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An ode to phytoplankton

Light in the euphotic layer of the oceans supports the growth of unicellular autotrophic organisms. These organisms drifting with the current are called phytoplankton [START_REF] Falkowski | Aquatic photosynthesis[END_REF]. Phytoplankton constitute a polyphyletic group, gathering prokaryotes (Cyanobacteria) and various unicellular eukaryotes lineages (fig. 1.1), for which photosynthesis results from different evolutionary pathways of the chloroplast (i.e. the cellular organelle performing photosynthesis), which has travelled between eukaryote groups via endosymbiosis through the ages [START_REF] Boudouresque | Taxonomy and phylogeny of unicellular eukaryotes[END_REF]. For this reason, phytoplankton comprise very different organisms, with size ranging from 1 to 10 4 µm (fig. 1.2), and a vast variety of metabolic functions shaping ocean biogeochemistry. Currently, the global ocean is dominated in cell number by Cyanobacteria of the genus Prochlorococcus and Synechococcus [START_REF] Ting | Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies[END_REF], which can annually reach, for example, a total of 10 27 and 10 26 cells on average in the Pacific Ocean, respectively [START_REF] Flombaum | Present and future global distributions of the marine cyanobacteria prochlorococcus and synechococcus[END_REF]. By harvesting the solar energy, phytoplankton fuel the entire oceanic food web, forming a functional ecological group1 responsible of approximately 45% of the worldwide primary production [START_REF] Field | Primary production of the biosphere: integrating terrestrial and oceanic components[END_REF]]. In 1936, Alfred Redfield noticed a curious constant stoichiometry between carbon, nitrogen and phosphorus in the ocean [START_REF] Redfield | On the proportions of organic derivatives in sea water and their relation to the composition of plankton[END_REF] (C:N:P=106:16:1) which puzzled scientists for several decades. We now know that phytoplankton are the guilty organisms, and, as underlined by Pr. Paul Falkowksi: 'Phytoplankton not only reflected the chemical composition of the deep ocean, but created it.'. Phytoplankton deeply control biogeochemical cycles of these key elements up to the depths of the oceans, and then indirectly drive climate [START_REF] Boyd | The impact of climate change and feedback processes on the Ocean Carbon Cycle[END_REF]. Dead sinking phytoplankton actively participate to the 'biological carbon pump' [START_REF] Volk | Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric co2 changes[END_REF], a process by which inorganic carbon is incorporated to the biological biomass, exported to the depth, then remineralized and finally partially redistributed thousand to millions years later.
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Phytoplankton growth depends on various physico-chemical environmental factors. Light, obviously, is a fundamental factor driving growth and scientists even use it to infer phytoplankton world distribution by tracking the ocean colour [START_REF] Antoine | Oceanic primary production: 1. adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations[END_REF]Morel, 1996, Lin et al., 2016]. After light, temperature is also a very influencing factor, neglected for a long time, defining the biogeographical boundaries of major groups, from polar to tropical oceans [START_REF] Longurst | Ecological geography of the sea[END_REF]. A recent global scale study deeply confirms the temperature role in phytoplankton growth and repartition [START_REF] Sunagawa | Structure and function of the global ocean microbiome[END_REF]. Finally, nutrients (e.g. N, P, Fe etc.) may also limit phytoplankton growth. [START_REF] Baldauf | An overview of the phylogeny and diversity of eukaryotes[END_REF]). Phytoplankton groups are marked with green ellipses.

1.2 Phytoplankton and temperature 1.2.1 The direct effect of temperature

The direct effect of temperature on phytoplankton growth rate is represented by an asymmetric curve called the thermal growth curve or the thermal reaction norm 1.2 Phytoplankton and temperature Figure 1.2: Size range of phytoplankton -Scale range of phytoplankton, from unicellular Cyanobacteria to giant Bacillariophyceae and colonial Cyanobacteria (adapted from [START_REF] Finkel | Phytoplankton in a changing world: cell size and elemental stoichiometry[END_REF]). [START_REF] Kingsolver | The well-temperatured biologist[END_REF] (fig. 1.3). The cardinal temperatures corresponding to the boundaries of thermal tolerance are defined as the minimal (T min ), optimal (T opt ) and maximal (T max ) temperatures for growth. The growth rate obtained at T opt is the theoretical maximal growth rate µ opt which may further depend on light. The thermal range on which a given phytoplankton species can thrive is called the thermal niche width (i.e. |T max -T min |).

Phytoplankton can acclimate to temperature conditions (and then modify the shape of this curve) by increasing their RNA and modifying their chlorophyll content at low temperature, for example, or by expressing heat-shock proteins at high temperatures [START_REF] Hoppenrath | Dinoflagellate phylogeny as inferred from heat shock protein 90 and ribosomal gene sequences[END_REF] and adapting membrane fluidity accordingly.

The thermal growth curve is also influenced by several other factors. In specific conditions, light and temperature can have coupled effects. For example, at low temperature, the enzymatic-dependent part of photosynthesis is lowered by temperature whereas the non-enzymatic dependent part is not, resulting in an energy imbalances participating in photoinhibition [START_REF] Ras | Temperature effect on microalgae: a crucial factor for outdoor production[END_REF]. Similarly, nutrient starvation [START_REF] Thomas | The effect of temperature on the ecology, evolution, and biogeography of phytoplankton[END_REF] and salinity changes can temporarily modify the cardinal temperatures.

Phytoplankton in a changing climate

In the late 80's, a french team led by Pr. Claude Lorius brought back the proof from the Antarctic ices that earth was warming [START_REF] Lorius | The ice-core record: climate sensitivity and future greenhouse warming[END_REF]. According to Claude Lorius: 'Les fluctuations du CO 2 sont régulées par les océans, à travers des processus physiques, chimiques mais aussi biologiques, le monde vivant participant ainsi à l'évolution du climat. Depuis des centaines de milliers d'années, températures et concentrations en aérosols et en gaz à effet de serre varient entre des maxima et des minima relativement constants. Le climat terrestre s'auto-contrôle naturellement pour évoluer entre
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Asterionella formosa 50 µm Figure 1.3: Thermal growth curve -Thermal growth curve for the phytoplankton species Asterionella formosa (adapted from [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF]). Note the minimal temperature parameter T min which is negative here while no data points are available below zero (see chapter 3).

deux états stables bien définis. [...] les teneurs actuelles en gaz à effet de serre n'ont pas d'équivalent au cours des dernières centaines de milliers d'années et sont directement liées à l'impact anthropique sur la composition de l'atmosphère. Les conclusions tirées des archives glaciaires conduisent par conséquent à penser que la planète devrait sensiblement se réchauffer au cours du XXI e siècle, au risque d'affecter les ressources en eau, l'agriculture, la santé, la biodiversité et, d'une façon générale, les conditions de vie des humains.' This alarming report is a current reality; the year 2015 was, for example, the hottest year on record [START_REF] Tollefson | declared the hottest year on record[END_REF]. Recent estimations predict a global increase of 1 • C to 5 • C [START_REF] Rogelj | Global warming under old and new scenarios using ipcc climate sensitivity range estimates[END_REF] for the year 2100 (fig. 1.4).

Global warming is materialized in the oceans by an increase of the average annual Sea Surface Temperature [START_REF] Wijffels | Ocean temperatures chronicle the ongoing warming of earth[END_REF]. In this context, phytoplankton have to face different phenomena. Firstly, warming enhances upper ocean stratification and consequently lowers access to nutrient [START_REF] Winder | Phytoplankton response to a changing climate[END_REF]. Secondly, warming has a direct impact on phytoplankton physiology, specially during extreme thermal events. [START_REF] Behrenfled | Climate-driven trends in contemporary ocean productivity[END_REF] has found a correlation between the positive annual average temperature anomaly for the years 1999 to 2004 (corresponding to El Niño Southern Oscillations events) and the negative average annual anomaly of Net Primary Production (fig. 1.5). This is concerning because El niño is thought to occur repetitively, and a extreme one is predicted for 2016 [START_REF] Monastersky | Monster el nino probed by meteorologists[END_REF]. Recent studies claim that temperature strongly determines phytoplankton biogeographical repartition [START_REF] Chen | Patterns of thermal limits of phytoplankton[END_REF][START_REF] Thomas | Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits[END_REF], Yvon-Durocher et al., 2015]. These modified thermal regimes could induce community shifts in some areas, modifying the stoichiometry of fundamental el- [START_REF] Rogelj | Global warming under old and new scenarios using ipcc climate sensitivity range estimates[END_REF]).
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ements such as the N:P ratio which is largely temperature dependent [START_REF] Martiny | Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter[END_REF] (at higher temperatures, the P-rich ribosome concentration in cells is lower and thus the N:P ratio is higher).

It is worth noting that global change induces several other environmental modifications in the ocean combined to warming, such as the extension of oxygen minimum zones (OMZ) [START_REF] Wright | Microbial ecology of expanding oxygen minimum zones[END_REF] (i.e. oxygen depletion enhancement in certain areas), as well as ocean acidification [START_REF] Riebesell | Lessons learned from ocean acidification research[END_REF]. The coupled effects of all these factors on phytoplankton are currently unknown and represent a challenge in marine sciences. 

A decisive parameter in biotechnological applications

Characterized by several attracting physiological specificities, phytoplankton, also called microalgae in the context of valorisation, are under the scientific spotlights. On top of their autotrophic growth requiring little nutrient input compared to heterotrophic unicellular eukaryotes, some of them are able to accumulate important amounts of neutral 1.3 From acclimation to adaptation lipids [START_REF] Mata | Microalgae for biodiesel production and other applications: a review[END_REF], which can be turned into biofuel. Others can store large quantities of carbohydrates, used for methane production. They are therefore a promising resource for future biotechnologies [START_REF] Wijffels | Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae[END_REF].

Microalgae are cultivated in a wide range of systems. For large scale industrial productions, the most common ones are outdoor open ponds called raceways (fig. 1.6 A). Pond daily temperature variations can reach high values far different from what is encountered in the natural environment, sometimes higher than 40 • C [START_REF] Bechet | Mechanistic modeling of broth temperature in outdoor photobioreactors[END_REF][START_REF] Béchet | Universal temperature model for shallow algal ponds provides improved accuracy[END_REF] (fig. 1.6 B). Temperature then appears as a key factor for optimizing production and has to be controlled here for several purposes: maintain optimal temperature values in order to enhance productivity, limit thermally induced death during extreme thermal events, avoid light-saturation that occurs at low temperature [START_REF] Béchet | Universal temperature model for shallow algal ponds provides improved accuracy[END_REF][START_REF] Ras | Temperature effect on microalgae: a crucial factor for outdoor production[END_REF]. A recent modelling study trying to figure out the orders of magnitudes of phytoplankton large scale outdoor cultures productivity in France points toward a crucial role played by temperature, and particularly the negative impact of temperature daily fluctuations [START_REF] De Rosbo | Évaluation du gisement potentiel de ressources algales pour lénergie et la chimie en France à horizon[END_REF].

From acclimation to adaptation

The phytoplankton thermal growth curve is flexible, and phytoplankton can acclimate in a certain limit to temperature variations. However, when temperature variations overtake this limit, phytoplankton have to adapt through a process of evolution [START_REF] Hofmann | Living in the now: physiological mechanisms to tolerate a rapidly changing environment[END_REF]. Historically, Dallinger was the first to conduct a selection experiment to test for the adaptation limits of unicellular eukaryotes [START_REF] Dallinger | The president's address[END_REF] (fig. 1.7). Dallinger progressively increased the environmental temperature of three Monads (fig. 1.7 right), and watched for their presence with a microscope. He found that, years after years, Monads were well adapting to their new temperatures and were still alive. This experiment is subjected to caution, because of possible contamination. However, in 2011, more than one century after Dallinger's experiment, [START_REF] Huertas | Warming will affect phytoplankton differently: evidence through a mechanistic approach[END_REF] conducted a closely related one with phytoplankton (the so-called ratchet experiments). [START_REF] Huertas | Warming will affect phytoplankton differently: evidence through a mechanistic approach[END_REF] concluded that phytoplankton did adapt to temperature in silico, at least to smooth temperature increase, and that this adaptation is highly group dependent.

Since [START_REF] Huertas | Warming will affect phytoplankton differently: evidence through a mechanistic approach[END_REF], several studies have been conducted to define the ability of each species to adapt to temperature [Costas et al., 2014a,b, Padfield et al., 2015b]. It is however not known how the shape of the thermal growth curve evolves during adaptation, as well as the process by which cardinal temperatures change. Several hypotheses exist depending on the constraints playing a role during evolution [START_REF] Angilletta | Thermal adaptation[END_REF], Knies et al., 2009] (fig. 1.8). If the species are not thermodynamically constrained (i.e. if the effect of warming does not favour growth in an Arrhenius-like way), then the thermal growth curve would only horizontally transpose (horizontal shift hypothesis). In the other case, higher temperatures are expected to sustain higher growth rates (higher is better hypothesis). The thermal niche width is not obviously constant, and thus can decrease (specialist-generalist hypothesis) or increase (hotter is broader hypothesis) with temperature. Finally, evolution could only affect T opt and then lead to asymmetric changes only (asymmetric hypothesis).

Objectives of the thesis

In the present thesis, the objectives can be listed as follow: i)What are the effects of temperature on marine phytoplankton physiology? ii)What are the mechanistic processes that underlie the thermal growth curve? iii)How do phytoplankton adapt to temperature? To answer these questions, we first reviewed the existing models representing the thermal growth curve and the thermally driven physiological mechanisms (section 3). We then compiled thermal growth curves for hundreds of species to determine universal and specific links and try to interpret it in light of a mechanistic model (section 4,5,6). We finally constructed evolutionary models (section 7), later confronted to a selection experiment (section 8) and simulated at global ocean scale (section 9). 2
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Material and methods

Note: the first section of this material and methods chapter is extracted and adapted from [START_REF] Bonnefond | Amélioration de microalgues à vocation énergétique par pression de sélection continue[END_REF] with the kind authorization of Dr. Hubert Bonnefond.

2.1 Culture device and selection procedure

The selectiostats

A selection experiment based on temperature stress has been performed at the Observatoire de Villefranche-sur-Mer (see section 8). In this selection experiment, our culture system, a 1.9 L plane photobioreactor named 'selectiostat' (fig. 2.1), was specifically designed to impose an increasing selection pressure on long-term continuous cultures of microalgae. Cultures were continuously and gently homogenized by a magnetic stirrer and a slight air bubbling. Photobioreactors were continuously illuminated with white LED (Nichia NVSL219BT 2 700K) at 250 µmol photons.m -2 .s -1 , and light intensity was continuously measured with a plane probe (SKY, SKL2620) placed on the opposite side of the LED. The enrichment sterile medium was prepared in 20 L tanks (Nalgen) filled with 3 weeks matured natural seawater filtered on 0.1 µm, and autoclaved at 120 • C for 40 minutes. After cooling, f/2 medium was added [START_REF] Guillard | Culture of phytoplankton for feeding marine invertebrates[END_REF]. Selectiostats were automatically controlled: pH was regulated at 8.2 by computercontrolled micro-addition of CO 2 . The temperature was controlled by a double water jacket using a programmable cryostat. The inertia system was 30 minutes to change the temperature from 10 • C to 40 • C in the culturing system. Light, pH, temperature, turbidity, dilution rate were continuously recorded by ODIN R software developed by INRIA.

Cell concentration, size distribution and biovolume were monitored once or twice a day by optical particle counter (HIAC -Royco, Pacific Scientific Instruments). The first sampling was performed at the beginning of the low temperature period, the second at the beginning of the high temperature period. 2.1 Culture device and selection procedure measurements was routinely lower than 5 %. The mean cell diameter of the population and the biovolume were calculated from size distribution.

Cultivation mode for selection experiments

In the turbidostat culture, turbidity was continuously measured at 800 nm and kept constant (at a turbididty roughly corresponding to 9.10 5 cells.mL -1 ) by dynamically adjusting the dilution rate with ODIN R software. The set point of biomass was sufficiently high to optimize selection (because of the sufficient number of generations related by a sufficient growth rate) and to allow accurate biochemical analyses on small volume samples, and sufficiently low to prevent nutrient limitation and light shading. The fedbatch culture was diluted with fresh sterile medium every 7 days. Only 5 to 10% of the initial volume was kept, in order to restart cultures with an initial cell density of 5.10 5 cells.mL -1 . Since selection experiments lasted more than 150 days in stressing conditions, a procedure to prevent biofilm formation was required. The selectiostats were restarted monthly: they were cleaned and re-filled with the preserved culture complemented with a sterile medium.

For the feed-batch mode, the growth rate was calculated on the linear part of the logarithm of cell biovolume using the following equation:

µ SF bexp = ln(BV 1 /BV 2 ) t 2 -t 1 (2.1)
where BV 1 and BV 2 are the biovolume (µm 3 .mL -1 ) at time t 1 and t 2 (with t 2 -t 1 = 4 or 5 days). For the turbidostat mode, equilibrium was reached after 1 day. Afterwards, the growth rate was directly equal to the average dilution rate (D) recorded by ODIN on the resting days of the cycle (6 days).

The selection by temperature was processed by modifying the so-called ratchet protocol proposed by [START_REF] Reboud | Chlamydomonas reinhardtii as a model system for pro-active herbicide resistance evolution research[END_REF] and later modified by [START_REF] Huertas | Warming will affect phytoplankton differently: evidence through a mechanistic approach[END_REF]. Square wave temperature variations were daily applied. The temperature pattern was identical along a cycle which lasted 7 days. The daily pattern of a cycle consisted in the application of a low temperature (T low ) during 8 hours and a high temperature (T high ) during 16 hours, with a daily constant average temperature (28 • C). If a stabilized growth rate was observed at the end of each cycle, then the next selection cycle was started. It consisted in reducing T low by 2 • C and increasing T high by 1 • C so as to keep a constant average temperature. The same selection cycle could also be repeated if no positive average growth was observed. For the two last cycles, in highly stressing conditions inducing high mortality, T high was increased by only 0.5 • C and T low was decreased by only 1 • C.

The TIP device

The TIP (Temperature, Irradiance, pH) setup developed by [START_REF] Marchetti | Optimizing conditions for the continuous culture of isochrysis affinis galbana relevant to commercial hatcheries[END_REF] was used to measure the temperature response in acclimated conditions before and after
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the selection process (fig. 2.2). This device can assess the effect of pH and irradiance, but here we focused on the temperature response. The exponential growth rates at 8 temperatures ranging from 12 • C to 35.5 • C, at constant irradiance (250 µmol.m -2 .s -1 ) and pH (7.9) were measured after a lag time of 1 day on the linear part of the logarithm of the optical density measured at 680 nm (DO680). 2.2 Data compilation, parameters identification and models calibration

Thermal growth curves compilation

We compiled 464 specific growth rate versus temperature data sets (i.e. the thermal growth curve) from the literature (including the previously compiled data of [START_REF] Corkrey | Protein thermodynamics can be predicted directly from biological growth rates[END_REF] [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF]) for unicellular organism (UO) strains belonging to the 3 domains of life (5728 data points). We later incorporated part of the compiled data of [START_REF] Thomas | Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits[END_REF] for phytoplankton. We only selected data sets obtained in temperature-acclimated batch cultures and in non-limited 1 conditions. For autotrophic organisms, experiments not carried in autotrophic mode were eliminated. The specific 2.2 Data compilation, parameters identification and models calibration growth rate in the exponential phase is defined as:

µ(T ) = 1 X dX dt = ln(2) G(T ) (2.2)
where T is the (constant) temperature, X is the biomass concentration (assumed to be expressed here in cells.L -1 ), G(T ) is the generation time (i.e the time it takes to double the population size). The organisms are assumed to be in balanced growth conditions as defined by [START_REF] Campbell | Synchronization of cell division[END_REF] (i.e. every extensive property of the growing system increases by the same factor). Because data were compiled and therefore come from different authors and experimental protocols, the acclimation time at a given temperature is not the same for all the datasets. The method used to calculate the growth rate also differs between authors. Most of the growth rates were obtained from cell counts, but optical density monitoring using a spectrophotometer was also employed. For photosynthetic organisms, chl a fluorescence is sometimes used as a proxy of biomass. We assumed that these three different proxies of biomass used to calculate the growth rate give the same cardinal parameters estimation and only affects the maximum growth rate.

Species biovolume

We calculated the average cell biovolume for each species/strain mentioned above. To do so, we either directly found the information in the literature or we found informations on cell shape and on the average cell length and width. In the second case, cell biovolume was computed according to their shape, i.e. we used the formula of the sphere volume or the ellipsoid volume. For more complicated shapes, we referred to the cell biovolume formula summarized in [START_REF] Olenina | Biovolumes and size-classes of phytoplankton in the baltic sea[END_REF].

CTMI parameters determination

We estimated the cardinal parameters T min , T opt , T max and the maximum growth rate µ opt for each data set using the CTMI model (see eq. 3.11).

   µ(T ) = 0 if T < T min µ(T ) = µ opt φ(T ) if T min ≤ T ≤ T max µ(T ) = 0 if T > T max (2.3) with φ(T ) = λ(T ) (T -T max )(T -T min ) 2 (T opt -T min ) (T opt -T min )(T -T opt ) -(T opt -T max )(T opt + T min -2T ) β(T ) (2.4)
under the condition:

T opt > T min + T max 2 (2.5)
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We used a dedicated algorithm developed by [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF] and based on the Quasi-Newton with Broyden-Fletcher-Goldfarb-Shanno method to find the cardinal parameters. For each parameter, the confidence interval was also computed using a Jackknife method developed by [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF]. The estimation of T min is tricky mainly because the growth is very slow in the lower part of the thermal growth curve and can lead to experimental errors (i.e. growth rates artificially equal to zero). Moreover, authors tend to avoid experiments at low temperature and model calibration on this kind of incomplete data sets artificially gives very low T min with high degrees of uncertainty. Conversely, data are generally lacking in the decreasing upper part of the thermal growth curve and can twist T max estimation.

Data sets selection

After calibration, we eliminated data sets with less than 5 data points, and with less than two data points in the upper part of the thermal growth curve (i.e. data points for which T ≥ T opt ). We also did not consider data sets for which the model calibration does not give coherent results, i.e. if T max -T min > 60 • C (the largest known thermal niche width) and if µ opt > 4 h -1 (the highest growth rate known).

Hinshelwood model calibration

We calibrated the Hinshelwood model (eq. 3.22) on each selected data set µ exp (T ) using a dedicated method. Indeed, calibration of this model is made difficult without a precise determination of the initial parameter vector because, for example, A 1 can varies of several order of magnitude. Previous studies used an empirical trial and error method to do so [START_REF] Valik | Evaluation of temperature effect on growth rate of lactobacillus rhamnosus gg in milk using secondary models[END_REF][START_REF] Zwietering | Modeling of bacterial growth as a function of temperature[END_REF]. Firstly, we made a first estimate of A 1 and E 1 (written Â1 and Ê1 ) by calibrating the function f 1 (T ) (see eq. 3.22) on the lower part of the thermal growth curve (i.e. the data points for which T < T opt ) using an Arrhenius plot (see section 3.2.3). Because the resulting function is a first estimate, we called it f1 (T ). Then, we deduced the semi-experimental death curve f d (T ) by subtracting f1 (T ) to the experimental data points belonging to the upper part of the thermal growth curve (T ≥ T opt ):

f d (T ) = f1 (T ) -µ exp (T > ) (2.6)
where T > is the vector of data temperatures higher than or equal to T opt . We then obtained the first estimates of parameters A 2 and E 2 (i.e. Â2 and Ê2 ) by calibrating function f 2 (T ) (see eq.3.22) on f d (T ). Again, the estimated function is f2 (T ), and we obtained Â2 and Ê2 using an Arrhenius plot. Secondly, we calibrated the Hinshelwood model on the whole data set using the Matlab R function fminsearch with Â1 , Ê1 , Â2 and Ê2 as initial parameters. The ordinary least-squares criterion was used to fit the model, and the parameter set minimising the sum of the squared residuals was chosen:

SSR(θ) = n i=1 (µ exp (T i ) -µ(T i , θ)) 2 (2.7)
2.2 Data compilation, parameters identification and models calibration where θ is the parameter vector.

Data analysis

2.2.6.1 Linear relationships between the cardinal temperatures

We described the linear relationships between the cardinal temperatures obtained with the CTMI model using a simple statistical descriptor, the correlation coefficient ρ between each cardinal temperatures. We tested for the hypothesis of no correlation using the student t-test defined as:

t = ρ (1 -ρ) 2 /(n -2) (2.8)
where n is the data set size. The resulting p-value corresponds to the probability of getting a correlation as large as observed by random chance (see table 4.1).

We applied a linear regression between the cardinal temperatures and tested for its goodness using the coefficient of determination R 2 defined as the square of the correlation coefficient between the variable to explain and the linear regression, and the adjusted R 2 (called ω 2 ) expressed as:

ω 2 = R 2 -(1 -R 2 ) p n -p -1 (2.9)
where p is the number of explanatory variables. We then calculated the 95% confidence interval using the Matlab R function polyconf (see fig. 4.1). We compared the linear regression between groups obtained by subdividing data sets, and we used the Chow-test combined to a Fisher F-test. This test allows to determine if the coefficient of different linear regressions obtained for two different groups are the same. The Chow-test F statistic is:

F = (S tot -(S 1 + S 2 ))/k (S 1 + S 2 )/(n 1 + n 2 -2k) (2.10)
where S tot is the total sum of squared residuals, S 1 and S 2 are the sum of squared residuals for the two groups, n 1 and n 2 are the groups size, k is the number of parameters.

F follows the Fisher distribution with k and n 1 + n 2 -2k degrees of freedom.

Non-linear relationships between T opt and µ opt

In chapter 5, and on the contrary to [START_REF] Bissinger | Predicting marine phytoplankton maximum growth rates from temperature: Improving on the eppley curve using quantile regression[END_REF], we used non-linear quantile regression to describe the non-linear relationship between T opt and µ opt for the whole data set and for each sub-group (defined in chapter 5). Non-linear quantile regression is based on the least absolute deviations regression (LAD) which uses the median rather than the mean, and is therefore less sensitive to extreme outlying values than ordinary least squares (OLS) regression. The quantile q of interest (here q is the 99 th quantile) is estimated using an optimization function that minimizes the sum of weighted absolute
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deviations [START_REF] Koenker | Algorithm as 229: Computing regression quantiles[END_REF] (see also the review of [START_REF] Cade | A gentle introduction to quantile regression for ecologists[END_REF] for biological applications of quantile regression). A linear quantile regression would give, for example:

Q(β q ) = N i:y i ≥x ′ i β q|y i -x ′ i β q | + N i:y i <x ′ i β (1 -q)|y i -x ′ i β q | (2.11)
where Q(β q ) is the quantile regression estimator to be minimized, x and y are two data vectors (e.g. T opt and µ opt ), N is the size of these vectors, β and β q are parameters to estimate. The solution to the minimization problem is achieved using an algorithm such as the Nelder-Mead method [START_REF] Nelder | A simplex method for function minimization[END_REF]. In our non-linear case, the functions used were polynomial functions (3rd and 4th order degree) as well as the Bernard&Rémond equation. We described the quality of the fit using pseudo-R 2 , defined as [START_REF] Koenker | Goodness of fit and related inference processes for quantile regression[END_REF]:

pseudo-R 2 (q) = 1 - y i ≥ŷ i q|y i -ŷi | + y i <ŷ i (1 -q)|y i -ŷi | y i ≥ȳ q|y i -ȳ| + y i <ȳ (1 -q)|y i -ȳ| (2.12)
where ŷi is the predicted value and ȳ is the mean of y.

Statistical tools for models comparison

In chapter 6, we used several criterion to compare different models with different number of parameters. First, we used the Akaike Information Critetion (AIC) defined as [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF]:

AIC = -2ln(M SE) + 2k (2.13)
where k is the number of parameters, M SE is the mean squared error. We also used the corrected AIC called AICc taking sample size into account:

AIC c = AIC 2k(k + 1) n -k -1 (2.14)
where n is the sample size. Finally, we used the Bayesian Information Criterion (BIC), where the number of parameters has more influence:

BIC = -2ln(M SE) + kln(n) (2.15)
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Introduction

The growth of unicellular organisms (UO), from bacteria to heterotrophic unicellular eukaryotes and phytoplankton, is highly impacted by temperature, as pointed out by a recent study at global ocean scale [START_REF] Sunagawa | Structure and function of the global ocean microbiome[END_REF]. For photosynthetic organisms, temperature is the second most influencing factor after light. It is therefore crucial to understand how temperature affects UO as well as correctly model these effects.

MODELLING THE TEMPERATURE EFFECT ON UNICELLULAR ORGANISMS FROM HETEROTROPHIC BACTERIA TO AUTOTROPHIC EUKARYOTES: A REVIEW

Because of their wide repartition and use, UO have been studied in different scientific domains, ranging from ecological modellers to microbiologists specialized in the food security preservative. A variety of intrinsically different models have been developed for different uses.

The aim of this study is to summarize the existing deterministic temperature growth models in the light of the underlying biological processes (see table 3.1 for a summary). Firstly, models in non-limiting and balanced growth conditions are described. The key processes are presented through a mechanistic approach. Secondly, the specific case of unicellular photosynthetic organisms is addressed. Finally, we present the existing dynamical models, such as the thermal death models. [START_REF] Ratkowksy | Model for bacterial culture growth rate throughout the entire biokinetic temperature range[END_REF] Tmin and Tmax are explicit Topt is found by numerical optimization CTMI E 4 47, bacteria & yeast [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF] 

Explicit

Blanchard model E 4 2, benthic phytoplankton [START_REF] Blanchard | Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos[END_REF] Topt and Tmax are explicit Tmin is not defined

Mechanistic models

Master reaction model M 4 1, normalized, bacteria [START_REF] Johnson | The growth rate of e. coli in relation to temperature, quinine and coenzyme[END_REF]] [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF] Explicit In this section, we detail the existing models representing the effect of temperature on the specific growth rate of a UO in non-limiting conditions.

Topt = ∆H ‡ /R
Topt = bz -1 + (w/2) 2 b 2 + 1 b abs(Tmax -Tmin) = w Bernard&Rémond model E 4 15, phytoplankton

Methodological clarification

The specific growth rate is defined, in batch acclimated cultures, as the growth rate during the exponential phase:

µ(T ) = 1 X dX dt = ln(2) G(T ) (3.1)
where T is a fixed temperature, X is the biomass concentration (assumed to be expressed here in cells.L -1 ), G(T ) is the generation time (i.e the time it takes to double the population size). The organisms are assumed to be in balanced growth conditions as defined by [START_REF] Campbell | Synchronization of cell division[END_REF] (i.e. every extensive property of the growing system increases by the same factor). µ(T ) is commonly called the thermal growth curve.

It is important to note that the thermal growth curve is dependent on the way biomass is measured. Firstly, some authors use optical density to quantify the cell concentration, or, for the photosynthetic organisms, the chlorophyll a concentration. These methods are not accurate since pigment content is temperature depend, and an acclimation phase should be needed for pigment acclimation to the new temperature. Moreover, for heterotrophic UO, the results obtained highly depend on the physiological state of the organisms [START_REF] Monod | The growth of bacterial cultures[END_REF]. Secondly, other biomass descriptors are commonly used, such as the particulate organic carbon (POC) concentration. The dynamics of this descriptor is likely to be differently affected by temperature (see section 3.4). Even thought the use of the descriptor depends on the processes studied, it should be homogeneous and an ideal biomass estimate should be proportional to the carbon mass with a constant independent of temperature. Thirdly, the experimental acclimation time at a given temperature is of major importance for the consistency of the thermal growth curve; the acclimation time can vary from one day to several weeks. For example, some protocols consist in gradually increasing the temperature and measuring the growth rate. Such approach has the advantage of providing a rapid evaluation of the temperature response. However, the cell acclimation state is unclear and probably provides a less exploitable response curve. For all these reasons, [START_REF] Boyd | Marine phytoplankton temperature versus growth responses from polar to tropical waters outcome of a scientific communitywide study[END_REF] have, for example, developed a standard protocol to construct the thermal growth curve for phytoplankton: the population must be acclimated to the experimental temperature for at least 4 generations, the population must be kept at an exponential growth phase using semi-continuous cultures, multiple biomass descriptors must be used and compared to obtain growth rates (cell counts, chlorophylle a fluorescence, etc.), a minimum of 6 experimental growth rates at 6 different temperatures must be obtained, the cultures must be carried on with three replicates, all the other parameters must be kept constant and if possible at optimal 3.2 Modelling the specific growth rate of unicellular organisms as a function of temperature levels, the experiments with temperatures at which the cells do not grow or grow very slowly must be repeated several times, and finally several strains of the same species should be compared.

3.2.2

The Arrhenius model from Van't-Hoff to Eyring:

Since the xix e century, chemists are aware of the prodigious effect of temperature change on chemical reaction rates. As early as 1850, Ludwig Ferdinand Wilhelmy published an article dealing with 'The law by which the action of acids on cane sugar occurs' and its temperature dependence [START_REF] Wilhelmy | Über das gesetz, nach welchem die einwirkung der säuren auf den rohrzucker stattfindet[END_REF]. At that time, Maxwell's law of distribution of molecular velocities already established that the proportion of molecules having energies greater than the average at ordinary temperatures were very small, but increased with temperature. In 1867, Leopold Pfaundler von Hadermur applied Maxwell's law to chemical equilibrium [START_REF] Pfaundler | Beiträge zur chemischen statik[END_REF] 

B k 1 ⇋ k 2 C (3.2)
with k 1 and k 2 the forward and reverse reaction rate, respectively. Then, van't Hoff assumed that the equilibrium constant defined as K = k 1 /k 2 satisfied the following relation for a fixed pressure:

dln(K) dT = ∆H 0 RT 2 (3.3)
where ∆H 0 is the standard enthalpy change (corresponding approximately to the internal energy change), R is the ideal gas constant. To understand the funding principles of this equation, we have to introduce some thermodynamical concepts. Firstly, the definition of change in Gibbs free energy ∆G 0 is:

∆G 0 = ∆H 0 -T ∆S 0 (3.4)
where ∆S 0 is the system entropy change. Secondly, the link between Gibbs free energy and the equilibrium constant K is:

∆G 0 = -RT ln(K) (3.5)
It is possible to find eq.3.3 by combining eq.3.4 and eq.3.5. eq.3.4 results directly from the second law of thermodynamics stipulating that every chemical transformation generates entropy. Eq.3.5 is trickier to detail. However, the natural logarithm 'appears' in this equation and is responsible for the exponential temperature dependence of chemical 3. MODELLING THE TEMPERATURE EFFECT ON UNICELLULAR ORGANISMS FROM HETEROTROPHIC BACTERIA TO AUTOTROPHIC EUKARYOTES: A REVIEW reactions described next. Briefly, eq.3.5 comes from the mass action law. Despite van't Hoff approach, the fact remained that eq. 3.3 only related temperature to equilibrium constant and not to reaction rates. In 1889, the Swedish chemist Svante Arrhenius, a former van't Hoff's student, published a study about the temperature effect on cane sugar inversion based on Wilhelmy work [START_REF] Arrhenius | On the reaction velocity of the inversion of cane sugar by acids[END_REF]. Using eq.3.3, Arrhenius proposed a semi-empirical model which was later applied to bacteria by replacing the rate constant by the species growth rate [START_REF] Arrhenius | On the reaction velocity of the inversion of cane sugar by acids[END_REF][START_REF] Ratkowsky | Relationship between temperature and growth rate of bacterial cultures[END_REF]:

µ(T ) = Ae -E/(RT ) (3.6)
where R is the gas constant, A is called the 'collision factor' or the pre-exponential part and E is said to be the activation energy, determined empirically. The Arrhenius model parameters are easy to estimate using an Arrhenius plot, by expressing ln(µ(T )) as a function of 1/T , which gives a linear relationship; parameters can thus be obtained with a linear regression. The Arrhenius model allows good representations of growth rates at low temperatures, but some Arrhenius plot does not give straight lines, indicating for example that E can vary with T . Moreover, the Arrhenius model cannot represent the decreasing part of the thermal growth curve, e.g. when temperature might cause cell death. Arrhenius equation can be reformulated as:

µ(T ) = k 1 e T A /T 1 -T A /T (3.7)
where T 1 is a reference temperature, T A is the Arrhenius temperature (i.e. slope of the straight line of the Arrhenius plot) and k 1 is the reaction rate at T 1 .

Arrhenius model is said semi-empirical because the parameter meanings were not clear. However, this model worked perfectly in many cases (for a detailed story of the Arrhenius equation, see [START_REF] Laidler | The development of the arrhenius equation[END_REF]). In 1935, Henry Eyring and two colleagues used a new theory to develop the 'Erying equation', bringing a mechanistic justification to the Arrhenius equation. This theory, called the Transition State Theory, stipulates that there exists an intermediate form between the reactants and the products (the native and denatured protein and enzyme, for example) which is in rapid equilibrium with the reactants:

P f k 1 ⇋ k 2 T S k d → P u (3.8)
where, in this example, P f and P u are the fraction of native and denatured proteins, respectively. The Eyring equation reads:

k(T ) = K B T h e ∆S ‡ /(R) e -∆H ‡ /(RT ) (3.9)
where K B is the Boltzmann constant, h is the Planck's constant. The parameters ∆S ‡ and ∆H ‡ correspond to the entropy and enthalpy of activation. The Eyring equation is also used in bacteria growth models nowadays.

3.2 Modelling the specific growth rate of unicellular organisms as a function of temperature

Empirical approach

Historically, empirical models of unicellular organisms specific growth rate as a function of temperature have been developed, mostly for food-processing industry and medical applications. Various empirical models have been proposed since the 1960's, but only three are still commonly used.

The Square-Root model: The Square-Root model was initially proposed by David Ratkowsky as an alternative to the Arrhenius model [START_REF] Ratkowsky | Relationship between temperature and growth rate of bacterial cultures[END_REF] and then extended to the whole biokinetic range [START_REF] Ratkowksy | Model for bacterial culture growth rate throughout the entire biokinetic temperature range[END_REF]:

µ(T ) = b T -T min )(1 -e c(T -T max) 2 (3.10)
where T min and T max are the minimal and maximal temperatures for growth, b is the regression coefficient of the squared root growth rate plotted against temperature below the optimal temperature, and c is an additional parameter to represent growth rate decrease above the optimal temperature.

The CTMI model: The CTMI (Cardinal Temperature Model with Inflexion) was developed by [START_REF] Lobry | A fortran subroutine for the determination of parameter confidence limits in non-linear models[END_REF] and later popularized by [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF]:

   µ(T ) = 0 if T < T min µ(T ) = µ opt φ(T ) if T min ≤ T ≤ T max µ(T ) = 0 if T > T max (3.11) with φ(T ) = λ(T ) (T -T max )(T -T min ) 2 (T opt -T min ) (T opt -T min )(T -T opt ) -(T opt -T max )(T opt + T min -2T ) β(T ) (3.12)
under the condition:

T opt > T min + T max 2 (3.13)
T min , T opt , T max are the minimal, optimal and maximal temperatures for growth and µ opt is the growth rate at T opt . The model parameters have a direct biological interpretation.

The model was built for its easy calibration on experimental data.

The Blanchard model: The Blanchard model was developed by [START_REF] Blanchard | Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos[END_REF] to model the photosynthetic response of benthic phytoplankton to temperature. This model can be used to represent the thermal growth curve:

µ(T ) = µ max T max -T T max -T opt β e -β(Topt-T )/(Tmax-Topt) (3.14)
3. MODELLING THE TEMPERATURE EFFECT ON UNICELLULAR ORGANISMS FROM HETEROTROPHIC BACTERIA TO AUTOTROPHIC EUKARYOTES: A REVIEW with T ≤ T max and T opt < T max . Parameters T opt and T max correspond to the cardinal temperatures, µ max is the growth rate at T = T opt and β is a dimensionless parameter.

Model comparison: A comparison between the Square-Root model and the CTMI was made by [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF] and more recently by [START_REF] Valik | Evaluation of temperature effect on growth rate of lactobacillus rhamnosus gg in milk using secondary models[END_REF]. According to these studies, the two models fit equally well the data. Both models were validated by [START_REF] Valik | Evaluation of temperature effect on growth rate of lactobacillus rhamnosus gg in milk using secondary models[END_REF] using an F-test. However, the b and c parameters of the Square-root model are correlated, whereas the CTMI parameters are not, which allows easier parameter identification. CTMI proves useful for cardinal temperatures identification.

Mechanistic approach

The former model types allow to identify the main characteristics of the thermal growth curve. However, the mechanistic approach aims to represent the thermal growth curve as a result of inherent physiological processes. These models are mostly based on the Arrhenius formulation (see 3.2.3).

The master reaction model: In 1946, [START_REF] Johnson | The growth rate of e. coli in relation to temperature, quinine and coenzyme[END_REF] noticed that cultures of Escherichia coli exposed to 45 • C during a long time ceased to grow, but grew exponentially again when replaced at 37 • C. The longer the cultures were exposed to the high temperature, the lower was the growth rate at 37 • C. However, there was no sign of viability loss. They concluded that cells endured reversible damage, particularly protein denaturation. They considered a simple case where a single reaction controlled by one master enzyme E n limits growth (with no substrate limitation):

µ(T ) = cT E n e -∆H ‡ A /(RT ) e ∆S ‡ A /R (3.15)
where c is a constant given by the Eyring formulation (see 3.8), ∆H ‡ A is the enthalpy of activation (enthalpy difference between the transition complex and the active form) and ∆S ‡

A is the entropy of activation. The enzyme goes from a native, active form E n to a reversibly denatured, inactive form E d :

E n k 1 ⇋ k 2 E d (3.16)
The chemical equilibrium is defined as:

K = k 1 /k 2 = E n /E d = e -∆H/(RT )-∆S/R (3.17)
where ∆H is the enthalpy difference between the active form and the inactive form, ∆S is the entropy difference. If E 0 is the total amount of enzyme, E 0 = E n + E d . It follows that:

E n = E 0 1 + K = E 0 1 + e -∆H/(RT )-∆S/R (3.18)
Then, by posing C = ce ∆S ‡ A /R E 0 and replacing E n by Eq. 3.18 in Eq.3.15,Johnson and 3.2 Modelling the specific growth rate of unicellular organisms as a function of temperature Lewin obtained the master reaction model (see fig. 3.2): (3.19) where P (T ) is the probability that the enzyme is in its native state and ∆G(T ) is the Gibbs free energy change: ∆G(T ) = ∆H -T ∆S (3.20) An other version of eq.3.19 exists, where the exponential part does not follow an Eyring formulation but rather an Arrhenius one, which is relevant in the case of reactions with high activation energy like protein denaturation [START_REF] Bischof | Thermal stability of proteins[END_REF]:

µ(T ) = CT e -∆H ‡ /(RT ) • 1 1 + e -∆G(T )/(RT ) P (T )
µ(T ) = Ce -∆H ‡ /(RT ) • 1 1 + e -∆G(T )/(RT ) (3.21)
It is worth noting that this simplified equation here does not have any influence on the model fit and behaviour, and simplifies the calculation of the cardinal temperature T opt (see table 3.1). The Hinshelwood model: In 1945, Sir Norman Hinshelwood proposed a rather simple model in which the temperature-dependent growth rate is just the difference between a synthesis rate f 1 (T ) and a degenerative rate f 2 (T ) [START_REF] Hinshelwood | The chemical kinetics of bacterial cells[END_REF] (see fig. 3.3):

µ(T ) = f 1 (T ) A 1 e -E 1 /(RT ) -A 2 e -E 2 /(RT ) f 2 (T ) (3.22)
3. MODELLING THE TEMPERATURE EFFECT ON UNICELLULAR ORGANISMS FROM HETEROTROPHIC BACTERIA TO AUTOTROPHIC EUKARYOTES: A REVIEW where A 1 and A 2 are related to entropy and E 1 and E 2 are related to enthalpy. Hinshelwood believed that the function f 2 (T ), which causes the 'catastrophic decline to zero', represents protein denaturation. He argued that the model only works if E 2 is higher than E 1 , because the degenerative process represented by f 2 (T ) must be sudden. Since protein denaturation possesses a high activation energy, it is a good candidate for driving the process. Moreover, A 2 (corresponding to entropy) also has to be quite high. Thus, the 'activated state must be highly disordered compared with the initial state' which 'results in an easy transition to the activated state in spite of the large amount of energy which has to be taken up to reach it'. Precisely, protein denaturation leads from a highly ordered state to an higly disordered state and is therefore associated with a large entropy increase. From the Hinshelwood model, after some mathematical manipulations, it is possible to express T opt , T max , µ opt (see section 10.3):

T opt = E 1 -E 2 Rln A 1 E 1 A 2 E 2 (3.23) T max = E 1 -E 2 Rln A 1 A 2 (3.24) µ opt = θA 2 A 1 (1 + θ)A 2 (1+θ)/θ = E 2 -E 1 E 1 A 2 e -E2/(RTopt) (3.25) with θ = (E 2 -E 1 )/E 1 .
Given that µ(T ) does not cancel for low temperature, T min is defined in this case by µ(T min ) = ǫµ opt and arbitrarily fixing ǫ = 0.05 (see proof in 3.2 Modelling the specific growth rate of unicellular organisms as a function of temperature section 10.3): 3.26) where:

T min ≃ -T opt E 1 /γ T opt -E 2 /γ ( 
γ = Rln E 2 -E 1 E 1 A 2 A 1 ǫ (3.27)
The DEB theory approach: In the Dynamics Budget Theory, the effect of temperature on population growth is taken into account using a modified Master Reaction model [START_REF] Kooijman | Dynamic energy budget theory for metabolic organisation[END_REF], where all the temperature-dependent functions are Arrhenius modified equations (eq. 3.7):

µ(T ) = k 1 e T A /T 1 -T A /T 1 + e T AL /T -T AL /T L + e T AH /T H -T AH /T f D (3.28)
where T L and T H are related to cold and hot denaturation (lower and upper boundaries), T AL and T AH are the Arrhenius temperatures at low and high temperature respectively (see eq.3.7). The ratio f -1 D corresponds to the fraction of enzyme in its native state, modelling also cold denaturation contrary to the Master Reaction model.

The protein thermal stability challenge

Protein thermal stability plays a key role in the UO thermal growth curve [START_REF] Johnson | The growth rate of e. coli in relation to temperature, quinine and coenzyme[END_REF][START_REF] Pena | Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection[END_REF][START_REF] Rosenberg | Quantitative evidence for protein denaturation as the cause of thermal death[END_REF][START_REF] Zeldovich | Protein stability imposes limits on organism complexity and speed of molecular evolution[END_REF] (see section 5.1 and 6). In line with the master reaction model, some publications went further in the comprehension of protein thermal stability and its consequences on UO growth.

The modified master reaction model: The master reaction model assumes that ∆G, the Gibbs free energy difference between the native and denatured protein, is temperature independent. Based on [START_REF] Murphy | Common features of protein unfolding and dissolution of hydrophobic compounds[END_REF] work, [START_REF] Ross | A philosophy for the development of kinetic models in predictive microbiology[END_REF] and then [START_REF] Ratkowsky | Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins[END_REF] remarked that ∆G should vary with T in eq.3.19 following eq. 3.20. Moreover, [START_REF] Murphy | Common features of protein unfolding and dissolution of hydrophobic compounds[END_REF] showed that globular proteins (including enzymes) share common thermodynamic properties. For any protein, the denaturation enthalpy change ∆H and the denaturation entropy change ∆S, normalized to the number of amino-acids residues of this protein, both converge to a fixed value ∆H * and ∆S * at T * H and T * S respectively [START_REF] Privalov | Stability of proteins small globular proteins[END_REF]. The reason for such a temperature convergence is still unclear. Nonetheless, it has been shown that at T * H and T * S , the hydrophobic contribution to ∆H and ∆S approaches zero [START_REF] Robertson | Protein structure and the energetics of protein stability[END_REF]. At that stage, we have to introduce a novel thermodynamics parameter, the heat capacity C p . According to [START_REF] Murphy | Common features of protein unfolding and dissolution of hydrophobic compounds[END_REF], ∆H and ∆S can be expressed as a function of the heat capacity change: 3.2 Modelling the specific growth rate of unicellular organisms as a function of temperature where ∆H * is the enthalpy change per mol of amino-acid residue of the enzyme at T * H , ∆S * is the entropy change per mol of amino-acid residue of the enzyme at T * S , ∆C p is the heat capacity difference between the native and denatured protein, T * H is the temperature at which the contribution of ∆C p to enthalpy is zero and T * S is the temperature at which the contribution of ∆C p to entropy is zero. The heat capacity change ∆C p is constant for a given protein [START_REF] Privalov | A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study[END_REF]. Using Eq.3.29 and 3.30, the Gibbs free energy of protein denaturation (i.e. the protein thermal stability) is (Fig. 3.4A and B):

∆H = ∆H * + ∆C p (T -T * H ) ( 3 
∆G(T ) = n ∆H * -T ∆S * + ∆G hydro ∆C p [(T -T * H ) -T ln(T /T * S )] (3.31)
where n is the number of amino-acid residues in the master enzyme and ∆G hydro is the hydrophobic contribution to the free energy change. Eq.3.31 describes protein thermal stability in terms of hydrophobic contribution of apolar compounds. [START_REF] Ross | A philosophy for the development of kinetic models in predictive microbiology[END_REF] and [START_REF] Ratkowsky | Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins[END_REF] proposed to replace ∆G by Eq.3.31 in Eq.3.19 (forming the modified master reaction model). Because T * H , T * S and ∆S * are considered as universal constant for globular proteins [START_REF] Murphy | Solid model compounds and the thermodynamics of protein unfolding[END_REF], the modified master reaction model has 5 parameters (Fig. 3.4C). As a validation, [START_REF] Ratkowsky | Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins[END_REF] fitted the model on 35 bacterial strains normalized data sets obtained in non-limiting conditions. Their main conclusion points towards the crucial role played by a single master enzyme whose thermal sensitivity is driven by hydrophobic interactions.

Recently, [START_REF] Corkrey | Protein thermodynamics can be predicted directly from biological growth rates[END_REF] extended the modified master reaction model to unicellular and multicellular eukaryotes. They considered ∆H * as a universal constant as well, reducing the model parameters to 4. They fitted the model on 230 strains normalized data sets covering a range of 124 • C. Their principal conclusion states that the model is able to find coherent protein thermodynamics parameters with only growth data (i.e. growth rate versus temperature). Hyperthermophiles proteins seem to be more widely robust. Moreover, they found several link between thermodynamic parameters, for example between T opt and ∆C p (enzyme stability), and between T opt and ∆H ‡ (enzyme activity). However, they did not provide further explanations. They finally speculate on the nature of the single limiting reaction. They assume that if a single reaction (and not several) is rate limiting, then it should be linked to the protein unfolding and re-folding process. They particularly focus on the role of chaperones proteins responsible for de novo folding.

The proteome approach: In 2007, [START_REF] Zeldovich | Protein stability imposes limits on organism complexity and speed of molecular evolution[END_REF] proposed that the whole proteome plays a role in UO thermal sensitivity. Resuming this idea, [START_REF] Chen | Thermal adaptation of viruses and bacteria[END_REF] considered that each important protein i has its own Gibbs free energy of denaturation ∆G i . The growth rate of an UO becomes dependent of the stability of each protein, and the thermal denaturation of several proteins causes a bottleneck effect on growth: 3.2 Modelling the specific growth rate of unicellular organisms as a function of temperature where N p is the number of proteins. According to [START_REF] Zeldovich | Protein stability imposes limits on organism complexity and speed of molecular evolution[END_REF], the proteome can be described in protein stability distribution thanks to a dedicated probability function of the Gibbs free energy, P (∆G) (see fig. 3.5). By taking the natural logarithm of eq.3.32 and by integrating the resulting equation over the whole P (∆G) distribution range, [START_REF] Chen | Thermal adaptation of viruses and bacteria[END_REF] expressed the growth rate as:

µ(T ) = CT e -∆H ‡ /(RT ) • 1 Np i 1 + e -∆G i (T )/(RT )
ln(µ(T )) = ln(CT ) -∆H ‡ /(RT ) - Np i=1 ln 1 + e -∆G i /(RT ) (3.33)
that is, by averaging over the proteome:

ln(µ(T )) ≃ ln(CT ) -∆H ‡ /(RT ) -N p L 0 ln 1 + e -∆G/(RT ) P (∆G) d∆G (3.34)
where L is the maximum value of ∆G (for example L = 40 in fig. 3.5). N p can be reduced to the number of the only important proteins. According to Sawle and Ghosh [2011] and [START_REF] Ghosh | Cellular proteomes have broad distributions of protein stability[END_REF], ∆G can be expressed as a function of ∆H, ∆S and ∆C p (using eq. 3.29 and eq. 3.30), itself depending on the protein chain length denoted N :

∆G = ∆H(N ) + ∆C p (N )(T -T h ) -T ∆S(N ) -T ∆C p (N )ln (T /T s ) (3.35) with ∆H(N ) = aN + b ∆S(N ) = cN + d ∆C p (N ) = lN + m (3.36)
where a, b, c, d, l, m are empirical parameters constant defined for mesophilic and for thermophilic organisms. The distribution of chain length over the proteome P (N ) can be known [START_REF] Zhang | Protein-length distributions for the three domains of life[END_REF] and is used to estimate P (∆G). It can be modelled by a gamma distribution:

P (N ) = N α-1 e -N/θ Γ(α)θ α (3.37)
where θ and α are the parameters of the gamma distribution corresponding to:

< N >= αθ < (∆N ) 2 >= αθ 2 (3.38)
The brackets represent the mean over all the proteins. Γ(α) is the gamma function evaluated at α. The model (eq. 3.34), presented as universal, has thus only two parameters, N p and ∆H ‡ . It has been validated on 12 normalized data sets of prokaryotes.

The heat capacity hypothesis: Recently, [START_REF] Hobbs | Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates[END_REF] and [START_REF] Schipper | Thermodynamic theory explains the temperature optima of soil microbial processes and high q10 values at low temperatures[END_REF] proposed a model called the Macromolecular Rate Theory (MMRT) in which the thermal growth curve is driven by the heat capacity change of activation ∆C ‡ p (i.e.
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the heat capacity difference between the ground state and the transition state). More precisely, the growth rate is expressed as:

µ(T ) = k B h T e ∆G ‡ (T )/(RT ) (3.39)
where k B and h are the Boltzmann and Planck's constants, ∆G ‡ is the Gibbs free energy difference between the ground state and the transition state of a possible rate-limiting enzyme. Contrary to the master reaction model, the MMRT considers that enzymes do not denature easily and are in rapid equilibrium with a folded, inactive intermediate (i.e. the transition state). The Gibbs free energy difference can be here written as:

∆G ‡ (T ) = ∆H ‡ T 0 + ∆C ‡ p (T -T 0 ) + T (∆S ‡ T 0 + ∆C ‡ p ln(T /T 0 )) (3.40)
If ∆C ‡ p > 0, then the heat capacity difference between the ground state and the transition state (i.e. the inactive folded enzyme) itself is sufficient to explain the decrease of growth rate above T opt . [START_REF] Schipper | Thermodynamic theory explains the temperature optima of soil microbial processes and high q10 values at low temperatures[END_REF] validated the MMRT model on microbial soil processes data sets.

The special case of unicellular photosynthetic organisms

Unicellular photosynthetic organisms perform oxygenic photosynthesis. This metabolic particularity is ensured by special structures and enzymes, such as the rubisco enzyme involved in CO 2 fixation, and the photosystems protein complexes which harvest photons. The thermal sensitivity of unicellular photosynthetic organisms is thus expected to be distinct and will be discussed in this section.

The Eppley point of view for phytoplankton

In 1972, Richard Eppley published a review dealing with the effect of temperature on phytoplankton growth in the sea [START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF]. Comparing different thermal growth curves for a variety of phytoplankton species in non-limiting conditions (nearly 200 data points), Eppley determined that the maximal growth rate µ opt for each species is constrained by a virtual envelope along the optimal temperature trait T opt , the so-called 'Eppley curve'(see Fig.3.6). Eppley stated that for any phytoplankton species growing under 40 • C, 'hotter is faster'.

In 2004, Jon Norberg used Eppley's hypothesis to develop a temperature-growth model, the 'Eppley-Norberg' model [START_REF] Norberg | Biodiversity and ecosystem functioning: A complex adaptive systems approach[END_REF]: where w is the thermal niche width, z is the temperature at which the growth rate is equal to the Eppley function and is a proxy of T opt , a and b are parameters of the Eppley function. The Eppley-Norberg model is widely used by the scientific community working on phytoplankton (see for example the recent paper of [START_REF] Taucher | Combined effects of co2 and temperature on carbon uptake and partitioning by the marine diatoms thalassiosira weissflogii and dactyliosolen fragilissimus[END_REF]). The Eppley envelop is designed for phytoplankton but is likely to be modified for bacteria (see section 5). [START_REF] Follows | Emergent biogeography of microbial communities in a model ocean[END_REF] proposed a slightly different version of the Eppley-Norberg model to take into account photosynthesis:

µ(T ) = 1 - T -z w
µ(T, I) = µ max . 1 τ 1 A T e -B(T -T 0 ) c -τ 2 γ T . 1 γ I max 1 -e -kpI e -k i I γ I (3.42)
where µ max is the species maximum growth rate, γ T and γ I are respectively the normalized temperature photosynthesis functions. The parameters τ 1 and τ 2 ensure the normalization of γ T , while parameters A, B, T 0 and c modify its shape by taking into account the Eppley hypothesis (see fig. 

The link between photosynthesis and temperature in the models

Photosynthesis involves two distinct parts with different sensitivities to temperature (the dark phase and the light phase, see section 10.1.2). The light phase is virtually not affected by temperature, leading to a possible desequilibrium between the photons harvested and their conversion into chemical energy whenever the dark phase is affected by temperature (see for example the review by [START_REF] Ras | Temperature effect on microalgae: a crucial factor for outdoor production[END_REF]). The model supported by data related to the light phase of photosynthesis (O 2 production of Pulse Amplitude-Modulated (PAM) fluorescence) therefore includes a moderated temperature effect [START_REF] Béchet | Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation[END_REF].

Photosynthesis and temperature uncoupled: These models assume that temperature and light are independent factors. For example, the model developed by [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF] assumes that the growth rate is expressed as:

µ(T, I) = f (I).φ(T ) (3.43)
where φ(T ) corresponds to the CTMI (eq.3.12) and:

f (I) = µ max I I + µ max α I I opt -1 2 (3.44)
µ max is the maximum growth rate at optimal light intensity I opt and optimal temperature T opt , α is the initial slope of the light response curve. f (I) was built in line with the

3.4

The dynamical effect of temperature on unicellular organisms [START_REF] Peeters | The relationship between light intensity and photosynthesisa simple mathematical model[END_REF] model with photoinhibition, but reparametrized for a better parameter identification. [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF] developed an algorithm to obtain the cardinal temperatures from data sets with different light conditions. This model was validated on 15 phytoplankton species. The uncoupled hypothesis is, however, no longer valid at high light intensities (i.e. when photoinhibition occurs) as temperature is known to play a role in photoinhibition [Jensen and Knutsen, 1993a]. For example, low temperature induces an imbalance between the light harvesting and the carbon fixation which is enzyme-dependent (carboxylase) and thus generates light saturating conditions (see 10. 1.2 and Young et al. [2015]).

Photosynthesis and temperature coupled: Some models consider the coupling between temperature and photosynthesis, such as the model developed by [START_REF] Dermoun | Modelling of growth of porphyridium cruentum in connection with two interdependent factors: light and temperature[END_REF] for the unicellular Rhodophyta Porphyridium cruentum:

µ(T, I) = 2µ m (T )(1 + β 1 ) I/I opt (T ) 1 + 2β 1 I/I opt (T ) + (I/I opt (T )) 2 (3.45)
where µ m (T ) is the maximum specific growth rate at a given temperature T , I opt is the optimal irradiance at a given temperature T and β 1 is the shape factor for limiting irradiance. µ m (T ) and I opt (T ) are functions similar to eq. 3.45 (see [START_REF] Dermoun | Modelling of growth of porphyridium cruentum in connection with two interdependent factors: light and temperature[END_REF]). It is worth noting that the tight coupling between light and temperature in this model leads to identifiability problems partially due to excessive number of parameters (9 here). Furthermore, when light is limiting, it is not essential to take into account the coupling between light and temperature. For all these reasons, we avoid the use of such models. An other example [START_REF] Carvalho | Kinetic modeling of the autotrophic growth of pavlova lutheri: study of the combined influence of light and temperature[END_REF] is detailed in [START_REF] Béchet | Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation[END_REF].

The dynamical effect of temperature on unicellular organisms

Previously, we exposed the different effects of temperature on acclimated cells, using static growth models. However, temperature can have a short-term effect on growth. Internal metabolites such as starch or lipid can accumulate at a rate which can be driven differently by temperature. Moreover, in the natural environment or in outdoor cultures, temperature is varying with time. Dynamical models are thus essential to capture the resulting effects of these varying temperature conditions on growth.

The metabolic response to temperature acclimation

Most of the models representing the growth of an UO when the temperature T (t) is time-varying include a function φ(T (t)) directly in each reaction kinetic, which has the same mathematical formulation as µ(T ) described in section 3.2, assuming that the specific growth rate defined by temperature is adopted instantaneously (see for example Baranyi et al. [1995], [START_REF] Baranyi | Mathematics of predictive food microbiology[END_REF]). However, this approach is not always 3. MODELLING THE TEMPERATURE EFFECT ON UNICELLULAR ORGANISMS FROM HETEROTROPHIC BACTERIA TO AUTOTROPHIC EUKARYOTES: A REVIEW satisfactory given that temperature-driven metabolite accumulation, temperature-driven respiration and acclimation processes can take place. In the following, we introduce the existing models dealing with temperature variations. For heterotrophic UO, dynamical models developed by microbiologists mostly take into account a slowly changing temperature (see for example Baranyi et al. [1995] and [START_REF] Kovarova | Temperature-dependent growth kinetics of escherichia coli ml 30 in glucose-limited continuous culture[END_REF]). [START_REF] Dougherty | Energy-based dynamic model for variable temperature batch fermentation by lactococcus lactis[END_REF] developed a model for the bacteria Lactococcus lactis under more rapid temperature fluctuations. The model considers the total amount of energy per cell as a state variable, and its distribution for different biosynthesis pathways (here malic acid and lactic acid) have different temperature sensitivities.

Richard Geider was one of the first to develop a dynamical model accounting for temperature effect on phytoplankton growth. Firstly, he took into account the fact that phytoplankton cells are able to adapt their pigment content to temperature changes. The chlorophyll concentration is adjusted to the photon flux and to the cell capacity of converting it into chemical energy. It has been clearly shown that the carbon to chlorophyll ratio (C/Chla) decreases exponentially with temperature, and [START_REF] Geider | Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton[END_REF] modelled it:

C Chla = a -bT + cIe -kT (3.46)
where a, b, c, k are constants and I is the light intensity. However, eq. 3.46 isn't valid anymore when the temperature is higher than the species T opt [START_REF] Geider | Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton[END_REF]. This model has thus to be included into a dynamical model where carbon or chlorophyll are state variables.

Later, [START_REF] Geider | A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature[END_REF] developed a dynamical model for the whole phytoplankton growth. The model deals with the co-limitation by nutrient, light and temperature on growth. The state variables and biomass descriptors are the bulk nitrogen, carbon and chlorophyll concentrations. Using an Arrhenius equation, they consider that temperature acts equally on respiration, chlorophyll synthesis and nitrogen assimilation so that different metabolic processes have the same temperature dependence. However, the model considers that temperature affects the light-saturated photosynthesis whereas it does not affect the initial slope of the photosynthesis versus light intensity curve. The [START_REF] Geider | A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature[END_REF] model was later modified by [START_REF] Quinn | Microalgae bulk growth model with application to industrial scale systems[END_REF] for phytoplankton biotechnological applications assuming that temperature does not affect respiration.

For marine biogeochemical applications, [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF] have developed a model for phytoplankton in which the substrate uptake follows an Eppley formulation (eq. 3.41). The temperature-induced losses are arbitrary set to 5% of the Eppley curve regardless of the species thermal trait.

More recently, [START_REF] Muñoz-Tamayo | Optimizing microalgal production in raceway systems[END_REF] constructed a model based on [START_REF] Mairet | Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation[END_REF] itself based on the Droop model [START_REF] Droop | Vitamin b12 and marine ecology. iv. the kinetics of uptake, growth and inhibition in monochrysis lutheri[END_REF] to account for the temperature fluctuations effects in outdoor phytoplankton cultures. The model assumes again that temperature has the same effect on all kinetic reactions by incorporating the CTMI model (eq. 3.12) in the ODE system. Yet, it considers chlorophyll acclimation to temperature by including eq.3.46 in the chlorophyll state variable dynamics.

3.4

The dynamical effect of temperature on unicellular organisms

The thermally-induced death

UO cells submitted to cooling or warming can die because of protein denaturation, membranes injuries or an imbalance between the needed and produced ATP. Several question related to lethal temperatures are still open: i) What is the effect of the timeduration of cooling or heating on mortality? ii) What happens for temperature lower or higher than the physiological T min and T max ? iii) Does death rate already increase for temperatures lower than the T opt ?

The survival curve: Thermal mortality was first investigated, once again, by microbiologists dealing with bacterial disinfection in food industry. They particularly focused their study on the survival curve, i.e. the natural logarithm of the remaining alive cells plotted against time. Applying a fixed temperature above the species T max , [START_REF] Moats | Kinetics of thermal death of bacteria[END_REF] describes 4 types of survival curve (fig. 3.8). Numerous empirical models exist to represent the survival curves within isothermal conditions (see the recent review [START_REF] Smelt | Thermal inactivation of microorganisms[END_REF]); they are called primary model, because they don't take into account the temperature time variation effect. The Weibull model [START_REF] Mafart | On calculating sterility in thermal preservation methods: application of the weibull frequency distribution model[END_REF] is one of the most widely used:

ln(N (t)) = -ln(N 0 ) - t δ(T ) p(T ) (3.47)
where t is the time of heating, δ(T ) is the temperature-dependent scale parameter and p(T ) is the temperature-dependent shape parameter. The Weilbull model accounts for the upward or downward concavity that the survival curve can take shape. If p(T ) = 1, then the mortality rate is exponential. Because the survival curve is the combination of several processes, including cell damages and repairs, mechanistic models have also been developed [START_REF] Smelt | Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means[END_REF]. Nonetheless, primary models can't be used in dynamical conditions.

Secondary death models associate a temperature-dependent function to the parameters of primary models (i.e. isothermal models). They allow to consider temperature as a time-varying variable. The simpler and mechanistic use of secondary model is constructed on an Arrhenius equation. [START_REF] Qin | Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells[END_REF], for example, used such a secondary model for eukaryote cells. Because the irreversible cell denaturation rate regarding temperature follows an Arrhenius equation, the denatured cell fraction F D during an heating process can be written as:

F D = 1 -exp -1/B T end T 0 k(T ) dT (3.48)
where k(T ) is the cell denaturation rate, B is the rate of temperature change (temperature is linearly varying here), T 0 and T end are the temperature at the beginning and at the end of the heating process. It is worth noting that other mechanistic approaches exist, such as proposed by [START_REF] Valdramidis | Stress-adaptive responses by heat under the microscope of predictive microbiology[END_REF] who developed a model for Escherichia coli taking into account heat resistance (and thus repair mechanisms) of cells. Empirical ) when exposed to temperature higher than T max (redrawn from [START_REF] Moats | Kinetics of thermal death of bacteria[END_REF]). A, initial lag in death followed by a log-linear death rate, B, log-linear death rate, C, heterogeneous population with different death rates, D, death rate with inflexion.

Conclusion

secondary-based models are also common; [START_REF] Corradini | A weibullian model for microbial injury and mortality[END_REF] constructed an empirical model for bacteria based on the Weilbull model (eq. 3.47) where δ(T (t)) and p(T (t)) are explicit temperature-dependent functions.

Coupling growth and death models: In variable conditions, cells can be submitted to lethal and non-lethal temperatures. For this reason, microbiologists have sought to couple growth models with mortality models (fig. 3.9). Van Uden [1985], for example, combines a master reaction growth model with an exponential mortality model (i.e. a primary model) for yeast. For bacteria, this kind of models has been reviewed by [START_REF] Corradini | On modeling and simulating transitions between microbial growth and inactivation or vice versa[END_REF]. Some authors have coupled growth models and secondary death models in order to also take into account the effect of the time duration of heating and cooling (see for example [START_REF] Baranyi | A combined model for growth and subsequent thermal inactivation of brochothrix thermosphacta[END_REF]).

Conclusion

In this chapter, we have pictured out the different types of existing temperature-growth models for UO. In non-limiting conditions and balanced growth, the empirical temperature models better fit the data than mechanistic models (see fig. 3.1).

However, the limiting steps in the thermal growth curve, as depicted by the mechanistic models, are not clearly understood. Despite the recent development of a universal unicellular growth model [START_REF] Corkrey | Protein thermodynamics can be predicted directly from biological growth rates[END_REF], the 'proteome paradigm' should be further investigated. The proteome implication in thermal adaptation should be considered.

Modelling of the temperature effect on photosynthetic organisms still has shortcomings. The temperature coupling with light has not clearly been investigated at high light intensity. The Eppley hypothesis has only been applied to phytoplankton and could be adapted for other groups. Also, this hypothesis may depend on the phytoplankton group considered.

The effect of temporal temperature variations on the cell metabolic reactions are not well described by the models [START_REF] Ras | Temperature effect on microalgae: a crucial factor for outdoor production[END_REF]. Data are clearly lacking to understand and model how internal metabolites such as starch or lipid react to temperature variations. Because temperature is naturally varying in the environment, its fluctuations may drive temperature acclimation and its effects have to be determined.

Finally, the thermally-induced death still has to be investigated. Few studies exist for unicellular eukaryotes, especially for phytoplankton. It is not clear if death rate increases under theoretically sublethal temperatures. Moreover, the capacity of cell to repair its damages and regrow after an heat or cold shock is not clearly understood and modelled, as well as the acclimation and adaptation to temperature. The molecular mechanisms leading to or protecting against death are not clearly understood, and should be closely related to the proteome thermal sensitivity. 3. MODELLING THE TEMPERATURE EFFECT ON UNICELLULAR ORGANISMS FROM HETEROTROPHIC BACTERIA TO AUTOTROPHIC EUKARYOTES: A REVIEW Summary of section 3:

• Empirical models better describe the thermal growth curve than mechanistic ones

• The effect of temperature on physiology are not well understood, especially when temperature is fluctuating

• The coupled effects of temperature and light have to be further investigated AErarissima nostro simplicitas

Introduction

Unicellular organisms (UO) are poikilotherms, which means that their internal temperature is at equilibrium with the environmental temperature, thus constraining their metabolic rate. However, these microorganisms have colonized most of the thermal windows, ranging from psychrophilic (temperature< 15 • C) to hyperthermophilic (temperature> 90 • C) niches [START_REF] Rothschild | Life in extreme environments[END_REF]. The underlying adaptation mechanisms have been extensively studied over the past decade Chen and Shakhnovich [2010], [START_REF] Cooper | Evolution of thermal dependence of growth rate of escherichia coli populations during 20,000 generations in a constant environment[END_REF], [START_REF] Kingsolver | The well-temperatured biologist[END_REF], but are still in debate. The adaptation capability is strongly dependent on the different phylogenetic groups. For example, the two phytoplankton groups of diatoms and dinophytes do not adapt in the same way despite their close ecological role [START_REF] Huertas | Warming will affect phytoplankton differently: evidence through a mechanistic approach[END_REF]. In a warming world, two questions are critical: i) What controls thermal adaptation? ii) Is thermal adaptation driven by some universal mechanisms? Temperature controls the rate of metabolic activity Gillooly et al. [2001a], but also induces enzyme denaturation [START_REF] Zeldovich | Protein stability imposes limits on organism complexity and speed of molecular evolution[END_REF]. These antagonistic effects are responsible for the asymmetry of the thermal growth curve, which links growth rate to temperature for a given species [START_REF] Angilletta | Thermal adaptation[END_REF]. Each species can be characterized

CORRELATION BETWEEN THE CARDINAL TEMPERATURES: INSIGHT INTO THERMAL ADAPTATION

by three thermal parameters called cardinal temperatures: its minimal (T min ), optimal (T opt ) and maximal (T max ) temperatures for growth. It has been previously shown that there exists a linear relationship between T min , T opt and T max , in bacteria [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF], but this has not been explained yet.

We investigated the correlation between cardinal temperatures in the three domains of life (Archaea, Bacteria, and unicellular Eukaryota). To this end, we modelled the thermal growth curve using an empirical model, the Cardinal Temperature Model with Inflexion (CTMI) [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF] (see eq. 3.11). CTMI allows to identify the cardinal temperatures from experimental data using a method developed by [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF]. We analysed 464 growth rates versus temperature curves (representing more than 5780 points) from the literature for species belonging to the three domains of life and ranging from psychrophiles to hyperthermophiles (see section 2.2). We determined the associated cardinal temperatures for each curve. We validated our approach by comparing experimental data points to model predictions.

We show that there exists linear correlations between T min and T opt and between T max and T opt valid for all UO, with a marked difference between prokaryotes and eukaryotes.

Relation between the cardinal temperatures 4.2.1 Linear relationships

Using the CTMI model, [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF] have previously shown that the cardinal temperatures are linearly correlated for psychrophiles, mesophiles and thermophiles bacteria. We tested if such a linear relationship holds for all the UO and we calculated a linear regression between the cardinal temperatures obtained for our data set (see fig 4.1 and table 4.1). It turns out that a similar relationship holds for the whole data set, including groups for which this relation has never been tested before, i.e. phytoplankton, yeasts, archae, cyanobacteria (ρ = 0.981 for the relationship (T opt , T max ) , ρ = 0.871 for the relationship (T opt , T min ), and ρ = 0.867 for the relationship (T min , T max ), p < 0.01 (Ttest); see table 4.1), with the best linear fit obtained for the linear regression between T opt and T max (r 2 = 0.962). The thermal profile of a UO can thus be expressed as: 

T max = a 1 T opt + b 1 T min = a 2 T opt + b 2 (4.1) with a 1 = 1.035, b 1 = 7.367 • C, a 2 = 0.819, b 2 = -19.006 • C.

Differences among the phylogenetic groups

To challenge the universality of these linear relationships, we divided the data set into two groups, prokaryotes and eukaryotes, and 5 subgroups according to phylogenetic and metabolic criteria: bacteria (heterotrophic prokaryotes), archae (heterotrophic prokaryotes), cyanobacteria (photosynthetic prokaryotes), microalgae (photosynthetic eukaryotes), yeast (heterotrophic eukaryotes).

For the couple (T opt ,T max ), the linear regression is better for prokaryotes than for eukaryotes, the significance of the linear relationship being verified for both (ρ = 0.986 and ρ = 0.851 respectively, p < 0.01). Moreover, the slope and the intercept are comparable (p < 0.05, Chow-test; see table 4.1) and significantly close to that found by [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF] (p < 0.05, Chow-test). However, for the couple (T opt , T min ), the linear correlation is only significant for prokaryotes, and the linear regression gives a satisfactory result only for this group (ρ = 0.916, R 2 = 0.839, p < 0.01 (T-test) for prokaryotes and ρ = 0.238, R 2 = 0.056 for eukaryotes). The linear regression only gives values significantly close to that of [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF] for prokaryote (p < 0.05, Chow-test). The same differences prokaryotes/eukaryotes are observed for the couple (T max , T min ) (ρ = 0.911, p < 0.01 (T-test) for prokaryotes and ρ = 0.260 for eukaryotes). From these data analysis, it results that [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF] observations only hold for prokaryotes. Eukaryotes, on the other way, solely follow the linear rule between T opt and T max .

The three prokaryote subgroups archae, bacteria and cyanobacteria all verify the linear correlations between cardinal temperatures and have the same linear regressions for the cardinal temperatures, without subgroup specificities (p < 0.05, Chow-test) (see fig. 4.2, 4.3, 4.4 A,B,C). The eukaryote subgroups of microalgae and yeasts also show a significant linear correlation between T opt and T max (see table 4.1). The linear regression coefficients obtained for microalgae are comparable to the ones obtained for prokaryotes, but differ from those of yeasts (see fig. 4.2, 4.3, 4.4 D,E).

The metabolism type (heterotrophic or autotrophic) does not seem to affect the linear link between the cardinal temperatures (but see section 5.3). However, microalgae and cyanobacteria have a lower average thermal niche width (29.535±8.579 and 29.640±7.949 respectively) than heterotrophic UO (fig. 4.6). It is worth noting that most of the autotrophic organisms can change their metabolism to an heterotrophic mode under particular environmental conditions. Here, all the phytoplankton data sets are obtained in autotrophic conditions. Finally, to test whether the differences previously observed could be related to the range of temperature growth, we divided the data set into 3 groups according to their thermal preferences: psychrophiles (T opt < 15 • C), mesophiles (15 [START_REF] Willey | s Microbiology-7th international[END_REF]. No significant differences were found between these groups. This indicates that the species thermal preferendum does not play a role in the correlation between the cardinal temperatures.

• C≤ T opt < 45 • C), thermophiles (T opt ≥ 45 • C)

A closer look at microalgae

To validate the linear correlations found between the cardinal temperatures, we analysed a data set recently compiled by [START_REF] Thomas | Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits[END_REF] for eukaryotic phytoplankton. We divided this data set into 4 phylogenetic groups: Dinophyta, Ochrophyta (diatoms and related), Haptophyta and Chlorophyta. We applied the same linear regression as for the other groups, with the same data set selection criteria (see section 2.2.4). Results (fig. 4.5 and table 4.2) confirmed the correlations observed for (T opt , T max ) for eukaryotes, with no significant differences between the linear regressions for Dinophyta, Ochrophyta and Chlorophyta (p < 0.05, Chow-test). Nevertheless, for Haptophyta, the linear regression gave significantly different results; because there is only 12 data points for this group, it was not possible to conclude that Haptophyta are particularly different.

The link between T min and the other cardinal temperatures found here nuances the results obtained for the microalgae data set compiled in section 4.2.2. Indeed, among the 4 microalgae groups considered here, Dinophyta have a significant linear correlation between T opt and T min . At that stage, it is not possible to determine if it is a specificity of Dinophyta, or if this correlation could apply to the other microalgae groups using a better protocole to determine T min . 

Thermal adaptation and the thermal niche width

The unveiled linear relationships between the cardinal temperatures, universal for T opt and T max , specific to prokaryotes for T opt and T min , let us assume that thermal adaptation, at least within the prokaryote group, proceeds by translation of the thermal growth curve. This result corresponds to the 'horizontal-shift' hypothesis of [START_REF] Huey | Evolution of thermal sensitivity of ectotherm performance[END_REF] (see also [START_REF] Kingsolver | The well-temperatured biologist[END_REF]). This translation is not strict, because, as previously found for the whole data set, the thermal niche width of prokaryotes is supposed to slightly increase with T opt (see eq. ). The thermal adaptation mechanisms are maybe different (explaining the possible uncoupling between T min and T max for eukaryotes) but the same physical constrains apply for the two groups. For example, some authors have highlighted the crucial role played by membrane structures during thermal adaptation [START_REF] Arthur | Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts[END_REF][START_REF] Caspeta | Altered sterol composition renders yeast thermotolerant[END_REF][START_REF] Daniel | The stability of biomolecules and the implications for life at high temperatures[END_REF][START_REF] Liberles | The interface of protein structure, protein biophysics, and molecular evolution[END_REF][START_REF] Los | Regulatory role of membrane fluidity in gene expression and physiological functions[END_REF]. Because eukaryotes possess complex membranes compared to prokaryotes, this could be a key concept for explaining the eukaryote T min flexibility. Recently, [START_REF] Caspeta | Altered sterol composition renders yeast thermotolerant[END_REF] have enhanced the thermal tolerance of the yeast Saccharomyces cerevisiae by continuously selecting more thermal tolerant strains.

The resulting strains had a different sterol composition, a key component of membrane fluidity. Lipids composition of membranes is also highly modified during thermal adaptation of microalgae, as recently shown by Bonnefond et al. [subm.]. Additionally, some microalgae are able to regulate their ribosome cell concentration as an adaptation to cold temperatures [START_REF] Toseland | The impact of temperature on marine phytoplankton resource allocation and metabolism[END_REF].

Conclusion

The linear correlations between the cardinal temperatures unveiled by [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF] have been confirmed for all the UO. However, eukaryotes seem to have a more flexible T min and have a higher capability to adapt to cold temperatures. The thermal niche width is highly constrained by these linear links, but is not constant. This study supports the hypothesis that thermal adaptation proceeds by horizontal shifts of the thermal growth curve, with possible small fluctuations of its skewness. • The cardinal temperatures of all UO are linearly linked.

• The relationship between T min and T opt is not verified in eukaryotes, which have more adaptive properties at cold temperatures. It is verified in eukaryotic phytoplankton.

• The thermal growth curve may evolve by horizontal shifting, with potential fluctuations of its skewness during adaptation.
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Revisiting the Eppley hypothesis Contributors: Mairet, F., Sciandra, A., Bernard, O.

A common fallacy in much of the adverse criticism to which science is subjected today is that it claims certainty, infallibility and complete emotional objectivity. It would be more nearly true to say that it is based on wonder, adventure and hope.

Sir Norman Hinshelwood

Introduction

In 1973, Richard Eppley established a relationship between the maximal growth rate of phytoplankton and their living temperature, formalized by an exponential envelop function [START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF]. Since Eppley, the 'hotter is faster hypothesis' prevails. Relieved and modelled by [START_REF] Norberg | Biodiversity and ecosystem functioning: A complex adaptive systems approach[END_REF], Eppley's hypothesis is based on the classical Arrhenius formulation and seduced the scientific community who applied it for every UO. In addition to temperature, the cell biovolume is known to influence the maximal growth rate. In this way, the results obtained by Eppley and since then by many others [START_REF] Bissinger | Predicting marine phytoplankton maximum growth rates from temperature: Improving on the eppley curve using quantile regression[END_REF][START_REF] Chollet | The role of diatoms in the global carbon cycle[END_REF] highly depend on this link. Despite several works [START_REF] Brown | Toward a metabolic theory of ecology[END_REF][START_REF] Nielsen | Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria: comparisons between unicells and colonial growth forms[END_REF][START_REF] Rose | Does low temperature constrain the growth rates of heterotrophic protists? evidence and implications for algal blooms in cold waters[END_REF][START_REF] Sal | Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth[END_REF], the clear inter-relation between temperature, biovolume, and maximal growth rate is still unclear.

Here, we challenged Eppley's hypothesis using only the relation between T opt and µ opt [START_REF] Bissinger | Predicting marine phytoplankton maximum growth rates from temperature: Improving on the eppley curve using quantile regression[END_REF]. We assumed that the maximal measured growth rate is a proxy for µ opt . We also normalized the maximal growth rate by the species biovolume. We found that µ opt is an increasing function of T opt until a certain temperature that is 5. REVISITING THE EPPLEY HYPOTHESIS group dependent, and thereafter decreases. We then focused on phytoplankton to get further insight into the Eppley hypothesis.

5.2 Hotter is not always faster 5.2.1 Describing the relationship between T opt and µ opt using quantile regression

We compiled the optimal temperature for growth T opt and the maximal growth rate at T opt (i.e. µ opt ), using CTMI model (see section 2.2) for 464 species or strains of UO. We assumed that in non-limited conditions µ opt is the maximal growth rate that a species or a strain can reach. However, cultures conditions are rarely perfectly optimized because, for example, growth depends on many different factors. For the same temperature range, the lowest growth rates should not be considered. Therefore, in line with Bissinger et al.

[2008], we used quantile regression [START_REF] Koenker | Regression quantiles[END_REF] to infer relationships between T opt and µ opt from the upper edge of the plot µ opt = f (T opt ) (see section 2.2.6 for a full description of the method used). The quantile regression was calculated on the 99 th quantile, corresponding to the line below which 99% of the observations are found. The 99 th quantile was chosen because it is the most reliable way to calculate the edge of the data, with the possibility of calculating interval errors, which would not be possible with the 100 th quantile [START_REF] Bissinger | Predicting marine phytoplankton maximum growth rates from temperature: Improving on the eppley curve using quantile regression[END_REF]. Unlike Bissinger et al.

[2008], we used non-linear quantile regression with third and fourth degree polynomial functions. This choice was motivated by the fact that, as supposed by [START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF], optimal growth rate µ opt should increase exponentially with temperature (and thus with T opt ) until a certain value above which it starts to decrease. Indeed, [START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF] only described the exponential part but hypothesized that such a threshold exists: 'There is a gradual and exponential increase of µ up to about 40 • C. Temperature data above 40 • C, obtained with thermophilic, blue-green algae (...) show no further increase in µ. (...) Such temperatures are outside the range encountered in the ocean and will not be furthered discussed.'

Results (fig. 5.1) shows that, indeed, an optimal T opt equal to 70.6 • C and corresponding to µ opt = 2.95h -1 seems to exist in UO meaning that hotter is not always faster for all the UO analyzed together. The two polynomial functions fit well the 99 th quantile, with pseudo-R 2 =0.679 and pseudo-R 2 =0.748 respectively. Conversely, if we only take into account data below the optimal T opt , the function that best describes the link between T opt and µ opt is the exponential function, as described in [START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF] for phytoplankton. It is not possible to find such an increasing trend above the optimal T opt despite the existence of extreme notorious exceptions in archae not represented here (e.g. Thermococcus celericrescens growing at 3 h -1 at 80 • C [START_REF] Kuwabara | Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent[END_REF]). 

Group specificities

The metabolism efficiency of the different UO considered is probably highly groupdependent, resulting in completely different µ opt at least between heterotrophs and autotrophs. We thus divided the data set into the same 5 groups as in section 4.2.2 and calculated the same 99 th quantile regression. We also calibrated the CTMI model on the 99 th quantile:

µ opt (T opt ) = φ(T opt ) (5.1)
with φ(.) corresponding to eq. 3.12. Parameters of the CTMI model become: T opt min , T optopt , T optmax the minimal, optimal and maximal T opt that a given group can reach, and µ optopt the maximal reachable µ opt . Results (fig. 5.3, table. 5.2 and 5.1) using polynomials functions and CTMI model quantile regressions are different but not contradictory. The repartition of data points is not homogeneous on the thermal range of each group particularly at hotter temperatures, and, as a result, T maxopt parameter is not well estimated. It is worth noting that eukaryotes have a lower T maxopt but also a lower T minopt than prokaryotes (fig. 5.2). To have a clear comparison between the different group thermal sensitivities, we normalized each group by its maximal growth rate (fig. 5.2). The group succession on the T opt axis is consistent with [START_REF] Storch | Climate sensitivity across marine domains of life: Limits to evolutionary adaptation shape species interactions[END_REF], who hypothesized that group thermal sensitivity is related to cell complexity. In this way, archae are more widely tolerant to temperature and especially more resistant to warm than bacteria and then unicellular eukaryotes. Here, we complete this picture by observing the following decreasing thermal tolerance order: archae, bacteria, cyanobacteria, microalgae, yeasts. However, the observed difference between microalgae and yeasts is probably not significant given the lack of points at high temperature for microalgae.

Scaling law in the thermal growth curve

The method used in section 5.2.2 is coherent for closely related species. However, for groups as vast and diverse as bacteria, for example, the method is insufficient. It has 5.2 Hotter is not always faster 

Group

T opt min ( 5.2 Hotter is not always faster been shown, indeed, that cell size is strongly related to the maximal growth rate for every UO Brown et al. [2004], Gillooly et al. [2001b], [START_REF] Johnson | Universal constant for heat production in protists[END_REF], [START_REF] Kempes | Growth, metabolic partitioning, and the size of microorganisms[END_REF]. This is well summarized by [START_REF] Niklas | A phyletic perspective on cell growth[END_REF]: 'This aspect of cell growth is treated here in light of studies showing that cell growth, metabolism, and division rates decrease across (and often within) species as cell size increases [...] Explanations for these inverse relationships differ among investigators, but considerations typically involve the size-dependent (scaling) relationships among cell surface area, volume, and dry mass (as measured by carbon or DNA content). The relationship between cell surface area and volume (and its effect on cell growth rates and division rates) has received the most attention because of the dictum that growth requires energy and, regardless of the form of energy garnered by a cell (radiant energy in plants; chemical energy in fungi and animals), the ability to harvest energy is some function of external surface area, whereas the metabolic requirement for energy is some function of volume'. Various authors have claimed that the following relationship exists between the maximal growth rate and the dry mass or biovolume of any given UO [START_REF] Banse | Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial[END_REF][START_REF] Brown | Toward a metabolic theory of ecology[END_REF], Gillooly et al., 2001b[START_REF] Kleiber | Body size and metabolic rate[END_REF]:

• C) T optopt ( • C) T optmax ( • C) µ optopt (h -1 ) Pseudo-R
µ opt = a 0 V α (5.2)
where V is the biovolume or the dry mass, a 0 is a scaling parameter and α = -1/4. Eq. 5.2, called the 'Keibler 3/4 power law', states that 'smaller is better'. There is a current debate around the value of α for UO. DeLong et al. [2010] found that α = 0.66 for prokaryotes and α = -0.2 for unicellular eukaryotes, arguing that prokaryotes metabolic rate is limited by the number of genes whereas unicellular eukaryotes are limited by the number of respiratory complexes (fig. 5.4). [START_REF] Kempes | Growth, metabolic partitioning, and the size of microorganisms[END_REF] and [START_REF] Johnson | Universal constant for heat production in protists[END_REF], on the other way, point towards the intra and inter-specific variability of α, especially for microalgae.

The Keibler power law, as well as the α values proposed by [START_REF] Delong | Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life[END_REF] are coherent with the result obtained with our database (fig. 5.4). However, the relation between V and µ opt is not obvious. As explained by Gillooly et al. [2001b] and in section 5.2, µ opt critically depends on temperature. To obtain a relation between the biovolume and the maximal growth rate ceteris paribus, µ opt has to be 'temperature compensated'. Indeed, Gillooly et al. [2001b] considered the following equation:

µ opt = a 0 V α f (T opt ) (5.3)
where f (T opt ) is a classical Arrhenius equation of the form e -E/(RTopt) . Then, by taking the natural logarithm of eq. 5.3, it is possible to obtain a 'biovolume-corrected'or a 'temperature-corrected'expression of the maximal growth rate. However, motivated by fig. 5.3, we claim here that f (T opt ) is not a simple Arrhenius equation, and rather:

µ opt = a 0 V α e -E1/(RTopt) -e -E2/(RTopt) (5.4)
where f (T opt ) corresponds to an Hinshelwood equation. To obtain an approximation of f (T opt ), we divided the experimental maximal growth rates by V α , with α = 0.66 for prokaryotes and α = -0.2 for eukaryotes, in line with DeLong et al. [2010]. The result,
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presented in fig. 5.5, tends to validate eq. 5.4. However, since there is no clear consensus on the value of α, fig. 5.5 has to be analyzed carefully. An experimental way to get further insight into f (T opt ) would be to analyse the maximal growth rate of different set of species with the same T opt or with the same biovolume (see section 5.3.2).

5.3

The phytoplankton paradigm

The revisited Eppley curve for phytoplankton

Since the work of [START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF], the exponential Eppley curve setting that 'hotter is better' for phytoplankton species living in the ocean volens nolens has been massively used, especially for marine biogeochemical models using the formulation proposed by [START_REF] Norberg | Biodiversity and ecosystem functioning: A complex adaptive systems approach[END_REF]. Some works have challenged the validity of this hypothesis, claiming for example that in situ phytoplankton growth rates are often underestimated because of the Eppley curve [START_REF] Bissinger | Predicting marine phytoplankton maximum growth rates from temperature: Improving on the eppley curve using quantile regression[END_REF][START_REF] Brush | Modeling phytoplankton production: problems with the eppley curve and an empirical alternative[END_REF]. [START_REF] Chollet | The role of diatoms in the global carbon cycle[END_REF], for example, showed that despite a clear exponential trend at low temperature, the link between T opt and µ opt differs from that of an Eppley curve for diatoms.

Here, we focused on the result found for microalgae in section 5.2.2 by adding the [START_REF] Thomas | Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits[END_REF] database to our, filtered with the same criteria. We also included the eukaryote extremophile Cyanidinium caldarium owing an optimal growth rate at 45 • C [START_REF] Doemel | The physiological ecology of cyanidium caldarium[END_REF]. We applied the same 99 th quantile regression as in section 5.2.2 with a third polynomial function and the CTMI model. Results (fig. 5.6) suggest that there exists an intrinsic thermal limit for T opt (comprised between 4.7 • C and 47.3 • C), proper to microalgae, and that the maximal growth rate is highly constrained by this limit, following the shape of a single species thermal growth curve. We will refer as it as the 'modified Eppley curve'all along the manuscript.

This result is highly variable between microalgae groups. We thus split microalgae into the four phylogenetic groups Dinophyta, Ochrophyta, Haptophyta, Chlorophyta and applied again the same method. Fig. 5.7 shows that Chlorophyta is the most thermotolerant group, whereas Haptophyta and Dinophyta are the less ones. Data are probably lacking for Haptophyta, however. The maximal optimal growth rate is also widely different between groups, probably emphasizing different intrinsic physiological limits and photosynthesis yields [START_REF] Raven | Interactions of photosynthesis with genome size and function[END_REF].

These groups differences may also be the result of the influence of cell biovolume on maximal growth rates, as seen in section 5.2.3. [START_REF] Marañón | Resource supply overrides temperature as a controlling factor of marine phytoplankton growth[END_REF], for example, claim that the maximal growth rate of microalgae expressed a function of the biovolume follows an unimodal function. Nevertheless, [START_REF] Marañón | Resource supply overrides temperature as a controlling factor of marine phytoplankton growth[END_REF] did not take into account the optimal temperature of growth nor thermally compensated their growth data, and their results are in contradiction with [START_REF] Sal | Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth[END_REF]. However, we did not have the biovolume information for the [START_REF] Thomas | Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits[END_REF] database and could not further investigate the question. 

The phytoplankton paradigm

Conclusion

A case study: the cyanobacteria Synechococcus sp.

Among the unicellular photosynthetic organisms, Synechococcus sp. have been particularly studied, especially for its huge capacity to tolerate a wide range of temperature. Some Synechococcus sp. strains are for example capable to live above 70 • C. In 2000, [START_REF] Miller | Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus[END_REF] analysed the thermal growth curve of several Synechococcus sp. strains growing from 25 • C to 70 • C, and deduced from phylogenetic considerations that these strains evolved from a less thermotolerant ancestor. The same team identified four amino acid substitutions that together increased stability and activity of Calvin cycle enzyme ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) at higher temperatures in high temperature adapted strains [START_REF] Miller | The evolution of rubisco stability at the thermal limit of photoautotrophy[END_REF][START_REF] Miller | Evidence for the adaptive evolution of the carbon fixation gene rbcl during diversification in temperature tolerance of a clade of hot spring cyanobacteria[END_REF]]. Miller's results highlight the crucial role played by RuBisCO during thermal adaptation. Later, [START_REF] Pittera | Connecting thermal physiology and latitudinal niche partitioning in marine synechococcus[END_REF] identified several Synechococcus sp. thermal ecotypes in the ocean and studied their thermal growth curve. Here, by compiling [START_REF] Pittera | Connecting thermal physiology and latitudinal niche partitioning in marine synechococcus[END_REF] and [START_REF] Miller | Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus[END_REF] data, we show that not only the Synechococcus sp. strains have evolved by shifts of the thermal growth curve with conservation of the thermal niche width (see for example fig. 1.8), but also followed a modified Eppley curve for the link between µ opt and T opt (fig. 5.8). At low and high temperatures, strains are less efficient. Since the biovolume is not affected between the different strains, this observation argues towards a clear existence of the modified Eppley hypothesis, as formulated in eq. 5.4.

These results pose different challenging questions: is the RuBisCO enzyme driving the thermal evolution in cyanobacteria and causing the efficiency loss at low and high temperatures? Are this mechanisms also driving adaptation in microalgae? Several studies exist on the effect of temperature on RuBisCO [START_REF] Galmes | Temperature responses of the rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain[END_REF] and are a promising trail for unraveling the modified Eppley curve.

Conclusion

We have shown that, contrary to the commonly accepted Eppley hypothesis, 'hotter is not always faster'. Each phylogenetic group might have its own modified Eppley curve, following the exact shape of a single species thermal growth curve. It is, indeed, rather surprising that the modified Eppley curve follows the shape of a CTMI or an Hinshelwood function; further investigations are needed to clarify this fact. In addition to temperature, cell biovolume has a great influence on the maximal growth rate µ opt , and it is not easy to separate between these two factors. Following the Gillooly et al. [2001b] expression and the Keibler power law, we showed that the pure effect of temperature on the maximal growth rate is an Hinshelwood-like function rather than an Arrhenius (and thus Eppley) exponential one, confirming our modified Eppley hypothesis.

We then compared our results to the unicellular photosynthetic group, emphasizing the intrinsic thermal limits of microalgae. We highlighted the great sub-groups differences among microalgae. We then showed that the Cyanobacteria Synechococcus sp. well follows the rules developed in chapter 4 and in this chapter, and linked it to the -Growth rate as a function of temperature for different thermal ecotypes of Synechococcus sp. In blue, data from two chosen species from [START_REF] Pittera | Connecting thermal physiology and latitudinal niche partitioning in marine synechococcus[END_REF], in red, data from two selected species from [START_REF] Miller | Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus[END_REF]. The green points correspond to µ opt as a function of T opt for the species described in [START_REF] Miller | Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus[END_REF] and [START_REF] Pittera | Connecting thermal physiology and latitudinal niche partitioning in marine synechococcus[END_REF]. The dashed curve corresponds to the theoretical third order polynomial function linking µ opt to T opt described in section 5.2.3. The bold curve corresponds to the second order polynomial function.

REVISITING THE EPPLEY HYPOTHESIS

Summary of section 5:

• 'Hotter is not always faster'.

• The Eppley curve is group-specific and has to take into account the decrease at hot temperatures.

• Cell biovolume plays a key role in µ opt and has to be taken into account to obtain the 'normalized' thermal effect.

• Phytoplankton paradigm has to be reconsidered; there exists strong group specificities in the Eppley hypothesis, that we call the 'modified Eppley hypothesis'.

• This theory is particularly well illustrated with different strains of Synechococcus sp.
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The English physical chemist Sir Cyril Norman Hinshelwood.

Introduction

In chapter 4 and 5, we have shown that a linear correlation between the cardinal temperatures as well as a specific relationship between T opt and µ opt exist. How to explain these links? To get insight into the mechanisms underlying the thermal growth curve, we developed here a mechanistic model which can be simplified to obtain the Hinshelwood model. We calibrated the Hinshelwood model on the data set used in the 6. TOWARDS UNDERSTANDING THE THERMODYNAMICAL FUNDAMENT OF THE THERMAL GROWTH CURVE: A MODELLING APPROACH previous chapters and search for possible links between its parameters. It appears that the entropy-entalpy compensation during enzyme thermal denaturation as well as the enzyme thermal activity-stability trade-off could play a key role to explain the observed parametric correlations. A simplified model with only two parameters is derived based on these concepts. 6.2 The Hinshelwood model as a theoretical framework

Metabolism represented as a set of n autocatalytic reactions

In line with Iyer-Biswas et al. [2014], and as first proposed by [START_REF] Hinshelwood | On the chemical kinetics of autosynthetic systems[END_REF], we considered that exponential growth is the result of an autocatalytic cycle of n reactions where each enzyme x i catalyzes the production of the next at a rate k i . Moreover, each enzyme denatures or is inactivated at a rate d i (illustrated in fig. 6.1). Considering the temperature effect on production and inactivation, the resulting model is:

ẋ1 = k 1 (T )x n -d 1 (T )x 1 ẋ2 = k 2 (T )x 1 -d 2 (T )x 2 . . . ẋn = k n (T )x n-1 -d n (T )x n (6.1)
where the biomass concentration X is proportional to the sum of all the x i enzymes. Under non-limited conditions, the growth rate µ(T ) defining the thermal growth curve 6.2 The Hinshelwood model as a theoretical framework is:

µ(T ) = n i=1 ẋi n i=1 x i (6.2)
However, equation ( 6.2) depends on each enzyme dynamics as they appear in equations (6.1). We approximated these equations in order to propose a simpler expression for µ(T ), as proposed by [START_REF] Koch | Overall controls on the biosynthesis of ribosomes in growing bacteria[END_REF] who used the operator method to compute the growth rate µ in a similar but two dimensional autocatalytic system. Assuming that the rates d i are significantly lower than the growth rate, we extended the two dimensional [START_REF] Koch | Overall controls on the biosynthesis of ribosomes in growing bacteria[END_REF] approach, and we deduced the overall growth rate µ(T ) (see demonstration in section 10.3):

µ(T ) = [k 1 (T )...k n (T )] 1/n - 1 n n i=1 d i (T ) (6.3)
Each synthesis step is supposed to vary according to an Eyring equation as established by the transition-state theory (see section 3.8), but it can be approximated by using an Arrhenius term. It follows from eq.6.3:

µ(T ) = (A 1 ...A n ) 1/n e -(E 1 +...+En)/(RT ) - 1 n n i=1 d i (T ) (6.4)
where the terms A i correspond to the entropy of activation e ∆S ‡ i /R and E i to the enthalpy of activation ∆H ‡ i . We assumed that the rates d i (T ) correspond to reversible unfolding leading to denaturation with a two state transition (see section 3.8). This assumption has been validated experimentally for globular proteins with more than 100 amino-acids [Feller et al., 1999, Siddiqui and[START_REF] Siddiqui | Cold-adapted enzymes[END_REF]. Then:

d i (T ) = e -∆G ‡ i /(RT ) (6.5)
where ∆G ‡ i is the activation energy for unfolding. Because of the two state transition, ∆G ‡ i does not depend on the temperature T . Finally:

µ(T ) = Ae -E/(RT ) - 1 n n i=1 e -∆G ‡ i /(RT ) (6.6) with A = (A 1 ...A n ) 1/n and E = n i=1 E i . Because e -∆G ‡ i /(RT ) is equal to e ∆S ‡ i /R e -∆H ‡ i /(RT )
which can be written Ãi e -Ẽi /(RT ) , eq.6.6 is similar to the Hinshelwood model (see section 3.2.4) with thermodynamical meanings of the model parameters:

µ(T ) = Ae -E/(RT ) -< A d e -E d /(RT ) > (6.7)
where < . > is the arithmetic mean. An important point is that the degradation term in the Hinshelwood model appears here to be related to the average of the denaturation
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of all the enzymes. This approach can be compared to other mechanistic models such as those developed by [START_REF] Corkrey | Protein thermodynamics can be predicted directly from biological growth rates[END_REF] or [START_REF] Dill | Physical limits of cells and proteomes[END_REF] based on the role played by the whole proteome. This formulation seems to invalidate the hypothesis of a single or few limiting enzymes and highlights the cell potential to soften degradation of key components through the auto-catalytic interactions of the whole proteome. This is also a key strategy for adaptation.

The maximal and optimal temperatures predicted by the Hinshelwood model can be derived after simple mathematical computations. The minimal temperature is defined as the temperature for which the growth rate is below ǫ (ǫ is an arbitrary small number, we took ǫ = 0.05). The cardinal temperatures can then be derived from the Hinshelwood parameters. Simple computations provide the functional link between the cardinal temperatures and the Hinshelwood parameters. (see section 3). Therefore, the Hinshelwood model relates the cardinal temperatures and the maximal growth rate to parameters derived from thermodynamical considerations. For sake of simplicity, in the following, the Hinshelwood parameters are written according to eq. 3.22.

Data normalization and calibration of the Hinshelwood model

In chapter 5, we studied the relationship between T opt and µ opt for different phylogenetic groups. However, our data set surely contains many experiments where the optimal growth rate has not been reached. Indeed, especially for phytoplankton, experiments are often carried out far from the optimal growth conditions (for example when light is not saturating). We therefore normalized the growth rate by the estimate of the optimal growth rate as computed from eq. 5.1, on the basis of the knowledge of parameter T opt . Once the data set has been normalized, we calibrated the Hinshelwood model using the method described in section 2. Typical model fit is shown in Fig. 3.1. The fit turns out to be of equal quality than the CTMI model. Now we explore and explain the correlations between the thermodynamically based Hinshewlood parameters.

Accounting for the enthalpy-entropy compensation 6.3.1 Theoretical approach

The negative term in the Hinshelwood model (function f 2 (T ); see eq. 3.22), can be interpreted as representing the unfolding reaction. The enthalpy ∆H and the entropy ∆S of the reaction corresponding respectively to E 2 and Rln(A 2 ) are known to compensate each others according to eq.6.8, where 1/(aR) is the compensation temperature at which every unfolding reactions have the same rate e b . ln(A 2 ) = aE 2 + b (6.8) Eq. 6.8 is called 'enthalpy-entropy compensation' (EEC) [Liu andGuoa, 2001, Rosenberg et al., 1971]. EEC has been observed for proteins denaturation but also for a wide range of organisms at their upper temperature limits, from virus to bacteria and even 6.4 Accounting for the activity-stability trade-off drosophilia [START_REF] Bischof | Thermal stability of proteins[END_REF][START_REF] Liu | A study on the enthalpy-entropy compensation in protein unfolding[END_REF][START_REF] Qin | Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells[END_REF][START_REF] Rosenberg | Quantitative evidence for protein denaturation as the cause of thermal death[END_REF]. EEC seems to be a universal characteristic, but has been widely debated due to experimental errors that could possibly lead to artificial EEC [START_REF] Banks | The so-called thermodynamic compensation law and thermal death[END_REF][START_REF] Harris | Compensation effect and experimental error[END_REF]. Moreover, some intrinsic correlations between Arrhenius function parameters are suspected. The current view is that EEC is a real phenomenon in protein denaturation and unfolding, but protein unfolding data analysis have to be carried out carefully on a sufficiently large range of activation enthalpy (e.g. from 10 4 J/mol to 10 6 J/mol) to be significant [Bischof andHe, 2005, Liu et al., 2000]. The reason for such a compensation is possibly related to water reorganization during protein denaturation which contributes to enthalpy and entropy but little to free energy [START_REF] Liu | A study on the enthalpy-entropy compensation in protein unfolding[END_REF]].

Calibration

The parameters a and b were calibrated using the estimated values of A 2 and E 2 (see fig.

6.2). Different authors, for example [START_REF] Rosenberg | Quantitative evidence for protein denaturation as the cause of thermal death[END_REF] and [START_REF] Qin | Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells[END_REF], found similar values of a and b, i.e. a = 0.00038 mol.J -1 , b = -9.36, with the compensation temperature equal to 316.52 K. We found close values with a = 0.0003844 mol.J -1 and b = -0.427. We thus considered that a and b could be universal, and we replaced A 2 by eq. 6.8 in the Hinshelwood model to take EEC into account. It results that EEC highly constrains f 2 (T ) because a high change of enthalpy is compensated by a high change of entropy and a resulting small change of free energy.

6.4 Accounting for the activity-stability trade-off

Theoretical approach

The activity of an enzyme is described by its maximum number of substrates converted to products per active site and per unit of time. During in vitro thermal adaptation, the thermal stability of enzymes is modified to fit the new thermal environment, and, in turn, the enzyme activity on the thermal range is modified. It has been shown that a trade-off exists between stability and activity at low temperature [START_REF] Arnold | How enzymes adapt: lessons from directed evolution[END_REF][START_REF] Couñago | An adaptive mutation in adenylate kinase that increases organismal fitness is linked to stability-activity trade-offs[END_REF][START_REF] Howell | Understanding thermal adaptation of enzymes through the multistate rational design and stability prediction of 100 adenylate kinases[END_REF]. This effect directly results from the trade-off between rigidity, which confers thermal resistance but low activity at low temperature, and fluidity, which confers the exact opposite [START_REF] Karshikoff | Rigidity versus flexibility: the dilemma of understanding protein thermal stability[END_REF][START_REF] Siddiqui | Cold-adapted enzymes[END_REF][START_REF] Zavodszky | Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins[END_REF]]. In the Hinshelwood model, this would be expressed by a link between the synthesis function f 1 (T ), which corresponds to enzyme activity according to eq. 6.6, and the unfolding function f 2 (T ) which represents enzyme thermal stability.

After taking EEC into account, it turns out that the enthalpy ratio E 1 /E 2 increases with the maximum temperature at which the organism is adapted. We interpreted it as a result of activity-stability trade-off. To express this relation properly, we assumed that E 1 is zero when T max is near the compensation temperature. By definition, parameter E 2 is higher than E 1 , but both converge at high temperature. We proposed a simple 

6.5

The two parameters Hinshelwood model Michaelis-Menten type equation to represent the enthalpy ratio:

E 1 /E 2 = T max -T o T max -2T o + T s (6.9)
This non-linear relation includes parameter T s (see fig. 6.3), for which E 2 = 2E 1 and T o , which is supposed to be close to the compensation temperature.

Calibration

Relationship 6.9 was tested and calibrated on different groups with the set of available data. It turns out that this relationship is satisfied, with values specific to each group (see table 6.1). Archae and bacteria were grouped together because the results obtained were very close.

6.5

The two parameters Hinshelwood model 6.5.1 Reducing the parameter number of the Hinshelwood model down to 2

We introduced eq. 6.9 and eq. 6.8 in eq. 3.22 to reduce the Hinshelwood model to two parameters, A 1 and E 2 (we will refer at it as the 2P-Hinshelwood model). Parameters E 1 and A 2 are derived as follows: [START_REF] Guyot | Extremely rapid acclimation of escherichia coli to high temperature over a few generations of a fed-batch culture during slow warming[END_REF] with A c = e b . Moreover, it is possible to express A 1 as a function of T max and E 2 : The Hinshelwood model can therefore be expressed as:

E 1 (E 2 ) = T max -T o T max -2T o + T s E 2 (6.10) and A 2 (E 2 ) = A c e E 2 /(RTc) (6.
A 1 = f (T max , E 2 ) = A c e E 2 /(RTc) e (E 1 (E 2 )-E 2 )/(
µ(T ) = A c e E 2 /(RTc) e - T max -T o T max -2T o + T s (1-E 2 /(RTmax)-1/(RT ) -A c e E 2 (1/(RTc)-1/(RT ))
(6.13) where T o and T s are given for each group (see table 6.1), while A c and T c are universal constants: A c = 0.652 and T c = 312.901 K. Only the two parameters T max (or A 1 ) and E 2 need to be determined for each species. This reduced parametrization turns out to accurately reproduce the available data sets, as it can be seen on fig. 6.4 with normalized data sets.

Comparison between the reduced Hinshelwood and the reduced CTMI models

To validate our approach, we compared the normalized 2P-Hinshelwood model to the normalised CTMI model as well as to the normalized four parameters Hinshelwood model. We also compared it to the normalized two parameters CTMI model (2P-CTMI model) with: 6.14) where α 1 and α 2 are constants, equal to 0.152 and 0.091 respectively, that we formerly found using the whole data set. Comparison results on normalized data set (fig. 6.4, 6.6 and 6.7; table 6.2) shows that 2P-Hinshelwood and 2P-CTMI models are satisfyingly fitting the data. The 2P-CTMI model has the best trade-off between parameter numbers and fitting quality because it has the lowest Bayesian information criterion (BIC) and the lowest Akaike criterion (AIC) (see table 6.2). However, the 2P-Hinshelwood model comes just after it, also combining a low number of parameters and a high accuracy for predicting thermal growth curve. Moreover, the 2P-Hinshelwood model, when not normalized, can also predict the mu opt , contrary to the two parameters CTMI (fig. 6.5). T max or T min (°C)

T min = α 1 T opt + α 2 T max ( 

Correlation between the cardinal temperatures

T opt (°C) 

Conclusion

We have proposed a mechanistic view of the Hinshelwood formula from an autocatalytic model of cell exponential growth with parameters based on thermodynamic considerations. This model has been calibrated on a large thermal growth curve data set. 90

Conclusion

We found two correlations between its parameters. Firstly, the enthalpy-entropy compensation of protein denaturation (or desactivation through unfolding), which highly constrains the enzyme stability regarding temperature. Secondly, the activity-stability trade-off characteristic of enzymes. The model, taking these phenomena into account, was reduced to two parameters, and compared to the two parameters CTMI. It results that it almost equally fits the normalized data, while it can also predict maximal growth rates. The two parameters Hinshelwood model also partially explains the linear links between the cardinal temperatures as well as the relations between µ opt and T opt .

TOWARDS UNDERSTANDING THE THERMODYNAMICAL FUNDAMENT OF THE THERMAL GROWTH CURVE: A MODELLING APPROACH

Summary of section 6:

• The Hinshelwood model can be derived from an autocatalytic view of cell growth.

• In this scheme, thermal sensitivity appears to result from the average sensitivity of all the enzymes rather than some specific enzymes.

• The physical phenomenon of entropy-enthalpy compensation as well as the activity-stability trade-off of enzymes play a key role in the thermal growth curve, partially explaining the linear correlations between the cardinal temperatures.

• A two parameters mechanistic model can be obtained with these hypotheses.
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The two fathers of the theory of evolution, Charles Darwin and Alfred Russel Wallace.

Introduction

In chapters 4, 5 and 6 we have shown that temperature has a crucial effect on microalgae growth, and we have determined the potential links existing between the different thermal parameters. We now study how temperature shapes microalgae evolution. Because of their high division rate, microalgae are able to rapidly adapt to their environment through a process of selection-mutation. To date, there is only one model which predicts microalgae adaptation to temperature [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF], by simulations based on the Adaptive Dynamics theory. However, this model implies several assumptions that have been discussed [START_REF] Boyd | Marine phytoplankton temperature versus growth responses from polar to tropical waters outcome of a scientific communitywide study[END_REF].

MODELLING THERMAL ADAPTATION IN MICROALGAE: AN ADAPTIVE DYNAMICS POINT OF VIEW

Adaptive dynamics is a theoretical framework developed during the last decade aiming to understand the long-term consequences of small mutations on adaptive traits visible through the phenotype [START_REF] Dieckmann | The dynamical theory of coevolution: A derivation from stochastic ecological processes[END_REF][START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF][START_REF] Metz | How should we define fitness for general ecological scenarios ?[END_REF], 1996]. On the contrary to other evolutionary modelling such as the quantitative genetics theory [START_REF] Falconer | Introduction to quantitative genetics (4th edn)[END_REF], the adaptive dynamics theory does not focus on genetic changes during evolution but rather combines ecology and evolution, taking into account the density-dependent effects inherited from game theory [START_REF] Smith | Evolution and the Theory of Games[END_REF].

Here, we propose firstly a simple Monod-like model that represents the effect of a constant temperature on growth and extend it to model microalgae adaptation to temperature. In line with [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF], we use the Adaptive Dynamics theory. We keep the model as simple as possible to study it analytically. In a second part, we use the model under periodic temperature to account for more realistic conditions. Finally, we simulate strain separation through evolutionary branching under fluctuating temperature.

Simple dynamical model describing the temperature effect on microalgae in chemostat 7.2.1 The Monod model in chemostat

The dynamical effect of temperature on UO growth can be represented using a Monodtype growth model in chemostat, including for example the CTMI statical model:

M : Ṡ = D(S in -S) -µ(T )ρ(S)X Ẋ = µ(T )ρ(S)X -DX (7.1)
where µ(T ) is the CTMI model (eq. 3.11), S is the nutrient concentration in the chemostat, X is the algal biomass concentration, D is the dilution rate and with:

ρ(S) = S K + S (7.2)
K is a half-saturation coefficient. It is possible to calculate the non zero equilibrium (S * , X * ) of system (M ):

S * = KD µ(T ) -D X * = (S in -S * ) (7.3)
with the hypothesis µ(T )ρ(S in ) -D > 0. In the following, we use a Lyapunov function taken from [START_REF] Harisson | Global stability of predator-prey interactions[END_REF] to prove that (7.3) 

V (S, X) = S S * µ(T )ρ(w) -µ(T )ρ(S * ) µ(T )ρ(w) dw + X X *
w -X * w dw (7.4) with V : B → R 2 where B is an open containing (S * , X * ). V (S, X) is zero at (S * , X * ), positive at all other points (S, X), defined and monotone increasing when |X -X * | or |S -S * | increases. The time derivative of V is:

V (S, X) = 1 µ(T )ρ(S) (D -µ(T )ρ(S)) µ(T )ρ(S)(S in -S * ) -D(S in -S) (7.5)
Proof: It is obvious that V (S * , X * ) = 0. Moreover, since the integrands are of the same sign as X -X * and S -S * , the integrals are positive and increasing as |X -X * | and |S -S * | increase.

Proposition 7.2.2 If D < µ(T )ρ(S in ), System (M ) admits one non-zero equilibrium which is globally asymptotically stable.

Proof: It is sufficient to prove that (7.5)< 0 ∀(S, X) ∈ B, (S, X) = (S * , X * ). If S > S * (resp. S < S * ), then D -µ(T )ρ(S) < 0 (resp. > 0) because µ(T )ρ(S * ) = D, and µ(T )ρ(S)(S in -S * ) -D(S in -S) > 0 (resp. < 0) because S in -S < S in -S * (resp.
S in -S > S in -S * ). Thus, (7.5)< 0 is verified, and (S * , X * ) is globally asymptotically stable.

The specific case of the Droop model in chemostat

The Monod-type models assume a 'constant yield', i.e. the biomass produced is proportional to the nutrients that are consumed. For microalgae, this hypothesis is unsatisfying with poor fit on experimental data. In 1968, Michael Droop introduced a new model [START_REF] Droop | Vitamin b12 and marine ecology. iv. the kinetics of uptake, growth and inhibition in monochrysis lutheri[END_REF] considering an additional state variable, the nutrient cell quota, defined as the concentration of internal nutrient 1 per unit of biomass. Growth then depends on stored intra-cellular nutrients. The Droop model is currently preferred to the Monod-like models for describing growth, notably in chemostat [START_REF] Sommer | A comparison of the droop and the monod models of nutrient limited growth applied to natural populations of phytoplankton[END_REF]. It is possible to introduce the temperature effect on growth in the Droop model:

M Droop        Ṡ = D(S in -S) -µ 1 (T )ρ(S)X q = µ 1 (T )ρ(S) -µ 2 (T )(q -Q 0 ) Ẋ = µ 2 (T ) 1 - Q 0 q X -DX (7.6)
where q is the cell nutrient quota, Q 0 is the minimal cell quota that sustains growth, µ 1 (T ) and µ 2 (T ) are Bernard&Rémond equations (eq. 3.11) with different parameters.

1 Transformed into stored material or not, depending on the nature of the nutrient 95
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We thus assume that the nutrient uptake and the growth on internal nutrients have different thermal sensitivities. In this particular case, it is not immediate to deduce the global growth rate of the population, i.e. for example reconstructing the thermal growth curve using the growth rate at each temperature.

Under balanced growth, we set that q = 0. Then:

q * = µ 1 (T ) µ 2 (T ) ρ(S) + Q 0 (7.7)
and so: Ẋ

X = µ 2 (T ) µ 1 (T )ρ(S) µ 1 (T )ρ(S) + µ 2 (T )Q 0 -D (7.8)
If nutrient is not limited (i.e. ρ(S) ≃ 1) and µ 1 (T )ρ(S) > µ 2 (T )Q 0 , then, the thermal growth curve of the microalgae species is mainly the result of µ 2 (T ) -D. However, if nutrient is limited (ρ(S) < 1) then the T opt of the thermal growth curve is modified by µ 1 (T ) and µ opt is affected too (fig. 7.1). This is an important result for the study of the Droop model in an evolutionary perspective, as well as for the comprehension of the coupled effects of nutrient and temperature on growth.

Evolutionary Model

General case

Now that the global stability of the positive equilibrium of system (M ) has been shown, we study system (M ) in the context of adaptive dynamics, introducing a mutant X mut with an adaptive trait a mut (i.e. a quantifiable trait that is likely to evolve) different from the resident trait a, with µ mut (a mut , T ) and µ(a, T ) [START_REF] Dieckmann | The dynamical theory of coevolution: A derivation from stochastic ecological processes[END_REF].

For further introduction to adaptive dynamics, see [START_REF] Dieckmann | A beginners guide to adaptive dynamics[END_REF]. To define the canonical equation of adaptive dynamics, i.e. the equation of the evolution of trait a [START_REF] Dieckmann | The dynamical theory of coevolution: A derivation from stochastic ecological processes[END_REF], we need to find the mutant growth rate (per capita) in the resident population at equilibrium, called invasion fitness f (a mut , a) (see eq. 2.4 for the complete expression of β(T ) and λ(T )).

Proposition 7.3.1 The invasion fitness for System (7.1) is given by:

f (a mut , a) = D λ mut λ β β mut -1 (7.9)
Proof: This results from the steady-state condition of the resident system, and from the hypothesis that the mutant is initially rare. We can thus replace S by its equilibrium value S * : 

f (a mut , a) = µ mut (a mut , T )ρ(S * ) -D ( 

Modelling the evolution of the optimal temperature trait

We choose to study the adaptive trait a = T opt , assuming that temperature will mainly affect the optimal conditions for growth. Because of the constraint (3.13) on T opt , we choose to study the case:

T > T min + T max 2 (7.11)
We calculate the selection gradient, which gives the direction of the selection, using (7.9):

∂f (a mut , a) ∂a mut amut=a = - β ′ (a) β(a) D (7.12) with β ′ (a) = -6a 2 + (6T + 2T max + 4T min )a + (-2T max -4T min )T (7.13)
We can deduce the canonical equation of the adaptive trait, that describes the evolution of T opt at the evolutionary time scale θ:

da dθ = -M p σ 2 X * D β ′ (a) β(a) (7.14)
where M p is the probability to be a mutant at each apparition, and σ is the mutation step.

We then search for the evolutionary singular strategy. We find that da/dθ = 0 for a * = T , which means that the optimal temperature trait tends to equal the environment temperature (Fig. 7.2 B). Note that the same results can be obtained with the Droop model presented in section 7.2.2 (not presented here for sake of brevity). We investigate the stability of the singular strategy examining the sign of the fitness invasion second order derivative. Proposition 7.3.2 a * is a Convergent Stable Strategy (CSS), which means that the singular strategy is attractive, and an Evolutionary Stable Strategy (ESS), which means that the resident a * cannot be invaded by another mutant.

Proof:

The following conditions are respected:

H1. ∂ 2 f (a mut , a) ∂a 2 mut amut=a=a * < ∂ 2 f (a mut , a) ∂a 2 amut=a=a * H2. ∂ 2 f (a mut , a) ∂a 2 mut amut=a=a * < 0 98 7.
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Indeed, we have:

∂ 2 f (a mut , a) ∂a 2 mut amut=a=a * = -D β ′′ β -2β ′2 β 2 ∂ 2 f (a mut , a) ∂a 2 amut=a=a * = D β ′′ β (7.15)
β ′ (a * ) = 0, and so it is sufficient to prove:

-D β ′′ (a * ) β(a * ) < 0 (7.16) Yet, we have β(a * ) = -(T -T min )(T -T max )(T min -T ) < 0 because T min < T < T max . Also, β ′′ (a * ) = 2T max + 4T min -6T . β ′′ (a * ) < 0 is equivalent to T > (2T min + T max )/3
which is true because of (7.11). Thus, (7.16) is true. H1 and H2 are verified.

Structural link between adaptive traits

In nature, it is possible that several adaptive traits evolve concurrently. By taking the adaptive trait a = T opt and considering that T min , T max and µ opt can evolve with a, the selection gradient becomes: Then, different cases can be assumed.

Case 1: T opt and T max are linearly linked. We have previously pointed out (section 4) that the strongest linear links between the cardinal temperatures are those existing between these two parameters:

T max = a 1 T opt + b 1 (7.18)
In expression (7.9), we replace T max by (7.18). Thus:

β ′ (a) = T 2 opt (3a 1 -6)+T opt (6T +4T min +2b 1 -4T a 1 )-4T T min -2T b 1 -T 2 min a 1 +2T T min a 1 (7.19) and: λ ′ (a) = -a 1 (T -T min ) 2 (7.20)
We search for the evolutionary singular strategy by setting eq.( 7.23) equal to zero. As for (7.14), we find that a * = T , and thus

T * max = a 1 T + b 1 (fig. 7.2 C
). This is an important 7.4 Fluctuating temperature result in the context of co-evolving species, because whether T max evolve or not, the thermal growth curve will differently affect the species fitness in its environment, and so its competition with other species or stains.

Case 2: accounting for all the linear links between cardinal temperatures. If T min is also linked to T opt according to eq. 4.1, then:

β ′ (a) = [(T -Topt)(Topt(-1 + a2)b2) -(TopT (-1 + a1)b1)(Topt -2T + b2 + a2Topt)](a2 -1) -(b2 + Topt(a2 -1))(Topt(-4 + 2a1 + 2a1a2) + 3T + b1 -2T a1 -T a2 + a1b2 + a2b1) (7.21) and λ ′ (a) = -a 1 (b 2 -T + a 2 T opt ) 2 -2a 2 (b 1 -T + a 1 T opt )(b 2 -T + a 2 T opt ) (7.22)
At the evolutionary equilibrium, we found again a * = T . Note that in this particular case, the thermal niche width can be kept constant.

Case 3: µ opt is linked to T opt (Eppley hypothesis and modified-Eppley hypothesis). In this case, on top of the linear links between cardinal temperatures, µ opt is linked to T opt according to a function g(T opt ), i.e. µ opt = g(a) (which can represent one of the hypotheses developed in section 5). Then:

∂f (a mut , a) ∂a mut amut=a = D g(a)(λ ′ (a)β(a) -β ′ (a)λ(a)) + g ′ (a)λ(a)β(a) λ(a)β(a) (7.23)
Surprisingly, the evolutionary equilibrium is different from T for the Eppley and modified Eppley equations; it was found numerically for the both hypotheses. This means that, even at constant temperature, T opt tends to be higher than T if the hotter is better hypothesis prevails. This could be a key result to explain why Cyanobacteria of the genus Synechoccocus sp. grown by [START_REF] Pittera | Connecting thermal physiology and latitudinal niche partitioning in marine synechococcus[END_REF] have experimental T opt much higher than the temperature at which they have been maintained during several years.

Fluctuating temperature 7.4.1 Ecological timescale

We now study the system (M ) in the context of fluctuating temperature:

T (t) = T inf if t mod τ ∈ [ǫ; τ 1 -ǫ[ T (t) = T supp if t mod τ ∈ [τ 1 + ǫ; τ -ǫ] (7.24)
with T inf < T supp . By applying the conservation principle assuming that the sum S + X has reached its asymptotic value S in , we have the equality S = S in -X. Thus, the system (M ) can be reduced to a one dimension differential equation: 7.25) where T (t) is given by Eq. (7.24). We define g(t, X) def = µ(T (t))ρ(S in -X) -D. We follow the same reasoning as [START_REF] Butler | A mathematical model of the chemostat with periodic washout rate[END_REF] and [START_REF] Butler | Predator-prey system with periodic coefficients[END_REF] who studied a similar Monod-type model, but with a time varying dilution rate D(t) instead, and a predator-prey system with periodic coefficients, respectively. Theorem 7.4.1 For D < min(µ(T)ρ(S in )), equation ( 7.25) has a unique nontrivial positive periodic solution ψ(t) which is globally orbitally asymptotically stable. Moreover, we have min s∈

Ẋ = [µ(T (t))ρ(S in -X) -D]X ( 
[0,τ ] A(s) ≤ ψ(t) ≤ max s∈[0,τ ] A(s) with A(t) := [D(S in + K) -µ(T (t))S in ]/(D -µ(T (t))
(which corresponds to the steady state biomass concentration for constant T ).

Proof: ∂g/∂X exists and is continuous for (t,

X) ∈ R 1 × R 1 + with R 1 + = {X ∈ R 1 : X ≥ 0}. Moreover, ∃A(t) > 0 ∋ [X -A(t)]g(t, X) < 0 ∀X > 0, X = A(t). Indeed, given D < min(µ(T)ρ(S in ), we have: [X -A(t)] g(t, X) < 0∀X > 0, X = A(t) (7.26)
Thus, Massera's theorem [START_REF] Massera | The existence of periodic solutions of systems of differential equations[END_REF] easily implies the existence of a periodic solution ψ(t) of (7.25) 

satisfying min s∈[0,τ ] A(s) ≤ ψ(t) ≤ max s∈[0,τ ] A(s). ψ(t)
is the unique solution of (7.25), given that X∂g(t, X)/∂X < 0 for all (t, X) ∈ R 1 × R 1 + . Indeed, we have:

X ∂g(t, X) ∂X = µ(T )X -K (S in -X + K) 2 (7.27) 
Because X > 0, K > 0, X∂g(t, X)/∂X < 0 is always verified. Following the same reasoning as [START_REF] Butler | Predator-prey system with periodic coefficients[END_REF], X∂g(t, X)/∂X < 0 implies that g(t, X) is strictly decreasing as a function of X, for X > 0, for all t. So, if two solutions ψ(t) and ψ 2 (t) exist, with ψ(t) < ψ 2 (t), it implies that ψ ′ (t)/ψ(t) = g(t, ψ(t)) > g(t, ψ 2 (t)) = ψ ′ 2 (t)/ψ 2 (t) for all t. Integrating this inequality over [0, τ ] leads to a contradiction which prove the uniqueness of ψ(t).

Using theorem 7.4.1, we have the following inequality with the periodic temperature (7.24):

D(S in + K) -µ(T inf )S in D -µ(T inf ) ≤ X(t) ≤ D(S in + K) -µ(T supp )S in D -µ(T supp ) (7.28) which means that DK µ(T inf ) -D ≤ S(t) ≤ DK µ(T supp ) -D (7.29)
If the time spent at each temperature is sufficiently long, then, when T = T inf (resp. T = T supp ), the substrate concentration converges towards its equilibrium S * inf = DK/(µ(T inf ) -D) (resp. S * supp = DK/(µ(T supp ) -D)). We assume that the state transition between S * inf and S * supp is negligible. From a biological point of view, this assumption implies that the growth rates at both temperatures are quite similar. As explained previously, we assume that the resident population reaches rapidly its equilibrium for each temperature. In the case with the adaptive trait a = T opt and considering constant T min and T max , we obtain:

           f (a mut , a) = D β(T inf ) β mut (T inf ) -1 if T = T inf f (a mut , a) = D β(T supp ) β mut (T supp ) -1 if T = T supp (7.30)
It is possible to use the average mutant growth rate in the resident population at steadystate [START_REF] Ripa | Mutant invasions and adaptive dynamics in variable environments[END_REF]:

f (a mut , a) = 1 τ τ 0 f (a mut , a; t) dt (7.31)
which is equivalent to:

f (a mut , a) = D β(a, T inf ) β(a mut , T inf ) τ 1 τ + β(a, T supp ) β(a mut , T supp ) τ -τ 1 τ -1 (7.32) 
We thus deduce the selection gradient:

∂ f (a mut , a) ∂a mut amut=a = D - τ 1 τ β ′ (T inf ) β(T inf ) - τ -τ 1 τ β ′ (T supp ) β(T supp ) (7.33)
and so the canonical equation of the adaptive trait with fluctuating temperature is:

da dθ = M p σ X * ∂ f (a mut , a) ∂a mut amut=a (7.34)
Equation ( 7.34) is not analytically tractable. We perform simulations of (7.34) to search for the evolutionary singular strategy. Result (Fig. 7.3 C) shows that, at steady, T opt does not converge to the average temperature T mean . This result still holds if we replace T max by a linear function of T opt (Fig. 7.3 B), even if a * is different. The asymmetric property of the thermal growth curve is probably the reason for such outcome. ∂φ(T, T opt ) ∂T

T =Topt-x < ∂φ(T, T opt ) ∂T T =Topt+x for all x > 0 (φ(T ) is asym- metrical) H3. ∂φ(T, T opt ) ∂T T =Topt+x < ∂φ(T, T opt ) ∂T T =Topt+x+y with y > x ≥ 0 (φ(T ) is con- cave on the interval [T opt , T max ]).
Then, under H1-H3:

dψ(T opt ) dT opt = 0 ⇒ T * opt ≥ T mean (7.35) 
with T mean = (T 1 + T 2 )/2.

Proof: We start with hypotheses H1-H3. Suppose now that:

T * opt < (T 1 + T 2 )/2 (7.36)
Consider that:

∆ 1 = φ(T * opt , T 1 ) -φ(T * opt + ǫ, T 1 ) (7.37) ∆ 2 = φ(T * opt + ǫ, T 2 ) -φ(T * opt , T 2 ) (7.38)
with ǫ > 0. According to H1,

∆ 1 ≃ ǫ dφ(T * opt , T ) dT T =T 1 (7.39) and ∆ 2 ≃ ǫ dφ(T * opt , T ) dT T =T 2 (7.40)

MODELLING THERMAL ADAPTATION IN MICROALGAE: AN ADAPTIVE DYNAMICS POINT OF VIEW

One can easily show that T 1 < T opt < T 2 and so it is possible to write T 1 = T opt -α with α > 0.

According to eq. 7.36, T 2 = T opt + α + θ, θ > 0.

According to H2:

|∆ 1 | = ǫ dφ(T * opt , T ) dT T =Topt-α < ǫ dφ(T * opt , T ) dT
T =Topt+α (7.41) According to H3,

ǫ dφ(T * opt , T ) dT T =Topt+α < ǫ dφ(T * opt , T ) dT T =Topt+α+θ = |∆ 2 | (7.42)
We thus have:

|∆ 1 | < |∆ 2 | (7.43)
It is possible to show that ∆ 1 > 0 and ∆ 2 > 0. In that case, after eq. 7.43:

φ(T * opt , T 1 ) -φ(T * opt + ǫ, T 1 ) < φ(T * opt + ǫ, T 2 ) -φ(T * opt , T 2 ) (7.44) 
And therefore:

φ(T * opt , T 1 ) + φ(T * opt , T 2 ) < φ(T * opt + ǫ, T 2 ) + φ(T * opt + ǫ, T 1 ) (7.45) 
Eq. 7.45 imply that T * opt is not the value for which ψ(T opt ) is maximum, and thus eq 7.36 is wrong. Thus, T * opt > (T 1 + T 2 )/2 and prop. 7.4.2 is verified (see fig . 7.4).

This is an important result for applying adaptive dynamics to asymmetrical growth curve. This result would no longer be available for pH variations for example, given that the effect of pH on growth is a symmetrical function [START_REF] Rosso | Convenient model to describe the combined effects of temperature and ph on microbial growth[END_REF]. It also implicitly implies that the more the curve is asymmetrical, the more T * opt is higher than T mean .

Evolutionary Branching conditions

Under particular conditions, Adaptive Dynamics predicts that evolution can converge to a specific singular strategy called 'branching point' where selection becomes disruptive, so that two strains move apart [START_REF] Metz | How should we define fitness for general ecological scenarios ?[END_REF]. The mutant can invade the resident and reciprocally, and both stably coexist.

We investigate the evolutionary dynamics of (7.3) by using a pairwise invasibility plot (PIP) (Fig. 7.5) [START_REF] Geritz | Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF]. This allows us to determine the stability of the singular strategy, studying graphically the sign of the mutant invasion fitness. For temperatures comprised between T inf = 20 T max = 40 • C, we find that there exists a branching point (fig. 7.5 A). Indeed, at this point, mutant and resident can mutually invade in such a way that two strains separate. For a range of values around the previous ones, we observe that the singular strategy bifurcates in three singular strategies (fig. 7.5 B, C, D). In fig. 7.5 D, there is still a branching point, which seems to allow a strong separation between strains because of the large area of positive invasion fitness.

Parameters Unit

T min , minimal temperature for growth 4 • C T max , maximal temperature for growth 40 To confirm the results found previously, we perform a simulation of an evolutionary branching. In line with [START_REF] Mirrahimi | Evolution of species trait through resource competition[END_REF], we consider a model where the adaptive trait a becomes a continuous trait:

       ∂ t X(a, t) = X(a, t)[µ(a, T )S(t) -D] + ǫ∆X(a, t) S(t) =
DS in D + µ(a, T )X(a, t) da (7.46) where X(a, t) is the species density with trait a = T opt , S(t) is the quasi-static approximation of resource dynamics, ǫ is the mutation rate. We use the parameters listed in Table 7. 1. Fig. 7.6 shows that an evolutionary branching really occurs. Two general morphs with two distinct T opt appear and stabilize.

Conclusion

We have proposed a simple model of temperature effect on microalgae growth based on the model developed by [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF]. We used it in an evolutionary perspective thanks to the adaptive dynamics. We found that, under constant temperature, the optimal temperature tends to equal the environmental temperature in different scenarios, if T min and T max are fixed or if they are linearly linked to T opt . However, as soon as µ opt is linked to T opt , then the hotter is better hypothesis (at least on a given interval) induced that T * opt > T . We then studied the model under a simple fluctuating temperature signal. We showed that a stable periodic solution exists. The evolutionary study reveals that T * opt is always

Conclusion

higher than or equal to the average temperature T mean . At evolutionary time scale, the fluctuating temperature allows strains to separate if T min , T max and µ opt are fixed, and evolutionary branching occurs. We simulated the strain separation and found results consistent with our theoretical approach. This may be a first step to understand how species coexist under fluctuating temperature. It could serve to find a criterion for selecting species with the highest growth rate under particular temperature conditions, which is of key interest for microalgae outdoor production.

• At constant temperature, the optimal temperature T opt tends to equal the ambient temperature regardless of the underlying hypotheses on the cardinal temperatures.

• If µ opt is linked to T opt (Eppley hypothesis and modified Eppley hypothesis), then the evolutionary equilibrium T * opt is always higher than the ambient temperature T .

• Under fluctuating temperatures, T opt is always higher than or equal to the average temperature. This is enhanced by the modified Eppley hypothesis.

• Finally, if T min and T max are fixed and temperature is varying, strain separation through evolutionary branching can occur.

8. SELECTING THERMAL TOLERANT STRAINS OF THE HAPTOPHYCEAE TISOCHRYSIS LUTEA strains with enhanced thermal niche width. Since then, similar evolutionary experiments where temperature was driving the selective pressure have been carried out with UO. Most of the studies took place at a constant temperature to test the adaptation capability in a warmer world [START_REF] Guyot | Extremely rapid acclimation of escherichia coli to high temperature over a few generations of a fed-batch culture during slow warming[END_REF][START_REF] Julou | Evolution, competition and cooperation in bacterial populations[END_REF]. Authors were searching for the key physiological mechanisms leading to temperature adaptation [START_REF] Caspeta | Altered sterol composition renders yeast thermotolerant[END_REF] and ways to infer a general theory of thermal adaptation [START_REF] Kingsolver | The well-temperatured biologist[END_REF][START_REF] Knies | Hotter is better and broader: thermal sensitivity of fitness in a population of bacteriophages[END_REF] (see section 1). These approaches were also used in biotechnology to enhance the productivity of some strains of industrial interest [START_REF] Guyot | Surviving the heat: heterogeneity of response in saccharomyces cerevisiae provides insight into thermal damage to the membrane[END_REF][START_REF] Wei | A thermotolerant acetobacter pasteurianus t24 achieving acetic acid fermentation at high temperature in self-adaption experiment[END_REF].

In phytoplankton, thermal adaptation experiments are recent and mostly dedicated to the study of the global warming effect [Huertas et al., 2011, Reusch and[START_REF] Reusch | Experimental evolution meets marine phytoplankton[END_REF]. Using ratchet protocols, these experiments proved that microalgae and cyanobacteria can indeed adapt in several months to (constant) temperatures which were initially lethal [Costas et al., 2014a,b, Huertas et al., 2011]. They also highlighted that this adaptation is preceded by phases of physiological acclimation and selection of pre-adapted individuals.

Here, we present the results of the selection experiment carried out with fluctuating temperatures by Bonnefond et al. [subm.]. Realized in chemostat, either in fed-batch mode or in turbidostat, the experimental conditions insure that nutrients were not limiting and that individuals with the highest average growth rate were selected in stressing conditions [START_REF] Masci | Continuous selection of the fastest growing species in the chemostat[END_REF]. We analyze the result by re-constructing the competition and the adaptation story and try to represent the thermal evolution using the adaptive dynamics theory.

Selection experiment in controlled systems

Summary of the experiment

The selection experiment was performed in two controlled systems, a chemostat in fedbatch mode (i.e. with periodical washout rate) and a turbidostat called 'selectiostat '(see section Material and Methods 2. 1 and Bonnefond et al. [subm.] for more details). The phytoplankton strain used was derived from the Haptophyceae Tisochrisis lutea (CCAP 927/14) previously named Isochrysis galbana clone Tahiti [START_REF] Bendif | On the description of tisochrysis lutea gen. nov. sp. nov. and isochrysis nuda sp. nov. in the isochrysidales, and the transfer of dicrateria to the prymnesiales (haptophyta)[END_REF]. This strain (CCAP 927/17, called W2X here) resulted from a mutation/selection procedure, [START_REF] Bougaran | Enhancement of neutral lipid productivity in the microalga isochrysis affinis galbana (t-iso) by a mutation-selection procedure[END_REF] which enhanced its capability to store lipids. Indeed, it produced two times more neutral lipids under nitrogen starvation, without significant modification of the maximum growth rate in nitrogen replete conditions.

In the two cultures, a daily temperature cycle was applied consisting in 8 hours at low temperature and 16 hours at high temperature while the average temperature was maintained at 28 • C. Each cycle was repeated at least for one week, and the cycles were elaborated to be progressively more selective (see fig. 8.2). If the growth rate was positive, the next cycle was started. If not, cultures stayed in the same cycle. The experiment was carried for 293 days with 10 cycles. In the last cycle, temperature varied between 12 • C and 36 • C.

Main results

The final strains were called S-Turb and S-Fb for the turbidostat and the fed-batch cultures, respectively. Strains' final thermal tolerance called θ T urb and θ F b was determined using the TIP calibration device developed by Marchetti et al. [2012] (fig. 8.1) and the Bernard&Rémond model. Results showed that S-Turb and S-Fb have broader thermal niche width (11% and 22% more, respectively), a higher T opt (1.4 • C and 2.4 • C higher) and a higher µ opt (10 % higher) than the initial strains W2X [Bonnefond et al.,subm.] (fig. 8.1 and table 8.1). Bonnefond et al. [subm.] insisted on the stronger effect of cold temperatures on adaptation/selection. The error interval correspond to the mean ± standard deviation determined by a jackknife analysis as in [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF].

Strain

T min ( Bonnefond et al. [subm.] inferred that the experiment was split into three parts (fig. 8.2): first, from cycle 1 to cycle 5, T. lutea physiologically acclimated to the temperatures applied. For example, growth rate in turbidostat was higher than expected during these cycles because microalgae are synchronized by the temperature temporal periodicity [START_REF] Bonnefond | Temperature: a key parameter in microalgae biochemical mechanisms[END_REF]. Second, from cycle 6 to cycle 8, individuals with preadaptive mutations were selected. This was considered to be pure selection, only based on competition. Third, from cycle 8 to cycle 10, adaptation was supposed to occur, resulting from apparition of new mutants (fig. 8.2). The different points in cycle 9, for example, corresponded to a gradual increase of the growth rate, possibly corresponding to adaptation.

• C) T opt ( • C) T max ( • C) µ opt (d -1 ) W2X (θ W 2X ) 14.8 ± 1 26.3 ± 0.5 35.0± 0.5 1.1 ± 0.1 S-Turb (θ T urb ) 12.4 ± 1 27.7 ± 0.5 34.9 ± 0.2 1.2 ± 0.1 S-Fb (θ F b ) 11.6 ± 2.5 28.8 ± 1 36.2 ± 2 1.2 ± 0.1
We compared the theoretical thermal tolerance of strains S-Turb and S-Fb (using the Bernard&Rémond model parameters obtained by Bonnefond et al. [subm.]) to the growth rates measured during each cycle in each culture. We used the cardinal temperature values provided by the TIP experiment, performed several months after the end of the selection experiment. We neglected acclimation to temperature and assumed that growth instantaneously acclimated to a new temperature. We therefore simply computed the growth rate as follows, assuming that the transition phase between T low and T high was equivalent to one hour at average temperature:

μth = τ 1 24 µ(T low ) + τ 2 24 µ(T high ) + 1 24 µ(T average ) (8.1)
where T average is equal to 28 • C and with τ 1 = 7.5h and τ 2 = 15.5h. The model for strain S-Fb seems coherent (R 2 = 0.714, average error equal to 28.63%) even if gradual 

) Growth rates of the different strains during each cycle of the experiment -Data points appear in blue and red for the turbidostat and the fed-batch cultures respectively. The black points correspond to the average theoretical growth rates for S-Turbi and S-Fb (corresponding to μth ). The green points correspond to the theoretical growth rate of the initial strain W2X. The blue lines on the top figure represent the temperatures daily applied to the cultures [Bonnefond et al., subm.].

S-Fb S-Turbi

Modelling selection during the experiment

is the weight associated to cycle i. The choice of a weighted SSR is motivated by the fact that we want to characterize the final strains, which have progressively emerged (w(i) is increasing form 0 to 1). It is worth noting that the practical identifiability of eq. 8.2 is not guaranteed because θ is a vector of 4 parameters while the experimental data set is scarce. The optimization was thus successively done by fixing three parameters and allowing only one to change. We then did the same for the cardinal temperatures taken two by two and we used each identified cardinal temperature set to initiate the 3 parameters θ where only µ opt is fixed (see table 8.2). Finally, we identified the two parameters θ under different possible assumptions: i)The thermal niche width is kept constant and µ opt and T opt can change, ii)The thermal niche width is kept constant and µ opt is linked to T opt according to eq. 5.1 (corresponding to the modified Eppley curve) for Haptophyta and Ochrophyta grouped together, iii)The thermal niche width is kept constant and µ opt is linked to T opt according to the Eppley equation. For the two last approaches, the link between µ opt and T opt is adapted to the value of µ opt at T opt for the strain W2X (using a proportionality factor equal to 0.765%), assuming that the growth conditions are not perfectly optimal.

Results (table 8. 2 and fig. 8.3, 8.4, 8.5, 8.6) show that, firstly, the identification with only 1 parameter is poor compared to the other identifications (fig. 8.3 and 8.4). This simple observation points towards the evidence that during the selection experiment, individuals with at least modification of two thermal parameters have been selected. When the three cardinal temperatures can simultaneously change, T min tends to be very small. This is consistent with the experimental observations that the physiology of the microalgae (lipid structure) indicates an acclimation to low temperatures. The results obtained with the 3 cardinal temperatures are close to that obtained when calibrating only T min and T max (fig. 8.5). This may indicates that these two cardinal temperatures are the most important in the thermal selection process if µ opt is fixed. Finally, the result obtained with the modified Eppley hypothesis (method 7) gave the best results, comforting the idea that the hypothesized links between the thermal parameters makes sense. However, method 8 (Eppley curve) gives the nearest results, with higher µ opt .

A possible justification for the difference between θT urb , θF b and θ T urb , θ F b is that the strains continued to drift during their 6 months at 23 • C before the TIP experiment. We conjecture that the thermal performance of the enhanced strains has been altered during this period. Moreover, this method with constant thermal parameters fails to represent the gradual modification of the growth rates along each cycle. To get further into selection, we considered a simple competition model. 

Competition between two thermal phenotypes

The microalgal population variability can be described by a sum of polymorphic subpopulations competing cycles after cycles. As a first approach, we studied the competition between two sub-populations with two different phenotypes denoted x 1 and x 2 associated to growth rates µ 1 (T ) and µ 2 (T ), respectively. We considered the following dynamical system: .5: Re-identified strains using method 5 -Data points appear in blue and red for the turbidostat and the fed-batch cultures respectively. The black points correspond to the average theoretical growth rates for θT urb (A) and θF b (B) with method 5 (see table 8.2). C and D correspond to the same identification but with parameters T min , T max . Identification is done after the grey part. Bars represent minimal and maximal growth rate in each cycles. ) Figure 8.6: Re-identified strains using method 7 -Data points appear in blue and red for the turbidostat and the fed-batch cultures respectively. The black points correspond to the average theoretical growth rates for θT urb (A) and θF b (B) with method 7 (see table 8.2). Identification is done after the grey part. Bars represent minimal and maximal growth rate in each cycles. experienced during the selection experiment and, after that, the temperature of 23 • C experienced during 6 months before the TIP. We finally took into account this final TIP (see fig. 8.7). Set z = x 2 /x 1 in Equations (8.3). Then: (8.4) and so: z(t) = z(0)e ∆µ(T )t (8.5)

ẋ1 = [µ 1 (T ) -D(t)]x 1 ẋ2 = [µ 2 (T ) -D(t)]x 2 (8.
ż = [µ 2 (T ) -µ 1 (T )]z = ∆µz
We computed ∆µ(T ) from the daily average difference between competitors, ∆μ(T ) Contrary to section 8.3.1.1, we account for the detailed temperature history. To avoid practical identification problems, we reduced the parameter numbers from 9 to 3 by considering that the thermal niche width is constant, that T max is linearly linked to T opt and that µ opt follows a modified Eppley curve (in the same way as section 8. 3.1.1). To ensure that none of the competitors are never extinct, we saturated the minimum value of z to 10 -10 . Results (table 8.3 and fig. 8.8) show that, for both cultures, an initial strain (corresponding here to x 1 ) is solely responsible for the W2X TIP response and that a final strain (corresponding here to x 2 ) is also, in the same way, only responsible for the final TIP response. The invasion of the final strain is rapid (40.5 days and 32.5 days for turbidostat and fed-batch cultures, respectively to reach z = 10 2 ). It takes place during the first cycle of the selection experiment (constant temperature of 28 • C). Experimentally, we observe an increase of growth rate during cycle reiterations (cycle 8 and 9), which is probably due to the emergence of a new strain. From the simulation, we can infer that the final strain was not present initially (otherwise, it would have emerged before the last cycles). During the storage period carried after the selection experiment with a constant temperature applied for 6 months, the z ratio x 1 /x 2 tends to increase again, but the ∆µ(T ) is too low to insure that the initial strain x 1 can replace the strain x 2 . Additional simulations indicate that, in these constant conditions, it would take 253 days and 287 days for x 1 in the turbidostat and fed-batch cultures respectively to overcome x 2 (starting from z = 10 -10 and with parameters as specified in table 8.3).

The two competitors method has clear limitations since it cannot take into account a wide initial diversity and thus poorly represents the gradual selection assumed to take place in the cultures. A competition model with n competitors would be more accurate, but its calibration would be very tricky. Moreover, to represent adaptation, we must take into account mutants apparition. In this perspective, we used the adaptive dynamics theory. Table 8.3: Thermal parameters of two-subpopulations competing (corrseponding in average to strain S-Turb or strain S-Fb). The initial parameters which do not change appear in gray.

Parameters identified Strain Population Tmin

( • C) Topt ( • C) Tmax ( • C) µopt (d -1
) R 

M T urb : Ṡ = D(t)(S in -S) -µ(T (t))ρ(S)X Ẋ = µ(T (t))ρ(S)X -D(t)X (8.6)
In the turbidostat mode, D is automatically adjusted to the growth rate to maintain a constant biomass:

D(t) = µ(T (t))ρ(S) (8.7)
where T (t) is time varying according to eq. 7.24. In the turbidostat mode, the microalgae biomass X is supposed to reach the consign biomass X co . Eq. 8.7 insures that Ẋ = 0. It is thus possible to find the following positive equilibrium:

S * = S in -X co X * = X co (8.8)
This equilibrium is stable thanks to a dedicated control approach to satisfy equation (8.7). Thus, we can use system (M T urb ) in an evolutionary perspective using the adaptive dynamics theory. Based on the same method as in section 7.4.2, we can define the invasion fitness of a mutant with trait a mut in the resident population with trait a at equilibrium, averaged over a temperature cycle:

fT urb (a mut , a) = 1/τ Similarly, consider the following system: (8.11) We assume that the invasion fitness is the same as in the turbidostat culture.

M F b : Ṡ = D(t)(S in -S) -µ(T (t))ρ(S)X Ẋ = µ(T (t))ρ(S)X -D(t)X

Evolutionary dynamics

Eq. 8.10 can be used to study the evolutionary dynamics of the considered adaptive trait, here a = T opt . Here, we assume a constant thermal niche width equal to that of the W2X strain; T min and T max are thus linearly linked to T opt as in eq. where M p is the probability to be a mutant at each apparition, and σ is the mutation step. We simulated eq. 8.12 and 8.13 in the real temperature conditions of the selection experiment. We calibrated the value of the product M p σ on experimental data using the Sum of Squared Residual criterion and the matlab function fminsearch. Results (fig. 8.9 and 8.10) show that the evolutionary model correctly matches the growth rate dynamics (mean error equal to 10.94% and 14.32% respectively, including the TIP experimental points). With this model, the gradual increase within a selection cycle is represented (fig.

8.9 B and 8.10 B). Taking into account the slide effect related to the 6 months of storage at 23 • C, we are able to reproduce the final results of the TIP for both strains S T urb and S F b (fig. 8.9 C and 8.10 C). Interestingly, at the end of the selection experiment (i.e. day 292), the strains obtained for the turbidostat and fed-batch modes were apparently more thermoresistant at high temperatures and had a higher µ opt than S-Turb and S-Fb, equal to 1.327 d -1 and 1.325 d -1 respectively (T opt =28.98 • C and T opt =28.97 • C) (fig. 8.9 C and 8.10 C). But this feature was lost during the conservation period.

The hypothesis of a constant thermal niche width during adaptation is not fully coherent with the thermal parameters obtained for S-Turb and S-Fb. This is especially related to the poor knowledge we have of how T min evolution is affected by temperature in microalgae. To better represent the evolutionary dynamics of T. lutea, we replaced a 2 and b 2 by the interpolation between the results found for W2X, S-Turb and S-Fb, i.e. a 2 = -1.310, b 2 = 49.021. Simulations give a mean error equal to 1.53% and 3.81% for the turbidostat and the fed-batch, respectively, arguing towards a global increase of the thermal niche width during the experiment.

It is worth noting that adaptive dynamics assumes that the mutant invasion is fast enough to be negligible. In section 8.3.1.2, we have shown that a strain x 2 can rapidly replaces another resident strain x 1 if the ratio x 1 /x 2 is not too low, i.e. x 1 /x 2 < 10 3 . Additional calculations show that a mutant x 2 with a thermal parameter set equal to θ F b would totally replace a resident x 1 with a thermal parameter set equal to θ W 2X in 73 days during cycle 8 if initially x 1 /x 2 = 10 8 (i.e. total replacement is considered up to x 1 /x 2 < 10 -2 ). Such timescale represents 25% of the selection experiment duration and is not negligible. Moreover, adaptive dynamics only considers mutation/selection 

Evolutionary equilibrium

It is very likely that microalgae did not reach the evolutionary equilibrium even at the end of the selection experiment. We looked at the evolutionary equilibrium that microalgae would have reached if we had waited for a sufficient time in the condition of cycle 9. Results (fig. 8.11) show that starting from W2X and using parameters M p and σ found in section 8. ). This prediction is probably overestimated, but highlights a potential gain for a longer experiment.

Conclusion

We proved that the selection experiment did produce thermally enhanced strains. We showed that it resulted from a combination of competition of pre-adapted individuals and adaptations. Separating clearly these two phases is however very tricky. Moreover, the permanent acclimation of the cells to the fluctuating temperature makes the picture more complex, and an additional model to quantify this effect would help to decipher the effect of these three mechanisms. The analysis of the experimental results reveals that the relationship between the thermal parameters stated in this thesis seems to be valid in Tisochrysis lutea. However, T min appears to be more flexible from an evolutionary point of view. A more accurate protocol to determine T min would be required to explore more extensively the consequence of adaptation on the response at low temperatures.

• We carried a selection experiment with fluctuating temperatures and obtained thermally enhanced strains

• We were not able to distinguish between competition/selection stricto sensu and evolution

• However, evolution did occur and the adaptive dynamics model well captures the evolutionary trajectories

• The link between the thermal parameters are coherent, but we failed to represent the 'autonomous' evolution of T min

• This is a first step for designing optimal experiment for directed evolution
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Modelling the effect of temperature on phytoplankton growth across the global ocean Contributors: Ayata, S. D., Mairet, F., LeGuennec, V., Sciandra, A., Bernard, O.

Introduction

In the oceans, phytoplankton are the input point of inorganic carbon in the trophic net thanks to photosynthesis and form the base of marine food web. They play a key role in biogeochemical cycles at global scale [START_REF] Falkowski | Biogeochemical controls and feedbacks on ocean primary production[END_REF]]. Their activity depends on many factors, primarily light, nutrient availability and temperature [START_REF] Falkowski | Aquatic photosynthesis[END_REF]. In the context of global warming, predicting how the ocean temperature increase will affect marine phytoplankton is a challenging issue. Since the past decade, scientists have tried to figure out how phytoplankton would deal with a warmer world. First of all, [START_REF] Huertas | Warming will affect phytoplankton differently: evidence through a mechanistic approach[END_REF] (and later Costas et al. [2014b] and Costas et al. [2014a]) carried warming experiments in batch cultures of 12 phytoplankton species belonging to 4 major phytoplankton groups. Their results highlight phytoplankton capacity to adapt to constant warm temperatures, particularly for species living in areas with high temperatures fluctuations. The need for experimental evolution became an evidence [START_REF] Reusch | Experimental evolution meets marine phytoplankton[END_REF]. Later, [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF] analysed a vast database of phytoplankton thermal growth curves, comparing their thermal tolerance to their extraction site in the ocean. They showed that variation in phytoplankton temperature optima over latitude is linked to a gradient in mean ocean temperature. They tried to reconstruct the observed thermal repartition using the adaptive dynamic theory based on a competition model between phytoplankton species. The main result of this study is the supposed high sensitivity of tropical and polar strains to warming because of their close maximal temperature tolerance to ambient temperature.

The race to phytoplankton study in a warming world was then launched. [START_REF] Toseland | The impact of temperature on marine phytoplankton resource allocation and metabolism[END_REF] and [START_REF] Yvon-Durocher | Temperature and the biogeography of algal stoichiometry[END_REF] tried to predict how warming would modify phytoplankton stoichiometry, particularly the N:P ratio, and how it would affect biogeochemical cycles. [START_REF] Dutkiewicz | Winners and losers: ecological and biogeochemical changes in a warming ocean[END_REF] modelled future 'winners and losers', mostly resulting from the effect of temperature on nutrient availability. Padfield et al. [2015b] got insight into phytoplankton thermal adaptation by submitting the well known Chlorella vulgaris Chlorophyceae species to a 2 • C warming above its basic upper thermal limit. They emphasized the role of carbon-use efficiency during adaptation and the high speed of adaptation (less than 100 generations). Finally, a community-wide publication aimed to standardise phytoplankton thermal study in the laboratory for future modelling and prediction of eco-regional phytoplankton changes [START_REF] Boyd | Marine phytoplankton temperature versus growth responses from polar to tropical waters outcome of a scientific communitywide study[END_REF]. In line with [START_REF] Boyd | Marine phytoplankton temperature versus growth responses from polar to tropical waters outcome of a scientific communitywide study[END_REF], a thermal evolution experiments was carried by [START_REF] Listmann | Swift thermal reaction norm evolution in a key marine phytoplankton species[END_REF] on the key phytoplankton species Emiliana huxleyi.

In 2014, [START_REF] Marañón | Resource supply overrides temperature as a controlling factor of marine phytoplankton growth[END_REF] were still rather sceptical and claimed that 'Biogeographic patterns in phytoplankton size structure and growth rate are independent of temperature and driven mainly by changes in resource supply'. However, the methods leading to this conclusion are controversial (see section 5.2.3). Moreover, these results are in contradiction with [START_REF] Reuman | A metabolic perspective on competition and body size reductions with warming[END_REF] who modelled competition for nutrient in concordance with temperature and cell size in phytoplankton. [START_REF] Chen | Patterns of thermal limits of phytoplankton[END_REF] deeply confirmed the effect of temperature on phytoplankton repartition at global ocean scale and the implication of warming, extending the [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF] database.

MODELLING THE EFFECT OF TEMPERATURE ON PHYTOPLANKTON GROWTH ACROSS THE GLOBAL OCEAN

where K is a half-saturation coefficient. We consider that growth, in term of carbon fixation, is fast compared to temperature fluctuations, i.e. ǫ is a small positive parameter. It is possible to analyze system (M ǫ ) using the Singular Perturbation Theory [START_REF] Tikhonov | Systems of differential equations containing a small parameter multiplying the derivative[END_REF]. The fast dynamics, where T (t) = T (0), corresponds to the classical chemostat model:

Ṡ = f S (S, X, T (t)) Ẋ = f X (S, X, T (t)) (9.5)
System (9.5) has a unique positive globally asymptotically stable equilibrium (S * (T (t)), X * (T (t))) ∈ R 2 + (see e.g. Grimaud et al. [2014a]), where:

S * (T (t)) = KD µ(T (t)) -D X * (T (t)) = (S in -S * (T (t))) (9.6)
The slow dynamics is given by:

M 0 :        S * (T (t)) = KD µ(T (t)) -D X * (T (t)) = (S in -S * (T (t))) Ṫ = ǫf T (t), T (0) = T 0 (9.7)
The reduced system (M 0 ) admits a unique solution T * (t):

T * (t) = T 0 + ǫ ω sin(ωt) (9.8) Tikhonov's theorem [START_REF] Tikhonov | Systems of differential equations containing a small parameter multiplying the derivative[END_REF] allows us to conclude:

Proposition 9.2.1 For sufficiently small values of ǫ > 0, system (M ǫ ) admits a unique positive solution (X ǫ (t); S ǫ (t); T ǫ (t)) on [0; τ ], where 0 < τ < +∞. Moreover:

lim ǫ→0 S ǫ (t) = S * (t) lim ǫ→0 X ǫ (t) = X * (t) (9.9)
From a biological point of view, prop 9.2.1 shows that phytoplankton populations are always at equilibrium because growth is faster than long-term temperature variations. Assuming small annual temperature fluctuations of amplitude δ, we obtain ǫ = δω << 1. The long-term (i. e. annual) dynamics of the algal biomass can thus be approximated by:

S * (T (t)) = KD µ(T (t)) -D X * (T (t)) = (S in -S * (T (t))) T (t) = T 0 + δ sin(ωt) (9.10)

Evolutionary model using Adaptive Dynamics theory

We now study system (M ǫ ) in an evolutionary perspective using the adaptive dynamics theory [START_REF] Dieckmann | The dynamical theory of coevolution: A derivation from stochastic ecological processes[END_REF]. To do so we allow one parameter to evolve, called the adaptive trait, here T opt . One mutant X mut appears in the resident population at equilibrium with a different value of T opt , T mut opt :

M ǫ mut :            S = S * (T (t), T opt ) X = X * (T (t), T opt ) Ẋmut = f Xmut (T (t), T opt , T mut opt )X mut = [µ mut (T (t))ρ(S) -D]X mut Ṫ = ǫf T (t) (9.11)
Assuming that the mutant is initially rare, we compute the mutant growth rate in the resident population, f Xmut (T (t), T opt , T mut opt ). Depending on the sign of f Xmut (T (t), T opt , T mut opt ), the mutant can invade and replace the resident or not. Prop 9.2.1 insures that resident population is actually at equilibrium during mutant invasion. Here, because T is a periodically time varying variable of period τ , we use the time average mutant growth rate [START_REF] Ripa | Mutant invasions and adaptive dynamics in variable environments[END_REF]:

< f Xmut (T opt , T mut opt ) >= 1 τ τ 0 f Xmut (T (t), T opt , T mut opt ) dt (9.12)
We then compute the selection gradient g(T opt , T mut opt ) which gives the selection direction (e.g. growing or decreasing values of T opt are selected through evolution). The selection gradient is defined as the partial derivative of the time average mutant growth rate with respect to T mut opt evaluated in T mut opt = T opt :

g(T opt , T mut opt ) = ∂ < f Xmut (T opt , T mut opt ) > ∂T mut opt T mut opt =Topt (9.13)
At the evolutionary equilibrium, the selection gradient is equal to zero:

∂ < f Xmut (T opt , T mut opt ) > ∂T mut opt T mut opt =Topt=T * opt = 0 (9.14)
The evolutionary outcome of the model is thus given by the selection gradient. However, it is possible to simplify the way to find T * opt in order to decrease the numerical computation time: If T opt = T * opt (evolutionary equilibrium), eq.( 9.16)=0. Thus:

∂ < ln(µ(T(t), T * opt )) > ∂T opt = 0
which is equivalent to say that:

T * opt = arg max Topt < ln(µ(T(t), T opt )) >
We formally show that finding the evolutionary equilibrium is equivalent here to a simple optimization problem. This result revoices the question addressed by [START_REF] Metz | When does evolution optimize?[END_REF] in the adaptive dynamics framework: 'when does evolution optimize ? '. In particular, [START_REF] Metz | When does evolution optimize?[END_REF] showed that 'a pure optimization approach holds water only when the eco-evolutionary feedbacks are of a particularly simple kind ', and we do believe that this is the case here.

Global ocean scale simulations 9.3.1 Evolutionary model with realistic temperature signal

We now study phytoplankton thermal evolution at global ocean scale. Let us consider an ubiquitous phytoplankton species which has evolved locally at each sea surface location (i, j) in response to environmental pressure. In a first assumption, each point of latitude/longitude (i, j) can be viewed as a chemostat with growth equations given by eq. (9.3). Assuming that the sea surface temperature is a proxy of the temperature experienced by the phytoplankton cells, we use a realistic temperature signal T (t, i, j) from in situ observations. The sea surface temperature data for the global ocean have been downloaded from the European short term meteorological forecasting website (http://apps.ecmwf.int). The data cover the years 2010 to 2012 and the spatial resolution is 1 • in latitude and longitude with a temporal resolution of 3 hours.

We calculate for each time step (3 hours) at a given location, the value of the function φ(T (t, i, j), T opt ), depending on the perceived in situ temperature T (t, i, j) and the optimum growth temperature T opt . We then calculate the average of the integrated function over 3τ = 3 years (2010, 2011, 2012):

ψ(T opt ) = 1 3τ • 3τ 0
ln(µ(T(t, i, j), T opt ))dt (9.18)

Global ocean scale simulations

Using prop 9.2.2, we search for the evolutionary optimum temperature T * opt achieving the maximum of eq. (9.18).

Global scale simulations

Global scale simulations for eq. 9.1 (fig. 9.1 A) show that for any range of temperature experienced by phytoplankton, the evolutionary temperature T * opt at a given place (i, j) is always higher or equal to the average temperature T (i, j). In the tropical zone, where the average temperature is high (near 26 • C), T * opt (i, j) ≃ T (i, j). In temperate and coastal zones, where the average temperature is between 10 and 20 • C, T * opt (i, j) > T (i, j). This corresponds to areas where the temperature range max(T(t)) -min(T(t)) is higher than 10 • C (Fig. 9.1 C). We suppose that due to the thermal growth curve asymmetrical shape, it is more suitable to have higher T opt when temperature fluctuates. This assumption is in good agreement with [START_REF] Kimura | Growth temperatures of archaeal communities can be estimated from the guanine-plus-cytosine contents of 16s rrna gene fragments[END_REF] observations for Archae; these organisms live near their maximum temperature, with a T opt much higher than the environmental T .

Simulations with eq. 9.2 (Eppley hypothesis) (fig. 9.1 B) show similar results, however the evolutionary temperature is always higher than the average temperature (for about 6 • C).

Comparison with experimental data

Using model (9.1), we determined the cardinal temperatures ( Tmin , Topt , Tmax ) for the 194 phytoplankton strains studied by [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF] thanks to growth rate versus temperature data sets as detailed in chapter 2. The calibration was coupled to a Jackkniffe statistical test evaluating the confidence interval of the parameters as in [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF]. We then only considered strains associated with data sets providing a confidence interval smaller than 5 • C for the estimated Topt , i. e. 57 strains.

Since the geographical coordinates of the isolation of the 194 stains are known, it is possible to compare Topt to in situ T (i, j) (fig. 9.2 A). Results support the fact that T opt is much higher than T (here the maximum difference is 10 • C) in temperate areas and almost the same as T in tropical and polar areas. We simulate the eq. 9.1 and eq. 9.2 at the isolation coordinates of the 57 selected strains (fig. 9.2 B, green points). Simulations with eq. 9.1 give the same non-linear trend previously stated (fig. 9.2 B, blue points) whereas simulations with the Eppley hypothesis mostly capture a more flattened relationship between T * opt and T (fig. 9.2 B, red points). We define ∆ = T * opt -T . For simulations with eq. 9.1 representing the horizontalshift hypothesis, we obtain ∆ ≥ 0. Here, it is worth noting that ∆ can be equal to zero due to the assumption that µ opt does not depend on T opt . This is particularly true in tropical zones, which is in accordance to experimental data. Quite the opposite, ∆ is always higher than 6 • C for simulations with the Eppley hypothesis and does not allow to match the points situated in tropical zones. Moreover, the Eppley simulation gives a rather linear relationship between T * opt and T (t). Results obtained with eq. 9.1 (horizontal-shift hypothesis) are therefore more coherent with 9.3 Global ocean scale simulations [START_REF] Chen | Patterns of thermal limits of phytoplankton[END_REF][START_REF] Thomas | Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits[END_REF] and illustrate perfectly [START_REF] Boersma | Projecting effects of climate change on marine systems: is the mean all that matters?[END_REF]: 'Projecting effects of climate change on marine systems is the mean all that matters ?'

We then compare predicted T * opt to observed Topt (fig. 9.3). For simulations with the horizontal-shift hypothesis, mean error calculated as |T * opt -Topt |/ Topt is 21.7% whereas for Eppley hypothesis simulation, mean error is 25.5%. Error is thus quite similar for the two models, but the Eppley simulation overestimates T * opt . The accuracy of the model predictions, despite the model simplicity, is really surprising. Thus, direct temperature effect must drive evolution at global scale, contrary to what is claimed by [START_REF] Marañón | Resource supply overrides temperature as a controlling factor of marine phytoplankton growth[END_REF].

There are some unavoidable biases in our approach. The first one is due to the age of the microalgae cultures which have been used to provide the data. In general, the measurements were not performed right after in situ isolation. It results that the strains may have evolved, due to the temperature where the strains are stored in the culture collection. Second, we only consider the effect of temperature. Effects of light and nutrients which also strongly drive µ opt are not taken into account. Finally, we use sea surface temperature. Phytoplankton can migrate and are advected along the water column, and experience temperatures different from the surface.

Despite these biases, we estimated with a certain accuracy the T * opt , e.g. for the cyanobacteria group, which lives in areas where the average temperature is high. It is thus possible that the sea surface temperature, where light is available, is actually a good proxy to predict thermal adaptation.

The warming scenario

In our method, the cardinal temperatures are linearly linked. We can thus obtain the upper thermal limit at evolutionary equilibrium, T * max , from T * opt . We compared T * max to the annual maximal temperature experienced in situ, defined as ∆ m = T * max -max(T (t)). The results (fig. 9.4) show that for the horizontal-shift hypothesis as for the Eppley hypothesis simulations, temperate areas with annual high temperature fluctuations have the low ∆ m . For the horizontal-shift hypothesis, ∆ m is even slightly negative in several places such as the Japan sea. We infer that in case of warming, even for the most optimistic scenario with only 1 • C of annual average temperature increase before the end of the century, thermal extreme events (such as El niño) will drastically increase the maximal temperature experienced and thus challenge phytoplankton survival in temperate areas. This result is counter-intuitive and in contradiction with that of [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF], who claim that tropical and polar areas where the T * opt is the closest to the experienced (and stable) temperature are the more sensitive to warming. We rather show here that even if, in temperate areas, simulations give T * opt higher than the annual average temperature compared to tropical areas, this difference is low compared to the high difference between the maximal temperature max(T (t)) and the annual average temperature T (t) in temperate areas. [START_REF] Huertas | Warming will affect phytoplankton differently: evidence through a mechanistic approach[END_REF] challenged this hypothesis with experimental evolution and have highlighted the following trade-off: in temperate areas, T * max is closed to max(T (t)) and 9. MODELLING THE EFFECT OF TEMPERATURE ON PHYTOPLANKTON GROWTH ACROSS THE GLOBAL OCEAN a potential warming would directly affect phytoplankton if the speed of adaptation is not high enough. However, [START_REF] Huertas | Warming will affect phytoplankton differently: evidence through a mechanistic approach[END_REF] showed that temperate phytoplankton species have higher genetic capabilities to adapt to thermal changes.

Conclusion

We have presented a new method based on adaptive dynamics theory to study the outcome of phytoplankton adaptation at global ocean scale. We defined a standard ubiquitous phytoplantkon species and we compared at first two different thermal growth models, the horizontal-shift hypothesis and the Eppley hypothesis, describing it in the context of evolution. We found, in agreement with chapter 7, that the evolutionary optimal temperature T * opt is always equal or higher than the average temperature experienced by the phytoplankton T . Moreover, the area with high difference between T * opt and T characterizes large temperature fluctuations. When based on the horizontal-shift hypothesis, our model successfully fits the data, contrary to the Eppley hypothesis which linearly links T * opt and T , and overestimates T * opt . We inferred that direct temperature effect strongly drives evolution at the scale of the global ocean. It is worth noting that the modified Eppley hypothesis is still to be tested in this evolutionary model.

In contradiction with [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF] and [START_REF] Ward | Temperature-correlated changes in phytoplankton community structure are restricted to polar waters[END_REF], we showed that temperate areas are more sensitive to global warming because of the small difference between T * max and max(T (t)) there. However, this could be compensated by the perhaps higher evolutionary capabilities of phytoplankton in these areas [START_REF] Huertas | Warming will affect phytoplankton differently: evidence through a mechanistic approach[END_REF].

The evolutionary effect of temperature on phytoplankton should now be investigated concomitantly to other factors (which has been partially done by [START_REF] Sauterey | When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems[END_REF]), such as irradiance, nutrient [START_REF] Irwin | Phytoplankton adapt to changing ocean environments[END_REF] or pH and CO 2 concentrations [START_REF] Coello-Camba | Interactive effect of temperature and co2 increase in arctic phytoplankton[END_REF]. The phytoplankton species Emiliana huxleyi is known to be acidsensitive, but its adaptation capability to co-variation of temperature and pH are not clearly understood [START_REF] Fielding | Emiliania huxleyi population growth rate response to light and temperature: a synthesis[END_REF][START_REF] Gibbs | Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change[END_REF][START_REF] Schlüter | Adaptation of a globally important coccolithophore to ocean warming and acidification[END_REF].

Finally, as co-evolution is a powerful driver, co-evolutionary models taking into account the predators sensitivity to temperature should be developed [START_REF] Amarasekare | Effects of temperature on consumer-resource interactions[END_REF][START_REF] Chen | Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean?[END_REF][START_REF] Rose | Does low temperature constrain the growth rates of heterotrophic protists? evidence and implications for algal blooms in cold waters[END_REF] In chapter 3, we have reviewed the different models representing the effect of temperature on UO growth, classifying them into empirical and mechanistic categories. We have shown that empirical models, and most particularly the [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF] model, are the most reliable for dealing with the low number of points which characterize, in practice, these data sets. Mechanistic models, contribute to explain and highlight the thermally induced physiological effects. If we compare to the broad literature dedicated to understanding the effect of light on growth, the poor knowledge of the mechanisms balancing or favoring growth is very surprising. The current consensus is that temperature affects enzyme conformational stability. Despite the recent development of a unicellular growth model said to be universal [START_REF] Corkrey | Protein thermodynamics can be predicted directly from biological growth rates[END_REF], we have shown that the 'proteome paradigm' should be further investigated. Some authors, for example, claim that physiological mechanisms compensating each others, particularly the respiration rate, are the basis of the thermal growth curve [START_REF] Poertner | Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes[END_REF][START_REF] Ruoff | Temperature compensation through systems biology[END_REF][START_REF] Zakhartsev | Metabolic efficiency in yeast saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield[END_REF] (this is called the metabolic hypothesis). The process of temperature acclimation did not receive much attention, and should definitely be more extensively studied and integrated into the models.

In the same way, cell mortality at low or high temperatures still has to be investigated. Few studies exist for unicellular eukaryotes, especially for phytoplankton. It is not clear if death rate increases under theoretically sub-lethal temperatures (i.e. below T opt ). The molecular mechanisms leading to death are not definitely unveiled and definitely need further investigations. Moreover, the capacity of cell to repair its damages and regrow after an heat or cold shock is not clearly understood and modelled.

In chapter 4 and chapter 5, an opportunity to clarify the situation is given by the exploration of universal links between the cardinal temperatures, on one hand, and be-
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tween the optimal growth rates and the optimal temperature for growth on the other hand. Since [START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF], it has been noticed that an unexpected linear link between the cardinal temperatures exists for bacteria. We have extended this observation to a large range of UO, including unicellular eukaryotes, and discovered that not only a linear relationship is observed too, but that this relation is exactly the same. It is also valid for different phytoplankton sub-groups such as Chlorophyta. Nonetheless, the relation between T min and the other cardinal temperatures is more confused for eukaryotes, perhaps because of the difficulty to study these organisms at low temperature (probably because of the specificity of their membrane fluidity [START_REF] Caspeta | Altered sterol composition renders yeast thermotolerant[END_REF]). Our result do not tend to support, for example, a tough constant thermal niche width for all the organisms. The asymmetry of the thermal growth curve is also subject to variations [START_REF] Thompson | Effects of variation in temperature. i. on the biochemical composition of eight species of marine phytoplankton1[END_REF]]. Yet, we have shown that these linear relations are highly significant, and that there is a clear trade-off between the cardinal temperatures for every UO despite the large variety of metabolisms. On top of that, we also unveiled groupspecific links between the theoretical optimal growth rate and the optimal temperature for growth, and thus we proposed a correction of the Eppley law [START_REF] Eppley | Temperature and phytoplankton growth in the sea[END_REF] for the highest temperatures. Although depending on many factors including cell biovolume and scaling laws, we have shown that growth is intrinsically limited by an upper and a lower bound that seems to be rather constant for a given group. More experiments in the framework of [START_REF] Boyd | Marine phytoplankton temperature versus growth responses from polar to tropical waters outcome of a scientific communitywide study[END_REF] are necessary using agreed and standardized protocols.

In chapter 6, we revisited these universal features using a mechanistic model, the Hinshelwood model. We firstly showed that the Hinshelwood model arises from considering an autocatalytic model with n enzymes in interactions that are thermally unfolded. This model shows that the average unfolded proteome, rather than a specific unfolding enzyme, matters at high temperature (on the contrary to what is claimed by [START_REF] Corkrey | Protein thermodynamics can be predicted directly from biological growth rates[END_REF]). This theory has deep implications for thermal adaptation. We then included two thermodynamically-motivated links in the model: the entropy-enthalpy compensation (EEC) and the activity-stability trade-off. When proteins unfold, EEC stipulates that enthalpy always compensates entropy such that the gibbs free energy difference of unfolding cannot widely vary. The activity-stability trade-off accounts for the loss of enzyme activity linked to its stability when it unfolds. With these hypotheses, we were able to satisfyingly represent the thermal growth curves with only two parameters. Finally, we explained the links between thermal parameters previously highlighted. Further work is needed to explore the underlying thermodynamical principles of the thermal growth curve beyond its Arrhenius type response. The use of metabolic models under nonbalanced growth, while explicitly accounting for the thermal sensitivity of each single metabolic reaction could be used to challenge this problematic [START_REF] Baroukh | Metabolic modeling under non-balanced growth. Application to microalgae for biofuels production[END_REF].

The submerged iceberg of unknown: future works

In chapter 7, we have exploited an experiment where phytoplankton was grown in dynamical conditions under periodically varying temperatures. We have developed a dynamical model, and we have shown that a periodical solution theoretically exists. Using the 10.2 Capturing the evolutionary trajectories Droop model [START_REF] Droop | Vitamin b12 and marine ecology. iv. the kinetics of uptake, growth and inhibition in monochrysis lutheri[END_REF], we have challenged the duality of both growth and nutrient uptake thermal sensitivities. However, as soon as temperature is varying, our knowledge concerning cell metabolic reactions becomes limited [START_REF] Ras | Temperature effect on microalgae: a crucial factor for outdoor production[END_REF]. Data are clearly lacking to understand how internal metabolites such as starch or lipid respond to temperature variations. Again, the use of metabolic models under non-balanced growth [START_REF] Baroukh | Metabolic modeling under non-balanced growth. Application to microalgae for biofuels production[END_REF] could deeply help to decipher between the different impacts of temperature, and finally understand the unclear observations. Additionally, [START_REF] Bonnefond | Temperature: a key parameter in microalgae biochemical mechanisms[END_REF] have shown that temperature variations contribute to synchronize the cell cycle and can strongly favor growth by reducing the loss of carbon by respiration during the night.

Temperature is a central parameter for phytoplankton, but as it acts on the whole metabolism, it is linked to several other factors, making the understanding of its effect in a real environment very challenging. First of all, the coupling between temperature and photosynthesis is still to be explored. The temperature coupling with light has not clearly been investigated at high light intensity [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF], Jensen and Knutsen, 1993b[START_REF] Ras | Temperature effect on microalgae: a crucial factor for outdoor production[END_REF], where it seems to lead to nonlinear effects. The development of cell-scaled models representing the different states of the reaction centers involved in the photon harvesting process (see for example [START_REF] Han | Photosynthesis-irradiance response at physiological level: a mechanistic model[END_REF]) and their temperature sensitivity (as done by [START_REF] Duarte | A mechanistic model of the effects of light and temperature on algal primary productivity[END_REF]) could help to better understand and model the temperature and light coupling in conditions of photosaturation and photoinhibition. Moreover, the process by which low temperatures induce photoinhibition has not been modelled yet.

Temperature also influences the oxygen concentration in the medium. It therefore indirectly affects the respiration rate, but can also more deeply impact the metabolism, at high biomass density, when oxygen stimulates photorespiration or mortality due to oxygen free radicals. Some authors have pointed out the importance of this coupling for unicellular diazotrophic cyanobacteria (UCYN) owning the nitrogenase, the enzyme responsible of the N 2 fixation, which is highly inhibited by oxygen [START_REF] Brauer | Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium cyanothece[END_REF][START_REF] Stal | Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?[END_REF]. For now on, no model exists to take this phenomenon into account but the Grimaud et al. [2014b] model could be a starting point.

Capturing the evolutionary trajectories 10.2.1 Selection experiments and evolutionary modelling

In chapters 7, we have modelled phytoplankton temperature adaptation using the adaptive dynamics theory applied to a simple Monod model in constant and varying thermal conditions. We have taken into account the links described in the previous chapters, incorporating them into the Bernard&Rémond model. We depicted several possibilities among these links and their potential effects on adaptation. The main results show that, firstly, the optimal growth temperature tends to equal the applied temperature if the temperature is kept constant and the optimal growth rate does not change. This is an important result for long-term conservation conditions of phytoplankton in labo-10. CONCLUSION & PERSPECTIVES ratory cultures [START_REF] Garrido | Effects of sample conservation on assessments of the photosynthetic efficiency of phytoplankton using pam fluorometry[END_REF]. As a consequence, the thermal response of the strains which have been for decades maintained at 20 • C may strongly diverge from the response of the strain still in the natural environment. On top of that, under Eppley or modified-Eppley hypotheses, the optimal growth temperature tends to be higher than the applied temperature. Secondly, we showed and demonstrated that T opt tends to be always higher than the average temperature in fluctuating regimes. This phenomenon is highly amplified when considering the modified Eppley hypothesis. Finally, we showed that if T min and T max are fixed, evolutionary branching can occur meaning that two new strains can coexist and separate.

In chapter 8, we compared our model to a selection experiment carried by Bonnefond et al. [subm.] for the Facteur 4 ANR project in controlled conditions with peace-wise linear fluctuating temperatures. We designed the canonical equation of the adaptive dynamics in line with [START_REF] Kremer | Coexistence in a variable environment: Ecoevolutionary perspectives[END_REF] for fluctuating conditions. We calibrated the evolution model using the experimentally measured growth rates. This model was able to nicely reproduce the evolutionary dynamics. However, it was not possible to distinguish between the acclimation, selection and adaptation phases. In this kind of evolutionary experiments, competitions models as well as evolutionary models should be built together to better understand and estimate the time-scale of the different phenomenons. A future step would be to deduce optimal experimental conditions to select a particular adaptive trait using the adaptive dynamics theory. This was partially done here by extrapolating the theoretical evolution of T opt for a long lasting experiment. We also estimated the derivation of T opt during the strain conservation period.

The adaptive dynamics theory gave us insight into thermal adaptation here, but suffers from structural limitations. First of all, it is only possible to represent the evolution of a single adaptive trait. We overcame this limitation thanks to the links existing between some parameters, but these links are not always clear or universal. Some authors are currently searching for a way to fix this limitation and model multi-dimensional traits space [START_REF] Champagnat | The canonical equation of adaptive dynamics: a mathematical view[END_REF], notably by using the new notion of function valued adaptive dynamics [START_REF] Parvinen | Function-valued adaptive dynamics and the calculus of variations[END_REF]. Moreover, multi-dimensional phenotypic traits cannot be taken into account most of the time [START_REF] Ispolatov | Individual-based models for adaptive diversification in high-dimensional phenotype spaces[END_REF], which constitute a big gap with n species competition models. The mutant invasion time could also be a limitation. In the adaptive dynamics theory, it is assumed to be instantaneous. In the same way, the mutation rates cannot be easily deduced from the canonical equation.

Evolution in the ocean

In chapter 9, we have tried to extend our evolutionary modelling approach to the global ocean for phytoplankton. Firstly, we have reduced the model exposed in chapter 7 to an optimization problem. In this simple formulation, it was possible to simulate phytoplankton evolution at the global ocean scale using 3 years Sea Surface Temperatures data. The main result suggests that the higher is the temperature annual fluctuation, the higher will be the difference between T opt and the annual average temperature, and this was particularly linked to the modified Eppley hypothesis, specific for each 10.3 Conclusion phytoplankton group. Surprisingly, it was possible to compare the experimental data relating a strain phenotype to its geographical original. Indeed, we were able to predict optimal temperatures for phytoplankton species at a given location in the world. A close view to the corresponding T max showed that species located in areas with wider range of annual temperature fluctuations had T max closer to the maximal temperatures recorded there and could thus be more sensitive to a potential increase of sea water temperature as well as extreme thermal events. Moreover, it is worth noting that each phytoplankton group has its own intrinsic thermal limits.

These results have to be cautiously considered because of the huge variability encountered at global scale. Some other authors are currently trying to represent thermal evolution in the ocean using similar methods. [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF] and [Padfield et al., 2015a, Yvon-Durocher et al., 2015] use similar adaptive dynamics model whereas David Claessen with the ANR Phytback project is constructing a large scale multi-dimensional adaptive dynamics model considering several varying environmental factors. It is obvious that many factors impact evolution in the ocean. For example, temperature increase is associated to ocean acidification by an increase in dissolved CO 2 .

Moreover, temperature affects all the organisms, unicellular or not. The eco-regional repartition of copepods is highly influenced by temperature, for example [START_REF] Benedetti | Identifying copepod functional groups from species functional traits[END_REF]. Co-evolution should thus be considered even in a thermal problematic, and even community-thermal response could be studied [START_REF] Brauer | Does universal temperature dependence apply to communities? an experimental test using natural marine plankton assemblages[END_REF].

Conclusion

This PhD thesis has tried to figure out how phytoplankton adapt to temperature. The overall picture is still very incomplete, but the developed approaches can be extended to the whole microbial world. In a warming context, it becomes crucial to understand and estimate the evolutionary capacity of this invisible microscopic world, and anticipate its adaptation capability. Our new results characterizing the short and long term responses to temperature are expected to challenge biogeochemical models as well as scientific minds. Determining T min in the Hinshelwood model The Hinshelwood model (eq. 3.22) considers that growth rate tends to zero when temperature tends to minus infinity, and it is thus not possible to define an exact minimum temperature for growth T min . We considered that T min can also be defined as the temperature at which the growth rate is equal to a small fraction ǫ of the optimal growth rate:

Annexes

µ(T min ) = ǫµ opt (10.1)

We assumed that, at T min , the function f 2 (T ) corresponding to thermal deactivation/denaturation is negligible regarding f 1 (T ) (see eq. 3.22 and eq. 3.25):

A 1 e -E 1 /(RT min ) ≃ ǫ E 2 -E 1 E 1
A 2 e -E 2 /(RTopt) (10.2)

and thus: (10.3) where:

T min ≃ -T opt E 1 /γ T opt -E 2 /γ
γ = Rln E 2 -E 1 E 1 A 2 A 1 ǫ (10.4)
We arbitrarily fixed ǫ = 0.05.

Autocatalytic view of the Hinshelwood model

The autocatalytic system described in section 6.2.1 is written: Each reaction i can be written:

ẋi x i = k i x i-1 x i -d i = µ (10.7)
Moreover, because: 

Résumé

Les organismes unicellulaires photosynthétiques formant le phytoplancton sont la base de la production primaire marine. Ne pouvant pas réguler leur température, ce facteur physique contraint fortement leur croissance. L'étude de son impact est d'une actualité brûlante dans un contexte de changement climatique. Dans cette thèse nous nous sommes efforcés de comprendre comment le phytoplancton s'acclimate à la température. En analysant la réponse du taux de croissance à la température de centaines d'espèces, nous avons mis en évidence les liens existant entre les températures cardinales ainsi que leurs fondements thermodynamiques grâce au modèle mécaniste de Hinshelwood. Nous avons testé l'hypothèse de Eppley 'plus chaud implique plus rapide' pour 5 groupes phylogénétiques de phytoplancton et défini leurs limites évolutives intrinsèques. Nous avons examiné les mécanismes d'adaptation induits à long terme par des variations de température et construit un modèle évolutif en utilisant la théorie de la dynamique adaptative afin de prévoir l'issue évolutive de l'adaptation dune espèce à un cycle de température simple. Nos résultats ont été confrontés à une expérience de sélection réalisée en laboratoire sur Tisochrysis lutea. Notre méthode a été étendue pour prédire l'adaptation d'une souche soumise à un profil de température périodique et étudier l'adaptation thermique du phytoplancton à l'échelle de l'océan mondial. Des données in situ de température de surface de l'océan ont permis de forcer le modèle et de montrer qu'une augmentation de température sera critique pour certains groupes dans les zones où lamplitude thermique annuelle est grande, comme par exemple la mer Méditerranée.
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Figure 1 . 1 :

 11 Figure 1.1: Eukaryote phylogenetic tree -Eurakyote phylogenetic tree (adapted from[START_REF] Baldauf | An overview of the phylogeny and diversity of eukaryotes[END_REF]). Phytoplankton groups are marked with green ellipses.

Figure 1 . 4 :

 14 Figure 1.4: Global warming trend -Change in average temperature recorded and predicted according to different scenario of the Intergovernmental Panel on Climate Change (IPCC) (adapted from Rogelj et al. [2012]).

Figure 1 .

 1 Figure 1.5: Correlation between warming and Net Primary Production change -Change in average Sea Surface Temperature (upper figure) and Net Primary Production (figure below) during the 1999 to 2004 period (adapted from Behrenfled et al. [2006]).

Figure 1 . 6 :

 16 Figure 1.6: Temperature variations in a raceway pond located in New Zeand -Raceway pond (A) and associated temperature variations (B) during August 2013 (adapted from[START_REF] Béchet | Universal temperature model for shallow algal ponds provides improved accuracy[END_REF]). Experimental data are marked in red whereas the blue line corresponds to a dedicated model.

EFigure 1 . 8 :

 18 Figure1.8: Adaptation of the thermal growth curve -Different hypotheses for the deformation of the thermal growth curve during thermal adaptation. A, horizontal-shift, B, hotter is better, C, specialist-generalist trade-off, D, hotter is broader and better, E, asymmetric adaptation. Adapted from[START_REF] Knies | Hotter is better and broader: thermal sensitivity of fitness in a population of bacteriophages[END_REF].

Figure 2 . 1 :

 21 Figure 2.1: Selectiostat culture device -Culture of Tisochrysis lutea in the 'selectiostat' device. Adapted from Bonnefond [2015].

Figure 2 . 2 :

 22 Figure 2.2: TIP device -Cultures of Tisochrysis lutea in the multifactorial TIP device designed at IFREMER Nantes.

Figure 3 . 1 :

 31 Figure 3.1: Model fit -Fit of the 10 described models on the normalized thermal growth curve of Escherichia coli (strain code 62 from Corkrey et al. [2014]). Models denoted with a '*' are normalized.

Figure 3 . 2 :

 32 Figure 3.2: Master reaction model (eq. 3.19) -Illustration of the master reaction model. The black line corresponds to µ(T ), the blue dashed line corresponds to CT e -∆H ‡ /(RT ) , the red dashed line corresponds to P (T ).

Figure 3 . 3 :

 33 Figure 3.3: Hinshelwood model -Illustration of the Hinshelwood model. The black line corresponds to µ(T ), the blue dashed line corresponds to f 1 (T ), the red dashed line corresponds to f 2 (T ).

Figure 3 . 4 :

 34 Figure 3.4: Modified master reaction model -Illustration of the modified master reaction model. A, the Gibbs free energy change as a function of heat capacity change and temperature. B, Gibbs free energy change as a function of temperature only for different fixed heat capacity change (and thus for a given protein). C, the modified master reaction model plot for a UO (black line) with activation function (blue dashed line) and protein denaturation probability P (T ) (red dashed line).

Figure 3 . 5 :

 35 Figure 3.5: Free energy distribution -Gibbs free energy distribution of Escherichia coli proteome at 37 • C (adapted from Ghosh and Dill [2010]).

Figure 3 . 6 :

 36 Figure 3.6: Eppley curve -A, Eppley envelope function with the original data points. B, 5 data sets for eukaryotic phytoplankton species. C, Eppley-Norberg plot for the 5 species (redrawn from Norberg [2004]).

  3.7). Similarly, γ I max ensures the normalization of γ I , k p represents the increase of growth with light at low irradiance and k i represents photo-inhibition.

Figure 3 . 7 :

 37 Figure 3.7: Modified Eppley model -A, Eppley curve normalized at 30 • C. B, photosynthesis as represented in eq. 3.42. The figure is redrawn after Follows et al. [2007].

3 .)Figure 3

 33 Figure 3.8: Survival curves -Cell survival curves in batch conditions (here expressed as the concentration of alive cells N (t) on initial cells concentration N 0 .) when exposed to temperature higher than T max (redrawn from[START_REF] Moats | Kinetics of thermal death of bacteria[END_REF]). A, initial lag in death followed by a log-linear death rate, B, log-linear death rate, C, heterogeneous population with different death rates, D, death rate with inflexion.

3 .)Figure 3 . 9 :

 339 Figure 3.9: Coupled growth and death models -A, first-order reaction kinetic (blue, growth, red, death) for a fictive UO when the time spent at each temperature is sufficiently long. B, resulting growth rate versus temperature curve. Redrawn from[START_REF] Corradini | On modeling and simulating transitions between microbial growth and inactivation or vice versa[END_REF] 
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 41 Figure 4.1: Linear regression between the cardinal temperatures. -A, T opt ,T max , B, T opt ,T min , C, T min ,T max . The blue line corresponds to the linear regression, the grey areas are the 95% prediction intervals . The dashed line is the y = x function. Prokaryotes and Eukaryotes are indicated by red and blue points respectively.
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 424344 Figure 4.2: Linear regression between T opt and T max -A, bacteria, B, archae, C, cyanobacteria, D, microalgae, E, yeasts, F, whole data set. The blue line corresponds to the linear regression, the grey areas are the 95% prediction intervals . The dashed line is the y = x line.
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 412 Parameters of the linear regression between cardinal temperatures and statistical descriptors. â and b correspond to the slope and to the intercept of the linear regression y = âx + b. Relation between the cardinal temperatures
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 4245 Figure 4.5: Linear regression between T opt and T min , T opt and T max for phytoplankton (data from[START_REF] Thomas | Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits[END_REF]) -Red, Dinophyta, blue, Ochrophyta, black, Haptophyta, green, Chlorophyta. The blue an red lines correspond to the linear regressions between T opt and T min , T opt and T max respectively. The grey areas are the 95% prediction intervals. The dashed line is the y = x line.

  4.1). Eukaryotes seem to follow a different pattern with a possible absence of linear link between T min and T max , and thus eukaryotes could have a more flexible thermal niche width and a special ability to adapt to cold temperatures.Nevertheless, eukaryotes and prokaryotes (fig. 4.6 and fig. 4.7) have similar average thermal niche widths (31.757 • C ±8.947 and 35.016 • C ±8.500 respectively), even within the phytoplankton eukaryotic group(fig. 4.7

56 4Figure 4 . 6 :

 5646 Figure 4.6: Thermal niche width box plot -Boxplot of the thermal niche width T max -T min of the different groups. The bold whiskers correspond to the 25 th and 75 th percentiles, the points correspond to the median. The thin whiskers are the 5 th and 95 th percentiles.
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 47 Figure 4.7: Thermal niche width box plot for[START_REF] Thomas | Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits[END_REF] data set -Boxplot of the thermal niche width T max -T min of the different microalgae groups. The bold whiskers correspond to the 25 th and 75 th percentiles, the points correspond to the median. The thin whiskers are the 5 th and 95 th percentiles.
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 51 Figure5.1: Maximal growth rate µ opt as a function of T opt -µ opt plotted against T opt for the 5 different groups studied (brown, bacteria, green, microalgae, yellow, yeasts, red, cyanobacteria, blue, archae). The bold and dashed blue lines are the 99 th quantile regression of a fourth and third order polynomial functions respectively, dotted lines are the 95% confidence intervals for the fourth order quantile regression.
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 5253545 Figure 5.2: Normalized thermal envelope of the µ opt = f (T opt ) curve. -Brown: bacteria, green: microalgae, yellow: yeasts, red: cyanobacteria, blue: archae.
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 56 Figure 5.6: Maximal growth rate µ opt as a function of T opt and 99th quantile regression for 4 microalgae subgroups -Red, Dinophyceae, blue, Ochrophyta (diatoms), yellow, Haptophyceae, green, Chlorophyceae. The dashed line corresponds to the Eppley curve, the bold line to a third order polynomial function and the blue line to the CTMI model.
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 57 Figure 5.7: Maximal growth rate µ opt as a function of T opt , 99th quantile regression and CTMI model calibration for 4 microalgae subgroups -Red, Dinophyta, blue, Ochrophyta (diatoms), yellow, Haptophyta, green, Chlorophyta. The red and blue lines represent the quantile regression and the CTMI model, respectively.
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 58 Figure 5.8: Thermal growth curve of Synechococcus sp. strains.-Growth rate as a function of temperature for different thermal ecotypes of Synechococcus sp. In blue, data from two chosen species from[START_REF] Pittera | Connecting thermal physiology and latitudinal niche partitioning in marine synechococcus[END_REF], in red, data from two selected species from[START_REF] Miller | Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus[END_REF]. The green points correspond to µ opt as a function of T opt for the species described in[START_REF] Miller | Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus[END_REF] and[START_REF] Pittera | Connecting thermal physiology and latitudinal niche partitioning in marine synechococcus[END_REF]. The dashed curve corresponds to the theoretical third order polynomial function linking µ opt to T opt described in section 5.2.3. The bold curve corresponds to the second order polynomial function.

Figure 6 . 1 :

 61 Figure 6.1: Thermostability of Escherichia coli homoserine transsuccinylase -Unfolding starts at low temperatures, around 20 • C. Reproduced after Julou [2011].

Figure 6 . 2 :

 62 Figure 6.2: Log-linear relation between A 2 and E 2 -Log-linear plot with ln(A 2 ) as a function of E 2 . The log-linear regression appears in red. The black line corresponds to the log-linear regression found by[START_REF] Rosenberg | Quantitative evidence for protein denaturation as the cause of thermal death[END_REF].
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 646566 Figure 6.4: Normalised model validation -Two parameters Hinshelwood model (black) and two parameters CTMI (red) fitted on normalized data sets. A, Archae, B, Bacteria, C, Cyanobacteria, D, Yeasts, E, Dinophyta, F, Ochrophyta, G, Haptophyta, H, Chlorophyta.
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 68 Figure 6.8: Cardinal temperatures predicted by the Hinshelwood model -T min (blue) and T max (red) as a function of T opt according to the Hinshelwood model with two parameters for coherent values of A 1 and E 2 . The linear relationships appear when A 1 is fixed (represented by green points).
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 71 Figure 7.1: Thermal growth curve obtained with the Droop model -The blue line corresponds to µ 2 (T ), the red line to µ 1 (T ) and the dashed lines are the resulting growth rates Ẋ/X obtained by increasing ρ(S) or Q 0 .
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 72 Figure 7.2: Thermal growth curve of Nannochloropsis oceanica -A, Initial thermal growth curve Nannochloropsis oceanica. B and C are the evolutionary cases for T = 30 • C with a * = T , T min and T max are fixed, and with T max = a 1 a * + b 1 , respectively. The black circles are data from Sandnes et al. [2005] for N. oceanica.
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 1 Case 1: T opt is varying only
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 732742 Figure 7.3: Evolution of the thermal growth curve -Evolution of the thermal growth curve for T inf = 24 • C, T supp = 31 • C. (A) is the initial thermal growth curve, (B) is the evolutionary thermal growth curve for a = T opt and T max = mT opt + p at steady-state, and (C) is the evolutionary thermal growth curve for a = T opt and T max = 31.5 • C at steady state. The singular strategies are represented by black points.
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 7475 Figure 7.4: Evolution of T opt if the niche width is kept constant -If ǫ is sufficiently small, then the green segment corresponds to dφ(T * opt , T )/dT evaluated at T = T 1 .

Figure 8 . 1 :

 81 Figure 8.1: Thermal growth curves of the initial and adapted strains of Tisochrysis lutea -The data points result from the TIP calibration experiment. The black lines correspond to the Bernard&Rémond model with the parameters estimated in Bonnefond et al. [subm.].

  Figure8.2: Growth rates of the different strains during each cycle of the experiment -Data points appear in blue and red for the turbidostat and the fed-batch cultures respectively. The black points correspond to the average theoretical growth rates for S-Turbi and S-Fb (corresponding to μth ). The green points correspond to the theoretical growth rate of the initial strain W2X. The blue lines on the top figure represent the temperatures daily applied to the cultures[Bonnefond et al., subm.].
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 283 Figure 8.3: Re-identified strains with one parameter for Turbidostat -Data points appear in blue. The black points correspond to the average theoretical growth rates for θT urb and θF b . Identification is done after the grey part. Bars represent minimal and maximal growth rate in each cycles.
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 384 Figure 8.4: Re-identified strains with one parameter for Fed-batch -Data points appear in red. The black points correspond to the average theoretical growth rates for θT urb and θF b . Identification is done after the grey part. Bars represent minimal and maximal growth rate in each cycles.
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 87 Figure 8.7: Temperature applied to the turbidostat and fed-batch cultures -Note the difference of cycles succession in the two cultures.Table8.3: Thermal parameters of two-subpopulations competing (corrseponding in average to strain S-Turb or strain S-Fb). The initial parameters which do not change appear in gray.

Figure 8

 8 Figure 8.8: Competition dynamics for the Fed-batch culture -Growth rate data points appear in blue and red. The black line corresponds to the modelled population overall growth rate. The arrow shows the invasion time. The red line corresponds to the selection experiment period.

  4.1 but with a 1 = 1, a 2 = 1 b 1 = 8.68, b 2 = 11.53. Moreover, µ opt is linked to T opt as in section 8.3.1.1 with the same proportionality factor. We obtained the two following canonical equations: ȧmut T urb = M p T urb σ T urb X * T urb ∂ fT urb (a mut , a) ∂a mut amut=a (8.12) ȧmut F b = M p F b σ F b X *

Figure 8 . 9 :Figure 8

 898 Figure8.9: Adaptation during the selection experiment in turbidostat -Experimental growth rates appear in blue. The black line represents the modelled growth rate. A, evolution of T opt during the selection experiment and the storage period. B, evolution of the population growth rate. C, strain thermal growth curve obtained at the end of the selection experiment (2) and at the end of the storage period(1).
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 811 Figure 8.11: Thermal growth curve at the evolutionary equilibrium -The black line (1) corresponds to the evolutionary equilibrium for the fixed thermal niched width hypothesis, the black dashed line (2) to the T min linearly linked to T opt hypothesis according to the W2X, S-Turb and S-Fb parameters link. S-Turb and S-Fb are represented in blue and red respectively.

4 . 2 ,

 42 it would have taken 2128 days and 2122 days (with turbidostat and fed-batch parameters respectively) to reach the equilibrium, with T * opt = 34.772 • C and µ * opt = 1.598d -1 . Linking T min to T opt according to strains W2X, S-Turb and S-Fb, the 8.5 Conclusion model predicted a drastic increase in the thermal niche up to 40.95 • C (T * min = 4.97 • C

Figure 9 . 1 :

 91 Figure 9.1: Global ocean scale simulations -World map of the difference between the optimal temperature for growth and the mean temperature ∆ = T * opt -T for the horizontal-shift hypothesis simulation (A) and Eppley hypothesis simulation (B) (red correspond to areas where ∆ ≥ 6 • C for (A) and ∆ ≥ 12 • C for (B)), and temperature range max(T (t))-min(T (t)) for the three years 2010, 2011, 2012 (C).

Figure 9 . 2 :

 92 Figure 9.2: Model predictions -(A) Observed Topt for 194 phytoplankton strains as a function of T . The 57 selected strains are indicated in green points. (B) Predicted T * opt as a function of T for eq. 9.1 simulations (horizontal shift hypothesis) (blue points) and Eppley hypothesis simulations (red points). The y = x curve is indicated in black. The green points correspond to the predicted T *opt for the 57 selected strains (light green for eq. 9.1 simulations, dark green for Eppley hypothesis simulations).

Figure 9 . 3 :

 93 Figure 9.3: Comparison to experimental data -Predicted T *opt compared to experimental Topt for Eppley hypothesis (A) and eq. 9.1 simulations (B). Phytoplankton phylogenetic groups are indicated in color in (B): green: Dinoflagellates, pink: Diatoms, black: Cyanobacteria, blue: others.
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 94 Figure 9.4: Global ocean scale simulations of T * max . -World map of the difference between the maximal temperature for growth and the maximal annual temperature in situ, T * max -max(T ) for the horizontal-shift hypothesis simulation (A) and Eppley hypothesis simulation (B). The blue areas correspond to potentially sensitive zones.
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	1: Synthesis of the main models for growth rate as a function of temperature. E, empirical models. M,	mechanistic models.

  The results are in accordance with[START_REF] Rosso | An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model[END_REF] (p < 0.05, Chow-test) (see table4.1). The slope a 1 of the linear regression between T opt and T max is nearly equal to one, indicating that the difference between T max and T opt is fairly constant and equal to the intercept of the linear regression (b 1 = 7.367). This is not the case for the linear regression between (T opt , T min ) and (T min , T max ) (a 2 = 0.819 and a 3 = 0.773 respectively) meaning that the thermal niche width w = |T max -T min | theoretically increases with T max (w increases by 0.216 • C as T max increases by 1 • C).

Table 5 . 1 :

 51 Parameters of the fourth ordrer polynomial function µ opt (T ) = p i T i applied to the 5 groups.

	Group	p 5	p 4	p 3	p 2	p 1	Pseudo-R 2
	Archae	3.491.10 -7 -1.131.10 -4	0.012	-0.462	5.817	0.741
	Bacteria	1.277.10 -6 -2.205.10 -4 0.0127	-0.225	1.589	0.722
	Cyanobacteria 2.028.10 -7 -3.856.10 -5 0.0025 -0.0595 0.5248	0.821
	Microalgae	-1.554.10 -6 1.750.10 -4 -0.0064	0.091	-0.341	0.803
	Yeast	-7.318.10 -6	0.001	-0.054	1.291	-11.011	0.617
	All groups	1.857.10 -7 -5.974.10 -5 0.0049	-0.075	0.451	0.8003

Table 5 . 2 :

 52 Parameters of the CTMI model applied to the 5 groups.

Table 5 . 3 :

 53 Parameters of the CTMI model applied to microalgae groups.

	Group T optmin ( Dinophyta 8.43	32.34	39.23	0.049
	Ochrophyta	4.81	34.43	41.22	0.145
	Haptophyta	11.23	25.81	29.72	0.075
	Chlorophyta	10.34	42.91	46.63	0.274
	Microalgae (with Thomas et al. [2015])	4.7	39.2	47.3	0.248
		71			

• C) T optopt ( • C) T optmax ( • C) µ optopt (h -1 )
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 61 Parameters of the activity/stability trade-off function

	Group	T s (K)	T c (K)
	Archae and Bacteria 326.668 311.938
	Cyanobacteria	310.547 300.142
	Yeast	315.079 312.842
	Dinophyta	309.452 307.135
	Ochrophyta	320.175 301.254
	Haptophyta	304.342 302.145
	Chlorophyta	313.218 302.341

Table 6 . 2 :

 62 Figure 6.3: E 1 /E 2 as a function of T max for bacteria and archae -Non-linear relationship between the enthalpy ratio and T max . The red line corresponds to eq. 6.9. Models comparison on normalised data sets

	RTmax)	(6.12)

  is globally asymptotically stable. 7.2 Simple dynamical model describing the temperature effect on microalgae in chemostat Lemma 7.2.1 The Lyapunov candidate function is given:

Table 7 .
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	• C

1: Model parameters for evolutionary branching.

Table 8 . 1 :

 81 Bernard & Rémond model parameters for strains W2X, S-Turb and S-Fb.

  mut ) represents the link between µ opt and a mut (i.e. T opt ).

						t 0 +τ	μm (T (t))ρ(S * ) -μ(T (t))ρ(S * )dt	(8.9)
						t 0
	We can deduce the average selection gradient:
	∂ fT urb (a mut , a) ∂a mut	amut=a	= 1/τ	t 0 +τ t 0	λ ′ (a mut , T (t))β(a mut , T (t)) -β ′ (a mut , T (t))λ(a mut , T (t)) β(a mut , T (t)) 2 (8.10)
	.g(a mut ) + g ′ (a mut )	λ(a mut , T (t)) β(a mut , T (t))	dt
	where g(a 8.4.1.2 Population dynamics, invasion fitness and selection gradient in a
	fed-batch growth model

  8. SELECTING THERMAL TOLERANT STRAINS OF THE HAPTOPHYCEAE TISOCHRYSIS LUTEA with small steps, which is not necessarily the case in this example. Even if an evolutionary framework gives coherent results here and shows adaptation inside a temperature cycle, it is thus tricky to differentiate selection from adaptation at that stage.Costas et al. [2014b] andCostas et al. [2014a] carried evolution experiments by gradually increasing the temperature medium of several microalgae, including Isochrysis galbana. To differentiate between acclimation, selection and adaptation, they separated the initial population into clones of the different thermal genotypes. If all genotypes survived, they considered that acclimation occurred; if only several genotypes survived, it was selection. If they all initially experienced massive mortality, then it was adaptation, either due to mutation or still possibly due to selection of rare pre-adapted individuals. Interestingly, they observed that 75 days of adaptation at 35 • C were necessary for Isochrysis galbana to detect a growth in the population.

We do note include predators, parasites and heterotrophic species in our phytoplankton definition

We cannot guaranty that the light conditions for photoautotrophic organisms were optimal.

Remerciements

Picture of Tisochrysis lutea from a Transmission Electron Microscope

Introduction

In the 1990's, [START_REF] Bennett | Evolutionary adaptation to temperature ii. thermal niches of experimental lines of escherichia coli[END_REF] 2). For strain S-Turb, however, the difference between the simplistic model and the growth rates (R 2 = 0.62, average error equal to 63.27%) suggests that S-Turb thermal tolerance does not correspond to the effective thermal tolerance of the strain at the end of the experiment. This probably reflects the progressive modification of the strain phenotype. It may also result from the delay between the end of the selection experiment and the TIP. It is likely that, during this period, the strain maintained at 23 The thermal parameters derived from the TIP device for S-Turb and S-Fb cannot explain the dynamics observed during the selection experiment. Especially, the final strains obtained at the very end of the experiment seem more widely thermoresistant than the performance recorded 6 months later in the TIP. We thus re-identified parameters (T min , T opt , T max , µ opt ) for S-Turb and S-Fb using different methods and considering that only selection occurred. Indeed, at the beginning of the experiment, and contrary to [START_REF] Huertas | Warming will affect phytoplankton differently: evidence through a mechanistic approach[END_REF], Bonnefond et al. [subm.] chose to start with a polymorphic population. This imply that, first, the observed growth rate was a population average growth rate with potentially different individuals harvesting different phenotypes and, second, that pre-adapted individuals must exist. We successively used two methods for the parameters re-identification: i)Identification of the average population thermal parameters, ii)Identification considering two sub-populations.

Identification at the population scale

At the population scale, the growth rate is averaged over the existing phenotypes and the population is considered as a single strain. We adjusted parameters (T min , T opt , T max , µ opt ), that we called θT urb and θF b for strains S-Turb and S-Fb, in order to match μth ( θT urb ) and μth ( θF b ) (see eq. 8.1) to the maximal experimental growth rate for each cycle starting from cycle 5. In line with Bonnefond et al. [subm.], we considered that selection starts occurring during this cycle. The optimization consisted in searching for a parameter vector θ minimizing the weighted ordinary least-squares criterion SSR using the matlab fminsearch function:

where µ exp (cycle i ) is the maximum experimental growth rate for cycle i, n is the total number of cycles, T (cycle i ) corresponds to the temperatures applied at cycle i and w(i)

9.2 Evolutionary model for thermal adaptation [START_REF] Thomas | Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits[END_REF] then enhanced again this database, finding that 'functional groups differ strongly in their patterns of adaptation: traits are similar in hot tropical environments, but diverge at temperate latitudes'.

We focus here on temperature as an evolutionary driver in phytoplankton at global scale with a modelling point of view. Evolution of phytoplankton facing realistic temperature conditions has already been modeled by [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF] using [START_REF] Norberg | Biodiversity and ecosystem functioning: A complex adaptive systems approach[END_REF] model and by Grimaud et al. [2014a] using [START_REF] Bernard | Validation of a simple model accounting for light and temperature effect on microalgal growth[END_REF] model (see chapter 7). In line with [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF] and Grimaud et al. [2014a], we used the adaptive dynamics theory to study a given temperature-dependent growth model in an evolutionary perspective. Nevertheless, we proposed an original approach showing that the study of evolutionary equilibrium can be reduce to a function optimization problem. By doing so, we drastically decreased the computational time required to compute the evolutionary equilibrium and we were able to predict the evolutionary outcomes at the global ocean scale. We validated our approach on a data set of 194 observations (extracted from [START_REF] Thomas | A global pattern of thermal adaptation in marine phytoplankton[END_REF]) of the temperature response for different species for which isolation sites are known. We compared different hypotheses, and we addressed the questions of how phytoplankton adapts to in situ temperature variations, investigating the implications at global scale.

Evolutionary model for thermal adaptation 9.2.1 Slow-fast dynamical system

First, we consider a simplified chemostat model to focus on the adaptation mechanisms driven by temperature. We tested two different models to represent the impact of temperature on phytoplankton growth rate:

where φ(T (t)) is the CTMI model and Ep(T opt ) is the Eppley curve linking T opt to µ opt .

In line with Grimaud et al. [2014a], we included eq.(9.1), eq.(9.2) in a simple chemostat model of phytoplankton growth with varying temperature:

S is the nutrient concentration in the chemostat, S in is the inflow substrate concentration, X is the algal biomass concentration, µ(T (t)) is either µ B (T (t)) or µ E (T (t)) or µ M E (T (t)), f T (t) is a periodic function (reflecting seasonality), D is the dilution rate with D < µ(T (t))ρ(S in ) ∀t, and ρ(S) is the substrate uptake defined as: (9.4) 9. MODELLING THE EFFECT OF TEMPERATURE ON PHYTOPLANKTON GROWTH ACROSS THE GLOBAL OCEAN Summary of section 9:

• We reduced a thermal evolutionary model to a simple optimization problem, allowing to compute T * opt at the global ocean scale

• In situ simulations are coherent with experimental results

• In situ simulations show that in temperate areas, T * opt > T (t), which is correlated to the annual thermal range

• In these temperate areas, T * max is close to max(T (t)). Temperate areas are thus probably sensitive to ocean warming

Abstract

Unicellular photosynthetic organisms forming the phytoplankton are the basis of primary production. Because these organisms cannot regulate their inner temperature, the medium temperature strongly constrains their growth. Understanding the impact of this factor is topical in a global change context. In this PhD thesis we have investigated how phytoplankton adapts to temperature. By analyzing the growth rate as a function of temperature for hundreds of species we highlighted the characteristics that can be accurately described by a mathematical model. We have identified the links between the cardinal temperatures as well as their thermodynamical fundament using the mechanistic Hinshelwood model. We then challenged the Eppley hypothesis 'hotter is faster' for 5 phylogenetic phytoplankton groups and determined the evolutionary limits for each of them. We have also studied the adaptation mechanisms associated to long term temperature variations by developing an evolutionary model using the adaptive dynamics theory allowing to predict the evolutionary outcome of species adaptation to a simple temperature cycle. Our results have been compared to a selection experiment carried out in a controlled device on Tisochrysis lutea. Our method has been extended to predict the adaptation of a strain to periodic temperature profiles and study phytoplankton adaptation at the global ocean scale. In situ data of sea surface temperature have been used as a forcing variable and have permitted to show that the elevation of temperature will be critical for several species in particular for those living in areas where the annual temperature fluctuation is high such as the Mediterranean sea.