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Extended Abstract in French 

Méthodologie pour estimer la consommation d’énergie dans les bâtiments 

en utilisant des techniques d’intelligence artificielle  

 

 
S. Paudel 

 

 
Pour une société de services énergétiques opérant sur les réseaux de chaleur, il est essentiel 

d’avoir un estimé de la courbe de charge de son réseau en fonction des prévisions 

météorologiques et du comportement de ces clients. Or, les bâtiments à basse consommation 

d’énergie rendent de moins en moins précis les anciennes approches, telle que la droite de charge 

(relation linéaire entre la charge du réseau et la température extérieure), principalement du fait de 

l’inertie de ces nouvelles enveloppes, voir la figure 1. La finalité de cette thèse est de proposer 

une méthodologie pour estimer le besoin de chaleur de tels bâtiments. 

 

L’estimation du besoin d’un bâtiment peut être abordée de différentes manières : 

- Modèle de connaissance (désigné aussi par boîte blanche) : en partant des équations de 

la physique et en connaissant l’ensemble des éléments constituant le système, il est 

possible d’établir un modèle. 
- Modèle de comportement : en partant d’essais spécifiques sur le système, il est 

possible d’établir un modèle de type entrées/sorties. Il existe plusieurs types de 

méthodes pour établir un tel modèle : méthode d’identification (moindre carrés), 

méthode d’auto-régression (type ARX), ou les méthodes d’intelligence artificielle (AI) 

(Réseaux de neurones ANN, Machines à vecteur de support SVM, Arbre de décision 

DT, ou Forêt aléatoire RF), présentées en annexe B. Ces modèles sont désignés par 

l’appellation boîte noire. Le tableau 2.5 présente une synthèse de 23 auteurs ayant 

utilisé l’une de ces méthodes. 
- Modèle intermédiaire (désigné par boîte grise) : en reprenant les équations de la 

physique, certains paramètres sont identifiés sur le système étudié. 

L’approche boîte blanche n’a pas été retenue dans cette thèse car l’opérateur du réseau de chaleur 

n’a pas nécessairement les données sur la composition des bâtiments alimentés. L’approche boîte 

grise n’a pas été retenue car l’opérateur ne pourrait que très difficilement effectuer des essais chez 

son client, notamment pour des immeubles résidentiels. L’approche boîte noire est donc celle qui 

semble la plus opportune. Du fait, de complexes interactions entre la température extérieure, le 

rayonnement solaire (sur les murs et à travers les fenêtres), l’inertie du bâtiment, l’usage et le 

pilotage de la fourniture de chaleur, les méthodes d’intelligence artificielle ont été retenues. 

 

L’état de l’art des applications des techniques AI appliquées dans les bâtiments est l’objet du 

chapitre 2. Des exemples d’application sur des bâtiments basse consommation n’ont pas été 

identifiés. Définir une approche méthodologique mettant en œuvre une technique AI pour la 

prédiction d’un besoin de chaleur d’immeuble basse consommation (fortement inertiel) est l’objet 

des travaux présentés dans ce manuscrit. 
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Figure 1 : Besoin de chaleur d’un bâtiment basse consommation (à droite) en fonction des 

données météorologiques (à gauche température extérieure et rayonnement solaire) pour deux 

journées différentes D1 et D2. 

 

Le point de départ de cette thèse est : 

- L’historique des consommations (horaire moyennée) du client est disponible ; 

- L’historique des conditions climatiques (horaire moyennée) est disponible ; 

- Une estimation de l’usage (horaire moyenné) du bâtiment est disponible (occupation, 

température de consigne, etc…) ; 

- Une prédiction des conditions météorologiques est disponible. 

Le caractère stochastique est de facto hors du cadre de ce travail. 

Le cadre méthodologique proposé dans cette thèse contient une préparation de la base de données 

(constituée des historiques de consommations et des conditions météorologiques ainsi que de 

l’usage du bâtiment), voir la figure 2. 

 

Il existe deux possibilités pour mettre en œuvre une technique AI :  

1. Utiliser l’ensemble de la base de données et créer un unique modèle AI. Dans le corps du 

manuscrit, cette approche est désignée par « all data ». 

2. Effectuer une présélection dans la base de données en lien avec les conditions climatiques 

à prédire. Un modèle AI est établi pour chaque nouvelle condition climatique. Dans le 

corps de ce manuscrit, cette approche est désignée par « relevant data ».  

Cette présélection peut être effectuée de différentes manières : 

- La méthode « homme de l’art » du degré jour unifié, adaptée pour des bâtiments plutôt 

anciens, fortement dépendant de la température extérieure (mal isolés et avec des 

infiltrations) 

- Des méthodes mathématiques de traitement du signal permettant de corréler des 

signaux. 
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Figure 2 : Cadre méthodologique des approches « all data » et « relevant data » 

 

L’une des difficultés majeures dans la prédiction du besoin de chaleur est de tenir compte de la 

constante de temps de l’enveloppe du bâtiment.  

 

L’historique de la consommation d’un bâtiment contient l’ajustement, en boucle fermée, de cette 

consommation au suivi des températures intérieures de consigne, en fonction de son usage. Ainsi, 

pour des conditions extérieures identiques et pour des valeurs de consignes constantes, le besoin 

de chaleur n’est pas le même après un changement de température de consigne ou une heure après 

ce changement, voir la figure 3. Pour tenir de ce phénomène, un modèle, désigné par pseudo-

dynamique, est l’une des propositions de cette thèse, voir le chapitre 3 pour plus de détails. 

 

 
Figure 3 : Changement de consigne et modèle de transition pseudo-dynamique 

 

Ce modèle pseudo-dynamique doit permettre d’indiquer qu’un autre effet (inertie thermique 

interne) est en cours. La proposition est de créer un vecteur de transition indiquant les différents 

seuils de changement de consigne (ou d’occupation). L’aspect inertiel est lui indiqué en 

« décalant » ce vecteur de manière à ce qu’en entrée du module « intelligence artificielle » le 

comportement dynamique puisse être « appris ». Dans le manuscrit, cette connaissance à priori du 

comportement thermique est donc mise en entrée. Ce modèle est décrit par une réponse du 

premier ordre du bâtiment mais fonctionne aussi pour une réponse oscillante : l’important est 
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qu’en entrée, les plages horaires soient bien distinguables. Ce modèle de transition est aussi 

appliqué à l’occupation qui, pour la même raison, pourrait avoir des entrées « constantes » mais 

dont le besoin de chaleur serait à distinguer (ex : l’occupation des salles de cours dans une école). 

 

L’aspect dynamique plus long dû à l’enveloppe du bâtiment est mis en évidence sur la figure 4, 

correspondant à l’historique de la température extérieure et du flux radiatif des 5 jours précédents 

les jours D1 et D2 de la figure 1. 

 

 
Figure 4 : Historique des 5 jours précédents la prédiction des jours D1 et D2. 

 

Pour intégrer cet aspect deux éléments sont proposés : 

- D’une part, calculer les valeurs journalières des variables climatiques sur les jours précédents. 

Ainsi, il est proposé de mettre en entrée la température journalière extérieure, le flux solaire 

journalier impactant les murs et celui traversant les fenêtres, voir le chapitre 3 pour plus de 

détails. 
- D’autre part, faire une décomposition en ondelettes des variables climatiques, voir le 

chapitre 3 pour plus de détails. 

La figure 5 schématise l’ensemble de la préparation des données effectuée. 

 

Comme indiqué précédemment deux approches ont été développées : « all data » et « relevant 

data ». Néanmoins, un travail plus important a été réalisé sur l’approche « relevant data » car les 

résultats obtenus ont été meilleurs, comme décrit ci-après, et au chapitre 4. 

 

L’approche « relevant data » repose sur une sélection de jours dans la base de données 

ressemblant le plus possible aux conditions météorologiques à prévoir (incluant l’historique). Pour 

cette sélection il a été envisagé des méthodes mono-variables (comme  le degré jours HDD ou une 

modification mHDD) et multi-variables (comme le critère de la distance de Fréchet FD et celui de 

la déformation temporelle dynamique, ci après DTW) pour les variables climatiques (température 

extérieure, flux solaire sur les murs et traversant les fenêtres), voir le chapitre 3. Quatre 

techniques d’intelligence artificielle ont été mises en œuvre : réseau de neurones ANN, Machines 
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à vecteur de support SVM, Arbre de décision DT, ou Forêt aléatoire RF (l’annexe B est une 

introduction à ces techniques). La méthodologie est décrite dans le chapitre 3. 

 

 
Figure 5 : Préparation des données  

 

 

L‘approche « all data » est comparée avec l’approche « relevant data » sur le couple (DTW et 

SVM), association donnant les meilleures résultats. 

 

La mise en œuvre de cette méthodologie s’effectue en deux étapes distinctes : la première étape 

est numérique (la base de données est générée en utilisant TRNSys), voir le chapitre 4, la seconde 

est une application sur le bâtiment de l’Ecole des Mines de Nantes, voir le chapitre 5. 

 

Pour la première étape de mise en œuvre, 6 configurations de bâtiments ont été imaginées en 

concertation avec le centre Veolia Environnement Recherche et Innovation, voir le tableau 1. Les 

quatre premiers cas correspondent au même bâtiment, avec différents degrés d’isolation et 

différentes constantes de temps d’enveloppes (cas 1 30h, cas 2 53h, cas 3 76h, cas 4 119h, cas 4* 

210h), pour un usage de type résidentiel, voir la figure 6 (gauche). Ces quatre premiers cas 

correspondent à des bâtiments d’une consommation spécifique conventionnelle à une basse 

consommation. Le cas 5 est un immeuble de bureau, avec un profil d’occupation spécifique, voir 

la figure 6 (droite), avec une constante de temps de 210 h pour le cas 5 et 219 h pour le cas 5*. 

Le cas 6 correspond à un immeuble avec un autre type d’occupation de type centre commercial, 

voir la figure 6 (bas), avec une constante de temps de 219 h pour les cas 6 et 6*. 

 

Input 

Data 

Collection

Climatic

Conditions

Building 

Operating 

Characteristics

Occupancy

Profiles

Measurement

Energy Data

{selection of relevant  direct and 

derived climatic variables }

{past number of climate

impacts (time constant of 

building)}

{energy load, occupancy

profile}

Derived Climatic

Variables 

Generation

Operating 

Characteristics

Building

Dynamic

characteristics of 

indoor temperature

control

Transitional

and Pseudo 

dynamic model

{Overall operating characteristics

pseudo dynamic lag

transitionalbehavior}

Pseudo Dynamic Model

Offline Data Preparations

Building 

Operation

classification/clust

ering

Impact of Thermal 

Envelope on Type 

of Building

{building operation classes} i

Data Classes 

1

m

Climatic Variables 

Selection

{derived climatic variables}



x  Extended Abstract in French 

 

 

 
Tableau 1 : Principales caractéristiques des bâtiments 

 

La modélisation sous TRNSys est une modélisation mono-zone pour les cas sans le symbole (*). 

Pour les cas 4, 5 et 6, une modélisation multizone a été effectuée, symbolisée avec (*). 

 

 

 
Figure 6 : Profil d’occupation selon les cas  

 

 

Les profils des flux (éclairage, ventilation) et des conditions opératoires sont tracés sur la figure 7 

(cas 1-4), la figure 8 (pour le cas 5 et 5*) et la figure 9 (pour le cas 6 et 6*). 

 

Descriptions Case 1 Case 2 Case 3 Case 4
1*

Case 5
1*

Case 6
1*

Floor Surface  (m
2
) 3333 3333 3333 3333 1372 10521

Number of floor 6 6 6 6 10 1

Total surface (m
2
) 20000 20000 20000 20000 13720 10521

External wall South (m
2
) 4000 4000 4000 4000 4450 330

External wall North (m
2
) 4000 4000 4000 4000 4450 330

External wall West (m
2
) 1250 1250 1250 1250 - 330

External Wall East (m
2
) 1250 1250 1250 1250 - 330

Floor height (m) 3.2 3.2 3.2 3.2 3.2 3.2

U-value of walls, roofs and floors (W/m
2
.K) 2 1 0.5 0.25 0.25 0.25

U-value of glazing W/m
2
.K 2.95 2.95 2.95 1.76 1.43 1.43

Glazing rate on each external wall (%) 25 25 25 25 30 30

Building Type Residential Residential Residential Residential Office Commercial

Single/Multi-zone Type Single Single Single Single/Multi Single/Multi Single/Multi
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Figure 7 : Profil des flux (éclairage, ventilation) et conditions opératoires pour les cas 1 à 4(4*) 

 
Figure 8 : Profil des flux (éclairage, ventilation) et conditions opératoires pour les cas 5 et 5* 

 

 
Figure 9 : Profil des flux (éclairage, ventilation) et conditions opératoires pour les cas 6 et 6* 
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Le besoin de chaleur concerne le bâtiment dans son ensemble et correspond à la puissance 

thermique délivrée par la sous-station. La demande annuelle spécifique de l’ensemble des cas est 

indiquée sur la figure 10, pour l’ensemble des cas et pour 4 fichiers météorologiques 

(correspondant à 4 villes : Paris, Lille, Lyon et Clermont-Ferrand). La demande spécifique des cas 

1 à 4 passe de 80 kWh/m²/an à 20 kWh/m2/an, permettant de représenter des bâtiments de 

consommation dite conventionnelle et des bâtiments basse consommation. Les cas 5 et 6 

présentent des demande spécifiques de l’ordre de 20-25 kWh/m²/an, correspondant à des 

bâtiments basse consommation. 

 

 
Figure 10 : Demande annuelle spécifique pour l’ensemble des cas : résultats TRNSys. 

 

Préalablement à la mise en ouvre d’une méthode AI, il faut définir la composition des entrées. 

Huit séries d’entrées ont été considérées, voir le tableau 2. 

 
Tableau 2 : Composition des entrées pour les cas 1-4 
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0
C) ×
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Horizontal solar radiation at 2 hours  delay  (kW)
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Le besoin de chaleur du cas 3, respectivement 4 (bâtiment faible et basse consommation, profil 

d’occupation de type résidentiel) est tracé sur la figure 11, respectivement sur la figure 12. Dans 

la légende, « actual » correspond aux résultats de TRNSys ; « prediction S7 et S8 » correspondent 

aux résultats obtenus avec le couple (DTW, SVM) avec les séries d’entrées S7 et S8. Trois paires 

de journées sont reportées et correspondent à trois mois différents. 

 

Figure 11: Besoin de chaleur du bâtiment Cas-3 (faible consommation) 

 

Figure 12: Besoin de chaleur du bâtiment Cas-4 (basse consommation) 

Les pics de consommation et les comportements du besoin de chaleur sont bien décrits. Le 

coefficient de détermination, l’erreur quadratique moyenne sont donnés pour l’ensemble des 8 

séries d’entrées pour une année dans le tableau 3. La série d’entrées S8 donne des coefficients 
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presque unitaires indiquant une bonne prédiction. Ceci est particulièrement pertinent pour le cas 4 

(bâtiment à basse consommation). 

 
Tableau 3 : Coefficients de détermination et erreur quadratique moyenne pour le couple (DTW et 

SVM) 

De plus la distribution mensuelle de ces deux coefficients montre que l’erreur la plus importante 

correspond au mois d’Avril (mois de fin de saison de chauffe), ce qui n’est pas le mois le plus 

significatif pour un opérateur de réseaux de chaleur, voir la figure 13. 

 
Figure 13 : Distribution mensuelle de l’erreur de prédiction selon les cas 1-4 pour le couple 

(DTW-SVM) 

L’erreur pour l’ensemble des couples (méthode de sélection, méthode d’intelligence artificielle) 

est reportée dans le tableau 4 pour la série d’entrées S8. On observe que : 

- la méthode de sélection mHDD fonctionne bien pour les bâtiments de consommation 

conventionnelle (80 kWh/m²/an), représentés par les cas 1-2.  
- La méthode DTW donne les meilleurs résultats quelle que soit la méthode 

d’intelligence artificielle. 
- La méthode d’intelligence artificielle SVM donne les meilleurs résultats quelle que 

soit la méthode de sélection. 

La conclusion est donc que le couple (DTW associé à SVM) est le choix donnant les meilleurs 

résultats pour les cas 1-4.  
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Tableau 4 : Erreur pour la combinaison des entrées S8 en fonction du couple (méthode de 

sélection associé à la méthode AI). 

 

Les résultats obtenus par le couple (DTW, SVM) sont comparés à l’approche « all data », sur trois 

années de données. Les erreurs obtenues sont reportées dans le tableau 5. L’approche « relevant 

data » (DTW, SVM) donne la meilleure précision. Il faut aussi noter les temps de mise en œuvre 

pour l’approche « all data » : pour ANN 184h de calculs, pour SVM 75h et pour RF 15h. Par 

contre, il faut souligner que pour l’approche « relevant data » il faut refaire les calculs pour 

chaque prévision météorologique. Le temps de calculs est de 3 min. Il parait tout à fait acceptable 

de relancer ces calculs, même quotidiennement. 

 

 
Tableau 5 : Comparaison entre l’approche « relevant data » (DTW, SVM) et l’approche « all 

data » 

 

Les résultats de l’approche « all data » se dégradent significativement si la base de données n’est 

pas suffisante. Par exemple, le coefficient de détermination progresse de 0.91 à 0.96 (RF).  

 

 
Figure 14 : Coefficient de détermination en fonction de la base de données par l’approche « all 

data » 

 

Le besoin de chaleur obtenu par l’approche « all data » en utilisant SVM et celui utilisant 

l’approche « relevant data » couple (DTW, SVM) sont tracés sur la figure 15. L’approche « all 

data » ne transcrit pas bien le profil « actual ». 

 

En considérant la quantité significative de données, le coefficient de détermination et le temps de 

calculs (nécessitant plusieurs jours), l’approche « all data » est considérée comme inadéquate pour 

un gestionnaire de réseaux de chaleur. 

 

Pour les cas 1-4, le couple (DTW, SVM) permet d’obtenir les meilleurs coefficients de 

détermination. Cette observation ne peut pas être une généralisation. Parmi les interrogations, on 

peut énoncer : 

Est-ce toujours valide pour d’autres types d’occupations ? 

Est-ce une conséquence de la modélisation très simplifiée dans TRNSys ?  
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Figure 15 : Comparaison des approches « all data » et « relevant data » avec la méthode SVM 

 

 

Les cas 5 et 6 ont été conçus comme des premiers éléments de réponse à la première question, 

respectivement les cas 4*, 5* et 6* à la seconde question. 

 

Comme les conditions opératoires sont différentes, il est nécessaire de définir de nouvelles séries 

d’entrées. Cinq scénarii d’entrées ont été établis pour les cas 5 et 6, voir le tableau 6. 

 

L’approche « relevant data » (DTW, SVM) est naturellement mise en œuvre comme 

précédemment. Le coefficient de détermination et l’erreur quadratique moyenne sont reportés 

dans le tableau 7. Pour les cas 5 et 6, le coefficient (annuel) est très proche de l’unité : cela 

montre que l’approche « relevant data » (DTW, SVM) permet de bien prédire le besoin de 

chaleur. 

 

 
Tableau 7 : Coefficients de détermination et erreur quadratique moyenne selon les compositions 

des entrées 
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Tableau 6 : Composition des entrées pour les cas 5-6 

 

 

La figure 16, respectivement 17,  illustre que l’approche « relevant data » (DTW, SVM) reproduit 

fidèlement le comportement du besoin de chaleur obtenu des simulations de TRNSys dans le cas 

d’un immeuble de bureaux (cas 5), respectivement dans le cas d’un immeuble de type centre 

commercial (cas 6).  

 
Figure 16 : Prédiction du besoin de chaleur dans le cas 5 (immeuble de type bureaux) 

S1 S2 S3 S4 S5

Outputs P (t) × × × × ×
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 øSh(t) × × × × ×
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 øSh(t-2) × × × × ×
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øSext(t-1) × ×

øSext(t-2) × ×

øSint(t) × ×

øSint(t-1) Solar gain on wall at 1 hour delay (kW) × ×

øSint(t-2) Solar gain on wall at 2 hours delay (kW) × ×

occup Occupancy profile [0  1] × × × × ×

oper Operational characteristics [0 1] × × × ×

trans Transitional attributes [0.2 1] × × × ×

PDL-1 Pseudo dynamic lag 1 [0.2 1] × × × ×

PDL-2 Pseudo dynamic lag 2 [0.2 1] × × × ×

Text_TDM Temporal moving average of external temperature (
0
C) × ×

øSh_TDM Temporal moving average of horizontal solar radiation (kW) ×

øSint_TDM Temporal moving average of solar gain on wall (kW) ×
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Figure 17 : Prédiction du besoin de chaleur dans le cas 6 (immeuble de type centre commercial) 

 

Comme indiqué précédemment, les cas 4* (occupation « résidentielle »), 5* (occupation 

« immeuble de bureaux ») et 6* (occupation « centre commercial ») correspondent à une 

modélisation plus raffinée dans TRNSys. Les cinq séries d’entrées (de la méthode AI) ont été 

testées sur le couple (DTW-SVM). Le coefficient de détermination et l’erreur quadratique 

permettent d’affirmer que les résultats reproduisent assez fidèlement le besoin de chaleur (généré 

par TRNsys) quelle que soit la typologie d’occupation indépendamment de la modélisation dans 

TRNSys, voir le tableau 8. 

 

 
Tableau 8 : Coefficients de détermination et erreur quadratique moyenne selon les compositions 

des entrées 

Le besoin de chaleur « actual » (généré par TRNSys) et celui prédit par l’approche « relevant 

data » (DTW, SVM) pour les séries d’entrées S2 et S4 sont tracés sur une semaine, figure 18 pour 

le cas 4*, figure 19 pour le cas 5* et figure 20 pour le cas 6*. 

 

 

 

Figure 18: Besoin de chaleur estimé (TRNSys) et prédit par l’approche « relevant data » (DTW, 

SVM) pour une occupation de type résidentielle, cas 4* 
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Figure 19: Besoin de chaleur estimé (TRNSys) et prédit par l’approche « relevant data » (DTW, 

SVM) pour une occupation de type « immeuble de bureaux », cas 5* 

 

Figure 20: Besoin de chaleur estimé (TRNSys) et prédit par l’approche « relevant data » (DTW, 

SVM) pour une occupation de type « centre commercial », cas 6* 

 

L’approche « relevant data » utilisant la méthode de sélection DTW associée à la technique 

d’intelligence artificielle SVM donne des prédictions de besoin de chaleur avec des coefficients 

de détermination proche de l’unité.  

 

Est-ce que cette approche reste aussi consistante sur des données de consommation réelles ? 

 

A l’Ecole des Mines de Nantes, les besoins thermiques sont enregistrés et peuvent servir de 

support de cas test, appelé Cas EMN. 

 

Le profil d’occupation est  simplifié et correspond à celui de bureaux, voir la figure 21 (haut). La 

température de consigne globale est aussi simplifiée, voir la figure 21(bas). 
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Figure 21 : Profil simplifié d’occupation et de la température de consigne « globalisée » du cas 

EMN 

 

Le vecteur de transition est représenté sur la figure 23.  

 
Figure 23: Vecteur de transition du cas EMN 

 

Neuf séries d’entrées ont été considérées dans le cas EMN, voir tableau 9. 
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Tableau 9 : Configuration des entrées considérées pour le cas EMN 

 

L’approche “relevant data” (DTW, SVM) est appliquée à ces 9 séries d’entrées. Les coefficients 

de détermination et l’erreur quadratique moyenne sont moins proches de l’unité (qu’à partir des 

simulations TRNSys), voir le tableau 10. 

 

 
Tableau 10 : Coefficient de détermination et erreur quadratique moyenne pour l’approche 

« relevant data » (DTW, SVM) pour le cas EMN 

 

La précision est certes moins correcte mais d’une part le modèle de transition, celui de la 

température de consigne globale sont assez grossiers et d’autre part il existe aussi de nombreux 

phénomènes négligés (dont le rayonnement solaire non disponible dans la base de données des 

années antérieures). En outre, des problèmes de cohérence de mesures ont aussi été observés. 

 

Le besoin de chaleur mesuré « actual » et celui obtenu en utilisant l’approche « relevant data » 

SVM associé à chaque technique de sélection (HDD, mHDD, FD, DTW) est tracé pour 120 

heures consécutives, voir la figure 24. L’allure générale est bien prédite : le dernier jour est plutôt 

bien estimé (un jour de WE). Les jours mardi, mercredi et vendredi sont aussi plutôt bien décrits. 

Pour le jeudi (dans ce cas), un écart significatif est observé : l’occupation de l’école est différente 

du reste de la semaine (pas de cours l’après midi et une activité pédagogique le matin différente 

du reste de la semaine). Ce point pourrait donc être affiné. 

S1 S2 S3 S4 S5 S6 S7 S8 S9

Outputs P(t) × × × × × × × × ×

Inputs Text(t) × × × × × × × × ×

Text (t-1) × × × × × × × × ×

Text (t-2) × × × × × × × × ×

occup Occupancy profile [0 to 1] × × × × × × × ×

oper Operational characteristics [0 1] × × × × × × ×

trans Transitional characteristics [0.2 1] × × × × × ×

PDL-1 Pseudo dynamic lag 1 [0.2 1] × × × × ×

PDL-2 Pseudo dynamic lag 2 [0.2 1] × × × ×

PDL-3 Pseudo dynamic lag 1 [0.2 1] × × ×

PDL-4 Pseudo dynamic lag 2 [0.2 1] × ×
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C) ×
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Figure 24: Besoin de chaleur mesuré et prédit pour le cas EMN, SVM associé à chaque méthode 

de sélection. 

 

Les coefficients de détermination et l’erreur quadratique moyenne pour l’approche « relevant 

data » SVM en fonction de la méthode de sélection sont indiqués dans le tableau 11. 

 

 
Tableau 11 : Coefficient de détermination et erreur quadratique moyenne pour l’approche 

« relevant data » en fonction de la méthode de sélection 

 

Les temps de calculs pour l’élaboration d’un modèle prédictif par l’approche « relevant data » 

sont présentés sur la figure 25. A gauche, le choix de la technique AI est associé à la sélection 

DTW, à droite la technique AI est SVM. Les 15 minutes de CPU requises pour la mise au point 

d’un modèle lors d’une prévision météorologiques semblent acceptables. 

 

 
Figure 25 :Temps de calcul CPU, à gauche en fonction du choix de la méthode AI, à droite en 

fonction de la méthode de sélection. 
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L’approche « relevant data » est comparée à l’approche «all data », voir le tableau 12.  

 

 
Tableau 12: Coefficient de détermination et erreur quadratique moyenne pour l’approche 

« relevant data » et « all data » 

 

Le besoin de chaleur mesuré et prédit (« revelant data » SVM-DTW et « all data » SVM) sont 

tracés sur la figure 26. 

 
Figure 26: Besoin de chaleur mesuré et prédit par l’approche « relevant data » SVM-DTW et 

« all data » SVM 
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L’approche « relevant data » (DTW-SVM) reste assez performante pour le cas EMN (et est la plus 

performante parmi les couples testés).  

 

Les résultats du cas EMN ne sont pas pleinement satisfaisants : 

- La base de données n’incluait pas le flux solaire. 

- De nombreuses mesures aberrantes ont été détectées. 

- Un vecteur de transition et une température de consigne globalisée pourraient aussi 

être repris. 

- L’occupation pourrait aussi être affinée, en fonction des activités pédagogiques. 

 

Pour conclure la méthodologie « relevant data » est schématisée dans la figure 27. Elle se met en 

œuvre suivant les 7 étapes suivantes : 

 

Etape-1: Classification des conditions d’exploitation et d’usage de l’immeuble 

Etape-2: Mise au point du modèle pseudo-dynamique de transition 

Etape-3: Choix des variables climatiques les plus explicatives (incluant des effets inertiels 

par le biais de grandeurs moyennées) 

Etape-4: Configurations des entrées (pour la phase d’apprentissage puis de prédiction) 

Etape-5: Pré-analyse de la base de données (application du traitement d’ondelettes pour 

pondérer les variables climatiques entre-elles) 

Etape-6: Sélection des jours les plus ressemblants aux conditions à prédire 

Etape-7: Prédiction du besoin de chaleur.  

 

Il est recommandé d’utiliser la technique la technique « Machines à vecteur de support » (SVM) 

associée à une extraction de la base de données des jours les plus ressemblants par la sélection de 

la déformation temporelle dynamique (DTW). 
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Figure 27: Méthodologie pour la mise en œuvre d’une technique AI par sélection de jours similaires

{all offline/online training data}
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Nomenclature 

 

Acronyms 

AI   Artificial Intelligence 

ANN   Artificial Neural Network 

ARIMA  Autoregressive with Moving Average 

ARx   Autoregressive with Exogeneous, i.e., External, Inputs 

BBC   Batiment Basse Consummation 

BEMS   Building Energy Management System 

BT   Boosting Tree  

CB   Convectional Building 

CDD   Cooling Degree Day 

CPU   Central Processing Unit 

CVA   Cannonical Variate Analysis 

DOF   Degree of Freedom 

DT   Decision Tree 

DTW   Dynamic Time Warping 

EMN   Ecole des Mines de Nantes 

EPBD   Energy Performance Building Directive 

ESCOs   Energy Services Companys 

FD   Frechet Distance 

GA-ANFIS  Genetic Algorithm Adaptive Network Fuzzy Interfaces System 

HDD   Heating Degree Day 

HPE   Haute Performance Enérgetique  

HPE EnR  Haute Performance Enérgetique Energie Renouvelable  

HVAC   Heating, Ventilation and Air-Conditioning 

k-NN   K-Nearest Neighbor 

LEB   Low Energy Building 

LSM   Least Square Method 

MAPE   Mean Absolute Percentage Error 

MHDD   Modified Heating Degree Day
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MLP   Multi Layer Perceptron 

MLR   Multi Linear Regression 

NZEB   Nearly Zero Energy Building 

OOB   Out of Bag 

PAHU   Primary Air Handling Unit 

PCA   Principal Component Analysis 

PDM   Pseudo Dynamic Model 

PDL   Pseudo Dynamic Lag 

PEB   Passive Energy Building 

RBF   Radial Basis Function 

RES   Renewable Energy Sources 

RF   Random Forest 

RMSE   Root Mean Square Error 

SVM   Support Vector Machine 

SVR   Support Vector Regression 

THPE   Trés Haute Performance Enérgetique  

THPE EnR  Trés Haute Performance Enérgetique Energie Renouvelable 

VLEB   Very Low Energy Building 

 

Variables 

a   Wavelet low frequency coefficients    [-] 

A   Area        [m2] 

B   Number of trees in random forest    [-] 

bn   Number of bins      [-] 

    Thermal capacity      [J/K] 

Coeff_xx  Coefficient of climatic variables    [-] 

       Coefficient of performance of cooling system   [%] 

d   Wavelet high frequency coefficients    [-] 

D-1   Time delay       [hour] 

      Cooling degree-hour      [0C/h] 

      Heating degree-hour      [0C/h] 

     Cooling energy consumption     [kWh] 

Eh   Heating energy consumption      [kWh] 

     Shape factor       [m-1] 

k-value   Thermal conductivity       [W/m.K] 
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l   Number of relevant days     [-] 

        Mass flow rate of air       [kg/s] 

n   Number of training data     [-] 

N   Number of training days     [-] 

         Number of hours of occurrence of the jth bin    [-] 

                               Number of training equations     [-] 

                     Number of hidden neurons     [-] 

                                Maximum hidden neurons     [-] 

                                  Number of input neurons     [-] 

                                  Number of output neurons     [-] 

        Number of occupants       [-] 

         Air infiltration rate changes per hour     [h-1] 

                                  Number of model parameters     [-] 

occup   Occupancy profile      [-] 

P   Power        [W] 

                                 Performance goal      [-] 

     Annual energy consumption     [kWh] 

          Heat peak load       [W/m2] 

  
      Heat gain or loss through envelope components  [W] 

  
      Heating or cooling demand     [W] 

  
      Internal heat gain due to occupants, lighting and appliances [W] 

  
         Heat generation rate from occupants    [W/m2] 

  
      Heat loss from the air-zone     [W] 

  
      Solar heat gain through transparent building components [W] 

      Heat energy storage      [J] 

  
         Heat gain inside the air-zone      [W] 

  
      Ventilation heat gain or loss due to air exchange   [W] 

r   Correlation indexes      [-] 

R   Thermal resistance      [m2.K/W] 

R2   Coefficient of determination     [-] 

      Cross-correlation indexes for time series x and y  [-] 

     Sample standard deviations of time series x    [-] 

t   Time        [hour]  



Nomenclature  8 

 

T   Temperature       [0C] 

     Base temperature      [0C]  

      Exterior floor temperature     [K] 

           Sol-air temperature       [K] 

            Set-point temperature       [0C] 

trans   Transitional attributes      [-] 

u   Number of past day climate impacts    [-] 

U   Overall thermal heat loss coefficient     [W/m2.K] 

     Overall heat loss coefficient     [W/K] 

v   Significant climatic variables      [-] 

wc   Desired weight       [-] 

z   Decomposition length      [-] 

      Number of trees for decision tree    [-] 

                                  Number of leaf in each decision tree    [-] 

    Learning parameter of decision tree    [-] 

                                  Threshold values      [-] 

                                        Number of lags       [-] 

                                   Initial energy load level     [-] 

                                  Step size of transition of energy load    [-] 

      Horizontal solar radiation     [W] 

     Direct solar radiation      [W] 

        Solar gain transmitted through windows   [W] 

        Solar gain on walls      [W] 

          Temporal moving average of external temperature  [0C] 

           Temporal moving average of solar gain on walls  [W]  

    Time constant       [hour] 

    Density        [kg/m3] 

     Thickness        [m] 

     Specific heat capacity      [J/kg.K] 

       Heat flux entering the controlled volume    [W] 

       Heat flux leaving the controlled volume    [W] 

          Dissipated amount of heat flux from the control surface  [W] 

      Transmittance on glass plane      [-]
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     Solar absorptivity      [-] 

     Solar radiation incident on surface    [W] 

     Emissivity       [-] 

     Heat transfer coefficient on exterior envelope   [W/m2.K] 

     Factor of ventilation system     [-] 

      Volumetric flow of ventilation air    [m3/hour] 

    Sampling length of data in a day     [-]  

     Seasonal average efficiency of heating equipment  [%] 

 

Subscripts 

air   Air 

app   Appliances 

buil   Building 

env   Envelope components 

e, ext   External 

f   Floor 

g   Glazing 

in   Internal or Interior 

lit   Lighting 

md   Modified 

ocup   Occupancy 

rf   Roof 

sky   Sky 

steady   Steady state 

surr   Surrounding 

w   Wall 

win   Window 

z   Zone 
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Summary of Contribution 

This manuscript makes several contributions: 

 It provides detail understanding of physics behind thermal energy transfer process in the 

buildings and differentiates thermal energy performance criteria for conventional to low 

energy buildings. 

 It reviews and compares the building energy demand estimation and the prediction model. 

 It introduces different machine learning artificial intelligence model namely neural 

network, support vector machine, decision tree and random forest to predict thermal load 

of building. 

 It proposes novel pseudo dynamic model to include transitional behavior of occupancy 

and building operating conditions1. 

 It modifies the traditional degree-day method to new degree-day method (propose in this 

manuscript) to include variation of energy load weight effect at different time intervals 

during a day. 

 It proposes novel relevant data selection method to select small representative day data 

from the given database. Because of this fewer day data representation, it provides 

flexibility in adjusting the prediction model to rely in a dynamic environment due to lower 

computational complexities CPU2-time.  

                                                 
1
 Refers to the set of values, for example, set-point temperature and ventilation schedule during a day 

2
 Central processing unit 
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Chapter 1: Introduction 

1.1 General Background 

The total energy consumption globally accounts around 7200 Mtoe (Mega Tonnes Oil 

Equivalents) [1]. Out of these, the only building sector represents one-third of energy 

consumption and space heating, space cooling and water heating that accounts for 60% of final 

energy consumption [2] (Figure 1.1). This total energy consumption building considerably 

increased from 2002 to 2012 and contributes to large greenhouse gases (GHG) emissions.  

Similarly, GHG emission from building sector can be observed worldwide, for example, Europe 

contributes to 40% and United States to 48% [3].  

Figure 1.1: Global building energy consumption [2] 

In France, the annual energy consumption in different sectors is increasing for last 40 years as 

shown in Figure (1.2). Apart from industry and transport, the building sector 

(residential/commercial) is responsible for the largest portion of the energy consumption. The 

energy that is spent to heat the residential buildings accounts for 40% of total energy demand 

including electricity, hot-water and air-conditioning. This total energy consumption from building 

further contributes to 25% of GHG emission. Energy efficiency standards in building thus have 

drawn significant attention and awareness to focus on reducing annual energy consumption. 
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Figure 1.2: Annual energy consumption in each sector in France [4]  

In order to address these issues, many developed and developing countries are focusing their 

attention on energy performances and are migrating from these Conventional buildings (CBs) 

towards an energy-efficient buildings particularly low energy building (LEB). In order to 

standardize the building energy performance, the European Commission has formulated an 

Energy Performance Building Directive (EPBD) and this directive requires all the buildings to be 

nearly zero energy buildings by 2020. Similarly, Japan plans to implement nearly zero energy 

building for newly constructed public buildings by 2020 and the US by 2030. However, 

successful implementation of energy-efficient building requires a radical step in enhancing energy 

efficiency by improving building envelope (e.g., insulating wall cavities, increasing the quantity 

of insulation for roof, using high efficiency windows/glazing, compacting building shape), using 

higher efficient heating and cooling equipments, using renewable sources (solar thermal and 

electrical renewable energy system, e.g., solar photovoltaic and wind energy) integration in the 

building, use of intelligent energy management system, improvement in indoor thermal comfort 

etc. From the improvement of energy conservation point of view, estimation and prediction of 

energy consumption of building is therefore more noteworthy.  

1.2 Research Problems   

LEBs are new concept being considered as a solution for the built environment to satisfy high-

energy efficiency standards and to improve an energy performance. These are still progress in 

research and the technology is basically focused on improving thermal performance of envelope 

by adding layers of materials with very low thermal conductivity (W/m.K), thereby obtaining 

building envelope with low U-value (thermal transmittance, W/m2.K) or high R-value (thermal 
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resistance m2.K/W). This lower U-value decreases the annual heating requirements and introduces 

large time constant in building. Because of large time constant as well as large heat capacity, it 

slows the rate of heat transfer between interior of building and outdoor environment and alters the 

indoor climate in building regardless of sudden changes in climatic conditions. In addition, the 

estimation of energy demand complexity increases due to the non-linear relationship between the 

energy demand and other factors such as solar gains, internal gains (occupancy and lighting) and 

changes in climatic and operating conditions of building. Therefore, estimation and prediction of 

thermal energy demand of LEB is quite complex.  

1.3 Research Objectives   

For an energy services company, it is essential to know the estimate of energy demand by 

knowing forecasted weather and behavior of customer. So, the objective of this research is to 

estimate the thermal energy demand of LEBs based on forecast weather and behavior of customer. 

The range of prediction is from hours to couple of days or even for longer periods depending upon 

the forecast range of climatic conditions. The specific objectives of this research are:  

 To develop a prediction model using few available data for control and system 

management. 

 To analyze the behavioral change of a prediction model for different kinds of buildings: 

CB and LEB, office, commercial and residential building, and single-zone and complex-

zone building.  

1.4 Research Framework 

Our research work is mainly involved in development of a prediction model for LEB during the 

operation phase of buildings3. In order to build the prediction model for CB to LEBs, the work 

will focuses to understand the heat and energy transfer in the building and the principle behind CB 

and LEBs. Then, the work will emphasize review on existing prediction models for building 

thermal load. These studies lead us to understand the advantages and drawbacks of each 

prediction model and suggest the criteria to select the model. Finally, the research will focus on to 

integrate building non-linear dynamics due to large time constant and other second order factors 

(internal gains, solar gains, changes in climatic/operating conditions of building etc.) in the 

selected model. The summary of the research framework is shown in Figure (1.3).     

                                                 
3
 Refers to the phase when the activities of building operations started to be used 



1.4 Research Framework   24 

 

 

 

Figure 1.3: Summary of our research framework 

1.5 Manuscript Outlines 

This manuscript is organized as shown in Figure (1.4). Chapter 2 will provide about LEB 

concepts and its evolution trends while migrating from CB to LEBs in Europe. It also explains the 

factors that govern energy-efficient measures for LEB. At last, it presents review and state of art 

on building energy models. It also compares different building energy models based on several 

factors and suggests criteria to select model during the operation phase of building.  

Chapter 3 proposes an artificial intelligence (AI) model for modeling the LEB. It introduces two 

kinds of modeling approaches: “all data” and “relevant data”. It then discusses different steps to 

prepare data for both kinds of modeling approaches. For instance, firstly, it describes 

classification/clustering methods to classify building operation according to week type. Secondly, 

it detail on novel pseudo dynamic model to generate additional input to model and to encompass 

building indoor characteristics. Finally, it provides derived climatic conditions generation steps 

and describes climatic variables selection method to identify most important climatic conditions 

that governs the building load.   

Then it describes on different “relevant data” modeling approaches to select small representative 

datasets to build an AI model. These relevant data modeling methods are based on simplified 

physical methods: heating-degree-day (HDD) and modified HDD, and pattern recognition 

methods: Frechet distance (FD) and Dynamic time warping (DTW). Finally, different machine 

learning AI models: Artificial Neural Network (ANN), Support Vector Machine (SVM), Boosted 

Ensemble Decision Tree (BEDT) and Random Forest (RF) and their practical aspects are 

highlighted.   

Chapter 4 discusses the application of methodology to predict thermal load for simulation 

building. It further describes the step-by-step process to apply the methodology for single-zone 

building model. It also provides comparison of different AI models and “relevant data” 

modeling methods. In addition, it also compares “all data” and “relevant data” modeling 
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approaches. Finally, the methodology is also evaluated with different occupancies profiles and 

multi-zone building models.  

Chapter 5 presents the application of the methodology on real building to predict thermal load 

using “relevant data” modeling approach and compare with “all data” approaches.  

Chapter 6 draws a summary and recommends future steps.       

   

 

Figure 1.4: Summary of manuscript outlines 
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Chapter 2: Low Energy Building Modelling 

2.1 Low Energy Building (LEB)  

2.1.1 LEB concepts 

 

The conventional building (CB) in this manuscript refers to a building with low insulation and 

high air leakage requiring high energy consumption. Besides high energy consumption, this type 

of building has several drawbacks such as a large peak power driven by weather conditions, 

environmental consequences (due to high energy requirement) and imbalance thermal comfort. 

There is no clear definition of LEB, but LEB refers to the building with high thermal 

performances or a building with a significant reduction in the annual energy consumption for the 

same level of thermal comfort compared to CB. Those high thermal performances are achieved by 

a good design, for example, the building compactness, fulfilling the building codes and standards, 

providing quality of thermal comfort, reliable building operations and using active and passive 

technologies. The active technologies are based on the use of mechanical, electrical and electronic 

equipments like the use of renewable sources, the use of heat pumps coupled with air or ground in 

the building. The passive technologies are based on building thermal envelope improvements like 

the thermal insulation, the quality of windows and the use of natural light to pass to interior spaces 

during a day. Due to the integrated design solutions, LEBs reduces 80% of the operational cost 

[5]. 

Generally, thermal performances are measured based on a significant reduction in annual energy 

consumption. This energy consumption can be a primary energy or directly measured which in 

this case is called end-use. The primary energy quantifies the energy resources at the generation or 

production sites and end-use energy consumption is measured at the final level of buildings.  

The LEBs are defined by a low annual energy consumption and a low heat peak at the end-use 

and the annual energy consumption (  ) and the heat peak load (         link is given by the 

Equation (2.1) [6]: 
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Where,         is the building shape factor (m-1),           is the external wall area of building 

construction (m2) and         is the external volume of the heated space in the building (m3). The 

values for    ,   ,    and    are reported in Table (2.1).  

LEBs characterization varies with the location of the countries due to the weather conditions. 

Mumovic and Santamouris [6] linked the building shape factor         in terms of annual heating 

energy consumption and the heat peak load for different countries in Europe (see Table 2.1). It 

clearly illustrates that LEBs standardization varies in Europe according to the building shape 

factor. 

Country   /           

(kWh/m2.year) 

                       

(W/m2) 

Austria 24.55 + 81.82         3.11 + 10.36         

Germany 26+ 13         2.25 + 1.6         

Slovenia 45+40         6+5.33         

Rest of Europe 13.64 + 45.45         1.73 +5.76         

 

Table 2.1: LEBs in different parts of the Europe [6] 

 

In Central Europe, LEBs are standardized for an improvement in energy consumption of 30% to 

50% to CB. Such LEBs have an annual heating energy consumption of 40-60 kWh/m2.year. In 

Czech Republic, LEBs are characterized by the U-value of building envelope and their U-value 

should be improved by 66% to CB. Similar trend of increasing performances of building envelope 

is seen in Germany and they defined 30% to 45% improvement in the quality of building envelope 

[7]. 

In France, five labels of energy performances are defined: Haute Performance Energétique (HPE), 

HPE EnR (Energie Renouvelable), THPE (Très Haute Performance Energétique), THPE EnR and 

BBC (Bâtiment basse consummation). The effinergie4 standardized the LEBs (BBC) criteria by an 

average annual requirement for heating, cooling, ventilation, hot water and lighting of  40-65 

                                                 
4
 French association for environment which promote low energy consumption buildings 
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kWh/m2.year (in primary energy and depending on location) for new dwellings [7] compare to CB 

(190 kWh/m2.year in primary energy)5.  

2.1.2 Evolution of LEBs  

Due to thermal energy standards, LEBs are also emerging to very low energy building (VLEB) or 

passive energy building (PEB) and nearly zero energy building (NZEB) in the Europe. 

VLEBs or PEBs focus on passive technologies and provide an equilibrium indoor climate in 

summer and winter without the need of conventional heating system. These PEBs provide more 

effective “free heat gains” from solar radiations. The other requirements of PEB are reduction in 

unwanted air leakage through building fabric and limiting thermal transfer (U-value) of building 

envelopes. According to Feist6, “A passive house is a building, for which thermal comfort can be 

achieved solely by post-heating or post-cooling of the fresh air mass, which is required to achieve 

sufficient indoor air quality conditions-without the need for additional recirculation of air”. PEB 

in terms of annual energy consumption (  ) and peak heating load (       ) is given by [6]: 

  

         

                                                                                       

                                                                                                 

PEBs characterization also varies with the countries. In central Europe, the maximum specific 

supply air heating load should be  10 W/m2 and maximum annual heating energy consumption 

should be  15 kWh/m2.year (in end-use) to achieve thermal comfort without using a conventional 

heating system. In addition, to fulfill PEBs requirement, the air-tightness should be  0.6 h-1 and 

percentage of time operative temperature (above 20 0C) should be around 10% [3]. In Czech 

Republic, PEBs are characterized by the U-values of building envelope and the criteria are: U-

value of wall less than or equals to 0.3 W/m2.K, U-value of roof  equals to 0.12 W/m2.K and U-

value of window  equals to 0.8 W/m2.K [7].  

NZEBs are LEBs which are integrated to on-site renewable energy sources (RES) to meet the 

remaining energy of building tending to be zero energy consumption requirements. There are 

several definitions of NZEB and are called by different names like zero energy building, nearly 

zero energy building, net zero energy building, energy positive building, zero carbon building etc. 

According to European Commission EPBD, NZEB is defined as a building which has very high 

                                                 
5
 http://www.concept-bio.eu/the-thermal-regulation-2005-rt2005.php 

6 http://www.passipedia.org/basics/the_passive_house_-_definition 
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energy performances in which nearly zero or very low amount of energy required is covered by a 

significant amount of energy from renewable sources including energy from renewable sources 

produced on-site or nearby [8]. Torcellini et al. [9] define a zero energy building as a building that 

could meet an energy requirement at relatively low cost from on-site generation of renewable 

sources. This further implies that this building could produce a significant renewable energy to 

meet or surplus annual energy requirement to achieve net zero energy consumption and/or zero 

carbon emissions. These NZEBs have the similar characteristics between LEBs and 

VLEBs/PEBs. The only major differences are NZEBs produces on-site RES or integrate RES on 

buildings to make an energy consumption requirement zero.  

The summary of evolution from CB to different LEBs is shown in Figure (2.1)-Figure (2.2). It can 

be noticed that while the building is migrating from CB to LEBs, building characteristics: 

insulation, thermal performances of windows/glazing and air-tightness go on increasing. Figure 

(2.2) further illustrates that building envelope loss goes on decreasing while the building is 

transforming from CB to LEBs.   

The migration pathways to LEBs for different countries in Europe are shown in Table (2.2). The 

energy performance improvements are based on annual heating energy consumption. It can be 

observed that most of the European countries will migrate to NZEB by 2020. For instance, in 

Denmark, the national regulation impelled to reduce energy consumption by 25% in 2010, 50% in 

2015 and 75% in 2020 compared to CB. In France, national regulation aimed to reduce the energy 

consumption by 50% in 2012 and planned to migrate to NZEB by 2020. Similarly, the national 

regulation targeted to reach PEB by 2013 in United Kingdom and reveals that LEBs had been 

implemented already. 

 

*: VLEB/PEB 

Table 2.2: Migration pathways from CBs to LEBs in Europe (in terms of annual energy 

consumption) [7] 

Country/Year 2008 2010 2012 2013 2015 2016 2020

Austria VLEB

Denmark 25% 50%
*
75%

Hungary LEB NZEB

France 50% NZEB

Germany 30% 60% NZEB

Netherlands 25% 50% NZEB

United Kingdom 25%
*
44% NZEB
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Figure 2.1: Summary of evolution from CB to LEBs ([3], [6]) 

 

Figure 2.2 : Comparison of different LEBs with CB (general context in Central Europe) 
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2.1.3 Factors affecting LEB 

The energy performance of a building depends on the design factors, thermo-physical properties 

of building construction, climatic conditions and building operating conditions. Apart from 

climatic conditions, occupancy and building operating conditions, the major factors affecting both 

CB and LEB are shown in Figure (2.3). 

 

Figure 2.3: Factors affecting LEB 

Building Morphology 

Building morphology is an important indicator to determine energy demand of building. The 

building’s shape also defines the morphology and is given by Equation (2.3). A compact building 

has less thermal envelope hence has less heat losses and this decreases its final energy demand. 

The building shape factor thus can be reduced by a compact building design. LEBs generally have 

a small shape factor. More detail about building morphology is given in Pessenlehner and 

Mahdavi [10]. 

Building Envelope Insulation 

The building envelope is the boundary between outdoor and indoor. It consist external walls, 

floors, roofs, ceiling, windows and doors. These envelope components play a major role in 

improving an energy efficiency of building. A study on thermal building envelope components 

and passive energy savings can be found in Sadineni et al. [11].  
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The insulation is one of the main material components of building envelope. It helps to reduce the 

heat transfers between indoor and external weather conditions mainly driven by the temperature 

gradients. This is usually obtained by adding layers with very low thermal conductivity (W/m.K) 

in the envelope contributing low U-values (thermal transmittance, W/m2.K) or high R-value 

(thermal resistance m2.K/W). The high insulation materials help to maintain an equilibrium indoor 

condition due to slow heat transfer between envelopes and indoor conditions. “Super insulation” 

and “Over insulation” is a suggested approach to reduce the heat transfer loss in building envelope 

(U-values ranging from 0.15 to 0.10 W/m2.K) [12].  

The typical U-values and R-values of building envelope components for CB and LEBs are shown 

in Table (2.3). One can see that the most significant differences are in the U-values of walls and 

roofs, and shows that the insulation in LEB has been increased by at least 10% to CB.    

Elements of 

Building 

Type of 

Building 
U-value  

(W/m2.K) 

R-value 

 (m2.K/W) 

Wall 

CB 2.5 0.4 

LEB 0.25 4 

VLEB/PEB 0.15 6.67 

Roof 
CB 1.9 0.53 

LEB/PEB 0.15 6.67 

Glazing 

CB 4.8 0.21 

LEB 2 0.37 

VLEB/PEB 0.8 1.25 
 

Table 2.3: Typical U-values and R-values of CBs and LEBs in Europe [13] 

Building Window/Glazing  

The area of windows/glazing provides a significant role as a means to provide “free heat gains” in 

building with solar gains. It also balances the thermal comfort and illumination inside the 

building. The window-to-wall ratio is used as an indicator to evaluate thermal performance and Li 

et al. [14] mentioned that it is possible to reduce the amount of heat gain/loss by simply lowering 

the window-to-wall ratio. Persson et al. [15] highlight that efficient windows (higher glazing and 

lower U-value materials) would have a significant contribution on energy demand reduction 

compared to highly insulated wall without windows.   

Table (2.3) shows the U-value and R-value of glazing for different types of building in Europe 

and these classifications are based on glazing components. For instance, CB normally have single 

and/or double glazing, LEB have double glazing and PEB have triple glazing. It can be observed 
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that CB has a glazing insulation 6 times worst than well insulated glazing (U-value of glazing in 

CB 4.8 W/m2.K compared to 0.8 W/m2.K in PEB). 

Building Time Constant 

The time constant of building is another important design factor to evaluate the performance of a 

building. It is a measure of the thermal response of building and is defined as a function of total 

heat capacity of building and insulation level. A high building time constant is achieved by 

combining high heat capacity and low U-value. It thus determines the effect of dampening of 

indoor temperature fluctuations corresponding to the external temperature. It is independent on 

the size of buildings, for instance, large and small buildings can have the same rates of response to 

temperature changes. Generally, LEBs envelope has a large time constant, more than 100 hours 

[16]. A first approximation of the global time constant of building (      expressed in h) is given 

by7:  

      
     

      

 
        

 
      

      
 

 
        

              

                                                

where,        is the thermal capacity for each envelope construction component j (J/K).        

(W/m2.K),        (m2),        (m2.K/W) are the U-values, i.e., heat loss factors, area and thermal 

resistance of each envelope construction component j including ventilation respectively.        is 

the overall building heat loss coefficient (W/K) and        is the total heat capacity of a building. 

The total heat capacity of a building depends on thickness and surface area of envelope 

components and can be estimated by summing heat capacities of building envelope layers in 

contact and is given by:  

        
     

                                                                                        

 

 

Where,  
     

 is the density of building envelope j (kg/m3),          is the specific heat capacity of 

building envelope j (J/kg.K) and          is the thickness of building envelope j (m). Higher heat 

capacity of a building means higher thermal mass and slower response to heat up a building. The 

heavy weight construction material in the building such as clay, concrete, stone have high thermal 

capacity and are main attributes of the thermal mass. 

                                                 
7
 See the next section about the main assumptions for Equation (2.6) and the symbol   means all the heat 

resistances are obviously not in series. 
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2.2 Building Energy Model 

2.2.1 Introduction 

Building energy demand can be estimated and predicted using two modeling approaches: top-

down and bottom-up approaches [17]. The top-down modeling approach estimates the long-term 

total energy demand and is based on macroeconomic indicators (gross domestic product, 

unemployment and inflation), energy price and general climate. It also roughly reduced to the 

scale of a district or a building. On the contrary, bottom-up approach estimates the individual 

energy demand of a building and aggregates it for the whole energy demand at the scale of a 

district. Top-down modeling approach thus fails to consider discontinuous advances in 

technology, and bottom-up modeling approach fails to take into account some effects such as the 

profusion of human behaviors. Since the aim of this research is the prediction of energy demand 

or consumption for different types of buildings, the prediction model based on bottom-up 

modeling approach is only reviewed. 

There are several approaches to model the building energy based on partial and ordinary 

differential equations, steady and unsteady equations, design and control models. In this study, 

building models are classified into three categories: white-box, black-box and gray-box as in 

[18][19][20][21][22][23] and the general overview of these three models is shown in Figure (2.4). 

Definition 2.1: Building parameters – Model parameters  

The factors, for example, window to wall ratio, U-value of building envelope etc. 

that influences the energy demand of a building are defined as building 

parameters. The sets of input values given to a model e.g., hidden neurons in 

neural network, kernel function in support vector machine, number of trees in 

decision tree etc. (see Appendix B.1, B.2 and B.3) for a black-box  model or 

thermal resistance R and thermal capacitance C for a gray-box model (see Section 

2.2.3) are called the model parameters.  

 First, the white-box models estimate the energy demand from detailed physical 

understanding of building and imply numerous degrees of non-linearity. These are also 

called fundamental models since they derive from fundamental principle of energy 

balance in buildings.   
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These kinds of model are based on prior knowledge and the model structure is completely 

dependent on physical principles. In addition, the models are built using detailed physical 

principles and have advantages for understanding the building energy system and energy 

flows. The model does not depend on measurement or in-situ experiments and their 

parameters (see definition 2.1) have direct physical meaning thus measurement data is not 

required to make new prediction for such models.  

 Second, the black-box models only depend on empirical data or data acquired from 

dynamic thermal energy simulations. So, these are also called data-driven model or 

inverse model since they predict the behavior from known measurement system (or from 

numerical simulations). They draw functional relationship of variables (model structure) 

and building parameters (see definition 2.1) are learned from measurement or empirical 

data.   For developing such models, no prior knowledge is required and model parameters 

have no physical sense. Such models are more suitable for adapting the future 

environment hence are useful during the operation phase of building.  

 Third, the gray-box models estimate the building energy demand combining physical 

understanding using model order reduction and data fitting techniques obtained from 

empirical data. For such model, the model structure strongly depends on prior knowledge 

(e.g. models are represented in the form of differential equation represented by lumped 

resistance and capacitance networks). In addition, model parameters, for example, thermal 

resistance R and thermal capacitance C assigned to the elements in the zone are 

determined from the empirical or measurement data. 

Definition 2.2: Input Features 

Input features are defined by the sets of inputs (e.g., external temperature, occupancy) 

that are used to build a model. These are also called by the name “input variables” 

without any distinction. 

One can concludes from Figure (2.4) that the internal structure of building energy model and 

physical interpretation of parameters of model go on decreasing while the model is transforming 

from white-box to black-box. In this section, reviews of each models based on input features (see 

definition 2.2) use and their application in building load prediction is presented. 
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Figure 2.4: White-box, gray-box and black-box models 

Definition 2.3: White-box - Black-box – Gray-box 

A model is classified as a white-box model (also called knowledge model) when equations 

are based on physics and all input features are already exist, a model is a black-box 

model (behavior model) when it is an input-ouput model based on in-situ experiments. A 

model is considered as a gray-box model, when some experiments are required in-situ to 

identify some parameters of the physical equations.  

Nevertheless, Berthou, page 15 [24], indicates that the borders between gray and black box 

models are fuzzy. Berthou, page 47 [24] also indicates that for a R4C2 (or R3C2 without a 

variable mechanical ventilation) it is difficult to attribute the heat flux (between air and pieces of 

furniture in one way and wall, ceiling, and floor in other way) and so such a model is not a white-

box model but it is classified as a gray-box model.  
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Whatever those fuzzy borders, artificial intelligence methods (artificial neural network, support 

vector machine etc.) belong to the black-box model and requires in-situ measurements. 

2.2.2 White-box Model 

Based on complexity of these heat transfer equations, white-box models are broadly classified 

into two categories: steady state models and dynamic models. A steady-state model neglects the 

important aspects of time constant of a building. A study by Al-Homoud [25] summarizes the 

simple physical methods to estimate energy demand of a building. The steady state models are 

outlined in Appendix A.  

The zone modeling applied to building is only described in the following in agreement with the 

subject of this research. 

Definition 2.4: Thermal Zone 

A “thermal zone” is defined by a confined volume in which the inside temperature is 

assumed homogeneous, so all the thermal properties are constant. Consequently, the 

inside mass can be viewed as one point with a mass limited by the volume.  

A thermal zone can be defined for a room or sets of rooms and this is mainly a modeling 

assumption. 

The heat flux stored within the controlled volume in definite interval of time is equal to the 

amount of heat flux entering in the studied volume, the heat flux exiting from that volume and the 

heat flux dissipated in that volume and is expressed in Equation (2.8):  

 

  
                                                                                       

Where,     is the stored amount of heat energy in the controlled volume (in J),        is the heat 

flux entering the controlled volume (in W),         is the heat flux leaving from the controlled 

volume (in W) and            is the dissipated amount of heat flux from the surface of controlled 

volume (in W). In Equation (2.8), (        -      ) signifies the amount of heat gain/loss from the 

controlled volume and this gain/loss may be in the representation of conduction transfer, solar 

radiation, ventilation and internal sources. 
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Zonal Modeling 

The white-box building energy models are built with multiple thermal zones (see definition 2.4) 

and in this section single zone building is considered.  Figure (2.5) shows the heat transfer 

between buildings and external climatic environment. The indoor volume is bordered by its 

envelope (external walls and windows) which separates it to the external climatic conditions. This 

building is equipped with HVAC system to provide heating and/or cooling by fresh air circulating 

between the indoor zone and the air handling unit (AHU) through air ducts. Heat flows out from 

the zone when the indoor temperature of building is above the outside temperature. Heat is also 

transferred through the zone envelope such as walls, layers of materials and windows. Inside the 

zone envelope, three types of heat transfer occurs: conduction, convection and radiation, for 

example, heat is flowed by conduction in envelope. The solar radiation is transmitted and 

reflected back through transparent glazing and is also absorbed by the indoor surfaces. Due to the 

presence of occupants, the use of electrical lighting and other appliances, heat is added in the 

zone. It is also noticed that radiation heat transfer occurs through external and internal envelope 

on its surroundings.  

 

Figure 2.5: Scheme of energy flows in a building 

The energy balance of the in-air zone is influenced by heat transfer through building envelope, air 

flows through ventilation, air flows through leakage and internal gains. Due to this heat and air 
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flows inside the building, thermal behavior of a building are changing with time. These thermal 

behaviors eventually result in changing temperature in the indoor environment. The energy 

balance of in-air zone can be modeled as a single zone with several assumptions: 

 The air inside the zone is perfectly mixed with the state of indoor air resulting in uniform 

air distribution in the zone due to which the zone has the same properties such as 

temperature and humidity.  

 The surface envelopes in the zone are supposed to have uniform surface temperature, 

uniform solar irradiance and uniform radiant gain. 

 Thermal bridges are neglected.  

 The furniture inside the zone (e.g. chairs, tables etc.) and internal partitions are not 

considered and do not have any influence in indoor climate.  

General representation of heat balance under steady state conditions of an in-air zone is given by:  

   
          

          
             

                                        

Where,   
       is the heating or cooling required to balance heat in the in-air zone (in W),   

       

is the internal heat gain due to occupants, lighting and appliances (in W),   
          is the sum of 

heat gain inside the in-air zone (in W),   
       is the sum of heat loss from the in-air zone (in W). 

The in-air zone is bordered by firstly opaque envelope components such as wall, roof and 

basement floor and by secondly transparent envelope components like windows and glazing 

surfaces. Considering ventilation in the zone, Equation (2.9) can be further modified as: 

   
          

          
        

 

    
           

      

 

                

Where,   
         is the solar heat gain through transparent envelope components i (in W),   

         

is the heat gain or loss through zone envelope components j (e.g. walls, roof, window etc.) (in W) 

and   
       is the ventilation heat gain or loss due to air exchange (in W). Heat transfer through 

envelope (wall, roof and window) thus can be modeled by considering interactions with the 

external and internal environment and is dominated by conduction and convection heat transfer 

processes.  

Figure (2.6) shows a simple representation of building energy model using lumped resistance for 

illustration where 2R1C network represents building envelope walls, 1R1C network represents 

roof and 3R2C represents floors [26]. The window is simply represented by thermal resistance 

without storage due to its fast response of heat transfer. To be noted that white-box models are 
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usually built with complex lumped resistances model resulting in large number of building 

parameters (see definition 2.1). This lower order RC thermal network shown in Figure (2.6) is 

just for an illustration. The effect of solar radiation on an opaque building envelope components 

like walls and roof are considered by replacing environmental external temperature by sol-air 

temperature. This sol-air temperature takes into account incident solar radiation, radiation 

exchange with sky and the surrounding surfaces and is given by [27]: 

                      
            

  

 
                

          
      

  

                           

Where,             is the sol-air temperature (in K),           is the external air temperature (in K), 

       is the solar absorptivity on the envelope surface (-),       is the solar radiation incident on 

building envelope surfaces  (in W),    is the heat transfer coefficient on the exterior envelope 

surfaces (in W/m2.K),        is the emissivity on the envelope surface (-) and          is the 

surrounding temperature (in K). The heat transfer through envelope j can be represented as: 

   
        

 

                                                         

                                                                                 

 

Figure 2.6: Simple illustration of building energy model using lumped resistance and capacitance 

Heat capacity of each envelope components represents the thermal storage in zone and energy 

balance equation of each component is given by Equation (2.13) – (2.16): 
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Where,       is the wall temperature (in K),            is the in-air temperature (in K),          is 

the internal floor temperature (in K) and        is the exterior floor temperature (in K).   , 

    ,   ,     are the areas of walls, windows, floor and roof respectively (in m2).      ,     ,    

and     are the U-values of indoor walls, windows, floor and roof respectively (in W/m2.K).      , 

    ,     ,      ,     and      are the thermal resistances of indoor walls, outside walls, exterior 

floor resistance, interior floor, ground conduction coefficient and roof respectively (in m2.K/W).  

       ,   ,      ,      and     are the heat capacities of in-air, walls, interior floor, exterior floor 

and roof  respectively (in J/K).  The heat gain in the zone due to solar radiation assuming i number 

of window/glazing in the zone is given by:  

   
        

 

                                                                   

 

 

Where,      is the area of glazing i (in m2),      is the transmittance on glass plane i (-) and      is 

the solar absorptance on a glass plane i (-).  

The heat demand due to ventilation system   
        can be simplified as: 

  
                                                                                                   

Where,    is the factor of ventilation system (e.g. HVAC system),     is the volumetric flow of 

ventilation air (in m3/h),         is the indoor air density (in kg/m3) and           is the specific heat 

capacitiy of the indoor air (in J/kg.K).  

The internal gain of the zone represents the heat gain from occupants and their activity, lighting 

and appliances uses. The internal gain (  
       expressed in W) is given as:  
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Where,   
        is the heat gain due to occupancy (in W),   

       is the heat gain due to lighting 

(in W) and   
           the heat gain from appliances (in W). The heat gain due to occupancy in 

the zone is given as: 

  
                

                                                                                

Where,       is the number of occupants (-) and   
          is the heat generation rate from 

occupants in the zone. The heat gain due to lighting is given as: 

  
           

 

                                                                           

Where,     is the floor area of the zone (in m2) and             is the specific electric power demand 

of light j in the zone (in W/m2). The heat gain due to appliances is given as: 

  
           

 

                                                                      

Where,        is the specific heat gain due to appliances j in the zone (W/m2).  

In order to model these transient behaviors of building energy model, nowadays there are several 

detailed simulation tools available. These simulation tools model the energy and fluid flows 

including HVAC and plant control system inside the building system in a dynamic way. Many 

tools have focused on individual components and whole building components, however, there are 

still limited tools developed to integrate the building systems like EnergyPlus [28], ESP-r [29], 

IBPT [30], SIMBAD [31], TRNsys8 etc. These simulation tools developed are modular and 

transparent. They provide benefits to the individual developers to extend their own model and 

modify the existing models. Crawley et al. [32] made a comparison of twenty building energy 

simulation tools (DOE-2.1, EnergyPlus, ESP-r, TRNSYS, etc.). They found that comparison is 

difficult not only because of the programming language, but also what the given tools able to take 

into account can be different from one to another. They suggested that the modular capabilities of 

tools and requirement of future system help to proper choice the individual simulation tools.  

Detailed simulation methods take into account the transient or change in the surroundings of a 

given system with inclusion of building thermal characteristics. Different numerical methods are 

implemented such as continuous-time (laplacian domain), discrete-time (z-domain) and frequency 

                                                 
8
 TRNSYS 17, a Transient system simulation program. http://sel.me.wisc.edu/trnsys/feature 
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domain or even higher order lumped to model the physical variables of building components. For 

example, these methods solve the heat transfer equations governing Fourier equation using finite 

difference methods and complex transfer functions equations to undertake building dynamics 

[33]. These detail simulation methods therefore consists several hundreds to thousands of 

equations in order to model detail air flows and heat transfer of building. It models the whole 

building components and its integrated sub-components and system considering physical 

properties of building. Since these detailed simulation tools are build with detailed mathematical 

equations governing the physical phenomena, they capture the thermal dynamic behavior of 

buildings efficiently.  

It can be concluded that detailed methods uses complex physics based analytical model and are 

quite good to estimate and predict thermal energy demand for different building types including 

LEBs. However, such kind of model requires large number of building parameters and seems 

feasible only during an early phase design of new building rather than operation phase of the 

building.  

2.2.3 Gray-box Model 

Gray-box model is a combination between white-box and statistics (see section 2.2.4). It 

combines prior physical knowledge of building to model heat dynamics and determine the model 

structure, and then data fitting techniques to estimate model parameters (see definition 2.1) from 

empirical or measurement data. It includes heat gains or loss through thermal envelope based on 

temperature difference and overall heat transfer coefficient of wall, roof and glazing. The 

simplification of gray-box model is low-order thermal network model in the form of electrical 

resistance–capacitance (RC) circuit. The parameters R and C are modeled in differential equations 

are transformed into state space model to determine the transfer function. For estimating 

coefficient matrices of state space model, the boundary conditions are formulated based on prior 

knowledge of building geometry and materials and then optimization algorithm is used to find the 

parameter that reflects the physical information.  

Bacher et al. [34] proposed short-term heat load forecasting for single family houses located in 

Denmark. The model was built with the data from sixteen houses. RC low pass transfer function 

model was developed to represent the heat dynamics. Ogunsola and Song [35] proposed 2R2C 

model (i.e., two resistances and two capacitances) for the office building located in University of 

Oklahoma for thermal load prediction. Their results were compared with real measurement and 

EnergyPlus, and found that their model and EnergyPlus provided similar cooling load prediction 
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with some under predictions. It was also observed that their model captured many fluctuations 

which were not captured by EnergyPlus.  

Similarly, Wang and Xu [36] proposed 3R2C to model building envelopes including external 

walls and ceiling/roof and 2R2C to model building internal mass including floors, partitions and 

internal walls. The parameters of 3R2C model were determined based on frequency response 

characteristics and parameters of 2R2C model were identified from building operation data using 

genetic algorithm. Their results provided considerable accuracy of 90% for cooling load.  

The higher order R6C2 model was also proposed by Berthou et al. [37] to estimate thermal energy 

demand. In their model, occupancy profile, ventilation set-point, temperature set-point and solar 

gains (solar gain on walls and solar gain transmitted through windows)9 were used to identify 

parameters of R and C using interior point algorithm. Their model had an accuracy of 84% with 

an energy error below 2% for heating and cooling load estimation. They used the same model 

parameters during a year and concluded that R6C2 model was efficient for estimating thermal 

energy demand for a whole year where thermal power needs are high. 

Rather than thermal analogous RC network, Lu et al. [38] proposed a model combining physical 

and statistical approach to predict heating energy consumption of heterogeneous buildings. The 

physical model was based on physics of energy flows in a building where they modeled thermal 

envelope, solar, ventilation, occupancy, lighting and appliances. Then the stochastic time series 

models were formulated based on lagged value of heating load, indoor and external temperature. 

The parameters of heterogeneity for different building types were obtained using convex hull 

technique and their results showed considerable accuracy during the prediction.  

The summary of input variables and time step of prediction used in the literatures are detailed in 

Table (2.4). 

 

Table 2.4: Summary of input variables and time step of prediction using gray-box model 

                                                 
9
 Solar gain on wall and solar gain transmitted through window are based on geometrical information of building 

considering the shading effect, time of day and cloud cover data 

1 Bacher et al. [34] Gray-bo× × × × × H Heating

2 Ogunsola & Song [35] Gray-bo× 1*: H Cooling

3 Wang and ×u [36] Gray-bo× × × × × × 2*: × H Cooling

4 Berthou et al. [37] Gray-bo× × × 3*: × H Heating and cooling

5 Lu et al. [38] Gray-bo× × × × × × H Heating
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It can be thus concluded that gray-box models provide greater feasibility compared to white-box 

models due to the requirement of fewer features during the operation phase. Nevertheless, the 

complexity of model increases to fit the parameters of differential equations for large multi-zone 

building. 

2.2.4 Black-box Model 

Black-box models rely on a set of input and output data. For such model, the model parameters 

(see definition 2.1) are identified by statistical analysis between inputs and outputs 

measurements. It is also called input-output model since it maps their dependencies. 

Remark 2.1: 

Two main drawbacks of black-box model implementation can preliminary highlighted: 

o The objective function can have a lot of minima: there is no evidence for a 

global minimization. 

o The results depend on the initial point. 

Remark 2.2:  

It can be very difficult to obtain the model parameters of the black-box model. These 

models are prone to either under-fitting or over-fitting of data to obtain parameters shown 

in Figure (2.7) where   represents parameters while fitting x input and y output. The 

under-fitting of model is due to improper design of model to fit the data. The over-fitting of 

model is due to complex behavior of data and tries to fit as much as possible. Reasonable 

fitting is in-between under- and over-fitting. 

 

Figure 2.7: Under-fitting, reasonable-fitting (just right) and over-fitting of data 

1*: building envelopes and internal load components

2*: water flow rate, return and supply water temperature difference, indoor humidity, air flow rate, internal gains

3*: ventilation set-point, solar gains on walls, solar gain transmitted through windows

H: Hourly, D: Daily, M: Monthly, A: Annually, S: Seasonally 
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Three methods are reviewed hereafter to fit the black-box model: 

 Regression methods 

 Autoregressive model 

 Machine learning methods (Artificial intelligence, see Appendix B): ANN, SVM, RF etc. 

The applications of these models in the prediction of building energy demand or consumption are 

highlighted below: 

Definition 2.5: Learning phase – Validation phase - Testing phase 

For building energy prediction from black-box model, measurements or numerical 

behavior of input-output data used to build a model are called a learning phase and a part 

of training data reserved to select parameters of model  are called validation phase. 

Testing data are the prediction day conditions data which are unknown in future to 

predict building energy demand or consumption are called testing phase. The training 

phase estimate the parameters of model whereas validation phase refers to the selection of 

best parameters of model by verifying if any increase in accuracy over training data 

actually yields a validation accuracy or not.  

Definition 2.6: Batch Learning - Sequential Learning 

In building energy model, if all the inputs-outputs training data are presented and model 

parameters are updated thereafter then such type of learning mechanism is defined as 

batch learning. Whereas, if model parameters are updated with each input-output training 

data presented, then such type of learning mechanism is defined as sequential or 

incremental learning. 

 

Remark 2.3: 

Even if a black-box model is an input-output model, the explanatory input features are the 

choice of the modeler and some useful statistical tools exist such as the principal 

component analysis and semi-physical understanding. So, a pre-treatment of the data can 

drive to the choice of those input features. 

 

As an example, Lam et al. [39], Olofsson et al. [40], Olofsson and Andersson [41], 

Chaowen and Dong [42], Wan et al. [43] and Li et al.[44] used principal component 

analysis (PCA) in order to transform input data (climatic conditions like dry bulb 

temperature, wet bulb temperature, global solar radiation, clearness index, wind speed, 

humidity etc.) into  principal components before developing prediction model. Lam et al. 
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[39] deduced several climatic conditions using PCA before predicting a long-term energy 

consumption of a building located in Hong Kong, China. They identified that clearness 

index and wind speeds were less significant than dry and wet bulb temperature and global 

solar radiation for cooling load. They also found that principal components had high 

correlation (R2=0.87-0.96) with cooling load. 

Yokoyama et al. [45] assumed building dynamics as a first order model and then applied 

first order differential operation on a training dataset to remove the trend and periodic 

changes of energy consumption and climatic conditions (external temperature and 

humidity). Later they used this converted dataset to estimate cooling load. They found that 

model performance has been increased (relative error  8%) while comparing without pre-

treatment (relative error  11.3%). In order to reduce the degree of variations of energy 

consumption from seasonal behavior, Deb et al. [46] divided the training data into classes 

(very low, low, medium, high and very high) according to energy consumption as a pre-

treatment step. Later, they used this training data to estimate cooling energy consumption 

for institution buildings. Their model after pre-treatment exhibits R2 of 0.94 during 

prediction conditions, however, they did not compare their results without pre-treatment of 

input-output data.     

Remark 2.4: 

Besides pre-treatment of data to simplify the input features choice from statistical method, 

classification of data (in order to represent building operations according to week type) 

are the choice of modeler.  

For instance, Lam et al. [47] and Gaitani et al. [48] used PCA ;Li et al. [49] used canonical 

variate analysis (CVA) ; Gao et al. [50], Santamouris et al. [51] and Gaitani et al. [48] 

used clustering analysis to classify the energy consumption data into different classes or 

group. As an example, Li et al. (2010) applied CVA to analyze the building operation 

classes of office building. They used six input variables: mean and peak daily energy 

consumption and dynamical change of energy consumption coefficients that are obtained 

from auto-regression model for classification. Their CVA results clearly distinguished two 

kinds of building operation classes: working day and weekend.
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Remark 2.5: 

Thermal performance of building depends on time dependent and independent variables. 

Time independent variables are the design variable that depends on building geometry 

such as building shape, zone height, envelope area, floor area, window to external area 

etc.; and thermo-physical factors such as building materials, thermal insulation etc. Time 

dependent variables are those variables that are varied according to time, for example, 

climatic conditions, occupant dynamics and operating building characteristics (set- point 

temperature, lighting and natural ventilation rate).However, the effects of both time 

dependent and independent variables greatly effects the performance of prediction model.  

If all the input features, i.e., time dependent and independent variables (see definition 2.2) 

are used, then it increases the number of training data. This will further results in model 

complexity and increases the model training CPU-time. Generally, three types of feature 

selection methods: filter, wrapper and embedded are widely used ([52] and [53]). Filter 

method selects the input feature based on highest statistical correlation features only. 

Wrapper method selects the feature based on the accuracy of each feature in the prediction 

model (e.g, ANN, SVM etc.). Embedded method selects the best combination features 

evaluating the accuracy of features in the prediction model. It discards the lowest weight 

feature from the input feature. It is similar to wrapper method but it avoids multiple 

training of same feature. Therefore, feature selection is also the choice of modeler. 

For instance, the feature selection were performed in literatures [54] [55] [56] and [57] to 

select significant input variables. Zhao and Magoulés [54] performed correlation 

coefficients and regression gradient guided based on k-nearest neighbor (k-NN) feature 

selection method on 23 features of building (climatic conditions, water mains temperature, 

zone total internal heat gain, number of occupants, window heat gain/loss on each wall, 

zone mean air temperature, zone infiltration volume, district heating outlet temperature 

and total heat gain from people, light and electricity etc.). They found that similar 

accuracy can be achieved with 12 features only compared to 23 initial features for 

predicting heating load of building. They also found that regression gradient guided based 

on k-NN selects the best feature than correlation coefficient methods.  

Similarly, Kuisak et al. [55] used correlation index and boosting decision tree algorithm 

(see Appendix B.3 for decision tree and B.5.2 for boosting) to determine significant input 

features for cooling load.  They identified that different features are significant for both 

methods and there was a slight increment in performance     while using significant 
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features compared to all features in both methods. Jovanovic et al. [56] performed forward 

selection method based on linear regression to select the combination of best input 

features for daily heating load of buildings. Initially, they ranked the input features 

according to higher correlation indexes and evaluated the accuracy from first highest 

correlation indexes. Similarly, they add one by one other remaining highest correlation 

inputs and select the best combination. Out of several input combination, they identified 

that mean daily wind speed and minimum daily temperature are insignificant features for 

heating load. However, they found that model after forward selection had more error 

      compared to all the input features. Autocorrelation to identify building load 

dynamics is also used. Zhang et al. [57] determined important input features for heating 

load using autocorrelation.  They investigated heating load of previous hour of the same 

day and same hour of the previous day and they found that previous 2 hours and last 3 

days have highest correlation indexes thus considered as an input features of the model. 

Unfortunately, they did not compare their results with and without feature selection. 

2.3 Applications to Building Energy Modeling by Black Box Model 

The building energy modeling based on black box model can be built considering all available 

data and few data.  

Definition 2.7: All data– Relevant data  

The approach is defined all data if all the available data (measurement or empirical 

behavior of building data) are used for model training to determine the parameters of 

model. For such model, the parameters are fixed for the considered building 

independently of the prediction day and future environment conditions. The approach is 

defined relevant data if the pre-selection of data is done initially for model training based 

on prediction day and future environment conditions. For such model, the data used for 

model training are reduced based on the relevance and parameters of model are changed 

for the considered building by each prediction day conditions. This type of approach is 

also named by few representative data since it selects small data to build a model.  

Definition 2.8: Featuring database  

A daily database is a collection of days for the input features. Those days have a sampling 

time of one hour. Consequently, the features are averaged on the sampling time.   
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The concept of “all data” and “relevant data” modeling approach for the featuring database (see 

definition 2.8) is shown in Figure (2.8-2.9).  

 

Figure 2.8: Concept of all data and relevant data with fixed training approach to build a model 

 

Figure 2.9: Concept of relevant training with updated training approach to build a model 

Training Data (Fixed) Testing Data

Relevant 

Data

All Data Approach

Relevant Data with Fixed Training Approach

Relevant Data with Updated Training Approach

Relevant 

Data

Training Data (Updated) Testing Data
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It can be seen that “all data” modeling approach uses entire data (e.g., 365 days featuring 

database) to build a model whatever the prediction day conditions (e.g., climatic conditions, 

occupancy etc.). The “relevant data” modeling approaches uses few representative day data (e.g., 

10 days featuring database) from the two kinds of training data: fixed and updated. In the 

“relevant data with fixed training” approach, few representative day data are selected from 

fixed all available data for model training for each prediction day conditions. On the other hand, 

in the “relevant data with updated training” approach, training data are updated after each 

prediction day conditions so that few representative training selected can be updated from all 

given training data if it is relevant to build a model for each prediction day conditions.   

2.3.1 All data modeling approach 

In this section, only applications related to building load prediction using “all data” modeling 

approach  are reviewed.   

Regression Methods 

Cho et al. [58] used a simple regression model to predict heating load for building located in 

Daejon, S. Korea. They used single external temperature input features and found that the model 

was highly sensitive with the length of measurement data. They concluded that the regression 

model requires more training data to increase the performance of the model.  

A second order polynomial regression was used by Catalina et al. [59] to estimate monthly and 

annual heating energy demand of a residential building. Different scenarios were evaluated by 

varying the shape factor, U-values, the time constant and the ratio of window to floor areas. The 

prediction results show a high accuracy with an error less than 3.2%.  

Autoregressive Method (ARX): Dynamic Model 

Yun et al. [60] used ARX (autoregressive with exogeneous, i.e., external, inputs) time and 

temperature indexed model with occupancy profile to predict hourly thermal load of building. 

They used three periods to represent the building energy dynamics: day period (8 AM to 9 PM), 

transition period (6 AM to 8 AM) and night period (9 PM to 6 AM). They identified that the 

external temperature is the dominant variable for thermal load. They also found that past hour 

energy load and occupancy are significant variable during the transition period.  

However, a statistical black-box model [58] does not precisely represent hourly or in fraction of 

minute of building load. In order to find the best optimum fitness of data, these statistical models 
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require more effort and time. Polynomial approximation [59] is rationalized than statistical 

models due to its non-linear mapping between input and output function, nonetheless it is 

computationally heavy in terms of curse of dimensionality10. The dynamic autoregressive models 

[60] are not suitable if the prediction range is long horizon since the prediction of building load 

values depends on predicted values (e.g., building load of previous hours) and errors might be 

accumulated.  

Neural Network  

Ben-Nakhi and Mahmoud [61] investigated different buildings based on occupancy density (low-

high) and building geometry to predict cooling load using external temperature of previous day 

using general regression neural network. They showed that neural network is able to predict 

heating load with good fit (R2=0.986) while considering single external temperature variable for 

different building configurations. 

Furthermore, thermo-physical parameters of building were investigated using neural network [62] 

[63] [64] to determine if neural network could be beneficial for different types of building. For 

instance, Kalogirou et al. [62] estimated minimum and maximum daily heating and cooling load 

for 9 buildings and their results showed that neural network can be used for thermal load 

prediction of buildings with different construction. Similarly, Yan and Yao [63] used different 

climatic zones using thermal envelope building parameter (see definition 2.1) including heat 

transfer coefficient and two other input features heating degree day (HDD) and cooling degree 

day (CDD) to predict heating and cooling energy consumption. Their results showed an average 

deviation of 1.7% and 2.9% while compared with actual values of heating and cooling energy 

consumption. They concluded that neural network can be used for adapting from one known 

building to another unknown that have different climates and heat transfer coefficients. The effect 

of insulation thickness and composition of insulation materials, i.e., insulation thermal 

conductivity (K-value) were investigated by Naji et al. [64] to predict total heating energy demand 

using extreme machine learning. They identified that energy demand were significantly affected 

by the properties of insulation materials rather than thickness of wall materials of building. They 

noticed that with the increasing of thickness of insulating materials affects the other materials in 

less amount leading to slight decrease in energy demand. 

                                                 
10

 Define complexity of model i.e., with the linear increase of input variables, the complexity of the model goes 

on increasing 
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Recurrent neural network, which uses internally generated predicted output to make further 

output, was used by Kalogirou and Bojic [65] to predict energy consumption for passive solar 

building in Cyprus. Their results showed higher accuracy (R2=0.999) for unknown conditions. In 

addition, dynamics of occupant behavior was included by Kowk and Lee [66] to predict cooling 

load for office building in Hong Kong, China. Apart from climatic conditions, they used 

percentage of total building occupancy area to distinguish for working/non-working period and 

electrical power consumption of the primary air handing unit (PAU) of the ventilation system for 

indicating occupancy dynamics. They found that with the inclusion of dynamics of occupancy and 

occupancy area leads to increase in performance (R2=0.43 to R2=0.95) compared to only climatic 

conditions input features and justified that the influence of occupancy is significant for thermal 

load. 

The comparison between different models: neural network with other statistical and physical 

models were also performed. Tso and Yau [67] made comparison of different black-box models: 

stepwise linear regression, neural network and decision tree for electricity energy consumption in 

Hong Kong, China. They found that during summer seasons, decision tree performs slightly better 

than other two methods whereas in winter seasons, neural network performed better than other 

two models. Comparison between physics based method (finite difference method) with neural 

network was performed by Ekici and Aksoy [68] to predict heating energy consumption in 

buildings. They used physical and geometrical input features and their results showed that neural 

network perform average 94-98% accuracy in comparison to physical method. Similarly, 

comparison between simulation tools Energy Plus and neural network was proposed by Neto and 

Fiorelli [69] to estimate energy consumption of buildings in Sao Paulo, Brazil. Their result 

showed that neural network was slightly more accurate than Energy Plus when comparing with 

real data.  

Support Vector Machine 

Zhang et al. [57] used SVM to predict heating load in Daqing city, China. In their work, 120 days 

from 2007 to 2008 of heating load data were used for training data and last one day was used to 

evaluate test condition. They performed autocorrelation of heating load of previous hour of the 

same day and same hour in the previous days and found that previous 2 hours and last 3 days have 

non-linear thermal dynamics. Later, trained SVM model errors were corrected using Markov 

chains probability. Their results further illustrated that such models were suitable for pure 

dynamic model. 
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Comparison of SVM with ANN was performed by Li et al. [70] to predict cooling load of office 

building in Guangzhou, China. They found that both SVM and ANN performed higher accuracy. 

However, the results also revealed that SVM has better accuracy of 0.02% than the ANN.  

Decision Tree 

Yu et al. [71] used decision tree to classify and estimate Japanese residential building energy use 

intensity levels into either high or low values. Their results demonstrated that decision tree 

method correctly classify and predict energy demand  with 93% and 92% accuracy on training 

and test data.  

Random Forest 

Tsanas and Xifara [72] used random forest to predict heating and cooling load of residential 

building. Their results showed that RF has higher accuracy with mean absolute errors deviations 

of 0.51 and 1.42 for heating and cooling load respectively. They also compared their results with 

linear regression model and identified that RF have higher accuracy due to their capacity of 

relevance of input variable determination (association strength of variable and their response) and 

redundancy (association strength between variables, i.e., multi-collinearity effects) unlike 

regression model.   

Hybrid/Ensemble Method 

Hybrid methods use fusion of several models whereas ensemble method used outputs of several 

models to make a final prediction. Ensemble prediction methods combine output of different 

models by simply averaging, weighted based averaging and median based averaging. The 

advantages of ensemble model are that it compensates the errors by combining their outputs thus 

performed better results than individual one ( [56], [73]).   

Kusiak et al. [55] made a comparison of ensemble neural network model with 9 other machine 

learning techniques (Decision Tree: CART, CHAID, exhaustive CHAID, and boosting tree; 

multivariate adaptive regression splines (MARS), RF, SVM, neural network and k-NN) for steam 

load prediction in Iowa City, USA. They found that ensemble neural network had better 

performance than other machine learning models. Fan et al. [74] used ensemble of machine 

learning models to predict peak and total energy consumption of buildings in Hong Kong, China. 

They compared eight models: statistical methods (MLR and ARIMA), and machine learning 

based on SVM, RF, multi-layer perceptron neural network, boosting tree (BT), MARS, and k-
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Nearest neighbors (k-NN). Their results revealed that ensemble model have MAPE error of 2.3% 

and 2.9% for daily peak and total energy consumption respectively. Out of eight models, RF and 

SVM have best performance, so largest weights of them were integrated in the ensemble model. 

The traditional statistical models, i.e., MLR and ARIMA had poor performance and they had 

small weights in the ensemble model. Jovanovic et al. [56] proposed ensemble of various neural 

networks (feed-forward neural networks, radial basis function neural network and adaptive neuro-

fuzzy interface system) for the prediction of daily heating energy consumption in Norweign 

University of Science and Technology campus buildings located in Norway. They found that 

ensemble method performed better than the individual model.     

Xuemei et al. [75] proposed hybrid ARMA and multi-layer perceptron neural network to predict 

hourly cooling load. The residual errors obtained from neural network model were further used to 

predict from ARMA model for correcting the cooling load. Li et al. [76] proposed hybrid genetic 

algorithm-adaptive network-based fuzzy interface system (GA-ANFIS) to predict energy 

consumption of buildings and compared with neural network. Their results showed that the 

performance of hybrid GA-ANFIS model was better than neural network. Wang and Meng [77] 

proposed ARMA-neural network to predict hourly energy consumption of Hebei, China. The 

residuals of ARMA were further input to neural network. Their results revealed that hybrid model 

has good accuracy (MAPE=0.3%) compared to individual model (neural network: MAPE=4.0%, 

ARMA: MAPE=3.5%).  

In the application of building with different construction using geometrical input features, Chou 

and Bui [73] applied ensemble model and compared with different data-driven models: SVM, 

neural network, classification and regression trees, chi-squared automatic interaction detector, 

general linear regression to predict heating and cooling load . Their results showed that SVM and 

ensemble model (combination of averaging the results from neural network and SVM) had better 

results for heating and cooling load respectively.  

The input variables and time step of prediction that are used in the literatures using “all data” 

modeling approaches are summarized in Table (2.5). It can be concluded that machine learning 

based AI model using “all data” approach had been widely applied using limited physical 

features of building during the operation phase. The literatures ( [62], [63] and [64]) also applied 

for building with different construction using thermo-physical and geometrical inputs features and 

have higher performance compared to statistical models ( [73] and, [74]). The main advantage of 

such AI model using “all data” approach is once the model has been built, energy operator or 

building operator does not require knowledge on physical systems.  
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Table 2.5: Summary of input features and time step of prediction using all data modeling approach  

 

1 Cho et al. [58] Regression × × A

2 Catalina et al. [59] Polynominal regression × × 1*: × M, A

3 Yun et al. [60] ARX × × × × × × × H

4 Ben-Nakhi & Mahmoud [61] Neural network × H, D

5 Kalogirou et al. [62] Neural network × × × × 2*: D

6 Yan and Yao [63] Neural network 3*: A

7 Naji et al. [64] Neural network 4*: A

8 Kalogirou and Bojic [65] Neural network × 5*: H

9 Kwok and Lee [66] Neural network × × × × 6*: H

10 Tso and Yau [67] Neural network 7*: A

11 Ekici and Aksoy [68] Neural network 8*: A

12 Neto and Fiorelli [69] Neural network × × × × D

13 Zhang et al. [57] Support vector machine × H

14 Li et al. [70] Support vector machine × × × 9*: H

15 Yu et al. [71] Decision tree × 10*: × A

16 Tsanas and Xifara [72] Random Forest 11*: -

17 Kusiak et al. [55] Ensemble × × D

18 Fan et al. [74] Ensemble × × × 12*: × D

19 Jovanovic et al. [56] Ensemble × × × × × × D

20 Chou and Bui [73] Ensemble 11*: A

21 Xuemei et al. [75] Hybrid × × × H

22 Li et al. [76] Hybrid × × × × × H

23 Wang and Meng [77] Hybrid × H

Other 

Parameters

Indoor /Set-

point 

temperature

S.N. Authors Type of Model

Input Features Used for Modeling

Time 

Step
External 

temperature

Solar  

radiation

Relative 

Humidity

Previous 

Hours/Day 

Energy Load

Wind 

speed

Occupancy 

Profile

Function 

representing 

H,D,M,A,S



2.3 Applications to Building Energy Modeling by Black Box Model 58 

 

 

 

2.3.2 Relevant data modeling approach 

The small representative data selected from the sets of all data is sufficient to build a predictive 

model. There are three major reasons to consider “relevant data” compared to “all data” 

modeling approach. 

 Firstly, all data used for model training contain similarities and dissimilarities of input 

patterns behaviors and some of the information might be redundant.  

 Secondly, a predictive model takes a lot of time for model training when all the data are 

used.  

 Finally, with the adaptability of growing this model in the future, the newest environment 

and climatic conditions have probable more useful information, which is not considered in 

“all data” modeling approach due to its computational complexities. The effect of this 

new information is neglected to update the model parameter. In order to update the model 

parameters in “all data” modeling approach, the initial learning algorithm should be 

modified to complex learning algorithm.  

Definition 2.9: Online Learning- Offline Learning 

Learning mechanism in all data modeling approach is called offline learning since model 

parameters are not updated with new datasets. The approach relevant data uses both 

offline learning and online learning: The offline learning selects few representative data 

from fixed all available data whereas online learning selects few representative data from 

updated all available data so that it updates the model parameter with new dataset and 

adapt to changing environment.  

 

1*: building envelope U-value, window to floor area ratio, building time constant

2*: structural characteristics of heat transfer by indicating wall and roof type

3*: heat transfer coefficients in building envelopes; window to wall ratio; building shade coefficient, orientation, solar absorption, 

air change rate, shading coefficient of window in each orientation, HDD and CDD

4*: insulation thickness, Insulation k-value

5*: insulation, thickness, heat transfer coefficient

6*: rainfall, bright sunshine duration, occupancy area and air unit power consumption

7*: housing type, household characteristics and appliances ownership

8*: building transparency ratio, insulation thickness and orientation

9*: last 2 hours dealy of outside air temperature and last 1 hour delay of solar radiation

10*: house type, construction type, floor area, heat loss coefficient, space heating, hot water supply

11*: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, glazing area distribution

12*: pressure, cloud, rainfall, evaporation, number of hours of reduced visibility

H: Hourly, D: Daily, M: Monthly, A: Annually, S: Seasonally 
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The comparison of “relevant data” with fixed/ updated training with “all data” modeling 

approach is shown in Table (2.6). It can be seen that “relevant data” modeling approach has 

many advantages in terms of probability to have redundant information, computing CPU-time and 

updating of model parameters. It is also seen that “relevant data with fixed training” uses 

offline input featuring database leads to learning mechanism offline (see definition 2.9). Whereas, 

“relevant data with updated training” uses online input featuring database result in learning 

mechanism online. 

 

Table 2.6: Comparison of relevant data with fixed/updated training with all data modeling 

approach 

Remark 2.6:  

The number of training data significantly influences the accuracy of prediction model. For 

instance, Withdrow and Kamenetsky [78] recommend that the ratio of training data should 

be at least ten times greater than the input features.  

The review works on “relevant data” modeling approach to select representative days data for 

model training applied to energy consumption prediction regardless of type of model used are 

discussed below: 

Similar Climatic Conditions 

Several studies have been carried out to select relevant day data based on similar trends of 

climatic conditions for model training applied to electrical energy consumption: ( [79], [80], [81] , 

[82] and [83]). For example, Chen et al. [79] used weekday and climatic index of wind chill 

temperature and humidity; other literatures ( [80]and [81]) used day indicator, maximum and 

minimum external temperature; and Jain et al.( [82]) used day-type, maximum external 

temperature and humidity of prediction day to select relevant day data for model training. All 

these methods determined the similarity of selected individual variable based on the Euclidean 

Whole database Selected sub-database Selected sub-database

Fixed Fixed Updated

Offline Offline Online

Computing CPU-time High Low Low

Model parameters Fixed Updated Updated

All data 

Approach

Relevant data with Fixed 

Training Approach

Relevant data with Updated 

Training Approach

Proabability to have

redudant information
High Low Low

Input featuring databse

Characteristics
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distance between prediction day with training day and they are further multiplied by weight 

factors of individual selected variable. The weight factors of selected variables were determined 

using least square method (LSM) based on regression model. Mu et al. [83] used day type, 

weather type, week type, maximum and minimum temperature change and date difference of 

prediction day to select relevant day for model training. In their work, the weights of selected 

variables were estimated from correlation coefficients of training and prediction day data. Their 

results showed that relevant day data based on similar climatic conditions for model training 

improved the performance, e.g., root mean square error (RMSE) of 0.84 with “relevant data” 

modeling approach compared to RMSE of 4.5 with “all data” modeling approach.    

Similar Energy Load and Climatic Conditions 

Several studies have been carried out to select relevant day based on electrical energy load and 

climatic conditions data of prediction day for model training. For example, Mandal et al. [84] 

determined the similarity between prediction day and relevant day based on electrical load, load 

deviation and deviation of external temperature of previous day from prediction day. They 

determined the weight factors of selected variables using LSM based on regression model. Their 

results revealed greater accuracy with 2.5% mean absolute error. He et al. [85] used similar trend 

and day similarity degree to select relevant day for model training. In their work, similar degree-

day was calculated from cosine similarity angle between electrical load with the day to be 

predicted and training day data, and trend similarity with daily average energy load. Their 

prediction results showed that “relevant data” approach is better (MSE11   2.5%) than “all data” 

modeling approach (MSE   4%).  

Heating Degree-Day and Cooling Degree-Day 

HDD and CDD was used by Roldàn-Blay et al. [86] to select relevant day for model training and 

later used trained model for predicting electrical load. In their work, estimated HDD and CDD of 

prediction day were used to select similar HDD and CDD of training day as a relevant day. Their 

results showed mean absolute percentage error (MAPE) of 2% while using “relevant data” 

modeling approach. Unfortunately, they did not compare their methods with “all data” modeling 

approach.    
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Clustering 

Several studies have been conducted ( [87], [88], [89], [90], [91], [92], [93], [94] and [95]) based 

on clustering /classification methods to select relevant day from particular cluster/classes for 

model training. The different clustering methods were used by many authors (Jain and Satish [87]: 

SVM classifier; Ghanbari et al. [88]: k-means clustering algorithm; Pasila [89]: Fuzzy c-means 

clustering; Yadav and Srinivasan [90]: Kohonen self-organizing map (SOM) clustering) to cluster 

daily average electrical load of training day and further selected particular cluster based on 

estimated daily average load of prediction day to define relevant day. As an example, Ghanbari et 

al. [88] achieved slight increment in prediction performance while applying “relevant data” 

modeling approach based on clustering compared to “all data” modeling approach, i.e., without 

clustering (All data: MAE- 1.4%; Relevant data: MAE- 0.6%).  

Several authors used different methods (Sun [91]: deterministic annealing clustering algorithm; 

Duan [92]: ant colony clustering method; Marin et al. [93]: self-organizing map classifier) to 

cluster electrical load data into different groups. Later on, the load from the previous day’s 

prediction was used to select particular clusters as relevant data for model training. As an 

example, Marin et al. [93] obtained 15 clusters and their prediction results showed absolute 

percentage error below 2.3% for all clusters.  Grenda and Macukow [94] used SOM to identify 

different classes of district heating load as relevant day data based on daily average heating 

energy demand with the assumption that similar daily average customers will have similar thermal 

properties of buildings. Their results showed acceptable standard deviation error rates of 0.0019.  

Pattern Recognition 

The SOM clustering based on external temperature and electrical  load of the previous day was 

used by Tafreshi et al. [95] to find similar patterns as relevant day for given predicted external 

temperature and estimated daily average energy load. The average error rates were       while 

testing with 1 year data.  

Reference Day 

Reference day based on similarities of occupancy profile was used by Sun et al. [96] to select 

representative day for model training. Their selection of reference day varied during a week. As 

an example, the working days (e.g., Wednesday, Thursday and Friday) have similar occupancies 

with the previous days thus previous days were selected as a reference day. In case of weekend 
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and Monday, last weekend and Monday was selected as a reference day because of similar 

occupancy profile. Their predicted R2
 value was 0.89 and observed that their predicted results had 

significant deviations with the actual measurement values due to their large deviations of weather 

difference while selecting a reference day.   

Sliding Window and Accumulated Training 

The selection of representative day based on fixed amount of data also called sliding window and 

retraining “all data” modeling approach with each new update measurement data called 

accumulated training or incremental learning (see definition 2.6) were purposed. For instance, 

Gonzalez and Zamarreno [97] predicted electricity consumption of building using sliding window 

of 21 days data for model training using neural network. Their results revealed good fit for 

working day period whereas their prediction results were below the actual measurement values for 

weekend. It might be due to 21 day window did not cover the peak energy consumption of data 

for particular prediction day conditions. Similarly, Yang et al. [98] used fixed sliding window and 

accumulating training. Compared to accumulative training, their results based on sliding window 

had better performance for real measurements.  

The summary of input features used to select relevant day data and the model used for training are 

detailed in Table (2.7). It can be concluded that most of the “relevant data” modeling approaches 

used to select small representative days data were based on daily average energy load of the 

previous day for a given predicted day, daily average energy load  of predicted day and initial 

energy load of predicted day ( [84], [85], [87], [88], [89], [90], [99], [91], [92], [93], [94] and 

[95]). In addition, if the learning mechanism of prediction model of energy demand of building is 

not only for a day ahead, but also for a longer period in advance, then prediction methods will rely 

on previously predicted daily average energy load values and errors will be accumulated thus it is 

not pragmatic during operation phase of building. Furthermore, many review works of “relevant 

data” modeling approaches were based on electricity load and methodology applied to electricity 

load would not have similar behavior to thermal energy consumption because of thermal inertia 

and set-point temperature behavior in building. It is also observed the possibility to consider 

smaller representative data using recent training data or using fixed sliding window ([97] and 

[98]), but the prediction conditions might not reflect the seasonal variations of energy demand 

using few or large window sizes. Also, adaptive model is seen based on retraining the model with 

new update of training data [98]. If the new training data increases then the adjustment of model 

parameters is difficult due to this recent change. In addition, sometimes this recent training data 

changes might be more informative but their effect have less impact in updating model training.   
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Table 2.7: Summary of input features used to select relevant data 

 

 

 

External 

Temperature

Wind 

Velocity
Humidity Energy Load Occupancy

Day Type 

Categorization

Other 

Parameters

Chen et al. [79] Wavelet and neural network × × × × LSM Electricity

Sun et al. [80] FSVR and linear extrapolation × × LSM Electricity

Senjyu et al. [81] Neural network × × LSM Electricity

Jain et al.[82] FLC and ant colony × × × LSM Electricity

Mu et al. [83] Neural network × 1* Correlation Coefficients Electricity

Mandal et al. [84] Neural network × × × 2* LSM Electricity

He et al. [85] Neural network × Correlation Coefficients Electricity

3 HDD & CDD Roldàn-Blay et al. [86] Neural network × - Electricity

Jain and Satish [87] Support vector machine × - Electricity

Ghanbari et al. [88]  Genetic fuzzy and ANF × - Electricity

Pasila [89] Neuro-fuzzy × - Electricity

Yadav and Srinivasan [90] Auto regression (AR) × - Electricity

Sun [91]; Duan [92]; Marin et al. [93]; Neural network × - Electricity

Grzenda and Macukow [94] SOM and evolutionary NN × Heating

5 Pattern Recognition Tafreshi et al. [95] Neural network × × Patterns search by SOM Electricity

6 Reference Day Sun et al. [96] 3* × - Cooling

7
Sliding window and

Accumulative Training

Gonzalez and Zamarreno [97]; Yang et 

al. [98]
Neural network

4*
- Electricity

4 Clustering

SN Selection Method Type Authors Problems

1 Similar Climatic Conditions

2
Similar Energy Load and 

Climatic Conditions

Model Type

Significant Input Features
Weight Determination 

Method

1*: Weather type and date difference

2*: Energy load deviations

3*: Calibration based on reference day

4*: Fixed window size and model focus to update parameters with new measurement data

FLC: fuzzy logic interface

FSVR: fuzzy support vector regression

ANF: adaptive neuro fuzzy

SOM: self organizing map

LSM: Least square method
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Remark 2.7:  

The individual selected features of building has different weight on building load and 

influence of building load is estimated by least square method (LSM) method based on 

regression model in literatures ( [84], [91], [79], [81] and [82]). 

2.4 Conclusion 

This chapter provides general concept on LEB and draw a benchmark to compare with CB. It also 

provides evolutions of LEB trends in Europe. Then it reviews on input features for building 

energy consumption prediction and found that energy consumption of building depends on several 

factors: climatic conditions, geometrical parameters, thermo-physical parameters and building 

operating conditions. The short-description of input features used in the literatures is summarized 

in Table (2.8). 

It then reviews three widely used prediction model namely white-box, gray-box and black-box 

model to estimate and predict thermal energy consumption of building. The white-box models are 

based on fundamental principle of building physics. Black-box model are solely based on 

measurement or empirical data. Gray-box model are just combination of white-box and black-

box. The proper choice of these three models depends on the purpose, prior knowledge and 

available data. 

The summary and comparison of these models based on input data, modular experience, 

calibration effort and training data requirement, etc. are shown in Table (2.9). The four kinds of 

artificial intelligence black-box models: neural network, support vector machine, decision tree 

and random forest are only considered for further discussion since they are more suitable for non-

linear problems. It can be noticed that when the model goes from white-box to black-box, the 

input features goes on decreasing, calibration goes on decreasing and training data sets goes on 

increasing. It is clear that white-box model (detailed energy simulation) should be used when 

there is a requirement of extensive information of building characteristics. These kinds of models 

are suitable for an early stage in new buildings for estimating thermal energy consumption. Gray-

box model, moreover, requires detail understanding of building thermal dynamics but overcomes 

the limitation of white-box model due to structural complexity. 
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Table 2.8 Description of input features used in literatures for building energy consumption prediction 

 

 

Descriptions (with respect to heating energy consumption of building)

dry bulb temperature determines thermal response of building and amount of heat gain/loss through building envelope; increases heating energy consumption when it is lower 

wet bulb temperature determines humidification 

solar radiation means free heat gains which lowers the energy use for heating and increases the heat gains due to increase of it

sol-air temperature the equivalent of outside air temperature that provides similar heat transfer due to outside air, solar radiation and radiative heat exchange with sky and surroundings 

humidity affects the latent load 

clearness index sky or cloud conditions and blocks the solar radiation, thus  affects the shading through windows/glazing

wind speed and directions affects natural ventilation and outside surface building envelope; increases the heating energy consumption thus impacts the hygrothermal response of building envelope

building location and orientation latitutde, longitude and affects the solar gain

window to floor area ratio affects the lighting pass through the building

shape factor /relative compactness shape of building type and affects the energy consumption and standards due to heat loss through the surface thus decreases heating energy consumption if it is higher 

transparency ratio percent of wall covered by the window and determine solar gain effect in building

area (surface, wall, roof, glazing) affects total energy consumption

determines the energy consumption and indoor environment; it decreases the requirement of heating energy consumption if thermal heat transfer coefficient of envelopes is lower

solar gain on wall affects the wall capacitance through insulation 

affects the thermal mass and indoor air temperature of building 

time constant ratio of thermal capacity of the building to the overall heat loss coefficient; and affected by the building envelope and thermal mass of the building

thermal inertia quantify in terms of thermal mass, i.e., heat capacity and density, and higher the heat capacity  higher will be thermal inertia and balances the indoor environment

base temperature the temperature which determines whether heating or cooling requires

shading coefficients determines the solar heat gain 

signify the time constant and thermal inertia of building

internal gains gains from occupants, lighting and appliances; it decreases heating energy consumption if it is higher

indoor temperature, humdity indoor temperature and moisture variation for thermal comfort

ventilation/infiltration rate air flow rate from outside to the building and signify heat loss from the building thus it increases heating energy consumption if its losses from ventilation is higher

(mass flow rate)

return and supply temperature temperature of water supply/return through pipe to/from the building

function representating H, D, M & S signify the energy use time

AHU power consumption electrical power consumption required for Air Handling Unit 

Building 

Operating 

Conditions

Geometrical 

Parameters

solar gain transmitted through 

window

heat transfer coefficient of walls, 

roof and glazing

materials of walls, roofs, floors  and 

windows

Input Features

Climatic 

Conditions

Thermo-

physical 

Parameters

H: Hour, D: Day, M: Month and S: Season
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Table 2.9: Comparison of white-box, gray-box and black-box prediction models 

 

 

Neural Network Support Vector Machine Decision Tree Random Forest

Input data ●●●● ●●● ● ● ● ● ●

Modeller experience ●●●● (1*,3*) ●●●  (1*,2*) ● ●●  (2*) ●●  (2*) ●●  (2*) ●●  (2*)

Simplicity of calibration (in terms of parameters) ● ●●● ●●●● ●●● ●●●● ●●●● ●●●●

Training data - ●●● ●●●● ●●●● ●●●● ●●●● ●●●●

Model Training Time ●●● ●●● ●●●● ●●●● ●●● ●● ●● 

Requirement of building physical information ●●●● ●●● ● ● ● ● ●

Physical intrepretation of parameters ●●●● ●●● ● ● ● ● ●

Model complexity ●●●● ●●● ● ●●● ●●● ●● ●● 

Accuracy ●●●● ●●●● ●● ●●●● ●●●● ●●●● ●●●●

Adaptability of model parameters ● ● ● ●●●● ●●●● ●●●● ●●●●

Application during operation phase ●● ●●● ●● ●●●● ●●●● ●●●● ●●●●

Multicollinearity effects from input data ● ● ●●●● ●●● ●● ●● ●● 

Uncertainity ●●●● ●●● ●●● ● ● ● ●

Features Specification Gray-box

Black-Box

Linear Regression
Machine Learning based AI TechniquesWhite-box

1*: Familar with building thermal dynamics

2*: Familar with statisical concepts

3*: Familar with building thermal simulation tools

Notations: 

●●●●: Very high

●: Very low
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Thus, it can be concluded that both white-box and grey-box model are highly parameterized due 

to their interactions between systems on various mode of heat transfer requiring more input 

information. All the physical thermal properties of building are not always known and cost 

effective, and hence impracticable for Energy Services Company (ESCOs) and/or building energy 

management system (BEMS) for planning and control use during the operation phase. On the 

other hand, black-box models can be used when few input features are available and is 

extensively used for adaptive model in the future. Linear statistical regressions based black-box 

models are easier method and do not require expertise knowledge. Machine learning based AI 

model have greater accuracy but suffer from physical interpretation. Neural network requires 

large number of training data. In contrast, SVM has a huge advantage in representative training 

data. Random forest and decision tree requires small CPU-time for model training.  

However, machine learning based artificial intelligence techniques have several advantages 

compare to white-box and gray-box model during the operation phase.  

 Firstly, they require fewer parameters of building which might be practicable during 

operation phase.  

 Secondly, they are good in learning the response of building energy system.  

 Finally, they have a strong capability of being adaptive to update the model parameter to 

take into account dynamic environment of future conditions.  

 

Nevertheless, these artificial intelligence models based on “all data” modeling approaches has 

several drawbacks due to redundancy of input information, complexities in model training and 

adaptability to updating the model parameters in future environment. The review works that are 

based on small representative data selection known as “relevant data” modeling approaches are 

suitable for adaptive model to update the parameters of model but still they have some limitations. 

First, the methods that focus on selection of few representative data do not consider past day 

climatic conditions due to large time constant of building (for example, more than 100 hours in 

LEBs [16] which is an essential factor for LEBs. Second, these methods do not consider the solar 

gain impact. Finally, the methods that are based on daily average energy load of prediction day or 

previous day to select representative data are not suitable for LEBs.  If the learning mechanism of 

prediction model of energy demand of building is not only for a day ahead, but also for a longer 

period in advance, then the prediction methods will rely on previously predicted daily average 

energy load values and errors will be accumulated thus it is not pragmatic for real application. 
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The next chapter will bridge the aforementioned research gap and discuss the methodological 

framework to predict building energy consumption from hours to couple of days (or even longer 

periods depending upon the forecast range of climatic conditions). It describes the “relevant 

data” modeling approach that uses few representative data for model training using machine 

learning model: artificial neural network, support vector machine, boosted ensemble decision tree 

and random forest. It also explain methodological framework of “all data” modeling approach 

using machine learning model. 
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Chapter 3: Artificial Intelligence for LEB 

Modelling 

 

3.1 Modeling Approaches  

3.1.1 Introduction 

The estimation of the heating load of a LEB is more challenging due to its large time constant, for 

detail see section 1.2, chapter 1. As an example, the estimation of heating load is quite different 

for two similar climatic conditions days d1 and d2 (under the same occupancy profile and the same 

building operating conditions schedule), see Figure (3.1). As shown in Figure (3.1), the days d1 

and d2 have a similar climatic conditions (External temperature     , horizontal solar radiation 

   , solar gain on walls       and solar gain transmitted through windows      ) but their heat 

demand during morning (0:9 hour) are quite different generally. It can be observed that external 

temperature      during 0:9 hour interval is quite similar in those two days and illustrates that this 

time interval does not fully explain the behavior of the heating load. Hence, this reveals that past 

day climatic dynamics are also significant.  

However, the climatic variables do not have the same dynamic effect. For instance, the previous 

days of the solar radiation transmitted through windows (     ) have no impact in the prediction 

day since it has a fast response to the indoor temperature changes. Since the energy inputs from 

external heat transfer (by conduction/convection with the external temperature      and by solar 

radiation on walls      ) are stored by walls heat capacity for a long period,  these variables are 

useful to find the suitable number of past time delay dynamics. The horizontal solar radiation 

(   ) is not useful to explain this behavior because its effect is already considered in both solar 

gain transmitted through windows       and solar gain on walls      . This further concludes that 

the past day dynamics of external temperature       and solar gain on walls       might be more 

important to understand the heat demand behavior.   
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Figure 3.1: Illustration of thermal dynamic behavior in building 

Coming back to the example, the past 5 days period is plotted for an analysis since the non-linear 

dynamic response of LEB is more than 100 hours. The time patterns of external temperature      

and solar gain on walls       for the previous 5 days of the days d1 and d2 are shown in Figure 

(3.2). It can be noticed that      and       behaviors of the past days of d1 and d2 are quite 

different. For instance, the time patterns of      and solar gain on walls       in past d1 day is 

quite lower in magnitude than the ones of d2 days for last 3 days. In contrast, on the past 4-5 days 

period, the solar gain on walls       for the day d1 is quite larger in magnitude than the one for the 

day d2. Moreover, the time patterns of      for the d1 is lower than the one for the day d2, thus the 

effect of the conduction/convection heat transfer (reflected by     ) is compensated by solar 

radiation (     ). Because of this difference of      and       in past days, the heating loads in d1 

and d2 days are quite different. Figure (3.2) hence reveals that the past 3 days of      and       is 

more informative to represent non-linear behavior of building for the days d1 and d2 than the 

period of 4-5 days. 

The research questions are: 

1. How to “introduce” such kinds of dynamic behavior in AI model to predict the energy 

consumption couple of days for a LEB?  

2. What are the most significant features for different types of building? 

3. How does the number of past days climatic variables influences the prediction accuracy of 

energy consumption of buildings? 
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4. How does number of data used for model training influences the performance of machine 

learning AI model?  

 

 

Figure 3.2: Past 5 day behavior of      and       from d1 and d2 days 

3.1.2 Assumptions 

1. The sampling time is fixed. All the data are then averaged on this sampling time. Any 

stochastic behaviors are not considered. 

2. The following data are available:  

o Climatic conditions (external temperature, solar radiation etc.) 

o Derived climatic conditions (e.g., solar gain on walls and solar gain transmitted 

through windows) obtained using main characteristics (window area, orientation 

etc.) and location (latitude and longitude) 

o Occupancy profiles (represented by a fixed pattern) 

o Building operating conditions (e.g., set-point temperature, lighting, ventilation 

imposed by Air Handling Unit) 

o Thermal energy consumption (heating or cooling): either from measurement for an 

existing building or from numerical simulation for a project 
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3. Any additional energy production (e.g., solar and wind energy integration to the building) 

is also out of the scope of this research.  

Remark 3.1:  

The dynamics of occupants have a large impact in the energy consumption but an 

estimation of an occupant’s behavior is complex due to stochastic nature of occupant’s 

therefore we have used fixed and repeated schedule for all days.  

For the prediction day (or the couple of days), the forecasted weather conditions, the occupancy 

and the building operation conditions are also assumed available.  

Those features are the key inputs for the development of a black box model and so for an 

application of a machine learning based AI model.  

3.1.3 Proposed Approaches 

In this work, we consider two main approaches during the model training: 

o All available data are used to build a model and this approach is named “all data” in the 

following (see definition 2.7, Chapter 2). The AI model consists to fixed parameters of a 

building and this later is independent to the prediction day conditions. 

o A pre-selection in the database is first done. A set of days (e.g., 10 days) data is brought 

out with the most similar weather conditions than the forecasting ones of the day for 

model training. Consequently, an AI model is defined for each predicted day. This 

approach is named “relevant data” in the following (see definition 2.7, Chapter 2). Here 

the training database can be updated day by day by including the training data before the 

prediction day (or the couple of days). 

Definition 3.1: Model parameter selection 

The task of choosing the best parameters of AI model is called model parameter 

selection. 

The whole framework of the model training methodologies “all data” and “relevant data” 

for an energy load prediction is shown in Figure (3.3).  
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Figure 3.3: Whole framework of all data and relevant data modeling approach based on offline 

and online learning for energy load prediction 

It can be observed that offline data are prepared for both types of modeling approaches: “all data” 

and “relevant data” to build a model. In the modeling approach “all data”, offline data are used 

for model training by making the learning system offline resulting in a fixed model parameters 

selection for a building. Then the prediction day conditions (e.g., forecasted weather conditions, 

occupancy, building operating conditions etc.) are used to predict energy load from this fixed 

model parameters (see definition 2.1, Chapter 2). On the contrary, the approach “relevant data” 

uses both offline and online database updating: The offline learning (see definition 2.9, Chapter 

2) uses the prediction day conditions to select few representative datasets for model training and 

consequently a specific model parameter selection is started for each prediction day conditions. 

On the other hand, online learning (see definition 2.9, Chapter 2) uses the database that is 

updated with new measurements (for an existing building or new numerical simulation) after the 

day to predict is happened and can use training data to build a model for each consecutive day. 

The individual block that is used in whole framework is described briefly in later cases.    

3.2 Offline Data Preparations 

The offline data preparations block represented in Figure (3.3) includes a data classification, an 

additional feature generation and the most significant feature determination for the two modeling 

approaches “all data” and “relevant data” and is shown in Figure (3.4).  
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Figure 3.4: Preparations of offline data 

The hourly input data are initially collected (from measurement or from numerical simulations). 

Some of the input data, particularly building operating conditions and occupancy profile can be 

even approximated. The building operations classes are determined in “Building 

classification/clustering” block and these represent the functioning profile of building during a 

week (detailed in section 3.2.1). Then, the impact of thermal envelope in building is evaluated 

based on simple physical understanding (e.g., time constant of building) in “Impact of Thermal 

Envelope on Type of Building” block to determine the number of past day climate impacts on 

the energy load  of building. In addition, from the building operating conditions, occupancy 

profile12 and the dynamic characteristics of the indoor temperature control in a building, “Pseudo 

Dynamic Model” (PDM) is developed to reflect the dynamics of occupancy and their interactions 

with building operating conditions. More details about PDM are outlined in section 3.2.2. 

Furthermore, the climatic variables, especially solar gain that directly impacts on building 

geometry are derived (for detail, see section 3.2.3). Finally, the climatic variable influence is only 

                                                 
12

 since the occupant’s activities are modeled with fixed occupancy, the dynamic characteristics of occupant can 

be even stochastic in nature and this assumption might impact the accuracy in the prediction of energy load   
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evaluated through “Climatic Variables Selection” block since we have considered fixed 

schedules of the building operating conditions and the occupancy (see remark 3.1) as detailed in 

section 3.2.4.  

3.2.1 Building Operation Classification/Clustering 

The purpose of this subsection represented in Figure (3.4) is to identify the functioning classes of 

building operating profile of building during a week. These classes greatly affect the model 

accuracy while predicting energy load of a building. For instance, in an offices building, the 

energy load during normal working days is higher than the one during the weekend; while in a 

residential building, the energy load during working and weekend days can be similar. In addition, 

it also depends on the thermal envelope type of building. For example, the ratio window to wall in 

an offices building is significantly higher than one in a residential building.  

There are various statistical methods applied to classify the data (in our case, the building energy 

load), for details see remark 2.4, Chapter 2. We used a statistical analysis based on canonical 

variate analysis (CVA) proposed by Li et al. [49] since this analysis transforms the input datasets 

into new axes with a visual representation and improves efficiently the decision to analyze the 

data. For details, see Appendix C. 

The inputs of this classification is the heating or cooling energy consumption of a building and 

outputs of this classification represent building operation type in a week.  

3.2.2 Pseudo Dynamic Model 

The purpose of this model represented in Figure (3.4) is to introduce a priori knowledge on the 

dynamic behavior of the building. The inputs of this model are the occupancy (in terms of time 

patterns) and building operating conditions during a day and the dynamic characteristics of the 

indoor temperature control in a building. The outputs of this block are the derived features that 

represent dynamic behavior of the building.  

In order to include the dynamic behavior in fixed occupancy patterns, we have proposed a novel 

PDM which includes a hidden transitional effect of occupancy by using time attributes when there 

is a change between the occupancy and the building operating conditions as a consequence of a 

set-point indoor temperature or the ventilation etc. This time attributes express a priori knowledge 

of the heat consumption dynamics.  
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The operating characteristics of building obtained from the operating conditions and the 

occupancy profile is shown in Figure (3.5) where x-axis represents operating period and y-axis 

represents magnitude of operating conditions. This magnitude is indirectly related to the power 

consumption or energy demand of the building. We represent the operating characteristics by a 

state and a transition where a state means a constant for a set-point indoor temperature and a 

transition means a change for this set-point temperature. The transition levels have a similar 

feature13.  However, the energy demands required for a transition from point 2 to 3 or from point 6 

to 7 are different. If the energy demand level of state 0, 1, 2, 3 and 4 in operating characteristics is 

represented by    , then the energy demand required for transition from point j to point i is 

represented by     in the transitional characteristics shown in Figure (3.6).  

 

Figure 3.5: Overall operating characteristics of building (for a day) 

The transitional characteristics corresponding to the operating conditions characteristics can be 

written as: 

    
                                                          

                                                                                                        
                                       

                                                 
13

 To clearly explain this concept: we are in a theoretical situation. We are assuming that weather conditions are 

“fixed”. One knows a priori the usual indoor temperature control. ESCOs have to provide enough energy to 

supply this demand of a building. So, just after an increasing of the set-point indoor temperature more energy is 

provided (in order to meet the demand and get steady state) than the energy requires for the steady state.     
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Where,   ,    and     represent an initial energy demand level, a step size of a transition of the 

energy demand level and the absolute value respectively. Each level (                        ) 

represents the transitional level and depends on the energy level of operational characteristics. 

 

Figure 3.6: Transitional and pseudo dynamic characteristics (for a day) 

The transitional characteristics describes the energy transition level of the operational 

characteristics (occupancy and building operating conditions), nonetheless, the dynamic 

transitional characteristics of the energy level attributes impact is still lacking.  

The dynamic transition characteristics is modeled by a first order model of the indoor air 

temperature and the heating system (in an open loop) shown in Figure (3.7) where         

represents the time constant due to indoor thermal capacity.  It can be seen that this time constant 

represents the time it takes to reach a new steady state for this indoor temperature. This time 

constant corresponds to the classical 63% of the new steady state. The steady state time 

               corresponds to the range [3        , 6       ]. A black-box model must learn that for the 

same weather conditions (and occupancy), a change of the set-point temperature impacts the 

heating load on a period [3        , 6       ]. We propose to indicate this time pattern by an array 

repeated with numerous time lags called pseudo dynamic lags (PDL), see Figure (3.6) with only 

one repetition or with multiple repetitions. We named this model as a “pseudo dynamic”.  

0 6 12 14 20 24

Hour

T
ra

n
s
it
io

n
 L

e
v
e
l 
 

PDL

1 2

3 4

5 6

7 8

9 10

Transition Level


21


43


65


87


109


21


43


87


109



3.2 Offline Data Preparations   78 

 

 

 

Figure 3.7: Dynamic characteristics of indoor temperature control in a building 

The output of this PDM consist overall building operating conditions, transitional behavior and 

PDL.  

3.2.3 Derived Climatic Variables Generation 

The purpose of this block shown in Figure (3.4) is to generate derived climatic variables. 

The energy demand requirement in LEB is largely depend on the solar gains in building thus solar 

gain on walls (     ) and solar gain transmitted through windows (     ) are derived from 

climatic variables. In addition, external heat transfer (by conduction/convection with the external 

temperature      and by solar radiation on walls      ) are stored by walls for a long period (for 

detail see Section 3.1.1) and in order to include these storage behavior, these derived climatic 

variables are further modified.   

We proposed to consider this storage effects by introducing a temporal moving average window 

(         for the external temperature and           for the solar gain on walls) depending on the 

past day climatic conditions dynamics.  

Those numbers of past day climatic conditions are obtained in “Impact of Thermal Envelope on 

Type of Building” in “Offline Data Preparations” block in Figure (3.4). Thus, the output of this 

“Derived Climatic Variables Generation” block are the time patterns of solar gain on walls 
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(     ), the time patterns of solar gain transmitted through windows (     ), the temporal moving 

average of external temperature (        ) and the temporal moving average of solar gain on 

walls (         ). 

The horizon of those moving averages is one parameter for the case study. 

3.2.4 Climatic Variables Selection 

The purpose of this selection shown in Figure (3.4) is to determine which weather variables and 

their dynamics are relevant for the prediction of energy consumption and limit the variables 

during the learning phase. 

The basic ideas for deriving the climatic variables are: 

1. Under fixed conditions (building operations and occupancy profile), the climatic 

conditions are the only variables that impacts the building energy consumption. 

2. Recalling that climatic variables selection is based on the selection of features which have 

a highest correlation or the features which provide a high accuracy in the prediction model 

or combination of features which gives high accuracy in the prediction model. Such a 

combination of features selection might be effective but it may not reflect the physical 

significance of importance of each feature. The autocorrelation method is not suitable 

because it make correlation of the future heating with its past heating and violates the 

proposed methodology of dynamical model to predict for several days ahead. The 

principal component analysis (PCA) has several drawbacks since it depends on input data 

distribution and sometimes it neglects some high relevant inputs which might increase the 

model performance. 

Considering the above facts, we used a filter as a climate feature selection method (Chapter 2, 

remark 2.5) which is based on simple correlation indexes. Such a correlation measures the 

strength and the weakness of a linear relationship between two features (external temperature and 

heating energy consumption for example). We select the input features if its correlation indexes is 

higher than threshold values (   )14 and discard the features if it less than this threshold values. 

We used Pearson coefficient of correlation to determine the relevance of the climatic conditions 

(e.g., solar radiation, external temperature) and the derived climatic conditions (e.g., solar gain on 

walls and solar gain transmitted through windows) and a sample cross correlation to determine the 

                                                 
14

 limiting value which provides a benchmark to compare with the features value 
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hourly dynamics of those selected climatic conditions (e.g., external temperature of last 1 to 4 

hours from prediction hours).  

Denoting the input features of the training data by x (e.g., external temperature, horizontal solar 

radiation) and the output features by y (e.g., heating energy consumption), a Pearson correlation 

coefficient is calculated by dividing the covariance of input and output features to their individual 

standard deviations as shown in Equation (3.2), where   represents the Pearson correlation 

coefficient,         represents the strength of linear relationship between two features    and  , 

   and    are the standard deviations of the features   and  ,   is the total number of training data 

and    and    are the sample mean of time series x and y. 

  
       

    
        (3.2) 

        
 

   
               

 

   

 

The Pearson correlation coefficient varies in the range -1 to 1. Representing time series of an 

input feature    (e.g., external temperature) and an output feature    (e.g., heating energy 

consumption) at lags  =0,  ,    etc., a cross correlation function determines the time delay 

between this input and this output. When these two input and output are best aligned with 

maximum (or minimum if these are negatively correlated) in the same point, then it is regarded as 

in a good time dynamics accordingly. The cross-correlation between two input and output time 

series is given by Equation (3.3).  

       
        

    
      (3. 3) 

where,

         

 
 
 

 
  

 
                                  

   

   

 

 
               

   

   

              

  

In Equation (3.3),        represents cross-correlation between two time series   and   at   lag, 

         is covariance of two time series x and y at   lag,    and    are the sample standard 

deviations of the time series   and  ,   and   are the sample means of time series   and   [100].  
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Eventually, the input of this selection are the climatic conditions variables (e.g., external 

temperature, solar radiation), derived climatic conditions variables (e.g., solar gain on walls, 

temporal moving average of solar gain on wall) and its past hour dynamics (e.g., external 

temperature of last 2 hours) and the output of this block are the selected direct and derived 

climatic feature and their past hour behaviors.   

3.3 Prediction Day Conditions 

The prediction day conditions block represented in Figure (3.3) provide information about the 

prediction day (or couple of days). The input of this block represents the forecast weather day (or 

couple of days), the expected conditions (occupancy profile and building operations) and 

information about the building operation classes, see Figure (3.8). The outputs of this block 

depend on the modeling approach, either “all data” or “relevant data”.  

 For “all data” modeling approach, the outputs contain forecast weather conditions, 

occupancy, building operating characteristics and information regarded to building 

operation classes. These are used for prediction of energy load from the parameter 

selected by AI model. 

 For “relevant data” modeling approach, the outputs contain the forecast weather 

conditions, a 24 hours time patterns and the previous days and the building operation 

classes (which are used to select similar weather conditions). In addition, it also contains 

outputs similar to “all data” modeling approach which are used for prediction from the 

model parameter selected by AI model. 

 

Figure 3.8: Prediction day conditions
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3.4 All Data Modeling Approach 

Definition 3.2: Cross validation 

A cross-validation refers to the splitting of training data into multiple sets of validation. 

 

The framework of “all data” modeling approach represented in Figure (3.3) based on offline 

learning for energy load prediction is shown in Figure (3.9). It can be seen that in the “all data” 

modeling approach, all offline training data obtained in “Offline Data Preparations” block in 

Figure (3.4) includes energy load, occupancy profile, building operating characteristics (building 

operating condition, transitional characteristics and pseudo dynamic lag) together with selected 

direct and indirect climatic variables and their dynamics for each building operation classes. 

These offline data used for model training are divided into each building operation classes and AI 

model are evaluated and learned accordingly using cross validation (see definition 3.2). Then, the 

parameters of AI model are identified for each building operation classes. Finally, forecast day 

weather conditions, occupancy, operating conditions obtained in “Prediction Day Conditions” 

block in Figure (3.8) are used for prediction of energy load from the identified parameters of 

learned AI model for each building operation classes. This concluded that “all data” modeling 

approach are based on offline learning because their parameters are not changed with new dataset 

availability in the future due to the inconvenience of model training CPU-time while updating all 

offline data.  

 

Figure 3.9: Framework of all data modeling approach based on offline learning for energy load 
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3.5 Relevant Data Modeling Approach 

The framework of the proposed “relevant data” modeling approach represented in Figure (3.3) 

uses relevant data selection method for each prediction day conditions and is shown in Figure 

(3.10). Relevant data selection basically use selection of similar day data based on similarity of 

climatic conditions, building operation classes (see, Section 3.2.1), impact of past day climate 

dynamics (obtained from “Impact of Thermal Envelope on Type of Building” block in Figure 

3.4), number of relevant days data and weight of climatic conditions on energy load of building.  

 

Research Question 1: How to “introduce” such kinds of dynamic behavior in AI model to 

predict the energy consumption couple of days for a LEB?  

The relevant data selection is done in three main steps: 

1. Considering the prediction day conditions shown in Figure (3.8), it is possible to calculate 

the variation of climatic conditions such as external temperature between the prediction 

day and a day in the training database based on deviation criteria. We select different 

deviations criteria based on simple physical understanding and pattern recognition 

methods: 

i. The physical methods are based on heating degree-day and modified heating 

degree day that includes variation of energy load weight effect at different time 

intervals. 

ii. The pattern recognition methods: Frechet distance and dynamic time warping are 

based on finding similarity patterns.    

These simple physical understanding and pattern recognition methods compared each 

prediction day and its past days with each training days and its past days climatic 

conditions. The more details about identification of similar climatic conditions are 

mentioned in Section 3.5.1. 

Consequently, for one prediction day and one specific day in the training database, the 

deviation criteria is a vector whose size is equal to the number of climatic conditions 

(external temperature, solar radiation, humidity etc.)  
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2. The purpose of the second step is to combine the deviation criteria vector in order to 

select a sub-database for relevant data modeling.  

i. A pre-calculation on the training database is first done independently to the 

prediction day. A wavelet analysis is performed for the determination of influence 

of climatic variables on building energy load. We used wavelet decomposition in 

order to reduce several climatic variables of the past days to transform into 

wavelet coefficients without losing the properties of several day behaviors. With 

daily average energy load and suitable wavelet coefficients of climatic conditions 

and their past days, weight of selected climatic conditions and their past days are 

determined by using support vector machine (SVM) based on linear kernel. The 

number of past day climatic conditions for each prediction day depends on the 

type of building that is obtained from “Impact of Thermal Envelope on Type of 

Building” block in Figure (3.4). The details about the influence of climatic 

variable in building load are provided in Section 3.5.2. 

ii. Knowing those weights, the previous deviation criteria vector is weighted by 

those wavelet coefficients so only one metric criterion is used to select suitable 

days from the training database.  

3. The final step is the identification of number of days for the model training. The smaller 

weights obtained from step 2 means the more relevance of day for model training since 

the closest match of prediction day conditions with training day database will have 

smallest weights. Hence, depending on the number of relevant day (see section 3.5.3), the 

smallest weights are selected from the training database to find suitable day for model 

training for particular prediction day conditions. 

 

Then the relevant datasets for each prediction day are used to build an AI model using cross 

validation. Other detail about machine learning based AI model and cross validation are detailed 

in Section 3.6. Finally, the parameters are identified from learnt AI model for each prediction day 

conditions. We therefore conclude that parameters are changed each day based on prediction day 

conditions due to fewer relevant datasets to represent whole behavior and its computational 

realization. During the prediction conditions, forecast day weather conditions, occupancy, 

operating conditions and building operation classes obtained in “Prediction Day Conditions” 

block in Figure (3.8) are used for prediction of energy load from identified parameter of AI model 

of a particular day. 
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Figure 3.10: Framework of proposed relevant data modeling approach based on online/offline learning  
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3.5.1 Identification of Similar Climatic Conditions  

The purpose of this identification is to select similar climatic conditions of prediction day and its 

past day.  

We have identified the similar behavior of climatic conditions (e.g., external temperature) of 

prediction and its past days dynamics with training day data based on physical understanding and 

pattern recognition methods. The physical methods are based on Heating Degree Day (HDD) and 

modified HDD (proposed in this manuscript), and pattern recognition methods are based on 

Frechet Distance and Dynamic Time Warping.  

Heating Degree Day 

Representing HDD of database by a notation     , see Equation (3.4); and forecast HDD of 

prediction day by     ; the similar day from N number of HDD database are determined by 

comparing forecasted      with      and is represented by              shown in 

Equation (3.5).  

      

    

    

 
    

            (3.4) 

                                 (3.5) 

Since LEB have large time constant, HDD of past days from prediction day also impact the 

building energy load. In order to avoid the weight effect of HDD from forecasted day with past 

day, normalization is performed in order to compare the weight of forecasted HDD and its past 

day. This normalization avoids the weight effect that might come from different range of HDD 

value of forecasted and its past day. Normalized similarity weight, i.e.,       correspondence to 

forecasted      of prediction day from database is shown in Equation (3.6).   

      
                               

                                   
                                             

Assuming u number of past day impacts due to time constant of building obtained from “Impact 

of Thermal Envelope on Type of Building” block in Figure (3.4), all normalized weight for 

prediction day together with u number of past day for N number of training day is expressed as:  
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Modified Heating Degree Day  

The proposed modified HDD method considers the weighted factor of energy consumption at 

each time steps to the average energy consumption of training day to distinguish different weights 

to different time intervals during a day. It includes variation of climatic conditions day-to-day and 

indirectly includes internal gains and solar gains effect by introducing weighted energy 

consumption. 

Denoting climatic variables (e.g., external temperature) of training database by a generic notation 

  , see Equation (3.8) and its corresponding energy consumption and daily mean energy 

consumption of training database by    and     respectively, and forecasted weather of prediction 

day (e.g., external temperature) by   , see Equation (3.9); modified HDD determined the similarity 

by Equation (3.10) and are represented by           . In Equation (3.8) and (3.9),   is the 

sampling length of data of each day.     

 

  

  

 
  

   

                

                
    

                

                                                           

                                     (3.9) 

                                     
    

     
         

    
    

   

  

   

   

 
   

                   (3.10) 

Equation (3.10) considers weighted factor at different time intervals for N number of training day 

data by the coefficient  
  

   

 
   . The lower value of           means more similarity of prediction 

day weather   . Normalization is performed on the similarity weights of climatic conditions (e.g., 

external temperature) obtained from Equation (3.10) so that weight can be compared and effect of 

other climatic variable (e.g., horizontal solar radiation) does not affect each other. Normalized 

similarity weight, i.e.,     of climatic variable (e.g., external temperature) is shown in Equation 

(3.11).   
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Equation (3.12) represents normalized similarity weight for single climate variable. For other 

climatic variables and their past days dynamics (e.g., horizontal solar radiation), it follows 

Equation (3.8-3.11) to represent normalized similarity weight. Representing number of past day 

climatic variables by u (e.g., external temperature of the last two days obtained from “Impact of 

Thermal Envelope on Type of Building” block in Figure 3.4) and most significant climatic 

variables for particular building by v (e.g., external temperature, horizontal solar radiation etc. 

from  “Climatic Variables Selection” block in Figure 3.4), the normalized similarity weight of 

all prediction days selected climatic variables and their past dynamics can be written in general 

form by       and Equation (3.11) is further modified to Equation (3.12). For example in 

Equation (3.12), normalized similarity weight vector of external temperature of prediction day 

        , the day before prediction day          etc. are represented by      ; and normalized 

similarity weight vector of horizontal solar radiation of prediction day         , day before 

prediction day          etc. are represented by      . 

 

     

     

 
     

  

 
 
 
 
                           

                           
    

                            
 
 
 
                                 

Dynamic Time Warping 

Dynamic time warping (DTW) is a distance measure time series method which finds the similar 

patterns of signal between two time series though they are not aligned in time. DTW finds 

similarities based on acceleration-deceleration of signals within the time dimension. Because of a 

large time constant in LEB, the influence of climatic variables influence the building and vary 

according to time, hence, DTW is more suitable. This method has been used in pattern recognition 

to find similarities of building energy patterns [101]. It determines the similarities of climatic 

variables by calculating Euclidean distance of training days and predicted day climatic variable 

and their past days in different warping path.  

The illustration of DTW to find similarity patterns is shown in Figure (3.11) where DTW 

calculates the Euclidean distance between climatic variables (e.g., external temperature) of 

training and prediction day in two warping path. The path that minimizes sum of Euclidean 

distance between two time series is chosen as optimal warping path. This process continues to 

calculate optimal warping path for each training day with prediction day climatic variables to 

determine similarity weights.  
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Figure 3.11: Illustration of dynamic time warping to select similar climatic variables (e.g., 

external temperature) 

The similarity days of forecast weather of prediction day or days are determined by comparing    

(shown in Equation 3.9) with the weather of database    (shown in Equation 3.8) by minimizing 

DTW and are represented by          as shown in Equation (3.13), for details to calculate DTW 

see Keogh and Ratanamahatana [102]. 

          

  

  

 
  

            (3.13) 

In Equation (3.13), the lower value of          means the similarity of prediction day weather    

with the N corresponding training day. Similarly, normalization is performed on similarity 

weights (Equation 3.13) and then to other climatic conditions. So, it follows the same procedure 

mentioned in Equation (3.11-3.12) similar to modified HDD.  

Frechet Distance 

Frechet distance (FD) is a pattern recognition method that measures the similarity degree between 

two continuous curves. If the FD of two curves is small, then the curves are similar and if the FD 

is large, curves are said to be dissimilar.  

Figure (3.12) shows illustrations of identification of similar climatic variables (e.g., external 

temperature) by FD. It can be seen that prediction day forecast weather is compared with training 
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day database and the FD method selects the training day that has smallest value. For instance, the 

Frechet Distance between prediction day and training days 1-3 of climatic variables (e.g., external 

temperature) shown in Figure (3.12) are 0, 0.24 and 0.26 and illustrated that training day 1 is more 

similar compare to other training days.  

 

Figure 3.12: Illustration of Frechet distance to select similar climatic variables (e.g., external 

temperature) 

Similar to DTW method, FD method determined the similarity days of forecast weather of 

prediction day by comparing    (shown in Equation 3.9) with the weather of database    (shown 

in Equation 3.8) and are represented by           as shown in Equation (3.14), for details on 

calculation of FD, see Wylie and Zhu [103]. 

           

   

   

 
   

            (3.14) 

The lower the value of           in Equation (3.14) means the more similarity of prediction day 

weather    with N corresponding training day. Similarly, normalization is performed on similarity 

weights (Equation 3.14) and also performed to other climatic conditions, therefore it follows the 

Equation (3.11-3.12).  
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3.5.2 Influence of Climatic Variables on Building  

The influences of climatic variables depend on building properties such as insulation, thermal 

mass and geometrical parameters. It also depends on the energy consumption type of building, 

e.g., external temperature is more dominant for heating energy consumption whereas solar gain is 

more dominant for cooling energy consumption. In case of heating energy consumption for LEB, 

solar gains is also equally important since the heat transfer by conduction/convection is absorbed 

by the walls for long period to maintain equilibrium indoor climate. Hence, it is essential to find 

the influence of each selected climatic variables on energy load of building.  

Selected climatic variables obtained in “Climatic Variables Selection” block in Figure (3.4) are 

pre-processed using wavelet analysis shown in “Relevant Data Selection” block in Figure (3.10). 

The suitable decomposition level is obtained by observing the reconstruction of the original signal 

using approximation and detail coefficients. Consequently, depending on the type of climate 

variables, these are converted into wavelet low frequency and high frequency components shown 

in “Wavelet coefficients calculation of selected climatic variables and their past day” block in 

Figure (3.10). For instance, the heat energy is transfer by external temperature      in the walls for 

a long period, so the decomposed signals of them are expressed by low-frequency and high-

frequency coefficients. On the other hand, though heat energy transfer by solar gain on walls       

for a long period, their average behavior is sufficient to characterize daily average heating load so 

they are expressed by low frequency components. Moreover, solar gain transmitted through 

windows       has fast impact in the indoor temperature and their responses to the heating load is 

at the same instant of time, hence these are considered only by low frequency coefficients. 

Horizontal solar radiation     is integrated with solar gain on walls       itself and their average 

behavior can easily characterize the daily average heating load thus expressed by low frequency 

coefficients. Details about wavelet decomposition are presented in Mallat [104]. In order to 

determine influence of climatic variables, i.e., weights of decomposed low and high frequency 

components of climatic variables on energy load of building, a daily average energy load is used. 

The weight of these selected variables is calculated by using SVM based on linear kernel and 

are represented by “Weight Calculation of Selected Climatic Variables” block in Figure (3.10). 

This block is represented as an intermediate model. Details about SVM and kernel are outlined in 

Section 3.6.2.  
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We have applied the wavelet decomposition to climatic variables (e.g., external temperature) day 

by day. By denoting low frequency coefficients at desired level of wavelet by a and high 

frequency coefficients by d, the weight of the low/high frequency coefficients of climatic variable 

is obtained from SVM based on linear kernel and is represented in Equation (3.15-3.16). In 

Equation (3.15-3.16), z is the decomposed length of   sample length data in a day.  

                   (3.15) 

                   (3.16) 

Then, the total approximation and detail coefficient weight of climatic variable (e.g., external 

temperature) can be estimated from Equation (3.17-3.18): 

       
 

 

   

                                                                            

       
 

 

   

                                                                           

Equation (3.17-3.18) which represents total approximation and detail coefficients are further 

converted into desired weight (  ) of particular climate variable (e.g., external temperature) and 

is represented by:  

      
    

                                                                       

Equation (3.19) represents wavelet coefficient weight of a single climate variable and for other 

climatic variables and their past days dynamics (e.g., horizontal solar radiation) depending on low 

or high frequency requirements; it follows Equation (3.15-3.19). Then the normalized wavelet 

coefficient     is calculated for most significant variables of building v and their past dynamics u, 

thus Equation (3.19) is further modified to Equation (3.20).    

    
              

                   
                                                      

Equation (3.20) can also be simplified to Equation (3.21) to represent influence of each climate 

variable and their past days in terms of wavelet coefficients     in each variable normalized 
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form. For example in Equation (3.21), the influence of climate variable external temperature     , 

i.e., total influence      , prediction day       , the day before prediction day        etc. on 

building load are represented by    and the influence of horizontal solar radiation    , i.e., total 

influence      , prediction day       , day before prediction day        etc. on building load  

are represented by    .  

 

   

   

 
   

   

     
     

 
     

   

                     
                     

    
                     

                                          

The influence of climatic variables on building load using SVM based on linear kernel is also 

compared with LSM based on regression model (see remark 2.7, Chapter 2 for LSM based on 

regression). 

3.5.3 Selection of Relevant Days  

The suitable choice of number of days for model training depends on the performance of 

prediction model. In case of modified HDD, the final weight of all training days    that depends 

on similarity of climatic variables of training and prediction day, and their building impacts is 

obtained by deducing Equation (3.21) and Equation (3.12).    

                  

  

  

 
  

                                                                             

Assuming suitable number of relevant training by l among N number of training days for model 

training, the smallest weight is selected from    as relevant days weight shown in Equation 

(3.23), where     represents weight of relevant days. Correspondingly, relevant day is determined 

from the relevant weights   .   

    

  

  

 
  

                                                                                                

Similarly, final weight is identified by deducing Equation (3.21) and Equation (3.13) for DTW 

method and it follows Equation (3.22) and Equation (3.23) for the determination of relevant day. 

In case of FD method, final weight is identified by deducing Equation (3.21) and Equation (3.14) 

and for the calculation of relevant day; it follows Equation (3.22) and Equation (3.23). 
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For the determination of relevant days from HDD, the influence of external temperature      is 

only considered since HDD methods are based on daily average external temperature to estimate 

the energy load of building. Equation (3.7) along with only influence of external temperature 

effect from Equation (3.21) are used to calculate the weight of all training days similar to 

Equation (3.22) and finally l number of smallest weights are selected as relevant days.         

3.6 Artificial Intelligence Model 

3.6.1 Artificial Neural Network  

We have used three layered multi-layered perceptron (MLP) neural network (see Appendix B.1.2 

for MLP neural network) since it can be applied for both static and dynamic model. We have used 

single hidden layer based on the suggestion of Kolmogorov’s theorem [105] since single hidden 

layer is sufficient to approximate any function with given suitable hidden neurons.   

Denoting input variables of the featuring database, see definition 2.8, (e.g., selected climatic 

conditions, occupancy, building operating conditions etc.) by the input layer consisting    neurons 

where   varies from 0 to  ; the hidden layer consisting    neurons where   varies from 1 to  ; and 

output variable of training data (e.g., heating load ) by the output layer consisting one signal 

neuron  ; the neural network estimates the output given by: 

              

   

   

 

 

   

                                                                        

where,   is the number of hidden neurons,   represents number of input features including bias 

thus represented by     and  f(.) is the activation function (for detail on activation function, see 

Appendix B.1.6). The w is the weight connecting between each neuron which we are interested to 

identify since this weight provides regression function and correspondingly prediction of building 

energy load. We have used tangent hyperbolic activation function in the hidden and output layer.   

The activation function is used to provide non-linearity in the estimation function approximated 

by the neural network. The minimization of training error approximated by neural network is 

calculated in Equation (3.26).       
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Where,     ,  ,   and    are training error functions, number of training data, estimation from the 

neural network (e.g. estimation of heating load of training data) and actual training output (e.g. 

actual heating load of training data) respectively. The purpose of Equation (3.26) is to provide 

input-output mapping by adjusting the initial weight to fixed weight to minimize the training 

error. The training process is done via batch learning (see definition 2.6, Chapter 2). There are 

many types of training algorithm used to update the model weight like gradient descent, gradient 

descent with momentum, Newton’s method, etc. [106]. However, they are often slow to train and 

take more time to compute gradient with second derivatives namely hessian matrix. The 

algorithms like conjugate gradient, quasi-Newton and levenberg-marquardt provides faster 

optimization to adjust the weights. We have used levenberg-marquardt algorithm since it is widely 

used and takes the approximation of hessian matrix in the form of Newton’s method which is 

quite fast and model weight update equation      is given as: 

                                                                                      

In Equation (3.27), hessian matrix is approximated as       and gradient is computed as       , 

where H is Jacobian matrix,      is vector of training error function,    is initial model weight,   

is suitable chosen scalar and I is identity matrix. Update model weight thus depends on the 

training error function and scalar value of   called parameters should define before training. 

Based on the difference between estimated output by the network and actual training data shown 

in Equation (3.26), the weights are adjusted and these adjustments are according to the decrease in 

the training error. If this training error is greater than maximum desired goal (pg) given by 

Equation (3.28) (where   is constant value parameter to be define by the readers), then this 

process is repeated until the errors propagating through the neural network are in desired tolerance 

level. When this error remains at the satisfactory level, the training is stopped and the network 

holds the constant weight. These constant weights were later used to identify and predict the 

energy load when the input is presented in the network.  

       
   

 

   

                                                                                       

The other way we stopped the training is by checking the performance on each iteration (epoch). 

For this, the actual training data is divided into training and validation data (see definition 2.5, 

Chapter 2). We defined the stopping criteria based on the performance of validation data so that 

training can be stopped when the validation error goes on increasing.  
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Then we addressed the problems of under-fitting, over-fitting and local minima problems (see 

remark 2.1-2.2, Chapter 2) of neural network by proposing degree of freedom (DOF) 

adjustment. DOF of neural network model is the difference between number of training equations 

and number of model parameters in the network. It should be always  1 and depends on the 

optimum size of hidden neurons.  

                                                                                            

Where, the number of training Equations (       ) is further given by Equation (3.30). The 

number of model parameters (  ) for a single hidden layer neural network are given by the 

Equation (3.31).  

                                                                                              

                                                                                          

Where,    is the number of output neuron (e.g. if only heating load, then   =1).   ,    and    

represents number of model parameters, number of input neurons and number of hidden neurons 

respectively.  

The performance goal in Equation (3.28) is adjusted according to degree of freedom. The 

modified performance goal (    ) is further given by Equation (3.32). 

     
         

    
   

       

                                                                        

We also define maximum hidden neuron (      ) threshold values to avoid over-fitting and is 

given by Equation (3.33), where,   represents the scalar constant value. These threshold values 

further depend on DOF.  

       
 

 

       

         
                                                                     

Finally, in order to select the best parameters of model from validation data, we also split data 

based on k-fold cross validation and evaluates the performance on k number of validation folds, 

for detail on parameter selection see Section 3.6.5.   
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3.6.2 Support Vector Machine  

There are many implementations of support vector machine (SVM) to build a model (for details 

on SVM and its available package, see Appendix B.2) and we have used LibSVM. SVM are used 

for classification and regression problems, and support vector regression (SVR) is used as an 

artificial intelligence model since the building energy consumption prediction is regression 

problem. Denoting the input variables of the featuring database, see definition 2.8, (e.g., selected 

climatic conditions, occupancy etc.) by x and output variables of featuring database (e.g. heating 

load) by y, SVR tries to find the hyperplane that maximizes the margin and the equation that 

separates the hyperplane is given by:  

                                                                                          

where,   and   are constant,      is the mapping function which will be used to map input vector 

x into higher dimensional called kernel space. Then the SVR finds the hyperplane by satisfying 

minimization of the quadratic problem to calculate   and   [107]: 

              
 

 
             

                                                        

 

   

 

In Equation (3.35), C is the regularization parameter which determines the degree of training error 

and controls the trade-off between model complexity and fitting errors, n is the number of training 

data and    and   
  are slack variables which penalize the training error by Vapnik’s  - insensitive 

loss function (for detail on  - insensitive loss function, see Appendix B.2). The 
 

 
     term helps 

to improve the generalization of SVR by regulating the degree of model complexity and 

        
    

    controls the training error.  

Equation (3.35) is further transformed into new objective function with the introduction to kernel 

function and then SVR produces the regression function. The training is performed based via 

batch learning (see definition 2.6, Chapter 2). It can be noticed that SVR is sensitive with the 

choice of kernel functions and parameters C and   (for detail about kernel function and other 

parameters, see Appendix B.2.1-B.2.2) and these parameters should be selected properly. We 

have used RBF as a kernel for building consumption prediction model and linear kernel to 

estimate the weights of climatic coefficient impacts on building load (see Section 3.5.2). In order 

to select the best parameter of SVM, we split the available training data based on k-fold cross 
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validation and select the parameters of model that has less error performance while averaging k 

number of validation folds, for details on data-splitting strategies see Section 3.6.5. 

3.6.3 Boosted Ensemble Decision Tree  

There are many techniques for developing decision tree model (for details on decision tree, see 

Appendix B.3) and we have used CART decision tree [108]. However, a decision tree model is 

itself unstable since it heavily depends on data and small effect of data may have large impact on 

model performance. In order to address this, ensemble method based on boosting has stabilized 

effect by averaging [109] and we have used boosted ensemble decision tree (for details on 

boosting, see Appendix B.5.2). 

Assuming   be the leaf node for each input i (e.g., selected climatic conditions, occupancy etc.), 

the prediction (e.g., heating energy load) is further simplified so that    ….    be the prediction 

of the training data in node  , then the boosting decision tree models estimate the regression 

output given by Equation (3.36). 

  

                  
 

  
       

  

   

                                 

  

 

where,              are the weight coefficient of given node of tree m. The parameters    

and number of trees (  ) are estimated by minimizing error function. Then, we solved the loss 

function through the optimization problem based on Freidman [110]. For details on loss function 

minimization, see Appendix B.5.2.  

3.6.4 Random Forest  

We have used Random Forest (RF) proposed by Breiman [111] and its detail is given in 

Appendix B.4. Denoting input featuring database, see definition 2.8, (e.g., selected climatic 

conditions, occupancy etc.) by x with n number of sample size of training dataset   , the bootstrap 

sample is selected randomly from the n observations with replacement from    where the 

probability of each sample drawn is 1/n [111]. The more details on bootstrapping combined with 

aggregation also called bagging is highlighted in Appendix B.5.1. Then bagging method selects 

the bootstrap samples from the training dataset    
        

    where b represents bootstrap and B 

represents bootstrap size. Then, the CART decision tree algorithm is used to train the model from 

B number of bootstrap size. While constructing decision trees, we have considered 1/3 of random 
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features from total number of input features suggested by Breiman [111]. The process of building 

decision tree is continued until minimum number of leaf node of decision tree and maximum 

number of bootstrap size has been reached and estimation from each bootstrap is 

       
             

    . Then the output of random forest is obtained by combing the output 

from each decision tree and is given by: 

     
 

 
       

   

 

   

                                                                                   

3.6.5 Practical Aspects in AI 

In AI techniques, there are different tasks to be understood and considered before the model 

training: normalization of input-output data as a pre-processing step for the data, data splitting 

strategies for best model parameter selection and the model evaluation for performance measures.  

Some machine learning algorithm can have the problems because of bias due to different scales of 

features. For instance, if the input and output data are not normalized, then there is a chance of 

some features (e.g., external temperature) to be significant than other features (e.g., solar 

radiation), thus normalization makes the scaling/range of each variable similar. The more details 

on widely used normalization techniques are presented in Appendix B.6.1. We have used min-

max normalization to a fixed range 0 to 1 since most of the “Relevant Data Selection” methods 

block in Figure (3.10) is also in same range of normalization. In addition to this, the neural 

network model that used non-linear activation functions particularly tangent hyperbolic function 

is also defined by the threshold values of 1.  

Apart from normalizing the input and output data, the best parameters of model should be selected 

in order to avoid under-fitting or over-fitting (see remark 2.2, Chapter 2). In case of ANN, the 

over-fitting problems arise due to improper choice of hidden layers, hidden neurons and size of 

weights. In addition, length of training data influences the over-fitting of AI models. In case of 

SVM, over-fitting might arises due to the large value of C penalty parameter and the low  -

insensitive loss function. In case of decision tree and random forest, over-fitting might be due to 

large number of trees. In order to avoid this over-fitting, the general practice is to split the data 

into training and validation. We have used k-fold cross validation since it divides the training data 

into k equal parts of validation data for data splitting. Details about widely used data splitting 

strategies including k-fold cross validation are shown in Appendix B.6.2. 
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The performance of prediction model is evaluated based on coefficient of determination      and 

root mean square error        shown in Equation (3.38-3.39) where   is the actual energy load, 

   is the mean of actual energy load and    is the predicted energy load of each day. 

     
         

  
   

          
   

                                                                         

      
 

 
         

 

 

   

 

 
 

                                                                   

3.7 Conclusion 

This chapter provides methodological framework to predict the building energy load using 

machine learning artificial intelligence model. It details preparations of offline data for model 

training. For example, it first discusses the indirect climatic variables generation block. Later, it 

describes pseudo dynamic model to introduce a priori knowledge on the dynamic behavior of 

building. It then mentions on building operation classification/clustering to group the building 

operation according to functioning profile of building. Lastly, it discusses the pre-processing steps 

of climatic variable selection to select significant direct and derived climatic variables and their 

dynamics.  

After that, it proposes two kinds of modeling approaches: “all data” and “relevant data” to select 

input featuring database for model training. It provides detailed depth on different kinds of 

“relevant data” modeling approaches. Finally, it discusses the four machine learning models: 

Neural Network, Support Vector Machine, Ensemble Boosted Decision Tree and Random Forest 

as an AI model for the two above described modeling approaches.  

The next chapter will discuss about the application of methodology for simulated data generation 

from TRNSys building simulation tools for single-zone and multiple-zone CB to LEBs. In order 

to apply the methodology, several building parameters should be defined to make prediction of 

building energy load. For instance, number of past day climate impacts (u) parameter is required 

to depict time constant of building. In addition to this, initial energy load level (  ), step size of 

transition of energy load (  ) and steady state time constant due to indoor thermal capacity 

(              ) parameters are required to generate derived features that provide prior knowledge 

on the dynamic of the building. Moreover, threshold value (   ) and number of lags ( ) 

parameters are necessary to determine most significant climatic variables.  
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In case of “relevant data” modeling approach, the parameters (C and  ), kernel function and 

number of cross-validation (k) are required to determine the influence of climatic variables on 

building using SVM based on linear kernel method. Furthermore, decomposition level (z) is 

required to transform the climatic conditions into suitable wavelet coefficients which determine 

the influence of climatic conditions on building. Also, number of relevant days (l is required to 

define number of days to build a model based on “relevant data” modeling approach. Finally, 

several parameters are required to build AI models.  In case of ANN, activation function in the 

hidden and output layer, the parameters of training algorithm:   and its increment and decrement 

factors, minimum hidden neurons, maximum hidden neurons set by   value, parameters to stop 

training: number of iterations and performance goals defined by   and number of cross-validation 

(k) for model selection should be defined. Similarly, in SVM, the    parameter for kernel 

function, other parameters: C and  , and number of cross-validation (k) for model selection should 

be defined. For boosted ensemble decision tree, number of tress (  ), number of leaf in each tree 

(  ) and learning parameter ( ) should be initialized. Consequently, for Random Forest, number 

of trees in forest (B), bootstrap sample drawn with replacement, number of randomly selected 

features in each split to grow trees and number of leaf in each tree needs to be initialized. 

Then the methodologies follow several steps after available data (e.g., climatic conditions, 

occupancy, building operating conditions, thermal energy consumption etc.): 

 Step-1: Building operation classification/clustering 

 Step-2: Pseudo dynamic model 

 Step-3: Climatic variables selection 

 Setp-4: Sets of input features 

Step-5: Analysis of climatic variables on the building load (in the “relevant data” 

modeling approach) 

Step-6: Selection of sub-database (in the “relevant data” modeling approach) 

 Step-7: Heat load prediction  

 

 

 

 



   102 

 

 

 



103                                                                  

 

 

 

Chapter 4: Application to Building Simulation  

 

The purpose of this chapter is to apply the methodology using the two modeling approaches: “all 

data” and “relevant data” to large buildings. Those large buildings are interesting for ESCOs. 

 The case study (building geometry and materials, occupancy profile, building operating 

conditions etc.) has been done in collaboration with Veolia Research & Innovation 

(VERI) engineers. 

 The heat demand databases are generated using TRNsys. 

 Single-zone and multi-zone building models have been introduced to test the 

methodologies.  

 Different kinds of occupancies (residential, office and commercial) have been studied too.  

 

4.1 Buildings Characteristics 

4.1.1 Buildings Description 

The buildings are based on French standards and details about the CBs to LEBs are summarized 

in Table (4.1). The Case 1- Case 3 buildings are CBs with single-zone configuration where 

buildings are considered based on the year of construction. For example, Case-1, Case-2 and 

Case-3 are based on the U-value of walls for the standard construction of different periods: <1945, 

1975-1982 and 1989-2000 respectively. The Case 4 - Case 6 are LEBs with both single and multi-

zone configuration. For instance, the Case-4 building volume is divided into three zones where 

zone-1 consists of the floor level 1-2, zone-2 consists of the levels 3-4 and zone-3 consists of the 

levels 5-6. Similarly, Case-5 building volumes are divided into three zones where zone-1, zone-2 

and zone-3 represents the floor levels 1-3, the levels 4-7 and the levels 8-10 respectively. For 

Case-6 multi-zone building model, the volumes are divided into two zones: zone-1 (North) and 

zone-2 (South). It can be further observed from Table (4.1) that the building types are varied 

according to the U-values for the walls, the roof and the glazing. For instance, the CBs (Case 1 – 

Case 3) have U-values of the walls, the roof and the floor in the range [0.5-2] in W/m2.K and U-

value of glazing 2.95 W/m2.K whereas LEBs (Case 4 – Case 6) have U-values of the walls, the 

roof and the floor of 0.25 W/m2.K and U-value of glazing in the range [1.43-1.76] W/m2.K. The 

glazing rates on the external walls are lower in Case 1- Case 4 buildings compare to Case 5- Case 
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6 buildings revealing the fact that buildings purposes (residential, offices and commercial) are 

different.   

 

Table 4.1: Description of buildings 

*: Multi-zone configurations 

The materials composition on the external walls, the roof and the floor for the different building 

cases is shown in Table (4.2). It can be seen that the external insulation thickness goes on 

increasing from CBs to LEBs whereas concrete thickness remains same for all kinds of building. 

 

Table 4.2: Description of materials use for buildings 

4.1.2 Climatic Conditions 

The climatic conditions variables: external temperature (    ), sky temperature (    ), horizontal 

solar radiation (   ) and direct solar radiation (    for four different climatic locations: Paris, 

Lille, Lyon and Clermont-Ferrand are generated from Meteonorm software15. The summary 

statistics in terms of minimum, maximum, mean and deviation of climatic variables for four 

different climatic locations is shown in Table (4.3). It can be seen that external temperature      

goes to about -8 0C with deviations of around 7 0C for different climatic locations. In case of sky 

                                                 
15 http://www.meteonorm.com/en/ 

Descriptions Case 1 Case 2 Case 3 Case 4
1*

Case 5
1*

Case 6
1*

Floor Surface  (m
2
) 3333 3333 3333 3333 1372 10521

Number of floor 6 6 6 6 10 1

Total surface (m
2
) 20000 20000 20000 20000 13720 10521

External wall South (m
2
) 4000 4000 4000 4000 4450 330

External wall North (m
2
) 4000 4000 4000 4000 4450 330

External wall West (m
2
) 1250 1250 1250 1250 - 330

External Wall East (m
2
) 1250 1250 1250 1250 - 330

Floor height (m) 3.2 3.2 3.2 3.2 3.2 3.2

U-value of walls, roofs and floors (W/m
2
.K) 2 1 0.5 0.25 0.25 0.25

U-value of glazing W/m
2
.K 2.95 2.95 2.95 1.76 1.43 1.43

Glazing rate on each external wall (%) 25 25 25 25 30 30

Building Type Residential Residential Residential Residential Office Commercial

Single/Multi-zone Type Single Single Single Single/Multi Single/Multi Single/Multi

Walls Roof Floor Walls Roof Floor Walls Roof Floor Walls Roof Floor

Concrete (mm) 200 200 200 200 200 200 200 200 200 200 200 200

Polystrene (mm) 10 10 30 65 65 140 140

Polyurethane (mm) 6 20 30 50 110

Case 1 Case 2 Case 3 Case 4 - Case 6
Materials

http://www.meteonorm.com/en/
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temperature     , the minimum and maximum value is around -34 0C and 28.8 0C with deviation 

of around 9 0C. Similarly, it can also be seen that maximum horizontal solar radiation     is about 

1000 kW/m2 with a deviation of around 203 kW/m2 for different climatic locations.  

 

Table 4.3: Summary statistics of climatic conditions at different locations 

4.1.3 Occupancy Profile 

Different kinds of occupancies profiles are considered for different cases. The occupancy profile 

of single-zone Case 1- Case 4 building is shown in Figure (4.1).  

 

Figure 4.1: Occupancy profile of single-zone Case1 - Case4 building 

Minimum Maximum Mean Deviation

Paris -6.8 34.2 11.9 7.1

Lille -7.4 31.7 11.0 6.7

Lyon -7.2 35.6 12.9 8.0

Clermont-Ferrand -9.3 32.9 11.9 7.7

Paris -30.1 28.7 3.6 8.7

Lille -24.6 25.5 2.8 8.1

Lyon -31.3 28.8 3.7 9.2

Clermont-Ferrand -34.0 28.2 2.1 9.8

Paris 0 1008 118 190

Lille 0 956 116 189

Lyon 0 1021 139 217

Clermont-Ferrand 0 1015 141 217

Paris 0 894 48 121

Lille 0 831 49 126

Lyon 0 881 67 151

Clermont-Ferrand 0 876 70 153
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This profile is similar for all days in a week. It can be seen that building is fully occupied from 

21:00 to 7:00 hour and there is a transition in occupancy in the afternoon. This kind of occupancy 

profile represents similar behavior to residential building profile. For the multi-zone Case-4 

building (Case-4*), the occupancy profile is similar to the one shown in Figure (4.1) for three 

zones (zone 1- zone 3). In both single-zone (Case 1- Case 4) and multi-zone (Case-4*) buildings, 

the occupancy rate is 0.05 per m2 and internal gains per occupants are 75 W.   

The occupancy profile of single-zone Case-5 building is shown in Figure (4.2) where building is 

occupied only during Monday to Friday.  

 

Figure 4.2: Occupancy profile of single-zone Case-5 building 

For buildings with such a configuration (Figure 4.2), there is no occupancy during morning and 

night but there is a transition in occupancy during a day revealing that profile looks similar to the 

offices building. In case of multi-zone Case-5 building (Case-5*), the occupancy profile is similar 

to the one shown in Figure (4.2) where zone-1 is occupied during Monday to Friday, zone-2 is 

occupied during Monday to Saturday and zone-3 is occupied for all days in a week (Monday to 

Sunday). For this type of building, the occupancy rate is 0.1 per m2 and internal gains per 

occupants are 75 W. 

Similarly, the occupancy profile of multi-zone Case-6 building (Case-6*)  is shown in Figure (4.3) 

where notation “zone-1” and “zone-2” represents the occupancies in two zones: zone 1 and zone 2 

respectively. In zone 1, the building is occupied during Monday-Saturday whereas in the other 

zone, the building is occupied during the whole week (Monday-Sunday). In case of single-zone 
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building (Case-6), the occupancy reflects the notation “zone-1” and the building is occupied 

during Monday-Saturday only. For this type of building, the occupancy rate is 0.2 per m2 and 

internal gains per occupants are 75 W.       

 

Figure 4.3: Occupancy profile of multi-zone Case-6 building 

4.1.4 Building Operating Conditions 

The operating conditions (set-point temperature, lighting and ventilation) vary for different types 

of building. Figure (4.4) shows the operating conditions for Case 1- Case 4 buildings in which the 

set-point temperature (represented by SP2) only varies. Whereas, the lighting (represented by L1) 

and the ventilation (represented by V1) are constant along the day at 0.3 W/m2 and 1 W/m3 

respectively. For single-zone building model, the set-point temperature is represented by “SP1” 

signifying 210C during all days in a week. In case of multi-zone building model, the lighting and 

the ventilation are similar to the ones shown in Figure (4.4) for the different zones. However, the 

set-point temperature varies in the different zones, for instance, the set-point temperature is 

represented by “SP1” (210C all hours) and “SP2” (180C: 0-5h and 22-23h; 210C: 6-21 h) in zone-1 

and zone-2 respectively for all days in a week. On the other hand, in other zone “zone-3”, the set-

point temperature is represented by “SP1” schedule during Monday-Friday and by “SP2” schedule 

during Saturday-Sunday.  
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Figure 4.4: Operating conditions of Case 1-Case 4 building

For Case-5 building model, the set-point temperature, the lighting, the ventilation and the 

appliances profiles are shown in Figure (4.5). In case of single-zone building model, the set-point 

temperature during Monday-Friday is represented by “SP1” notation (160C: 0-5 h and 22-23h; 

210C: 5-22h) and Saturday-Sunday is represented by “SP2” notation (160C: 0-23h). Similarly, the 

lighting, the ventilation and the appliances profiles during Monday-Friday are represented by 

“L1” “V1”and “A1” notation respectively whereas “L2”, “V2”and “A2” notations are represented 

for Saturday-Sunday. For multi-zone building model, the set-point temperature “SP1”, the lighting 

“L1”, the ventilation “V1”and appliances “A1” are scheduled in zone-1 during Monday-Friday, 

zone-2 during Monday-Saturday and zone-3 during all days in a week. On the other hand, the set-

point temperature “SP2”, the lighting “L2”, the ventilation “V2” and appliances “A2” are 

scheduled in zone-1 during “Saturday-Sunday” and zone-2 during Sunday.  

The set-point temperature, the lighting and the ventilation for Case-6 building model are shown in 

Figure (4.6). In case of single-zone building model, the set-point temperature, the lighting and the 

ventilation are represented by notation “SP1” (160C: 0-7h and 20-23h; 210C: 8-19h), “L1” (0.05 

W/m2: 0-7h and 20-23h; 1.0 W/m2: 8-19h) and “V2” (0.5 W/m3: 0-7h and 20-23h; 1.0 W/m3: 8-

19h) respectively during Monday-Saturday. The set-point temperature in the Sunday is 

represented by notation “SP2”. For multi-zone building model, all the operating conditions of 

building in one zone (zone-1) are similar to single-zone building model. For other zone, the set-
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point temperature, the lighting and the ventilation schedules are represented by notation “SP3”, 

“L2” and “V2” for all days in a week (Monday-Sunday).          

 

Figure 4.5: Operating conditions of Case-5 building 

 

Figure 4.6: Operating conditions of Case-6 building 
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4.2 Simulation Data Generation 

The hourly heating load of building is generated with the building simulation tool (TRNsys). In 

TRNsys, a single and multi-zone building can be modeled using lumped-capacitance analogy. We 

have used TRNsys version 17 single zone TYPE 56 model.  

The derived climatic variables (the solar gain transmitted through the windows       and the solar 

gain on the walls      ) for the different locations and the different buildings are obtained from 

TRNsys and is shown in Figure (4.7-4.8). It can be seen that solar gain transmitted through the 

windows       in CBs (Case1 – Case 3) is relatively higher than LEBs for different climatic 

locations. On the contrary, the solar gain on the walls       in LEB (Case-4) is relatively higher 

than CBs (Case1 –Case 3) for different climatic locations but the solar gain on the walls       in 

other LEBs (Case 5- Case 6) is lower than CBs. It is more noticeable that the solar gain 

transmitted through the windows       and the solar gain on the walls       in Case-6 building are 

relatively lower than other types of buildings.  

 

 

Figure 4.7: Summary statistics of the solar gain transmitted through the windows for four climatic 

locations (Paris, Lille, Lyon and Clermont-Ferrand) 

 

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Max Mean Dev

S
o

la
r

g
a

in
 t

r
a

n
sm

it
te

d
th

r
o

u
g

h
W

in
d

o
w

(k
W

)

Paris

Case 1

Case 2

Case 3

Case 4

Case 4*

Case 5

Case 5*

Case 6

Case 6*

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Max Mean Dev

S
o

la
r

g
a

in
 t

r
a

n
sm

it
te

d
th

r
o

u
g

h
W

in
d

o
w

(k
W

)

Lille

Case 1

Case 2

Case 3

Case 4

Case 4*

Case 5

Case 5*

Case 6

Case 6*

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Max Mean Dev

S
o

la
r

g
a

in
 t

r
a

n
sm

it
te

d
th

r
o

u
g

h
W

in
d

o
w

(k
W

)

Lyon

Case 1

Case 2

Case 3

Case 4

Case 4*

Case 5

Case 5*

Case 6

Case 6*

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Max Mean Dev

S
o

la
r

g
a

in
 t

r
a

n
sm

it
te

d
th

r
o

u
g

h
W

in
d

o
w

(k
W

)

Clermont-Ferrand

Case 1

Case 2

Case 3

Case 4

Case 4*

Case 5

Case 5*

Case 6

Case 6*



111                                                                Chapter 4: Application to Building Simulation 

 

 

 

 

Figure 4.8: Summary statistics of the solar gain on the walls for four climatic locations (Paris, 

Lille, Lyon and Clermont-Ferrand) 

The final annual energy demand for CBs and LEBs is shown in Figure (4.9) and it is noticed that 

the final energy demand varies according to climatic locations. The final heating energy demand 

varies from 36 to 82 kWh/m2.yr for CBs whereas LEBs varies from 21 to 32.8 kWh/m2.yr.   

 

Figure 4.9: Final energy demand for CBs and LEBs 
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The dynamic response of building, i.e., time constant is evaluated at 20 cm concrete from TRNsys 

by maintaining constant indoor temperature. It was observed by turning off the heater and the 

internal gains. By assuming a first order dynamic behavior, this time constant of building models 

are calculated as shown in Table (4.4). 

 

Table 4.4: Summary of time constant for different building types 

4.3 Application of AI Modeling Methodology for CB to 

LEB  

4.3.1 Introduction 

The case study is applied to CBs (Case 1- Case 3) and LEB (Case-4). The shape factor of those 

buildings is calculated by using Equation (2.3) in Chapter 2. This factor is 0.22 for all types of 

buildings which is quite realistic for LEB. According to specification of LEBs criteria based on 

shape factor shown in Table (2.1) and Equation (2.1) in Chapter 2, the final energy demand is 

23.6 kWh/m2.yr which is quite convenient to the range of Case-4 building shown in Figure (4.9).    

The time constant of CBs and LEBs shown in Table (4.4) represents the non-linear dynamics of 

building. But steady state time of building is sufficient to characterize non-linear dynamics and 

almost corresponds to 63% of time constant of 30 hours, 53 hours, 76 hours and 119 hours   1 

day, 1.4 day, 2 days and 3 days respectively. However, for the sake of convenience, the number of 

past day climate impacts u in Equation (3.7, 3.12, 3.20-3.21) in Chapter 3 corresponds to 1 for 

Case-1 to Case-2 building, 2 for Case-3 building and 3 for Case-4 building.  

Building Types
Time Constant 

(Hours)

Case 1 30

Case 2 53

Case 3 76

Case 4 119

Case 4* 170

Case 5 210

Case 5* 217

Case 6 219

Case 6* 219
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4.3.2 Recommendation for Applying the Methodology “Step by 

Step”  

Step 1: Building Operation Classification/Clustering 

The classification of building operations in “Offline Data Preparations” in Figure (3.4) in 

Chapter 3 is shown in Figure (4.10) for Case-4 building model as an example. It can be seen that 

all days are represented by a single cluster of data from canonical variate (CV) analysis. 

Therefore, there is only one building operation class (this is similar for all the cases of this 

Section). Figure (4.11) shows the average heat load profile of each day of a week for Case-4 

building. It is clear from Figure (4.10) and Figure (4.11) that the operating conditions of building 

remains the same during a week (this is similar for all the cases).  

 

Figure 4.10: Classification of building operation classes (Case-4) 

 

Figure 4.11: Functioning profile of building (Case-4) 
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Step 2: Pseudo Dynamic Model 

The dynamic characteristic to control the indoor temperature of the building16 (represented by 

steady state               ) is around 1-2 hours. It can be noticed that the operating conditions of the 

building (set-point temperature, ventilation and lighting shown in Figure 4.4) are constant during 

a day, so this schedule does not contain significant information for an AI model. However, the 

occupancy profile (shown in Figure 4.1) changes at periods 7-8, 11-12, 13-14, 18-19 and 20-21 

hour; therefore the PDM directly depends on the these changes period.  

A transitional and pseudo dynamic characteristics with 2 lags (due to steady state time) during a 

day are shown in Figure (4.12) where “Trans” represents transitional characteristics, “PDL-1” 

represents the pseudo dynamic lag at past 1 hour and “PDL-2” represents the pseudo dynamic lag 

at past 2 hours.  

 

Figure 4.12: Transitional and pseudo dynamic characteristics during two consecutive day 

The transitional levels in Figure (4.12) are calculated using the Equation (3.1) in Chapter 3. For 

this study, we assume    to be zero and    with an increment of 0.5. Furthermore, the effects of 

the transitional and pseudo dynamic effects on heating load can be understood from Figure (4.13) 

where each transitional level (represented by Trans) and pseudo dynamic lag (represented by 

PDL) correspond to the changes in heating load from one period to another. It is clear that 

                                                 
16

 The time constant of the indoor air is very different than the time constant of the building envelopes 
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dynamic behavior characteristics arising from occupants can be illustrated using transition and 

PDL (Trans and PDL shown in Figure 4.12).  

  

Figure 4.13: Pseudo dynamic transitional effects on heating load during two consecutive days 

Step 3: Climatic Variables Selection 

 

Research Question 2: What are the most significant features for different types of building? 

The climatic variables considered for relevance determination are: 

● Direct Climatic Data:  

 External temperature (    ), Temperature of sky (    ) 

 Horizontal solar radiation (   ), Direct solar radiation (  ) 

● Derived Climatic Data (depending on window of number of past day climate impacts u 

e.g., u in Case-1 to Case-2: 1 day, Case-3: 2 days and Case-4: 3 days) 

 Solar gain transmitted through windows (     ), Solar gain on walls (     ) 

 Temporal moving average of external temperature  (        ), solar gain on walls 

(         ) 
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The correlation indexes (r) of all climatic variables to select important features represented by 

“Climatic Variables Selection” block (Chapter 3 in Figure 3.4) for different buildings by 

applying Equation (3.2) is shown in Figure (4.14).  

 

Figure 4.14: Correlation indexes on climatic conditions for CBs to LEB 

In all cases, it is observed that the external temperature is more significant than the solar gains. It 

is also noticed that          and           have higher correlation coefficients which provide 

further justification of thermal storage impacts from past day. The threshold value (   ) of 0.07 is 

chosen to determine the relevance of those variables since most of the climatic conditions have 

their correlation indexes above 0.07. If the threshold value is greater than 0.10, then their 

important characteristics especially solar gains (the r for solar gain transmitted through the 

windows       is below 0.10 for most of the cases) in determining the heat load are missed. With 

consideration of     with 0.07 value, the climatic condition     ,     ,    ,   ,      ,      , 

         and           are significant.  

However,      and     ,     and    have mutual cross-correlation effects and influences the 

black-box model. Therefore      and     are only selected because of their highest correlation 

compared to their mutual correlating variables. Thus, it can be concluded that that external 

temperature     , horizontal solar radiation    , solar gain on walls      , solar gains transmitted 

through windows      , temporal moving average of external temperature          and temporal 

moving average of solar gain on walls           are significant variables for different types of 
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and      , only     ,    ,       and       variables are used as a selected weather variables in 

finding similar patterns so v in Equation (3.12) and Equation (3.20- 3.22) in Chapter 3 represents 

4.    

The cross-correlation indexes (   ) are performed by applying Equation (3.3) in Chapter 3 at lags 

( ) 23 hours that provides time dynamics of selected weather variables. The time dynamics of the 

external temperature      for last 23 hours to represent the thermal storage effects in different 

cases are shown in Figure (4.15). It can be seen that the cross-correlation indexes     for external 

temperature      reach maximum value at past 1-2 hours and decrease the     value slowly for all 

the cases. This further illustrates that the time dynamics of       is 1 hour with  1 hour deviations 

for all cases. Similarly, cross-correlation indexes     are applied to other climatic variables:    , 

      and      . As a result, their time dynamics ranges from 2 hours with  1 hour deviations for 

all cases. Thus, all the selected direct and derived climatic variables (    ,         ,    ,      , 

      and          ) and their dynamics (   ,       and       at past 2 hours; and      at past 1 

hour) are represented by output of “Climatic Variables Selection” block in Figure (3.4) in 

Chapter 3.  

 

Figure 4.15: Cross-correlation indexes to select external temperature dynamics for CBs to LEB 
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input features scenario of S7 and the temporal moving average window (external temperature 

         and solar gain on walls          ). It can also be noticed from Table (4.5) that the input 

and output variables are shown in t where t varies from 1 to 24 hour since the prediction model 

relies on 1 day ahead (the parameters of AI model changes each day) and   in Equation (3.8-

3.9) corresponds to 24.   

 

Table 4.5: Summary of input and output variables of different scenarios 

Step 5: Analysis of Climatic Variables on the Building Load 

Research Question 3: How does the number of past days climatic variables influences the 

prediction accuracy of energy consumption of buildings? 

In order to determine the influences of the past days climatic variables on the daily average 

heating load, signal analysis is initially performed using a wavelet analysis shown by “Wavelet 

Coefficient Calculation of Selected Climatic Variables and their Past Day” block in Figure 

(3.10) in Chapter 3 or in Section 3.5.2. For this analysis, we have used Daubechies wavelet and 

the climatic variables are decomposed at 5 levels, thus the 24-hourly samples are re-sampled into 

32 (25) samples. For the 32 samples of data in a day, the decomposition coefficients z equals to 5 

in Equation (3.15-3.18). The decomposed signals of them are expressed by low-frequency and 

high-frequency coefficients in order to describe the fast and low effects for the heat stored in the 

S1 S2 S3 S4 S5 S6 S7 S8

Outputs P (t) × × × × × × × ×

Inputs Text(t) × × × × × × × ×

Text (t-1) × × × × × × × ×

 øSh(t) × × × × × × × ×

 øSh(t-1) × × × × × × × ×

 øSh(t-2) × × × × × ×

øSext(t) × × × × × × ×

øSext(t-1) × × × × × × ×

øSext(t-2) × × × × × ×

øSint(t) × × × × × × ×

øSint(t-1) Solar gain on wall at 1 hour delay (kW) × × × × × × ×

øSint(t-2) Solar gain on wall at 2 hours delay (kW) × × × × × ×

occup Occupancy profile [0  1] × × × × ×

trans Transitional attributes [0.2 1] × × × ×

PDL-1 Pseudo dynamic lag 1 [0.2 1] × × ×

PDL-2 Pseudo dynamic lag 2 [0.2 1] × ×

Text_TDM Temporal moving average of external temperature (
0
C) ×

øSint_TDM Temporal moving average of solar gain on wall (kW) ×

Solar gain transmitted through window at 2 hours delay (kW)

Solar gain on wall (kW)

Horizontal solar radiation (kW)

Horizontal solar radiation at 1 hours  delay  (kW)

Horizontal solar radiation at 2 hours  delay  (kW)

Solar gain transmitted through window (kW)

Solar gain transmitted through window at 1 hour delay (kW)

Input Features Scenarios

External temperature at 1 hour time delay (
0
C) 

Name Description

Heat Load (kW)

External temperature  (
0
C)
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walls. The input-output parameters of an intermediate SVM model based on linear kernel are 

shown in Table (4.6).  

 

Table 4.6: Parameters of SVM used for weight calculation 

From Table (4.6), it is clear that the differences in the influences of climatic variables for the 

different cases lie to the set of inputs. For instance, Case-1 building has a past number of climatic 

impacts (u) of 1 day so its relevant input wavelet coefficients are:                                

                                  . Similarly, Case-4 building has a past climatic conditions 

impacts of 3 days so its relevant input wavelet coefficients are:                            

                                                                                 . The 

output of this intermediate model that used wavelet decomposition (see Section 3.5.2) is the daily 

average heating load. The normalization is performed in the range of 0 to 1 using min-max 

normalization and model selections are based on k-fold cross validation where k equals to 5. In 

order to determine the influence of these wavelet coefficients, Lyon and Clermont-Ferrand 

wavelet climatic conditions are chosen as training and validation to fit the model, and Lille is used 

to test the model.   

The influence of the number of the past climatic conditions up to past 5 days for different cases 

based on median17 and overall RMSE and R2 is shown in Figure (4.16) for the Case 1 to 4. It can 

be noticed that model performance is higher (higher median and overall R2 values or lower 

median and overall RMSE values) at past day 1 for Case-1 building whereas its performance is 

                                                 
17

 The reason to choose median value is due to its robustness with the changes in performance data and is less 

affected by outliers compare to mean value 

Name Descriptions

Wavelet coefficients: Text(t), Text(t-24),….. ,Text(t-72),

øSh(t),øSext(t),øSint(t),øSint(t-24),...,øSint(t-72)

Output Daily average heating load

C {2
-5

, 2
-4
, …, 2

5
}

ɛ {0.001, 0.01, 0.1, 0.2, 0.5}

Kernel function Linear

Model selection 5-fold cross validation

Normalization min-max

Datasets Training and Validation: Lyon-1 year and Clermont-Ferrand-1 year

Testing: Lille-1 year

Input (depending on

building type)
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higher (higher: median and overall R2 values or lower median and overall RMSE values) at past 

1-2 days, past 2 days and past 3 days for Case-2, Case-3 and Case-4 respectively. 

 

Figure 4.16: Influence of the number of the past climatic conditions days selection on different 

building cases 

The weight factors affecting in selection of external temperature      and solar gain on walls 

      at past 1-5 days as an example for Case-4 building is shown in Figure (4.17) where pie 

diagram represents the total share of weights between      and      , and bar diagram represents 

predicted and past day behavior weights of      and      . In Figure (4.17), time t corresponds to 

prediction day, t-24 corresponds to day before prediction day and t-48 corresponds to last two 

days before prediction day and so on. It is clear from Figure (4.17) that prediction day external 

temperature      is more dominant compared to previous days (t-24, t-48, t-72, t-96 and t-120) for 

daily average heat load of building. However, for the solar gain on the walls      , the prediction 

day has less weight compared to previous days  (t-24, t-48, t-72, t-96 and t-120) on determining 

daily average heat load of building. Moreover, it is also seen that with the increasing number of 

selection days from 3, the weight effect of climatic variables: external temperature      and solar 
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gain on walls        are almost similar in days 3 to 5 and illustrates that 3 days seem quite 

significant to determine thermal dynamic response for Case-4 building.  

 

Figure 4.17: Influence of past day external temperature      and solar gain on walls       from 

prediction day on daily average heating load for Case-4 building 

Intermediate Recommendations: The reader can consider the past 3 day’s climatic conditions 

of external temperature      and solar gain on walls       for LEB. In case of CB, the past 1-2 

days of these climatic conditions are significant. Therefore, number of past day climatic impacts u 

for CB and LEB are 1-2 and 3 respectively.  

Comparison between SVM and Least Square Method (LSM) 

The comparison between SVM based on linear kernel and a LSM based on regression model 

is performed by fitting the wavelet coefficients features shown in Table (4.6). The performance 

accuracy based on SVM and LSM is shown in Figure (4.18). It is shown that SVM based on 

linear kernel is better than LSM based on regression model due to its lower RMSE for all the 

given cases. For instance, the performance of SVM based on linear kernel is higher (lower 

RMSE=142) compared to LSM based on regression model (higher RMSE=184) for Case-4. 
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Therefore, this reveals that SVM based on linear kernel is better than LSM based on regression 

model to determine the influence of climatic variables on the building load.  

 

Figure 4.18: Performance while fitting wavelet coefficients using LSM based on regression and 

SVM based on linear kernel 

The influence of climatic conditions weight using SVM based on linear kernel and LSM based 

on regression model is shown in Figure (4.19).  

 

Figure 4.19: Influence of climatic conditions on different buildings using SVM based on linear 

kernel and LSM based on regression 

As an example, with SVM based on linear kernel it is noticed that the impact of external 

temperature      goes on decreasing and solar gains go on increasing while the building is 

migrating from CBs (Case-1 to Case-3) to LEB (Case-4). On the other hand, the influence of 
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buildings are dominated by external temperature     , for example,  in Case-4 the external 

temperature      is 93% dominant on heating load which is followed by the solar gain transmitted 

through the windows       (5%), the solar gain on the walls       (1%) and the horizontal solar 

radiation     (1%). Furthermore, LSM results reveal that influence of building load is highly 

dominated by      and further signifies that       and       has less influences on heating load.  

Intermediate Recommendations: The comparison study suggests using SVM based on linear 

kernel rather than LSM based on regression to determine the influence of climatic variables on 

LEB.  

The individual prediction and past day behaviors of climatic conditions for different cases using 

SVM based on linear kernel is shown in Figure (4.20). 

 

Figure 4.20: Individual weight distribution of prediction and past day climatic conditions for 

different building types (using SVM based on linear kernel) 
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transmitted through the windows       (4%) and the horizontal solar radiation      (3%) whereas 

prediction day (corresponds to time t) the external temperature      is more dominant (58%) 

compared to the previous days external temperature t-24 (42%) in determining heating load. In 

case of solar gain on the walls      , the prediction day has less weight (17%) whereas the 

previous day from prediction day at time t-24 has highest weight (83%). On the other hand, in 

Case-4 building, the external temperature      is more dominant (61%) which is followed by the 

solar gain on the walls       (23%), the solar gain transmitted through the windows       (12%) 

and the horizontal solar radiation      (4%) whereas the prediction day (corresponds to time t) 

external temperature      is more dominant (70%) compared to the previous days external 

temperature (t-24, t-48 and t-72) in determining the heating load. In case of the solar gain on the 

walls        for such LEB (Case-4), the prediction day has less weight (4%) whereas the previous 

day from the prediction day at time t-24 has highest weight (52%). 

The summary of individual normalized weight matrix represented in Figure (4.20) obtained from 

Equation (3.21) in Chapter 3 is given below for different types of buildings where           , 

         ,             and             represents weight vector matrix of     ,    ,       and  

      respectively. The right hand side of first scalar contains the influence of climatic variables 

    ,    ,       and       on building load. Right hand side of second matrix contains the 

influence of respective climatic variables of prediction day, last day before prediction, last two 

days before prediction day and last three days before prediction day.  
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Step 6: Selection of the Sub-Database 

The selection of the sub-database are based on the influence of climatic variable weights obtained 

from step-5 and after the identification of similar climatic variables shown by “Identification of 

Similar Climatic Conditions” block in Figure (3.10) in Chapter 3. The HDD is calculated for 

prediction day and its number of past day climate impacts u (e.g., u in Case-1 to Case-2: 1 day, 

Case-3: 2 days and Case-4: 3 days) using Equation (3.7) in Chapter 3. Similarly, modified HDD 

(mHDD) similarity weights of external temperature      and solar gain on walls       are 

determined using prediction day and its number of past day climate impacts using Equation (3.12) 

in Chapter 3. In addition, similarity weight of horizontal solar radiation     and solar gain 

transmitted through windows       are calculated only for prediction day using Equation (3.12) in 

Chapter 3. Furthermore, similarity weights of      and       are determined by comparing 

prediction day and its number of past day climate impacts u with the training database based on 

DTW using Equation (3.13) in Chapter 3 and based on FD using Equation (3.14) in Chapter 3. 

However, similarity weight of     and       are determined only by comparing prediction day 

with training day climatic behavior for both methods based on FD and DTW.  

Finally, the final weights of all training days are calculated based on Equation (3.22) and then the 

12 relevant days (l in Equation 3.23 in Chapter 3 corresponds to 12) sub-databases are selected. 

The sensitivity analysis on number of relevant days with the prediction performance is carried in 

step-7.  

Step 7: Heating Load Prediction 

Let us remember that the TRNsys results have been generated using a single-zone model for the 

description of this step.  

Initially, the model is evaluated using ANN based on DTW and then studied comparison of 

different AI models and “relevant data” modeling approaches. The different input features 

scenarios are considered for the analysis of ANN model based on Table (4.5). For each of the 

input features scenarios, the cost function in Equation (3.26) in Chapter 3 is calculated by 

iterating up to 1000 times for each of the minimum and maximum hidden neurons. The maximum 
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hidden neurons is calculated using Equation (3.33) in Chapter 3, where   is chosen 8 as it gives 

the flexibility in the degree of model parameters and minimum hidden neuron is chosen 1. The 

model parameters are updated based on Equation (3.27) in Chapter 3 where training parameters 

are chosen to converge slowly due to the use of faster Levenberg-Marquardt training algorithm. In 

order to converge slowly, we chose relatively larger value of   to be 1 where its value is increased 

with a factor of 1.5 and decreased with a factor of 0.8. The neural network model training is 

stopped when the iterations reached to 1000 and performance goal reached to the value given by 

the Equation (3.32) in Chapter 3 where   corresponds to 0.01. The summary of parameters of 

ANN model is shown in Table (4.7). The performance of different input scenarios are evaluated 

considering 1 year test data at Paris location for different cases and their performances are shown 

in Table (4.8). 

 

Table 4.7: Summary of ANN parameters 

 

Table 4.8: Comparison of different input features scenarios for different cases using DTW 

relevant data modeling approach based on ANN 

Name Descriptions

Input and output of 

model
S1 to S8 shown in Table (4.5)

Activation function Hyperbolic tangent (hidden and output layer)

Hidden neurons 1 to maximum define in Equation (3.33)

Training algorithm Levenberg-Marquardt 

Stopping criteria Number of iteration:1000 and performance goal define in Equation (3.32)

Model selection 5-fold cross validation

Normalization min-max

Datasets Training and Validation: Lyon-1 year, Clermont-Ferrand-1 year and Lille-1 year

Testing: Paris-1 year

R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE

S1 0.74 20.5 0.98 23.4 0.71 17.7 0.96 23.4 0.67 16.2 0.96 18.3 0.69 13.2 0.93 16.6

S2 0.75 20.1 0.98 23.0 0.69 17.5 0.97 20.5 0.69 16.1 0.96 18.1 0.68 14.1 0.94 15.5

S3 0.77 19.6 0.98 22.8 0.69 17.3 0.97 20.7 0.70 15.9 0.96 18.1 0.70 13.6 0.94 15.5

S4 0.88 14.7 0.99 18.5 0.88 12.3 0.98 16.2 0.90 10.4 0.98 13.6 0.93 7.2 0.97 9.7

S5 0.89 14.2 0.99 17.8 0.88 12.2 0.98 16.6 0.91 10.1 0.98 13 0.94 7.3 0.98 9.3

S6 0.88 14.5 0.99 19.5 0.86 13.1 0.98 17.2 0.90 10.1 0.98 13.4 0.93 7.2 0.97 10.6

S7 0.89 14.1 0.99 17.8 0.88 12.7 0.98 16.2 0.91 10.0 0.98 13.6 0.93 6.9 0.98 8.9

S8 0.93 10.9 0.99 14.1 0.92 9.5 0.99 13.6 0.96 6.0 0.99 8.5 0.97 3.9 0.99 6.0

Models

Case 1 Case 2 Case 3 Case 4

Median Overall Median Overall Median Overall Median Overall
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The performances of different input features scenarios are evaluated based on median18 and 

overall19 values. It can be seen that the input feature scenario S1 that relies on the external 

temperature      and the horizontal solar radiation     is not fully sufficient to learn the behavior 

of heat load. It is noticed that CB (Case-1) that is more temperature dependent has higher 

performance (Median R2=0.74; Overall R2=0.98) compared to LEB (Case-4) that depends on solar 

gain (Median R2=0.69; Overall R2=0.93) which is the fact that the external temperature features 

are not sufficient to characterize for Case-4. It can be seen that median values performance gave 

better comparison than overall performance due to the evaluation of model performance each day. 

It is also observed that the input feature scenario S3 that relies on climatic conditions (external 

temperature and solar gain) including delay storage of the climatic conditions has more stable 

results in comparison to the input feature scenarios S1-S2 for all the cases.  

In addition, it can be observed that occupancy profile has a major impact for all the cases shown 

by the input feature scenario S4 and their performance has been increased compared to scenario 

S3. For instance, the input feature scenario S4 has better performance (Median: R2=0.88, 

RMSE=14.7; Overall: R2=0.99, RMSE=18.5) compared to the input feature scenario S3 that 

depends only on climatic conditions (Median: R2=0.77, RMSE=19.6; Overall: R2=0.98, 

RMSE=22.8) for Case-1 building. With the introduction of transitional and pseudo dynamic lag, 

the performance has been slightly increased as well. It is clear that PDM with 2 hours lag (the 

input feature scenario S7) is sufficient to characterize the dynamics of indoor air rather than only 

1 hour lag (the input feature scenario S6) and the best simulation result is obtained from the 

scenario S7 while comparing scenarios S1-S6 for all the cases. Furthermore, the most interesting 

result is given when we consider the temporal moving average behavior in scenario S8 compared 

to the best simulation results (scenario S7). Thus, it can be concluded that though scenario S7 has 

more consistent results compared to scenarios S1-S6, scenario S8 is even better due to the moving 

average of thermal storage effects behaviors.        

Figure (4.21) shows the performance of scenarios S7 and S8 for different heating months (January 

–April and October- December) for different types of buildings (Case 1-4). It can be observed that 

the performance of scenario S8 is higher compared to scenario S7 for  different heating months 

(January – April and  October – December) for all the cases due to the inclusion of temporal 

moving average behavior of       and      . But during April, both scenarios S7 and S8 have less 

performance compared to other months. This is due to the intermediate season where heating 

                                                 
18

 Evaluates the performance using median values of each prediction day from all testing condition of 1 year 
19

 Evaluates the performance from all testing condition of 1 year  
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loads are mostly dominated by     . During this intermediate season, heating demand is more or 

less similar in range of low peak demand thus it is not essential for ESCOs to have a good heating 

demand prediction. Therefore, Figure (4.21) illustrates that scenario S8 is better for all types of 

building (Case 1- Case 4) to predict heating load.  

 

Figure 4.21: Performance of scenarios S7 and S8 for different heating months 

As an example, Figure (4.22-4.23) shows the heating load prediction from scenarios S7 and S8 for 

some random days in months (January- March) for Case-3 and Case-4 building.  

 

Figure 4.22: Prediction of heating load from input scenarios S7 and S8 for some random days in 

different months for Case-3 building 

It can be noticed that for both types of buildings, most of the errors are accumulated during first 

hours of heating period (0-7) hour in morning, in particular to scenario S7 compared to scenario 
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S8. This is because though the input feature scenario S7 considers building dynamics behavior, it 

does not include small transition of thermal energy storage in walls from past dynamics of 

climates:       and       which are the dominant variables for heating load. In contrast, the input 

feature scenario S8 comprises transition of thermal energy storage in wall from       and       by 

introducing temporal moving average window at past 3 days for Case-4 and at past 2 days for 

Case-3 building. 

 

Figure 4.23: Prediction of heating load from input scenarios S7 and S8 for some random days in 

different months of Case-4 building 

Intermediate Recommendations: The readers are suggested to use the input feature scenario 

S8 as a reference for all the cases at later use for the given building.  

Sensibility Study: Influence of the Number of Relevant Days in 

the Prediction Performance 

Research Question 4: How does number of data used for model training influences the 

performance of machine learning AI model?  

Generally, the number of days used for model training depends on ten times the number of 

features (see remark 2.6 in Chapter 2). The numbers of features are around 4-17 for different 

scenarios. Thus, number of training data should be around 170 hours equivalent to 7 days. 
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Considering this fact to determine stable and reliable performance values, the model is evaluated 

by varying the number of training day data from 5 days to 45 days shown in Figure (4.24). The 

performance of the model is evaluated by considering different test days. The median of their 

normalized RMSE performance is shown in Figure (4.24). It can be observed that the performance 

of the model decreases (RMSE increases) when the number of days is lower than 7 days and 

greater than 14 days.  

 

Figure 4.24: Influence of number of days data in accuracy of prediction model 

 

Intermediate Recommendations: From the remark 2.6, the readers can consider the ratio of 

training days to be 10 times the number of features has a good recommendation since the 

performance has less error and stable values between 7 and 14 days. However, the readers are 

encouraged to use 12 days as relevant days as a general rule of thumb since it has higher 

performance.  

 

Selection on AI Models  

The choice of AI models: ANN, SVM, BEDT and RF depend on the choice of the relevant data 

selection methods (HDD, Modified HDD, FD and DTW). 
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The comparisons between different AI models are evaluated using input features of scenario S8 

based on different “relevant data” modeling approaches. In case of SVM, the parameters C 

shown in Equation (3.35) in Chapter 3 is tuned at                and   is searched at 

                        . The   parameter shown in Equation (B.15) in Appendix B of RBF 

kernel is tuned at                  . Similarly, for BEDT, the number of trees    shown in 

Equation (3.36) in Chapter 3 is searched from                      at increment of 25, the 

number of leaf in each tree    shown in Equation (3.36) is chosen 5 and the learning parameter   

in Equation (B.26) in Appendix B varies from [0.1 0.25 0.5 0.75 1]. Finally, for RF, the number 

of trees of forest B in Equation (3.37) is searched from                     at increment of 25, 

the random sample with replacement, i.e., bootstrap sample is 1, the number of randomly selected 

features in each split to grow trees is one-third of the number of features of scenario S8 and 

number of leaf in each tree is varied from [1 5 10 20 50]. The computation time is evaluated in 2.5 

GHz CPU with 128 GB RAM. The parameters of ANN are similar to Table (4.7) and summary of 

parameters of SVM, BEDT and RF are shown in Table (4.9).    

 

Table 4.9: Summary of SVM, BEDT and RF parameters 

The comparison of different AI models using different “relevant data” modeling approaches for 

heat load prediction is shown in Table (4.10). It can be observed that SVM model has better 

performance compared to other AI models for all the cases whereas ANN and RF are also 

suitable for Case 3-4 building. On the other hand, BEDT performance is worst for all the cases. 

This might be because BEDT require large number of data for model training. In addition, it can 

be noticed that a modified HDD and pattern recognition method (DTW and FD) has higher 

performance compared to HDD method for all kinds of AI models. The poor performance of 

HDD method might be due to solar gains and internal gains effects are not included while 

selecting relevant data selections. On the other hand, the modified HDD method has better 

performance for Case 1-2 building while its performance decreases by small values for Case-4 

building.  The decrease in performance in Case-4 building is due to the fact that it relies on weight 

effect of energy demand during a day and this LEB has zero energy demand in many periods 

Input and output of 

model
S8 shown in Table (4.5) Input and output of model S8 shown in Table (4.5) Input and output of model S8 shown in Table (4.5)

Kernel Function RBF shown in Equation B.15 Number of trees [25 50 75 100... 200] Number of trees in forest [25 50 75 100... 200]

C {2-5,2-4,…,25} Number of leaf in each tree 5 Number of leaf in each tree [1 5 10 20 50]

σ {2-15,2-14,…,215} learning rate [0.1 0.25 0.5 0.75 1] Number of random features 1/3(number of features of M10 model)

ɛ [0.001, 0.01, 0.1,0.2,0.5] Bootstrap sample 1

Normalization min-max

Datasets Training and Validation: Lyon-1 year, Clermont-Ferrand-1 year and Lille-1 year; Testing: Paris-1 year

Support Vector Machine (SVM) Boosted ensemble decision tree (BEDT) Random Forest (RF)

Model selection: 5-fold cross validation
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resulting into daily mean energy consumption zero and violating selection methods principle. The 

more noticeable result is DTW “relevant data” modeling approach has comparable results with 

the modified HDD method and can be regarded as best “relevant data” modeling approach. 

 

Table 4.10: Performance of AI models using different relevant data modeling approaches for 

different cases 

The model training CPU-time from different AI models using DTW “relevant data” modeling 

approach for particular single prediction day as a reference considering Case-4 building is shown 

in Figure (4.25). It can be seen that model training CPU-time in SVM is quite faster than other AI 

models. The higher model training CPU-time in ANN might be due to the requirement of large 

number of model parameters and BEDT might be due to the necessity of tuning best learning rate 

for different types of trees. On the other hand, RF took large model training CPU-time compared 

to rest of the model. This large time might be due to the fine tuning of number of leaf in each 

decision tree.  

 

Figure 4.25: Model training CPU-time from different AI models 

R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE

HDD 0.86 15.8 0.987 18.5 0.81 14.3 0.978 18 0.91 8.4 0.987 10.5 0.81 11.1 0.945 14.3

Modified HDD 0.93 11.2 0.993 13.9 0.91 10.2 0.986 14.4 0.96 5.9 0.991 9 0.95 6 0.977 9.3

Frechet Distance 0.93 10.9 0.99 14.1 0.92 9.5 0.99 13.6 0.96 6.1 0.99 8.6 0.93 6.4 0.971 10.3

DTW 0.95 10.1 0.995 12.2 0.94 8 0.99 11.5 0.96 6 0.99 8.5 0.97 3.9 0.99 6

HDD 0.86 16.1 0.987 18.6 0.82 14 0.978 17.6 0.94 7.5 0.988 9.8 0.87 9.1 0.963 11.7

Modified HDD 0.97 7.4 0.996 10.1 0.96 6.4 0.994 9.3 0.96 5.8 0.992 8.2 0.97 4.4 0.989 6.1

Frechet Distance 0.96 7.2 0.995 10.6 0.95 6.2 0.994 9.6 0.98 5.4 0.994 7 0.98 3.6 0.99 5.2

DTW 0.97 7.5 0.996 10.4 0.96 6.4 0.994 9.4 0.98 5.1 0.994 7 0.98 3.3 0.993 5.1

HDD 0.78 20.1 0.982 22 0.71 17.1 0.972 20.1 0.84 11.7 0.976 14.4 0.81 10.6 0.944 14.4

Modified HDD 0.89 13.4 0.991 15.4 0.85 12.2 0.984 15.2 0.92 8.9 0.983 12.1 0.94 6.6 0.983 7.9
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The model training CPU-time for different relevant data selection methods: HDD, mHDD, FD 

and DTW using SVM for a particular single day prediction is shown in Figure (4.26). It can be 

seen that FD method requires more training CPU-time ( 10 min) compared to other methods. 

This might be due to the fact that FD method defines number of paths in discrete form to follow 

the pattern recognition. In addition, this large time might be due to the large iterations it takes to 

find the smallest path for optimization problem solving. It is also seen that DTW and modified 

HDD methods training CPU-time are quite faster and reveal that these methods are useful for 

ESCOs and/or BEMS for optimal control applications.  

 

Figure 4.26: Model training CPU-time from different relevant data modeling approaches  

Intermediate Recommendations: The readers are suggested to choose modified HDD or DTW 

method based on SVM as a reference due to their higher performance and faster model training 

CPU-time to predict heat load. It is more preferable to use modified HDD “relevant data” 

modeling approach for CBs and DTW for LEBs using SVM. 

Comparison between the Modeling Approaches: “All Data” and 

“Relevant Data”  

The DTW “relevant data” modeling approach using SVM is compared with “all data” approach 

using ANN, SVM, BEDT and RF considering input features of scenario S8. In case of BEDT and 

RF, the parameters of model are defined similar to Table (4.9) except that in both of the cases 

number of trees are searched from [25, 50, 75,….,500] at increment of 25. The parameters of 

ANN are defined similar to Table (4.7) and parameters of SVM are defined similar to Table (4.9). 

The models are compared using the Case-4 building due to the requirement of large model 
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training CPU-time in “all data” modeling approaches. The comparison between “all data” and 

“relevant data” modeling approaches are shown in Table (4.11). It can be seen that R2 median 

performance in “relevant data” modeling approach is 0.09, 0.05, 0.12 and 0.02 times higher than 

“all data” modeling approach using ANN, SVM, BEDT and RF respectively. In addition, there is 

a significant reduction in RMSE value in “relevant data” approach compared to “all data” 

approach. The performance of “all data” modeling using RF is higher than “all data” modeling 

using SVM. Nevertheless, “all data” modeling approach using RF performance is lower than 

DTW “relevant data” modeling approach using SVM. Moreover, the model training CPU-time in 

“relevant data” modeling approach is 3 min 40 sec for a single day prediction while for “all 

data” modeling approach using ANN is 184 hours 43 min 6 sec, SVM is 75 hour 43 min 12 sec, 

BEDT is 1 hour 37 min 11 sec and 15 hour 42 min 18 sec for RF.  

 

Table 4.11: Comparison of model performance of DTW based relevant data modeling approach 

using SVM with all data modeling approach using ANN, SVM, BEDT and RF 

Because of the comparable results of prediction of heat load from “all data” modeling approach 

using RF, the sensitivity on size of training data is evaluated. The sizes of training data are varied 

from 3 years (Lyon, Clermont- Ferrand and Lille), 2 years (Lyon and Clermont-Ferrrand) and 1 

year (only Lille) to test on Paris location shown in Figure (4.27).  

 

Figure 4.27: Influence of training size data using all data modeling approach using RF 
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It is clear from Figure (4.27) that performance of RF model goes on decreasing while decreasing 

the training data and reveals that RF is sensitive to the size of training data.  One therefore can 

conclude that RF requires more training data to generalize the predictive model thus they are 

unsuitable for prediction of heat load with fewer training data.   

As an example, the prediction from “all data” modeling approach using SVM and DTW 

“relevant data” modeling approach using SVM for some random days in January using scenario 

S8 is shown in Figure (4.28). It is clear that “all data” modeling approach have similar problems 

to scenario S7 using “relevant data” modeling approach for learning initial period (0-7) hour in 

the morning. This is explained by the fact that “all data” modeling approach uses a single model 

parameter (         ) from all given training data due to the building operation classes are similar 

during the weeks. Therefore, “all data” modeling approach fails to generalize for each prediction 

day conditions. On the contrary, “relevant data” modeling approach changes model parameters 

for each prediction day and generalizes the specific conditions of prediction day though there is 

little problem in initial hour.  

 

Figure 4.28: Prediction of heating load based on DTW relevant data modeling approach using 

SVM with all data modeling approach using SVM for some random days 

We can therefore summarize that the major differences between “all data” and “relevant data” 

modeling approach lie on generalizing the prediction day behaviors. For example, if one has 365 

days of data needs to be predicted, then there are 365 models in “relevant data” modeling 
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approach while there is a single model in “all data” modeling approach that generalizes each 

prediction condition (due to building operation classes is same during a week). It can be 

concluded that “relevant data” modeling approach includes the behavior of prediction conditions 

based on physical understanding by representing small data with significant model training CPU-

time. Consequently, optimal model parameters (hidden neurons, performance goal in ANN; 

          in SVM; B and number of leaf in RF) are varied in “relevant data” modeling approach 

each day based on prediction conditions. Whereas in “all data” modeling approach, the optimal 

parameters are always constant (e.g., fixed initial defined parameters and 30 hidden neurons in 

ANN;            are 256, 1 and 0.01 in SVM; B and number of leaf are 375 and 1).  

Intermediate Recommendations: The readers are suggested to use DTW relevant data 

modeling approach using SVM for heating load prediction. In case of large data available, all data 

modeling approach using RF is also suggested for application in heat load prediction.  

Effects of Occupancy  

The TRNsys results have been generated using a single-zone model for the description of this 

step. The application of methodology is applied to DTW relevant data modeling approach using 

SVM (suggested from intermediate recommendation) to Case 5-6 building with different 

occupancies (Figure 4.2-4.3). The shape factor and final energy demand of building are calculated 

similar to Section 4.3.1. It is found that shape factors of buildings are 0.23 and 0.35 for Case-5 

and Case-6 building respectively. The final energy demand of Case-5 building is 24.1 kWh/m2.yr 

whereas that of Case-6 building is 29.5 kWh/m2.yr. Both of the cases have similar range of energy 

demand to that of Figure (4.9) for different climatic locations. Based on the intermediate 

recommendation for LEBs, the number of past day climatic conditions impacts u is chosen 3 for 

both cases. 

Step 1: Building Classification/Clustering  

The classification of building operation is calculated similar to Section 4.3.2. Figure (4.29) shows 

the building operation classification and it can be seen that buildings have three kinds of 

functioning profiles which are summarized in Table (4.12). The Monday CV has different 

behaviors than other days CV in both cases. In Case-5 building, the building operation day 

“Tuesday-Friday” has similar behavior whereas CV of “Tuesday-Saturday” in Case-6 building is 

identical. In building operation classes-3, there is no occupancy during Saturday-Sunday in Case-
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5 building and during Sunday in Case-6 building (only few CVs) thus there is no requirement of 

heating load.  

 

Table 4.12: Building operation classes for Case-5 and Case-6 building 

 

Figure 4.29: Classification of building operation classes (Case-5 and Case-6 buildings) 

Step 2: Pseudo Dynamic Model  

The dynamic indoor characteristics of building to control the indoor temperature represented by 

steady state (              ) are similar to Section 4.3.2. In Case-5 building, the operating conditions 

particularly set-point temperature is changed at period 5-6 and 21-22 hours; lighting is changed at 

period 7-8, 11-12, 13-14, 17-18 and 19-20 hours (shown in Figure 4.5). On the other hand, the set-

point temperature and lighting operation of building are changed at period 7-8 and 19-20 hours; 

and ventilation operation is changed at period 6-7 and 20-21 hours in Case-6 building (shown in 

Figure 4.6). Based on these changing periods, the operational characteristics are formulated. 

Similarly, the occupancy profiles are changed at period similar to the behavior of lighting 

operation for both of the cases and accordingly transitional and pseudo dynamic model are 
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calculated at these changing periods with the same initial energy load level    and step size of 

transition of energy load    values shown in Section 4.3.2. 

Step 3: Climatic Variables Selection  

The correlation indexes (r) of direct and derived climatic variables: external temperature     , 

temporal moving average of external temperature         , sky temperature     , horizontal solar 

radiation    , temporal moving average of horizontal solar radiation        , direct solar 

radiation   , solar gain transmitted through windows      , solar gain on walls       and 

temporal moving average of solar gain on walls           are calculated similar to Section 4.3.2 

and is shown in Figure (4.30) for Case-5 and Case-6 buildings. It can be noticed that for both of 

the cases, correlation indexes (r) of direct solar radiation    are relatively lower than other 

climatic variables. In addition, it is noticed that Case-6 building external temperature      is 

higher (r=0.72) than Case-5 building (r=0.52). The threshold value (   ) of 0.07 is chosen to 

determine the relevance of variables similar to Section 4.3.2 and it is found that climatic 

variables:     ,         ,     ,    ,        ,      ,       and           are significant for Case-5 

building. It is also interestingly noticed that for Case-6 building, the solar gain on the walls       

and the solar gain transmitted through the windows       are less significant while considering 

threshold value (   ) 0.07. In addition, due to mutual cross-correlation of external temperature 

     and sky temperature     , sky temperature      is not considered due to its less correlation 

indexes compared to external temperature      in both cases. 

 

Figure 4.30: Correlation indexes of direct and derived climatic variables of Case-5 and Case-6 

buildings 
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The cross-correlation (   ) is calculated similar to Section 4.3.2 for lags ( ) at 23 hours and it is 

found that external temperature     , horizontal solar radiation    , solar gain transmitted through 

windows        and solar gain on walls       has past dynamics at 2 hours for both cases (Case-5 

and Case-6).  In Case-6 building, the temporal moving average behaviors of solar gain on walls 

          have higher correlation index (r=0.44) and due to solar gain on walls has past climatic 

effects at 2 hours, the effects of solar gain are also considered for further analysis though it is 

discarded from threshold value    . Therefore, main significant direct and derived climatic 

variables are: external temperature     , temporal moving average of external temperature 

        , horizontal solar radiation    , solar gain transmitted through windows      , solar gain 

on walls       and temporal moving average behavior of solar gain on walls           ; the past 1 

hour dynamics of external temperature      and past 2 hours dynamics of all solar radiations.   

Step 4: Sets of Input Features  

In order to understand the behavior of different input features, five input scenarios are considered 

and summary of input and output variables are shown in Table (4.13).  

 

Table 4.13: Summary of input and output variables of different scenarios 

The scenario S1 consist external temperature and horizontal solar radiation with occupancy; 

scenario S2 includes transitional and pseudo dynamics effects in scenario S1; scenario S3 takes 

S1 S2 S3 S4 S5

Outputs P (t) × × × × ×

Inputs Text(t) × × × × ×

Text (t-1) × × × × ×

 øSh(t) × × × × ×

 øSh(t-1) × × × × ×

 øSh(t-2) × × × × ×

øSext(t) × ×

øSext(t-1) × ×

øSext(t-2) × ×

øSint(t) × ×

øSint(t-1) Solar gain on wall at 1 hour delay (kW) × ×

øSint(t-2) Solar gain on wall at 2 hours delay (kW) × ×

occup Occupancy profile [0  1] × × × × ×

oper Operational characteristics [0 1] × × × ×

trans Transitional attributes [0.2 1] × × × ×

PDL-1 Pseudo dynamic lag 1 [0.2 1] × × × ×

PDL-2 Pseudo dynamic lag 2 [0.2 1] × × × ×

Text_TDM Temporal moving average of external temperature (
0
C) × ×

øSh_TDM Temporal moving average of horizontal solar radiation (kW) ×

øSint_TDM Temporal moving average of solar gain on wall (kW) ×

Solar gain on wall (kW)

Horizontal solar radiation (kW)

Horizontal solar radiation at 1 hour time delay  (kW)

Solar gain transmitted through window (kW)

Solar gain transmitted through window at 1 hour delay (kW)

Horizontal solar radiation at 2 hours time delay  (kW)

Solar gain transmitted through windows at 2 hours delay (kW)

External temperature at 1 hour time delay (
0
C) 

Name Description
Scenarios

Heat Load (kW)

External temperature  (
0
C)
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into account temporal moving average behaviors of external temperature and horizontal solar 

radiation. Lastly, scenarios S4-S5 includes the derived climatic variables: solar gain transmitted 

through windows       and solar gain on walls      .   

Step 5: Analysis of Climatic Variables on the Building  

By applying the Section 4.3.2, it is identified that the external temperature      is highly dominant 

(85%) compared to solar gain (15%) for Case-5 building whereas external temperature is also 

highly dominant (94%) compared to solar gains (6%) in Case-6 building neglecting the impact of 

solar gain from derived variables. The impacts of solar gains are less important compared to 

external temperature       in both cases and it might be because there is no requirement of heating 

load during early morning and night during working days and in the weekend (Saturday-Sunday 

in Case-5 and Sunday in Case-6 building). This further concludes that solar gain variables are less 

significant in determining thermal storage in walls.   

Step 6: Selection of the Sub-Database 

The selection of the sub-database are based on the influence of climatic variable weights obtained 

from step-5 and after the identification of similar climatic variables using DTW which follows 

similar steps in Section 4.3.2. The number of days for model training is based on the intermediate 

recommendations in Section 4.3.2 and the number of days (l) is chosen 12.  

Step 7: Heating Load Prediction 

The model is evaluated using DTW “relevant data” modeling approach using SVM and the 

parameters of SVM are similar to that defined in Table (4.9). The performance comparison for 

different input features scenarios in both Case-5 and Case-6 buildings are shown in Table (4.14).  

It is seen that pseudo dynamic model (scenario S2) results in greater accuracy while comparing 

with the scenario S1 in both cases. There is a little improvement in overall performance in 

scenarios S4-S5 compared to scenario S2. In addition, there is no any improvement while using 

temporal moving average behaviors of past climatic conditions shown by results of scenarios S4-

S5. It is most interestingly noticed that though the correlation indexes (r) due to solar gain 

transmitted through windows       and solar gain on walls       are lower in Case-6, there is a 

little improvement in scenario S4 while compared with scenario S2.      
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Table 4.14: Prediction performance of different scenarios for Case-5 and Case-6 building based 

on DTW relevant data modeling approach using SVM 

The prediction of some days in January using scenarios S2 and S4 is shown in Figure (4.31-4.32) 

for Case-5 and Case-6 building. It can be seen that both of the scenarios (S2 and S4) have ability 

to predict for the given load in both of the cases. This further reveals that for these types of 

buildings, with climatic variables: external temperature      and horizontal solar radiations     

have good results (scenario S2) similar to that of using derived solar gains (scenario S4).       

 

Figure 4.31: Prediction of heating load using scenarios S2 and S4 of Case-5 building (some 

random days in January) 
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RMSE R
2

RMSE R
2

RMSE R
2

RMSE

S1 0.220 101.6 0.410 108.4 0.947 22.7 0.954 27.8

S2 0.982 17.4 0.973 23.3 0.987 11.1 0.986 15.7

S3 0.976 18.1 0.971 24.1 0.983 12.1 0.984 16.5

S4 0.978 16.8 0.976 21.8 0.992 9.0 0.990 13.2

S5 0.978 16.6 0.975 22.6 0.991 9.0 0.988 14.2
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Figure 4.32: Prediction of heating load using scenarios S2 and S4 of Case-6 building (some 

random days in January) 

Intermediate Recommendations: The methodology has proven to predict heat load with high 

accuracy for different occupancy single-zone building models based on DTW relevant data 

modeling approach using SVM. The readers have the choice to select the input features S2 or S4 

depending on the availability and calculation steps on derived climatic variables: solar gain 

transmitted through the windows       and solar gain on walls      . The building operating 

conditions and pseudo dynamic model have greater effects in prediction performance.  

 

Effects due to Multi-zone Model 

The TRNsys have been generated using multi-zone model for the description of this step. The 

main question is whether the methodology will be working in case of complex building model? 

In Figure (4.9), the readers can see the difference in the final heating energy demand calculation 

with the single-zone (Case 4-6) to multi-zone (Case 4*-6*) building model. The same 

methodology mentioned in Section 4.3.2 is applied to multi-zone building model according to the 

intermediate recommendations.  
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Step 1: Building Classification/Clustering  

The building operations classifications for different multi-zone models are shown in Figure (4.33). 

It can be observed that for Case-4* building, all the CVs are clustered in one form thus can be 

regarded as single operation classes. Similarly, in Case-5* building, Saturday, Sunday, Monday 

has distinct profiles than other days, thus four kinds of building operation classes can be 

considered: Monday, Tuesday-Friday, Saturday and Sunday. In Case-6* building, Monday and 

Sunday have a distinct profiles but other days look similar thus can be regarded as three kinds of 

operation classes. 

 

Figure 4.33: Classification of building operation classes (Case-4*, Case-5* and Case-6*) 

Step 2: Pseudo Dynamic Model  

The pseudo dynamic models are based on the Section 4.3.2 described for single-zone building 

model. The only differences in multi-zone building model are the operating characteristics and 

pseudo dynamic models are developed based on the changing period at different zones in order to 

reflect differences in different zones. For instance, in Case-4* building, the occupancy profile is 

changed at periods 7-8, 11-12, 13-14, 18-19 and 20-21 hour (shown in Figure 4.1) and the 

building operating conditions remains constant for zone-1 (shown in Figure 4.4). However, in 

zone-2, building operating conditions are changed at period 5-6 and 21- 22 hour. Therefore, PDM 
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are developed based on these aggregated changing period (5-6, 7-8, 11-12, 13-14, 18-19 and 21-

22 hour).    

Step 3: Climatic Variables Selection  

The correlation indexes (r) of direct and derived climatic variables are shown in Figure (4.34) and 

it can be seen that external temperature      has higher correlation in Case-4* and Case-6* 

building compared to Case-5* building. In addition, it is also noticed that solar gains are more 

important in Case-4* building compared to Case-5* and Case-6* building. Other reason of this 

solar gain important in Case-4* building might be due to the occupancy profile behaviors in 

different zones (For instance, there is always same occupancy in all zones in Case-4* building). 

By using the threshold value (   ) defined similar to Section 4.3.2, the significant variables are 

    ,         ,     ,    ,        ,      ,       and           by neglecting mutual cross-

correlation indexes.  

The cross-correlation indexes (   ) is similar to single-zone building model described in Section 

4.3.2.    

 

Figure 4.34: Correlation indexes of direct and derived climatic variables of Case-4*, Case-5* and 

Case-6* building 

Step 4: Sets of Input Features  

The input features considered for analysis are similar to shown in Table (4.13) due to the similar 

climatic variables selection. 
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Step 5: Analysis of Climatic Variables on the Building  

The influence of climatic variables, in particular, solar gain is more foreseen in Case-4* building 

compared to Case-5* and Case-6* building. In Case-4* building, the influence of external 

temperature      is 57% dominant which is followed by solar gain on walls       (25%), solar 

gain transmitted through windows       (10%) and horizontal solar radiation     (5%). For Case-

5* building, the influence of external temperature      is only 56% which is followed by  solar 

gain on walls       (20%), solar gain transmitted through windows       (18%) and horizontal 

solar radiation     (6%). However, by neglecting the effects of derived climatic variables, the 

influence of external temperature      is more dominant (86%) than solar gain (14%). Similarly, 

by neglecting the effects of derived climatic variables in Case-6* building, the external 

temperature      weight is higher (94%) followed by solar gain (6%).    

Step 6: Selection of the Sub-Database 

The selections of sub-database are done after the step-5. DTW relevant data selection is 

performed to identify similar climatic conditions according to suggestion from intermediate 

recommendation. The influence of number of days for model training is considered 12 days.  

Step 7: Heating Load Prediction 

Similarly, mentioned in effects of different occupancies, SVM model and their parameters are 

defined in same way.  The prediction of heating load for different scenarios and cases based on 

DTW “relevant data” modeling approach using SVM is shown in Table (4.15). It can be seen 

that scenarios S4 and S5 are suitable for all the cases. It can be noticeably seen that scenario S2 

that uses direct climatic variables has little differences compared to scenarios S4 and S5. 

 

Table 4.15: Prediction performance of heating load for different scenarios and cases based on 

DTW relevant data modeling approach using SVM 

R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE R
2

RMSE

S1 0.730 25.1 0.842 28.7 0.245 72.8 0.452 84.1 0.900 19.0 0.922 26.7

S2 0.979 7.2 0.975 11.5 0.982 11.6 0.975 17.8 0.971 9.9 0.980 13.4

S3 0.980 7.5 0.977 11 0.976 13.4 0.974 18.3 0.970 10.3 0.978 14.2

S4 0.981 7.2 0.975 11.3 0.985 11.0 0.979 16.5 0.988 6.0 0.991 9.0

S5 0.985 7.1 0.978 10.7 0.980 10.6 0.980 16.2 0.979 8.3 0.986 11.6

Case-6*

Median Overall

Input 

Features 

Scenarios

Case-4* Case-5*

Median Overall Median Overall
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The prediction performance for some days in January is compared between scenarios S2 and S4 

for different cases shown in Figure (4.35-4.37).  

 

Figure 4.35: Prediction of heating load using scenarios S2 and S4 of Case-4* building (some 

random days in January) 

 

Figure 4.36: Prediction of heating load using scenario S2 and S4 of Case-5* building (some 

random days in January)
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Figure 4.37: Prediction of heating load using scenarios S2 and S4 of Case-6* building (some 

random days in January) 

It can be seen that for Case-4* building, it has little initial problem similar to “all data” modeling 

approach in Case-4 for both scenarios S2 and S4. In the other hand, there is no much difference in 

Case-5* and Case-6* buildings in both of the scenarios while comparing with the single-zone 

model (Case-5 shown in Figure 4.31 and Case-6 shown in Figure 4.32).  

 

 Intermediate Recommendations: The methodology has proven to predict heat load with high 

accuracy in case of complex building that uses multi-zone model based on DTW “relevant data” 

modeling approach using SVM. The readers are suggested to choose the input feature scenario S4 

or S5 to make good prediction model. However, readers are also suggested to use scenario S2. 

This is due to scenario S2 avoids using derived climatic variables (solar gain on walls       and 

solar gain transmitted through windows      ). Finally, the readers are suggested to aggregate the 

changing period of occupancy and building operating conditions of multi-zones into one zone to 

develop pseudo dynamic model. 
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4.4 Conclusion 

This chapter provides application of proposed methodology to predict heating load for CBs to 

LEBs. It first provides detail step-by-step procedure to single-zone CBs to LEBs and provides 

intermediate recommendations using “relevant data” modeling approach. It also provides 

comparison between different AI models and relevant data selections method and identified that 

DTW “relevant data” modeling approach using SVM has better performance compared to other 

models for all the cases. 

Then it provides comparison study on two kinds of modeling approaches: “relevant data” and 

“all data”. It is found that “relevant data” modeling approach has higher performance and faster 

model building CPU-time compared to “all data” approach revealing the benefit to use for 

ESCOs and/or BEMS in control and forecasting purposes for a longer period. In addition, it also 

provides study on different kinds of occupancies. The results reveal that the proposed approach is 

suitable for different kinds of occupancies.  

Finally, the methodology is applied to multi-zone building model by aggregating the heat load 

with modification in pseudo dynamic model. The results showed that the proposed method 

provides higher prediction performance for complex multi-zone building model though a little 

performance decreases compared to single-zone building model. 

The next chapter provides application of methodology to real buildings.   
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Chapter 5:  Application- Real Building 

 

5.1 Buildings Characteristics 

5.1.1 Building Description 

Ecole des Mines de Nantes (EMN) building located in Nantes, France is used as a real building. 

The building belongs to the mixed conventional and LEB type. The building has a total floor area 

of 25,000 m2. It consist 900 students and 200 employees. It consists of 120 research and 

administrative rooms, 30 class rooms, 3 laboratories and 8 seminar halls. The area of class room is 

different from each other but each class room can be occupied by 18 to 28 students. It has also 2 

big and 6 seminar halls which can accommodate up to 250 and 80 students respectively. 

5.1.2 Data Collection 

The building heating load and climatic conditions data are obtained from data acquisition system 

for 7 months (14/10/2012 – 28/02/2013) and (24/02/2014 – 02/05/2014) during the heating season 

period with 5 minutes sampling time. However, since BEMS are generally managed at 15 minutes 

sampling time, 5 minutes data samples are averaged at 15 minutes. The first period of data 

(14/10/2012 – 28/02/2013) belongs to CB and the second period of data (24/02/2014 – 

02/05/2014) consists CB and LEB due to the construction of a new LEB which has been operated 

only during the second period.  

The climatic conditions:  external temperature (    ) and horizontal solar radiation (   ) database 

are available, however, horizontal solar radiation     has many missing data and outliers, thus it 

is not taken into consideration. The external temperature       has summary statistics of minimum, 

average and maximum temperature of -1.50C, 11.4 0C and 21.5 0C respectively. 

5.1.3 Occupancy Profile 

The simplified/theoretical occupancy profile is shown in Figure (5.1). It can be seen that the 

building is only occupied during working day (Monday-Friday) from 8:00-17:45 hour which 
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corresponds to an office use time. It can be also seen that there are few occupancy at 12-13:30 

hour because of lunch time. There is no occupancy during weekend (Saturday-Sunday).   

 

 

Figure 5.1: Occupancy profile for working days and weekend 

5.1.4 Building Operating Conditions 

The operating condition of building (only approximated set-point temperature) is known from the 

information provided by the building operator. Figure (5.2) shows the set-point temperature 

operation during working day. It can be seen that set-point temperature is maintained constant at 

21 0C before entering and leaving the occupants.  

 

Figure 5.2: Operating conditions of building for working day 
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5.2 Application of AI Modeling Methodology 

5.2.1 Introduction 

The dynamic response of building, i.e., the time constant represented by “Impact of Thermal 

Envelope on Type of Building” block in Figure (3.4) in Chapter 3 and represented by Equation 

(2.6) in Chapter 2 is assumed to be 1 day since this building belongs to conventional categories. 

Therefore, number of past day climate impacts u in Equation (3.7, 3.12, 3.20-3.21) in Chapter 3 

corresponds to 1. 

The heat demand and the occupancy profile during working day is shown in Figure (5.3) and it 

can be noticed that only occupancy profile does not precisely gives information about the heat 

demand characteristics.  

 

Figure 5.3: Heating power demand and occupancy profile during working days 

5.2.2 Recommendation for Applying the Methodology “Step by 

Step”  

Step 1: Building Operation Classification/Clustering  

The classification of building operation shown in “Building operation classification/clustering” 

block in Figure (3.4) in Chapter 3 is shown in Figure (5.4) and CV analysis show two kinds of 
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Figure 5.4: Classification of building operation classes 

It can be observed that CV analysis distinguish two kinds of building operation: working day 

(Monday- Friday) and weekend (Saturday-Sunday) though some of the working days belong to 

the cluster of weekends. Figure (5.5) shows the average of heat load profile of each day of a week 

and it is clear that building operating conditions can be categorized into two forms: working 

(Monday-Friday) and weekend (Saturday-Sunday).  

 

Figure 5.5: Functioning profile of building 
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Step 2: Pseudo Dynamic Model 

The dynamic indoor air characteristic of building represented by steady state (               in 

Section 3.2.2 in Chapter 3) is around few hours. The set-point temperature of the building is 

changing at period 6 and 20 hours all the days (shown in Figure 5.3) and the occupancy profile is 

changing at period 8, 12, 13:30 and 17:45 hour during working days (shown in Figure 5.2). The 

PDM thus depends on both changing period of occupancy and building operating conditions. 

The transitional and pseudo dynamic characteristics are calculated using Equation (3.1) in 

Chapter 3 assuming    to be zero and    with an increment of 0.03. Figure (5.6) shows the 

transitional and pseudo dynamic characteristics during working days for illustrations. It can be 

seen that four pseudo dynamic lag (PDL) is used since the sampling time of data is 15 minutes 

and the steady state time                corresponds to 1 hour. In the Figure (5.6), “Trans” 

represents the transitional characteristics and “PDL-4” represents the pseudo dynamic lag at past 1 

hour. However, to understand the phenomena of pseudo dynamic lag, PDL is varied from 1 to 4. 

Therefore, “PDL-1” means a pseudo dynamic model with transition lag 1 (at past 15 minutes), 

“PDL-2” means pseudo dynamic model with transition lag 2 (at past 30 minutes) and so on.    

 

Figure 5.6: Transitional and pseudo dynamic characteristics during a day 
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couple of days (more than 24 hours), pseudo dynamic model shows the transition of heat demand 

variation.  

 

Figure 5.7: Pseudo dynamic transitional effects on heating load  

Step 3: Climatic Variables Selection 

The climatic variables: external temperature      and the temporal moving average of external 

temperature          are used for relevance determination. The correlation indexes (r) of external 

temperature      and temporal moving average of external temperature          by applying 

Equation (3.2) are: 0.60 and 0.59 and are represented by “Climatic Variables Selection block in 

Figure (3.4) in Chapter 3. This further shows that both features: external temperature      and 

temporal moving average of external temperature          are significant.  

The cross-correlation indexes (   ) of external temperature      is performed by applying 

Equation (3.3) in Chapter 3 at lags ( ) 96 equivalent to 24 hours and is shown in Figure (5.8). It 

is clear that external temperature      has maximum cross-correlation indexes     at past 1-2 

samples and then decreases its cross-correlation indexes after. Thus, the external temperature      

and its past 2 samples delay and          on window of past 1 day are represented by output of 
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Figure 5.8: Cross-correlation indexes to select external temperature dynamics 

Step 4: Sets of Input Features 

Different input features are considered to understand the physical significance of each features 

and Table (5.1) shows the summary of input and output variables of different scenarios. It can be 

seen that scenario S1 includes the effect of external temperature      and its past 30 minutes 

sample dynamics obtained from step-3. The scenario S2 considers the behavior of occupancy, 

scenario S3 take into account an operational characteristics and scenario S4 includes the 

transitional behavior. Similarly, scenarios S5-S8 consider the pseudo dynamic lag (PDL) at 4 lags. 

Finally, scenario S9 includes the behavior of temporal moving average window of external 

temperature     . It can be observed from Table (5.1) that input and output variables of different 

scenarios are shown in t where t varies from 1 to 96 hour due to the realization of 1 day ahead 

prediction and   in Equation (3.8-3.9) corresponds to 96.  

 

Table 5.1: Summary of input and output variables of different scenarios 
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Step 5: Analysis of Climatic Variables on the Building Load 

The influence of past days climatic variables on daily average heating load is determined using 

wavelet analysis represented by “Wavelet Coefficient Calculation of Selected Climatic 

Variables and their Past Day” block in Figure (3.10) in Chapter 3. The Daubechies wavelet 

analysis is considered for the study at 7 levels in order to represent 96 samples of data (27) thus 

decomposition level z is 7 in Equation (3.15-3.18) in Chapter 3. The heat energy is transfer by 

the external temperature      in the walls for a long period, so the decomposition of it is expressed 

by low-frequency and high-frequency coefficient. 

The parameters of an intermediate model: SVM based on linear kernel are summarized in Table 

(5.2). It can be seen that inputs of model are the wavelet coefficients of external temperature of 

prediction day         and past 1 day           ; and output of model is the daily average 

heating load. In addition, normalization is carried out with min-max normalization and parameters 

of model are selected using k-fold cross validation where k equals to 5. The training data 

(October-December: 2012; January: 2013) are used to determine the weight coefficients.  

 

Table 5.2: Parameters of SVM used for weight calculation 

It is found that for this type of building, the influence of external temperature      is 74% and that 

of previous day is 26%.  

Comparison between SVM and Least Square Method (LSM)  

The comparison between SVM based on linear kernel and a LSM based on regression model 

is performed to calculate the influence of external temperature     . The influence of wavelet 

external temperature coefficients      on daily average heating load from both methods is shown 

in Figure (5.9).  It can be noticed that for such CB, the influence of both methods are similar. For 

Name Descriptions

Input 

building type)
Wavelet coefficients: Text(t), Text(t-24)

Output Daily average heating load

C {2
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, 2
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, …, 2

5
}

ɛ {0.001, 0.01, 0.1, 0.2, 0.5}

Kernel function Linear

Model selection 5-fold cross validation

Normalization min-max

Datasets Training and Validation: October-December: 2012, January:2013
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instance, with SVM method, the effect of external temperature      has 74% effect on prediction 

day compare to 26% on past day from prediction day (t-24) on daily average heating load. 

Similarly, with LSM method, the prediction day external temperature      has 68% effect on daily 

average heating load compared to past day from prediction day (t-24) that has 32% influence.  

 

Figure 5.9: Influence of past 1 day of external temperature      on daily average heating load 

using SVM based on linear kernel and LSM based on regression 

Intermediate Recommendations: The readers are suggested to choose both types of method: 

SVM based on linear kernel and LSM based on regression model for weight determination for 

CBs because of their similar influence of climatic conditions on building load.  

Step 6: Selection of Sub-Database  

The selection of sub-databases are based on the weight determination of climatic variables from 

step-5 and after the identification of similar climatic variables shown by “Identification of 

Similar Climatic Conditions” block in Figure (3.10) in Chapter 3. The HDD is calculated for 

prediction day and its past 1 day using Equation (3.7) in Chapter 3. Similarly, modified HDD 

similarity weights of external temperature      is determined using prediction day and its past 1 

day using Equation (3.12) in Chapter 3. Finally, external temperature      similarity weight is 

compared between prediction day and its past 1 day based on DTW using Equation (3.13) in 

Chapter 3 and based on FD using Equation (3.14) in Chapter 3.  

Then, the final weights of the entire database are calculated from Equation (3.22) and 12 relevant 

days (l in Equation 3.23 in Chapter 3 corresponds to 12) are selected as a sub-database for model 

training. Then, later we performed the sensibility analysis on the number of days for model 

training.  

 

0

0.2

0.4

0.6

0.8

t-24 

t

0

0.2

0.4

0.6

0.8

t-24 

t

SVM based on Linear Kernel LSM based on regression

M
ag

n
it

u
d

e

M
ag

n
it

u
d

e



5.2 Application of AI Modeling Methodology 158 

 

 

Step 7: Heating Load Prediction 

The AI model is initially evaluated based on DTW “relevant data” modeling approach using 

ANN. Hence, the comparison between different AI models and “relevant data” modeling 

approaches are performed. The input and output variables of ANN model are based on Table (5.1) 

and others parameters: activation function, hidden neurons, training algorithm, stopping criteria, 

model selection and normalization are based on Table (4.7) in Chapter 4. The datasets of 

October-December, 2012 and January 2013 are used for training and validation; and datasets of 

February, 2013 and February-April, 2014 are used for testing. Similarly, the cost function, hidden 

neurons and performance goal are calculated similar to “Step-7: Heating Load Prediction” in 

Chapter 4.  

The prediction performance for different scenarios are shown in Table (5.3) and the performances 

of model are evaluated based on median and overall values similar to model performance in 

Chapter 4.  

 

Table 5.3: Comparison of different scenarios based on DTW relevant data modeling approach 

using ANN 

It can be observed that scenario S1 that relies only on external temperature      has very poor 

performance (Median: R2=0.14, RMSE=101.6; Overall: R2=0.53, RMSE=97). With the 

introduction of occupancy profile in scenario S2, the performance is increased (Median: R2=0.44, 

RMSE=77.3; Overall: R2=0.67, RMSE=82) compared to scenario S1. In addition, by using 

operational characteristics in scenario S3, the performance is increased a lot in terms of median 

values compared to scenario S2. This further concludes that operational characteristics have a 

R
2

RMSE R
2

RMSE

S1 0.14 101.6 0.53 97.0

S2 0.44 77.3 0.67 82.2

S3 0.71 55 0.67 81.5

S4 0.72 57.9 0.73 73.6

S5 0.72 54.3 0.74 71.4

S6 0.73 52 0.83 63.7

S7 0.76 50.8 0.80 58.8

S8 0.77 48.9 0.85 54.5

S9 0.77 48.9 0.85 54.0

Overall
Models

Median
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strong effect in prediction of heat load. Furthermore, with the introduction of transitional and 

pseudo dynamic lag in scenario S4-S8, the performance is increased slightly and the higher 

accuracy is achieved in scenario S8 at PDL 1 hour. Finally, with the introduction of temporal 

moving average of past 1 day in scenario S9, the performance is slightly increased in overall 

RMSE compared to scenario S8. Thus, scenario S8 or S9 is chosen as reference model for later 

cases.     

Intermediate Recommendations: The readers are suggested to use the input feature scenario 

S8 or S9 as a reference for all the cases at later use for the considered building. 

Sensibility Study: Influence of the Number of Relevant Days in 

the Prediction Performance 

As recommended in the Remark 2.6 in Chapter 2, the selection of relevant days for model 

training should be ten times the number of features (in this real application, features equal to 4-

11), thus number of relevant days data require is about 110 samples equivalent to   2 days. 

However, since the sampling data is at 15 minutes resolution, the data of 2 days are not sufficient 

to divide the datasets into training and validation. Thus relevant data are varied between 5 days to 

20 days for the model training to study the sensitivity analysis shown in Figure (5.10). 

 

Figure 5.10: Influence of relevant days data on the accuracy of prediction model 
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fluctuations. However, the performance increases between 7 and 12 days but more noticeably 

higher performance is achieved at 12 training days. Therefore, in this study 12 days (l in Equation 

3.23 in Chapter 3 corresponds to 12) is used as relevant days for model training shown in block 

“Number of Relevant Days” in Figure (3.10) in Chapter 3.    

 

Intermediate Recommendations: From the Remark 2.6, the ratio of training days to be 10 times 

the number of features does not validate for the real building. The readers are thus encouraged to 

perform the sensibility analysis for their given cases. However, the performance has a noticeable 

higher performance between 7 and 12 days, thus readers are suggested to use 12 days as relevant 

days for model training.  

 

Selection on AI Models  

The choice of AI model (ANN, SVM, BEDT and RF) depends on the choice of the relevant data 

selection methods (HDD, modified HDD, FD and DTW). The performances of model are 

evaluated using the scenario S8 suggested from intermediate recommendations. 

The parameters of ANN are similar to Table (4.7) in Chapter 4 and the parameters of SVM, 

BEDT and RF are similar to Table (4.9) except that training and testing datasets are different. In 

order to evaluate the model, datasets of October-December, 2012 and January 2013 are used for 

training and validation; and datasets of February, 2013 and February-April, 2014 are used for 

testing. The performances of different AI models using different relevant data selection method 

are shown in Table (5.4).  

 

Table 5.4: Performance of different AI models using HDD, modified HDD, FD and DTW 

relevant data selection method 

It can be seen that performance of ANN and SVM are higher compared to BEDT and RF 

illustrating that both BEDT and RF are sensitive with the training data. The most interesting result 

for this type of building are that the HDD method based on SVM has better performance (Median: 
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ANN 0.753 47.4 0.850 55 0.751 49.4 0.853 54.4 0.751 50.8 0.843 56.2 0.77 48.9 0.850 54.5

SVM 0.772 48.8 0.862 52.7 0.781 46.8 0.862 52.9 0.749 51.3 0.84 56.5 0.751 50.1 0.856 53.7

BEDT 0.653 48.7 0.833 58 0.707 53.8 0.822 59.9 0.729 53.8 0.833 58 0.652 51.5 0.819 60.5

RF 0.704 49.5 0.834 57.9 0.735 53.6 0.839 56.9 0.675 49.5 0.837 57.4 0.704 54.5 0.836 57.6

Median Overall Median OverallModels

HDD Modified HDD Frechet Distance DTW
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R2=0.772, RMSE=48.8; Overall: R2=0.862, RMSE=52.7) than the FD method. It is observed that 

simplified physical methods (modified HDD) has higher accuracy noticeably in median 

performance (Median: R2=0.781, RMSE=46.5; Overall: R2=0.862, RMSE=52.9) compared to 

other relevant data selection methods. This might be due to the weight effect introduced during a 

whole day that differentiates the degree of energy consumption profile. On the other hand, DTW 

relevant data selection method also provides reasonable accuracy compared to modified HDD 

method.  

The prediction of some random days based on modified HDD and DTW “relevant data” 

modeling approach using SVM are shown in Figure (5.11). It is seen that both of the methods 

have similar performance except that error occured during initial hour.   

 

Figure 5.11: Prediction of heating load using different relevant data selections based on SVM (for 

some random days) 

The model training CPU-time using different AI models for each prediction day using DTW 

relevant data selection is shown in Figure (5.12). It can be seen that the fastest model training 

methods are SVM and BEDT, whereas ANN and RF requires large model training CPU-time. The 

long model training process is due to the sampling time of the data and the time required for the 

optimization to find the parameters of model.  
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Figure 5.12: Model training CPU-time using different AI models using DTW 

The model training CPU-time requirement from different “relevant data” modeling approach 

using SVM for a random prediction day is shown in Figure (5.13). It can be seen that all the 

“relevant data” modeling approaches requires similar model training CPU-time except than the 

HDD method. The few extra minutes requirement for HDD method might be due to the selection 

of relevant day for model training is different than other methods resulting in extra time for SVM 

to solve the optimization problem to find model parameters.  
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Intermediate Recommendations: The readers are suggested to use modified HDD or DTW 

method based on SVM or ANN as a reference model due to their higher performance. However, 

SVM method is more preferable due to faster model training CPU-time to predict heat load 

compared to ANN method.  

Comparison between the Modeling Approaches: “All Data” and 

“Relevant Data”  

The comparison between DTW “relevant data” modeling approach using SVM is performed 

with “all data” modeling approaches using ANN, SVM, BEDT and RF considering input features 

scenario S8 shown in Table (5.1). The parameters of ANN are defined similar to Table (4.7) in 

and SVM similar to Table (4.9) in Chapter 4. Similarly, the parameters of model in both BEDT 

and RF are defined similar to Table (4.9) in Chapter 4 except that in both cases, number of trees 

are searched from [25, 50, 75,….,500] at increment of 25. The model comparisons of all methods 

for working day and weekend are shown in Table (5.5).  

 

Table 5.5: Comparison of model performance of DTW relevant data modeling approach using 

SVM with all data modeling approach using ANN, SVM, BEDT and RF 

It is clearly seen that DTW “relevant data” modeling approach using SVM is superior (Working 

Day- Median: R2=0.80, RMSE=51.5; Overall: R2=0.86, RMSE=57.6; Weekends- Median: 

R2=0.63, RMSE=36.3; Overall: R2=0.82, RMSE=42.7) than “all data” modeling approaches. It is 

noticeably seen that weekend performances are relatively lower than the working day. This might 

be due to the very few data belonging to the weekend for model training. It is also seen that 

computation CPU-time in “relevant data” modeling approach is faster than ”all data” modeling 

approaches. Thus, “relevant data” modeling approach are suitable for ESCOs and/or BEMS for 

control applications. 

     

Median Overall Median Overall Median Overall Median Overall Median Overall

R
2

0.80 0.86 0.55 0.84 0.56 0.85 0.54 0.83 0.53 0.78

RMSE 51.5 57.6 91.2 60 90 58.9 92.7 63 93 71.8

Model  Training

Time

R
2

0.63 0.82 0.41 0.75 0.48 0.81 0.33 0.66 0.39 0.70

RMSE 36.3 42.7 53 50.1 44.1 43.9 50.1 59.2 52.7 55.3

Model  Training

Time

DTW Relevant Data Modeling 

Approaches using SVM

Working 

Day

Weekend
2 hour 57 min 

12 sec
26 min 14 sec
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Type

22 min 27 sec

Performances

All Data Modeling Approaches

ANN SVM BEDT
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15 min 3 sec

12 min 48 sec

RF
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As an example, the prediction of some random test days for working days and weekend based on 

“all data” and DTW “relevant data” modeling approach using SVM is shown in Figure (5.14-

5.15). 

 

Figure 5.14: Prediction of heating load based on all data and DTW relevant data modeling 

approach using SVM for working days 

 

 

Figure 5.15: Prediction of heating load based on all data and DTW relevant data modeling 

approach using SVM for weekend 

0 24 48 72
0

100

200

300

400

500

600

Time (Hour)

H
e
a
ti
n
g
 C

o
n
s
u
m

p
ti
o
n
 (

k
W

)

 

 
Actual

Predict-Relevant Data:SVM-DTW

Predict-All Data:SVM

0 24 48 72
50

100

150

200

250

300

350

400

450

500

H
e
a
ti
n
g
 C

o
n
s
u
m

p
ti
o
n
 (

k
W

)

Time (hour)

 

 

Actual

Predict-Relevant Data: SVM-DTW

Predict-All Data: SVM



165                                                                               Chapter 5: Application- Real Building 

 

 

 

Figure (5.14-5.15) illustrated that “relevant data” modeling approach has higher performance 

compared to “all data” modeling approach for both working days and weekend. It is also noticed 

that both modeling approaches generalize quite well approximately after 12 till 24 hours for each 

prediction day, however, “all data” modeling approach fails to generalize quite well during an 

initial period (0-9) hours for each prediction day. This might be because “all data” modeling 

approaches focuses to generalize the model in terms of overall data and lacks the generality for 

specific hour prediction conditions, for example, during initial period (0-9) hours. In contrast, 

“relevant data” modeling approaches have almost learnt the heating energy consumption 

behavior during initial period since it considers selection of relevant days based on dynamic 

behavior of external temperature.      

 

Intermediate Recommendations: The readers are suggested to use “relevant data” modeling 

approach using SVM compared to “all data” modeling approach for heating load prediction.  

5.3 Conclusion 

This chapter provides an application of methodology to mixed conventional and low energy office 

building for heating load prediction using “all data” and “relevant data” modeling approaches. 

The comparative analysis on different relevant data selections: HDD, modified HDD, FD and 

DTW and different AI models: ANN, SVM, BEDT and RF were also performed. It is found that 

modified HDD “relevant data” modeling approach using SVM performs better accuracy 

revealing the fact that these methods consider the weight effect to differentiate degree of energy 

consumption during a day. In addition, it is also noticed that HDD “relevant data” modeling 

approach using SVM is also suitable for the given studied building. 

Furthermore, the model has been built with pseudo dynamic model to include dynamics of indoor 

air characteristics and results show greater accuracy while using such input features.  

The next chapter will focus on summary of overall manuscript and the perspectives in the future. 
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Chapter 6: Summary and Future Works 

6.1 Summary 

The building energy load prediction is important for ESCOs and/or BEMS to manage the thermal 

energy demand for control and planning purposes. It not only helps to manage the energy 

consumption in buildings but also provides to reduce the green-house emission. This manuscript 

provides detail on energy demand modeling approach for LEBs.   

Initially, we introduced the thermal energy performance measures of LEBs and its comparison 

with CBs. We highlighted several building characteristics: insulation, time constant, 

window/glazing etc. We then summarized the evolution of LEBs in Europe and noticed that most 

of the European countries are focusing to migrate towards VLEBs or PEBs. After that, we 

presented three kinds of building energy models: white-box, gray-box and black-box models 

(statistical linear regression and machine learning AI particularly ANN, SVM, BEDT and RF) to 

estimate and predict thermal energy demand. Then we made comparison of different models 

based on several factors: input data, modeler experience, simplicity of calibration (in terms of 

input use), training data, model training CPU-time, requirement of building physical information, 

accuracy etc. These review work drawn a conclusion that both white-box and gray-box model 

require many input data of building since they are based on physical principles. Moreover, 

sometimes all these physical information of building are not applicable for ESCOs and/or BEMS 

during the operation phase of building. This further justified that machine learning based AI 

black-box models seem more suitable because of their requirement of few input information and 

their capacity to adapt the model in the future unknown environment. 

Then, we went through deep understanding of different AI models and found that two kinds of 

modeling approaches: “all data” and “relevant data” exists. We found that “all data” approach 

which uses all available data for model training has been numerously applied in literatures. 

However, “all data” modeling approach has several drawbacks due to the redundancy of input 

data, complexities in model building CPU-time and to update the model parameters in future 

environment. On the other hand, we found that the “relevant data” modeling approach uses few 

representative day data to build a model. Noticeably, “relevant data” modeling approach has 

been extensively applied in electrical load but not applied in thermal load for LEBs. Although the 
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methodologies that applied for electrical load have advantages due to small representative data 

selection. Nevertheless, “relevant data” modeling approach have still some limitations to 

consider solar gain and past day climatic conditions influences. Also, the previous studies focus 

on daily average energy load of prediction day or previous day to select representative day data 

and these are not adapted for LEBs. If the prediction model is not only for a day ahead but for 

longer periods, then the prediction methods will rely on previously predicted daily averaged 

energy load to select database and errors might be accumulated.   

We thus addressed the complexity in considering few representative day data for model training in 

LEBs by considering deviation criteria between prediction day and training database depending 

on their past day climatic conditions influences. These deviation criteria are based simple physical 

understanding: HDD and modified HDD, and pattern recognition methods: FD and DTW. Then 

we determined the wavelet coefficients of climatic conditions to calculate their influences on 

building load. After that, these wavelet coefficients are combined with the deviation criteria to get 

one metric criterion to select representative days for model training. Before developing such 

metric criteria, we developed several sub-modules as a pre-processing step to build an AI model. 

Firstly, we built “Building Operation Classification/Clustering” module to identify the 

functioning classes of building operation profile (during a week for example). Secondly, we 

developed novel “Pseudo Dynamic Model” to introduce a priori knowledge on the dynamic 

behavior of the building. Thirdly, we generated derived climatic variables to consider the thermal 

storage effects on the walls. Lastly, we built “Climatic Variables Selection” module to determine 

significant direct and derived climatic variables and their dynamics. 

We then applied the methodology using two kinds of modeling approaches: “all data” and 

“relevant data” to large simulated CBs and LEBs. The building data were generated from 

simulation tools TRNsys. The methodology is tested step-by-step. Firstly, we applied our 

methodology to single-zone CB and LEB model. We identified that past climatic conditions: 

external temperature and solar gains on walls have significant impact for all types of building. In 

case of CB, the past 1-2 days of these climatic conditions are important and past 3 days are 

significant for LEBs. Secondly, we performed a comparison on relevance of “SVM based on 

Linear Kernel” and “LSM based on Regression” for analysis of the climatic variables influence 

on building load.  We found that “SVM based on Linear Kernel” is more suitable for LEBs. 

Thirdly, we investigated several input feature scenarios and identified that occupancy, pseudo 

dynamic transitional effects and derived climatic features has a greater influence in different 

buildings. We also found that impact of solar gain is increasing when the building is migrating 

from CB to LEBs. Fourthly, we performed the sensibility analysis on the influence of the number 
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of days for model training and identified that good performance can be achieved between 7 and 14 

days. Fifthly, we performed comparison on choice of AI models (ANN, SVM, BEDT and RF) and 

choice of relevant data selection method (HDD, modified HDD, Frechet Distance and DTW) for 

model training. We identified that modified HDD or DTW method based on SVM can be taken as 

a reference AI model to predict thermal energy demand because of their very high prediction 

accuracy and faster model training CPU-time. It is also noticed that modified HDD method are 

more preferable for CBs and DTW method for LEBs. Sixthly, we made a comparisons between 

two kinds of modeling approaches: “all data” and “relevant data” and it is observed that DTW 

relevant data selection using SVM is better performances than “all data” approach for different 

AI models. Seventhly, we tested the performance of prediction model with different occupancy 

and found that proposed methodology can guaranteed very high prediction accuracy. We 

recognized that building operating conditions and pseudo dynamic model has greater effects in the 

prediction performance. Finally, the multi-zone building model is examined and the methodology 

has guaranteed high accuracy to predict heat load for multi-zone using DTW relevant data 

selection using SVM. The major difference while using multi-zone model compared to single-

zone model is that we have to consider the changing period of occupancy and building operating 

conditions of multi-zone into aggregated one-zone to formulate the transition in the pseudo 

dynamic model. 

After that, we applied the methodology in real mixed CB and LEB at Ecole des Mines de Nantes. 

We evaluated the methodology step-by-step similar to simulation building. Firstly, we made a 

comparison between “SVM based on Linear Kernel” and “LSM based on Regression Model” for 

weight determination and found that they have similar weights. Secondly, we tested on different 

input feature scenarios and found that occupancy and pseudo dynamic model has a significant 

effect in the model performance. Thirdly, we performed the sensibility analysis on the influence 

of the number of days for model training and observed that the performance of model is higher 

between 7 and 12 days. Fifthly, we compared different AI models (ANN, SVM, BEDT and RF) 

and relevant data selection methods (HDD, modified HDD, Frechet Distance and DTW) and 

noticed that modified HDD or DTW using SVM and ANN have higher performance. However, 

SVM method is more preferable due to its faster model training CPU-time to predict thermal heat 

load. Finally, we compared “all data” and “relevant data” modeling approaches and identified 

that DTW “relevant data” modeling approach using SVM has higher performance to “all data” 

modeling approaches for heating load prediction.            
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 6.2 Future Works 

There are also several research problems in energy demand or consumption prediction as a future 

steps and these are summarized below: 

 Develop a criterion to combine different relevant data selections methods and AI models. 

For example, combination of modified HDD and DTW relevant data selection methods 

and combination of AI models: ANN and SVM. 

 Develop an automatic feature selection method to identify important features during the 

operation phase of the building.  

 Develop a methodology to learn the behavior in one building and apply it to unknown 

buildings that have different physical and geometrical parameters. In this research, the 

methodology is aim on known building where physical and geometrical properties are 

provided and make prediction under various climatic conditions. 
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Appendix A- Steady State Model 

The steady state model can be classified into two categories:  

 Degree-hour or day method 

 Bin method 

The degree-hour or day method considers an energy requirement of building is due to the 

difference between external temperature and base temperature of building. This method assumes 

that average heat gains from solar radiation and internal gains is balanced by heat loss due to fixed 

mean daily external temperature [25]. Figure (A.1) shows the base temperature of building and it 

can be seen that if the base temperature of building is higher than the external temperature then 

there is necessity of heating energy consumption. On the contrary, if the base temperature is 

below the external temperature then there is necessity of cooling energy consumption.  

 

 

Fig. A.1: Illustration of base temperature  

The degree-hour method is given by [112]: 
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Where,    (t) is heating degree-hour (0C/h),    (t) is cooling degree-hour (0C/h),          is 

fixed base temperature of building (0C) (usually 180C in Central Europe) and           is external 

temperature (0C). In Equation (A.1 –A.3), + indicates that calculation is valid when          

           difference is positive or zero. Then, the heating energy consumption is given by 

Equation (A.4) [112] and cooling energy consumption is given by Equation (A.5) [113]: 

       
             

  
                                                                        

      
                             

    

                                                             

 

Where,       is heating energy consumption of building (kWh),        is overall building heating 

loss coefficient (W/K),     is overall seasonal average efficiency of heating equipment (%),        

is cooling energy consumption of building (kWh),          is mass flow rate of environmental 

indoor air (kg/s),           is specific heat capacity of indoor air (kJ/kg) and      is the overall 

coefficient of performance of cooling system (%). The overall heat loss coefficient of building 

(      ) further given by [113]: 

       
              

 
                 

    
                                                                     

Where,       is area of building (m2),       is total U-value of building envelope components 

(W/m2K)        is air infiltration rate changes per hour (h-1) and       is volume of building (m3). 

In the Equation (A.6), the numerical values 1/3 represent typical values of density and specific 

heat of indoor air and conversion to air changes per hour.  

However, degree-hour or day method that uses fixed base temperature of building does not 

consider internal heat gains and does not include variation of temperature on the performance of 

equipment. By considering fixed based temperature, it lags physical fundamental principle which 

depends on several factors such as insulation level, materials composition, internal and solar heat 

gains, desired set-point temperature and occupant’s behavior ([25];[114]).  

To overcome the limitation of degree-hour or day-method, variable degree-hour or day method 

exist in literature and it assumes heat gain or heat loss of building is balanced by variable base 
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temperature instead of fixed base temperature. The variable base temperature of building  

            in 0C is given by [25]: 

                          
  

         
      

      

                                                         

Where,               is set-point temperature of building (0C),   
       is solar heat gain in the 

building (W) and    
       is internal heat gain in the building (W). Nevertheless, these methods 

are also not precise for building dominated by internal gains and low U-value of envelope 

components.  

On the other hand, bin method is similar to variable base temperature but it rely functions of bins 

in terms of closeness using external temperature to estimate total building heating and cooling 

energy consumption. The average values of external temperature bins is used for energy load 

prediction and heating energy consumption       is further given by [25]. 

      
                                         

   

  

                                                       

Where, bn is number of bins,        is number of hours of occurrence of the jth bin,              is 

the external temperature at the jth bin and              is the base temperature of jth bin for 

building. These bin methods are more accurate than degree-day method since it considers hourly 

weather data unlike daily average values, nevertheless, these  methods has several drawbacks 

since it can neglects the extreme high or low climatic conditions and thermal mass effects of 

building.
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Appendix B – Machine Learning based 

Artificial Intelligence 

 

Machine learning techniques have been widely used in various applications of science and 

engineering. This machine learning based artificial intelligence techniques is helpful for linear and 

non-linear solving problems of higher dimensional and big data. This appendix details four types 

of machine learning based artificial intelligence techniques: artificial neural network, support 

vector machine, decision tree, random forest and concept of ensemble methods as a building 

energy modeling tools and practical aspects before training the model. 

 

B.1 Artificial Neural Network 

B.1.1 McCulloch Pitts Model 

The biological neuron is the foundation of neural network concept forwarded by McCulloch and 

Pitts to solve the linear and non-linear complex problems.  The neuron is the basic element of the 

nervous system including brain and is composed of three components: the cell body (soma), the 

axon and the dendrites. The structure of biological neurons is shown in Figure (B.1).  

 

Fig. B.1: Structure of biological neurons [115]  
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As shown in Figure (B.1), the neuron receives the chemical input from other neurons through 

dendrites. The axon of single neurons forms the synaptic connection with many neurons and is the 

output channel to the other neurons.  The connecting junction of neurons is called a synapse. The 

neuron thus receives signal from other neurons through cell body and dendrites, and integrates the 

stimulations. If this stimulates is higher, it increases the polarization of receiving nerve cell, and if 

this excitation is beyond the threshold value, then the neuron excites its own impulse to other 

neurons and sends a spike or output signal to other neurons through its axon. If these stimulates is 

below than the threshold values, then input will decay and they will not generate any action. The 

schematic of neural network is shown in Figure (B.2) and comparison of biological neuron with 

artificial neuron is shown in Table (B.1).  

 

 

Fig. B.2: Schematic of artificial neuron network  

 

Table B.1: Comparison of biological neuron and artificial neuron 

 

In the Figure (B.2), neural network consist input represented by             and its 

corresponding weight are              i varies from 1 to u and u is the number of inputs; and b 

represents offset values called bias. Total signal ( ) from input neurons is given by: 
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Then, all the connecting weights are summed with input signals and compared with the threshold 

value  . Finally, the output   is given by       , where   is an activation function and also 

called transfer function. The McCulloh-Pitts perceptron model thus is defined by: 

   
          
        

                                                                             

Equation (B.2) illustrates that the output of the neural network model will be high if the combined 

input is higher than the threshold values and zero if the combined input is below the threshold 

values.  

B.1.2 Multi Layer Perceptron 

Multi-layer perceptron (MLP) neural network are widely neural network and Figure (B.3) shows 

the MLP neural network which consists: input, hidden and output layers.  

 

Figure B.3: Feed-forward multi layer perceptron neural network 

The input layer receives the input data where each neuron correspond to each feature element 

(e.g., selected climatic conditions, occupancy profile etc.). The activation function for the input 

neurons is usually f(x)=x. The input data from input layer is further sends to the hidden layer.  
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The hidden layer processes the data and sends it to the next layer. There can exist more than one 

hidden layer and there is no any mathematical method which can be used to find the number of 

hidden layers. Generally, adding extra hidden layer improves the performance of model, however 

model training time is high due to additional complex structure. The output layer (e.g., heating 

load) is the last layer which receives the input signal from the last hidden layer. In each layer, the 

neurons receive the input signal from the previous layer and proceed to the next layer without 

feedback, thus this type of MLP neural network is also called feed-forward neural network. In the 

Figure,    is the input neurons, y is the output neuron and f(.) is the activation function which 

provides mapping of hidden layer to output layer. In order to find the weights and bias of the 

neurons, the training is performed and there are many algorithm and back-propagation algorithm 

is widely used method. This method initially calculates the training error by comparing network 

output obtained while flowing from input via hidden layer to output layer. After that, errors are 

back-propagated to the hidden layer and then the input layer so that the weight and bias are 

adjusted accordingly to minimize the error. Such process is repeated many times until the error 

propagating will be smaller.  

 

B.1.3 Recurrent Neural Network 

The recurrent neural network is similar to MLP feed-forward neural network except that neurons 

in the hidden layer are connected by the time delay (D-1) which provides information of the past 

and is shown in Figure (B.4). It means output neurons is feedback to the previous neurons and 

thus signal flows both in forward and backward direction. This kind of learning is based on past 

experiences and are also called dynamic neural network. 

 

Fig. B.4: Recurrent neural network 
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B.1.4 Radial Basis Function Neural Network 

The radial basis function (RBF) neural network differs from MLP neural network based on the 

activation function and is shown in Figure (B.5). Unlike MLP neural network which determined 

hidden layer by the weighted sum at the activation function, RBF neural network uses radial basis 

function at the hidden layer. This activation function at the hidden layer is given by: 

          
       

  

                                                                     

Where,       is the jth radial basis function,    is input vector,    is the jth center point and    is 

the width of the RBF. Typically,       is Gaussian function and is further given as: 

         

       
 

   
 

                                                           

The output of radial basis function is given by: 

           

 

                                                                     

 

Fig. B.5: Radial basis function neural network 

B.1.5 Hidden Neurons 

The hidden neurons affect the performance of neural network. If the neural network has small 

number of hidden neurons, there is a chance that neural network not to capture the representation 
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of data leading to under-fitting of model.  With the increase of hidden neurons, the performance of 

model can also be increased, but there are chances of network to be over-learned. Optimal choice 

of hidden neurons is thus necessary and there is no any robust rule in the determination of hidden 

neurons for the neural network. There are few literature focus to determine the number of hidden 

neurons. Kalogirou and Bojic [65]  recommended hidden neurons based on input and output 

neurons and total number of training data and is given by Equation (B.6). 

 

   
 

 
                                                                           

Where,   ,   ,    and    are number of hidden neurons, input neurons, output neurons and total 

number of data points in the training data. For Huang [116], the estimation of hidden neurons 

depends only on output neurons and number of training data and their estimation of hidden 

neurons for two hidden layer feed-forward network is given by the followings: 

                                                                             

The number of hidden neurons in the first layer (   ) is given by: 

                 
  

      
                                                 

The number of hidden neurons in the second layer (   ) is given by: 

       
  

      
                                                                          

B.1.6 Activation Functions 

The activation function plays a significant role in mapping the non-linear functions. Typically, 

there are five types of activation functions widely used: linear, binary, piecewise linear, sigmoidal 

(s-shaped) and tangent hyperbolic shown in Figure (B.6) and their mapping function is shown in  

Equation (B.10).  

 

Fig. B.6: Activation functions used in the neural network 
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In Equation (B.10),   is slope for linear activation function;   is the shape parameter for widely 

used sigmoidal and hyperbolic tangent activation;   is control parameter for the width of the 

Gaussian activation function.  

B.2 Support Vector Machine 

Support vector machine (SVM) are built upon the state-of-the-art in kernel and are widely used in 

science and engineering. They are based on the statistical learning theory and have possibility to 

utilize kernel based methods to map the input features into higher dimensional plane to solve the 

complex non-linear problems. The non-linear function approximation with different kernels is the 

main strength of SVM but they are equally good in solving linear problems too. They provide 

advantages like noise robustness, maximum-margin etc. in comparison to simple regression 

model. SVM was originally utilized by Vapnik [117] for binary classification problem. After that, 

it was continuously followed by Vapnik, Drucker, Burges, Kaufman and Smola [118].  There are 

many libraries providing the implementation of SVM like LibSVM [119], LS-SVMlab [120] and 

SVMlight [121] etc. 

These are widely used for classification problem and Figure (B.7) shows the classification 

problem where SVM tries to separate the data with the introduction of maximum margin by 

hyperplane, which is the common interest of SVM.  The training data that are closest to the 

hyperplane are called support vectors and the distance between support vectors of different classes 

is called margin.  

SVM is also used for regression problems where training sets are non-linearly separable, It finds 

the solution by suitable kernel function to map the non-linear input space into higher dimensional 

feature space where the separation hyperplane is found shown in Figure (B.8). Generally, there 

are two kinds of SVM for regression based on the controlling of training errors and support 

vectors:  -SVR and  -SVR [107]. There is no such difference between these two kinds of SVM, 
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but only the differences lies in the parameter. In this manuscript, we have used  -SVM since this 

is widely used and more detail on   -SVM is found in Scholkopf et al. [122]. 

 

 

Fig. B.7: Separation hyperplane in support vector machine 

 

Fig. B.8: Transformation of input space into feature space 

 -SVM can be defined as follows:  A original training data consists                   where    

is the predictor variable and    is the response variable; the SVM tries to find the hyperplane that 

maximizes the margin and the equation of hyperplane is given by: 
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where,   and   are constant,      is the mapping function which will be used to map input vector 

x into higher dimensional called kernel space. Then the SVM finds hyperplane by minimizing of 

quadratic problem: 

  

              
 

 
             

                                    

 

   

 

subject to  

         
          

                

                
 

    
   

    k=1, 2, 3 …..N 

By applying Lagrangian multipliers (    ), Equation (B.12) is further formulated in order to 

minimize the dual quadratic problem.   

        
     

 

 
       

        
           

 
     

        
            

   
   

 
   

      (B.13) 

subject to 

 
       

     
   

       
   

    k=1, 2, 3 …..N 

Then the SVM output generates the regression and is represented in the following form:  

            
                                                                               

 

   

 

The vectors with       
     in Equation (B.14) are support vectors; n is the number of 

training data; K is the kernel function; and b is solved using boundary conditions.  

B.2.1 Kernel Functions 

Kernel function plays a significant role to allow the training process simple by mapping the input 

data space which are non-separable to a separable data in higher dimensional space. There are 

four types of kernel functions widely used: linear, polynomial, radial basis function (RBF) and 

sigmoidal; and their representation is given as:  
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Where,    and    are input feature space (e.g. external temperature and occupancy profile);  a and 

b are constant ; d is degree of polynomial and   is tuning parameter of Gaussian radial basis 

function which control the width of kernel functions.  In fact, this    determines the influences of 

input training transferred into kernel and if this value is small, then the input feature space are 

closer. If    is higher, then the input feature space are very far.  

B.2.2 Parameter C and   

The parameter C accounts for training errors and control the strength of penalty factor for error 

allowed during the training. Higher values of C will produce larger relative penalties and lead to 

problem of over-fitting. This further means large number of support vector will be required for the 

optimization problem. However, lower values of C will under fit the training data too. The 

parameter   control the width of margin error, i.e.,  -insensitive loss. Higher value of   produces 

simpler models and lead to problem of under-fitting. This further results in the solution to be 

sparse since it selects the fewer number of support vector.  Lower value of  , on the contrary, 

produces over-fitting of model. 

B.3 Decision Tree 

Decision tree is a statistical model widely used for classification and regression problems. 

Typically, trees are grown with binary recursive partition through series of splits or nodes shown 

in Figure (B.9). Initially, the root node is partitioned into two split nodes: left and right. This 

splitting of nodes continuously grows until fulfillment of stopping criteria is achieved. The node 

where tree stops growing is called leaf and all these values are averaged at the leaf node for the 

final prediction.   

It is defined as follows [123] : Assuming two features    and    shown in Figure (B.9), the tree 

splits the features into five non-overlapping regions   ….   and known as leaf node. It can be 

seen that tree      splits the regions into sub regions (left in the tree      and right in the tree 

    ). Assuming R be the leaf nodes with sets of input possible feature    ….   with j distinct 
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and non-overlapped regions, the goal of decision tree is to find the regions   ….   that minimize 

the sum of squares of regions. 

            
 

    

                                                                           

 

   

 

Where,       is mean output value of the training data within the jth box and     is the actual output 

of training data. 

Therefore, the main decision is the criteria for the choice of feature to be used in each node, how 

to calculate split from the node and how to decide that node is leaf. In order to address the above 

issues, various decision tree algorithms exist: ID3 Iterative Dichotomiser 3 [124], C4.5 successor 

of ID3 [125], CART classification and regression trees [108] etc. 

In ID3 algorithm, the information gain criterion is used for split selection and with given training 

data set T, the entropy of T is given by ([126]) 

                                                                                    

Where, x is input data set and Ent is entropy. With the division of training data into subset 

        , the entropy is reduced and the amount of information gain is given by [126]: 

                     
    

   
                                           

 

   

 

The features that have lowest information gain is used to select the split. However, the features 

that are selected only by information gain could have better fitting with the training data but 

cannot generalize for prediction or unseen condition. In order to address this, Quinlan proposes 

gain ratio given by: 

                             
    

   
   

    

   

 

   

 

  

                            

Equation (B.19) therefore considers variation of information gain by normalizing with the number 

of features. The features that have higher gain ratio is used to select the best split. 
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Similarly, CART another decision tree algorithm that uses Gini index was proposed by Breiman 

et al. [108] to select the split that maximizes the Gini index and is given by: 

 

                       
    

   
     

 

   

                                         

Where, 

                

 

Fig. B.9: A simple illustration of decision tree [123] 

B.4 Random Forest 

One of the main problems of decision tree is the chances of over-fitting while fitting the training 

data by maximizing the depth of the trees. Breiman [111] proposed random forest to address this 

issue by using several decision trees.  He proposed combination of regression trees with bagging 

(bootstrap aggregation) which uses random sampling with replacement from the original training 

data to build several bootstrapped datasets. Furthermore, it constructs the number of regression 

trees model by splitting the node with randomly selected subsets of features. Then, each splitting 

nodes, the conventional selection was performed to group into two proceeding nodes and the best 

split was selected. This process continues to split the nodes until the leaf nodes was met and the 

trees are build with maximum sizes. Finally, the output of all decision tree is aggregated. The 

overview of prediction from random forest is shown in Figure (B.10) where it can be seen that 

initial training data are divided into B number of bootstrap sample data sets for B number of trees 

and decision tree is build in each bootstrap and finally these are aggregated to make prediction.  
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Fig. B.10: Overview of random forest 

One of the characteristics of RF is “out-of-bag (OOB)” where it uses 2/3 of training data to build 

the model and 1/3 of training  data is drawn from original training data set and are not involved in 

the construction of best-split decision tree and are called “out-of-bag” samples [111].  

 

The main parameter that governs the random forest are: bootstrap size, number of trees, number 

of random possible variable at each splitting nodes and minimum number of leaf nodes of the 

trees. Random Forest are less sensitive to the parameters since the increase of bootstrap do not 

create a problem in over-fitting due to averaging effect of the trees in the ensemble [111].  

B.5 Ensemble 

Ensemble is the combination of multiple trained models to produce the prediction. The most 

popular methods are: bagging [127] and boosting [128]. Ensemble method performs better results 

than individual model [111].  

 

Representing training set by         for M number of sub-model, the ensemble model takes the 

following form: 

                                                                                    

 

   

 

where,   =1,2..B are the weights of the ith sub-model and        are trained model for the ith 

training set.  

Original training dataset

b1 b2 b3 bB

Σ
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B.5.1 Bagging 

Bagging is one of the widely used ensemble algorithm for classification and regression. It uses 

different training samples randomly with replacement from the original training data to represent 

bootstrap sample (for detail on bootstrap, see [129]) and then separate model are build with each 

bootstrap sample. The output of the model is obtained by aggregating the average from different 

model and thus reduces the generalization error [130].    

 

It can be defined as follows: The original training data consists                   where    is 

the predictor variable and    is the response variable; then m number of bootstrapped training data 

is obtained from sample with replacement from the original training data. Then the boostrapped 

training data is trained with chosen training algorithm to get predicted        for m model. Finally 

the prediction is obtained by averaging all the trained model: 

     
 

 
                                                                                 

 

   

 

More details about bagging is found in [131]; [132].   

B.5.2 Boosting 

Boosting is another ensemble machine learning algorithm and was proposed for the classification 

problem but it has also been widely used to solve the regression problem. It was first introduced 

by Schapire and named AdaBoost [133] and then it was improved by gradient method introduced 

by Freidman [110];[134] to build gradient boosted regression tree model.  

It is noticed that bagging involves creation of multiple bootstrap sample and model are obtained 

by fitting into the separate training data of each bootstrap and final model is obtained by 

averaging the results to create a single predictive model. The boosting work in similar way to 

bagging except that it fits the trees sequentially and the basic concept is to prioritize for poorly 

fitted training data based on the results from the previous tree alone instead of all previously fitted 

trees [135]. It first fit the training data and residuals are calculated. The training data points 

corresponding to the higher residuals are assigned more weight in order to fit the next tree and this 

process is continuously forwarded until existing trees are remained unchanged.  
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It can be defined as follows ([136]; [137]): A original training data consists                   

where    is the predictor variable and    is the response variable. Then the model can be 

approximated as a function f(x) for the response variable y and boosting decision tree algorithm 

estimate the basis function        as: 

                       

  

                                           

where,              are the expansion coefficients and          are regression trees with 

the parameter    represents the split variable. The coefficient    represents the weight of given 

nodes at each tree and it determines how the prediction from given trees are combined. The 

parameter    and    are estimated by minimizing the loss function           which further 

indicate the prediction performance.  

This loss function can be solved through optimization problem and Freidman [110] approximates 

the loss based on steepest descent. The methods follows by initializing the model       with 

constant value and grow the number of trees (m=1 to M). Then, the residuals for each training 

data are calculated as given: 

      
            

      
 

            

                                              

Then the regression tree is fitted to     to estimate    of        . After that, parameters    are 

estimated by minimizing                       . Finally, the update    is obtained from 

Equation (B.25).  

                                                                   

The important aspect of gradient boosting is the regularization by shrinkage to control the learning 

rate and reduces the risk of over-fitting and Equation (B.25) is further modified as: 

                                                                                        

Where,   is learning rate and is      . If the learning rate is  1, the ensemble requires more 

learning iterations.  Finally, the predicted response is: 

           

 

                                                                   

More details about boosting are found [110], [134] and [109].  
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B.6 Practical Aspects in Artificial Intelligence  

In artificial intelligence model, there are different task to be considered before training the model. 

Brief introduction of these practical aspects is explained below: 

B.6.1 Normalization of Input and Output Data 

Normalization is the process to make the magnitude of each variable similar so that there is no 

risk of slower convergence. In addition, it also helps to speed up training time and removes the 

outliers in the data and more details about it is found in Priddy and Keller [138]. The widely used 

normalization are discussed below:  

Min-Max Normalization 

It normalizes the input and output data to a fixed range usually from 0 to 1 or from -1 to 1. The 

min-max normalization is given by: 

     
       

         

                                                                           

Where,     ,      are the minimum and maximum values of the input data;           and 

          are the minimum and maximum target values;      is the normalized input data. 

Similarly, the normalization is performed for the output data. 

Z-Score Normalization 

It normalizes the training data of each feature by using mean ( ) and standard deviation ( ) of 

each feature of training data. The z-score normalization is given by:  

     
     

  

                                                                               

Sigmodial Normalization 

Sigmodial normalization performs transformation into non-linear form using sigmodial functions: 

logistic or hyerpbolic function. The sigmodial normalization is given by: 

     
 

   
 

       
  

                                                                          



203                                          Appendix B- Machine Learning based Artificial Intelligence 

 

 

 

     
   

 
       

  

   
 

       
  

                                                                              

Equation (B.30) represents the logistic sigmoidal and normalizes the data in the range between 0 

to 1. Equation (B.31) represents the normalization with hyperbolic tangent and normalizes the 

data in the range between -1 and 1. 

B.6.2 Data Splitting 

The data-driven models are prone to either under-fitting or over-fitting because of too many 

degrees of freedom in model.  Generally, the overtraining/over-fitting can be observed by 

evaluating the model in validation set. The complexity of the model due to training and validation 

phases is shown in Figure (B.11). We can see that the more complex model can fit better than 

simple model with high variance and low bias during training phase. In case of validation phase, it 

is seen that less complex model have high prediction error with low variance and high bias, for 

details see Hastie et al. [109]. 

 

Fig. B.11: Influence of model complexity during training and testing phase [109]  

The selection of model order thus depends on the complexity of model and these choices are 

further limited by bias and variance tradeoffs. If the model order is high, the complexity of model 

will increase and this has to be trade off by loss in approximation accuracy. If the model order is 

low, the complexity decreases and model error is dominated by approximation error due to 

insufficient fitting or capturing of non-linear data. This disadvantage of over-fitting and under-

fitting of the model are reduced by splitting the data. A detail study on various splitting data 
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methods is found in (Burman [139]; Molinaro et al. [140]) and the most widely used techniques 

are described below: 

Hold-out method 

This is a simplest kind of data-splitting techniques where total number of training data sets are 

divided into training and validation shown in Figure (B.12). It holds certain amount of data for 

validation (about 1/3 of data sets) and remaining data are used for training sets. The advantage of 

this method is that it requires less training time.   

 

Fig. B.12: Hold-out method 

However, this method has several drawbacks. If the small amount of training data is used, then the 

variance of the model will be larger. On the other hand, if large amount of training data is used, 

then small validation set might result in poor performance to select best parameters of model.     

Random Sub-Sampling 

Random sub-sampling is another hold out method where whole training data is randomly split into 

subsets shown in Figure (B.13). For each of the number of data splits, the model is trained and 

error is evaluated. The final model is evaluated by averaging the error estimate from individual 

data splits.  

 

Fig. B.13: Random sub-sampling 
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K-fold Cross-Validation 

K-fold cross-validation is the most popular data splitting method where data sets are divided into 

k-number of equal parts shown in Figure (B.14). This concept originates since the selection of 

single validation data split might not be representative of the training data sets. In this method, 

one fold is used for evaluation of model and remaining k-1 folds are used for training.  This 

method is similar to repeated hold-out method and has advantages of using all the training data 

sets for evaluating and learning the model. The result of the final model is obtained as the average 

of the k-fold results to find the best parameters of model.  

 

Fig. B.14: K-fold Cross Validation 

Leave-one-out cross validation  

Leave-one-out cross validation is a special case of k-fold cross validation where k=n and n 

represents the number of training data sample shown in Figure (B.15). It uses one sample of data 

for evaluating the model and rest of the training data for learning the model. Because of using n 

repeated sample of data for evaluating the model, the model training time is too high. This method 

is computationally expensive. 

 

Fig. B.15: Leave-one-out cross validation 
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Bootstrap 

The basic concept of bootstrap is to randomly select with replacement from the training data set 

shown in Figure (B.16). While selecting the bootstrap sample, the sample may be chosen again 

from the original data set more than once. This is considered best way if the training data samples 

are smaller. This process is repeated for the specified number of bootstrap B.  Then the model is 

evaluated on each bootstrap sample and final model is selected by averaging these B estimates. 

 

 

Fig. B.16: Bootstrap 
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Appendix C- Building Operation 

Classification/Clustering 

Cannonical Variate Analysis (CVA) is a multivariate discriminate tool, which is based on 

covariance matrix of variables and used to show the correlation degree between input vector data 

sets. It transform the original input vector data sets into new axes called canonical variable 

without losing relevant information from the input data sets and make this component even better 

than input data set. Basic idea of this transformation into new axes is first extraction of statistical 

features and dynamical change of daily energy consumption of building and later used this feature 

to analyze from CVA whether it is easier for classification or not. Main statistical features of daily 

time series include daily average energy load (  ) and maximum daily energy load (    ). In 

order to reduce the seasonal variance from model, minimum value of energy load on particular 

day is reduce from daily energy load [49]. Then, the auto-regression model is applied for the 

dynamical change of energy load of building for each day and is shown in Equation (C.1). 

Equation (C.1) assumes that current sample      can be predicted from the linear weight of the 

sum of   sample values i.e.       ,       …       , where p is the model order,    is the ith 

coefficient of the pth model order,   is the noise parameter and    is the initial value of the   

model order. With given the order of p for auto regression model, the parameters    and   can be 

estimated and burg algorithm is used for determination of coefficients in this study, for details see 

Li et al. [49]. Therefore, the statistical feature includes daily average energy load, maximum daily 

energy load and auto-regression model coefficients which are then input to the CVA to transform 

into canonical variables. 

                  

 

   

                                                                      

The input statistical features including auto-regression model coefficients of each day is divided 

into   group i.e.           , where   is the number of training days data sets,   is the number 

of statistical features,   is the operating profile of building in which each operating profile 

contains         samples. For example, if   is the statistical features of one year data with 

model order of four, then,                       ,   contains different kinds of operating 

profile from Monday to Sunday i.e.  =7,  =365 and  =6. Group covariance matrix (  ) and 
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between the group covariance matrix (  ) is calculated in equation (C.2 –C.3), where,     is the  th 

sample in the  th group,     is the mean vector in the  th group and    is the mean vector in overall 

database.  

   
 

   
           

 

   

                                                             

 

   

 

 

   
 

   
           

 

   

                                                                    

To determine canonical variables from Equation (C.2–C.3), a direction   needs to be determined 

which satisfies the condition in equation (C.4), where,   is Eigen values and   is Eigen vectors. 

                                                                                                  

Thus, canonical variables (  ) is determined as: 

                                                                                                      

 

  



 

 

 

 

 

Résumé 

 

Les  normes de construction pour des bâtiments de plus 
en plus économes en énergie (BBC) nécessitent une 
attention particulière. Ces normes reposent sur 
l’amélioration des performances thermiques de 
l’enveloppe du bâtiment  associé à un effet capacitif des 
murs augmentant la constante de temps du bâtiment. 
La prévision de la demande en énergie de bâtiments 
BBC est plutôt complexe. Ce travail aborde cette 
question par la mise en œuvre d’intelligence artificielle 
(IA). Deux approches de mise en œuvre ont été 
proposées : « all data » et « relevant data ». L’approche 
« all data » utilise la totalité de la base de données. 
L’approche « relevant data » consiste à extraire de la 
base de données un jeu de données représentant le 
mieux possible les prévisions météorologiques en 
incluant les phénomènes inertiels. Pour cette extraction, 
quatre modes de sélection ont été étudiés : le degré jour 
(HDD), une modification du degré jour (mHDD) et des 
techniques de reconnaissance de chemin : distance de 
Fréchet (FD) et déformation temporelle dynamique 
(DTW). Quatre techniques IA sont mises en œuvre : 
réseau de neurones (ANN), machine à support de 
vecteurs (SVM), arbre de décision (DT) et technique de 
forêt aléatoire (RF). Dans un premier temps, six 
bâtiments ont été numériquement simulés (de 
consommation entre 86 kWh/m².an à 25 kWh/m².an) : 
l’approche « relevant data » reposant sur le couple 
(DTW, SVM) donne les prévisions avec le moins 
d’erreur. L’approche « relevant data » (DTW, SVM) sur 
les mesures du bâtiment de l’Ecole des Mines de 
Nantes reste performante. 
 
Mots clés 
Consommation d’énergie dans le bâtiment, 
Prévision, Bâtiment basse consommation, 
Intelligence artificielle, Jeu de données 
représentatives, Apprentissage en ligne et hors 
ligne 
 
 
 
 
 
 
 
 
 
 

Abstract 

High-energy efficiency building standards (as Low 
energy building LEB) to improve building consumption 
have drawn significant attention. Building standards is 
basically focused on improving thermal performance of 
envelope and high heat capacity thus creating a higher 
thermal inertia. However, LEB concept introduces a 
large time constant as well as large heat capacity 
resulting in a slower rate of heat transfer between 
interior of building and outdoor environment. Therefore, 
it is challenging to estimate and predict thermal energy 
demand for such LEBs. This work focuses on artificial 
intelligence (AI) models to predict energy consumption 
of LEBs. We consider two kinds of AI modeling 
approaches: “all data” and “relevant data”. The “all data” 
uses all available data and “relevant data” uses a small 
representative day dataset and addresses the 
complexity of building non-linear dynamics by 
introducing past day climatic impacts behavior. This 
extraction is based on either simple physical 
understanding: Heating Degree Day (HDD), modified 
HDD or pattern recognition methods: Frechet Distance 
and Dynamic Time Warping (DTW). Four AI techniques 
have been considered: Artificial Neural Network (ANN), 
Support Vector Machine (SVM), Boosted Ensemble 
Decision Tree (BEDT) and Random forest (RF). In a first 
part, numerical simulations for six buildings (heat 
demand in the range [25 – 85 kWh/m².yr]) have been 
performed. The approach “relevant data” with (DTW, 
SVM) shows the best results. Real data of the building 
“Ecole des Mines de Nantes” proves the approach is still 
relevant. 
 
Key Words 
Building Energy Consumption, Prediction, Low 
Energy Building, Machine Learning, Small 
representative data, Online and Offline Learning 
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