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Président Jean-Pierre Gattuso Université Pierre et Marie Curie
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et mes compétences en Océanographie. Je remercie Francis Mairet qui est
un incroyable chercheur et une très belle personne. Merci de m’avoir soutenu
pendant ces trois ans et de m’avoir fait progresser en modélisation. Enfin, je
remercie Sophie Rabouille pour m’avoir également ouvert les portes du LOV
et pour son expertise enrichissante sur les cyanobactéries diazotrophes et la
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Introduction

1.1 An ode to phytoplankton

Light in the euphotic layer of the oceans supports the growth of unicellular autotrophic
organisms. These organisms drifting with the current are called phytoplankton [Falkowski
and Raven, 2013]. Phytoplankton constitute a polyphyletic group, gathering prokaryotes
(Cyanobacteria) and various unicellular eukaryotes lineages (fig. 1.1), for which photo-
synthesis results from different evolutionary pathways of the chloroplast (i.e. the cellular
organelle performing photosynthesis), which has travelled between eukaryote groups via
endosymbiosis through the ages [Boudouresque, 2015]. For this reason, phytoplankton
comprise very different organisms, with size ranging from 1 to 104 µm (fig. 1.2), and a
vast variety of metabolic functions shaping ocean biogeochemistry. Currently, the global
ocean is dominated in cell number by Cyanobacteria of the genus Prochlorococcus and
Synechococcus [Ting et al., 2002], which can annually reach, for example, a total of 1027

and 1026 cells on average in the Pacific Ocean, respectively [Flombaum et al., 2013].

By harvesting the solar energy, phytoplankton fuel the entire oceanic food web,
forming a functional ecological group1 responsible of approximately 45% of the worldwide
primary production [Field et al., 1998]. In 1936, Alfred Redfield noticed a curious
constant stoichiometry between carbon, nitrogen and phosphorus in the ocean [Redfield,
1934] (C:N:P=106:16:1) which puzzled scientists for several decades. We now know that
phytoplankton are the guilty organisms, and, as underlined by Pr. Paul Falkowksi:
‘Phytoplankton not only reflected the chemical composition of the deep ocean, but created
it.’. Phytoplankton deeply control biogeochemical cycles of these key elements up to
the depths of the oceans, and then indirectly drive climate [Boyd and Doney, 2003].
Dead sinking phytoplankton actively participate to the ‘biological carbon pump’ [Volk
and Hoffert, 1985], a process by which inorganic carbon is incorporated to the biological
biomass, exported to the depth, then remineralized and finally partially redistributed
thousand to millions years later.

1We do note include predators, parasites and heterotrophic species in our phytoplankton definition
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Phytoplankton growth depends on various physico-chemical environmental factors.
Light, obviously, is a fundamental factor driving growth and scientists even use it to in-
fer phytoplankton world distribution by tracking the ocean colour [Antoine and Morel,
1996, Lin et al., 2016]. After light, temperature is also a very influencing factor, ne-
glected for a long time, defining the biogeographical boundaries of major groups, from
polar to tropical oceans [Longurst, 1998]. A recent global scale study deeply confirms
the temperature role in phytoplankton growth and repartition [Sunagawa et al., 2015].
Finally, nutrients (e.g. N, P, Fe etc.) may also limit phytoplankton growth.

Figure 1.1: Eukaryote phylogenetic tree - Eurakyote phylogenetic tree (adapted from

Baldauf [2008]). Phytoplankton groups are marked with green ellipses.

1.2 Phytoplankton and temperature

1.2.1 The direct effect of temperature

The direct effect of temperature on phytoplankton growth rate is represented by an
asymmetric curve called the thermal growth curve or the thermal reaction norm

2



1.2 Phytoplankton and temperature

Figure 1.2: Size range of phytoplankton - Scale range of phytoplankton, from unicel-

lular Cyanobacteria to giant Bacillariophyceae and colonial Cyanobacteria (adapted from

Finkel et al. [2009]).

[Kingsolver, 2009] (fig. 1.3). The cardinal temperatures corresponding to the boundaries
of thermal tolerance are defined as the minimal (Tmin), optimal (Topt) and maximal
(Tmax) temperatures for growth. The growth rate obtained at Topt is the theoretical
maximal growth rate µopt which may further depend on light. The thermal range on
which a given phytoplankton species can thrive is called the thermal niche width (i.e.
|Tmax − Tmin|).

Phytoplankton can acclimate to temperature conditions (and then modify the shape
of this curve) by increasing their RNA and modifying their chlorophyll content at low
temperature, for example, or by expressing heat-shock proteins at high temperatures
[Hoppenrath and Leander, 2010] and adapting membrane fluidity accordingly.

The thermal growth curve is also influenced by several other factors. In specific condi-
tions, light and temperature can have coupled effects. For example, at low temperature,
the enzymatic-dependent part of photosynthesis is lowered by temperature whereas the
non-enzymatic dependent part is not, resulting in an energy imbalances participating
in photoinhibition [Ras et al., 2013]. Similarly, nutrient starvation Thomas [2013] and
salinity changes can temporarily modify the cardinal temperatures.

1.2.2 Phytoplankton in a changing climate

In the late 80’s, a french team led by Pr. Claude Lorius brought back the proof from the
Antarctic ices that earth was warming [Lorius et al., 1990]. According to Claude Lorius:
‘Les fluctuations du CO2 sont régulées par les océans, à travers des processus physiques,
chimiques mais aussi biologiques, le monde vivant participant ainsi à l’évolution du
climat. Depuis des centaines de milliers d’années, températures et concentrations en
aérosols et en gaz à effet de serre varient entre des maxima et des minima relative-
ment constants. Le climat terrestre s’auto-contrôle naturellement pour évoluer entre

3
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Asterionella formosa

50 µm

Figure 1.3: Thermal growth curve - Thermal growth curve for the phytoplankton

species Asterionella formosa (adapted from Bernard and Rémond [2012]). Note the minimal

temperature parameter Tmin which is negative here while no data points are available below

zero (see chapter 3).

deux états stables bien définis. [...] les teneurs actuelles en gaz à effet de serre n’ont pas
d’équivalent au cours des dernières centaines de milliers d’années et sont directement
liées à l’impact anthropique sur la composition de l’atmosphère. Les conclusions tirées
des archives glaciaires conduisent par conséquent à penser que la planète devrait sensi-
blement se réchauffer au cours du XXIe siècle, au risque d’affecter les ressources en
eau, l’agriculture, la santé, la biodiversité et, d’une façon générale, les conditions de vie
des humains.’ This alarming report is a current reality; the year 2015 was, for example,
the hottest year on record [Tollefson, 2016]. Recent estimations predict a global increase
of 1◦C to 5◦C [Rogelj et al., 2012] for the year 2100 (fig. 1.4).

Global warming is materialized in the oceans by an increase of the average annual
Sea Surface Temperature [Wijffels et al., 2016]. In this context, phytoplankton have to
face different phenomena. Firstly, warming enhances upper ocean stratification and con-
sequently lowers access to nutrient [Winder and Sommer, 2012]. Secondly, warming has
a direct impact on phytoplankton physiology, specially during extreme thermal events.
Behrenfled et al. [2006] has found a correlation between the positive annual average
temperature anomaly for the years 1999 to 2004 (corresponding to El Niño Southern
Oscillations events) and the negative average annual anomaly of Net Primary Produc-
tion (fig. 1.5). This is concerning because El niño is thought to occur repetitively, and a
extreme one is predicted for 2016 [Monastersky, 2016]. Recent studies claim that tem-
perature strongly determines phytoplankton biogeographical repartition [Chen, 2015,
Thomas et al., 2015, Yvon-Durocher et al., 2015]. These modified thermal regimes could
induce community shifts in some areas, modifying the stoichiometry of fundamental el-
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1.2 Phytoplankton and temperature

Figure 1.4: Global warming trend - Change in average temperature recorded and

predicted according to different scenario of the Intergovernmental Panel on Climate Change

(IPCC) (adapted from Rogelj et al. [2012]).
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ements such as the N:P ratio which is largely temperature dependent [Martiny et al.,
2013] (at higher temperatures, the P-rich ribosome concentration in cells is lower and
thus the N:P ratio is higher).

It is worth noting that global change induces several other environmental modifica-
tions in the ocean combined to warming, such as the extension of oxygen minimum zones
(OMZ) [Wright et al., 2012] (i.e. oxygen depletion enhancement in certain areas), as
well as ocean acidification Riebesell and Gattuso [2015]. The coupled effects of all these
factors on phytoplankton are currently unknown and represent a challenge in marine
sciences.

Figure 1.5: Correlation between warming and Net Primary Production change

- Change in average Sea Surface Temperature (upper figure) and Net Primary Production

(figure below) during the 1999 to 2004 period (adapted from Behrenfled et al. [2006]).

1.2.3 A decisive parameter in biotechnological applications

Characterized by several attracting physiological specificities, phytoplankton, also called
microalgae in the context of valorisation, are under the scientific spotlights. On top of
their autotrophic growth requiring little nutrient input compared to heterotrophic uni-
cellular eukaryotes, some of them are able to accumulate important amounts of neutral
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lipids [Mata et al., 2010], which can be turned into biofuel. Others can store large quan-
tities of carbohydrates, used for methane production. They are therefore a promising
resource for future biotechnologies [Wijffels et al., 2013].

Microalgae are cultivated in a wide range of systems. For large scale industrial pro-
ductions, the most common ones are outdoor open ponds called raceways (fig. 1.6 A).
Pond daily temperature variations can reach high values far different from what is en-
countered in the natural environment, sometimes higher than 40◦C [Bechet et al., 2010,
Béchet et al., 2011] (fig. 1.6 B). Temperature then appears as a key factor for optimizing
production and has to be controlled here for several purposes: maintain optimal tem-
perature values in order to enhance productivity, limit thermally induced death during
extreme thermal events, avoid light-saturation that occurs at low temperature [Béchet
et al., 2011, Ras et al., 2013]. A recent modelling study trying to figure out the orders of
magnitudes of phytoplankton large scale outdoor cultures productivity in France points
toward a crucial role played by temperature, and particularly the negative impact of
temperature daily fluctuations [De Rosbo and Bernard, 2014].

1.3 From acclimation to adaptation

The phytoplankton thermal growth curve is flexible, and phytoplankton can acclimate
in a certain limit to temperature variations. However, when temperature variations
overtake this limit, phytoplankton have to adapt through a process of evolution [Hof-
mann and Todgham, 2010]. Historically, Dallinger was the first to conduct a selection
experiment to test for the adaptation limits of unicellular eukaryotes [Dallinger, 1887]
(fig. 1.7). Dallinger progressively increased the environmental temperature of three
Monads (fig. 1.7 right), and watched for their presence with a microscope. He found
that, years after years, Monads were well adapting to their new temperatures and were
still alive. This experiment is subjected to caution, because of possible contamination.
However, in 2011, more than one century after Dallinger’s experiment, Huertas et al.
[2011] conducted a closely related one with phytoplankton (the so-called ratchet experi-
ments). Huertas et al. [2011] concluded that phytoplankton did adapt to temperature in
silico, at least to smooth temperature increase, and that this adaptation is highly group
dependent.

Since Huertas et al. [2011], several studies have been conducted to define the ability of
each species to adapt to temperature [Costas et al., 2014a,b, Padfield et al., 2015b]. It is
however not known how the shape of the thermal growth curve evolves during adaptation,
as well as the process by which cardinal temperatures change. Several hypotheses exist
depending on the constraints playing a role during evolution [Angilletta, 2009, Knies
et al., 2009] (fig. 1.8). If the species are not thermodynamically constrained (i.e. if the
effect of warming does not favour growth in an Arrhenius-like way), then the thermal
growth curve would only horizontally transpose (horizontal shift hypothesis). In the
other case, higher temperatures are expected to sustain higher growth rates (higher
is better hypothesis). The thermal niche width is not obviously constant, and thus
can decrease (specialist-generalist hypothesis) or increase (hotter is broader hypothesis)
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Figure 1.6: Temperature variations in a raceway pond located in New Zeand -

Raceway pond (A) and associated temperature variations (B) during August 2013 (adapted

from Béchet et al. [2011]). Experimental data are marked in red whereas the blue line

corresponds to a dedicated model.
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Figure 1.7: Dallinger experiment - Experiment conducted by Dallinger [1887] on the

three monads Tetramitus rostratus, Monas dallingeri, Dallingera drysdali (adapted from

Julou [2011]).

with temperature. Finally, evolution could only affect Topt and then lead to asymmetric
changes only (asymmetric hypothesis).

1.4 Objectives of the thesis

In the present thesis, the objectives can be listed as follow: i)What are the effects of tem-
perature on marine phytoplankton physiology? ii)What are the mechanistic processes
that underlie the thermal growth curve? iii)How do phytoplankton adapt to tempera-
ture? To answer these questions, we first reviewed the existing models representing the
thermal growth curve and the thermally driven physiological mechanisms (section 3).
We then compiled thermal growth curves for hundreds of species to determine universal
and specific links and try to interpret it in light of a mechanistic model (section 4, 5, 6).
We finally constructed evolutionary models (section 7), later confronted to a selection
experiment (section 8) and simulated at global ocean scale (section 9).
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Figure 1.8: Adaptation of the thermal growth curve - Different hypotheses for the

deformation of the thermal growth curve during thermal adaptation. A, horizontal-shift,

B, hotter is better, C, specialist-generalist trade-off, D, hotter is broader and better, E,

asymmetric adaptation. Adapted from Knies et al. [2009].
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2

Material and methods

Note: the first section of this material and methods chapter is extracted

and adapted from Bonnefond [2015] with the kind authorization of Dr.

Hubert Bonnefond.

2.1 Culture device and selection procedure

2.1.1 The selectiostats

A selection experiment based on temperature stress has been performed at the Obser-
vatoire de Villefranche-sur-Mer (see section 8). In this selection experiment, our culture
system, a 1.9 L plane photobioreactor named ‘selectiostat’ (fig. 2.1), was specifically
designed to impose an increasing selection pressure on long-term continuous cultures of
microalgae. Cultures were continuously and gently homogenized by a magnetic stirrer
and a slight air bubbling. Photobioreactors were continuously illuminated with white
LED (Nichia NVSL219BT 2 700K) at 250 µmol photons.m−2.s−1, and light intensity
was continuously measured with a plane probe (SKY, SKL2620) placed on the opposite
side of the LED. The enrichment sterile medium was prepared in 20 L tanks (Nalgen)
filled with 3 weeks matured natural seawater filtered on 0.1 µm, and autoclaved at 120◦C
for 40 minutes. After cooling, f/2 medium was added [Guillard, 1975].

Selectiostats were automatically controlled: pH was regulated at 8.2 by computer-
controlled micro-addition of CO2. The temperature was controlled by a double water
jacket using a programmable cryostat. The inertia system was 30 minutes to change
the temperature from 10◦C to 40◦C in the culturing system. Light, pH, temperature,
turbidity, dilution rate were continuously recorded by ODINR© software developed by
INRIA.

Cell concentration, size distribution and biovolume were monitored once or twice a
day by optical particle counter (HIAC - Royco, Pacific Scientific Instruments). The first
sampling was performed at the beginning of the low temperature period, the second
at the beginning of the high temperature period. The variability between triplicate
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Figure 2.1: Selectiostat culture device - Culture of Tisochrysis lutea in the ‘selectiostat’

device. Adapted from Bonnefond [2015].
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2.1 Culture device and selection procedure

measurements was routinely lower than 5 %. The mean cell diameter of the population
and the biovolume were calculated from size distribution.

2.1.2 Cultivation mode for selection experiments

In the turbidostat culture, turbidity was continuously measured at 800 nm and kept
constant (at a turbididty roughly corresponding to 9.105 cells.mL−1) by dynamically
adjusting the dilution rate with ODINR© software. The set point of biomass was suffi-
ciently high to optimize selection (because of the sufficient number of generations related
by a sufficient growth rate) and to allow accurate biochemical analyses on small volume
samples, and sufficiently low to prevent nutrient limitation and light shading. The fed-
batch culture was diluted with fresh sterile medium every 7 days. Only 5 to 10% of
the initial volume was kept, in order to restart cultures with an initial cell density of
5.105 cells.mL−1. Since selection experiments lasted more than 150 days in stressing
conditions, a procedure to prevent biofilm formation was required. The selectiostats
were restarted monthly: they were cleaned and re-filled with the preserved culture com-
plemented with a sterile medium.

For the feed-batch mode, the growth rate was calculated on the linear part of the
logarithm of cell biovolume using the following equation:

µSFbexp =
ln(BV1/BV2)

t2 − t1
(2.1)

where BV1 and BV2 are the biovolume (µm3.mL−1) at time t1 and t2 (with t2 − t1 = 4
or 5 days). For the turbidostat mode, equilibrium was reached after 1 day. Afterwards,
the growth rate was directly equal to the average dilution rate (D) recorded by ODIN
on the resting days of the cycle (6 days).

The selection by temperature was processed by modifying the so-called ratchet proto-
col proposed by Reboud et al. [2007] and later modified by Huertas et al. [2011]. Square
wave temperature variations were daily applied. The temperature pattern was identical
along a cycle which lasted 7 days. The daily pattern of a cycle consisted in the applica-
tion of a low temperature (Tlow) during 8 hours and a high temperature (Thigh) during
16 hours, with a daily constant average temperature (28◦C). If a stabilized growth rate
was observed at the end of each cycle, then the next selection cycle was started. It
consisted in reducing Tlow by 2◦C and increasing Thigh by 1◦C so as to keep a constant
average temperature. The same selection cycle could also be repeated if no positive
average growth was observed. For the two last cycles, in highly stressing conditions
inducing high mortality, Thigh was increased by only 0.5◦C and Tlow was decreased by
only 1◦C.

2.1.3 The TIP device

The TIP (Temperature, Irradiance, pH) setup developed by Marchetti et al. [2012] was
used to measure the temperature response in acclimated conditions before and after

13
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the selection process (fig. 2.2). This device can assess the effect of pH and irradiance,
but here we focused on the temperature response. The exponential growth rates at 8
temperatures ranging from 12◦C to 35.5◦C, at constant irradiance (250 µmol.m−2.s−1)
and pH (7.9) were measured after a lag time of 1 day on the linear part of the logarithm
of the optical density measured at 680 nm (DO680).

Figure 2.2: TIP device - Cultures of Tisochrysis lutea in the multifactorial TIP device

designed at IFREMER Nantes.

2.2 Data compilation, parameters identification and mod-

els calibration

2.2.1 Thermal growth curves compilation

We compiled 464 specific growth rate versus temperature data sets (i.e. the thermal
growth curve) from the literature (including the previously compiled data of Corkrey
et al. [2014] Thomas et al. [2012]) for unicellular organism (UO) strains belonging to
the 3 domains of life (5728 data points). We later incorporated part of the compiled
data of Thomas et al. [2015] for phytoplankton. We only selected data sets obtained in
temperature-acclimated batch cultures and in non-limited 1conditions. For autotrophic
organisms, experiments not carried in autotrophic mode were eliminated. The specific

1We cannot guaranty that the light conditions for photoautotrophic organisms were optimal.
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growth rate in the exponential phase is defined as:

µ(T ) =
1

X

dX

dt
=

ln(2)

G(T )
(2.2)

where T is the (constant) temperature, X is the biomass concentration (assumed to be
expressed here in cells.L−1), G(T ) is the generation time (i.e the time it takes to double
the population size). The organisms are assumed to be in balanced growth conditions as
defined by Campbell [1957] (i.e. every extensive property of the growing system increases
by the same factor). Because data were compiled and therefore come from different
authors and experimental protocols, the acclimation time at a given temperature is not
the same for all the datasets. The method used to calculate the growth rate also differs
between authors. Most of the growth rates were obtained from cell counts, but optical
density monitoring using a spectrophotometer was also employed. For photosynthetic
organisms, chl a fluorescence is sometimes used as a proxy of biomass. We assumed that
these three different proxies of biomass used to calculate the growth rate give the same
cardinal parameters estimation and only affects the maximum growth rate.

2.2.2 Species biovolume

We calculated the average cell biovolume for each species/strain mentioned above. To do
so, we either directly found the information in the literature or we found informations on
cell shape and on the average cell length and width. In the second case, cell biovolume
was computed according to their shape, i.e. we used the formula of the sphere volume
or the ellipsoid volume. For more complicated shapes, we referred to the cell biovolume
formula summarized in Olenina [2006].

2.2.3 CTMI parameters determination

We estimated the cardinal parameters Tmin, Topt, Tmax and the maximum growth rate
µopt for each data set using the CTMI model (see eq.3.11).







µ(T ) = 0 if T < Tmin

µ(T ) = µoptφ(T ) if Tmin ≤ T ≤ Tmax

µ(T ) = 0 if T > Tmax

(2.3)

with

φ(T ) =

λ(T )
︷ ︸︸ ︷

(T − Tmax)(T − Tmin)
2

(Topt − Tmin)
[

(Topt − Tmin)(T − Topt)− (Topt − Tmax)(Topt + Tmin − 2T )
]

︸ ︷︷ ︸

β(T )

(2.4)

under the condition:

Topt >
Tmin + Tmax

2
(2.5)
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We used a dedicated algorithm developed by Bernard and Rémond [2012] and based on
the Quasi-Newton with Broyden-Fletcher-Goldfarb-Shanno method to find the cardinal
parameters. For each parameter, the confidence interval was also computed using a
Jackknife method developed by Bernard and Rémond [2012]. The estimation of Tmin is
tricky mainly because the growth is very slow in the lower part of the thermal growth
curve and can lead to experimental errors (i.e. growth rates artificially equal to zero).
Moreover, authors tend to avoid experiments at low temperature and model calibration
on this kind of incomplete data sets artificially gives very low Tmin with high degrees of
uncertainty. Conversely, data are generally lacking in the decreasing upper part of the
thermal growth curve and can twist Tmax estimation.

2.2.4 Data sets selection

After calibration, we eliminated data sets with less than 5 data points, and with less
than two data points in the upper part of the thermal growth curve (i.e. data points
for which T ≥ Topt). We also did not consider data sets for which the model calibration
does not give coherent results, i.e. if Tmax − Tmin > 60◦C (the largest known thermal
niche width) and if µopt > 4 h−1 (the highest growth rate known).

2.2.5 Hinshelwood model calibration

We calibrated the Hinshelwood model (eq. 3.22) on each selected data set µexp(T )
using a dedicated method. Indeed, calibration of this model is made difficult without
a precise determination of the initial parameter vector because, for example, A1 can
varies of several order of magnitude. Previous studies used an empirical trial and error
method to do so [Valik et al., 2013, Zwietering et al., 1991]. Firstly, we made a first
estimate of A1 and E1 (written Â1 and Ê1) by calibrating the function f1(T ) (see eq.
3.22) on the lower part of the thermal growth curve (i.e. the data points for which
T < Topt) using an Arrhenius plot (see section 3.2.3). Because the resulting function is a

first estimate, we called it f̂1(T ). Then, we deduced the semi-experimental death curve
fd(T ) by subtracting f̂1(T ) to the experimental data points belonging to the upper part
of the thermal growth curve (T ≥ Topt):

fd(T ) = f̂1(T )− µexp(T>) (2.6)

where T> is the vector of data temperatures higher than or equal to Topt. We then
obtained the first estimates of parameters A2 and E2 (i.e. Â2 and Ê2) by calibrating
function f2(T ) (see eq.3.22) on fd(T ). Again, the estimated function is f̂2(T ), and we
obtained Â2 and Ê2 using an Arrhenius plot. Secondly, we calibrated the Hinshelwood
model on the whole data set using the MatlabR© function fminsearch with Â1, Ê1, Â2

and Ê2 as initial parameters. The ordinary least-squares criterion was used to fit the
model, and the parameter set minimising the sum of the squared residuals was chosen:

SSR(θ) =

n∑

i=1

(µexp(Ti)− µ(Ti, θ))
2 (2.7)
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where θ is the parameter vector.

2.2.6 Data analysis

2.2.6.1 Linear relationships between the cardinal temperatures

We described the linear relationships between the cardinal temperatures obtained with
the CTMI model using a simple statistical descriptor, the correlation coefficient ρ be-
tween each cardinal temperatures. We tested for the hypothesis of no correlation using
the student t-test defined as:

t =
ρ

√

(1− ρ)2/(n− 2)
(2.8)

where n is the data set size. The resulting p-value corresponds to the probability of
getting a correlation as large as observed by random chance (see table 4.1).

We applied a linear regression between the cardinal temperatures and tested for its
goodness using the coefficient of determination R2 defined as the square of the correlation
coefficient between the variable to explain and the linear regression, and the adjusted
R2 (called ω2) expressed as:

ω2 = R2 − (1−R2)
p

n− p− 1
(2.9)

where p is the number of explanatory variables. We then calculated the 95% confidence
interval using the MatlabR© function polyconf (see fig. 4.1).

We compared the linear regression between groups obtained by subdividing data sets,
and we used the Chow-test combined to a Fisher F-test. This test allows to determine
if the coefficient of different linear regressions obtained for two different groups are the
same. The Chow-test F statistic is:

F =
(Stot − (S1 + S2))/k

(S1 + S2)/(n1 + n2 − 2k)
(2.10)

where Stot is the total sum of squared residuals, S1 and S2 are the sum of squared
residuals for the two groups, n1 and n2 are the groups size, k is the number of parameters.
F follows the Fisher distribution with k and n1 + n2 − 2k degrees of freedom.

2.2.6.2 Non-linear relationships between Topt and µopt

In chapter 5, and on the contrary to Bissinger et al. [2008], we used non-linear quantile
regression to describe the non-linear relationship between Topt and µopt for the whole
data set and for each sub-group (defined in chapter 5). Non-linear quantile regression is
based on the least absolute deviations regression (LAD) which uses the median rather
than the mean, and is therefore less sensitive to extreme outlying values than ordinary
least squares (OLS) regression. The quantile q of interest (here q is the 99th quantile) is
estimated using an optimization function that minimizes the sum of weighted absolute

17



2. MATERIAL AND METHODS

deviations [Koenker and d’Orey, 1987] (see also the review of Cade and Noon [2003] for
biological applications of quantile regression). A linear quantile regression would give,
for example:

Q(βq) =
N∑

i:yi≥x′
iβ

q|yi − x′iβq|+
N∑

i:yi<x′
iβ

(1− q)|yi − x′iβq| (2.11)

where Q(βq) is the quantile regression estimator to be minimized, x and y are two data
vectors (e.g. Topt and µopt), N is the size of these vectors, β and βq are parameters
to estimate. The solution to the minimization problem is achieved using an algorithm
such as the Nelder-Mead method [Nelder and Mead, 1965]. In our non-linear case,
the functions used were polynomial functions (3rd and 4th order degree) as well as the
Bernard&Rémond equation. We described the quality of the fit using pseudo-R2, defined
as [Koenker and Machado, 1999]:

pseudo−R2(q) = 1−

∑

yi≥ŷi
q|yi − ŷi|+

∑

yi<ŷi
(1− q)|yi − ŷi|

∑

yi≥ȳ q|yi − ȳ|+
∑

yi<ȳ(1− q)|yi − ȳ|
(2.12)

where ŷi is the predicted value and ȳ is the mean of y.

2.2.6.3 Statistical tools for models comparison

In chapter 6, we used several criterion to compare different models with different number
of parameters. First, we used the Akaike Information Critetion (AIC) defined as [Akaike,
1998]:

AIC = −2ln(MSE) + 2k (2.13)

where k is the number of parameters, MSE is the mean squared error. We also used
the corrected AIC called AICc taking sample size into account:

AICc = AIC
2k(k + 1)

n− k − 1
(2.14)

where n is the sample size. Finally, we used the Bayesian Information Criterion (BIC),
where the number of parameters has more influence:

BIC = −2ln(MSE) + kln(n) (2.15)
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3

Modelling the temperature effect

on unicellular organisms from

heterotrophic bacteria to

autotrophic eukaryotes: a review

Contributors: Mairet, F., Sciandra, A., Bernard, O.

The Deutsch physical chemist Jacobus Henricus Van’t Hoff.

3.1 Introduction

The growth of unicellular organisms (UO), from bacteria to heterotrophic unicellular
eukaryotes and phytoplankton, is highly impacted by temperature, as pointed out by a
recent study at global ocean scale [Sunagawa et al., 2015]. For photosynthetic organisms,
temperature is the second most influencing factor after light. It is therefore crucial to
understand how temperature affects UO as well as correctly model these effects.
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3. MODELLING THE TEMPERATURE EFFECT ON UNICELLULAR
ORGANISMS FROM HETEROTROPHIC BACTERIA TO
AUTOTROPHIC EUKARYOTES: A REVIEW

Because of their wide repartition and use, UO have been studied in different scientific
domains, ranging from ecological modellers to microbiologists specialized in the food
security preservative. A variety of intrinsically different models have been developed for
different uses.

The aim of this study is to summarize the existing deterministic temperature growth
models in the light of the underlying biological processes (see table 3.1 for a summary).
Firstly, models in non-limiting and balanced growth conditions are described. The key
processes are presented through a mechanistic approach. Secondly, the specific case
of unicellular photosynthetic organisms is addressed. Finally, we present the existing
dynamical models, such as the thermal death models.
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Figure 3.1: Model fit - Fit of the 10 described models on the normalized thermal growth

curve of Escherichia coli (strain code 62 from Corkrey et al. [2014]). Models denoted with

a ‘*’ are normalized.
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3. MODELLING THE TEMPERATURE EFFECT ON UNICELLULAR
ORGANISMS FROM HETEROTROPHIC BACTERIA TO
AUTOTROPHIC EUKARYOTES: A REVIEW

3.2 Modelling the specific growth rate of unicellular or-

ganisms as a function of temperature

In this section, we detail the existing models representing the effect of temperature on
the specific growth rate of a UO in non-limiting conditions.

3.2.1 Methodological clarification

The specific growth rate is defined, in batch acclimated cultures, as the growth rate
during the exponential phase:

µ(T ) =
1

X

dX

dt
=

ln(2)

G(T )
(3.1)

where T is a fixed temperature, X is the biomass concentration (assumed to be expressed
here in cells.L−1), G(T ) is the generation time (i.e the time it takes to double the
population size). The organisms are assumed to be in balanced growth conditions as
defined by Campbell [1957] (i.e. every extensive property of the growing system increases
by the same factor). µ(T ) is commonly called the thermal growth curve.

It is important to note that the thermal growth curve is dependent on the way
biomass is measured. Firstly, some authors use optical density to quantify the cell con-
centration, or, for the photosynthetic organisms, the chlorophyll a concentration. These
methods are not accurate since pigment content is temperature depend, and an acclima-
tion phase should be needed for pigment acclimation to the new temperature. Moreover,
for heterotrophic UO, the results obtained highly depend on the physiological state of the
organisms [Monod, 2012]. Secondly, other biomass descriptors are commonly used, such
as the particulate organic carbon (POC) concentration. The dynamics of this descriptor
is likely to be differently affected by temperature (see section 3.4). Even thought the
use of the descriptor depends on the processes studied, it should be homogeneous and
an ideal biomass estimate should be proportional to the carbon mass with a constant
independent of temperature. Thirdly, the experimental acclimation time at a given tem-
perature is of major importance for the consistency of the thermal growth curve; the
acclimation time can vary from one day to several weeks. For example, some protocols
consist in gradually increasing the temperature and measuring the growth rate. Such
approach has the advantage of providing a rapid evaluation of the temperature response.
However, the cell acclimation state is unclear and probably provides a less exploitable
response curve. For all these reasons, Boyd et al. [2013] have, for example, developed a
standard protocol to construct the thermal growth curve for phytoplankton: the popula-
tion must be acclimated to the experimental temperature for at least 4 generations, the
population must be kept at an exponential growth phase using semi-continuous cultures,
multiple biomass descriptors must be used and compared to obtain growth rates (cell
counts, chlorophylle a fluorescence, etc.), a minimum of 6 experimental growth rates at
6 different temperatures must be obtained, the cultures must be carried on with three
replicates, all the other parameters must be kept constant and if possible at optimal

22



3.2 Modelling the specific growth rate of unicellular organisms as a
function of temperature

levels, the experiments with temperatures at which the cells do not grow or grow very
slowly must be repeated several times, and finally several strains of the same species
should be compared.

3.2.2 The Arrhenius model from Van’t-Hoff to Eyring:

Since the xixe century, chemists are aware of the prodigious effect of temperature change
on chemical reaction rates. As early as 1850, Ludwig Ferdinand Wilhelmy published an
article dealing with ‘The law by which the action of acids on cane sugar occurs’ and its
temperature dependence [Wilhelmy, 1850]. At that time, Maxwell’s law of distribution
of molecular velocities already established that the proportion of molecules having en-
ergies greater than the average at ordinary temperatures were very small, but increased
with temperature. In 1867, Leopold Pfaundler von Hadermur applied Maxwell’s law to
chemical equilibrium [Pfaundler, 1867]. Because at chemical equilibrium, reverse and
forwards reactions occur at the same rate, he assumed, using Maxwell’s law, that only a
fraction of molecules having energy greater than a critical parameter E could undergo
chemical-changes. Moreover, this fraction would exponentially change with temperature.
In 1884, the famous physical chemist Jacobus van’t Hoff contemplated a thermodynam-
ical version of Pfaundler thought [van’t Hoff, 1889]. Consider the following chemical
equilibrium between two species B and C:

B
k1
⇋

k2
C (3.2)

with k1 and k2 the forward and reverse reaction rate, respectively. Then, van’t Hoff
assumed that the equilibrium constant defined as K = k1/k2 satisfied the following
relation for a fixed pressure:

dln(K)

dT
=

∆H0

RT 2
(3.3)

where ∆H0 is the standard enthalpy change (corresponding approximately to the internal
energy change), R is the ideal gas constant. To understand the funding principles of this
equation, we have to introduce some thermodynamical concepts. Firstly, the definition
of change in Gibbs free energy ∆G0 is:

∆G0 = ∆H0 − T∆S0 (3.4)

where ∆S0 is the system entropy change. Secondly, the link between Gibbs free energy
and the equilibrium constant K is:

∆G0 = −RT ln(K) (3.5)

It is possible to find eq.3.3 by combining eq.3.4 and eq.3.5. eq.3.4 results directly from the
second law of thermodynamics stipulating that every chemical transformation generates
entropy. Eq.3.5 is trickier to detail. However, the natural logarithm ‘appears’ in this
equation and is responsible for the exponential temperature dependence of chemical
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reactions described next. Briefly, eq.3.5 comes from the mass action law. Despite van’t
Hoff approach, the fact remained that eq. 3.3 only related temperature to equilibrium
constant and not to reaction rates. In 1889, the Swedish chemist Svante Arrhenius, a
former van’t Hoff’s student, published a study about the temperature effect on cane
sugar inversion based on Wilhelmy work [Arrhenius, 1889]. Using eq.3.3, Arrhenius
proposed a semi-empirical model which was later applied to bacteria by replacing the
rate constant by the species growth rate [Arrhenius, 1889, Ratkowsky et al., 1982]:

µ(T ) = Ae−E/(RT ) (3.6)

where R is the gas constant, A is called the ‘collision factor’ or the pre-exponential part
and E is said to be the activation energy, determined empirically. The Arrhenius model
parameters are easy to estimate using an Arrhenius plot, by expressing ln(µ(T )) as a
function of 1/T , which gives a linear relationship; parameters can thus be obtained with
a linear regression. The Arrhenius model allows good representations of growth rates at
low temperatures, but some Arrhenius plot does not give straight lines, indicating for
example that E can vary with T . Moreover, the Arrhenius model cannot represent the
decreasing part of the thermal growth curve, e.g. when temperature might cause cell
death. Arrhenius equation can be reformulated as:

µ(T ) = k1e
TA/T1−TA/T (3.7)

where T1 is a reference temperature, TA is the Arrhenius temperature (i.e. slope of the
straight line of the Arrhenius plot) and k1 is the reaction rate at T1.

Arrhenius model is said semi-empirical because the parameter meanings were not
clear. However, this model worked perfectly in many cases (for a detailed story of the
Arrhenius equation, see Laidler [1984]). In 1935, Henry Eyring and two colleagues used
a new theory to develop the ‘Erying equation’, bringing a mechanistic justification to
the Arrhenius equation. This theory, called the Transition State Theory, stipulates that
there exists an intermediate form between the reactants and the products (the native
and denatured protein and enzyme, for example) which is in rapid equilibrium with the
reactants:

Pf
k1
⇋

k2
TS

kd→ Pu (3.8)

where, in this example, Pf and Pu are the fraction of native and denatured proteins,
respectively. The Eyring equation reads:

k(T ) =
KBT

h
e∆S‡/(R)e−∆H‡/(RT ) (3.9)

where KB is the Boltzmann constant, h is the Planck’s constant. The parameters ∆S‡

and ∆H‡ correspond to the entropy and enthalpy of activation. The Eyring equation is
also used in bacteria growth models nowadays.
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3.2.3 Empirical approach

Historically, empirical models of unicellular organisms specific growth rate as a function
of temperature have been developed, mostly for food-processing industry and medical
applications. Various empirical models have been proposed since the 1960’s, but only
three are still commonly used.

The Square-Root model: The Square-Root model was initially proposed by David
Ratkowsky as an alternative to the Arrhenius model [Ratkowsky et al., 1982] and then
extended to the whole biokinetic range [Ratkowksy et al., 1983]:

µ(T ) =
[

b
(

T − Tmin)(1− ec(T−Tmax)
)]2

(3.10)

where Tmin and Tmax are the minimal and maximal temperatures for growth, b is the
regression coefficient of the squared root growth rate plotted against temperature below
the optimal temperature, and c is an additional parameter to represent growth rate
decrease above the optimal temperature.

The CTMI model: The CTMI (Cardinal Temperature Model with Inflexion) was
developed by Lobry et al. [1991] and later popularized by Rosso et al. [1993]:







µ(T ) = 0 if T < Tmin

µ(T ) = µoptφ(T ) if Tmin ≤ T ≤ Tmax

µ(T ) = 0 if T > Tmax

(3.11)

with

φ(T ) =

λ(T )
︷ ︸︸ ︷

(T − Tmax)(T − Tmin)
2

(Topt − Tmin)
[

(Topt − Tmin)(T − Topt)− (Topt − Tmax)(Topt + Tmin − 2T )
]

︸ ︷︷ ︸

β(T )

(3.12)

under the condition:

Topt >
Tmin + Tmax

2
(3.13)

Tmin, Topt, Tmax are the minimal, optimal and maximal temperatures for growth and µopt
is the growth rate at Topt. The model parameters have a direct biological interpretation.
The model was built for its easy calibration on experimental data.

The Blanchard model: The Blanchard model was developed by Blanchard et al.
[1996] to model the photosynthetic response of benthic phytoplankton to temperature.
This model can be used to represent the thermal growth curve:

µ(T ) = µmax

(
Tmax − T

Tmax − Topt

)β

e−β(Topt−T )/(Tmax−Topt) (3.14)
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with T ≤ Tmax and Topt < Tmax. Parameters Topt and Tmax correspond to the cardinal
temperatures, µmax is the growth rate at T = Topt and β is a dimensionless parameter.

Model comparison: A comparison between the Square-Root model and the CTMI was
made by Rosso et al. [1993] and more recently by Valik et al. [2013]. According to these
studies, the two models fit equally well the data. Both models were validated by Valik
et al. [2013] using an F-test. However, the b and c parameters of the Square-root model
are correlated, whereas the CTMI parameters are not, which allows easier parameter
identification. CTMI proves useful for cardinal temperatures identification.

3.2.4 Mechanistic approach

The former model types allow to identify the main characteristics of the thermal growth
curve. However, the mechanistic approach aims to represent the thermal growth curve
as a result of inherent physiological processes. These models are mostly based on the
Arrhenius formulation (see 3.2.3).

The master reaction model: In 1946, Johnson and Lewin [1946] noticed that cul-
tures of Escherichia coli exposed to 45◦C during a long time ceased to grow, but grew
exponentially again when replaced at 37◦C. The longer the cultures were exposed to the
high temperature, the lower was the growth rate at 37◦C. However, there was no sign of
viability loss. They concluded that cells endured reversible damage, particularly protein
denaturation. They considered a simple case where a single reaction controlled by one
master enzyme En limits growth (with no substrate limitation):

µ(T ) = cTEne
−∆H‡

A
/(RT )e∆S‡

A
/R (3.15)

where c is a constant given by the Eyring formulation (see 3.8), ∆H‡
A is the enthalpy of

activation (enthalpy difference between the transition complex and the active form) and

∆S‡
A is the entropy of activation. The enzyme goes from a native, active form En to a

reversibly denatured, inactive form Ed:

En
k1
⇋

k2
Ed (3.16)

The chemical equilibrium is defined as:

K = k1/k2 = En/Ed = e−∆H/(RT )−∆S/R (3.17)

where ∆H is the enthalpy difference between the active form and the inactive form, ∆S
is the entropy difference. If E0 is the total amount of enzyme, E0 = En +Ed. It follows
that:

En =
E0

1 +K
=

E0

1 + e−∆H/(RT )−∆S/R
(3.18)

Then, by posing C = ce∆S‡
A
/RE0 and replacing En by Eq.3.18 in Eq.3.15, Johnson and
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Figure 3.2: Master reaction model (eq. 3.19) - Illustration of the master reac-

tion model. The black line corresponds to µ(T ), the blue dashed line corresponds to

CTe−∆H‡/(RT ), the red dashed line corresponds to P (T ).

Lewin obtained the master reaction model (see fig. 3.2):

µ(T ) = CTe−∆H‡/(RT ) ·
1

1 + e−∆G(T )/(RT )
︸ ︷︷ ︸

P (T )

(3.19)

where P (T ) is the probability that the enzyme is in its native state and ∆G(T ) is the
Gibbs free energy change:

∆G(T ) = ∆H − T∆S (3.20)

An other version of eq.3.19 exists, where the exponential part does not follow an Eyring
formulation but rather an Arrhenius one, which is relevant in the case of reactions with
high activation energy like protein denaturation Bischof and He [2005]:

µ(T ) = Ce−∆H‡/(RT ) ·
1

1 + e−∆G(T )/(RT )
(3.21)

It is worth noting that this simplified equation here does not have any influence on the
model fit and behaviour, and simplifies the calculation of the cardinal temperature Topt
(see table 3.1).

The Hinshelwood model: In 1945, Sir Norman Hinshelwood proposed a rather simple
model in which the temperature-dependent growth rate is just the difference between a
synthesis rate f1(T ) and a degenerative rate f2(T ) [Hinshelwood, 1945] (see fig. 3.3):

µ(T ) =

f1(T )
︷ ︸︸ ︷

A1e
−E1/(RT )−A2e

−E2/(RT )

︸ ︷︷ ︸

f2(T )

(3.22)
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where A1 and A2 are related to entropy and E1 and E2 are related to enthalpy. Hinshel-
wood believed that the function f2(T ), which causes the ‘catastrophic decline to zero’,
represents protein denaturation. He argued that the model only works if E2 is higher
than E1, because the degenerative process represented by f2(T ) must be sudden. Since
protein denaturation possesses a high activation energy, it is a good candidate for driving
the process. Moreover, A2 (corresponding to entropy) also has to be quite high. Thus,
the ‘activated state must be highly disordered compared with the initial state’ which ‘re-
sults in an easy transition to the activated state in spite of the large amount of energy
which has to be taken up to reach it ’. Precisely, protein denaturation leads from a highly
ordered state to an higly disordered state and is therefore associated with a large entropy
increase. From the Hinshelwood model, after some mathematical manipulations, it is

Figure 3.3: Hinshelwood model - Illustration of the Hinshelwood model. The black

line corresponds to µ(T ), the blue dashed line corresponds to f1(T ), the red dashed line

corresponds to f2(T ).

possible to express Topt, Tmax, µopt (see section 10.3):

Topt =
E1 − E2

Rln

(
A1E1

A2E2

) (3.23)

Tmax =
E1 − E2

Rln

(
A1

A2

) (3.24)

µopt = θA2

(
A1

(1 + θ)A2

)(1+θ)/θ

=
E2 − E1

E1
A2e

−E2/(RTopt) (3.25)

with θ = (E2 − E1)/E1. Given that µ(T ) does not cancel for low temperature, Tmin

is defined in this case by µ(Tmin) = ǫµopt and arbitrarily fixing ǫ = 0.05 (see proof in
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section 10.3):

Tmin ≃
−ToptE1/γ

Topt − E2/γ
(3.26)

where:

γ = Rln

(
E2 − E1

E1

A2

A1
ǫ

)

(3.27)

The DEB theory approach: In the Dynamics Budget Theory, the effect of tem-
perature on population growth is taken into account using a modified Master Reaction
model [Kooijman, 2010], where all the temperature-dependent functions are Arrhenius
modified equations (eq. 3.7):

µ(T ) =
k1e

TA/T1−TA/T

1 + eTAL/T−TAL/TL + eTAH/TH−TAH/T
︸ ︷︷ ︸

fD

(3.28)

where TL and TH are related to cold and hot denaturation (lower and upper boundaries),
TAL and TAH are the Arrhenius temperatures at low and high temperature respectively
(see eq.3.7). The ratio f−1

D corresponds to the fraction of enzyme in its native state,
modelling also cold denaturation contrary to the Master Reaction model.

3.2.5 The protein thermal stability challenge

Protein thermal stability plays a key role in the UO thermal growth curve [Johnson and
Lewin, 1946, Pena et al., 2010, Rosenberg et al., 1971, Zeldovich et al., 2007] (see section
5.1 and 6). In line with the master reaction model, some publications went further in
the comprehension of protein thermal stability and its consequences on UO growth.

The modified master reaction model: The master reaction model assumes that
∆G, the Gibbs free energy difference between the native and denatured protein, is
temperature independent. Based on Murphy et al. [1990] work, Ross [1993] and then
Ratkowsky et al. [2005] remarked that ∆G should vary with T in eq.3.19 following eq.
3.20. Moreover, [Murphy et al., 1990] showed that globular proteins (including enzymes)
share common thermodynamic properties. For any protein, the denaturation enthalpy
change ∆H and the denaturation entropy change ∆S, normalized to the number of
amino-acids residues of this protein, both converge to a fixed value ∆H∗ and ∆S∗ at
T ∗
H and T ∗

S respectively [Privalov, 1979]. The reason for such a temperature convergence
is still unclear. Nonetheless, it has been shown that at T ∗

H and T ∗
S , the hydrophobic

contribution to ∆H and ∆S approaches zero [Robertson and Murphy, 1997]. At that
stage, we have to introduce a novel thermodynamics parameter, the heat capacity Cp.
According to [Murphy et al., 1990], ∆H and ∆S can be expressed as a function of the
heat capacity change:

∆H = ∆H∗ +∆Cp(T − T ∗
H) (3.29)

∆S = ∆S∗ +∆Cpln(T/T
∗
S) (3.30)
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C

B

A

Figure 3.4: Modified master reaction model - Illustration of the modified master

reaction model. A, the Gibbs free energy change as a function of heat capacity change and

temperature. B, Gibbs free energy change as a function of temperature only for different

fixed heat capacity change (and thus for a given protein). C, the modified master reaction

model plot for a UO (black line) with activation function (blue dashed line) and protein

denaturation probability P (T ) (red dashed line).
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where ∆H∗ is the enthalpy change per mol of amino-acid residue of the enzyme at T ∗
H ,

∆S∗ is the entropy change per mol of amino-acid residue of the enzyme at T ∗
S , ∆Cp is the

heat capacity difference between the native and denatured protein, T ∗
H is the temperature

at which the contribution of ∆Cp to enthalpy is zero and T ∗
S is the temperature at which

the contribution of ∆Cp to entropy is zero. The heat capacity change ∆Cp is constant
for a given protein [Privalov and Khechinashvili, 1974]. Using Eq.3.29 and 3.30, the
Gibbs free energy of protein denaturation (i.e. the protein thermal stability) is (Fig.
3.4A and B):

∆G(T ) = n
[
∆H∗ − T∆S∗ +

∆Ghydro
︷ ︸︸ ︷

∆Cp[(T − T ∗
H)− T ln(T/T ∗

S)]
]

(3.31)

where n is the number of amino-acid residues in the master enzyme and ∆Ghydro is the
hydrophobic contribution to the free energy change. Eq.3.31 describes protein thermal
stability in terms of hydrophobic contribution of apolar compounds.

Ross [1993] and Ratkowsky et al. [2005] proposed to replace ∆G by Eq.3.31 in Eq.3.19
(forming the modified master reaction model). Because T ∗

H , T ∗
S and ∆S∗ are considered

as universal constant for globular proteins [Murphy and Gill, 1991], the modified master
reaction model has 5 parameters (Fig. 3.4C). As a validation, Ratkowsky et al. [2005]
fitted the model on 35 bacterial strains normalized data sets obtained in non-limiting
conditions. Their main conclusion points towards the crucial role played by a single
master enzyme whose thermal sensitivity is driven by hydrophobic interactions.

Recently, Corkrey et al. [2014] extended the modified master reaction model to uni-
cellular and multicellular eukaryotes. They considered ∆H∗ as a universal constant as
well, reducing the model parameters to 4. They fitted the model on 230 strains normal-
ized data sets covering a range of 124◦C. Their principal conclusion states that the model
is able to find coherent protein thermodynamics parameters with only growth data (i.e.
growth rate versus temperature). Hyperthermophiles proteins seem to be more widely
robust. Moreover, they found several link between thermodynamic parameters, for ex-
ample between Topt and ∆Cp (enzyme stability), and between Topt and ∆H‡ (enzyme
activity). However, they did not provide further explanations. They finally speculate on
the nature of the single limiting reaction. They assume that if a single reaction (and not
several) is rate limiting, then it should be linked to the protein unfolding and re-folding
process. They particularly focus on the role of chaperones proteins responsible for de
novo folding.

The proteome approach: In 2007, Zeldovich et al. [2007] proposed that the whole
proteome plays a role in UO thermal sensitivity. Resuming this idea,
Chen and Shakhnovich [2010] considered that each important protein i has its own
Gibbs free energy of denaturation ∆Gi. The growth rate of an UO becomes dependent
of the stability of each protein, and the thermal denaturation of several proteins causes
a bottleneck effect on growth:

µ(T ) = CTe−∆H‡/(RT ) ·
1

Np∏

i
1 + e−∆Gi(T )/(RT )

(3.32)
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Figure 3.5: Free energy distribution - Gibbs free energy distribution of Escherichia

coli proteome at 37◦C (adapted from Ghosh and Dill [2010]).
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where Np is the number of proteins. According to Zeldovich et al. [2007], the proteome
can be described in protein stability distribution thanks to a dedicated probability func-
tion of the Gibbs free energy, P (∆G) (see fig.3.5). By taking the natural logarithm of
eq.3.32 and by integrating the resulting equation over the whole P (∆G) distribution
range, Chen and Shakhnovich [2010] expressed the growth rate as:

ln(µ(T )) = ln(CT )−∆H‡/(RT )−

Np∑

i=1

ln
(

1 + e−∆Gi/(RT )
)

(3.33)

that is, by averaging over the proteome:

ln(µ(T )) ≃ ln(CT )−∆H‡/(RT )−Np

∫ L

0
ln
(

1 + e−∆G/(RT )
)

P (∆G) d∆G (3.34)

where L is the maximum value of ∆G (for example L = 40 in fig. 3.5). Np can be
reduced to the number of the only important proteins. According to Sawle and Ghosh
[2011] and Ghosh and Dill [2010], ∆G can be expressed as a function of ∆H, ∆S and
∆Cp (using eq. 3.29 and eq. 3.30), itself depending on the protein chain length denoted
N :

∆G = ∆H(N) + ∆Cp(N)(T − Th)− T∆S(N)− T∆Cp(N)ln (T/Ts) (3.35)

with

∆H(N) = aN + b
∆S(N) = cN + d
∆Cp(N) = lN +m

(3.36)

where a, b, c, d, l, m are empirical parameters constant defined for mesophilic and for
thermophilic organisms. The distribution of chain length over the proteome P (N) can
be known [Zhang, 2000] and is used to estimate P (∆G). It can be modelled by a gamma
distribution:

P (N) =
Nα−1e−N/θ

Γ(α)θα
(3.37)

where θ and α are the parameters of the gamma distribution corresponding to:

< N >= αθ
< (∆N)2 >= αθ2

(3.38)

The brackets represent the mean over all the proteins. Γ(α) is the gamma function eval-
uated at α. The model (eq. 3.34), presented as universal, has thus only two parameters,
Np and ∆H‡. It has been validated on 12 normalized data sets of prokaryotes.

The heat capacity hypothesis: Recently, Hobbs et al. [2013] and Schipper et al.
[2014] proposed a model called the Macromolecular Rate Theory (MMRT) in which

the thermal growth curve is driven by the heat capacity change of activation ∆C‡
p (i.e.
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the heat capacity difference between the ground state and the transition state). More
precisely, the growth rate is expressed as:

µ(T ) =
kB
h
Te∆G‡(T )/(RT ) (3.39)

where kB and h are the Boltzmann and Planck’s constants, ∆G‡ is the Gibbs free energy
difference between the ground state and the transition state of a possible rate-limiting
enzyme. Contrary to the master reaction model, the MMRT considers that enzymes
do not denature easily and are in rapid equilibrium with a folded, inactive intermediate
(i.e. the transition state). The Gibbs free energy difference can be here written as:

∆G‡(T ) = ∆H‡
T0

+∆C‡
p(T − T0) + T (∆S‡

T0
+∆C‡

pln(T/T0)) (3.40)

If ∆C‡
p > 0, then the heat capacity difference between the ground state and the transition

state (i.e. the inactive folded enzyme) itself is sufficient to explain the decrease of growth
rate above Topt. Schipper et al. [2014] validated the MMRT model on microbial soil
processes data sets.

3.3 The special case of unicellular photosynthetic organ-

isms

Unicellular photosynthetic organisms perform oxygenic photosynthesis. This metabolic
particularity is ensured by special structures and enzymes, such as the rubisco enzyme
involved in CO2 fixation, and the photosystems protein complexes which harvest pho-
tons. The thermal sensitivity of unicellular photosynthetic organisms is thus expected
to be distinct and will be discussed in this section.

3.3.1 The Eppley point of view for phytoplankton

In 1972, Richard Eppley published a review dealing with the effect of temperature on
phytoplankton growth in the sea [Eppley, 1972]. Comparing different thermal growth
curves for a variety of phytoplankton species in non-limiting conditions (nearly 200
data points), Eppley determined that the maximal growth rate µopt for each species is
constrained by a virtual envelope along the optimal temperature trait Topt, the so-called
‘Eppley curve’(see Fig.3.6). Eppley stated that for any phytoplankton species growing
under 40◦C, ‘hotter is faster’.

In 2004, Jon Norberg used Eppley’s hypothesis to develop a temperature-growth
model, the ‘Eppley-Norberg’ model [Norberg, 2004]:

µ(T ) =

[

1−

(
T − z

w

)2
]

aebT (3.41)
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w

z

Figure 3.6: Eppley curve - A, Eppley envelope function with the original data points. B,

5 data sets for eukaryotic phytoplankton species. C, Eppley-Norberg plot for the 5 species

(redrawn from Norberg [2004]).

where w is the thermal niche width, z is the temperature at which the growth rate is
equal to the Eppley function and is a proxy of Topt, a and b are parameters of the Eppley
function. The Eppley-Norberg model is widely used by the scientific community working
on phytoplankton (see for example the recent paper of Taucher et al. [2015]). The Eppley
envelop is designed for phytoplankton but is likely to be modified for bacteria (see section
5).

Follows et al. [2007] proposed a slightly different version of the Eppley-Norberg model
to take into account photosynthesis:

µ(T, I) = µmax.
1

τ1

(

AT e−B(T−T0)c − τ2

)

︸ ︷︷ ︸

γT

.
1

γImax

(

1− e−kpI
)

e−kiI

︸ ︷︷ ︸

γI

(3.42)

where µmax is the species maximum growth rate, γT and γI are respectively the nor-
malized temperature photosynthesis functions. The parameters τ1 and τ2 ensure the
normalization of γT , while parameters A, B, T0 and c modify its shape by taking into
account the Eppley hypothesis (see fig.3.7). Similarly, γImax ensures the normalization
of γI , kp represents the increase of growth with light at low irradiance and ki represents
photo-inhibition.

35



3. MODELLING THE TEMPERATURE EFFECT ON UNICELLULAR
ORGANISMS FROM HETEROTROPHIC BACTERIA TO
AUTOTROPHIC EUKARYOTES: A REVIEW

0 10 20 30

0.5

1

0

Temperature/(°C)

G
ro

w
th

/f
ac

to
r

1 100
Irradiance/(µE/m²/s)

A B

γ 
T γ 

I

0.5

1

0

Figure 3.7: Modified Eppley model - A, Eppley curve normalized at 30◦C. B, photo-

synthesis as represented in eq. 3.42. The figure is redrawn after Follows et al. [2007].

3.3.2 The link between photosynthesis and temperature in the models

Photosynthesis involves two distinct parts with different sensitivities to temperature
(the dark phase and the light phase, see section 10.1.2). The light phase is virtually
not affected by temperature, leading to a possible desequilibrium between the photons
harvested and their conversion into chemical energy whenever the dark phase is af-
fected by temperature (see for example the review by Ras et al. [2013]). The model
supported by data related to the light phase of photosynthesis (O2 production of Pulse
Amplitude-Modulated (PAM) fluorescence) therefore includes a moderated temperature
effect [Béchet et al., 2013].

Photosynthesis and temperature uncoupled: These models assume that tem-
perature and light are independent factors. For example, the model developed by
Bernard and Rémond [2012] assumes that the growth rate is expressed as:

µ(T, I) = f(I).φ(T ) (3.43)

where φ(T ) corresponds to the CTMI (eq.3.12) and:

f(I) = µmax
I

I +
µmax

α

(
I

Iopt
− 1

)2 (3.44)

µmax is the maximum growth rate at optimal light intensity Iopt and optimal temperature
Topt, α is the initial slope of the light response curve. f(I) was built in line with the
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Peeters and Eilers [1978] model with photoinhibition, but reparametrized for a better
parameter identification. Bernard and Rémond [2012] developed an algorithm to obtain
the cardinal temperatures from data sets with different light conditions. This model
was validated on 15 phytoplankton species. The uncoupled hypothesis is, however, no
longer valid at high light intensities (i.e. when photoinhibition occurs) as temperature is
known to play a role in photoinhibition [Jensen and Knutsen, 1993a]. For example, low
temperature induces an imbalance between the light harvesting and the carbon fixation
which is enzyme-dependent (carboxylase) and thus generates light saturating conditions
(see 10.1.2 and Young et al. [2015]).

Photosynthesis and temperature coupled: Some models consider the coupling
between temperature and photosynthesis, such as the model developed by Dermoun
et al. [1992] for the unicellular Rhodophyta Porphyridium cruentum:

µ(T, I) = 2µm(T )(1 + β1)
I/Iopt(T )

1 + 2β1I/Iopt(T ) + (I/Iopt(T ))
2 (3.45)

where µm(T ) is the maximum specific growth rate at a given temperature T , Iopt is
the optimal irradiance at a given temperature T and β1 is the shape factor for limiting
irradiance. µm(T ) and Iopt(T ) are functions similar to eq. 3.45 (see Dermoun et al.
[1992]). It is worth noting that the tight coupling between light and temperature in this
model leads to identifiability problems partially due to excessive number of parameters
(9 here). Furthermore, when light is limiting, it is not essential to take into account
the coupling between light and temperature. For all these reasons, we avoid the use of
such models. An other example [Carvalho and Malcata, 2003] is detailed in Béchet et al.
[2013].

3.4 The dynamical effect of temperature on unicellular or-

ganisms

Previously, we exposed the different effects of temperature on acclimated cells, using
static growth models. However, temperature can have a short-term effect on growth.
Internal metabolites such as starch or lipid can accumulate at a rate which can be driven
differently by temperature. Moreover, in the natural environment or in outdoor cultures,
temperature is varying with time. Dynamical models are thus essential to capture the
resulting effects of these varying temperature conditions on growth.

3.4.1 The metabolic response to temperature acclimation

Most of the models representing the growth of an UO when the temperature T (t) is
time-varying include a function φ(T (t)) directly in each reaction kinetic, which has the
same mathematical formulation as µ(T ) described in section 3.2, assuming that the
specific growth rate defined by temperature is adopted instantaneously (see for example
Baranyi et al. [1995], Baranyi and Roberts [1995]). However, this approach is not always
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satisfactory given that temperature-driven metabolite accumulation, temperature-driven
respiration and acclimation processes can take place. In the following, we introduce the
existing models dealing with temperature variations.

For heterotrophic UO, dynamical models developed by microbiologists mostly take
into account a slowly changing temperature (see for example Baranyi et al. [1995] and
Kovarova et al. [1996]). Dougherty et al. [2002] developed a model for the bacteria Lacto-
coccus lactis under more rapid temperature fluctuations. The model considers the total
amount of energy per cell as a state variable, and its distribution for different biosynthesis
pathways (here malic acid and lactic acid) have different temperature sensitivities.

Richard Geider was one of the first to develop a dynamical model accounting for
temperature effect on phytoplankton growth. Firstly, he took into account the fact that
phytoplankton cells are able to adapt their pigment content to temperature changes.
The chlorophyll concentration is adjusted to the photon flux and to the cell capacity
of converting it into chemical energy. It has been clearly shown that the carbon to
chlorophyll ratio (C/Chla) decreases exponentially with temperature, and Geider [1987]
modelled it:

C

Chla
= a− bT + cIe−kT (3.46)

where a, b, c, k are constants and I is the light intensity. However, eq. 3.46 isn’t valid
anymore when the temperature is higher than the species Topt [Geider, 1987]. This model
has thus to be included into a dynamical model where carbon or chlorophyll are state
variables.

Later, Geider et al. [1998] developed a dynamical model for the whole phytoplank-
ton growth. The model deals with the co-limitation by nutrient, light and temperature
on growth. The state variables and biomass descriptors are the bulk nitrogen, carbon
and chlorophyll concentrations. Using an Arrhenius equation, they consider that tem-
perature acts equally on respiration, chlorophyll synthesis and nitrogen assimilation so
that different metabolic processes have the same temperature dependence. However, the
model considers that temperature affects the light-saturated photosynthesis whereas it
does not affect the initial slope of the photosynthesis versus light intensity curve. The
Geider et al. [1998] model was later modified by Quinn et al. [2011] for phytoplankton
biotechnological applications assuming that temperature does not affect respiration.

For marine biogeochemical applications, Thomas et al. [2012] have developed a model
for phytoplankton in which the substrate uptake follows an Eppley formulation (eq.
3.41). The temperature-induced losses are arbitrary set to 5% of the Eppley curve
regardless of the species thermal trait.

More recently, Muñoz-Tamayo et al. [2013] constructed a model based on Mairet
et al. [2010] itself based on the Droop model [Droop, 1968] to account for the temperature
fluctuations effects in outdoor phytoplankton cultures. The model assumes again that
temperature has the same effect on all kinetic reactions by incorporating the CTMI model
(eq. 3.12) in the ODE system. Yet, it considers chlorophyll acclimation to temperature
by including eq.3.46 in the chlorophyll state variable dynamics.
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3.4.2 The thermally-induced death

UO cells submitted to cooling or warming can die because of protein denaturation,
membranes injuries or an imbalance between the needed and produced ATP. Several
question related to lethal temperatures are still open: i) What is the effect of the time-
duration of cooling or heating on mortality? ii) What happens for temperature lower or
higher than the physiological Tmin and Tmax? iii) Does death rate already increase for
temperatures lower than the Topt?

The survival curve: Thermal mortality was first investigated, once again, by mi-
crobiologists dealing with bacterial disinfection in food industry. They particularly fo-
cused their study on the survival curve, i.e. the natural logarithm of the remaining alive
cells plotted against time. Applying a fixed temperature above the species Tmax, Moats
[1971] describes 4 types of survival curve (fig. 3.8). Numerous empirical models exist to
represent the survival curves within isothermal conditions (see the recent review Smelt
and Brul [2014]); they are called primary model, because they don’t take into account
the temperature time variation effect. The Weibull model [Mafart et al., 2002] is one
of the most widely used:

ln(N(t)) = −ln(N0)−

(
t

δ(T )

)p(T )

(3.47)

where t is the time of heating, δ(T ) is the temperature-dependent scale parameter and
p(T ) is the temperature-dependent shape parameter. The Weilbull model accounts for
the upward or downward concavity that the survival curve can take shape. If p(T ) = 1,
then the mortality rate is exponential. Because the survival curve is the combination of
several processes, including cell damages and repairs, mechanistic models have also been
developed [Smelt et al., 2002]. Nonetheless, primary models can’t be used in dynamical
conditions.

Secondary death models associate a temperature-dependent function to the param-
eters of primary models (i.e. isothermal models). They allow to consider temperature
as a time-varying variable. The simpler and mechanistic use of secondary model is con-
structed on an Arrhenius equation. Qin et al. [2014], for example, used such a secondary
model for eukaryote cells. Because the irreversible cell denaturation rate regarding tem-
perature follows an Arrhenius equation, the denatured cell fraction FD during an heating
process can be written as:

FD = 1− exp

(

−1/B

∫ Tend

T0

k(T ) dT

)

(3.48)

where k(T ) is the cell denaturation rate, B is the rate of temperature change (tempera-
ture is linearly varying here), T0 and Tend are the temperature at the beginning and at
the end of the heating process. It is worth noting that other mechanistic approaches ex-
ist, such as proposed by Valdramidis et al. [2007] who developed a model for Escherichia
coli taking into account heat resistance (and thus repair mechanisms) of cells. Empirical
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Figure 3.8: Survival curves - Cell survival curves in batch conditions (here expressed

as the concentration of alive cells N(t) on initial cells concentration N0.) when exposed

to temperature higher than Tmax (redrawn from Moats [1971]). A, initial lag in death

followed by a log-linear death rate, B, log-linear death rate, C, heterogeneous population

with different death rates, D, death rate with inflexion.
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3.5 Conclusion

secondary-based models are also common; Corradini and Peleg [2007] constructed an
empirical model for bacteria based on the Weilbull model (eq. 3.47) where δ(T (t)) and
p(T (t)) are explicit temperature-dependent functions.

Coupling growth and death models: In variable conditions, cells can be submit-
ted to lethal and non-lethal temperatures. For this reason, microbiologists have sought
to couple growth models with mortality models (fig. 3.9). Van Uden [1985], for ex-
ample, combines a master reaction growth model with an exponential mortality model
(i.e. a primary model) for yeast. For bacteria, this kind of models has been reviewed by
Corradini and Peleg [2006]. Some authors have coupled growth models and secondary
death models in order to also take into account the effect of the time duration of heating
and cooling (see for example Baranyi et al. [1996]).

3.5 Conclusion

In this chapter, we have pictured out the different types of existing temperature-growth
models for UO. In non-limiting conditions and balanced growth, the empirical temper-
ature models better fit the data than mechanistic models (see fig. 3.1).

However, the limiting steps in the thermal growth curve, as depicted by the mecha-
nistic models, are not clearly understood. Despite the recent development of a universal
unicellular growth model [Corkrey et al., 2014], the ‘proteome paradigm’ should be fur-
ther investigated. The proteome implication in thermal adaptation should be considered.

Modelling of the temperature effect on photosynthetic organisms still has shortcom-
ings. The temperature coupling with light has not clearly been investigated at high light
intensity. The Eppley hypothesis has only been applied to phytoplankton and could be
adapted for other groups. Also, this hypothesis may depend on the phytoplankton group
considered.

The effect of temporal temperature variations on the cell metabolic reactions are not
well described by the models [Ras et al., 2013]. Data are clearly lacking to understand
and model how internal metabolites such as starch or lipid react to temperature vari-
ations. Because temperature is naturally varying in the environment, its fluctuations
may drive temperature acclimation and its effects have to be determined.

Finally, the thermally-induced death still has to be investigated. Few studies exist for
unicellular eukaryotes, especially for phytoplankton. It is not clear if death rate increases
under theoretically sublethal temperatures. Moreover, the capacity of cell to repair its
damages and regrow after an heat or cold shock is not clearly understood and modelled,
as well as the acclimation and adaptation to temperature. The molecular mechanisms
leading to or protecting against death are not clearly understood, and should be closely
related to the proteome thermal sensitivity.
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Figure 3.9: Coupled growth and death models - A, first-order reaction kinetic (blue,

growth, red, death) for a fictive UO when the time spent at each temperature is sufficiently

long. B, resulting growth rate versus temperature curve. Redrawn from Corradini and Peleg

[2006]
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3.5 Conclusion

Figure 3.10: Survival curves obtained at different temperatures - Temporal dy-

namics of temperature injury on Listeria innocua at two different temperatures (adapted

from Corradini and Peleg [2007]).
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3. MODELLING THE TEMPERATURE EFFECT ON UNICELLULAR
ORGANISMS FROM HETEROTROPHIC BACTERIA TO
AUTOTROPHIC EUKARYOTES: A REVIEW

Summary of section 3:

• Empirical models better describe the thermal growth

curve than mechanistic ones

• The effect of temperature on physiology are not well

understood, especially when temperature is fluctuating

• The coupled effects of temperature and light have to be

further investigated

• The thermally-induced death is only modelled by empir-

ical models
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4

Correlation between the cardinal

temperatures: insight into

thermal adaptation

Contributors: Bernard, O., Mairet, F., Sciandra, A.

Ærarissima nostro simplicitas

4.1 Introduction

Unicellular organisms (UO) are poikilotherms, which means that their internal tem-
perature is at equilibrium with the environmental temperature, thus constraining their
metabolic rate. However, these microorganisms have colonized most of the thermal win-
dows, ranging from psychrophilic (temperature< 15◦C) to hyperthermophilic (temperature>
90◦C) niches Rothschild and Rocco [2001]. The underlying adaptation mechanisms have
been extensively studied over the past decade Chen and Shakhnovich [2010], Cooper
et al. [2001], Kingsolver [2009], but are still in debate. The adaptation capability is
strongly dependent on the different phylogenetic groups. For example, the two phyto-
plankton groups of diatoms and dinophytes do not adapt in the same way despite their
close ecological role [Huertas et al., 2011]. In a warming world, two questions are critical:
i) What controls thermal adaptation? ii) Is thermal adaptation driven by some universal
mechanisms?

Temperature controls the rate of metabolic activity Gillooly et al. [2001a], but also
induces enzyme denaturation Zeldovich et al. [2007]. These antagonistic effects are
responsible for the asymmetry of the thermal growth curve, which links growth rate to
temperature for a given species Angilletta [2009]. Each species can be characterized
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4. CORRELATION BETWEEN THE CARDINAL TEMPERATURES:
INSIGHT INTO THERMAL ADAPTATION

by three thermal parameters called cardinal temperatures: its minimal (Tmin), optimal
(Topt) and maximal (Tmax) temperatures for growth. It has been previously shown that
there exists a linear relationship between Tmin, Topt and Tmax, in bacteria Rosso et al.
[1993], but this has not been explained yet.

We investigated the correlation between cardinal temperatures in the three domains
of life (Archaea, Bacteria, and unicellular Eukaryota). To this end, we modelled the
thermal growth curve using an empirical model, the Cardinal Temperature Model with
Inflexion (CTMI) Rosso et al. [1993] (see eq. 3.11). CTMI allows to identify the cardinal
temperatures from experimental data using a method developed by Bernard and Rémond
[2012]. We analysed 464 growth rates versus temperature curves (representing more
than 5780 points) from the literature for species belonging to the three domains of life
and ranging from psychrophiles to hyperthermophiles (see section 2.2). We determined
the associated cardinal temperatures for each curve. We validated our approach by
comparing experimental data points to model predictions.

We show that there exists linear correlations between Tmin and Topt and between Tmax

and Topt valid for all UO, with a marked difference between prokaryotes and eukaryotes.

4.2 Relation between the cardinal temperatures

4.2.1 Linear relationships

Using the CTMI model, Rosso et al. [1993] have previously shown that the cardinal tem-
peratures are linearly correlated for psychrophiles, mesophiles and thermophiles bacteria.
We tested if such a linear relationship holds for all the UO and we calculated a linear
regression between the cardinal temperatures obtained for our data set (see fig 4.1 and
table 4.1). It turns out that a similar relationship holds for the whole data set, including
groups for which this relation has never been tested before, i.e. phytoplankton, yeasts,
archae, cyanobacteria (ρ = 0.981 for the relationship (Topt, Tmax) , ρ = 0.871 for the
relationship (Topt, Tmin), and ρ = 0.867 for the relationship (Tmin, Tmax), p < 0.01 (T-
test); see table 4.1), with the best linear fit obtained for the linear regression between
Topt and Tmax (r2 = 0.962). The thermal profile of a UO can thus be expressed as:

Tmax = a1Topt + b1
Tmin = a2Topt + b2

(4.1)

with a1 = 1.035, b1 = 7.367◦C, a2 = 0.819, b2 = −19.006◦C. The results are in accor-
dance with Rosso et al. [1993] (p < 0.05, Chow-test) (see table 4.1). The slope a1 of
the linear regression between Topt and Tmax is nearly equal to one, indicating that the
difference between Tmax and Topt is fairly constant and equal to the intercept of the
linear regression (b1 = 7.367). This is not the case for the linear regression between
(Topt, Tmin) and (Tmin, Tmax) (a2 = 0.819 and a3 = 0.773 respectively) meaning that the
thermal niche width w = |Tmax − Tmin| theoretically increases with Tmax (w increases
by 0.216◦C as Tmax increases by 1◦C).
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4.2.2 Differences among the phylogenetic groups

To challenge the universality of these linear relationships, we divided the data set into
two groups, prokaryotes and eukaryotes, and 5 subgroups according to phylogenetic and
metabolic criteria: bacteria (heterotrophic prokaryotes), archae (heterotrophic prokary-
otes), cyanobacteria (photosynthetic prokaryotes), microalgae (photosynthetic eukary-
otes), yeast (heterotrophic eukaryotes).

For the couple (Topt,Tmax), the linear regression is better for prokaryotes than for
eukaryotes, the significance of the linear relationship being verified for both (ρ = 0.986
and ρ = 0.851 respectively, p < 0.01). Moreover, the slope and the intercept are compa-
rable (p < 0.05, Chow-test; see table 4.1) and significantly close to that found by Rosso
et al. [1993] (p < 0.05, Chow-test). However, for the couple (Topt, Tmin), the linear cor-
relation is only significant for prokaryotes, and the linear regression gives a satisfactory
result only for this group (ρ = 0.916, R2 = 0.839, p < 0.01 (T-test) for prokaryotes
and ρ = 0.238, R2 = 0.056 for eukaryotes). The linear regression only gives values
significantly close to that of Rosso et al. [1993] for prokaryote (p < 0.05, Chow-test).
The same differences prokaryotes/eukaryotes are observed for the couple (Tmax, Tmin)
(ρ = 0.911, p < 0.01 (T-test) for prokaryotes and ρ = 0.260 for eukaryotes). From these
data analysis, it results that Rosso et al. [1993] observations only hold for prokaryotes.
Eukaryotes, on the other way, solely follow the linear rule between Topt and Tmax.

The three prokaryote subgroups archae, bacteria and cyanobacteria all verify the
linear correlations between cardinal temperatures and have the same linear regressions
for the cardinal temperatures, without subgroup specificities (p < 0.05, Chow-test) (see
fig. 4.2, 4.3, 4.4 A,B,C). The eukaryote subgroups of microalgae and yeasts also show a
significant linear correlation between Topt and Tmax (see table 4.1). The linear regression
coefficients obtained for microalgae are comparable to the ones obtained for prokaryotes,
but differ from those of yeasts (see fig. 4.2, 4.3, 4.4 D,E).

The metabolism type (heterotrophic or autotrophic) does not seem to affect the linear
link between the cardinal temperatures (but see section 5.3). However, microalgae and
cyanobacteria have a lower average thermal niche width (29.535±8.579 and 29.640±7.949
respectively) than heterotrophic UO (fig. 4.6). It is worth noting that most of the
autotrophic organisms can change their metabolism to an heterotrophic mode under
particular environmental conditions. Here, all the phytoplankton data sets are obtained
in autotrophic conditions.
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â
x
+
b̂.

G
ro
u
p

L
in
ea
r
re
g
re
ss
io
n

â
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â
T
o
p
t
+

b̂
0
.5
1
0

-1
0
.4
3
7

0
.3
1
6

0
.1

0
.0
9
1

n
o

(a
u
to
tr
o
p
h
ic

eu
ka
ry
o
te
s)

T
m

a
x
=

â
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4.2 Relation between the cardinal temperatures

Finally, to test whether the differences previously observed could be related to the
range of temperature growth, we divided the data set into 3 groups according to their
thermal preferences: psychrophiles (Topt < 15◦C), mesophiles (15◦C≤ Topt < 45◦C),
thermophiles (Topt ≥ 45◦C) [Willey, 2008]. No significant differences were found between
these groups. This indicates that the species thermal preferendum does not play a role
in the correlation between the cardinal temperatures.

4.2.3 A closer look at microalgae

To validate the linear correlations found between the cardinal temperatures, we analysed
a data set recently compiled by Thomas et al. [2015] for eukaryotic phytoplankton. We
divided this data set into 4 phylogenetic groups: Dinophyta, Ochrophyta (diatoms and
related), Haptophyta and Chlorophyta. We applied the same linear regression as for the
other groups, with the same data set selection criteria (see section 2.2.4). Results (fig. 4.5
and table 4.2) confirmed the correlations observed for (Topt, Tmax) for eukaryotes, with
no significant differences between the linear regressions for Dinophyta, Ochrophyta and
Chlorophyta (p < 0.05, Chow-test). Nevertheless, for Haptophyta, the linear regression
gave significantly different results; because there is only 12 data points for this group, it
was not possible to conclude that Haptophyta are particularly different.

The link between Tmin and the other cardinal temperatures found here nuances the
results obtained for the microalgae data set compiled in section 4.2.2. Indeed, among
the 4 microalgae groups considered here, Dinophyta have a significant linear correlation
between Topt and Tmin. At that stage, it is not possible to determine if it is a specificity
of Dinophyta, or if this correlation could apply to the other microalgae groups using a
better protocole to determine Tmin.
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â
T
o
p
t
+
b̂

0.
92
4

-2
2.
34
2

0.
20
4

0.
04
1
4

-0
.0
5
4
4

n
o

T
m

a
x
=
â
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Figure 4.5: Linear regression between Topt and Tmin, Topt and Tmax for phyto-

plankton (data from Thomas et al. [2015]) - Red, Dinophyta, blue, Ochrophyta, black,

Haptophyta, green, Chlorophyta. The blue an red lines correspond to the linear regressions

between Topt and Tmin, Topt and Tmax respectively. The grey areas are the 95% prediction

intervals. The dashed line is the y = x line.

4.3 Thermal adaptation and the thermal niche width

The unveiled linear relationships between the cardinal temperatures, universal for Topt
and Tmax, specific to prokaryotes for Topt and Tmin, let us assume that thermal adapta-
tion, at least within the prokaryote group, proceeds by translation of the thermal growth
curve. This result corresponds to the ‘horizontal-shift’ hypothesis of Huey and Kingsolver
[1989] (see also Kingsolver [2009]). This translation is not strict, because, as previously
found for the whole data set, the thermal niche width of prokaryotes is supposed to
slightly increase with Topt (see eq. 4.1). Eukaryotes seem to follow a different pattern
with a possible absence of linear link between Tmin and Tmax, and thus eukaryotes could
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have a more flexible thermal niche width and a special ability to adapt to cold tem-
peratures. Nevertheless, eukaryotes and prokaryotes (fig. 4.6 and fig. 4.7) have similar
average thermal niche widths (31.757◦C ±8.947 and 35.016◦C ±8.500 respectively), even
within the phytoplankton eukaryotic group (fig. 4.7). The thermal adaptation mecha-
nisms are maybe different (explaining the possible uncoupling between Tmin and Tmax

for eukaryotes) but the same physical constrains apply for the two groups. For example,
some authors have highlighted the crucial role played by membrane structures during
thermal adaptation [Arthur and Watson, 1976, Caspeta et al., 2014, Daniel et al., 2004,
Liberles et al., 2012, Los et al., 2013]. Because eukaryotes possess complex membranes
compared to prokaryotes, this could be a key concept for explaining the eukaryote Tmin

flexibility. Recently, Caspeta et al. [2014] have enhanced the thermal tolerance of the
yeast Saccharomyces cerevisiae by continuously selecting more thermal tolerant strains.
The resulting strains had a different sterol composition, a key component of membrane
fluidity. Lipids composition of membranes is also highly modified during thermal adap-
tation of microalgae, as recently shown by Bonnefond et al. [subm.]. Additionally, some
microalgae are able to regulate their ribosome cell concentration as an adaptation to
cold temperatures [Toseland et al., 2013].

4.4 Conclusion

The linear correlations between the cardinal temperatures unveiled by Rosso et al. [1993]
have been confirmed for all the UO. However, eukaryotes seem to have a more flexible
Tmin and have a higher capability to adapt to cold temperatures. The thermal niche
width is highly constrained by these linear links, but is not constant. This study supports
the hypothesis that thermal adaptation proceeds by horizontal shifts of the thermal
growth curve, with possible small fluctuations of its skewness.
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Figure 4.6: Thermal niche width box plot - Boxplot of the thermal niche width

Tmax − Tmin of the different groups. The bold whiskers correspond to the 25th and 75th

percentiles, the points correspond to the median. The thin whiskers are the 5th and 95th

percentiles.
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Figure 4.7: Thermal niche width box plot for Thomas et al. [2015] data set -

Boxplot of the thermal niche width Tmax−Tmin of the different microalgae groups. The bold

whiskers correspond to the 25th and 75th percentiles, the points correspond to the median.

The thin whiskers are the 5th and 95th percentiles.
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4.4 Conclusion

Summary of section 4:

• The cardinal temperatures of all UO are linearly linked.

• The relationship between Tmin and Topt is not verified in

eukaryotes, which have more adaptive properties at cold

temperatures. It is verified in eukaryotic phytoplankton.

• The thermal growth curve may evolve by horizontal shift-

ing, with potential fluctuations of its skewness during

adaptation.
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5

Revisiting the Eppley hypothesis

Contributors: Mairet, F., Sciandra, A., Bernard, O.

A common fallacy in much of the

adverse criticism to which science is

subjected today is that it claims

certainty, infallibility and complete

emotional objectivity. It would be

more nearly true to say that it is

based on wonder, adventure and hope.

Sir Norman Hinshelwood

5.1 Introduction

In 1973, Richard Eppley established a relationship between the maximal growth rate of
phytoplankton and their living temperature, formalized by an exponential envelop func-
tion Eppley [1972]. Since Eppley, the ‘hotter is faster hypothesis’ prevails. Relieved and
modelled by Norberg [2004], Eppley’s hypothesis is based on the classical Arrhenius for-
mulation and seduced the scientific community who applied it for every UO. In addition
to temperature, the cell biovolume is known to influence the maximal growth rate. In
this way, the results obtained by Eppley and since then by many others [Bissinger et al.,
2008, Chollet, 2011] highly depend on this link. Despite several works [Brown et al.,
2004, Nielsen, 2006, Rose and Caron, 2007, Sal et al., 2015], the clear inter-relation
between temperature, biovolume, and maximal growth rate is still unclear.

Here, we challenged Eppley’s hypothesis using only the relation between Topt and
µopt [Bissinger et al., 2008]. We assumed that the maximal measured growth rate is a
proxy for µopt. We also normalized the maximal growth rate by the species biovolume.
We found that µopt is an increasing function of Topt until a certain temperature that is
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group dependent, and thereafter decreases. We then focused on phytoplankton to get
further insight into the Eppley hypothesis.

5.2 Hotter is not always faster

5.2.1 Describing the relationship between Topt and µopt using quantile

regression

We compiled the optimal temperature for growth Topt and the maximal growth rate at
Topt (i.e. µopt), using CTMI model (see section 2.2) for 464 species or strains of UO. We
assumed that in non-limited conditions µopt is the maximal growth rate that a species or
a strain can reach. However, cultures conditions are rarely perfectly optimized because,
for example, growth depends on many different factors. For the same temperature range,
the lowest growth rates should not be considered. Therefore, in line with Bissinger et al.
[2008], we used quantile regression Koenker and Bassett [1978] to infer relationships
between Topt and µopt from the upper edge of the plot µopt = f(Topt) (see section 2.2.6
for a full description of the method used). The quantile regression was calculated on
the 99th quantile, corresponding to the line below which 99% of the observations are
found. The 99th quantile was chosen because it is the most reliable way to calculate
the edge of the data, with the possibility of calculating interval errors, which would
not be possible with the 100th quantile [Bissinger et al., 2008]. Unlike Bissinger et al.
[2008], we used non-linear quantile regression with third and fourth degree polynomial
functions. This choice was motivated by the fact that, as supposed by Eppley [1972],
optimal growth rate µopt should increase exponentially with temperature (and thus with
Topt) until a certain value above which it starts to decrease. Indeed, Eppley [1972] only
described the exponential part but hypothesized that such a threshold exists: ‘There
is a gradual and exponential increase of µ up to about 40◦C. Temperature data above
40◦C, obtained with thermophilic, blue-green algae (...) show no further increase in µ.
(...) Such temperatures are outside the range encountered in the ocean and will not be
furthered discussed.’

Results (fig. 5.1) shows that, indeed, an optimal Topt equal to 70.6◦C and corre-
sponding to µopt = 2.95h−1 seems to exist in UO meaning that hotter is not always
faster for all the UO analyzed together. The two polynomial functions fit well the 99th

quantile, with pseudo-R2=0.679 and pseudo-R2=0.748 respectively. Conversely, if we
only take into account data below the optimal Topt, the function that best describes the
link between Topt and µopt is the exponential function, as described in Eppley [1972] for
phytoplankton. It is not possible to find such an increasing trend above the optimal
Topt despite the existence of extreme notorious exceptions in archae not represented here
(e.g. Thermococcus celericrescens growing at 3 h−1 at 80◦C [Kuwabara et al., 2007]).
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Figure 5.1: Maximal growth rate µopt as a function of Topt - µopt plotted against

Topt for the 5 different groups studied (brown, bacteria, green, microalgae, yellow, yeasts,

red, cyanobacteria, blue, archae). The bold and dashed blue lines are the 99th quantile

regression of a fourth and third order polynomial functions respectively, dotted lines are the

95% confidence intervals for the fourth order quantile regression.

63



5. REVISITING THE EPPLEY HYPOTHESIS

Table 5.1: Parameters of the fourth ordrer polynomial function µopt(T ) =
∑
piT

i applied

to the 5 groups.

Group p5 p4 p3 p2 p1 Pseudo-R2

Archae 3.491.10−7 -1.131.10−4 0.012 -0.462 5.817 0.741

Bacteria 1.277.10−6 -2.205.10−4 0.0127 -0.225 1.589 0.722

Cyanobacteria 2.028.10−7 -3.856.10−5 0.0025 -0.0595 0.5248 0.821

Microalgae -1.554.10−6 1.750.10−4 -0.0064 0.091 -0.341 0.803

Yeast -7.318.10−6 0.001 -0.054 1.291 -11.011 0.617

All groups 1.857.10−7 -5.974.10−5 0.0049 -0.075 0.451 0.8003

5.2.2 Group specificities

The metabolism efficiency of the different UO considered is probably highly group-
dependent, resulting in completely different µopt at least between heterotrophs and au-
totrophs. We thus divided the data set into the same 5 groups as in section 4.2.2 and
calculated the same 99th quantile regression. We also calibrated the CTMI model on the
99th quantile:

µopt(Topt) = φ(Topt) (5.1)

with φ(.) corresponding to eq. 3.12. Parameters of the CTMI model become: Toptmin
,

Toptopt , Toptmax the minimal, optimal and maximal Topt that a given group can reach,
and µoptopt the maximal reachable µopt.

Results (fig. 5.3, table. 5.2 and 5.1) using polynomials functions and CTMI model
quantile regressions are different but not contradictory. The repartition of data points
is not homogeneous on the thermal range of each group particularly at hotter tempera-
tures, and, as a result, Tmaxopt parameter is not well estimated. It is worth noting that
eukaryotes have a lower Tmaxopt but also a lower Tminopt than prokaryotes (fig. 5.2). To
have a clear comparison between the different group thermal sensitivities, we normalized
each group by its maximal growth rate (fig. 5.2). The group succession on the Topt axis
is consistent with Storch et al. [2014], who hypothesized that group thermal sensitivity is
related to cell complexity. In this way, archae are more widely tolerant to temperature
and especially more resistant to warm than bacteria and then unicellular eukaryotes.
Here, we complete this picture by observing the following decreasing thermal tolerance
order: archae, bacteria, cyanobacteria, microalgae, yeasts. However, the observed differ-
ence between microalgae and yeasts is probably not significant given the lack of points
at high temperature for microalgae.

5.2.3 Scaling law in the thermal growth curve

The method used in section 5.2.2 is coherent for closely related species. However, for
groups as vast and diverse as bacteria, for example, the method is insufficient. It has
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Table 5.2: Parameters of the CTMI model applied to the 5 groups.

Group Toptmin
(◦C) Toptopt (

◦C) Toptmax (◦C) µoptopt (h
−1) Pseudo-R2

Archae 1.32 89.4 108.2 1.02 0.572

Bacteria 9.41 57.31 106.42 1.04 0.587

Cyanobacteria 1.21 56.53 69.43 0.101 0.712

Microalgae 0.01 40.61 48.63 0.191 0.736

Yeast -8.36 36.62 41.34 0.454 0.623
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Figure 5.2: Normalized thermal envelope of the µopt = f(Topt) curve. - Brown:

bacteria, green: microalgae, yellow: yeasts, red: cyanobacteria, blue: archae.
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Figure 5.3: Maximal growth rate µopt as a function of Topt and 99th quantile

regression with fourth degrees polynome for the 5 groups - A, bacteria, B, archae,

C, cyanobacteria, D, microalgae, E, yeasts, F, all species.
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Figure 5.4: Log of cell biovolume V as a function of µopt - brown, bacteria, green,

microalgae, yellow, yeasts, red, cyanobacteria, blue, archae. The blue, red and black lines

correspond to eq. 5.2 with a0 = 2.2 and α = −1./4, α = −0.2 and α = 0.66 respectively.
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Figure 5.5: Maximal growth rate biovolume-adjusted µopt/V
α as a function of

Topt and third polynomial 99th quantile regression for the whole data set - Brown,

bacteria, green, microalgae, yellow, yeasts, red, cyanobacteria, blue, archae. The blue line

corresponds to the quantile regression. α = 0.66 for prokaryotes and α = −0.2 for eukary-

otes.
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been shown, indeed, that cell size is strongly related to the maximal growth rate for
every UO Brown et al. [2004], Gillooly et al. [2001b], Johnson et al. [2009], Kempes
et al. [2012]. This is well summarized by Niklas [2015]: ‘This aspect of cell growth
is treated here in light of studies showing that cell growth, metabolism, and division
rates decrease across (and often within) species as cell size increases [...] Explanations
for these inverse relationships differ among investigators, but considerations typically
involve the size-dependent (scaling) relationships among cell surface area, volume, and
dry mass (as measured by carbon or DNA content). The relationship between cell surface
area and volume (and its effect on cell growth rates and division rates) has received the
most attention because of the dictum that growth requires energy and, regardless of the
form of energy garnered by a cell (radiant energy in plants; chemical energy in fungi and
animals), the ability to harvest energy is some function of external surface area, whereas
the metabolic requirement for energy is some function of volume’. Various authors have
claimed that the following relationship exists between the maximal growth rate and the
dry mass or biovolume of any given UO [Banse, 1982, Brown et al., 2004, Gillooly et al.,
2001b, Kleiber et al., 1947]:

µopt = a0V
α (5.2)

where V is the biovolume or the dry mass, a0 is a scaling parameter and α = −1/4.
Eq. 5.2, called the ‘Keibler 3/4 power law’, states that ‘smaller is better’. There is a
current debate around the value of α for UO. DeLong et al. [2010] found that α = 0.66 for
prokaryotes and α = −0.2 for unicellular eukaryotes, arguing that prokaryotes metabolic
rate is limited by the number of genes whereas unicellular eukaryotes are limited by the
number of respiratory complexes (fig. 5.4). Kempes et al. [2012] and Johnson et al.
[2009], on the other way, point towards the intra and inter-specific variability of α,
especially for microalgae.

The Keibler power law, as well as the α values proposed by DeLong et al. [2010] are
coherent with the result obtained with our database (fig. 5.4). However, the relation
between V and µopt is not obvious. As explained by Gillooly et al. [2001b] and in section
5.2, µopt critically depends on temperature. To obtain a relation between the biovolume
and the maximal growth rate ceteris paribus, µopt has to be ‘temperature compensated’.
Indeed, Gillooly et al. [2001b] considered the following equation:

µopt = a0V
αf(Topt) (5.3)

where f(Topt) is a classical Arrhenius equation of the form e−E/(RTopt). Then, by taking
the natural logarithm of eq. 5.3, it is possible to obtain a ‘biovolume-corrected’or a
‘temperature-corrected’expression of the maximal growth rate. However, motivated by
fig. 5.3, we claim here that f(Topt) is not a simple Arrhenius equation, and rather:

µopt = a0V
α
(

e−E1/(RTopt) − e−E2/(RTopt)
)

(5.4)

where f(Topt) corresponds to an Hinshelwood equation. To obtain an approximation of
f(Topt), we divided the experimental maximal growth rates by V α, with α = 0.66 for
prokaryotes and α = −0.2 for eukaryotes, in line with DeLong et al. [2010]. The result,
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presented in fig. 5.5, tends to validate eq. 5.4. However, since there is no clear consensus
on the value of α, fig. 5.5 has to be analyzed carefully. An experimental way to get
further insight into f(Topt) would be to analyse the maximal growth rate of different set
of species with the same Topt or with the same biovolume (see section 5.3.2).

5.3 The phytoplankton paradigm

5.3.1 The revisited Eppley curve for phytoplankton

Since the work of Eppley [1972], the exponential Eppley curve setting that ‘hotter is
better’ for phytoplankton species living in the ocean volens nolens has been massively
used, especially for marine biogeochemical models using the formulation proposed by
Norberg [2004]. Some works have challenged the validity of this hypothesis, claiming for
example that in situ phytoplankton growth rates are often underestimated because of
the Eppley curve [Bissinger et al., 2008, Brush et al., 2002]. Chollet [2011], for example,
showed that despite a clear exponential trend at low temperature, the link between Topt
and µopt differs from that of an Eppley curve for diatoms.

Here, we focused on the result found for microalgae in section 5.2.2 by adding the
Thomas et al. [2015] database to our, filtered with the same criteria. We also included
the eukaryote extremophile Cyanidinium caldarium owing an optimal growth rate at
45◦C [Doemel and Brock, 1971]. We applied the same 99th quantile regression as in
section 5.2.2 with a third polynomial function and the CTMI model. Results (fig. 5.6)
suggest that there exists an intrinsic thermal limit for Topt (comprised between 4.7◦C and
47.3◦C), proper to microalgae, and that the maximal growth rate is highly constrained
by this limit, following the shape of a single species thermal growth curve. We will refer
as it as the ‘modified Eppley curve’all along the manuscript.

This result is highly variable between microalgae groups. We thus split microalgae
into the four phylogenetic groups Dinophyta, Ochrophyta, Haptophyta, Chlorophyta
and applied again the same method. Fig. 5.7 shows that Chlorophyta is the most
thermotolerant group, whereas Haptophyta and Dinophyta are the less ones. Data are
probably lacking for Haptophyta, however. The maximal optimal growth rate is also
widely different between groups, probably emphasizing different intrinsic physiological
limits and photosynthesis yields [Raven et al., 2013].

These groups differences may also be the result of the influence of cell biovolume
on maximal growth rates, as seen in section 5.2.3. Marañón et al. [2014], for example,
claim that the maximal growth rate of microalgae expressed a function of the biovolume
follows an unimodal function. Nevertheless, Marañón et al. [2014] did not take into
account the optimal temperature of growth nor thermally compensated their growth
data, and their results are in contradiction with Sal et al. [2015]. However, we did not
have the biovolume information for the Thomas et al. [2015] database and could not
further investigate the question.
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Figure 5.6: Maximal growth rate µopt as a function of Topt and 99th quantile

regression for 4 microalgae subgroups - Red, Dinophyceae, blue, Ochrophyta (diatoms),

yellow, Haptophyceae, green, Chlorophyceae. The dashed line corresponds to the Eppley

curve, the bold line to a third order polynomial function and the blue line to the CTMI

model.

Table 5.3: Parameters of the CTMI model applied to microalgae groups.

Group Toptmin
(◦C) Toptopt (◦C) Toptmax

(◦C) µoptopt (h−1)

Dinophyta 8.43 32.34 39.23 0.049

Ochrophyta 4.81 34.43 41.22 0.145

Haptophyta 11.23 25.81 29.72 0.075

Chlorophyta 10.34 42.91 46.63 0.274

Microalgae (with Thomas et al. [2015]) 4.7 39.2 47.3 0.248
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lines represent the quantile regression and the CTMI model, respectively.
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5.3.2 A case study: the cyanobacteria Synechococcus sp.

Among the unicellular photosynthetic organisms, Synechococcus sp. have been partic-
ularly studied, especially for its huge capacity to tolerate a wide range of temperature.
Some Synechococcus sp. strains are for example capable to live above 70◦C. In 2000,
Miller and Castenholz [2000] analysed the thermal growth curve of several Synechococcus
sp. strains growing from 25◦C to 70◦C, and deduced from phylogenetic considerations
that these strains evolved from a less thermotolerant ancestor. The same team identified
four amino acid substitutions that together increased stability and activity of Calvin cy-
cle enzyme ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO) at higher tem-
peratures in high temperature adapted strains [Miller et al., 2013, Miller, 2003]. Miller’s
results highlight the crucial role played by RuBisCO during thermal adaptation.

Later, Pittera et al. [2014] identified several Synechococcus sp. thermal ecotypes in
the ocean and studied their thermal growth curve. Here, by compiling Pittera et al.
[2014] and Miller and Castenholz [2000] data, we show that not only the Synechococcus
sp. strains have evolved by shifts of the thermal growth curve with conservation of the
thermal niche width (see for example fig. 1.8), but also followed a modified Eppley
curve for the link between µopt and Topt (fig. 5.8). At low and high temperatures,
strains are less efficient. Since the biovolume is not affected between the different strains,
this observation argues towards a clear existence of the modified Eppley hypothesis, as
formulated in eq. 5.4.

These results pose different challenging questions: is the RuBisCO enzyme driving
the thermal evolution in cyanobacteria and causing the efficiency loss at low and high
temperatures? Are this mechanisms also driving adaptation in microalgae? Several
studies exist on the effect of temperature on RuBisCO [Galmes et al., 2015] and are a
promising trail for unraveling the modified Eppley curve.

5.4 Conclusion

We have shown that, contrary to the commonly accepted Eppley hypothesis, ‘hotter
is not always faster’. Each phylogenetic group might have its own modified Eppley
curve, following the exact shape of a single species thermal growth curve. It is, indeed,
rather surprising that the modified Eppley curve follows the shape of a CTMI or an
Hinshelwood function; further investigations are needed to clarify this fact. In addition
to temperature, cell biovolume has a great influence on the maximal growth rate µopt, and
it is not easy to separate between these two factors. Following the Gillooly et al. [2001b]
expression and the Keibler power law, we showed that the pure effect of temperature on
the maximal growth rate is an Hinshelwood-like function rather than an Arrhenius (and
thus Eppley) exponential one, confirming our modified Eppley hypothesis.

We then compared our results to the unicellular photosynthetic group, emphasizing
the intrinsic thermal limits of microalgae. We highlighted the great sub-groups differ-
ences among microalgae. We then showed that the Cyanobacteria Synechococcus sp.
well follows the rules developed in chapter 4 and in this chapter, and linked it to the
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thermal sensitivity of the key enzyme RuBisCO.
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5. REVISITING THE EPPLEY HYPOTHESIS

Summary of section 5:

• ‘Hotter is not always faster’.

• The Eppley curve is group-specific and has to take into

account the decrease at hot temperatures.

• Cell biovolume plays a key role in µopt and has to be

taken into account to obtain the ‘normalized’ thermal

effect.

• Phytoplankton paradigm has to be reconsidered; there

exists strong group specificities in the Eppley hypothesis,

that we call the ‘modified Eppley hypothesis’.

• This theory is particularly well illustrated with different

strains of Synechococcus sp.
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6

Towards understanding the

thermodynamical fundament of

the thermal growth curve: a

modelling approach

Contributors: Bernard, O., Mairet, F., Sciandra, A.

The English physical chemist Sir Cyril Norman Hinshelwood.

6.1 Introduction

In chapter 4 and 5, we have shown that a linear correlation between the cardinal tem-
peratures as well as a specific relationship between Topt and µopt exist. How to explain
these links? To get insight into the mechanisms underlying the thermal growth curve,
we developed here a mechanistic model which can be simplified to obtain the Hin-
shelwood model. We calibrated the Hinshelwood model on the data set used in the
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previous chapters and search for possible links between its parameters. It appears that
the entropy-entalpy compensation during enzyme thermal denaturation as well as the
enzyme thermal activity-stability trade-off could play a key role to explain the observed
parametric correlations. A simplified model with only two parameters is derived based
on these concepts.

Figure 6.1: Thermostability of Escherichia coli homoserine transsuccinylase -

Unfolding starts at low temperatures, around 20◦C. Reproduced after Julou [2011].

6.2 The Hinshelwood model as a theoretical framework

6.2.1 Metabolism represented as a set of n autocatalytic reactions

In line with Iyer-Biswas et al. [2014], and as first proposed by Hinshelwood [1952], we
considered that exponential growth is the result of an autocatalytic cycle of n reactions
where each enzyme xi catalyzes the production of the next at a rate ki. Moreover, each
enzyme denatures or is inactivated at a rate di (illustrated in fig. 6.1). Considering the
temperature effect on production and inactivation, the resulting model is:

ẋ1 = k1(T )xn − d1(T )x1
ẋ2 = k2(T )x1 − d2(T )x2

...
ẋn = kn(T )xn−1 − dn(T )xn

(6.1)

where the biomass concentration X is proportional to the sum of all the xi enzymes.
Under non-limited conditions, the growth rate µ(T ) defining the thermal growth curve
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is:

µ(T ) =

n∑

i=1
ẋi

n∑

i=1
xi

(6.2)

However, equation (6.2) depends on each enzyme dynamics as they appear in equations
(6.1). We approximated these equations in order to propose a simpler expression for
µ(T ), as proposed by Koch [1970] who used the operator method to compute the growth
rate µ in a similar but two dimensional autocatalytic system. Assuming that the rates
di are significantly lower than the growth rate, we extended the two dimensional Koch
[1970] approach, and we deduced the overall growth rate µ(T ) (see demonstration in
section 10.3):

µ(T ) = [k1(T )...kn(T )]
1/n −

1

n

n∑

i=1

di(T ) (6.3)

Each synthesis step is supposed to vary according to an Eyring equation as established
by the transition-state theory (see section 3.8), but it can be approximated by using an
Arrhenius term. It follows from eq.6.3:

µ(T ) = (A1...An)
1/ne−(E1+...+En)/(RT ) −

1

n

n∑

i=1

di(T ) (6.4)

where the terms Ai correspond to the entropy of activation e∆S‡
i /R and Ei to the enthalpy

of activation ∆H‡
i . We assumed that the rates di(T ) correspond to reversible unfolding

leading to denaturation with a two state transition (see section 3.8). This assumption
has been validated experimentally for globular proteins with more than 100 amino-acids
[Feller et al., 1999, Siddiqui and Cavicchioli, 2006]. Then:

di(T ) = e−∆G‡
i /(RT ) (6.5)

where ∆G‡
i is the activation energy for unfolding. Because of the two state transition,

∆G‡
i does not depend on the temperature T . Finally:

µ(T ) = Ae−E/(RT ) −
1

n

n∑

i=1

e−∆G‡
i/(RT ) (6.6)

withA = (A1...An)
1/n and E =

n∑

i=1
Ei. Because e

−∆G‡
i/(RT ) is equal to e∆S‡

i /Re−∆H‡
i /(RT )

which can be written Ãie
−Ẽi/(RT ), eq.6.6 is similar to the Hinshelwood model (see section

3.2.4) with thermodynamical meanings of the model parameters:

µ(T ) = Ae−E/(RT )− < Ade
−Ed/(RT ) > (6.7)

where < . > is the arithmetic mean. An important point is that the degradation term
in the Hinshelwood model appears here to be related to the average of the denaturation
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of all the enzymes. This approach can be compared to other mechanistic models such
as those developed by Corkrey et al. [2014] or Dill et al. [2011] based on the role played
by the whole proteome. This formulation seems to invalidate the hypothesis of a single
or few limiting enzymes and highlights the cell potential to soften degradation of key
components through the auto-catalytic interactions of the whole proteome. This is also
a key strategy for adaptation.

The maximal and optimal temperatures predicted by the Hinshelwood model can
be derived after simple mathematical computations. The minimal temperature is de-
fined as the temperature for which the growth rate is below ǫ (ǫ is an arbitrary small
number, we took ǫ = 0.05). The cardinal temperatures can then be derived from the
Hinshelwood parameters. Simple computations provide the functional link between the
cardinal temperatures and the Hinshelwood parameters. (see section 3). Therefore, the
Hinshelwood model relates the cardinal temperatures and the maximal growth rate to
parameters derived from thermodynamical considerations. For sake of simplicity, in the
following, the Hinshelwood parameters are written according to eq. 3.22.

6.2.2 Data normalization and calibration of the Hinshelwood model

In chapter 5, we studied the relationship between Topt and µopt for different phylogenetic
groups. However, our data set surely contains many experiments where the optimal
growth rate has not been reached. Indeed, especially for phytoplankton, experiments
are often carried out far from the optimal growth conditions (for example when light is
not saturating). We therefore normalized the growth rate by the estimate of the optimal
growth rate as computed from eq. 5.1, on the basis of the knowledge of parameter Topt.
Once the data set has been normalized, we calibrated the Hinshelwood model using the
method described in section 2. Typical model fit is shown in Fig. 3.1. The fit turns
out to be of equal quality than the CTMI model. Now we explore and explain the
correlations between the thermodynamically based Hinshewlood parameters.

6.3 Accounting for the enthalpy-entropy compensation

6.3.1 Theoretical approach

The negative term in the Hinshelwood model (function f2(T ); see eq. 3.22), can be
interpreted as representing the unfolding reaction. The enthalpy ∆H and the entropy ∆S
of the reaction corresponding respectively to E2 and Rln(A2) are known to compensate
each others according to eq.6.8, where 1/(aR) is the compensation temperature at which
every unfolding reactions have the same rate eb.

ln(A2) = aE2 + b (6.8)

Eq. 6.8 is called ‘enthalpy-entropy compensation’ (EEC) [Liu and Guoa, 2001, Rosenberg
et al., 1971]. EEC has been observed for proteins denaturation but also for a wide
range of organisms at their upper temperature limits, from virus to bacteria and even
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drosophilia [Bischof and He, 2005, Liu et al., 2000, Qin et al., 2014, Rosenberg et al.,
1971]. EEC seems to be a universal characteristic, but has been widely debated due to
experimental errors that could possibly lead to artificial EEC [Banks et al., 1972, Harris,
1973]. Moreover, some intrinsic correlations between Arrhenius function parameters are
suspected. The current view is that EEC is a real phenomenon in protein denaturation
and unfolding, but protein unfolding data analysis have to be carried out carefully on
a sufficiently large range of activation enthalpy (e.g. from 104J/mol to 106J/mol) to be
significant [Bischof and He, 2005, Liu et al., 2000]. The reason for such a compensation is
possibly related to water reorganization during protein denaturation which contributes
to enthalpy and entropy but little to free energy [Liu et al., 2000].

6.3.2 Calibration

The parameters a and b were calibrated using the estimated values of A2 and E2 (see fig.
6.2). Different authors, for example Rosenberg et al. [1971] and Qin et al. [2014], found
similar values of a and b, i.e. a = 0.00038 mol.J−1, b = −9.36, with the compensation
temperature equal to 316.52 K. We found close values with a = 0.0003844 mol.J−1 and
b = −0.427. We thus considered that a and b could be universal, and we replaced A2 by
eq. 6.8 in the Hinshelwood model to take EEC into account. It results that EEC highly
constrains f2(T ) because a high change of enthalpy is compensated by a high change of
entropy and a resulting small change of free energy.

6.4 Accounting for the activity-stability trade-off

6.4.1 Theoretical approach

The activity of an enzyme is described by its maximum number of substrates converted
to products per active site and per unit of time. During in vitro thermal adaptation,
the thermal stability of enzymes is modified to fit the new thermal environment, and,
in turn, the enzyme activity on the thermal range is modified. It has been shown that
a trade-off exists between stability and activity at low temperature [Arnold et al., 2001,
Couñago et al., 2008, Howell et al., 2014]. This effect directly results from the trade-off
between rigidity, which confers thermal resistance but low activity at low temperature,
and fluidity, which confers the exact opposite [Karshikoff et al., 2015, Siddiqui and
Cavicchioli, 2006, Zavodszky et al., 1998]. In the Hinshelwood model, this would be
expressed by a link between the synthesis function f1(T ), which corresponds to enzyme
activity according to eq. 6.6, and the unfolding function f2(T ) which represents enzyme
thermal stability.

After taking EEC into account, it turns out that the enthalpy ratio E1/E2 increases
with the maximum temperature at which the organism is adapted. We interpreted it as
a result of activity-stability trade-off. To express this relation properly, we assumed that
E1 is zero when Tmax is near the compensation temperature. By definition, parameter
E2 is higher than E1, but both converge at high temperature. We proposed a simple
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Figure 6.2: Log-linear relation between A2 and E2 - Log-linear plot with ln(A2) as a

function of E2. The log-linear regression appears in red. The black line corresponds to the

log-linear regression found by Rosenberg et al. [1971].
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Table 6.1: Parameters of the activity/stability trade-off function

Group Ts (K) Tc (K)

Archae and Bacteria 326.668 311.938

Cyanobacteria 310.547 300.142

Yeast 315.079 312.842

Dinophyta 309.452 307.135

Ochrophyta 320.175 301.254

Haptophyta 304.342 302.145

Chlorophyta 313.218 302.341

Michaelis-Menten type equation to represent the enthalpy ratio:

E1/E2 =
Tmax − To

Tmax − 2To + Ts
(6.9)

This non-linear relation includes parameter Ts (see fig. 6.3), for which E2 = 2E1 and
To, which is supposed to be close to the compensation temperature.

6.4.2 Calibration

Relationship 6.9 was tested and calibrated on different groups with the set of available
data. It turns out that this relationship is satisfied, with values specific to each group
(see table 6.1). Archae and bacteria were grouped together because the results obtained
were very close.

6.5 The two parameters Hinshelwood model

6.5.1 Reducing the parameter number of the Hinshelwood model down

to 2

We introduced eq. 6.9 and eq. 6.8 in eq. 3.22 to reduce the Hinshelwood model to two
parameters, A1 and E2 (we will refer at it as the 2P-Hinshelwood model). Parameters
E1 and A2 are derived as follows:

E1(E2) =
Tmax − To

Tmax − 2To + Ts
E2 (6.10)

and
A2(E2) = Ace

E2/(RTc) (6.11)

with Ac = eb. Moreover, it is possible to express A1 as a function of Tmax and E2:

A1 = f(Tmax, E2) = Ace
E2/(RTc)e(E1(E2)−E2)/(RTmax) (6.12)
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Figure 6.3: E1/E2 as a function of Tmax for bacteria and archae - Non-linear

relationship between the enthalpy ratio and Tmax. The red line corresponds to eq. 6.9.
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Table 6.2: Models comparison on normalised data sets

Group R2 Adjusted-R2 AIC AICc BIC

Hinshelwood 4p 0.815 0.771 -32.301 -9.736 17.648

Hinshelwood 2p 0.754 0.707 -30.712 -13.857 16.643

Bernard&Remond3p 0.947 0.935 -44.057 -25.606 20.709

Bernard&Remond2p 0.890 0.864 -40.176 -36.90 14.477

The Hinshelwood model can therefore be expressed as:

µ(T ) = Ace
E2/(RTc)e

−
Tmax − To

Tmax − 2To + Ts
(1−E2/(RTmax)−1/(RT )

−Ace
E2(1/(RTc)−1/(RT ))

(6.13)
where To and Ts are given for each group (see table 6.1), while Ac and Tc are universal
constants: Ac = 0.652 and Tc = 312.901 K. Only the two parameters Tmax (or A1) and
E2 need to be determined for each species. This reduced parametrization turns out to
accurately reproduce the available data sets, as it can be seen on fig. 6.4 with normalized
data sets.

6.5.2 Comparison between the reduced Hinshelwood and the reduced

CTMI models

To validate our approach, we compared the normalized 2P-Hinshelwood model to the
normalised CTMI model as well as to the normalized four parameters Hinshelwood
model. We also compared it to the normalized two parameters CTMI model (2P-CTMI
model) with:

Tmin = α1Topt + α2Tmax (6.14)

where α1 and α2 are constants, equal to 0.152 and 0.091 respectively, that we formerly
found using the whole data set. Comparison results on normalized data set (fig. 6.4, 6.6
and 6.7; table 6.2) shows that 2P-Hinshelwood and 2P-CTMI models are satisfyingly
fitting the data. The 2P-CTMI model has the best trade-off between parameter numbers
and fitting quality because it has the lowest Bayesian information criterion (BIC) and
the lowest Akaike criterion (AIC) (see table 6.2). However, the 2P-Hinshelwood model
comes just after it, also combining a low number of parameters and a high accuracy
for predicting thermal growth curve. Moreover, the 2P-Hinshelwood model, when not
normalized, can also predict the muopt, contrary to the two parameters CTMI (fig. 6.5).

6.5.3 Correlation between the cardinal temperatures

Does the two parameters of the Hinshelwood model shed light on the linear correlations
found between cardinal temperatures in chapter 4? To evaluate it, we simulated thermal
growth curves for different couples of parameters (A1, E2) on coherent values ranges
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Figure 6.4: Normalised model validation - Two parameters Hinshelwood model (black)

and two parameters CTMI (red) fitted on normalized data sets. A, Archae, B, Bacteria, C,
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original data sets. A, Archae, B, Bacteria, C, Cyanobacteria, D, Yeasts, E, Dinophyta, F,

Ochrophyta, G, Haptophyta, H, Chlorophyta. Species are the same as fig. 6.4.
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(i.e. ln(A1) is comprised between 1 and 200, and E2 is comprised between 104 and
106 J.mol−1 with criteria ensuring that the thermal growth curve is possible for each
(A1, E2) combination. This gives small ranges of predicted Tmax−Topt and |Topt−Tmin|
variations (fig. 6.8). Particularly, for each fixed A1, the predicted cardinal temperatures
are linearly correlated (fig. 6.8).
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Figure 6.8: Cardinal temperatures predicted by the Hinshelwood model - Tmin

(blue) and Tmax (red) as a function of Topt according to the Hinshelwood model with two

parameters for coherent values of A1 and E2. The linear relationships appear when A1 is

fixed (represented by green points).

6.6 Conclusion

We have proposed a mechanistic view of the Hinshelwood formula from an autocat-
alytic model of cell exponential growth with parameters based on thermodynamic con-
siderations. This model has been calibrated on a large thermal growth curve data set.
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6.6 Conclusion

We found two correlations between its parameters. Firstly, the enthalpy-entropy com-
pensation of protein denaturation (or desactivation through unfolding), which highly
constrains the enzyme stability regarding temperature. Secondly, the activity-stability
trade-off characteristic of enzymes. The model, taking these phenomena into account,
was reduced to two parameters, and compared to the two parameters CTMI. It results
that it almost equally fits the normalized data, while it can also predict maximal growth
rates. The two parameters Hinshelwood model also partially explains the linear links
between the cardinal temperatures as well as the relations between µopt and Topt.
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Summary of section 6:

• The Hinshelwood model can be derived from an autocat-

alytic view of cell growth.

• In this scheme, thermal sensitivity appears to result from

the average sensitivity of all the enzymes rather than

some specific enzymes.

• The physical phenomenon of entropy-enthalpy compensa-

tion as well as the activity-stability trade-off of enzymes

play a key role in the thermal growth curve, partially

explaining the linear correlations between the cardinal

temperatures.

• A two parameters mechanistic model can be obtained

with these hypotheses.
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7

Modelling thermal adaptation in

microalgae: an adaptive dynamics

point of view

Contributors: Mairet, F., Sciandra, A., Bernard, O.

The two fathers of the theory of evolution, Charles Darwin and Alfred Russel Wallace.

7.1 Introduction

In chapters 4, 5 and 6 we have shown that temperature has a crucial effect on microalgae
growth, and we have determined the potential links existing between the different ther-
mal parameters. We now study how temperature shapes microalgae evolution. Because
of their high division rate, microalgae are able to rapidly adapt to their environment
through a process of selection-mutation. To date, there is only one model which predicts
microalgae adaptation to temperature [Thomas et al., 2012], by simulations based on
the Adaptive Dynamics theory. However, this model implies several assumptions that
have been discussed [Boyd et al., 2013].
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Adaptive dynamics is a theoretical framework developed during the last decade aim-
ing to understand the long-term consequences of small mutations on adaptive traits
visible through the phenotype [Dieckmann and Law, 1996, Geritz et al., 1998, Metz
et al., 1992, 1996]. On the contrary to other evolutionary modelling such as the quan-
titative genetics theory [Falconer et al., 1996], the adaptive dynamics theory does not
focus on genetic changes during evolution but rather combines ecology and evolution,
taking into account the density-dependent effects inherited from game theory [Smith,
1982].

Here, we propose firstly a simple Monod-like model that represents the effect of
a constant temperature on growth and extend it to model microalgae adaptation to
temperature. In line with Thomas et al. [2012], we use the Adaptive Dynamics theory.
We keep the model as simple as possible to study it analytically. In a second part,
we use the model under periodic temperature to account for more realistic conditions.
Finally, we simulate strain separation through evolutionary branching under fluctuating
temperature.

7.2 Simple dynamical model describing the temperature

effect on microalgae in chemostat

7.2.1 The Monod model in chemostat

The dynamical effect of temperature on UO growth can be represented using a Monod-
type growth model in chemostat, including for example the CTMI statical model:

M :

{
Ṡ = D(Sin − S)− µ(T )ρ(S)X

Ẋ = µ(T )ρ(S)X −DX
(7.1)

where µ(T ) is the CTMI model (eq. 3.11), S is the nutrient concentration in the chemo-
stat, X is the algal biomass concentration, D is the dilution rate and with:

ρ(S) =
S

K + S
(7.2)

K is a half-saturation coefficient. It is possible to calculate the non zero equilibrium
(S∗, X∗) of system (M):

S∗ =
KD

µ(T )−D

X∗ = (Sin − S∗)

(7.3)

with the hypothesis µ(T )ρ(Sin)−D > 0. In the following, we use a Lyapunov function
taken from Harisson [1979] to prove that (7.3) is globally asymptotically stable.
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7.2 Simple dynamical model describing the temperature effect on
microalgae in chemostat

Lemma 7.2.1 The Lyapunov candidate function is given:

V (S,X) =

∫ S

S∗

µ(T )ρ(w)− µ(T )ρ(S∗)

µ(T )ρ(w)
dw +

∫ X

X∗

w −X∗

w
dw (7.4)

with V : B → R
2 where B is an open containing (S∗, X∗). V (S,X) is zero at (S∗, X∗),

positive at all other points (S,X), defined and monotone increasing when |X − X∗| or

|S − S∗| increases. The time derivative of V is:

V̇ (S,X) =
1

µ(T )ρ(S)
(D − µ(T )ρ(S))

[
µ(T )ρ(S)(Sin − S∗)−D(Sin − S)

]
(7.5)

Proof: It is obvious that V (S∗, X∗) = 0. Moreover, since the integrands are of the same
sign as X −X∗ and S − S∗, the integrals are positive and increasing as |X −X∗| and
|S − S∗| increase.

Proposition 7.2.2 If D < µ(T )ρ(Sin), System (M) admits one non-zero equilibrium

which is globally asymptotically stable.

Proof: It is sufficient to prove that (7.5)< 0 ∀(S,X) ∈ B, (S,X) 6= (S∗, X∗). If S > S∗

(resp. S < S∗), then D − µ(T )ρ(S) < 0 (resp. > 0) because µ(T )ρ(S∗) = D, and
[
µ(T )ρ(S)(Sin − S∗) −D(Sin − S)

]
> 0 (resp. < 0) because Sin − S < Sin − S∗ (resp.

Sin − S > Sin − S∗). Thus, (7.5)< 0 is verified, and (S∗, X∗) is globally asymptotically
stable.

7.2.2 The specific case of the Droop model in chemostat

The Monod-type models assume a ‘constant yield’, i.e. the biomass produced is propor-
tional to the nutrients that are consumed. For microalgae, this hypothesis is unsatisfying
with poor fit on experimental data. In 1968, Michael Droop introduced a new model
[Droop, 1968] considering an additional state variable, the nutrient cell quota, defined
as the concentration of internal nutrient1 per unit of biomass. Growth then depends on
stored intra-cellular nutrients. The Droop model is currently preferred to the Monod-like
models for describing growth, notably in chemostat [Sommer, 1991]. It is possible to
introduce the temperature effect on growth in the Droop model:

MDroop







Ṡ = D(Sin − S)− µ1(T )ρ(S)X
q̇ = µ1(T )ρ(S)− µ2(T )(q −Q0)

Ẋ = µ2(T )

(

1−
Q0

q

)

X −DX

(7.6)

where q is the cell nutrient quota, Q0 is the minimal cell quota that sustains growth,
µ1(T ) and µ2(T ) are Bernard&Rémond equations (eq. 3.11) with different parameters.

1Transformed into stored material or not, depending on the nature of the nutrient
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We thus assume that the nutrient uptake and the growth on internal nutrients have
different thermal sensitivities. In this particular case, it is not immediate to deduce the
global growth rate of the population, i.e. for example reconstructing the thermal growth
curve using the growth rate at each temperature.

Under balanced growth, we set that q̇ = 0. Then:

q∗ =
µ1(T )

µ2(T )
ρ(S) +Q0 (7.7)

and so:
Ẋ

X
= µ2(T )

µ1(T )ρ(S)

µ1(T )ρ(S) + µ2(T )Q0
−D (7.8)

If nutrient is not limited (i.e. ρ(S) ≃ 1) and µ1(T )ρ(S) > µ2(T )Q0, then, the thermal
growth curve of the microalgae species is mainly the result of µ2(T ) − D. However, if
nutrient is limited (ρ(S) < 1) then the Topt of the thermal growth curve is modified by
µ1(T ) and µopt is affected too (fig. 7.1). This is an important result for the study of
the Droop model in an evolutionary perspective, as well as for the comprehension of the
coupled effects of nutrient and temperature on growth.

7.3 Evolutionary Model

7.3.1 General case

Now that the global stability of the positive equilibrium of system (M) has been shown,
we study system (M) in the context of adaptive dynamics, introducing a mutant Xmut

with an adaptive trait amut (i.e. a quantifiable trait that is likely to evolve) different
from the resident trait a, with µmut(amut, T ) and µ(a, T ) [Dieckmann and Law, 1996].
For further introduction to adaptive dynamics, see Dieckmann [2004]. To define the
canonical equation of adaptive dynamics, i.e. the equation of the evolution of trait a
[Dieckmann and Law, 1996], we need to find the mutant growth rate (per capita) in the
resident population at equilibrium, called invasion fitness f(amut, a) (see eq. 2.4 for the
complete expression of β(T ) and λ(T )).

Proposition 7.3.1 The invasion fitness for System (7.1) is given by:

f(amut, a) = D

(
λmut

λ

β

βmut
− 1

)

(7.9)

Proof: This results from the steady-state condition of the resident system, and from the
hypothesis that the mutant is initially rare. We can thus replace S by its equilibrium
value S∗:

f(amut, a) = µmut(amut, T )ρ(S
∗)−D (7.10)
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Figure 7.1: Thermal growth curve obtained with the Droop model - The blue line

corresponds to µ2(T ), the red line to µ1(T ) and the dashed lines are the resulting growth

rates Ẋ/X obtained by increasing ρ(S) or Q0.
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7.3.2 Modelling the evolution of the optimal temperature trait

We choose to study the adaptive trait a = Topt, assuming that temperature will mainly
affect the optimal conditions for growth. Because of the constraint (3.13) on Topt, we
choose to study the case:

T >
Tmin + Tmax

2
(7.11)

We calculate the selection gradient, which gives the direction of the selection, using (7.9):

∂f(amut, a)

∂amut

∣
∣
∣
∣
∣
amut=a

= −
β′(a)

β(a)
D (7.12)

with

β′(a) = −6a2 + (6T + 2Tmax + 4Tmin)a+ (−2Tmax − 4Tmin)T (7.13)

We can deduce the canonical equation of the adaptive trait, that describes the evolution
of Topt at the evolutionary time scale θ:

da

dθ
= −Mpσ

2X∗D
β′(a)

β(a)
(7.14)

where Mp is the probability to be a mutant at each apparition, and σ is the mutation
step.

We then search for the evolutionary singular strategy. We find that da/dθ = 0 for
a∗ = T , which means that the optimal temperature trait tends to equal the environment
temperature (Fig. 7.2 B). Note that the same results can be obtained with the Droop
model presented in section 7.2.2 (not presented here for sake of brevity). We investigate
the stability of the singular strategy examining the sign of the fitness invasion second
order derivative.

Proposition 7.3.2 a∗ is a Convergent Stable Strategy (CSS), which means that the

singular strategy is attractive, and an Evolutionary Stable Strategy (ESS), which means

that the resident a∗ cannot be invaded by another mutant.

Proof: The following conditions are respected:

H1.
∂2f(amut, a)

∂a2mut

∣
∣
∣
∣
∣
amut=a=a∗

<
∂2f(amut, a)

∂a2

∣
∣
∣
∣
∣
amut=a=a∗

H2.
∂2f(amut, a)

∂a2mut

∣
∣
∣
∣
∣
amut=a=a∗

< 0
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Indeed, we have:

∂2f(amut, a)

∂a2mut

∣
∣
∣
∣
∣
amut=a=a∗

= −D
β′′β − 2β′2

β2

∂2f(amut, a)

∂a2

∣
∣
∣
∣
∣
amut=a=a∗

= D
β′′

β

(7.15)

β′(a∗) = 0, and so it is sufficient to prove:

−D
β′′(a∗)

β(a∗)
< 0 (7.16)

Yet, we have β(a∗) = −(T − Tmin)(T − Tmax)(Tmin − T ) < 0 because Tmin < T < Tmax.
Also, β′′(a∗) = 2Tmax + 4Tmin − 6T . β′′(a∗) < 0 is equivalent to T > (2Tmin + Tmax)/3
which is true because of (7.11). Thus, (7.16) is true. H1 and H2 are verified.

7.3.3 Structural link between adaptive traits

In nature, it is possible that several adaptive traits evolve concurrently. By taking the
adaptive trait a = Topt and considering that Tmin, Tmax and µopt can evolve with a, the
selection gradient becomes:

∂f(amut, a)

∂amut

∣
∣
∣
∣
∣
amut=a

= D
λ′(a)β(a)− β′(a)λ(a)

λ(a)β(a)
(7.17)

Then, different cases can be assumed.

Case 1: Topt and Tmax are linearly linked. We have previously pointed out
(section 4) that the strongest linear links between the cardinal temperatures are those
existing between these two parameters:

Tmax = a1Topt + b1 (7.18)

In expression (7.9), we replace Tmax by (7.18). Thus:

β′(a) = T 2
opt(3a1−6)+Topt(6T+4Tmin+2b1−4Ta1)−4TTmin−2Tb1−T

2
mina1+2TTmina1

(7.19)
and:

λ′(a) = −a1(T − Tmin)
2 (7.20)

We search for the evolutionary singular strategy by setting eq.(7.23) equal to zero. As for
(7.14), we find that a∗ = T , and thus T ∗

max = a1T + b1 (fig. 7.2 C). This is an important
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Figure 7.2: Thermal growth curve of Nannochloropsis oceanica - A, Initial thermal

growth curve Nannochloropsis oceanica. B and C are the evolutionary cases for T = 30◦C

with a∗ = T , Tmin and Tmax are fixed, and with Tmax = a1a
∗ + b1, respectively. The black

circles are data from Sandnes et al. [2005] for N. oceanica.
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7.4 Fluctuating temperature

result in the context of co-evolving species, because whether Tmax evolve or not, the
thermal growth curve will differently affect the species fitness in its environment, and so
its competition with other species or stains.

Case 2: accounting for all the linear links between cardinal temperatures.
If Tmin is also linked to Topt according to eq. 4.1, then:

β′(a) = [(T − Topt)(Topt(−1 + a2)b2)− (TopT (−1 + a1)b1)(Topt − 2T + b2 + a2Topt)](a2 − 1)

−(b2 + Topt(a2 − 1))(Topt(−4 + 2a1 + 2a1a2) + 3T + b1 − 2Ta1 − Ta2 + a1b2 + a2b1)
(7.21)

and

λ′(a) = −a1(b2 − T + a2Topt)
2 − 2a2(b1 − T + a1Topt)(b2 − T + a2Topt) (7.22)

At the evolutionary equilibrium, we found again a∗ = T . Note that in this particular
case, the thermal niche width can be kept constant.

Case 3: µopt is linked to Topt (Eppley hypothesis and modified-Eppley
hypothesis). In this case, on top of the linear links between cardinal temperatures,
µopt is linked to Topt according to a function g(Topt), i.e. µopt = g(a) (which can represent
one of the hypotheses developed in section 5). Then:

∂f(amut, a)

∂amut

∣
∣
∣
∣
∣
amut=a

= D
g(a)(λ′(a)β(a)− β′(a)λ(a)) + g′(a)λ(a)β(a)

λ(a)β(a)
(7.23)

Surprisingly, the evolutionary equilibrium is different from T for the Eppley and modified
Eppley equations; it was found numerically for the both hypotheses. This means that,
even at constant temperature, Topt tends to be higher than T if the hotter is better
hypothesis prevails. This could be a key result to explain why Cyanobacteria of the
genus Synechoccocus sp. grown by Pittera et al. [2014] have experimental Topt much
higher than the temperature at which they have been maintained during several years.

7.4 Fluctuating temperature

7.4.1 Ecological timescale

We now study the system (M) in the context of fluctuating temperature:

{
T (t) = Tinf if t mod τ ∈ [ǫ; τ1 − ǫ[
T (t) = Tsupp if t mod τ ∈ [τ1 + ǫ; τ − ǫ]

(7.24)

with Tinf < Tsupp. By applying the conservation principle assuming that the sum S+X
has reached its asymptotic value Sin, we have the equality S = Sin − X. Thus, the
system (M) can be reduced to a one dimension differential equation:

Ẋ = [µ(T (t))ρ(Sin −X)−D]X (7.25)
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where T (t) is given by Eq. (7.24). We define g(t,X)
def
= µ(T (t))ρ(Sin −X)−D.

We follow the same reasoning as Butler et al. [1985] and Butler and Freedman [1981]
who studied a similar Monod-type model, but with a time varying dilution rate D(t)
instead, and a predator-prey system with periodic coefficients, respectively.

Theorem 7.4.1 For D < min(µ(T)ρ(Sin)), equation (7.25) has a unique nontrivial

positive periodic solution ψ(t) which is globally orbitally asymptotically stable. Moreover,

we have mins∈[0,τ ]A(s) ≤ ψ(t) ≤ maxs∈[0,τ ]A(s) with

A(t) := [D(Sin +K)− µ(T (t))Sin]/(D − µ(T (t))

(which corresponds to the steady state biomass concentration for constant T ).

Proof: ∂g/∂X exists and is continuous for (t,X) ∈ R1×R1
+ with R1

+ = {X ∈ R1 : X ≥
0}.

Moreover, ∃A(t) > 0 ∋ [X − A(t)]g(t,X) < 0 ∀X > 0, X 6= A(t). Indeed, given
D < min(µ(T)ρ(Sin), we have:

[X −A(t)] g(t,X) < 0∀X > 0, X 6= A(t) (7.26)

Thus, Massera’s theorem [Massera, 1950] easily implies the existence of a periodic solu-
tion ψ(t) of (7.25) satisfying mins∈[0,τ ]A(s) ≤ ψ(t) ≤ maxs∈[0,τ ]A(s). ψ(t) is the unique
solution of (7.25), given that X∂g(t,X)/∂X < 0 for all (t,X) ∈ R1 × R1

+. Indeed, we
have:

X
∂g(t,X)

∂X
= µ(T )X

−K

(Sin −X +K)2
(7.27)

Because X > 0, K > 0, X∂g(t,X)/∂X < 0 is always verified. Following the same
reasoning as Butler and Freedman [1981], X∂g(t,X)/∂X < 0 implies that g(t,X) is
strictly decreasing as a function of X, for X > 0, for all t. So, if two solutions ψ(t)
and ψ2(t) exist, with ψ(t) < ψ2(t), it implies that ψ′(t)/ψ(t) = g(t, ψ(t)) > g(t, ψ2(t)) =
ψ′
2(t)/ψ2(t) for all t. Integrating this inequality over [0, τ ] leads to a contradiction which

prove the uniqueness of ψ(t).
Using theorem 7.4.1, we have the following inequality with the periodic temperature

(7.24):

D(Sin +K)− µ(Tinf )Sin
D − µ(Tinf )

≤ X(t) ≤
D(Sin +K)− µ(Tsupp)Sin

D − µ(Tsupp)
(7.28)

which means that

DK

µ(Tinf )−D
≤ S(t) ≤

DK

µ(Tsupp)−D
(7.29)

If the time spent at each temperature is sufficiently long, then, when T = Tinf (resp.
T = Tsupp), the substrate concentration converges towards its equilibrium S∗

inf =
DK/(µ(Tinf ) − D) (resp. S∗

supp = DK/(µ(Tsupp) − D)). We assume that the state
transition between S∗

inf and S∗
supp is negligible. From a biological point of view, this

assumption implies that the growth rates at both temperatures are quite similar.
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7.4.2 Evolutionary timescale

7.4.2.1 Case 1: Topt is varying only

As explained previously, we assume that the resident population reaches rapidly its
equilibrium for each temperature. In the case with the adaptive trait a = Topt and
considering constant Tmin and Tmax, we obtain:







f(amut, a) = D

(
β(Tinf )

βmut(Tinf )
− 1

)

if T = Tinf

f(amut, a) = D

(
β(Tsupp)

βmut(Tsupp)
− 1

)

if T = Tsupp

(7.30)

It is possible to use the average mutant growth rate in the resident population at steady-
state [Ripa and Dieckmann, 2013]:

f̄(amut, a) =
1

τ

∫ τ

0
f(amut, a; t) dt (7.31)

which is equivalent to:

f̄(amut, a) = D

[

β(a, Tinf )

β(amut, Tinf )

τ1
τ

+
β(a, Tsupp)

β(amut, Tsupp)

τ − τ1
τ

− 1

] (7.32)

We thus deduce the selection gradient:

∂f̄(amut, a)

∂amut

∣
∣
∣
∣
∣
amut=a

= D

[

−
τ1
τ

β′(Tinf )

β(Tinf )
−

τ − τ1
τ

β′(Tsupp)

β(Tsupp)

] (7.33)

and so the canonical equation of the adaptive trait with fluctuating temperature is:

da

dθ
=MpσX̄

∗∂f̄(amut, a)

∂amut

∣
∣
∣
∣
∣
amut=a

(7.34)

Equation (7.34) is not analytically tractable. We perform simulations of (7.34) to search
for the evolutionary singular strategy. Result (Fig. 7.3 C) shows that, at steady, Topt
does not converge to the average temperature Tmean. This result still holds if we replace
Tmax by a linear function of Topt (Fig. 7.3 B), even if a∗ is different. The asymmetric
property of the thermal growth curve is probably the reason for such outcome.
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Figure 7.3: Evolution of the thermal growth curve - Evolution of the thermal growth

curve for Tinf = 24◦C, Tsupp = 31◦C. (A) is the initial thermal growth curve, (B) is the

evolutionary thermal growth curve for a = Topt and Tmax = mTopt + p at steady-state, and

(C) is the evolutionary thermal growth curve for a = Topt and Tmax = 31.5◦C at steady

state. The singular strategies are represented by black points.
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7.4 Fluctuating temperature

7.4.2.2 Case 2: the thermal niche width is kept constant

If the thermal niche width is kept constant and µopt = 1, it is possible to demonstrate
that T ∗

opt ≥ Tmean.

Proposition 7.4.2 Suppose that T is periodically varying as in eq. 7.24 with τ1 = τ

to simplify. Consider ψ(Topt) = [φ(T1, Topt) + φ(T2, Topt)]/2. Consider the following

hypotheses:

H1. Tmin = Topt − b2 et Tmax = Topt + b1 (all the curve is shifting horizontally on

T ) and µopt = 1

H2.

∣
∣
∣
∣
∣

∂φ(T, Topt)

∂T

∣
∣
∣
T=Topt−x

∣
∣
∣
∣
∣
<

∣
∣
∣
∣
∣

∂φ(T, Topt)

∂T

∣
∣
∣
T=Topt+x

∣
∣
∣
∣
∣
for all x > 0 (φ(T ) is asym-

metrical)

H3.

∣
∣
∣
∣
∣

∂φ(T, Topt)

∂T

∣
∣
∣
T=Topt+x

∣
∣
∣
∣
∣
<

∣
∣
∣
∣
∣

∂φ(T, Topt)

∂T

∣
∣
∣
T=Topt+x+y

∣
∣
∣
∣
∣
with y > x ≥ 0 (φ(T ) is con-

cave on the interval [Topt, Tmax]).

Then, under H1-H3:
dψ(Topt)

dTopt
= 0 ⇒ T ∗

opt ≥ Tmean (7.35)

with Tmean = (T1 + T2)/2.

Proof: We start with hypotheses H1-H3. Suppose now that:

T ∗
opt < (T1 + T2)/2 (7.36)

Consider that:

∆1 = φ(T ∗
opt, T1)− φ(T ∗

opt + ǫ, T1) (7.37)

∆2 = φ(T ∗
opt + ǫ, T2)− φ(T ∗

opt, T2) (7.38)

with ǫ > 0. According to H1,

∆1 ≃ ǫ
dφ(T ∗

opt, T )

dT

∣
∣
∣
T=T1

(7.39)

and

∆2 ≃ ǫ
dφ(T ∗

opt, T )

dT

∣
∣
∣
T=T2

(7.40)

105



7. MODELLING THERMAL ADAPTATION IN MICROALGAE: AN
ADAPTIVE DYNAMICS POINT OF VIEW

One can easily show that T1 < Topt < T2 and so it is possible to write T1 = Topt−α with
α > 0.

According to eq. 7.36, T2 = Topt + α+ θ, θ > 0.

According to H2:

|∆1| =

∣
∣
∣
∣
∣
ǫ
dφ(T ∗

opt, T )

dT

∣
∣
∣
T=Topt−α

∣
∣
∣
∣
∣
<

∣
∣
∣
∣
∣
ǫ
dφ(T ∗

opt, T )

dT

∣
∣
∣
T=Topt+α

∣
∣
∣
∣
∣

(7.41)

According to H3,
∣
∣
∣
∣
∣
ǫ
dφ(T ∗

opt, T )

dT

∣
∣
∣
T=Topt+α

∣
∣
∣
∣
∣
<

∣
∣
∣
∣
∣
ǫ
dφ(T ∗

opt, T )

dT

∣
∣
∣
T=Topt+α+θ

∣
∣
∣
∣
∣
= |∆2| (7.42)

We thus have:

|∆1| < |∆2| (7.43)

It is possible to show that ∆1 > 0 and ∆2 > 0. In that case, after eq. 7.43:

φ(T ∗
opt, T1)− φ(T ∗

opt + ǫ, T1) < φ(T ∗
opt + ǫ, T2)− φ(T ∗

opt, T2) (7.44)

And therefore:

φ(T ∗
opt, T1) + φ(T ∗

opt, T2) < φ(T ∗
opt + ǫ, T2) + φ(T ∗

opt + ǫ, T1) (7.45)

Eq. 7.45 imply that T ∗
opt is not the value for which ψ(Topt) is maximum, and thus eq

7.36 is wrong. Thus, T ∗
opt > (T1 + T2)/2 and prop. 7.4.2 is verified (see fig. 7.4).

This is an important result for applying adaptive dynamics to asymmetrical growth
curve. This result would no longer be available for pH variations for example, given
that the effect of pH on growth is a symmetrical function [Rosso et al., 1995]. It also
implicitly implies that the more the curve is asymmetrical, the more T ∗

opt is higher than
Tmean.

7.4.3 Evolutionary Branching conditions

Under particular conditions, Adaptive Dynamics predicts that evolution can converge to
a specific singular strategy called ‘branching point’ where selection becomes disruptive,
so that two strains move apart [Metz et al., 1992]. The mutant can invade the resident
and reciprocally, and both stably coexist.

We investigate the evolutionary dynamics of (7.3) by using a pairwise invasibility
plot (PIP) (Fig. 7.5)[Geritz et al., 1998]. This allows us to determine the stability of
the singular strategy, studying graphically the sign of the mutant invasion fitness. For
temperatures comprised between Tinf = 20◦C and Tsupp = 36◦C, and with Tmin = 4◦C,
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7.4 Fluctuating temperature
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Figure 7.4: Evolution of Topt if the niche width is kept constant - If ǫ is sufficiently

small, then the green segment corresponds to dφ(T ∗

opt, T )/dT evaluated at T = T1.

107



7. MODELLING THERMAL ADAPTATION IN MICROALGAE: AN
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singular strategy are represented by a black circle.
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7.5 Conclusion

Tmax = 40◦C, we find that there exists a branching point (fig. 7.5 A). Indeed, at this
point, mutant and resident can mutually invade in such a way that two strains separate.
For a range of values around the previous ones, we observe that the singular strategy
bifurcates in three singular strategies (fig. 7.5 B, C, D). In fig. 7.5 D, there is still a
branching point, which seems to allow a strong separation between strains because of
the large area of positive invasion fitness.

Parameters Unit

Tmin, minimal temperature for growth 4◦C

Tmax, maximal temperature for growth 40◦C

Tinf , inferior temperature applied 20◦C

Tsupp, superior temperature applied 36◦C

τ1, time during which Tinf is applied 12 h

τ , period of temperature fluctuation 24 h

Table 7.1: Model parameters for evolutionary branching.

To confirm the results found previously, we perform a simulation of an evolutionary
branching. In line with Mirrahimi et al. [2011], we consider a model where the adaptive
trait a becomes a continuous trait:







∂tX(a, t) = X(a, t)[µ(a, T )S(t)−D] + ǫ∆X(a, t)

S(t) =
DSin

D +
∫
µ(a, T )X(a, t) da

(7.46)

where X(a, t) is the species density with trait a = Topt, S(t) is the quasi-static approx-
imation of resource dynamics, ǫ is the mutation rate. We use the parameters listed in
Table 7.1. Fig. 7.6 shows that an evolutionary branching really occurs. Two general
morphs with two distinct Topt appear and stabilize.

7.5 Conclusion

We have proposed a simple model of temperature effect on microalgae growth based on
the model developed by Bernard and Rémond [2012]. We used it in an evolutionary
perspective thanks to the adaptive dynamics. We found that, under constant tempera-
ture, the optimal temperature tends to equal the environmental temperature in different
scenarios, if Tmin and Tmax are fixed or if they are linearly linked to Topt. However, as
soon as µopt is linked to Topt, then the hotter is better hypothesis (at least on a given
interval) induced that T ∗

opt > T .
We then studied the model under a simple fluctuating temperature signal. We showed

that a stable periodic solution exists. The evolutionary study reveals that T ∗
opt is always
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Figure 7.6: Evolutionary branching of trait a. - Evolutionary branching of trait a

for the parameters of Table 7.1. The trait a is expressed in ◦C, t is arbitrarily expressed in

hours. The colored lines correspond to a population size for each trait value.
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7.5 Conclusion

higher than or equal to the average temperature Tmean. At evolutionary time scale, the
fluctuating temperature allows strains to separate if Tmin, Tmax and µopt are fixed, and
evolutionary branching occurs. We simulated the strain separation and found results
consistent with our theoretical approach. This may be a first step to understand how
species coexist under fluctuating temperature. It could serve to find a criterion for
selecting species with the highest growth rate under particular temperature conditions,
which is of key interest for microalgae outdoor production.
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7. MODELLING THERMAL ADAPTATION IN MICROALGAE: AN
ADAPTIVE DYNAMICS POINT OF VIEW

Summary of section 7:

• At constant temperature, the optimal temperature Topt

tends to equal the ambient temperature regardless of the

underlying hypotheses on the cardinal temperatures.

• If µopt is linked to Topt (Eppley hypothesis and modified

Eppley hypothesis), then the evolutionary equilibrium

T ∗
opt is always higher than the ambient temperature T .

• Under fluctuating temperatures, Topt is always higher

than or equal to the average temperature. This is

enhanced by the modified Eppley hypothesis.

• Finally, if Tmin and Tmax are fixed and temperature is

varying, strain separation through evolutionary branch-

ing can occur.
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8

Selecting thermal tolerant strains

of the Haptophyceae Tisochrysis

lutea

Contributors: Bonnefond, H., Mairet, F., Pruvost, E., Sciandra, A.,

Bernard, O.

Picture of Tisochrysis lutea from a Transmission Electron Microscope

8.1 Introduction

In the 1990’s, Bennett and Lenski [1993] carried several thermal adaptation experiments
on Escherichia coli during several years for more than 2000 generations and obtained
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8. SELECTING THERMAL TOLERANT STRAINS OF THE
HAPTOPHYCEAE TISOCHRYSIS LUTEA

strains with enhanced thermal niche width. Since then, similar evolutionary experiments
where temperature was driving the selective pressure have been carried out with UO.
Most of the studies took place at a constant temperature to test the adaptation capability
in a warmer world [Guyot et al., 2014, Julou, 2011]. Authors were searching for the key
physiological mechanisms leading to temperature adaptation [Caspeta et al., 2014] and
ways to infer a general theory of thermal adaptation [Kingsolver, 2009, Knies et al.,
2009] (see section 1). These approaches were also used in biotechnology to enhance the
productivity of some strains of industrial interest [Guyot et al., 2015, Wei et al., 2015].

In phytoplankton, thermal adaptation experiments are recent and mostly dedicated
to the study of the global warming effect [Huertas et al., 2011, Reusch and Boyd, 2012].
Using ratchet protocols, these experiments proved that microalgae and cyanobacteria can
indeed adapt in several months to (constant) temperatures which were initially lethal
[Costas et al., 2014a,b, Huertas et al., 2011]. They also highlighted that this adaptation is
preceded by phases of physiological acclimation and selection of pre-adapted individuals.

Here, we present the results of the selection experiment carried out with fluctuating
temperatures by Bonnefond et al. [subm.]. Realized in chemostat, either in fed-batch
mode or in turbidostat, the experimental conditions insure that nutrients were not lim-
iting and that individuals with the highest average growth rate were selected in stressing
conditions [Masci et al., 2008]. We analyze the result by re-constructing the competition
and the adaptation story and try to represent the thermal evolution using the adaptive
dynamics theory.

8.2 Selection experiment in controlled systems

8.2.1 Summary of the experiment

The selection experiment was performed in two controlled systems, a chemostat in fed-
batch mode (i.e. with periodical washout rate) and a turbidostat called ‘selectiostat ’(see
section Material and Methods 2.1 and Bonnefond et al. [subm.] for more details). The
phytoplankton strain used was derived from the Haptophyceae Tisochrisis lutea (CCAP
927/14) previously named Isochrysis galbana clone Tahiti [Bendif et al., 2013]. This
strain (CCAP 927/17, called W2X here) resulted from a mutation/selection procedure,
Bougaran et al. [2012] which enhanced its capability to store lipids. Indeed, it produced
two times more neutral lipids under nitrogen starvation, without significant modification
of the maximum growth rate in nitrogen replete conditions.

In the two cultures, a daily temperature cycle was applied consisting in 8 hours
at low temperature and 16 hours at high temperature while the average temperature
was maintained at 28◦C. Each cycle was repeated at least for one week, and the cycles
were elaborated to be progressively more selective (see fig. 8.2). If the growth rate
was positive, the next cycle was started. If not, cultures stayed in the same cycle. The
experiment was carried for 293 days with 10 cycles. In the last cycle, temperature varied
between 12◦C and 36◦C.

114



8.2 Selection experiment in controlled systems

8.2.2 Main results

The final strains were called S-Turb and S-Fb for the turbidostat and the fed-batch
cultures, respectively. Strains’ final thermal tolerance called θTurb and θFb was deter-
mined using the TIP calibration device developed by Marchetti et al. [2012] (fig. 8.1)
and the Bernard&Rémond model. Results showed that S-Turb and S-Fb have broader
thermal niche width (11% and 22% more, respectively), a higher Topt (1.4

◦C and 2.4◦C
higher) and a higher µopt (10 % higher) than the initial strains W2X [Bonnefond et al.,
subm.] (fig. 8.1 and table 8.1). Bonnefond et al. [subm.] insisted on the stronger effect
of cold temperatures on adaptation/selection.

Table 8.1: Bernard & Rémond model parameters for strains W2X, S-Turb and S-Fb.

The error interval correspond to the mean ± standard deviation determined by a jackknife

analysis as in Bernard and Rémond [2012].

Strain Tmin (◦C) Topt (
◦C) Tmax (◦C) µopt (d

−1)

W2X (θW2X) 14.8 ± 1 26.3 ± 0.5 35.0± 0.5 1.1 ± 0.1

S-Turb (θTurb) 12.4 ± 1 27.7 ± 0.5 34.9 ± 0.2 1.2 ± 0.1

S-Fb (θFb) 11.6 ± 2.5 28.8 ± 1 36.2 ± 2 1.2 ± 0.1

Bonnefond et al. [subm.] inferred that the experiment was split into three parts
(fig. 8.2): first, from cycle 1 to cycle 5, T. lutea physiologically acclimated to the
temperatures applied. For example, growth rate in turbidostat was higher than expected
during these cycles because microalgae are synchronized by the temperature temporal
periodicity [Bonnefond et al., 2016]. Second, from cycle 6 to cycle 8, individuals with pre-
adaptive mutations were selected. This was considered to be pure selection, only based
on competition. Third, from cycle 8 to cycle 10, adaptation was supposed to occur,
resulting from apparition of new mutants (fig. 8.2). The different points in cycle 9, for
example, corresponded to a gradual increase of the growth rate, possibly corresponding
to adaptation.

We compared the theoretical thermal tolerance of strains S-Turb and S-Fb (using
the Bernard&Rémond model parameters obtained by Bonnefond et al. [subm.]) to the
growth rates measured during each cycle in each culture. We used the cardinal temper-
ature values provided by the TIP experiment, performed several months after the end
of the selection experiment. We neglected acclimation to temperature and assumed that
growth instantaneously acclimated to a new temperature. We therefore simply com-
puted the growth rate as follows, assuming that the transition phase between Tlow and
Thigh was equivalent to one hour at average temperature:

µ̄th =
τ1
24
µ(Tlow) +

τ2
24
µ(Thigh) +

1

24
µ(Taverage) (8.1)

where Taverage is equal to 28◦C and with τ1 = 7.5h and τ2 = 15.5h. The model for
strain S-Fb seems coherent (R2 = 0.714, average error equal to 28.63%) even if gradual
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adaptation of the growth rate appears inside each cycle, starting from cycle 8, which
is not matched by the theoretical curve (fig. 8.2). For strain S-Turb, however, the
difference between the simplistic model and the growth rates (R2 = 0.62, average error
equal to 63.27%) suggests that S-Turb thermal tolerance does not correspond to the
effective thermal tolerance of the strain at the end of the experiment. This probably
reflects the progressive modification of the strain phenotype. It may also result from the
delay between the end of the selection experiment and the TIP. It is likely that, during
this period, the strain maintained at 23◦C have drifted. Two different hypotheses will
then be tested in the following to represent the progressive adaptation of the strains in
this fluctuating environment.

8.3 Modelling selection during the experiment

8.3.1 Re-identification of the final thermal tolerance parameters

The thermal parameters derived from the TIP device for S-Turb and S-Fb cannot explain
the dynamics observed during the selection experiment. Especially, the final strains
obtained at the very end of the experiment seem more widely thermoresistant than
the performance recorded 6 months later in the TIP. We thus re-identified parameters
(Tmin, Topt, Tmax, µopt) for S-Turb and S-Fb using different methods and considering
that only selection occurred. Indeed, at the beginning of the experiment, and contrary
to Huertas et al. [2011], Bonnefond et al. [subm.] chose to start with a polymorphic
population. This imply that, first, the observed growth rate was a population average
growth rate with potentially different individuals harvesting different phenotypes and,
second, that pre-adapted individuals must exist. We successively used two methods
for the parameters re-identification: i)Identification of the average population thermal
parameters, ii)Identification considering two sub-populations.

8.3.1.1 Identification at the population scale

At the population scale, the growth rate is averaged over the existing phenotypes and the
population is considered as a single strain. We adjusted parameters (Tmin, Topt, Tmax, µopt),

that we called θ̂Turb and θ̂Fb for strains S-Turb and S-Fb, in order to match µ̄th(θ̂Turb)
and µ̄th(θ̂Fb) (see eq. 8.1) to the maximal experimental growth rate for each cycle start-
ing from cycle 5. In line with Bonnefond et al. [subm.], we considered that selection
starts occurring during this cycle. The optimization consisted in searching for a param-
eter vector θ minimizing the weighted ordinary least-squares criterion SSR using the
matlab fminsearch function:

SSR(θ) =
1

n

∑

i=1

w(i) [µexp(cyclei)− µ̄(T (cyclei), θ)]
2 (8.2)

where µexp(cyclei) is the maximum experimental growth rate for cycle i, n is the total
number of cycles, T (cyclei) corresponds to the temperatures applied at cycle i and w(i)

118



8.3 Modelling selection during the experiment

is the weight associated to cycle i. The choice of a weighted SSR is motivated by the fact
that we want to characterize the final strains, which have progressively emerged (w(i) is
increasing form 0 to 1).

It is worth noting that the practical identifiability of eq. 8.2 is not guaranteed because
θ is a vector of 4 parameters while the experimental data set is scarce. The optimization
was thus successively done by fixing three parameters and allowing only one to change.
We then did the same for the cardinal temperatures taken two by two and we used
each identified cardinal temperature set to initiate the 3 parameters θ where only µopt is
fixed (see table 8.2). Finally, we identified the two parameters θ under different possible
assumptions: i)The thermal niche width is kept constant and µopt and Topt can change,
ii)The thermal niche width is kept constant and µopt is linked to Topt according to eq. 5.1
(corresponding to the modified Eppley curve) for Haptophyta and Ochrophyta grouped
together, iii)The thermal niche width is kept constant and µopt is linked to Topt according
to the Eppley equation. For the two last approaches, the link between µopt and Topt is
adapted to the value of µopt at Topt for the strain W2X (using a proportionality factor
equal to 0.765%), assuming that the growth conditions are not perfectly optimal.

Results (table 8.2 and fig. 8.3, 8.4, 8.5, 8.6) show that, firstly, the identification with
only 1 parameter is poor compared to the other identifications (fig. 8.3 and 8.4). This
simple observation points towards the evidence that during the selection experiment,
individuals with at least modification of two thermal parameters have been selected.
When the three cardinal temperatures can simultaneously change, Tmin tends to be very
small. This is consistent with the experimental observations that the physiology of the
microalgae (lipid structure) indicates an acclimation to low temperatures. The results
obtained with the 3 cardinal temperatures are close to that obtained when calibrating
only Tmin and Tmax (fig. 8.5). This may indicates that these two cardinal temperatures
are the most important in the thermal selection process if µopt is fixed. Finally, the
result obtained with the modified Eppley hypothesis (method 7) gave the best results,
comforting the idea that the hypothesized links between the thermal parameters makes
sense. However, method 8 (Eppley curve) gives the nearest results, with higher µopt.

A possible justification for the difference between θ̂Turb, θ̂Fb and θTurb, θFb is that
the strains continued to drift during their 6 months at 23◦C before the TIP experiment.
We conjecture that the thermal performance of the enhanced strains has been altered
during this period. Moreover, this method with constant thermal parameters fails to
represent the gradual modification of the growth rates along each cycle. To get further
into selection, we considered a simple competition model.
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Figure 8.3: Re-identified strains with one parameter for Turbidostat - Data

points appear in blue. The black points correspond to the average theoretical growth rates

for θ̂Turb and θ̂Fb. Identification is done after the grey part. Bars represent minimal and

maximal growth rate in each cycles.

8.3.1.2 Competition between two thermal phenotypes

The microalgal population variability can be described by a sum of polymorphic sub-
populations competing cycles after cycles. As a first approach, we studied the compe-
tition between two sub-populations with two different phenotypes denoted x1 and x2
associated to growth rates µ1(T ) and µ2(T ), respectively. We considered the following
dynamical system:

ẋ1 = [µ1(T )−D(t)]x1
ẋ2 = [µ2(T )−D(t)]x2

(8.3)

where D(t) is the dilution rate. Starting from the first TIP of strain W2X, the com-
petition between these populations has been simulated with the temperature profile
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experienced during the selection experiment and, after that, the temperature of 23◦C
experienced during 6 months before the TIP. We finally took into account this final TIP
(see fig. 8.7). Set z = x2/x1 in Equations (8.3). Then:

ż = [µ2(T )− µ1(T )]z = ∆µz (8.4)

and so:
z(t) = z(0)e∆µ(T )t (8.5)

We computed ∆µ(T ) from the daily average difference between competitors, ∆µ̄(T )
Contrary to section 8.3.1.1, we account for the detailed temperature history. To avoid
practical identification problems, we reduced the parameter numbers from 9 to 3 by
considering that the thermal niche width is constant, that Tmax is linearly linked to Topt
and that µopt follows a modified Eppley curve (in the same way as section 8.3.1.1). To
ensure that none of the competitors are never extinct, we saturated the minimum value
of z to 10−10.

Results (table 8.3 and fig. 8.8) show that, for both cultures, an initial strain (cor-
responding here to x1) is solely responsible for the W2X TIP response and that a final
strain (corresponding here to x2) is also, in the same way, only responsible for the final
TIP response. The invasion of the final strain is rapid (40.5 days and 32.5 days for tur-
bidostat and fed-batch cultures, respectively to reach z = 102). It takes place during the
first cycle of the selection experiment (constant temperature of 28◦C). Experimentally,
we observe an increase of growth rate during cycle reiterations (cycle 8 and 9), which
is probably due to the emergence of a new strain. From the simulation, we can infer
that the final strain was not present initially (otherwise, it would have emerged before
the last cycles). During the storage period carried after the selection experiment with
a constant temperature applied for 6 months, the z ratio x1/x2 tends to increase again,
but the ∆µ(T ) is too low to insure that the initial strain x1 can replace the strain x2.
Additional simulations indicate that, in these constant conditions, it would take 253 days
and 287 days for x1 in the turbidostat and fed-batch cultures respectively to overcome
x2 (starting from z = 10−10 and with parameters as specified in table 8.3).

The two competitors method has clear limitations since it cannot take into account
a wide initial diversity and thus poorly represents the gradual selection assumed to take
place in the cultures. A competition model with n competitors would be more accurate,
but its calibration would be very tricky. Moreover, to represent adaptation, we must take
into account mutants apparition. In this perspective, we used the adaptive dynamics
theory.
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8.4 Modelling thermal adaptation during the experiment
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points appear in blue and red. The black line corresponds to the modelled population overall

growth rate. The arrow shows the invasion time. The red line corresponds to the selection

experiment period.

8.4 Modelling thermal adaptation during the experiment

8.4.1 Determining the invasion fitness

In section 7, we have shown that it is possible to use the adaptive dynamics theory with
a simple chemostat model when the temperature applied is periodical and piecewise
constant. Here, we have to show the same in a turbidostat and in a fed-batch mode. We
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therefore modelled the population dynamics in each culture mode.

8.4.1.1 Population dynamics, invasion fitness and selection gradient in a

turbidostat growth model

Consider the following system:

MTurb :

{
Ṡ = D(t)(Sin − S)− µ(T (t))ρ(S)X

Ẋ = µ(T (t))ρ(S)X −D(t)X
(8.6)

In the turbidostat mode, D is automatically adjusted to the growth rate to maintain a
constant biomass:

D(t) = µ(T (t))ρ(S) (8.7)

where T (t) is time varying according to eq. 7.24. In the turbidostat mode, the microalgae
biomass X is supposed to reach the consign biomass Xco. Eq. 8.7 insures that Ẋ = 0.
It is thus possible to find the following positive equilibrium:

S∗ = Sin −Xco

X∗ = Xco
(8.8)

This equilibrium is stable thanks to a dedicated control approach to satisfy equation
(8.7). Thus, we can use system (MTurb) in an evolutionary perspective using the adaptive
dynamics theory. Based on the same method as in section 7.4.2, we can define the
invasion fitness of a mutant with trait amut in the resident population with trait a at
equilibrium, averaged over a temperature cycle:

f̄Turb(amut, a) = 1/τ

∫ t0+τ

t0

µ̄m(T (t))ρ(S∗)− µ̄(T (t))ρ(S∗)dt (8.9)

We can deduce the average selection gradient:

∂f̄Turb(amut, a)

∂amut

∣
∣
∣
∣
∣
amut=a

= 1/τ

∫ t0+τ

t0

λ′(amut, T (t))β(amut, T (t))− β′(amut, T (t))λ(amut, T (t))

β(amut, T (t))2

.g(amut) + g′(amut)
λ(amut, T (t))

β(amut, T (t))
dt

(8.10)

where g(amut) represents the link between µopt and amut (i.e. Topt).

8.4.1.2 Population dynamics, invasion fitness and selection gradient in a

fed-batch growth model

Similarly, consider the following system:

MFb :

{
Ṡ = D(t)(Sin − S)− µ(T (t))ρ(S)X

Ẋ = µ(T (t))ρ(S)X −D(t)X
(8.11)

We assume that the invasion fitness is the same as in the turbidostat culture.
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8.4 Modelling thermal adaptation during the experiment

8.4.2 Evolutionary dynamics

Eq. 8.10 can be used to study the evolutionary dynamics of the considered adaptive
trait, here a = Topt. Here, we assume a constant thermal niche width equal to that of
the W2X strain; Tmin and Tmax are thus linearly linked to Topt as in eq. 4.1 but with
a1 = 1, a2 = 1 b1 = 8.68, b2 = 11.53. Moreover, µopt is linked to Topt as in section
8.3.1.1 with the same proportionality factor. We obtained the two following canonical
equations:

ȧmutTurb
=MpTurb

σTurbX
∗
Turb

∂f̄Turb(amut, a)

∂amut

∣
∣
∣
∣
∣
amut=a

(8.12)

ȧmutFb
=MpFb

σFbX
∗
Fb

∂f̄Fb(amut, a)

∂amut

∣
∣
∣
∣
∣
amut=a

(8.13)

where Mp is the probability to be a mutant at each apparition, and σ is the mutation
step. We simulated eq. 8.12 and 8.13 in the real temperature conditions of the selection
experiment. We calibrated the value of the productMpσ on experimental data using the
Sum of Squared Residual criterion and the matlab function fminsearch. Results (fig. 8.9
and 8.10) show that the evolutionary model correctly matches the growth rate dynamics
(mean error equal to 10.94% and 14.32% respectively, including the TIP experimental
points). With this model, the gradual increase within a selection cycle is represented (fig.
8.9 B and 8.10 B). Taking into account the slide effect related to the 6 months of storage
at 23◦C, we are able to reproduce the final results of the TIP for both strains STurb and
SFb (fig. 8.9 C and 8.10 C). Interestingly, at the end of the selection experiment (i.e.
day 292), the strains obtained for the turbidostat and fed-batch modes were apparently
more thermoresistant at high temperatures and had a higher µopt than S-Turb and S-Fb,
equal to 1.327 d−1 and 1.325 d−1 respectively (Topt=28.98◦C and Topt=28.97◦C) (fig. 8.9
C and 8.10 C). But this feature was lost during the conservation period.

The hypothesis of a constant thermal niche width during adaptation is not fully
coherent with the thermal parameters obtained for S-Turb and S-Fb. This is especially
related to the poor knowledge we have of how Tmin evolution is affected by temperature
in microalgae. To better represent the evolutionary dynamics of T. lutea, we replaced
a2 and b2 by the interpolation between the results found for W2X, S-Turb and S-Fb, i.e.
a2 = −1.310, b2 = 49.021. Simulations give a mean error equal to 1.53% and 3.81% for
the turbidostat and the fed-batch, respectively, arguing towards a global increase of the
thermal niche width during the experiment.

It is worth noting that adaptive dynamics assumes that the mutant invasion is fast
enough to be negligible. In section 8.3.1.2, we have shown that a strain x2 can rapidly
replaces another resident strain x1 if the ratio x1/x2 is not too low, i.e. x1/x2 < 103.
Additional calculations show that a mutant x2 with a thermal parameter set equal to
θFb would totally replace a resident x1 with a thermal parameter set equal to θW2X in
73 days during cycle 8 if initially x1/x2 = 108 (i.e. total replacement is considered up
to x1/x2 < 10−2). Such timescale represents 25% of the selection experiment duration
and is not negligible. Moreover, adaptive dynamics only considers mutation/selection
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Figure 8.9: Adaptation during the selection experiment in turbidostat - Exper-

imental growth rates appear in blue. The black line represents the modelled growth rate.

A, evolution of Topt during the selection experiment and the storage period. B, evolution

of the population growth rate. C, strain thermal growth curve obtained at the end of the

selection experiment (2) and at the end of the storage period (1).
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with small steps, which is not necessarily the case in this example. Even if an evolution-
ary framework gives coherent results here and shows adaptation inside a temperature
cycle, it is thus tricky to differentiate selection from adaptation at that stage. Costas
et al. [2014b] and Costas et al. [2014a] carried evolution experiments by gradually in-
creasing the temperature medium of several microalgae, including Isochrysis galbana. To
differentiate between acclimation, selection and adaptation, they separated the initial
population into clones of the different thermal genotypes. If all genotypes survived, they
considered that acclimation occurred; if only several genotypes survived, it was selection.
If they all initially experienced massive mortality, then it was adaptation, either due to
mutation or still possibly due to selection of rare pre-adapted individuals. Interestingly,
they observed that 75 days of adaptation at 35◦C were necessary for Isochrysis galbana
to detect a growth in the population.
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Figure 8.11: Thermal growth curve at the evolutionary equilibrium - The black

line (1) corresponds to the evolutionary equilibrium for the fixed thermal niched width

hypothesis, the black dashed line (2) to the Tmin linearly linked to Topt hypothesis according

to the W2X, S-Turb and S-Fb parameters link. S-Turb and S-Fb are represented in blue

and red respectively.

8.4.3 Evolutionary equilibrium

It is very likely that microalgae did not reach the evolutionary equilibrium even at the end
of the selection experiment. We looked at the evolutionary equilibrium that microalgae
would have reached if we had waited for a sufficient time in the condition of cycle 9.
Results (fig. 8.11) show that starting from W2X and using parameters Mp and σ found
in section 8.4.2, it would have taken 2128 days and 2122 days (with turbidostat and
fed-batch parameters respectively) to reach the equilibrium, with T ∗

opt = 34.772◦C and
µ∗opt = 1.598d−1. Linking Tmin to Topt according to strains W2X, S-Turb and S-Fb, the

132



8.5 Conclusion

model predicted a drastic increase in the thermal niche up to 40.95◦C (T ∗
min = 4.97◦C).

This prediction is probably overestimated, but highlights a potential gain for a longer
experiment.

8.5 Conclusion

We proved that the selection experiment did produce thermally enhanced strains. We
showed that it resulted from a combination of competition of pre-adapted individuals
and adaptations. Separating clearly these two phases is however very tricky. Moreover,
the permanent acclimation of the cells to the fluctuating temperature makes the picture
more complex, and an additional model to quantify this effect would help to decipher the
effect of these three mechanisms. The analysis of the experimental results reveals that
the relationship between the thermal parameters stated in this thesis seems to be valid
in Tisochrysis lutea. However, Tmin appears to be more flexible from an evolutionary
point of view. A more accurate protocol to determine Tmin would be required to explore
more extensively the consequence of adaptation on the response at low temperatures.
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Summary of section 8:

• We carried a selection experiment with fluctuating

temperatures and obtained thermally enhanced strains

• We were not able to distinguish between competi-

tion/selection stricto sensu and evolution

• However, evolution did occur and the adaptive dynamics

model well captures the evolutionary trajectories

• The link between the thermal parameters are coherent,

but we failed to represent the ‘autonomous’ evolution of

Tmin

• This is a first step for designing optimal experiment for

directed evolution
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9. MODELLING THE EFFECT OF TEMPERATURE ON
PHYTOPLANKTON GROWTH ACROSS THE GLOBAL OCEAN

9.1 Introduction

In the oceans, phytoplankton are the input point of inorganic carbon in the trophic net
thanks to photosynthesis and form the base of marine food web. They play a key role
in biogeochemical cycles at global scale [Falkowski et al., 1998]. Their activity depends
on many factors, primarily light, nutrient availability and temperature [Falkowski and
Raven, 2007]. In the context of global warming, predicting how the ocean temperature
increase will affect marine phytoplankton is a challenging issue.

Since the past decade, scientists have tried to figure out how phytoplankton would
deal with a warmer world. First of all, Huertas et al. [2011] (and later Costas et al.
[2014b] and Costas et al. [2014a]) carried warming experiments in batch cultures of 12
phytoplankton species belonging to 4 major phytoplankton groups. Their results high-
light phytoplankton capacity to adapt to constant warm temperatures, particularly for
species living in areas with high temperatures fluctuations. The need for experimental
evolution became an evidence [Reusch and Boyd, 2012]. Later, Thomas et al. [2012] anal-
ysed a vast database of phytoplankton thermal growth curves, comparing their thermal
tolerance to their extraction site in the ocean. They showed that variation in phytoplank-
ton temperature optima over latitude is linked to a gradient in mean ocean temperature.
They tried to reconstruct the observed thermal repartition using the adaptive dynamic
theory based on a competition model between phytoplankton species. The main result
of this study is the supposed high sensitivity of tropical and polar strains to warming
because of their close maximal temperature tolerance to ambient temperature.

The race to phytoplankton study in a warming world was then launched. Toseland
et al. [2013] and [Yvon-Durocher et al., 2015] tried to predict how warming would mod-
ify phytoplankton stoichiometry, particularly the N:P ratio, and how it would affect
biogeochemical cycles. [Dutkiewicz et al., 2013] modelled future ‘winners and losers’,
mostly resulting from the effect of temperature on nutrient availability. Padfield et al.
[2015b] got insight into phytoplankton thermal adaptation by submitting the well known
Chlorella vulgaris Chlorophyceae species to a 2◦C warming above its basic upper ther-
mal limit. They emphasized the role of carbon-use efficiency during adaptation and the
high speed of adaptation (less than 100 generations). Finally, a community-wide pub-
lication aimed to standardise phytoplankton thermal study in the laboratory for future
modelling and prediction of eco-regional phytoplankton changes [Boyd et al., 2013]. In
line with Boyd et al. [2013], a thermal evolution experiments was carried by Listmann
et al. [2016] on the key phytoplankton species Emiliana huxleyi.

In 2014, Marañón et al. [2014] were still rather sceptical and claimed that ‘Bio-
geographic patterns in phytoplankton size structure and growth rate are independent of
temperature and driven mainly by changes in resource supply ’. However, the methods
leading to this conclusion are controversial (see section 5.2.3). Moreover, these results
are in contradiction with [Reuman et al., 2014] who modelled competition for nutrient
in concordance with temperature and cell size in phytoplankton. Chen [2015] deeply
confirmed the effect of temperature on phytoplankton repartition at global ocean scale
and the implication of warming, extending the Thomas et al. [2012] database.
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[Thomas et al., 2015] then enhanced again this database, finding that ‘functional groups
differ strongly in their patterns of adaptation: traits are similar in hot tropical environ-
ments, but diverge at temperate latitudes ’.

We focus here on temperature as an evolutionary driver in phytoplankton at global
scale with a modelling point of view. Evolution of phytoplankton facing realistic tem-
perature conditions has already been modeled by Thomas et al. [2012] using Norberg
[2004] model and by Grimaud et al. [2014a] using Bernard and Rémond [2012] model
(see chapter 7). In line with Thomas et al. [2012] and Grimaud et al. [2014a], we used the
adaptive dynamics theory to study a given temperature-dependent growth model in an
evolutionary perspective. Nevertheless, we proposed an original approach showing that
the study of evolutionary equilibrium can be reduce to a function optimization problem.
By doing so, we drastically decreased the computational time required to compute the
evolutionary equilibrium and we were able to predict the evolutionary outcomes at the
global ocean scale. We validated our approach on a data set of 194 observations (ex-
tracted from Thomas et al. [2012]) of the temperature response for different species for
which isolation sites are known. We compared different hypotheses, and we addressed the
questions of how phytoplankton adapts to in situ temperature variations, investigating
the implications at global scale.

9.2 Evolutionary model for thermal adaptation

9.2.1 Slow-fast dynamical system

First, we consider a simplified chemostat model to focus on the adaptation mechanisms
driven by temperature. We tested two different models to represent the impact of tem-
perature on phytoplankton growth rate:

µB(T (t)) = φ(T (t)) (horizontal− shift hypothesis) (9.1)

µE(T (t)) = Ep(Topt)φ(T (t)) (Eppley hypothesis) (9.2)

where φ(T (t)) is the CTMI model and Ep(Topt) is the Eppley curve linking Topt to µopt.
In line with Grimaud et al. [2014a], we included eq.(9.1), eq.(9.2) in a simple chemo-

stat model of phytoplankton growth with varying temperature:

M ǫ :







Ṡ = fS(S,X, T (t)) = D(Sin − S)− µ(T (t))ρ(S)X

Ẋ = fX(S,X, T (t)) = [µ(T (t))ρ(S)−D]X

Ṫ = ǫfT (t) = ǫ cos(ωt)

(9.3)

S is the nutrient concentration in the chemostat, Sin is the inflow substrate concentra-
tion, X is the algal biomass concentration, µ(T (t)) is either µB(T (t)) or µE(T (t)) or
µME(T (t)), fT (t) is a periodic function (reflecting seasonality), D is the dilution rate
with D < µ(T (t))ρ(Sin) ∀t, and ρ(S) is the substrate uptake defined as:

ρ(S) =
S

K + S
(9.4)
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where K is a half-saturation coefficient. We consider that growth, in term of carbon
fixation, is fast compared to temperature fluctuations, i.e. ǫ is a small positive parameter.
It is possible to analyze system (M ǫ) using the Singular Perturbation Theory [Tikhonov,
1952]. The fast dynamics, where T (t) = T (0), corresponds to the classical chemostat
model:

{
Ṡ = fS(S,X, T (t))

Ẋ = fX(S,X, T (t))
(9.5)

System (9.5) has a unique positive globally asymptotically stable equilibrium (S∗(T (t)), X∗(T (t))) ∈
R2

+ (see e.g. Grimaud et al. [2014a]), where:

S∗(T (t)) =
KD

µ(T (t))−D

X∗(T (t)) = (Sin − S∗(T (t)))

(9.6)

The slow dynamics is given by:

M0 :







S∗(T (t)) =
KD

µ(T (t))−D
X∗(T (t)) = (Sin − S∗(T (t)))

Ṫ = ǫfT (t), T (0) = T0

(9.7)

The reduced system (M0) admits a unique solution T ∗(t):

T ∗(t) = T0 +
ǫ

ω
sin(ωt) (9.8)

Tikhonov’s theorem [Tikhonov, 1952] allows us to conclude:

Proposition 9.2.1 For sufficiently small values of ǫ > 0, system (M ǫ) admits a unique

positive solution (Xǫ(t);Sǫ(t);T ǫ(t)) on [0; τ ], where 0 < τ < +∞. Moreover:

limǫ→0S
ǫ(t) = S∗(t)

limǫ→0X
ǫ(t) = X∗(t)

(9.9)

From a biological point of view, prop 9.2.1 shows that phytoplankton populations are
always at equilibrium because growth is faster than long-term temperature variations.
Assuming small annual temperature fluctuations of amplitude δ, we obtain ǫ = δω << 1.
The long-term (i. e. annual) dynamics of the algal biomass can thus be approximated
by:

S∗(T (t)) =
KD

µ(T (t))−D
X∗(T (t)) = (Sin − S∗(T (t)))
T (t) = T0 + δ sin(ωt)

(9.10)
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9.2.2 Evolutionary model using Adaptive Dynamics theory

We now study system (M ǫ) in an evolutionary perspective using the adaptive dynamics
theory [Dieckmann and Law, 1996]. To do so we allow one parameter to evolve, called
the adaptive trait, here Topt. One mutant Xmut appears in the resident population at
equilibrium with a different value of Topt, T

mut
opt :

M ǫ
mut :







S = S∗(T (t), Topt)
X = X∗(T (t), Topt)

Ẋmut = fXmut(T (t), Topt, T
mut
opt )Xmut

= [µmut(T (t))ρ(S)−D]Xmut

Ṫ = ǫfT (t)

(9.11)

Assuming that the mutant is initially rare, we compute the mutant growth rate in the res-

ident population, fXmut(T (t), Topt, T
mut
opt ). Depending on the sign of fXmut(T (t), Topt, T

mut
opt ),

the mutant can invade and replace the resident or not. Prop 9.2.1 insures that resident

population is actually at equilibrium during mutant invasion. Here, because T is a peri-

odically time varying variable of period τ , we use the time average mutant growth rate

[Ripa and Dieckmann, 2013]:

< fXmut
(Topt, T

mut
opt ) >=

1

τ

∫ τ

0

fXmut
(T (t), Topt, T

mut
opt ) dt

(9.12)

We then compute the selection gradient g(Topt, T
mut
opt ) which gives the selection direction

(e.g. growing or decreasing values of Topt are selected through evolution). The selection
gradient is defined as the partial derivative of the time average mutant growth rate with
respect to Tmut

opt evaluated in Tmut
opt = Topt:

g(Topt, T
mut
opt ) =

∂ < fXmut(Topt, T
mut
opt ) >

∂Tmut
opt

∣
∣
∣
∣
∣
Tmut
opt =Topt

(9.13)

At the evolutionary equilibrium, the selection gradient is equal to zero:

∂ < fXmut(Topt, T
mut
opt ) >

∂Tmut
opt

∣
∣
∣
∣
∣
Tmut
opt =Topt=T ∗

opt

= 0 (9.14)

The evolutionary outcome of the model is thus given by the selection gradient. How-
ever, it is possible to simplify the way to find T ∗

opt in order to decrease the numerical
computation time:

Proposition 9.2.2 The evolutionary equilibrium T ∗
opt is given by:

T ∗
opt = arg max

Topt

< ln(µ(T(t),Topt)) > (9.15)
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Proof. According to Grimaud et al. [2014a]:

∂ < fXmut(Topt, T
mut
opt ) >

∂Tmut
opt

∣
∣
∣
∣
∣
Tmut
opt =Topt

=
D

τ
.

∫ τ

0

µ′(T (t), Topt)

µ(T (t), Topt)
dt (9.16)

Moreover:

∂ < ln(µ(T(t),Topt)) >

∂Topt
=

1

τ

∫ τ

0

µ′(T (t), Topt
µ(T (t), Topt)

dt (9.17)

If Topt = T ∗
opt (evolutionary equilibrium), eq.(9.16)=0. Thus:

∂ < ln(µ(T(t),T∗
opt)) >

∂Topt
= 0

which is equivalent to say that:

T ∗
opt = arg max

Topt

< ln(µ(T(t),Topt)) >

We formally show that finding the evolutionary equilibrium is equivalent here to
a simple optimization problem. This result revoices the question addressed by Metz
et al. [2008] in the adaptive dynamics framework: ‘when does evolution optimize ? ’. In
particular, Metz et al. [2008] showed that ‘a pure optimization approach holds water only
when the eco-evolutionary feedbacks are of a particularly simple kind ’, and we do believe
that this is the case here.

9.3 Global ocean scale simulations

9.3.1 Evolutionary model with realistic temperature signal

We now study phytoplankton thermal evolution at global ocean scale. Let us consider
an ubiquitous phytoplankton species which has evolved locally at each sea surface lo-
cation (i, j) in response to environmental pressure. In a first assumption, each point
of latitude/longitude (i, j) can be viewed as a chemostat with growth equations given
by eq. (9.3). Assuming that the sea surface temperature is a proxy of the temper-
ature experienced by the phytoplankton cells, we use a realistic temperature signal
T (t, i, j) from in situ observations. The sea surface temperature data for the global
ocean have been downloaded from the European short term meteorological forecasting
website (http://apps.ecmwf.int). The data cover the years 2010 to 2012 and the spatial
resolution is 1◦ in latitude and longitude with a temporal resolution of 3 hours.

We calculate for each time step (3 hours) at a given location, the value of the function
φ(T (t, i, j), Topt), depending on the perceived in situ temperature T (t, i, j) and the opti-
mum growth temperature Topt. We then calculate the average of the integrated function
over 3τ = 3 years (2010, 2011, 2012):

ψ(Topt) =
1

3τ
·

∫ 3τ

0
ln(µ(T(t, i, j),Topt))dt (9.18)

140



9.3 Global ocean scale simulations

Using prop 9.2.2, we search for the evolutionary optimum temperature T ∗
opt achieving

the maximum of eq. (9.18).

9.3.2 Global scale simulations

Global scale simulations for eq. 9.1 (fig. 9.1 A) show that for any range of temperature
experienced by phytoplankton, the evolutionary temperature T ∗

opt at a given place (i, j) is
always higher or equal to the average temperature T̄ (i, j). In the tropical zone, where the
average temperature is high (near 26◦C), T ∗

opt(i, j) ≃ T̄ (i, j). In temperate and coastal
zones, where the average temperature is between 10 and 20◦C, T ∗

opt(i, j) > T̄ (i, j).
This corresponds to areas where the temperature range max(T(t)) − min(T(t)) is

higher than 10◦C (Fig. 9.1 C). We suppose that due to the thermal growth curve
asymmetrical shape, it is more suitable to have higher Topt when temperature fluctuates.
This assumption is in good agreement with Kimura et al. [2013] observations for Archae;
these organisms live near their maximum temperature, with a Topt much higher than the
environmental T̄ .

Simulations with eq. 9.2 (Eppley hypothesis) (fig. 9.1 B) show similar results,
however the evolutionary temperature is always higher than the average temperature
(for about 6◦C).

9.3.3 Comparison with experimental data

Using model (9.1), we determined the cardinal temperatures (T̂min, T̂opt, T̂max) for the
194 phytoplankton strains studied by Thomas et al. [2012] thanks to growth rate versus
temperature data sets as detailed in chapter 2. The calibration was coupled to a Jack-
kniffe statistical test evaluating the confidence interval of the parameters as in Bernard
and Rémond [2012]. We then only considered strains associated with data sets providing
a confidence interval smaller than 5◦C for the estimated T̂opt, i. e. 57 strains.

Since the geographical coordinates of the isolation of the 194 stains are known, it
is possible to compare T̂opt to in situ T̄ (i, j) (fig. 9.2 A). Results support the fact that
Topt is much higher than T̄ (here the maximum difference is 10◦C) in temperate areas
and almost the same as T̄ in tropical and polar areas. We simulate the eq. 9.1 and
eq. 9.2 at the isolation coordinates of the 57 selected strains (fig. 9.2 B, green points).
Simulations with eq. 9.1 give the same non-linear trend previously stated (fig. 9.2 B,
blue points) whereas simulations with the Eppley hypothesis mostly capture a more
flattened relationship between T ∗

opt and T̄ (fig. 9.2 B, red points).
We define ∆ = T ∗

opt − T̄ . For simulations with eq. 9.1 representing the horizontal-
shift hypothesis, we obtain ∆ ≥ 0. Here, it is worth noting that ∆ can be equal to
zero due to the assumption that µopt does not depend on Topt. This is particularly true
in tropical zones, which is in accordance to experimental data. Quite the opposite, ∆
is always higher than 6◦ C for simulations with the Eppley hypothesis and does not
allow to match the points situated in tropical zones. Moreover, the Eppley simulation
gives a rather linear relationship between T ∗

opt and T̄ (t). Results obtained with eq. 9.1
(horizontal-shift hypothesis) are therefore more coherent with
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Horizontal-shift hypothesis 

Eppley hypothesis

Temperature range 

Topt*-T

Topt*-T

max(T(t))-min(T(t))

_

_

A

B

C

Figure 9.1: Global ocean scale simulations - World map of the difference between

the optimal temperature for growth and the mean temperature ∆ = T ∗

opt − T̄ for the

horizontal-shift hypothesis simulation (A) and Eppley hypothesis simulation (B) (red cor-

respond to areas where ∆ ≥ 6◦C for (A) and ∆ ≥ 12◦C for (B)), and temperature range

max(T (t))−min(T (t)) for the three years 2010, 2011, 2012 (C).
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Figure 9.2: Model predictions - (A) Observed T̂opt for 194 phytoplankton strains as a

function of T̄ . The 57 selected strains are indicated in green points. (B) Predicted T ∗

opt

as a function of T̄ for eq. 9.1 simulations (horizontal shift hypothesis) (blue points) and

Eppley hypothesis simulations (red points). The y = x curve is indicated in black. The

green points correspond to the predicted T ∗

opt for the 57 selected strains (light green for eq.

9.1 simulations, dark green for Eppley hypothesis simulations).
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Figure 9.3: Comparison to experimental data - Predicted T ∗

opt compared to experi-

mental T̂opt for Eppley hypothesis (A) and eq. 9.1 simulations (B). Phytoplankton phylo-

genetic groups are indicated in color in (B): green: Dinoflagellates, pink: Diatoms, black:

Cyanobacteria, blue: others.
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[Chen, 2015, Thomas et al., 2015] and illustrate perfectly Boersma et al. [2016]: ‘Pro-
jecting effects of climate change on marine systems is the mean all that matters ?’

We then compare predicted T ∗
opt to observed T̂opt (fig. 9.3). For simulations with the

horizontal-shift hypothesis, mean error calculated as |T ∗
opt − T̂opt|/T̂opt is 21.7% whereas

for Eppley hypothesis simulation, mean error is 25.5%. Error is thus quite similar for the
two models, but the Eppley simulation overestimates T ∗

opt. The accuracy of the model
predictions, despite the model simplicity, is really surprising. Thus, direct temperature
effect must drive evolution at global scale, contrary to what is claimed by Marañón et al.
[2014].

There are some unavoidable biases in our approach. The first one is due to the
age of the microalgae cultures which have been used to provide the data. In general,
the measurements were not performed right after in situ isolation. It results that the
strains may have evolved, due to the temperature where the strains are stored in the
culture collection. Second, we only consider the effect of temperature. Effects of light
and nutrients which also strongly drive µopt are not taken into account. Finally, we use
sea surface temperature. Phytoplankton can migrate and are advected along the water
column, and experience temperatures different from the surface.

Despite these biases, we estimated with a certain accuracy the T ∗
opt, e.g. for the

cyanobacteria group, which lives in areas where the average temperature is high. It is
thus possible that the sea surface temperature, where light is available, is actually a
good proxy to predict thermal adaptation.

9.3.4 The warming scenario

In our method, the cardinal temperatures are linearly linked. We can thus obtain the
upper thermal limit at evolutionary equilibrium, T ∗

max, from T ∗
opt. We compared T ∗

max to
the annual maximal temperature experienced in situ, defined as ∆m = T ∗

max−max(T (t)).
The results (fig. 9.4) show that for the horizontal-shift hypothesis as for the Eppley hy-
pothesis simulations, temperate areas with annual high temperature fluctuations have
the low ∆m. For the horizontal-shift hypothesis, ∆m is even slightly negative in several
places such as the Japan sea. We infer that in case of warming, even for the most op-
timistic scenario with only 1◦C of annual average temperature increase before the end
of the century, thermal extreme events (such as El niño) will drastically increase the
maximal temperature experienced and thus challenge phytoplankton survival in tem-
perate areas. This result is counter-intuitive and in contradiction with that of Thomas
et al. [2012], who claim that tropical and polar areas where the T ∗

opt is the closest to
the experienced (and stable) temperature are the more sensitive to warming. We rather
show here that even if, in temperate areas, simulations give T ∗

opt higher than the annual
average temperature compared to tropical areas, this difference is low compared to the
high difference between the maximal temperature max(T (t)) and the annual average
temperature T̄ (t) in temperate areas.

Huertas et al. [2011] challenged this hypothesis with experimental evolution and have
highlighted the following trade-off: in temperate areas, T ∗

max is closed to max(T (t)) and
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a potential warming would directly affect phytoplankton if the speed of adaptation is
not high enough. However, Huertas et al. [2011] showed that temperate phytoplankton
species have higher genetic capabilities to adapt to thermal changes.

9.4 Conclusion

We have presented a new method based on adaptive dynamics theory to study the
outcome of phytoplankton adaptation at global ocean scale. We defined a standard
ubiquitous phytoplantkon species and we compared at first two different thermal growth
models, the horizontal-shift hypothesis and the Eppley hypothesis, describing it in the
context of evolution. We found, in agreement with chapter 7, that the evolutionary
optimal temperature T ∗

opt is always equal or higher than the average temperature expe-
rienced by the phytoplankton T̄ . Moreover, the area with high difference between T ∗

opt

and T̄ characterizes large temperature fluctuations. When based on the horizontal-shift
hypothesis, our model successfully fits the data, contrary to the Eppley hypothesis which
linearly links T ∗

opt and T̄ , and overestimates T ∗
opt. We inferred that direct temperature

effect strongly drives evolution at the scale of the global ocean. It is worth noting that
the modified Eppley hypothesis is still to be tested in this evolutionary model.

In contradiction with Thomas et al. [2012] and Ward [2015], we showed that temper-
ate areas are more sensitive to global warming because of the small difference between
T ∗
max and max(T (t)) there. However, this could be compensated by the perhaps higher

evolutionary capabilities of phytoplankton in these areas [Huertas et al., 2011].
The evolutionary effect of temperature on phytoplankton should now be investigated

concomitantly to other factors (which has been partially done by [Sauterey et al., 2014]),
such as irradiance, nutrient [Irwin et al., 2015] or pH and CO2 concentrations [Coello-
Camba et al., 2014]. The phytoplankton species Emiliana huxleyi is known to be acid-
sensitive, but its adaptation capability to co-variation of temperature and pH are not
clearly understood [Fielding, 2014, Gibbs et al., 2016, Schlüter et al., 2014].

Finally, as co-evolution is a powerful driver, co-evolutionary models taking into ac-
count the predators sensitivity to temperature should be developed [Amarasekare, 2015,
Chen et al., 2012, Rose and Caron, 2007]
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Tmax* - max(T(t))Horizontal-shift hypothesis

Eppley hypothesis Tmax* - max(T(t))

A

B

Figure 9.4: Global ocean scale simulations of T ∗

max. - World map of the difference

between the maximal temperature for growth and the maximal annual temperature in situ,

T ∗

max−max(T ) for the horizontal-shift hypothesis simulation (A) and Eppley hypothesis

simulation (B). The blue areas correspond to potentially sensitive zones.
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Summary of section 9:

• We reduced a thermal evolutionary model to a simple

optimization problem, allowing to compute T ∗
opt at the

global ocean scale

• In situ simulations are coherent with experimental results

• In situ simulations show that in temperate areas,

T ∗
opt > T̄ (t), which is correlated to the annual thermal

range

• In these temperate areas, T ∗
max is close to max(T (t)). Tem-

perate areas are thus probably sensitive to ocean warming
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Conclusion & Perspectives

10.1 The physiological impacts of temperature on phyto-

plankton

10.1.1 From empirical models to thermodynamical insights

In chapter 3, we have reviewed the different models representing the effect of tempera-
ture on UO growth, classifying them into empirical and mechanistic categories. We have
shown that empirical models, and most particularly the Bernard and Rémond [2012]
model, are the most reliable for dealing with the low number of points which char-
acterize, in practice, these data sets. Mechanistic models, contribute to explain and
highlight the thermally induced physiological effects. If we compare to the broad liter-
ature dedicated to understanding the effect of light on growth, the poor knowledge of
the mechanisms balancing or favoring growth is very surprising. The current consensus
is that temperature affects enzyme conformational stability. Despite the recent develop-
ment of a unicellular growth model said to be universal [Corkrey et al., 2014], we have
shown that the ‘proteome paradigm’ should be further investigated. Some authors, for
example, claim that physiological mechanisms compensating each others, particularly
the respiration rate, are the basis of the thermal growth curve [Poertner, 2012, Ruoff
et al., 2007, Zakhartsev et al., 2015] (this is called the metabolic hypothesis). The pro-
cess of temperature acclimation did not receive much attention, and should definitely be
more extensively studied and integrated into the models.

In the same way, cell mortality at low or high temperatures still has to be investigated.
Few studies exist for unicellular eukaryotes, especially for phytoplankton. It is not clear
if death rate increases under theoretically sub-lethal temperatures (i.e. below Topt). The
molecular mechanisms leading to death are not definitely unveiled and definitely need
further investigations. Moreover, the capacity of cell to repair its damages and regrow
after an heat or cold shock is not clearly understood and modelled.

In chapter 4 and chapter 5, an opportunity to clarify the situation is given by the
exploration of universal links between the cardinal temperatures, on one hand, and be-
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tween the optimal growth rates and the optimal temperature for growth on the other
hand. Since Rosso et al. [1993], it has been noticed that an unexpected linear link be-
tween the cardinal temperatures exists for bacteria. We have extended this observation
to a large range of UO, including unicellular eukaryotes, and discovered that not only a
linear relationship is observed too, but that this relation is exactly the same. It is also
valid for different phytoplankton sub-groups such as Chlorophyta. Nonetheless, the rela-
tion between Tmin and the other cardinal temperatures is more confused for eukaryotes,
perhaps because of the difficulty to study these organisms at low temperature (probably
because of the specificity of their membrane fluidity [Caspeta et al., 2014]). Our result
do not tend to support, for example, a tough constant thermal niche width for all the
organisms. The asymmetry of the thermal growth curve is also subject to variations
[Thompson et al., 1992]. Yet, we have shown that these linear relations are highly sig-
nificant, and that there is a clear trade-off between the cardinal temperatures for every
UO despite the large variety of metabolisms. On top of that, we also unveiled group-
specific links between the theoretical optimal growth rate and the optimal temperature
for growth, and thus we proposed a correction of the Eppley law [Eppley, 1972] for the
highest temperatures. Although depending on many factors including cell biovolume
and scaling laws, we have shown that growth is intrinsically limited by an upper and a
lower bound that seems to be rather constant for a given group. More experiments in the
framework of Boyd et al. [2013] are necessary using agreed and standardized protocols.

In chapter 6, we revisited these universal features using a mechanistic model, the Hin-
shelwood model. We firstly showed that the Hinshelwood model arises from considering
an autocatalytic model with n enzymes in interactions that are thermally unfolded. This
model shows that the average unfolded proteome, rather than a specific unfolding en-
zyme, matters at high temperature (on the contrary to what is claimed by Corkrey et al.
[2014]). This theory has deep implications for thermal adaptation. We then included
two thermodynamically-motivated links in the model: the entropy-enthalpy compensa-
tion (EEC) and the activity-stability trade-off. When proteins unfold, EEC stipulates
that enthalpy always compensates entropy such that the gibbs free energy difference of
unfolding cannot widely vary. The activity-stability trade-off accounts for the loss of en-
zyme activity linked to its stability when it unfolds. With these hypotheses, we were able
to satisfyingly represent the thermal growth curves with only two parameters. Finally,
we explained the links between thermal parameters previously highlighted. Further work
is needed to explore the underlying thermodynamical principles of the thermal growth
curve beyond its Arrhenius type response. The use of metabolic models under non-
balanced growth, while explicitly accounting for the thermal sensitivity of each single
metabolic reaction could be used to challenge this problematic [Baroukh, 2014].

10.1.2 The submerged iceberg of unknown: future works

In chapter 7, we have exploited an experiment where phytoplankton was grown in dynam-
ical conditions under periodically varying temperatures. We have developed a dynami-
cal model, and we have shown that a periodical solution theoretically exists. Using the
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Droop model [Droop, 1968], we have challenged the duality of both growth and nutrient
uptake thermal sensitivities. However, as soon as temperature is varying, our knowl-
edge concerning cell metabolic reactions becomes limited [Ras et al., 2013]. Data are
clearly lacking to understand how internal metabolites such as starch or lipid respond to
temperature variations. Again, the use of metabolic models under non-balanced growth
[Baroukh, 2014] could deeply help to decipher between the different impacts of temper-
ature, and finally understand the unclear observations. Additionally, Bonnefond et al.
[2016] have shown that temperature variations contribute to synchronize the cell cycle
and can strongly favor growth by reducing the loss of carbon by respiration during the
night.

Temperature is a central parameter for phytoplankton, but as it acts on the whole
metabolism, it is linked to several other factors, making the understanding of its effect
in a real environment very challenging. First of all, the coupling between temperature
and photosynthesis is still to be explored. The temperature coupling with light has
not clearly been investigated at high light intensity [Bernard and Rémond, 2012, Jensen
and Knutsen, 1993b, Ras et al., 2013], where it seems to lead to nonlinear effects. The
development of cell-scaled models representing the different states of the reaction cen-
ters involved in the photon harvesting process (see for example Han [2001]) and their
temperature sensitivity (as done by Duarte [1995]) could help to better understand and
model the temperature and light coupling in conditions of photosaturation and photoin-
hibition. Moreover, the process by which low temperatures induce photoinhibition has
not been modelled yet.

Temperature also influences the oxygen concentration in the medium. It therefore
indirectly affects the respiration rate, but can also more deeply impact the metabolism,
at high biomass density, when oxygen stimulates photorespiration or mortality due to
oxygen free radicals. Some authors have pointed out the importance of this coupling
for unicellular diazotrophic cyanobacteria (UCYN) owning the nitrogenase, the enzyme
responsible of the N2 fixation, which is highly inhibited by oxygen [Brauer et al., 2013,
Stal, 2009]. For now on, no model exists to take this phenomenon into account but the
Grimaud et al. [2014b] model could be a starting point.

10.2 Capturing the evolutionary trajectories

10.2.1 Selection experiments and evolutionary modelling

In chapters 7, we have modelled phytoplankton temperature adaptation using the adap-
tive dynamics theory applied to a simple Monod model in constant and varying thermal
conditions. We have taken into account the links described in the previous chapters,
incorporating them into the Bernard&Rémond model. We depicted several possibilities
among these links and their potential effects on adaptation. The main results show
that, firstly, the optimal growth temperature tends to equal the applied temperature if
the temperature is kept constant and the optimal growth rate does not change. This
is an important result for long-term conservation conditions of phytoplankton in labo-
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ratory cultures [Garrido et al., 2013]. As a consequence, the thermal response of the
strains which have been for decades maintained at 20◦C may strongly diverge from the
response of the strain still in the natural environment. On top of that, under Eppley or
modified-Eppley hypotheses, the optimal growth temperature tends to be higher than
the applied temperature. Secondly, we showed and demonstrated that Topt tends to be
always higher than the average temperature in fluctuating regimes. This phenomenon is
highly amplified when considering the modified Eppley hypothesis. Finally, we showed
that if Tmin and Tmax are fixed, evolutionary branching can occur meaning that two new
strains can coexist and separate.

In chapter 8, we compared our model to a selection experiment carried by Bonnefond
et al. [subm.] for the Facteur 4 ANR project in controlled conditions with peace-wise
linear fluctuating temperatures. We designed the canonical equation of the adaptive
dynamics in line with Kremer and Klausmeier [2013] for fluctuating conditions. We
calibrated the evolution model using the experimentally measured growth rates. This
model was able to nicely reproduce the evolutionary dynamics. However, it was not
possible to distinguish between the acclimation, selection and adaptation phases. In this
kind of evolutionary experiments, competitions models as well as evolutionary models
should be built together to better understand and estimate the time-scale of the different
phenomenons. A future step would be to deduce optimal experimental conditions to
select a particular adaptive trait using the adaptive dynamics theory. This was partially
done here by extrapolating the theoretical evolution of Topt for a long lasting experiment.
We also estimated the derivation of Topt during the strain conservation period.

The adaptive dynamics theory gave us insight into thermal adaptation here, but suf-
fers from structural limitations. First of all, it is only possible to represent the evolution
of a single adaptive trait. We overcame this limitation thanks to the links existing be-
tween some parameters, but these links are not always clear or universal. Some authors
are currently searching for a way to fix this limitation and model multi-dimensional
traits space [Champagnat et al., 2002], notably by using the new notion of function val-
ued adaptive dynamics [Parvinen et al., 2006]. Moreover, multi-dimensional phenotypic
traits cannot be taken into account most of the time [Ispolatov et al., 2016], which consti-
tute a big gap with n species competition models. The mutant invasion time could also
be a limitation. In the adaptive dynamics theory, it is assumed to be instantaneous. In
the same way, the mutation rates cannot be easily deduced from the canonical equation.

10.2.2 Evolution in the ocean

In chapter 9, we have tried to extend our evolutionary modelling approach to the global
ocean for phytoplankton. Firstly, we have reduced the model exposed in chapter 7
to an optimization problem. In this simple formulation, it was possible to simulate
phytoplankton evolution at the global ocean scale using 3 years Sea Surface Temperatures
data. The main result suggests that the higher is the temperature annual fluctuation,
the higher will be the difference between Topt and the annual average temperature,
and this was particularly linked to the modified Eppley hypothesis, specific for each
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10.3 Conclusion

phytoplankton group. Surprisingly, it was possible to compare the experimental data
relating a strain phenotype to its geographical original. Indeed, we were able to predict
optimal temperatures for phytoplankton species at a given location in the world. A close
view to the corresponding Tmax showed that species located in areas with wider range of
annual temperature fluctuations had Tmax closer to the maximal temperatures recorded
there and could thus be more sensitive to a potential increase of sea water temperature
as well as extreme thermal events. Moreover, it is worth noting that each phytoplankton
group has its own intrinsic thermal limits.

These results have to be cautiously considered because of the huge variability en-
countered at global scale. Some other authors are currently trying to represent thermal
evolution in the ocean using similar methods. Thomas et al. [2012] and [Padfield et al.,
2015a, Yvon-Durocher et al., 2015] use similar adaptive dynamics model whereas David
Claessen with the ANR Phytback project is constructing a large scale multi-dimensional
adaptive dynamics model considering several varying environmental factors. It is obvi-
ous that many factors impact evolution in the ocean. For example, temperature increase
is associated to ocean acidification by an increase in dissolved CO2.

Moreover, temperature affects all the organisms, unicellular or not. The eco-regional
repartition of copepods is highly influenced by temperature, for example [Benedetti et al.,
2016]. Co-evolution should thus be considered even in a thermal problematic, and even
community-thermal response could be studied [Brauer et al., 2009].

10.3 Conclusion

This PhD thesis has tried to figure out how phytoplankton adapt to temperature. The
overall picture is still very incomplete, but the developed approaches can be extended to
the whole microbial world. In a warming context, it becomes crucial to understand and
estimate the evolutionary capacity of this invisible microscopic world, and anticipate its
adaptation capability. Our new results characterizing the short and long term responses
to temperature are expected to challenge biogeochemical models as well as scientific
minds.
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Contributors: Mairet, F. & Bernard, O.

Determining Tmin in the Hinshelwood model

The Hinshelwood model (eq. 3.22) considers that growth rate tends to zero when tem-
perature tends to minus infinity, and it is thus not possible to define an exact minimum
temperature for growth Tmin. We considered that Tmin can also be defined as the tem-
perature at which the growth rate is equal to a small fraction ǫ of the optimal growth
rate:

µ(Tmin) = ǫµopt (10.1)

We assumed that, at Tmin, the function f2(T ) corresponding to thermal deactivation/denaturation
is negligible regarding f1(T ) (see eq. 3.22 and eq. 3.25):

A1e
−E1/(RTmin) ≃ ǫ

E2 − E1

E1
A2e

−E2/(RTopt) (10.2)

and thus:

Tmin ≃
−ToptE1/γ

Topt − E2/γ
(10.3)

where:

γ = Rln

(
E2 − E1

E1

A2

A1
ǫ

)

(10.4)

We arbitrarily fixed ǫ = 0.05.

Autocatalytic view of the Hinshelwood model

The autocatalytic system described in section 6.2.1 is written:

ẋ1 = k1(T )xn − d1(T )x1
ẋ2 = k2(T )x1 − d2(T )x2

...
ẋn = kn(T )xn−1 − dn(T )xn

(10.5)
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During balanced growth, every reactions can be expressed as a function of the growth
rate µ [Hinshelwood, 1952]:

ẋ1 = µx1
ẋ2 = µx2

...
ẋn = µxn

(10.6)

Each reaction i can be written:

ẋi
xi

= ki
xi−1

xi
− di = µ (10.7)

Moreover, because:
n∏

i=1

xi−1

xi
= 1 (10.8)

then:
n∏

i=1

ki =
n∏

i=1

(µ+ di) (10.9)

Considering that di < µ, we can write:

n∏

i=1

ki ≃ µn + µn−1
n∑

i=1

di (10.10)

that is:

µn
∏n

i=1 ki






1 +

n∑

i=1
di

µ







≃ 1 (10.11)

which gives:

µ

(
∏n

i=1 ki)
1/n






1 +

n∑

i=1
di

µ







1/n

≃ 1 (10.12)

By taking the Taylor expansion of the function

(

1 +
n∑

i=1
di/µ

)1/n

in the neighbourhood

of zero we obtain:

µ(1 +
n∑

i=1

di/(nµ)) ≃

(
n∏

i=1

ki

)1/n

(10.13)

Finally:

µ ≃ (
∏n

i=1 ki)
1/n −

1

n

n∑

i=1
di (10.14)
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Abstract

Unicellular photosynthetic organisms forming the phytoplankton are the ba-
sis of primary production. Because these organisms cannot regulate their in-
ner temperature, the medium temperature strongly constrains their growth.
Understanding the impact of this factor is topical in a global change con-
text. In this PhD thesis we have investigated how phytoplankton adapts to
temperature. By analyzing the growth rate as a function of temperature for
hundreds of species we highlighted the characteristics that can be accurately
described by a mathematical model. We have identified the links between the
cardinal temperatures as well as their thermodynamical fundament using the
mechanistic Hinshelwood model. We then challenged the Eppley hypothesis
‘hotter is faster’ for 5 phylogenetic phytoplankton groups and determined the
evolutionary limits for each of them. We have also studied the adaptation
mechanisms associated to long term temperature variations by developing an
evolutionary model using the adaptive dynamics theory allowing to predict
the evolutionary outcome of species adaptation to a simple temperature cy-
cle. Our results have been compared to a selection experiment carried out in
a controlled device on Tisochrysis lutea. Our method has been extended to
predict the adaptation of a strain to periodic temperature profiles and study
phytoplankton adaptation at the global ocean scale. In situ data of sea sur-
face temperature have been used as a forcing variable and have permitted to
show that the elevation of temperature will be critical for several species in
particular for those living in areas where the annual temperature fluctuation
is high such as the Mediterranean sea.



Résumé

Les organismes unicellulaires photosynthétiques formant le phytoplancton
sont la base de la production primaire marine. Ne pouvant pas réguler leur
température, ce facteur physique contraint fortement leur croissance. L’étude
de son impact est d’une actualité brûlante dans un contexte de changement
climatique. Dans cette thèse nous nous sommes efforcés de comprendre
comment le phytoplancton s’acclimate à la température. En analysant la
réponse du taux de croissance à la température de centaines d’espèces, nous
avons mis en évidence les liens existant entre les températures cardinales
ainsi que leurs fondements thermodynamiques grâce au modèle mécaniste
de Hinshelwood. Nous avons testé l’hypothèse de Eppley ‘plus chaud im-
plique plus rapide’ pour 5 groupes phylogénétiques de phytoplancton et défini
leurs limites évolutives intrinsèques. Nous avons examiné les mécanismes
d’adaptation induits à long terme par des variations de température et con-
struit un modèle évolutif en utilisant la théorie de la dynamique adapta-
tive afin de prévoir l’issue évolutive de l’adaptation dune espèce à un cycle
de température simple. Nos résultats ont été confrontés à une expérience
de sélection réalisée en laboratoire sur Tisochrysis lutea. Notre méthode a
été étendue pour prédire l’adaptation d’une souche soumise à un profil de
température périodique et étudier l’adaptation thermique du phytoplanc-
ton à l’échelle de l’océan mondial. Des données in situ de température de
surface de l’océan ont permis de forcer le modèle et de montrer qu’une aug-
mentation de température sera critique pour certains groupes dans les zones
où lamplitude thermique annuelle est grande, comme par exemple la mer
Méditerranée.
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