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1

GENERAL INTRODUCTION

Metal nanoparticles (NPs) and their interaction with light have been acquiring great sig-

nificance since antiquity. The first application viewed, was as the most well-known, the

Lycurgus cup dating back to the fourth century, was displayed by the British Museum in

London. Moreover, the popular stained glass windows adorning the cathedral of Chartres

were manufactured by the inclusion of metal powders at the beginning of the 13th. Cer-

tainly, it was not known and proven then that these infinite color palettes obtained from

metal nanoparticles existed because of the excitation of a Plasmon resonance.

The optical properties of metals NPs started to be studied systematically by Faraday

who managed to synthesize colloidal gold solutions by the reduction of gold salts [1]. He

demonstrated that the coloring of colloidal suspensions was intimately related to the role

of the size and morphology of the metal grains in the light scattering process. In the

absence of a theoretical framework, it was not possible to interpret these observations

except through the Faraday intuition. At the end of the 19th century, the first theoretical

treatment on the scattering of light by particles with subwavelength scale was achieved

by Rayleigh [2]. The latter analyzed the diffusion of light by diluted gases, and his theory

demonstrated that at high frequencies, light is scattered more efficiently by air molecules

than at low frequencies. This interpretation provided the origin of the physical phenomena

such as the yellow color of the sun and the blueness of the sky. In 1908, Mie succeed

to model the first full analytical solution of Maxwells’ equations to describe the scattering

and absorption spectra of a homogenous sphere [3]. His model shows that the spectra

observed of metal nanoparticles have an intense resonance in the near-UV-visible. This

resonance attributed to the interaction between light and the free conduction band elec-

tron of the metal that leads to produce an electron oscillation around the particle surface

[3, 4, 5].

Since Mie’s work, his analytical model provided an exact solution characterizing the
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scattering of light by spherical form only. At that time, there was a little attention on the

treatment of the effects of varying shape of particles in their optical properties because

this parameter was not controlled yet. In 1912, Gan [6] was able to predict scattering

cross-sections (different colors) of colloidal solution of ellipsoidal geometries with different

aspect ratios. With reference to the case of the cup of Lycurgus, the observation of such

intense colors were due to light scattering by the tiny metal present in the glass. In

our present day, these resonances represent the coupling of collective oscillation of the

conduction electrons in metal with an incident light which is known as Localized Surface

Plasmon Resonance (LSPR).

It is not until several decades later, that research teams’ attention has recently given

rise in metal nanoparticle due to the discovery of surface enhanced Raman scattering

(SERS) in 1974 [7, 8, 9]. The fascinating phenomenon (Raman emission enhancement)

arises from adsorption of molecules on a metal surface and/or thanks to so-called surface

plasmons (SPs) of roughened metals. This SP is another important element that will be

involved in our topic as a bounded mode of a single interface or of a multilayer metallic

structures.

On the experimental and theoretical sides, modern rapid advances were made in

the fabrication and characterization on the nanoscale level for more than two decades.

Several computational methods such as Finite Difference Time Domain FDTD [10] have

been proposed for predicting the electromagnetic fields around the illuminated individual

nanoparticles. This method supports a suitable systematic and general approach for

determining the optical responses of plasmonic nanostructures.

Overall, we can see that SP can appear through the excitation of two main kinds

of : (a) excitation of Localized Surface Plasmon Resonance (LSPR) mode which can

resonate locally through a direct interaction between finite metal nanoparticles and light,

and (b) the Propagating Surface Plasmons (PSPs) modes which supports the possibility

of guiding of light in subwavelength metallic structures (i.e infinite thin films in the case of

plasmonic wave-guides).

Localized surface plasmon resonance LSPR is a major phenomenon that controls

the tunability of absorption and scattering spectra as well as the strong local field of

metallic NPs [11, 12]. This means, it is highly sensitive to size parameters, morphology,

shape as well as the environment [11, 12]. Therefore, NPs with anisotropic shapes are

of great interest because of their considerable enhancement and polarization-dependent

properties [12]. Anisotropic metal NPs are currently considered as the most desirable

in the development of nano-optics. Plasmonic mode produces fascinating phenomena
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CHAPTER 1. GENERAL INTRODUCTION

through concentration of light into nanoscale volumes. Given this sense, metal NPs are

considered as optical antennas due to their similar functionality as the antennas in the

radio and telecommunication ranges [13].

Quite recently, great attention has been paid to tailoring of confinement properties

through designing metal structures that are able to greatly magnify local electromagnetic

fields. In fact, there are many applications that take their usefulness from the interaction

of the matter with enhanced light. For example, a "good" optical antenna is characterized

by efficient plasmonic properties and differs from one to another in terms of performance.

Controlling the plasmonic properties (local field enhancement and spectrally reso-

nance wavelength) of different types of nanoantennas have been demonstrated in recent

years [14, 15, 16, 17]. A successful new nanoantenna emerged in our team providing a

highly confined and enhanced field at the visible region in a small metal gap of the called

diabolo nanoantenna [18]. The study of the effects of various aspects of the latter have

recently been discussed and presented. However, a detailed systematically study on this

structure of its strong hotspot in terms of optical properties (scattering and absorption)

is still lacking. From this point, the first part of this thesis seeks to provide the informa-

tion needed for optimum choice of a such diabolo nanoantenna through the examination

of the effects of its geometrical parameters (gap,length and thickness) and the dielec-

tric constant of the host medium. All that previously mentioned as regards to the optical

properties result from the excitation of LSPR on a single nanoparticle.

The second kind of plasmonic mode which is propagating surface plasmon PSP will

be under the scope as another important part of this work. The first observation of sur-

face plasmon SP was performed in the middle of the twentieth century when a metal

was subjected to a beam of electron where an oscillation of surface plasma was created

[19, 20]. In 1902, the sudden variation in the intensity of the diffracted light was recorded

by Wood [21] when he illuminated a metal grating with polychromatic light. After, Wood’s

observation, an attempt had been emerged to suggest a physical interpretation of the

phenomenon [22]. It is not until 1941 that Fano [23] in his theory, has associated these

anomalies with the excitation of electromagnetic surface waves on the diffraction grating.

These anomalies on the spectrum correspond to the propagating surface plasmon PSP

which represent the coupling between the collective oscillation of free surface charges

of the metal and light. These SPs propagate along the interface between metal and

dielectric and have acquired their importance through the strong confinement of the elec-

tromagnetic field in the vicinity of the metal-dielectric interface. In the late 1960s, the

excitation of surface plasmons SPs based on the attenuated-total-reflection method was

reported by Otto, Raether and Kretschmann [24, 25]. Two decades after the discovery
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of Wood, enhancement of light produced locally by excitation of SP has been gaining

importance in the present days due to its vital role in nanophotonics. One of the most in-

teresting examples in recent development of plasmonic can be found in the phenomenon

of Extraordinary Optical Transmission (EOT) of light through subwavelength apertures in

metal plates.

Great effort has been devoted to the study of the excitation of SPs on periodic nanos-

tructures. This is mainly due to the observation made by T.W. Ebbesens team of an ex-

traordinary optical transmission (EOT), which inevitably revolutionized the field of nano-

optics and opened a wide range of applications from spectral filtering to nanoantennas

via single molecule spectroscopy [26]. This large transmission through subwavelength

apertures pierced in an opaque metal film is linked to surface plasmon resonance (SPR)

modes at the dielectric/metal interfaces and/or to plasmonic guided modes inside the

apertures [26, 27, 28]. Although most of the works on EOT are based on SPR, guided

modes offer a better efficiency and the advantage of increasing the transmission peak

[29].

Many constructions have been theoretically proposed and experimentally designed

to this phenomenon. Among the possible configurations of the cavities, Annular Aperture

Arrays (AAAs) [30] are the most motivating structures because they can considerably

increase the light transmission compared with cylindrical or rectangular apertures [31].

The coaxial apertures present higher values of the cutoff wavelength of its fundamental

guided mode, namely the Transverse Electric (T E11) mode. However, this bi-connexe

section waveguide supports as well a more interesting plasmonic guided mode which

has cutoff-less wavelength: the Transverse Electric and Magnetic (T EM) mode. Conse-

quently, the AAA have become an interesting candidate for the Enhanced Transmission

(ET) in the visible range.

Given the above interesting reasons associated with the optical properties to ad-

dress, this thesis includes the improvement of an existing FDTD algorithm by integrating

the called Total Field/Scattering Field (TF/SF) and Contour Path Technique (CPT). The

TF/SF technique allows determining the absorption and scattering efficiencies of any ge-

ometry (eliminates restrictions in Mie theory). Whereas the CPT is able to reduce the

staircase effect arising from the spatial meshing of such object.

After a general overview, the second chapter in this manuscript starts with some

details of the previous studies performed on the nanoparticles (NPs) and their optical re-

sponses (scattering and absorption) with different shapes. Thereafter, a brief review of

the concept of surface plasmons together with the classification of the electronic oscil-
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CHAPTER 1. GENERAL INTRODUCTION

lations into LSP and PSP are presented. The optical response of metal nanoparticles

associated with Mie theory is addressed. The latter section will be followed by the impor-

tant numerical tool needed to achieve the goal of this work which is the FDTD method

including our development of a homemade code through adapting the TF/SF as well as

the CP techniques. The validation of this modified code will be implemented in com-

parison with the analytic solution. In view of this, a comparison between two different

configurations of nanoantenna will be conducted to show the effect of shape on the opti-

cal response of a diabolo nanoantenna and how this structure yields to an effective cross

section that is larger than its actual size when it interacts with light. Study of the ab-

sorption and scattering efficiencies by diabolo nanoantenna for different metal types is

performed.

As stated in the context of our interest in the PSP excitation, Chapter 3 is dedicated

to the characterization of the transmission through AAAs configuration and its signifi-

cant fundamental aspects that are accompanied, such as the excitation of some guided

modes. In the beginning, we give an overview of the state of the art on the Extraordinary

Optical Transmission (EOT). It will be followed by a brief description of the fundamental

waveguide theory. The last section is devoted to theoretical study of the excitation of TEM

guided mode through AAAs involving the investigation of the effects of the array size and

the metal thickness on ET. This chapter also sheds light on the comparison of the trans-

mission measurements that was conducted in the context of an earlier thesis with our

simulation results.

Due to interesting reasons associated with the excitation of the T EM mode, the study

of the transmission properties of the previously proposed and modified AAA structure,

which is a Slanted AAA, will be the main scope of chapter 4. We will recall a brief

overview about the characterization and fabrication of the SAAA structure. Firstly, we

will carry out a comparison between the transmission of an AAA and a SAAA structures

having the same film thickness. Then, numerical and analytical demonstrations of some

intrinsic properties of the structure will be discussed. This theoretical study will examine

the influence of angle of inclination which is the distinguishing mark in SAAA structure on

the transmission response. Other geometrical parameters such as angle of incidence, the

azimuthal angle, and their influences in two cases of TE- and TM-polarization on trans-

mission spectra, will be discussed. At the end of this chapter, we address an analytic

treatment together with our numerical results showing the very important characteristics

on transmission of this structure such as giant energy deviation over very small distances

(smaller than the wavelength). Finally, the conclusion of the main theoretical results of the

current work will be summarized with the most important remarks and the perspectives
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in chapter 5.
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2

MODELING OPTICAL RESPONSE

OF METALLIC NANO-PARTICLES

2.1/ INTRODUCTION

In this chapter, a state of the art on nanoparticles (NPs) and their optical response

supported by Localized Surface Plasmon resonances LSPRs is presented. In this

overview, we address different studies including several types of isotropic (spherical) and

anisotropic NPs such as Bowtie and Diabolo nano-antennas. This part will be followed

by a more detailed description of the Mie theory that can address basically isotropic NPs

through the determination of their absorption and scattering efficiencies. FDTD algo-

rithm was adapted to such studies by developing the Total field/Scattered field (TF/SF)

technique. This allows to determine the efficiencies of any geometrical NPs shape. A

comparison with Mie theory is first done to validate our code after including the Contour

Path Technique (CPT) to faithfully reduce the staircase effect arising from the FDTD spa-

tial meshing. A systematic study on the optical properties of diabolo nanoantenna will be

presented at the end of this chapter.

2.2/ STATE OF THE ART ON OPTICAL PROPERTIES OF METAL

NANOPARTICLES

A considerable attention has been paid to the topic of optical properties of nono-sized

metallic nanoparticles. When light interacts with metal nanoparticles, a high enhance-

ment of the electromagnetic field at their surfaces can occur. This phenomenon arises

thanks to the excitation of local plasmon resonance. Since the first indication by Gustav
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2.2. STATE OF THE ART ON OPTICAL PROPERTIES OF METAL NANOPARTICLES

Mie in 1908 [3], this resonance is attributed to the interaction between light and the free

conduction band electron of the metal that leads to produce an electron oscillation around

the particle surface [5, 11]. Recently, this phenomenon is known as the localized surface

plasmon resonance (LSPR) [12]. The wavelength resonance of plasmonic oscillation is

particularly dependent on permittivity of the material (i.e. the plasma frequency of the

metal) [11] not only, but also on the size, shape of the particle, as well as the dielectric

constant of the host medium. The plasmon resonances of such nanostructure can be

tuned over wide range of wavelengths, by adjusting the properties of any nanoparticle.

[12].

Mie theory is the first study characterizing the scattering and absorption spectra of

spherical particles. After discovering of the Surface-Enhanced Raman Scattering (SERS)

effect [7, 8, 9], a renewed attention from research teams has been expanded to the metal

nanoparticles due to recent rapid advances in fabrication and characterization at the

nanoscale. Thereafter, a large number of publications have been devoted to the study

of high enhancement of the electric field on the metal nanoparticles surface including

many applications. A very interesting paper description of recent progress in the theory

of nanoparticle optical properties, particularly methods for solving Maxwells equations for

light scattering from particles of arbitrary shape in a complex environment can be found

in references [12, 32]. In that work, the qualitative features of dipole and quadrupole

plasmon resonances for spherical particles are presented. The determination of far-field

properties extinction and scattering cross-sections, local fields, and other optical proper-

ties for nonspherical particles is discussed by means of analytical and numerical methods.

Moreover, another form of nanoparticle (triangular prisms) is numerically modeled. Sev-

eral publications have been published in recent years documenting the theoretical study

in order to understand the phenomena of the surface plasmon mode in metal nanostruc-

tures. Localized Surface Plasmon Resonance LSP, its local electric field and scattering

cross section on several shapes of nanoparticles were also evaluated by the FDTD (finite

difference time domain) method in [33, 34, 35, 36]. As explained in those references,

the effective cross-section can be greater than the actual structure area at the resonance

frequency and as mentioned above that scattering factor is sensitive to geometry. Thus,

it can be exploited to increase the strength interaction with incident field. In [34], the

optical response spectra, local electromagnetic fields and induced charge densities at

the surfaces of the nanostructures (uniform single nanoshells, nanoshells with surface

defects, and nanoshells with shape distortions from a spherical geometry) are investi-

gated using the finite difference time domain method FDTD. The quasistatic approach to

particles of arbitrary shape compact metal is quantitatively described the light scattering

from the lowest resonance mode [37]. Another study has been suggested by Hao et al.

8
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in reference [38] to determine the intense localized field at the particle surface of more

complex shapes via the numerical methods. In the literature, several papers have been

published to demonstrate the scattering efficiencies and optical resonance wavelengths

of NPs for biological imaging and biomedicine applications [39, 40, 41, 42, 43]. In the

context of LSP-based applications in biomedicine, Kessentini and Barchiesi [43] studied

the absorption efficiency of set of NPs (nanorods, nanoshell and hollow nanosphere) in

order to get the highest efficient among them, for using in necrosis of cancer cells, in pho-

tothermal therapy. In that study, the Mie theory, the Discrete Dipole Approximation (DAA)

were used and they showed that for the shallow cancer therapy, the hollow nanosphere

seems to be efficient than the other NPs (see Fig. 2.1)

Figure 2.1: Absorption efficiency by capped cylinder and hollow nanosphere in (a) VIS
range and (b) NIR range. The DDA method is used to get the spectra of capped cylinder
and Mie theory is used to get spectra of hollow nanosphere. Ref. [43].

A review paper published by Myroshnychenko et al. [36] in 2008, discusses the the-

oretical methods for predicting and understanding the optical response of gold nanopar-

ticles. Another interesting study in this issue has also been published in [14] and [44].

In those papers, some interesting nanostructure geometries, including nanocubes and

nanobars displayed a characteristic enhanced and tunable plasmon resonances (see fig-

ure 2.2) are studied.

9
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Figure 2.2: (a) Calculated absorption (solid lines) and scattering (dashed lines) efficien-
cies for a cubic (blue) and a ring (green) shaped silver NP. The particles have similar
dimensions, both the side of the cube and the diameter of the ring are 50 nm. (b) Exper-
imental measurment of scattering spectra of silver nanobars. (c) Electric field intensity
enhancement corresponding to the three lowest longitudinal LSPRs. Note that, the color
map of the field amplitude scale from 0.1 (blue) to 100 (red). The bottom sketches depict
the instantaneous charge distributions for three plasmonic resonances. Ref. [14].

In the context of LSPRs, the ability of concentrating the light into nanoscale vol-

umes provided by plasmonic mode leads to turn-on large local enhancements of elec-

tromagnetic energy. This phenomenon makes to recall the fundamental of antennas

working in the radio and telecommunication systems, although at optical spectrum

[45, 46, 47, 48, 49, 50, 51, 52, 13, 53]. Given this sense, metal NPs can behave as

nanoantennas in the optical range. The highly confined and enhanced electromagnetic

field in the optical frequency region, resulting from pairs of nanoantennas with a small

gap between them or by nanoantennas with particular shapes, makes these structures

the focus of researchers’ attention. One of the understandable examples of the enhanced

light with metal nanoparticles is the surface-enhanced Raman spectroscopy [54, 55, 56]

which is a Raman emission (Raman scattering signal) of molecules adsorbed onto or near

10



CHAPTER 2. MODELING OPTICAL RESPONSE OF METALLIC NANO-PARTICLES

a roughened noble metal under certain condition that can be extremely enhanced and

show a surprisingly high interaction cross section. LSPRs are particularly very promising

candidate to design antennas operating for many applications such as enhanced nonlin-

ear effects, spectroscopic analysis, imaging and identification of nanoscale amounts of

substances and single molecules and nanorefractometry [13, 53, 57, 58, 59].

In recent years, research into plasmonic properties of different types of antennas has

become very common. In [60], it was found that the FDTD calculated and experimentally

measured extinction efficiencies of the optical antennas are influenced by antenna shape,

length, and sharpness upon the intensity of the optical fields. Several authors [14, 15, 16,

17, 36, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73] have demonstrated the two

main mechanisms that can be observed at plasmon resonance excited in metal NPs; the

absorption and scattering. In optical nanoantennas domain, the researchers are looking

for design an efficient antenna characterized by a large cross section and a large localized

field enhancement. This structure has the possibility to concentrate EM energy from the

incident field with high efficiency. Therefore, this leads to transfer maximum quantity of

energy into small volumes in the vicinity of the nanoantenna. As an example, simple idea

that emerged to obtain a good performance was inspired from a nanobar optical antenna

and consists of separating it in two parts thereby creating a gap along its long axis. Thus,

the enhancement of the field then can be stronger without any reducing in the effective

cross section of in the original form. This proposition has been studied by Ghenuche et

al. [74], through the plasmonic mode properties. It was found that, the luminescence that

occurs between the two arms (enhancement squeezed at the gap of antenna) is much

larger than the one of a gapless antenna with the same whole length. Thus, the concept

of plasmonic gap becomes essential for the design of nanoantenna.

Another structure, based on the above idea, is the bowtie antenna. The physical

properties of this configuration are intriguing due to their extremely strong response and

the tunable resonance in its nanojunction gap [61, 63, 70, 75, 76, 77, 78, 79, 80, 81]. The

super performance of bowtie antenna led to explore a new characteristic by connecting

their two apexes metal triangles in a narrow waist metal bar. Therefore the resulting ge-

ometry for this arrangement is then called diabolo antenna. The highly amplification of

local magnetic charge accumulation at the tips is then converted into a high electric cur-

rent through the metal junction (inductive effect). The latter generates a high, magnetic

field coiled around the metal gap. The first study on diabolo nanoantenna was performed

in our team in 2011 by Grosjean et al. [18]. In that work, it was found that the strong

magnetic hotspot generating in metal gap of the diabolo nanoantenna can be explained

through the Babinet theorem which is a relation between the electric and magnetic fields
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of an aperture in an infinity thin perfectly conducting film and its complement. The de-

termination of the electric field properties of the latter provides spectroscopic and spatial

approach to the optical magnetic field of metal film of finite thickness and vice versa.

The first numerical results showed a 2900-fold enhancement of the magnetic field at a

wavelength of 2540 nm (see figure 2.3). Reference [18] analyzes and discusses vari-

ous aspects of diabolo nanoantenna. Nevertheless, there are still some interesting and

relevant points to be addressed.

Figure 2.3: Plasmonic resonance in diabolo nanoantenna and its near-field enhancement.
The hot spot is due the strong magnetic field. Ref. [18].

This chapter is an attempt to show the potential and characteristics of localized sur-

face plasmon resonance LSPR properties of nanoparticles NPs. More specifically, we

focus on determining the localized energy enhancement factor in term of optical response

12
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(scattering and absorption) of diabolo nanoantenna and the effects of their geometrical

parameters (gap, length and thickness) and dielectric constant of the host medium. This

object is the interest of the research team in our laboratory due to its potential applications

in the optical domain.

To this end, we have to address and recall the background of this topic such as Mie

theory which provides analytical solutions for spheroid forms. This step is necessary

to validate our numerical tool by comparing it with those results obtained from the Mie

theory. Subsequently, we prepare our numerical tool to facilitate our job using finite time

difference domain FDTD method. We sought to extend an existing algorithm in order to

contribute in the theoretical modeling of NPs of any shape. It is worth to be mentioned

that the simulation for absorption and scattering requires adapting the so-called total field

scattered field technique TF/SF in our code. This latter is previously used in literature but

it was not available in our team.

2.3/ MODERN CONCEPT OF SURFACE PLASMONS

This section introduces the various concepts related to the excitation of plasmon. The

two kind of propagating and localized surface plasmons will be introduced.These two

plasmon resonances are directly involved in the optical responces of the structures that

will be studied in this work: localized SP in NPs or nano-antennas and propagating SP in

the case of enhanced transmission through metamaterial. We will not make an exhaustive

study in this area, but we will briefly present surface plasmons and the main points that

we need in this manuscript.

2.3.1/ CLASSIFICATION OF PLASMON RESONANCE

The essential component of plasmon resonance is a metal, due to the excitation of sur-

face plasmon SP modes which are electromagnetic waves coupled to the collective os-

cillations of conductive electrons in the metal. The plasmonic metal nanostructures can

be classified based on the supported plasmonic modes. As mentioned before, there are

two categories of electronic fluctuations which are Propagating Surface Plasmons (PSPs)

and Localized Surface Plasmons (LSPs) [52, 82, 83].

In the case of PSPs, the existence of the negative/positive charges along the metal

surface leads to a propagating electronic density wave in a direction parallel to the
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metal/dielectric interface. A TM polarized electromagnetic wave is generally needed to

induce this kind of SPRs. In this case, the magnetic excitation field H is perpendicular

to the incidence plane (xz) as shown in Fig.2.4(a). The dielectric permittivity function of

the metal and the wavelength of the exciting radiation affects on the propagating length

[84]. One of the basic concepts associated to PSPs, is the dispersion relation which is

of fundamental interest for understanding the coupling of light to PSPs. The confined EM

modes can be supported on a modest system such as an infinite flat metal-dielectric in-

terface. The dispersion relation for the plasmonic modes carried by the latter is a solution

of Maxwell equations under the convenient boundary conditions that gives the frequency-

dependent SP wave-vector, kS P as:

kS P = ko

√
εmεs

εm + εs
(2.1)

where ko = ω/c is the modulus of free-space wavevector, εs and εm represent the

frequency-dependent permittivity of the metal and the dielectric material respectively. In

general description, when we consider a silver metal and εm = 1, according to Eq. 2.1 and

at SP resonance, the εs must has both negative and complex (the latter, due to absorp-

tion in metal). At red wavelength, the permittivity of Ag metal decreases and approaches

−εm causing the real part of the denominator in Eq. 2.1 to vanish, resulting kS P � 1.03ko.

This increase leads to the concentration of EM energy into subwavelength volumes at the

metallic-dielectric interface. The PSPs can be also excited on periodic arrays of subwave-

length holes in optically thick metallic that can provide the enhanced transmission [26].

More details on PSPs are given in chapter 3.

In the case of nonpropagating excitation of surface palsmons (i.e. direct interaction

of metal NPs with light), the electronic oscillations occur locally around the nanoparticle

(see Fig. 2.4(b)), the corresponding surface oscillation is then called localized surface

plasmon resonance LSPR. The induced dipoles in LSPR vary their direction in the ex-

ternal field every half period, which composes a nonpropagating oscillations mode. In

the LSPR, the confined electronic oscillations enhance the local field distribution at the

surface of the NPs. The remarkable property in plasmonic modes can simply realize in

the polarizability, αp, of a spherical metallic NP. An accurate expression for αp outside

a nanosphere of radius, R surrounded by dielectric medium, can be written taking into

consideration electrostatic (Rayleigh) [2] approximation as:

αp = 4πR3 εm − εs

εm + 2εs
(2.2)

As the same way to what occurs for kS P in the flat shape, αp shows a strong resonant
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Figure 2.4: Schematic illustration of the two types of plasmonic nanostructures. (a) The
excitation of free electrons leads to create a propagating surface plasmon (PSP). This
mode propagate along the surface of the metal nanostructure. (b) The surface charges
are locally oscillated around the metal nanoparticles. This is known as a localized surface
plasmon resonance (LSPR). Refs. [82, 83, 52].

behavior for smaller metal permittivities, diverging for frequencies governing by the poles

of the polarizability, given by εs = −2εm. In comparison with flat geometry, the conse-

quences of the polarizability can be understood as the presence of resonance in the NP

response at incident fields corresponding those of the plasmonic modes provided by the

NP. Equation 2.2 is valid to spherical geometries in electrostatic system, but in metal par-

ticles of any shape and size, the study of LSPRs can be explored by full electrodynamic

calculations based on numerical approaches.
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2.4/ OPTICAL RESPONSE OF METALLIC NPS

To understand the optical response of resonant metallic structures, we need to have an

accurate description of the electromagnetic modes function of the geometrical parameters

and the dispersion properties of the particles under study. The most common method to

this issue is based on analytical solutions of Maxwells equations that can only be obtained

for simple geometries, such as spheres. For the latter, the solutions is given through the

Mie theory. Consequently, we will firstly describe this analytical model for better under-

standing the occurrence of localized surface plasmon resonances LSPRs, by calculating

the extinction, scattering, and absorption cross sections. For reasons related to the limi-

tations of this model, it is necessary to use rigorous computational approaches qualified

for dealing with more complex geometries. Therefore, the next step in this chapter will

be intended to introduce the principle of Finite Difference Time Domain method (FDTD)

with little detail allows the realization of calculations of optical response of nano-objects

for any shapes and sizes.

2.4.1/ MIE THEORY: ANALYTICAL MODEL FOR SPHERES

The optical response can be predicated analytically through solving the Maxwells equa-

tions for spherically symmetric particles based on Mie theory [3]. This theory fully de-

scribes the effects of retardation, including radiative damping and higher-order multipole

resonances. In addition, it is appropriate for the particle size of the order or much smaller

than the wavelength λ of the incident field. Mie theory provides expressions giving ab-

sorption, scattering and extinction spectra of spherical metal NPs. This step allows to

validate our numerical method through comparing the result obtained by this latter with

those obtained from analytical solution.

2.4.1.1/ MIE FORMULATIONS

The full details on this theory can be found in the Bohren textbook (see Ch.4 in refer-

ence. [5]). Here, we recall the basic steps down to the final formulations. Mie theory

is the exact analytical solution of Maxwells equations for the spheroid forms that allows

determination of the scattered and absorbed fields to deduce the extinction one. Accord-

ing to the spherical symmetry of the problem, the spherical coordinate system is chosen

to describe the electromagnetic fields by developing it on the basis of vector functions,
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called Harmonics Spherical Vector (HSV). By using the Helmholtz equations for the E

and H fields, their zero divergence and boundary conditions on the sphere surface, we

can express the three electromagnetic fields, internal, scattered and incident one in the

HSV basis. Let’s consider the case of sphere with radius R, complex electric permittiv-

ity ε = n2
s embedded in dielectric medium of permittivity εm = n2

m and illuminated by a

monochromatic (wavelength λ) plane wave.

Let’s define on a set of useful dimensionless parameters:

m =
ns

nm
, x =

2πR
λ
, (2.3)

The expansion coefficients of the scattered field (an) and (bn) are obtained by applying

the relations of continuity of the tangential components of the electric field and magnetic

field at the surface of the particle. In the conditions of orthogonality of HSV, the extinction

(Qext), scattering (Qsca) and absorption (Qabs) cross-sections normalized to the physical

cross section (πR2) are given by the following formulas:

Qext =
2
x2

∞∑
n=1

(2n + 1)ℜ[an + bn] (2.4)

Qsca =
2
x2

∞∑
n=1

(2n + 1)(|an|2 + |bn|2) (2.5)

Qabs = Qext − Qsca (2.6)

where

an =
mψn(mx)ψ́n(x) − ψn(x)ψ́n(mx)
mψn(mx)ξ́n(x) − ξn(x)ψ́n(mx)

(2.7)

bn =
ψn(mx)ψ́n(x) − mψn(x)ψ́n(mx)
ψn(mx)ξ́n(x) − mξn(x)ψ́n(mx)

(2.8)

The coefficients, an and bn, are also called Mie coefficients. The electric behavior

of the scattered radiation is usually linked to an coefficients, whereas the magnetic one

is associated with bn coefficients. In these expressions, ψn and ξn are the Ricatti-Bessel

functions written as:

ψn(x) = x jn(x) =
√
πx
2

Jn+ 1
2

(2.9)

ξn(x) = ψn(x) − iχn(x), χn(x) = −xyn(x) = −
√
πx
2

Yn+ 1
2

(2.10)

ξn(x) =
√
πx
2

(Jn+ 1
2
+ iYn+ 1

2
) (2.11)

17



2.4. OPTICAL RESPONSE OF METALLIC NPS

where Jn+ 1
2

and Yn+ 1
2

are spherical Bessel-function of first and second order respectively.

Note that Jn and Yn are solutions of the Bessel differential equation:

x2 d2y
dx2 + 2x

dy
dx
+ [x2 − n(n + 1)]y = 0 (2.12)

whereas ψn and ξn are the solutions of the following differential equation:

x2 d2y
dx2 + [x2 − n(n + 1)]y = 0 (2.13)

ψn and ξn can be expressed as a sum of sines and cosines function. For example,

the first terms read:

ψo(x) = sin x (2.14)

ξo(x) = sin x − i cos x (2.15)

ψ1(x) =
sin x

x
− cos x (2.16)

ξ1(x) =
sin x

x
− i(

cos x
x
+ sin x) (2.17)

In Eqs. 2.4 and 2.5, the sum over n can be restricted to only a few terms. Therefore,

the derivatives in Eqs. 2.7 and 2.8 can be expressed as:

ψ́n(x) = ψn−1(x) − n
x
ψn(x) (2.18)

ξ́n(x) = ξn−1(x) − n
x
ξn(x) (2.19)

This analytical method allows realizing and analyzing the effects of size, character-

istics of material and environment on the electromagnetic scattering and absorption by

spherical NPs.

18



CHAPTER 2. MODELING OPTICAL RESPONSE OF METALLIC NANO-PARTICLES

2.4.2/ ABSORPTION, SCATTERING AND EXTINCTION EFFICIENCIES WITH MIE

According to Eq. 2.4, the extinction energy is defined as the total energy removed from

the incident field by both scattering and absorption. After the interaction of light with the

NPs, the absorption occurs through an inelastic processes that lead to dissipate the pho-

ton energy, otherwise the latter induces the electron oscillation in the matter to produce

the light scattering. There are two types of scattering due to the nature of the photon

emission: the Rayleigh scattering that occurs at the same frequency as the incident light,

and the Raman one that has a shifted frequency [42].

Once the Mie coefficients are determined through Eqs. 2.7 and 2.8, we can calculate

the extinction, absorption and scattering efficiencies or the electromagnetic fields caused

by the spherical particle using Eqs. 2.4 and 2.5. We have developed a MATLAB® code to

numerically determine these three coefficients.

We have validated our code by making some comparisons with already published

results. The spectra for two different sizes of gold sphere particles, R = 10 nm and R =

30 nm, embedded in a medium of nm = 1.5 are shown in Fig. 2.6. As expected, in the

case of small radius (R << λ), the polarizability of the sphere exhibits a dipolar resonance

at a wavelength for which its permittivity is equal to −2n2
m. In our case this corresponds

to εs = −4.5. According to figure 2.5, this condition is fulfilled for λ ∼ 521 nm. This

result is in very good agreement with the position of the extinction coefficient maximum of

figure 2.6. In addition, the scattering coefficient is so week, due to the very small sphere

volume, so that the extinction cross section is almost obtained by the contribution of the

absorption one. For a 30 nm Au nanosphere, the situation is a little bit different due to

grow the contribution of the scattering (see figure 2.6(b)). As reported in previous studies,

these results can be useful to select the suitable nanoparticles in some applications. For

example, it can use the smaller nanoparticles for the photothermal therapy because of

light is mainly absorbed by the particles and hence the energy converted to heat, whereas

larger one is desirable in imaging applications for example coherent Raman scattering or

biological imaging [40].

This analytical method (Mie solutions) allows determining the efficiency of spheres,

or ellipsoids form. To bypass this restriction, it should be necessary to introduce a

new method that allows to calculate the extinction and scattering efficiencies for

any geometry of nanoparticles (nano-bar, nano-triangle, etc....). For this purpose, nu-

merical approaches are required. One of the most commonly used is the Finite Difference

Time Domain (FDTD) method which has successfully been applied to solve light-matter
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Figure 2.5: Real (blue curve) and imaginary (red curve) parts of the permittivity of gold in
the optical region. The experimental data taken from Ref. [85].
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Figure 2.6: Extinction, absorption and scattering cross sections of a sphere made of
gold with a radius of (a) 10 nm, (b) 30 nm. In both cases, the refractive index of the
environment is 1.5. The dielectric function database are taken from [85].

interaction especially in nano-optics.

2.5/ FINITE DIFFERENCE TIME DOMAIN FDTD METHOD

The Finite Difference Time Domain (FDTD) method is one of the most important com-

putational tools in electromagnetic since Yee suggested it in 1966 [86]. In the FDTD
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approach, both space and time are discretized into a regular grid by exploiting the nature

of Maxwells equations in order to determine the E and H fields at different both positions

and time-steps [10, 87, 88, 89]. In our laboratory, we use quasi featured homemade FDTD

codes, including for example: 2D arbitrary isotropic or anisotropic in Transverse Electric

(TE) and Transverse Magnetic (TM) polarizations [90, 91, 92], guided mode solver [27],

3D finite (unique) or infinite (periodic) structures [31, 93] and 2.5D Body Of Revolution-

FDTD (BOR-FDTD) [94] in cylindrical coordinates. Furthermore, a dispersive media such

as metals in the optical range can be modeled in this method, where the complex permit-

tivity ε(ω) should be adapted through the use of analytical models that are then integrated

into the FDTD algorithm through different schema as it will be shown in the following.

In this manuscript, after reviewing in outline the principles associated to the un-

derstanding of FDTD method, we will present the development of a new simulation

tool derived from an existing FDTD code by adapting a new technique called Total

Field/Scattered Field (TF/SF). By the latter, our code becomes able to extract the pure

scattered field from the incident one and we will show how to detect and monitor those

fields to determine the optical responses of NPs.

2.6/ EXPLOITATION OF MAXWELL EQUATIONS

Firstly, we recall the Maxwell equations that are needed to be implemented in the FDTD

algorithm in the case of an isotropic (←→ε = ε), linear and non dispersive material without

sources (J⃗ = 0⃗). The two curl equations can then be expressed by:

∂H⃗
∂t
= −1

µ
∇⃗ × E⃗ (2.20)

∂E⃗
∂t
=

1
ε
∇⃗ × H⃗ (2.21)

E⃗ and H⃗ are the electric and magnetic fields respectively whereas µ and ε are the

magnetic permeability and the dielectric permittivity respectively. After projection of these

equations on the three axes of a Cartesian coordinate system x̂, ŷ and ẑ, one obtains six
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scalar relations below:

∂Hx

∂t
=

1
µ

(∂Ey

∂z
− ∂Ez

∂y

)
(2.22)

∂Hy

∂t
=

1
µ

(∂Ez

∂x
− ∂Ex

∂z

)
(2.23)

∂Hz

∂t
=

1
µ

(∂Ex

∂y
−
∂Ey

∂x

)
(2.24)

∂Ex

∂t
=

1
ε

(∂Hz

∂y
−
∂Hy

∂z

)
(2.25)

∂Ey

∂t
=

1
ε

(∂Hx

∂z
− ∂Hz

∂x

)
(2.26)

∂Ez

∂t
=

1
ε

(∂Hy

∂x
− ∂Hx

∂y

)
(2.27)
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Figure 2.7: An example of windows of FDTD calculation and regular mesh.

These partial differential equations are then discretized both in the space and time in
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order to treat them numerically.

2.6.1/ FINITE DIFFERENCES

As seen in Fig. 2.7, the calculation windows is represented as a rectangular parallelpiped

and it is divided into (Nx×Ny×Nz) cells, one cell has the elementary volume (∆x×∆y×∆z)

where ∆x, ∆y and ∆z are the spatial discretization steps along the x,y and z directions

respectively. It is necessary to define the node in the grid with a triplet integers (i, j, k),

therefore, the coordinates (xi, y j, zk) of a node are fulfilled by:

xi = i ∆x (2.28)

y j = j ∆y (2.29)

zk = k ∆z (2.30)

The discretization of the computational time can be written as ∆t. This real time of the

EM field evolution is connected to an integer n defining the number of temporal sampling

and to this time step by:

t = n ∆t (2.31)

The temporal and spatial derivatives for the six components of the field (Ex, Ey, Ez,

Hx, Hy and Hz) of Eqs. 2.22–2.27 are approximated from their Taylor expansions through

a centered finite difference schema. Let us consider a function f that depends both on

time and space so that f = f (x, t). To calculate its spatial derivative at x = xi, we need

to express the Taylor expansion of this function at two spatial positions from either side

separated by a distance of ∆x. Consequently, using the Taylor expansion to the second

order for f = f (x, t) at the points xi −
∆x
2

and xi +
∆x
2

, we get:

f (xi +
∆x
2

) = f |xi +
∆x
2
∂ f
∂x

∣∣∣∣
xi
+

(∆x)2

2!
∂2 f
∂2x

∣∣∣∣
xi
+O[(∆x)2] (2.32)

f (xi −
∆x
2

) = f |xi −
∆x
2
∂ f
∂x

∣∣∣∣
xi
+

(∆x)2

2!
∂2 f
∂2x

∣∣∣∣
xi
+O[(∆x)2] (2.33)

where O[(∆x)2] is the error of the expansion. By subtracting 2.33 from 2.32 one and gets

the following equation:

∂ f
∂x

∣∣∣∣n
xi
=

f n
i+ 1

2
− f n

i− 1
2

∆x
+ O[(∆x)2] (2.34)
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where f n
i = f (xi, tn) with xi = i∆x. This formula represents the expression of the first

spatial derivative of the function f through a centered finite difference schema and shows

that error is at the second order. This ensures a very stable numerical schema to the

FDTD algorithm.

By the same way, we obtain the same temporal discretization schema through:

∂ f
∂t

∣∣∣∣n
xi
=

f
n+ 1

2
i − f

n− 1
2

i

∆t
+ O[(∆t)2] (2.35)

2.6.2/ YEE ALGORITHM

In the Yees scheme, both electric and magnetic fields components are located at different

points in a unit cell (see Fig 2.8). The electric field components are determined along the

edges of the cell while the magnetic field components are determined at the centers of

the cell faces. Therefore, each electric field component is surrounded by four magnetic

field components and similarly for each magnetic field component. In Yee scheme, the

temporal increment can be produced through a "leapfrog" discretization. The field com-

ponents H⃗ (or E⃗ ) are calculated at times odd multiples of the half time-step ∆t
2 , whereas

the field components E⃗ (respectively H⃗ ) are updated at the times even multiples of ∆t
2

as shown in figure 2.9. Such a discretization allows estimating the time derivatives by

keeping a centered difference schema as for spatial derivatives.

Hx(i,j+1/2,k+ )1/2

Hz(i+1/2,j+1/2,k)

Hy(i+1/2,j,k )+1/2

Ex(i+1/2,j,k )+1

Ey(i,j+1/2,k )+1

Ey(i+1,j+1/2,k)

Ez(i,j+1,k )+1/2

Ez(i+1,j,k )+1/2

Ex(i+1/2,j+1,k)

(i,j,k)
z

x
y

Figure 2.8: Yee cell in three dimensions. Note that the six components of electric and
magnetic fields are represented in this cell.
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E
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H
n+3/2

2n t/2D (2n+1) t/2D (2n+2) t/2D (2n+3) t/2D (2n+4) t/2D

Figure 2.9: Temporal discretization into the Yees scheme.

Consequently, applying the central difference in equations (2.34 and 2.35) through

the replacing of the partial derivatives in equations 2.22–2.27, the updated equations of

electromagnetic components in the FDTD algorithm depending on the numerical diagram

(Yee scheme) are:

Hx|
n+ 1

2

i, j+ 1
2 ,k+

1
2
= Hx|

n− 1
2

i, j+ 1
2 ,k+

1
2
− ∆t
µo
{
[Ez|ni, j+1,k+ 1

2
− Ez|ni, j,k+ 1

2

∆y

]
+
[Ey|ni, j+ 1

2 ,k
− Ey|ni, j+ 1

2 ,k+1

∆z

]
}

(2.36)

Hy|
n+ 1

2

i+ 1
2 , j,k+

1
2
= Hy|

n− 1
2

i+ 1
2 , j,k+

1
2
− ∆t
µo
{
[Ex|ni+ 1

2 , j,k+1
− Ex|ni+ 1

2 , j,k

∆z

]
+
[Ez|ni, j,k+ 1

2
− Ez|ni+1, j,k+ 1

2

∆x

]
}

(2.37)

Hz|
n+ 1

2

i+ 1
2 , j+

1
2 ,k
= Hz|

n− 1
2

i+ 1
2 , j+

1
2 ,k
− ∆t
µo
{
[Ey|ni+1, j+ 1

2 ,k
− Ey|ni, j+ 1

2 ,k

∆x

]
+
[Ex|ni+ 1

2 , j,k
− Ex|ni+ 1

2 , j+1,k

∆y

]
}

(2.38)

Ex|n+1
i+ 1

2 , j,k
= Ex|ni+ 1

2 , j,k
+
∆t
ε
{
[Hz|ni+ 1

2 , j+
1
2 ,k
− Hz|ni+ 1

2 , j−
1
2 ,k

∆y

]
+
[Hy|ni+ 1

2 , j,k−
1
2
− Hy|ni+ 1

2 , j,k+
1
2

∆z

]
}

(2.39)

Ey|n+1
i, j+ 1

2 ,k
= Ey|ni, j+ 1

2 ,k
+
∆t
ε
{
[Hx|ni, j+ 1

2 ,k+
1
2
− Hx|ni, j+ 1

2 ,k−
1
2

∆z

]
+
[Hz|ni− 1

2 , j+
1
2 ,k
− Hz|ni+ 1

2 , j+
1
2 ,k

∆x

]
}

(2.40)
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Ez|n+1
i, j,k+ 1

2
= Ez|ni, j,k+ 1

2
+
∆t
ε
{
[Hy|ni+ 1

2 , j,k+
1
2
− Hy|ni− 1

2 , j,k+
1
2

∆x

]
+
[Hx|ni, j− 1

2 ,k+
1
2
− Hx|ni, j+ 1

2 ,k+
1
2

∆y

]
}

(2.41)

2.6.3/ CRITERIA OF STABILITY FOR FDTD CODE

The FDTD method as in all numerical methods may become unstable if the spatial dis-

cretization parameters ∆x,∆y,∆z and temporal ∆t do not respect certain limitations. Ar-

bitrary values of spatiotemporal discretization can cause to unbounded solutions of the

electromagnetic field. Stability matter in evident numerical methods has been analyzed

in detail by Courant, Friedrichs and Levy [95] and Von Neumann [96], from a mathemat-

ically strict approach. The latter gives stable schemes under a condition called CFL (for

Current, Friedrich and Levy) and used in the FDTD method in the case of a uniform mesh

[95]:

∆t ≤ 1

c
√

1
(∆x)2 +

1
(∆y)2 +

1
(∆z)2

(2.42)

where c represents the speed of light in vacuum. Furthermore, the transition from contin-

uous forms of Maxwell equations to the discrete numerical approximations can give rise

on an intrusive effect called "numerical dispersion". The latter is linked to the fact that

numerical pluses are propagated throughout time in the FDTD grid, with a phase velocity

less than the actual velocity. The frequency, propagation direction in the grid and the

spatial discretization induce the dispersion to vary [95]. Numerical dispersion errors grow

with increased signal frequencies making the simulation results unrealistic. To prevent

this problem, a mesh refining is required in the FDTD grid, so that the maximum spatial

discretization is of the order [10]:
λmin

20
(2.43)

where λmin being the minimum wavelength of propagating waves in the FDTD grid. The

limit of the spatial discretization given by equation 2.43 corresponds to a relative error on

the phase velocity of about 0.2% (see Fig. 2.2, page 50 in Ref. [10]). In our code, we need

to fulfill these two criteria in order to be acceptable in the context of our simulations.
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2.7/ BOUNDARY CONDITIONS

Providing a finite grid in FDTD computational domain is one of the main challenges. To

prevent very large calculation window volume, the latter must be truncated. This obvi-

ously requires the using of absorbing boundary conditions in order to avoid parasitical

reflections on the window borders. In our code, we used the called Perfectly Matched

Layer (PML) boundary conditions [10]. The PML is a loss medium reducing the reflection

to the minimum over a broad spectrum and large angles of incidence.

2.7.1/ PERFECTLY MATCHED LAYER (PML)

This technique is one of most widely used technique that was introduced by J.P. Berenger

in 1994 [97]. PML technique consists of surrounding the window of calculation by a layer

giving rise to no reflection and almost fully absorbing all the propagating electromagnetic

fields. Its principle depends on the condition of impedance matching at the interface

between two media (main window and PML layer) but here PML medium exhibits both

electric (σ) and magnetic (σ∗) conductivities as shown in figure 2.10(a). This impedance

matching condition is written as:
σ

ε
=
σ∗

µ
(2.44)

Consequently, a magnetic conductivity is required to achieve the impedance matching

condition whereas, the absorption is required only for components of the fields that prop-

agates perpendicularly to the interface (boundary of window calculation) and not in the

parallel direction. This problem has been solved by Berenger via the suggestion of an arti-

ficially biaxial absorbing medium [97]. In the direction normal to the interface between the

two media, the absorption is not zero while, there is no absorption along the axis parallel

to the interface. In the PML medium, there are two artificial waves resulting from the split

of the incident field (see figure 2.10(b)): A wave propagating at normal incidence with σ

and σ∗ different from zero and a second wave that propagates without absorption parallel

to the interface direction. Sudden variations in conductivities at this interface introduces

numerical spurious reflections due to the discrete representation of the physical problem.

However, this effect was accurately optimized by imposing a progressive variation of the

conductivities according to a polynomial law given by [97]:

σ(xpml) = σmax
( xpml

l

)n
(2.45)
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where σmax is the maximum conductivity at the FDTD grid truncation boundary including

the PML layer, l is the width of the PML, xpml represents the distance between the interface

and the cell position inside the PML layer and n is the polynomial order generally fixed

to 2 in our code. In chapter 3, where our attention is focused on the periodic structures,
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Figure 2.10: (a) Impedance matching principle. (b) Sketch of the PML principle.

the absorbing boundaries conditions are replaced by Floquet-Bloch periodic conditions.

However, for a 2D periodic structure, PML are only necessary in the third direction where

the structure is finite.

2.8/ METAL DISPERSION MODELS

An accurate study of the light-matter interaction should take into account the dielectric

and magnetic properties of all the material involved into this interaction. In optics, ho-

mogeneous magnetic materials do not exist so that magnetic properties are independent

from the frequency (µr = 1). Nevertheless, dielectric properties can highly vary with re-

spect to the illumination wavelength. Even if some dielectrics can be assumed to be non

dispersive over a wide spectral range, metals-especially noble ones-exhibit large disper-

sion in that range. For such materials, equations 2.25 to 2.27 are no more valid due to

the permittivity temporal dependency (ε(ω) → ε(t)). Calculation of the electric displace-

ment vector is then needed to determine the upgrading schema between the electric E⃗

and magnetic H⃗ fields. The constitutive relation between E⃗ and D⃗ is then exploited and

can only be integrated into the FDTD algorithm providing an analytical expression of the

permittivity (linear media). This point was already addressed through the implementation

of Debye [98, 99], Drude [100, 101], Drude-Lorentz [102] or, more recently, Drude critical
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points models [103, 104].

2.8.1/ DRUDE MODEL

The Drude model of free electron [5, 105] for the dielectric function which, although uses

the classical mechanical theory, can well take into account for interband transitions. This

model was firstly proposed by P. Drude in 1900 [106], where the idea of a gas of free

electrons moving in a static metal ions lattice (between positively charged ionic cores) is

considered. Therefore, the electron-electron and/or electron-ion interactions are ignored

and the motion of all the electron cloud is hence the average of the movement of individual

electrons. Drude dielectric function ε(ω) is given by the following equation:

ε(ω) = ε∞ −
ω2

D

ω2 + iωγD
(2.46)

where ωD is the oscillation frequency of the electron density (often is called plasma fre-

quency), γD is the damping coefficient and ε∞ is the high-frequency contribution that is

usually superior or equal to one.

2.8.2/ DRUDE-LORENTZ MODEL (DL)

The Drude-Lorentz model considers the bound electrons as well as what is taken into

account in Drude one. The interband transition of electrons from filled bands to the con-

duction band plays a crucial role in the optical response. As explained above, alkali

metals become transparent when ω > ωD because the transition of electron occurs at

this frequencies which provide only small corrections to dielectric constant in the optical

domain. In contrast, the others metals (noble metals) do not because the contribution

of bound electrons to the dielectric function must be taken into account. Lorentz model

described these contributions by adding another term called Lorentzian term εL(ω) to the

Drude dielectric function:

εDL(ω) = εD(ω) + εL(ω) (2.47)

Lorentzian term can be estimate by forced and damped harmonic oscillators. This term

is considered as a single oscillator in order to completely describe the permittivity of gold

in the optical range compared with the Drude model. The relative dielectric function εDL

is given by:

εDL(ω) = ε∞ −
ω2

D

ω2 + iωγD
+

∆ε Ω2
L

(ω2 − Ω2
L) + iγLω

(2.48)
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where γL and ΩL represent the spectral width and the strength of the Lorentz oscillator

respectively. ∆ε is a weighting factor. A. Vial proposed a very accurate algorithm to in-

tegrate this analytical model of the permettivity into the FDTD one. Auxilliary Differential

Equations (ADE) method is then applied to implement the DL model [103]. Using of the

additional Lorentzian term requires the use of the additional intermediate electromagnetic

components in the algorithm. Consequently, larger memory space will be needed com-

pared to the case of the Drude model. Meanwhile, multiple oscillators Lorentz terms are

generally required to accurately describe the permittivity of noble metals in the optical

domain [104].

2.8.3/ DRUDE CRITICAL POINTS (DCP)

In the visible/near-UV region, the contribution of the intraband transitions for some metals

become prominent and must be taken into consideration. This can be found in particular

in the case of gold. In order to well describe the permittivity metal, more than one Lorentz

oscillator must be added to the classical Drude model to estimate these transitions, but

the great number of parameters as well as the huge simulation time make this way very

hard. To overcome this problem, it is necessary to adopt a reasonable representation of

the dielectric function. An innovative method, borrow from parametric critical points model

developed for semiconductors, was adapted and implemented in the FDTD algorithm by

Vial in 2007 [107]. In fact, this approach is very useful for the description of optical

properties of noble metals (gold) for which the electron transition band structure is quite

complex. The formula of this model can be well sufficient to describe the optical properties

of noble metals. The dielectric function of DCP model is a combination of Drude model

and two CP terms:

εDCP(ω) = ε∞ −
ω2

D

ω2 + iωγ
+

p=2∑
p=1

Gp(ω) (2.49)

with

Gp(ω) = ApΩp
( eiϕp

Ωp − ω − iγp
+

e−iϕp

Ωp + ω + iγp

)
(2.50)

It is clear that the first two terms in Eq. (2.49) correspond to the Drude model, whereas the

sum that appears in Eq. (2.50) represents the intraband transition contribution describing

by the parameters Ap, Ωp, ϕp and γp which are the amplitude, the gap energy divided

by Dirac constant, the phase and the broadening of the pole [107] respectively. The

validation of the DCP model in our FDTD homemade code was already performed in Ref.

[104]. The ADE technique that was used for the DL model is used to handle the DCP

one.
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2.8.4/ DESCRIPTION OF PERMITTIVITY FOR METALS

In order to accurately implement the dispersive model, we have optimized the parameters

for gold and silver metals over a wide spectral range lying from 300 nm to 2000 nm by

adjusting them to fit the experimental data of the literature [108]. This optimization is

done thanks to a homemade software based on the fitness function ∆ as:

∆ =
∑
ω

|εexp(ω) − εmodel(ω)|2 (2.51)

where ω represents the discrete frequency values for which were experimentally calcu-

lated permittivities of such metal, εexp is the tabulated values taken from the literature.

Optimized parameters of the three dispersive models described above are given in tables

2.1 and 2.2 for gold and silver respectively. For all models, ε∞ is fixed to 1 so that it is not

involved in the optimization process. We recognize that this assumption can occasionally

(for some other metals) lead to less accurate model. Nevertheless, no negative impact

was observed in the case of gold or silver.

Gold Drude DL DCP

ε∞ 1.0000 1.0000 1.0000
ωD(s−1) 1.206×1016 1.229×1016 1.234×1016

γ(s−1) 1.312×1014 1.240×1014 1.180×1014

A1(∆ε) 3.6617092 1.921431
Ω1(ΩL)(rad s−1) 5.935×1015 8.467×1014

γ1(γL)(rad s−1) 3.134×1015 1.425×1015

ϕ1(rad) -0.785
A2 1.8570215

Ω2(rad s−1) 4.674×1015

γ2(rad s−1) 1.269×1015

ϕ2(rad) -0.785
∆ 12.92 8.66 5.65

Table 2.1: Permittivities of gold for Drude, DL and DCP models are optimized using ∆
function over 300 − 2000 nm wavelength range

As may be seen in figure 2.11 and 2.12, there is a good agreement between data

of Ref. [109] and the DCP model over the considered spectral range. As it can be

shown on figure 2.11, the contribution of the inter-band transition is only taken into ac-

count in DL and DCP models. Drude model is then not appropriate in this spectral range

(300 − 600 nm). DL and DCP can then be employed over a wider range of wavelengths.

Nevertheless, DCP exhibits smaller value of the fitness function and is more suitable.

For silver, the same situation is almost seen in figure 2.12, where the permittivity of Ag is
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Silver Drude DL DCP

ε∞ 1.0000 1.0000 1.0000
ωD(s−1) 1.155×1016 1.154×1016 1.170×1016

γ(s−1) 1.114×1014 8.340×1013 0.9098×1014

A1(∆ε) 27.365658 0.2521938
Ω1(ΩL)(rad s−1) 3.868×1015 6.206×1015

γ1(γL)(rad s−1) 13.76×1016 4.520×1014

ϕ1(rad) -0.785
A2 0.9190994

Ω2(rad s−1) 1.184×1015

γ2(rad s−1) 3.894×1014

ϕ2(rad) -0.785
∆ 40.63 39.92 12.43

Table 2.2: Permittivities of silver for Drude, DL and DCP models are optimized using ∆
function over 300 − 2000 nm wavelength range
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Figure 2.11: Palik data of gold [108] (blue square) and comparison with the fitted per-
mittivities using Drude (solid red curve), DL (dashed green curve) and DCP (solid black
curve) models (a) real part (b) imaginary part.

well described in high energy region (300− 600 nm) using DCP model and its fitness func-

tion has also the lower value in comparison with other ones (see in table 2.2). It clearly

appears that the improvement in the description of the permittivity using DCP leads us to

choose the latter for getting perceptible enhancement in the accuracy of the computation

over a wider spectrum.

The following section recalls the background material necessary to construct the

technique of total field/scattered field (TF/SF). This technique is useful to determine ab-

sorption, extinction and scattering coefficients of any shape NPs.
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Figure 2.12: Palik data of silver [108] (blue square) and comparison with the fitted permit-
tivities using Drude (solid red curve), DL (dashed green curve) and DC (solid black curve)
models (a) real part (b) imaginary part.

2.9/ TOTAL FIELD/SCATTERED FIELD TECHNIQUE (TF/SF)

The TF/SF was firstly described in [110] based on the concept of surfaces of Huygens. As

mentioned above, by applying this technique, the absorption (near field), extinction and

scattering (far field) spectra from an arbitrary scatterer can be easily calculated. In this

section, we verbosely describe the TF/SF techniques in 1D, 2D and 3D and the validation

of this technique inside a standard FDTD homemade code as well as the comparison

with the corresponding theory will be conducted.

2.9.1/ TF/SF IN ONE-DIMENSIONAL

The figure 2.13 schematically represents the principle of the TF/SF in one-dimensional

problem. The computational domain is divided into two zones; total field region and

scattered one. The TF zone involves the sum of the incident field and scattered field,

whereas only the scattered field exists in the SF zone. By using the property of linearity

of Maxwell equations, the total electric and magnetic fields can be written as:

Etot = Einc + Escat

Htot = Hinc + Hscat
(2.52)
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Figure 2.13: Schematic represents the FDTD computational domain including two distinct
TF and SF zones in the case of 1D.

Suppose that a uniform plane wave propagates in the +x direction, with the field com-

ponents Ez and Hy (see Figure 2.13). The FDTD update equations can be derived as

previously mentioned in section 2.6 as:

Ez|n+1
i = Ez|ni −

∆t
ε∆y

[
Hy|n+1/2

i+1/2 − Hy|n+1/2
i−1/2

]
(2.53)

Hy|n+1/2
i+1/2 = Hy|n+1/2

i+1/2 −
∆t
∆y

[
Ez|ni+1 − Ez|ni

]
(2.54)

It is clear that the update equations can be applied to the whole computational domain

except at the TF/SF boundaries. At these interfaces, the field components are Ez|n+1
ia

,

Ez|n+1
ib

, Hy|n+1/2
ia−1/2 and Hy|n+1/2

ia+1/2. As an example, to determine the Ez in point ia, we need

to subtract the incident field from the total one at each time step through applying the

equation 2.53 at TF/SF boundaries. Therefore, the total electric field at ia can be written

as:

Etot
z |n+1

ia = Etot
z |nia −

∆t
ε∆y

[
Htot

y |n+1/2
ia+1/2 − Hscat

y |n+1/2
ia−1/2

]
(2.55)

in equation 2.55, there is no consistency due to the appearance of the term Hscat
y . This

requires that the incident fields only need to be known at the boundary between the total-

field region and the scattered-field region. By taking advantage of equation 2.52, the

necessary correction have to obtain a consistent update of these electric field nodes by

subtracting the incident field from the magnetic total field as is done in the following:

Etot
z |n+1

ia = Etot
z |nia −

∆t
ε∆y

[
Htot

y |n+1/2
ia+1/2 − Htot

y |n+1/2
ia−1/2 + Hinc

y |n+1/2
ia−1/2

]
(2.56)
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equation (2.56) can be expressed in a more compact form as follows:

Ez|n+1
ia = {Ez|n+1

ia } +
∆t
ε∆y

Hinc
y |n+1/2

ia−1/2 (2.57)

We see in Eq.(2.57) that the field component {Ez|n+1
ia } refers to (Eq.2.53), (i.e. the ordinary

FDTD update equation). By the same way, the TF/SF consistency equations can be

obtained for the other components, which are given below:

Ez|n+1
ib = {Ez|n+1

ib } −
∆t
ε∆y

Hinc
y |n+1/2

ib+1/2 (2.58)

Hy|n+1/2
ia−1/2 = {Hy|n+1/2

ia−1/2} +
∆t
∆y

Einc
z |nia (2.59)

Hy|n+1/2
ib+1/2 = {Hy|n+1/2

ib+1/2} −
∆t
∆y

Einc
z |nib (2.60)

It becomes clear that the equations (2.53) and (2.54) are in TF and SF zones whereas

the equations (2.56–2.60) are to be applied only at the TF/SF boundary. The 1D FDTD

code with TF/SF technique was implemented and tested. Nevertheless, the validation of

the implementation of this technique will be given in the following for 2D and 3D cases.

2.9.2/ TF/SF IN TWO-DIMENSIONAL

In the problem of two dimensions, the grid is once again divided into a TF zone and a

SF zone. The 2D TF/SF is more complicated than 1D TF/SF in the meaning that the

incident wave can have arbitrary propagation direction. In our case, we restrict ourselves

to TF/SF boundaries which are rectangular. Nonetheless, the implementation details are

simplest when the boundary has straight sides. 2D FDTD can be formulated either in T M

or T E polarizations [10]. Figure 2.14 shows a T M grid with a rectangular TF/SF boundary.

As shown in figure 2.14, we have to know the incident wave component values at Ez the

TF/SF boundary and and Hy and Hx at grid points just outside it. For example, the electric

fields tangential to the TFSF boundary are always in the TF region and hence these nodes

will have at least one neighboring magnetic field node that is in the SF region. To obtain a

consistent update of these electric field nodes, it is necessary that the correction involves

the incident field to correct the values of the neighboring magnetic fields on the outer

side of the TFSF boundary. Reciprocally, the magnetic field nodes which are tangential

to the TFSF boundary (from the SF zone) must be corrected too. These nodes have

one neighboring electric field Ez node which is in TF zone. Consequently, the necessary

correction have to obtain a consistent update of these magnetic field nodes by subtracting

the incident field from this electric total field. As mentioned in the one dimensional case,
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Figure 2.14: Sketch of the simulation for (a) a plan wave hitting a scatterer. The field
scattering from the structure is the solitary field in region SF and hit the PML (b) The
lower left corner of the FDTD problem space showing the position of nodes for 2D T Mz

problem. Note that the bold E and H components indicate the nodes that need to modify
the update equations.

to achieve the TF/SF technique, the incident field must be at these specific node and at

each time-step. Note that the incident field in TF/SF-FDTD is calculated separately by

propagation it inside the homogeneous incident medium.
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Generally, the incident beam can propagate along any direction. Nevertheless and

for sake of simplicity, we only consider the case where the propagation is in the y-

direction. This allows simplifying the field correction at the TF/SF boundary due to a very

simple determination of the incident field. In fact, when the propagation direction is along

one of the coordinate system axis (here x or y), the schema of incident field updating is

reduced to 1D problem. Let us emphasize that this simplification will not limit the validity

domain of our FDTD code. In fact, for oblique incidence cases, the illuminated structure

is rotated instead of the incident wave itself. In the case of y-propagation incident wave,

the formulations of 2D TF/SF-FDTD can be written in a similar way as in 1D TF/SF. In this

case, the Hinc
y vanishes reducing the corrections the fields at the TF/SF boundaries to:

Ez value at j = ja and j = jb for i ∈ [ia, ib]:

Ez(i, ja) = Ez(i, ja) +
∆t
ε∆y

Hinc
x (ja −

1
2

) (2.61)

Ez(i, jb) = Ez(i, jb) − ∆t
ε∆y

Hinc
x (jb +

1
2

) (2.62)

Hx field only outside j = ja and j = jb for i ∈ [ia, ib]:

Hx(i, ja −
1
2

) = Hx(i, ja −
1
2

) +
∆t
∆y

Einc
z (ja) (2.63)

Hx(i, jb +
1
2

) = Hx(i, jb +
1
2

) − ∆t
∆y

Einc
z (jb) (2.64)

Hy field only outside i = ia and i = ib for j ∈ [ ja, jb]:

Hy(ia −
1
2
, j) = Hy(ia −

1
2
, j) − ∆t

∆y
Einc

z ( j) (2.65)

Hy(ib +
1
2
, j) = Hy(ib +

1
2
, j) − ∆t

∆y
Einc

z ( j) (2.66)

2.9.3/ MODEL VALIDATION OF 2D TF/SF

As an illustration, figure (2.15) shows the visualized simulation results obtained in the

case of an incident monochromatic plan wave at the wavelength λ = 600 nm and prop-

agating parallel to the plane xOy axis. In our code FDTD, the computational domain is

(200)2 cells with ∆x = ∆y = λ/25 and no scatterer is considered (homogeneous medium).

The interface that is represented by the dashed green squares in the computational do-

main is TF/SF boundaries. The incident wave is TE polarized so that E⃗ is along the

z-direction.
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Figures 2.15(a-c) represent the modulus of the electric field in the xOy plane. As

shown in Fig. (2.15), there is no scatterer in the computational windows, so there is no

visible field in the SF region. We can see in Fig. 2.15(a) initial field is injected from

the right side of the TF region. As the field crosses the TF/SF left boundary, a sudden

discontinuity occurs due to the fact that the scattered field vanishes. This discontinuity

appears both on the left of the TF zone as well as along a portion of the top and bottom

of the inner zone, whereas in Fig. 2.15(b) the pulse fills the half of the TF zone. Finally,

in figure 2.15(c) the incident wave has faced the right side of the TF zone. Thus, we

can verify that without scatterer the field in the SF region is zero even if an initial field is

injected into the computational window.

Figure (2.16), shows the modulus of the electric field for the three different time steps

as in figure(2.15) but when a dielectric cylinder, with refractive index of n=2, is placed into

the mesh grid. In figure 2.16(a), the wavefront has just reached the cylinder . It is clear

that there is no visible scattering yet meaning a zero field in the SF region. In figure

2.16(b) the interaction of the EM wave with the cylinder takes place. Consequently, a

scattered field is generated but it only exists inside the TF zone. Interferences between

the incident and the scattered fields occurs especially in front of the cylinder where re-

flection is efficient. Later, in figure 2.16(c), the non-zero field in the SF zone correponds

to the propagation of the scattered field from the TF zone into the SF one. The PML ABC

ensures the non reflection of the scattered field on the computational window borders as

it can be seen from figure 2.16(c).

2.9.4/ TF/SF DEMONSTRATION IN THREE-DIMENSIONAL

We have seen in the previous section, the implementation of the TF/SF method in 2D in

the case of TM-polarization. In the case of 3-D TF/SF FDTD, the update of the equations

also depends on the type of source used in the simulation. To better understand, we

introduce the simplest case when a linearly polarized plane wave along the y-direction

is considered propagating in the z-direction. In this case, the plane wave has only two

non-zero components of the incident field Einc
y and Hinc

x (see Fig. 2.17). Furthermore, it

is necessary to determine the E and H nodes that are tangential to the TF/SF interface

and their neighboring nodes that are on the other side of TF/SF boundary. The update

of E and H will be done through the adding or subtracting of the incident field from the

neighboring node in order to get consistent equations.

To illustrate the construction, the incident field could be injected on the TF/SF inter-
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Figure 2.15: Ez field in a computational domain using a TF/SF technique. The modulus of
the electric field in xOy plane are taken at time-steps (a) 120, (b) 180, and (c) 270. Note
that the dt = 4.0028 × 10−17 s.

face. Moreover, whatever the type of source (incident field), the description of this field

at the TF/SF interface should be taken into account and hence should be compatible

with the usual behavior of the field in the full grid. The TF/SF boundary has six planes
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Figure 2.16: Ez field with dielectric cylinder (ns = 2 in a computational domain using a
TF/SF technique. The modulus of the electric field in xOy plane are taken at time-steps
(a) 180, (b) 240, and (c) 360. dt = 4.0028 × 10−17.

and each one has two components of electric and magnetic fields which are tangential to

TF/SF interface. These components should be modified over the TF/SF interface. For this

purpose, let us write these consistent equations over the six faces of the parallelepiped

that corresponds to the frontier between TF and SF regions according to the notions of
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Figure 2.17: 3−D computational domain which contains a TF/SF boundary (ia, ja,ka, ib, jb
and kb) and the nodes that are used in the corrections.

figure 2.17 and taken into account the interleaving between E and H spatial positions:

in x − z plane, Ez value at j = ja and j = jb for i ∈ [ia, ib] and for k ∈ [ka, kb] :

Ez(i, ja, k) = Ez(i, ja, k) +
∆t
ε∆

Hinc
x (ja −

1
2

) (2.67)

Ez(i, jb, k) = Ez(i, jb, k) − ∆t
ε∆

Hinc
x (jb +

1
2

) (2.68)

in x − y plane, Ey value at k = ka and k = kb for i ∈ [ia, ib] and for j ∈ [ ja, jb] :

Ey(i, j, ka) = Ey(i, j,ka) − ∆t
ε∆

Hinc
x (ka −

1
2

) (2.69)

Ey(i, j, kb) = Ey(i, j, kb) +
∆t
ε∆

Hinc
x (kb +

1
2

) (2.70)

Now we write the H field

in x − y plane, Hx value at k = ka − 1
2 and k = kb +

1
2 for i ∈ [ia, ib] and for j ∈ [ ja, jb]

41



2.10. MODELING THE OPTICAL RESPONSE: FDTD-TF/SF VALIDATION

:

Hx(i, j,ka −
1
2

) = Hx(i, j, ka −
1
2

) − ∆t
∆

Einc
y (ka) (2.71)

Hx(i, j,kb +
1
2

) = Hx(i, j, kb +
1
2

) +
∆t
∆

Einc
y (kb) (2.72)

in x − y plane, Hy value at i = ia − 1
2 and i = ib + 1

2 for i ∈ [ ja, jb] and for k ∈ [ka, kb] :

Hy(ia −
1
2
, j, k) = Hy(ia −

1
2
, j, k) +

∆t
∆

Einc
y (ia) (2.73)

Hy(ib +
1
2
, j, k) = Hy(ib +

1
2
, j, k) − ∆t

∆y
Einc

y (ib) (2.74)

For the two remaining faces, there is no need to correct the EM field because the in-

volved components are always null. To validate our 3-D TF/SF FDTD code, we will model

in next section, nanosphere taking advantage of this method to calculate its scattering

efficiency and compare it to the one obtained by Mie theory.

2.10/ MODELING THE OPTICAL RESPONSE: FDTD-TF/SF VALI-

DATION

Even if any geometrical shape (nanosphere, nanotubes, nanoelliptical beads, nanoshells

and also nanoantenna ...etc) can be considered in the FDTD code, we will start by study-

ing the light scattering by spheres in order to validate our code.

2.10.1/ FRAMEWORK OF SCATTERING OF LIGHT

In order to illustrate the calculation of the scattered and absorption energies, let’s look at

what would happen when a nanoparticle is illuminated by an EM wave.

To better describe the problem, it is convenient to define the total field as the sum

of incident and scattered fields. Thus, if one notes that Esca and Hsca as the scattered

electric field and scattered magnetic field respectively and Einc and Hinc as the incident

field, then the total field outside of the particles corresponds to the superposition of these

two fields. The latter is already written in equation 2.52. The elastic interaction between

the particle and the incident field will induce the scattering to occur in all directions. As

shown in Fig.2.18, one can see that the conservation of energy for the problem can be
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Figure 2.18: Sketch showing an arbitrary particle illuminated with plane wave, a part
of incident light is scattered by the particle. Note that electromagnetic fields Etot, Htot

decompose of incident and scattered components.

expressed by:

P⃗ext = P⃗abs + P⃗sca (2.75)

where P⃗abs =
1
2ℜ(E⃗abs × H⃗∗abs) and P⃗sca =

1
2ℜ(E⃗sca × H⃗∗sca) are the time-averaged

Poynting vector obtained by the electromagnetic fields absorbed and scattered by the

particle respectively. whereas P⃗ext =
1
2ℜ(E⃗inc × H⃗∗sca + E⃗sca × H⃗∗inc) denotes the power

emerging due to the superposition of the incident and scattered fields.

As seen in figure 2.18, for any auxiliary closed surface A including the target, we can

obtain a simple relation of different energies by integrating the Poynting vectors over this

surface. If we consider that the general case is without loss (surrounding medium is pure

dielectric), then the incoming light is a plane wave giving
∫

A PincdA = 0. Therefore, the
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power scattered and absorbed by the particle are:

Wsca =

∫
A

PscadA (2.76)

Wabs = −
∫

A
PtotdA (2.77)

One can see that Wabs in Eq. 2.77 is a link between the total and absorbed energies.

In fact, the surrounding medium in our case is lossless, while the imaginary part of epsilon

ℑε > 0. Let notice that the minus sign that appears in the Wabs expression is due to the

fact that the normal vector to the A surface is taken along the outgoing direction.

As previously explained, the extinction term corresponds what is lost by the incident

beam by both scattering and absorption. The scattering and absorption cross-sections

can be defined as:

σsca =
Wsca

Pinc
(2.78)

σabs =
Wabs

Pinc
(2.79)

where Pinc =
1
2 c εo

√
εm|Eo|2 is the power flow per unit area supported by a plane wave of

the form E⃗inc = Eoe−i(ωt−k⃗.⃗r), where k is the wave vector the incident medium k = 2π
λ

√
εm.

The extinction cross-section then can be deduced from the energy conservation as:

σext =
Wext

Pinc
= σsca + σabs (2.80)

It is also appropriate, to define Q which is the efficiency that can be obtained by

normalizing the cross-section σ to the physical cross-sectional area of the target projected

onto a plane perpendicular to the direction of illumination.

Numerically, by applying the TF/SF FDTD technique, it can be possible to directly

access to the total energy Ptot that is calculated inside the total zone. According to equa-

tion 2.77, the flux of this quantity through an enclosed surface A located in the TF zone

directly leads to the absorbed power (Pabs). Similarly, the scattered power Psca is deter-

mined by applying the same calculation but in the SF zone. Knowing the incident power

that is deduced from the expression of the injected incident field, scattering and absorp-

tion coefficients can be easily determined. In our case, and for seek of simplicity, the two

enclosed surfaces consist on two parallelepipedic boxes surrounding the target, one in

the TF zone and the other in the SF zone. By the way, totally, we need to integrate the

Poynting vector over 12 planar faces. Note that, the Fourier transform of the E and H fields
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needed for the calculation of the Poynting vector, should be done simultaneously when

updating them through the FDTD algorithm in order to avoid a very huge data storage.

2.10.2/ COMPARISON NUMERICAL RESULT WITH ANALYTIC RESULT

In order to validate our approach we calculate the optical response of aluminum

nanosphere and with radius R = 60 nm (see Fig.2.19) and compare the obtained effi-

ciencies from TF/SF-FDTD code with the analytical Mie theory. In the computational

domain, the value of the grid size is set to ∆x = ∆y = ∆z = 5 nm and the time-step was

8.34 × 10−18 s. 10 grid cells are used as a PML all around the computational windows

that has 1 × 1 × 1 µm3 volume. The sphere is illuminated by linearly polarized incident

plane wave propagating along z-axis and polarized along y-axis. The dielectric function

integrated in our FDTD code is a simple Drude model that was adapted to the wavelength

λ = 344.4 nm has been extracted from Palik et al [109]. The scattering cross-section is

calculated over 300 nm to 800 nm wavelength range.

SF TF

plane wave

vacuum

Figure 2.19: Computational domain in the case of a metal sphere which contains a TF/SF
boundary .

Figure 2.20 shows a comparison between the FDTD result (red line) and the theo-

retical one calculated by Mie theory (blue line). Unfortunately, the results do not agree

very well because of the errors that arise from numerical source such as the mesh size

that induces staircasing close to the sphere surface. This problem may occur for any type
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of curved surfaces. To overcome this problem, the simplest idea is to reduce the size of

spatial cell size. However, there are drawbacks to work with thinner meshing. In fact,

when the spatial size is reduced by a factor x, the required memory grows as x3 and the

total time-step also increases by a factor x due to the stability criterion given in Eq. (2.42).

This results by increasing the total simulation CPU-time by a factor of x4. For example,

when x = 2.5 and a total volume of 1 µm3, the CPU-time needed to make one FDTD sim-

ulation grows from 2 hours (∆x = 5 nm) to 70 hours (∆x = 2 nm) which almost corresponds

to an increasing by a factor 2.54 = 39. To avoid such huge FDTD simulations, we integrate

the Contour Path Technique (CPT) into our FDTD code. This technique is dedicated to

enhance the description of curved surface when meshed by rectangular grid.
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Figure 2.20: Scattering efficiency of aluminum nanosphere with radius (R = 60 nm) and
grid size (∆ = 5 nm) is calculated with FDTD (solid blue curve) and Mie (solid red curve).
The target is illuminated by plane wave in a vacuum.

2.11/ CONTOUR PATH TECHNIQUE (CPT)

Modeling some objects in FDTD code requires to be well described within the simulation

window. The use of a structured uniform mesh makes such objects (see Fig. 2.21(a)

are not described with high spatial resolution. In the literature, different techniques have

been developed in order to minimize the staircasing problem in such object with curved

surface. These techniques are, for example, the unstructured grids technique [10, 111]

or sub Cartesian grids [10, 112], and the CPT one that will be the focus of our attention
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in our work.

The principle of CPT was proposed by Yu, Mittra and Dey [113, 114, 115] to describe

the objects that have curved surfaces with a structured mesh. The significance of the

staircasing error in a conventional FDTD becomes clear when dealing with curved inter-

faces between two dissimilar dielectrics. Into each cell of Yee (see figure 2.8) crossed

by a virtual surface of such object, it is necessary to determine, at each edge of the cell,

what proportion is inside the cell, and what proportion is outside. In order to well address

this technique, we give below an example of a two-dimensional case (for simplify) that de-

scribe the CPT. In figure 2.21(b), shows an object and their intersection between a curved

surface and the Yee cell (i.e. there are ε1 and ε2). The electric field Ex(i + 1
2 , j + 1) update

algorithm remains unchanged outside of the object (completely in the medium 2) and can

be calculated in the usual manner. On the other hand, the edge that has the electric field

Ex(i + 1
2 , j) is intersected by the surface of the object. In this case, we know the inter-

sections of the grid lines with the object surface and hence can distinguish between the

medium 1 and medium 2.

In order to determine the electric field Ex(i + 1
2 , j) at the point of intersection, it must

be taken into account the contributions of these two mediums. This effect can be write

using the ratios δx
∆x and 1−δx

∆x as:

Ex(i +
1
2
, j) =

δx
∆x

E1
x(i +

1
2
, j) +

1 − δx
∆x

E2
x(i +

1
2
, j) (2.81)

where E1
x is calculated into medium 1, whereas E2

x is calculated into medium 2.

Therefore, E1
x and E2

x must be calculated separately at the object/medium border, and

hence must be stored during the calculation FDTD. It is possible to work directly with Ex

without using these intermediates fields in the case of non-dispersive dielectric object. In

this case, the geometry of the problem is directly described by the dielectric matrix ε. The

ratios outside and inside the object, can then be integrated to the same dielectric matrix.

By taking the previous example, this technique allows to obtain the eigen dielectric matrix

ε to the electric field component

εx(i +
1
2
, j) =

δx
∆x

ε1 +
1 − δx
∆x

ε2 (2.82)

where ε1 and ε2 are the dielectric constants of the object and the surrounding medium

respectively. The same work is to be done for Ey and Ez components which would require

the introduction of the dielectric matrices εy and εz. This matrix corresponds to three

planes sections passing through the center of a such object in the case of 3D.
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Figure 2.21: (a) Scheme illustrates the defects resulting from using a uniform structured
mesh in the case of a sphere. (b) Zoom for a 2D cell Yee in (b) shows the principle of the
CPT.

Fig. 2.22 gives an example of the results obtained in the case of a nano-cylinder

made of glass, placed in a vacuum with radius of 60 nm and mesh size 5 nm. As shown in

Fig. 2.22(a), introduces significant staircasing because the CPT was not applied. On the

other hand, figure 2.22(b), shows a clear reducing of the staircasing around the circum-

ference of the cylinder by using CPT.
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Figure 2.22: Meshing of a 2D nano-cylinder made of glass placed in air (a) staircase, (b)
CPT.

In next section, the numerical test of CPT against Mie theory will be conducted

through modeling a three-dimensional case (sphere).

2.11.1/ IMPLEMENTATION OF CPT IN FDTD CODE

To illustrate both the accuracy and the stability of CPT-FDTD code, several simulations

are performed through calculating the scattering efficiency of an aluminum sphere with
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R = 60 nm, with background index (nm = 1). On the other hand, our numerical results for

both code (conventional FDTD and CPT-FDTD) are compared with the exact ones (Mie

solutions). The optical constants of aluminum have fitted to a Drude model [108] with the

parameters: ε∞ = 1, ωp = 1.9731 × 1016 rad/s and γ = 2.1981 × 1014 rad/s. In fact, Drude

model has a good approximation for aluminum in the optical domain [102]. Moreover, our

aim is focused on comparing the numerical results with those of Mie solution no more.

The TF/SF technique is also applied to compute the scattering efficiency of the object

under study. The scattering efficiency is calculated for different values of mesh size,

figure 2.23(a) shows the result with two values of grid size ∆ = 5 nm and ∆ = 2 nm.
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Figure 2.23: Scattering efficiency of nanosphere made in aluminum with radius (R =
60 nm) is calculated using (a) Classic FDTD code for two values of mesh size ∆ = 5 nm
(solid green curve) and ∆ = 2 nm (solid red curve). (b) CPT-FDTD (dashed red curve)
compared with Mie (solid blue curve). The target is illuminated by a plane wave in a
vacuum.

The result of CPT-FDTD with mesh size ∆ = 5 nm exhibits a high accuracy and

agree very well with the Mie solution. The absolute relative error between CPT and Mie

calculation is ∼ 0.0074, indicating that the CPT is largely reduced the errors in compare

with the FDTD code without CPT (see table 2.3). In contrast, the numerical results of

the classic FDTD (staircasing) have much more errors as confirmed in figures 2.23 and

2.24. It is clear from these latter that scattering efficiency calculated by classical code

depends on mesh size. Regarding to computational resources, the mesh grid (∆ = 5 nm)

in CPT-FDTD code requires 7.6 GB of ram and takes ∼ 5 CPU hours to complete on a

2003 cell. On the other hand, the mesh size (∆ = 2 nm) in a classic code (i.e. without

CPT) uses 47.73 GB of ram and needs ∼ 70 CPU hours to finish on a 5003 cell. In fact, it

would have been better to perform another calculation with finer resolution in order to get
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Figure 2.24: Relative error on the scattering efficiency calculated by both FDTD and Mie.
The FDTD calculation without CPT technique has two values of mesh size ∆ = 5 nm (solid
green curve) and ∆ = 2 nm (solid red curve). The solid blue curve represents CPT one.

the same curve as in CPT. Unfortunately, it was not possible to reach a value of grid less

than 2 nm due to the lack of necessary resources in our laboratory.

Technique used CPU (hour) Ram(GB) # cells relative er-
ror

Classic, mesh size (∆ = 5 nm) 01:58 4.1 8 000000 0.1018
Classic, mesh size (∆ = 2 nm) 70:10 47.7 64 000000 0.0605
CPT, mesh size (∆ = 5 nm) 05:12 7.6 8 000000 0.0074

Table 2.3: The accuracy of both CPT-FDTD and classic FDTD used in the calculation of
the scattering efficiency with different values of mesh size.

In general, the numerical results reveal that CPT-FDTD is better than the classic one

due to the two advantage main reasons: getting a high precision in particular when the

CPT is applied to study the optical response of metallo-dielectric NPs, the second impor-

tant factor is to reduce the expenses of resources (memory and time of computational).
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2.12/ ABSORPTION, SCATTERING AND EXTINCTION PROPERTIES

OF BOWTIE AND DIABOLO NANO-ANTENNAS

In the previous section, the FDTD method is presented and validated as a computational

tool to model the optical properties of nanostructures. In general, this method is quite

adaptable for any geometry of the target. In this present section, we employ our FDTD

code to calculate the scattering, absorption and extinction efficiencies for metallic nanoan-

tenna exhibiting very interesting optical properties. Two kinds of NA are considered: the

bowtie and the diabolo NAs. A parametric study is performed where all geometrical pa-

rameters and metal nature are varied. In fact, these structures exhibit tunability of the

resonance wavelength leading to large local field enhancement in the vicinity of the NA

making it a good candidate for many applications.

Einc
Einc

D

t

g g

t

D

g g

a) b)

z
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y

axis of antenna

axis of antenna

Figure 2.25: Schema showing 3D view of two different nanoantenna configurations (a)
bowtie nanoantenna and (b) diabolo nanoantenna under study having the same values
of geometric parameters, thickness t, gap g and length D. For both NAs, we consider an
incident field with a polarization along its long axis. Note that both NAs are immersed in
water.

In present days most of applications require structures or devices operating with high

efficiency to minimize the needed power. Therefore, the optimization or the modification

of the design is one of the challenges in the optical domain. In the context of LSPR, an

important point is the tailoring of the shape and dimensions of metal NPs. This task can

be performed through the exploitation of our code based on the TF/SF FDTD technique.

We started our study with a comparison between the optical responses of a bowtie and

a diabolo NAs with the same geometrical of parameters. We will see from this com-

parison, how the information supported by optical properties from such structures can
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produce an efficient enhancement of electromagnetic field. The electromagnetic energy

localized onto these structures is directly linked to the effective cross section of the NA.

This work is a contribution to the ongoing discussions about optical responses, not only

for nanoantennas but also from any NPs.

Figure 2.25 presents scheme of the two different optical nanoantennas. The first one,

called Bowtie nanoantenna (BA), consists of two metallic triangles separated by a small

gap [78] (see figure 2.25(a)). Whereas the other one, known as Diabolo nanoantenna

(DA), has a similar geometric shape but its gap is filled with metal as narrow waist [18]

(see figure 2.25(b)). All the results are carried out through FDTD numerical calculations

where the DCP model is adapted to describe the dielectric constant of the considered

metals. Our simulations are performed to determine the optical (scattering, absorption

and extinction) efficiencies of each NA.

The two NAs presented in figure 2.25 are first supposed to be made in silver and

placed in water as host medium. These two targets are separately excited by a plane

wave polarized along the axis of the antennas (see figure 2.25). The calculated absorp-

tion, scattering and extinction efficiencies, are presented in figure 2.26(a). It can be shown

that at the resonance, the effective NA area (i.e. virtual section interacting with light) can

reach 38 times its actual area in the case of the DA while only a factor of 10 is obtained for

the BA. This result demonstrates a very large amount of scattering of the DA compared to

bowtie one. Figure 2.26 shows a DA resonance peak at λres = 1322 nm, while the bowtie

resonates at higher energy with lower amount as well. On the other hand, it is clear that,

for both cases presented in this figure, the significant part of the incident energy is scat-

tered, whereas the absorption exhibits a modest contribution of the total efficiency (i.e.

the extinction). Let us emphasize that the amount of the energy absorption in DA is larger

than those in BA one. The ratio of the absorption efficiency to extinction one (see the

definitions of these two quantities on page 44) Γ = Qabs
Qext

for both DA and BA is calculated

and found to be ΓDA = 0.243 and ΓBA = 0.213. Besides, the intensity distribution of electric

and magnetic fields is separately calculated in xOy plane in the vicinity of DA and BA and

at their resonance wavelengths. Figure 2.26 shows the electric and magnetic distribution

in BA (b,c) and DA (d,e) respectively. In figure 2.26(e), a better localization of the mag-

netic field occurs inside the metallic gap of DA with less electric field enhancement at the

corners (see figure 2.26(d)). Whereas for BA, a prominent electric intensity but with low

factor can be seen in dielectric gap and the external edges with insignificant magnetic

intensity (see figure 2.26(b,c)). As a result, one can deduce that the DA has a larger vol-

ume mode compared to BA leading to λDA
res > λBA

res due to the contribution of both electric

and magnetic optical resonances. As mentioned earlier, this wonderful performance of
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the DA is due to the enhancement of magnetic field through charge funneling in its narrow

waist region [18].
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Figure 2.26: (a) Calculated extinction (solid curves), scattering (dashed curves) and ab-
sorption (doted curves) efficiencies for two different NAs: bowtie (blue curves) and dia-
bolo nanoantenna (red curves). The two NAs have the same values of metal thickness
t = 25 nm, gap g = 25 nm and length D = 135 nm and both NAs are immersed in water. (b)
and (c) calculated square root of the electric and magnetic amplitude distribution respec-
tively in the xOy plane in the vicinity of BNA. (d) and (e) the same as in (b,c) but for DA.
Note that the intensity distribution is calculated in the total field region.

In order to get a focused image of the hotspot generated in metal gap of DA at

resonance λres = 1322 nm, the distribution of the energy flow in a vertical plane comprising

the DA axis is displayed in figure 2.27. One can clearly see, the Poynting vector (see

yellow arrows) that is then converging towards the neck region of the DA. Therefore, the

large magnitude of scattering efficiency at resonance corresponds to the high efficiency

of the funneling effect seen in figure 2.26 d and e.

Due to the interesting resonance properties of the DA, a more detailed study on this

structure will be performed in the following. We will start this systematic analysis by in-

vestigating the influence of the metal nature on the resonance wavelength value. The

effect of the host medium is also addressed. Finally, the influence of different geometrical

parameters (length, gap and thickness) is preformed. This study is an attempt to opti-

mize the antenna performances in the context of the growing interest by our laboratory in

applications involving strong enhancement of light magnetic field.
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Figure 2.27: The energy flow distribution (in color map) passing through the middle of
Diabolo NA in a vertical xOz plane. Yellow arrows correspond the tangential Poynting
vector. Dimensions of the diabolo NA are: thickness t = 20 nm, gap g = 25 nm and length
D = 135 nm. The incident field with a polarization along its long axis.

2.12.1/ EFFECT OF THE MATERIAL ON THE OPTICAL RESPONSE OF DA

This section is devoted to discuss the influence of different metals, in particular gold, silver

and aluminum on the scattering, absorption and extinction spectra of the diabolo NA. This

investigation is necessary to obtain a selective and efficient enhancement of the light into

such NA. The latter is supposed to be illuminated by a plane wave normally incident

(along the z axis in figure 2.27(a)) and linearly polarized along the axis of the antenna

which is placed in water. The considered diabolo nanoantenna has a length D of 135 nm,

gap g of 25 nm and has a thicknesses t of 25 nm. Figure 2.28 shows the optical responses

(extinction, scattering and absorption) of gold diabolo nanoantenna (blue curves), silver

(red curves) and (green curves) for aluminum one. The optical constants of Au and Ag

are previously given in tables 2.1 and 2.2, whereas the values of the parameters of the
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ε∞ ωD(rad s−1) γ(rad s−1) A1 Ω1(rad s−1) γ1(rad s−1)

1.0000 2.035×1016 1.730×1014 3.8029548 1.92×1015 6.335×1015

ϕ1(rad) A2 Ω2(rad s−1) γ2(rad s−1) ϕ2(rad)

-0.785 17.200025 2.147×1015 2.344×1015 -0.785

Table 2.4: Permittivity of aluminum for DCP model is optimized using ∆ function presented
previously in section 2.8.4 over 300 − 2000 nm wavelength range

DCP model allowing the description of Al dispersion are given in the table 2.4.
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Figure 2.28: Optical responses (extinction (solid curves), scattering (dashed curves) and
absorptions (doted curves) of diabolo nanoantenna made of gold (black curves), silver
(red curves) and aluminum (blue curves), with D = 135 nm, g = 25 nm and t = 25 nm. Note
that the diabolo NA is placed in water medium.

As shown in Fig. 2.28, the Ag-diabolo nanoantenna clearly exhibits a strongest spec-

tral response (i.e. the extinction) outperforming the two others (Au and Al) NAs. The

resonance wavelength is directly linked to the dispersion properties of the three metals

for which the plasma frequency increases (ωAl
D > ω

Ag
D > ωAu

D ) (see tables 2.1, 2.2 and

2.4). This results confirms the plasmonic nature of the resonance. On the other hand,

absorption of each metal is related to their imaginary parts ε′′(ω), for example, aluminum

exhibits weak losses in visible region because of its imaginary part which represents the

conduction loss is smaller than two others Ag and Au (see the values of ε ′′(ω) for the

three metals in figure 2.28). Furthermore, the quantity of the absorbed energy as func-

tion of D is compatible with the so called loss of energy relation Λ, where the latter can

56



CHAPTER 2. MODELING OPTICAL RESPONSE OF METALLIC NANO-PARTICLES

express in term of the complex Poynting theorem as (see the derivation in Appendix A):

Λ = −1
2

∫ ∫ ∫
V
εoε ´́r ω|E2| dV (2.83)

In our case, the distribution of the electric field is almost the same for the three metals of

DA (numerically verified), therefore the term
∫ ∫ ∫

V |E
2| dv can be assumed to be constant

A leading to write Λ as: Λ = −1
2 εoε ´́r ω A and hence the latter is directly proportional to

εŕ́ indicating that our numerical results presented in figure 2.28 are compatible with the

relation Λ. Henceforth, our study will be focused in Ag-DA due to its resonance properties

in the NIR region. The work of the next sections is dedicated to perform a geometrical

study on this Ag-nanoantenna in addition to the influence of the host medium nature.

2.12.2/ EFFECT OF THE HOST MEDIUM ON THE OPTICAL RESPONSE OF DA

This study is also interesting due to the antenna sensitivity to variations of the surrounding

medium index. In fact, the relationship between the index and the dielectric function

(εm = n2
m) emphasizes that increasing the value of the latter leads to adjust the position

of SPR. As shown in figure 2.29 the scattering spectral positions of DA strongly depend

on the host index of refraction. As expected, a linear increase of the resonance with nm is

obtained.

2.12.3/ EFFECT OF THE LENGTH

There are other important factors (shape and geometry) that play a crucial role and gov-

ern the optical response of optical nanoantenna. Particularly, one of the most determinant

factors to control the resonant frequency and scattering property is the size of the parti-

cles. Figure 2.30 investigates the influence of the length (D) of the DA on the scattering

efficiency where the two others parameters g and t are fixed to 25 nm. This figure presents

the numerical calculations for four different DA lengths. As this latter becomes longer, the

longitudinal dipole resonance shifts to the large wavelength due to the increasing of the

spatial extension of the resonance mode over all the geometry of the DA. At a first ap-

proximation, the resonance wavelength is proportional to D2 due to the fact that the width

of the DA is also modified simultaneously with its length (the DA is circumscribed inside a

square of side D). Indeed, the resonance wavelength of DA is a combination of the elec-

tric and the magnetic fields at the corner and center of DA respectively, therefore when

D varies, the magnetic field is not modified leading to λres/D2 is not more coherent. In
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Figure 2.29: Sensitivity of the scattering responses to the refractive index of the surround-
ing medium for a silver daibolo nanoantenna with D = 135 nm, g = 25 nm and t = 25 nm,
blue (in air), green (in water), red (in oil).

addition, this red-shift of the resonance wavelength is accompanied by a decreasing of

the scattering efficiency (current density function of D). At the resonance wavelength, the

scattering efficiency with a smaller length of DA is about v 30 orders of magnitude higher

than the corresponding geometrical cross-section.

2.12.4/ EFFECT OF GAP SIZE

The effect of the gap size is also investigated through the calculation of the scattering

efficiency. Numerical simulations are performed for different lengths of gap (g) where both

D and t are fixed to 135 nm and 25 nm respectively. It is clear from figure 2.31, that when

the length of gap is increased, the scattering resonance peak shifts towards high energy

region. In contrast, the scattering efficiency exhibits a non linear behavior due to the fact

that both length and width of the gap zone are also modified simultaneously. One can

demonstrate that by spreading out the two metallic triangles, the magnetic confinement

decreases leading to a smaller scattering efficiency. Nevertheless, if we enlarge the gap

width, the current density in the neck zone becomes smaller. The combination of these

two somewhat contradictory effects allows optimizing the DA performances (see green

curve of figure 2.31). However, the DA geometries are proposed to be compatible with

commonly used fabrication techniques that are available at our institute.
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Figure 2.30: Evolution of the scattering efficiency with length of silver DA, g and t are
25 nm. Note that the diabolo NA is placed in water medium.
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Figure 2.31: Scattering efficiency with the gap size of DA made in silver, D and t are
135 nm and 25 nm respectively. The water is considered as a medium.
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2.12.5/ EFFECT OF THE METAL THICKNESS

The numerical results in Fig. 2.32 clearly show the effect of thickness of the DA on the

scattering efficiency. The higher thickness is, the higher somewhat in scattering efficiency

is, while, its scattering resonance peak shifts to low energy region. Nevertheless, when

the thickness is decreasing, the current density at the DA center increases leading to

highly mode confinement (larger mode volume) that induces a blue-shift of the resonance

wavelength. Nonetheless, this effect seems to be counterbalanced by the enhancement

of the electric field confinement at the DA corners induced by the small metal thickness.

Thus, the total volume of the mode increases when t increases.
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Figure 2.32: Dependency of the scattering efficiency on the thickness t of DA made in
silver, D and g are 135 nm and 25 nm respectively. The diabolo NA is placed in water
medium.

2.13/ CONCLUSION

In this chapter, we have first reviewed the state of the art on NPs including several types

of isotropic (spherical) and anisotropic ( Bowtie and Diabolo) nanoantennas and their

optical response supported by LSPRs. We have then described with more detail the

Mie theory that can address basically isotropic NPs through the determination of their

absorption and scattering efficiencies. Among such isotropic shapes, the responses of

gold nanosphere for two different sizes in the near and far field were calculated using a
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Matlab code involving the formulas of Mie theory. We have showed that for both sizes,

the dipolar resonances are compatible with the polarisability relation of the sphere. In

addition, the scattering coefficient is powerless when the sphere volume is small and the

global extinction cross section is almost obtained by the contribution of the absorption

one. On the other hand, the latter becomes less effective compared to the scattering as

the sphere size gradually increases. The obtained results can be appropriate to select the

suitable NPs in very important applications, for example, the photothermal therapy due to

light is mainly absorbed by the particles and hence the energy converted to heat, whereas

larger particles is desirable in imaging applications. Unfortunately, the calculation of the

optical response using Mie solution, is restricted to the spheres and ellipsoid geometry.

To overcome the problem of constraints on the shapes, a numerical approach which

the most commonly used is FDTD method, have been successfully applied to solve light-

matter interaction especially in nano-optics. In order to calculate absorption, extinction

and scattering coefficients of any shape NPs, we have adapted the TF/SF technique and

numerically investigated the 1D, 2D and 3D and their validations inside a conventional

homemade FDTD code. The numerical results obtained have indicating that there is no

agreement with the analytical results calculated by Mie theory due to the errors arising

from numerical such as mesh size. Consequently, we have integrated the CPT into our

TF/SF-FDTD code in order to optimize the spatial resolution that describes such objects,

and to avoid a huge FDTD simulations resulting from the increase of spatial cell size.

Several simulations were conducted pointing out that CPT results exhibit a high precision

with respect to the Mie solution. We were able to construct an algorithm that is capable

of modeling any NPs.

From the outcome of our numerical developments, we have investigated the optical

responses of two kinds of nanoantenna (BA and DA) in terms of extinction, scattering and

absorption efficiencies. We have succeeded to optimize a diabolo design that has a very

large amount of scattering compared to the BA one. This interesting result was obtained

thanks to a highly localized electromagnetic field in the vicinity of the DA (both center

and corners of its design). Different simulation studies have been made to investigate

the characteristics of the resonance of DA through its influence by: the metal nature;

the host medium and geometrical parameters (length, gap and thickness). A selective

and efficient enhancement of light into silver DA have been obtained and outperformed

the two other (Au and Al) NAs. The numerical study have also reported that the DA

is very sensitive to the variations of the surrounding medium index and exhibits a linear

increase in resonance with increasing nm. The obtained systematic study (length, gap and

thickness) that were performed explaining that as the length of DA becomes longer, the
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resonance properties shits to red region accompanied by a decreasing of the scattering

efficiency. Whereas the increasing of the gap size displays a shift towards high energy

region of the scattering resonance peak, and the latter has a non linear behavior. In

addition, the effect of thickness of the DA on the scattering efficiency has been clearly

shown that the larger mode volume induces a blue-shift of resonance wavelength with

higher scattering coefficient. Finally, the obtained results explain that the factors studied

above play a vital role on the tunability and the increasing of the effective volume up to

several times the physical cross section of NA. This feature can be employed to enhance

the interaction of any object located in their proximity with electromagnetic wave.

In the next chapter, we will address a different type of plasmon excitation called

plasmonic waveguide mode in order to characterize the optical properties of periodic

structure with subwavelength dimension.
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3

OPTICAL TRANSMISSION

PROPERTIES THROUGHT

SUB-WAVELENGTH ANNULAR

APERTURES ARRAY (AAA)

3.1/ INTRODUCTION

The interesting optical properties associated with localized surface plasmon (LSP) of

metallic NPs (spheres, bowtie and diabolo NAs) have been numerically discussed in the

previous chapter. The FDTD method with TF/SF and CPT techniques was used to model

the optical responses of the NPs under study. This chapter deals with the exploitation

of Propagating Surface Plasmons (PSPs) resulting from the excitation of a guided mode

inside nano-apertures made in metallic layer to act as Enhanced Transmission Metama-

terials (ETM). The main property of such ETM is the fact that the excited mode has no

cutoff and efficient transmission can be obtained for large values of wavelength compared

to the aperture dimension.

This chapter therefore, is devoted to the study of the excitation of this fundamen-

tal guided mode and aims to explore the optical properties of nanoscale subwavelength

annular apertures when arranged in a array (AAA: Annular Aperture Array). Even if the

excited mode has no cutoff, experimental and technological constraints need to be taken

into account in order to acheive individual components capable to realize basic optical

operations. Consequently, this goal will be accomplished by correctly designing the struc-

tures (geometrical parameters) to get efficient/low power performances. We conducted
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extensive numerical simulations based on a 3D-FDTD homemade code where the DCP

dispersion model, the TF/SF and the CPT techniques are adapted to accurately describe

the dielectric constant of the considered metals and its geometry. We will present basic

principle of waveguides in terms of the dispersion relation of fundamental guided modes

in order to provide a basic information about the cutoff frequencies and effective indexes.

The last section will be dedicated to the numerical study of the excitation of T EM guided

mode through an AAA. In particular, we highlight on the factors that would contribute to

optimize the transmittance in visible range.

3.2/ STATE OF THE ART ON THE TRANSMISSION THROUGH

NANOAPERTURES

The observation made by T. W. Ebbesen’s team of an Extraordinary Optical Transmission

(EOT) of light through artificially periodic nanostructured metallic layers has inevitably

revolutionized the field of nano-optics (see figure 3.1). The amazing feature monitored in

that subwavelength apertures is due to the very large measured transmission obtained

from the whole periodic structure compared to the sum of transmissions of each single

aperture. Whereas, this EOT only appears for wavelength values larger than the struc-

ture period meaning that evanescent diffracted orders plays a predominant role in the

observed phenomenon.

Figure 3.1: Zero-order transmission spectra of an Ag array (period (ao) = 900 nm,
diameter= 150 nm and thickness= 200 nm). Ref. [26].

Few years after the publication of T. W. Ebbesen et al., there has been a growing

interest in many experimental and theoretical studies in order to investigate the physical

origin of the EOT presented in that paper. In a previous study, the position of large
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transmission peak of a cylindrical aperture array engraved in opaque thin metallic film

corresponds exactly to the excitation of the surface plasmon wave of the structure without

apertures. Although most of works on EOT are based on SPR, the guided modes offer

a better efficiency and take advantage of increasing in transmission capacity at larger

wavelength values with respect to the nanostructures dimension [116, 117, 118, 119].

In the last decade, the EOT has attracted tremendous attention from research teams in

particular theoreticians due to the need of extensive numerical studies to get a deeper

understanding of the EOT phenomenon.

One of the first examples of a theoretical calculation by using a Fourier modal method

of light transmission through 2D grating, was presented by Popov et al. [120]. References

[121] and [122] calculated the transmission of a 2D hole perforated in metal film via a

modal expansion of the fields (see figure 3.2). The researchers developed in their papers

a very simple and efficient minimal model and arrived at the conclusion that the holes

behave like subwavelength cavities for the evanescent waves to couple with the surface

plasmon on both sides of the films. A numerical study of the transmission of a tiny (20 nm)

2D hole grating was performed, using a differential method, by Salomon et al. [123]. In

references [124, 125, 126], the authors argue that the enhanced transmission is asso-

ciated with the cavity resonances into the holes (cas of lamellar gratings). In addition,

a near field analysis of the Ebbesen experiment in the light of evanescent short range

diffraction was presented in [127]. Furthermore, an interesting comparison between the

EOT phenomenon and multiband frequency selective surface (FSS) in near-infrared to

microwave region was addressed in [128, 129]. These FSS elements are designed for

a wide domain of applications such as Fabry-Perot interferometers, filters, couplers for

laser cavity output, or simply as polarizers. Their optical responses are directly linked to

their geometrical parameters (i.e. their thickness, aperture size, period), and particularly

the shape of the aperture.

In recent years, several publications have appeared documenting a very good dis-

cussion of the EOT phenomenon. Garcia de Abajo [130] published in 2007, a quite useful

review paper. Besides, Catrysse and Fan [131] have demonstrated through an interesting

paper, the principle of the EOT in Ebbesen’s experiments in term of different mechanisms.

In those works, it was indicated that the EOT can be explained as a combining effect of

surface plasmon waves and propagation plasmonic guided modes. In a recent paper,

Gordon et al. [132] stated a general review paper on EOT including the discussion of var-

ious approaches, developments in hole-array fabrication, and integration of hole-arrays

into devices. As reported by Ebbesen, the challenge is how to obtain transmission spec-

tra located at wavelength greater than the array period with perforated metallic opaque
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Figure 3.2: Theoretical and experimental transmission spectra of extraordinary optical
transmission EOT structures based on cylindrical holes engraved into opaque metallic
layer. (a) Experimental zero-order transmission spectra of Au film on a quartz substrate,
the film thickness is h = 250 nm, the hole radius is b = 100 nm and the lattice constant
is ao = 600 nm. Ref. [121] (b) Experimental (solid curve) and analytical model (doted
curve) of zero-order power transmittance at normal incidence for a square array of holes
(ao = 750 nm and b = 140 nm) in a free standing Ag film h = 320 nm. Ref. [122]

plates. A simple idea is then emerged: it is to get better optical transmission based on a

guided mode that could be excited inside through the openings. The structure periodicity

has only the role of phase matching that allows controlling the energy propagation direc-

tion through quantified diffracted orders. Therefore, the concept of waveguide is a key

point for designing these structures. Consequently, the first periodic waveguide structure

proposed in Refs. [30, 31] was AAAs due to fact that it can support a guided mode with-

out cutoff, namely, the T EM mode although this latter occurs under specific conditions

[135]. However, an Enhanced Transmission (ET), larger (w 5×) that obtained EOT (Ebbe-

sen) with cylindrical holes was achieved (see figure 3.3) [31, 136, 134, 137, 133, 138].

In our laboratory, the first numerical study demonstrating the ET through AAA structure

in comparison with cylindrical aperture array was published in [31]. comparison is done

by partially filling the cylindrical holes of a EOT structure with metallic cylinders smaller

in order to get AAA geometry. Therefore, this comparison pointed out that by increasing
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Figure 3.3: Theoretical study of extraordinary optical transmission EOT in AAAs structure.
(a) Transmission spectra of a square array of coaxial cylinders, spaced at d = 555 nm and
for various inner radii (Au cylinders) R1 and metal thickness L. Note that the outer radii
(silica cylinder) is fixed to R2 = 100 nm. The arrows indicate the theoretical m = 0 and
m = 1 cylindrical surface plasmon (CSP) resonance peaks. The top panel includes the
cases of a perfectly conducting (PC) and a periodicity of d = 888 nm (which has the same
predicted resonance positions as the R1 = 50 nm, L = 290 nm case in the second panel).
Ref. [133]. (b) Transmission spectrum through a silver layer perforated with annular
apertures arranged into a square array. The period is p = 350 nm, the inner and the outer
radii of the coaxial cavities are Ri = 75 nm and Ro = 100 nm, respectively. The metal
thickness is set to h = 100 nm and the structure is illuminated by a linearly polarized plane
wave at normal incidence. Ref. [134].
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the hollow area we can get more transmission at larger values of the wavelength. Never-

theless, the T EM guided mode of the AAA structure was not responsible of the obtained

ET.

In this chapter, the demonstration of the ET through AAA by the excitation of the T EM

guided mode is presented. In the context of improvement the transmission efficiency,

this is my first contribution in the theoretical study of the AAA structure. Besides, we

address the theoretical results based on FDTD calculations in order to compare with the

experimental study that has been performed in Ref. [139]. The excitation of the T EM

mode is demonstrated through the emergence of an additional transmission peak located

at a wavelength larger than the one associated with the Transverse Electric (T E11) mode.

3.3/ REASON FOR CHOOSING AAA

Before addressing the numerical simulation results, it is necessary to get a basic under-

standing of waveguide theory of metallic waveguides. We will not delve in the mathemat-

ics details of the waveguide theory insofar as we limit our discussions to a brief outline

of the formalism and to a statement of the required results. The idea of the waveg-

uide arises from the electromagnetic waves propagating along a hollow metal tube which

are typically constrained inside it. Consequently, since the electromagnetic wave is sur-

rounded by metallic boundaries, it is impossible to spread out and hence to neglect the

losses even if small propagation distances are in play.

According to waveguide theory, the electromagnetic wave that can propagate in-

side the waveguide are classified into different types of electromagnetic mode according

to the different components within an electromagnetic wave: Transverse Electric (TE),

Transverse Magnetic (TM) and the Transverse ElectroMagnetic (T EM). Each mode has

a definite higher wavelength limit called cutoff wavelength where above no wave can

propagate inside the waveguide. There are several modes that can be excited and their

number decreases for a given size of waveguide as the wavelength increases. In addition,

there is the so-called dominant mode (the fundamental mode) in the waveguide that can

be guided at the largest wavelength.
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3.3.1/ TYPES OF WAVEGUIDES

Let’s give an example of the first modes that can propagate within three types of waveg-

uides (rectangle, circular and coaxial section ones). For this purpose, figure 3.4 gives us

the cutoff wavelengths of some examples of waveguide as a function of their geometrical

parameters. Let’s consider all examples of waveguides in a PEC, as seen in Fig. 3.4 ,

the fundamental mode T E10 of a rectangular waveguide (sides a and b with a > b) has

a largest cutoff wavelength at λc = 2a. When a circular waveguide is considered with a

radius R = a
2 , the fundamental mode T E11 has a smaller cutoff wavelength at λc ≈ 1.7a.

Let us consider a coaxial waveguide, for all modes except two, the difference between

the outer and inner radii determines the value of the wavelength cutoff which means this

value is very small. These two modes are: (a) T EM mode, with no cutoff (i.e. λc → ∞ ),

and (b) the T E11 mode, for which the cutoff wavelength is proportional to the sum of the

radii: λc
T E11

≈ π(Ri + Ro) where Ri and Ro are the inner and outer radii respectively. This

allows designing an AAA structure where the period can be smaller than this cutoff wave-

length that will lead to an ET based on the excitation and the propagation of this specific

T E11 mode [27, 140, 30, 31, 91, 137, 141]. Therefore, the unique mode that has a large

value of cutoff wavelength in a coaxial waveguide, is the T E11 mode. However, when

we try to guide the light through metallic waveguide in the visible or IR spectral range,

the dispersion should be taken into account because these types of metals suffer from

losses. Furthermore, the guided mode becomes a hybrid mode combining properties of

TE and TM ones [29], therefore it is necessary to determine the effect of the metal nature

on the guided modes.

3.3.2/ DISPERSION DIAGRAM OF THE GUIDED MODE

The basic information about the guided mode can be provided by the relation dispersion.

In a recent paper by Catarysse and Fan [142], an analytical parametric dispersion re-

lation has been performed in the case of nano-coaxial waveguides made in real metal.

This relation requires a numerical solution to determine the modal propagation constants

simultaneously with the propagation losses. The implementation of an algorithm to cal-

culate the dispersion diagrams of modes for cylindrical and coaxial waveguides using the

FDTD method has been performed by N-order Body-Of-Revolution-FDTD (BOR-FDTD).

The Maxwell equations in the latter method is written in the cylindrical coordinates sys-

tem [10, 94], whereas the N-order method consists in exciting the structure using an initial

field whose spectrum extends over all of the possible frequencies of the structure modes.

Then the FDTD code determines the field variations versus time. After a transient delay,
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Figure 3.4: Three different kinds of waveguide made in perfectly electric conductor (PEC)
with their cutoff wavelengths of the first guided modes.

only the eigenmodes of the structure persist and lead to a great spectral radiant inten-

sity at every eigenfrequency. The components of the initial EM field which differ from an

eigenmode will disappear [90, 143].

As an example, the N-Order BOR-FDTD code calculates the cutoff wavelengths of

the first guided modes supported by both cylindrical and coaxial waveguides made in

silver and compare them to the PEC case (see Fig. 3.5). The results of modes are

denoted by the two numbers (m, n) where m is the azimuthal number (eimϕ with ϕ the

azimuthal angle) and n is the radial one (Bessel functions of n order). As seen in Fig. 3.5,

the silver waveguide exhibits a cutoff wavelength of the T E11 mode in red region compared

with the PEC one. Furthermore, the coaxial configuration presents cutoff wavelengths

that are more shifted towards the red region with regard to cylindrical one. In addition,

metal losses induce additional red shift. Fig. 3.5 shows that ∆λ between the two cutoffs in

PEC case is 130 nm whereas it becomes 200 nm in the case of silver [29]. Even if we are

expecting to work with the T EM mode, the study of the excitation and propagation of the

T E11 mode will bring to us more physical insights pointing out the difficulties underlying

with the excitation of the cutoff-less T EM mode.
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Figure 3.5: Different kinds of the guided modes and their cutoff wavelengths in the case of
cylindrical and coaxial nano-waveguides made in a perfect conductor (gray) and in silver
(blue). Cylindrical radius is set to R = 100 nm and corresponds to the outer radius Ro of
the coaxial structure whereas the inner radius of this latter is set to Ri = 50 nm. Note that
the ∆λ represents the difference between the two cutoff positions of the two fundamental
modes. This value, estimated here as 2R, can be used to quantify the gain due to the
coaxial structure. This figure is reproduced from Ref. [29]

3.3.3/ TEM GUIDED MODE

In the case of coaxial waveguide made in perfect conductor, the T EM mode has an

electric and magnetic fields that are transverse to the direction of propagation. These

two fields are invariant under rotation around the axial direction meaning that there is

no dependence according to the azimuthal angle. The electric field is radial while the

magnetic one is azimuthal (ortho-radial). Furthermore, this mode holds advantageous

property that is its invariant effective index which makes it dispersionless at any frequency

(ne f f = nd where nd is the optical index of the inner media).

Contrarily, when a real metal is considered, the above properties (transverse charac-

ter and dispersionless) are no more valid. To figure out the influence of the metal nature

on the first guided modes (T EM, T E11 and T E21), we plot the dispersion diagram of these

modes for both PEC and silver coaxial waveguides (see Figure 3.6) with air as inner me-

dia. In the case of PEC, the T EM mode has an effective index of 1 and its dispersion

curve is superimposed on the light line. For all higher modes, the dispersion relation is

given by:
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ω

√
1 − (

ωc

ω
)2 = kz c (3.1)

where ωc is the cutoff angular frequency, kz is the propagation constant along the

z-axis (the waveguide axis) and c is the light velocity in vacuum. The value of ωc(T Em1)

for the T Em1 modes (first modes) can be analytically written as: ωc =
2m c

Ri+Ro
.

For a coaxial waveguide made in silver, the material dispersion must be taken into

account. Parametric equations can be established for the dispersion relation [142]. Nev-

ertheless, a BOR-FDTD code was developed by our team allowing determination of the

diagram dispersion [27]. By integrating the DCP model of silver given in table 2.2 and

varying m from 0 to 2, we get the three red curves of figure 3.6. For this study, and as

for the PEC structure, the inner and outer radii of the waveguiding region are taken to be

Ri = 50 nm and Ro = 100 nm, respectively. One can see from figure 3.6 that the T EM

guided mode exhibits a dispersion curve lying just below the light line meaning that it has

a plasmonic character. On the other hand, the T E11 and T E21 modes present a hybrid

properties combining a conventional character near their cutoff and a plasmonic one for

larger values of the frequency.
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Figure 3.6: Dispersion diagrams of guided modes of an coaxial waveguide made in silver
(red curves) and PEC (blue curves). The inner and outer radius are fixed to Ri = 50 nm
and Ro = 150 nm respectively.
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The electric field distribution inside the waveguide of the three first guided modes

are presented in figure 3.7. The azimuthal dependence is clearly shown where a perfect

azimuthal symmetry is obtained for the T EM mode, a sin ϕ or cos ϕ dependence for the

T E11 mode and a sin(2ϕ) or cos(2ϕ) dependence for the T E21 mode. Nevertheless, due

to the real nature of the metal (here silver), the T EM mode is no more pure transverse

electric and magnetic. Very small longitudinal components appear. Nonetheless, this

mode will be named T EM in the following.

Figure 3.7: Distribution of the intensity light for the first three-guided modes of a coaxial
waveguide made in silver with: Ro = 75 nm and Ri = 50 nm.

Due to the symmetry properties shown in figure 3.7, the T E11 mode is the only mode

that can present non-zero overlap with a linearly polarized incident plane wave. Thus,

at normal incidence, the ET through AAA is due to the excitation and the propagation of

this peculiar mode inside the annular aperture. The transmission peak appearing in the

spectrum of figure 3.3(b) around λ = 910 nm corresponds to the excitation of the T E11

mode at its cutoff wavelength. The second peak, located around λ = 500 nm, is the first

interference harmonic of the same T E11 mode. Its spectral position is then given by a

phase matching condition that will be explicitly given in the following.

However, the T EM mode of the annular aperture can not be excited at normal in-

cidence. As reported by Baida.F. in ref. [135], it was found through an analytical deter-

mination that the T EM guided mode can only be excited when the overlap between the

incident beam and the mode is non zero. This condition can only be achieved with a

transverse magnetic TM polarized plane wave under oblique incidence. This result was

supported through numerical simulations involving an original FDTD algorithm that was

developed in the A. Belkhir’s thesis [144]. One interesting result is shown in Fig. 3.8(a)

where the transmission spectrum through an AAA structure (see figure caption for geo-

metrical parameters) illuminated at an angle of incidence of θ = 40o exhibits a peak at a

value of the wavelength that is beyond the cutoff wavelength of the T E11 mode. To point
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out the nature of the propagating mode at this wavelength value, we plot in figure 3.8 (b

and c) both the radial Er(x, y) and azimuthal Ez(x, y) electric field components calculated

at the middle of the metal thickness. As quite expected, the appearance of these two

quantities confirms the excitation of the T EM mode since the radial component of the

electric field is independent of the azimuthal angle and the axial one is negligible [135].
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Figure 3.8: (a) Transmission spectra of AAA structure made in a perfect conductor their
geometric parameters have been adjusted by setting the inner and outer radius to Ri = p/4
and Ro = p/3 respectively, p being the period of the AAA structure. The structure is il-
luminated by a TM polarized plan wave at angle of incidence of θ = 40o. Note that the
spectral response presents extra peaks denoted by the point A due to the excitation of
T EM guided mode inside each coaxial aperture. Modulus of the radial (b) and azimuthal
(c) electric field components calculated at p/2 from exit side of the structure for the pa-
rameter of point A in (a). These two quantities are normalized according to the maximum
of the radial component. Ref. [135]

.

Even though the excitation of T E11 mode has high transmission coefficient, but the

excitation of the T EM mode has several advantages. As mentioned above, the proper-

ties of the T EM mode are somewhat different because it has no limiting frequency and,

consequently, the associated transmission peak can occur at a wavelength λT EM which is

settled in first approximation, by a phase matching condition as in a conventional Fabry-

Perot interferometer. In fact, this peculiar mode is exactly analogue to the fundamental

cutoff less mode of a linear slit [125]. Consequently, the transmission peak that appears
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at λT EM depends on the thickness of the metal layer (i.e. the cavity length) and on the

nature of the metal. Accordingly, it may correspond to a larger wavelength than that of

the T E11 mode. The phase matching condition can be written as follows:

λT EM =
2πne f f h
mπ − ϕr

(3.2)

where ϕr is the phase change induced by the mode reflection at the two ends of the

coaxial waveguide including the scattering by the edges of the apertures (ϕr depends

then of the aperture geometry as it was recently demonstrated in ref. [145]), h is the

metal film thickness, M is an integer and ne f f is the real part of the effective optical index

of the T EM mode (ne f f becomes the optical index of the inner dielectric media in the

case of a perfect electric conductor structure). Note that the phase term ϕr contains

the contribution of the evanescent waves generated by diffraction at the two side of the

apertures (metal-dielectric interfaces). Some authors [146, 147] attributed this effect to

the coupling between the vertical guided mode and the horizontal diffracted waves and

others expressed the same thing through an analytical form by adding a phase term to

the Fabry-Perot phase matching formula [91, 125] or by integrating it in the same formula

as a term depending on the overlap integral between the guided mode and the incident

wave [92]. Thus, similarly to a conventional Fabry-Perot interferometer, it is possible to

tune the spectral position of the transmission peak by varying h and as a consequence,

to obtain an ET for a wavelength larger than λc
T E11

. However, as it will be shown, the

fabrication of nanometric high aspect ratio structures is still a challenging task and the

losses associated with noble metals in the visible range prohibits the use of thick metallic

plate.

3.4/ THEORETICAL STUDY OF THE EXCITATION OF T EM GUIDED

MODE THROUGH AAA STRUCTURE

In this section, we present a brief description of the used FDTD method allowing treat-

ment of periodic structures illuminated under oblique incidence. The considered structure

is supposed to be periodic in two dimensions (x and y for example) and finite in the z di-

rection. The FDTD calculation window consists of one unit cell (one period) and the

Floquet-Bloch periodicity conditions [148] are applied to the electric and magnetic com-

ponents through:
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E⃗(x + p, y, z, t) = E⃗(x, y, z, t)eikix p (3.3)

E⃗(x, y + p, z, t) = E⃗(x, y, z, t)eikiy p (3.4)

H⃗(x, y, z, t) = H⃗(x + p, y, z, t)e−ikix p (3.5)

H⃗(x, y, z, t) = H⃗(x, y + p, z, t)e−ikiy p (3.6)

where p is the period along both x and y direction, kix and kiy are the x and y components of

the incident wavevector respectively. These two quantities explicitly depend on the angle

of incidence but also on the frequency. Consequently, they can not be simply computed

due to the temporal character of the FDTD (frequency is not fixed). To overcome this

constraint, A. Belkhir developed an FDTD code based on Split-Field Method that allows

the integration of the periodicity conditions after a variable changes of the electric and

magnetic field components. The basic idea consists in integrating the exponential term

appearing in these conditions in order to get similar periodic conditions as in the case of

normal incidence. We suggest Ref. [149, 150, 99] to the reader for more details about

this method. We only mention here that the variable change induced the introduction of

4 different Yee grids that involve more than 12 electric and magnetic field components.

In addition, the implementation of the DCP dispersion model in this algorithm leads to

introduce a large number of variables 12. Fortunately, the SFM-FDTD code integrating a

DCP dispersion model was available by our team since the beginning of this part of my

thesis work.

The first simulation results that were done through this code are presented in the Ref.

[135]. Figure 3.8 shows a part of these results that were done to support the analytical

findings in that paper. Later, A. Ndao experimentally studied the excitation of the T EM

mode [139]. He performed experiments with AAA structures illuminated at oblique inci-

dence and got T EM-based ET. Nevertheless, the magnitude of the observed transmission

peak was very small due to the metal absorption and to the fact that the peak spectral

position was in the vicinity of the T E11 one. In order to optimize the AAA geometry and

to get efficient T EM-based transmission peak, it is important to make an overview on the

electromagnetic modes that can be excited within the 2D periodic structure depicted in

figure 3.9.
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Figure 3.9: Schematic of a conventional Annular Apertures Array (AAA) structure. Ro and
Ri are the outer and inner radius respectively, p the period and θ is the angle of incidence
at the substrate-metal interface and β is the angle of incidence in the superstrate.

3.4.1/ CLASSIFICATION OF THE EM MODES WITHIN AAA

To better understand and describe the transmission spectra of an AAA, it is very important

to point out all the mechanisms that are in play within this structure. As it is well-known,

discontinuities can appear in the spectra and they generally correspond to Rayleigh and

Wood anomalies due to the diffractive orders that match their excitation. The Rayleigh

one is obtained when the diffracted wave-vector is tangential to the interface whereas the

second corresponds to the surface plasmon excitation. For both cases, the tangential

components of the wave-vector are given by the grating relations:

kdx = kix +
2πm

p
(3.7)

kdy = kiy +
2πl
p

(3.8)
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where kdx, kdy, kix and kiy are the x and y components of the diffracted and incident wave-

vectors respectively. The couple of integers (m, l) represent the diffractive orders. Conse-

quently, Rayleigh and Wood anomalies are obtained when:√
k2

dx + k2
dy =

2π
λ

√
ε j −→ Rayleigh (3.9)√

k2
dx + k2

dy = Ksp =
2π
λ
ℜ

[√
εm ε j

εm + ε j

]
−→ Wood (3.10)

where εm and ε j with j = 1, 2 are the relative permittivities of the metal (silver for

example) and dielectrics (substrate or superstrate) respectively. Assuming an incident

wavevector k⃗i in the xOz plane (see figure 3.9) and after projection along the Ox and Oy

directions, one can express its two components by:

kix =
√
ε j ω/c sin θ (3.11)

kiy = 0 (3.12)

Replacing kix and kiy by their values in equation 3.9 and 3.10 allows writing them

through the single following equation:

λ2(m2 + l2) + 2mλp
√
ε j sin θ + p2ε j sin2 θ − p2α = 0 (3.13)

where θ is the angle of incidence and α becomes a constant which takes two values:

α = ε j in the case of Rayleigh anomaly, and α = ℜ( εmε j
εm+ε j

) in the case of Wood anomaly.

In addition to these horizontal modes, there are guided vertical modes inside the

annular apertures. In order to get efficient transmission based on the excitation of these

vertical modes, their spectral positions must be far from the anomalies in order to avoid

coupling between the two kinds of modes. Nevertheless, this coupling will lead to inter-

esting phenomena but it is considered as out of scope in this work.

To avoid the coupling between horizontal and vertical modes, and to get ET at largest

wavelength value than what it is commonly performed with the EOT structures, the T EM

mode must be excited beyond the Wood anomaly corresponding to the SP at metal-

substrate interface ( j =glass). To fulfill this condition, the metal thickness will be large

enough to allow verifying both Eqs. 3.2 and 3.10 and small enough to minimize the metal

absorption. This enforce to work with the first harmonic (m = 1 in Eq. 3.2) interference of

the T EM mode inside the vertical cavities (annular apertures).
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3.5/ SIMULATIONS RESULTS

Our numerical simulations are based on a 3D-FDTD code integrating a critical points

model to accurately take into account the metal dispersion [104]. We recall that our ob-

jective is to determine the most appropriate geometrical parameters of the AAA structure

in view of experimentally demonstrate ET assisted by a T EM mode in the visible range.

We will restrict our study to the case where the plane of incidence is always considered to

be parallel to one periodic direction (here the xOz plane) (see Fig. 3.9). In fact, because

of the aperture axis-symmetry, the transmission response is quasi-independent on the

azimuthal angle (ϕ) [150] if the anomalies are far from the transmission peaks induced by

the excitation of guided modes.

Two conditions are imposed in the design of the structure. First, the difference be-

tween the inner and outer diameter must be sufficient in order to facilitate the technologi-

cal fabrication, and second, the metal plate must be thick enough in order to get the T EM

mode in the visible range with λT EM > λc
T E11

. However, the metallic film thickness has to

remain below a certain value in order to limit the absorption and to simplify the drilling

during the fabrication process. Because gold is more absorbing in the visible range than

silver, the latter has been preferred to the former to build our structure. The following

sections are devoted to the optimization of the AAA structure by studying the influence of

geometrical parameters on the transmission properties.

3.5.1/ INFLUENCE OF GAP (Ro − Ri)

First, zero order transmission spectra are calculated for different outer radius ranging from

100 nm to 150 nm. The inner radius is set to Ri = 50 nm corresponding to the smallest value

that can be reached by the used etching technique (Focused Ion Beam) and ensuring a

small value of λT E11 . The thickness of silver is set to h = 200 nm and the period of the array

to p = 400 nm. These values of geometrical parameters result from the numerical study

which is presented in the following. Normalized transmission spectra are plotted in Fig.

3.10 for an angle of incidence of θ = 20o at the glass-metal interface corresponding to the

maximum value of β = 30o for an incidence in air that is allowed by the experimental device

(see Fig. 3.9). A large amount of light is transmitted through the structure between 600 nm

and 800 nm : this high transmission is due to the excitation of the T E11 that occurs around

its cut-off wavelength (here λc
T E11

∈ [690; 765] nm). Rayleigh and Wood anomalies also

appear on the spectra due to diffractive orders that match their excitation. The wavelength

(λ) of these diffractive orders is governed by the relations mentioned previously (see Eq.

79



3.5. SIMULATIONS RESULTS

3.13).
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Figure 3.10: Theoretical transmission spectra for different outer radius Ro. The inner
radius Ri is fixed to 50 nm, the period p = 400 nm, the silver thickness is set to h = 200 nm
and the incidence angle θ = 20◦ (i.e. β = 30◦). The red arrow indicates the transmission
spectra of the chosen parametric.

Thus, the discontinuities at λ = 537 nm correspond to the spectral position of the

Rayleigh anomaly (α = 1) on the air-metal interface while the two large dips are associ-

ated with the excitation of two diffractive orders ((m, l) = (0,−1)) that match the SPR on the

metal-air and metal-glass interfaces. Finally, the T EM peak occurs around λT EM = 915 nm

corresponding to the first harmonic (m = 1 in Eq. 3.2). Its position is almost independent

from Ro, but its amplitude increases with the latter. Indeed, the smaller the gap is, the

more the mode is confined and the more it penetrates inside the metal, leading to a rise

of the losses. Consequently, an efficient T EM-based transmission requires large outer

radius. However, the value of Ro is limited by the period value and by λc
T E11

which also

increases to get closer and enhancing artificially the T EM peak. In fact, mode solver

calculations demonstrate that the cutoff of the T E11 mode varies from λc
T E11
= 665 nm for

Ro = 100 nm to λc
T E11
= 827 nm for Ro = 180 nm. We have chosen Ro = 150 nm as a compro-

mise to have efficient T EM peak together with a weak coupling with the T E11 mode. In

addition, a very large value of Ro is prohibited since the distance between two successive

apertures (p − 2Ro) must be larger than 50 nm to be technologically realized.
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3.5.2/ INFLUENCE OF THE METAL THICKNESS

The second important geometrical parameter is the thickness h of the metal plate which

plays a key role in the T EM peak via the phase matching condition (see Eq. 3.2). As

shown in figure 3.11, the larger h is, the more the spectral position of T EM peak is red-

shifted: the position of the T EM peaks is proportional to the metal thickness but also to

the effective index of the T EM guided mode traveling inside the apertures. Moreover, the

transmission decreases when the thickness increases from 200 nm to 240 nm (see Fig.

3.11).
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Figure 3.11: Zero-order theoretical transmission spectra trough an AAA structure versus
the height h of silver for a transverse magnetic (TM) polarization illuminated at θ = 20◦

(i.e. β = 30◦). The other geometrical parameters are Ri = 50 nm, Ro = 150 nm, h = 200 nm
and p = 400 nm.

Once again, this is due to the metal absorption that increases with longer propaga-

tion distance. At first glance, this seems contradictory with the fact that metal becomes

less absorbing when the wavelength increases. In fact, there is a competition between

two effects: the first one is the red-shift of the T EM peak spectral position leading to

smaller imaginary part of the metal permittivity while the second is directly linked to the

propagation distance that becomes longer and to the variations of imaginary part of the

effective index of the T EM mode. According to Fig. 3.11, the second effect is predominant

because the T EM-based transmission peak amplitude decreases for larger thicknesses.

One notes that the peak corresponding to the T EM mode is narrower than the peak cor-

responding to the T E11 mode conferring the property of being more adapted for some
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applications such as spectral filtering.

3.5.3/ INFLUENCE OF THE PERIOD

Finally, the last important parameter is the structure period. Figure 3.12 shows the trans-

mission spectra for four different values of the period. As expected, this greatly affects

the anomalies position. Moreover, we choose the larger value of the period for which the

anomalies are far from the spectral range of the T EM-based transmission peak. This

was verified by reporting the analytical value of the anomaly position, obtained through

the equation 3.13, on the calculated spectra. As seen in figure 3.12, the black arrow

corresponding to that SPR fits well the dip position since p ≤ 400 nm. Coupling with the

guided modes appears for larger value of the period and leads to a red shift of the dip.

Consequently, we have fixed the value of the period to p = 400 nm.
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Figure 3.12: Theoretical transmission spectra for different period p values. The inner
radius Ri is fixed to 50 nm, Ro = 150 nm, h = 200 nm and the incidence angle θ = 20◦ (i.e.
β = 30◦).

Given the experimental constraints, this theoretical study leads to the optimum pa-

rameters for an efficient transmission through an AAA thanks to a plasmonic T EM mode:

h = 200 nm, Ro = 150 nm, Ri = 50 nm, p = 400 nm and the incidence angle must be as large

as possible.
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3.6/ THE MEASURED AND SIMULATED TRANSMISSION OF AAA

This section is devoted to compare the measurement of the light transmission through

AAA structure whose transmission properties are described in the previous section. Once

the simulation results become available, it is possible to do the process of the fabrication

of the design depending on the information obtained theoretically. We review the de-

scription of this fabrication and the way of the recorded transmission, measurements of

transmission coefficients without delve into the fine details because the experimental part

is out of scope of this thesis.

3.6.1/ BRIEF DETAILS OF THE SAMPLE FABRICATION

The fabrication of this structure has been performed in the context of A. Ndao’s thesis.

[139]. For this purpose, Focused Ion Beam (FIB) milling combined with a very accurate

metal deposition process has been used. It allows building a structure with very small

radii. A 5 nm thin chromium layer is deposited on the glass substrate (index n = 1.51) as

an adhesion layer. Next, a silver film (thickness h = 200 nm) is deposited by evaporation.

Finally, the structure grating is obtained by FIB milling of the metallic layer. A Scanning

Electron Microscopy (SEM) images of a fabricated matrix of 30 × 30 annular apertures

is presented in Fig. 3.13(a). Two enlargements made on Fig. 3.13(a) with different

viewing angles are presented in the Figs. 3.13(b) and (c) in order to check the good

surface quality. For checking the quality of the apertures along the metal thickness, a

vertical cutting of the structure parallel to the xOz plane passing through the center of

the aperture is presented in Fig. 3.13(d). More details on the quality of the fabrication

including extended demonstrations are presented in [139].

3.6.2/ COMPARISON BETWEEN THEORY AND EXPERIMENT

For the spectrum normalization, the transmission coefficients are theoretically and ex-

perimentally defined as the ratio of the transmitted intensity of the diffracted zero order

through the structure to the same quantity measured through a reference area. The latter

is a large square aperture having the same lateral size (12 × 12 µm2) as the whole array

of nano-apertures that are engraved in the same metallic film.

Transmission spectra are recorded for three different incidence angles in the context

of thesis of A. Ndao. but we only present here the result of one value (θ = 20o). This result
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Figure 3.13: (a) SEM top view image of the studied AAA (30 × 30 apertures) engraved in
silver film. (b) zoom-in over 6 × 9 patterns. (c) 52◦ titled zoom-in over 4 × 4 apertures. (d)
Vertical cross-section made on the structure after it was filled in with platinum. Ref. [139]

.

is compared to the theoretical calculations in Fig. 3.14. As it can be seen from figure 3.13,

some fabrication imprecision occurs and leads to different geometrical parameters than

those of the designed structure. To take into account these slight modifications geometry,

the geometrical parameters of the simulated structure were adapted to those obtained
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from SEM images of Fig. 3.13. More precisely, the inner and outer radii are fixed to

Ri = 50 nm and Ro = 145 nm instead of 150 nm respectively, and the metal thickness to

h = 190 nm instead of 200 nm. The comparison is made for both TE and TM incident

polarizations at θ = 20o. Experimental and theoretical spectra of figure 3.14 are in good

agreement in terms of the peak position and amplitude. Nevertheless, the technologi-

cal process produces samples with periods and aperture diameters slightly different from

one pattern to the other. In addition, when looking closely to Fig. 3.13(a) (see the red

circle), one can see that 52 apertures among the 784 that the AAA contains are almost

not completely opened. This obviously leads to cancel the T EM guided mode excitation

inside these apertures and affects the transmission amplitude of the TEM peak. Unfortu-

nately, FDTD simulations exploiting periodic boundary conditions can not support such a

structure. All this can explain the small discrepancies between the theoretical and exper-

imental results of Fig. 3.14. The main broad peak in two curves of Fig. 3.14 is attributed

to the T E11 mode excited at its cutoff wavelength λc
T E11
≃ 751 nm. This transmission peak

position remains the same independently at the incidence angle [150].

However, the most interesting feature is the presence in the transmission spectrum

for θ = 20o (Fig. 3.14(a)) of a small peak located at λ = 915nm. This peak is due to the

excitation of the T EM mode. Indeed, as expected, this peak does not exist under normal

incidence and it disappears if the polarization is turned to T E (Fig. 3.14(b)). Nevertheless,

its position is independent of the incidence angle since it is far from the anomalies. The

absorption along the h = 200 nm of the metal thickness prevents the T EM peak from

having a larger amplitude. Unfortunately, the set-up could not allow the incidence angle

to be increased beyond β = 30o (corresponding to θ = 20o) which could have further

enhanced the T EM peak amplitude.

3.7/ CONCLUSION

In this chapter, we have reviewed the state of the art achieved on Extraordinary Optical

Transmission (EOT) and the basic principle of waveguides have then outlined in terms of

the dispersion diagram of fundamental guided modes. A theoretical study of the excitation

of T EM guided mode through AAA structure has been conducted. We have performed

extensive numerical simulations based on a 3D-FDTD homemade code where the DCP

dispersion model is adapted to accurately describe the dielectric constant of the consid-

ered metals. We have reported the influence of: the cavity gap, metal thickness, and the

period on ET. We have been able to get the preferable parameters for an efficient trans-

mission through an AAA structure. Consequently, the demonstration of the simulation
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Figure 3.14: Experimental (solid line) and theoretical (dashed line) transmission spectra
at θ = 20o (i.e. β = 30o) through an AAA made in silver for both (a) TM and (b) TE
polarizations. Numerical simulations are performed with the geometrical parameters :
Ri = 50nm, Ro = 145nm and h = 190nm. The vertical arrows show surface plasmons
resonance (SPR) positions and the colored area marks the position of the peak due
to the excitation of the T EM guided mode. The T EM mode is only excited with a TM
polarization: no peak appears around 900 nm in TE polarization.

results have somewhat ensured and facilitated the AAA fabrication process and hence

the characterization of the experimental construction of AAA structure has been under-

taken. Our numerical studies have revealed that, for the first time to our knowledge, the

ET assisted by a T EM mode in the optical regime can be excited inside the apertures un-

der oblique incident TM polarized light. This mode has no cut-off wavelength, therefore,
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annular nano-apertures can transmit light at wavelength much larger than their external

diameter (λT EM = 6Ro = 2.3p in our case). However, the T EM peak amplitude remains low

because of metal absorption but it can be increased with large incidence angles and/or

by stretching out the inner part from the metallic layer as shown in ref. [93] (see figure

4c of that paper) where this point will be the focus of our attention in the next chapter.

Nevertheless, in the case of the AAA structure, the propagation constant of the T EM

mode is always larger than the freely propagation one (plasmonic character) meaning

that it does not allow slow light propagation nor enhancing of non-linear effects as it can

be done within the T E11 one [151]. By the way, the T EM mode becomes complementary

to the T E11 one. Despite everything, the T EM mode of AAA structures leads to efficient

transmission in the domain of terahertz waves or microwaves where metal absorption is

negligible.
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4

TRANSMISSION PROPERTIES OF

SLANTED ANNULAR APERTURE

ARRAYS (SAAA)

In the previous chapter, we theoretically demonstrated an enhanced transmission ET

through annular aperture arrays AAA by the excitation of the peculiar transverse electro-

magnetic (T EM) guided mode. We have performed a numerical study to correctly design

the structure seeking the optimal performance before it is experimentally characterized.

As explained in chapter 3, two conditions require to be fulfilled in order to excite the T EM

mode that is often experimentally difficult to allow efficient transmission at oblique inci-

dence. The fabrication process has been constrained with some limits associated to the

angle of incidence and the thickness of metal. It was experimentally found that maximum

value of the angle of incidence can reach to 30o [139]. For most of applications, it is

best to get a more efficient transmission (i.e. in the visible and near-IR) through the T EM

mode assuming an operation wavelength larger than the T E11 one. To overcome this con-

straint, an alternative solution was carried out by J. J. Greffet team [152]. They proposed

a geometric evolution of the profile of the cavities, to favor a wide-band behavior. The

suggestion was to incline the apertures instead of tilting the whole structure and/or the

incident beam. In 2010, Baida F. et al. have presented a pure theoretical study of such

structures called Slanted Annular Aperture Arrays (SAAA), to demonstrate their potential

[93]. In that paper, the transmission of T EM guided mode was numerically predicted for

several configurations. Unfortunately, the ET based on the T EM-mode excitation remains

very small (v 15% at normal incidence) for an easy-fabrication SAAA structure (see figure

4b of ref. [93]).

After an overview on the ET through SAAA for applications in the visible and NIR do-
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mains, pointing out the limitations due to the losses induced by the real nature of metals,

we will restrict our study to the case of SAAA made in perfectly conducting metal. We

will numerically and analytically describe some intrinsic properties of the structure as a

function of its geometry. Moreover, we will bypass the excitation of the T E11 mode, that

was already discussed in details in [29] and the references therein.
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Figure 4.1: (a) Schematic of one annular aperture section in the xOy plan giving the
geometrical parameters (outer radius Ro = 150 nm, inner radius Ri = 50 nm). (b) Schema
of the xOz and yOz sections showing the metallic film with thickness h = 190 nm perforated
with SAAA. Note that the tilted angle α = 30o of the aperture axis belongs to the xOz
plan. (c) Sketch of the whole sample with SAAA structure and the reference zone used
to normalize the transmitted signal. Ref. [153].
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4.1/ A HISTORICAL OVERVIEW OF THE CHARACTERIZATION AND

FABRICATION OF SAAA STRUCTURE

Recently, the experimental demonstration of an ET associated with the excitation of the

T EM mode of the SAAA structure (depicted in Fig. 4.1) was addressed by A. Ndao et al.

[153]. The fabricated structure consists of annular apertures with axes tilted by an angle

α = 30o normal to a h = 190 nm thick silver layer (see Fig. 4.1(b)). This value of thickness

is necessary to, at least, shift T EM-based transmission peak away from the T E11-based

one (see phase matching condition Eq. 3.2). As already mentioned, the choice of the

array period plays an important role to move away the Wood’s and Rayleigh’s anomalies

from the spectral range where the T EM guided mode is excited (see Eqs. 3.9 and 3.10

in Ch.3).

The numerical simulations of different geometric parameters for the SAAA structure

for both silver and PEC were previously presented in [139]. The influence of outer and

inner radii was also addressed in order to explore their effects on the position and the

amplitude of the T EM-based peak and hence to be the best characterized (see figure

4.2). This study shows high dependence of the peak spectral position with the value of

the inner radius. More specifically, the peak shifts towards the red region as Ri increases

for both real and perfect metals (see figure 4.2(a,b)), this shifts is attributed to two different

factors: (a) the growth in the T EM guided mode effective index as the gap decreases and

(b) to the modification (increase) of the reflection phase at the ends of the apertures

(see figure 8(a) of Ref. [145]; [93]). Nevertheless, in the case of PEC structure where

the effective index of the T EM guided is equal to 1 whatever the radii values, the shift

is only linked to the second factor. Consequently, smaller shifts occur in the case of

PEC as shown in Fig. 4.2(a). A ∆Ri = 25 nm leads to ∆λT EM = 150 nm for PEC and

∆λT EM = 230 nm for silver. Similarly, the influence of the outer radius was studied and

it was found that decreasing Ro, the T EM-based peak of a PEC structure shifts to blue

spectral region (see Fig. 4.2(c)). This behavior is directly related to the variation in the

phase ϕr of the reflection at the aperture ends. Contrarily to the case of PEC where the

shift is quite proportional to Ro, the silver case presents a more complicated behavior

(see Fig. 4.2(d)) due to the fact that increasing Ro allows coupling between adjacent

aperture T EM modes. This coupling occurs not only at the interfaces (up and down) but

also through the metal part that exists between the apertures. In this case, the dispersion

diagram of the T EM mode becomes different from the one of a unique waveguide, i.e. a

collective effect appears as depicted in figure 1.28(b) of Ref. [144].

According to these results, and in the perspective of experimental demonstration,
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Ndao A. envisaged two different metals for the fabrication of the structure; namely silver

and gold due to their good performances in the visible and NIR spectral ranges. In this

context, it was appropriate pointing out the dispersion diagram of the T E11 and the T EM

mode of an infinitly-long coaxial waveguide, within the geometrical parameters deduced

from the study performed above (Ri = 50 nm,Ro = 150 nm). The T E11 mode was consid-

ered in order to ensure large spectral separation with the T EM mode. The dispersion of

these two modes is calculated using a homemade BOR-FDTD code that was adapted to

determine the eigenmodes of a structure exhibiting a cylindrical symmetry [27]. The DCP

dispersion model of gold and silver was implemented with the parameter values given in

tables 2.1 and 2.2 in page (31 and 31) respectively. Consequently, the effective index,

real and imaginary parts, of the two guided modes were obtained from the calculated

electromagnetic spectral density. As expected, for both silver and gold, T E11 mode ex-

hibits a hybrid character: conventional propagating guided mode (over the light line) and

plasmonic one (under the light line). Whereas, the T EM mode is only a plasmonic one

(see figure 4.3(b)). As it is well known, when light propagates as a guided wave it expe-

riences some propagation losses. According to the results of Fig. 4.3(c and d), silver is
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most suitable, instead of gold due to a smaller imaginary part of the effective index of its

T EM mode. Nevertheless, one can expect that the transmission efficiency of the T EM

peak will be smaller compared to the T E11 peak due to the fact that the latter is always

excited at its cutoff wavelength involving very small losses (n ´́ T E11
e f f = 3 × 10−2 as seen in

Fig. 4.3(c)), while the T EM mode exhibits smaller values (n ´́ T EM
e f f w 0.015 at λ = 1550 nm).

To optimize the transmission efficiency based on the excitation of the TEM mode, it is

necessary to choose an operation wavelength around 900 nm (see Fig. 4.3(d)).
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(b). (d) corresponding curves as in (c) for the T EM mode. Ref. [153].

The fabrication of this structure was performed in the context of A. Ndao’s thesis

[139]. The focused ion beam (FIB) milling combined with very accurate metal deposition

has been used. Thereafter, a silver film with thickness h = 190 nm is deposited by evapo-

ration, and the SAAA grating is gained using FIB milling of the metallic layer. Figure 4.4

shows the good quality of the fabrication and the geometric parameters of the sample

that has been checked using scanning electron microscopy images (SEM). As shown in

figure 4.1, the angle of inclination of slanted apertures was set to α = 30o in the xOz plan

93



4.1. A HISTORICAL OVERVIEW OF THE CHARACTERIZATION AND FABRICATION
OF SAAA STRUCTURE
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Figure 4.4: Top view SEM image of the studied SAAA matrix engraved in silver film. (b)
is a zoom-in made over 3 × 3 patterns imaged in the Oy direction to point out the slanted
apertures. (c) is a zoom-in made over 3 × 2 apertures in the Ox direction. Ref. [153].

(angle between the annular aperture axis and the perpendicular to the metal film). A top

view SEM image of the whole fabricated array (i.e. a matrix of 20 × 20 annular apertures)

is presented in figure 4.4(a). As well, figure 4.4(b) is side view SEM image from Oy di-

rection that clearly shows the slanted apertures whereas, figure 4.4(c) is obtained in the

Ox direction. For more details about the checking of the quality and the processes of

fabrication of the apertures along the metal thickness, the reader can be referred to Ref.

[153].

To investigate the transmission spectra for the fabricated SAAA structure, the zero-

order transmission for both the recorded experimental transmission and the correspon-

dent theoretical simulations are presented in figure 4.5. A good agreement between the-

ory and experiment was obtained. The T E11 guided mode is efficiently excited with trans-

mission efficiency more than 70% located around its cutoff wavelength (λc
T E11

≃ 707 nm).

In fact, this transmission value was less than the one obtained by Poujet et al. [141] be-

cause of the metal thickness (i.e. the propagation distance) that is here larger (h = 190 nm

instead of 100 nm). Furthermore, another transmission peak occurs at (λT EM w 935 nm)

thanks to the excitation of the T EM guided mode inside the apertures. The nature of this

peak (TEM guided mode excitation) was experimentally confirmed by the fact that it only

occurs for TM polarization of the incident illumination. Nevertheless, as shown in Fig.
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4.5(a), there was a difference between theory and experiment in terms of transmission

efficiency. However, both the measurement and simulation results are qualitatively very

comparable, whereas the small discrepancy is linked to the fabrication imperfections that

are induced by the used technological processes as explained in Ref. [139].
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Figure 4.5: Zero-order (a) experimental and (b) theoretical transmission spectra of the
SAAA structure as a function of wavelength for the two cases of polarization: Einc//Ox
(solid blue line) and Einc//Oy (dashed red line). The T EM guided mode is only excited
when the incident electric field has a non-zero component along the aperture axis (here
TM polarization). Ref. [153].

In brief, the review of the recent study of SAAA described above shows that the T EM

mode is excited at normal incidence and its spectral position is expected to be red-shifted

compared to the conventional AAA structure. In fact, due to the inclined path through

the metal film, the effective thickness of the cavities is increased and the phase matching

condition can be fulfilled for larger values of the wavelength. Unfortunately, the T EM-

based transmission in the visible range was weak due to metal losses and to the fact that

this T EM mode is spatially extended in the metal more than the T E11 mode. Therefore,
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in this chapter, we will address theoretical and numerical simulations through 3D-FDTD

algorithm only in case of microwave and THz domain where metals can be considered

as PECs leading to an efficient transmission. In the next section, we discuss in detail the

difference between the AAA structure and the SAAA one in terms of their transmission.

Due to the interesting transmission properties through the SAAA structure, a more de-

tailed study on this structure on the basis of both numerical and analytical calculations

will be performed in the following. The investigating of the influence of angle of inclina-

tion α, incidence θ and azimuthal ϕ on the transmission spectra is conducted. Then, we

present an exhaustive demonstration of the transmission characteristics in terms of the

couple (θ and ϕ). Finally, the analytical treatment of an arbitrary SAAA configuration to

reinforce our numerical results is supported.

4.2/ COMPARISON BETWEEN AAA AND SAAA

As already mentioned, the T EM-based transmission in the visible range was weak due to

metal losses and to the fact that this T EM mode is spatially extended in the metal more

than the T E11 mode. In this section we present a numerical simulations study through

homemade 3D-FDTD algorithm to compare the transmission spectra of an AAA and an

SAAA having the same geometrical parameters.

Figure 4.7 a depicts the schema of the two studied structures and gives all the geo-

metrical parameters. Note that due to the non-dispersive character of all the considered

media, reduced parameters are used with p unit where p is the period of the structure.

The AAA structure is illuminated at oblique incidence with an angle of incidence equals

to the tilt angle (θ = α = 30o) of the SAAA structure while this later is illuminated at nor-

mal incidence. The incident polarization is TM (magnetic field perpendicular to the plane

of incidence); As shown in figure 4.7(b) the T EM-based transmission peak appears and

reaches 100% for both structures. Nevertheless, as expected, its spectral position is sig-

nificantly red-shifted when the apertures are tilted. Indeed, since the Rayleigh anomaly is

far from the spectral position λT EM of the T EM-based transmission peak (structure period

p < π(Ri + Ro)), λT EM can be given by a phase matching relation:

λT EM =
4πne f f he f f

(2mπ − ϕr)
with {he f f = h for AAA} and {he f f = h/cos(α) for SAAA} (4.1)

m is a non-zero positive integer, ne f f is the real part of the effective index of the T EM mode

(ne f f = 1 if perfect conductor) and ϕr is the phase change due to the mode reflection (and

diffraction) at the input or the output sides of the aperture. Let us recall that α is the
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Figure 4.6: (a) 3D view of the Slanted Annular Aperture Array (SAAA) structure under
consideration. (b) Schema showing the different geometrical parameters used to assign
the incident wave-vector position (in the plane formed by the Oz axis at an angle ϕ from
the Ox axis) and direction (incidence angle θ counted from the Oz axis). The aperture axis
is tilted by an angle α from the vertical direction (Oz) in a plane also located at an angle
β from the Ox axis). The horizontal section of on aperture has then outer (inner) ellipses
with minor half axis Ro (Ri) and major Ro/ cosα (Ri/ cosα).

angle of the aperture tilt counted from the normal to the metal interface. The position of

the T EM peak can then be tuned through the tilt angle for a fixed value of the thickness.

Nevertheless, this dependence is not completely explicit because the phase term (ϕr) can

also depend on α. Furthermore, the quality factor Q of the T EM transmission peak for the

two configurations are calculated and it is found that the QAAA = 122.78 and QS AAA = 45.

Consequently, the low quality factor of SAAA can be useful for broad-band applications
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Figure 4.7: Calculated transmission spectra for two different configurations (a) having the
same metal thickness h = 2p/3 where p is the period along Ox and Oy directions. (b)The
red curve represents the transmission through the SAAA structure at normal incidence
while the blue one corresponds to the transmission through the AAA structure. For both
structures, we consider a TM polarized incident plane wave with ϕ = β = 0o (see Fig. 4.6)
but θ = 0o and α = 30o for the SAAA structure and θ = 30o in the case of the AAA structure
. For the two configurations, we fixed the radii values to Ro = p/3 and Ri = p/6.

while the AAA structure is more appropriate for spectral filtering applications, chemical

sensing, biology and enhanced Raman spectroscopy.

4.3/ INFLUENCE OF ANGLE OF INCLINATION ON THE TRANSMIS-

SION SPECTRA

This study is performed in order to gain more insight and to see how the angle of incli-

nation affects the phase term (ϕr). For this purpose, we have studied the transmission

response as a function of α at a fixed value of the thickness h = 2p/3 and in the case of

normal incidence. In both cases, the radii of the annular aperture are fixed to Ro = p/3

and Ri = p/6 and β = 0 meaning an inclination axis parallel to the xOz plane. The results

are plotted in figure 4.8(a) for α varying from 5o to 45o. As expected from equation 4.1,

the T EM peak position shifts to the red region of the spectrum when α increases (1/ cosα

increases). Figure 4.8(b) depicts the spectral positions of the T EM peak as a function of

1/ cosα (solid blue curve). An almost linear behavior is obtained meaning that the phase

ϕr is quite constant when α varies. The slight discrepancy appearing at small values of α

between the numerical calculation and that obtained from equation 4.1 when considering

ϕr = 1.9 rad (dashed red line), can be attributed to the coupling between the T EM and the

T E11 modes.
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Figure 4.8: (a) Transmission spectra in color level versus the tilt angle α of a SAAA with
metal thickness h = 2p/3 (p is the period of the grating along the Ox and Oy directions),
the inner and outer radii of the coaxial cavities are Ri = p/6 and Ro = p/3 respectively. The
structure is illuminated by a TM polarized plane wave at normal incidence with ϕ = β = 0o.
(b) The solid blue curve is the spectral position of the T EM-based transmission peak
function of 1/ cos(α). The dashed red curve corresponds to the asymptotic linear behavior
when we consider ϕr constant.

4.4/ INFLUENCE OF ANGLE OF INCIDENCE

A closer look at the equation 4.1, shows that there is no explicit relation between λT EM and

the angle of incidence θ. Nonetheless, one can intuitively suspect a relation between this

angle and the phase term ϕr. In order to point out this effect, we have performed extensive

numerical simulations (see Fig. 4.9(a)) corresponding to a tilt angle α = 35o and an angle

of incidence that varies from −45o to 45o. The results show that the spectral position

and the maximum value (100%) of the T EM-based transmission peak are independent

of the angle of incidence. Only the quality factor (peak sharpness) is affected and it is

maximum at normal incidence. Nevertheless, the TEM peak exhibits a perfect symmetry

with respect to the normal incidence (T (−θ) = T (θ)), as shown in figure 4.9(b), where

two spectra corresponding to θ = ±40o are plotted. This property is a consequence

of the energy balance and the reciprocity theorem as analytically demonstrated in the

appendix (see paragraphs 1 and 3 of the appendix B). The symmetry of the spectra

with respect to the angle of incidence (that appears for λ > λRayleigh corresponding to

the subwavelength regime) can be understood intuitively by the fact that the dimensions

aperture are sub-wavelength details of the structure, and therefore their properties cannot

be detected in the far-field. On the contrary, when λ < λRayleigh the transmission spectra

do not exhibit any symmetry. In this spectral range, propagating diffracted orders exist

and their efficiencies depend on the tilt angle. Consequently, the diffracted zero order

transmission changes with respect to the energy carried by these homogeneous orders.

The obtained symmetry breaking, due to energy loss in the propagated diffraction orders,
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is clearly illustrated in figure 4.9(b) where the diffracted zero order is more efficient when

the angle between the incident light and the aperture axis (tilt direction) is small (blue

curve of figure 4.9(b)) compared to the opposite incident angle case (red curve of figure

4.9(b)). Let us notice that the property of symmetry with respect to the angle of incidence

is valid for any resonance of the transmission that occurs beyond the Rayleigh anomaly.

This is clearly illustrated in the same figure 4.9(a) where the two T E11-based transmission

peaks exhibit the same symmetry properties with respect to the normal incident axis (θ =

0o) and also reach 100% transmission efficiency independently of the angle of incidence.

Nevertheless, for large values of θ (& 20o), the Rayleigh anomaly approaches the T E11-

based transmission peaks and a coupling between the two resonances occur resulting in

a modification of the transmission properties.
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Figure 4.9: (a) Calculated transmission spectra in color level versus the angle of inci-
dence. Inset of (a) presents the illumination direction with respect to the tilt angle. Two
Rayleigh anomalies can be seen in the figure and are indicated by the value of the (m, l)
corresponding to diffracted order (m along x and l along y axis). (b) two cross-sections
made on (a) and illustrating the transmission spectra for two angles of incidence θ = 40o

in solid blue line and θ = −40o in dashed red line. Note that the up- and down-arrows
indicate the position of T EM-based transmission peak and the Rayleigh anomaly respec-
tively whereas the value of the tilt angle is fixed to α = 35o. The inset of (b) shows the
residual numerical signal (∆ = |T (θ = 40o) − T (θ = −40o)|) corresponding to the difference
between the two spectra only in the sub−λ regime.

All the results presented above correspond to a TM polarized incident plane wave

where the electric field is parallel to the plane of incidence that is also parallel to the plane

of aperture axis inclination (β = 0o). For a TE polarization, the TEM mode is not excited

whatever the value of the incidence angle (see figure 4.10). In addition, the two T E11-

based peaks are located at different spectral values from the TM case. This discrepancy

is attributed to the asymmetry of the annular apertures (i.e the xOy plane) where aperture

becomes elliptical with major axis along Ox direction. In order to point out the influence of
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Figure 4.10: (a) Calculated transmission spectra in the case of TE polarization in color
level versus the angle of incidence. Two Rayleigh anomalies can be seen in the figure
and are indicated by the value of the (m, l) corresponding to diffracted order (m along x
and l along y axis). (b) two cross-sections made on (a) and illustrating the transmission
spectra for two angles of incidence θ = 40o in solid blue line and θ = −40o in dashed red
line. Note that the up- and down-arrows indicate the position of the Rayleigh anomaly
respectively whereas the value of the tilt angle is fixed to α = 35o.

the angle of incidence in a general case (mismatch between the incidence and inclination

planes), we rotate the plane of incidence by an angle ϕ = 35o (see figure 4.6) and we carry

out the results of transmission in both TE and TM polarizations that are plotted in figure

4.11. One can see that the symmetry properties with respect to the angle of incidence

are conserved. Nevertheless, the transmission efficiencies change (85% in TM) and a

TEM peak appears in TE polarization (15%). As discussed in appendix B, this results

from the projection of the incident field on the direction of the eigenvector that yields a

100% transmission (at ϕ = 0o the TM polarization is parallel to this eigenvector).

4.5/ INFLUENCE OF THE AZIMUTHAL ANGLE

As already mentioned, an important information can be shown from the transmission

spectra of the SAAA structure: the central symmetry allowing transmission of 100% at

the wavelength resonance that only depends on the tilt angle. This total transmission

(100%) is obtained whatever the angle of incidence and the tilt angle. Unfortunately, the

polarization of the incident wave is the only parameter that is involved in the value of

the transmission efficiency through the value of the azimuthal angle ϕ. In the following,

we address the properties of the T EM-based mode with respect to the variation of this

angle. For this purpose, let us fix the angle of incidence to θ = 30o and vary ϕ from 0o to

60o by 5o step. Let us recall the geometrical parameter of the SAAA that are the same
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Figure 4.11: (Top) Calculated transmission spectra in color level in both TM (a) and TE
(b) polarizations versus the angle of incidence. Two Rayleigh anomalies can be seen in
the figure and are indicated by the value of the (m, l) corresponding to diffracted order
(m along x and l along y axis). (Bottom) two cross-sections in both TM (c) and TE (d)
polarizations made on (a) and (b) respectively, illustrating the transmission spectra for
two angles of incidence θ = 40o in solid blue line and θ = −40o in dashed red line. Note
that the up- and down-arrows indicate the position of the Rayleigh anomaly respectively
whereas the value of the tilt angle is fixed to α = 35o and for an arbitrary azimuthal angle
ϕ = 35o.

as in the previous section: Ri = p/6,Ro = p/3, h = 2p/3 and α = 30o. The simulation

results are presented in figure 4.12. On the other hand, the discontinuities shown in the

transmission spectra of figure 4.12(a,b) correspond to Rayleigh anomalies which arise

when a propagating diffracted wave likes evanescent. Once more, the figure 4.12(a,b)

unambiguously shows that the sum of the transmission at the T EM-based peak appears

100% for both polarization states (TE,TM) (see figure 4.12(d)).
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Figure 4.12: Transmission spectra for different azimuthal angles ϕ values in both TM (a)
and TE (b) polarizations for an angle of incidence of θ = 30o. (c) Cross-sections made
over (a) and (b) at ϕ = 37.5o. (d) Transmission efficiencies at λT EM of the two polarization
states (TM in dashed red line and TE in solid blue line) and their sum (green horizontal
line) as a function of the azimuthal angle ϕ.

4.6/ ANALYTIC TREATMENT

We address here an analytic treatment in order to reinforce our numerical results. The fact

that for the structure under study, the sum of the transmittivities for TE and TM incident

polarizations is equal to 100% at resonance whatever the angle of incidence, can be

explained by analyzing the eigenvectors and eigenvalues of the T ∗1T1 matrix, where T1 is

the scattering matrix of the structure and T ∗1 is the conjugate transpose of T1. The details

are presented in the Appendix B, which extends the demonstrations made in [154] and
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Figure 4.13: Transmission spectra for different angles of incidence in both TE (a) and TM
(b) polarizations obtained for an arbitrary azimuthal angle ϕ = 30o. (c) Cross-sections
made over (a) and (b) at θ = 37.5o. (d) Transmission efficiencies at λT EM of the two
polarization states (TM in dashed red line and TE in solid blue line) and their sum (green
horizontal line) as a function of the angle of incidence θ.

[155]. To sum-up, the two eigenvalues of the T ∗1T1 matrix are real and positive and they

are the limits of the range of variation of the transmittivity when the polarization of the

incident plane wave takes all possible states, even non linear polarization states (see the

Appendix B, first paragraph). The only necessary assumption is that the only propagative

diffraction order is the zero order so the minimum wavelength value must be greater

than the Rayleigh anomaly (sub-wavelength regime). The two eigenvectors, which are

orthogonal to each other, correspond to the polarization of the incident wave that allow

obtaining these limits of transmittivity. Hence, it appears that it is better to work with the

eigenvalues and eigenvectors of the T ∗1T1 matrix rather than with the transmittivities for TE

104



CHAPTER 4. TRANSMISSION PROPERTIES OF SLANTED ANNULAR APERTURE
ARRAYS (SAAA)

and TM incident polarizations, especially for structures leading to polarization conversion.

Furthermore, if the structure has a symmetry center, it is possible to show (see the

Appendix B, paragraph 2-4) that one eigenvalue of the T ∗1T1 matrix reaches 100% when

one eigenmode is excited, provided that the materials are lossless.

4.6.1/ CENTRAL SYMMETRY OF THE TRANSMISSION IN SAAA.

In the case of the SAAA structure that presents a center of symmetry, we can say that

there exists a polarization state (Pmax) for which the transmission reaches 100%. More-

over, in our case, as we consider small apertures in a metallic plate, the orthogonal Pmin

polarization state leads to a negligible transmission, or eventually to a residual transmis-

sion due, for example, to the presence of another resonance at a different wavelength. In

our case, it corresponds to the value of the transmission at point M of figure 4.12. The

Pmax polarization is clearly the TM polarization when β = ϕ = 0 (see Fig. 4.13(b)), meaning

a plane of incidence parallel to the aperture axis. In the general case of arbitrary incident

polarization, because of the fact that the Pmax and Pmin polarization are orthogonal to each

other, the sum of the transmittivities for TE and TM polarizations is equal to the sum of

the eigenvalues of the T ∗1T1 matrix, hence is close to 100%. This property is numerically

verified through the results presented in Fig. 4.12 and 4.13 where different illumination

configurations are considered by varying both the angle of incidence θ and the azimuthal

one ϕ assuming β = 0o. For each couple (θ, ϕ), the two polarization states (TE, TM) are

studied and we found that the sum of the transmission at the T EM-based peak is equal

to 100% whatever the couple (θ, ϕ) is.

4.6.2/ TRANSMISSION SPECTRA OF AN ARBITRARY SAAA.

Let us now consider an arbitrary configuration where ϕ and β are simultaneously nonzero

and different from each other. Consequently, we have fixed the geometrical and illumi-

nation parameters to : Ri = p/6, Ro = p/3, h = 2p/3, α = 30o, ϕ = 65o, β = 25o and

θ = −35o. Fig. 4.14(a) presents the numerical transmission spectra where the dashed red

line and the solid blue one correspond to the TE and TM polarization states respectively.

Once again, the sum of the transmission at λT EM is equal to 1. The two eigenvalues

of the T ∗1T1 matrix are plotted in Fig. 4.14(b) where the solid green line corresponds to

the polarization state Pmax while the dashed magenta one represents the Pmin state. As

expected, perfect transmission is obtained at λT EM for the Pmax polarization while an al-
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Figure 4.14: Transmission spectra of an arbitrary SAAA structure where β = 25o, Ro = p/3,
Ri = p/6, h = 2p/3 illuminated by a linearly polarized plane wave with ϕ = 65o and θ = −35o.
(a) The solid blue line corresponds to the case of a TM polarization while the dashed red
one fits the case of a TE polarization. The dotted black line presents the transmission
of an unpolarized incident beam. (b) Transmission spectra for the two polarization states
(Pmax, Pmin that correspond to the two eigenvalues of the matrix T ∗1T1). Note that the
polarization states Pmax and Pmin vary with the wavelength. The dotted black line is the
same as in (a) because it equals to (Pmax + Pmin)/2 = (T E + T M)/2.

most zero transmission (2.6% only) occurs for the orthogonal polarization Pmin. Note that,

for the Pmax polarization, other transmission maxima (up to 100%) arise corresponding to

additional transmission resonances (especially due to the excitation of the T E11 guided

mode at two different wavelength values corresponding to Fabry-Perot harmonics). It is

important to note that the eigenvectors corresponding to the eigenvalues plotted in Fig.

4.14(b) generally vary with the wavelength, hence, the polarization state allowing a 100%

transmittivity may not be the same when the T EM and the T E11 modes are excited. From

this study, it appears that when one eigenmode is excited, the transmission efficiency of

an unpolarized incident beam at the resonance wavelength is, at least, equal to 50%. This

is confirmed by the plot of the transmittivity for an unpolarized wave in Fig. 4.14. Another

conclusion is that a necessary condition to obtain a polarization independent transmittivity

at resonance is to excite two eigenmodes.

4.6.3/ GIANT ENERGY DEVIATION

Finally, let us emphasize that in the sub-wavelength regime, at λT EM and for the polariza-

tion state Pmax, the incident energy is totally routed through the apertures for every value

of the tilt angle. As an example, we consider a SAAA structure with α = 35o illuminated by
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a plane wave propagating at θ = ±75o. The calculated transmission spectra for the Pmax

polarization state are presented in Fig. 4.15(a). A T EM-based transmission peak occurs

at λT EM = 2.3p whatever the sign of θ. In order to visualize the energy propagation in the

vicinity of the SAAA, the energy flow (Poynting vector) is also calculated and presented in

a vertical plane containing the axis of the apertures. One can clearly see in Fig. 4.15(b)

and 4.15(c) the giant bending of light that occurs over a distance as small as λ/5 (see the

direction change of the white arrows at the bottom of the structure). In the vicinity of the

structure, the light energy follows a serpentine path with laminar flow (total transmission)

through the nanostructured metallic film after suffering a total deviation of 220o over a

distance smaller than the wavelength.
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Figure 4.15: Transmission spectra for an angle of incidence θ = 75o in (a) and θ = −75o in
(b) for the same SAAA structure of Fig. 4.7. (c) Square root of the electric field amplitude
distributions (in color map) around the nano-structured metallic film in a vertical plane
containing the aperture axis for an illumination at θ = 75o. White arrows correspond the
tangential Poynting vector. (d) Same as (c) for θ = −75o.
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4.7/ CONCLUSION

In this chapter, we have recalled a brief overview of the characterization and fabrica-

tion as well as the numerical study of the influence of the inner and outer radius in both

PEC and silver SAAA on the transmission spectra of the SAAA structure. In this review,

the simulated SAAA has also been qualitatively validated through the investigation of the

zero-order transmission for both recorded experimental transmission and the correspon-

dent theoretical simulations. The comparison between the measurement and simulation

results agreed very well.

In addition, we have studied the fundamental aspect of the enhanced transmission

mechanism through the SAAA structure on the basis of both numerical and analytical

calculations. we have first carried out a numerical comparison between the transmission

of an AAA and SAAA structures having the same film thickness. This comparison have

revealed that the T EM-based transmission peaks appears and reaches 100% for both

structures although they have red-shifted on its spectral position but SAAA spectra is

located at λT EM(S AAA) > λT EM(AAA). As an additional result, we presented some prop-

erties of this structure that demonstrate a high potential for applications in various fields

such as spectral filtering regardless of the illumination direction. The giant deviation of

the energy flux over small distance presented in Fig. 4.15(c) and (d), brings a supple-

mentary and comprehensive physical insight about the guided mode-based enhanced

transmission paradigm without the need to resort to surface plasmons or other surface

waves.
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We have improved an existing FDTD code by integrating the TF/SF technique. This

method allows calculating the pure scattered field and the absorbed one. After applying

this technique on a sphere particle, the result showed a mismatch with those from ana-

lytical Mie solutions. We took advantage of a method that was already implemented in

the context of the FDTD algorithm by other authors, the CPT (Contour Path Technique).

The latter have also adapted in our code to more accurately describe the curved surface

of a structure keeping parallelepiped mesh by resolving Maxwell equations expressed in

their integral forms at specific cells of the grid. We have seen that the numerical result of

a single metal nanosphere has a high accuracy and exhibits a very good agreement with

the Mie solution than those resulted from classic FDTD (i.e. FDTD code without CPT).

The supported TF/SF and CPT- FDTD techniques which are effective for a wide range of

problems have employed to study the optical responses of NAs as one of the important

applications in optical domain. We have emphasized that the influence of shape can con-

trol the optical antennas properties such as the scattering efficiency and the resonance

wavelength. Therefore, a comparison between two different designs of optical NA (BA

and DA) has been performed. The numerical results have showed that at plasmon reso-

nance, the diabolo design exhibits a very large amount of scattering compared to bowtie

one. The interesting obtained results are thanks to a highly localized electromagnetic field

in the vicinity of the DA (both center and corners). Due to the interesting resonance prop-

erties of the DA, a systematic study is performed including the influences of metal nature,

the host medium and geometrical parameters (length, gap and thickness) affecting on

tunability of the resonance frequency and hence controlling its the performances of opti-

cal antennas. We have showed that the magnitude of the scattering efficiency is strongly

influenced by the factors (parameters) studied above. The obtained results explain that

the excitation of LSPR plays a vital role by increasing the effective section up to several

times the physical cross section of the nanostructure. This feature can be employed to

enhance the interaction of any object located in their proximity with electromagnetic wave.
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The TF/SF technique adopted in FDTD algorithm is applicable to model any NPs and de-

tect their efficiencies to make them suitable for various applications. Future simulations

study may address another nanoform which can be useful in evaluating the optical re-

sponses for applications where the strong scattering or/and absorption efficiencies are

desired.

In the context of plasmonic wave guide, the optical properties of the latter have been

theoretically studied in the next chapter. Parametric simulations have been conducted to

obtain the most convenient parameters that allow an efficient transmission of light through

AAA structure. The simulation results were useful to facilitate and optimize the AAA fab-

rication process that were performed in the context of another thesis performed in our

laboratory. The ET assisted by a T EM mode, which is a pure plasmonic guided mode

of a metallic coaxial waveguide, in the optical regime is observed through exciting this

peculiar mode inside each annular aperture under oblique incident TM polarized light.

Nevertheless, the magnitude of the T EM amplitude remains low due to the metal absorp-

tion that specifically occurs in the visible range. In fact, only high efficient T EM-based ET

can be achieved in the domain of terahertz waves or microwaves where metal absorption

is negligible.

In order to get more interesting properties of AAA structure, we have taken the ad-

vantage of SAAA structure that was previously proposed to study the fundamental aspect

of the enhanced transmission mechanism on the basis of both numerical and analytical

calculations. We have performed a comparison between the AAA and SAAA structures in

the case of PEC. It has been found that the spectral position of the TEM mode of SAAA is

significantly red shifted compared to AAA structure. We have numerically shown that the

light is totally transmitted through the structure independently of the value of tilted angle

but at different values of wavelengths. The numerical simulations have presented an-

other feature including that the peak of T EM guided mode at the maximum value (100%)

of the transmission is independent of the angle of incidence θ and its quality factor in-

creases when the θ becomes close to zero. The property of the transmission spectra

with respect to the angle of incidence is analytically demonstrated through the concept

of energy balance and the reciprocity theorem. Consequently, the property of symmetry

respect to θ can be valid for any resonance of the transmission. Another surprising prop-

erty is observed when the planes of incidence are not along the direction of periodicity

of the structure. Similarly, it has numerically and analytically found that the sum of the

transmission at the T EM-based peak is equal to 100% whatever the angle of incidence

and the azimuthal one. This means that, for incoherent illumination (sun for instance),

the transmission is equal to 50% whatever the light source condition. In addition, we have
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emphasized that in the subwavelength regime at λT EM and for the transmission maxima,

the incident energy is totally routed through the apertures of SAAA for every value of tilt

angle. This is illustrated by visualizing the energy propagation in the vicinity of the SAAA.

The giant bending of light is clearly observed over a distance as small as λ/5 and it follows

a serpentine path with laminar flow with deviation of 220o per wavelength.

This structure supports some properties that demonstrate a high potential for appli-

cations in various fields such as spectral filtering regardless of the illumination direction.

The next step should address the potential enhancement of the transmission of unpolar-

ized beams (more than 50%) by spectrally approaching two different resonances (here

the T EM and the T E11 ones) without causing destructive coupling through a degeneracy

breaking. This may require an accurate optimization of the parameters of the structure

or more complex structure geometries, as it was done in the case of all dielectric sub-

wavelength periodic structures presenting a resonance peak due to the excitation of a

leaky guided mode (guided mode resonance grating) [156, 157] .
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tion and scattering properties of gold nanoparticles of different size, shape, and

composition: Applications in biological imaging and biomedicine. The Journal of

Physical Chemistry B, 110(14):7238–7248, 2006. PMID: 16599493.

[41] Xiaohua Huang, Ivan H. El-Sayed, Wei Qian, , and Mostafa A. El-Sayed*. Cancer

cell imaging and photothermal therapy in the near-infrared region by using gold

nanorods. Journal of the American Chemical Society, 128(6):2115–2120, 2006.

PMID: 16464114.

[42] Xiaohua Huang and Mostafa A. El-Sayed. Gold nanoparticles: Optical properties

and implementations in cancer diagnosis and photothermal therapy. Journal of

Advanced Research, 1(1):13–28, 2010.

[43] Sameh Kessentini and Dominique Barchiesi. Quantitative comparison of optimized

nanorods, nanoshells and hollow nanospheres for photothermal therapy. Biomed.

Opt. Express, 3(3):590–604, Mar 2012.

[44] Emilie Ringe, Mark R. Langille, Kwonnam Sohn, Jian Zhang, Jiaxing Huang,

Chad A. Mirkin, Richard P. Van Duyne, and Laurence D. Marks. Plasmon length: A

universal parameter to describe size effects in gold nanoparticles. The Journal of

Physical Chemistry Letters, 3(11):1479–1483, 2012. PMID: 26285624.

[45] G.W. Ford and W.H. Weber. Electromagnetic interactions of molecules with metal

surfaces. Physics Reports, 113(4):195 – 287, 1984.

116



BIBLIOGRAPHY

[46] T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann. Surface-

plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett., 80:4249–

4252, May 1998.

[47] W. L. Barnes. Fluorescence near interfaces: The role of photonic mode density.

Journal of Modern Optics, 45(4):661–699, 1998.

[48] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz. Shape effects

in plasmon resonance of individual colloidal silver nanoparticles. The Journal of

Chemical Physics, 116(15):6755–6759, 2002.

[49] Stefan A. Maier and Harry A. Atwater. Plasmonics: Localization and guiding of

electromagnetic energy in metal/dielectric structures. Journal of Applied Physics,

98(1), 2005.

[50] P. Mhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl. Resonant

optical antennas. Science, 308(5728):1607–1609, 2005.

[51] A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hem-

mer, H. Park, and M. D. Lukin. Generation of single optical plasmons in metallic

nanowires coupled to quantum dots. Nature, 450(7168):402–406, November 2007.

[52] S. Maier. Plasmonics: Fundamentals and Applications. Springer Verlag, 2007.

[53] Lukas Novotny and Niek van Hulst. Antennas for light. Nat Photon, 5(2):83–90,

February 2011.

[54] Shuming Nie and Steven R. Emory. Probing single molecules and single nanoparti-

cles by surface-enhanced raman scattering. Science, 275(5303):1102–1106, 1997.

[55] Jon P. Camden, Jon A. Dieringer, Yingmin Wang, David J. Masiello, Lawrence D.

Marks, George C. Schatz, and Richard P. Van Duyne. Probing the structure of

single-molecule surface-enhanced raman scattering hot spots. Journal of the Amer-

ican Chemical Society, 130(38):12616–12617, 2008. PMID: 18761451.

[56] Eric C. Le Ru and Pablo G. Etchegoin. Preface. In Eric C. Le Ru and Pablo G.

Etchegoin, editors, Principles of Surface-Enhanced Raman Spectroscopy, pages

xvii – xix. Elsevier, Amsterdam, 2009.

[57] Anika Kinkhabwala, Zongfu Yu, Shanhui Fan, Yuri Avlasevich, Klaus Mullen, and

MoernerW. E. Large single-molecule fluorescence enhancements produced by a

bowtie nanoantenna. Nat Photon, 3(11):654–657, November 2009.

117



BIBLIOGRAPHY

[58] Jon A. Schuller, Edward S. Barnard, Wenshan Cai, Young Chul Jun, Justin S. White,

and Mark L. Brongersma. Plasmonics for extreme light concentration and manipu-

lation. Nat Mater, 9(3):193–204, March 2010.

[59] Niels Verellen, Pol Van Dorpe, Chengjun Huang, Kristof Lodewijks, Guy A. E. Van-

denbosch, Liesbet Lagae, and Victor V. Moshchalkov. Plasmon line shaping us-

ing nanocrosses for high sensitivity localized surface plasmon resonance sensing.

Nano Letters, 11(2):391–397, 2011. PMID: 21265553.

[60] K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate. Optical antennas:

Resonators for local field enhancement. Journal of Applied Physics, 94(7):4632–

4642, 2003.

[61] David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, , and

W. E. Moerner*. Gap-dependent optical coupling of single bowtie nanoantennas

resonant in the visible. Nano Letters, 4(5):957–961, 2004.

[62] J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht. Single quantum dot coupled

to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett., 95:017402,

Jun 2005.

[63] P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner.

Improving the mismatch between light and nanoscale objects with gold bowtie

nanoantennas. Phys. Rev. Lett., 94:017402, Jan 2005.

[64] Gaëtan Lévêque and Olivier J.F. Martin. Tunable composite nanoparticle for plas-

monics. Opt. Lett., 31(18):2750–2752, Sep 2006.

[65] K. H. Su, Q. H. Wei, and X. Zhang. Tunable and augmented plasmon resonances

of ausio2au nanodisks. Applied Physics Letters, 88(6), 2006.

[66] Ertugrul Cubukcu, Eric A. Kort, Kenneth B. Crozier, and Federico Capasso. Plas-

monic laser antenna. Applied Physics Letters, 89(9), 2006.

[67] Jingjing Li, Alessandro Salandrino, and Nader Engheta. Shaping light beams in

the nanometer scale: A yagi-uda nanoantenna in the optical domain. Phys. Rev. B,

76:245403, Dec 2007.

[68] O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas. Optical scat-

tering resonances of single and coupled dimer plasmonic nanoantennas. Opt. Ex-

press, 15(26):17736–17746, Dec 2007.

118



BIBLIOGRAPHY

[69] Reuben M. Bakker, Alexandra Boltasseva, Zhengtong Liu, Rasmus H. Pedersen,

Samuel Gresillon, Alexander V. Kildishev, Vladimir P. Drachev, and Vladimir M. Sha-

laev. Near-field excitation of nanoantenna resonance. Opt. Express, 15(21):13682–

13688, Oct 2007.

[70] Holger Fischer and Olivier J. F. Martin. Engineering the optical response of plas-

monic nanoantennas. Opt. Express, 16(12):9144–9154, Jun 2008.

[71] Andrea Alu and Nader Engheta. Tuning the scattering response of optical nanoan-

tennas with nanocircuit loads. Nat Photon, 2(5):307–310, May 2008.

[72] MerleinJorg, Matthias Kahl, Annika Zuschlag, Alexander Sell, Andreas Halm, Jo-

hannes Boneberg, Paul Leiderer, Alfred Leitenstorfer, and Rudolf Bratschitsch.

Nanomechanical control of an optical antenna. Nat Photon, 2(4):230–233, April

2008.

[73] SchnellM., Garcia-EtxarriA., HuberA. J., CrozierK., AizpuruaJ., and HillenbrandR.

Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Pho-

ton, 3(5):287–291, May 2009.

[74] Petru Ghenuche, Sudhir Cherukulappurath, Tim H. Taminiau, Niek F. van Hulst, and

Romain Quidant. Spectroscopic mode mapping of resonant plasmon nanoanten-

nas. Phys. Rev. Lett., 101:116805, Sep 2008.

[75] Robert D. Grober, Robert J. Schoelkopf, and Daniel E. Prober. Optical an-

tenna: Towards a unity efficiency near-field optical probe. Applied Physics Letters,

70(11):1354–1356, 1997.

[76] Arvind Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and

W. E. Moerner. Field enhancement and gap-dependent resonance in a system of

two opposing tip-to-tip au nanotriangles. Phys. Rev. B, 72:165409, Oct 2005.

[77] Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck.

Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter.

Nano Letters, 9(12):4505–4509, 2009. PMID: 19899744.

[78] I. A. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. W. Burr, and F. I. Baida.

Bowtie-shaped nanoaperture: a modal study. Opt. Lett., 35(14):2448–2450, Jul

2010.

[79] Kaspar D. Ko, Anil Kumar, Kin Hung Fung, Raghu Ambekar, Gang Logan Liu,

Nicholas X. Fang, and Jr. Kimani C. Toussaint. Nonlinear optical response from

arrays of au bowtie nanoantennas. Nano Letters, 11(1):61–65, 2011. PMID:

21105719.

119



BIBLIOGRAPHY

[80] W. Zhong, Y. Wang, R. He, and X. Zhou. Investigation of plasmonics resonance

infrared bowtie metal antenna. Applied Physics B, 105(2):231–237, 2011.

[81] David A. Rosen and Andrea R. Tao. Modeling the optical properties of bowtie

antenna generated by self-assembled ag triangular nanoprisms. ACS Applied Ma-

terials & Interfaces, 6(6):4134–4142, 2014. PMID: 24533909.

[82] E. Hutter and J. H. Fendler. Exploitation of localized surface plasmon resonance.

Advanced Materials, 16(19):1685–1706, 2004.

[83] Surbhi Lal, Stephan Link, and Naomi J. Halas. Nano-optics from sensing to waveg-

uiding. Nat Photon, 1(11):641–648, November 2007.

[84] Eric F. Y. Kou and Theodor Tamir. Incidence angles for optimized atr excitation of

surface plasmons. Appl. Opt., 27(19):4098–4103, Oct 1988.

[85] P. B. Johnson and R. W. Christy. Optical constants of the noble metals. Phys. Rev.

B, 6:4370–4379, Dec 1972.

[86] K. Yee. Numerical solution in initialy boundary value problems involving Maxwell’s

equations in isotropic media. IEEE Trans. Antennas Propag., 14:302–307, 1966.

[87] D.M. Sullivan. Electromagnetic Simulation Using the FDTD Method. Wiley, IEEE

Press, New York, 2000.

[88] V. Demir A. Elsherbeni. The Finite Difference Time Domain Method for Electromag-

netics: With MATLAB Simulations. SciTech, Rayleigh, NC, 2009.

[89] T. Su Y. Liu X. Yang W. Yu, R. Mittra. Parallel Finite-Difference Time-Domain

Method. Artech House, Norwood, MA, 2006.

[90] F.I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir. Origin of the

super-enhanced light transmission through a 2-d metallic annular aperture array: a

study of photonic bands. Applied Physics B, 79(1):1–8, 2004.

[91] F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir. Origin of the

super-enhanced light transmission through a 2-d metallic annular aperture array: a

study of photonic bands. Appl. Phys. B, 79:1–8, 2004.

[92] F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke. Enhanced-transmission

metamaterials as anisotropic plates. Phys. Rev. B, 84:035107, Jul 2011.

[93] F. I. Baida, A. Belkhir, O. Arar, E. Barakat, J. Dahdah, C. Chemrouk, D. Van Labeke,

C. Diebold, N. Perry, and M.-P. Bernal. Enhanced optical transmission by light

coaxing: Mechanism of the {TEM}-mode excitation. Micron, 41:742–745, 2010.

120



BIBLIOGRAPHY

[94] F.I. Baida, D. Van Labeke, and Y. Pagani. Body-of-revolution {FDTD} simulations

of improved tip performance for scanning near-field optical microscopes. Optics

Communications, 225(46):241 – 252, 2003.

[95] R. Courant, K. Friedrich, and H. Lewy. On the partial differential equation of math-

ematical physics. 1967.

[96] J. G. CHARNEY, R. FJORTOFT, and J. von NEUMANN. Numerical integration of

the barotropic vorticity equation. Aquarterly Journal of Geophysics, 2, 1950.

[97] Jean-Pierre Berenger. A perfectly matched layer for the absorption of electromag-

netic waves. Journal of Computational Physics, 114(2):185–200, 1994.

[98] Matthew C. Beard and Charles A. Schmuttenmaer. Using the finite-difference time-

domain pulse propagation method to simulate time-resolved thz experiments. The

Journal of Chemical Physics, 114(7):2903–2909, 2001.

[99] F I Baida and A Blekhir. Split field-fdtd method for oblique incidence study of peri-

odic dispersive metallic structures. Optics letter, 34:2453–2455, 2009.

[100] F. L. Teixeira, Weng Cho Chew, M. Straka, M. L. Oristaglio, and T. Wang. Finite-

difference time-domain simulation of ground penetrating radar on dispersive, inho-

mogeneous, and conductive soils. IEEE Transactions on Geoscience and Remote

Sensing, 36(6):1928–1937, Nov 1998.

[101] Stephen K. Gray and Teobald Kupka. Propagation of light in metallic nanowire

arrays: Finite-difference time-domain studies of silver cylinders. Phys. Rev. B,

68:045415, Jul 2003.

[102] Alexandre Vial, Anne-Sophie Grimault, Demetrio Macías, Dominique Barchiesi,

and Marc Lamy de la Chapelle. Improved analytical fit of gold dispersion: Ap-

plication to the modeling of extinction spectra with a finite-difference time-domain

method. Phys. Rev. B, 71:085416, Feb 2005.

[103] Alexandre Vial and Thierry Laroche. Description of dispersion properties of metals

by means of the critical points model and application to the study of resonant struc-

tures using the fdtd method. Journal of Physics D: Applied Physics, 40(22):7152,

2007.

[104] M Hamidi, F I Baida, A Belkhir, and O Lamrous. Implementation of the critical

points model in a sfm-fdtd code working in oblique incidence. Journal of Physics D:

Applied Physics, 44(24):245101, 2011.

[105] C. Kittel. Physcs of solid state. Dunod, 2002.

121



BIBLIOGRAPHY

[106] P. Drude. To the electron theory of metals. Annals of Physics, 306:566–613, 1900.

[107] Alexandre Vial. Implementation of the critical points model in the recursive convo-

lution method for modelling dispersive media with the finite-difference time domain

method. Journal of Optics A: Pure and Applied Optics, 9(7):745, 2007.

[108] E.D. Palik. Handbook of optical constants of solids. Academic Press, 1985.

[109] E.D. Palik. Handbook of optical constants of solids III. Academic Press, 2009.

[110] D.E. Merewether, R. Fisher, and F.W. Smith. On implementing a numeric huygen’s

source scheme in a finite difference program to illuminate scattering bodies. Nu-

clear Science, IEEE Transactions on, 27(6):1829–1833, Dec 1980.

[111] Robert Lee Le Wei Li Neelakantam V. Venkatarayalu, Yeow Beng Gan. Applica-

tion of hybrid fetd-fdtd method in the modeling and analysis of antennas. IEEE

Transactions on Antennas and Propagation, 56:3068Ű3072, 2008.
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A

A.1/ DISSIPATION OF ENERGY

The Poynting vector is defined as:

P⃗ = E⃗ ∧ H⃗ (A.1)

where E⃗ and H⃗ are the electric and magnetic field vectors respectively. The energy flux

going outside an enclosed volume (V) delimited by a surface (S):

Φ =

∫ ∫
S

P⃗ · ds⃗ (A.2)

where
∫ ∫

S is a surface integral over the surface S and ds⃗ denotes the differential vector

element of surface area S , normal to surface. The time-average energy collected by a

conventional detector (having integration time larger than the light period) is given by:

⟨Φ⟩ = 1
τ

∫ τ

0

(∫ ∫
S

P⃗ · ds⃗
)

dτ (A.3)

therefore the relation energy loss Λ is defined as:

Λ = −⟨Φ⟩ (A.4)

By using of Ostrogradsky theorem, one can write Λ as:

Λ = −1/τ
∫ ∫ ∫

div(P⃗)dV (A.5)

Since the energy is real, we must consider real notations for all the electromagnetic
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fields. Keeping the complex values of these fields, on can express their real part as:

E⃗ =
1
2

(E⃗e−iωt + E⃗∗eiωt), (A.6)

D⃗ =
1
2

(D⃗e−iωt + D⃗∗eiωt), (A.7)

H⃗ =
1
2

(H⃗e−iωt + H⃗∗eiωt), (A.8)

B⃗ =
1
2

(B⃗e−iωt + B⃗∗eiωt), (A.9)

To evaluate the energy loss Λ, we will use the Poynting theorem (conservation of energy

for EM field) that is given by:

− ∇ · P⃗ = J⃗ · E⃗ + E⃗ · ∂D⃗
∂t
+ H⃗

∂B⃗
∂t

(A.10)

where ∇ · P⃗ is the divergence of the Poynting vector and J is the free current density

corresponding to the motion of charges, therefore, the time derivative of the D⃗ and E⃗

writes from Eq. A.7 as:
∂D⃗
∂t
=

1
2

(−iωD⃗e−iωt + iωD⃗∗eiωt) (A.11)

By using the constitutive relation D⃗ = εE⃗ one gets:

∂D⃗
∂t
=

1
2

(−iωεE⃗e−iωt + iωε∗E⃗∗eiωt) (A.12)

After multiplying Eq. A.12 by Eq. A.6, one obtaines:

E⃗ · ∂D⃗
∂t
=

1
4

[
−iωεE⃗ · E⃗e−2iωt + iωε∗E⃗∗ · E⃗∗e2iωt) + iωε∗E⃗ · E⃗∗ − iωεE⃗ · E⃗∗

]
(A.13)

Now, due to the time-averaging in eq. A.13, the terms E⃗ · E⃗ and E⃗∗ · E⃗∗ will not

contribute to the energy value due to the fact they still oscillate in time (because these

terms still oscillate in time as e∓2iωt. Only the E⃗ · E⃗∗ and E⃗∗ · E⃗ terms (two last terms of Eq.

A.13) are involved through:

1
τ

∫ τ

0
(E⃗ · ∂D⃗

∂t
) dτ =

1
4

iω(ε∗ − ε)E⃗ · E⃗∗ (A.14)

By the same way, one obtains:

1
τ

∫ τ

0
(H⃗ · ∂B⃗

∂t
) dτ =

1
4

iω(µ∗ − µ)E⃗ · E⃗∗ (A.15)
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In addition, the conductivity σ of metals is assumed to be real, and links the J vector to

the electric field through the relation: J = σE, then:

Λ = −⟨Φ⟩ = −1
τ

∫ τ

0
dτ

[∫ ∫ ∫
v
∇P⃗ · dV

]
(A.16)

=

∫ ∫ ∫
v

dV
[
1
2
σ |E⃗|2 + 1

2
ωεoε”′ |E⃗|2 + 1

2
ωµoµ́́ |H⃗|2

]
(A.17)

the first, second and third term represent the called Joule effect, dielectric loss and mag-

netic loss respectively, with (ε∗ − ε) = 2iέ́. If we put εr e f f = εr − σ
iεoω

, we can fund the two

terms (Joule effect and dielectric loss) as:

Λ =

∫ ∫ ∫
v

dV
[
1
2
ωεoε ´́r e f f |E⃗|2 +

1
2
ωµoµ́́ |H⃗|2

]
(A.18)

in the visible range µ = µo whatever the medium, therefore, there is no magnetic loss:

Λ =
1
2

∫ ∫ ∫
v

[
ωεoε ´́r e f f |E⃗|2 dV

]
(A.19)
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B

B.1/

We consider a periodic structure composed of lossless materials which presents only

one propagating diffraction order (the zero order). From the study of the scattering matrix

of the structure, we will derive some properties of its transmittivity. This appendix is

an extension of the works published in [155] and [154], and similar properties could be

derived for the reflectivity.

In the following, we will first show that the eigenvalues of the transmittivity matrix

for the energy, denoted T ∗1T1 hereafter, are the limits of the variation of the transmittivity

when the incident polarization takes all possible states, and that they are obtained for

orthogonal polarizations (given by the eigenvectors). Thus, these eigenvalues are the

key variables to understand the behavior of a sub-wavelength grating with respect to

the incident polarization. This is true especially in the case where the eigenvectors are

not simply the TE and TM vectors, which occurs in conical incidence or when particular

eigenmodes are excited.

Second, using only the reciprocity theorem and the energy balance, and with no

hypothesis on the symmetry of the structure, we will show that the eigenvalues of T ∗1T1 are

unchanged when the angle of incidence is changed in its opposite, hence generalizing a

property that is well know for gratings illuminated in classical incidence (plane of incidence

perpendicular to the grating grooves). This is a new result that was not published in [154].

Third, we consider structures having a central symmetry (examples are shown in

Figs. 4.6 and B.1). This kind of symmetry was discussed in [155] which focused on

gratings illuminated under classical incidence (plane of incidence containing a direction

of periodicity) for which there is no polarization conversion, but it was not discussed in
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[154]. We show that when one mode is excited, one eigenvalue of T ∗1T1 reaches 100% at

resonance. This means that the transmittivity is equal to 100% at the resonance wave-

length when the incident polarization corresponds to that of the eigenvector associated

with this eigenvalue, while the transmittivity is equal to the transmittivity of the structure

out of resonance for the orthogonal polarization.
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Figure B.1: General scheme of a structure exhibiting a central symmetry in (a) and the
reciprocal configuration in (b).

B.1.1/ FROM THE SCATTERING MATRIX TO THE TRANSMITTIVITY

We start from the scattering matrix S (κ, λ) relating the incoming field (from the substrate

and the superstrate), with wavelength λ and wave-vector with in-plane component κ (lying

in the xy-plane in Fig. B.1), to the field diffracted by the structure in the zero order of

diffraction. The reader can refer to [154] (sections 2 and 3) for a full definition of the

scattering matrix and of the TE and TM vectors associated to each incident and diffracted

field (in the superstrate and the substrate). This 4 × 4 matrix is composed with 4 blocks:

S (κ, λ) =

 R1(κ, λ) T2(κ, λ)

T1(κ, λ) R2(κ, λ)

 . (A1)

The reflection and transmission matrices R j and T j, where the subscript j = 1 (resp.

j = 2) is used when the incident field comes from the superstrate (resp. substrate), are

2 × 2 matrix. They contain the reflection and transmission conversion coefficients of a TE

or TM polarized field to a TE or TM polarized field. For example, T1 writes as
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T1 =

 tss
1 tsp

1

tps
1 tpp

1

 . (A2)

From the definition of the scattering matrix it follows that the energy τ transmitted in

the substrate when the incident field comes from the superstrate only can be written as:

τ = l
T ∗1 T1
a

∣∣∣∣∣⟨I1|V
T ∗1 T1
a

⟩∣∣∣∣∣2 + l
T ∗1 T1

b

∣∣∣∣∣⟨I1|V
T ∗1 T1

b

⟩∣∣∣∣∣2 , (A3)

where l
T ∗1 T1
a and l

T ∗1 T1

b , are the eigenvalues and V
T ∗1 T1
a and V

T ∗1 T1

b the eigenvectors of

the matrix T ∗1T1, and I1 is a two-elements vector containing the TE and TM components

of the amplitude of the incident field vector.

It is important to note that T ∗1T1 is a hermitian matrix, thus its eigenvectors are orthog-

onal (in the sense of hermitian scalar product) to each other and its eigenvalues are real

and positive. Hence, from Eq. A3, it follows that l
T ∗1 T1
a and l

T ∗1 T1

b are the limits of the vari-

ation of the transmittivity when the incident field takes all possible states of polarization

(even non linear). These limits are obtained for two orthogonal polarizations. Moreover,

for any two incident orthogonal polarizations, the sum of the transmittivity is equal to the

sum of the eigenvalues.

B.1.2/ PROPERTIES OF THE SCATTERING MATRIX

Several properties of the scattering matrix can be deduced from the energy balance and

the reciprocity theorem. Again, the demonstration is given in [154] (section 3 and 5),

and only the results will be reported here. Note that in the following, we will need to

consider the scattering matrix for complex wavelengths. Hence, we use an expression of

the energy balance suitable for a complex variable λ with complex conjugate λ:

R1
∗(κ, λ)R1(κ, λ) + T1

∗(κ, λ)T1(κ, λ) = 1 (A4)

R2
∗(κ, λ)R2(κ, λ) + T2

∗(κ, λ)T2(κ, λ) = 1 (A5)

R1
∗(κ, λ)T2(κ, λ) + T1

∗(κ, λ)R2(κ, λ) = 0 (A6)

T2
∗(κ, λ)R1(κ, λ) + R2

∗(κ, λ)T1(κ, λ) = 0 (A7)

where 1 stands for the unit diagonal matrix of size 2x2.
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The reciprocity theorem entails that S (−κ, λ) = t(S (κ, λ)) (where t(S ) is the transpose

of S ) which can be written as:

R1(−κ, λ) = t(R1(κ, λ)) (A8)

R2(−κ, λ) = t(R2(κ, λ)) (A9)

T2(−κ, λ) = t(T1(κ, λ)). (A10)

Now, we shall demonstrate a property related to the symmetry of the structure with

respect to a symmetry center C. We consider two configurations, as depicted in Fig. B.1.

In the first configuration Fig. B.1(a) I1(κ, λ) and I2(κ, λ) are two elements vectors con-

taining the amplitudes, in TE and TM polarizations, of the incident field coming from the

superstrate and the substrate respectively, and D1(κ, λ), D2(κ, λ) stand for the diffracted

field. In the second configuration Fig. B.1(b), the structure is illuminated with I′1(−κ, λ)

and I′2(−κ, λ) in such a way that I′2(−κ, λ) is the symmetric of I1(κ, λ) with respect to the

center of symmetry C, and I′1(−κ, λ)) is the symmetric of I2(κ, λ):

I′1(−κ, λ) = I2(κ, λ)

I′2(−κ, λ) = I1(κ, λ).
(A11)

Because the structure is symmetric with respect to C, the two configurations are

physically equivalent, and we can say that the same equality is verified for the diffracted

field:

D′1(−κ, λ) = D2(κ, λ)

D′2(−κ, λ) = D1(κ, λ).
(A12)

From the definition of the scattering matrix, we write:

 D′1(−κ, λ)

D′2(−κ, λ)

 =
 R1(−κ, λ) T2(−κ, λ)

T1(−κ, λ) R2(−κ, λ)


 I′1(−κ, λ)

I′2(−κ, λ)

 , (A13)

and, on the other hand: D1(κ, λ)

D2(κ, λ)

 =
 R1(κ, λ) T2(κ, λ)

T1(κ, λ) R2(κ, λ)


 I1(κ, λ)

I2(κ, λ)

 . (A14)
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From Eqs. A13 and A14 using Eqs. A11 and A12, we deduce that

R1(−κ, λ) = R2(κ, λ)

T1(−κ, λ) = T2(κ, λ).
(A15)

Finally, using the reciprocity theorem Eqs. A8, A9 and A10, it follows that

R1(κ, λ) = t(R2(κ, λ))

T1(κ, λ) = t(T1(κ, λ))

T2(κ, λ) = t(T2(κ, λ)).

(A16)

B.1.3/ PROPERTIES OF THE EIGENVALUES

Let us now consider the energy transfer transmission and reflection matrices T j
∗T j and

R j
∗R j, with j = 1 or 2. We shall demonstrate that their egienvalues are unchanged when

the polar angle is changed in its opposite. The two eigenvalues for each of the matrices

are denoted as l
T ∗j T j

k and l
R∗jR j

k (with k = a or b), and V
T ∗j T j

k and V
R∗jR j

k stand for the associated

eigenvectors.

The first property comes from the energy balance. Multiplying Eq.A4 (resp. Eq.A5) ,

with V
T ∗1 T1

k (resp. V
T ∗2 T2

k ), it is easy to show that

l
R∗1R1

k = 1 − l
T ∗1 T1

k , and V
R∗1R1

k = V
T ∗1 T1

k ,

(resp. l
R∗2R2

k = 1 − l
T ∗2 T2

k , and V
R∗2R2

k = V
T ∗2 T2

k ).
(A17)

The second property comes from the reciprocity theorem. Considering a

given real κ, and from the definition of the eigenvalue of T1
∗(κ, λ)T1(κ, λ), we have

T1
∗(κ, λ)T1(κ, λ)V

T ∗1 T1

k (κ, λ) = l
T ∗1 T1

k (κ, λ)V
T ∗1 T1

k (κ, λ). Using the relation between T1(κ, λ) and

T2(−κ, λ) coming from the reciprocity theorem (Eq. A8), we obtain

T2(−κ, λ)t(T2(−κ, λ))V
T ∗1 T1

k (κ, λ)

= l
T ∗1 T1

k (κ, λ)V
T ∗1 T1

k (κ, λ).
(A18)

Taking the complex conjugate and multiplying the two sides of Eq. A18 with
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T2
∗(−κ, λ), we obtain that

T2
∗(−κ, λ)T2(−κ, λ)[T2

∗(−κ, λ)V
T ∗1 T1

k (κ, λ)]

= l
T ∗1 T1

k (κ, λ)[T2
∗(−κ, λ)V

T ∗1 T1

k (κ, λ).
(A19)

This means that

l
T ∗2 T2

k (−κ, λ) = l
T ∗1 T1

k (κ, λ) and V
T ∗2 T2

k (−κ, λ)

= T2
∗(−κ, λ)V

T ∗1 T1

k (κ, λ).
(A20)

A similar demonstration using the definition of the eigenvalues of R j
∗(κ, λ)R j(κ, λ) (for j = 1

or 2) and the Eqs. A9 and A10 leads to

l
R∗jR j

k (−κ, λ) = l
R∗jR j

k (κ, λ) and V
R∗jR j

k (−κ, λ)

= R j
∗(−κ, λ)V

R∗jR j

k (κ, λ),
(A21)

for k = a and b (the two eigenvalues), and j = 1 or 2 (the two reflectivity matrices).

Finally, applying both the energy balance and the reciprocity theorem, we obtain the

following relation for the eigenvalues (k = a or b):

l
T ∗1 T1

k (κ, λ) = l
T ∗2 T2

k (κ, λ) = l
T ∗1 T1

k (−κ, λ) = l
T ∗2 T2

k (−κ, λ), (A22)

l
R∗1R1

k (κ, λ) = l
R∗2R2

k (κ, λ) = l
R∗1R1

k (−κ, λ) = l
R∗2R2

k (−κ, λ). (A23)

In other words, the energy balance and the reciprocity theorem entail that the two

reflectivity (resp. transmittivity) matrices for the energy have the same eigenvalues, and

that these eigenvalues are symmetrical with respect to the polar angle of incidence. This

last property is the vectorial analog of the property which is well known for 1D blazed

gratings illuminated in classical incidence (plane of incidence perpendicular to the grating

grooves). Note that the eigenvectors of the reflectivity (resp. transmittivity) matrices for

the energy do change when the polar angle is changed in its opposite, which means that

in case of polarization conversion, the reflected and transmitted energy are not symmetric

with respect to the polar angle of incidence for any state of polarization.
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B.1.4/ RESONANT BEHAVIOR OF THE EIGENVALUES

In this paragraph, we shall demonstrate that one eigenvalue of the energy transmittivity

matrix T1
∗T1 reaches 100% if the structure has a central symmetry. From now, we con-

sider a configuration for a given real κ where only one eigenmode of the structure can

be excited. This means that the equation det(S −1(κ, λ)) = 0 has one complex solution

λ = λp(κ) where λp(κ) stands for the dispersion relation of the eigenmode. We introduce

the eigenvalues lR1
a (κ, λ) and lR1

b (κ, λ) and eigenvectors VR1
a (κ, λ) and VR1

b (κ, λ) of the matrix

R1. We suppose that only one of the two eigenvalues of R1 shows a resonant behavior,

the other remaining a slowly varying function. We have checked numerically the validity

of this hypothesis for the configuration under study. Following the arguments given in ref

[154] (end of section 4), for λ in the vicinity of λp(κ) we write the resonant eigenvalue, say

lR1
a , as

lR1
a (κ, λ) = u(κ, λ)

λ − λR1
z (κ)

λ − λp(κ)
, (A24)

where u(κ, λ) is a function with neither roots nor poles, and λR1
z (κ) a complex number. The

unicity of the root of lR1
a (κ, λ), which is due to the fact that only one mode is excited, is an

important property that will be used at the end of the proof.

When λ = λR1
z (κ), we obtain that R1(κ, λR1

z )VR1
a (κ, λR1

z ) = 0. Introducing this in Eq. A4,

where the two sides have been multiplied with VR1
a (κ, λR1

z ), we obtain

T1
∗(κ, λR1

z )T1(κ, λR1
z )VR1

a (κ, λR1
z ) = VR1

a (κ, λR1
z ) (A25)

which is nothing but the eigenvector equation for T1
∗T1. This means that for λ = λR1

z (κ),

one eigenvalue of T1
∗T1, say l

T ∗1 T1
a (κ, λR1

z ) is equal to unity. Its eigenvector is V
T ∗1 T1
a (κ, λR1

z ) =

VR1
a (κ, λR1

z ). In other words, and not surprisingly, for λ = λR1
z (κ), the maximum of transmit-

tivity is obtained when the incident configuration leads to a zero reflected field.

We shall now prove that the symmetry of the structure with respect to a symmetry

center entails the fact that λR1
z (κ) is real, meaning that the transmittivity can reach 100%

for a real wavelength value. Multiplying the two sides of Eq. A7 with VR1
a (κ, λR1

z ) and taking

λ = λR1
z (κ) leads to

R2
∗(κ, λR1

z )T1(κ, λR1
z )Va(κ, λR1

z ) = 0. (A26)

Using Eq. A16, we obtain

R1(κ, λR1
z )T1(κ, λR1

z )Va(κ, λR1
z ) = 0. (A27)

As T1(κ, λR1
z )Va(κ, λR1

z ) can not be null (otherwise from Eq. A25, Va(κ, λR1
z ) would be null),
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we deduce that T1(κ, λR1
z )Va(κ, λR1

z ) is the eigenvector of R1 associated with an eigenvalue

which is null for λ = λR1
z . As lR1

a (κ, λ) has only one root and lR1
b (κ, λ) has no root, we

conclude that λR1
z (κ) is real. Hence, we have shown that there exists one real wavelength

for which one eigenvalue of the matrix T1
∗T1 is equal to 100%.
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Abstract :

The release of the rst report by Faraday in 1857 set the foundation of the production of metal nanoparticles
and their unexpected optical properties (coloring). More recently, controlling and guiding light via plasmonic
resonance in nanostructures enable a lot of applications affecting everyday life that involves light. Plasmon
resonance of metallic structures is a key phenomenon that allows unique optical properties through the inter-
action of light with the free electrons of the metal. The excitation of Localized Surface Plasmon Resonance
(LSPR) leads to turn-on large local enhancements of electromagnetic energy as within antennas or to route
light as waveguide to desired region with high transmission through the excitation of Propagating Surface
Plasmon (PSP). During this thesis, we have developed an existing algorithm in order to calculate the optical
response of NPs of any shape. We have especially determined the localized energy enhancement factor in
term of optical response of nano-antenna. This anisotropic (polarization dependent) NPs type can feature, at
plasmon resonance, scattering efciency factor higher than 25. Moreover, an important systematic study has
been performed in order to optimize design of such NPs.
Concerning the PSP that are involved in the enhanced transmission through Annular Aperture Arrays (AAAs),
we systematically study the properties of the excitation of the peculiar Transverse ElectroMagnetic (TEM) gui-
ded mode inside such nano-apertures. A complete numerical study is performed to correctly design the struc-
ture before it is experimentally characterized. For reasons associated to fabrication constraints and efciency,
a slanted AAA made in perfectly conducting metal is proposed and studied. We numerically and analytically
demonstrate some intrinsic properties of the structure showing a transmission coefcient of at least 50%of
an un-polarized incident beam independently of the illumination configuration (polarization, angle, and plane
of incidence). At the TEM peak transmission, the laminar flow of the energy through the structure can exhibit
giant deviation over very small distances ( ). The results presented in this thesis could be considered as an
important contribution to the understanding of the enhanced transmission phenomenon based on the excitation
of guided modes.

Keywords: Localized surface plasmon, Optical nanoantenna, Propagating surface plasmons, Waveguides,
Enhanced transmission, Metamaterials.

< l

Résumé :

L ’intérêt des nano-particules pour le domain de l ’optique  visible a été suscité lors du premier rapport  rédigé
par Faraday en 1857 et qui a initié les bases de la production de nanoparticules métalliques en vue de leur  p- 
ropriété optiques inattendues (coloration des solutions).  Plus récemment, le contrôle et le guidage de la lumi-
ère basés  sur  l’excitation de résonance plasmon dans  les nanostructures a permis beaucoup  d’applications
liées à la  vie  quotidienne et  impliquant la lumière.   La résonance plasmonique de structures métalliques est  
un phénomène essentiel qui conduit à des propriétés optiques uniques à travers l’interaction de la lumière av-    
ec les électrons libres du métal. L’excitation de la résonance plasmon localisé (LSPR) permet d’exalter locale-    
ment l’énergie électromagnétique comme  dans  le cas des nano-antennes mais aussi d’acheminer la lumière 
à travers des canaux de dimensions  sub-l sur de grandes distances distances grâce à l’excitation du Plasm- 
on de Surface Propagatif (PSP). Au cours de cette thèse, nous avons étendu un algorithme existant afin de c-
alculer la réponse optique (sections efficaces de diffusion et d’absorption) de NPs ayant une forme géométrie 
quelconque.  Ce type de NP anisotrope  (vis-à-vis de la polarisation incidente)  peut présenter à la résonance   
plasmonique une section efficace de diffusion 25 fois supérieure à celle géométrique. De plus, une étude sy-
stématique importante a été effectuée afin d’optimiser la géométrie de tels Nps. 
En ce qui concerne la  PSP  qui est impliqué dans la transmission  exaltée à travers les matrices d’ouvertures
annulaires AAA, nous avons entrepris une étude systématique des propriétés de l’excitation du mode particul-
particulier sans coupure de ces nano - guides.  Il s’agit du mode Transverse Electrique et Magnétique (TEM). 
Une étude numérique  complète est  alors effectuée pour correctement concevoir la structure avant qu’elle ne 
soit expérimentalement fabriquée et caractérisée. Pour palier certaines contraintes expérimentale,  une struct-
ure inclinée est proposée et étudiée dans le cas d’un métal parfaitement conducteur.  Nous avons démontrée 
numériquement et  analytiquement certaines propriétés intrinsèques de la structure montrant un coefficient de
d’au moins 50% d’un faisceau incident non polarisé indépendamment des conditions d’éclairage (polarisation,
angle et plan d’incidence). Lorsque le mode TEM est excité, le flux laminaire de l’énergie à travers la structure
présente une déviation géante sur de très petites distances inférieures à la longueur d’onde.  Les résultats pr-
ésentés dans cette thèse pourraient  être considérés  comme une contribution importante à la compréhension 
du phénomène de transmission exaltée basé sur l’excitation de ce type de mode guidé.

Mots-clés : Plasmon de surface localisée, Nanoantenne optique, Plasmon de surface localisés, Guides
d’onde, Transmission exaltée, Métamatériaux.
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