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THÈSE
présentée à
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POUR OBTENIR LE GRADE DE

DOCTEUR
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STRENG, Marco Docteur Universiteit Leiden Directeur
TOP, Jaap Professeur Rijksuniversiteit Groningen Rapporteur
HESS, Florian Professeur Universität Oldenburg Rapporteur





Contents

Preface viii

List of Notation x

1 Preliminaries 1
1.1 Global class field theory . . . . . . . . . . . . . . . . . . 1
1.2 CM fields and CM types . . . . . . . . . . . . . . . . . . 3
1.3 Abelian varieties . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Polarizations and the dual variety . . . . . . . . . 6
1.3.2 Complex abelian varieties . . . . . . . . . . . . . 9

1.4 Abelian varieties with complex multiplication . . . . . . 10
1.4.1 Construction of abelian varieties with CM . . . . 10

1.5 Polarized simple abelian varieties with CM . . . . . . . . 14
1.5.1 Classes of polarized simple abelian varieties with CM 16
1.5.2 The first main theorem of CM . . . . . . . . . . . 17

2 The CM class number one problem for curves of genus 2 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 The relative class number . . . . . . . . . . . . . . . . . 23
2.3 Non-normal quartic CM fields . . . . . . . . . . . . . . . 26

2.3.1 An effective bound for CM class number one non-
normal quartic fields . . . . . . . . . . . . . . . . 26
2.3.1.1 Almost all ramified primes are inert in F

and F r . . . . . . . . . . . . . . . . . . 29
2.3.2 Enumerating the fields . . . . . . . . . . . . . . . 38

2.4 Cyclic quartic CM fields . . . . . . . . . . . . . . . . . . 43

v



3 The CM class number one problem for curves of genus 3 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Sextic CM fields containing an imaginary quadratic field 51
3.3 Cyclic sextic CM fields . . . . . . . . . . . . . . . . . . . 53
3.4 Non-normal sextic CM fields . . . . . . . . . . . . . . . . 56

4 Simple CM curves of genus 3 over Q 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Polarized CM abelian varieties over Q . . . . . . . . . . 74
4.3 Principally polarized simple CM abelian threefolds . . . 77
4.4 Genus-3 CM curve examples over Q . . . . . . . . . . . . 84

Bibliography 91

Summary 93

Samenvatting 95
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Preface

This thesis has four chapters and is organized as follows.
Chapter 1 is an introduction to abelian varieties and complex multi-

plication theory. It also contains facts from unramified class field theory.
We present facts that we will use in later chapters, including the main
theorem of complex multiplication. The results in this chapter are not
new and most are due to Shimura and Taniyama [40].

Chapter 2 is a joint work with Marco Streng that appeared as The
CM class number one problem for curves of genus 2 [18]. In Sections 2.3
and 2.4, we give a solution to the CM class number one problem for
curves of genus 2 (Theorems 2.3.15 and 2.4.5).

Chapter 3 deals with the CM class number one problem for curves
of genus 3 with a simple Jacobian. We give a partial solution to this
problem. We restrict ourselves to the case where the sextic CM field cor-
responding to such a curve contains an imaginary quadratic subfield. We
give the complete list of such sextic CM fields in Table 3.1 (unconditional)
and Tables 3.3–3.12 (under GRH).

Chapter 4 gives the complete list of sextic CM fields K for which there
exist principally polarized simple abelian threefolds with CM by OK with
rational field of moduli.

vii
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Chapter 1

Preliminaries

ABSTRACT. In this chapter, we give the main ingredients
that we will use in the later chapters. This chapter contains
facts from class field theory, complex multiplication theory
and facts related to abelian varieties.

“All the truths of mathematics
are linked to each other, and
all means of discovering them
are equally admissible.”

Adrien-Marie Legendre

1.1 Global class field theory
In this section, we follow Neukirch [32].

Let K be a number field and OK its ring of integers. We denote
places by p. A cycle or modulus of K is a formal product

m =
∏
p

pn(p),

where p runs over all places of K with n(p) ∈ Z≥0 such that n(p) = 0
for almost all places of K. Here n(p) is 0 or 1 if p is real, and 0 if p is
complex.
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Chapter 1. Preliminaries

Frobenius automorphisms
Let L/K be a Galois extension of number fields and m be a cycle of K
divisible by all ramified primes of L/K. Given P - m lying above a
finite prime p of K, there exists a unique automorphism σP ∈Gal(L/K)
satisfying

σP(x)≡ xq mod P for all x ∈ OL,
where OL is the ring of integers of L and q= |OK/p|. This automorphism
is called the Frobenius automorphism of P and is denoted by

σP =
(
L/K

P

)
.

The Artin map for unramified abelian extensions
Let L/K be an unramified abelian extension of number fields. Let P be
a finite prime of L lying above a prime p of K and let σP =

(
L/K
P

)
be its

Frobenius automorphism. For any element τ ∈Gal(L/K), we have(
L/K

τ(P)

)
= τ

(
L/K

P

)
τ−1 =

(
L/K

P

)
.

Hence the Frobenius automorphisms στP of the primes τP are the
same, hence the Frobenius automorphisms in Gal(L/K) depends only on
p = P∩K, not on P itself. For abelian extensions we use the notation(
L/K
p

)
for

(
L/K
P

)
and call this the Frobenius automorphism of p.

Let IK be the group of fractional ideals of OK , which is the free
abelian group generated by the prime ideals of K.

Then for any a =∏
p p

v(p) ∈ IK with v(p) ∈ Z, we define(
L/K

a

)
=
∏
p

(
L/K

p

)v(p)
.

It is a theorem (Theorem VI.7.1 in Neukirch [32]) that the homomor-
phism

rK/L : IK →Gal(L/K)

a 7→
(
L/K

a

) (1.1.1)

2



1.2. CM fields and CM types

is surjective. This map is called the Artin map for the unramified abelian
extension L/K.

Unramified class fields
A number field extension K ⊂ L is unramified if it is unramified at all
places of K (including the infinite places). When we say that an infinite
place of L is unramified in L/K, we mean that it is not a complex place
lying over a real place of K.

Let PK ⊂ IK be the group of principal ideals of K. The ideal class
group (or class group) ClK of K is the quotient group IK/PK .

Theorem 1.1.1. (Proposition VI.6.9 [32]) Given a number field K, there
is an unramified finite abelian extension HK of K such that the Artin
map (1.1.1) induces an isomorphism

rK : IK/PK
∼→Gal(HK/K).

The field HK in Theorem 1.1.1 is called the Hilbert class field of K.
It is the maximal abelian extension of K that is unramified at all places
of K (see page 399 in Neukirch [32]).

1.2 CM fields and CM types

In this section, we mainly follow Lang [20] and Shimura–Taniyama [40].

Definition 1.2.1. A CM field is a totally imaginary quadratic extension
K of a totally real number field F . In other words, a CM field is a field
K = F (

√
−δ) for a totally real number field F and a totally positive

element δ ∈ F .

Let · : C→ C denote the complex conjugation automorphism of C.
For every CM field K there exists an automorphism ρ such that for every
embedding τ :K→C we have · ◦τ = τ ◦ρ; we call it complex conjugation
and denote it by ρ or ·. Let φ be an embedding of a CM field K into any
field N . Then we denote φ ◦ · by φ. Note that if N is a CM field or C

3



Chapter 1. Preliminaries

then we have · ◦φ = φ because the composite of φ with any embedding
N → C is an embedding K→ C.

Let K be a CM field of degree 2g and N ′ be a number field that
contains a subfield that is isomorphic over Q to a normal closure over Q
of K.

Definition 1.2.2. Let K and N ′ be as above. A CM type of K with
values in N ′ is a set Φ of embeddings φ : K →N ′ such that exactly one
embedding of each of the g complex conjugate pairs φ, φ : K → N ′ is
in Φ. We say that (K,Φ) is a CM pair or CM type.

Let K0 be a proper CM subfield of K. Let ΦK0 be a CM type of
K0 with values in N ′. Then the CM type of K induced by ΦK0 is {φ ∈
Hom(K,N ′) : φ|K0 ∈ ΦK0}.

We say that a CM type Φ of a CM field is primitive if it is not induced
from a CM type of a proper CM subfield. The following proposition is a
criterion for the primitiveness of a CM type.

If γ is an automorphism of K, then we define CM type Φγ as the set
of embeddings φ◦γ for φ ∈ Φ, and if γ is an automorphism of N ′, then
we define CM type γΦ as the set of embeddings γ ◦φ for φ ∈ Φ.

Proposition 1.2.3. (Shimura–Taniyama [40, Propostion 26]) Let K be
a CM field and let N be a normal closure over Q of K. Then N is a CM
field. Let N ′ be as above.

Let Φ be a CM type of K with values in N ′ and let ΦN be the CM
type of N with values in N ′ induced from Φ. Then (K,Φ) is primitive if
and only if

Gal(N/K) = {γ ∈Gal(N/Q) : ΦNγ = ΦN}.

Corollary 1.2.4. With the notation in Proposition 1.2.3, suppose that K
is normal over Q. Then (K,Φ) is primitive if and only if there is no non-
trivial element γ ∈Gal(K/Q) satisfying Φγ = Φ.

We say that CM types Φ1 and Φ2 of K are equivalent if there is an
automorphism σ of K such that Φ1 = Φ2σ holds.

Let K be a CM field of degree 2g and N ′ be a number field that
contains a subfield that is isomorphic over Q to a normal closure over Q

4



1.2. CM fields and CM types

of K. We make N ′ smaller and from now on we assume N ∼= N ′. Let Φ
be a CM type of K with values in N ′ and let ΦN be the CM type of N
with values in N ′ induced from Φ. Here ΦN is a set of isomorphisms
φ :N →N ′, so we can take the inverses φ−1 :N ′→N . Let Φ−1

N = {φ−1 :
φ ∈ ΦN}. Then the subfield Kr of N ′ corresponding to the subgroup
{γ : γ ∈ Gal(N ′/Q), Φ−1

N γ = Φ−1
N } is a CM field with the primitive CM

type Φr = Φ−1
N |Kr . Moreover, we have

Kr = Q({
∑
φ∈Φ

φ(x) | x ∈K})⊂N ′.

For details, see Shimura–Taniyama [40, Proposition 28].
The field Kr is called the reflex field of (K,Φ) and Φr is called the

reflex type of (K,Φ). The pair (Kr,Φr) is called the reflex of (K,Φ).

Lemma 1.2.5. Let K be a CM field and let Φ be a CM type of K. Then
the reflex field Krr of (Kr,Φr) is a subfield of K with the primitive CM
type Φrr. If Φ is primitive, then Krr =K and Φrr = Φ.

Proof. This follows from the definition of the reflex field and Proposi-
tion 1.2.3.

The type norm of a CM pair (K,Φ) is the multiplicative map

NΦ :K→Kr,

x 7→
∏
φ∈Φ

φ(x).

Proposition 1.2.6. (Shimura–Taniyama [40, Proposition 29]) Let K be
a CM field and let Φ be a CM type of K with values in N ′. Let a ∈ IK
and x ∈K. Then there is an ideal NΦ(a) of Kr such that NΦ(a)ON ′ =∏
φ∈Φφ(a)ON ′ and we have

NΦ(a)NΦ(a) = NK/Q(a)OKr ,

NΦ(x)NΦ(x) = NK/Q(x) ∈Q.

5



Chapter 1. Preliminaries

1.3 Abelian varieties
In this chapter, we refer to Lang [20] and Shimura–Taniyama [40].

Let k be a field. In this thesis, we will use the following definitions.
By a variety over k, we mean a geometrically integral, separated scheme
of finite type over Spec(k). Curves, respectively surfaces, respectively
threefolds are varieties are of dimension 1, respectively 2, respectively 3.
We will always assume that curves, surfaces and threefolds are projective,
smooth over k.

By an abelian variety over k, we mean a complete irreducible group
variety over k. It is known that abelian varieties are smooth, projective,
and commutative. Let A and B be abelian varieties over k. A morphism
λ of A to B is a morphism of varieties that respects the group structure.
If A and B are of the same dimension and λ is surjective, then it is called
an isogeny. If an isogeny λ : A→ B exists, then A and B are called
isogenous. A non-zero abelian variety is said to be simple if it is not
isogenous to a product of abelian varieties of lower dimensions.

We denote by End(A) the ring of homomorphisms of A to itself over k
and we put End0(A) = End(A)⊗Q.

1.3.1 Polarizations and the dual variety
This section basically follows Lang [20, 3.4].

By a divisor on a variety, we always mean a Cartier divisor. We say
that two divisors X1 and X2 on an abelian variety A over a field k are
algebraically equivalent (X1 ∼X2) if there is a connected algebraic set T ,
two points t1, t2 ∈ T and a divisor Z on A×T such that Z|ti = Xi for
i = 1, 2. The divisors X1 and X2 are linearly equivalent if there is a
rational function f ∈ k(A)× such that X1 = X2 + (f). For details, see
Hartshorne [15].

Let Da(A) and Dl(A) respectively be the group of divisors on A over k
that are algebraically equivalent to 0 and the group of divisors on A over
k that are linearly equivalent to 0. There exists an abelian variety A∗,
that is called the dual variety of A, whose group of k-points is canonically
isomorphic to Pic0(A) :=Da(A)/Dl(A). Let X be an ample divisor over
k on an abelian variety A and let [X] denote the linear equivalence class

6



1.3. Abelian varieties

of X. Let Xa be the translation of X by an element a ∈ A. Then the
map

ϕX : A→ Pic0(A)
a 7→ [Xa−X],

(1.3.1)

induces an isogeny ϕX : A→ A∗.

Proposition 1.3.1. (Serre [37]) Two divisors X1 and X2 are alge-
braically equivalent if and only if ϕX1 = ϕX2.

Definition 1.3.2. An isogeny ϕ : A→ A∗ induced by (1.3.1) is called
a polarization of A. It is said to be a principal polarization if ϕ is an
isomorphism.

We understand by a polarized abelian variety a pair (A,ϕ) formed by
an abelian variety A and a polarization ϕ of A. We say that a polarized
abelian variety (A,ϕ) is defined over a field k if A and ϕ are defined over
k.

Every polarization ϕ on A induces an involution as follows. Each
endomorphism λ ∈ End0(A) has a dual

λ∗ : A∗→ A∗ : [Y ] 7→ [λ−1(Y )] (1.3.2)

and for every λ ∈ End0(A), we define

λ′ = ϕ−1λ∗ϕ ∈ End0(A).

The map sending λ to λ′ is an involution of A and called the Rosati
involution determined by ϕ.

Let (A1,ϕ1) and (A2,ϕ2) be two polarized abelian varieties of the
same dimension. A homomorphism λ of A1 to A2 is called a homomor-
phism of (A1,ϕ1) to (A2,ϕ2) if the following diagram

A1 A2

A∗1 A∗2

λ

ϕ1 ϕ2

commutes.

7



Chapter 1. Preliminaries

Proposition 1.3.3. (Shimura–Taniyama [40, Theorem 2 and Proposi-
tion 14]) Let (A,ϕ) be a polarized abelian variety over a characteristic 0
field k. Then there exists a field k0 ⊂ k with the following property: For
all σ : k→ k, it holds that (A,ϕ) and (σA,σϕ) are isomorphic over k if
and only if σ is the identity map on k0.

Definition 1.3.4. The field k0 in Proposition 1.3.3 is called the the field
of moduli of (A,ϕ).

Jacobian of curves

The Jacobian J(C) of a curve C/k of genus g is a certain principally
polarized abelian variety of dimension g such that we have J(C)(k) =
Pic0(Ck); for details we refer to [29].

Theorem 1.3.5. (Torelli) Two algebraic curves over C are isomorphic if
and only if their Jacobians are isomorphic as polarized abelian varieties.

Proof. This is Theorem 11.1.7 of Birkenhake–Lange [6].

Theorem 1.3.6.

(i) (Weil) Every principally polarized abelian surface over C is either
a product of elliptic curves with the product polarization or the Ja-
cobian of a smooth projective curve of genus 2.

(ii) (Matsusaka–Ran) Every principally polarized abelian threefold over
C is either the Jacobian of a smooth curve of genus 3 or a prin-
cipally polarized product of a principally polarized abelian surface
with an elliptic curve or of three elliptic curves.

Proof. The assertion (i) is Satz 2 of Weil [47]. The assertions (i) and
(ii) are consequences of the Matsusaka–Ran criterion in [28, 35], also see
Corollary 11.8.2 in Birkenhake–Lange [6].

8



1.3. Abelian varieties

1.3.2 Complex abelian varieties

A lattice in Cg is a discrete subgroup of maximal rank in Cg. It is a free
abelian group of rank 2g. The quotient Cg/Λ is called a complex torus.
A Riemann form on Cg is a skew symmetric R-bilinear map E such that
the form Cg×Cg→ C : (x,y) 7→ E(x,iy) is positive definite symmetric.

If A is a g-dimensional abelian variety over C, then there is a complex
torus Cg/Λ that is isomorphic (as a complex Lie group) to A via an ana-
lytic isomorphism ι : Cg/Λ→A. Following Lang [20, 3.4] we describe the
notion of polarization in the complex analytic setting as follows. Let X
be an ample divisor on an abelian variety A over C and let ϕX be a
polarization on A. Then ι−1(X) is an analytic divisor of Cg/Λ, and its
pull back to Cg is defined by a theta function fX . There is a Riemann
form EX associated to fX . It is obtained from the functional equation
of fX , see Lang [20, page 68]. We say that EX is associated to X via ι.
Two divisors are algebraically equivalent if and only if the associated
Riemann forms are the same.

Let X be an ample divisor on an abelian variety A and E be the
Riemann form associated to X via ι : Cg/Λ→ A. We can consider Cg
as the dual vector space of itself over R with respect to the Riemann
form E that is, we identify y ∈ Cg with E(·,y). Let us denote by Λ∗
the set of all vectors of x ∈ Cg such that E(x,y) ∈ Z for every y ∈ Λ.
Then Λ∗ is a discrete group in Cg and Cg/Λ∗ is a complex torus, which
we call the dual of the complex torus Cg/Λ. Then there is an analytic
isomorphism ι∗ :Cg/Λ∗→A∗ making the following diagram commutative

Cg/Λ A

Cg/Λ∗ A∗

ι

λ : x 7→ x ϕX

ι∗

.

9



Chapter 1. Preliminaries

1.4 Abelian varieties with complex
multiplication

This section is a summary of Birkenhake–Lange [6, 13.3] and Lang [20,
1.4].

We say that an abelian variety A over a field k of dimension g has
complex multiplication (CM) by a CM field K if K has degree 2g and
there is an embedding θ : K ↪→ End(A)⊗Q. We say that A has CM by
an order O ⊂K if there is an embedding θ :K ↪→ End(A)⊗Q such that
θ−1(End(A)) =O.

The tangent space Tgt0(A) of A at the unit point 0 of A is a vector
space over k of dimension g.

Let A be an abelian variety over C with CM by K via the embedding
θ : K ↪→ End(A)⊗Q. Then there exists a unique set Φ of embeddings
K → C such that the representation of K on EndC(Tgt0(A)) via θ is
equivalent to ⊕φ∈Φφ, see Shimura–Taniyama [40, §5.2]. We call Φ the
CM type of K. The CM type Φ is uniquely determined by (A,θ). We say
that (A,θ) is an abelian variety of type (K,Φ). Furthermore, if θ(OK)⊂
End(A) holds, then we say that (A,θ) is an abelian variety of type (K,Φ)
with CM by OK .

We say that (A,θ) is defined over a field k if A is defined over k and
every element of θ(OK)⊂ End(A) is defined over k.

Theorem 1.4.1 (Shimura, §8.2). Let K be a CM field and let Φ be a
CM type of K. An abelian variety (A,θ) of type (K,Φ) is simple if and
only if Φ is primitive.

1.4.1 Construction of abelian varieties with CM
By a lattice in an algebraic number field K of finite degree over Q, we
mean a finitely generated Z-submodule of K that spans K over Q.

Let K be a CM field of degree 2g. To every CM type Φ of K and
Z-lattice m of K, we associate an abelian variety AΦ,m as follows. The
tensor product K⊗QR is an R-vector space of dimension 2g. The CM
type Φ = {φ1, . . . ,φg} induces a C-algebra structure on K⊗QR via the
R-algebra isomorphism

10



1.4. Abelian varieties with CM

Φ̃ :K⊗QR→ Cg

α⊗a 7→ t(aφ1(α), . . . ,aφg(α)).

By Φ̃(m), we mean the group of all elements Φ̃(α) with α ∈m. Then
Φ̃(m) is a lattice in Cg and Cg/Φ̃(m) is a complex torus. Hence the quo-
tient AΦ,m := (K⊗QR)/m is isomorphic to the complex torus Cg/Φ̃(m).

Proposition 1.4.2. (Birkenhake–Lange [6, Proposition 13.3.1] and Lang
[20, Theorem 1.4.1-(iii)]) With the notation above, the complex torus
AΦ,m is an abelian variety and has a natural CM structure given by the
action of OK on m.

In this thesis, we use the complex torus Cg/Φ̃(m) instead of AΦ,m as
a realization of an abelian variety over C conforming to the notation of
Lang [20] and Shimura–Taniyama [40].

For each α ∈K, we let SΦ(α) be the matrix diag(φ1(α), . . . ,φg(α)).

Theorem 1.4.3. (Lang [20, Theorem 1.4.1-(ii)]) Let (K,Φ) be a CM
pair and let (A,θ) be an abelian variety of type (K,Φ) with CM by OK .
Then there is a fractional ideal m ∈ IK and an analytic isomorphism
ι : Cg/Φ̃(m)→ A(C) such that the diagram

Cg/Φ̃(m) A(C)

Cg/Φ̃(m) A(C)

SΦ(α) θ(α)

commutes for all α ∈ OK .

Definition 1.4.4. We say that an abelian variety (A,θ) of type (K,Φ)
is of type (K,Φ,m) if there is a fractional ideal m ∈ IK and an analytic
isomorphism ι : Cg/Φ̃(m)→ A(C).

Definition 1.4.5. Let (A,θ) be an abelian variety of type (K,Φ) and
let X be an ample divisor on A. We say that (A,θ) is Φ-admissible
with respect to the polarization ϕX if θ(K) is stable under the Rosati
involution.

11
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Theorem 1.4.6. (Lang [20, Theorem 1.4.5-(iii)] If an abelian variety
(A,θ) of type (K,Φ,m) is simple, then it is Φ-admissible with respect to
every polarization.

Definition 1.4.7. Let (A1, θ1) and (A2, θ2) be abelian varieties of type
(K,Φ) with CM by OK . A homomorphism λ from A1 to A2 is called a
homomorphism from (A1, θ1) to (A2, θ2) if it satisfies

λθ1(α) = θ2(α)λ

for every α ∈ OK .

Proposition 1.4.8. (Shimura–Taniyama [40, Proposition 1 in §14]) Let
(K,Φ) be a primitive CM type. Let (A1, θ1) and (A2, θ2) be abelian va-
rieties over k ⊂ C of type (K,Φ). Then every homomorphism from A1
into A2 over k is a homomorphism from (A1, θ1) to (A2, θ2) over k.

Let (A,θ) be a g-dimensional abelian variety of CM type (K,Φ). Let
a be a Z-lattice in K. Let (α1, . . . ,α2g) be a basis of a over Z. We obtain
a homomorphism

λa : A→ A2g

such that x 7→ (α1x, . . . ,α2gx) for all x∈A. If a 6= 0, then λa is an isogeny
to its image λa(A) (see page 56 in Lang [20]).

A homomorphism λ of (A1, θ1) onto (A2, θ2) is called an a-multiplica-
tion if there is a commutative diagram

(A1, θ1) (λa(A1),λaθ1)

(A2, θ2)

λa

λ ∼=

of homomorphisms as in Definition 1.4.7.
An a-multiplication is uniquely determined up to an isomorphism, for

the details, see Lang [20, 3.2] and Shimura–Taniyama [40, 7.1].
Let (A1, θ1) and (A2, θ2) be g-dimensional abelian varieties over C of

a primitive CM type (K,Φ), analytically represented by Cg/Φ̃(m1) and

12
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Cg/Φ̃(m2) respectively. If a non-zero γ ∈K is such that γm1 ⊂m2, then
there exists a homomorphism γθ1,θ2 such that the following diagram

Cg/Φ̃(m1) A1

Cg/Φ̃(m2) A2

SΦ(γ) γθ1,θ2

is commutative with SΦ(γ) as on page 11. Observe that γθ1,θ2 gives an
isogeny of (A1, θ1) onto (A2, θ2).

Proposition 1.4.9. (Lang [20, Proposition 3.2.6], Shimura–Taniyama
[40, Proposition 15 in 7.4]) Let K be a CM field and let Φ be a primitive
CM type of K. Let (A1, θ1) and (A2, θ2) be abelian varieties over C
of types (K,Φ,m1) and (K,Φ,m2) respectively (see Definition 1.4.4). If
γ 6= 0 is an element of m−1

1 m2, then γθ1,θ2 is a γm−1
2 m1-multiplication of

(A1, θ1) onto (A2, θ2). Every isogeny of (A1, θ1) onto (A2, θ2) is equal to
γθ1,θ2 for some such γ.

Corollary 1.4.10. Any two abelian varieties of the same primitive CM
type (K,Φ) are isogenous to each other.

Proposition 1.4.11. Let (K,Φ) be a primitive CM pair and let (A1, θ1)
and (A2, θ2) be g-dimensional abelian varieties over C of types (K,Φ,m1)
and (K,Φ,m2) respectively (see Definition 1.4.4). Let [mi] denote the
class of mi in the class group ClK . Then (A1, θ1) and (A2, θ2) are iso-
morphic if and only if [m1] = [m2].

Proof. Suppose that λ is an isomorphism of (A1, θ1) onto (A2, θ2). By
Proposition 1.4.9 there is a non-zero γ ∈ m−1

1 m2 such that S(γ) gives
an isomorphism between Cg/Φ̃(m1) and Cg/Φ̃(m2). Therefore we get
S(γ)Φ̃(m1) = Φ̃(m2) and hence γm1 = m2, so we have [m1] = [m2].

Conversely, if [m1] = [m2] then there is a non-zero α ∈ OK such that
αm1 = m2. Therefore, the map S(α) gives an isomorphism between
Cg/Φ̃(m1) and Cg/Φ̃(m2). Hence by Proposition 1.4.8, the map S(α)
induces an isomorphism between (A1, θ1) and (A2, θ2).

13
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Proposition 1.4.12. (Shimura–Taniyama [40, Proposition 30 in 8.5])
Let A be a simple abelian variety over a field k ⊂ C with CM by K via
θ :K ↪→End0(A) of CM type Φ. Then θ is over k if and only if the reflex
field Kr of (K,Φ) is contained in k.

Proposition 1.4.13. (Shimura [39, (5.5.17) and Proposition 5.14]) Let
(K,Φ) be a primitive CM pair and let (A,θ) be an abelian variety over
C and of type (K,Φ). If an automorphism σ of C is the identity map on
the reflex field Kr, then (σA,σθ) is of type (K,Φ).

1.5 Polarized simple abelian varieties with
complex multiplication

Let K be a CM field and let Φ be a primitive CM type of K. Let (A,θ) be
an abelian variety of type (K,Φ,m) with CM by OK . Let X be an ample
divisor on A and E(u,w) be the Riemann form on Cg/Φ̃(m) associated
to X. Then there is an element t ∈ K× (see Shimura–Taniyama [40,
Theorem 4 in §6.2] and use Theorem 1.4.6) such that

E(Φ̃(x), Φ̃(y)) = trK/Q(txy) (1.5.1)

for every (x,y) ∈K×K, and the element t satisfies

t=−t, Im(φ(t))> 0 for all φ ∈ Φ. (1.5.2)

Since we obtained t from an ample divisor, by (1.3) in Shimura [38],
we have

trK/Q(tmm) = Z. (1.5.3)
Let ϕ be the polarization corresponding to X. Then we say that the
polarized abelian variety P := (A,θ,ϕ) is of type (K,Φ, t,m).

Let A∗ be the dual variety of A (recall the definition of A∗ from
Section 1.3.1). For every α ∈K, put

θ∗(α) = θ(α)∗,

where θ(α)∗ is the transpose homomorphism of θ(α). In [40, 3.3 & 6.3],
Shimura shows that θ∗ is an isomorphism of K into End0(A∗) and (A∗, θ∗)
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is of type (K,Φ), and (A∗, θ∗) is analytically represented by the complex
torus Cg/Φ̃(m∗), where

m∗ = {β ∈K | trK/Q(βm)⊂ Z}. (1.5.4)

Proposition 1.5.1. Let (A1, θ1) and (A2, θ2) be abelian varieties of prim-
itive CM type (K,Φ). If an isogeny λ from (A1, θ1) onto (A2, θ2) is an a-
multiplication, then λ∗ from (A∗1, θ∗1) onto (A∗2, θ∗2) is an a-multiplication.

Proof. It is Proposition 6 in Shimura–Taniyama [40, 14.4].

Let DK/Q be the different (the inverse of the dual of OK relative to
the trace form on K/Q) of K.

Proposition 1.5.2. Let P = (A,θ,ϕ) be a polarized abelian variety of
type (K,Φ, t,m). Then the isogeny ϕ :A→A∗ is a tDK/Qmm-multiplica-
tion.

Moreover, if P is principally polarized, then tDK/Qmm =OK .

Proof. By the definition of m∗ (1.5.4), we have

m∗ = (DK/Qm)−1.

Then by (1.3.1), the isogeny ϕ : A→ A∗ is represented by the matrix
SΦ(t). Hence by Proposition 1.4.9, the polarization ϕ is a tDK/Qmm-
multiplication from (A,θ) onto (A∗, θ∗) (also see Shimura–Taniyama [40,
14.3]).

Moreover, the kernel of SΦ(t) is Φ̃(t−1m∗)/Φ̃(m), which is isomorphic
to t−1m∗/m. Hence we have ker(ϕ) = (tDK/Qm)−1/m. This implies that
if P is principally polarized, that is ker(ϕ) = 1, then we have tDK/Qmm=
OK .

Put f := tDK/Qmm. We now show that there is an OF -ideal f0 such
that f = f0OK . By definition, we have DK/Q = DK/FDF/Q and moreover
the ideal DK/F is generated by the elements (α−α) for α ∈ OK . Since
t = −t, we have t(α−α) ∈ F for every α ∈ OK . Hence there is an OF -
ideal f1 such that tDK/F = f1OK . On the other hand, the ideal DF/Qmm
is an OF -ideal. So if we put f0 = f1DF/Qmm, then we get f = f0OF .

Remark that by definition, the ideal f is determined by P = (A,θ,ϕ).
Set f(P ) := f. We say that P is of type (K,Φ, f(P )).
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Proposition 1.5.3. (Shimura–Taniyama [40, Proposition 2 in 14.2])
Let (A,θ) be an abelian variety over C of type (K,Φ,m). Let F be the
maximal totally real subfield of K. Let X1 and X2 be two ample divisors
on A, and let E1, E2 be the Riemann forms on Cg/Φ̃(m) associated to
X1, X2 respectively. Let ti be the element of K× satisfying (1.5.2) for
the form Ei. Then t−1

1 t2 is a totally positive element in F and we have

ϕ−1
X1
ϕX2 = θ(t−1

1 t2) ∈ End(A)⊗Q.

Proposition 1.5.4. (Shimura–Taniyama [40, Proposition 3 in 14.2]) Let
the notation be as in Proposition 1.5.3. The polarized abelian varieties
(A,ϕX1) and (A,ϕX2) are isomorphic if and only if there exist ε ∈ O×K
such that t−1

1 t2 = εε.

1.5.1 Classes of polarized simple abelian varieties
with CM

For a given polarized simple abelian variety P = (A,θ,ϕ) over C of prim-
itive CM type (K,Φ) we can find a Z-lattice m in K such that A is iso-
morphic to Cg/Φ̃(m). There exists t ∈K× satisfying (1.5.1) and (1.5.2)
such that P = (A,θ,ϕ) is of type (K,Φ, t,m). We say that P is of type
(t,m) if (K,Φ) is fixed. Put f(P ) := tDK/Qmm. We call (t,m) and (t′,m′)
equivalent if the following holds

t= bbt′ and mb= m′ with b ∈K×.

For given (t,m) satisfying (1.5.2) and (1.5.3), there is a polarized
simple abelian variety P = (A,θ,ϕ) of type (K,Φ, t,m), which is unique
up to isomorphism (see page 67 in Shimura [38]).

We denote the group of totally positive elements in F by F�0. Set

CK := (F�0× IK)/{(xx,xOK) : x ∈K×}.

We define the multiplication of two classes [(ξ1,c1)] and [(ξ2,c2)] in CK
by

[(ξ1,c1)][(ξ2,c2)] = [(ξ1ξ2,c1c2)].
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This set becomes a group with the identity element [(1,OK)]. It is clear
that the group CK is abelian.

Let Pi = (Ai, θi,ϕi) be of type (K,Φ, ti,mi) for i ∈ {1, 2}. By (1.5.2),
we have t−1

1 t2 ∈ F�0, hence we get an element [(t−1
1 t2,m1m

−1
2 )] in CK .

We define
(P2 : P1) := [(t−1

1 t2,m1m
−1
2 )] = [(ξ,c)] ∈ CK . (1.5.5)

Then by the definition of f(Pi), we have

f(P1)f(P2)−1 = ξ−1NK/F (c). (1.5.6)

Proposition 1.5.5. (Shimura–Taniyama [40, Proposition 10 in 14.7])
We have (P2 : P1) = [(1,OK)] if and only if P2 is isomorphic to P1.

1.5.2 The first main theorem of CM
Theorem 1.5.6 (The first main theorem of complex multiplication, [40,
Main Theorem 1]). Let (K,Φ) be a primitive CM type with [K : Q] = 2g
and let (Kr,Φr) be its reflex. Let P = (A,θ,ϕ) be a polarized simple
abelian variety of type (K,Φ) with CM by OK . Let M be the field of
moduli of (A,ϕ). Then Kr ·M is the unramified class field over Kr

corresponding to the ideal group

I0(Φr) := {b ∈ IKr : NΦr(b) = (α), αα ∈Q for some α ∈K×}.

We give a part of the proof because we will use ideas from this in
Chapter 4.

Proof. Let P = (A,θ,ϕ) be of type (K,Φ, t,m) with CM by OK . Put
f(P ) = tDK/Qmm. Let (A,θ,ϕ) be defined over an algebraic number field
of finite degree k such that k is normal over Kr. Since there are only
finitely many σA up to C-isomorphism of A over Kr, such a field k exists
and the field of moduli M of (A,ϕ) is contained in k.

Let σ ∈ Gal(k/Kr). Then by Proposition 1.4.13 the abelian variety
(σA,σθ) is of type (K,Φ) and hence by Corollary 1.4.10, the abelian vari-
ety (A,θ) is isogenous to (σA,σθ). Let X be the ample divisor satisfying
ϕ= ϕX . By Proposition 1.5.2, the isogeny ϕX is an f(P )-multiplication.

17



Chapter 1. Preliminaries

Let m′ ∈ IK and t′ ∈K such that σP is of type (K,Φ, t′,m′). The dual
of (σA,σθ) is (σA∗,σθ∗) and ϕ(σX) = σϕX is an f(P )-multiplication, see
page 124 Shimura–Taniyama [40]. So we have f(σP ) = f(P ) hence by
(1.5.6), we get

NK/F (m′−1m) = t−1t′.

This concludes (σP : P ) = (NK/F (m′−1m),m′−1m) ∈ CK .
On the other hand, for every σ1,σ2 ∈Gal(k/Kr), we have

(σ2σ1P : P ) = (σ1P : P )(σ2P : P )

and the map

ψ : Gal(k/Kr)→ CK

σ 7→ (σP : P ),

gives a surjective homomorphism see §15.2 in Shimura–Taniyama [40].
By Proposition 1.5.5, we have σ ∈ ker(ψ) if and only if σP and P are

isomorphic. Moreover, by the definition of M and by Proposition 1.4.8,
it holds that σP and P are isomorphic if and only if σ fixes the field M .
Therefore, we have ker(ψ) = Gal(k/MKr) and hence the image of ψ in
CK is isomorphic to Gal(MKr/Kr). Since CK is abelian, the image of
ψ in CK is abelian and so the extension MKr/Kr is abelian.

It remains to show that MKr is unramified over Kr corresponding to
the subgroup I0(Φr). For this, we refer to page 127 in Shimura–Taniyama
[40, §15].

We say that a curve C has CM by an order of a CM field K if the
endomorphism ring of its Jacobian J(C) is an order in K. Moreover,
we say that a curve C is of type (K,Φ), if its Jacobian J(C) is of type
(K,Φ).

Corollary 1.5.7. If a curve C is of primitive type (K,Φ) with CM by OK
and defined over Kr, then the CM class group IKr/I0(Φr) is trivial.

Definition 1.5.8. Let the notation be as in the preceding theorem. The
quotient IKr/I0(Φr) is called the CM class group of (K,Φ). We say that
the CM field K has CM class number one if there exists a primitive CM
type Φ such that (K,Φ) satisfies I0(Φr) = IKr .
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Definition 1.5.9.

• The CM class number one problem for CM fields of degree 2g is
the problem of finding all CM class number one pairs (K,Φ) of
degree 2g.

• The CM class number one problem for curves of genus g is the
problem of finding all curves of genus g that have a simple Jacobian
with CM by the maximal order of a CM class number one field of
degree 2g.

We skip the second and the third main theorems of complex multi-
plication as we do not need them.
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Chapter 2

The CM class number one
problem for curves of genus 2

ABSTRACT. In this chapter, we list all quartic CM fields
that correspond to CM curves of genus 2 defined over the
reflex field. This chapter is an adaptation of a joint work
with Marco Streng that appears as The CM class number one
problem for curves of genus 2 [18]. The facts in Section 2.2
are presented only for quartic CM fields in the paper [18] and
are presented in a more general form in this thesis so that
they can be used in Chapter 3.

2.1 Introduction

Let K be a non-biquadratic quartic (i.e., Gal(K/Q) 6∼= C2×C2) CM
field and Φ be a primitive CM type of K. Let C be a curve of genus 2 with
simple Jacobian J(C) of type (K,Φ) with CM by OK . Let (Kr,Φr) be
the reflex of (K,Φ) and let NΦr be the type norm of (Kr,Φr) as defined
in (1.2.1). Recall

I0(Φr) := {b ∈ IKr : NΦr(b) = (α), αα ∈Q for some α ∈K×}.

Theorem 1.5.6 implies that if C is defined over the reflex field Kr, then
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the CM class group IKr/I0(Φr) is trivial. Murabayashi and Umegaki [31]
listed all quartic CM fields K corresponding to the rational abelian sur-
faces with CM by OK . This list contains only cyclic quartic CM fields,
but not the generic dihedral quartic CM fields because curves cannot be
defined over Q in the dihedral case. The reason for this is that in the
dihedral case the reflex field Kr is not normal over Q (see Figure 2.1)
and hence the curve C is not defined over Q by Proposition 5.17 in
Shimura [39] (see also Proposition 4.2.1 in Chapter 4). In this chapter,
we give the complete list of CM class number one non-biquadratic quartic
fields, thereby solving the CM class number one problem for curves of
genus 2 and showing the list in Bouyer–Streng [9] is complete.

In the genus-2 case, the quartic CM field K is either cyclic Galois,
biquadratic Galois, or non-Galois with Galois group D4 (Shimura [40,
Example 8.4(2)]). We restrict ourselves to CM curves with a simple Ja-
cobian, which therefore have primitive CM types by Theorem 1.4.1. The
corresponding CM fields of such curves are not biquadratic, by Exam-
ple 8.4-(2) in Shimura [40]

Theorem 2.1.1. There exist exactly 63 isomorphism classes of non-
normal quartic CM fields with CM class number one. The fields are
listed in Theorem 2.3.15.

Theorem 2.1.2. There exist exactly 20 isomorphism classes of cyclic
quartic CM fields with CM class number one. The fields are listed in
Theorem 2.4.5.

Remark that the list in Theorem 2.4.5 contains the list in [31].

Corollary 2.1.3. There are exactly 125 curves of genus 2, up to iso-
morphism over Q, defined over the reflex field with CM by OK for some
non-biquadratic quartic CM field K. The fields are the fields in Theorems
2.1.1 and 2.1.2, and the curves are those of Bouyer–Streng [9, Tables 1a,
1b, 2b, and 2c].

Proof. This follows from the list given by Bouyer–Streng in [9] and
Theorems 2.1.1–2.1.2.

Corollary 2.1.4. There are exactly 21 simple CM curves of genus 2
defined over Q, up to isomorphism over Q. The fields and 19 of the
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curves are given in van Wamelen [45]. The other two curves are y2 =
x6−4x5 +10x3−6x−1 and y2 = 4x5 +40x4−40x3 +20x2 +20x+3 given
in Theorem 14 of Bisson–Streng [7].

Proof. The 19 curves given in [9] are the curves of genus 2 defined over Q
with CM by OK , see [31] or Corollary 2.1.3. In [7], Bisson–Streng prove
that there are only 2 curves of genus 2 defined over Q with CM by a non-
maximal order inside one of the fields of Theorem 2.4.5. Theorem 2.1.2
and Proposition 5.17 in Shimura [39] (see also Proposition 4.2.1 in Chap-
ter 4) finish the proof.

Corollary 2.1.5. There are only finitely many simple CM curves of
genus 2 defined over the reflex field. The corresponding CM fields are
those of Theorems 2.1.1–2.1.2, the complete list of orders can be com-
puted using the methods of [7] and the curves using the methods of [9].

In Section 2.2, we present general facts about CM fields that we
need in this chapter and Chapter 3. Then in Section 2.3, we prove
Theorem 2.1.1. The strategy is as follows. We first show that there are
only finitely many non-biquadratic quartic CM fields with CM class num-
ber one by bounding their absolute discriminant. The bound will be too
large for practical purposes, but by using ramification theory and L-
functions, we improve the bound which we then use to enumerate the
CM fields. Section 2.4 proves Theorem 2.1.2 using the same strategy as
in Section 2.3.

2.2 The relative class number
Let K be a CM field with the maximal totally real subfield F of degree g
and h∗K := hK/hF . In this section, we will present the sufficient condi-
tions for CM class number one fields to satisfy h∗K = 2tK−1, where tK is
the number of primes in F that are ramified in K.

Recall that IK is the group of fractional ideals in K and PK is the
group of principal fractional ideals in K.

Lemma 2.2.1. Let K be a CM field and let F be the maximal totally real
subfield of K. Let H denote the group Gal(K/F ). Put IHK = {b∈ IK | b=
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b} and PHK = PK ∩ IHK . Then we have h∗K = 2tK [IK :IH
KPK ]

[PH
K :PF ] , where tK is

the number of primes in F that are ramified in K.

Proof. We have the exact sequence

1→ IF → IHK →
⊕

p prime of F
Z/eK/F (p)Z→ 1 (2.2.1)

and ⊕
p prime of F

Z/eK/F (p)Z ∼= (Z/2Z)tK .

The map ϕ : IHK → IK/PK induces an isomorphism

IHK /P
H
K
∼= im(ϕ) = IHKPK/PK

so by (2.2.1), we have

hF = [IF : PF ] = [IHK : PHK ][PHK : PF ]
[IHK : IF ]

= 2−tK [IHKPK : PK ][PHK : PF ],

hence
h∗K := hK

hF
= 2tK [IK : IHKPK ]

[PHK : PF ]
.

Lemma 2.2.2. Let K be a CM field with the maximal totally real sub-
field F . Let WK be the group of roots of unity of K. If the Hasse
unit index QK := [O×K : WKO×F ] is 1, then we have [PHK : PF ] = 2 and
h∗K = 2tK−1[IK : IHKPK ].

Proof. Define ϕ : O×K → O
×
K by ϕ(ε) = ε/ε. Then by the assumption

O×K =WKO×F , we have ϕ(ε) = ζ/ζ = ζ2, where ε= ζε0 with ζ ∈WK and
ε0 ∈ O×F . Hence Imϕ=W 2

K .
There is a surjective group homomorphism λ : PHK→WK/W

2
K given

by λ((α)) = α/α. The map λ is well-defined because every generator of
(α) equals u ·α for some u ∈O×K and u/u ∈W 2

K . It now suffices to prove
that the kernel is PF . Suppose α ∈ F×. Then λ((α)) = α/α = 1, hence
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(α) ∈ ker(λ). Conversely, suppose λ((α)) ∈W 2
K . Then we have α ∈ F×,

hence (α) ∈ PF . It follows that ker(λ) = PF .
The latter equality follows from Lemma 2.2.1 and the fact [PHK :PF ] =

2.

Recall

I0(Φr) := {b ∈ IKr : NΦr(b) = (α), NKr/Q(b) = αα for some α ∈K×}.

Lemma 2.2.3. Let (K,Φ) be a primitive CM pair. If for every a ∈ IK ,
we have

NΦrNΦ(a) = (α)aa−1 and αα ∈Q, (2.2.2)
where α ∈K×, then we have [IK : IHKPK ]≤ [IKr : I0(Φr)].

Proof. To prove the assertion, we show that the kernel of the map
NΦ : IK → IKr/I0(Φr) is contained in IHKPK . Suppose NΦ(a) ∈ I0(Φr).
Then by (2.2.2), we have (α)aa−1 = (λ), where λ∈K× and λλ= αα∈Q.
Then aa−1 = (δ) with δ = λ/α, and hence δδ = 1. There is a γ ∈K× such
that δ = γ

γ (this is a special case of Hilbert’s Theorem 90, but can be seen
directly by taking γ = ε+ δε for any ε ∈ K with γ 6= 0). Thus we have
a = γa · ( 1

γ ) ∈ IHKPK and therefore [IK : IHKPK ]≤ [IKr : I0(Φr)].

Proposition 2.2.4. Let K be a CM field and let F be the maximal totally
real subfield of K. Suppose I0(Φr) = IKr . If K satisfies (2.2.2), then we
have h∗K = 2T with T ∈ {tK , tK −1}, where tK is the number of primes
in F that are ramified in K. Moreover, if O×K =WKO×F then T = tK−1.

Proof. By Lemma 2.2.1, we have

h∗K = 2tK [IK : IHKPK ]
[PHK : PF ]

.

Lemma 2.2.3 with the assumption I0(Φr) = IKr implies [IK : IHKPK ] = 1.
Hence it follows that h∗K = 2tK [PHK : PF ]−1 = 2T with T ∈ {tK , tK − 1}
as [PHK : PF ] ∈ {1, 2}.

Moreover, ifO×K =WKO×F , then by Lemma 2.2.2, we get [PHK : PF ] = 1
and hence h∗K = 2tK−1.
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Chapter 2. CM curves of genus 2

2.3 Non-normal quartic CM fields
This section, which is the largest in this chapter, proves Theorem 2.1.1.
The case of cyclic CM fields is much easier and is treated in Section 2.4.

Suppose that K/Q is a non-normal quartic CM field and F is the real
quadratic subfield of K. The normal closure N is a dihedral CM field of
degree 8 with Galois group G := Gal(N/Q) = 〈x, y : y4 = x2 = (xy)2 = id〉.
Complex conjugation · is y2 in this notation and the CM field K is
the subfield of N fixed by 〈x〉. Let Φ be a CM type of K with values
in N ′. We can (and do) identify N with a subfield of N ′ in such a way
that Φ = {id,y|K}. Then the reflex field Kr of Φ is the fixed field of
〈xy〉, which is a non-normal quartic CM field non-isomorphic to K with
reflex type Φr = {id,y3|Kr}, (see [40, Examples 8.4., 2(C)]). Denote the
quadratic subfield of Kr by F r.

N

N+KK ′ Kr K ′r

F F rF+

Q

1

〈y2〉〈x〉〈xy2〉 〈xy〉 〈xy3〉

〈x, y2〉 〈xy, y2〉〈y〉

G

Figure 2.1: Lattice of subfields and subgroups

Let N+ be the maximal totally real subfield of N , and let F+ be the
quadratic subfield of N+ such that N/F+ is cyclic.

2.3.1 An effective bound for CM class number one
non-normal quartic fields

In this section, we find an effective upper bound for the absolute discrim-
inant of non-normal quartic CM fields with CM class number one.
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2.3. Non-normal quartic CM fields

Proposition 2.3.1. Let K be a non-biquadratic quartic CM field and let
F be the real quadratic subfield of K. Assuming I0(Φr) = IKr , we have
h∗K = 2tK−1, where tK is the number of primes in F that are ramified
in K.

Moreover, we have h∗Kr = 2tKr−1, where tKr is the number of primes
in F r that are ramified in Kr.

Proof. Since µK = {±1}, by Lemma 2.2.2, we have h∗K = 2tK−1[IK :
IHKPK ]. For any a ∈ IK , we can compute (see [38, (3.1)])

NΦrNΦ(a) = NK/Q(a)aa−1.

Then, by Lemma 2.2.3, under the assumption I0(Φr) = IKr , the quotient
IK/I

H
KPK is trivial. Therefore, we have h∗K = 2tK−1.

For the second statement, we claim [IKr : IH ′
KrPKr ] ≤ [IKr : I0(Φr)],

where H ′ = Gal(Kr/F r). For any b ∈ IKr , by [38, (3.2)], we have

NΦNΦr(b) = NKr/Q(b)bb−1
.

Suppose b ∈ I0(Φr). Then NKr/Q(b)bb−1 = (α), where α ∈ Kr× and
αα=NΦ(NKr/Q(b)) =NKr/Q(b)2 ∈Q. We finish the proof of b∈ IH ′

KrPKr

exactly as in Lemma 2.2.3. So this proves I0(Φr) ⊂ IH ′
KrPKr , hence the

claim follows.
Since µKr = {±1}, by Lemma 2.2.2, we have h∗Kr = 2tKr−1[IKr :

IH
r

KrPKr ]. By the assumption I0(Φr) = IKr , the claim above implies
[IKr : IHr

KrPKr ] = 1, hence we get h∗Kr = 2tKr−1.

Remark 2.3.2. In the case where K/Q is cyclic quartic, this result is
(i)⇒ (iii) of Proposition 4.5 in Murabayashi [30].

On the other hand, if K is a non-normal quartic CM field, Louboutin
proves h∗K ≈

√
dK/dF with an effective error bound, see Proposition 2.3.3.

Putting this together with the result in Proposition 2.3.1 gives approxi-
mately

√
dK/dF ≤ 2tK−1. As the left hand side grows more quickly than

the right, this relation will give a bound on the absolute value of the
discriminant, precisely see Proposition 2.3.4.
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Chapter 2. CM curves of genus 2

The next step is to use the following bound from analytic number
theory.

Let dM denote the absolute value of the discriminant (absolute dis-
criminant) of a number field M .
Proposition 2.3.3. (Louboutin [26], Remark 27 (1)) Let N be the nor-
mal closure of a non-normal quartic CM field K with Galois group D4.
Assume d1/8

N ≥ 222. Then

h∗K ≥
2
√
dK/dF√

eπ2(log(dK/dF ) + 0.057)2 .

(2.3.1)
Proposition 2.3.4. Let K be a non-normal quartic CM field and let F
be the real quadratic subfield of K. Let Φ be a primitive CM type of K.
Suppose I0(Φr) = IKr . Then we have dK/dF ≤ 2 ·1015.
Proof. Let

f(D) = 2
√
D√

eπ2(log(D) + 0.057)2 and g(t) = 2−t+1f(∆t),

where ∆k =∏k
j=1 pj and pj is the j-th prime.

Here, if D = dK/dF , then f is the right hand side of the inequality
(2.3.1) in Proposition 2.3.3. The quotient dK/dF is divisible by the
product of rational primes that are ramified in K/F , so dK/dF ≥∆tK

.
On the other hand, the function f is monotonically increasing for

D > 52, so if tK ≥ 4 then f(dK/dF ) ≥ f(∆tK
). Therefore, by Proposi-

tion 2.3.1, we get that if I0(Φr) = IKr , then

2tK−1 ≥ f(dK/dF )≥ f(∆tK
) (2.3.2)

and hence 1 ≥ g(tK). The function g is monotonically increasing for
tK ≥ 4 and is greater than 1 if tK > 14. Therefore, we get tK ≤ 14 and
h∗K ≤ 213, hence dK/dF < 2 ·1015.

The bound that we get in Proposition 2.3.4 is unfortunately too large
to list all the fields. In the following section we study ramification of
primes in N/Q and find a sharper upper bound for dKr/dF r , see Propo-
sition 2.3.14.
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2.3. Non-normal quartic CM fields

2.3.1.1 Almost all ramified primes are inert in F and F r

In this section, under the assumption I0(Φr) = IKr , we study the ram-
ification behavior of primes in N/Q, and prove that almost all rational
primes that are ramified in Kr/F r are inert in F r. We precisely prove
the following proposition.

Proposition 2.3.5. Let K be a non-normal quartic CM field and let F be
its real quadratic subfield. Let Φ be a primitive CM type of K. Suppose
I0(Φr) = IKr . Then F = Q(√p) and F r = Q(√q), where p and q are
prime numbers with q 6≡ 3 (mod 4) and (p/q) = (q/p) = 1. Moreover, all
the rational primes (distinct from p and q) that are ramified in Kr/F r

are inert in F and F r.

This proposition implies that dKr/dF r grows as the square of the
product of such ramified primes and we get a lower bound on f(dKr/dF r)
of (2.3.2) that grows even faster with tKr than what we had in the proof
of Proposition 2.3.4. Hence we obtain a better upper bound on dKr/dF r ,
see Proposition 2.3.14.

We begin the proof of Proposition 2.3.5 with exploring the ramifica-
tion behavior of primes in N/Q, under the assumption I0(Φr) = IKr .

Ramification of primes in N/Q

Lemma 2.3.6. Let M/L be a Galois extension of number fields and q be
a prime of M over an odd prime ideal p (that is, the prime p lies over an
odd prime in Q) of L. Then there is no surjective homomorphism from
a subgroup of Iq to a Klein four group V4.

Proof. For an odd prime ideal p in L, suppose that there is a surjective
homomorphism from a subgroup of Iq to V4. In other words, suppose
a prime of F over p is totally ramified in a biquadratic intermediate
extension E/F of M/L. Assume without loss of generality E = M and
F =L. The biquadratic intermediate extension E/F has three quadratic
intermediate extensions Ei = F (√αi) for i = 1, 2, 3. Without loss of
generality, take ordp(αi) ∈ {0,1} for each i. Note OEi

contains OF [√αi]
of relative discriminant 4αi over OF . Since p is odd, this implies that the
relative discriminant ∆(Ei/F ) of OEi

has ordp(∆(Ei/F )) = ordp(αi). At
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Chapter 2. CM curves of genus 2

the same time, we have E3 = F (√α1α2) so p ramifies in Ei for an even
number of i’s. In particular, p is not totally ramified in E/F .

Lemma 2.3.7. Let K be a non-normal quartic CM field and let F be
the real quadratic subfield of K. Let Φ be a primitive CM type of K and
Kr be the reflex field of (K,Φ) with the quadratic subfield F r. Then the
following assertions hold.

(i) If a prime p is ramified in both F and F r, then it is totally ramified
in K/Q and Kr/Q.

(ii) If an odd prime p is ramified in F (in F r, respectively) as well as
in F+, then p splits in F r (in F , respectively). Moreover, at least
one of the primes above p in F r is ramified in Kr/F r (in K/F ,
respectively).

Proof. The statements (i) and (ii) are clear from Table 2.1 on page 32.
Alternatively, one can also prove the statements as follows:

(i) Let pN be a prime of N above p that is ramified in both F/Q
and F r/Q. Then the maximal unramified subextension of N/Q
is contained in F+. Therefore, the inertia group of pN contains
Gal(N/F+) = 〈y〉. By computing ramification indices in the dia-
gram of subfields one by one, we see that the prime p is totally
ramified in K and Kr.

(ii) Let p be an odd prime that is ramified in F/Q and F+/Q and pN be
a prime above p in N . The inertia group of an odd prime cannot be
a biquadratic group by Lemma 2.3.6, so IpN

is a proper subgroup
of Gal(N/F r). Since IpN

is a normal subgroup in DpN
, the group

DpN
cannot be the full Galois group Gal(N/Q). So DpN

is a proper
subgroup of Gal(N/F r) and hence p splits in F r. Moreover, since p
is ramified in F , hence in K, hence in Kr, at least one of the primes
above p in F r is ramified in Kr. Since F and F r are symmetric in
N/Q, the same argument holds for F r as well.
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2.3. Non-normal quartic CM fields

Lemma 2.3.8. Let the notation be as in Lemma 2.3.7. Assuming
I0(Φr) = IKr , if Kr has a prime p of prime norm p with p = p, then
F = Q(√p).

Proof. By the assumption, we have

NΦr(p) = (α) for some α ∈K×such that αα = NKr/Q(p) = p.

Since p = p, we have (α) = (α), and so α = εα for a unit ε in O×K with
absolute value 1 (hence a root of unity). Since µK = {±1}, we get α2 =
±p. The case α2 =−p is not possible, since K has no imaginary quadratic
intermediate field. Hence we have α2 = p and so √p ∈ F .

Corollary 2.3.9. The notation being as in Lemma 2.3.7, suppose
I0(Φr) = IKr . If p is totally ramified in Kr/Q, or splits in F r/Q and
at least one of the primes over p in F r ramifies in Kr/F r, then F =
Q(√p).

Proposition 2.3.10. Suppose I0(Φr) = IKr . Then F = Q(√p), where p
is a rational prime.

Proof. Suppose that there is an odd prime p that is ramified in F . Then p
is ramified either in F and F r or in F and F+.

If p is ramified in both F and F r, then by Lemma 2.3.7-(i), the prime p
is totally ramified in Kr/Q. If p is ramified in F and F+, then by Lemma
2.3.7-(ii), the prime p splits in F r and at least one of the primes over p
in F r ramifies in Kr/F r. In both cases, Corollary 2.3.9 tells us that
F = Q(√p).

Therefore, if an odd prime p is ramified in F , then we have F =Q(√p).
If no odd prime ramifies in F , then the only prime that ramifies in F is 2
so we have F = Q(

√
2).
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Lemma 2.3.11. Suppose I0(Φr) = IKr . Then the following assertions
are true.

(i) If a rational prime l is unramified in both F/Q and F r/Q, but is
ramified in K/Q or Kr/Q, then all primes above l in F and F r

are ramified in K/F and Kr/F r and l is inert in F r.

(ii) If F = Q(√p) with a prime number p≡ 3 (mod 4), then 2 is inert
in F r.

Proof. (i) It follows from Table 2.1 except for the statement that l is
inert in F r.
Suppose that l splits in F r. Then by Corollary 2.3.9, we have√
l ∈ F , contradicts unramifiedness of l in F . Therefore, the prime

l is inert in F r.

(ii) The prime 2 is ramified in F since p ≡ 3 (mod 4). If 2 is also
ramified in F r, then by Lemma 2.3.7-(i), the prime 2 is totally
ramified in K and Kr. If 2 splits in F r, then by Table 2.1, at least
one of the primes in F r above 2 ramifies in Kr. In both cases by
Corollary 2.3.9, we have F = Q(√p) with p = 2, a contradiction.
This implies that 2 is inert in F r.

Equality of tK and tKr

In the previous section, we proved that the primes that are unramified
in F and F r, but are ramified in Kr/F r are inert in F r. Thus these
primes contribute to tKr (the number of primes in F r that are ramified
in Kr) with one prime, on the other hand they contribute to tK (the
number of primes in F that are ramified in K) with at least one prime
and exactly two if the prime splits in F/Q. So if we could prove tK = tKr ,
then that would approximately say that all such primes are inert in both
F and F r.

Proposition 2.3.12. (Shimura, [38, Proposition A.7.]) Let the notation
be as above. Then we have h∗K = h∗Kr .
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2.3. Non-normal quartic CM fields

Proof. The idea of the proof is to first show

ζK(s)/ζF (s) = ζKr(s)/ζF r(s) (2.3.3)

and then use the analytic class number formula at s= 0. Louboutin [23,
Theorem A] shows the equality (2.3.3) by writing the Dedekind zeta func-
tions of K, Kr, F and F r as a product of Artin L-functions and finding
relations between these combinations of L-functions (see [23, Theorem
A]).

We can also get this equality by comparing the local factors of the
Euler products of the Dedekind ζ-functions of the fields. By Table 2.1,
we see that each ramified prime in N/Q has the same factors in the Euler
products of the quotients of the Dedekind ζ-functions on both sides of
(2.3.3). As an example, we take a rational prime p with ramification
type (6 a) in Table 2.1, where the local factors for p of the Dedekind
ζ-functions are as follows:

ζK(s)p = 1
1−NpK,1−s

· 1
1−NpK,y−s

= 1
1− (p2)−s ·

1
1−p−s ,

ζF (s)p = 1
1−NpF,1−s

· 1
1−NpF,y−s

=
(

1
1−p−s

)2
,

ζKr(s)p = 1
1−NpKr,1−s

= 1
1− (p2)−s ,

ζF r(s)p = 1
1−NpKr,1−s

= 1
1−p−s .

So for such a prime, we get

ζK(s)p/ζF (s)p = 1
1 +p−s

= ζKr(s)p/ζF r(s)p.

Similarly, by using Table 3.5.1 in [14], we can get this equality for the
unramified primes as well.

The analytic class number formula at s= 0 (see, [46, Chapter 4]) says
that the Dedekind zeta function ζM (s) of an algebraic number field M
has a zero at s= 0 and the derivative of ζM (s) at s= 0 has the value

−hM ·RM
µM

,
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where hM is the class number; RM is the regulator; and µM is the order
of the group of roots of unity WM .

Since µK = 2 = µF and RK = 2RF (see Washington, [46, Proposition
4.16]), the analytic class number formula at s= 0 gives

lim
s→0

ζK(s)
ζF (s) = 2h∗K .

Therefore, the equality of h∗K and h∗Kr follows from the identity (2.3.3).

Corollary 2.3.13. The notation being as above, assuming I0(Φr) = IKr ,
we have tK = tKr .

Proof. By Proposition 2.3.1, we have h∗K = 2tK−1 and h∗Kr = 2tKr−1.
Then by Proposition 2.3.12, we get tK = tKr .

Proof of Proposition 2.3.5

Proposition 2.3.5. Let K be a non-normal quartic CM field and let F be
its real quadratic subfield. Let Φ be a primitive CM type of K. Suppose
I0(Φr) = IKr . Then F = Q(√p) and F r = Q(√q), where p and q are
prime numbers with q 6≡ 3 (mod 4) and (p/q) = (q/p) = 1. Moreover, all
the rational primes (distinct from p and q) that are ramified in Kr/F r

are inert in F and F r.

Proof. We first prove that if a prime l ramifies in both F and F r, then
it is equal to p, where F = Q(√p).

Indeed, by Lemma 2.3.7-(i), the prime l is totally ramified in Kr/Q
and hence by Corollary 2.3.9, we get F = Q(

√
l), so l = p.

Now we see that there are four types of prime numbers that ramify
in N/Q:

(I) The prime p, which is ramified in F and possibly in F r.

(II) The primes that are unramified in F , but ramified in F r, say
q1, . . . , qs.

(III) The primes that are unramified in F and F r, but ramified in K,
say r1, . . . , rm.
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2.3. Non-normal quartic CM fields

(IV) If p≡ 3 (mod4), then 2 6= p is ramified in F and is inert in F r by
Lemma 2.3.11-(ii).

We will compute the contribution of each ramification type to tK (the
number of primes in F that are ramified in K) and tKr (the number of
primes in F r that are ramified in Kr). Let fp and f rp be the contri-
butions of the primes over p to tK and tKr , respectively. Set i2 = 1 if
p≡ 3 (mod4), and i2 = 0 if p 6≡ 3 (mod4).
Claim. We have tK ≥ fp+ s+m+ i2 with equality only if all primes of
type (III) are inert in F and tKr = f rp +m+ i2.
Proof. By Table 2.1 including Lemma 2.3.8, we see that for i = 1, . . . , s
exactly one of the primes above qi in F ramifies in K/F and the unique
prime above qi in F r does not ramify in Kr/F r. By Lemma 2.3.11-(i),
we see that for j = 1, . . . ,m the prime rj is inert in F r so contributes
with exactly one prime to tKr , and with at least one prime to tK and
with exactly one if and only if rj is inert in F/Q. If p≡ 3 (mod 4), then
by Lemma 2.3.11-(ii), the prime 2 is inert in F r. As furthermore 2 is
ramified in F and F 6∼= Q(

√
2), the prime 2 has the decomposition (14)

in Table 2.1, so it contributes exactly with one prime to tK and tKr . So
we get tK ≥ fp+s+m+ i2 with equality if and only if all primes of type
(III) are inert in F and tKr = f rp +m+ i2, which proves the claim.

We observe that s > 0 holds. Indeed, if s = 0, then all primes that
ramify in F r also ramify in F . Hence dF r divides dF , which is equal to p
if p≡ 1 (mod 4) and 4p otherwise. So F r ∼= F , a contradiction.

If p ramifies in both F and F r, then by Lemma 2.3.7-(i), we have
fp = f rp = 1. The same is true if p is of type (14) in Table 2.1. By
Corollary 2.3.13, we have tK = tKr , so in this case m+ i2 ≥ s+m+ i2, so
s= 0, a contradiction. Therefore, the prime p is not ramified in F r and is
not of type (14), leaving only the possibility (q/p) = 1. By Table 2.1, we
see that f rp −fp = 1. Hence tK = tKr implies that all primes of type (III)
are inert in F and s= 1. In particular, since p is unramified in F r, we
get F r = Q(√q) for a prime q 6≡ 3 (mod 4). Moreover, Table 2.1 implies
(p/q) = 1.
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A sharper bound for dKr/dF r

Proposition 2.3.14. Let K be a non-normal quartic CM field and let F
be its real quadratic subfield. Let Φ be a primitive CM type of K. Suppose
I0(Φr) = IKr and d

1/8
N ≥ 222. Then we have h∗Kr ≤ 25 and dKr/dF r ≤

3 ·1010.

Proof. Under the assumption I0(Φr) = IKr , in Propositions 2.3.10 and
2.3.5 we proved F = Q(√p) and F r = Q(√q), where p and q are prime
numbers. Additionally, we proved that at least one of the ramified primes
above p in F r is ramified in Kr/F r, and the other ramified primes in
Kr/F r are inert in F r, say r1, . . . , rtKr−1. Therefore, we have dKr/dF r ≥
pqr2

1 · · ·r2
tKr−1.

Let

f(D) = 2
√
D√

eπ2(log(D) + 0.057)2 and g(t) = 2−t+1f(ptpt+1∆2
t−1),

where pj is the j-th prime and ∆k = ∏k
j=1 pj . If D = dKr/dF r , then we

have hKr ≥ f(D) by Proposition 2.3.3.
Recall that, by the proof of Proposition 2.3.4, the function f is mono-

tonically increasing for D > 52. Therefore, if tKr > 3, then we have
f(dKr/dF r)>f(ptKrptKr +1∆2

tKr−1). So in that case by Proposition 2.3.1
and Corollary 2.3.13, we have h∗Kr = 2tKr−1, hence we get g(tKr) ≤ 1.
Further, the function g is monotonically increasing for tKr ≥ 4 and is
greater than 1 for tKr = 7. So we get tKr ≤ 6.

2.3.2 Enumerating the fields
To specify non-biquadratic quartic CM fields, we use the following no-
tation of the ECHIDNA database [13]. Given a non-biquadratic quartic
CM field K, let D be the discriminant of the real quadratic subfield F
ofK. WriteK =F (

√
−α) where α is a totally positive element of OF and

take α such that A := TrF/Q(α)> 0 is minimal and let B := NF/Q(−α).
We choose α with minimal B if there is more than one B with the same A.
We use the triple [D,A,B] to uniquely represent the isomorphism class
of the CM field K ∼= Q[X]/(X4 +AX2 +B).
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2.3. Non-normal quartic CM fields

Theorem 2.3.15. There exist exactly 63 isomorphism classes of CM
class number one non-normal quartic CM fields. The fields are given by
K ∼= Q[X]/(X4 +AX2 +B)⊃Q(

√
D) where [D,A,B] ranges over

[5,13,41], [5,17,61], [5,21,109], [5,26,149], [5,34,269], [5,41,389],
[8,10,17], [8,18,73], [8,22,89], [8,34,281], [8,38,233], [13,9,17],
[13,18,29], [13,29,181], [13,41,157], [17,5,2], [17,15,52], [17,46,257],
[17,47,548], [29,9,13], [29,26,53], [41,11,20], [53,13,29], [61,9,5],
[73,9,2], [73,47,388], [89,11,8], [97,94,657], [109,17,45],
[137,35,272], [149,13,5], [157,25,117], [181,41,13], [233,19,32],
[269,17,5], [281,17,2], [389,37,245]

with class number 1;

[5,11,29], [5,33,261], [5,66,909], [8,50,425], [8,66,1017], [17,25,50],
[29,7,5], [29,21,45], [101,33,45], [113,33,18], [8,14,41], [8,26,137],
[12,8,13], [12,10,13], [12,14,37], [12,26,61], [12,26,157], [44,8,5],
[44,14,5], [76,18,5], [172,34,117], [236,32,20]

with class number 2;
[257,23,68]

with class number 3;
[8,30,153], [12,50,325], [44,42,45]

with class number 4.

We begin the proof by combining the ramification results into the
following explicit form for Kr.

Proposition 2.3.16. Let K be a non-normal quartic CM field and let F
be its real quadratic subfield. Let Φ be a primitive CM type of K. Suppose
I0(Φr) = IKr . Then there exist prime numbers p, q, and s1 < · · · < su
with u ∈ {tKr −1, tKr −2} such that all of the following hold. We have
F = Q(√p) and F r = Q(√q) with q 6≡ 3 (mod 4) and (p/q) = (q/p) = 1.
There exists a prime p lying above p in F r that ramifies in Kr, an odd
j ∈ Z>0 and a totally positive generator π of pj. Moreover, for exactly
one such p and each such π and j, we have Kr ∼= Q(√−πs1 · · ·su).
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Proof. By Proposition 2.3.5, we have F =Q(√p) and F r =Q(√q), where
p and q are prime numbers with q 6≡ 3 (mod 4) and (p/q) = (q/p) = 1.

There exists a totally positive element β in (F r)× such that Kr =
F r(
√
−β), where β is uniquely defined up to ((F r)×)2 (without loss of

generality, we can take β in OF r).
Since OKr ⊃OF r [

√
−β]⊃OF r , the quotient of the discriminant ide-

als ∆(OKr/OF r)/∆(OF r [
√
−β]/OF r) = ∆(OKr/OF r)/(−4β) is a square

ideal in OF r (see Cohen [10, pp.79]). As β is unique up to squares, and
we can take l-minimal β′ ∈ β(F×)2 for each prime l of OF r , we get

ordl((β))≡


1 (mod 2) if l is ramified in Kr/F r and l - 2,
0 (mod 2) if l is not ramified in Kr/F r,
0 or 1 (mod 2) if l is ramified in Kr/F r and l|2.

(2.3.4)
Let l1, . . . , ltKr ⊆OF r be the primes above the prime numbers l1, . . . ,

ltKr that ramify in Kr/F r respectively. Let ni > 0 be minimal such that
li
ni is generated by a totally positive λi ∈ OF r . Since F r = Q(√q) with

prime q 6≡ 3 (mod 4), genus theory implies that ClF r = Cl+F r has odd
order so ni is odd. Let

α =
tKr∏
i=1

λ
(ordli

((β)) mod 2)
i .

By proving the following two claims we finish the proof.
Claim 1. We have α/β ∈ (F r×)2.
Claim 2. We have α = πs1 · · ·su with π, si and u as in the statement.
Proof of Claim 1. We first prove that (α/β) = (α)/(β) is a square ideal
in F r. Let l be any prime of F r. If l is unramified in Kr/F r, then by
(2.3.4), we have ordl((β))≡ 0 (mod 2). So by the definition of α, we have
ordl((α)) = 0. If l is ramified in Kr/F r, then there exists li such that
l = li, so we get

ordl((α))≡ ordli
((β))ordli

((λi))≡ ordli
((β)) (mod 2)

as ni = ordli
((λi)) is odd. Therefore, the ideal (α/β) is a square of an

ideal a in OF r . Thus a2 is generated by the totally positive α/β. So the
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ideal class [a] is of 2-torsion in Cl+F r , which has an odd order, so there
is a totally positive element µ ∈ (F r)× that generates a. So α/β = µ2 ·v
for some v ∈ (O×F r)+. Moreover, since ClF r = Cl+F r , the norm of the
fundamental unit ε is negative. Therefore, a unit inOF r is totally positive
if and only if it is a square in OF r . Hence v is a square in OF r so we get
α/β ∈ (F r×)2.
Proof of Claim 2. For any given i, if li is inert in F r/Q, then ni = 1
and λi = li ∈ Z>0 is prime. If li is not inert in F r/Q then li ∈ {p, q}, by
Proposition 2.3.5. If li = q, then li is not ramified in Kr/F r, otherwise
by Corollary 2.3.9 we get √q ∈ F . So li = p.

Let

{s1, . . . , su}= {li : li is inert in F r/Q and ramified in Kr/F r

and ordli
((β))≡ 1 (mod 2)}.

Then u ∈ {tKr −1, tKr −2, tKr −3} by (2.3.4).
Let pOF r = pp′. Then we have α = πaπ′a

′∏u
i=1 s

(1 (mod 2))
i , where π

and π′ are totally positive generators of pj and p′j for some odd j ∈ Z>0.
Here, we have ∏ui=1 s

(1 (mod 2))
i ∈ Z and a, a′ ∈ {0, 1}. If a = a′, then

α ∈ Z, which leads to a contradiction since Kr is non-biquadratic. So
for a unique p, we can take a1 = 1 and a2 = 0. In particular, we have
u ∈ {tKr −1, tKr −2}.

Combining Proposition 2.3.16 and the bound on the discriminant in
Proposition 2.3.14, we now have a good way of listing the fields. Next,
we need a fast way of eliminating fields from our list if they have CM
class number > 1.

The following lemma is a special case of Theorem D in Louboutin [23].

Lemma 2.3.17. Let K be a non-biquadratic quartic CM field and let F
be its real quadratic subfield. Let dK and dF be the absolute values of the
discriminants of K and F . Then assuming I0(Φr) = IKr , if a rational
prime l splits completely in Kr/Q, then l ≥

√
dK/dF

2

4 .

Proof. Let l be a prime that splits completely in Kr/Q. Let lKr be
a prime ideal in Kr above l. By the assumption I0(Φr) = IKr , there
exists τ ∈ K× such that NΦr(lKr) = (τ) and ττ = l. Here τ 6= τ , since
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√
l 6∈K. Then since OK ⊃OF [τ ] and ∆(OF [τ ]/OF ) = (τ − τ)2, we have

dK/d
2
F = NF/Q(dK/F ) = NF/Q(∆(OK/OF ))≤NF/Q((τ−τ)2). Moreover,

since ττ = l, we have φ(τ − τ)2 ≤ (2
√
l)2 for all embeddings φ : F ↪→ R,

hence dK/d2
F ≤ NF/Q((τ − τ)2)≤ 16l2.

Every prime si as in Proposition 2.3.16 divides ∆(Kr/F r) so s2
i |dKr ,

hence s4
i |dN . The primes p and q are ramified in F and F r, so p4 and q4

divide the discriminant dN of the normal closure N of degree 8. Hence
dN ≥ p4q4s4

1 · · ·s4
t−1.

Algorithm 2.3.18. Output: [D, A, B] representations of all non-
normal quartic CM fields K satisfying I0(Φr) = IKr .

Step 1. Find all square-free integers smaller than 3 ·1010 having at most 8
prime divisors and find all square-free integers smaller than 2222.

Step 2. Order the prime factors of each of these square-free integers as
tuples of primes (p,q,s1, . . . , su) with s1 < · · ·< su in (u+1)(u+2)-
ways, then take only the tuples satisfying q 6≡ 3 (mod 4), (p/q) =
(q/p) = 1 and (p/si) = (q/si) =−1 for all i.

Step 3. For each (p,q,s1, . . . , su), let F r = Q(√q), write pOF r = pp′, and
take α= π ·s1 · · ·su ∈ F r, where π is a totally positive generator of
pj for the minimal j ∈ Z>0. Construct Kr = F r(

√
−α).

Step 4. Eliminate the fields Kr that have totally split primes in Kr below
the bound

√
dK/d

2
F /4.

Step 5. For each q with norm Q below 12log(|dKr |)2, check whether it is
in I0(Φr) as follows. List all quartic Weil Q–polynomials, that is,
monic integer polynomials of degree 4 such that all roots in C have
absolute value

√
Q. For each, take its roots in K and check whether

NΦr(q) is generated by such a root. If not, then q is not in I0(Φr),
so we throw away the field.

Step 6. For each Kr, compute the class group of Kr and for a CM type Φ
of K test I0(Φr)/PKr = IKr/PKr .
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2.4. Cyclic quartic CM fields

Step 7. Find [D, A, B] representations for the reflex fields K of the re-
maining pairs (Kr,Φr).

Proof. Note that Step 4 and Step 5 of the algorithm above do not affect
the validity of the algorithm by Lemma 2.3.17. These two steps are only
to speed up the computation. In Step 4 we eliminate most of the CM
fields.

Suppose that a non-normal quartic CM field K satisfies I0(Φr) = IKr .
Then by Proposition 2.3.16, we have F = Q(√p) and F r = Q(√q), where
p and q are prime numbers with q 6≡ 3 (mod 4) and (p/q) = (q/p) = 1.
Also by Proposition 2.3.16, there exist a prime p lying above p in F r

that ramifies in Kr and a totally positive element α= πs1 · · ·su, where π
is a totally positive generator of pj for some odd j ∈ Z>0 such that
Kr = F r(

√
−α). By Proposition 2.3.5, the ramified primes in Kr/F r

that are distinct from p are inert in F and F r. As s1, . . . , su are such
primes, we have (p/si) =−1 and (q/si) =−1. By Lemma 2.3.14, we have
either h∗Kr = 2tKr−1≤ 25 and dKr/dF r ≤ 3 ·1010 or dN < 2228. Therefore,
the CM field K is listed.

We implemented the algorithm in SAGE [36, 33, 42] and obtained
the list of the fields in Theorem 2.3.15. The implementation is available
online at [17]. This proves Theorems 2.3.15 and 2.1.1.

This computation takes few weeks on a computer.

Remark 2.3.19. There are no fields eliminated in Step 6, because they
turned out to be already eliminated in Step 5.

2.4 Cyclic quartic CM fields
In [31], Murabayashi and Umegaki determined cyclic quartic CM fields
corresponding to simple CM curves of genus 2 defined over Q. Such
fields have CM class number one, however there are more examples, for
example, the fields in Table 1b of [9] have CM class number one, but
the CM curves corresponding to these cyclic sextic CM fields do not
have a model over Q. We apply the strategy in the previous section to
cyclic quartic CM fields and list all of those with CM class number one.
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Murabayashi [30, Proposition 4.5] proves that the relative class number
of cyclic quartic CM fields with CM class number one is 2tK−1, where tK
is the number of primes in F that are ramified in K. This result also
follows from Proposition 2.3.1 in Section 2.3.1.

Suppose that K/Q is a cyclic quartic CM field with Gal(K/Q) = 〈y〉.
Since K/Q is normal, we consider CM types with values in K. The CM
type, up to equivalence, is Φ = {id,y}, which is primitive. The reflex
field Kr is K and the reflex type of Φ is the CM type {id,y3} (Example
8.4(1) of Shimura [40]). In this notation complex conjugation · is y2.

Suppose K ∼= Q(ζ5), where ζm denotes a primitive m-th root of unity.
Then the class group of K is trivial, so the equality I0(Φr) = IK holds.
Hence K = Q(ζ5) will occur in the list of cyclic quartic CM fields satis-
fying I0(Φr) = IK .

From now on, suppose K 6∼= Q(ζ5).

Lemma 2.4.1. (Murabayashi [30], Lemma 4.2) If I0(Φr) = IKr , then
there is exactly one totally ramified prime in K/Q (i.e., F = Q(√p) with
prime p 6≡ 3 (mod 4)) and the other ramified primes of K/Q are inert in
F/Q.

Example 2.4.2. Suppose I0(Φr) = IKr . The relative class number h∗K
equals 1 if and only if K/F has exactly one ramified prime. This ramified
prime is √p when F = Q(√p).

We now determine such CM fields by using a lower bound on their
relative class numbers from analytic number theory.

Theorem 2.4.3. (Louboutin [24], Theorem 5) Let K be a cyclic quartic
CM field of conductor fK and absolute discriminant dK . Then we have

h∗K ≥
2

3eπ2

1− 4πe1/2

d
1/4
K

 fK
(log(fK) + 0.05)2 . (2.4.1)

Proposition 2.4.4. Let the notation be as above. Suppose I0(Φr) = IKr .
Then we have h∗K ≤ 25 and fK < 2.1 ·105.

Proof. Under the assumption I0(Φr) = IKr , Lemma 2.4.1 implies that
there is exactly one totally ramified prime in K/Q and the other ramified
primes of K/Q are inert in F/Q.
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Let ∆t be the product of the first t primes. Since the ramified primes
in K/Q divide the conductor fK , we have fK >∆tK

. Further, by Propo-
sitions 11.9 and 11.10 in Chapter VII [32], we have dK = f2

K · dF so
dK > ∆2

tK
. The right hand side of (2.4.1) is monotonically increasing

with fK > 2. Further, by Proposition 2.3.1, we have h∗K = 2tK−1 so by
dividing both sides of (2.4.1) by 2tK−1, we obtain

1≥ 2
3eπ2

1− 4πe1/2

∆1/2
tK

 ∆tK

2tK (log(∆tK
) + 0.05)2 . (2.4.2)

The right hand side of (2.4.2) is monotonically increasing with tK ≥ 2,
and if tK = 7, then the right hand side is greater than 1. Hence t ≤ 6.
So we get h∗K ≤ 25, and therefore, we get fK < 2.1 ·105.

Theorem 2.4.5. There exist exactly 20 isomorphism classes of CM
class number one cyclic quartic CM fields. The fields are given by K ∼=
Q[X]/(X4 +AX2 +B)⊃Q(

√
D) where [D,A,B] ranges over

[5,5,5], [8,4,2], [13,13,13], [29,29,29],

[37,37,333], [53,53,53], [61,61,549]
with class number 1;

[5,65,845], [5,85,1445], [5,10,20], [8,12,18],

[8,20,50], [13,65,325], [13,26,52], [17,119,3332]
with class number 2;

[5,30,180], [5,35,245], [5,15,45], [5,105,2205], [17,255,15300]

with class number 4.

We begin the proof with the following proposition.

Proposition 2.4.6. If a cyclic quartic CM field K satisfies I0(Φr) =
IK , then there exist prime numbers p, s1, . . . , su ∈ Z such that F =
Q(√p) with p 6≡ 3 (mod 4) and (p/si) = −1 for all i, and we have
Kr ∼= Q(

√
−εs1 · · ·su

√
p) with u ∈ {tK−1, tK−2} for every ε ∈O×F with

ε
√
p� 0.
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Proof. By Proposition 2.4.1, we have F = Q(√p), where p is a prime
with p 6≡ 3 (mod 4). If there are tK ramified primes in K/F , the ones
that are distinct from the one above p are inert in F/Q, by Proposition
2.4.1; denote them by s1, . . . , stK .

There exists a totally positive element β in F× (without loss of gener-
ality, we can take β in OF ) such that K = F (

√
−β), where β is uniquely

defined up to (F×)2. As in the proof of Proposition 2.3.16 in the previous
section, we will define a totally positive element α ∈ F× with respect to
the ramified primes in K/F and show that α and β differ by a factor in
(F×)2.

Let ε ∈ O×F such that ε√p� 0. Such an element exists since p 6≡
3 (mod 4). As β is unique up to squares and we can take l-minimal
β′ ∈ β(F×)2 for each prime l of OF , then we get the cases in (2.3.4) for
ordl((β)).

If p 6= 2 and the prime (2) in OF is ramified in K/F with ord(2)((β))≡
0 (mod 2), then take α := εs1 · · ·su

√
p with u = tK − 2. If p = 2 and

ord(
√

2)((β)) ≡ 0 (mod 2), then take α := s1 · · ·su with u = tK − 1. For
all other cases in (2.3.4), take α := εs1 · · ·su

√
p with u= tK −1.

By the definition of α, for all ideals l ⊂ OF we have ordl((α/β)) ≡
0 (mod 2). So (α/β) = a2 for a fractional OF -ideal a. The ideal a is a 2-
torsion element in ClF . Moreover, since F = Q(√p) with p 6≡ 3 (mod 4),
genus theory implies that ClF = Cl+F has odd order. Therefore, there
is a totally positive element µ that generates a. So α/β = µ2 · v for
some v ∈ O+

F . Furthermore, since ClF = Cl+F , the fundamental unit has
a negative norm, and so O+

F = (OF )2. Hence v is a square in OF , and
therefore we get α/β ∈ (F×)2.

In the case p= 2 and ord(
√

2)((β))≡ 0 (mod 2), we get the biquadratic
field K = F (√−s1 · · ·su) over Q, contradiction. Therefore, we have

K = Q(
√
−εs1 · · ·su

√
p) with u ∈ {tK−1, tK−2}.

Algorithm 2.4.7. Output: [D, A, B] representations of all cyclic
quartic CM fields K satisfying I0(Φr) = IK .

Step 1. Find all square-free integers less than 2.1 ·105 and having at most 6
prime divisors.
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2.4. Cyclic quartic CM fields

Step 2. Order the prime factors of each of these square-free integers as
tuples of primes (p,s1, . . . , su) with s1 < .. . < su in (u+ 1)-ways,
then take only the tuples satisfying p 6≡ 3 (mod 4) and (p/si) =−1
for all i.

Step 3. For each (p,s1, . . . , su), let F = Q(√p) and take a totally positive
element α = εs1 · · ·su

√
p, where ε is a fundamental unit in F such

that ε√p� 0. Construct K = F (
√
−α).

Step 4. Eliminate the fields K that have totally split primes in K below
the bound

√
dK/d

2
F /4. (In this step we eliminate most of the CM

fields.)

Step 5. For each q with norm Q below 12log(|dKr |)2, check whether it is
in I0(Φr) as follows. List all quartic Weil Q-polynomials, that is,
monic integer polynomials of degree 4 such that all roots in C have
absolute value

√
Q. For each, take its roots in K and check whether

NΦr(q) is generated by such a root. If not, then q is not in I0(Φr),
so we throw away the field.

Step 6. For each K compute the class group of the fields K and for a prim-
itive CM type Φ of K test I0(Φr)/PK = IK/PK .

Step 7. Find [D, A, B] representations for the quartic CM class number
one fields K.

Proof. The idea of the proof of this algorithm is exactly as the proof
of Algorithm 2.3.18. In this algorithm, Step 1 follows from Proposition
2.4.4; Step 2 and 3 follow from Proposition 2.4.6; Step 4 follows from
Lemma 2.3.17.

We implemented the algorithm in SAGE [36, 33, 42] and obtained
the list of the fields in Theorem 2.4.5. The implementation is available
online at [17]. This proves Theorems 2.1.2 and 2.4.5.

This computation takes few days on a computer.
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Chapter 3

The CM class number one
problem for curves of genus 3

ABSTRACT. In this chapter, we give the complete list of CM
class number one Galois sextic fields, and under GRH, the
complete list of CM class number one non-normal sextic CM
fields containing an imaginary quadratic field. We will see in
Chapter 4 that the first list is the complete list of CM fields
corresponding to CM curves of genus 3 with rational field of
moduli.

3.1 Introduction
Let K be a sextic CM field and let Φ be a primitive CM type of K.
Further, let C be a curve of genus 3 with a simple Jacobian J(C) over C
of type (K,Φ) with CM by OK . Let (Kr,Φr) be the reflex of (K,Φ).
Recall that Theorem 1.5.6 implies that if C is defined over the reflex
field Kr, then

I0(Φr) := {b ∈ IKr : NΦr(b) = (α) and NK/Q(b) = αα for some α ∈K×}
= IKr .

We say that K is a CM class number one field if there exists a prim-
itive CM type Φ such that (K,Φ) has I0(Φr) = IKr . In this chapter, we
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Chapter 3. CM curves of genus 3

will list CM class number one sextic fields by using a similar strategy as
in Chapter 2.

We will restrict ourselves to the fields K that contain an imaginary
quadratic field. This restriction is not too bad because it covers the most
interesting cases:

• CM fields with known explicit CM constructions of genus-3 CM
curves:

– hyperelliptic curves with K ⊃Q(i), Weng [48],
– Picard curves, Koike and Weng [19],

• all cases where K is Galois over Q see Section 3.3,

• all CM curves of genus 3 over Q (see Chapter 4).

Remark 3.1.1. Dodson [12, Section 5.1.1] gives the Galois groups of
the remaining sextic CM fields K, i.e., those that do not contain an
imaginary quadratic field. For those fields, K/Q is not normal and the
Galois group of a normal closure of K is isomorphic to (C2)3oG0, where
G0 ∈ {C3, S3} acts on (C2)3 by permuting the indices.

Let K be a sextic CM field containing an imaginary quadratic field k
and let F be the totally real cubic subfield of K. Since k and F are
linearly disjoint over Q, we have K = Fk. Totally real cubic fields F
are either cyclic or non-normal over Q. If F is non-normal, then the
normal closureN+ of F is a totally real field with Galois group isomorphic
to S3. Let N be a Galois closure of K. Then we have Gal(N/Q) =
Gal(N+/Q)×Gal(k/Q), see Lang [22, Theorem 1.14 in IV]. In particular,
we have either Gal(N/Q) = C3×C2 ∼= C6 or Gal(N/Q) = S3×C2 ∼= D6.
Note that N+ is the maximal totally real subfield of N , whence our
notation.

In Section 3.3, we will consider the case that K/Q is Galois and prove
the following.

Theorem 3.1.2. There exist exactly 37 isomorphism classes of cyclic
sextic CM fields K such that there exists a primitive CM type Φ satisfying
I0(Φr) = IKr . These fields are exactly the fields listed in Table 3.1.
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In Section 3.4, non-normal sextic CM fields will be considered and
the following will be proved.

Theorem 3.1.3. Assuming GRH, the complete list of the isomorphism
classes of CM class number one non-normal sextic CM fields containing
an imaginary quadratic field is given in Tables 3.3–3.12.

3.2 Sextic CM fields containing an imagi-
nary quadratic field

The main result of this section is the following. We will use this result
in Sections 3.3 and 3.4 to prove Theorems 3.1.2 and 3.1.3.

Proposition 3.2.1. Let K be a sextic CM field and let Φ be a CM type
of K. Let (Kr,Φr) be the reflex of (K,Φ). Suppose that Kr ∼= K. If K
contains a class number one imaginary quadratic field k and h∗K = 2tK−1,
then

I0(Φr) := {b ∈ IKr : NΦr(b) = (α) and NK/Q(b) = αα for some α ∈K×}
= IKr .

Lemma 3.2.2. Let K be a sextic CM field containing an imaginary
quadratic field k. Then we have

O×K =WKO×F ,

where WK is the group of roots of unity of K.

Proof. This follows from Theorem 5-(i) in Louboutin, Okazaki, Olivier
[27].

Lemma 3.2.3. Let K be a sextic CM field containing an imaginary
quadratic field k and Φ be a CM type of K. Let F be totally cubic subfield
of K. Put IHK = {b ∈ IK | b = b}, where H := Gal(K/F ). Then we have

h∗K = 2tK−1[IK : IHKPK ].
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Proof. Lemma 2.2.2 tells us that if O×K =WKO×F , then h∗K = 2tK−1[IK :
IHKPK ]. Combine this with Lemma 3.2.2.

Proof of Proposition 3.2.1. Identify K with Kr via an isomorphism. By
Lemma 3.2.3, we have

h∗K = 2tK−1 if and only if IK = IHKPK .

For any b ∈ IF , we have NΦr(b) = (NF/Q(b)), where NF/Q(b) ∈ Z.
Hence IFPK ⊂ I0(Φr). We can see from the exact sequence (2.2.1)

1→ IF → IHK →
⊕

p prime of F
Z/eK/F (p)Z→ 1

that the elements of IHK /IF are represented by the products of the primes
in K that are ramified in K/F . For any such prime P, let pZ = P∩F
and p= p∩Q. Then the following holds

NΦr(P)2 = NΦr(pOK) = NF/Q(p)OK , (3.2.1)

where NF/Q(p) ∈ {p, p2,p3} depending on the splitting behavior of p
in F .

The prime P lies over a rational prime p that is ramified in k, see
Lang [21, Proposition 4.8-(ii) in II]. Moreover, the prime p is the unique
ramified prime in k/Q. Indeed, by genus theory, if the class number of an
imaginary quadratic field k is odd then there is one and only one ramified
prime in k/Q. By (3.2.1), we have

NΦr(P) =
√

NF/Q(p)OK . (3.2.2)

If NF/Q(p) = p, then the right hand side of (3.2.2) is generated by √−p
if k 6∼= Q(i) and generated by i+ 1 if k ∼= Q(i). Therefore, in both cases
we have a generator π in k of NΦr(P) such that ππ ∈ Q. Similarly, in
cases NF/Q(p) = p2 or p3, there exists a generator π in k of NΦr(P) such
that ππ ∈Q.

Hence every element of IHKPK , which is IK , is in I0(Φr). In particular,
we get IK = I0(Φr).
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3.3 Cyclic sextic CM fields
In this section, we will prove Theorem 3.1.2. We begin with proving
the following proposition which is the main ingredient of the proof of
Theorem 3.1.2.

Proposition 3.3.1. Let K be a cyclic sextic CM field with a primitive
CM type Φ. It holds I0(Φr) = IKr if and only if h∗K = 2tK−1 and hk = 1,
where tK is the number of primes in F that are ramified in K.

Let K be a cyclic sextic CM field with G := Gal(K/Q) = 〈y〉. In this
notation, complex conjugation · is y3. Then K has a totally real cubic
subfield F and an imaginary quadratic subfield k. So K = kF .

Proposition 3.3.2. Given (K,Φ) such that K is a cyclic sextic CM
field and Φ is a primitive CM type of K with values in N ′. There is an
embedding K ↪→N ′ such that Φ is {id, y, y−1}. Moreover, we then have
Kr =K and Φr = Φ.

Proof. There are 23 CM types of K with values in N ′. Two of them
are induced by the CM types of k and the remaining six are primitive.
For simplicity, we consider CM types with values in K. In other words,
we identify K with a subfield of N ′. The CM type {id, y, y−1} of K
is primitive by Corollary 1.2.4 and if we translate this type with the
elements of Gal(K/Q), we get six equivalent primitive CM types. Hence
by changing the embedding K ↪→N ′, without loss of generality, we have
Φ = {id, y, y−1}.

Since K is normal and Φ is primitive, the reflex field Kr is K. More-
over, the reflex type Φr is Φ−1 = Φ.

We now prove the converse of Proposition 3.2.1 for cyclic sextic CM
fields.

Proposition 3.3.3. Let K be a cyclic sextic CM field with a primitive
CM type Φ. Suppose I0(Φr) = IKr . Then we have hk = 1.

Proof. As K has degree 6, the order µK of the group of roots of unity
WK of K is 2, 4, 6, 14, or 18 and it is greater than 2 only if k = Q(

√
−d)
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with d = 1 3, 7, or 3 respectively, so in that case we are done as hk = 1
if d= 1 3, or 7. We now suppose WK = {±1}.

For any a ∈ Ik, we have

NΦr(aOK) = aa2OK = aNk/Q(a)OK .

Then by the assumption I0(Φr) = IK , we have aNk/Q(a)OK = πOK for
some π ∈K× such that ππ ∈ Q. Let ν = π/Nk/Q(a). Then νν ∈ Q and
νOK = aOK . This makes ν unique up to a root of unity hence up to a
sign.

The map φ : Gal(K/k)→ {±1} given by φ(σ) = σ(ν)/ν is a homo-
morphism. Since the order of Gal(K/k) is 3, the map φ is trivial. Hence
σ(ν) = ν for every σ ∈ Gal(K/k). This implies ν ∈ k× and hence a is
principal in k. As a was arbitrary, we then have hk = 1.

Remark 3.3.4. It is known that the imaginary quadratic fields with
class number one are k = Q(

√
−d) with d ∈ {3, 4, 7, 8, 11, 19, 43, 67,

163} (see Baker, Heegner, and Stark [2, 16, 41]).

Proposition 3.3.5. Let K be a cyclic sextic CM field and let Φ be a
primitive CM type of K. Suppose I0(Φr) = IKr . Then we have h∗K =
2tK−1, where tK is the number of primes in F that are ramified in K.

Proof. Recall that without loss of generality we have Φ = {id, y, y−1}
and Kr = K. By Lemma 3.2.3, we have h∗K = 2tK−1[IK : IHKPK ], where
IHK = {b∈ IK | b = b}. So it is enough to show [IK : IHKPK ] = 1 under the
assumption I0(Φr) = IKr . For any b∈ IK , we have the following equality

NΦr(y−1(b)/y−2(b)) = bb
−1
.

By the assumption I0(Φr) = IKr , we get bb
−1 = (β), where β ∈K× and

ββ ∈ Q. Here we have (ββ) = (NKr/Q((y−1b)/(y−2b))) = (1), by the
property of the type norm in Proposition 1.2.6 hence ββ = 1.

Then the proof continues as in the proof of Lemma 2.2.3: there is
a γ ∈K× such that β = γγ−1 by Hilbert’s Theorem 90. Thus we have
b = γb · ( 1

γ ) ∈ IHKPK and therefore IK = IHKPK .
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Proof of Proposition 3.3.1. It follows from Propositions 3.2.1, 3.3.2, 3.3.3,
and 3.3.5.

Theorem 3.1.2. There exist exactly 37 isomorphism classes of cyclic
sextic CM fields K such that there exists a primitive CM type Φ satisfying
I0(Φr) = IKr . These fields are exactly the fields listed in Table 3.1.

Proof. By Proposition 3.3.1, we have

I0(Φr) = IKr if and only if h∗K = 2tK−1 and hk = 1.

If hk = 1, then there is only one ramified prime in k, say p. Under the
assumption I0(Φr) = IKr , we have hk = 1 and hence all ramified primes
in K/F lie over p (see Proposition 4.8-(ii) in II of Lang [21]). So if
I0(Φr) = IKr , then we have tK ≤ 3 and therefore, we get h∗K = 2tK−1≤ 22.
Thanks to Park and Kwon [34], we have the list of cyclic sextic CM fields
with h∗K ≤ 4. And of all the sextic cyclic CM fields listed in Table 3 in
Kwon and Park [34], those that satisfy h∗K = 2tK−1 and hk = 1 are listed
in Table 3.1.

In Table 3.1, K is a cyclic sextic CM field that contains an imaginary
quadratic field k, and F is the totally real cubic subfield that is defined
as being the splitting field of an irreducible monic polynomial p(X).
Furthermore, dk is the absolute value of the discriminant of k and hF
is the class number of F . In column C some CM fields have ∗, this
indicates that a rational model of the corresponding CM curve is known,
see Section 4.4.
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Table 3.1: All CM class number one cyclic sextic CM fields

h∗K = 1
dk p(X) hF C |dk| p(X) hF C
3 X3 +X2−4X+ 1 1 * 7 X3−3X−1 1
3 X3 +X2−2X−1 1 * 7 X3 + 8X2−51X+ 27 3
3 X3−3X−1 1 * 7 X3 + 6X2−9X+ 1 3
3 X3 +X2−10X−8 1 * 7 X3 +X2−30X+ 27 3
3 X3 +X2−14X+ 8 1 * 7 X3 + 4X2−39X+ 27 3
3 X3 + 3X2−18X+ 8 3 8 X3 +X2−4X+ 1 1
3 X3 + 6X2−9X+ 1 3 8 X3 +X2−2X−1 1
3 X3 + 3X2−36X−64 3 11 X3 +X2−2X−1 1
4 X3 + 2X2−5X+ 1 1 * 19 X3 + 2X2−5X+ 1 1
4 X3−3X−1 1 * 19 X3 + 9X2−30X+ 8 3
4 X3 +X2−2X−1 1 * 19 X3 + 7X2−66X−216 3
7 X3 +X2−4X+ 1 1 43 X3 +X2−14X+ 8 1
7 X3 +X2−2X−1 1 * 67 X3 + 2X2−21X−27 1

h∗K = 4
dk p(X) hF C dk p(X) hF C
3 X3 + 4X2−15X−27 1 7 X3 + 2X2−5X+ 1 1
3 X3 + 2X2−21X−27 1 8 X3 +X2−10X−8 1
4 X3 +X2−14X+ 8 1 11 X3 +X2−14X+ 8 1
4 X3 +X2−10X−8 1 * 11 X3 + 2X2−5X+ 1 1
4 X3 + 3X2−18X+ 8 3 19 X3−3X−1 1
7 X3 +X2−24X−27 1

3.4 Non-normal sextic CM fields
In this section, we will prove Theorem 3.1.3. As in Section 3.3, we begin
with proving the following proposition, which is the analogue of Propo-
sition 3.3.1 in the case of non-normal sextic CM fields.
Proposition 3.4.1. Let K be a non-normal sextic CM field containing
an imaginary quadratic field k. Let Φ be a primitive CM type of K. Let F
be the totally real cubic subfield of K. Then I0(Φr) = IKr holds if and
only if h∗K = 2tK−1 and hk = 1, where tK is the number of primes in F
that are ramified in K.

Let K be a non-normal sextic CM field containing Q(
√
−d), where

d ∈ Z>0. The normal closure N of K is a dihedral CM field of degree 12
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with Galois group G := Gal(N/Q) = 〈x, y : y6 = x2 = 1, xyxy= 1〉, where
〈x〉 fixes K. The complex conjugation · is y3 in this notation. The normal
closure of F is the maximal totally real subfield N+ of N , which is fixed
by 〈y3〉. We have the following diagram of some of the subfields of N .

N

K K ′N+

F

Q

k k′

1

〈x〉 〈xy3〉〈y3〉

〈x,y3〉

G

〈x,y2〉 〈xy,y2〉

Figure 3.1: Some subfields and subgroups

The extension N/F is biquadratic, and the extensions N/k, N/k′
and N+/Q are dihedral Galois of degree 6.

Let N ′ be a number field that contains a subfield isomorphic to N .
Proposition 3.4.2. Given (K,Φ) such that K is a non-normal sextic
CM field that contains an imaginary quadratic subfield and Φ is a prim-
itive CM type of K with values in N ′. There is an embedding N ↪→ N ′

such that Φ is {id, y|K , y−1|K}. Moreover, the reflex field Kr is K and
the reflex type Φr is Φ.
Proof. There are 23 CM types of K with values in N ′. Two of them are
induced by the CM types of k. The remaining six are primitive. For sim-
plicity, we consider CM types with values in N . In other words, we iden-
tify N with a subfield of N ′. The CM type {id, y|K , y−1|K} of K is prim-
itive by Proposition 1.2.3 and if we translate this type with the elements
of the unique cyclic subgroup of order 6, we get six equivalent primitive
CM types. Hence by changing the embedding N ↪→N ′ by an appropriate
power of y, without loss of generality, we have Φ = {id, y|K , y−1|K}.

The CM type ΦN = {id,y,y−1,x,xy,xy−1} of N is induced by the
CM type Φ. By definition (see page 5), the reflex field Kr is the fixed
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field of {γ : γ ∈Gal(N/Q), Φ−1
N γ = Φ−1

N }= 〈x〉. Hence the reflex field Kr

is K and the reflex type Φr is Φ.

Proposition 3.4.3. Let K be a non-normal sextic CM field containing
an imaginary quadratic field and let Φ be a primitive CM type of K.
Suppose I0(Φr) = IKr . Then h∗K = 2tK−1, where tK is the number of
primes in F that are ramified in K.

Proof. The idea is similar to the proof of Proposition 3.3.5.
Put IHK = {b∈ IK | b= b} and PHK =PK∩IHK , where H := Gal(K/F ).

Then by Lemma 3.2.3 we have

h∗K = 2tK−1[IK : IHKPK ].

On the other hand, Lemma 2.2.3 tells us the following. If for every
b ∈ IK , we have

NΦrNΦ(b) = (β)bb−1 and ββ ∈Q (3.4.1)

with β ∈K×, then [IK : IHKPK ]≤ [IKr : I0(Φr)].
Without loss of generality, we can take Φ = {id, y|K , y−1|K}. Then

for any a ∈ IK , we have the following equality

NΦrNΦ(a) = NK/Q(a)NΦr(a)aa−1. (3.4.2)

By the assumption I0(Φr) = IKr , there exists α ∈ K× such that
NΦr(a) = (α) and αα ∈ Q. Moreover, the assumption I0(Φr) = IKr

also implies that there is a β ∈ K× such that NK/Q(a)aa−1(α) = (β)
and ββ ∈ Q. So the CM type (K,Φ) satisfies (3.4.1), by the assump-
tion I0(Φr) = IKr . Therefore, Lemma 2.2.3 implies [IK : IHKPK ]≤ [IKr :
I0(Φr)] = 1. Hence the result follows.

Proposition 3.4.4. Let K be a non-normal sextic CM field and let k be
an imaginary quadratic field such that K contains k. Let Φ be a primitive
CM type of K. Suppose I0(Φr) = IKr . Then we have either

(i) k = Q(
√
−d) with d ∈ {3, 4, 7, 8, 11, 19, 43, 67, 163} or
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(ii) k = Q(
√
−d) with d∈ {23, 31, 59, 83, 107, 139, 211, 283, 307, 331,

379, 499, 547, 643, 883, 907} and for every [a] ∈Clk of order 3, we
have K = k( 3√α) for all α ∈ k such that a3 = (α).

Proof. By Baker, Heegner, Stark [2, 16, 41], the list (i) consists of all
imaginary quadratic fields whose class number is 1 and by Arno [1], the
list (ii) consists of all imaginary quadratic fields whose class number is 3.

Let N , K, F , k, and k′ be as in Figure 3.1. Denote the Galois group of
N/Q by G. Without loss of generality, we can take Φ = {id, y|K , y−1|K}
and Kr =K. Given a ∈ Ik, we have

NΦr(aOKr)ON = (aON )y(aON )y−1(aON )
= a2aON = aNk/Q(a)ON .

Then by the assumption I0(Φr) = IK , we have aNk/Q(a)ON = πON for
some π ∈K× such that ππ ∈Q.

Let ν = π/Nk/Q(a). Then νν ∈ Q and νON = aON . We would like
to imitate the proof of Proposition 3.3.3 and show ν ∈ k× in order to
conclude hk = 1. Since K is the field fixed by 〈x〉, to show that ν is fixed
by Gal(N/k) = 〈x, y2〉 it would be enough to prove y2ν = ν.

However, we cannot prove this. Instead we will show that if hk 6= 1,
then hk = 3 and K = k( 3√α), where (α) = a3 for every ideal class [a]∈Clk
with order 3.

Suppose that hk 6= 1.
Claim 1. The subgroup 〈y2〉 ⊂G fixes all elements of the group WN of
roots of unity.
Proof. Suppose that µN = m. Then Q(ζm) is contained in the maximal
abelian subfield M of N . Since the Galois group of M is G/[G,G] ∼=
〈x,y〉/〈y2〉, every element in WN is fixed by 〈y2〉. This proves the claim.

The map φ : 〈y2〉→WN given by φ(y2) = (y2ν)/ν is a 1-cocyle. But y2

acts trivially as y2|M is the identity map, hence φ is a homomorphism.
It depends only on a because y2 fixes the elements of WN . So we denote
this homomorphism φ by φa.
Claim 2. The map

ψ : Ik→ Hom(〈y2〉,WN )
a 7→ φa
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is a homomorphism and induces an injective homomorphism from the
class group Clk to Hom(〈y2〉,WN ).
Proof. For i= 1, 2 let ai be a fractional ideal of Ik and νi be an element
in K× such that aiON = νiON and νiνi ∈Q. We have

ψ(a1a2)(y2) = (y2(ν1ν2))/ν1ν2 = ((y2ν1)/ν1)((y2ν2)/ν2)
= (ψ(a1)ψ(a2))(y2),

hence ψ is a homomorphism. Moreover, we clearly have Pk ⊂ kerψ. On
the other hand, if a ∈ kerψ, then ψ(a) is the identity homomorphism
and so ν is fixed by y2. This implies that ν is fixed by Gal(N/k) as
ν ∈K is also fixed by x. So we have ν ∈ k, and hence a ∈ Pk. Then the
isomorphism theorem proves the claim.

Since the order of 〈y2〉 is 3, the order of the image of ψ is divisible
by 3. So hk divides 3 and since we assumed hk 6= 1, we get hk = 3. For
every generator [a] of Clk, there is ν ∈K× and α ∈ k such that a3 = αOk,
ν = aOK and νiνi ∈Q. Hence ν3 = α up to a root of unity in K, so up
to ±1. So ν = 3√α ∈K and hence we have K = k( 3√α).

Therefore, we proved that the imaginary quadratic field in a sextic
non-normal CM field satisfying I0(Φr) = IKr is one of the fields in the
proposition.

Proposition 3.4.5. None of the fields K in (ii) in Proposition 3.4.4 are
sextic CM fields with CM class number one.

Proof. Let k be any of the imaginary quadratic fields in (ii) in Propo-
sition 3.4.4. For a generator [a] of Clk such that a3 = αOk, we let
K = k( 3√α). Let F be the maximal totally real subfield of the CM fieldK.
A direct computation gives h∗K 6= 2tK−1, therefore, by Proposition 3.4.3,
the CM field K is not a CM class number one field.

Proof of Proposition 3.4.1. If I0(Φr) = IKr , then by Proposition 3.4.3 we
have h∗K = 2tK−1, and by Propositions 3.4.4 and 3.4.5 we have that the
imaginary quadratic fields is as required.

Conversely, if k is one of the imaginary quadratic fields in the propo-
sition and h∗K = 2tK−1, then by Propositions 3.2.1 and 3.4.2 we have
I0(Φr) = IKr .
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3.4. Non-normal sextic CM fields

By combining the following two theorems, under GRH, we give a
lower bound for the relative class number h∗K of a non-normal sextic CM
field K containing an imaginary quadratic field. Then using this result,
under GRH, we give an upper bound on the discriminant of the totally
real cubic subfield F of a CM class number one non-normal sextic CM
field K, see Proposition 3.4.9.
Theorem 3.4.6. (Louboutin [25, Theorem 2]) If F is a totally real cubic
number field, then

Ress=1(ζF )≤ 1
8 log2 dF ,

where ζF is the Dedekind zeta function and dF is the discriminant.
Theorem 3.4.7. (J. Oesterlé) For any number field K different from Q
for which the Riemann Hypothesis for the Dedekind zeta function ζK
holds, we have

Ress=1(ζK)≥ e−3/2√
log |dK |

exp
(

−1√
log |dK |

)
.

Proof. See Theorem 14 in Bessassi [5].

Combining these theorems with the analytic class number formula
(see page 35), we get the following.
Theorem 3.4.8. Let K be a non-normal sextic CM field containing an
imaginary quadratic field and let F be the totally real cubic subfield of
K. Then, under the Riemann Hypothesis (RH) for ζK(s), we have

h∗K ≥
µK

e3/2π3

√
|dK |/dF

(logdF )2
√

log(|dK |)
exp

(
−1√

log |dK |

)
, (3.4.3)

where µK is the order of the group of roots of unity WK of K.
Proof. Recall QK := [O×K :WKO×F ]. We have (see Washington [46, Chap-
ter 4]):

h∗K = QKµK
8π3

√
|dK |
dF

Ress=1(ζK)
Ress=1(ζF ) .

If we assume the Riemann Hypothesis for ζK , then combining Theorem
3.4.6 and Theorem 3.4.7, we obtain the lower bound (3.4.3).
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Proposition 3.4.9. Let K be a CM class number one non-normal sextic
CM field containing an imaginary quadratic field k. Let F be the totally
real cubic subfield of K. Then we have k = Q(

√
−d) with d ∈ {3, 4, 7, 8,

11, 19, 43, 67, 163} and an upper bound on dF is given in Table 3.2.

|dk| dF ≤
3 6 ·109

4 3 ·1010

7 1.4 ·1010

8 7 ·1010

11 8 ·109

19 4 ·109

43 1.4 ·109

67 8 ·108

163 3 ·108

Table 3.2: Upper bounds on dF for CM class number one non-normal sextic
CM fields K containing an imaginary quadratic field k.

Proof. By Proposition 3.4.1, the CM field K contains one of the imagi-
nary quadratic fields in the proposition and h∗K = 2tK−1. Since hk = 1 we
have tk ≤ 3. Moreover, the factor exp(−1/

√
log |dK |) increases monoton-

ically with |dK | and |dK |/ log |dK | increases monotonically with |dK |> 2.
Hence for every fixed dF , the right hand side of (3.4.3) increases mono-
tonically with |dK |> e.

Furthermore, we have |dK |= d2
Fdr, where dr := |NF/Q(∆K/F )|. If we

replace |dK | with d2
Fdr and divide both sides of (3.4.3) by the constant

µK/(e3/2π3), then we get

h∗Ke
3/2π3

µK
≥

√√√√ drdF
(logdF )4 log(drd2

F ) exp
(

−1√
log(drd2

F )

)
. (3.4.4)

For every fixed dr, each of the two factors of the right hand side of
(3.4.4) increases monotonically with dF > 103. Hence the right hand
side of (3.4.4) increases monotonically with dF for every fixed dr.
Claim. Let p be the prime that ramifies in k. Then we have
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3.4. Non-normal sextic CM fields

(i) dr ≥ |dk| if tK = 1,

(ii) dr ≥max{p2, |dk|} if tK = 2,

(iii) dr ≥ |dk|3 if tK = 3.

Proof. By Lemma 20 in Louboutin, Okazaki, Olivier [27], we have that
|dk| divides dr.

Every prime p of F that ramifies in K/F divides ∆K/F . So ∆K/F

has at least tK prime factors. Hence NF/Q(∆K/F ) has at least tK prime
factors with multiplicity. And these factors all must be equal to p because
it is the unique prime that ramifies in k/Q. So this proves (ii).

If tK = 3, then p splits completely in F and all the primes above p in
F ramify in K. So gcd(dk,dF ) = 1. Since |dk|3 divides |dk|3|Nk/Q(∆K/k)|
= |dK | = d2

Fdr and gcd(dk,dF ) = 1, we have that |dk|3 divides dr. This
proves the last assertion. Hence we proved the claim.

For every dk in Table 3.2 and every tK ∈ {1,2,3}, if we take dF from
the right hand side of the table, use h∗K = 2tK−1, µK = µk and use the
lower bound on dr from (i)–(iii), then we get that the right hand side
of (3.4.4) is larger than the left hand side. By monotonicity of the right
hand side of (3.4.4) in terms of dr and dF , this gives a contradiction with
(3.4.4) for every dF larger than the bound in Table 3.2.

By Proposition 3.3.3, we know that every CM class number one sextic
CM field K contains a class number one imaginary quadratic field k.
Thus there is only one prime that ramifies in k. On the other hand, the
ramified primes in K/F are lying above the prime that ramifies in k (see
Proposition 4.8-(ii) in II of Lang [21]). Hence the relative class number
h∗K is at most 4, and so by Proposition 3.4.9, we get that if I0(Φr) = IKr

and the RH holds for ζK , then the bound for dF is given in Table 3.2.
We will list all fields up to that bound. Then the following lemma

will help us eliminate sextic CM fields that do not have trivial CM class
group.

Lemma 3.4.10. Let K be a non-normal sextic CM field containing an
imaginary quadratic field k. Assuming I0(Φr) = IKr , if a rational prime
l splits completely in K/Q, then l ≥

√
dF /(6|dk|).
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Proof. Let l be a rational prime that splits completely in K and l be a
prime in K lying above l. By the assumption I0(Φr) = IKr , there exists
π ∈K× such that NΦr(l) = πOK and ππ = l.

We claim that K = Q(π). Let N be a normal closure of K with
Gal(N/Q) = 〈x, y : y6 = x2 = 1, xyxy = 1〉, where K is fixed by 〈x〉.

If σπ and π have the same ideal factorization in N , then σ satisfies

(σNΦr(l))ON = (NΦr(l))ON . (3.4.5)

Since N is a normal closure of K, the rational prime l splits completely
in N . Then the equality (3.4.5) holds only if σΦr

N = Φr
N , equivalently

ΦNσ = ΦN . Since Φ is primitive, this implies that σ ∈ 〈x〉. So if σπ = π,
then σ ∈Gal(N/K), hence Q(π) =K.

We claim that {1,π,π} is linearly independent over k. Assume that
they are linearly dependent over k. Then there exist a,b ∈ k such that
π = a+ bπ. Then we have bπ2 +aπ− l = 0, hence {1,π,π2} are linearly
dependent over k. But this is a contradiction since the degree of K/k
is 3.

Therefore, we have

∆K/k ≤ |disc(1,π,π)|=

∣∣∣∣∣∣∣
1 π π
π π2 l
π l π2

∣∣∣∣∣∣∣≤ 3! · l2 (3.4.6)

as |π|=
√
l for every K ↪→ C. Hence we get |Nk/Q(∆K/k)| ≤ (6l2)2.

By Lemma 20 in [27], we have |dK | ≥ |dk|d2
F . So we get

|dk|d2
F ≤ |dK |= |Nk/Q(∆K/k)||dk|3 ≤ (6l2)2|dk|3.

Hence we get
√
dF /(6|dk|)≤ l.

Algorithm 3.4.11. Output: Assuming GRH, the output is the complete
list of non-normal sextic CM fields with a primitive CM type Φ satisfying
I0(Φr) = IKr and containing an imaginary quadratic field k.

Step 1. Enumerate all totally real non-normal cubic number fields F up to
dF ≤ 7 ·1010, using the algorithm in Belabas [4].
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3.4. Non-normal sextic CM fields

Step 2. For each F construct K = F (
√
−d), where d ∈ {3, 4, 7, 8, 11, 19,

43, 67, 163}.

Step 3. Eliminate fields K that have totally split primes under the bound√
dF /(6|dk|).

Step 4. For each sextic CM field K, compute the class numbers of K and
its totally real subfield F under the GRH. Then test whether h∗K =
2tK−1, where tK is the number of primes in F that are ramified
in K.

Proof. Note that Step 3 of the algorithm does not affect the validity of
the algorithm by Lemma 3.4.10, only speeds up the computation.

Suppose that a non-normal sextic CM field K = F (
√
−d) with d ∈

Z>0 satisfies I0(Φr) = IKr . Then by Proposition 3.4.1, we have h∗K =
2tK−1, and without loss of generality d ∈ {3, 4, 7, 8, 11, 19, 43, 67,
163}. Therefore, there are at most 3 ramified primes in K/F . This
implies tK ≤ 3 and hence h∗K = 2tK−1 ≤ 4. Then by Proposition 3.4.9,
under GRH, for each k we get the upper bound for dF as in Table 3.2.
Hence dF < 7 ·1010. Therefore, the CM field K is listed by the algorithm.
Conversely, all the listed fields satisfy I0(Φr) = IKr by Propositions 3.2.1
and 3.4.2.

We implemented the algorithm in SageMath [36] using Belabas’ cubic
software [3] for Step 1 and using Pari [33]’s bnfinit function with flag = 0
for computing the class numbers under the GRH without computing
the generators of the unit group. The fields that we obtained are in
Tables 3.3–3.12. The implementation is online at [18]. This computation
takes few weeks on a computer.

So we proved Theorem 3.1.3.
In Tables 3.3–3.12, the notation is as follows: K is a non-normal sextic

CM field that contains Q(
√
−d) for some d ∈ Z>0; F is the totally real

cubic subfield of K and F is defined by a monic irreducible polynomial
p(X); h∗K is the relative class number hK/hF , where hK and hF are the
class numbers of K and F , respectively.
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Table 3.3: Under GRH, the complete list of p(X) ∈Q[X] such that
K = Q(

√
−3)[X]/p(X) is a CM class number one

non-normal sextic CM field.

h∗
K = 1

p(X) hF p(X) hF

X3 − 6X− 2 1 X3 + 3X2 − 24X+ 8 1
X3 − 6X− 1 1 X3 + 4X2 −X− 2 1
X3 − 9X− 2 1 X3 + 4X2 − 3X− 3 1
X3 − 18X− 12 1 X3 + 4X2 − 5X− 3 1
X3 +X2 − 3X− 1 1 X3 + 4X2 − 7X− 4 1
X3 +X2 − 4X− 1 1 X3 + 4X2 − 12X− 12 1
X3 +X2 − 7X− 1 1 X3 + 4X2 − 16X− 4 1
X3 +X2 − 9X− 3 1 X3 + 4X2 − 18X− 12 1
X3 +X2 − 16X+ 8 1 X3 + 4X2 − 22X+ 8 1
X3 +X2 − 20X− 12 1 X3 + 5X2 −X− 2 1
X3 +X2 − 22X− 16 1 X3 + 5X2 − 6X− 6 1
X3 +X2 − 30X− 18 1 X3 + 5X2 − 10X− 2 1
X3 + 2X2 − 3X− 2 1 X3 + 5X2 − 12X− 6 1
X3 + 2X2 − 4X− 2 1 X3 + 5X2 − 18X− 24 1
X3 + 2X2 − 5X− 3 1 X3 + 5X2 − 22X− 8 1
X3 + 2X2 − 14X− 12 1 X3 + 6X2 − 2 1
X3 + 2X2 − 15X− 6 1 X3 + 6X2 − 3X− 2 1
X3 + 2X2 − 22X+ 4 1 X3 + 6X2 − 3X− 6 1
X3 + 3X2 − 3X− 2 1 X3 + 6X2 − 6X− 12 1
X3 + 3X2 − 4X− 2 1 X3 + 6X2 − 9X− 4 1
X3 + 3X2 − 6X− 2 1 X3 + 6X2 − 21X− 36 1
X3 + 3X2 − 6X− 3 1 X3 + 7X2 − 3 1
X3 + 3X2 − 9X− 5 1 X3 + 7X2 +X− 3 1
X3 + 3X2 − 12X− 8 1 X3 + 7X2 − 8X− 12 1
X3 + 3X2 − 18X− 8 1 X3 + 7X2 − 14X− 24 1
X3 + 3X2 − 18X− 16 1 X3 + 9X2 − 6X− 24 1
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Table 3.4: Under GRH, the complete list of p(X) ∈Q[X] such that
K = Q(

√
−3)[X]/p(X) is a CM class number one

non-normal sextic CM field.

h∗
K = 2

p(X) hF p(X) hF

X3 − 5X− 1 1 X3 + 2X2 − 5X− 1 1
X3 − 8X− 2 1 X3 + 2X2 − 14X− 4 1
X3 − 14X− 4 1 X3 + 3X2 − 8X− 8 1
X3 +X2 − 5X+ 1 1 X3 + 3X2 − 14X− 8 1
X3 +X2 − 6X− 2 1 X3 + 4X2 − 2X− 2 1
X3 +X2 − 8X− 2 1 X3 + 4X2 − 5X− 2 1
X3 +X2 − 9X+ 1 1 X3 + 5X2 −X− 3 1
X3 +X2 − 12X− 8 1 X3 + 6X2 +X− 2 1
X3 + 2X2 − 3X− 1 1

h∗
K = 4

p(X) hF p(X) hF

X3 − 22X− 12 1 X3 + 3X2 − 16X− 12 1
X3 + 3X2 − 4X− 3 1 X3 + 6X2 −X− 3 1
X3 + 3X2 − 10X− 6 1 X3 + 6X2 − 4X− 12 1
X3 + 3X2 − 7X− 3 1
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Table 3.5: Under GRH, the complete list of p(X) ∈Q[X] such that
K = Q(

√
−4)[X]/p(X) is a CM class number one

non-normal sextic CM field.

h∗
K = 1

p(X) hF p(X) hF

X3 − 6X− 2 1 X3 + 3X2 − 8X− 2 1
X3 − 14X− 4 1 X3 + 3X2 − 24X− 18 1
X3 − 22X− 12 1 X3 + 4X2 − 3X− 4 1
X3 +X2 − 3X− 1 1 X3 + 4X2 − 22X− 4 1
X3 +X2 − 4X− 1 1 X3 + 4X2 − 27X− 36 1
X3 +X2 − 5X+ 1 1 X3 + 5X2 − 4X− 6 1
X3 +X2 − 7X− 1 1 X3 + 5X2 − 8X− 6 3
X3 +X2 − 12X− 8 1 X3 + 5X2 − 12X− 8 1
X3 +X2 − 36X+ 18 1 X3 + 6X2 − 3X− 2 1
X3 + 2X2 − 3X− 2 1 X3 + 6X2 − 4X− 12 1
X3 + 2X2 − 4X− 2 1 X3 + 6X2 − 7X− 6 1
X3 + 2X2 − 11X− 6 1 X3 + 8X2 +X− 4 1
X3 + 2X2 − 18X− 8 1 X3 + 8X2 − 15X− 36 1
X3 + 2X2 − 18X+ 8 1 X3 + 13X2 + 12X− 12 1
X3 + 3X2 − 4X− 2 1

h∗
K = 2

p(X) hF p(X) hF

X3 − 4X− 1 1 X3 + 3X2 − 6X− 2 1
X3 +X2 − 6X− 2 1 X3 + 3X2 − 8X− 8 1
X3 +X2 − 10X+ 2 1 X3 + 3X2 − 10X− 6 1
X3 +X2 − 16X− 4 1 X3 + 3X2 − 16X− 12 1
X3 +X2 − 16X+ 8 1 X3 + 4X2 −X− 2 1
X3 + 2X2 − 4X− 1 1 X3 + 4X2 − 5X− 2 1
X3 + 2X2 − 6X− 3 1 X3 + 5X2 −X− 2 1
X3 + 2X2 − 14X− 12 1 X3 + 5X2 − 2X− 2 1
X3 + 2X2 − 18X− 12 1 X3 + 6X2 − 6X− 12 1
X3 + 3X2 − 3X− 2 1 X3 + 7X2 + 2X− 2 1

h∗
K = 4
p(X) hF

X3 + 3X2 − 10X− 8 1

68



3.4. Non-normal sextic CM fields

Table 3.6: Under GRH, the complete list of p(X) ∈Q[X] such that
K = Q(

√
−7)[X]/p(X) is a CM class number one

non-normal sextic CM field.

h∗
K = 1

p(X) hF p(X) hF

X3 − 6X− 2 1 X3 + 3X2 − 30X− 9 1
X3 +X2 − 16X− 1 3 X3 + 4X2 − 7X− 3 1
X3 +X2 − 8X− 1 1 X3 + 4X2 − 7X− 7 1
X3 +X2 − 36X+ 27 1 X3 + 4X2 − 9X− 1 1
X3 +X2 − 42X− 45 1 X3 + 5X2 − 6X− 3 1
X3 + 2X2 − 4X− 1 1 X3 + 5X2 − 18X− 27 1
X3 + 2X2 − 7X− 3 1 X3 + 6X2 − 5X− 7 1
X3 + 2X2 − 39X+ 27 1 X3 + 6X2 − 5X− 3 1
X3 + 3X2 − 10X− 3 1 X3 + 8X2 −X− 5 1
X3 + 3X2 − 10X− 7 1 X3 + 9X2 − 3 1
X3 + 3X2 − 16X− 9 1

h∗
K = 2

p(X) hF

X3 +X2 − 4X− 1 1
X3 + 2X2 − 5X− 3 1
X3 + 2X2 − 3X− 1 1

h∗
K = 4

p(X) hF

X3 − 7X− 1 1
X3 + 5X2 − 2X− 3 1
X3 + 3X2 − 6X− 1 1
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Table 3.7: Under GRH, the complete list of p(X) ∈Q[X] such that
K = Q(

√
−8)[X]/p(X) is a CM class number one

non-normal sextic CM field.

h∗
K = 1

p(X) hF p(X) hF

X3 +X2 − 3X− 1 1 X3 +X2 − 24X− 4 1
X3 + 2X2 − 13X− 4 1 X3 +X2 − 16X− 8 3
X3 + 3X2 − 6X− 2 1 X3 + 3X2 − 8X− 8 1
X3 + 4X2 −X− 2 1 X3 + 4X2 − 18X− 16 1
X3 + 5X2 − 6X− 2 1 X3 + 6X2 − 10X− 20 1
X3 + 8X2 − 9X− 2 1 X3 + 6X2 − 22X− 20 1

h∗
K = 2

p(X) hF p(X) hF

X3 − 4X− 1 1 X3 + 5X2 − 2X− 2 1
X3 − 13X− 2 1 X3 + 6X2 −X− 4 1
X3 +X2 − 10X− 2 1 X3 + 8X2 + 3X− 2 1
X3 + 2X2 − 3X− 2 1 X3 + 3X2 − 16X− 8 1
X3 + 3X2 − 4X− 2 1 X3 + 4X2 − 14X− 16 1
X3 + 4X2 − 3X− 4 1 X3 + 4X2 − 10X− 8 1
X3 + 5X2 − 2 1

Table 3.8: Under GRH, the complete list of p(X) ∈Q[X] such that
K = Q(

√
−11)[X]/p(X) is a CM class number one

non-normal sextic CM field.

h∗
K = 1

p(X) hF p(X) hF

X3 − 5X− 1 1 X3 + 2X2 − 18X− 8 1
X3 +X2 − 7X− 2 1 X3 + 4X2 − 5X− 2 1
X3 +X2 − 8X− 1 1 X3 + 4X2 − 6X− 1 1
X3 +X2 − 16X− 2 1 X3 + 5X2 − 26X− 8 1
X3 +X2 − 16X− 8 3 X3 + 5X2 − 26X− 32 1
X3 + 2X2 − 18X+ 4 1 X3 + 7X2 − 14X− 16 1

h∗
K = 2

p(X) hF

X3 + 2X2 − 3X− 2 1
h∗

K = 4
p(X) hF

X3 + 5X2 − 2X− 2 1
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Table 3.9: Under GRH, the complete list of p(X) ∈Q[X] such that
K = Q(

√
−19)[X]/p(X) is a CM class number one

non-normal sextic CM field.

h∗
K = 1

p(X) hF p(X) hF

X3 + 2X2 − 8X− 3 1 X3 + 6X2 − 6X− 12 1
X3 + 4X2 − 3X− 3 1 X3 + 7X2 − 30X− 54 1
X3 + 4X2 − 14X− 8 1 X3 + 8X2 +X− 3 1
X3 + 6X2 −X− 4 1

Table 3.10: Under GRH, the complete list of p(X) ∈Q[X] such that
K = Q(

√
−43)[X]/p(X) is a CM class number one

non-normal sextic CM field.

h∗
K = 1

p(X) hF

X3 +X2 − 22X− 8 1
X3 + 2X2 − 18X− 12 1
X3 − 5X− 1 1

Table 3.11: Under GRH, the complete list of p(X) ∈Q[X] such that
K = Q(

√
−67)[X]/p(X) is a CM class number one

non-normal sextic CM field.

h∗
K = 1

p(X) hF

X3 + 2X2 − 4X− 1 1

Table 3.12: Under GRH, the complete list of p(X) ∈Q[X] such that
K = Q(

√
−163)[X]/p(X) is a CM class number one

non-normal sextic CM field.

h∗
K = 1

p(X) hF

X3 + 3X2 − 8X− 8 1
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Chapter 4

Simple CM curves of genus 3
over Q

ABSTRACT. In this chapter, we will study the isomorphism
classes of principally polarized simple CM abelian threefolds
with field of moduli Q. In Section 4.3, we will determine
the sextic CM fields corresponding to simple CM curves of
genus 3 with field of moduli Q.

4.1 Introduction
It is known that there are only finitely many CM elliptic curves

over Q, up to isomorphism over Q. An equivalent formulation of this
statement is that there are only finitely many class number one imaginary
quadratic fields. The complete list of such fields is given by Heegner [16]
(1952), Baker [2] (1966) and Stark [41] (1967). A list of simple CM curves
of genus 2 defined over Q, up to isomorphism over Q, is given by van
Wamelen [45] and the completeness of the list of van Wamelen is shown
by Murabayashi and Umegaki [31].

In this chapter, we determine the sextic CM fields corresponding to
simple CM curves of genus 3 with field of moduli Q. One way to do
this would be to compute the curves corresponding to the CM fields of
Chapter 3. However, the current techniques are not sufficient to compute
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Chapter 4. Simple CM curves of genus 3 over Q

all CM curves of genus 3, see Section 4.4. Instead, in this chapter, we will
use an alternative method inspired by Murabayashi [30] and Shimura [38].

It is known that every principally polarized simple abelian variety
over C of dimension g with g ≤ 3 is isomorphic to the Jacobian variety
of a curve of genus g (see Theorem 1.3.6). By the fact that the Torelli
map is injective on C-points, the field of moduli of J(C) is the same as
the field of moduli of the curve C. Therefore, we will be interested in
finding the CM fields corresponding to the principally polarized simple
CM abelian threefolds with rational field of moduli.

Theorem 4.1.1. There exist exactly 37 CM points over Q in the moduli
space of principally polarized abelian threefolds that are simple over Q
and have CM by a maximal order. In fact, it is exactly one point for
each field in Table 3.1.

Remark 4.1.2. For some of these abelian threefolds, we know that they
can be defined over Q, for others we do not know. See Section 4.4.

4.2 Polarized CM abelian varieties over Q

Let K be a CM field and Φ be a primitive CM type of K. Let P :=
(A,θ,ϕ) be a polarized abelian variety over C of type (K,Φ, t,m) (for the
definition see page 14) such that θ−1(End(A)) =OK . Let M be the field
of moduli of (A,ϕ). By the first main theorem of CM (Theorem 1.5.6),
we can determine MKr as a class field over Kr. This theorem does not
provide information about the size of M . We will see that sometimes
the field M depends on the isomorphim class of (A,ϕ) whereas MKr is
determined only by (K,Φ).

To say something about M requires investigation of the behavior of P
under an automorphism of C that does not necessarily fix Kr.

Let σ ∈ Aut(C). By Proposition 1.4.13, the abelian variety σ(A,θ)
is of type (K,σΦ) and if σ is the identity map on Kr, then σ(A,θ) is
of type (K,Φ). In this chapter, we broaden our perspective from only
the automorphisms in Aut(C/Kr), to all the ones σ ∈ Aut(C) for which
there exists [σ] ∈ Aut(K) such that we have σ ◦Φ = Φ◦ [σ] as sets.
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4.2. Polarized CM abelian varieties over Q

Note that if Φ is primitive, then [σ] is uniquely determined by σ and Φ
if it exists.

For a given P := (A,θ,ϕ), we denote by θ|J , for any subfield J of K,
the restriction of θ to J and by MJ the field of moduli of (A,θ|J ,ϕ).
Throughout this chapter, every P of CM type (K,Φ) is assumed to have
CM by OK .

Proposition 4.2.1. (Shimura) Let (K,Φ) be a primitive CM pair, and
let (Kr,Φr) be its reflex. Let P = (A,θ,ϕ) be of CM type (K,Φ) and
defined over C. Let J be a subfield of K, θ|J be the restriction of θ to J
and MJ be the field of moduli of (A,θ|J ,ϕ). Then the following assertions
hold.

(i) MJK
r is the field of moduli of P .

(ii) Kr is normal over MJ ∩Kr.

(iii) MJK
r is normal over MJ and Gal(MJK

r/MJ) is isomorphic to a
subgroup of Aut(K/J) via the map

σ|MJK
r 7→ [σ]

for σ ∈Aut(C/MJ), where [σ] ∈Aut(K/J) is such that σΦ = Φ[σ].

Proof. This is Shimura [39, Proposition 5.17] except that Shimura does
not explicitly give the map in (iii). Therefore, we reprove the second
part of (iii).

Let σ ∈ Aut(C/MJ) and let λ be an isomorphism from (A,ϕ,θ|J) to
(σA,σϕ,σθ|J), where σθ(α) = σθ([σ]−1α) for all α∈K. Since A is simple,
we have θ(K) = End0(A) := End(A)⊗Q. Let [σ] ∈ Aut(K/J) be given
by [σ](α) = θ−1(λ−1σ(θ(α))λ). Then we get that σθ and θ[σ] have the
same CM type, hence σΦ = Φ[σ]. Recall that [σ] is uniquely defined by
σΦ = Φ[σ] as Φ is primitive.

We have [σ] = idK if and only if σΦ = Φ if and only if σ|MJK
r =

idMJK
r . Hence the map σ|MJK

r 7→ [σ] is a well-defined injection, so
Gal(MJK

r/MJ) is isomorphic to a subgroup of Aut(K/J).

Remark 4.2.2. If K is abelian over Q and embedded inside C and Φ is
a primitive CM type of K, then we have [σ] = σ|K as σΦ = Φσ.
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Chapter 4. Simple CM curves of genus 3 over Q

Proposition 4.2.3. Let P = (A,θ,ϕ) be of a primitive CM type (K,Φ).
Let J be a subfield of K such that MJ =Q. Then J =Q and MK =Kr ∼=
K is Galois over Q.

Proof. Suppose that J is a subfield of K and MJ = Q. By Proposi-
tion 4.2.1-(ii), the reflex field Kr is normal over Q; and by (iii), the
Galois group Gal(Kr/Q) is isomorphic to a subgroup of Aut(K/J). In
particular, we get

[Kr : Q] = #Gal(Kr/Q)≤#Aut(K/J)≤ [K : J ]. (4.2.1)

On the other hand, since Φ is primitive, we get Krr =K by Lemma 1.2.5.
Furthermore, since Kr/Q is normal, the reflex field Krr is isomorphic
to a subfield of Kr. Hence we have Krr = K ⊂ Kr, and therefore, by
(4.2.1) we get J = Q and Kr ∼= K and by Proposition 4.2.1-(i), we get
MK =MJK

r =Kr.

Note that MQ :=M . For σ ∈ Aut(C/MQ), we define
σP = (σA,σθ,σϕ), (4.2.2)

where σθ(α) = σθ([σ]−1α) for all α ∈K.

Proposition 4.2.4. (Shimura [38, page 69]) For σ ∈ Aut(C/MQ), the
polarized simple abelian variety σP = (σA,σθ,σϕ) is of type (K,Φ).

Proof. Proposition 4.2.1-(iii) tells us Φ = σΦ[σ]−1 and then the result
follows from the definition of σθ.

Recall the notation (P ′ : P ) ∈ CK from (1.5.5).

Proposition 4.2.5. (Shimura [38, Proposition 2]) Let K be a CM field
and Φ be its CM type. Let P and P ′ be polarized simple abelian varieties
of CM type (K,Φ) and defined over k ⊂ C. For any σ, γ ∈ Aut(k/Q),
the following holds.

(i) If (P ′ : P ) = [(b,c)], then we have (σP ′ : σP ) = [([σ]b, [σ]c)].

(ii) If (σP : P ) = [(b,c)] and (γP : P ) = [(d,e)], then we have

(γσP : P ) = [(([γ]b)d,([γ]c)e)].
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4.3. Principally polarized simple CM abelian threefolds

(iii) If (P ′ : P ) = [(b,c)] and (σP : P ) = [(d,e)], then we have

(σP ′ :P ′) = [(([σ]b)b−1d,([σ]c)c−1e)].

Proof. (i) See Proposition 2-(i) in Shimura [38].

(ii) We have (γσP : P ) = (γσP : γP )(γP : P ) and by (i), we have (γσP :
γP ) = [([γ]b, [γ]c)]. It follows

(γσP : P ) = [([γ]b, [γ]c)][(d,e)].

(iii) We have (σP ′ : P ′) = (σP ′ : σP )(σP : P )(P ′ : P )−1. By (i), we have
(σP ′ : σP ) = [([σ]b, [σ]c)]. Hence the result follows from the follow-
ing

(σP ′ : P ′) = [([σ]b, [σ]c)][(d,e)][(b,c)]−1.

4.3 Principally polarized simple CM
abelian threefolds

In this chapter, our interest will be determining the sextic CM fields that
correspond to principally polarized CM abelian threefolds with rational
field of moduli.

In this section, we will prove the following.

Theorem 4.3.1.

(i) If a principally polarized simple CM abelian threefold over C with
CM by the ring of integer of a CM field K has field of moduli
Q, then K is one of the cyclic sextic CM fields in Table 3.1; in
particular h∗K = 2tK−1 = 1 or 4, where tK is the number of primes
in F that are ramified in K.

(ii) For every cyclic sextic CM field K with h∗K = 1, up to isomorphism,
there exists a unique principally polarized simple abelian threefold
over C that has CM by OK , and such principally polarized abelian
threefolds have field of moduli Q.
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Chapter 4. Simple CM curves of genus 3 over Q

(iii) For every cyclic sextic CM field K with h∗K = 4 and a primitive
CM type Φ that satisfies I0(Φr) = IKr , there are four isomorphism
classes of principally polarized simple abelian threefolds over C that
have CM by OK . Among these four isomorphism classes, one of
them has rational field of moduli and the other three have field of
moduli F , which is the cubic subfield of K.

Lemma 4.3.2. Let K be a CM field of degree 2g with an odd prime g and
let Φ be a CM type of K. Let P = (A,θ,ϕ) be a g-dimensional polarized
abelian variety of type (K,Φ) with CM by OK .

If A is simple over C and the field of moduli MQ of (A,ϕ) is Q then K
is cyclic over Q, the CM type Φ is primitive and we have I0(Φr) = IKr .

Proof. Suppose that A is simple over C. Then by Theorem 1.4.1 the
CM type Φ of A is primitive. By Proposition 4.2.3, we have that K is
Galois over Q. Hence the maximal totally real subfield F is also normal
over Q with an odd prime degree g. Every group with a prime order is
cyclic, hence Gal(F/Q) is cyclic. Let k be the subfield of K that is fixed
by the order-g cyclic subgroup of Gal(K/Q). Since K is a CM field of
order 2g and F is totally real, we have ρ∈Gal(K/F ) and Gal(K/F ) = 2.
Therefore, the subfield k is imaginary quadratic over Q. Moreover, since
ρ commutes with every element in Gal(K/k), the Galois group Gal(K/Q)
is abelian hence cyclic of degree 2g.

Moreover, recall that the first main theorem of Complex Multiplica-
tion (Theorem 1.5.6) says that MQK

r is the unramified class field over
Kr corresponding to the ideal group I0(Φr). Hence if MQ = Q, then
(K,Φ) satisfies I0(Φr) = IKr .

Lemma 4.3.2 proves (i) of Theorem 4.3.1 as follows. If MQ = Q,
then K is cyclic over Q, the CM type Φ is primitive and (K,Φ) satisfies
I0(Φr) = IKr . By Theorem 3.1.2, the cyclic sextic CM fields that satisfy
I0(Φr) = IKr for a primitive CM type are listed in Table 3.1. Therefore,
we have h∗K ∈ {1, 4}.

Remark 4.3.3. We can also see h∗K ∈ {1, 4} directly as follows. Since K
is cyclic over Q, the totally real cubic subfield F is also cyclic over Q.
Moreover, Proposition 3.3.3 tells us that K contains a class number one
imaginary quadratic field. So there is only one rational prime that is
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4.3. Principally polarized simple CM abelian threefolds

ramified in K/F (see Proposition 4.8-(ii) in II of Lang [21]). Since F
is a cubic field, the number tK of primes in F that are ramified in K
is at most 3. Furthermore, since K is cyclic, we have tK 6= 2. Hence
tK ∈ {1,3} and so h∗K = 2tK−1 ∈ {1, 4}.

Lemma 4.3.4. Let K be a cyclic sextic CM field in Table 3.1 and let F
be the totally real cubic subfield of K. Let (O×F )+ be the group of totally
positive units in OF . Then we have (O×F )+ = (O×F )2. Moreover, we have
ClF = Cl+F .

Proof. For each field in Table 3.1, using Sage [36], we check that the map

sign :O×F → (C2)3 (4.3.1)

is surjective. On the other hand, since F is a totally real cubic field, we
have [O×F : (O×F )2] = 8 by the Dirichlet unit theorem. Hence the kernel
of the map (4.3.1) is (O×F )2, and therefore the first equality follows.

Moreover, since the map (4.3.1) is surjective, we have ClF = Cl+F .

Proposition 4.3.5. (Shimura [38, Proposition 1]) Let K be a CM field
and let Φ be a primitive CM type of K. If DK/F 6=OK , then there is a
principally polarized abelian variety P = (A,θ,ϕ) of type (K,Φ).

Corollary 4.3.6. For every CM class number one sextic cyclic CM
field K and every primitive CM type Φ of K, there exists a principally
polarized abelian threefold of type (K,Φ).

Proof. Theorem 3.1.2 proves that all CM class number one cyclic sextic
CM fields K are in Table 3.1 and we can see that all the fields in this table
satisfy DK/F 6=OK . Therefore, the result follows from Proposition 4.3.5.

The following is a variant of Proposition 4.4 in Streng [43].

Proposition 4.3.7. Let K be a CM field of degree 2g and let F be
the maximal totally real subfield of K. Let Φ be a primitive CM type
of K. Suppose (O×F )+ = NK/F (O×K). If there exists a principally po-
larized abelian variety over C of type (K,Φ), then there are exactly h∗K
isomorphism classes of such principally polarized abelian varieties.
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Proof. Set

HΦ := {(t,m) ∈K×× IK : Im(φ(t))> 0 for all φ ∈ Φ, t=−t,
and t−1OK = DK/Qmm}.

The group K× acts on HΦ via x(t,m) = ((xx)−1t,xm) for x ∈K×. Let
H′Φ := HΦ/{((xx)−1,xOK) : x ∈K×}.

Let CMΦ be the set of isomorphism classes of principally polarized
g-dimensional abelian varieties of type (K,Φ). Let Pi = (Ai, θi,ϕi) be a
principally polarized g-dimensional abelian varietiy of type (K,Φ). Then
there is a Z-lattice mi in K and ti ∈ K× such that Ai ∼= Cg/Φ̃(mi),
and φ(ti) > 0 for all φ ∈ Φ and ti = −ti, see page 14. By Proposi-
tion 1.5.5, it holds that P1 and P2 are isomorphic if and only if (P1 :
P2) := [(t−1

1 t2,m1m
−1
2 )] = [(1,OK)], which holds if and only if there ex-

ists x ∈K× such that m2 = xm1 and t2(xx)−1 = t1. So CMΦ is bijective
to H′Φ.

Recall CK := (F�0× IK)/{(xx,xOK) : x ∈K×}. Define

C′K = {[(b,c)] ∈ CK : cc = bOF}.

Suppose DK/F 6= OK . Then by Proposition 4.3.5, there exists an el-
ement (t0,m0) in HΦ. We observe that the map C′K → H′Φ : [(b,c)] 7→
[(b−1t0,cm0)] is a bijection. Hence we have |C′K |= |H

′
Φ|= |CMΦ|.

Moreover, by the assumption (O×F )+ =NK/F (O×K), for every [(b,c)]∈
C′K there is ε ∈ O×K such that b = εε. This means that for every c ∈ IK ,
there is a unique class in C′K . Hence the group C′K injects into ClK via
the map [(b,c)] 7→ [c].

We claim C′K
∼= ker(ClK → ClF ).

By definition, for every [(b,c)] ∈ C′K , we have NK/F (c) = bOK and b ∈
F�0. Therefore, we get C′K ⊂ ker(ClK →ClF ) via the injection [(b,c)] 7→
[c]. On the other hand, if [a] ∈ ker(ClK→ClF ), then we have NK/F (a) ∈
PF and P+

F = PF by the assumption (O×F )+ = NK/F (O×K). This proves
the claim.

The norm map NK/F : ClK → ClF is surjective by Theorem 10.1 in
Washington [46] and the fact that the infinite primes ramify in K/F .
By the isomorphism theorem we have ClK/C′K ∼= ClF . Therefore, we get
h∗K := |ClK |/|ClF |= |C′K |= |CMΦ|.
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Corollary 4.3.8. Let K be a cyclic sextic CM field in Table 3.1 on
page 56 and let Φ be a primitive CM type of K. Then there are h∗K ∈{1,4}
isomorphism classes of principally polarized abelian varieties over C of
type (K,Φ) with CM by OK .
Proof. The existence of a principally polarized abelian threefold of type
(K,Φ) is guaranteed by Corollary 4.3.6. On the other hand, by
Lemma 4.3.4, we have (O×F )+ = NK/F (O×K), hence the result follows
from Proposition 4.3.7.

The following proposition is (ii) in Theorem 4.3.1.
Proposition 4.3.9. For every cyclic sextic CM field K with h∗K = 1,
up to isomorphism, there exists a unique principally polarized simple
abelian threefold (A,ϕ) over C with End(A)∼=OK , and such a principally
polarized simple abelian threefold has field of moduli Q.
Proof. Let CMK be the set of isomorphism classes of principally polarized
simple abelian threefold (A,ϕ) over C with End(A)∼=OK .

We claim that for every primitive CM type Φ of K, there is a bijection
between CMΦ and CMK . Given any (A,ϕ) ∈ CMK , there is an embed-
ding θ :OK→End(A) for (A,ϕ). Let Φ′ be the CM type of A. Since A is
simple, by Theorem 1.4.1, the CM type Φ′ is primitive. Then there is a
unique σ ∈Aut(K) such that Φ = Φ′σ, see the proof of Proposition 3.3.2.
So we have (A,θσ,ϕ) ∈ CMΦ and this proves the claim.

Since CMΦ and CMK are bijective and |CMΦ|= 1 by Proposition 4.3.7,
we have |CMK |= 1. This means that for every cyclic sextic CM field K
with h∗K = 1, there exists a unique principally polarized simple abelian
threefold of type (K,Φ) and every representative (A,ϕ) of the isomor-
phism class in CMK satisfies (A,ϕ)∼= (σA,σϕ) for all σ ∈Aut(C). Hence
MQ = Q.

We now suppose that K is a cyclic sextic CM field in Table 3.1 with
h∗K = 4 and prove (iii) in Theorem 4.3.1.
Lemma 4.3.10. Let P be a principally polarized simple abelian threefold
over C that has CM by the maximal order of a CM class number one
sextic CM field K. Then we have

(ρP : P ) = 1,
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where ρ is complex conjugation.

Proof. Let Φ be a primitive CM type ofK and let P be of type (K,Φ, t,m),
see page 14. By Proposition 3.5.5 in Lang [20], the principally polarized
simple abelian threefold ρP is of type (K,Φ, t,m). Then by (1.5.5), we
have (ρP :P ) = [(1,m/m)]. So we get (ρP :P ) = 1 if and only if m/m∈PK
and is generated by an α ∈K× with αα = 1.

Since all the fields K in Table 3.1 satisfy I0(Φr) = IKr , by Propo-
sition 3.3.5, we have IK = IHKPK , where IHK = {b ∈ IK | b = b}. So
there is a ∈ IHK and (β) ∈ PK such that m = a(β). Then it follows that
m/m = (β/β) =: (α) and αα = 1 since we have NK/F (O×K) = (O×F )+ by
Lemmata 3.2.2 and 4.3.4. So we get (ρP : P ) = 1.

Recall CK := (F�0× IK)/{(xx,xOK) : x ∈K×} and C′K = {[(b,c)] ∈
CK : cc = bOF}.

Lemma 4.3.11. Let K be a cyclic sextic CM field with h∗K = 4 and let
Φ be a primitive CM type of K. Let F be the totally real cubic subfield
of K. Let pOF = p1p2p3 and piOK = P2

i . Suppose I0(Φr) = IKr .
Then there is ti ∈ F�0 such that phF

i = tiOF for each i ∈ {1,2,3} and
we have

C′K = {[(1,OK)]}∪{[(ti,P
hF
i )] : i= 1,2,3}

of order 4.

Proof. The Galois group Gal(K/Q) acts on {P1,P2,P3} transitively,
hence they all have the same order in ClK .

By the assumption I0(Φr) = IKr , Proposition 3.3.5 implies IK =
IHKPK . By Table 3.1, the class number hF is odd, so the group ClF
injects into ClK . Therefore, we have

ClK = IHKPK/PK = 〈ClF , [P1], [P2], [P3]〉.

Since h∗K = 4, the order of 〈[P1], [P2], [P3]〉 is divisible by 4. Hence [Pi]
has even order in ClK .

By Lemma 4.3.4, there is ti ∈ F�0 such that p
hF
i = tiOF . Hence we

have [(ti,P
hF
i )]∈ C′K as NK/F (PhF

i ) = p
hF
i = tiOF . By Proposition 3.3.1,

under the assumption I0(Φr) = IKr , the imaginary quadratic field k ⊂K
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has class number one. Hence there is only one ramified prime in k, say
p. Then we have P1P2P3 = √−pOK if k = Q(

√
−d) with d 6= 1 or

P1P2P3 = (1 + i)OK otherwise. Since [Pi] has even order, no two of
[PhF

i ] for i ∈ {1,2,3} are the same class in ClK and none are the trivial
class. Moreover, in the proof of Proposition 4.3.7, we proved |C′K |= h∗K .
Therefore we get C′K = {[(1,OK)]}∪{[(ti,P

hF
i )] : i= 1,2,3} of order 4.

The following proves (iii) in Theorem 4.3.1.

Proposition 4.3.12. Let K be a cyclic sextic CM field with h∗K = 4 and
let Φ be a primitive CM type of K. Let F be the totally real cubic subfield
of K. Suppose I0(Φr) = IKr . Then there are four isomorphism classes
of principally polarized simple abelian threefolds over C. Exactly one of
these classes has Q as the field of moduli and the other three have field
of moduli F .

Proof. Let CMΦ be the isomorphism classes of principally polarized sim-
ple abelian threefolds over C of type (K,Φ) with CM by OK . The set
CMΦ is not empty by Corollary 4.3.6 and, indeed, by Proposition 4.3.7
it holds that |CMΦ|= 4.

We first prove that there is at least one isomorphism class in CMΦ
with field of moduli Q. Then we prove there is only one such isomorphism
class in CMΦ.

Let Aut(C) act on CMΦ with (σ, [P ]) 7→ [σP ]. Under the assump-
tion I0(Φr) = IKr , Theorem 1.5.6 implies that for each [P ] ∈ CMΦ, we
have MQ ⊂Kr ∼= K. Identify K with Kr. Then Theorem 4.2.1-(i) tells
us MK =K. Moreover, Lemma 4.3.10 says that ρ acts trivially on CMΦ
and hence G′ = Gal(K/Q)/〈ρ〉 acts on CMΦ. Since |G′|= 3, by the orbit-
stabilizer theorem (see Lang [22, Proposition 5.5.1 in I]) the size of each
orbit is 1 or 3. This means that the action is either trivial or has one
orbit of length 1 and one orbit of length 3. This implies that there is
at least one isomorphism class in CMΦ with field of moduli Q. We will
now show that the action of G′ on CMΦ is not trivial, in other words, we
will prove that there is only one isomorphism class in CMΦ with field of
moduli Q.
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Suppose that G′ acts on CMΦ trivially. This implies that the field
of moduli MQ of each [P ] ∈ CMΦ is Q and P is fixed by Gal(MK/Q).
Hence for every [P ] ∈ CMΦ, we have (σP : P ) = 1 for all σ ∈Aut(C). Let
[P ′] be an element of CMΦ such that P 6∼= P ′. Then by Proposition 1.5.2
and (1.5.6), there is a non-trivial [(b,c)] ∈ C′K such that (P ′ : P ) = [(b,c)].

Let Gal(K/Q) = 〈y〉 and let σ ∈ Aut(C) be such that σ|K = y. Then
by Proposition 4.2.5-(iii), we have

(σP ′ : P ′) = [((yb)b−1,(yc)c−1)] ∈ C′K .

Therefore, we have σP ′ ∼= P ′ if and only if (yc)/c is a principal ideal.
Let pOF = p2

1p
2
2p

2
3 and piOK = P2

i . Then by Lemma 4.3.11, we have

C′K = {[(1,OK)]}∪{[(ti,P
hF
i )] : i= 1,2,3}

Since Gal(K/Q) = 〈y〉 acts on {P1,P2,P3} transitively, without loss of
generality we have

yP1 = P2, yP2 = P3, andyP3 = P1.

So by Lemma 4.3.11, we have [(t2t−1
1 ,(P2P

−1
1 )hF )] 6= 0. Hence σP ′ is not

isomorphic to P ′ for some σ ∈Aut(C). This proves that G′ does not act
on CMΦ trivially.

This proves that for exactly one isomorphism class in CMΦ, we have
MQ = Q. Moreover, since ρ acts trivially on CMΦ, the other three iso-
morphism classes in CMΦ have field of moduli F r = F .

4.4 Genus-3 CM curve examples over Q
In this section we give some examples.

Example 4.4.1. The curve

C : y2 = x7 + 1

has CM by Z[ζ7] via ζ7(x,y) = (ζ7x,y) of type Φ = {1,3,32} ⊂ (Z/7Z)×.
It is defined over Q. See (II) on page 76 in Shimura [38]
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Example 4.4.2. The curve

C : y3 = x4−x

is a Picard curve which has CM by Z[ζ9] via ζ9(x,y) = (ζ3
9x,ζ9y) of type

Φ = {1,2,22}⊂ (Z/9Z)×. It is defined over Q. See Lemma 5.1-(a) in [8].

Example 4.4.3. The curve

C : y2 = (x3−x2−2x+ 1)2x−2x

is a hyperelliptic curve over Q with CM by Z[ζ7 + ζ−1
7 , i] and a primitive

CM type Φ = {(0,1),(1,2),(0,3)} ⊂Gal(K/Q) = Z/2Z× (Z/7Z)×/〈±1〉.
See Proposition 4 in Tautz, Top and Verberkmoes [44].

Example 4.4.4.

(i) For hyperelliptic curves corresponding to the fields K = F (i), where
F ∼= Q[X]/(p(X)) and

p(X) ∈ {X3−3X−1, X3 + 2X2−5X+ 1,
X3 +X2−2X−1, X3 +X2−10X−8},

models have been computed that are correct up to some precision
over C. These models are defined over Q, see Weng [48].
Note that the sextic CM field K = F (i) with F ∼= Q[X]/(p(X)),
where p(X) = X3 +X2− 2X − 1 corresponds to the CM curve in
Example 4.4.3.

(ii) For Picard curves corresponding to the fields K = F (ζ3), where
F ∼= Q[X]/(p(X)) and

p(X) ∈ {X3 +X2−4X+ 1, X3 +X2−2X−1,
X3 +X2−10X−8, X3−3X−1,
X3 +X2−14X+ 8}

models have been computed that are correct up to some precision
over C. These models are defined over Q, see Koike–Weng [19].
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Note that the sextic CM field K = F (ζ3) with F ∼= Q[X]/(p(X)),
where p(X) =X3−3X−1 corresponds to the CM curve in Exam-
ple 4.4.2.

Example 4.4.5. Let C be a Picard curve defined over a field k0 with
char(k0) 6= 2 and 3. Without loss of generality, we may assume that C is
given by

C : y3 = x4 +g2x
2 +g3x+g4, where gi ∈ k0.

If g2g3 6= 0, then C is defined over the field of moduli, see Koike–Weng
[19, page 504].
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Summary

Let E be an elliptic curve over C with complex multiplication (CM) by
the maximal order OK of an imaginary quadratic field K. The first main
theorem of complex multiplication for elliptic curves then states that the
field extension K(j(E)), obtained by adjoining the j-invariant of E to
K, is equal to the Hilbert class field of K, see Theorem 11.1 in Cox [11].
Note that if E is defined over Q, then the Hilbert class field K(j(E)) is
equal to K, which implies that the class group ClK is trivial.

We can ask for which imaginary quadratic fields K the corresponding
elliptic curve with CM by OK is defined over Q. This is equivalent
to asking to find all imaginary quadratic fields with trivial class group
ClK . This problem is known as Gauss’ class number one problem, which
was solved by Heegner in 1952 [16], Baker in 1967 [2], and Stark in 1967
[41]. The imaginary quadratic fields with trivial class group are the fields
Q(
√
−d) with d ∈ {3, 4, 7, 8, 11, 19, 43, 67, 163}.

In the 1950’s, Shimura and Taniyama [39] generalized the first main
theorem of CM for elliptic curves to abelian varieties. We say that an
abelian variety A of dimension g has CM if the endomorphism ring of A
contains an order of a CM field of degree 2g. Let K be a CM field of
degree 2g with maximal order OK , and let Φ be a CM type of K. Let
A be a polarized simple abelian variety over C of dimension g that has
CM by OK . Then the first main theorem of CM says that the field of
moduli M of the polarized simple abelian variety A gives an unramified
class field H over the reflex field Kr of K. Moreover, the class field H
corresponds to the ideal group I0(Φr) (see page 17), which only depends
on (K,Φ), see Theorem 1.5.6. Note that the first main theorem of CM
implies that if the polarized abelian variety A is defined over Kr, then
the CM class group IKr/I0(Φr) is trivial.

As in the elliptic curve case, we can ask for which CM pairs (K,Φ) the
corresponding CM abelian varieties are defined over Kr. Equivalently,
we can ask for which CM pairs (K,Φ) the CM class group IKr/I0(Φr) is
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trivial. In this thesis we give an answer to this problem for quartic CM
fields (see Chapter 2), and for sextic CM fields containing an imaginary
quadratic field (see Chapter 3).

Furthermore, we can ask for which CM fields the corresponding simple
CM abelian varieties have field of moduli Q. Murabayashi and Umegaki
[31] determined the quartic CM fields that correspond to a simple CM
abelian surface with field of moduli Q. In Chapter 4, we determine the
sextic CM fields that correspond to a simple CM abelian threefold with
field of moduli Q.
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Samenvatting

Zij E een elliptische kromme over C met complexe vermenigvuldiging
(CM) over de ring van gehelen OK van een imaginair kwadratisch li-
chaam K. Dan stelt de eerste hoofdstelling van de theorie van complexe
vermenigvuldiging van elliptische krommen dat de lichaamsuitbreiding
K(j(E)), verkregen door het adjungeren van de j-invariant van E aan
K, het Hilbertklasselichaam van K is, zie [11, Theorem 11.1]. Als E
gedefinieerd is over Q, dan is K(j(E)) gelijk aan K, wat impliceert dat
de klassegroep ClK triviaal is.

We kunnen ons afvragen voor welke imaginaire kwadratische lichamen
K de corresponderende elliptische kromme met CM over OK gedefinieerd
is over Q. Dit is equivalent met het vinden van alle imaginaire kwadrati-
sche lichamen met triviale klassegroep, wat bekend is als het klassegetal-
één-probleem van Gauss. Dit probleem is opgelost door Heegner in 1952
[16], door Baker in 1967 [2] en door Stark in 1967 [41]; de imaginaire
kwadratische lichamen van klassegetal één zijn de lichamen Q(

√
−d) met

d ∈ {3, 4, 7, 8, 11, 19, 43, 67, 163}.
In de jaren ’50 hebben Shimura en Taniyama [39] de eerste hoofd-

stelling van de theorie van complexe vermenigvuldiging van elliptische
krommen gegeneraliseerd naar abelse variëteiten. Een abelse variëteit A
van geslacht g heeft CM als de endomorfismering van A een orde bevat
in een CM-lichaam van graad 2g. Zij K een CM-lichaam van graad 2g
met maximale orde OK en zij Φ een CM type van K. Zij A een gepo-
lariseerde simpele abelse variëteit over C van dimensie g met CM over
OK . Dan stelt de eerste hoofdstelling van complexe vermenigvuldiging
voor abelse variëteiten dat het lichaam van moduli M van de gepola-
riseerde simpele abelse variëteit A een onvertakt klasselichaam H over
het reflexlichaam Kr van K geeft. Het klasselichaam H correspondeert
met de ideaalgroep I0(Φr) (zie pagina 17) die alleen afhankelijk is van
(K,Φ), zie Stelling 1.5.6. Merk op dat de eerste hoofdstelling van de
complexe vermenigvuldiging impliceert dat als de gepolariseerde simpele
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abelse variëteit A gedefinieerd is over Kr, dat dan de CM-klassegroep
IKr/I0(Φr) triviaal is.

Analoog aan het elliptischekrommengeval, vragen we ons af voor
welke CM-paren (K,Φ) de corresponderende CM abelse variëteit gede-
finieerd is over Kr. Anders gezegd, voor welke CM-paren (K,Φ) is de
CM-klassegroep IKr/I0(Φr) triviaal. In dit proefschrift geven we een ant-
woord op dit probleem voor vierdegraads CM-lichamen (zie hoofdstuk 2)
en voor zesdegraads CM-lichamen die een imaginair kwadratisch lichaam
bevatten (zie hoofdstuk 3).

Verder vragen we ons af voor welke CM-lichamen de corresponderende
CM abelse variëteiten lichaam van moduli gelijk aan Q hebben. Mura-
bayashi en Umegaki [31] hebben de vierdegraads CM-lichamen bepaald
die corresponderen met een simpel CM abels oppervlak met lichaam van
moduli gelijk aan Q. In hoofdstuk 4 bepalen wij de zesdegraads CM-
lichamen die corresponderen met een simpele CM abelse variëteit van
dimensie 3 met lichaam van moduli gelijk aan Q.
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Résumé

Soit E une courbe elliptique sur C ayant multiplication complexe (CM)
par l’ordre maximal OK d’un corps quadratique imaginaire K. Le pre-
mier théorème principal de la multiplication complexe affirme que le corps
K(j(E)), obtenu en adjoignant à K le j-invariant de E, est égal au corps
de classes de Hilbert de K, confer Cox [11, Theorem 11.1]. Notons que
lorsque E est définie sur Q, le corps de classes de Hilbert K(j(E)) est
égal à K et le groupe des classes ClK est trivial.

Se pose alors le problème de déterminer les corps quadratiques tota-
lement imaginaires K pour lesquels la courbe elliptique à multiplication
complexe par OK correspondante est définie sur Q. De façon équivalente,
il s’agit de trouver tous les corps quadratiques imaginaires dont le groupe
des classes est trivial. Ce problème est connu sous le nom de problème
du nombre de classes 1 de Gauss et a été résolu par Heegner en 1952 [16],
Baker en 1967 [2] et Stark en 1967 [41]; les corps quadratiques imaginai-
res dont le groupe des classes est trivial sont les corps Q(

√
−d), où d ∈

{3, 4, 7, 8, 11, 19, 43, 67, 163}.
Dans les années ’50, Shimura et Taniyama [39] ont généralisé le pre-

mier théorème principal de la multiplication complexe aux variétés abéli-
ennes. On dit qu’une variété abélienne A de dimension g a multiplication
complexe si son anneau d’endomorphismes contient un ordre d’un corps
CM de degré 2g. Soit K un corps CM de degré 2g et d’ordre maximal
OK et soit Φ un type CM de K. Soit A une variété abélienne complexe
simplement polarisée de dimension g ayant multiplication complexe par
OK . Le premier théorème principal de la multiplication complexe dans
ce cadre affirme que le corps de classes H du corps du modules M de la
variété abélienne simplement polarisée A est une extension non ramifiée
du corps reflex Kr de K. De plus, le corps des classes H correspond
au groupe d’idéaux I0(Φr) (voir page 17) qui ne dépend que de (K,Φ),
confer Théorème 1.5.6. Notons que le premier théorème de la multiplica-
tion complexe implique que si la variété abélienne polarisée A est définie
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sur Kr, le groupe des classes CM IKr/I0(Φr) est trivial.
Comme dans le cas des courbes elliptiques, on peut alors chercher à

déterminer les couples CM (K,Φ) pour lesquels les variétés abéliennes
correspondantes sont définies sur Kr. De façon équivalente, il s’agit
de déterminer les couples CM (K,Φ) dont le groupe des classes CM,
IKr/I0(Φr), est trivial. Dans cette thèse, on résout ce problème dans le
cas des corps CM quartiques imaginaires (voir Chapitre 2) ainsi que dans
celui des corps CM sextiques contenant un corps quadratique imaginaire
(voir Chapitre 3).

Enfin, on peut se demander quels sont les corps CM pour lesquels
la variété abélienne simple à multiplication complexe admet Q comme
corps de module. Murabayashi et Umegaki [31] ont déterminé les corps
quartiques CM correspondant aux surfaces abéliennes simples à multipli-
cation complexe de corps du module Q. Dans le chapitre 4, on détermine
les corps CM sextiques correspondant aux variétés abéliennes simples à
multiplication complexe de dimension 3 de corps du module Q.
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