony, but its degree of validity should be carefully related to
the nature of the stimuli [246] and more particularly to its color distribution
and spatial arrangement.

10.3 Ground truth creation

The definition and the characterization of color harmony started to be investi-
gated some centuries ago. Today, even if no consensus has been reached in this
field, some image processing tools (recoloring, automatic harmonization, aes-
thetic metric...) based on color harmony principles are clearly emerging. Thus,
the need for a ground-truth grows up at the same time.

We proposed an experimental protocol to create color harmony maps for
complex stimuli knowing there is no relevant previous work on this topic. We
chose to take advantage of the Experiment 2 (Chapter 8) using the eye fixations
collected with a color harmony task.

Since we introduced a computational post-processing of eye fixations, we are
facing the issue of validating the ground truth. This is an egg and chicken prob-
lem: how to validate what will be used for the validation later of computational
methods? We could not provide any other way than a visual appreciation of
final disharmony maps based on empirical assumptions and observations.

10.4 Conclusion

In this part, we tackled the topic of Color Harmony from an experimental per-
spective. We assumed a strong relationship between visual attention and color
harmony. Therefore, we investigated the measurement of such factor through an
eye-tracking protocol having a search task. We evidenced a high inter-observer
agreement that demonstrated the universal aspect of the color harmony notion.
Such way of experiencing Color Harmony is pioneer and may suffer from deeper
analysis. However, it paves the way to further investigations.

We proposed some hypothesis in Section 6.4 that we attempted to validate
along this part.

Experiment 1

Hypothesis 1: The color factor influences the visual attention deployment.

Findings 1: Measured through our dataset, it is not the case. The human
fixation maps compared between color stimuli and their grey counterparts are
not significantly different.
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Hypothesis 2: The emotion factor plays a role in visual attention deployment.

Findings 2: It does only for a specific category of emotion. However, such
finding was not confirmed with other metric applied on human fixation maps
between categories.

Experiment 2

Hypothesis 3: During a task protocol with eye-tracking for measuring color har-
mony, the inter-observer consistency is high.

Findings 3: This is confirmed by several employed metrics.

Hypothesis 4: There is an influence of color distribution and color diversity
in the assessment of color harmony.

Findings 4: This is confirmed. The color distribution width does not seem
to be the main factor, rather the spatial arrangement of color variety.

Ground truth

Hypothesis 5: The eye movements and individuals’ assessment of color harmony
are relevant enough to create a ground truth.

Findings 5: This is confirmed when using both information. Two aspects pre-
vent from using directly the eye fixation maps recorded with a color harmony
task. First, they are too noisy due to parasite fixations related to search task
and low level attentional mechanisms. Second, the complexity of stimuli mea-
sured by their color distribution varies and lead us to clustered them according
to observers’ consistency in their assessment.

Global hypothesis: the concept of color harmony is well understood by ob-
servers, homogeneous between anyone and close to universality.

From our experiments, we concluded the concept is homogeneous enough to
design any computational models that would predict in some extend a common
human behavior and assessment.
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Part III

Models and Applications
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Chapter 11

Introduction

This chapter introduces the Part III, named Models and Applications. This part
deals with two computational methods which exploit the findings of the Part
II as well as two editing tools that implement the proposed methods. The part
is composed of four chapters: a global Introduction (Section 11), the Saliency-
guided Consistent Color Harmonization algorithm (Section 12), the Harmony-
guided Quality Assessment algorithm (Section 13) and Color Harmony for Image
Editing (Section 14).

In this Chapter, we explain our approach by depicting the Computational
Perspective (Section 11.1), such as done for the experimental part. Then, we
draw a picture of the existing algorithms (Section 11.2). Finally, we describe
the formulation used along the three Chapters (Section 11.3).

11.1 The computational perspective

On one hand, a color science community conducted some work to characterize
the color harmony concept. For example, the right association from two or three
color patches controlled in terms of saturation, lightness has been annotated by
naive experimenters. Out of these experiments, fitting curves have been ex-
trapolated to model the relationship between hue, saturation, lightness and the
degree of perceived harmony [195, 241]. From collected data during years, other
color scientists designed a geometric representation of Color Harmony through
hue wheel, saturation and lightness polygons [168, 252]. This community did
not investigate a formulation or an algorithm for an automatic processing, even
if some effort have been devoted to the integration of such rules into editing
tools, but still with a manual intervention of an experienced user [106, 50, 161].

On the other hand, the image processing community found in the Cohen-Or
et al. implementation [54] a first innovative recoloring algorithm which relies on
fuzzy color science findings. This implementation opened the door to compu-
tational work on Color Harmony by providing a formulation of the Matsuda’s
harmony templates [168], i.e. the sector angles values and the histogram match-

121



ing between picture distribution and templates.
However, the experimental and computational work remain specific to each

community, which did not exchange more than these experimental templates
and mathematical formulation. Still the experimental community suffers from
the generalization of the experimentally-designed models or representation (to
natural pictures, large variety of colors, cultural specificity...) and the image
processing community encounters the lack of available dataset, then the diffi-
culty of an objective validation of their algorithm. Nonetheless, by means of
large scale techniques, recent approaches have emerged which consist in gather-
ing and inferring the opinion of a large community of designers on color patterns
[194]. These work could fill in the gap between experimenters and algorithm
scientists.

Having investigated the experimental and computational perspectives, we
propose in this thesis to bring closer these two approaches. The experimental
work serves the computational approaches described in this part. We did not
perform any experiences involving any color science protocols, but rather focus
on our experimental and computational expertise related to visual attention.
As far as we know, the notion of color harmony has not been investigated under
the view of visual attention.

Concretely, we propose in Chapter 12 to use a visual attention model into a
color harmonization algorithm, inspired from Cohen-Or et al. work, in order to
improve the choice of the best Color Harmony template. Other contributions
are also introduced and their benefits are demonstrated individually.

In Chapter 13, a harmony-guided quality metric is designed. This is the first
attempt to use the color harmony theory into a perceptual quality metric. Once
again, we believe the perception of low-level features and the masking effects
may influence the local and overall harmony perceived and interpreted by the
human brain.

In Chapter 14, two editing tools have been designed. They rely with the two
proposed computational methods about color harmony. These conclude and
finalize this thesis by bringing the Color Harmony principles to the end user.

11.2 Color Harmony and Algorithms

A complete overview of existing methods involving the theory of color harmony
is described in the literature review (Chapter 4): from models (Section 4.2) to
applications in image processing (Section 4.3). Additionally, we also provide a
review of editing tools in the Chapter related to this aspect (Section 14.1).

Briefly, there are three families of color harmony model:

• the geometric models which build on a wheel to represent the color
spatial relationship and the associated harmony;

• the numerical models which fit curves on user annotations of pairs/triplets
of controlled patterns;
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• the contingent model which proposes a framework to integrates other
modalities than only the stimuli properties, such as cultural heritage, age,
mood, context, effect of time...

The numerical models remain largely unconsidered by the image processing
community. Only the work of Solli and Lenz [239] did employ the model of Ou
and Luo [195] to get a local measure of the color harmony. On the contrary,
the geometric models, from Moon and Spencer’s metric [172] to Matsuda tem-
plates [168], have been largely used in most of the image processing algorithms.
The contingent models keep acting at a conceptual stage without any concrete
implementation.

Following the trend in Image Processing, we keep working on the Matsuda’s
templates for both proposed methods. We reviewed partially the Cohen-Or for-
mulation such as described in the next Section. In the context of an innovative
perceptual quality metric, we propose a new framework to employ Matsuda’s
templates. In addition, we propose also two new editing tools which ease the
user’s manipulation of pictures. They offer a personal and homogeneous ren-
dering of users’ pictures.

As reported for the prior art, the two proposed algorithms may suffer from
robustness due to lack of testing, even if we made an effort in this sense. Their
fully automatic property as well as the uncertainty related to Matsuda’s tem-
plates (originally built on design and fashion dataset) may be responsible for
failure in specific cases. Consequently, we propose also the semi-automatic tools
presented in Chapter 14 that could be a good compromise to encompass the sub-
jectivity, cultural differences, taste and expertise of the user.

V type L typei type J type

T type Y type X type I type

Figure 11.1: Effective color harmony templates used in our computational methods. Compared to
Cohen-Or, we removed the O template and added the J one, symmetrical design of L.

11.3 Harmony Formulation

We are inspired from the formulation of Cohen-Or et al. in [54]. However, we try
to improve its generalization by the introduction of sectors in the formulation,
instead of using the template border as they did.

The eight harmonious templates Tm,m ∈ {i, I, L, T, V,X, Y, J} have differ-
ent sector layout and size to handle color complementary, color orthogonality
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and color similarity (Figure 11.1). They can be turned around the hue wheel.
Note that we added the template J as being the symmetrical version of L tem-
plate.

𝛼 = 0

 𝛼𝑚ℎ = 0. . 359

𝜔𝑚,𝑘

𝑘 = 1

𝑘 = 2

𝑚 = 𝑌𝛼𝑚,𝑘

Figure 11.2: Color Harmony Formulation: Template notations. For ease of understanding, the
notations have been implemented on a Template Y .

A template m is depicted in Figure 11.2 and defined as:

Tm : {(αm,k, wm,k); k = 1, ...,Km} (11.1)

where Km ∈ {1, 2} is the number of sectors, αm,k is the angle of the k-th sector’s
center on the hue wheel and wm,k its width in degrees. For notation simplicity,
αm denotes the angle of the first sector, which is also referred to as the template
angle. For a given picture, an appropriate rotation angle α̂m is computed to
align at best Tm with the hue distribution of the image. It is the template
angle that minimizes the Kullback-Liebler divergence between the normalized
hue distribution M(h) of the picture, typically in the form of an histogram with
L = 360 bins, and the normalized hue distribution of the template:

α̂m = arg min
α

∑
h

M(h) ln

(
M(h)

Pm(h− α)

)
, (11.2)

where Pm(h) is the hue distribution of the template Tm with angle 0, such as:

Pm(h) =
1

J

Km∑
k=1

Pm,k(h), J =
∑
h

Km∑
k=1

Pm,k(h), (11.3)

Pm,k(h) = e

−1

1−
(

2|h−αm,k|
wm,k

)10

1{|h−αm,k|<wm,k
2 } (11.4)

Each template’s sector has a form of sigmoid such as expressed by the previous
formula. Indeed, the distribution of a sector is characterized by a bump function,
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under the form P (x) = e
−1

1−(x)t if |x| < 1. If we perform the following change

of variables x =
2|h−αm,k|
wm,k

, we reach the same formula. Note that t controls the

curvature of the bump function. We empirically set it to 10 in order to get a hat
border at the side of the distribution, as illustrated in Figure 11.3. This seems
more appropriate and a good compromise compared to the use of a triangle or a

square to represent a sector. The value Em =
∑
h

M(h) ln
(

M(h)
Pm(h−α̂m)

)
represents

the residual energy of template m for image at hand.
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Distribution of a template sector approximated as a bump function
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Figure 11.3: Color Harmony Formulation: Template distribution as a bump function. Two values
of t are depicted.
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Chapter 12

Saliency-guided Consistent
Color Harmonization

Contribution: Y. Baveye, F. Urban, C. Chamaret, V. Demoulin, P. Hellier,
Saliency-Guided Consistent Color Harmonization, Computational Color Imag-
ing Worshop, Lecture Notes in Computer Science, Springer p.105-118, 2012.

In this chapter, we investigated a new computational method for Color Har-
monization. Following the same intent as previous work (Section 4.3.1), the
idea is to automatically recolorize the pixels that are estimated disharmonious
in a picture. The obtained color palette of the processed picture is objectively
more harmonious for human observers.

12.1 Introduction

The proposed automatic algorithm builds on the pioneering work of Cohen-Or
[54] which takes advantage of Matsuda’s color harmony model [168]. Thus it
proposes the same algorithm architecture that tackles the main issues related
to this processing: 1) through an energy minimization, the template that best
matches the picture distribution is found, 2) color shifting is performed while
preserving spatial consistency. However, we identified several limitations in the
previous work that we carefully describe in Section 12.2: the choice of template
is sometimes inadequate with regard to the picture distribution and the fidelity
to the original content is not always preserved. Targeting also professional audi-
ence for such application, this last argument is somehow unacceptable. Colorists
and professional designers hardly tolerate major alteration of their creative in-
tent.

Having this in mind, we bring three contributions for such method: first, a
saliency model is used to predict the most attractive visual areas and estimate
a consistent harmonious template. Second, an efficient color segmentation algo-
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rithm is proposed to perform consistent color mapping. Third, a new mapping
function substitutes usual color shifting method. Results show that the method
limits the visual artifacts of state-of-the-art methods and leads to a visually
consistent harmonization.

Before describing the proposed method (Section 12.3), we first go deeper in
the analysis of limitations of previous methods (Section 12.2). As a substan-
tial contribution, several aspects of the validation are developed: from the gain
introduced by each algorithm step (Section 12.4.1) to the global benefit of ap-
plying this harmonization method (Section 12.4.2).

12.2 Limitations of previous work

In addition to fixing the limitations of current state-of-the-art, we aim at pro-
viding a high fidelity of the original picture by changing as less as possible
the colors of the original content. Hereby, we briefly provide a feeling about
potential improvements for existing methods.

12.2.1 Template determination

We created a small dataset of 154 images with various content type. We compare
the selection of templates for the method of Cohen-Or et al. [54] and Tang et al.
[243] on this dataset. In [54] the cost function is the sum of the distance between
each pixel hue and the template sectors, weighted by its saturation. In [243], the
template is determined using the ratio between the number of pixels contained
in the template and the maximum number of pixels that could be contained in
the sectors. As expressed in Figure 12.1a, [54] tends to favor only the T and
X templates, while [243] has a more balanced repartition of selected templates.
Since Cohen-Or ’s averages the contribution of each pixel, this is not surprising
that larger templates gain the selection. However, such large templates do not
subtly enclose the color picture distribution.

We also show the obtained template on a particular image on Figure 12.1b.
Templates estimated using the two methods are shown at the bottom, and the
harmonized images at the top. [54] and [243] have estimated the T template,
leading to highly changes in the final color rendering. The distribution is pretty
large around the hue wheel and the T template favors the hues that are similar
within the grey sector to the detriment of the pink color. A X template could
have been a better solution such as illustrated in Figure 12.6a. The choice of a
suitable energy remains the challenge for fixing such issue.

12.2.2 Alteration of original content

The loss of meaningfully minor colors in the global distribution is a challenge for
automatic color harmonization. Modifying skin or sky colors in an unnatural
way may have an annoying impact on the image semantic. A manually defined
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Figure 12.1: Limitations of current methods: the issue about template determination. (a) Distribu-
tion of template selection for a database of 154 images regarding the Cohen-Or [54] and Tang [243]
methods. (b) Illustration of a large template choice and the resulting color mapping (From left to
right: Original pictures, Cohen-Or and Tang implementations).

mask is usually used to harmonize only selected pixel and thus preserve other
areas [54]. Salient areas are visually attractive and then important in a picture.
However, they have by definition a low representation in the color distribution.
Previous methods did not highlight such problem illustrated in Figure 12.2a.

Another source of alteration of the original content is the color mapping
or shifting which is applied after finding the candidate template. In state-of-
the-art solutions, color mapping functions tend to highly contract hue even
for colors that originally lie in the middle of harmonious sectors. Thus, the
harmonization might over-modify original pictures. This effect may be sought
in some applications, but may be disruptive when the intent is to stick to the
original image. Color dynamics are not preserved even for the pixels whose hue
is near the middle of the template in the original image (Figure 12.2b).

12.2.3 Spatial inconsistency

The need for color segmentation has been discussed previously in [54]. Some
illustrations are provided in Figure 4.8b. However, depending on the color
segmentation approach, a higher level of inconsistency may still be encountered.
Using a spatial segmentation might lead to split a disconnected object into two
different components such as illustrated in Figure 12.2c. Using a non spatial
algorithm allows to treat all pixels having the same colors without a priori on
their position.

12.3 Our Approach

Having identified the previous limitations, we tried to bring a solution while
still performing a minimal recoloring of the picture. A better determination
of template is achieved by using the Kullback-Leibler divergence as an energy
for distribution matching. Indeed, it is a non-symmetric measure of the dif-
ference between two probability distributions P and Q. Specifically, the Kull-
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(a) (b)

(c) from Coehn-Or [54]

Figure 12.2: Limitations of current methods: alteration of the original content and spatial uncon-
sistency. (a) Lost of colors for small and salient areas. (b) Color mapping function is too ”strong”.
(c) Object color inconsistency computed from Cohen-Or [54]

back–Leibler divergence of Q from P is a measure of the information lost when
Q is used to approximate P . This seems fitted better the problem of matching
templates and picture distribution.

We applied this measure on a weighted histogram of the picture that take
into consideration the most salient areas of the pictures. Thus, more weight is
applied to the colors of these pixels allowing a bias (in favor of these salient
colors) in the template selection. To determine the salient areas, a saliency
map is computed from a visual attention model. In order to avoid too much
changes or alteration of the original colors, we also introduce a new color shifting
function which softly tightens the original color distribution around the center
of the harmonious sectors.

Regarding the issue of spatial consistency, we prefered a non-spatial color
segmentation algorithm that clusters the image on an histogram basis without
spatial a priori. An overview of the method is shown in Figure 12.3. We then
describe the different steps of the algorithm.

12.3.1 Template determination

This step consists in choosing the best template amongst one of the nine har-
monious templates Tm (m ∈ {i, I, L, T, V,X, Y, J,O}). The first eight templates
are depicted in Figure 11.1. Note that template O has been added since we

129



Pixel mapping

Visual Attention
Model

Color
Segmentation

Original picture

Template
determination

Harmonized picture

SM Tm

CM

Figure 12.3: Overview of the proposed Color Harmonization algorithm. The first step (top part)
consists in estimating the best harmonic template. Based on a measure of the salient areas, a
template determination is performed so as to minimize a statistical distance between the histogram
and a harmonious template. Prior to the color mapping, a color segmentation technique is performed
to ensure that consistent colors are finally mapped into the same harmonious template sector.

want to leave unchanged (i.e., no harmonization) the pictures containing a large
distribution of hue values, e.g. rainbow-like pictures. We followed the same
formulation as the previous computational method (Section 11.3).

The color histogram of the original image is computed in HSV space using
L bins (typically, L = 360). However, to determine the template matching best
the color distribution, a modified hue histogram M is weighted by the saturation
and value. At each pixel u = (x, y) with associated hue h(u):

∀i ∈ [1, L],Mi =
1∑

u S (u)× V (u)
×

∑
u|h(u)=i

S(u)× V (u) (12.1)

Saliency map

The saliency map SM is computed for the considered picture from the visual
attention model of [170]. The saliency map provides a representation of the
most visually attractive pixels (white pixels stand for the most attractive one.).
The basic idea is that the estimation of the template should be driven mainly
by visually representative areas of the image to obtain a visually consistent
harmonization. As for the entire image, a weighted hue histogram S is computed
for the T most salient pixels, such as done in Equation (12.1). The threshold T
has been empirically set to 1% of the total number of pixels in all experiments.

Cost function or energy

A cost function is required to determine the most appropriate or the closest
template for the distributions M (and S). The appropriate template shape Tm
and the associated orientation α that best fits the hue distributions M is chosen
by minimizing the Kullback-Leibler divergence computed for each template and
each orientation, such already expressed in Section 11.3:

α̂m = arg min
α

∑
h

M(h) ln

(
M(h)

Pm(h− α)

)
, (12.2)
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where Pm(h) is the hue distribution of the template Tm with angle 0, already
specified and justified in Section 11.3.

The value Em =
∑
h

M(h) ln
(

M(h)
Pm(h−α̂m)

)
represents the residual energy of

template m for image at hand.
The cost function is applied independently on both M and S distributions,

leading to two optimal templates and their associated angles α̂m,M and α̂m,S ,
following these two steps minimization:

T ∗ = arg min
m

{
arg min
αm

∑
h

M(h) ln

(
M(h)

Pm(h− αm)

)}
. (12.3)

Note that α̂m,M is equivalent to (12.2) and that:

α̂m,S = arg min
α

∑
h

S(h) ln

(
S(h)

Pm(h− α)

)
, (12.4)

Merging the two templates

Both templates are then combined to form a new distribution or model P ′.
The combination consists in taking the maximum value between the optimal
templates of Pm,M (h− α̂m,M ) and Pm,S(h− α̂m,S), relative to the whole image
and to the salient pixels:

∀h ∈ [0 . . . 359], P ′(h) = max (Pm,M (h− α̂m,M ), Pm,S(h− α̂m,S)) (12.5)

Once again, the most similar template to this new combined distribution P ′,
among the nine harmonious templates, is found by minimizing the Kullback-
Leibler divergence under α and the residual energy under the different templates
as expressed in equation (12.3).

The different steps are illustrated in Figure 12.4. Since minor hues in color
histogram have to be taken into account due to their semantic or attentional
relevance, two templates based on two different hue distributions (the entire
image and only most salient pixels) are separately computed and then com-
bined. The main advantage of using two hue distributions is that the method
is parameter-free, compared to a weighting of salient pixels where the weights
would have to be tuned carefully.

12.3.2 Pixel color mapping

Once an harmonious template has been estimated, colors that lie outside the
template will be mapped into the template. This step is described here and
the main purpose is to perform a larger modification for pixels whose color is
outside the harmonious template and a minor (or unexisting) change for those
inside the template. Some artifacts may be created during this step because
two neighboring pixels that have similar colors can be mapped into two different
sectors of a template. We discussed this problem earlier in Figure 12.2c. To
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(a) (b) (c)

Figure 12.4: Illustration of the use of saliency for finding the final template. (a) Original picture
and the best template computed on its color distribution M , (b) Saliency map, the best template
corresponding to its 1% highest values S (left template) and the unified template P ′ (right template)
(c) the final template (from Matsuda’s set), the closest one to P ′.

remove these artifacts, all pixels that are in the same segmented area are mapped
in the same sector. To do so, a dedicated color segmentation will be used and
is described in the next section.

A hue-mapping map is thus created where each pixel is assigned with the
direction of mapping of its hue value:

• For each pixel p, its original hue quadrant between a sector angle alpha
and a border is determined,

• each segmented area is sub-divided depending on the pixel hue where all
pixels having their hues between a sector angle and the next are in the
same sub-segment (this is because segmentation problems appear only at
sector borders - each segment can be divided in two parts (see Figure
12.5),

• for each sub-segment, the majority quadrant (between the 2 around a
given border) is selected as the hue mapping direction for each pixel p, so
that all pixels belonging to the same segment and having their hues around
a sector border are harmonized in the same direction to avoid mapping
artifacts.

A sigmoid function is then used to transform the hue of each pixel at site
u = (x, y):

h
′
(u) = αm,k + Sign× wm,k

2
× tanh

(
2× ‖ H (u)− αm,k ‖

wm,k

)
(12.6)

where C (u) is the central hue of the sector associated with u, w is the arc-width
of the template sector, ‖ . ‖ refers again to the arc-length distance on the hue
wheel and Sign is the sign associated to the direction of mapping.

This sigmoid function has interesting properties for pixel color mapping: its
asymptote in extreme values auto-clamps pixels in the template and its middle
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Figure 12.5: Harmonic mapping of hue depending on the initial hue value. (a) Chosen harmonic
template with two sectors and their angles, (b) hue mapping examples

section (normal behavior) is nearly linear so at the center of a sector, hues
are not changed. Original image and dynamics are less modified compared to
Cohen-Or [54] where the mapping function contracts hues even near the center
of sectors. Since dominant colors are likely to be chosen near the middle section
of harmonic sectors, they are less subject to hue change, thus the original color
intent is maintained. Therefore automatic harmonization can be performed
without any user interaction.

12.3.3 Color segmentation

As mentioned previously, a color segmentation step is necessary to ensure the
mapping consistency, in other words to maximize the probability that pixels
belonging to the same semantic object are mapped to the same harmonious
sector.

State-of-the-art techniques [54] and [108] apply conventional graph cut algo-
rithm [32] for segmentation, while Tang et al. [244] perform a two-steps graph
cut processing both at the region and pixel levels in order to handle issues re-
garding spatial inconsistency of graph-cut algorithm. Sawant et al. [229] do not
use any image segmentation but implements histogram splitting on the hue his-
togram. Such a method does not account for spatial arrangement of the pixels
and can be seen as color clusterization of the outlier pixels in two clusters.

For color harmonization, the spatial aspect of the color segmentation may
not be compulsory and might even introduce artifacts as it can be seen on
Figure 12.2c. Therefore, we think that a histogram segmentation technique is
adequate here, such as the popular K-means method. However, such a histogram
segmentation should obey the following constraints:

• It should be unsupervised, meaning that the final number of color clusters
should not be a parameter. As a matter of fact, the color harmonization
would be very sensitive to a incorrect number of meaningful colors.

• The histogram segmentation technique should be capable of segmenting
small modes of the histogram. In other words, small regions that could
be seen as color outliers, such as the ladybug of Figure 12.2a, should be
detected as separate modes.
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In order to meet these requirements, we propose here a color segmentation
method that build on the work of Delon et al. [65] referred to as ACoPa (Auto-
matic Color Palette). This color segmentation technique is based on a contrario
analysis of the color histogram modes. A statistical estimation of meaningful
histogram modes is performed. Instead of the hierarchical estimation of modes
in the H, then S, then V space, we propose to perform a histogram decomposi-
tion of each component independently. The obtained modes are combined from
all modes obtained, and segments with a very limited group of pixels are dis-
carded. Finally, based on these histograms modes, a K-means post-processing
is used to group the modes that are perceptually similar using a dictionary ex-
pressed in the Lab color space.
We have obtained a segmentation technique that is approximatively 10 times
faster than the original version, and deals more efficiently with achromatic pix-
els.

12.4 Validation

In this section, we attempt providing a large qualitative appreciation of the
method compared mainly to Cohen-Or method. In a second part, we have per-
form an user experiment to validate the method. The basic idea is to demon-
strate that observers prefer or better rate harmonized pictures compared to
non-harmonized pictures. We set up a pair-wise protocol where observers were
asked for choosing the most harmonious pictures between a pair. Pictures may
be completely different (not necessary the pair: original versus its harmonized
counterpart) and are reorder at the end on a global scale, from the least to the
highest harmony rating.

First, we will demonstrate that we have fixed the state-of-the-art limitations
mentioned in Section 12.2, then we will provide a bench of visual results and
finally we introduce the experiment and its results.

12.4.1 Fixing state-of-the-art limitations

In Section 12.2, we introduced the limitations of previous work and developed
our approach for avoiding the mentioned effects. Below is a bench of results
related to the different issues.

Searching for a better fidelity

Figure 12.6 provides the results of our approach for all previously illustrated
limitations. We outperform Cohen-Or method for all of them. A better fidelity
is reached with our approach. In Figure 12.6a, the choice of X template better
fit the original color distribution. While in Figure 12.6b we keep the color of the
ladybug by means of saliency component, in Figure 12.6c the soft color mapping
within the template allows keeping most of the original colors.
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(a) see Figure 12.1b (b) see Figure 12.2a (c) see Figure 12.2b

Figure 12.6: Results of our method for the limitations of the state-of-the-art. For comparison, the
reader can refer to the mentioned figures in caption.

Figure 12.7 illustrates the interest of having changed the energy and used
the KL divergence. The choice of final template is different and lead to dras-
tic differences in final color remapping. In 12.7a, Cohen-Or method drastically
change the original color intent. With our method, we arrange only the color
of the tee-shirt, shifted to blue color, to fit well with shoes color. The example
in Figure 12.7b is clearly tricky. This is a typical case where the nature meets
man-made colors; this is difficult to harmonize and Matsuda’s template poten-
tially does not handle this case. Our method slightly changes the rendering,
while Cohen-Or completely alterates the original scene.

Figure 12.8 illustrates the interest of using the saliency map within the selec-
tion of template. The choice of final template is different and leads to drastical
differences in final color remapping. Even if we do not use the saliency (third
case), our method maintains the background color while Cohen-Or contracts
too much the blue within the template.

Figure 12.9 illustrates the interest of having a soft color mapping function.
Most of original color distribution is maintained. The other colors are softly
mapped into the template’s borders. The skin is preserved for our method and
gets yellowish due to the high contraction of Cohen-Or method. Also for the
second picture, the spirit around blue colors is maintained in our result, while
not for Cohen-Or.

No Spatial artefacts

By means of our histogram-based color segmentation, we fixed the problem of
unconsistency for non-convex areas having the same color. Since we do the
segmentation on the histogram, we do not have any a priori on the spatial
consistency which leads to better global results, such as illustrated with Figure
12.10. The trouser has a homogeneous color for our method.
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Figure 12.7: Results of our method to illustrate the interest of our energy formulation.

Original Our method Cohen-OrOur method wo saliency

Figure 12.8: Results of our method to illustrate the interest of the saliency map.

136



5

Original Our method Cohen-Or

Original Our method Cohen-Or

Figure 12.9: Results of our method to illustrate the soft color mapping function.

(a) (b)

Figure 12.10: Results of our method to illustrate the non-spatial segmentation. (a) The original pic-
ture and the harmonized picture with spatial unconsistency of object from [54], (b) our harmonized
result without artefact.
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12.4.2 User test

This section relates an experiment of pair-wise comparison where we asked for
the “most harmonious pictures” to be picked up during a side-by-side presen-
tation. This experiment leads us a bit further in the understanding of color
harmony. We answered the following questions: Knowing there is no previous
work on the pair-wise assessment of harmony for color pictures, is there any
high agreement between observers? Can we reasonably classified pictures with
different color content on the same scale from the least to the most harmonious
pictures? Have the large color distribution pictures a particular behavior? Is the
template theory from Matsuda and consequently the derived color processing
methods reliable for automatic harmonization task?

Participants

Twenty-one employees from 20 to 53 years old participated to this experiment,
with a median age of forty-two years old. The repartition between male and
females is unbalanced (four females and seventeen males). The enrollment for
participation was organized as a challenge to find the “golden eye” of color
harmony.

Material

We conducted the experiment on a 22-inch DELL monitor having a resolution of
1900 x 1200 pixels. Participants were located around 60 cm far from the screen.
The experiment setup was located in a dedicated user test room free of noise
with dark wall. The pair-wise comparison was implemented on a python server
that manages the experiment itself as well as the results visualization after each
run. It allows the monitoring of ranking after each participant. Moreover, it
has a console for the participant to enter its own characteristics (name, age,
expertise, gender, affiliation) and a training page to get familiar to the side by
side assessment.

Stimuli

Over the thirty-two stimuli composing the dataset of the Experiment 2 (Chapter
8) depicted in Figure 8.1, twenty-three of them and their harmonized counter-
part computed from our color harmonization method [24] were proposed to the
participant. In addition, three “large distribution” or complex stimuli of the
original dataset have been dropped into the involved stimuli but without their
harmonized counterpart. A total of forty-nine stimuli were involved in the ex-
periment.

Procedure

Participants were asked first to fill in the form about their personal information.
After performing the training session, they started the pair-wise experiment. It
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consists in choosing “the most harmonious pictures” over the side-by-side dis-
play of two stimuli extracted from the forty-nine involved stimuli. They had
eight seconds of visualization time to make their choice. After that, the pic-
tures disappear and they had an unlimited time to finally choose between one
over the two pictures. The choice was forced and could be made also during the
first eight seconds of visualization.

The paired pictures presented to the observers were not set randomly. The
specification document from ITU-T [114] for subjective quality assessment rec-
ommends presenting all possible pairs even the same pairs being unversed on
screen in order to derive accurate final ranking of all n involved pictures. Fol-
lowing such constraint leads to a number of pair comparison equal to n ·(n− 1).
Having an average visualization time of at least six seconds per pair (4 seconds
of visualization and 2 seconds for choice) and forty-nine pictures (2352 pairs)
causes a total experiment time of 235 minutes (about four hours). This is ob-
viously unrealistic. Twenty minutes of experiment with previously mentioned
conditions leads to using no more than 25 stimuli. Since we already reduced
the number of involved original pictures (only twenty-three over the thirty-two
original stimuli) to also include their harmonized counterpart, we have focused
on an optimal solution to reduce the number of presented pairs while guaran-
teeing a good accuracy of the final picture ranking.

The Bradley-Terry model [34] is usually the approach recommended for subjec-
tive quality assessment. This linear model analyses participants’ choices during
pair comparisons in order to map the probabilities of preferences to scales (see
probability results for each ranked picture in Figure 12.12). Our proposed ex-
periment used the Matlab implementation from Wickelmaier and Schmid [269].
Li et al. [150] proposed an adaptive square design method that decreases the
number of pairs comparison to n · (

√
n− 1), leading in our case to 294 pairs and

about 30 minutes. The good convergence for ranking is controlled for each iter-
ation(after each participant) and the algorithm is initialized with the previously
computed ranking scale such as performed by Li et al. [150]. Thus, the conver-
gence of ranking has been reached after recording around fifteen participants.
However, we conducted twenty-one iterations to ensure the convergence.

Inter-observer agreement

We first want to answer the question related to the reliability of pair-wise com-
parison for color harmony task. Thus, we need to measure the global inter-
observer agreement. Regarding the pair-wise aspect combined with a dynamic
creation of pairs (that may be different for each observer), we needed an agree-
ment metric that could handle ordinal annotation and a number of annotation
that may vary between pairs and finally for each stimulus.

Several measures of inter-annotator agreement are used in the literature such as
percent agreement, Fleiss’ kappa [79] and Krippendorff’s alpha [133]. Percent
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agreement is widely used and intuitive but overestimates inter-annotator reli-
ability since it does not take into account the agreement expected by chance.
However, this parameter is even presented as a high boundary in Table 12.1.
Fleiss’ kappa and Krippendorff’s alpha both take into account observed disagree-
ment and expected disagreement but suffers from prevalence: they consider that
annotators know a priori the quantity of cases that should be distributed into
each category [216]. It results that, especially using binary response which is
the case here, if a value is very rare the reliability is low even if there are few
mistakes in the annotations. Randolph’s multirater kappa free [216] is not sub-
ject to prevalence because it does not depends on how many values are in each
category.

In our annotation process, prevalence is not an issue. All possible pairs
are not presented to the observers; a stimulus is presented at most four times
over the 294 total numbers of pairs. Moreover, the most harmonious stimulus
(regarding the ranking of the previous iteration) is presented either on left or
right side of the screen. We do not induce an unbalanced effect on the binary
rating related to the stimuli presence or position. Both kappa values need a
fixed number of annotators; we used four annotations to compute all these
measures, because it is the best compromise between the number of discarded
pairs and a high value of annotators. The inter-annotator reliabilities for these
sub-samples are displayed in Table 12.1. Their values can range from 0 to 1
for percent agreement and from -1 to 1 for the other measures. For Fleiss’
kappa, Krippendorff’s alpha and Randolph’s kappa, a value below 0 indicates
that disagreements are systematic and exceed what can be expected by chance,
a value equal to 0 indicates the absence of reliability and a value equal to 1
indicates a perfect agreement between annotators.

Agreement Metric
Complete
Dataset

Original
Pictures

Harmonized
Pictures

Orig. vs Harm.
pictures

Percent agreement 0.73 0.72 0.76 0.74

Fleiss’ κ 0.12 0.13 0.19 0.16

Krippendorff’s α 0.12 0.07 0.17 0.14

Randolph’s κ 0.55 0.57 0.62 0.58

Table 12.1: Comparison of inter-observer agreement metrics for all stimuli (second column) and
several subsets: only pairs involving original pictures (third column), harmonized pictures (fourth
column) and an original and its harmonized counterpart (fifth column)

In Table 12.1, all values are positive which means that agreement is slightly
better than what would have been expected by chance and have similar range
of values to other subjective tasks, such as emotion annotation studies [139].
Randolph’s kappa which is robust against prevalence gives the highest reliability
value compared to Fleiss’ kappa and Krippendorff’s alpha. Landis and Koch
[139] suggest that a score of 0.375 indicates a fair agreement and a score of
0.452 corresponds to a moderate agreement. Since the experiment achieves a
Randolph’s kappa of 0.55 on the complete dataset, we conclude that the task
reaches a high rating agreement despite its subjectivity.
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Since Krippendorff’s alpha takes into account all pairs even if they are not
rated with the same number of annotators. As explained before, the prevalence
notion is not an issue for our experiment then the Randolph’s kappa has no
interest in such context. Consequently, we will discuss only the results related
to Krippendorff’s alpha in the following section.

12.4.3 Ranking Results

Having said inter-observer agreement is high enough, we focus now on the two
questions mentioned at the beginning of this section: 1) the classification of
different stimuli on a scale and 2) the validity of Matsuda’s templates through
the processing tool of pictures harmonization. There are two distinct studies:
the ranking of different stimuli categories (original versus harmonized sets) and
the ranking of each stimulus versus its harmonized counterpart, mentioned as
the inter-stimuli and the intra-stimuli conditions, respectively. Thus, we created
subset of annotated pairs by gathering all concerned pairs for the observed
condition.

Inter-stimuli condition

Focusing on inter-observer agreement, Table 12.1 illustrates difference of perfor-
mances regarding the set of observed pictures. While original pictures reaches
the lowest agreement (Krippendorff’ α = 0.07), the set of harmonized pictures
have a higher agreement score (Krippendorff’ α = 0.17). Figure 12.11a in-
troduces the correlation between final rankings of a category as a function of
ranking differences for each stimulus. Clearly, the harmonized ranking is highly
correlated to the difference, meaning the higher the ranking, the higher the dif-
ference is. However, this is not the case for the original pictures. Their ranking
is not correlated to the difference of ranking (R2 = 0.0148, Figure 12.11a) which
is more difficult to interpret.

Figure 12.12 points out qualitatively that harmonized pictures are rather at
the top of harmony scale and original pictures at the bottom of it. Previous
numerical proof seems to make the evidence that classifying original pictures
on a harmony scale is a difficult task, while comparing harmonized pictures is
more reliable and easier for observers.

Intra-stimuli condition

Working with the harmonized aspect of the experiment, over the twenty-three
pairs (original and harmonized counterpart), only four stimuli had a ranking
where the harmonized picture has a lower ranking (blue squares in Figure 12.12).
Our color harmonization method and the color harmony model [168] associated
to it are valid. As observed in Figure 12.12, those particular four stimuli are
located in the middle of the ranking scale indicating potential neutral aspect of
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the harmony and thus difficulty for harmony assessment. Additionally one can
notice that these differences are quite low in Figure 12.11b (negative bars).
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Figure 12.11: Ranking differences and statistics. (a) Linear correlation between Ranking differences
and final ranking for each set: original versus harmonized pictures. (b) Ranking differences between
original pictures and their harmonized counterpart as a function of harmonized pictures order.

12.4.4 Color Distribution Role

Since we introduced complex stimuli with large color distribution or several
hue peaks in their distribution (Figure 8.1), we are interested in any potential
correlation between the hue histogram or number of hue values larger than a
minimal threshold (T = 500) and the final ranking. We found a correlation
between those parameters (R2 = 0.26 with a linear model and R2 = 0.48 with a
logarithmic model), that confirms the intuitive assumption: the larger the color
distribution, the lower the rank.

In the same vein, the correlation between inter-observer agreement and
color distribution does exist at different degree according to the considered sets
(R2

all = 0.16, R2
original = 0.07, R2

harmonized = 0.20). It is more important for
the harmonized dataset.
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Focusing on the ranking in Figure 12.11b and color distribution of the dataset
depicted in Figure 8.1, we can observe that large, unclear and opposite color
distributions are located in the first third of the low harmony rate. Thin color
distributions (the two first rows of Figure 8.1) are rather at the top of the
harmony scale. Orthogonal distributions are rather in the middle of the scale.

We can formulate two conclusions out of these observations. First, thin dis-
tributions are probably easier to analyze by observers and also quite intrinsically
harmonious due to their arrangement with similar hues. Large distributions are
easy also to process for harmony task, but rather lead to disharmony opinion.
Orthogonal distributions are located in the middle of the scale and depict ei-
ther a high ambiguity for assessment or a neutral harmony score. However,
there are some outliers to these conclusions (pictures 16, 17 and 18 in Figure
12.11b). When focusing on differences of ranking, it appears that these harmo-
nized pictures are quite far on the scale from their original counterpart (ranking
difference above the average). The harmonization processing of such stimuli
highly improves their harmony feeling as annotated by observers.
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Harmonized counterpart: 

highest ranking

Harmonized counterpart: 

lowest ranking

Figure 12.12: Qualitative observation of the harmony ranking for all stimuli. First row is the lowest
ranking for harmony score and so on. Red squares points out the harmonized counterpart when
this one is ranked above the original one.
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12.4.5 Discussion

Fidelity criteria

Regarding the computational method exposed in this chapter, we can discuss
one limitation of having used the fidelity criteria. As originally motivated,
the aim of preserving original content is dictated by professional and potential
audience of such algorithm that would argue for the respect of their creative
intent. However, this fidelity may lead to few changes in the harmonization
process. Thus, having more changes and/or contraction of the color distribution
may sometimes bring more pleasant results because more consistency in terms
of colors.

(a) (b)

(c) (d)

Figure 12.13: Discussion on fidelity criteria. (a) Original picture and its associated hue distribution,
(b) the harmonized result from our method (only the green part of cushion is harmonized), (c)
Cohen-Or harmonization with our shifting function (less contraction), (d) Cohen-Or harmonization
with his original shifting function (highly contracted).

One example is illustrated in Figure 12.13. The first row depicts from left
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to right the original picture and our harmonized result. Few changes have been
performed, only the green pattern of cushion has been recolored in blue. Two
versions of Cohen-Or’s algorithm are depicted on the second row: the left-hand
side version uses Cohen-Or’s cost function and our shifting function, while the
right-hand side version implement both Cohen-Or’s cost function and shift-
ing function (high contraction). One can appreciate the harmonious rendering
of Cohen-Or implementation, while our result preserve maybe too much the
original intent. The different choice of templates for our method has clearly
conducted to a better preservation of blue color, itself driven by the saliency
feature that we have introduced in our method. This is a typical case, where the
saliency does not help much. However, we can always appreciate the interest of
using a slight shifting function for the contraction of colors within the template,
as depicted in Figure 12.13c.

Assessment methods

A tricky point about such image processing method is indisputably the valida-
tion aspect. There are neither objective result, nor ground truth to be compared
to. Quantitative evaluation is somehow impossible to provide. A visual appre-
ciation remains usually the only way to provide to the community a benchmark
about the performances of the different methods.

Following an usual validation process, we provided qualitative results of our
method, but also we carefully proposed evidence of improvements for each iden-
tified limitations of current state-of-the-art (Section 12.4.1). It seems proven
that our algorithm fix all limitations by applying suitable strategies on the
identified components of the algorithm.

As a new contribution we proposed to set up an user experiment where
participants directly assessed the most harmonious pictures from a presented
pair. Figure 12.12 attests of the right classification on a global scale (from low to
high harmony rank), where harmonized pictures locate mostly at a higher rank
than their original counterpart. This experiment expresses the improvements
performed by the computational method. However, we can discuss the nature
of stimuli. All of them received a substantial level of harmonization, despite the
criteria on fidelity. In other words, many pixels have been recolored to get the
picture globally consistent. We believe the ranking would have been completely
different and maybe not in favor of harmonized stimuli, if few pixels would have
required a recolorization (such as the picture in Figure 12.13a).

12.5 Summary

In this Chapter, a color harmonization method has been presented. Building
on the work of Cohen-Or [54], the method proposes three main contributions to
reduce possible artefacts and obtain a visually consistent result. First, a cost
function measuring the statistical distance between a weighted hue histogram
and the possible templates was used, jointly with the information of saliency.
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In Cohen-Or et al. [54] the cost penalizes only pixels that have a hue outside
the template, and favors large templates. In Tang et al.[243], the cost penal-
izes large sectors when not necessary. Our approach considers hue histogram
and templates as statistical distributions. The Kullback-Liebler divergence is
used to quantify the distribution similarity and emphasizes histogram differ-
ences. In addition, the weighted hue histogram is closer to the perception of
colors. Consequently, the selection of templates better fits the original image
color distribution. Second, a new color mapping function was used. Results
have shown that this mapping function contracts less the mapping within the
desired template and leads to a more consistent mapping. Third, a dedicated
color segmentation was used and was able to segment small histogram modes,
while leading to satisfactory result.

In Section 12.4, we attempted to convince that the method is achieving good
performances by tackle different tracks for validation. We provided usual visual
results, but also we carefully answered the questions raised during the exhaus-
tive exposition of limitations (Section 12.2). In addition to the computational
method of color harmonization, a major contribution deals with the introduc-
tion of a pairwise protocol in the context of color harmonization. We aimed at
showing that harmonized pictures are objectively rated more harmonious than
their original counterpart. Indeed, 19 over 23 stimuli achieved this expected
conclusion.
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Chapter 13

Harmony-guided Quality
Assessment

Contribution: C. Chamaret, F. Urban, No-reference Harmony-Guided Quality
Assessment, Computer Vision and Pattern Recognition Workshops (CVPRW),
2013 IEEE Conference on , vol., no., pp.961,967, 23-28 June 2013

In Section 4.3, the different employments of color harmony rules are reviewed.
From automatic color harmonization to the use as a low-level feature, the field of
application in image processing is large. The models of color harmony serve to
derive image aesthetic scores, infer emotion or to re-colorize pictures. However,
no work attempts to explore the field of quality assessment (at a larger extend,
the visual perception) with a color harmony perspective.

Extensive research has been done in the context of quality assessment to
define what is visible or not in images and videos. Techniques based on human
visual system models use signal masking to define visibility thresholds in order
to rate the impact of dedicated artifacts. What can the human eye perceive
disharmonious?

Based on the theory in both fields, we have designed a quality assessment
method which measures what is harmonious or not in an image. Color harmony
rules from Matsuda’s color coordination are used to detect which parts of images
are disharmonious, and visual masking is applied to estimate to what extent an
image area can be perceived disharmonious.

As an interesting tool for content creator and targeting a maximization of
the artistic effect, the proposed computational method outputs a no-reference
perceptual harmony-guided quality map as well as a score of disharmony. These
outputs are integrated into a photo editing framework to guide the user getting
the best artistic effects (Chapter 14).
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13.1 Introduction

When manipulating, editing, improving images, the best quality as well as a
certain artistic intent are usually the purpose. Nevertheless, although the issues
related to objective quality assessment have been largely studied in the context
of low level artifacts (blur, blockiness, jitter...), the artistic intent remains diffi-
cult to model or learn. As an intermediary indicator, aesthetic quality metrics
based on high-level features intuitively related to beauty (colorfulness, line ori-
entation, shape...) and rules of thumb (composition, rules-of-third, skyline...)
are showing up recently in the community [174, 63, 274]. Depending on the
context, some approaches take advantage of a reference source or do the best
effort without any reference when providing an absolute quality measurement.

Such as developed in Section 4.3.2, color harmony model is used in [186, 149]
as a global image cue for the assessment of aesthetic quality. To our knowledge,
the use of color harmony concept in the context of perceptual quality assessment
has been limited to the estimation of global image cues. Thus, the main contri-
bution of the proposed method is to take advantage of human vision knowledge
in the context of color harmony assessment. In other words, we have introduced
a model of color harmony in the context of a perceptual quality metric.

Perceptual quality metrics [270, 166, 183] take into account the human visual
system properties to exploit local and global masking effects in evaluating image
or video quality with full reference. They provide perceptual quality maps that
mimic the human perception of degradations by highlighting visible degrada-
tions. In the same vein, the structural similarity index [263] is largely used due
to its fair correlation with subjective judgment and its simplicity of implemen-
tation.

Previous work of Wang [263] has been extended to color by introducing hue
similarity into the SSIM index [233]. Thakur and Devi [250] proposed a color
quality index that performs in the spatial domain and takes advantage of the
Human Visual System (HVS) properties to assess color quality with reference.
Without any reference, Ouni et al. [199] have proposed different color statis-
tics analysis (distribution of hue histogram, proportion and dispersion of the
dominant color...) to derive a quality score, but they do not propose any local
information such as a color quality map.

Nishiyama et al. [186] focus on color harmony theory to compute an aes-
thetic estimation of the input image. As it is usually done in aesthetic quality
classification, features are extracted and a model is learned from an annotated
ground truth. Although features are based on color harmony, there is no use of
perceptual precept to derive any quality maps.

The proposed computational method relies also on Matsuda’s model or tem-
plates (Figure 4.6a) that we reinterpreted in the context of quality assessment.
To clarify the proposed computational method, we start by introducing some
outputs computed from the quality metric in Figure 13.1.

In this chapter, we will develop the approach for bringing the Color Har-
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(a) (b) (c)

Figure 13.1: Is it possible to quantify the color harmony of a pixel in a picture? The original
picture and its harmony-guided perceptual quality map are depicted. The whiter the pixels, the
more disharmonious the pixels relatively to the global picture. In (c), balls of color can be sorted
by disharmony level: from blue, green to yellow; red and orange are the most harmonious colors.

mony theory into a quality metric (Section 13.2), then we described the pro-
posed method (Section 13.3). Finally, we assess the performances of the method
(Section 13.4) and discuss the main findings (Section 13.4.3).

13.2 Paradigm

Such as elaborated previously, the proposed method links two distinct topics: a
no-reference perceptual quality metric and the harmonious templates. The basic
idea is to compute a harmony distance for each pixel regarding its corresponding
hue. Thus, the harmony distance, computed on a hue basis, of each pixel is
balanced by its degree of visibility in the picture. In other words, we apply
spatial masking rules to weight the harmony perceived at a spatial location.
Figure 13.2a illustrates the concept: blue pixels are considered disharmonious
by the metric; while the large blue areas are then rated with high value (meaning
high disharmony), the disharmony levels of small blue areas in the wall are
tempered due to their low level of visibility or due to the high level of masking
in the considered area. We assume that the spatial frequencies play a role in
the perceived disharmony.

In the proposed method, we are applying Matsuda’s templates as it is done
usually in the image processing literature. Cohen-Or et al. [54] and previously
Tokumaru et al. [252] assumed that one template at a time can be matched
to a picture. Thus, Cohen-Or’s method searched for the optimal template,
minimizing an energy according to each template design and each potential
angle (0 − 360◦). We rather interpret Matsuda’s models as providing us an
information about harmony. We are considering that each template delivers
an information of harmony which is more or less relevant depending on how
well they fit the picture distribution. One pragmatic consideration is that some
templates are included within others, e.g. V may be inside T. Consequently,
both templates may reflect to some extent (e.g. depending on the energy used
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Large areas without masking effects

Small areas with masking effects

High disharmony

Low disharmony

(a) On the right-hand side, the corresponding harmony quality map is
depicted. The blue colors are the most disharmonious but at different
levels depending on visibility threshold.

(b) Top row illustrates the original picture and its hue distribution.
Bottom row depicts different harmonization algorithms having dif-
ferent energy for determining the candidate template. From left to
right, the employed energy is the average of hue weighted by sat-
uration (Cohen-Or-like), Kullback-Liebler divergence and Kullback-
Liebler divergence combined with saliency information (computed by
our method [24]). All results are more or less harmonious, but at the
expense of the fidelity.

Figure 13.2: Illustration of the concept behind the harmony-guided quality assessment: (a) Contrast
masking, (b) Sensitivity of the energy used for matching.
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to match their distribution and the picture distribution) the degree of harmony
of a picture. Such consideration has also the advantage to minimize the impact
of the energy metric used to match the templates and picture distribution. This
point is illustrated in Figure 13.2b. As can be observed, the original picture has
a hue peak in red values and few pixels around blue and green values. Depending
on the strategy of matching, those minor colors have been taken into account
or not leading to a complete different candidate template. However, these three
results may be considered individually harmonious. The issue around these
three implementations is rather related to their fidelity to the original picture.

In the proposed metric, we consider the contribution of each template and
their minimal energy with respect to the optimal angle (providing the best
match to the picture distribution) in the computation of harmony distance.

13.3 Proposed method

Figure 13.3 depicts the different steps that are detailed in the next sections.
Based on the previous precept, we define a harmony distance relative to the
hue distance from the current pixels to all optimal templates. This distance is
applied on each pixel to derive a disharmony map. Afterward, the perceptual
quality map is obtained by applying masking functions that provide information
regarding the local visibility. Those mentioned processing are done at different
levels of resolution to mimic the human visual system. A pooling step is then
required to aggregate all resolution level maps leading to a perceptual harmony
quality map (Figure 13.1). A final score is then computed from the map. The
reader can notice that the map as well as the score are expressed regarding
a disharmony level and not relatively to the harmony. We considered such
representation more intuitive since white pixels (high values) conventionally
depicts outliers or a minor behavior (e.g. saliency map). The description of the

DWT (YUV space)
Contrast Masking

Activity Masking 
(YUV space)

Harmony Distance 
(HSV space)

Perceptual 
masking Spatial poolingInter-level 

accumulation

Activity 
Masking 

Map

Hierarchical 
Harmony Map

Contrast Masking 
Map

Perceptual 
Harmony Map
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Figure 13.3: Overview of the Harmony-guided Quality Assessment: the different steps of the com-
plete system are depicted.

following steps relies on the harmony formulation introduced in Section 11.3.
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13.3.1 Harmony distance

The definition of harmonious templates reveals to be convenient information
that may be arranged to provide a spatial harmony map. For a given template
Tm, a hue h is considered harmonious if it is enclosed by a sector (meaning
its harmonious distance is 0), while a hue outside the sector is not harmonious
regarding a certain proportion defined by the hue distance dm(h). It is evaluated
by computing the arc-length distance on the hue wheel (measured in degrees)
to the closest sector:

dm(h) = min
k=1...Km

[
|h− αm,k| −

wm,k
2

]+
, (13.1)

where |.| is the arc-length distance and [.]+ = max(0, .). Then, assuming that
each template (associated with its optimal angle) provides harmony information
about the picture, the dm maps are computed for all templates and combined at
the pixel level. At each pixel u = (x, y) with associated hue h(u), the harmony
distance map G(u) accumulates the harmony distances dm(h(u)) as follows.
The contribution of each template is weighted according to its respective energy
Em (referenced in Section 11.3 and related to equation (11.2)), to give more
importance to well suited templates (having low energy);

G(u) =

∑
m

1− Em∑
m′
Em′

 dm (h(u))

 · s(u) · v(u) (13.2)

where s and v are saturation and value of the image. Weighting the harmony
distance by saturation and value gives a more perceptual result because the
more saturated the color or the higher its value, the stronger it is perceived.
This point is independent of the following perceptual masking, but it already
introduces perceptual concept into the metric. Some qualitative results are
depicted in the second column of Figure 13.4.

13.3.2 Perceptual masking

At this stage, the harmony distances obtained at the previous step are con-
verted into perceptual harmony maps. Spatial masking refers to the alteration
of the perception of a signal by surrounding background, i.e, visibility increase
(pedestal effect) or decrease (masking effect) due to the surrounding signal. As
recommended by Watson et al. [265], both contrast masking and entropy mask-
ing are incorporated in the proposed quality metric. Contrast masking models
the visibility change of the signal due to contrast values created by edges or
color gradation. Entropy masking reflects the uncertainty of the masking signal,
due to texture complexity. Entropy masking is also known as activity masking
or local texture masking [184]; in the following, activity masking is used. The
masking values are computed on the luminance channel of the YUV color space,
because a perceptual masking is already employed on saturation and value in the
previous step. The multi-channel behavior of the HVS is commonly simulated
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by multi-resolution analysis [183, 264]. Discrete Wavelet Transform (DWT) has
proven to be efficient both in term of prediction and computation performances
[183].

A CDF 9/7 (Cohen-Daubechies-Feauveau) kernel is used in our implemen-
tation with L decomposition levels. Each decomposition level comprises 3 ori-
entation sub-bands (horizontal, vertical, and oblique frequencies). The spatial
frequency range of a decomposition level l ∈ [1;L] is

[
2−l · fmax; 2−l+1 · fmax

]
where fmax is the maximum spatial frequency of the image. The number of
decomposition levels is set so that the lowest resolution level L contains the
frequency 1 cycle/degree: 2−L · fmax < 1c/d < 2−L+1 · fmax.

Contrast masking Cl,o(u) at level l and orientation o is defined as the wavelet
transformed value at site u, weighted by the CSF (Contrast Sensitivity Func-
tion) that describes the variations in visual sensitivity to the spatial frequency.
The CSF value Nl,o is the mean value of the 2D CSF [62] over the spatial
frequencies covered by the sub-band wl,o at level l and orientation o:

Cl,o(u) = wl,o(u) ·Nl,o, o ∈ {1, 2, 3}. (13.3)

The activity A(u) is usually evaluated by the computation of entropy on a n-
by-n neighborhood. Unfortunately, this tends to give high values on areas with
a color step even between uniform areas, while we aim at detecting complexity
of texture and not edges. Thus, it leads to overestimate the masking effects,
such as pointed out by Ninassi et al. [183]. Instead, the spatial gradient of the
image luminance Y for different directions (horizontal, vertical, diagonal) are
computed for each pixel at the full resolution and the minimum value is retained
in the activity map. A high value would mean a contour is present in several
directions, highlighting potentially a texture:

A(x, y) = min (min (gx, gd1) ,min (gy, gd2)) (13.4)

with gx = |Y (x+1,y)−Y (x−1,y)|
2 , gy = |Y (x,y+1)−Y (x,y−1)|

2 ,

gd1 = |Y (x+1,y+1)−Y (x−1,y−1)|
2 and gd2 = |Y (x−1,y+1)−Y (x+1,y−1)|

2
This map A is computed at different resolutions, yielding maps Al’s, to

match the HVS simulation and the resolution of contrast masking maps.
In quality assessment models, contrast values are used to find a visibility

threshold for the contrast difference between two images [184]. Here the studied
signal being the color values, and not contrast and structure such as in quality
assessment, the masking functions thus apply to the harmony map only. To
apply masking functions, a multi-resolution analysis of the harmonious distance
map is adopted to match the multi-channel behavior of the HVS. A multi-
resolution image pyramid is first computed in the RGB space and converted into
an HSV pyramid. Harmonious distance maps Gl, l = 1...L are then computed
as explained above, along the pyramid. Note that no map is computed at full
resolution because the added information is mostly contrast information and is
poorly related to perceived color.

Then, perceptual masking is applied to harmonious distance maps at each
resolution level. This step consists in applying contrast masking Cl,o and activ-
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ity masking Al on the harmony distance map at each resolution l. Daly [62] and
Nadenau [179] have proposed different complex intra-channel models for inte-
grating the different kinds of masking effects. However this involves the tuning
of parameters to adjust masking strength. Instead a simple masking function is
used:

H∗l (u) =
Gl(u)

1 + 1
2

(∑
o
Cl,o(u) +Al(u)

) . (13.5)

The contribution of disharmonious pixels is reduced when the masking effect is
high.

13.3.3 Pooling and rating

This step consists in accumulating the perceptual harmony maps H∗l for the
different resolutions l ∈ [1...L] to build the final perceptual harmony map H.
Finally, a score or rating is derived from this aggregated map. The perceptual
harmony map is obtained with successive upscaling and combination of the map
at each resolution level:

Ll−1(u) = Ll(2−1u) +H∗l (2−1u), LL(u) = 0. (13.6)

The perceptual harmony map is the accumulation over all the resolution levels:

H(u) = L0(u). (13.7)

Note that H is visually close to the harmony distance map, but integrates mask-
ing effects by decreasing impact of colors in textured areas (Figure 13.4). The
final image rating is defined as:

R =

(
1

W ·H
∑
u

H(u)β

) 1
β

, (13.8)

where W and H are respectively the width and height of the original picture
and β is a parameter empirically set to 2.

13.4 Validation

Due to inherent issues related to color harmony field (Section 5.4), the no-
reference harmony-guided quality assessment initially suffered from a lack of
ground truth for the validation. Ideally, a dataset with perceptual harmony
maps as well as the associated score would be useful for the extensive validation
of the proposed algorithm. These aspect has motivated our work in Chapter 9.

In this section, we divided the validation question into two usual approaches:
the qualitative and quantitative appreciations. In the qualitative section, we are
going to answer the following question: are the harmony-guided maps visually
consistent with user perception of disharmony? In the quantitative approach, we
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confront 1/ the harmony perceptual quality maps to the ground truth elaborated
in Chapter 9 from the eye-tracking experiment (Chapter 8) and 2/ the harmony
score to experimental ranking elaborated in the experiment described in Section
12.4.2.

13.4.1 Qualitative appreciation

The role of masking maps

Figure 13.4: Visual appreciation of perceptual harmony-guided quality maps. The first column
is the original picture, the second column is the harmony distance map, the third column is the
contrast masking map and the fourth one is the activity map. Final maps are perceptual and
harmony-guided in the sense they are close to harmony distance map but with applied masking
effects.

As mentioned previously, the masking effect is a key concept in perceptual
quality assessment. In this section, we demonstrate the interest of the two
masking maps introduced in the context of harmony guidance. First row in
figure 13.4 illustrates the main advantages of masking modeling. The harmony
map at the first row highlights blue and green areas as being disharmonious with
orange/red major hues of the picture. The corresponding masking maps are not
related to hues, but to visible spatial frequencies. Regions with complex texture
are detected in the two masking maps: typically, black and clear areas with low
contrast regarding the background are not masking areas, while red and green
areas have complicated texture with high contrast. High masking contrast areas
have a reduced contribution on the final perceptual harmony map.

In the second example, the gray/blue hues of the ground are detected as
being disharmonious in the harmony distance map. However, the two masking
maps clearly distinguished from the two areas of ground. Indeed, the ground
of the right hand side of the picture is more textured leading to high contrast
and potentially no clear analysis of HVS in this kind of area. The perception
of the disharmonious hues in this area is thus masked by the image content.
Consequently, the contribution of such area is minimized in the final perceptual
map.
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Figure 13.5: Qualitative appreciation of perceptual harmony maps and its associated score S. Also,
the hue histogram of each picture is depicted.

Finally, on the third row, the complementary roles of the two masking maps
can be appreciated. The blue color is perceived as a disharmonious hue in this
picture. Nevertheless, all the blue pixels can not be treated the same way, since
masking effects alter the perception of some small group of blue pixels (jacket of
the woman). High activity masking effects (4th column) appear in the cushion
(above the yellow one) leading to non-detection of non-harmonious blue hues by
the HVS. Although green colors (particularly on the shelf) are also mentioned
as having an average level of disharmony in the harmony distance map, they
are detected in the contrast masking and then masked in the final perceptual
map.

The two masking maps are complementary and allow the attenuation of
disharmonious regions that are not perceived by the HVS due to their complex
neighboring environment.

Harmony score and map

Figure 13.5 depicts four results for a qualitative appreciation of the perceptual
harmony map and its associated score: from the least harmonized pictures (top
left) to the most harmonized picture (bottom right). The blue colors in left-
hand side pictures have been identified as being not harmonious with regard
to the other dominant colors. For the right-hand side pictures, it is rather the
green colors that do not match well with the yellowish dominant colors.
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13.4.2 Quantitative appreciation

In this section, we propose to appreciate quantitatively the performances of the
quality metric in terms of harmony score and spatial map.

Harmony Score

Relying on the pairwise experiment described in Section 12.4.2, we exploited
the ranking score estimated by this experiment on the dataset. The main idea
is to estimate a potential correlation between the experimental ranking and the
score provided by the metric.

In Section 12.4.4, a high correlation between the color distribution and the
harmony ranking has been established (R2 = 0.26 with a linear model and R2

= 0.48 with a logarithmic model). Also, in Chapter 9, the creation of a ground
truth evidenced the need for classifying the considered dataset into three distinct
categories depending on the complexity of the stimuli, measured by the inter-
observer agreement. Thus, we considered the two reliable categories estimated
within the dataset: the Low Agreement (LA) and the High Agreement (HA)
sets. For each of them, we computed the linear correlation R2 between the
ranking score and the estimated score from the metric smetric, as well as the
linear correlation between the ranking score sexp and the color distribution
(Table 13.1). Note that the color distribution (nh) is expressed as the number
of hue values in the histogram having more than T pixels (T=500, representing
0.1 % of pixels for a 800x600 picture).

Linear Correlation R2, Ranking score sexp versus ...

Dataset
Color Distri-
bution: nh

Metric Score:
smetric

f(Metric Score, Color Distri-
bution): f(smetric, nh)

LA 0.0092 0.48
HA 0.35 0.02 0.79

Table 13.1: Validation of the score computed from the metric. The linear correlation has been
estimated between different factors: the color distribution (or hue width) of the considered stimuli,
the experimental ranking score and the metric score for the two datasets. Note that in the last
column a function has been determined regarding the HA dataset.

As observed in Table 13.1, the color distribution is correlated to the experi-
mental ranking score for the HA dataset: the larger the color distribution, the
lower the experimental score. For the LA dataset, where there is less consensus
between observers, there is no correlation between these two factors. However,
the correlation between the experimental score and the metric score is pretty
high. This confirms that the harmony score computed from the proposed model
is relevant for the LA dataset.

Nonetheless, this is not the case for the HA dataset. Since the color distribu-
tion influences the experimental ranking score, it seems suitable to include such
feature into the metric score. We have empirically fitted a logarithmic function
including the color distribution as a variable, such as described in Equation
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(13.9):

f̂(smetric, nh) =
a

nh
· log

(
b

smetric

)
, (13.9)

with a = 360, b = 8.
The logarithmic curve is weighted by the color distribution (a = 360, the

maximal number of hues). Since the metric score provides a score of disharmony,
it is inverted in the formula to match the harmony score provided experimen-
tally. Figure 13.6 illustrates in 2 dimensions the correlation between the fitting
curve and the experimental scores.

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

Experimental Ranking Score (sexp)
3.0

2.5

2.0

1.5

1.0

0.5

E
st

im
a
te

d
 f

u
n
ct

io
n
 f̂

R2 =0.79

f̂(sexp,nh )

Linear Regression

Figure 13.6: Correlation between the fitting curve and the experimental data for the harmony score.

Globally, we found a high correlation between the experimental score of
harmony and those computed from the computational metric.

Perceptual Map

In this section, the maps designed as a ground truth in Chapter 9 are employed
in order to confront the computational method of this chapter with experimen-
tal results. Following the same methodology as in the previous section, we
distinguished the LA and HA dataset. In Chapter 9, the experimental maps for
those two datasets were built differently. Since the eye fixations have been post-
processed, we could not employed the recorded scanpaths and consequently, the
NSS measure. Thus, the similarity in terms of Correlation Coefficient (CC),
Area Under the Curve (AUC) and Kullback-Leibler Divergence (KLD) is de-
picted in Figure 13.7 under the form of an histogram. The inter-map similarity
is limited, but does exist. Only two or three pictures per dataset come up with
a high divergence. As expected, the similarity is higher for the HA dataset than
for the LA one, whose the inter-observer agreement was lower.

159



0

0.5

1

1.5

2

2.5

3

3.5

-0.25 0 0.25 0.5 0.75 1 1.25

Fr
e

q
u

e
n

cy
 

CC 

HA dataset LA dataset

(a) Linear Correlation Coefficient

0

1

2

3

4

5

6

7

8

9

-0.25 0 0.25 0.5 0.75 1 1.25

Fr
e

q
u

e
n

cy
 

AUC 

HA dataset LA dataset

(b) Area Under the Curve (ROC)
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(c) Kullback-Leibler Divergence

Figure 13.7: Validation of the computational and perceptual harmony maps. The histograms of
CC, KLD and AUC values for the two datasets are depicted.

13.4.3 Discussion

We demonstrated the role of masking maps and their interest in a metric of
quality assessment dedicated to harmony concept. As a first attempt in the de-
sign of such metric, only luminance-based functions of perceptual masking were
employed and tested. A significant improvement could be brought by taking
advantage of masking functions dedicated to color, such as e.g. in [141].

For the validation of the harmony score, there are several unexplored paths
that can be mentioned. There are two prior works that aim at predicting the
harmony from content. Solli and Lenz [239] extended the Ou’s model for es-
timating the perceived harmony of multi-colored images in a context of image
indexing (Section 4.2.2). Also, Moon and Spencer extrapolated a score of har-
mony from their geometric formulation of color harmonies [173]. A comparison
to these two models would be useful to benchmark the performances of each
approach.

Following adjacent work on aesthetic assessment, we performed a comparison
of recorded aesthetic scores (AVA dataset [178]) and harmony scores computed
from the proposed model. Consistent with Nishiyama et al. [186], no correlation
were found between the aesthetic and harmony scores. Aesthetic assessment is
not directly related to harmony, even if this latter certainly participates to the
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global aesthetic appraisal.

13.5 Summary

In this chapter, a perceptual and no-reference harmony-guided quality metric
has been introduced as a new way to assess picture quality. It relies on percep-
tual masking effects that are important properties of Human Visual System, and
on harmony templates that have previously been designed during psychological
experiments. The integration of these two concepts leads to the computation
of perceptual harmony-guided map and an associated score. Both types of in-
formation may be useful in the context of image content creation, edition and
retouching for guiding expert and non-expert content creators such as proposed
in Chapter 14.

Qualitative results show that the harmony-guided map reflects the percep-
tion of color harmony by a human eye. Perceptual maps closely mimic the HVS
to take into account masking effects and to discard disharmonious regions that
are not perceived. The computation of score is consistent with potential changes
of colors that can be done to improve picture harmony.

The quantitative analysis reveals a correlation with two experiments serving
respectively for the validation of the harmony score and the perceptual harmony
maps.
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Chapter 14

Color Harmony for Editing

Contribution: Christel Chamaret, Fabrice Urban, and Lionel Oisel, “Harmony-
guided image editing”, in IEEE International Conference on Image Processing
2014 (ICIP 2014), Paris, France, Oct. 2014, pp. 2176-2178.

This chapter proposes two applications that directly implement the previously
proposed computational methods to guide the end user in a task of image edit-
ing. In Section 14.2, the perceptual harmony guided map provides an useful
information for selecting locally the non-harmonious colors to be retouched and
an algorithm extrapolates a harmonious color palette to serve the user editing
task. In Section 14.3, the color harmonization process is biased by a dataset
previously uploaded by the user.

First, we briefly present an overview of the available tools related to Color
Harmony.

14.1 User-assisted color design: state-of-the-art

Related to color harmony, extensive work has been carried out to produce com-
prehensive and user-friendly tools for performing color design. Once again, main
difficulties remind 1) the translation of empirical color harmony rules, 2) the
usability and accessibility for non-expert audience. More specifically, colors are
quantitatively enormous, color spaces or representations are also varied depict-
ing different characteristics and color interacts with each others. Considering all
these problems, designing color schemes or rendering tools have been explored
by researchers. This set of tools showed up for guiding user in his design choice
and more particularly in combining colors together.

In 2004, Lyons and Moretti surveyed the current state-of-the-art of tools that
generates harmonious color schemes [159]. At this time, most of computer in-
terfaces suffer from proposing strong and reliable guidance to achieve harmony
schemes. Most of them relied on the color wheel representation which may limit

162



the user’s choice: one (hue) or maybe two components are represented at a
time, but they do not display the full three-dimensional structure of the color
universe. Also, most of tools do not force user’s choice by adjusting its previous
color choices to guarantee respect of geometric harmony rules.

In such context, Lyons and Moretti were undertaking a long-term investiga-
tion into mathematical solutions for introducing color harmony within computer
interfaces [161, 159, 160, 176]. The main idea behind their substantial work is
to mathematically formalized and conceptualized the color harmony notion as
an abstract color scheme which can be represented as a rigid shape, a color
molecule that is free to move within a 3D color-space. As a missing element of
previous attempt, they proposed a consistent mapping between the distances in
the color space and perceived color differences. Thus, they have built the Color
Harmonizer tool which basically operates in two steps: 1) it generates the ab-
stract color scheme by depicting essential color relationships between interface
components (button, texts...); 2) using a direct manipulation interface, the user
locates the targeted sample in color space. The chosen colors are harmonious
and ensure also a visual distinction between the different components. How-
ever, they specify a restrictive applicative domain related to web design. They
did not demonstrated the power of their tool on pictures or more sophisticated
graphics.

Having less sophisticated harmony rules, but displaying appealing results,
the work of Hascoët [95] also investigated the design of web page from the color
of an original picture (Figure 14.1a). Following their experience and experi-
ments funding, Ou et al. have also created an editing tool [198] that tackles
color harmony principles (Figure 14.1b).

Recently, a color planning and visualization system were proposed by Chen
and Wang [50]. Their system includes four interesting functions: 1) the model
component grouping, 2) color arrangement, 3) visualization and 4) an online
evaluation. The color arrangement function directly applies Moon and Spencer’s
harmony as well as Munsell’s law by computing contrasts for two or three-colors
combinations. In addition, they applied specific rendering effects, such as Phong
shading model, Cook-Torrance shading model and environment reflection effect.
The user selects a group of characteristics (color, design mode...) and then the
system proposes a computational visualization based on the harmony rules and
rendering effects. If desired by the user, an online evaluation may be requested
and allows him reiterating regarding such feedback.

In the same vein, Hu et al. [106] also proposed an interactive visualization
tool for generating harmonious color schemes. It relies on two color harmony
principles: familial factors (the ability for sharing attributes among colors) and
rythmic spans (the property of repeated distances in the color space). Based
on these two principles, they fix one or two components and generate schemes
within their harmonic color generator tool. Visualization on patterns may be
proposed to the user that can immediately appreciate the combinations he de-
signed.
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(a) Extracted from [95] (b) Extracted from [198]

Figure 14.1: Examples of color design tools. All of them use color harmony concepts for guiding
the user in his editing task. (a) Hascoët and the design of webpage [95], (b) Ou et al.’s editing tool
[198] based on their harmony model.

Finally, we can cite two specialized design tools which have integrated the
color harmony concepts in order to guide the color design of specific material.

In [51], Cheng and Liu proposed an smartphone-based application that be-
haves as a fashion advisor. They imagine an user taking a picture when shopping
and submitting it to the known personal garment database of the user. Thus,
the tool evaluates potential match, based on color harmony rules derived from
Matsuda’s color coordination.

Focusing on another material and usecase, Jahanian et al. [116, 117] have
implemented an automatic tool to design magazine covers. In addition to color
harmony theory, they also introduced notion of color semantics and more par-
ticularly mood-based color descriptors. From Itten’s theory, they defined the
harmonious color palette they can employ for text with regard to the back-
ground picture.

For the two following sections, we propose the same descriptive organization.
First, the tool is introduced and its motivation is developed. Second, its design
and use are described because they participate to its added value. Third, the
link and the algorithm allowing to make the link with the core technology de-
scribed in the previous chapter are depicted. Finally, a last subsection provides
an example of usage.

14.2 Picture Retouching

14.2.1 Introduction and motivations

This tool [49] is based on the harmony-guided quality metric developed in Chap-
ter 13. Based on the disharmonious areas identified by the metric on a picture,
the end user picks up a target area and color to be retouched. Then, the tool
proposes to him a harmonious color palette that guarantees the improvement
of global harmony score, also computed from the harmony-guided quality metric.
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When manipulating, editing, improving images, a high artistic quality is some-
how purposely maximized. However, even if modern tools propose user-friendly
image editing, there is no guarantee that anyone has good taste by essence for
retouching color images. Improving color rendering of pictures requires an ex-
pertize. Hopefully, the scientific community, very active in the design of rules
for understanding the user experience when confronting to color harmony, is
also driven the transfer of such notion into comprehensive engine or tool (Sec-
tion 14.1). However, their use is restricted to a color science community and
they are far from being exploitable by any naive person. On the other hand,
automatic solution for color harmonization appeared recently by means of new
connection between color scientists and image processing community. Nonethe-
less, such kind of automatic solution may alter too much the original content
and/or change too much the creative intent. There is a need for supervised
solutions, where the user could select the area that he really wants to retouch.

In such context, we propose in this section a tool that could be integrated as a
plugin in any image editing software. It aims at facilitating the color retouch
of images by 1) depicting an informative representation of non-harmonious ar-
eas, 2) proposing a color palette that guarantees the increase of global color
harmony. The end-user iteratively selects a color to be retouched (typically the
one of an object) based on the provided guide (a spatial map of disharmonious
pixels), pick up a color in the proposed harmonious color palette and validate
its choice for the current area. Thus, in few clicks and without color expertize,
he has maximized the color rendering of the pictures while his artistic intent is
respected.

14.2.2 Implementation

Design

The User Interface (UI) has been designed in C language using QT. Having seg-
mented the picture in uniform color areas [55] allows an intuitive and friendly
way to select the disharmonious pixels. Such as usually done for image edit-
ing, the main environment is composed of several frames: the harmony-related
information, i.e. harmony quality map and color palette, are displayed at the
bottom of the interface, while the top area depicts the high level information,
such as the original, retouched and segmented pictures. An overview of the UI
is provided in Figure 14.2.

Use

This section describes the different steps and interactional aspects of the UI.
The following numbering follows the steps depicted in Figure 14.2.

1. First, the user uploads a picture within the interface, then while opening
the selected image, two libraries run in parallel: the color segmentation
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Figure 14.2: Screenshot of the User interface. The numbers refer to Section 14.2.2

and the harmony quality metric. In few seconds, the user interface outputs
the results of these two algorithms. Then, the user may simply observe
the harmony quality map to immediately identify disharmonious colors
that he might retouch.

2. Once he takes his decision, he can pick up an uniform area on the seg-
mentation map. Note that several uniform areas can be selected as soon
as they reflect hues similar to the original area in average.

3. Then, a color palette able to improve the global color harmony is proposed
to the user. He can choose the color that best fits his intent and control
the improvement by checking the harmony quality map and the associated
score that are instantaneously updated at each color selection.

Several options allow performing a finer color editing. Two color segmentation
algorithms are plugged into the interface: the well-known meanshift implemen-
tation segments coarse uniform areas [55] while the histogram-based approach
inspired from [65] provides an accurate selection of areas. Also, the user may
zoom in the color palette proposal to access intermediary hues.
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14.2.3 Method

Core technology

The tool is built on a core technology that is purposely introduced as a guidance
for the end-user. It consists in creating computational harmony map and score
that predicts or assess the degree of color harmony, as described in Chapter 13.

Color Palette Creation

This step consists in computing the optimal color palette C associated to the
selected color hs picked up by the user. This color palette is supposed to guar-
antee the increase of color harmony. The color palette C is computed through
four main steps, where each variable is illustrated in Figure 14.3:

1. Determine the central hue hs of the selected area,

2. Find the distribution G which is the harmony contribution of each tem-
plate for each hue,

3. Find the N first maximum values in G(h), such as H = {hn;n = 1..N}
verifying that the distance between two maxima is high enough to obtain
distinguishable colors:
maxhG(h)|hi−hj |i6=j=1..N>Th

4. Create C by selecting the hues from H that have a harmony contri-
bution superior to the one of the hue hs picked up by the user, C =
H − hn,G(hn)<G(hs).

Th is empirically set to 10 degrees. Note that in Chapter 12, each template is
preliminary rotated to map the hue distribution of the picture, such as described
in Equation (11.2). Then, the harmony contribution G consists for each hue in
aggregating the distance of the hue to the template border, such as done in
Equation (13.2). G(h) corresponds to G(u), where u are the spatial coordinates
of the image.

14.2.4 Use Case

In this section, we provide intermediary inputs to understand the interest and
results of the tool. We iterate on several colors/areas to be retouched such as
depicted in Figure 14.4.

14.3 Biased Color Harmonization

14.3.1 Introduction and motivations

This tool is derived from the method of automatic color harmonization proposed
in Chapter 12. Targeting the harmonization of a picture, the end user biases
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Figure 14.3: Color Palette Creation. It illustrates the case depicted in Figure 14.2. The user wants
to retouch the purple skirt and choose the red color proposal.

(a) (b) (c)

Figure 14.4: Picture retouching Usecase. (a) Original picture and hue distribution, (b) Harmonized
picture from Chapter 12, (c) Picture retouched locally with the proposed tool and the method from
Chapter 13

the original processing of automatic harmonization with the colors present in a
set of pictures.

This tool answers the need for harmonizing pictures based on examples. It
follows the same philosophy as performing Color Transfer processing [220, 208,
273, 213], but less drastically. Indeed, we do not apply the colors of a reference
picture, but rather maintain the original colors of the source picture while shift-
ing the original color distribution to the colors of the reference pictures. Thus,
we guarantee that the final picture contain both harmonized set of colors and
potentially colors from the reference pictures.

It may be used for harmonizing different rooms of a building (Section 14.3.4)
or the objects of a room or even the clothes of a wardrobe.
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14.3.2 Implementation

Design

The User Interface (UI) has been designed in C language using QT. It intuitively
displays the original picture (top left-hand side), the processed image (top right-
hand side) and at the bottom a thumbnail version of all reference pictures. Some
buttons allows changing of strategy for the bias application. The user is free to
play with options and can go back to previous result with one click since the
results are stored locally. An overview of the UI is provided in Figure 14.5.

Figure 14.5: Biased Harmonization: screenshot of the User Interface.

Use

This section describes the different steps and interactional aspects of the UI.
The following numbering follows the steps depicted in Figure 14.6.

1. The user uploads a gallery of pictures, either from a local folder or from
an internet url (Figure 14.6b).

2. The user uploads the picture to be processed.

3. The user chooses a setting for the bias strategy (details in Section 14.3.3).

4. The user clicks on Harmonize button, then the result is displayed. Also,
at the same time regular Harmonization process is run and may be display
by choosing it on the right-hand side list of processing.
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Figure 14.6: Biased Harmonization: one additional result. (a) The numbers refer to the one de-
scribed above. (b) Upload of reference pictures, display of thumbnails version and potential remov-
ing of pictures with right click.
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14.3.3 Method

Core technology

This tool is based on the method of color harmonization described in Chapter
12. We did not perform any specific changes in the method to get adapted to
this application. Only a software architecture effort was necessary to well split
the C functions in order to address the way we perform the bias strategy.

Introducing the bias

The bias related to a set of reference pictures may be ingested from different
ways. There are actually two settings that may highly influence the final results:

1. which information from the reference pictures we are taken into account,

2. the way those information will be pushed to the final harmonization pro-
cessing

These two paths are depicted in the accessible options for the users. Basically,
there are three options for the information extracted from the reference pictures
and five options for the way they are taken into account on the harmonization
process. Finding the information from reference pictures may follow the idea
of computing the trend of a group of pictures, while the ingestion of bias is a
shifting or mapping of colors based on previously estimated trend. Both group
of options consists simply in finding a candidate template and its associated
angle. These options are described below:

Trend from reference pictures

• The most representative template: from a set of consistent pictures, it is
likely that the same template, providing the best match with the original
hue distribution, occurs for several reference pictures. Thus, the tem-
plate that appears the most is selected. The selected angle is the average
(modulo 360) of all candidate angles.

• Cumulative hue histogram: all hues present in all pictures are aggregated
within an unique histogram of hue. Thus, a candidate template is extrap-
olated from this global histogram.

• Template histogram: each candidate template are described through a 1D
hue distribution (for details, see Section 11.3 and Equation (11.3)) and
aggregated in one final histogram. The selected template is the one that
best match this global template histogram.

A representative template and its angle (T̂ refm , α̂refm ) are found from this step
that is supposed to catch the color spirit of the reference pictures.
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Ingestion of bias

The color bias is ingested at this step. It consists in four different strategies that
may be chosen by the user. It relies in the trend template and associated angle
extrapolated also from different potential methods. Since we may want not to
penalize too much the original color distribution, most of strategies keep the
original color harmonization parameters (T̂m, α̂m) somehow (except the third
strategy). It allows keeping the original color spirit of the picture in case this
latter is very far from the reference pictures. On the uploaded picture, shift the
hue histogram based on following parameters:

• use the trend angle combined with the best template from regular harmo-
nization: (T̂m, α̂

ref
m )

• use the trend template combined with the best angle from regular harmo-
nization: (T̂ refm , α̂m)

• use the trend template and angle: (T̂ refm , α̂refm )

• use the trend template and the optimal angle for this template on the
original picture: (T̂ refm , αm |Tm=T̂ refm

)

14.3.4 Use Case

In this section, we provide some results related to the strategies detailed in
Section 14.3.3 and illustrated in Figure 14.7. In this picture is chosen the trend
from the Cumulative hue histogram. Thus, the four ways to ingest the bias are
computed. As can be observed, some strategies provide the same visual results,
the V template providing a green-yellow-orange rendering. This is conform to
the original set of reference pictures. The first strategy of bias ingestion lead
to the selection of X template, preserving the blue color, such as present in the
original picture, but also in the second picture of the reference set.

14.4 Summary

In this Chapter, we introduced two user-friendly and artistically-guided user
interfaces: one for color retouching (Section 14.2) and one for biasing from an
existing dataset the harmonization processing (Section 14.3).

Preliminary to the description of these tools, we introduced the state-of-
the-art in terms of editing tools including color harmony theory (Section 14.1).
Most of the approaches target a specific area of application, such as fashion,
magazine covers, website and so on. As a minority, the most generic tools rely
on complex formulation of color harmony and some associated distances, making
the interface difficult to be manipulated by naive users. The two proposed tools’
ambition is to make accessible the color harmony theory through a hidden and
intuitive formulation of it and a user-friendly interface.
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For the picture retouching tool, we demonstrated an efficient implementation
of the quality metric introduced in Chapter 13, where we reinterpreted the use
of color template introduced by Matsuda [168]. By means of this editing tool,
any user may retouch the color of picture by picking up a harmonious color from
the color palette presented by the interface. He is guided to both choose the
disharmonious color and replace it with a suitable one.

For the biased harmony tool, the main idea is to harmonize a picture globally
by means of a picture dataset. Typically, it could be used in a context of
homogenization of colors for a website, a catalog, a book etc.

173



(a) (b)

(c) (d) (e) (f)

(g) (h)

(i) (j)

Figure 14.7: Biased Harmonization Usecase. (a) Original picture and hue distribution, (b) Har-
monized picture from Chapter 12, (c)-(f) Reference pictures for bias processing, (g)-(j) the four
different strategies are applied for biasing the harmonization process
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Chapter 15

General Conclusion

This chapter concludes the development elaborated in this thesis. The topic
concerns the Color Harmony, that has been addressed under two mains axis:
an experimental and a computational perspectives. First, we summarize the
achievements of the proposed work by reminding the limitations about the lit-
erature. Second, we propose some perspectives for future directions of research.

15.1 Achievements

Literature status

The first part of the thesis presents the literature in relation with the different
fields tackled in this thesis. A non-exhaustive review of visual attention princi-
ples (Chapter 2) as well as eye-tracking processes (Chapter 3) are presented in
order to lay the foundation of the employed protocols and methods. Chapter 4
depicts a large view of the theory and models of Color Harmony as well as their
field of application, notably in the image processing community. Additionally,
we also provide a review of editing tools in Section 14.1.

This literature review points out a number of limitations and non-investigated
paths (Chapter 5):

• Despite the fact that color preferences and color mood (or emotion) have
been recently studied experimentally, there are still pending questions
about their universality. They seem highly related to culture, age, back-
ground and reveal tricky to be evaluated. In such context, we position
the topic of color harmony as being less subject to be interfered by such
side factors. The existence of empirical work, with universal rules (com-
plementarity, similarity of colors...), leading to geometric representation
of harmony on color wheel testifies of such feeling.

• The validity of collected data remains questionable. The measured data
and more precisely the inter-rater agreement have not been intensively
studied. Thus, the generalization of numerical models computed from

176



these data has not been convincingly demonstrated. In addition, they are
based on two or three color combination samples. Regarding the geometric
models (wheel-based), they do not propose an objective framework for
their application; they are open to interpretation. Consequently, their
practical nature is challenged.

• The algorithms employing color harmony theory as a core concept to per-
form image processing suffer from being quantitatively tested and vali-
dated. This is typically due to the lack of available ground truth, that
can be easily explained as follows: how can we reasonably design a per-
fectly harmonious picture for any kind of content that would serve as
benchmark? Can we ensure a high agreement without bias related to age,
gender etc.?

Experimental view

We assumed a strong relationship between visual attention and color harmony.
Therefore, we investigated the measurement of such factor through an eye-
tracking protocol under a search task. We evidenced a high inter-observer
agreement that demonstrated the universal aspect of the color harmony no-
tion. Such way of experiencing Color Harmony was pioneer and could suffer
from deeper analysis; however, it paved the way to further investigations.

From the experiment 1 on color factor (Chapter 7), we found that the color
factor does not influence the visual attention deployment. The human fixation
maps compared between color stimuli and their grey counterparts were not
significantly different. This result is delivered partly by the visual attention
community. Anyway, it made us confident to apprehend the effects related to
color harmony in experiment 2 (Chapter 8) without expecting (low-level) color-
related attentional interferences.

From the experiment 2 on color harmony, we ended up with several conclu-
sions. During a task protocol with eye-tracking for measuring color harmony,
the inter-observer consistency was high (confirmed by several employed met-
rics). There was an influence of color distribution and color diversity in the
assessment of color harmony. The diversity of color distribution did not seem
to be the main factor, rather the spatial arrangement of color variety.

From the data collected in experiment 2, the eye movements and individu-
als’ assessment of color harmony were relevant enough to create a ground truth
(Chapter 9). Two aspects prevented from using directly the eye fixation maps
recorded with a color harmony task. First, they were too noisy due to parasite
fixations related to search task and low level attentional mechanisms. Second,
the complexity of stimuli measured by their color distribution varied and lead
us to clustered them according to observers’ consistency in their assessment.

Globally, we concluded that the concept of color harmony is well understood
by observers, consistent and close to universality. Thus, we are convinced that
the concept is homogeneous enough to design any computational models that
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would predict in some extend a common human behavior and assessment.

Computational view

In Chapter 12, a color harmonization method, outperforming the state-of-the-
art, is introduced and validated. Building on the work of Cohen-Or [54], the
method proposed three main contributions to reduce possible artifacts and to
obtain a visually consistent result. First, a cost function measuring the statisti-
cal distance between a weighted hue histogram and the possible templates was
used, jointly with the information of saliency. Consequently, the selection of
harmony templates better fits the original image color distribution. Second, a
new color mapping function contracted less the hues within the desired template
and leads to a more consistent mapping. Third, a dedicated color segmentation
was able to segment small histogram modes, while leading to satisfactory result.

Also in this chapter, we attempted to convince that the method is achieving
good performances by tackling different tracks for validation. We provided tra-
ditional visual results, but we also carefully answered the questions raised during
the exhaustive exposition of limitations. A major contribution dealt with the
introduction of a pairwise protocol in the context of color harmonization. We
demonstrated that harmonized pictures are objectively rated more harmonious
than their original counterpart (19 over 23 stimuli).

In Chapter 13, a perceptual and no-reference harmony-guided quality metric
has been designed as a new way to assess picture quality. It relied on percep-
tual masking effects that are important properties of Human Visual System,
and on experimental harmony templates. The integration of these two concepts
led to the design of perceptual harmony-guided map and an associated score.

Qualitative results showed that the harmony-guided map reflects the per-
ception of color harmony by the human eye. Perceptual maps closely mimicked
the human visual system to take into account masking effects and to discard
disharmonious regions that are not perceived. The computation of score was
consistent with potential changes of colors that can be done to improve picture
harmony. The quantitative analysis revealed a correlation between the com-
puted outputs and the results of two experiments serving respectively for the
validation of the harmony score and the perceptual harmony maps.

In Chapter 14, we introduced two user-friendly and artistically-guided user in-
terfaces. The two proposed tools made accessible the color harmony theory
through a hidden and intuitive formulation of it and a user-friendly interface.

For the first tool, we demonstrated an efficient implementation of the qual-
ity metric introduced in Chapter 13. Also, we reinterpreted the use of color
template introduced by Matsuda [168], by assuming that each template has a
role in the assessment of color harmony. By means of this editing tool, any
user may retouch the color of picture by picking up a harmonious color from
the color palette presented by the interface. He is guided to both choose the
disharmonious color and replace it with a suitable one.
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For the second tool, the main idea is to harmonize a picture globally by
means of a picture set. Typically, it could be used in a context of homogenization
of colors for a website, a catalog, a book...

15.2 Perspectives

The task of characterizing the mechanisms related to color harmony is indis-
putably challenging. Many factors (age, culture, personal background, stimuli
features and so on) may potentially play their role, while they may be difficult
to quantify or measure. The path is still long before being able to get good
prediction and to prove it by means of a relevant ground truth. However, we
hope to have brought first answers to this problem in this thesis.

When thinking about the perspectives or the future directions of this work,
a remaining challenge lies in the establishment of a solid link between
the experimental findings and the modeling of Color Harmony. If an
unique regret should be mentioned about this thesis, it would be to have failed
achieving a strong relationship and transfer of knowledge between the experi-
mental investigations and the computational modeling.

Less conceptually, but pretty relevant, a nice way of investigations would be
to establish a relationship experimentally between Color Harmony and other
concepts, such as e.g. Color Mood, Color Preferences. Indubitably, it would be
a first step to the specialization of models per categories (age, nationality...) of
subjects.

In addition to these global perspectives, several ideas can be mentioned to ex-
tend the contributions of the thesis.

15.2.1 Experimental perspectives

Ground truth

• The dataset used for creating the ground truth could be extended with
natural pictures and designed on image categories (street, countryside and
so on).

• A more reliable computational method to derive a ground truth from the
collected eye fixation data would be relevant. More intensive (or cross-)
validation could be conducted.

Stimuli impact

• The experimental work could be extended to a different dataset. As for
the creation of the ground truth, a dataset of natural pictures could be
relevant, on condition that the stimuli are controlled in some way regarding
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their low-level features (spatial frequencies, color etc.) and their semantic
meaning (faces, objects etc.). Also, an interesting investigation would
be to measure the effects of color harmony on image categories (street,
countryside and so on).

• The impact of color distribution on color harmony ranking could be more
investigated. Particularly, the spatial arrangement and color complexity
could be controlled and specific behavior could then be evidenced.

Brain mechanisms

More investigations could be conducted to understand at which stage/area the
color harmony functions is activated in the brain. By proposing to measure
such concept, it could help to better understand the mechanisms and strategy
inferred in the human brain. This could be performed by means of specific
medical apparatus, such as EEG, MRI and so on. Maybe it could help precising
the color inference located in different areas of the brain.

Dedicated protocols

It would be of great benefits to define dedicated protocols to specifically evaluate
the performances between different algorithms. As an example, we still do not
know objectively if our Harmonization algorithm performs better than the one
of Cohen-Or, even though we demonstrated the gain of harmonizing pictures
(with our algorithm) versus not harmonizing them.

Generally, this is a typical problem met when comparing algorithms (such
as Color Transfer, Stylization and so on) where the results are subjective and
that a ground truth is neither available nor able to be generated.

15.2.2 Computational perspectives

Algorithm improvements

• The harmony quality map could be certainly improved by ingesting a
Contrast Sensitivity Function dedicated to color. An interesting work
could be also to extend this metric to video content and then to employ
the principles of temporal masking.

• Another interesting idea would be to use additional harmony templates
such as those inferred from large scale data.

• A certain number of thresholds or fixed values are present in the different
algorithms: power β in HQA, number of salient pixels in the harmoniza-
tion and so on. The ground truth could help tuning the values to find the
suitable set of parameters.
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Color Harmony models

In the thesis, we did use color harmony model or template as being a core
technology. We did question their reliability, but we employed them as they were
available and commonly adopted. Finally, the representation of color harmony
through the different families illustrated in the Part 1 has not been addressed
in the thesis. Interestingly, it would be relevant to establish a link between the
families of color harmony models. Their different representation maybe made
them complementary for the prediction of color harmony.

Related to the ground truth as well, it could make sense to define specific
models or subfamily of models in relation with image categories. Finally, higher
level of information related to the semantic of the picture could be added to the
design of color harmony models.

Benchmark

The harmony quality score could be benchmarked with different competitive
methods:

• the extension of Ou and Luo [195] to natural pictures by Solli and Lenz
[239] (it was not possible at this time),

• the Itten scores produced by the implementation of Sauvaget et al. [227]

The editing tools would benefit from being evaluated regarding their time saving
and attractiveness in terms of usage.

15.2.3 Industrial perspectives

This work has been developed in an industrial context within Technicolor com-
pany. There are two points which motivated this work under the industrial
perspcetive.

First, Technicolor is a key actor in Hollywood for the post-production of
movies and is well recognized for its Color expertize (since it colorized the first
black and white movies). Thus, the choice of Color Harmony has been motivated
by these reasons, but also in order to facilitate the discussion between scientists
and colorists and fill the gap between these two communities evolving within
Technicolor.

Second, there are a number of concrete applications in the framework of
Technicolor business. Any editing or post-production tool integrating color har-
mony rules could potentially benefit to save time of creatives. The insertion of
Computer Graphics or Virtual objects within an existing background/scene is
a typical daily task realized by a high number of creatives. Also, these tools
could be potentially licensed to external company.

There are many potential directions to continue after this thesis, from short- to
long-term investigations, from experimental to computational sensitivities.
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Appendix A

Benchmark of the
Technicolor’s Visual
Attention Model

The visual attention model has been compared to most recent models via the
MIT Saliency Benchmark1 [38, 123]. Figure A.1 depicts the results numerically
for the seven available metrics.

Since the Technicolor’s model has been purposely simplified to address real-
time application, this is not surprising that it points not at the top level, as very
algorithmically sophisticated model. Nonetheless, we can see the good perfor-
mance of the center bias baseline. Basically, all models that do not implement
such prior knowledge perform worse than this baseline. This is our case.

Figures A.2, A.3, A.4, A.5, A.6,A.7 and A.8 localize the Technicolor’s model
visually for each metric.

1Available at: http://saliency.mit.edu

182



AUC_Judd SIM EMD AUC_Borji sAUC CC NSS
Baseline: Chance [?] 0.5 0.31 5.73 0.5 0.5 0 0
Achanta 0.52 0.29 5.77 0.52 0.52 0.04 0.13
IttiKoch 0.6 0.2 5.17 0.54 0.53 0.14 0.43

SUN saliency 0.67 0.38 5.1 0.66 0.61 0.25 0.68

Baseline: Permutation Control [?] 0.68 0.33 4.73 0.59 0.5 0.2 0.49

Torralba saliency 0.68 0.39 4.99 0.68 0.62 0.25 0.69
Murray model (Chromatic Induction 
Wavelet Model)

0.7 0.38 5.18 0.69 0.65 0.27 0.73

Rosin Saliency 1 0.71 0.4 4.86 0.7 0.62 0.29 0.76

Stochastic fixation prediction (SFP) 0.71 0.41 4.56 0.7 0.62 0.3 0.8

Self-resemblance by LARK 0.71 0.41 4.55 0.69 0.64 0.31 0.83

Technicolor 0.71 0.4 5.03 0.7 0.64 0.29 0.78

NARFI saliency 0.73 0.38 4.75 0.61 0.55 0.33 0.83

Aboudib Magnification Saliency 0.74 0.44 4.24 0.72 0.58 0.39 0.99

Weighted Maximum Phase Alignment 
Model (WMAP)

0.74 0.42 4.49 0.67 0.63 0.34 0.97

Generalized Nonlocal Mean Saliency (GNM) 0.74 0.42 4.49 0.67 0.63 0.34 0.97
Context-Aware saliency 0.74 0.43 4.46 0.73 0.65 0.36 0.95
Co-Occurrence Histogram based Saliency 0.74 0.44 4.49 0.71 0.66 0.36 1.01
Adaptive Whitening Saliency Model (AWS) 0.74 0.43 4.62 0.73 0.68 0.37 1.01
Random Center Surround Saliency 0.75 0.44 3.81 0.74 0.55 0.38 0.95
Quantum-Cuts (QCUT) 0.75 0.39 4.57 0.67 0.57 0.4 1.07
Visual Conspicuity (VICO) 0.75 0.44 4.38 0.71 0.6 0.37 0.97
IttiKoch2 0.75 0.44 4.26 0.74 0.63 0.37 0.97
Image Signature 0.75 0.43 4.49 0.74 0.66 0.38 1.01
Local+Global Saliency Model (LGS) 0.76 0.42 4.63 0.76 0.66 0.39 1.02

Multi-Resolution AIM (MR-AIM) 0.77 0.43 4.04 0.76 0.55 0.39 0.96

LMF 0.77 0.45 4.22 0.76 0.64 0.41 1.07

Saliency for Image Manipulation 0.77 0.46 4.17 0.76 0.64 0.43 1.14
AIM 0.77 0.4 4.73 0.75 0.66 0.31 0.79
RARE2012 0.77 0.46 4.11 0.75 0.67 0.42 1.15

Baseline: Center [?] 0.78 0.39 4.81 0.77 0.51 0.38 0.92

Rosin Saliency 2 0.78 0.48 3.43 0.73 0.53 0.45 1.13

Aboudib Magnification Saliency (Bottom-up 
v2)

0.78 0.48 3.56 0.75 0.56 0.45 1.12

MKL-based model 0.78 0.42 4.4 0.78 0.61 0.42 1.08
Local Saliency Model (LS) 0.78 0.43 4.4 0.77 0.64 0.39 1.02
Sampled Template Collation 0.79 0.39 4.79 0.78 0.54 0.4 0.97
CWS model 0.79 0.46 3.81 0.78 0.55 0.45 1.11
Region Contrast (RC) 0.79 0.48 3.48 0.78 0.55 0.47 1.18

Multiresolution CNN (Mr-CNN) 0.79 0.48 3.71 0.75 0.69 0.48 1.37

Fast and Efficient Saliency (FES) 0.8 0.49 3.36 0.73 0.59 0.48 1.27

Baseline: one human [?] 0.8 0.38 3.48 0.66 0.63 0.52 1.65

CovSal 0.81 0.47 3.39 0.67 0.57 0.45 1.22

Spatially Weighted Dissimilarity Saliency 
(SWD)

0.81 0.46 3.89 0.8 0.59 0.49 1.27

Judd Model 0.81 0.42 4.45 0.8 0.6 0.47 1.18

Graph-Based Visual Saliency (GBVS) 0.81 0.48 3.51 0.8 0.63 0.48 1.24

Ensembles of Deep Networks (eDN) 0.82 0.41 4.56 0.81 0.62 0.45 1.14

Mixture of Saliency Models 0.82 0.44 4.22 0.81 0.62 0.52 1.34

Outlier Saliency (OS) 0.82 0.5 3.33 0.81 0.62 0.54 1.38

Boolean Map based Saliency (BMS) 0.83 0.51 3.35 0.82 0.65 0.55 1.41

SalNet 0.83 0.52 3.31 0.82 0.69 0.58 1.51

Deep Gaze 1 0.84 0.39 4.97 0.83 0.66 0.48 1.22

DeepFix 0.87 0.67 2.04 0.8 0.71 0.78 2.26

SALICON 0.87 0.6 2.62 0.85 0.74 0.74 2.12
Baseline: infinite humans [?] 0.91 1 0 0.87 0.8 1 3.18

Figure A.1: Benchmark of the Technicolor’s visual attention model on the MIT dataset. Arrange-
ment is performed regarding the AUC Judd metric.
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Figure A.2: Benchmark of the Technicolor’s visual attention model on the MIT dataset: AUC Judd
metric.
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Figure A.3: Benchmark of the Technicolor’s visual attention model on the MIT dataset: Similarity
metric.
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Figure A.4: Benchmark of the Technicolor’s visual attention model on the MIT dataset: EMD
metric.
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Figure A.5: Benchmark of the Technicolor’s visual attention model on the MIT dataset: AUC Borji
metric.
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Figure A.6: Benchmark of the Technicolor’s visual attention model on the MIT dataset: sAUC
metric.
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Figure A.7: Benchmark of the Technicolor’s visual attention model on the MIT dataset: Coefficent
Correlation metric.
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Figure A.8: Benchmark of the Technicolor’s visual attention model on the MIT dataset: Normalized
Saliency Scanpath metric.
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