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Abstract:
In this thesis, I present some measurements of fluctuations of light after
interaction with a cloud of laser-cooled rubidium atoms. These measure-
ments can provide useful information on the source itself as well as on the
medium in which light propagates. I address a particular configuration in
which intensity noise are measured on a laser beam transmitted through the
atomic cloud. This geometry is relevant to investigate di↵erent properties,
such as the atomic motion. However, in our experiment the intrinsic
noise of the incident laser has an important contribution to the detected
noise spectrum. This technical noise may be hard to distinguish from the
signal under study and a good understanding of this process is thus essential.

Experimentally, the intensity noise spectra show a di↵erent behavior
for low and high Fourier frequencies. Whereas one recovers the ”standard”
frequency to intensity conversion at low frequencies, due to the atomic
resonance as a frequency discriminator, some di↵erences appear at high
frequencies. We show that a mean-field approach, which corresponds to
describing the atomic cloud by a dielectric susceptibility, is su�cient to
explain the observations. Using this model, the noise spectra allow to
extract some quantitative information on the laser noise as well as on the
atomic sample. This is known as noise spectroscopy.

The perspective of this thesis aims at applying noise measurement to
obtain complementary signatures of the cold-atom random laser by study-
ing the temporal coherence of the emitted light. The manuscript therefore
outlines a review on random laser phenomena with a focus on cold-atom
random lasers and its coherence properties.
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Résumé:
Dans cette thèse je présente des mesures de fluctuations de la lumière
après propagation dans un nuage d’atomes de rubidium refroidi par laser.
Ces mesures fournissent des informations sur la source et sur le milieu de
propagation. Je considère une configuration particulière en transmission,
le laser se propageant au travers du nuage atomique. Cette géométrie
est pertinente pour étudier différentes propriétés, comme le mouvement
des atomes. Cependant, le bruit intrinsèque du laser a une contribution
importante sur les spectres de bruit. Ce bruit technique peut alors devenir
gênant pour extraire le signal étudié et une bonne compréhension du
phénomène est donc essentielle.

Expérimentalement, les spectres de bruit en intensité montrent un
comportement différent aux fréquences basses et hautes. Alors que l’on
observe la conversion "standard" du bruit de fréquence en bruit d’intensité
pour les fréquences basses, la résonance atomique correspondant à un dis-
criminateur de fréquence, des différences apparaissent à hautes fréquences.
Nous montrons qu’une approche de champ moyen, en associant une sus-
ceptibilité électrique au nuage atomique, est suffisante pour expliquer les
observations. Partant de ce modèle, les spectres permettent d’extraire des
informations quantitatives sur le laser et sur le nuage atomique. Ceci est
connu sous le nom de spectroscopie de bruit.

La perspective est d’utiliser ces mesures de bruit afin d’obtenir une
signature claire du laser aléatoire à atomes froids en étudiant la cohérence
temporelle de la lumière émise. Cette thèse expose une revue du phénomène
de laser aléatoire, en particulier sur le laser à atomes froids et ses propriétés
de cohérence.

Mots-clés : atomes froids, la spectroscopie de bruit, laser aléatoire
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Résumé

Le laser aléatoire

L’idée du laser aléatoire a été proposée par Letokhov, qui a étudié la
propagation de la lumière en présence d’amplification (ou gain) dans un
milieu fortement diffusant. Dans une telle situation, la diffusion multiple
augmente la longueur effective du chemin dans le milieu à gain et donc
augmente l’effet d’amplification. Letokhov développa un modèle théorique
basé sur l’équation de diffusion et obtint un seuil sur la taille du système
au-delà duquel l’amplification dans le volume du milieu surpasse les pertes
à la surface, provoquant une augmentation exponentielle de l’intensité de la
lumière piégée dans le milieu, et par conséquent de la lumière émise. Cela
est très similaire au principe d’un laser, qui oscille lorsque le gain produit
par le milieu amplificateur surpasse les pertes de la cavité. Ici, la cavité
est remplacée par le piégeage de radiation dû à la diffusion multiple. Les
propriétés des modes spatiaux et spectraux sont donc différentes des lasers
standard.

Des lasers aléatoires ont été observés dans différents milieux, dont des
lasers à colorant, des poudres de semi-conducteurs, des céramiques, des films
minces nanostructurés ou non, etc. Récemment, un laser aléatoire basé sur
des atomes froids a été obtenu dans notre équipe, en utilisant des atomes
de rubidium refroidis dans un piège magnéto-optique (PMO). Ici les atomes
froids fournissent à la fois le gain et la diffusion multiple. Dans ce système,
le gain est obtenu par une transition Raman à deux photons entre les états
hyperfins du niveau fondamental. La fréquence du laser Raman peut être
choisie telle que le laser lui-même soit peu diffusé par les atomes et que la
fréquence de gain soit résonante avec une transition procurant de la diffusion.

Les lasers aléatoires sont généralement basés sur une excitation im-
pulsionnelle et sur des matériaux solides ou liquides. Un fonctionnement
quasi-continu et utilisant une vapeur atomique sont deux particularités
du laser aléatoire à atomes froids. Ces deux propriétés seraient également
une caractéristique des lasers aléatoires naturels "astrophysique", dont
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l’existence n’est juste qu’une hypothèse à l’heure actuelle.

Motivations

Différencier l’émission d’un laser aléatoire parmi d’autres source de
radiation, d’objets astrophysiques par exemple, nécessite de développer
de nouvelles techniques de mesure. En particulier, dans le cas du laser
aléatoire basé sur des atomes froids, développé à l’INLN, il est difficile
de séparer spectralement ou spatialement la lumière du laser des autres
lumières diffusées. Plus précisément, il y a quatre raies séparées de quelques
dizaines de megahertz et l’émission du laser aléatoire est l’une d’elle.

Les propriétés de cohérence temporelle et spatiale permettent de cara-
ctériser et de classifier une source inconnue de lumière. Plusieurs travaux
théoriques et expérimentaux ont démontré que, en générale, l’émission d’un
laser aléatoire est partiellement cohérente. Cependant cette cohérence est
généralement inférieure à celle d’un laser conventionnel. Ces propriétés de
cohérence dépendent des paramètres expérimentaux et du matériau utilisé,
et peuvent être très différentes d’une expérience à l’autre. A cause de la
complexité de la situation due à la diffusion multiple, les propriétés de
cohérence des lasers aléatoires ne sont pas complètement connues et restent
donc une question ouverte.

Le but à long terme de ce travail est de caractériser la cohérence
temporelle du laser aléatoire à atomes froids. Cela pourrait en particulier
fournir une nouvelle signature du seuil du laser. La cohérence de la
lumière diffusée par des atomes froids a déjà été étudiée dans plusieurs
expériences en régime de diffusion simple, ce qui nous fournit des exemples
de techniques de mesure applicables à notre cas. Afin d’aller pas à pas
vers l’implémentation et l’exploitation de ce genre de techniques et de les
appliquer au laser aléatoire, la première étape est d’abord de caractériser le
bruit intrinsèque dû aux lasers utilisés dans l’expérience, et l’impact de ce
bruit sur les mesures futures. Ensuite, nous pourrons étudier la cohérence
temporelle de la lumière en diffusion multiple dans le nuage d’atomes.
Enfin, nous étudierons l’effet de l’ajout de gain dans le système et du
franchissement du seuil du laser aléatoire.

Travail de cette thèse

Dans ce contexte, cette thèse présente une étude détaillée sur le
bruit de la lumière diffusée vers l’avant par un nuage d’atomes froids.
Une partie de mon travail durant ces trois dernières années a consisté à
manipuler et amélioré le dispositif expérimental d’atomes froids. Nous
avons installé un montage de détection du bruit en transmission afin
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d’étudier le bruit induit par les atomes froids sur un faisceau laser sonde
traversant le nuage. Nous avons d’abord caractérisé les bruits du laser
ainsi que la forme et la largeur de son spectre, puis nous avons étudié
l’effet du bruit de fréquence et du bruit d’intensité du laser sur le bruit en
transmission. En utilisant un modèle simple, nous avons démontré la spec-
troscopie de bruit sur un niveau hyperfin dans un gros nuage d’atomes froids.

Au chapitre 2 de ce manuscrit, nous introduisons plus en détail le laser
aléatoire. Il s’agit d’un laser basé sur un milieu à gain très désordonné.
Comme il n’y a pas de cavité optique, les modes spatiaux et spectraux sont
complètement différents de ceux des lasers conventionnels. La diffusion
multiple produit la rétroaction et détermine les modes émis. Bien que des
travaux théoriques et expérimentaux aient montré que l’émission des lasers
aléatoires est partiellement cohérente, cette cohérence est réduite par rap-
port aux lasers standard. A cause de la complexité de la diffusion multiple,
il n’y a pas encore de théorie précise de la cohérence des lasers aléatoires, et
des études complémentaires sont donc nécessaires dans ce domaine. Bien
que le laser aléatoire à atomes froids ait été observé dans notre équipe,
des mesures de la cohérence pourraient apporter une observation plus directe.

Au chapitre 3 nous décrivons notre dispositif expérimental de production
d’atomes froids. Nous avons un piège magnéto-optique de rubidium 85
contenant ⇠ 1010 atomes, avec une épaisseur optique b0 = 100, une taille
� = 1 mm et une température de 100 µK. Nous avons installé un nouveau
système d’asservissement laser, dit “offset-lock”, afin de stabiliser et contrôler
la fréquence du laser des faisceaux de refroidissement et des faisceaux pompe
et sonde. L’avantage de ce système est qu’il permet de balayer la fréquence
du laser sur une grande plage tout en maintenant l’intensité constante,
ce qui est particulièrement important pour le faisceau Raman du laser
aléatoire. De plus, plusieurs informations techniques utiles sur le contrôle et
la caractérisation du PMO sont données.

Pour comprendre le bruit ajouté par les atomes sur un faisceau laser se
propageant à travers le PMO, il est nécessaire de d’abord caractériser les
bruits intrinsèques existant dans le faisceau incident. Ces bruits peuvent
évoluer de manière non triviale et être convertis en d’autres types de bruit
par l’interaction avec les atomes. En appliquant la méthode dite de la “ligne
de séparation �”, la largeur spectrale du laser a pu être estimée à partir de
la puissance spectrale du bruit de fréquence, elle-même mesuré grâce à la
conversion du bruit de fréquence en bruit d’intensité lorsque le faisceau est
transmis sur le flanc d’une résonance d’une cavité Fabry-Perot. Le résultat
a ensuite été confirmé par une mesure de battement avec un laser plus fin.

De manière similaire, le bruit de fréquence du laser peut être mesuré
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en utilisant la résonance atomique comme filtre fréquentiel. Au chapitre 4
nous discutons nos mesures de bruit de fréquence utilisant le PMO. L’effet
Doppler est négligeable et les transitions hyperfines peuvent convertir les
fluctuations de fréquence du laser incident en fluctuation d’intensité. Une
propriété intéressante des atomes froids est qu’en contrôlant l’épaisseur
optique du nuage on peut changer l’efficacité de cette conversion du bruit de
fréquence en bruit d’intensité. C’est un peu analogue à changer la largeur
d’une cavité optique. De même que dans le cas de la cavité Fabry-Perot,
nous avons mesuré le bruit de fréquence du laser et appliqué la méthode de
la ligne de séparation �. L’estimation résultante de la largeur spectrale du
laser est en accord avec les autres résultats.

Les larges ailes du spectre optique du laser peuvent être considérées
comme un balayage de fréquence. On peut donc réaliser de la spectroscopie
avec une fréquence laser fixe. Cette technique est nommée spectroscopie
de bruit. Le bruit de la transmission du laser à travers le nuage d’atomes
froids est modélisé en supposant que le bruit du laser incident comporte
une modulation de phase. Les bandes latérales qui en résultent simulent
la largeur spectrale. Une modulation d’amplitude produit également des
bandes latérales qui pourraient aussi décrire la spectroscopie de bruit.
Cependant les résultats des deux modèles sont qualitativement différents.
En les comparant aux résultats expérimentaux nous obtenons que le modèle
basé sur la modulation de phase est en très bon accord, mais ce n’est pas
le cas avec celui basé sur la modulation d’amplitude. Cela démontre que
la spectroscopie de bruit nous renseigne sur la nature du bruit du laser
incident. Nous démontrons également que la spectroscopie de bruit donne
aussi des informations sur l’échantillon atomique, par exemple son épaisseur
optique. La compréhension qualitative et quantitative de la conversion du
bruit de fréquence en bruit d’intensité par le nuage sera utile pour toute
expérience où un faisceau laser est détecté après transmission à travers un
nuage d’atomes froids, même si le modèle présenté dans cette thèse ne prend
pas en compte les sous-niveaux Zeeman.

Perspective

Plusieurs techniques de mesure de la cohérence ont déjà été implémentées
dans la communauté des atomes froids pour caractériser la diffusion de la
lumière par un PMO en régime de diffusion simple. Afin de comprendre les
propriétés de cohérence du laser aléatoire à atomes froids, nous proposons
de commencer par étudier les propriétés de cohérence de la lumière ayant
subi de la diffusion multiple dans le nuage d’atomes froids. Il s’agit en fait
d’appliquer la technique dite de spectroscopie d’onde diffusée (diffusive wave

spectroscopy, DWS), qui permet de sonder les déplacements des diffuseurs
avec une très grande précision grâce à la dynamique de la lumière diffusée
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en régime de diffusion multiple. Comme le DWS est sensible à de petits
déplacements et dépend du nombre moyen d’évènements de diffusion, toute
variation de température ou d’épaisseur optique entraine un changement
significatif du résultat. En pratique, il s’agit d’effectuer une mesure de
la fonction d’autocorrélation d’intensité temporelle. L’évolution du temps
de cohérence en fonction de l’épaisseur optique pourrait contenir une
information pertinente sur l’impact du seuil laser sur la cohérence du laser
aléatoire. Cette mesure pourra être effectuée en régime de comptage de
photons.

Une autre mesure intéressante peut être effectuée en étudiant la stat-
istique de photon du laser aléatoire à atomes froids. Comme montrée par
Cao et al., les statistiques de photons en-dessous et au-dessus du seuil laser
sont respectivement des lois de Bose-Einstein et de Poisson.
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Chapter 1

Introduction

Random laser

The idea of random lasing was first proposed by Letokhov who considered
the propagation of light in the presence of amplification or gain in a mul-
tiple scattering medium [1]. In such a situation, multiple scattering increases
the e↵ective path length in the gain medium and thus enhances light amp-
lification. Letokhov developed a theoretical model based on the di↵usion
equation and he defined a threshold on the system size above which the
amplification in the volume overcomes losses at the surface of the medium,
leading to an exponential increase of the light intensity trapped in the me-
dium and hence of the subsequent emitted light [1, 2]. This is very similar
to the principle of a laser, which starts oscillation when the gain produced
by the amplifying medium overcomes the cavity losses. Here, the cavity is
replaced by radiation trapping due to multiple scattering [3], and therefore
the spatial and spectral lasing modes are di↵erent.

Random laser has been observed in many di↵erent media including
laser dyes, semiconductor powders, ceramics, nanostructured and non-
nanostructured thin films, etc [2]. Recently cold-atom random laser was
also observed in our team [4] by investigation of the level of fluorescence
from the atoms. The rubidium atoms are cooled in a magneto-optical trap
(MOT). Here the cold atoms provide both gain and multiple scattering. In
this system, a two-photon Raman transition between the hyperfine atomic
levels provides gain. Considering the hyperfine structure of the rubidium
atoms, the frequency of the laser which makes this Raman transition can
be tuned, where the scattering of the laser by the atoms is minimized and
simultaneously the scattering of the induced gain is maximized.

State-of-the-art random lasers are usually based on pulsed excitation of
condensed matter systems and quasi cw operation of random lasing in dilute
atomic vapors had not been realized prior to our recent study [4].

Motivations

Existence of a natural laser emission has long been an open question for
scientists. Astronomical observations in the microwave domain have led to
the discovery of anomalously bright emission lines from molecules in stellar
atmospheres [5]. Moreover spectroscopic data from the atmosphere of planet
Mars and planet Venus revealed an extraordinary emission line in infrared
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(IR) domain (� ⇠ 10µm) from CO2 molecules [6, 7]. Much later, this
type of emission was also observed in stellar atmospheres in the far IR [8].
This amplification by stimulated emission in Mars was first observed by
Charles Townes’ team [6], and later identified as a ”natural laser”. It was
used later as a diagnostic probe of the temperature and wind patterns on
Venus [9]. Due to the low densities of the lasing species in the mesosphere
and thermosphere of Mars the gain is low, comparable to single-pass gains in
some earth based CO2 lasers [7]. The low gain though is partly compensated
by the extremely large volumes of active lasing medium.

It should be noted here that astrophysicists often call ”lasers” what a
laser physicist would describe as amplification, or Amplified Spontaneous
Emission (ASE) [10].

Owing to the huge amount of gain medium in combination with very
intense sun light in the Venus atmosphere, scientists in NASA proposed an
ambitious project [11]. They designed some satellites carrying mirrors to
be located around the Venus atmosphere in order to enhance natural lasing
emission for interstellar communication. This was a part of the program
”search for extraterrestrial intelligence” (SETI). However this proposal was
never implemented.

Discriminating the random laser emission among all the other sources of
radiation from an astronomical object for instance, requires well-developed
knowledge and measurement techniques. In particular, for the case of cold-
atom random lasing developed at INLN, it is very di�cult to resolve random
laser spectrally and spatially among all the other emitted or scattered light.
In fact there are at least four spectral lines which are separated by 10s of
MHz and random laser emission has to be resolved amongst them.

Temporal and spatial coherence are strong tools which can potentially
help to better understand and also to classify an unknown source of light
emission. Several theoretical and experimental e↵orts demonstrated that, in
general, random lasing emission is partially coherent [12, 13]. However its
coherence is usually less compared with the conventional lasers [14]. These
coherence properties depend on the experimental parameters and material
used, and could be di↵erent from one experiment to the other. However,
due to very complicated mechanism of multiple scattering, the coherence of
random laser is not completely known and it seems an open question.

The long term goal of this work is to characterize the temporal coherence
properties of the cold-atom random laser. This can help to distinguish the
lasing modes and threshold condition. The coherence of the scattered light
through the cold atoms in the single scattering regime has been already
investigated in some experiments [15, 16, 17], which provides us with
solid applicable coherence measurement techniques and physics beyond it.
Nevertheless to approach step by step coherence measurement and analysis
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of a cold-atom random laser, we should first fully characterize the intrinsic
noise existing in the laser used in this experiment and its impact on our
future measurements. Next, we have to study the coherence of multiple
scattered light. Finally, the impact of adding gain has to be taken into
account below and above the lasing threshold.

Thesis outline

The content of this thesis is organized as follows. In chapter 2 we intro-
duce the ”random laser” phenomena. The results of some theoretical and
experimental research on the coherence properties of random laser are sum-
marized briefly. Then the prior observation of cold-atom random laser is
also reported, and some possible experimental techniques for studying its
coherence properties, which can be possibly applied in cold-atom random
laser, are introduced.

In chapter 3, we explain the current status of our 85Rb MOT experiment.
Furthermore some experimental and technical informations will be provided
about characterizing and modifying the important physical parameters such
as temperature, density, and optical thickness.

Finally, in chapter 4 we characterize the lasers used for probing the cold
atoms. These properties include laser line shape and linewidth, intensity and
frequency noise. Then, using those information, we study the noise power
spectral density (PSD) of a laser beam transmitted through the cold atoms.
In order to understand the noise features, two models based on phase and
amplitude modulation are introduced and compared with the experimental
results.



4 CHAPTER 1. INTRODUCTION



Chapter 2

RANDOM LASER

Two fundamental ingredients of a conventional laser are an amplifying ma-
terial, which provides optical gain, and an optical cavity that partially traps
the light and induces feedback. When the total gain overcomes the losses,
the system reaches a threshold and lasing occurs. The mode properties of a
laser are determined by the cavity, i.e. the frequency and directionality of
the output light. Similar to a conventional laser, random lasers are based on
the same principles, but here it is multiple scattering that induces feedback
and determines the lasing modes instead of the cavity (Fig. 2.1). The term
”random laser” was introduced and suggested in 1995 by Wiersma et. al.
[18].

Figure 2.1 – Comparison between a conventional laser (a) and a random
laser (RL) (b). In a regular laser the light is captured in the optical cavity
and passes through the amplifying material several times. The gain amp-
lification in this situation can be su�ciently large for the onset of lasing.
Although the optical cavity is absent in the RL, the photon lifetime in the
amplifying material due to the multiple scattering can be long enough that
the amplification corresponding to the stimulated emission becomes e�cient
and the lasing begins in random directions [19].

Multiple scattering is a well-known phenomena, which occurs almost in
all the opaque optical materials. The resemblance between a human tissue
and a white paint is that the light propagating in both media undergoes
multiple scattering. The propagation of light in such a system can be de-
scribed as a random walk, like the process which happens to a photon inside
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the core of sun before it escapes. This type of propagation can be modeled
and studied by the di↵usion equation. In 1968 Letokhov investigated the
di↵usion of light due to multiple scattering in the presence of gain and he
found a critical situation where the amplification of light gets larger than
losses and the so-called self-generation of photons occurs [1]. Letokhov’s
prediction was observed for the first time in 1994 by Lawandy et al. [20].

2.1 Random laser (RL)

2.1.1 Introduction

Although in the conventional lasers multiple scattering is usually considered
as a detrimental e↵ect, which removes lasing photons from the laser cav-
ity mode, this e↵ect combined with the gain can establish lasing. Multiple
scattering increases the propagation length of a photon di↵using in that me-
dium. This enhances the light amplification related to stimulated emission.
Of course the mode properties are di↵erent from the lasers with cavity.

This type of lasing was first discussed theoretically by Letokhov. He
showed that for light di↵used in a medium in the presence of gain, the total
amplification is scaled with the volume of the system whereas the losses are
proportional to the total surface [1]. He predicted a threshold where the gain
overcomes the losses and consequently the intensity of light increases with
time and diverges. In the case of frequency dependent gain, the di↵usion
model also predicts narrowing in the spectrum of the emission above the
threshold with a maximum at the same frequency as the maximum of the
gain.

To describe the scattering process, two basic lengths are defined. The
mean free path, `sc, which is the average distance that light travels between
two consecutive scattering events, and the transport mean free path, `t,
which is defined as the average distance that the incident light propagates
in the medium before its direction gets randomized. These two length scales
are linked by

`t =
`sc

1� hcos(✓)i , (2.1)

where ✓ is the scattering angle.
To characterize the light amplification due to stimulated emission, the

gain length `g is defined as the path length over which the intensity of the
light is amplified by a factor of e, and the amplification length `amp which is
the rms average of distance from the beginning to the ending point for paths
of length `g [2]. When the medium is transparent and homogeneous, light
travels in a straight line and thus `amp = `g, whereas in a strongly scattering
regime where a photon di↵uses in the medium, `amp =

p
Dt, where D is the

di↵usion coe�cient and for a 3-dimensional system is D = v`t/3, where v is
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Figure 2.2 – Coherent backscattered light cone from ZnO powder film. Re-
printed from [26].

the transport velocity of light. t also can be written as t = `g/v, thus

`amp =

r
`g`t
3

. (2.2)

Generally three regimes of light transport are considered in a 3D dis-
ordered medium

• The ballistic regime, `t � L

• The di↵usive regime, L � `t � �

• The localization regime, ke.`sc ⇡ 1

where L is the size of the medium and ke = k0/n is the e↵ective wave-vector
and k0 is the wavevector and n is refractive index [21]. Experimentally
`t can be measured from the angular width of the backscattered cone of
light in a coherent backscattering (CBS) experiment [22, 23, 24, 25]. In
this experiment the angle of the backscattered light cone (Fig. 2.2) at the
full-width at half-maximum (FWHM) is written

�✓ ' 0.7

ke`t
. (2.3)

2.1.2 Letokhov photonic bomb

In the di↵usive regime, the di↵usion of photons in a medium with a uniform
and linear gain is described by

@W (~r, t)

@t
= Dr2W (~r, t) +

v

`g
W (~r, t), (2.4)
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where W (~r, t) is photon energy density, D is the di↵usion coe�cient of the
photon. A general solution to Eq. 2.4 is

W (~r, t) =
X

n

an n(~r)e
�(DB2

n� v
`g

)t
, (2.5)

where an are arbitrary constants and depend on the initial and boundary
conditions, Bn and  n(~r) are respectively eigenvalues and eigenfunctions of
the equation

r2 n(~r) +B2
n n(~r) = 0, (2.6)

which is obtained by substituting Eq. 2.5 into Eq. 2.4 and using modal
decomposition. The boundary condition in such a system is defined as
 n(~r)|~r=ze = 0 at distance ze, which is known as the extrapolation length
and quite often is much smaller than the physical dimension of the random
medium and hence it can be approximated as  n = 0 at the boundary of
the medium.

Eq. 2.5 shows a change from an exponential decay to an exponential
increase in time when the system crosses the threshold

DB2
1 �

v

`g
= 0, (2.7)

where B1 is the lowest eigenvalue. The values of Bn depend on the geometry
of the medium, for example in a spherical shape with diameter L, Bn =
2⇡n/L, and for a cube shape with side length L, B1 =

p
3⇡/L [2]. Regardless

of the shape of the scattering medium, order of magnitude for B1 is 1/L.
For a spherical shape, Eq. 2.7 results to a critical size for the system

Lcr = 2⇡

r
`t`g
3

. (2.8)

If the gain length `g and the transport length `t are kept fixed, for a size of
the medium above a critical value, W (~r, t) starts growing exponentially with
time. Because of the similarity between this self-generation of the photons
and the neutron multiplication in a nuclear bomb, this process is sometimes
referred as a photonic bomb.

Although this model predicts a divergence for the light intensity, because
of the gain depletion no explosion occurs. The gain begins to deplete quickly
and consequently `g increases. By considering the gain saturation, Letokhov
predicted a damped oscillation (pulsation) in the transient process of the
generation. He also calculated the emission linewidth. The main limiting
factor for the width of the lasing spectrum in the stationary regime comes
from the spontaneous emission. Otherwise the Doppler e↵ect from moving
scatterer particles also induces some noise in the photon frequency [1].

Fig. 2.3 demonstrated the spectral features of RL emission from semi-
conductor powder while the pump intensity increased.
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Figure 2.3 – Spectra of emission from ZnO semiconductor powder observed
by Cao et al., while the pump intensity increased from below to above
RL threshold (from bottom to top pump energy is 400, 562, 763, 875,
1387 kW/cm2). During this experiment the excitation area was kept the
same [26].
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2.1.3 Coherent and incoherent feedback

Classifying random laser (RL) into coherent and incoherent feedback lasing
categories, has been debated in the past two decades. It was initially believed
that as the density of scatterers increases, the probability that the light
comes back in closed loops during its propagation increases. That means
the interference of light in this situation has to be taken into account. When
the gain in such a loop exceeds the loss, laser oscillation can occur. The
required constructive interference due to the total phase shift along the loop
determines the frequency of oscillation. This is known as RL with coherent
feedback [26, 27, 28].

The incoherent feedback can be interpreted in terms of modes. Instead
of individual high-Q resonances there appear a large number of low-Q res-
onances which spectrally overlap and form a continuous spectrum. This
corresponds to the occurrence of incoherent feedback. The absence of co-
herent feedback means that the cavity spectrum tends to be continuous, i.e.,
it does not contain discrete components at selected resonant frequencies [2].
By increasing the density of scatterers Cao et al. [29] observed the transition
from incoherent to coherent feedback random laser (Fig. 2.4).

One main di↵erence between the two types of feedback is that, in the
incoherent one the interference e↵ect is negligible, the photon is di↵used and
makes random walk in the disordered medium and mathematically the in-
tensity can be analyzed by a di↵usion equation to explain the lasing. Indeed
this is at the heart of Letokhov’s model. Whereas in the coherent feedback
lasing, the interference e↵ect cannot be neglected and is essential, so the
electric field has to be studied instead of the intensity. The picture of closed
loops is intuitive but naive. In general light can go back to its origin in many
di↵erent paths, and all the backscattered light interferes and determines the
lasing. Thus the coherent feedback RL is a randomly distributed feedback
laser.

In order to develop a model which describes the coherent RL emission,
instead of the di↵usion equation for the light intensity, the Maxwell equa-
tions for the electro-magnetic fields should be used [30]. Several theoretical
models have been already introduced, such as time-dependent theory [31],
the collective modes of resonant scatterers [32], the prelocalized modes in
di↵usive media [33], the Anderson model [34], etc.

2.1.4 Coherence properties of random lasers

Temporal coherence and photon statistics

One important feature of the laser emission is its temporal coherence. The-
oretical studies predicted that the random laser above threshold could be a
coherent light [35] and its photon statistics could be very similar to those of
a conventional laser.
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Figure 2.4 – Spectra of emission from the rhodamine 640 dye solution con-
taining ZnO nanoparticles corresponding to (a) incoherent and (b) coherent
feedback random laser. The ZnO particle density is ⇠ 3 ⇥ 1011 cm�3 and
⇠ 1⇥ 1012 cm�3 respectively. The incident pump pulse energy is (from bot-
tom to top) 0.68, 1.5, 2.3, 3.3, 5.6µJ in (a) and 0.68, 1.1, 1.3 and 2.9µJ in
(b) [29].
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In quantum optics, correlation functions are used to characterize the
statistical and coherence properties of light [36]. First order correlation
function represents the fluctuations in the electric field

g(1)(⌧) =
hE⇤(t)E(t+ ⌧)i

h|E(t)|2i
, (2.9)

where 0 <=
��g(1)(⌧)

�� <= 1, and
��g(1)(⌧)

�� = 0, 1 represents incoherent and
coherent electric field respectfully. On the other hand, the degree of second-
order coherence characterizes the intensity fluctuations

g(2)(⌧) =
hI(t)I(t+ ⌧)i

hI(t)i2 , (2.10)

where 0 <= g(2)(0) <= 1. A light source is called coherent when
g(1)(⌧) = g(2)(⌧) = 1. This is of course ideal and in practice a coherence time
⌧c, which depends on the modes and spectral distribution of light, has to be
taken into account. A source with a su�ciently narrow wavelength band,
for example, has automatically high first-order coherence [37]. Thus a band-
pass filter which selects a narrow wavelength band can increase first-order
coherence of a light emission. Obtaining second-order coherence though is
more challenging, since photons have a natural tendency to bunch, and this
leads to large intensity fluctuations. Gain saturation is a nonlinear e↵ect
in lasers which restricts the intensity fluctuations and consequently reduces
the second-order correlation. In a conventional laser, it is the cavity that
creates feedback and makes an automatic mechanism which results in the
gain saturation and thereby in second-order coherence. In a random laser
however, the gain saturation can be achieved by, for instance, the amplified
spontaneous emission (ASE) through stimulated emission [38]. For large
gain, intensity grows till the gain medium is depleted entirely. Therefore
the intensity fluctuations will be suppressed and thereby leads to second-
order coherence. This is regardless of the number of scattering events in the
medium.

It is known that the photon statistics of a single-mode coherent light
obeys a Poisson distribution

PP(n) =
hnine�hni

n!
, (2.11)

where hni is the average photon number and is written as

hni =
X

nP (n) (2.12)

(2.13)

while the photon statistics of a single-mode chaotic light satisfies Bose-
Einstein (B-E) distribution [39]

PBE(n) =
hnin

(1 + hni)1+n
. (2.14)
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For a multi-mode chaotic light the photon statistics converges to the Poisson
distribution. Once the P (n) is measured, one can calculate the normalized
second-order correlation coe�cient

G2 = g(2)(⌧ = 0) = 1 +
h(�n)2i � hni

hni2 , (2.15)

where (�n)2 = hn2i � hni2. For the B-E distribution G2 = 2, and for the
Poissonian distribution G2 = 1.

Alternatively, the shot noise power can be used as a reference. The
one-sided power spectral density of the shot noise is given by

SSN = 2h⌫Pop, (2.16)

where Pop is the mean optical power. Comparing the intensity noise of a
light with the shot noise thus can be used to indicate whether it is coherent
or not. In particular to determine if a light is incoherent (above shot noise
level) or coherent (noise equal to shot noise) or squeezed (below shot noise).
This is the essence of the Fano factor [40]. The properties of the above
parameters are summarized in table 2.1.

Table 2.1 – Comparing the values of |g1(⌧)|, g2(⌧) and photon statistics
P(n) of di↵erent types of light. ”P” and ”B-E” stand for Poisson and Bose-
Einstein distribution respectively.

Types of light Photon statistics P (n)

Ideal coherent light P
Ideal incoherent light B-E
Single-mode laser P

chaotic light B-E
ASE B-E

Based on the parameters introduced here, one can study the coherence
properties of any light source. Cao and coworkers studied the photon stat-
istics of the random laser and they observed that it is similar to that of a
conventional laser [13]. They used a compressed pellet of ZnO powder as
the scattering and the gain medium, and a Nd:YAG pulsed laser to optically
pump the sample. Then the emitted light was collected and observed by a
spectrometer-streak camera setup which operated in the photon counting
mode. With this detection setup they were able to study the time evolu-
tion of the emitted light at di↵erent wavelengths (Fig. 2.5). In order to
investigate the photon number distribution of a single lasing mode, only
photons from an individual intensity spike (a single dark region in Fig. 2.5)
are counted within a square with wavelength resolution of �� and sampling
time �t. Hence the sampled radiation field is within frequency interval of
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Figure 2.5 – The spectral-temporal image of the lasing from ZnO powder
taken by spectrometer-streak camera. The incident pump pulse energy is
4.5 nJ. Reprinted from [13].

�⌫ = c��/�2. Thus by setting the sampling time respecting �⌫�t < 1, the
counting area corresponds to a single electromagnetic mode. After counting
the number of photons for a large number of pulses P (n) was obtained.

Then the evolution of the photon number distribution for di↵erent pump-
ing intensities was investigated (Fig. 2.6). They observed that well above
the random lasing threshold the photon statistics changes from B-E distri-
bution to Poisson (Fig. 2.7). Next, in order to confirm the reliability of
their measurements, the photon statistics of a single-mode quasi thermal
light was measured and it was in agreement with the B-E distribution.

Using a similar method Zacharakis et al. studied the photon number
distribution of the fluorescence from a polymer sheet of dye material (Fig.
2.8) [12]. The observed data was well fitted by a linear combination of
Poisson and B-E distribution

P (n) = ↵
hnine�hni

n!
+ (1� ↵)

hnin

(1 + hni)1+n
, (2.17)

where ↵ is defined as the coherent percentage and indicates the proportion
of the Poisson contribution (as coherent part) to the B-E portion (as the
incoherent part) [12].

However their observation disagreed the Cao’s results, and did not con-
firm the coherence of random laser. Zacharakis’s results and conclusion was
criticized later in some other papers. For instance, Cao et. al suggested that
because of incoherent feedback lasing mechanism in their dye material, the
photon number distribution associated to the ASE, which has B-E photon
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Figure 2.6 – The measured photon number distribution of random lasing
from a ZnO pellet (Solid columns) and comparing to the B-E (dotted) and
Poisson distribution (dashed) for the same count rate. The ratio between
the incident pump intensity and threshold intensity is (a) 1.0, (b) 1.5, (c)
3.0, (d) 5.6. The saturation intensity is assumed as the amount of pump
intensity at which the discrete spectral feature appears. Reprinted from [13].

Figure 2.7 – The second-order correlation coe�cient as a function of the ratio
of the incident pump intensity Ip to the threshold intensity Ith. Reprinted
from [13].
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Figure 2.8 – The measured photon number distribution of a random laser
emission from dye material for di↵erent excitation energy. The data was
fitted (lines) by a linear combination of Poisson and B-E function. Re-
printed from [12]. The coherence percentage ↵ = 0, 0.37, 0.49, 0.50 for the
excitation energy of E= 1, 4, 7, 12µJ respectively.

statistics [41], could be significant [13].
Based on a chaotic cavity filled with a laser dye material, Patra theoret-

ically modeled the photon statistics and the Fano parameter of the RL [14].
He showed that in general random lasing radiation fluctuates more compared
to the conventional lasers. The amount of fluctuations and photon statistics
depend critically on the number of modes which contribute to the detection.
Moreover this excess noise could be connected to the mode-competition i.e.
indeterminacy in the number of emitted modes in the detected light. This
kind of noise is due to the overlap between the possible emitting modes. If
only one mode is above threshold, the emission becomes coherent, whereas
the strength of the coherence decreases by adding number of modes above
threshold. Thus according to the above argument, Patra suggested that the
reason for di↵erence between two observations in Refs. [13] and [12] is due
to the di↵erent number of detected modes in their experiments.

By improving the detection setup to select the non-overlapping modes,
photon statistics of RL radiation from a dye doped hybrid powder was stud-
ied [42]. The experiment is very similar to what has been reported in [12].
By applying spatial filtering technique, they discriminated modes with high
resolution with respect to the spatial coherence size of its laser like emission.
This process of limiting the detected modes was done by locating an aper-
ture with a size close to the transport length in the material under study.
They also measured the photon statistics of the RL, and they observed that
above threshold, the correlation coe�cient, G2, and the coherent percentage
↵, approaches one at the time of maximum pump intensity and around the
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wavelength of the maximum gain response.

Florescu et. al. [35] developed a theoretical model to describe photon
statistics of a random laser. It was shown that the laser threshold is lowered
by an increase in the strength of scattering. This leads to redistribution
of the noise with respect to the Poissonian value. From this point of view
the lasing with association to the larger number of scattering events shows
higher level of coherence.

As mentioned above, several techniques have been used to study the
temporal response of the light such as first and second-order temporal cor-
relation functions and photon probability distribution. However sometimes
the third order intensity correlation can provide some extra information. For
instance, the second-order intensity correlation gives information only about
the Fourier magnitude of the temporal response, while the third-order intens-
ity correlation provides information about the Fourier phase also. Cao et al.
showed theoretically and experimentally that in a passive random medium,
by measuring the third-order speckle intensity correlation, it is possible to
reconstruct the temporal response of that medium [43]. Propagation of a
coherent light through a disordered scattering material makes interference
between multiply scattered partial waves and therefore it produces fluctu-
ations in the intensity. This phenomena is known as speckle, and its stat-
istical properties have been well studied and explained in some optics and
laser physics contexts [44, 45]. However, it is not yet clear if this technique
helps to get more information about RL as well.

Spatial coherence

In general, spatial coherence properties of a RL are complicated and quite
di↵erent from the conventional lasers. Initially it was stated that the RL
emission has lower spatial coherence than the conventional one [46, 47, 48,
49]. This di↵erence leads to some potential applications for RL, such as
the experiments and measurements that need low spatial coherent light or
implementation of speckle free experiments. For instance in the laser ranging
[50] and optical coherent tomography [51] the main limit comes from the
spatial cross-talk and speckle, thus in these experiments applying an intense
but spatially incoherent light can be beneficial.

Recently the spatial coherence measurements of RL have been demon-
strated in several works. For example Redding et al. [52] implemented a
double slit experiment (Fig. 2.9a) to study the spatial coherence of RL emis-
sion. More specifically, in this experiment they studied the e↵ect of some
parameters like the scatterer concentration, i.e the strength of the scattering
by changing `sc, the excitation volume, and the pump energy.

For quantitative study of the spatial coherence, the mutual coherence
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(a) (b)

Figure 2.9 – Schematic of the experimental setup for (a) spatial coherence
measurement, (b) Michelson interferometry for temporal coherence meas-
urement. Reprinted from [53].

function, �1,2, which is a complex function is defined as

�1,2 =
hE1E⇤

2ip
I1I2

, (2.18)

where I1,2 = |E1,2|2 denotes the intensity due to each slit. The superposition
of the intensities at the screen or the detector can be written

I = I1 + I2 + 2
p
I1I2|�1,2| cos(�), (2.19)

where � is the phase of �1,2. When |�1,2| is zero the light is defined as
spatially incoherent, and |�1,2| = 1 means coherent light. The case where
0 < |�1,2| < 1 is referred to as the partially coherent light. When the
intensities at each slit are equal, which is the case in this experiment, �1,2
reduces to the visibility or contrast

|�1,2| = V ⌘ Imax � Imin

Imax + Imin
, (2.20)

where Imax and Imin are the maximum and minimum intensities of the
interference fringes.

Based on this parameter, it was shown that the spatial coherence of
the RL emission is enhanced by decreasing `sc (or in other words when the
sample is denser and the scattering gets stronger). In contrast enlarging
the pump area in the sample at fixed pump power leads to a reduction in
coherence of the RL [52, 53].

This technique in addition to Michelson-like interferometer (Fig. 2.9b)
was used to study both spatial and temporal coherence of the RL [54] and
to investigate the RL threshold by studying the visibility as a function of
pumping energy [53]. It was observed that when the excitation intensity goes
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Figure 2.10 – Visibility (spatial coherence) of the emission as a function
of excitation energy for three di↵erent sample concentrations measured by
a setup depicted in Fig. 2.9a. An abrupt increase in the visibility shows
the onset of random lasing action and represents the threshold, which is in
agreement with the theoretical predictions. Reprinted from [53].

above threshold, an abrupt increase in the visibility (i.e. spatial coherence)
occurs (Fig. 2.10). However comparing the spatial coherence of a RL with
a conventional laser shows less coherence for the RL.

To summarize, the photon statistics and coherence properties of a ran-
dom lasing emission is still a controversial topic. To extensively understand
and characterize those properties, further theoretical and experimental in-
vestigation is needed. Based on the previous works, generally the spatial co-
herence of a RL is expected to be lower than a conventional laser. Moreover,
It is enhanced by increasing the scattering strength in a medium. On the
other hand the spatial coherence, e.g. visibility, shows an instantaneous
increase when the pumping energy passes the threshold.

Furthermore, the second-order temporal correlation of a single mode
random laser emission well above threshold shows a coherent light. This
is also what is expected from standard lasers. However the observation of
G2 = 1 is challenging since only a single mode of random lasing emission
must be selected and discriminated from the other sources of fluorescence,
i.e. ASE which is incoherent. Experimentally, as the ratio of random lasing
to ASE grows, due to i.e. higher pump intensity well above threshold, G2 is
expected to approach one.

Finally the photon statistics P (n) of a light in general can be modeled
as a partial coherent light with a combination of a Poisson distribution
(corresponding to the coherent part) and a B-E distribution (corresponding
to an incoherent part, i.e. chaotic light or ASE). For a RL below threshold
P (n) is expected to demonstrate a pure B-E distribution, whereas above
the threshold, the coherent percentage ↵ increases substantially and P (n)
converges to a Poisson distribution.
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In this section, the random laser was defined with a focus on its co-
herence properties. Generally random laser can be considered as a partially
coherent light and the coherence percentage is enhanced by increasing
either the gain or the scattering. We showed that coherence measurements
can be employed to testify a random laser emission and to investigate
threshold.

2.2 Cold-atom RL

2.2.1 Advantages and disadvantages of cold atoms

A cloud of cold atoms has very di↵erent properties from the other standard
sources of RL such as semiconductor powders or dye solutions. In this
section we try to compare some of the advantageous and disadvantageous
properties of the cold atoms with those of the other sources of RL.

First of all, cold atoms are simple and well-controlled systems. That
makes it easier to develop a theoretical model. Moreover it is considered
as a homogeneous system (with no impurities) and because of the very low
temperature (⇠ 100µK) the Doppler e↵ect can be neglected. Moreover,
some fundamental features of cold atoms are tunable. For example there
are some techniques which allow us to manipulate the density n, mean free
path `sc, and scattering cross-section �.

Secondly, cold atoms do not present non-radiative fast-decaying trans-
itions, preventing a standard four-level scheme to produce a population in-
version [55]. Nevertheless there are some known mechanisms to make popu-
lation inversion between di↵erent atomic states. This means that the deph-
asing time of the optical coherence is often in the same order of magnitude as
the life time of the excited states. In contrast, in solid state samples for in-
stance, non-radiative process (like electron-photon interactions) reduces the
optical coherence time to some orders of magnitude below the population
relaxation time.

Finally, using a pump-probe configuration in the cold-atom experiment
makes it possible to investigate di↵erent gain mechanisms. However, con-
trary to most RL sources, in cold atoms amplifiers and scatterers are the
same and the gain and multiple scattering are linked and controlled together.
Nevertheless the frequency at which gain and scattering occur, are often dif-
ferent. Thus it is necessary to find an appropriate mechanism to provide
both simultaneously.

Although there is no absorption in the cold atoms, the scattering from
the atoms, depending on the experimental situation, could be inelastic,
which is considered as a drawback for RL. Furthermore disorder config-
uration, i.e. the position of the atoms in a magneto-optical trap (MOT),
changes for each RL realization, which makes it easy to integrate data but
this averaging in each realization would be unavoidable.
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2.2.2 Gain and lasing with cold atoms

As discussed in the previous sections, to generate random lasing one needs
two fundamental ingredients, multiple scattering and gain. In our lab we
can prepare MOT with on-resonance optical thickness of ⇠ 10� 100 which
is large enough to induce multiple scattering and radiation trapping [56]. In
this section we explain how the second necessary ingredient of RL can be
achieved from cold atoms. Although there are several possible gain mech-
anisms in cold atoms, we only employ Raman gain among them, which is
experimentally easier to combine with multiple scattering.

Raman gain using Zeeman sublevels

Raman transition generally means a two-photon transition between two non-
degenerate ground levels which could be either Zeeman sublevels or hyperfine
states. To characterize this gain a pump-probe configuration is needed.
Using a pumping field to make an upward transition to the vicinity of an
atomic excited state, then a probe beam can be amplified at the frequency
of the downward transition.

A first possibility is to make population inversion between the di↵erent
light-shifted Zeeman sublevels mF of a given hyperfine state F by a pump
beam (Fig. 2.11a) [57, 58]. For instance, optical pumping by a ⇡-polarized
laser near a closed transition of F = 1 ! F 0 = 2, results in a symmetric
population distribution. Since the mF = 0 sublevel of the ground state has
the largest Clebsch-Gordan coe�cient C, it is the most populated and most
shifted state [59] according to the light shift for a red-detuned light

�E ⇠ �C2⌦2

2�
, (2.21)

where ⌦ = �I/2Isat is the Rabi frequency, and� is the detuning of the pump
from the excited state. To characterize this process one needs to observe the
transmission spectrum by probing the atoms with a linearly polarized weak
laser beam. With the polarization axis orthogonal to the pump polarization,
it induces �mF = ±1 Raman transitions. For a given pump-probe detuning
� population imbalance in the Zeeman sublevels and that introduces either
gain or absorption depending on the sign of the detuning. For a larger F ,
each pair of neighboring sublevels contributes with a relative weight depend-
ing on the population inversion. In practice however, only two components
are observable; one due to the amplification at � = ��R and the other due
to the absorption at � = �R when the pump beam is red detuned (� < 0).
For a blue detuned pump beam (� > 0), that structure will be inverted.
This mechanism has been also applied to produce lasing with a cold-atom
cloud inside an optical cavity [60, 61]. The narrow spectrum of this kind of
laser can be easily characterized by a beat-note measurement [60]. Note that
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(a) (b)

Figure 2.11 – (a) Principle of the Raman mechanism due to a F = 1 !
F 0 = 2 transition. (b) Experimental transmission spectra recorded with
cold 85Rb near the F = 3 ! F 0 = 4 transition plotted as a function of
pump-probe detuning �. Without pumping, spectrum (1) shows only the
atomic absorption. A pump beam of detuning � = 3.8� and intensity
13mW/cm2, corresponding to a Rabi frequency ⌦ = 2.5� , is added to
obtain spectrum (2), which then exhibits a Raman resonance in the vicinity
of � = 0. Moreover, the atomic absorption is shifted due to the pump-
induced light shift and the absorption is reduced due to saturation. Adapted
from Ref. [62].

�R is related to the light shift and thus it depends on the Clebsch-Gordan
coe�cients of each sublevels, and usually its value is small (�R ⇠ �). On the
other hand � is a few �. The width of the Raman resonances � is connec-
ted to the elastic scattering, which is also smaller than � [58]. This leads to
spectrally narrow resonances far from the main atomic absorption resonance
(Fig. 2.11b). Thus this Raman gain is very sensitive to any Doppler shift.
For instance the radiation pressure from the intense pump beam, induces
strong enough Doppler shift which changes and destroys the Raman gain
structure and would stop the laser emission after a very short time.

Raman gain using hyperfine sublevels

Two-photon transition between two hyperfine ground states can also leads
to a Raman gain (Fig. 2.12). The advantage of this kind of gain is that
the frequency of the pump beam is relatively far from the gain photons, for
instance in the case of rubidium atoms the two hyperfine ground states F = 2
and F = 3 are separated by a few gigahertz. However since the pump laser
is tuned close to an open transition in this configuration, it destroys the
population inversion quickly and hence another laser is needed to recycle
the ground states population distribution, and it increases somehow the
complexity of the experimental setup.
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Figure 2.12 – An example of Raman gain using hyperfine states. Here the
Raman laser makes two-photon transition and generates gain by inducing
stimulated emission. The optical pumping laser recycles the atoms and
maintains the population inversion between the hyperfine ground states |g1i
and |g2i. Reprinted from Ref. [4]

This gain mechanism has been used in di↵erent experiments on lasing
with cold atoms in di↵erent regimes [63, 64, 65] as well as the cold-atom
random laser experiment [4].

Other gain mechanisms

There are some other known mechanisms to generate gain such as Mollow
[66] and non-degenerate four-wave mixing (NDFWM) [67] gains. These gain
mechanisms have been already explained with details in Ref. [60, 68, 69, 70].
However producing RL from hyperfine Raman gain is much easier than the
others because of the expected lower threshold condition.

2.2.3 Threshold of a cold-atom RL

Letokhov’s threshold of a RL

As mentioned in Sec. 1.1.2, considering the Letokhov’s approach to derive
the threshold condition for continuous-wave (cw) operation of random lasing,
by solving the di↵usion equation (Eq. 2.4), a critical sphere diameter was
found

Le↵ > 2⇡

r
`sc`g
3

, (2.22)



24 CHAPTER 2. RANDOM LASER

which showed a threshold for an exponential increase in the energy density
in time. Here Le↵ = ⌘L, where ⌘ ⇠ 1 is a small correction factor in the
di↵usive regime. For a sphere geometry

⌘ = 1 +
2⇠

L
`sc

+ 2⇠
, (2.23)

where ⇠ ' 0.71 [71, 72]. Note that this threshold value is correct under the
validity of the di↵usive or multiple scattering regime, where L � `sc. We
call this condition Letokhov’s threshold [55].

Threshold of a RL using the radiative transfer equation

When a medium is weakly scattering, transport of the light can be modeled
by the radiative transfer equation (RTE) [73], which is valid from the ballistic
regime to the di↵usive one [74]. For a plane wave along z-axis propagating
in the direction of u and for isotropic scatterers in the presence of the gain,
RTE is written as

1

v

@

@t
I!(z, µ, t) + µ

@

@z
I!(z, µ, t) = (g � �)I!(z, µ, t) +

�

2

Z +1

�1
I!(z, µ

0, t)dµ0,

(2.24)
where I!(z, µ, t) is the specific intensity which characterizes the number
of photons at frequency ! and it depends on the spatial variable z and
the angular variable µ = cos✓, with ✓ the angle between the propagation
direction u and the z-axis. Here v is the transport velocity of light in the
medium, g is the linear gain coe�cient and � = 1/`sc. For a medium with
linear gain, g = 1/`g > 0.

In the slab geometry, it is possible to solve the RTE by a modal expansion
of the equation. This expansion has asymptotic behavior at large length
and time scales which converges to the modal expansion of the di↵usion
equation [71]. Although there is no modal expansion of RTE in 3D available,
it can be directly solved [75, 76, 10] by applying the so-called Eddington
approximation [77, 78]. As a result one can find a critical radius Rcr given
by

tan(qRcr) =
2gqRcr

2g � q2Rcr
, (2.25)

where

q2 = 3g(�� g) =
3

`g

� 1

`sc
� 1

`g

�
. (2.26)

In the di↵usive regime (�Rcr � 1) and when the scattering is much more
than the gain (�� g so q2 ' 3�g), Guerin et al. show [79] that the critical
radius of a spherical medium matches with the one obtained by the di↵usion
equation (Eq. 2.22).
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Threshold of cold-atom RL

For a cloud of cold atoms, all the characteristic lengths can be written as a
function of the atomic polarizability ↵(!). Experimentally ↵ is determined
by the pumping parameters, detuning � and intensity. For example the
elastic scattering cross-section is given by

�sc(!) =
k4

6⇡
⇥ |↵(!)|2, (2.27)

and the extinction cross-section by

�ex(!) = k ⇥ Im [↵(!)], (2.28)

where k = !/c is the wave vector [80]. Note that Eq. 2.27 is specific to the
dipole scatterers, while Eq. 2.28 is generally valid for any dielectric medium.
Moreover, the characteristic lengths are linked by

1

`ex
=

1

`sc
� 1

`g
(2.29)

1

`ex,sc,g
= n�ex,sc,g,

where �g is gain cross-section and n is the atomic density.
We can consider only resonant scatterers and thus quasi-resonant light

k = k0 = !0/c with !0 the atomic eigenfrequency. In the following a dimen-
sionless atomic polarizability ↵̃ is introduced and defined by ↵ = ↵̃⇥�0/k0,
which omits the dependence on !. Here �0 = 3�2/2⇡ = 6⇡/k20 is the res-
onant scattering cross-section. Therefore Eq. 2.27-2.29 can be rewritten
as

�sc = �0|↵̃|2 (2.30)

�ex = �0 Im[↵̃]

�g = �0
�
|↵̃|2 � Im[↵̃]

�
.

Next by using Eqs. 2.29 and 2.30 in the Letokhov’s threshold given by Eq.
2.22, this results to [81]

n�0Le↵ = ⌘b0cr >
2⇡q

3|↵̃|2
⇥
|↵̃|2 � Im(↵̃)

⇤ , (2.31)

where b0 = n�0L is the on-resonance optical thickness of the atomic cloud.
This threshold condition is valid in the di↵usive regime, i.e. |↵̃|2�Im(↵̃) > 0.

Thus for a cloud of cold atoms the threshold can be expressed in terms
of the on-resonance optical thickness b0 which is an intrinsic parameter, and
it is a function of complex variable of polarizability. Note that the real and
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(a) (b)

Figure 2.13 – Threshold for a RL using Raman gain between hyperfine levels,
as a function of the Raman laser parameters (detuning� and Rabi frequency
⌦). The optical pumping parameters are �OP = 0 and ⌦OP = 0.2�. (a)
Scheme taking four levels into account. The lowest threshold is b0cr = 92.
(b) Scheme with five levels involving supplementary scattering from the
|2i ! |10i transition (Fig. 2.14). The lowest threshold is b0cr = 20. Adapted
from Ref. [55].

imaginary parts of ↵ (or in other words `sc and `g) are related via Kramers-
Kronig relation [82]

Re[↵(!)] = 1

⇡
P

Z 1

�1

Im[↵(!0)]

!0 � !
d!0 (2.32)

Im[↵(!)] = � 1

⇡
P

Z 1

�1

Re[↵(!0)]

!0 � !
d!0,

where P is the Cauchy principal value. This simplifies the characterization
of the threshold in the experiment, as only one measurement is enough to de-
termine ↵̃. Experimentally ↵̃ is characterized by recording the transmission
spectrum of a weak probe beam [83]

T (!) = exp
�
� b0 Im[↵̃(!)]

�
. (2.33)

Using Eq. 2.31, the threshold in di↵erent gain mechanisms can be char-
acterized and compared. For more details see Ref. [68, 81, 83]. For example
by solving the optical-Bloch equations (OBE) for relevant gain parameters,
the critical optical thickness can be numerically simulated as a function of
pumping parameters (detuning and intensity) for Raman gain between hy-
perfine ground states, which resulted in a minimum b0cr ⇠ 100 [68], which is
a significant improvement compared with the other gain mechanisms (Fig.
2.13).

We can summarize the optimum threshold conditions for di↵erent gain
mechanisms in table 2.2. Since the gain frequency is detuned by several
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Table 2.2 – Comparing the lowest threshold in di↵erent gain mechanisms.
Considering this table, the Raman gain between the hyperfine ground states
with additional scattering is the most feasible mechanism for generating
cold-atom RL. In our lab we are able to make a cold-atom cloud with the
optical thickness of b0 ⇠ 10� 200.

Gain mechanism Evaluation method b0cr

Validity of
the di↵usion

approximation
Ref.

Mollow gain
Analytical calculation

of ↵
⇠ 300 Not valid [81]

NDFWM
Experimental
and numerical

1 Valid [55]

Raman gain
(Zeeman sublevels)

Experimental ⇠ 200 Not valid [83]

Raman gain
(hyperfine states)

Numerical ⇠ 90 Not valid [55]

Raman gain
(hyperfine states)

with additional scattering
Numerical ⇠ 20 Valid [4]

atomic linewidth � from the transition providing scattering, it is considered
as a regime with low scattering and high gain. In other words the validity of
the di↵usion approximation breaks down and one needs to study the RTE
instead for computing the threshold. However Froufe-Pérez and coworkers
showed that for a slab it leads to very similar results [81].

Combining scattering to the Raman gain

As already explained, in order to prepare an appropriate condition for ran-
dom lasing we have to find a scheme in which the Raman gain and scattering
are present simultaneously. Fortunately the rich atomic structure of the D2

line of rubidium atoms allows us to combine them, as it is depicted in Fig.
2.14 for 85Rb atoms (see also Fig. 3.1). Five hyperfine states are involved in
this scheme. There are two ground levels as |F = 2i ⌘ |2i and |F = 3i ⌘ |3i,
and three excited states (|F 0 = 1i ⌘ |10i, |20i and |30i).

A transition between |3i ! |20i contributes to the generation of the
Raman gain depending to the detuning of the Raman laser from |20i�, while
|2i ! |10i transition contributes to the scattering of the gain photons and
|2i ! |30i transition provides the optical pumping to control the populations
in the two ground states. It is clear that when � is chosen equal to the
separation of |10i and |20i the scattering will be maximum.

There are some important features in this supplementary scattering
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Figure 2.14 – Raman gain scheme used for random lasing in cold 85Rb.
Supplementary scattering is provided by the |2i ! |10i transition. Reprinted
from Ref. [4]

scheme. Firstly |2i ! |10i photons do not couple to level |3i because of
the selection rule (�F = 0,±1). So the level |10i does not interact with the
Raman laser and does not destroy the Raman gain. Secondly |2i ! |10i is a
closed transition, which means that it does not interfere with the equilibrium
populations in the ground states which is governed only by the composition
of the optical pumping and the Raman laser. Finally the separation between
|10i and |20i is only 29MHz or 4.8�, which is small enough to make e�cient
Raman gain. Note that another similar scheme to combine Raman gain and
supplementary scattering is possible through |40i state. However the nearest
excited state in this case is separated by ⇡ 20� and hence the Raman gain
would be much less e�cient. This is also the reason why 85Rb are preferred
to the 87Rb atoms, in which the hyperfine excited states splitting is larger.

By solving the OBEs for the five contributing states, including a sup-
plementary incoherent scattering term due to the |2i ! |10i transition, and
considering the optimum parameters, a critical optical thickness b0cr ⇠ 20
is obtained with L/`sc ⇠ 6 which fulfills the di↵usion approximation [4, 68].
However the Zeeman degeneracy is neglected in this model and therefore
the result is not completely precise.

2.2.4 Observational results

The random lasing emission from cold 85Rb atoms have been observed re-
cently [4]. Observation of RL is a challenging issue and needs to settle down
some di�culties. In this section we explain the detection system and the
results which has been observed recently in our group. The Raman gain and
scattering scheme is based on what is already represented in Fig. 2.14.

Experimentally a controlled compression period (see Sec. 3.4) is exerted
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Figure 2.15 – Measurement of the total fluorescence emitted by the atomic
cloud as a function of the Raman laser detuning for di↵erent on-resonance
optical thickness b0. Reprinted from Ref. [4]

on the atoms, then by time of flight technique (see Sec. 3.6.3) b0 is varied
with a constant number of atoms. Then a pair of strong counter-propagating
Raman beams are applied to the atoms. An optical pumping laser is also
applied with a slightly red detuning from the |2i ! |30i transition to recycle
the atoms. The relative intensity between the Raman and optical pump-
ing lasers determine the population distribution in the two ground states.
By collecting the fluorescence of the light from the cold-atom cloud, while
the frequency of the Raman laser is scanned slowly around the |3i ! |10i
resonance (� = 0), Baudouin and coworkers observed the first evidence of
random lasing in the cold atoms [4]. This procedure has been repeated for
di↵erent b0 (Fig. 2.15). In the experiment the total emitted fluorescence
was collected in a small solid angle (10�2sr), and for obtaining each curve
in Fig. 2.15 the signal was averaged over many cycles (⇠ 4000).

Note that the detected fluorescence is the total emitted light by the
atomic cloud and it contains the scattered light from two external lasers
(Raman and optical pumping) as well as random lasing. The separation
between the di↵erent lines is indeed experimentally very di�cult because
they all are at the same wavelength � = 780.24 nm and di↵er only from
a few megahertz or gigahertz. Moreover, in random lasers, there is not
any privileged emission direction that allows one to spatially separate the
random-laser light. In most random lasers, the separation is done either
spectrally or temporally (using very short pump pulses), which is very im-
portant because the light scattered from the pump is much more intense
than the random laser itself. In our system, however, the |2i ! |10i trans-
ition does not scatter light from the two external lasers. The random-laser
line has, thus, a strength comparable to the one of the other involved trans-
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itions and that is why it is possible to detect the random laser signal in the
total fluorescence. It should also be stressed that in a conventional laser,
the beam is well separated from the fluorescence of the gain medium, thanks
to the cavity. This is not the case in our system, where both are measured
together. Finally, it may be useful to have in mind that looking at the total
emitted light is equivalent, due to energy conservation, to looking at the
pump depletion (here the two external lasers).

In regions 1 of Fig. 2.15 where the scattering is low due to larger de-
tuning from the |2i ! |10i transition, ASE makes an overall increase in the
fluorescence as a function of optical thickness b0. This is actually a signa-
ture of the collective behavior of the atoms. In this region photons from the
Raman laser can perform a spontaneous Raman transition. Next, the sub-
sequent scattered light can be amplified by the Raman gain. The e�ciency
of this process depends directly on b0.

When the Raman laser is tuned close to � = 0 (region 2 of Fig. 2.15),
the combination of gain and scattering gives rise to an enhanced fluorescence
bump that emerges as the optical thickness b0 is increased. Both scattering
and gain, which are the fundamental ingredients of the RL, are present in
this condition and thereby one can expect to have RL emission in this region
if the system is above random lasing threshold. To investigate the random
lasing threshold in this experiment, the supplementary fluorescence is de-
picted as a function of optical thickness b0 (Fig. 2.16a). ASE e↵ect though
is removed by fitting the wings of the curves in regions 1, with adjustable
slopes and curvatures, and then it is subtracted from corresponding data
in region 2. The remaining signal is a bell-shaped curve, well-centered at
� = 0 (Fig. 2.16b). Surprisingly, it is very well fitted by a Gaussian. We
can thus use a Gaussian fit to extract its amplitude �PF and width �, as
reported in Fig. 2.16b. Although the signal consists of di↵erent emission
lines, a threshold of the peak amplitude is clearly visible, with a change
of slope at b0 = 6 ± 1. This threshold was interpreted as the signature of
random lasing occurrence in cold 85Rb atoms when the Raman beams are
tuned around � ⇠ 0 and when b0 > 6. It should be stressed that varying the
optical thickness in this system, acts simultaneously on the amount of gain
and feedback provided by the medium. This is unusual in laser physics,
where the threshold is most-commonly defined as a critical pump power.
In this case, the optical-pumping intensity increases indeed the population
inversion that provides gain, but simultaneously decreases the feedback, so
that random lasing needs a fine tuning of the laser parameters.

The recent observation of cold-atom random lasing is in qualitative agree-
ment with an ab initio model based on Letokhov’s threshold [4]. There are,
however, quantitative discrepancies. In particular, the measured threshold
is lower than the predicted one. This might be due to interference and/or
cooperative e↵ects [84], which are neglected in the di↵usion model. Several
other ingredients are neglected and might also play a role, like the light po-
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(a) (b)

Figure 2.16 – (a) Supplementary fluorescence around � = 0 for di↵erent
optical thickness (same color scale as in Fig. 2.15). The raw data are the
same as in Fig. 2.15 but the wings have been subtracted and the signal
has been smoothed. (b) A Gaussian fit allows extraction of the amplitude
(red squares) and the r.m.s. width � (blue circles) of the curves shown in
(a) as a function of the optical thickness b0. The vertical error bars are
the statistical uncertainties of the fit (not visible for the amplitude) and
the horizontal error bars correspond to the fluctuations of b0 on five shots.
Adapted from Ref. [4].

larization, the Zeeman degeneracy of the involved atomic levels, the finite
temperature of the cloud, and the inhomogeneous density distribution. This
demonstrates the need for a more evolved modeling.
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2.3 Optical coherence measurements

Although the cold-atom random laser has been observed recently, the ob-
servational evidence was indirect. As already explained in section 1.1.4,
the optical coherence properties of the random laser can be used to detect
random lasing emission and study the threshold in a more direct fashion.
The optical coherence can also develop our knowledge about the nature of
random laser light. Generally speaking, optical coherence of a light can
be measured by various techniques. The degrees of first and second-order
correlation, photon probability distribution, optical spectrum of light, and
noise spectrum of the light intensity, provide information about the optical
coherence. All these parameters are often connected. Depending on the ex-
perimental conditions and the available equipment, one of these parameters
can be measured.

In this section, we briefly introduce and present some well known tech-
niques of coherence measurement with a focus on the applications to a cold
atomic sample. So far, some experiments have been implemented to in-
quire about the atomic physics imprinted by cold atoms on the scattered
light. However, those experiments have been mainly performed in the single
scattering regime.

2.3.1 Degree of first-order correlation measurement

The first-order correlation function g(1)(⌧) characterizes the temporal fluc-
tuations in electric field. In optical interferometers such as Michelson
and Mach-Zehnder interferometer, the interference visibility is related to
|g(1)(⌧)|. The pattern of interference fringes and therefore |g(1)(⌧)| depends
on the nature of light incident on the interferometer. In Fig. 2.17, |g(1)(⌧)|
is qualitatively depicted for coherent and chaotic fields. In section 1.1.4 it
was mentioned that the degree of first-order spatial coherence can be invest-
igated by a double-slit experiment. Since the fluorescence from the atoms is
usually very weak, preparing an optical setup of these kind would be a main
challenge.

According to the Wiener-Khinchin theorem, the degree of first-order
coherence g(1)(⌧), is the Fourier transform of the optical spectrum So(!).

g(1)(⌧) = 2⇡

Z 1

�1
So(!)e

i!⌧d!. (2.34)

The coherence time is then given by the inverse of the spectrum width,
⌧c = 1/�! [85]. Thus an alternative way to verify optical coherence is
achievable by extracting the optical spectrum of light. The transmission of
light through an appropriate high resolution Fabry-Perot cavity, for instance,
can be used for spectroscopy of an unknown spectrum. Suppose that a light
with an unknown spectrum, distributed at a certain frequency interval, is



2.3. OPTICAL COHERENCE MEASUREMENTS 33

(a)

(b)

Figure 2.17 – (a) |g(1)(⌧)| and (b) g(2)(⌧) for chaotic and coherent light.

incident into a cavity. By scanning the length of the cavity, the transmission
signal can be exploited to determine the optical spectrum of the incident
light. However, the main challenge to successfully demonstrate spectroscopy
by the Fabry-Perot is to have very narrow cavity linewidth compared to the
spectrum under study. More details about the Fabry-Perot cavity are given
in chapter 3. The Fabry-Perot interferometry was used to resolve the cold-
atom random laser emission, but it failed due to the poor resolution of that
cavity [86].

2.3.2 Intensity correlation measurement

Intensity correlation measurement (ICM) is a very popular technique for
coherence measurement. ICM describes the temporal fluctuations of light
intensity I(t), based on the second-order correlation function g2(⌧) (Eq.
2.10). This technique was first demonstrated by Hanbury Brown and Twiss
in 1956 [87] for investigation of the angular diameter of stars. This is com-
monly known as the HBT experiment. Nowadays, the HBT correlation
measurement method is used in several scientific fields, including cold atoms
[88].

The second-order correlation function was defined in Eq. 2.10. As an
example in Fig. 2.17, |g(1)(⌧)| and g(2)(⌧) for coherent and chaotic lights are
depicted. According to the Siegert relation for a light wave from a chaotic
sample, first and second-order temporal correlation functions are related by
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[36]

g(2)(⌧) = 1 + S|g(1)(⌧)|2. (2.35)

The factor S depends on the spatial coherence of the detected light. More
specifically, S / 1/N and N is the number of speckle grains included in the
detection system. For a detector radius less than the coherent length of the
scattered light S approaches unity. S decreases as the number of involved
spatial coherence areas in the detection increases. According to Eq. 2.34,
g(2)(⌧) also provides spectral information about the detected light.

It is straightforward to perform ICM for a light intensity as a function
of time based on the definition of the g(2)(⌧) function. Bali and coworkers
[17], for example, demonstrated ICM of the fluorescence of a cold atomic
cloud (Fig. 2.18) by directly detecting scattered light from the atoms in
the photon counting regime. Note that in the following experiments, which
will be reviewed in this section, the cold atomic cloud is exposed by six
counter-propagating laser beams, providing the fluorescence from the atoms.
According to Fig. 2.18, a partially spatial coherence polarized fluorescence
is detected by a photomultiplier tube (PMT) in a given solid angle. An
amplifier and a discriminator system used for photon counting. The output
is registered in the first channel of a 32-channel shift register. By each clock
pulse with a period ⌧cl, the data registered in each channel is shifted to the
next one and new detected photon count is registered in channel 0. Counter
A, counts and accumulates N0 from channel 0 of the shift register which is
equivalent of the detected intensity I(t), while the coincidence counts Nn

between first (0) and nth channels, obtained by an AND circuit, reflects
the product I(t)I(t + n⌧cl). Therefore in this experiment Eq. 2.10 can be
rewritten as

g(2)(n⌧cl) =
hI(t)I(t+ n⌧cl)i

hI(t)i2 =
NnTdet

N2
0 ⌧cl

, (2.36)

where Tdet is the total duration of measurement and counting.
For a cloud of cold two-level atoms, the optical spectrum of the scattered

light usually consists of two parts: a narrow (compared to the atomic
linewidth) spectral peak due to the elastic Rayleigh scattering, and a broad
resonance spectrum [89]. The width of the Rayleigh spectral peak is determ-
ined by Doppler broadening if the atoms are not confined in a microscopic
potential well. The broad spectral feature depends on the intensity of the
laser. If the driving laser has a low enough intensity, the Rayleigh contri-
bution is dominant. For multilevel atoms, additional contributions appear
in the optical spectrum [90]. For an atom at rest in zero magnetic field, the
most important contribution is due to incoherent Raman scattering. Using
the ICM setup depicted in Fig. 2.18, Bali and coworkers showed that in
the absence of magnetic field (B ⇡ 0), the second-order correlation can be
simply modeled based on the Doppler broadening of the light due to the
temperature of the atomic cloud. The So(!) can be described by a convo-
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(a)

(b)

Figure 2.18 – (a) Schematic diagram of the apparatus for ICM of the
scattered light from a cloud of cold atoms. The incoming fluorescence is
made partially spatial coherent by a pair of pinholes, Si and Sd, and de-
tected by a photomultiplier tube (PMT) in a photon counting regime. The
required ICMs are performed by the TTL circuitry. (b) Measurements of
g(2)(⌧) as a function of delay time. The dashed and solid lines are fits as-
suming two models for the line shape. The circles are measurements of an
incandescent source for calibration purposes. Reprinted from Ref. [17]
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Figure 2.19 – Another scheme of ICM setup used in Ref. [91]. A single-mode
fiber is directed at the reduced image of the cold-atom cloud and the mode-
filtered light is led to a photon correlator. SMF: single-mode fiber, FBS:
fiber beam splitter, SPCM: single photon counting module, TAC: time-to-
amplitude converter, and MCA: multi-channel analyzer.

lution of Doppler broadened feature with the spectrum of the atom at rest,
thus

|g(1)(⌧)| = |g(1)D (⌧)||g(1)A (⌧)|, (2.37)

where the inhomogeneous component g(1)D (⌧) is the sum of the Doppler con-
tributions from the laser beams traveling through the cloud along di↵erent
coordinates [15]

g(1)D (⌧) =
X

i

ai exp
⇣
� ↵i

�2⌧2

2

⌘
. (2.38)

The parameter � = q
p
kBT/M is the standard Doppler width, where q, kB,

and M are the wave number of the laser, Boltzmann constant, and the mass
of the atoms respectively. Here, ↵j reflects the dependence of the Doppler
shift on the angle between the detection direction and the propagation dir-
ection of the jth laser beam. In the following, the homogeneous component

g(1)A (⌧) in Eq. 2.37 can be modeled by a coherent Rayleigh scattering con-
tribution and an incoherent term corresponding to the Mollow triplet [89].
The temperature measured based on the above model was in agreement
with another standard temperature measurement method [17]. Moreover
they showed that the coherence time depends on the number of atoms in
the cloud, due to the probability of multiple scattering events.

Based on the assumption of Eq. 2.37, Nakayama et al. [91] also per-
formed a similar ICM experiment on the fluorescence of the cold atoms (Fig.
2.19). By increasing the time-averaged atom number, they performed a pre-
cise ICM and observed a strong photon bunching (g(2)(⌧ = 0) ' 2) and a
rapid damped oscillation (Fig. 2.20). The oscillation structure in g(2)(⌧)
can be described by the interference between the central coherent compon-
ent and the incoherent side contribution of the Mollow triplet [91]. A similar
modulation was observed and reported in Refs. [92, 93].
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Figure 2.20 – Measurements of the second-order intensity correlation as a
function of delay time for various detuning of the MOT beam. (a) Long-time
decay of the correlation function which corresponds to the temperature of
the cloud. (b) Short-time decay. The short decay time is determined by the
lifetime of the atomic excited state. Adapted from Ref. [91].

Figure 2.21 – Schematic diagram of the optical setup to measure the power
spectrum. Reprinted from Ref. [16].

An alternative method of ICM is to study the power spectrum of a
detected signal, i.e. by a spectrum analyzer. Jurczak and coworkers [16],
used this method to investigate the correlation of fluorescence from cold
atoms (Fig. 2.21). Similarly they assumed that the light emitted from N
independent radiators (cold atoms) at a certain temperature results in a
broad Doppler spectral feature. In the experiment they observed a narrow
peak, which was interpreted as an evidence of confinement of the atoms into
potential wells [15]. This is known as Lamb-Dicke e↵ect and has a Gaussian
form. The observed spectrum therefore contains one narrow peak, one broad
pedestal corresponding to the Doppler e↵ect, and finally a convolution of the
two peaks. Using this model, Jurczak et al. fitted the experimental data
and extracted the temperature of the cloud (Fig. 2.22). The measured
temperature in this method was consistent with the result from another
standard temperature measurement technique.
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Figure 2.22 – Two power spectra of scattered light from a cold-atom cloud,
normalized to the shot noise level for two di↵erent cloud temperatures.
These spectra contains a narrow and a broad Doppler contributions. (a)
vrms =

p
kBT/m = 5 cm/s and (b) vrms = 3.5 cm/s. Adapted from Ref.

[16].

2.3.3 Homodyne and heterodyne detections

The direct detection of a light contains information about the intensity as
well as the intensity noise of that source. In the case of a low intensity
signal, the interesting noise under study can be smaller than the quantum
noise limit (QNL). For a single mode field a combination of two detectors
with a beamsplitter can be used to discriminate between a classical modula-
tion and the quantum noise contribution. Furthermore, adding a reference
beam to the signal, referred as local oscillator, one performs a homodyne
detection system (Fig. 2.23). In order to explain the mechanism, firstly, let

Figure 2.23 – Schematic diagram of the homodyne detection.
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us represent the amplitude of two beams

Es(t) = Es + �Es(t)

ELO(t) =
h
ELO + �ELO(t)

i
ei�LO , (2.39)

where Es(t) and ELO(t) are respectively the incident signal and the local os-
cillator electric fields, and �E(t) = �X(t)+ i�Y (t) is the relevant quadrature
electric field. Here �LO represents the relative phase between local oscillator
and main signal. Considering the case of an intense local oscillator and a
weak input signal (E2

LO � E2
s ), we can assume that the detected intensities

at the two detectors are approximately the same and only correspond to the
local oscillator intensity

|ED1|2 ⇡ |ED2|2 ⇡
1

2
|ELO|2. (2.40)

Under the above assumption one can drop all the terms related to Es com-
pared to ELO. The signal at the two detectors can be described, taking into
account the ⇡ radian phase shift for one of the reflected beams in a single
beamsplitter [85], as following

ED1(t) =

r
1

2

�
ELO(t) + Es(t)

�

ED2(t) =

r
1

2

�
ELO(t)� Es(t)

�
, (2.41)

The photo-currents from the two detectors then are proportional to |ED1|2
and |ED2|2

|ED1|2 =
1

2

�
|ELO(t)|2 + ELO(t)E⇤

s (t) + E⇤
LO(t)Es(t) + |Es(t)|2

�
, (2.42)

which can be approximated as

|ED1|2 =
1

2

h
|ELO|2+2ELO�XLO(t)+2ELO

�
�Xs(t) cos�LO��Ys(t) sin�LO

�i
,

(2.43)
by neglecting terms such as ELOE⇤

s compared to |ELO|2 and Es�X⇤ or Es�Y ⇤

compared to ELO�X⇤ or ELO�Y ⇤. Moreover all higher terms in �X and �Y
have been ignored. A similar equation can be written for the detected signal
at the second detector. Now based on the Eq. 2.43, the di↵erence current
i�(t) from the two detectors is estimated by

i�(t) ⇡ 2ELO
�
�Xs(t) cos�LO � �Ys(t) sin�LO

�
. (2.44)

This is a remarkable result. Firstly, the output signal scales only with the
amplitude of the local oscillator, and the noise associated with the local oscil-
lator is suppressed. Secondly the power of the input beam has no influence,
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as long as it is small compared to the power of the local oscillator. Finally,
the noise of the input beam is now amplified and can be above the QNL,
which makes it easier to investigate, and the result would not be a↵ected
[85]. The variance of the di↵erence current i�(t) can be also evaluated

�i2� ⇡ 4|ELO|2
�
�X2

s cos
2 �LO + �Y 2

s sin2 �LO
�
. (2.45)

This technique is phase sensitive. In case that the relative phase �LO is not
preserved in time, the fluctuations in the two quadrature components are
not distinguishable.

If a local oscillator has the same frequency as the input signal, the detec-
tion is called balanced homodyne, and if there is a frequency di↵erence �f
between them, the frequency spectrum of the input signal would be shifted
by �f . This technique is commonly called optical heterodyne detection.
The main advantage of heterodyne detection is that due to beating, one
can avoid the low frequency noises, such as the flicker and electronic noises.
A frequent application of the heterodyne detection is the laser linewidth
measurement by detecting beat-note signal between two lasers of di↵erent
frequency.

Based on the heterodyne technique Westbrook et al. [15] studied the
e↵ect of spatial confinements of cold atoms in potential wells (Fig. 2.24). A
pair of laser beams makes an optical standing wave and provides potential
wells for the atoms. The e�ciency of the localization of atoms and the depth
of the potential wells can be controlled by the detuning of the laser beams.
They observed a very narrow feature in the spectrum of the fluorescence (Fig.
2.24b). Similarly Yoon and coworkers [94] used a heterodyne detection in
the photon counting regime to study a similar e↵ect.

2.3.4 Noise in the forward direction

So far, all the methods explained here study the fluorescence of a sample.
However a very convenient method could be to monitor the fluctuations
of a beam transmitting through a cloud of cold atoms. This can be done
by probing the intensity noise of the transmitted light by a photo-detector.
The privilege of this method is that the optical setup is very simple. Also
the signal is usually stronger than the fluorescence and depends on the
incident intensity, as long as it is less than the saturation intensity for the
atoms. Although the photo-detector is not directly sensitive to the phase and
frequency of the incident light, atoms likely convert the phase or frequency
fluctuations into amplitude noise. The conversion depends on the intrinsic
and essential frequency noise of the laser, as well as some physical parameters
of the atoms. More details are given in chapter 4.

Based on this method, Florez and coworkers [95] studied the intensity
correlation of the transmitted laser beams through the cold atoms under
the condition of electromagnetically induced transparency (EIT). In order
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(a)

(b)

Figure 2.24 – (a) Schematic diagram of the heterodyne detection used in
Ref. [15]. (b) Heterodyne spectra with a resolution bandwidth of 30 kHz
at di↵erent detuning. The relative vertical scale between the spectra is
arbitrary. Reprinted from Ref. [15]. Similar to Fig. 2.22 they referred
the narrow part of the spectra to the spatial confinement of the atoms in
potential wells.
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Figure 2.25 – Schematic diagram of the transmission detection used in Ref.
[95] to investigate the EIT e↵ect by performing cross-correlation between
two detectors.

to prepare a proper condition of EIT, they used two laser beams at two
di↵erent frequencies transmitted through the atoms, and a cross correlation
of the two transmitted beams was carried out to extract the spectroscopic
features of the EIT line (Fig. 2.25). This technique is also very popular in
noise spectroscopy [96].

2.3.5 Photon counting statistics

As it was already discussed in section 1.1.4, the photon distribution can
describe whether a light is a coherent (i.e. Poisson distribution) or a chaotic
source (i.e. B-E distribution). In general, one can consider light as a par-
tially coherent source which has both Poisson and B-E contributions with
di↵erent weight (Fig. 2.26). It was explained in section 1.2.4 that the RL
emission from cold atoms contains ASE as well. Since the ASE has B-E
photon statistics [41], this technique can be applied to study the proportion
of RL emission among the total fluorescence from the cold-atom sample
(Eq. 2.17). Furthermore, one can monitor this coherent percentage while
the optical thickness of the sample is changing. This is a practical method
to investigate the threshold conditions (similarly to the experiments done in
Refs. [13, 12]).

Suppose that a PMT or an avalanche photodiode (APD) with high
quantum e�ciency is connected to an electronic counter. It counts and re-
gisters the number of detected photons within a certain time interval which
is set by the user, with an average count rate of R. Now, by choosing a
time segment smaller than the coherence time of the emitted light, we can
extract the photon probability distribution.

2.3.6 Coherence measurement of cold-atom RL

To this end, we reviewed several known techniques and methods for op-
tical coherence measurements. These techniques are usually equivalent, and
based on the physics we want to study and the experimental situations one
of those methods can be chosen and implemented. Now in this section,
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Table 2.3 – Summarizing di↵erent known techniques for studying the noise
properties of the light from the cold atoms. FP: Fabry-Perot cavity, ICM:
intensity correlation measurement, SNR: signal to noise ratio, and LO: local
oscillator.

Technique
Related
function

Advantages/ Disadvantages
Schematic
diagram

Ref.

Fluorescence

FP So(!)
Needs a cavity linewidth

narrower than the
expected emitted spectrum

[86]

ICM (P.C.) g(2)(⌧)
Simple optical setup

For the RL:
Long integration time

[17]
[91]
[93]

Noise
spectrum

Si(!)
For the RL:

Long integration time
[16]

Photon
statistics

P (n)
Only gives g(2)(0)

For the RL:
Long integration time

Balanced
homodyne
detection

g(1)(⌧)
So(!)

Enhanced SNR
Independent from signal power
Phase lock needed between

LO and signal

Heterodyne
detection

g(1)(⌧)
So(!)

Enhanced SNR
Avoiding low frequency

technical noises
Phase lock needed between

LO and signal

[15]

Transmission

Transmission
Noise

So(!)
Enhanced SNR

Simple optical setup
Not appropriate to RL

[95]
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(a) (b)

(c) (d)

Figure 2.26 – Photon probability distribution with n̄ = 10 for a (a) coherent,
(b) chaotic, (c) partially coherent with coherence percentage ↵ = 50%, and
(d) partially coherent light with ↵ = 20%.

physical conditions which are in our areas of concern, will be described. As
a long term goal, the verification of the random laser emission, by investig-
ating the optical coherence of the fluorescence of a cold-atom cloud, is our
main interest. However, this fluorescence might be a mixture of single and
multiple scattered photons in the presence of the gain. Moreover the trivial
fluctuations and noise of the repumper and the Raman lasers can a↵ect the
final results. Thus in order to reduce the complexity of such system, it
would be better to start with the characterization of the lasers being used
on the experiment. Parameters like linewidth, intensity and frequency noise
of the lasers ought to be carefully investigated in the first step. Next, the
coherence properties of light in a single scattering regime has to be charac-
terized. In the past two decades, some experiments have been implemented
under this circumstances which help to develop a comprehensive model for a
single scattered light through the cold atoms. Then, we need to characterize
the light multiply scattered. To our knowledge, this has not been reported
yet in the cold-atom community. However there are already some models
which were developed for a strongly multiple scattering regime. Di↵usive
wave spectroscopy, for instance, has been developed to study the dynamics
and motions of suspended particles based on the di↵usion of light. Similarly
it can be applied to moving atoms in a cloud. Next, the e↵ect of adding
the gain will be taken into account. Finally by changing optical thickness of
the atomic cloud we can investigate the RL threshold. In the final stage, all
the fundamental conditions for random lasing are fulfilled. In this strategy,
we might be able to observe an evidence of the cold-atom random lasing
threshold in the coherence properties of the fluorescence of light from MOT.
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2.4 Conclusion

In this chapter, we introduced a new exotic type of laser. Random lasers
work on the same principles as conventional lasers, but here the modes are
determined by multiple scattering and not by a laser cavity. Therefore a ran-
dom laser is a mirrorless laser but not modeless. Moreover, we saw that the
optical coherence of random lasers is predicted as a coherent emission above
threshold and it exhibits Poissonnian photon statistics, just like a conven-
tional laser. This kind of laser has been observed in many di↵erent materials,
including a cloud of cold rubidium atoms. However it is very di�cult to spa-
tially and spectrally resolve this cold-atom random laser, since there is no
privileged direction for the emission and the frequency of scattered light are
very close to the emission frequency. Coherence measurement though is a
powerful tool for verifying random laser. It can help to study the coher-
ent nature of random lasing emission, as well as the threshold conditions.
Thus a brief overview of some practical techniques for performing coherence
measurements in our cold-atom experiment were presented. Also in order
to understand the results of a coherence measurement of a random laser
and avoid complexity of such experiment, we proposed to study the coher-
ence properties of light in di↵erent regimes and conditions, approaching the
required situation for random laser emission. These conditions could con-
tain light scattered in a single scattering regime, then multiple scattering,
next we have to consider the e↵ect of combining gain to this system, and
finally threshold conditions have to be fulfilled. Thus it would be easier to
understand the transition from one regime to another.
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Chapter 3

Cold-atom 85Rb setup at
INLN

In this chapter we will explain the experimental setup of cold atoms stressing
new features and techniques in our experiment. The basics of the experi-
ment has already been explained in Ref. [70]. Therefore in this chapter
we give more details about the present optical setup of the cooling and re-
pumping beams and the items which have been upgraded. Also we present
some technical information about controlling and running the experiment.
Furthermore, we explain the techniques used for characterization of our cold
atomic cloud. Historically this cold-atom 85Rb setup at INLN has been used
for observation and investigation of di↵erent phenomena such as the coher-
ent back-scattering (CBS) [97, 98], radiation trapping [56], optomechanical
instabilities [99], the gain mechanisms [69], scaling laws for large magneto-
optical trap [70, 100], and the cold-atom random laser [4, 68, 86].

3.1 The laser system

In order to implement a Magneto-Optical Trap (MOT), at least two lasers
are needed, one to cool down the atoms and the other to re-pump and
maintain atomic population in the proper ground state.

In our experiment however, two lasers are employed to make the cooling
process. First a Distributed Bragg Reflector (DBR) laser diode (Yokogawa
YL78XN), with relatively low intensity and frequency noise, is used as a
master laser. This laser has a nominal optical power of about 5mW and a
linewidth of 2MHz and it is locked via the saturated absorption spectroscopy
on the cross-over (CO23) F = 2 ! F 0 = 3/F = 2 ! F 0 = 2 transitions of
the 87Rb. Next, we have a Distributed Feedback (DFB) laser diode as our
cooling laser. This laser diode provides approximately 30mW. Its frequency
is locked and stabilized by the o↵set lock technique using the master laser
as the frequency reference and providing about 1GHz o↵set. The principles
of this locking technique are explained in the next section. The number of
captured atoms in a large MOT scales as the sixth power of the cooling
beam waist size at a given optical power, N / w6 [102]. On the other hand
by enlarging the trapping beams and keeping the intensity near saturation,
the optical power has to be increased as the square of the waist size, P /
w2. Thus in order to trap a large number of atoms we need more optical

47
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Figure 3.1 – Atomic hyperfine structure of the D2 line of 85Rb and the
transitions used for trapping and re-pumping the atoms (Ref.[101]). The
cooling laser is tuned to F = 3 ! F 0 = 4 atomic transitions with a slightly
red detuning (� = �3�) while the re-pumper laser is tuned to F = 2 !
F 0 = 3. Level spacing are not drawn to scale.
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Figure 3.2 – An overview of the optical setup of the cooling beams. O.I.
stands for optical isolator, �/2 is half-wave plate, �/4 is quarter-wave plate,
PBS is polarized beam splitter, AOM is acousto-optical modulator, and TA
is tapered amplifier. Green lines indicate the feedback lock signals.

power, so a tapered amplifier (TA, model: TEC-400) [103] is exploited for
amplification up to 1W .

In addition, to make the re-pumping process another DFB laser diode
is used with 80mW optical power and linewidth of about 2 � 3MHz. This
laser is locked to the CO23 (F = 2 ! F 0 = 3/F = 2 ! F 0 = 2) of the 85Rb
transitions again by the saturated absorption technique. Its frequency is
shifted by two AOMs in single-pass (switch on and o↵, !AOM = �105MHz)
and double-pass (frequency scan, !AOM = +75.67MHz) configurations to
reach the F = 2 ! F 0 = 3 transition. The schematic of the optical setup is
depicted in Fig. 3.2 and 3.3.

3.2 O↵set lock

3.2.1 O↵set lock vs AOM frequency shifting

The first step in preparing and manipulating of the cold atoms is to control
the frequency of the lasers in the experiment. In the old version of this cold-
atom setup, conventional saturated absorption locking has been employed
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Figure 3.3 – Schematic optical setup of the re-pumping beams. Two AOMs
are used in this setup. The upper AOM switches on and o↵ (single pass
configuration), and the bottom one is being used to scan the frequency of
the laser without misaligning the beam (double pass configuration). Green
line indicates the feedback lock signal.

Figure 3.4 – Schematic configuration of the double-pass AOM. This config-
uration is suitable for scanning the incident beam over a frequency range
which is limited by the frequency dependent di↵raction e�ciency of the
AOMs.

for laser frequency stabilization. The saturated absorption locking fixes the
frequency of a laser based on an atomic transition, but then in order to vary
or scan the frequency during the experiment we need to use an acousto-
optical modulator (AOM) in the double pass scheme (Fig. 3.4). Since the
e�ciency of the AOM depends on the frequency shift, the main limitation
of this locking technique is the range of frequency shift it can support. This
means that during a frequency scan, the di↵raction e�ciency and therefore
the power of the di↵racted beam change. In Fig. 3.5 we compared the
optical power variation of a double-pass AOM with the power variation in
our o↵set lock, while the frequency of the laser is scanned. Moreover there
would be some losses of the optical power each time the beam passes through
the AOMs.
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Figure 3.5 – Comparison of the intensity dependence of the probe beam
while its frequency is being scanned by an AOM (left) and by the o↵set
lock-in (right). The red line corresponds to the incident probe intensity and
the black one corresponds to the transmission of that probe beam through
the atoms. Note that the detector gain factor is negative and the range of
frequency scan is much larger in the right figure. The flat part at the top of
each figure corresponds to the background detection signal when the probe
laser beam is switched o↵. It is clear that the output intensity of the AOM
changes a lot during the scan, while on the contrary it is quite stable when
the o↵set lock is used [86].

As it is mentioned in chapter 1, in order to perform a random laser, the
frequency of a pump beam has to be tuned to the F = 3 ! F 0 = 1 transition
to provide the Raman gain. In our cold-atom setup the pump beam is taken
from the same laser which provides also the cooling beams (see Fig. 3.2).
Therefore during the experiment the frequency of this laser has to be shifted
frequently in a range of approximately 200MHz. This large frequency span
is very di�cult to achieve through the AOMs without changing the optical
power. By contrast, in the o↵set lock system, a large frequency scan with
no power dependence is very easy to obtain (Fig. 3.6).

Furthermore to realize the cold-atom random laser, the frequency of the
Raman beam has to be swept over a range of approximately 20MHz (see
Sec. 1.2.4). It is critical to preserve the power of Raman laser while its
frequency is being scanned, otherwise one needs to renormalize the gain
parameter. On the other hand the gain has a nonlinear response to the
Raman laser power, and renormalization would be very di�cult. Hence to
avoid this complexity, it is important to keep a constant intensity for the
Raman beam during the frequency scan.
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Figure 3.6 – Hyperfine structure of 85Rb 52P3/2 level. The frequency of
the transmitted probe beam was scanned by the o↵set lock-in in a range of
[�40� : 20�] during 8ms. � = 6.06MHz is the natural atomic linewidth
of the rubidium atoms. This range of frequency sweep is much beyond the
AOMs working range.

3.2.2 Beat-note profiles

When two laser beams with di↵erent frequencies but same polarization are
superimposed on a photo-detector, the optical intensity measurement shows
a signal at the di↵erence between the optical frequencies, which is known as
beat-note. It can be modeled as follows

E1(t) = Emcos([!m +�!m(t)]t)

E2(t) = Escos([!s +�!s(t)]t), (3.1)

where E1(t) and E2(t) are the electric field of the master and slave lasers
with mean optical frequency !m/2⇡ and !s/2⇡ respectively and �!(t) is a
random frequency fluctuation of each laser and characterizes the linewidth
of the laser. Thus the intensity at the detector would be

I(t) / E2
m + E2

s

2
+EmEscos([!m +�!m(t) + !s +�!s(t)]t)

+EmEscos([!m +�!m(t)� !s ��!s(t)]t). (3.2)

The first term in Eq. 3.2 is the DC intensity component, the last term is the
beat component between two lasers, and the rest are high frequency com-
ponents which are filtered out in the photo-detection process. Obviously
to observe a beat-note signal, the optical frequency di↵erence between two
lasers must be within the bandwidth of the photo-detector. The Fourier
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Figure 3.7 – A beat-note profile between our DFB and DBR lasers. Applying
a Gaussian fit gives a width (FWHM) of 9.3MHz for this beat-note profile.

transform of the detected optical intensity gives a �-function at |!m � !s| if
�!m and �!s are infinitely small. However for a real laser, �! has a dis-
tribution with a certain width. In this case, the beat-note has a distribution
and width which depends on the shape and the width of each �!. As it is
shown in the Fig. 3.8, there are two lasers superposed on a fast photodiode.
The beat-note profile is the convolution of the two laser lineshapes. In the
case of two Gaussian laser optical spectrum, it results in a Gaussian beat-
note profile and its width is the quadratic sum of the two laser linewidths

�⌫BN =
q
�⌫2DBR +�⌫2DFB, (3.3)

where �⌫DBR and �⌫DFB correspondingly are the linewidth of our master
and slave lasers. If the laser line shapes are supposed to be Lorentzian, then
the width of the beat-note will be

�⌫BN = �⌫DBR +�⌫DFB. (3.4)

Finally if one of the lasers is supposed to have a Gaussian line shape and
the other has a Lorentzian, that gives a Voigt profile for the beat-note. In
an interesting case, if one of the lasers is much narrower than the other one,
the beat-note width is approximately the same as the linewidth of the broad
laser. In the Fig. 3.7 a beat-note profile between our master and slave lasers
is represented.

3.2.3 Electronics

In order to understand how this locking technique operates, it is useful
to discuss the electronic ingredients. The frequency o↵set locking dia-
gram is depicted in Fig. 3.8 [104]. The beat-note of the master and
slave lasers is detected by a fiber coupled fast photo-diode (PD model:
Thorlabs SV2-FC, bandwidth 2 GHz) and amplified by two consecutive
very low noise amplifiers (ZX60-3018-G-S+). As mentioned before, the
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frequency of the master laser is stabilized and locked to the 87Rb CO23

(F = 2 ! F 0 = 3/F = 2 ! F 0 = 2) transition. The measured beat-note
frequency (!BN) corresponds to the frequency di↵erence between master
and slave lasers (which is about 1GHz). Thus the drift in the beat-note
frequency is due to the changes in the frequency of slave laser. Using a
radio frequency (RF) mixer (ZFM-11-S+) the output signal is mixed with
the RF signal of a VCO (ZX95-1300-S+). The frequency of VCO (!VCO)
is controlled via a computer and a high-speed voltage output card (Na-
tional Instruments, model PCI6723) by setting the VCO input voltage level
between 0V and 20V (Fig. 3.9). In the mixer, !BN is mixed and therefore
it makes both frequency sum (!+ = !BN + !VCO) and frequency di↵erence
(!� = |!BN � !VCO|). Then by applying a low pass filter with frequency
cut-o↵ at 550MHz (BLP-550+) the frequency sum can be eliminated and
only the frequency di↵erence is selected (of course this selection depends on
the values of the !BN and !VCO). Next, the signal at !� is equally split
(ZFSC-2-11+) into two outputs, one passes through a high-pass filter with
frequency cut-o↵ at 300MHz (BHP-300+) and the other passes through a
low-pass filter with frequency cut-o↵ at 250MHz (BLP-250+). Both signals
are then detected by two RF power detectors (ZX47-LN-S+) and subtrac-
ted to produce the error signal. As it is depicted by a dotted box in Fig.
3.8, the combination of both low-pass and high-pass filters performs a radio
frequency (RF) filter. This RF filter can be characterized by !filter which
corresponds to the input modulation frequency that produces null signal
at the output of subtractor (I). Finally this error signal is fed into a PI
controller (Proportional Integrator) to generate the feedback signal which
controls and stabilizes the frequency of the slave laser by keeping the out-
put of subtractor I around zero. This feedback signal is sent to the current
supply and is added to the current which feeds the slave laser diode. By
changing the input voltage to the VCO we can vary the frequency of our
laser. Therefore !VCO needs to be calibrated as a function of input voltage
(Fig. 3.9).

This lock loops is stable and keeps the lock for a couple of days. Moreover
the working frequency range of this lock system, without losing the lock, is
approximately 500MHz.

3.2.4 Speed of frequency scan

Since the frequency of the cooling beams as well as probe and pump beams
are controlled by the o↵set lock, one important parameter is how fast it can
change the frequency from one value to another. In other words what is the
maximum speed of frequency scan in closed loop. In order to characterize
this parameter, an instantaneous jump of the target frequency is applied to
the laser while it is locked. Consequently the error signal of the servo shows
a jump and then it goes back to zero with an exponential time constant
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(a)

(b)

Figure 3.8 – (a) The o↵set lock-in scheme. Details about each electronic
element and how it works are given in the text. (b) A schematic diagram
of the output voltage of the two high-pass and low-pass RF filters and the
result of the subtractor as the error signal.
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Figure 3.9 – The calibration of the VCO which controls the o↵set lock. The
feeding voltage of this VCO varies between 1 and 20V, which corresponds
to a range of [487 : 1416]MHz frequency in the output signal.

of approximately 50µs. The required time to reach the target frequency
represents the speed of lock. According to Fig. 3.10 a 500µs time delay
in our servo system ensures proper frequency for the laser by o↵set lock in
the range of �7 to 7�. Note that this speed depends on the electronic gain
parameters of the Proportional-Integral controller (PI). Although the o↵set
lock provides a large range of frequency scan without variation in the laser
power, as a drawback it is slower compared to the saturated absorption lock.

3.2.5 Adjusting the o↵set frequency

For our MOT experiment, to trap the 85Rb isotope, the DFB laser used
for cooling atoms has to be tuned and locked to the atomic transition of
F = 3 ! F 0 = 4 albeit with a small red detuning (�MOT ⇡ �3�). Since
the master laser is locked to the CO23 (F = 2 ! F 0 = 3/F = 2 ! F 0 = 2)
transition of 87Rb isotope, an o↵set of 1259.8MHz is needed to adjust the
right frequency for the trapping beams, as it is also indicated in the Fig.
3.12 [101]

!85
340
2⇡

=
!87
CO

2,3

2⇡
+ 1259.813(7) MHz. (3.5)

On the other hand, the beat-note frequency of master and cooling lasers,
once they are locked, is determined by

!BN = !VCO + !filter, (3.6)

where !filter is the crossover frequency of the output of subtractor in Fig.
3.8. We characterized the !filter = 253MHz (Fig. 3.11) which is determined
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(a)

(b)

(c)

Figure 3.10 – (a) Time evolution of the error signal in the o↵set lock after
an instantaneous jump of the target frequency at t = 0. Consequently the
error signal goes back to zero (±0.1�) at t ⇡ 500µs, which represents the
speed of our o↵set lock in the range of [�7� : 7�]. (b) and (c) Zoom on the
error signals.
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Figure 3.11 – Calibration of the RF filter in the o↵set lock. The vertical
axis represents the output voltage of the subtractor. The input frequency
of 253MHz returns zero output voltage .

by the high and low pass filters. Fig. 3.11 is obtained by injecting a RF
signal with a certain frequency to the RF filter (dotted box in Fig. 3.8), and
recording the voltage of the signal at the output of the subtractor I. In order
to switch the trapping beams on and o↵, we use an AOM (Acousto-Optical
Modulator) in a single-pass configuration (Fig. 3.2). The frequency of this
AOM is set at 100MHz, and the first order di↵raction beam is selected which
leads to !AOM = +100MHz. As a consequence,

(
!VCO = 907MHz ! �MOT = 0

!VCO = 889MHz ! �MOT = �3�.
(3.7)

3.3 Fibered setup for 6 beams MOT

For cooling the atoms we need six mutually perpendicular beams intersecting
at the center of our vacuum chamber. Previously dividing the cooling and
re-pumper beams had been done by polarizing beam-splitter (PBS) in free
space. After upgrading our setup, we are using a polarization-maintaining
(PM) optical fiber for the cooling and re-pumping beams (Fig. 3.13). One
of the advantages of this new set-up is the stability of the alignment of
the MOT and re-pumper beams at the MOT position. Therefore we spend
less time on realignment of the six beams. Moreover the number of optical
elements is reduced by replacing them with the optical fibers. This reduces
the complexity of the setup as well. The two beams (MOT and re-pumper)
have been overlapped and adapted to the spatial mode of the optical fiber
(Fig. 3.14). We used an inverse injection to the output of the optical fiber
and we looked at the spatial mode of the out-coming light. Next, by means of
a telescope, we adapted the spatial profile of the MOT and re-pumper beams
to that out-coming spatial mode. Then injection into the fiber has been
optimized. The injection e�ciency for the MOT beam is about 40% and
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Figure 3.12 – D2 transition saturated absorption spectrum of the rubidium
vapor. The frequency of master laser is indicated and the frequency shift
that is needed for the cycling cooling transition of 85Rb MOT [105].

Figure 3.13 – Image of our one to six fiber beam splitter.
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Figure 3.14 – Combination of the cooling and re-pumper beam for the in-
jection into the optical fiber. Note that, because of the polarized beam
splitter (PBS), the polarization of the MOT beam and the re-pumper is
perpendicular at the fiber injection.

for the re-pumping beam is about 60%. Here the e�ciency is relatively low
because of the poor spatial profile of the beam at the output of the tapered
amplifier. Moreover we make the beams linearly polarized and for the cooling
beams we set the polarization on the optical axis of the fiber to have a stable
and linear polarization at the output. The polarization of re-pumper beam
is perpendicular to the cooling laser due to the PBS used to overlap the two
beams before fiber injection (Fig. 3.14). At the fiber injection the MOT
beam and the re-pumper have perpendicular polarizations.

Previously dividing the cooling and re-pumper beams had been done by
polarizer beam-splitters (PBS). Now in order to provide six perpendicular
trapping beams, a fibered beam-splitter from OZ optics [106] (Fig. 3.13) is
employed. This beam-splitter equally splits (⇡ ±10%) the incident beam
into six and preserves the polarization. At the output of each fiber, the
polarization is readjusted by a quarter-wave-plate to make appropriate cir-
cular polarization (�+ and ��) for the trapping beams. The cooling and
repumping beams are collimated by using large lenses (100mm diameter
and 300mm focal length) at each fiber output, which results in collimated
30mm waist size for each beam (Fig. 3.15). In order to balance the optical
power of counter-propagating pairs of beams along x, y and z directions we
paired up the fibers with closest match. So we have (11.73, 12.29mW) along
x, (12.79, 14.21mW) along y, and (10.84, 10.86mW) along z-axis.
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(a)

(b)

(c)

Figure 3.15 – (a) The intensity profile of a trapping beam just before
propagating through the vacuum chamber. The beam was intercepted by
a white paper and the image of it was taken by a camera. Calibration of
this camera gives 0.173mm for each pixel size of the image and this image
contains 360 ⇥ 360 pixels. (b) One dimensional spatial profile of the beam
along x-axis and (c) y-axis and their Gaussian fits, which show a waist size
(width at 1/e2) of ⇡ 29mm and ⇡ 34mm respectively.
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3.4 Dark MOT

Trapping atoms in a MOT basically leads to a dilute atomic cloud with an
atom density of typically a few 1010 atoms/cm3 and a size of ⇠ 1 cm. The
optical thickness b0 of such a cloud would be around a few 10s. This steady-
state density is a consequence of the balance between the trapping force,
i.e. spring constant, and the repulsive force due to the e↵ective atom-atom
repulsive interactions due to multiple scattering. For many experiments and
measurements, it is important to increase the density and b0. In a standard
MOT atom number density n is limited mainly for two reasons. First,
absorption of the trapping beams and shadow e↵ect. This means that the
trapping beams can not penetrate a dense cloud and thus the cooling and
trapping process is less e�cient. Second, the repulsive interaction between
atoms, which is related to the scattering of the trapping light, forces the
atoms apart through the radiation pressure processes and thereby both size
and temperature of the cloud increases [107]. A number of methods have
been proposed to overcome this constraint. In compressed MOT (CMOT)
for example, an immediate increase in the gradient magnetic field 5B can
enhance the density by almost one order of magnitude, but at the cost of
heating up the cloud [108, 109]. In dark MOT (DMOT) on the other hand,
atoms in the trap are allowed to dissipate into an atomic state which does
not couple to the trapping light, in our case |F = 2i. The atom-atom
interaction thus decreases and density increases.

DMOT compression can be carried out in two di↵erent regimes of spatial
dark spot by masking the center of re-pumper beams [110, 111] and dynam-
ical DMOT by attenuating the re-pumper intensity, typically by a factor of
100, for a short time, typically tens of milliseconds, after the loading of the
MOT [112, 109].

In our cold-atom experiment a dynamical dark MOT is applied (with
experimental parameters mentioned in time unit) to compress MOT and to
enhance the density up to 1012 atoms.cm�3 and optical thickness b0 up to
⇠ 150. In Fig. 3.16 an absorption image of a small MOT is depicted before
and after compression by a DMOT process. Attenuation of the re-pumper
intensity is done by changing the amplitude of modulation produced by a
VCO and fed into an AOM. The calibration of the first-order di↵racted
intensity of that AOM as a function of the VCO modulation amplitude is
demonstrated in Fig. 3.17. This amplitude is controlled by an interface card
which is connected to a computer. Therefore with this calibration we can
adjust the intensity of the re-pumper to a certain portion and certain interval
at a desired time. By measuring the optical thickness b0 and density n
corresponding to di↵erent values of re-pumper intensity and DMOT interval,
an optimum situation can be chosen (Fig. 3.18). In our experiment we
reduce Irep to 2% of its initial intensity within 35ms (see the DMOT time
sequence in Fig. 3.21).
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(a) (b)

Figure 3.16 – Absorption image of (a) a standard MOT realization (�img =
0�, b0 ⇡ 5) and (b) after applying the dark MOT compression to it (�img =
�2�, b0 = 22). Please note that in order to fit the image of MOT into the
frame, a short loading time was used. In practice we are able to produce
bigger and optically thicker MOT and dark MOT (up to b0 = 150). The
size of standard MOT compressed from 2.9mm to 0.9mm for dark MOT.

Figure 3.17 – Calibration of an AOM by changing the voltage input of the
VCO which feeds that AOM, in order to vary the intensity of the di↵racted
beam. The voltage controls the amplitude of the VCO modulation and hence
it changes the e�ciency of the di↵raction in the AOM. This calibration has
been normalized to the maximum intensity of the di↵racted beam.
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(a)

(b)

Figure 3.18 – Optimizing the re-pumper intensity and DMOT duration in
order to have maximum optical thickness. (a) b0 as a function of the reduced
re-pumper intensity during 35ms. (b) b0 as a function of DMOT duration
with a reduced re-pumper intensity to 2% of its initial value. The total
initial re-pumper intensity was ⇡ 5mW. Each point is the average of 10
realizations and the errorbars are the standard deviation of them.
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3.5 Optical molasses

The Doppler cooling process due to the radiation pressure in the absence of
magnetic field is known as optical molasses because of the viscous nature of
this process. This phenomena for the first time was experimentally observed
at Bell laboratories [113]. Indeed that was a revolutionary step towards cold
and ultra cold-atom experiments.

It is known that the temperature of the atoms depends strongly on the
detuning of the cooling beams in this phase. A larger red detuning leads
to a lower temperature. However there is a lower limit to the minimum
temperature which one can reach by this technique [114, 115, 116]. In our
experiment we use this time period basically to vary the temperature. First
the MOT is loaded in the trap, then dark MOT is applied to compress the
MOT, and finally the magnetic gradient is switched o↵ to perform the optical
molasses phase. In fact the spatial confinement of the MOT is suppressed
when switching the magnetic gradient o↵. The detuning of the cooling beams
changes to a desired value (�Mol) which depends on the target temperature.

In the laboratory, there are sources such as computer displays, electron-
ics, vacuum pump, wires and the earth which generate unwanted magnetic
fields. Optical molasses are very sensitive to stray magnetic fields. If there is
a magnetic field at the position of the MOT, during the molasses period, the
cloud starts to move in a way which depends on the direction of that mag-
netic field. By installing three pairs of coils in Helmholtz configuration and
adjusting the current in each coil we can compensate stray magnetic fields
along di↵erent directions. Therefore an application of the optical molasses is
to adjust those bias magnetic fields in a configuration that the atomic cloud
expands almost homogeneously at its position during the molasses period.

3.6 The characterization of MOT

In this section some common experimental methods will be introduced for
measuring di↵erent parameters in order to characterize the MOT.

3.6.1 Transmission spectra

The aim of the transmission spectra method is mainly to measure the optical
thickness. In this method a weak probe beam (typically around Isat/10 with
Isat = 1.67mW.cm�2) is transmitted through the MOT while the frequency
of that probe is scanned through the atomic resonance. The normalized
transmission, T , is defined as the ratio between the transmitted intensity and
the incident intensity (T = IT /II) and is a function of the probe detuning.
For a non-saturating probe beam, the transmission can be written as

T (�) =
IT
II

= e�b(�). (3.8)
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Figure 3.19 – Experimental transmission curves for three di↵erent b0 =
0.9, 8.3, 77.

b(�) is known as optical depth or optical thickness, and for a two-level system
it is a Lorentzian function of the detuning

b(�) =
b0

1 + 4 �2

�2

, (3.9)

where b0 is the on-resonance optical thickness, and � = 6.06MHz is the
natural linewidth of the rubidium atoms. Considering Eq. 3.8 one can fit the
measured T (�) spectrum and extract the value of b0, one of the characteristic
parameters of the MOT. With a large cloud of cold atoms, the on-resonance
optical thickness b0 is large and practically nothing is transmitted at line
center. Then, the full width at half-maximum (FWHM) of the transmission
spectra is approximately proportional to

p
b0 (Fig. 3.19).

A useful and interesting situation is to study the transmission of a probe
beam through an optically thin sample (b0 ⌧ 1). First of all one can easily
check if the frequency of the laser is well calibrated with the atomic resonance
in the transmission curve. This is very important for the experiment because
we use the detuning of the laser from the atomic resonance to calculate and
measure quantities such as the number of atoms. Thus any discrepancy in
the actual detuning and frequency calibration of the laser leads to errors in
our measurements.

We can also use optical thickness spectra to quantify the laser linewidth.
Taking the probe laser spectrum S(⌫) into account, the transmission is given
by

T (�) =

Z 1

�1
S(⌫) exp b0

1 + 4( �+⌫
� )2

d⌫. (3.10)

The transmission spectrum therefore is a result of the convolution between
exp(�b(�)) and the laser spectrum S(⌫). Thus by deconvolution of the
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Figure 3.20 – Measured transmission (light gray) of a probe through a MOT
with small optical thickness, b0 = 0.27. Applying a convolution fit based on
Eq. 3.10 we estimated 3.6MHz for the probe laser linewidth.

transmission spectrum one can estimate the laser linewidth. Applying this
method we verified a laser linewidth of 3.63MHz (Fig. 3.20). In a special
case of very small optical thickness (b0 ⌧ 1), exp(�b(�)) is expanded to the
lowest order and replacing in Eq. 3.10 leads to

T (�) = ((1� b) ⇤ S) (�), (3.11)

where ⇤ means the convolution operation. Assuming a Gaussian optical
spectrum for the laser, Eq. 3.11 results in a Voigt spectrum.

3.6.2 Absorption imaging

Absorption imaging is an alternative technique to characterize the number
of atoms Nat in the MOT, the size of the cloud �, and the optical thickness
b. In this method, a weak and large waist size (⇡ 10mm) laser beam is
employed as the probe beam. The transmission of this probe beam depends
on its relative frequency to the atomic resonance, as well as on the number
density of the atoms. The transmission of light through a medium follows
the Beer-Lambert law

IT (x, y, z) = II(x, y, z) exp
⇣
� �(�)

Z z

�1
n(x, y, z0)dz0

⌘
, (3.12)
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where n(x, y, z0) is the atom number density, z0 is the direction of light
propagation, and �(�) is scattering cross-section and defined as

�(�) = gf
3�2/2⇡

1 + 4 �2

�2

, (3.13)

and �0 = gf3�2/2⇡ accounts for on-resonant atomic scattering cross-section
and gf represents the degeneracy of the atomic levels. For F = 3 ! F 0 = 4
transition, assuming all the atoms are in a statistical mixture of the Zeeman
states, one can write [117]

gf =
1

3

2F 0 + 1

(2F + 1)
=

3

7
. (3.14)

Considering Eq. 3.8, the optical thickness can be written as

b(�) = �(�)

Z z

�1
n(x, y, z0)dz0. (3.15)

The atomic cloud is supposed to have a Gaussian spatial distribution
with r.m.s. sizes �x, �y, and �z along each dimension. So the total number
of atoms Nat is

Nat = (2⇡)3/2�x�y�zn0 (3.16)

where n0 is the peak of atom number density and in view of the Eq. 3.15 is
given (Ref. [14])

n0 =
b0p

2⇡�z�0
(3.17)

Now Eq. 3.16 can be written as

Nat = (2⇡)
�x�yb0
�0

(3.18)

Another way to measure the total number of atoms is to measure first
the atom number density profile

Z z

�1
n(x, y, z0)dz0 = � 1

�(�)
ln
⇣ I(x, y, z)

II(x, y, z)

⌘
(3.19)

and then by integration of Eq. 3.19 over all the CCD pixels, the total number
of atoms in the MOT is computed

Nat = � A

�(�)

X

i,j

ln
h(IT )ij
(II)ij

i
, (3.20)

where A is the apparent area of each pixel. Pixels area depends on the
optical magnification (M) and is measured with calibration of the CCD by
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Figure 3.21 – Time sequence of a typical absorption imaging process. In this
sequence, first the MOT is loaded, then compressed to achieve higher optical
thickness, then by applying molasses phase, the temperature is modified, and
finally the absorption image is taken.



70 CHAPTER 3. COLD-ATOM 85RB SETUP AT INLN

capturing an image of a ruler and taking the real pixel size (4.4µm) into
account.We measured (M ⇡ 2.6) and the image pixel size of 11.4µm.

Experimentally an absorption image is obtained by recording the shadow
of a MOT on a CCD camera (Pointgray model gras-20S4M-C) when a laser
beam is transmitted through it. Next it is compared to the image of the
incident beam when the atomic cloud disappeared completely. Finally a dark
image is subtracted from both images to get rid of any o↵set. The exposure
time is typically 100µs to avoid any changes in the MOT properties during
the first image capture. The typical time sequence of the absorption imaging
is demonstrated in Fig. 3.21. The image processing and its analysis are being
done by a Matlab routine, which provides us with a real time analysis and
calculation of all the MOT parameters from each image. The calibration of
apparent pixel size and the detuning � of the imaging probe are given to this
routine as the input values for computations of all the desired parameters.
Therefore the precision of this technique depends on the calibration of the
CCD pixel size and also depends on how accurate the real frequency of the
probe has been adjusted. Any defect in these input parameters causes error
in the computations. This emphasizes the importance of calibration of the
laser frequency. By applying a Gaussian fit to the image and extracting
Gaussian width (�x and �y), the size of the cloud is measured. Also the
center of the image of MOT, where the transmission is minimum, measures
b(�) and consequently b0 considering Eq. 3.9. Now from Eq. 3.18 and then
Eq. 3.16 we obtain Nat and n0. This Matlab routine also calculates Nat

from Eq. 3.20.

3.6.3 Time of flight

By switching o↵ the MOT, atoms in the cloud start to make a ballistic flight
and as a consequence the cloud expands due to its temperature while falling
due to gravity. This process is known as time of flight (TOF). This experi-
mental phase is usually employed before taking data to ensure that all the
components of the trap switch completely o↵ (specially the magnetic gradi-
ent field decays to zero with 2% error (which in our experiment is equivalent
to ±0.5Gauss) in a certain time as it is shown in the Fig. 3.24). Moreover
preparing the right frequency for the probe beam, which is done by the o↵set
lock just as for the trapping beams, takes few hundred microseconds (Fig.
3.10). In our configuration a TOF of 1ms usually guarantees an appropriate
situation.

Another important application of the TOF is to measure the temperature
of the cloud of cold atoms as explained in the following section.
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Figure 3.22 – A sample of absorption image of the MOT and the Matlab
routine which is used to measure size, optical thickness, total number of
atoms and atom number density.
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Figure 3.23 – Absorption images of dark MOT taken after di↵er-
ent TOF durations. �img was chosen to keep b(�) ' 1, (�img =
�3, �2.5, �1.8, �1, �0.3� from left to right respectively). From this time-
lapse one can estimate the gravity of Earth g.
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(a)

(b)

(c)

Figure 3.24 – Decay of the magnetic field measured by a Gauss-meter (a)
and the current in the coils (b) after switching o↵ the magnetic gradient.
The normalized decay signals of both magnetic field and the current are
compared (c). It is realized from the figure that an approximately 2ms
delay time is needed for the I and B-field to get to zero with 2% error.
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(a) (b)

Figure 3.25 – Time of flight measurements of a dark MOT with Nat ⇡ 1010

and b0 ⇡ 100, (a) in the x-dimension and (b) in the y-dimension. The slope

of each plot is a measure of kBT
m . Considering kB

m = 97.9188 m2

s2K the above
plots show a temperature of about 110µK for the MOT.

3.6.4 Temperature measurement

The equation of motion of the particles during TOF can be written as

~r(t) = ~r(0) + ~v(0)t� 1

2
gt2 ~ez, (3.21)

where g is the gravitational acceleration along ~ez. The last term in Eq. 3.21
can be ignored in very short TOF. By averaging over the atomic distribution
the square of this equation of motion one obtains

< r(t)2 >=< r(0)2 > + < v2 > t2 + 2 < ~r(0).~v(0) > t. (3.22)

Assuming that there is no correlation between the velocity and initial posi-
tion of particles, the term ~r(t). ~v(t) averages to zero. Regarding the spatial
Gaussian density profile of the MOT, the r.m.s. size (�(t)) of the cloud can
be taken and also < v2 >= kBT

M , we obtain

�(t) =

r
kT

m
t2 + �2ini. (3.23)

Thus, in the time of flight (TOF) experiment, by taking several pictures at
di↵erent TOF and measuring the cloud size, one can estimate the temper-
ature (Fig. 3.25).

3.6.5 Controlling optical thickness

Decreasing b0 is very straightforward. The maximum b0 is obtained by com-
pressing the MOT, and then by applying a TOF period the cloud expands
whereas the temperature does not change. Although there are some losses
of the rubidium atoms in the MOT due to the residual gases collision, it is
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Figure 3.26 – b0 as a function of TOF duration. The errors correspond to
the statistical variations in the measured optical thicknesses. A fit, based
on the relation b0 / N/�2(t), is applied (blue line) to estimate the optical
thickness at di↵erent TOF.

usually negligible during the TOF. Therefore by increasing the TOF dura-
tion, b0 decreases (in our experiment we are able to change it from almost
160 to 10 (Fig. 3.26)) while the other parameters, such as the atom number
and the temperature, are reasonably unchanged, except, of course, the size
and the density of the cloud.

3.7 Vacuum pressure

The MOT is loaded from the background room-temperature 85Rb atoms in a
cubic silica cell with a size of 10 cm [118]. However to realize a MOT, a very
low pressure environment is needed. This low pressure is achieved in our ex-
periment by an ultra high vacuum (UHV) ionic pump (Varian, 20 Liter/sec)
which provides a vacuum of 10�8mbar in the cell. Indeed the vacuum pres-
sure Pvac plays an important role in realization and improvement of the
MOT.

The MOT is basically loaded at a certain rate, L (atoms/sec), which
is in principle proportional to the partial pressure of Rb-atoms, PRb. On
the other hand collisions between the background room-temperature gases
(including both rubidium atoms and residual gases) and trapped atoms is
one of the loss factors. The impact of a room-temperature atom can transfer
enough energy to a cold trapped Rb atom such that the atom escapes from
the trap. This loss rate is represented by � and is proportional to the total
vacuum pressure, including both partial pressure of residual gas, Pres, and
PRb (� / PRb + Pres). Another loss factor is the collision between trapped
atoms, which is known as cold collision. This type of loss accounts for two-
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Figure 3.27 – Fluorescence signal representing the loading of a MOT. The
detuning of the cooling beam is �MOT = �3�. An exponential fit (Eq. 3.25)
gives ��1 = 1.2 s (red dashed line).

body losses, i.e. light assisted collisions between cold atoms. Theoretically,
the time evolution of the total number of trapped atoms, N , is written as
[119]

dN

dt
= L� �.N � �.

Z
n2(r, t)d3r, (3.24)

where L is the loading rate, n(r, t) is the atomic density, � is the loss rate due
to the room-temperature collisions, and the quadratic term �.n2 describes
losses due to the cold collisions. In our experiment, the typical atomic
density of MOT (without any compression) is about ⇠ 1010cm�3 and � =
2.10�12cm3.s�1 [120]. Therefore �.n ⌧ �, or in other words the cold collision
is negligible compared to the background gas loss rate. A general solution
of Eq. 3.24 in this regime is given by

N(t) = N1(1� e��t) (3.25)

with boundary conditions of N(t = 0) = 0 and N1 = L/�. In a limit that
Pres ⌧ PRb, the stationary state number of atoms, N1 is independent from
the background gas pressure. However � depends on the pressure. Therefore
the time constant of loading of a MOT, �, can be employed in this regime
as a criterion for estimation of PRb in the vacuum cell. This can be done by
collecting the fluorescence of the MOT on a photo-detector while it is loaded
(Fig. 3.27). When the loading time, 1/�, is too long one can open the valve
of the Rb reservoir, for instance, to increase PRb. This valve connects a small
reservoir of Rb metal, to the vacuum chamber (see Fig. 3.28.) Therefore by
opening it, the Rb pressure increases in the vacuum chamber.

One possibility is to study PRb by using transmission measurements.
Considering Eq. 3.12, and assuming that Rb pressure, Rb atom density
and ambient temperature are stationary and homogeneous, transmission of
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Figure 3.28 – The image of the valve which connects the Rb reservoir to the
vacuum chamber.
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a laser beam through the vacuum cell and a reference cell is written as

Tcell = exp(�ncell�(�)Lcell) (3.26)

Tref = exp(�nref�(�)Lref )

The estimated Rb pressure Pref in a reference Rb cell was given in Ref. [101]
and is about 2.66 ⇥ 10�7mbar at the lab temperature (⇠ 22�C). Since at
low pressure the ideal gas law is applicable, one can calculate the pressure
as a linear function of atomic density and temperature ⇥.

P = nR⇥ (3.27)

where R is the universal gas constant, R = 8.314J.K�1.mol�1. Taking the
transmission spectra from both reference cell and vacuum chamber simul-
taneously and using Eqs. 3.26 and 3.27 leads us to

Pcell =
ln(Tcell)

ln(Tref )

Lref

Lcell
Pref (3.28)

Regarding Lref = 45mm and Lcell = 100mm, Fig. 3.29 shows PRb ⇠
10�7mbar in the vacuum cell which is relatively high for making a MOT.
When I started my PhD, the ionic pump had just been replaced. However
after replacement, the pressure in the vacuum chamber did not decrease
enough and the quality of the MOT was not satisfactory. However this
result raises an interesting idea, since we have already obtained a MOT in
this pressure, almost the same as Pref : is it possible to get rid of vacuum
pumps and demonstrate MOT in a standard spectroscopy cell, which could
decrease the size and complexity of the experiment a lot? As a result the
beginning of my job was to find and solve this vacuum pressure problem.
Finally it turned out that the polarity of the power supply of the ionic pump
was reversed. So after applying the correct polarity, the vacuum pressure
dropped to almost 10�8mbar, and as a consequence the loading time of the
MOT increased and the loss rate due to the background collisions decreased.
Therefore the MOT got bigger in size and number of atoms and also the
maximum optical thickness increased. In the Table 3.1 the quality of the
MOT before and after changing the polarity of the power supply of the ionic
pump is summarized.

3.8 Conclusion

As a conclusion we can perform MOT at INLN with approximately 1010

atoms of 85Rb and a size of ⇠ 1mm after a short compression period. The
frequency of the cooling laser is stabilized by an o↵set lock-in. This lock
provides us with a very large frequency scanning range (⇠ 500MHz), which
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(a)

(b)

Figure 3.29 – Rubidium transmission spectra from a reference cell and the
vacuum chamber. Eq. 3.28, (a) shows a pressure of ⇡ 10�7mbar, while
after reducing the pressure to 10�8mbar in (b) the absorption signal in the
vacuum cell was not strong enough so that we could not use Eq. 3.28 to
estimate pressure.

Table 3.1 – Comparing di↵erent MOT properties before and after solving the
problem in the performance of the ionic pump. After solving this problem
we achieved lower vacuum pressure (10�8mbar).

Vacuum pressure ⇠ 10�7 mbar ⇠ 10�8 mbar

max b0 20 150
Loading time ⇠ 60ms ⇠ 1 s
Temperature ⇠ 40µK ⇠ 120µK
MOT size 0.2mm 0.8mm

Number of trapped atoms 107 � 108 109 � 1010

Atomic density ⇠ 1012 cm�3 ⇠ 1012 cm�3
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Figure 3.30 – A snapshot of the standard MOT produced in the vacuum
chamber (with a length 10 cm) in our experiment.

is very advantageous for the random laser experiment. For our future ex-
periments it will be critical to be able to control and vary the physical
parameters of the MOT individually in a skillful manner. For instance by
TOF technique, we can manipulate the optical thickness of the MOT in the
range of ⇠ 10�100 while Nat and temperature are kept constant. The tem-
perature of the MOT can be also managed between 150 � 500µK. Finally
the reproducibility of the MOT properties over several weeks is satisfactory.



Chapter 4

Noise Spectroscopy Of Cold
Atoms

Table 4.1 – Table of notation used in the following chapter.

� Laser detuning from the atomic resonance
� Natural linewidth of the rubidium atom � = 6.06MHz
⌫ Optical frequency
⌫L Laser frequency
�⌫L Laser linewidth
�⌫BN Beat-note linewidth
�⌫c Fabry-Perot cavity linewidth

�⌫FSR Free spectral range
F Cavity finesse
fn Fourier frequency

SSN (fn) Shot noise power spectral density (PSD)
G(fn) Photodiode gain curve
SP Laser intensity noise PSD
RIN Relative intensity noise PSD
SE Optical spectrum
S⌫

L

Laser frequency noise PSD
S� Laser phase noise PSD
ST Transmission noise PSD

S⌫T
Converted frequency noise to intensity noise

due to the frequency discriminator
Ii Incident intensity
IT Transmitted intensity
Tc Fabry-Perot cavity transmission
Ta Atomic transmission
D dTa/d�
�m Phase shift
↵m Electric field absorption

81
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Measuring the light fluctuations and correlations after their interaction
with cold atomic samples may provide information on the atomic sample
such as motion [16, 121, 122] and could be used to characterize more subtle
e↵ects due to interference e↵ects in multiple scattering [123]. Such measure-
ments could in particular be implemented to study the di↵erence between
light scattered in passive cold atomic clouds and light emitted by cold atom
random lasers [4], thus providing a direct signature of this phenomenon.

However, in this kind of experiments, the intrinsic noise of the involved
lasers may contribute and even mask the fluctuations under study. One
particular problem is the frequency or phase noise of the laser, which is
converted to intensity noise through the atomic resonance in a nontrivial
way.

In this chapter, we study this conversion in detail, by addressing a partic-
ular configuration, in which intensity noise measurements are performed on a
laser beam transmitted through a sample of laser-cooled atoms. This trans-
mission geometry is relevant to investigate di↵erent properties, such as the
reduction of the noise below the shot-noise level (squeezing) [124, 125], the
extra noise due to the atomic internal structure via Raman scattering [126],
or two-photon optical nonlinearity [127]. This configuration also allows us
to use a simple model of light-atom interaction, in which the atomic cloud
is described by a complex index of refraction.

This study in the forward direction might become interesting to invest-
igate di↵erent properties, such as cooperative e↵ects [128] or the influence
of the atoms via their motion [129] or via quantum e↵ects due to saturation
or atomic internal structure [126] or the spin squeezing in a quantum non-
demolition measurements [130]. But, before turning to these more involved
regimes, one first needs to have a precise description of the noise features in
the simplest model where the atomic cloud can be described by an index of
refraction and thus by a mean field approach. The interaction of the laser
intrinsic noise with the atoms gives rise to the noise spectroscopy. In this
technique, one can resolve the atomic spectra without scanning the laser
frequency.

4.1 Laser characterizations

Characterizing laser noise is a vital issue in many experiments. High preci-
sion optical measurements, e.g. in frequency metrology, or in high resolution
spectroscopy or interferometry, require low laser intensity and phase noise
[131, 132, 133]. In optical fiber communication systems also, one main limit-
ation in the data transmission rate comes from the noise of lasers and amp-
lifiers [134]. In our experiment, the transmitted light through cold atoms
contains some information imprinted by the atoms and at the same time
infected by the intrinsic noises of the incident laser. Thus in order to dis-
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tinguish those interesting atomic information, it is first important to char-
acterize carefully the laser noise. Generally noise in a continuous wave laser
can be classified as

• amplitude/intensity noise, which is usually low for a laser working far
above its threshold

• frequency noise,

• phase noise, which limits the laser temporal coherence.

Generally a laser electric field is described by

E(t) = E0(t)e
i[!Lt+�(t)], (4.1)

where E0(t) and �(t) are time-dependent amplitude and phase of the electric
field. The instantaneous frequency of the laser is given by

!(t) = !L +
d�

dt
= !L +�!(t). (4.2)

In this picture !L would be constant and d�/dt or �!(t) is associated to
the frequency noise. Therefore the frequency and phase noises are related.
In addition, two types of origins are considered for the laser noise

• quantum noise, in particular associated with the spontaneous emis-
sion in the gain medium and the gain saturation.

• technical or classical noise, arising for instance from temperature
fluctuations, electronic noise of the laser driver, the mechanical noises
of the laser cavity.

In this section, by using some standard and common techniques, we char-
acterize the noise of a DFB laser which is amplified by a tapered amplifier.
The laser is frequency locked by an o↵set lock system. We also report the
e↵ect of some technical sources of noise on the line shape and the frequency
noise of our laser. To fully characterize the linewidth of our DFB laser by
the beat-note measurements, two frequency locked extended cavity lasers
also were used. More details about these lasers will be given in Sec. 4.1.2.

4.1.1 Laser amplitude/intensity noise

The intensity noise of a laser is measured by directly shining that laser to a
photodiode. The power spectral density (PSD) of the output photocurrent
then can give the intensity fluctuations. However to obtain intensity noise,
one needs first to characterize the response or the gain curve of the detection
system (Fig. 4.1).
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Figure 4.1 – Schematic of the gain curve measurement.

Detection gain curve

For this measurement we used a home-made trans-impedance photodiode.
This type of photodiode has two outputs. One has a very low bandwidth
which can record a DC signal. After calibration of this output channel, we
used it as a powermeter. The second output corresponds to a band-pass
filter which is convenient for noise measurements and is referred as the AC
output. A low noise amplifier (Minicircuit model:ZFL-500ln, +30 dBm) is
also used on this photodiode output to enhance the final signal. Then the
PSD of this amplified AC signal is observed by an oscilloscope working in the
fast Fourier transform (FFT) mode. The gain curve of the detection system
(AC output with amplifier) was taken by shining a white noise source at
the detector. The white noise is flat and frequency independent. We used a
battery powered incandescent light bulb, which is supposed to be shot-noise
limited, to produce white noise. The PSD of the amplified AC output Swhite

was recorded after 100 cycles of averaging. The incident optical power Popt

was taken also thanks to the DC calibration of the photodiode. In order to
check that our measurements are not limited by the electronic noise, the PSD
of background is recorded with the same number of averages. According to
the incident optical power, one can calculate the expected 1-sided shot-noise
PSD

SSN = 2
hc

�
⌘ ⇥ P opt, (4.3)

where h is the Planck’s constant, � is the average wavelength of the detected
light due to the detector working range, and ⌘ is the quantum e�ciency of
the detector. SSN is independent on the Fourier frequency and is a constant
number. Now the gain curve G(fn) [V2.W�2] is given by

G(fn) =
Swhite

SSN
. (4.4)

Our detector gain curve G(fn) is depicted in Fig. 4.2. From the gain curve
we measured a low frequency cuto↵ at 10 kHz and a high frequency cuto↵



4.1. LASER CHARACTERIZATIONS 85

Figure 4.2 – The gain curve recorded at the AC output of a trans-impedance
photodiode accompanied by an amplifier.

of 6MHz for the AC output of our trans-impedance photodiode with the
amplifier.

Oscilloscope and unit conversion

The FFT function in the oscilloscopes usually represents the power spectrum
of the electric signal in a logarithmic scale with a dBm unit. This unit is
converted to watt by the following equation

Pel [watt] = 10
Pel [dBm] �30

10 . (4.5)

The detected light on a photodiode generates a voltage signal U(fn) based
on its gain curve.

U(fn) = Popt(fn)⇥
p

G(fn). (4.6)

This voltage signal in the oscilloscope then converted to electrical power
depends on the loading impedance R = 50⌦ and the impedance coupling of

the oscilloscope C as follows Pel[watt] =
U2(f

n

)
CR . For coupling of 50⌦, C = 1

and for coupling of 1M⌦, C = 1/4. Finally the oscilloscope FFT represents
the one-sided optical power spectrum given by

P 2
opt(fn)[W

2] =
CR

2G(fn)
⇥ 10

Pel [dBm] +30

10 . (4.7)

Therefore with this conversion we get data in the meaningful optical power
unit. Note that to get PSD, one needs to divide Eq. 4.7 by the frequency
resolution of the oscilloscope df in [Hz].

Intensity noise measurements

The intensity fluctuation measurements are ultimately limited by the shot
noise. In this case, the PSD is flat (frequency independent) and proportional
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Figure 4.3 – Typical intensity noise SP of the DFB laser as a function of
Fourier frequency fn, obtained with a mean laser power of 80µW. The gray
vertical lines indicate specific frequencies which is used to extract the noise
power as a function of optical power in Fig. 4.4.

to the mean laser power P (Eq. 4.3). That means the shot noise scales
linearly with the optical power. On the other hand, when the intensity
noise is dominated by technical noises, e.g. electronic noise, the PSD is
proportional to the square of the mean laser power

SP, shot noise(fn) / P

SP, classical noise(fn) / P
2
. (4.8)

Thus, measuring SP (fn) at a certain frequency as a function of P allows to
extract some of the noise features (Fig. 4.3).

The intensity fluctuations PSD of the DFB laser as a function of the
mean power is plotted in Fig. 4.4 for di↵erent Fourier frequencies 1. The
mean power has been varied by adding some neutral density (ND) filters.
Data are well fitted by a square law indicating a classical noise. The PSD
corresponding to the shot noise limitation, given by Eq. 4.3, is also added.

The intensity fluctuations in general could be due to the combination of
both classical and shot noise. In a range of very low optical power, classical
noise vanishes and the shot noise is dominant. By contrast, as the optical
power increases, the classical noise grows faster and becomes dominant (Fig.
4.5). This figure shows clearly that even for a laser intensity dominated by
classical noise, reducing the optical power can end up to a regime in which
the intensity noise might be dominated by the shot noise.

1

The background is removed from the detected signal as follows : SP = SP,detected �
SP,background. SP,detected corresponds to the signal detected when the laser is on, while

SP,background corresponds to the measured signal with no incident light on the detector.
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Figure 4.4 – Power spectral density SP of the DFB laser intensity fluctu-
ations as a function of the mean power at di↵erent frequencies. The data
are well fitted by a square law (solid line with fn = 1MHz) corresponding
to a classical noise. The dashed line corresponds to the shot noise level
calculated by Eq. 4.3.

Figure 4.5 – The intensity fluctuations of a laser diode as a function of
the mean incident optical power at fn = 400 kHz. The noise power scaled
linearly up to ⇠ 100µWwhich describes the shot noise limited domain, while
above this power, noise power is scaled quadratically which shows classical
noise domain.
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Figure 4.6 – Relative intensity noise for the DFB laser diode. The mean
power is about 80µW.

Intensity noise is usually expressed as relative intensity noise (RIN)

RIN [dB/Hz] = 10 log
⇣SP (fn)[W

2/Hz]

P
2
[W2]

⌘
. (4.9)

With this definition, the RIN will be constant for classical noise. For
quantum noise, the RIN depends on the beam power and in particular it
increases when P decreases. The RIN of the DFB laser diode is plotted in
Fig. 4.6. The mean power in this measurement is about 80µW.

As a conclusion, the intensity noise of the lasers in our experiment were
characterized. For the power used in our experiments (typically a few µW),
the DFB is limited by the classical noise. In the following, intensity noise
does not limit the other characterization measurements such as the beat-note
and the frequency noise measurements.

4.1.2 Laser optical spectrum

Using the beat-note measurement, we can characterize the laser optical spec-
trum and its linewidth. The schematic of the measurement is depicted in
Fig. 4.7. In this measurement two lasers are injected into an optical fiber
and combined by a 50:50 fibered coupler. The signal is collected then by a
9.5GHz bandwidth photodiode (Thorlabs PDA8GS) which is connected to
a spectrum analyzer. Depending on the running frequency of each laser, the
beat-note signal appears at the di↵erence frequency of the two lasers on the
spectrum analyzer.
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Figure 4.7 – Beat-note setup to measure laser line shapes. Two lasers are
injected into a 50:50 fiber coupler. The beat-note signal is detected by a fast
photodiode (PD). The signal is finally analyzed with a spectrum analyzer.

Laser line shape

The laser line shape corresponds to the shape of the power spectral density
(PSD) of the laser electric field SE(⌫). To measure it, we use the beat-note
technique. The basics of this technique were already explained in Sec. 3.2.2.
The electric field of each laser can be described by

E1(t) = E0,1e
i2⇡⌫

L,1t

E2(t) = E0,2(t)e
i[2⇡⌫

L,2t+�(t)], (4.10)

where �(t) is a time dependent relative phase between the two lasers. The
first laser is supposed to be perfect here, or at least with a very narrow
line and with a very low intensity and frequency noises compared to the
second laser. Therefore the intensity detected by the photodiode (PD) can
be written as

IBN(t) = |E1 + E2|2

= |E0,1|2 + |E0,2|2 +
+2E0,1E0,2(t) cos

⇥
2⇡
�
⌫L,2 � ⌫L,1

�
t+ �(t)

⇤
. (4.11)

The two first terms in Eq. 4.11 correspond to the DC component. Thus the
PSD of IBN represents the line shape of the laser 2, shifted to the frequency
|⌫L,2 � ⌫L,1| . However, in reality, the first laser has a finite spectrum which
should be taken into account. Thus the beat-note signal would be a result
of the convolution of the two laser line shapes. In a particular case, if one of
the lasers has much narrower spectrum than the other one (reference laser),
the beat-note signal can be approximated as the line shape of the broader
laser.

A typical beat-note is shown in Fig. 4.8. The TOPTICA laser in this
figure has a very narrow line compared to the DFB, and the TOPTICA
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Figure 4.8 – Beat-note signal PSD between the DFB laser and the TOPTICA
laser. The center of the spectrum has been shifted to the origin. Since the
TOPTICA laser has a much smaller linewidth than the DFB laser one, it
can be treated as a reference laser and the PSD mainly corresponds to the
optical spectrum of the DFB laser. The central part can be fitted by a
Gaussian (dashed line) with a FWHM �⌫BN ' 3MHz, and the wings are
well fitted by a Lorentzian (solid line). Inset: zoom on the Gaussian part
of the optical spectrum. Red curve: beat-note signal PSD. Dashed curve:
Gaussian fit.

is taken as the reference laser. Therefore the beat-note spectrum reflects
the optical spectrum of the DFB. The PSD peak has been shifted to the
origin and it consists of two parts. A central part which can be fitted by a
Gaussian, superimposed on large wings with a Lorentzian shape and with
a relative amplitude of approximately 10�3. The Lorentzian fit gives a full
width at half maximum (FWHM) of 20MHz.

Laser linewidth

The laser linewidth �⌫L corresponds to the FWHM of the laser electric
field spectrum. As mentioned before, the beat-note profile is a convolution
of the two lasers optical spectra. The Gaussian part can be estimated as
the main optical spectrum which is responsible of the laser linewidth. This
approximation is valid as the amplitude of the Gaussian part is typically 103

times larger than the Lorentzian. The convolution of two Gaussian will be
also a Gaussian and the FWHM of the beat-note is given by

�⌫BN =
q
�⌫2L,1 +�⌫2L,2, (4.12)

where �⌫BN is the FWHM of the beat-note profile extracted by a Gaussian
fit, �⌫L,i is the FWHM of the lasers optical spectrum. If a reference laser is
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used with a negligible linewidth, then the beat-note FWHM directly gives
the linewidth of the second laser. For instance in Fig. 4.8, the TOPTICA
laser was considered as a reference laser. Therefore a linewidth of �⌫L '
3MHz is estimated for the DFB from a Gaussian fit.

Nevertheless if the linewidth of the reference laser is unknown the above
approximation could be not valid. An alternative method to measure the
laser linewidth by the beat-note technique is to use at least three di↵erent
lasers. In this way we can characterize the linewidth of all the three lasers.
We used three lasers as explained in the following:

• A distributed-feedback (DFB) laser amplified by a master oscillator
power amplifier (MOPA). The laser frequency is locked to an atomic
transition using a master/slave configuration with an o↵set locking
scheme. The master is locked to the 87Rb crossover of the F = 2 !
F 0 = 2, 3 transition thanks to a saturated absorption spectroscopy
method, the error signal being obtained by modulating the laser cur-
rent. The DFB laser frequency is shifted to the closest 85Rb hyperfine
transition thanks to the o↵set lock.

• A home-made external-cavity diode laser (ECDL) provided by
SYRTE. This laser diode is locked to the 85Rb crossover of the
F = 3 ! F 0 = 3, 4 transition. The error signal is obtained by modulat-
ing the longitudinal magnetic field applied on the saturated absorption
cell.

• A commercial external-cavity diode laser from the TOPTICA com-
pany. It is locked to the 85Rb crossover of the F = 3 ! F 0 = 3, 4
transition with the same modulating scheme used for the SYRTE laser
diode.

Now, there are three di↵erent combinations to make the beat-note, first
DFB and TOPTICA, then DFB and SYRTE, and finally SYRTE and TOP-
TICA (Fig. 4.9). Thus from the beat-note experiment we can measure three
FWHM values for three di↵erent combinations. Considering Eq. 4.12, we
would have then three equations with three unknown linewidths. The res-
ults are summarized in table 4.2. The beat-note for each pair of lasers was
recorded after 100 averaging on the spectrum analyzer with a sweep time
of 0.5 s. Then by applying a Gaussian fit, the linewidth of the beat-note is
calculated. This procedure is repeated several times in order to calculate the
statistical uncertainty which is given at 1�. Therefore the uncertainties in
table 4.2 have been obtained with a statistical analysis of di↵erent beat-note
signals recorded in the same conditions.
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(a)

(b)

(c)

Figure 4.9 – The central parts of the beat-note PSD profiles for the (a) DFB
and Toptica, (b) DFB and SYRTE and (c) SYRTE and Toptica laser diodes
and their Gaussian fits. All the beat-notes were shifted to the origin. The
fits give FWHM= 0.49�, = 0.52�, and = 0.18� respectively. Each beat-
note are recorded after 100 averaging. The resolution bandwidth (RBW)
and video bandwidth (VBW) were set on 1 kHz and the spectrum analyzer
span was 10MHz.
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Table 4.2 – Beat-note and deduced laser linewidth, compared to the expected
values. The uncertainties are statistical errors taken at 1�.

Beat-note
linewidth

TOPTICA - DFB
TOPTICA - SYRTE

SYRTE - DFB

3.0(±0.2)MHz
1.11(±0.03)MHz
3.16(±0.13)MHz

Measured laser
linewidth

TOPTICA
SYRTE

SYRTE + low-pass filter
DFB

0.2(+1.5/� 0.2)MHz
1.1(±0.3)MHz
' 0.8MHz

3.0(±0.2)MHz

Expected laser
linewidth

TOPTICA

SYRTE
DFB

< 500 kHz
(from the datasheet)
a few 100 kHz [135]

3MHz [136]

E↵ect of electronic noise on the linewidth

As discussed in the beginning of this section, the technical noise can a↵ect
the laser optical spectrum, and broaden its linewidth. These technical noise
sources usually can be reduced by some e↵orts. For instance the electronic
noise of the laser driver is directly fed into the diode and converted to intens-
ity and frequency fluctuations. Adding a low pass RC filter to the output
of the driver can reduce and cut a part of the electronic noise out. Con-
sequently the lock-in bandwidth would be limited by the frequency cuto↵
of the filter. In Fig. 4.10 the e↵ect of a RC filter on reducing the linewidth
of the laser is demonstrated. In this measurement, beat-note between a
DFB and a distributed Bragg reflector (DBR), with expected linewidth of
⇡ 2MHz, lasers was observed. Then by applying a low-pass RC filter with
a cuto↵ frequency at fc = 2.7 kHz to the current supply of the DFB laser
diode. The beat-note was observed again and showed a narrower linewidth.
This means a cheap and simple RC filter can improve the linewidth of a
laser by reducing the electronic noise in the current which is fed into the
laser diode. However that filter can cut or weaken the feedback signal of the
lock. Thus the frequency lock of the laser would be more fragile.

Another device which can induce noise and broaden the laser optical
spectrum is the AOM. In our experiment, the amplitude and the frequency
of AOMs are controlled by homemade voltage-controlled oscillators (VCO).
The electronic noise in VCOs output can a↵ect the performance of the
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Figure 4.10 – The beat-note signals between a DFB and a DBR lasers fre-
quency locked, with (triangle marks) and without (square marks) a low-
pass RC filter at the output of the laser driver with a cuto↵ frequency at
fc = 2.7 kHz. Gaussian fits (purple and green respectively) were applied
to measure the linewidth. The RC filter reduces the electronic noise in the
current driver and narrows down the beat-note linewidth from 6 to 4MHz.

AOMs, and thus a↵ect the laser linewidth. On the other hand synthes-
izers are known as the most precise function generator and can be employed
for controlling AOMs. The schematic of this measurement is depicted in
Fig. 4.11a. In Fig. 4.12 the e↵ect of the electronic noises in an AOM on the
laser optical spectrum is depicted. Although the measurement confirms a
broadening associated to the VCO electronic noise, for the DFB laser with
3MHz linewidth this broadening is negligible. However this e↵ect has to
be taken into account when a narrow linewidth laser, such as TOPTICA, is
being used.

Similarly, one can expect that the tapered amplifier also induces noise
to the laser electric field. The setup is depicted in Fig. 4.11b. However
our investigation did not show any noticeable e↵ect on the beat-note profile
(Fig. 4.13).

4.1.3 Laser frequency noise

To better characterize frequency and phase fluctuations in a laser, the PSD
of frequency noise is measured. The frequency noise is noise of the instant-
aneous frequency of an oscillating signal. The instantaneous frequency is
defined as

⌫L(t) =
1

2⇡


d�

dt
+ !L

�
, (4.13)
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(a)

(b)

Figure 4.11 – Schematic beat-note measurement setup to study the e↵ect of
electronic noise of (a) the AOM drivers and (b) the tapered amplifier (TA).
To study the broadening due to the amplifier, we used synthesizer to drive
the AOM, then the beat-note taken by the setup (a) is compared with the
one taken by the setup (b) (Fig. 4.13).

where � is a phase in the electric field (Eq. 4.1). The PSDs of both frequency
and phase noises are linked by

S⌫
L

(fn) = f2
nS�(fn), (4.14)

where S⌫
L

(fn) and S�(fn) are the PSDs of frequency and phase fluctuations
respectively, and fn is the Fourier frequency. Eq. 4.14 means that a random
walk phase noise (S� = h0�2f

�2
n ) is equivalent to a white frequency noise

(S⌫
L

= h0), where h0�2 and h0 are constants. Usually the frequency noise
PSD (FNPSD) can be composed of di↵erent noise component [137]

S⌫
L

(fn) =
+2X

↵=�2

h↵f
↵
n . (4.15)

In table 4.3, the noise is categorized based on its PSD behavior as a function
of the frequency. These di↵erent categories can be associated with some well-
known technical and electronic noises. For instance, the electronic thermal
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Figure 4.12 – The e↵ect of the electronic noise in the driver of an AOM
on the beat-note linewidth of the DFB laser. In this measurement, the self
beat-note profiles of the DFB laser with one beam which is di↵racted by an
AOM controlled by a homemade VCO (blue line) and by a Rohde & Schwarz
synthesizer (red line) were recorded. The scheme of the measurement is
illustrated in Fig. 4.11a. The beat-notes were shifted to the origin. The
video bandwidth (VBW) and the resolution bandwidth (RBW) were set at
30Hz with a span of 100 kHz on the spectrum analyzer and the beat-notes
were recorded after 300 samples averaging.

Figure 4.13 – The e↵ect of the tapered amplifier on the beat-note linewidth
of the DFB laser. In this measurement, the self beat-note profiles of the
DFB laser without (dashed black line) and with (solid red line) a tapered
amplifier were recorded. An AOM driven by a synthesizer was used to make
100MHz frequency shift in the beat-note. The basis of the measurement was
presented in Fig. 4.11b. Both curves are almost the same and thus there is
no broadening due to the amplifier. The VBW and RBW were set at 10Hz
with a span of 100 kHz on the spectrum analyzer and the beat-notes were
recorded after 100 samples averaging.
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noise (JohnsonNyquist noise) is generated due to the thermal agitation of
the charge carriers at equilibrium. It has a flat FNPSD and nearly frequency
independent similar to the shot noise. Thus, if the PSD, or part of it, con-
tains a flat white noise, it can correspond to these types of noises. Another
example is the electronic flicker noise with a 1/fn PSD. It occurs almost in
all the electronic devices.

Table 4.3 – Di↵erent frequency noise component, classified based on their
frequency functionality.

Name of Noise ↵ S⌫
L

(fn)

White phase 2 h2f2
n

Flicker phase 1 h1fn
White frequency 0 h0
Flicker frequency �1 h�1f�1

n

Random walk frequency �2 h�2f�2
n

Frequency noise to intensity noise conversion

In order to measure frequency noise, one needs to transform the frequency
fluctuations to intensity one, which is measurable on a photodetector (Fig.
4.14). By using a linear frequency discriminator or a filter, the intensity at
the output IT (⌫L) would depend on the incident light frequency Ii(⌫L)

IT (⌫L) = Ii(⌫L)T (⌫L), (4.16)

where T (⌫) is the frequency response of the filter. Now in the presence of
frequency noise, the output intensity can be expanded as

IT (⌫L) = DC + �IT (⌫L)

= Ii(⌫L)T (⌫L) + �⌫L
h
T
@Ii
@⌫

���
⌫=⌫

L

+ Ii
@T

@⌫

���
⌫=⌫

L

i
. (4.17)

The first term in rhs. of Eq. 4.17 is a DC component, the second term repres-
ent the intensity fluctuations of the incident light, and the last term describes
the fluctuations in the output intensity corresponding to the frequency fluc-
tuations. Assuming negligible intensity fluctuations, the frequency noise can
then be described by

�⌫2L =
�I2T (⌫L)

I2i

���dTd⌫
���
2

⌫=⌫
L

. (4.18)
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Figure 4.14 – Schematic diagram for frequency to intensity conversion using
an optical frequency discriminator.

Eq. 4.18 can be equivalently written in terms of frequency and transmitted
intensity noise PSDs normalized by the incident laser intensity

S⌫
L

=
ST���dTd⌫
���
2

⌫=⌫
L

, (4.19)

where S⌫
L

/ �⌫2L and ST / �I2T (⌫L)/I
2
i . As a result, by measuring the power

of intensity fluctuations and using the derivative of the filter response one
can extract the frequency noise.

Frequency noise measurement using a Fabry-Perot cavity

We used a confocal Fabry-Perot cavity as frequency discriminator as shown
in Fig. 4.16b. The transmission function of the incident light from a Fabry-
Perot cavity depends on the length of the cavity Lc as well as on the laser
frequency ⌫L

Tc(⌫L) =
1

1 + 4F2

⇡2

sin2
�4⇡(⌫

L

�⌫
0

)Lc

c

� , (4.20)

where ⌫0 is the cavity resonance, F = �⌫FSR/�⌫c is the finesse of the cavity,
�⌫FSR = c/4Lc is the free spectral range which is the frequency interval
between two consecutive transmission resonances, and finally �⌫c is the
cavity linewidth which is deduced by a Lorentzian fit of a cavity resonance.
Close to the cavity resonance Tc(⌫L) can be approximated by

Tc(⌫L) '
1

1 + 4
⇣
⌫
L

�⌫
0

�⌫c

⌘2 (4.21)
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and thus
dTc(⌫L)

d⌫L
=

8⌫
L

�⌫
0

�⌫2c"
1 + 4

⇣
⌫
L

�⌫
0

�⌫c

⌘2
#2 . (4.22)

Now replacing this equation into Eq. 4.19, one can measure the frequency
noise of a laser. However Eq. 4.19 is valid only if the laser linewidth is much
smaller than the cavity linewidth �⌫c (to respect linear filtering assump-
tion).

A typical Fabry-Perot transmission is shown in Fig. 4.15b. To perform
this measurement, the frequency of the incident laser into the Fabry-Perot
cavity is scanned and the output light is detected by a photodiode (Fig.
4.16a).

A triangular voltage modulation, supplied by a function generator, is
fed to the laser driver to scan the laser frequency linearly. The amplitude
of the voltage determines the frequency range of the scan. The calibration
of the voltage amplitude versus the frequency shift can be done using the
saturated spectroscopy of that laser. The frequency di↵erence between two
certain atomic resonances is known [101]. The process is demonstrated in
Fig. 4.15a. From the transmission signal in Fig. 4.15b we measured a free
spectral range �⌫FSR = 980MHz which corresponds to the cavity length
of Lc ' 13 cm. A Lorentzian fit applied to one of the transmission peaks
gives a cavity linewidth of �⌫c = 73MHz as shown in Fig. 4.16b. Therefore
the finesse would be F = �⌫FSR/�⌫c = 13. We have also checked that
the background and the intensity noises do not limit the measurements.
Given the value, at most 3MHz, of the linewidth of the lasers, the value
�⌫c = 73MHz is large enough to fulfill the condition, recalled above, of
linear frequency to intensity conversion.

For frequency noise measurement, experimentally, the cavity resonance
frequency is adjusted via the cavity length in order to set the transmission
signal to be at half of the resonance. This condition corresponds to the best
frequency to intensity conversion with |dTc/d⌫L| = 1/�⌫c at maximum.

The frequency noise is plotted in Fig. 4.17 for the DFB laser and for the
TOPTICA laser diode. The frequency noise power spectral density FNPSD
of the DFB laser is higher than the one obtained with the TOPTICA laser,
which was expected considering each laser linewidth. The DFB FNPSD
mainly exhibits a flicker noise (1/fn noise). The TOPTICA also shows a
1/fn noise up to 1MHz.

We can also calculate the frequency noise standard deviation using the
following equation

�⌫
L

=

sZ
S⌫

L

dfn. (4.23)

The results are listed in table 4.4
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(a)

(b)

Figure 4.15 – (a) The transmission spectra of the rubidium atoms (red curve)
while the frequency of the laser was scanned by a triangular voltage (green
curve) produced by a function generator and injected into the laser driver.
By changing the amplitude of the voltage signal we can change the range
of frequency scan. In the atomic spectrum, 87Rb F = 2 ! F 0 = 2, 3 and
85Rb F = 3 ! F 0 = 4 transitions with a frequency distance of 1.26GHz
are marked which corresponds to a conversion of 1.19V.GHz�1. (b) Trans-
mission of the Fabry-Perot cavity by scanning the frequency of the laser
via a triangular voltage. The transmission is plotted as a function of laser
frequency scan thanks to the previous conversion factor. The space between
two consecutive transmission peaks is the free spectral range of the cavity
(�⌫FSR = 980MHz). Applying a Lorentzian fit also to one of the peaks
gives a cavity linewidth of �⌫c = 73MHz and thus the finesse is F = 13.

Table 4.4 – Frequency noise standard deviation �⌫
L

for the TOPTICA and
the DFB lasers calculated by Eq. 4.23.

Laser �⌫
L

TOPTICA 365 kHz
DFB 3MHz
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(a)

(b)

Figure 4.16 – (a) Schematic of the frequency noise power spectral density
(FNPSD) measurement using a Fabry-Perot cavity as a frequency discrim-
inator. (b) A typical intensity transmission from a Fabry-Perot cavity(gray
line). A Lorentzian fit can be applied to this experimental curve to measure
the cavity linewidth �⌫c (red dotted line). The derivative dTc/d⌫L (blue
dashed line) is also demonstrated to show the optimum frequency to intens-
ity noise conversion, occurring at half maximum of the transmission where
|dTc/d⌫L| is maximum.

Figure 4.17 – Frequency noise PSD for the DFB and the TOPTICA lasers.
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4.1.4 Relation between optical spectrum and frequency noise

The optical spectrum SE(⌫), which describes the line-shape, can be re-
covered from S⌫

L

(fn) [138]

SE(⌫) = 2

Z 1

�1
E2

0e
i2⇡(⌫

L

�⌫)⌧ exp
⇣
� 2

Z 1

0
S⌫

L

(fn)
sin2(⇡fn⌧)

f2
n

dfn
⌘
d⌧.

(4.24)
This general formula, most often cannot be integrated analytically, except
for a simple and trivial case of white noise (S⌫

L

(fn) = h0 with h0 given in
Hz2/Hz). Regarding Z 1

0

sin2 x

x2
dx =

⇡

2
, (4.25)

Eq. 4.24 becomes

SE(⌫) = 2

Z 1

�1
E2

0e
i2⇡(⌫

L

�⌫)⌧ exp
�
�⇡2h0⌧

�
d⌧. (4.26)

This is the Fourier transform of an exponential decay with a time constant
of 1/⇡2h0 which leads to a Lorentzian optical spectrum with FWHM= ⇡h0.

In any real noise measurement, there is a finite bandwidth B, which has
to be taken into account. It is interesting to calculate the optical spectrum
SE(⌫) in the presence of a frequency cuto↵. In particular if we approximate
S⌫

L

(fn) with a rectangular function, Eq. 4.24 thus becomes

SE(⌫) = 2

Z 1

�1
E2

0e
i2⇡(⌫

L

�⌫)⌧ exp
⇣
� 2⇡h0⌧

Z B⇡⌧

0

sin2(x)

x2
dx
⌘
d⌧. (4.27)

Here we consider two limiting cases:

• B � h0
in this case, the integral

R B⇡⌧
0 sin2(x)/x2dx can be approximated by

its asymptotic value, ⇡/2. Therefore Eq. 4.27 changing again to the
Fourier transform of a decaying exponent which leads to a Lorentzian
optical spectrum

SE(⌫) ⇡
E2

0h0

(⇡h0

2 )2 + (⌫L � ⌫)2
, (4.28)

with a FWHM linewidth

�⌫L = ⇡h0. (4.29)

• B ⌧ h0
in this case the exponential is significant for only small x. So sin2(x)
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can be expanded which yields to
R B⇡⌧
0 sin2(x)/x2dx = B⇡⌧ . Therefore

Eq. 4.27 becomes

SE(⌫) = 2

Z 1

�1
E2

0e
i2⇡(⌫

L

�⌫)⌧ exp
�
�2⇡2Bh0⌧

2
�
d⌧, (4.30)

which is the Fourier transform of a Gaussian function. Thus the laser
optical spectrum would be

SE(⌫) ⇡ E2
0

r
2

⇡h0B
⇥ e

� (⌫
L

�⌫)2

2h
0

B , (4.31)

with a FWHM linewidth of

�⌫L =
p
8h0B ln 2. (4.32)

For more complicated cases, Eq. 4.24 ought to be solved numerically.
A simpler approach to connect the FNPSD to the optical spectrum has

been reported in references [139, 140]. This simple geometrical approxima-
tion is applicable to any arbitrary FNPSD. The basis of this approach lies
on a universal �-separation line, defined as

S�(fn) =
8 ln 2

⇡2
fn. (4.33)

Since the first theoretical study [139], this approach has been applied in
many experimental setups [141, 142, 143, 144] and further refined [145, 146].
The �-line divide geometrically the FNPSD in two regions:

• S⌫
L

(fn) > S�(fn): in this region frequency noise contributes to the
Gaussian part of the optical spectrum. Therefore this region also de-
termines the linewidth.

• S⌫
L

(fn) < S�(fn): frequency noise contributes to the Lorentzian wings
in the optical spectrum.

A good approximation of the laser linewidth, corresponding to the FWHM
of the laser line shape, is then given by

�⌫L =
p
8 ln(2)A, (4.34)

where A is the surface below S⌫
L

(fn) for the region where S⌫
L

(fn) is above
the �-line

A =

Z 1

1/Tosc

H
�
S⌫

L

(fn)� S�(fn)
�
S⌫

L

(fn)dfn, (4.35)

with Tosc the time window of the oscilloscope and H the Heaviside step
function. A is demonstrated in Fig. 4.18 for the DFB and the TOPTICA
lasers.
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Figure 4.18 – FNPSD for the DFB and the TOPTICA lasers and geometrical
approach with the �-line to estimate the laser linewidth. Dark grey area:
area which contributes to the TOPTICA laser linewidth. Light grey area:
area which contributes to the DFB laser linewidth.

Applying this approach, we obtain a linewidth of 3.4 ± 0.4MHz for the
DFB laser. The 10% relative uncertainty takes into account the maximum
typical error introduced by the �-line approach [145], which is again a simple
method to approximate the laser linewidth. The laser linewidth is compat-
ible with the one obtained with the beat-note measurement. The calculated
linewidth are listed and compared with the results of the beat-note meas-
urement in table 4.5.

Table 4.5 – Laser linewidth measured by the �-line approach and compared
with the values from the beat-note measurements.

Laser Linewidth �⌫L
�-line approximation Beat-note measurement

TOPTICA 0.85(±0.08)MHz 0.2(+1.5/� 0.2)MHz
DFB 3.4(±0.4)MHz 3.0(±0.2)MHz

4.1.5 Frequency noise measurement using an atomic reson-
ance

As explained in Sec. 4.1.3, to measure FNPSD one needs to convert fre-
quency fluctuations to measurable intensity fluctuations. This conversion
can be done by any frequency discriminator. In previous section we used
a Fabry-Perot cavity. However the result corresponds to the convolution of
the laser and the cavity resonant frequency noises. While the cavity fre-
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quency noise is negligible for noisy lasers, it can become significant when
the measurements are performed with narrow lasers. One solution is to use
ultra stable cavities [147]. Alternatively, one can also use a molecular or
an atomic transition as the frequency discriminator. This has been first re-
ported in [148] and then extensively studied theoretically [149, 150, 151] as
well as experimentally, either to measure the laser properties [152, 153], to
extract atomic characteristics [154, 155] or to study the light-matter inter-
action [156, 157, 158, 159].

Another method is to use an atomic transition as the frequency discrim-
inator. The experimental setup is shown in Fig. 4.19a. The measurement
technique, analogous to the Fabry-Perot experiment, concerns the intens-
ity fluctuations of a weak probe after transmission through a cloud of cold
atoms. The atomic cloud is obtained by loading a magneto-optical trap
(MOT) with 85Rb atoms. A compression is applied to increase the atomic
density. The maximum number of atoms is N ' 1010 with a temperature
T ' 100µK and a cloud rms radius of R ' 1mm.

The probe beam is the one characterized in the previous sections, de-
livered by the DFB laser amplified by the tapered amplifier and frequency
locked close to the F = 3 ! F 0 = 4 hyperfine transition of the D2 line of
85Rb. A doublepass AOM is used to change the laser detuning � = (⌫L�⌫0)
from this transition. The parameter ⌫L corresponds to the laser frequency,
and ⌫0 to the atomic transition frequency. The laser beam inside the atomic
cloud is linearly polarized and its waist is about 300µm. The intensity is
adjusted to have a saturation parameter lower than 0.1. In order to align
the beam path with the center of the atomic cloud, we apply the probe beam
after a fixed tTOF = 4ms time of flight (TOF).

The laser beam after propagation through the atomic cloud is collected
by the same homemade trans-impedance photodiode as the one used for
the measurements with the Fabry-Perot cavity. As for the measurements
done with the Fabry-Perot cavity, the intensity noise PSD is normalized by
the frequency response of the detection system. The probe beam is applied
during tp = 1.2ms but we fix the oscilloscope time window to tosc = 100µs,
tpause = 200µs after the beginning of the probe pulse. To increase the
signal to noise ratio, data are integrated over 100 cycles. We also record
for each cycle the power of the probe beam without atoms I0, which is
needed for intensity to frequency noise conversion. This measurement is
done by applying a second probe pulse after having removed all the atoms
by shining the MOT beams at resonance during tpush = 6ms. The time
sequence is sketched in Fig. 4.19b. The duration ti includes the loading and
compression stages. The optical thickness is varied by changing the total
number of atoms through the MOT loading time.

Recalling Eq. 3.8, one can replace it to the Fabry-Perot transmission
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(a)

(b)

Figure 4.19 – (a) Schematic of the FNPSD measurement with the atomic
transition. PD: photodiode, Amp: low noise amplifier. (b) Experimental
time sequence. Typically 1010 atoms are loaded in the MOT and compressed
to achieve high density during ti. Then the trapping system switches o↵ and
atoms are released. Two probe pulses are applied during tp = 1.2ms, after
a time of flight of tTOF = 4ms. The first pulse provides the transmission
through the atomic cloud, and the second one allows us to measure the
incident intensity without atoms in order to calculate the normalized trans-
mission for each cycle. The atoms are removed by applying the MOT beams
at resonance during tpush = 6ms between the two probe pulses. For the PSD
measurements the time window of the oscilloscope is set tpause = 200µs after
the beginning of the first probe within tosc = 100µs.
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Figure 4.20 – The value of transmission noise from a cloud of cold atoms
with optical thickness b0 = 19 at fn = 500 kHz taken with di↵erent laser
detuning � (dots), compared to the square of discriminator slope (solid gray
line).

function in Eqs. 4.21 and 4.22. Thus

Ta =
IT
Ii

= exp

 
�b0

1 + 4 �2

�2

!
, (4.36)

where b0 is the on-resonance optical thickness, � = ⌫L�⌫0 is the laser detun-
ing from the atomic transition, and � = 6.06MHz is the atomic transition
linewidth. As explained before, the frequency fluctuations can be converted
to the intensity noise thanks to the frequency discriminator.

Based on Eq. 4.19, the relation between the PSD of the normalized
transmitted intensity IT /Iinc (ST ) and the FNPSD is given by

ST =
⇣dTa
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⇥ S⌫
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where D is the derivative of the frequency discriminator and it is defined as

D =
dTa
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=
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⌘
. (4.38)

Eq. 4.37 is valid when the transmission curve can be locally approximated
by a line whose slope is equal to dTa/d⌫L (assumption of linear filtering).
Moreover, the laser linewidth has to be much smaller than �. As we will see
in Sec. 4.2, this is a good approximation for low Fourier frequencies. It is
clear that the discriminator slope dTa/d⌫L depends on b0 as well as on the
laser detuning �.
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The transmission and its derivative are plotted in Fig. 4.21 for three
di↵erent on-resonance optical thickness. The optimal frequency to intensity
fluctuations conversion is typically at half of the transmission. This optimum
conversion is reduced as the optical thickness is increased. On the other
hand, the frequency range where the conversion is linear increases. From
this point of view, this system can be regarded as a Fabry-Perot cavity with
an adjustable linewidth. This is particularly interesting when one wants to
measure the frequency noise of a laser with a linewidth of the order of the
cavity or the atomic resonance linewidth.

The e�ciency of frequency to intensity noise conversion depends on the
square of the discriminator slope. This is confirmed by taking the values
of transmission intensity noise at the output of the discriminator at a given
frequency while the incident laser frequency is scanned. This measurement
results to a famous M-shaped spectrum [160, 161, 162, 163] (Fig. 4.20).

We have measured the transmitted intensity noise PSD for three di↵erent
on-resonance optical thicknesses: b0 = 6.5, 19 and 51.5. For each b0, the
laser detuning is adjusted to be at the maximum of the discriminator slope
on the blue side of the atomic transition. We have first checked that our
measurements are not limited by the detection background and that the
intrinsic laser intensity noise, measured without atoms, are well below the
intensity noise PSD measured with atoms. The PSD ST is then converted
to FNPSD using Eq. 4.37. The results are plotted in Fig. 4.22 for the three
optical thicknesses. The frequency noise obtained via the Fabry-Perot cavity
is also plotted together with the �-separation line. Although all the PSDs
collapse onto the same curve at low frequencies, typically below 1MHz, some
di↵erences appear at higher frequencies.

For low Fourier frequencies, typically below 1MHz, Eq. 4.37 is valid and
the curves plotted in Fig. 4.22 thus correspond to the laser FNPSD. Now
applying the �-separation line technique, analogous to what have been done
with the Fabry-Perot cavity, we estimated the laser linewidth. The results
are listed and compared with the other linewidth measurement techniques
in table 4.6. The uncertainties obtained with the cold atomic cloud take
into account the statistical uncertainty (standard deviation of the linewidth
measurements obtained in similar conditions) as well as the estimation of
the maximum error due to the �-separation line approach [164].

Table 4.6 shows an agreement between all the linewidth measurements,
obtained by di↵erent techniques. Thus all the methods used in this chapter
to extract the linewidth of the lasers are consistent. Furthermore, it confirms
that our assumption of the linear filtering is valid in our experiment.
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(a)

(b)

Figure 4.21 – (a) Transmission through an atomic cloud as a function of
the laser detuning and for three di↵erent optical thicknesses. (b) Frequency
discriminator as a function of the laser detuning. These curves are obtained
from the derivative of the transmission fits and will be used for the frequency
intensity noise conversion.
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Figure 4.22 – Laser transmission noise PSD SIn divided by the square of the
discriminator slope D2 =

�
dTa/d⌫L

�2
, measured using a cold atomic cloud

as a frequency discriminator. For low Fourier frequencies, Eq. 4.37 is valid
and the curves thus correspond to the laser FNPSD. The FNPSD measured
with the Fabry-Perot cavity is plotted in grey. The �-line corresponds to
the dashed line.

Table 4.6 – DFB laser linewidth measured by di↵erent techniques.

Experimental technique Linewidth �⌫L

Beat-note 3± 0.2MHz
Fabry-Perot cavity 3.4± 0.4MHz

Cold atoms transmission b0 = 6.5 3.7± 0.5MHz
b0 = 19 3.3± 0.5MHz
b0 = 51.5 3.7± 0.5MHz

deconvolution of a small
transmission spectra

Fig. 3.20
3.6MHz
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4.2 Noise spectroscopy with the cold atoms

Although the frequency noise measurement using atomic transmission in the
previous section indicated a satisfying results, FNPSDs show some discrep-
ancies at higher frequencies (typically above 1MHz). Fig. 4.22 displays
some qualitative features at high frequencies. We realized that these fea-
tures depend on the laser detuning and optical thickness of the atomic cloud.
This part of the FNPSDs is limited by our detector bandwidth (' 6MHz).
To resolve these features properly, we changed our photodiode with a larger
bandwidth (0.01�240MHz) and lower noise equivalent power (NEP) trans-
impedance photodiode provided by Laser Components company (model: A-
CUBE-S500-240). One possibility which explains those features could be
the impact of the broad Lorentzian wings in the optical spectrum of the
lasers. These broad wings produce frequency noise at high frequencies. Even
though the amplitude of this noise is much smaller than the main Gaussian
part, it is enough to produce some spectroscopic features. For our DFB, the
Lorentzian wings has typically 1000 times weaker noise power rather than
the center of the Gaussian part.

Indeed, the broad wings behave such as a scanning frequency probe and
perform spectroscopy. This is known as noise spectroscopy. In this type of
spectroscopy, the laser frequency is neither scanned nor modulated. High
resolution spectra in a wide radio-frequency range can be observed simul-
taneously by only frequency analyzing of the intensity fluctuations of the
light transmitted through a sample [96]. Noise spectroscopy of an atomic
transition have been applied in several experiments, usually using room tem-
perature or hot vapors, for instance to perform spectroscopy of the Zeeman
[96] or hyperfine levels [160, 161, 162], or study the e↵ect of pressure on
the spectroscopy [163], and observation of the electromagnetically induced
transparency (EIT) [165]. However in this regime the Doppler e↵ect has
to be taken into account and limits the atomic spectral linewidth. On the
other hand, cold atomic samples correspond to a system where the Doppler
e↵ect can generally be ignored, which improves the frequency to intensity
noise conversion by reducing the atomic spectral linewidth.

In this section we predict the e↵ect of the laser line-shape on the noise
spectra in the transmission through the 85Rb atoms, using phase modulation
(PM) and amplitude modulation (AM) models.

4.2.1 Phase-modulation model

A simple approach to study the e↵ect of noise on the transmitted intensity
spectrum is modeled based on the phase modulation (PM) theory. The
phase modulation at fn is due to the carrier and two sidebands at ⌫L ± fn
as done in [158] (Fig. 4.23).
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Figure 4.23 – Schematic of the phase modulation model by treating the broad
optical spectrum wings as frequency sidebands. For more information see
text.

The laser electric field with a phase modulating term can be written as

E(t) = E0e
i[2⇡⌫

L

t+⇣ sin(2⇡f
n

t)], (4.39)

where ⇣ is the depth of the phase modulation. Thus the corresponding
amplitude of the frequency noise at frequency fn is ⇣fn. Eq. 4.39 is expanded
using the JacobiAnger expansion

E(t) = E0e
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where Jk(⇣) is the k-th order Bessel functions and J�k(⇣) = (�1)kJk(⇣).
Eq. 4.40 actually assumes infinite number of sidebands. Supposing a very
small modulation depth ⇣ ⌧ 1, Eq. 4.39 can be approximated by the Taylor
expansion using only the first term

E(t) ' E0


ei2⇡⌫Lt +

⇣

2
ei2⇡(⌫L+f

n

)t � ⇣

2
ei2⇡(⌫L�f
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�
. (4.41)

The expression gives the main carrier frequency at ⌫L with two small side-
bands at ⌫± = ⌫L ± fn. The intensity is then given by

I(t) = |E|2 = |E0|2 = I0 = const. (4.42)
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The transmission of the electric field through the atoms is given by

Et = Eie
i� , (4.43)

where � = �+ i↵/2 is a phase which contains a dephasing � and an absorp-
tion terms ↵/2. According to the Beer-Lambart law (Eq. 3.12),

�(x, y) = � �0/2

i+ 2�/�

Z
dz n(x, y, z)

= � �0/2

1 + (2�/�)2

⇣
2�/�� i

⌘Z
dz n(x, y, z), (4.44)

where � = ⌫L � ⌫0 is the detuning of the laser carrier frequency from the
atomic resonance and with z the propagation axis of the laser beam. Thus
the dephasing and absorption will be defined as

↵(x, y)

2
=

�0/2

1 + (2�/�)2

Z
dz n(x, y, z)

�(x, y) = � �0�/�

1 + (2�/�)2

Z
dz n(x, y, z). (4.45)

Concerning the definition of optical thickness in Eq. 3.15, the above equa-
tions can be rewritten for x = y = 0, that is, at the center of the cloud

↵(�) = b(�) =
b0

1 + 4( ��)
2

�(�) = �b(�)
�

�
, (4.46)

with b0 = �0
R
dzn(x, y, z). Examples of phase shift and transmission as a

function of laser detuning are depicted in Fig. 4.24 for three di↵erent cloud
optical thicknesses. Note that the phase shift induced by the atoms can be
larger than ⇡. This makes a di↵erence between the atoms and a Fabry-Perot
cavity as frequency discriminators. In a Fabry-Perot cavity, the phase shift
is given by �(�) = arctan(�2�/�c) and is limited to a range between �⇡ to
+⇡. For atomic clouds on the contrary there is no upper or lower bound for
the phase shift. The transmitted intensity is given by

IT = |Et|2 = Iie
�↵ = Iie

�b(�). (4.47)

Combining Eqs. 4.43 and 4.46 one finds

� =
b0

1 + 4( ��)
2

 
i

2
� �

�

!
. (4.48)

Now considering the transmission of the phase modulated electric field
introduced in Eq. 4.41, three components can be defined as the transmission
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Figure 4.24 – Examples of phase shift �(�) in radian and normalized trans-
mission T (�) = exp [�↵(�)] as a function of laser detuning �, for three
di↵erent cloud optical thickness b0 = 5, 20 and 50.

of a main carrier part in addition to two sidebands
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with ⌫± = ⌫L ± fn and

↵0 = ↵(�) = b(�)

↵1 = ↵(� + fn) = b(� + fn)

↵�1 = ↵(� � fn) = b(� � fn), (4.50)

and
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Now neglecting all the ⇣2 terms (⇣ ⌧ 1) one obtains the transmitted intens-
ity

IT = |Et,0 + Et,1 + Et,�1|2

= Et,0E
⇤
t,0 + Et,1E

⇤
t,0 + c.c + Et,�1E

⇤
t,0 + c.c. (4.52)
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Replacing Eq. 4.49 in above expression leads to

IT = |E0|2e�↵
0 +

|E0|2⇣
2

ei(�1

��
0

+2⇡f
n

t)e�
↵
0

+↵
1

2 + c.c

� |E0|2⇣
2

ei(��1

��
0

�2⇡f
n

t)e�
↵
0

+↵�1

2 + c.c. (4.53)

Then this equation can be written as
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The term |E0|2e�↵
0 in above equation describes the transmission of the

main carrier part of the electric field, while the second and the third terms
corresponds to the beat-note between the carrier and each sideband and
can be described by an oscillatory function. Therefore the normalized time-
dependent transmission in such system becomes

IT (t)

I0
= T0


1 +

⇣p
T0

A cos (!nt+  )

�
, (4.55)

where !n = 2⇡fn, T0 = e�↵
0 ,  is a phase and A is defined as
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At t = 0

A cos ( ) =
p
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p
T�1 cos (��1 � �0) , (4.57)

and at !nt = ⇡/2
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with T1 = e�↵
1 and T�1 = e�↵�1 . Therefore A is given by
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The term ⇣A
p
T0 describes the amplitude of the transmitted intensity

at frequency fn. Therefore the expected transmitted intensity noise is given
by
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(a) (b)

Figure 4.25 – The simulation based on Eq. 4.61 for di↵erent optical thick-
nesses b0 and laser detuning � as mentioned in the figures legend. The optical
thickness and detuning has been chosen to keep almost the best frequency
to intensity noise conversion due to D2.

where df is the frequency resolution of the oscilloscope. This model is used
to calculate the expected noise of the transmitted intensity. Reminding Eq.
4.39, ⇣fn is the amplitude of the frequency fluctuations at the sidebands
frequency fn. Thus ⇣2/df = S⌫

L

(fn)/f2
n . Moreover the FNPSD measured

with the Fabry-Perot indicated a white frequency noise for laser frequencies
higher than 1MHz. Hence in our model it was supposed that for fn >
1MHz the sidebands correspond only to the white frequency noise and have
constant amplitude. So ⇣ is extracted from the measured FNPSD at fn =
1MHz, S⌫

L

' 105 [Hz2/Hz] (Fig. 4.26). Finally applying Eqs. 4.37 and
4.38, the theoretical frequency to intensity noise conversion is obtained
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◆2
S⌫

L

D2
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where

D2 =

✓
dTa

d�

◆2

. (4.62)

Eq. 4.61 is plotted in Fig. 4.25 for several on-resonance optical thicknesses
b0 and laser detuning �.

4.2.2 Experimental results

We can see in Fig. 4.22 that the PSDs di↵er at high frequencies, with
in particular the appearance of a small ”bump”. However, these curves
become limited by the noise floor of the photodiode for frequencies higher
than 1MHz. To overcome this problem, the photodiode and the amplifier
have been replaced by a new photodiode, with a high cuto↵ frequency of
240MHz and with a lower noise floor.

Typical FNPSDs, obtained with this low noise photodiode, are zoomed
at high frequencies in Fig. 4.26. The three curves have been measured with
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the same optical thickness b0 = 19 but for three di↵erent laser detunings.
We clearly see the appearance of bumps whose frequency positions depend
on the laser detuning. These positions also depend on the optical thickness
as shown in Fig. 4.30, where the frequency position of the first and second
bump is plotted as a function of the laser detuning and for the three previous
optical thicknesses.

Figure 4.26 – Zoom at high frequencies of laser transmission noise PSD ST

divided by the square of the discriminator slopeD2 using a cold atomic cloud
with an optical thickness of b0 = 19 and for three di↵erent laser detunings.

A typical calculated and measured PSD is compared with the model in
Fig. 4.27. The optical thickness is b0 = 19 and the laser detuning is � = 3.
We see a good overlap between the measured and the calculated PSD. In
particular, the model predicts the existence of two bumps whose frequency
positions correspond to the ones experimentally observed. These bumps
are intrinsically related to the fact that we deal with frequency noise. On
the contrary, as we will see in the next section, if we do the calculations
assuming an incident laser with amplitude noise, one sees the appearance
of dips instead of bumps. The presence of bumps or dips is thus a clear
signature of the nature of the laser noise [166, 167].

In Fig. 4.28, the experimental and calculated transmission noise PSDs
are plotted for di↵erent probe laser detuning but at a fix optical thickness
b0 = 19 in order to demonstrate the impact of the laser detuning on the
bumps and dips features of the noise PSDs. Similarly, Fig. 4.29 shows the
impact of the optical thickness (b0 = 19 and 51) at a given laser detuning � =
3�. As a conclusion we observed a good agreement between the theoretical
and the experimental results.

Finally, we have compared the measured and the calculated bump po-
sitions, corresponding to the frequency position of the local maxima, as a
function of the laser detuning and for the three di↵erent optical thicknesses.
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Figure 4.27 – Green solid line: laser transmission noise PSD ST divided by
the square of the discriminator slope D2 = (dTa/d�)2 using a cold atomic
cloud with an optical thickness of b0 = 19 and a laser detuning of � = 3.
Dashed line: S⌫

L

,th/D2 calculated using Eqs. 4.59 and 4.60 assuming a
white frequency noise.

The results are plotted in Fig. 4.30. We obtain a very good agreement
between measurements and calculations, validating the model used to un-
derstand the frequency to intensity noise conversion. We can also notice that
the frequency di↵erence between both bump positions remains constant, at
least for su�ciently high laser detuning, and that this di↵erence roughly
corresponds to the frequency range where the transmission curve is closed
to zero. Both bumps can thus be interpreted as one sideband going from one
side of the transmission curve to the other [166, 167]. Fig. 4.31 describes
an intuitive picture for the origin of the bumps in a noise spectrum.

4.2.3 Amplitude modulation model

Alternatively, we model the amplitude modulation.

E(t) = E0 (1 + " cos (!nt)) e
i!Lt, (4.63)

where " is the amplitude of the modulation. Eq. 4.63 can be written as

E(t) = E0e
i!Lt +

E0"

2

⇥
ei!+

t + ei!�t
⇤
. (4.64)

Eq. 4.64 shows two sidebands at !± = !L ± !n. The intensity would be

I(t) = |E(t)|2 = I0
⇣
1 + 2" cos(!nt) + |"|2 cos2(!nt)

⌘
. (4.65)

In case of weak modulation amplitude ("⌧ 1) Eq. 4.65 is approximated by

I(t) = I0 (1 + 2" cos(!nt)) . (4.66)
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(a)

(b)

Figure 4.28 – Comparison of (a) calculated Eq. 4.61 and (b) experimental
laser transmission noise PSD for optical thickness b0 = 19 and detuning
� = 2, 3, 4, 5.
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(a)

(b)

Figure 4.29 – Comparison of (a) calculated Eq. 4.61 and (b) experimental
laser transmission noise PSD for optical thicknesses b0 = 19 and b0 = 51
and detuning � = 3.
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Figure 4.30 – Points: experimental frequency position of the bumps (circles:
first bump, triangles: second bump) observed in the frequency noise PSD,
obtained with the cold atomic cloud, as a function of the laser detuning.
Solid line: calculated frequency position of the first bump. Dashed line:
calculated frequency position of the second bump.

Using Eq. 4.43, and recalling Eqs. 4.50 and 4.51,
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Similar to the previous section, the transmitted intensity is given by

IT (t)
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�
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with

A0 =
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T1T�1 cos (2�0 � �1 � ��1), (4.69)

and therefore the theoretical anticipated PSD of the normalized transmission
would be
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In this model the amplitude of modulation " is assumed to be white noise
("2/df = const). To compare the noise created by the amplitude modulation
with the one created by phase modulation and also with our experimental
measurements, " can be extracted by

"2

df
= ST |f

n

=1MHz. (4.71)
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Figure 4.31 – An intuitive picture for the origin of the bumps in a transmis-
sion noise PSD. below, the laser optical spectrum at its carrier frequency
is supposed to encounter a cloud of cold atoms with a transmission func-
tion T as described by the black curve in the center of the figure. The
width of transmission curve scales as

p
b0. This means that by increasing

b0, the width of transmission function increases proportional to
p
b0. In the

top a relevant transmission noise PSD is depicted. The bumps represent
two group of sidebands in the laser optical spectrum which encounter two
di↵erent sides of the transmission spectrum at about maximum frequency-
to-intensity conversion. We observed that the space between two bumps
changes proportional to

p
b0.
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(a) (b)

Figure 4.32 – The calculation of (a) A2 based on Eq. 4.59 and (b) A02 in Eq.
4.69 for optical thicknesses b0 = 5, 20, 50 with the same detuning � = 3�.
Note that A2 has an overall behavior as 1/f2

n at low frequencies while A02

is nearly flat.

(a) (b)

Figure 4.33 – (a) The FNPSD and (b) the transmission intensity noise cal-
culated based on amplitude modulation model in Eq. 4.72 and 4.70, for
optical thickness b0 = 19.

In order to compare the results with the experimental data, we use the
same strategy as done in the previous section. Thus Eq. 4.70 is divided by
the square of discriminator slope D2 = (dTa/d�)2.

S⌫T (fn) =
ST

D2
. (4.72)

Typical results are depicted in Fig. 4.33.
Figs. 4.34 shows clearly that the amplitude modulation does not match

with the experimental results. As a conclusion, the noise of the DFB laser
used in this experiment can be described by mainly the noise in the frequency
of the laser and the intensity noise of the laser is negligible as expected from
Sec. 4.1.1.

As done in Fig. 4.20, it is also possible to recover the M-shaped spectrum
from the transmission noise PSD ST , predicted by both amplitude and phase
modulation, at low frequencies (typically at few MHz). Fig. 4.35a repres-
ents the value of the calculated transmission noise PSD ST from Eqs. 4.60
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Figure 4.34 – Laser transmission noise PSD ST divided by the square of the
discriminator slope D2 using a cold atomic cloud with an optical thickness
of b0 = 19 and a laser detuning of � = 3�. Experimental data (green),
compared with theoretical simulation based on phase modulation (pink)
and amplitude modulation models (blue).

and 4.70 at a certain frequency fn = 1MHz while the laser frequency is
scanned around the atomic resonance. This figure shows that the strength
of fluctuations in the transmitted intensity, in particular at low frequencies
(fn < 4MHz), varies in a same way as the square of derivative of the fre-
quency discriminator D2. At high frequencies however the M-shape might
be distorted (Fig. 4.35b). This distortion might be due to the complicated
bumps and dips features in the FNPSD.

Similarly, we can study the variation of the transmitted intensity noise
at a particular frequency as a function of on-resonance optical thickness b0
of a cloud. Fig. 4.36a demonstrates some examples of the transmission
noise PSD for di↵erent b0, and in Fig. 4.36b the variation of the noise
level at two specific frequencies (fn = 1 and 40MHz) are depicted, which
represent the behavior of ST at low and high Fourier frequencies. Although
at low frequencies the variation only shows a simple frequency-to-intensity
conversion factor, at higher frequencies it demonstrates a more complicated
oscillatory behavior related to the bumps and depths features in the noise
spectra. A better understanding on the origin of the oscillation in Fig. 4.36b
for example, needs further investigations.

4.3 Conclusion

In this chapter, we have studied the intensity noise of a laser beam trans-
mitted through a cold atomic cloud. In this forward configuration, we have
observed the conversion of the intrinsic laser frequency noise to intensity
noise, the atomic transition playing the role of a frequency discriminator
whose slope is adjustable through the optical thickness. While we recover



4.3. CONCLUSION 125

(a)

(b)

Figure 4.35 – Transmitted intensity noise PSD ST calculated based on phase
and amplitude modulation models in Eqs. 4.60 and 4.70 at a given frequency
(a) fn = 1MHz and (b) fn = 30MHz while the detuning � is scanned
between �5 to 5�. The optical thickness b0 = 19. The noise created by
phase modulation is larger than the one generated by amplitude modula-
tion. At high frequencies, the M-shaped spectrum corresponding to phase
modulation is distorted. This might be due to the complicated bumps and
dips features in the spectrum and the dependence of their positions to the
di↵erent detunings.
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(a)

(b)

Figure 4.36 – (a) Transmitted intensity noise PSD ST for di↵erent optical
thicknesses b0 = 3, 7, 15, 20, 30 and 50. Note that here the intensity noise
PSD after transmission is not normalized by the derivative of the frequency
discriminator. (b) The noise power at fn = 1MHz (dashed blue line) and
fn = 40MHz (solid orange line) as a function of b0 computed by the phase
modulation model. The blue plus and orange star symbols correspond to
experimental measurements. The experimental data confirms the prediction
from computations. The deviation between computation and experimental
data at fn = 40MHz could be due to the noise floor of our detection system.
In this measurement, b0 was modified by applying di↵erent TOF durations
to a cold-atom cloud (i.e. Fig. 3.26).
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the same FNPSD at low Fourier frequencies using a Fabry-Perot cavity, some
di↵erences appear at higher Fourier frequencies and one needs to go beyond
the linear response of the discriminator. We have shown that a simple model
in which the frequency noise is modeled as a carrier with two sidebands and
the atomic cloud as a medium with an index of refraction is su�cient to
describe the observations.

The conversion of the laser frequency noise to intensity noise can be used
to characterize the laser noise. Conversely, if the laser frequency noise spec-
trum is known, one can exploit the frequency to intensity noise conversion
to extract information on the discriminator medium itself. We have seen
that the frequency positions of the bumps in the FNPSD depend on the
laser detuning from the atomic transition and on the optical thickness. One
could thus imagine to extract the two last quantities by directly measuring
one FNPSD instead of measuring the entire transmission curve by scanning
the laser frequency around the atomic transition.

The frequency noise in the transmission converts to intensity noise and
as we showed by the phase modulation model the intensity noise PSD repres-
ents the atomic spectrum. When the intensity noise of the incident laser is
dominant, based on the amplitude modulation model, we showed the trans-
mitted intensity noise corresponding to a same atomic sample represents a
di↵erent qualitative features. Indeed based on those qualitative features,
one can infer the type of dominant noise in the incident laser. This pic-
ture however, has to be modified in an atomic sample with a large optical
thickness, b(�) � 1, or in the case of very large atomic sample [168].

Finally, in the forward direction, the conversion of the intrinsic laser fre-
quency noise to intensity noise is usually one of the main process. A good
understanding of this e↵ect is thus of crucial importance. With this conver-
sion now well characterized, intensity noise measurements could possibly be
used to extract some signatures of more involved phenomena, such as the
observation of the influence of atomic motion.
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Chapter 5

Conclusion and outlook

Conclusion

This thesis has presented my work on characterization of the noise in light
scattered by a cloud of cold rubidium atoms in forward direction. Part
of my work as a PhD student during the last three years has consisted in
manipulating the cold-atom experiment and upgrading the experimental
setup. We have installed a noise detection setup in the transmission
geometry in order to study the noise induced by cold atoms on a probe
laser beam. We characterized first the laser noises, as well as its line shape
and linewidth. Finally we studied the e↵ect of laser frequency and intensity
noises in the transmission. Using a basic mathematical model, we succeeded
in demonstrating noise spectroscopy of a hyperfine level in a large cloud of
cold 85Rb atoms.

In chapter 2 of this manuscript, random laser was introduced. It is a laser
which is based on highly disordered gain medium. No cavity is needed to
generate random lasing. Thus its spatial and spectral modes are completely
di↵erent from the conventional lasers. Here the multiple scattering provides
feedback and determines the spectral modes of the emission. Although some
theoretical and experimental works have shown that random laser emission is
partially coherent, its coherence is reduced compared to conventional lasers.
Due to sophisticated properties of multiple scattering, there is no precise
conclusion about the coherence of random laser yet, and it needs further
studies in this field.

Although cold-atom random laser has been observed in our team,
coherence measurements can support the prior observation in a more direct
fashion.

In chapter 3 our experimental setup of the magneto-optical trap (MOT)
was described. We have a 85Rb MOT with ⇠ 1010 atoms, optical thickness
b0 = 100, size � = 1 mm, and temperature 100µK. The setup was equipped
with an o↵set lock system, to stabilize and control the laser frequency of
the cooling beams as well as pump and probe beams. This is important
for maintaining the intensity and frequency of pump beams unchanged
when the Raman beam is swept across the resonance in order to generate
and observe a random laser. Moreover some useful technical informations
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regarding the control and characterization of MOT were explained.

To understand the noise imprinted by the atoms to a light beam
propagating through the MOT, first one needs to characterize the intrinsic
noises which exist in the incident light. These noises can nontrivially evolve
and be converted to other types of noise after interaction with atoms. By
applying a so-called �-separation line approach, the linewidth of the laser
was estimated from the frequency noise power spectral density (PSD). The
result confirmed the beat-note measurements.

Similarly, the frequency noise of a laser can be also measured in forward
direction using the atomic resonance as the frequency discriminator. In
chapter 4 we reported our frequency noise measurement using the MOT.
The Doppler e↵ect is negligible and the hyperfine transitions can convert
the fluctuations in the frequency into intensity ones. One interesting feature
of cold atoms is that by controlling the optical thickness of the cloud one can
change the e�ciency of this frequency to intensity noise conversion. This
is analogous to changing the cavity linewidth. Similar to the Fabry-Perot
cavity the laser frequency noise was measured and consequently applying
the �-line separation approach, the laser linewidth was estimated with a
good agreement with the other results.

The broad wings of the laser optical spectrum is considered as a
frequency span. Thus one can perform spectroscopy even with a fixed
laser frequency. This is known as noise spectroscopy [96]. The noise in
the transmitted laser through a cloud of cold atoms was modeled based on
the phase modulation. The resulting sidebands simulate the large optical
spectrum wings. Analogously the amplitude modulation can make similar
sidebands and can describe noise spectroscopy. However the final results
have qualitatively di↵erent features. Using both phase and amplitude mod-
ulation models and comparing with the experimental results we succeeded
in performing noise spectroscopy of a hyperfine level of a large cloud of
rubidium atoms. The qualitative and quantitative understanding of the
frequency-to-intensity noise conversion will be helpful in any experiment
where a laser beam is detected after transmission through a cloud of cold
atoms, even though the modeling presented in this thesis does not yet
account for the Zeeman degeneracy.

Outlook

Several practical coherence measurement techniques have been already
performed in the cold-atom community to characterize the scattered light
through the MOT in a single scattering regime. However to understand
the coherence properties of cold-atom random laser, we proposed to begin
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with determining the coherence properties of light multiply scattered by
the atoms. Di↵using-wave spectroscopy (DWS) is an optical technique
which deals with the dynamics of the scattered light in the limit of strong
scattering [169]. This technique allows to probe the displacements of the
scatterers with very high precision. DWS can be applied to the scattered
light by cold atoms. As DWS probes tiny displacements of the scatterers
and also the e�ciency of this technique depends on the mean number of
scattering events, any variation in the temperature and optical thickness of
the cloud can lead to a significant change in the results.

As explained in Sec. 2.1.4, one interesting measurement can be done
by studying the photon statistics of cold atom random lasers. As shown
by Cao et al. [13], the photon statistics of the random laser below and
above lasing threshold are governed by Bose-Einstein and Poisson statistics
respectively.

One can also perform temporal intensity correlation measurements in
a photon counting regime. Extracting coherence time for di↵erent op-
tical thickness b0, might reflect some information about the impact of the
threshold on the random laser coherence.
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