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RESUME

Les réseaux sont présents dans plusieurs contextes et applications: biolo-
gie, transports, réseaux sociaux en ligne, etc. De nombreuses applications
récentes traitent d’immenses volumes de données personnelles. Les liens en-
tre les personnes dans ces données peuvent traduire des liens d’amitiés, des
échanges de messages, ou des intéréts communs. Les entités impliquées dans
les réseaux, et spécialement les personnes, ont tendance a former des com-
munautés. Dans ce contexte, une communauté peut étre définie comme un
ensemble d’entités qui interagissent beaucoup plus entre elles qu’avec le reste
du réseau.

La détection de communautés dans les grands réseaux a largement été
étudiée pendant ces derniéres années, suite aux travaux précurseurs de New-
man qui a introduit le critére de modularité. Toutefois, la majorité des
algorithmes de détection de communautés supposent que le réseau est com-
plétement connu et qu’il n’évolue pas avec le temps.

Dans cette thése, nous commencons par proposer de nouvelles méthodes
pour la détection de communautés locales (en considérant uniquement le
voisinage d’un nceud donné et sans accéder a la totalité du réseau). Nos
algorithmes sont plus efficaces que ceux de I’état de ’art. Nous montrons en-
suite comment utiliser les communautés détectées pour améliorer la prévision
de comportements utilisateurs. Dans un deuxiéme temps, nous proposons des
approches pour prévoir I’évolution des communautés détectées. Ces méth-
odes sont basées sur des techniques d’apprentissage automatique. FEnfin,
nous proposons un framework général pour stocker et analyser les réseaux
distribués dans un environnement “Big Data”.

Les méthodes proposées sont validées en utilisant (entre autre) des don-
nées réelles issues d’un partenaire industriel fournissant un des réseaux en
ligne les plus utilisés en France (40 millions d’utilisateurs).

Mots-clés: Réseaux sociaux dynamiques, apprentissage automatique,
communautés locales, Big Data.






ABSTRACT

Complex networks arises in many contexts and applications: biology, trans-
ports, online social networks (OSN). Many recent applications deal with large
amount of personal data. The links between peoples may reflect friendship,
messaging, or some common interests. Entities in complex network, and
especially persons, tend to form communities. Here, a community can be
defined as a set of entities interacting more between each other than with
the rest of the network.

The topic of community detection in large networks as been extensively
studied during the last decades, following the seminal work by Newman, who
popularized the modularity criteria. However, most community detection
algorithms assume that the network is entirely known and that it does not
evolve with time. This is usually not true in real world applications.

In this thesis, we start by proposing novel methods for local community
identification (considering only the vicinity of a given node, without accessing
the whole graph). Our algorithms experimentally outperform the state-of-art
methods. We show how to use the local communities to enhance the predic-
tion of a user’s behaviour. Secondly, we propose some approaches to predict
the evolution of the detected communities based on machine learning meth-
ods. Finally we propose a framework for storing and processing distributed
social networks in a Big Data environment.

The proposed methods are validated using (among others) real world
data, provided by an industrial partner operating a major social network
platform in France (40 millions of users).

Keywords: social network analysis, machine learning, local community
detection, Big Data.
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CHAPTER 1

Introduction

“You can do anything, but not everything.”

- David Allen

of Networks [12] has changed the way of thinking about real-world networks
and has also shown that many real complex systems can be modelled as
networks. Since then, interest in social networks analysis and mining has
considerably grown. Moreover, the popularization of online social networks
like Facebook, Twitter and LinkedIn has reinforced the importance accorded
to social networks by the scientific community.

A network is a set of entities, like people or organisation, connected by
links representing relations or interactions (friendship, messages,...). Exam-
ple of such networks are online social networks (Facebook, Twitter, Skyrock,
etc.), Internet (with routers as nodes and their physical connections as links)
and the Web (with pages as nodes and hyper-links as links). An introduction
to the field of complex networks analysis can be found in [109].

One of the hottest topics in the social network analysis literature is the
community detection problem. Following the seminal work by Newman,
introducing the modularity function [106], hundred of papers have been pub-
lished on that topic. A good recent review of these methods has been pro-
posed by Fortunato [47]. The community detection problem consists in the
automatic detection of groups of related nodes, according to a defined quality
function.

Many methods for community detection exist, however they usually sup-
pose that the network is entirely available in one computer at the analysis
time. This assumption is usually false for very large, dynamic or inherently
distributed networks. Moreover, for some applications, one can be only in-
terested in the communities to which a particular node belongs to. Despite
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the fact that it is possible to first detect all the communities and then select
the ones containing the target node, the time complexity of these global com-
munity detection methods makes them infeasible for real time applications
on very large networks.

In this thesis we are interested on the communities a given node belongs
to: their detection, their usage and their evolution assuming that the network
is large, dynamic and distributed.

Other possible analysis tasks on social networks that we will explore in
this thesis (either as application, tools or for comparison purposes) are:

e node categorization: given a social network, a node can have many dif-
ferent states (active or not active; infected, not infected or recovered).
The node categorization problem consists in predicting the state of an
unlabelled node;

e link prediction: the problem here is to predict whether or not a link
that does not exist at time ¢ will be created at time t' > ¢;

e information diffusion: given a piece of information held by some users,
the problem is to study how it will spread across the network;

The remainder of this chapter is organised as follows: section 1 presents
the context of this thesis, section 2 presents its contributions and finally
section 3 draws the organisation of the rest of this dissertation.

Contents
1.1 Context . ... .. ..o 2
1.2 Contribution . . ... ... ... ... 0000, 3
1.3 Organisation . . .................0... 5

1.1 Context

Algorithms for community detection usually make the four following assump-
tions:

1. the network is entirely known: the community detection algorithm has
a global knowledge of the data composing the network;

2. each node has (at least) one community: each node will be assigned to
at least one community even if the node does not really belong to any
one;
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3. the network does not evolve with time: the dynamics of the network is
simply ignored;

4. all the data of the network are available at a unique location: it is not
possible to deal with distributed data.

These assumptions are not always true in real social networks. Moreover,
for such networks, these algorithms can produce communities with thousands
or millions of nodes and this may not be useful in practice. Our aim is to
propose solutions which do not require that the above mentioned assumptions
hold.

1.2 Contribution

The objective of this thesis is to present local community detection methods
as an alternative to global community detection which usually require the
entire knowledge of the network. In practice, having this global knowledge
of the network is not always possible. The detected communities are then
used in predicting some users’ behaviours in a real online social network. Be-
cause real networks are dynamics, we also investigate the dynamic of these
detected communities. Finally, because the data of very large social networks
are usually distributed, we propose a framework that enables the computa-
tion of local communities in particular and more generally social network
analysis in the context of distributed data. The contributions of this thesis
are summarized as follow:

e we propose new algorithms for local community detection which can
be used even if the entire structure of the network is not known. These
algorithms can also detect that a node does not belong to any commu-
nity;

e we propose a procedure to detect all the overlapping communities a
given node belongs to, using the above mentioned new local community
detection methods;

e to show that the detected local communities are meaningful, we apply
them in the prediction of users’ behaviours using machine learning;

e we propose some methods, using machine learning, to predict the evo-
lution of local communities;

e we finally propose a model to store and process social networks with
distributed data.
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This work has been valued by the following publications:
e Peer-reviewed international journals

— Blaise Ngonmang, Emmanuel Viennet, and Maurice Tchuente.
Predicting users behaviours in distributed social networks using
community analysis. Lect. Notes Social Networks. Springer,
2014.

— Blaise Ngonmang, Maurice Tchuente, and Emmanuel Viennet.
Local communities identification in social networks. Parallel Pro-
cessing Letters, 22(1), March 2012.

e Book Chapters

— Blaise Ngonmang, Vanessa Kamga, Emmanuel Viennet and Mau-
rice Tchuente. Community Analysis and Link Prediction in Dy-
namic Social networks. Computing in Research and Development
in Africa - Benefits, Trends, Challenges. Springer, 2014.

e Peer-reviewed international conferences

— Blaise Ngonmang, Emmanuel Viennet, S. Sean, Francoise Fogelman-
Soulié, and Rémi Kirche. Monetization and services on a real on-
line social network using social network analysis. In ICDM work-
shop on Data Mining Case Studies and Success Stories, December
2013.

— Blaise Ngonmang, Emmanuel Viennet, and Maurice Tchuente.
Churn prediction in a real online social network using local com-
munity analysis. In IEEE/ACM Int. Conf. on Advances in So-
cial Networks Analysis and Mining (ASONAM’12), pages 282-290,
August 2012.

— Blaise Ngonmang and Emmanuel Viennet. Toward community
dynamic through interactions prediction in complex networks. In
IEEE SITIS 2013, Complex Networks and their Applications, Ky-
oto, Japan, December 2013.

e Peer-reviewed national conferences

— Blaise Ngonmang and Emmanuel Viennet. Dynamique des com-
munautés par prévision d’interactions dans les réseaux sociaux.
In Atelier Fouille de Données Complexes de la 14e Conférence In-
ternationale Francophone sur I’Extraction et la Gestion des Con-
naissances (EGC’14), Rennes, January 2014.
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— Blaise Ngonmang and Emmanuel Viennet. Dynamique des com-
munautés par prédiction d’interactions dans les réseaux sociaux
(poster). In 14e Conférence Internationale Francophone sur I’ et
la Gestion des Connaissances (EGC’14), Rennes, January 2014.

— Blaise Ngonmang and Emmanuel Viennet. Framework d’analyse
de grands réseaux sociaux distribués. In CRI 2013, Yaoundé,
Cameroun, December 2013.

1.3 Organisation
The content of this thesis is organized as follow:

e Chapter 2- “Basic definitions and notations™. introduces helpful notions
to easily follow the remaining chapters.

e Chapter 3- “Global community detection in static network™ introduces
the problem of detecting the community structure of static networks.

e Chapter 4- “Local community identification in social networks™ presents
local methods for the identification of the community a particular node
belongs to.

e Chapter 5- “Local community applied to the prediction of users’ be-
haviours™ presents the application of local community identification to
the prediction of a users’ behaviours.

e Chapter 6- “Communities in dynamic networks™ presents an overview
of methods for detecting community in dynamics networks and our
contribution to predict local communities.

e Chapter 7: “Towards a Framework for storing and analysing distributed
networks™ introduces a general Framework to analyse social networks
with distributed data.

e Chapter 8: “Conclusions and perspectives”: draws some conclusions
and perspectives.
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CHAPTER 2

Basic definitions and notations

“The Web is more a social creation than a technical one.”

- Tim Berners-Lee

Throughout this thesis, some social networks and machine learning con-
cepts will be used. This chapter recalls the main concepts that will help to
better understand the rest of this thesis.

Contents

2.1 Basic notions on social networks . ... ... ... 7

2.2 Basic notions on supervised learning for classifi-

cation . . . . . ... e e 11

2.2.1  Problem definition . . . . . .. ... ... ... .. 11
2.2.2  Model evaluation . . . . .. ... ... 11
2.2.3 Introduction to support vector machines . . . . . . 12

23 Conclusion. . . . ... ... .. 00000 14

2.1 Basic notions on social networks

A social network can be represented by a graph G = (V| E) [109|, where V
is the set of vertices (or nodes), and E is the set of edges (or links), formed
by pairs of vertices. The two nodes v and v are the end vertices of the edge
e = (u,v). If the order of end vertices matters in an edge, then the graph is
said to be directed; otherwise, it is undirected. Figure 2.1 shows examples of
undirected (a and b) and directed (¢ and d) graphs.

The neighbourhood I'(u) of a node w is the set of nodes v such that
(u,v) € E. In figure 2.1 (a), the neighbour of the node 0 is {1,2}. The

7
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Figure 2.1: Some graph examples: an undirected and unweighed graph (a),
an undirected and unweighed graph (b), a directed and unweighed graph (c)
and a directed and unweighed graph (d).

degree of a node u is the number of its neighbours or the cardinality of T'(u),
i.e. degree(u) = |I'(u)|. The degree of node u will also be denoted by d,.
In figure 2.1 (a), dyp = 2. Given this model, all graph theoretic tools can be
reused in network analysis. We recall in the rest of this section, the main
concepts of graph theory that will be used in this thesis.

Hereafter, the number of nodes of the network will be denoted by n and
the number of edges will be denoted by m. The adjacency matrix of G is an
n x n boolean matrix A defined by a;; = 1 if there is a link from ¢ to j, and
a;; = 0 otherwise. In some applications, it is useful to model the strength of
the link between ¢ and a neighbour j. In this case a;; is a real number. Such
graphs are said to be weighted. Example of weighted graphs are presented
in figure 2.1 (b and d).

A graph algorithm is global if its time complexity scales at least with the
number of node (O(n)). A global graph algorithm thus requires access to a
vast portion (usually all the nodes) of the graph. Conversely, a local graph
algorithm only needs to access a little sub-set of the graph.

The spectrum of a graph G is the set of eigenvalues of its adjacency matrix
A. The Laplacian matrix L of a graph G is defined by L = D — A, where D
is the diagonal matrix of order n defined by d;; = degree(i).

A finite path of length %k in G, is a sequence of edges (e; = (uy,uy), €2 =
(ug,ug),...,er = (ug, ugps1)), such that two consecutive edges e; = (u;, uir1)
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and e;11 = (411, ui12) share a common end vertex w;, 1. Such a path connects
w1 to ugyq. A path of length k is said to be closed if u; = ugyq. In figure
2.1(a) an example of path is given by the sequence ((0,1),(1,3),(3,5)) and
a closed path is given by ((1,2),(2,4), (4,3), (3, 1)).

A connected component of an undirected graph G is a maximal sub-graph
in which any two vertices are connected to each other by paths. Maximal
means that such a component is not connected to any additional vertex in G.
A clique is a set of nodes that forms a complete graph i.e. with all possible
links. The term k — clique is used to denote a clique of k nodes. A triangle
is a 3 — clique or closed path of length 3.

The clustering coefficient of a network is related to the number of triangles
(close path of length 2). It corresponds to the probability that two nodes u
and v, connected to a common neighbour w, are also connected. There are
two different ways for computing the clustering coefficient of a network. The
global clustering coefficient is the number of triangle divided by the number
of paths of length 2. The clustering coefficient of a node is the ration between
the number of pairs of its neighbors that are connected and the total number
of pairs of its neighbors. The average local clustering coefficient is an average
of the clustering coefficients for all nodes of the network. In figure 2.1(a) the
global clustering coefficient is 0.66 and the average local clustering coefficient
is 0.72.

A link e = (7, j) is internal to a sub-graph G’ = (V', E') if i and j are in
V'. A link e = (4,7) is external to a sub-graph G’ if either ¢ or j is in V',
but not both. The density ¢ of a graph corresponds to the proportion of its
existing links compared to the total possible links. The internal density d;,
corresponds to the proportion of internal links of a sub-graph compared to
the possible internal links. Similarly, the external density d,,; corresponds
to the proportion of external links of a sub-graph compared to the possible
external links.

The observation of a dynamic network during 7' time steps is modelled
by G = (G4, Gy, ..., Gr), where G, = (V}, E;) is the network observed at time
t.

It has been observed that many real world complex networks share some
characteristics [109, 13]:

e scale-free property: the degree distribution follows a power law i.e.
the probability that a node has degree k is given by [12, 109]:

P(k) = k™ (2.1)

for a given constant v usually between 2 and 3. This power low has
been justified by the preferential attachment |14 which states that new
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links tend to connect to high degree nodes.

This property is relevant for the analysis in this thesis because it leads
to very sparse networks with only some very high degree nodes. It is
then safe to consider that the average degree is small compared to the
total number of nodes (with removing very high degree nodes if needed)
in complexity estimation.

Small world property: the shortest path between any given pair of
nodes is usually small. This property is relevant for us because we can
consider that "close friends" in a social networks must be connected
with short paths.

High clustering coefficient: this implies that the probability to have
a link between two nodes having the same third node as neighour is
high, compared to a random network. This property will help us to
predict missing interactions in social networks.

Presence of a community structure. A community is a set of
nodes having a high internal density and a low external density. Fig.
2.2 presents an example of community structure in a network. We
however notice that community structure is not always present or easy
to detect. This topic is the subject of active research (see for instance
[73, 21]).

Detecting communities from a local point of view and predicting their
dynamic will be at the core of our contributions.

Figure 2.2: Example of community structure.
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2.2 Basic notions on supervised learning for clas-
sification

In this thesis some supervised learning models are used for prediction. This
section presents the supervised learning problem, some evaluation techniques
and Support Vector Machines(SVM), the tool used in our experiments.

2.2.1 Problem definition

Supervised learning is the machine learning task of inferring a function from
labelled training data [97]. The training data consists of a set of training
examples. Each example is a pair consisting of an input object (typically a
vector) and a desired output value (also called the supervisory signal). A
supervised learning algorithm analyses the training data and produces an
inferred function, which can be used for mapping new examples. An optimal
scenario will allow for the algorithm to correctly determine the class labels
for unseen instances. This requires the learning algorithm to generalize from
the training data to unseen situations in a "reasonable" way.

The classification task is an example of supervised learning where the
target value to predict is a categorical finite variable. One particular case is
a binary target variable, for example whether or not a user will leave a social
network.

More formally, a classification task can be defined as follow: given M
training examples of the form {(z1,v1),...(zar, yar)}, where z; is the feature
vector (set of variables describing x) of example ¢ and y; is the label (also
called class) of example i. The objective of the classification task is to infer
a function h, usually called the hypothesis or classifier, that will be able for
a previously unseen feature vector z; to compute the probability P.(z;) that
it belongs to the class c.

2.2.2 Model evaluation

To measure the generalisation power of the classifier on previously unseen
examples, the available data must be divided into two disjoint sets: a training
set used to train the classifier and a test set used to evaluate it. For each
example of the test set, the trained model is used to predict its class. A
comparison is then done between the predicted and the real value of the
example. Different measures can then be used to give an evaluation score.
In this thesis we will used Precision/Recall/F-score and the Area Under the
Curve(AUC).
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True label-> | True | False
True a b
False C d

Table 2.1: Binary classifier confusion matrix.

Precision/Recall/F-Score

After using a classifier on a test set for a binary classification problem, one
gets a confusion matrix as presented in table 2.1. Based on that confusion
matrix, the precision is defined by:

a

a+b
and can be interpreted as the proportion of returned positives that are really
positives. The recall is defined by:

Precision = (2.2)

Recall =

— (2.3)

and can be interpreted as the proportion of returned positives compared to
the total number of positives examples. Finally the F-Score that combines
the two is defined by:

Precision X Recall
F-S5 =2 2.4
core x Precision + Recall (2:4)

Area under the curve

A receiver operating characteristic (ROC), or simply ROC curve, is a graph-
ical plot which illustrates the performance of a binary classifier system while
its discrimination threshold is varying. It is created by plotting the fraction
of true positives out of the total actual positives (TPR = true positive rate)
vs. the fraction of false positives out of the total actual negatives (FPR =
false positive rate), at various threshold settings. TPR is also known as sen-
sitivity or recall in machine learning. Examples of ROC curve are presented
in figure 2.3

The area under the ROC curve (AUC) gives a good measure to compare
classifiers: the higher the value, the better the classifier is.

2.2.3 Introduction to support vector machines

Support vector machines (SVM) are one of the most powerful tools for clas-
sification. The idea behind SVM is to find the linear separator that gives the
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Rate of True Positives (%)
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O 1010 20 WOSOcO 70 80 90 100
Rate of False Positives (%)

Figure 2.3: ROC curves examples.

maximal margin between the two classes in a binary classification problem.
This large margin intuition is illustrated in figure 2.4. In that figure, W,
is the optimal weight vector. The SVM learning problem can be formally
defined as the following optimisation problem:

1 M
min|[W][* + CZ@- (2.5)
7=1
&; > 0 correspond to the eventual violation of the example j to the constraint
of being behind the margin. C' > 0 is a user defined parameter that controls
the trade-off between large margin and constraint violation.
When the problem is not linearly separable, a kernel trick can be used
to project the data into a higher dimensional space where the data can be
linearly separated. The most used kernels are:

e the polynomial kernel: K(z;,z;) = (z]z; +1)% d is the polynomial
degree and leads to one more user defined parameter.

e the gaussian kernel: K(z;,z;) = exp(—%)

deviation and must also be provided by the user.

o is the standard

All the parameters can be automatically set using a validation set or
k-fold cross validation and an heuristic search technique like grid-search|67].
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Figure 2.4: SVM’s Margin illustration.

2.3 Conclusion

With these basic concepts in mind, it will be more easy to follow the re-
mainder of this thesis. The next chapter will start addressing community
detection in static networks.



CHAPTER 3

Global community detection in static
networks

“In theory, there is no difference between theory and practice. But in practice,
there 1s.”

- Yogi Berra.

3.1 Introduction

A graph is a set of items called vertices (or nodes), with connections be-
tween them, called edges (or links) [106]. Many complex systems can be
represented using graphs. Examples are online social networks (Facebook,
Skyrock, Twitter, etc.), Internet and web pages. An interesting problem
studied in these networks is the detection of communities. A community is
a set of nodes highly connected together than with the rest of the network.
Community detection is an important task in networks because, in the one
hand, it can help better understand the structure and the functions of the
network [109] and can be used as component for more complex tasks like
social recommendation [34] or network visualisation |83] in the other hand.

In this thesis, we are interested in detecting the communities a particular
node belongs to. If one can efficiently detect all the communities of the
network, it is then possible to select the ones where we have the node of
interest. In this chapter, we present an overview of these global community
detection methods. This presentation will help us better understand the
limitations that make them unsuitable to detect the communities of a given
node in very large, dynamic and distributed networks.

An important notion in community detection is the quality function. The
role of quality functions is to evaluate how well a particular community de-

15
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tection performs on a given network. Moreover, some community detection
algorithms are based on the optimisation of a particular quality function.

This chapter is organised as follows: section 2 presents the different mean-
ing of the word community in the literature, section 3 presents the most pop-
ular quality functions, section 4 presents some problems similar to commu-
nity detection, section 5 presents an overview of some community detection
methods, section 6 presents how to evaluate community detection methods,
section 6 shows how to check whether or not a community structure is present
in a network and finally, section 7 concludes this chapter.
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3.2 Different definitions of communities

The term community has different meanings in the scientific literature. It
may refer to interest community, similarity community or connectivity com-
munity. A community of interest [45] is a community of people who share a
common interest or passion. In the context of online social networks (OSN),
these people exchange ideas and thoughts about the given passion, but may
know (or care) little about each other outside of this area. An example of
such a community is the set of fans of “The Beattles”.

A similarity community is in fact a cluster: a set of similar objects [153].
The social links are ignored and only the node attributes are considered. Here
also, members of these communities may know or care little about others.
An example of such community is the community that contains mainly PhD
students, located in France, working on data mining and having started their
thesis in 2011.

A connectivity community is a set of vertices having a high number of
links between them and few with the rest of the network [106]. In the rest of
this thesis, if not stated explicitly, this is the definition of community that is
assumed. Examples of such communities will be presented in the following
chapter.

3.3 Quality functions

Most of the community detection methods use a function to estimate the
quality of the detected community structure. This function is called the
quality function. The estimation of the value for this quality function is either
done directly during the optimisation, because it is used as the objective
function to optimise, or indirectly because it is used a posteriori to evaluate
the mined community structure. Quality functions are very useful when one
wants to compare many algorithms that do not optimise the same objective
function. Among the most commonly used quality functions, there are: the
conductance, the performance and the modularity.

3.3.1 Conductance

The conductance is one of the simplest definitions for the quality of a com-
munity. It is defined as the ratio between the number of links having one
end in the community and the minimum between the number of links inside
the community and the number of links outside it. Given a community S,
its conductance is computed using the following expression:
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|(u,v) :u € SveS|
i (3 s o Yocs o)

The conductance can be explained as the probability that a random walk
starting inside the community will leave it. As a probability, its values range
from 0 to 1. A value close to 0 corresponds to a good partition. Figure 3.1
presents an example of community structure. In that figure, ®(A) = % >
®(B) = ;. Ais a better community than B as far as the conductance is
concerns. Using the conductance, a community structure is as good as all its

communities have a good conductance (close to 0).

B(S) =

(3.1)

E\ (A

%0

C

Figure 3.1: Example of community structure for the computation of the
conductance.

3.3.2 Performance

The performance [47| gives the proportion of pairs of nodes correctly inter-
preted by the algorithm i.e. nodes belonging to the same community and
connected with links or nodes belonging to different communities and not
connected. Given a partitioning p, its performance score is given by:

Pl) = n(n—1)/2

(3.2)

where C; is the community of node 1.
By definition, 0 < P(p) < 1. A value of performance close to 1 means a
good partitioning.
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3.3.3 Modularity

The modularity defined by Girvan and Newman [110] is the most used qual-
ity function. The intuition behind this quality function is that a random
network is not supposed to have a community structure. For each commu-
nity, the density of its links is compared to the expected density in a random
network with the same number of nodes and the same degree distribution
but without community structure. The value of the modularity is given using
the following formula:

1 dld]
Q= g Ly = 50 C) (33)
where m is the number of links of the network, A the adjacency matrix, d;
and C; the degree and the community of the node 7 respectively. The function
4 is equal to 1 if and only if C; = C} and 0 otherwise. The value of () range
from —1 to 1 and it is generally admitted that a good community structure
has a modularity score greater than 0.4 [108|.

The modularity optimisation gives a good way to detect community in
very large networks [107, 108, 18]. However, this quality function has two
most important drawbacks:

1. the resolution limit: it has been shown in |48| that the size of each
community depends on the number of nodes in the network. It is then
difficult to detect small communities, even well separated.

2. the instability: the assumption behind the modularity is that a random
network is not supposed to have community structure. The actual
community structure is then compared with a null model expressed
in term of expectation as presented with the term ]2’:; in equation
3.3. This leads to many possible realisations of the null model and it
is possible to have many different community structures with a high

modularity score, even in random networks [74].

3.4 Some problems similar to community de-
tection
In this section, we present some problems which consist in grouping related

objects of a given set into classes. We have chosen to present these problems
because tools used to solve them can be adapted for community detection.
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3.4.1 Graph Partitioning

The objective of graph partitioning is to group the nodes of a graph in a pre-
determined number of partitions, with predetermined sizes. This is usually
done by minimizing the number of links falling between the partitions. The
most successful historical methods are presented bellow:

e Spectral bisection [124]: this method consists in computing the eigen-
vector corresponding to the smallest eigenvalue of the Laplacian matrix
of the graph. The graph is then divided into two parts corresponding
to the sign of the projection of each node according to this eigenvector.
The time complexity of this method is O(n?) and the results are good
when the graph really contains two partitions of similar sizes. That is
only a particular case in the context of community detection.

e Minimal cut [10]: this algorithm tries to minimize the cut of the graph
by minimizing the number of links between two groups. This method
requires the sizes of the partitions as a parameter and starts with a
random initial partition. The optimisation is performed using a greedy
scheme. At each step, the quality of the bisection is improved by switch-
ing nodes between partitions. The switch which gives the best improve-
ment is performed, with the condition that a node changes its partition
at most once. There is then exactly n? computations and the best bi-
section is returned. The worst case complexity is O(n?).

These methods can be used for community detection if the number of
communities and their sizes are known a priori. However, this is not usually
the case and others techniques must be developed.

3.4.2 Data clustering

This problem has been introduced for data analysis. It consists in partition-
ing data objects based on a similarity measure (a pseudo distance, because
the triangular inequality is not required) between data points in some defined
space. Similar objects are grouped together and dissimilar one are separated
in different groups.

Lets A — (a1, ag, ..., a;) and B — (by, bo, ..., br) be two data points
in a k dimensional space. The distance functions mostly used as similarity
measures are:

e the euclidean distance (or Ly norm) : dap = > . \/(a; — b;)?

e the Manhattan distance (or Ly norm) : dap = > ., [(a; — b;)|
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e the cosine similarity : d g =

One of the mostly used method for data clustering is the k — means
algorithm [153|. It works as follows:

1. for each of the k classes, one point is chosen at random as the initial
mean;

2. for each data point, its distance to each mean is computed and it is
moved to the cluster of the closest mean (breaking ties randomly);

3. for each of the k updated clusters, the new mean is computed;

4. the process restart from step 2 until the clusters do not change or a
maximum (predefined) number of iterations is reached.

As for the graph partitioning, one needs to know the number of clusters.
Choosing the number of cluster for k£ — means is widely studied and some
heuristics such as the elbows’ methods [61, 132] exist to solve it.

Some others methods that do not require the number of clusters as pa-
rameters also exist. They usually perform an hierarchical clustering by either
starting with all the data points in one cluster and separate them at each
step (top down approaches) or starting with each point in its own cluster
and grouping clusters at each step (bottom up approaches).

The data clustering methods can be used in community detection by
choosing an appropriate distance function between the nodes of the network.
An example of such an application will be presented when presenting spectral
methods (see sub-section 3.5.3).

3.5 Global community detection

Given a function measuring the quality of a community structure, optimizing
it to get the best partitioning is an NP-hard problem [150, 20, 47|. Some
heuristics are then used to approximate the best partitioning. The most
important classes of methods are presented below with some examples of
methods ranging from each class.

3.5.1 Divisive methods

These methods proceed by starting with all the nodes of the network in one
community and at each step, they use a criterion to divide the existing com-
munities. This optimisation procedure gives a dendrogram as the one shown
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in figure 3.2. Examples of methods ranging in this category are the link be-
tweenness centrality-based and the link clustering coefficient-based methods.

al

Figure 3.2: A dendogram structure.

Link betweenness centrality based method

This method has been proposed by Girvan and Newman in 2002 [110]|. The
betweenness centrality of a link is the number of shortest paths passing
through this link. The idea is that a link with a high betweenness is more
likely to be an inter-community link. At each step, the algorithm removes
the link with the highest betweenness and the process is repeated until there
is no more increase for the modularity score (used as quality function in this
algorithm).

The time complexity of this method is O(m?n). In fact, the computation
of all the betweenness centralities is done in O(mn) and one can need m
steps in the worst case. The detected communities using this method are
quite good (with a high modularity score) but, due to the time complexity
it can not be used on large networks.

Link Clustering coefficient based method

This method was proposed by Radicchi et al. in 2004 [129]. The k-order
clustering coefficient of a link is the ratio between the number of cycles of
length k passing through this link and the total number of cycles of length
k in the graph. The idea is that links with high clustering coefficients are
more likely to be inter-community links. The optimisation procedure is then
the same as the one using the link betweenness.

When removing a link, one just need to update the clustering coefficient
values for the links adjacent to it. That leads to a more efficient algorithm,
than the one using the betweenness centrality, with a time complexity of
O(m?). However, it is still not suitable to deal with very large graph (millions
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of nodes). We will then move to agglomerative methods where we have one
of the most efficient methods for global community detection in networks.

3.5.2 Agglomerative methods

The main idea behind this class of methods is that, at the start, each node is
alone in is community and, at each step the two more similar neighbour com-
munities (having adjacent edges) are merged to form one new community.
Like divisive methods, this optimisation procedure also leads to a dendro-
gram. Examples of methods from this class are modularity optimisation and
the Louvain’s methods. We will detail them in the following sub-sections.

Modularity optimisation

This method has been proposed by Newman in 2004 [107]. It consists in
a greedy optimisation of the modularity: starting with each vertex being
the sole member of a community of one, at each step, the two communities
whose amalgamation produces the largest increase in modularity are joined.
The number of partitioning found by this method is n — 1, each partitioning
having a different number of communities between n and 1. The partitioning
with the highest value of modularity is retained as the approximation of the
best partitioning.

The time complexity of this algorithm is in O(n?) in the case of sparse
networks (as it is usually the case for social networks). Indeed, the evaluation
of the change in modularity when merging two communities is done in con-
stant time. This evaluation for all pairs of adjacent communities is then done
in O(m). Afterwards, at each step, one needs to to update the matrix con-
taining the inter-community links, needed to compute the modularity. This
update is done in O(n) in the worst case. Finally, the algorithm has n — 1
steps. The complexity is then in time O((m-+n)n) which is approximated by
O(n?) for sparse network. As reported by the author in [107], this method is
able to analyse networks up to 10° nodes.

The time complexity of this method has been considerably improved and
reduced to O(nlog®n) by Clauset et al. [30]. In fact, these authors have
noticed that, because the adjacency matrix of the network is sparse, one
can use adapted data structures for this type of matrices. They then have
proposed an implementation using a heap. This new implementation enables
to analyse network up to 10° nodes. This implementation is freely available
here: http://cs.unm.edu/~aaron/research/fastmodularity.htm.

With this method, it is then possible to analyse quite large networks but
still not very large networks with millions of nodes. The next presented
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method enables us to take that step.

Louvain’s method

The Louvain’s method [18] is one of the fastest methods for community de-
tection in complex networks. It can be used in the general case of weighted
networks. As an agglomerative algorithm, it starts with each node in a sep-
arated community. The algorithm has two main steps: in the first step, all
the nodes of the network are evaluated one by one and for each of them, the
weighted modularity gain is computed if the current node ¢ is added to the
community of its neighbour j. The node 7 is added to the community which
produces the maximal positive gain. These sweeping are repeated until there
is no more positive gain. At the end of this step, one has a partitioning of
the network.

_ Pl
ue=_/\
v ——013
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Optimization Aggregation
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1st pass 2nd pass 26(’ 24
—_— N |1 — (g )

Figure 3.3: Hierarchic Optimisation of modularity with the Louvain’s method
[18].

In the second step, each of the previous discovered communities becomes
a super-node. Two super nodes are linked if and only if there is at least one
link between two members belonging to each community. The link between
two communities is weighted according to the sum of all the weights of their
inter-communities links.
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These two steps are repeated until no more gain in modularity is observed.
It is worth noting that the gains on modularity are always computed from the
starting network, in order to be able to compare the partitioning during each
pass of the algorithm. The figure 3.3 presents an execution of this method
on a toy network. On this figure, one can see two passes starting from the
network at the left.

The speed of this method comes from the observation that the modularity
can be optimised locally: only the neighbours are considered during the
evaluation, that enables to update the modularity gain in linear time (O(m)).
This method is actually only limited by the storage (main memory) capacity
and allows to analyse networks of millions of nodes in some minutes.

However, the result of this algorithm extremely depends on the order in
which the node are processed. In fact, two different orders can lead to quite
different partitions. This is because many partitioning can lead to a high
and close value for the modularity |21, 141]. The authors have proposed to
run the algorithm many time and get the partitioning that gives the highest
value [18].

3.5.3 Spectral methods

Spectral methods have been initially used for the particular case of graph
partitioning. Many methods have been afterwards proposed in the more
general case of community detection. The main idea of this class of methods is
to segment the network using a projection of the nodes in a space constructed
with the eigenvectors of one of its characteristic matrices. The mostly used
matrices are:

e the adjacency matrix A;
e the Laplacian matrix L;

e the normalized Laplacian matrix.

The nodes of the graph are represented in the space of the k firsts eigen-
vectors of the chosen matrix. A similarity function is then defined in this
space and one can applied a classical clustering algorithm.

The Laplacian matrix is the mostly used because it has the following
properties:

e it is positive definite: all its eigenvalues are positives;

e the sum of each of its lines or columns gives 0.
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These properties ensure that it always has an eigenvalue equals to 0 which
can be associated to the eigenvector with all elements equals to 1.

The intuition behind spectral methods is the fact that when a graph
has k connected components, it has exactly £ eigenvalues equal to 0 and,
the projection of the nodes of the graph in the space associated with the
eigenvectors of these k eigenvalues gives the same coordinates to all points
belonging to the same connected component |47, 91|. For a graph with a
community structure, the points corresponding to nodes in the same com-
munity are then expected to be close in that space. Examples of spectral
methods can be found in [154, 108, 105].

Spectral algorithms for community detection differ mostly on the choice
of the topological matrix and the clustering algorithm used. The time com-
plexity mostly depends on the computation of the eigenvalues. The exact
computation is done in time O(n?). Because one only needs the k first eigen-
values, some quick approximations, such as the Lanczos method for example
[80], can be used.

3.5.4 Random walks

A random walker on a graph G = (V, E) follows a stochastic process that
starts at a node ¢« € V' and, at each step, selects with probability P; among its
neighbours the next node j to visit at time ¢t+1 [87]. Usually, this selection is
done randomly and uniformly i.e. P; = % The length of a random walk is
its number of steps. The transition matrix of the random walk is P = AD™!,
and the probability of going from a vertex i to a vertex j in ¢ steps is (P?);;.

The idea behind random walk methods is that a random walker on G
tends to get trapped into communities. As a consequence, two vertices i and
j of the same community tend to see all the other vertices in the same way,
i.e. if the length ¢ of the random walk is long enough, the " row (P!);.
and the j" row (P'); will be similar. This leads to a definition of distance
between nodes and community detection becomes a clustering problem that
can be solved using for example hierarchical methods. One algorithm of this

class is WALKTRAP [122].

Random walks on graphs are strongly related to methods that study
community structure using spectral properties of graphs. For instance, in
[122] it is shown that the distance r;; defined between two nodes ¢ and j,
using random walks, is related to the spectral property of the matrix P by
the formula:
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rh =D A (va(i) = va()))? (3.4)

where (Ay)i<a<n and (va)i1<a<n are respectively the eigenvalues and eigen-
vectors.

3.5.5 Information diffusion methods

The idea behind this class of methods is that if one member of a community
has a piece of information, this information can reach easily other members
of the same community and this information will reach more difficultly non-
members of the community. One of the most famous algorithms ranging from
this category is the label propagation method [130| which can be described
as follows:

1. at the start of the algorithm, each node has a unique label;

2. at each iteration, each node receives the label of its neighbours and
adopts the must frequent one breaking ties randomly;

3. the process stops when there is no more label change or after a maxi-
mum number of iterations (used as parameter);

4. each set of nodes with the same label are assigned to the same commu-
nity.

Notice that the step number 2 can either be synchronous or asynchronous.
The asynchronous update cause the node labels to be updated as each node
is considered. Conversely, with the synchronous updates, the node labels are
fixed until all the nodes are considered, and then all of them are updated ac-
cordingly. Experimentations have shown that this can cause more oscillatory
actions than the Asynchronous option (see for example this online simulation:
http://www.opcoast.com/demos/label_propagation/index.html).

3.5.6 Ensemble methods

Statistical estimates can often be improved by fusion of data from different
sources. It is the idea behind the so-called ensemble methods which have been
successfully applied in some machine learning problems like classification or
clustering [40]. The same idea has been applied for community detection
in networks. The general framework for ensemble methods for community
detection can be stated as follow:
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1. compute k community structures using either a stochastic algorithm or
k different algorithms;

2. build a nxn consensus matrix I’ where Fj; is the frequency of instances
where node ¢ and node j are in the same community;

3. construct a new graph with the frequency matrix F' as adjacency ma-
trix;

4. perform a partitioning of the new constructed graph.

Methods of this class mainly differ by the algorithms used for community
detection in step 1 and the partitioning method used in step 4. Examples of
ensemble methods for community detection are presented in |32, 141].

3.5.7 Community detection in attributed graphs

All the above mentioned methods do not take into account the attributes
of the nodes in the network. Some works have been proposed to deal with
attributed graphs. In [33], the authors have proposed a new quality function
that combines the structure and the attributes of the graph. This new quality
function is defined by:

Qhybria = Z Z (- S(i,5) + (1 —a) - simA(i, j)) (3.5)
C ijeC
where the link strength S(i,j) between two nodes ¢ and j is measured by
comparing the true network interaction G;; with the expected number of
connections (d;-d;)/2m. simA(i, j) is a user defined attribute similarity and
a is the weighting factor, 0 < o < 1 and enables to give more importance to
the structural or attribute similarity.

3.5.8 Methods to detect overlapping communities

All the algorithms presented until now always assume that each node be-
longs to only one community. This assumption is rarely true in real social
networks. In fact, in his/her Facebook contacts, a user can have friends that
was classmates, some that are his/her colleagues and some that are members
of his/her family, leading to three different communities he/she belongs to,
with eventually some overlaps between them (a past classmate can now be
a colleague). The last part of this section presents some methods to detect
overlapping communities.
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Figure 3.4: A 4-cliques. percolation example.

Cliques Percolation Method

One of the most popular method for overlapping community detection in
network is the Clique Percolation Method (CPM) proposed by Palla et al.
in 2005 [119]. This technique is based on the fact that internal links in a
community generally form cliques because of their high density. similarly,
the inter-community links are not expected to form cliques due to their low
density.

The authors of this method used the notion of k-cliques to define a full
connected sub-graph of k& nodes. Two k-cliques are adjacent if they share
k — 1 nodes. The union of many adjacent k-cliques forms a k-cliques chain.
Finally, a k-cliques community is the biggest sub-graph composed of a k-
clique and all the k-cliques that are adjacent to it. By construction, the
k-cliques community can share nodes, it is why they can overlap.

To detect k-cliques communities, one firstly find all the maximal cliques
of the network (all the complete sub-graphs). Afterwards, an overlapping
matrix O of order n., the number of maximal cliques, is built. The element
O;; gives the number of common nodes between the cliques ¢ and j. Then,
a matrix O’ is built by setting O}; to one if and only if Oy; is greater than
or equal to k — 1 and setting O;; to zero otherwise. The k-cliques communi-
ties are finally obtained by finding the connected components of the graph
induced by the matrix O'.

The time complexity of this method depends on many factors, including
the number of maximal cliques, and do not have been given in closest form.
Experimentations on real networks shows that it is only applicable on small
or very sparse graphs. The implementation done by the authors is freely
available here: www.cfinder.org.
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Link partitioning
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Figure 3.5: Link partitioning.

It is sometimes more easy to identify the intra and inter-communities
links than to detect overlapping nodes. For example, in figure 3.5, it is
easier to identify the links of each community than to detect the communities
themselves. The idea of link partitioning is then to define communities in
terms of group of links rather than groups of nodes.

Evans and Lambiotte [44| have, for example, proposed to used the line
graph constructed using the starting graph as follows: the nodes are the links
of the starting graph and a link exists between two nodes if the corresponding
links are adjacent in the starting graph. One can then use a usual community
detection method to partition the line graph. In the resulting graph, inter-
communities links corresponds to overlapping nodes in the initial graph.

The idea of grouping the links is quite interesting, however it is not a
priori better to group links rather than nodes. In fact, the two situations are
equivalent: when partitioning links, a link crossing two communities will be
assigned to only one of them.

The implementation provided by the authors is freely available here:
http://sites.google.com/site/linegraphs/.

Graph Expansion Method

If one is able to detect the overlapping nodes, it is possible to create multiple
copies of that nodes, one for each community they belong to, in order to
remove the overlapping and then be able to use an existing non-overlapping
method. That is the idea behind graph expansion proposed by Gregory [57].
This method, called COPRA (Community Overlap PRopagation Algorithm)
has three steps:

3
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1. the starting graph is expanded to remove the overlaps;

2. a non overlapping community detection method is applied to the ex-
panded graph;

3. the nodes of each partition are converted to their equivalent in the
non-expanded graph.

The transformation step is done by identifying the nodes with the highest
betweenness centrality. These nodes are divided in many copies connected by
links. This step is applied until the maximum value of the node betweenness
is greater than a threshold s, used as the parameter of the method. Using
this procedure, most of the nodes of the network remain the same, only
nodes belonging to many communities are transformed into many copies. The
overlaps in the result are obtained by looking nodes having copies belonging
to different communities.

The time complexity of the method mostly depends on the transformation
phase which exact computation require time in O(n?). However the author
has proposed an approximation which only considers the shortest paths of
length k. This optimisation leads to an algorithm in time O(nlogn) for the
expansion phase.

3.5.9 Summary on global community detection

Tab. 3.1 summarizes the complexity of several community detection algo-
rithms (adapted from [47]) The complexity (Compl.) is measured under the
assumption that the graph is sparse. The scale of graph in which the method
is appropriate is also provided : S for small scale (up to 10* nodes), M for
medium (up to 10° nodes) and L for large scale (up to 10° nodes). Whether or
not the method is overlapping (Overlap.) or (Hierarchical) is also indicated.
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Table 3.1: Summary of some community detection algorithms.

Method Compl. | Scale | Overlap.? | Hier.?
CPM ([119]) O(exp(n)) | M Y N
WALKTRAP ([122)]) O(n’logn) S N Y
Fast Greedy (|107]) O(nlog?n) M N Y
Spectral optimization ([108]) | O(n*logn) M N N
Louvain ([18]) O(n) L N N
Girvan-Newman ([110]) O(n3) S N Y
Link community ([44]) O(n?) M Y Y
Label propagation ([130]) O(n) L N N
COPRA ([57]) O(nlogn) L Y N

3.6 Evaluation of community detection meth-
ods

Given a community detection method, how can we be sure that it performs
well? And how can we compare two different methods that eventually op-
timise two different objectives functions? These are the principal questions
addressed by evaluation techniques for community detection. There are two
principal configurations, depending on whether the ground truth is known or
not.

3.6.1 Evaluation with ground truth

When the ground truth is known, the evaluation consists in comparing how
well the algorithm recovers the known communities. For that purpose, among
others, the following partitions comparison indexes can be used: the Rand
Index and its variations, the Mutual Information and its variations.

Given a set of elements S = {ej, ey, ...,e,} and two partitions P and @
of S to compare, lets define:

e a, the number of pairs of elements in S that are in the same set in P
and in the same set in Q);

e ), the number of pairs of elements in S that are in different sets in P
and in different sets in Q);

e ¢, the number of pairs of elements in that are in the same set in and in
different sets in
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e d, the number of pairs of elements in S that are in different sets in P
and in the same set in ().

The rand index [137] is :

a-+b a+b

Tatbtcetd ()

RI

(3.6)

RI ranges from 0 to 1, 1 meaning a perfect matching. There are some known
problems with RI such as the fact that the expected value of the RI of
two random partitions does not take a constant value (say zero) or that the
Rand statistic approaches its upper limit of unity as the number of clusters
increases. With the intention to overcome these limitations the Adjusted for
chance Rand Index (ARI) was introduced. The ARI is computed by:

(5)(a+b) = [(a+b)a+c)(c+d)(b+d)]
(2)* = [(a+b)(a+c)(c+d)(b+ d)]

with expected value zero and maximum value one.

The Mutual Information (MI) allows to compare two partitions by quan-
tifying the information they share. The mutual information of two partitions
X and Y is given by:

ARI =

(3.7)

r s o P(Z,])

MI(X,Y) = P(i,j)log——— 3.8

(XY) = 323 Pl oo g (33)

With P(i) = ‘)Ii;‘ the probability that a node in the community X; in the
first partition, P(j) = % is the probability that a node in the community Y

in the second partition and P(i,j) = |X—;YJ| the joint probability. MI actually

measures the difference between the entropy of X and the conditional entropy
of X knowing Y.

A normalized version of mutual information that takes values ranging
between 0 (different partitioning) and 1 (identical partitioning) is given by:

2MI(X,Y)
H(X)+ H(Y)

NMI(X,Y) = (3.9)
with H(X) being the entropy of X.

Usually, the ground truth is not available (if we already know the commu-
nity, why do we need to compute them?), for that reason, some graph gen-
erator with known community structure have been introduced. The mostly
used of these generators is the LFR benchmark [78].
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3.6.2 Evaluation without ground truth

When the ground truth is unknown, the only way to evaluate a commu-
nity detection method or to compare two methods is by defining a quality
measure. The mostly used measure in this case is the modularity defined in
section 3.3. For each algorithm, the value of the quality function is computed
and one can compare the algorithms based on this value.

3.6.3 Presence of a community structure in a network

All the community detection methods presented in this chapter suppose that
a community structure is present in the network. However, a community
structure is not always present or easy to detect. This topic is the subject
of active research. The works in [73] and [21] use the notion of consensus to
decide whether or not a network has a community structure. More precisely,
different partitions are found in the network by using many executions of a
non deterministic algorithm and the nodes frequently in the same commu-
nities form the consensus (also called community cores). It has been shown
in [21] that in a network without community structure, community cores are
trivial, either containing all the nodes of the graph or one node each.

3.7 Conclusion

In this chapter, we have presented the problem of global community detection
and show how it has been addressed in the literature. Due to the lack of for-
mal definition of community structure, hundreds of methods have appeared
these past years. To get the communities a given node belong to, one can
mine all the communities of the network, using one of the above described
methods and then select the communities of this target node. However, the
methods described in this chapter usually assume that the entire network is
available and can be analysed as a whole. They also assume that the network
do not evolve with time. Because these assumptions are not always true, and
also because it is sometime usefull to get in realtime the community a given
node belongs to, in a network that change quickly, we will present in the next
chapter methods that can be used in these contexts.



CHAPTER 4

Local community identification in social
networks

"Beware of bugs in the above code; I have only proved it correct, not tried it "

- Donald E. Knuth

4.1 Introduction

In the previous chapter, an overview of the global community detection prob-
lem has been presented. Algorithms like the ones published in [111, 18| have
been described. These algorithms generally assume that the complete struc-
ture of the network is known i.e., it can fit into the memory of a single
machine. This assumption is not realistic for very large networks like the
Web. Moreover, for such networks, these algorithms produce communities
with thousands or millions of nodes and this may not be useful in practice.
Alternatively, we can focus only on the communities a given node belongs
to. This is called the local community identification problem. It is solved by
exploring a portion of the graph starting from the given node.

To overcome the complexity of graph exploration problems, most of the
proposed algorithms for local community identification are based on greedy
heuristics. They proceed in an iterative manner: starting from a node, they
add at each step one of the external nodes that maximize a quality function.
Such a method is described in |28]. However, these algorithms have difficulty
in identifying a local community when starting from a node which is at
its boundary. Moreover when a node belongs to several local communities,
these algorithms fail to produce the overlapping sub-communities. In this
chapter, we propose to improve the existing methods for local community

35
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identification and we propose a method to identify the local overlapping
communities starting from a specific node.

This chapter is organized as follows: section 4.2 presents previous meth-
ods for the identification of local communities; section 3 presents our improve-
ment for local community identification, section 4.4 presents our proposed
method for the identification of local overlapping communities and finally
section 4.5 presents the performance of our algorithms on synthetic and real
datasets, and compares them to some state-of-the-art algorithms.
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4.2 Previous methods

Hereafter, a network is represented by an undirected and unweighed graph
G =< V,E >, where V is the set of nodes and E is the set of edges. A
neighbour of node u is a vertex v such that (u,v) € E. T'(u) denotes the set
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of neighbours of u. Let D be a subset of V. An edge e = (u,v) is internal
to D if both ends u and v are in D. An outgoing link is an edge e = (u,v)
that has only one end in D.

The density 0 of links present in a graph is a generic notion that refers to
the number of links divided by the number of nodes to which they are inci-
dent. The internal density d;,, corresponds to the number of internal links of
a sub-graph divided by the number of vertices. Similarly, the external den-
Sity dous corresponds to the number of outgoing links divided by the number
of nodes.

A community of a network G is a subset of nodes D such that ¢;, is
high, and 9,,; is low. In the case where the network is not fully known, the
community produced by exploring G starting from a node ng is called the
local community of nyg.

4.2.1 General greedy scheme for community detection

When we have started our work on local community identification in social
network, there where some existing methods starting with the one by Clauset
[29] in 2005 and ending with the one of Chen and colleagues [28] in 2009.
Most of this existing algorithms for local community identification are based
on a greedy and iterative scheme in which, at each step we have a local view
of the graph G as follows:

e the set D of nodes already identified as members of the local commu-
nity. This set D can be divided into two subsets:

e the subset C of nodes u such that I'(u) C D, called the core of D;

Figure 4.1: Subsets used in greedy algorithms.
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e the subset B of nodes u that have at least one neighbour outside
D, called the border of D;

e the set S of nodes that do not belong to D and are adjacent to at least
one node of D;

e and the set U of nodes with no neighbor in D.

Fig. 4.1 illustrates the subsets D, C, B and S. It is further assumed that the
only way to get more information about G is to visit the nodes of S one at
a time.

The basic greedy scheme for the identification of local communities using
the maximisation of a quality function is given in Algorithm 1.

Algorithm 1 Identification of local communities based on greedy maximiza-
tion of a quality criterion Q.
Algorithm: Local community identification
Input: a graph G and a starting node nyp.
Output: a subset D : the local community of ng.
Initialize D with ng
Initialize B with ng
Initialize C' with the empty set
Initialize S with the neighbors of ng
Q=0
Repeat
For each s; € S do
Compute the quality criterion obtained if s; is added to D
End for each
Select the node s* that produces the maximal quality Q*, breaking ties
randomly.
If Q* > (@ then
Add s* to D and remove it from S.
Update B, S, C.
End if
Until (Q* < Q)
Return D

Initially, the local community D of ng is reduced to ng, B = D, C'is the
empty set, S = I'(ng) and the quality of this initial community is 0. At each
step, the node s* € S that maximizes the quality function ) used by the
algorithm is considered. If its inclusion into D increases the quality criterion
@, then it is removed from S and added to D, and the subsets D, C', B and
S are updated. This procedure is repeated until there is no vertex s € S
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whose inclusion into D increases the quality (). At the end of the algorithm,
D contains the local community of n.

4.2.2 Quality functions for local community identifica-
tion

The idea introduced by Clauset [29] is that nodes on the border of a commu-
nity (nodes of B) must have more links with D (the nodes of the community)
than with S (the nodes outside the community with some neighbors in D).
The local modularity of D is then defined by formula (4.1):

Bin
Bin + Baut
where By, = > .5 |I'(v) N D] is the number of links between B and D, and
Bout = Y _uep |T'(w) NS| is the number of links between B and S.

Note that R = 1/(1 + ) = f(R') where R’ = Bj,/Boy. Since f is an
increasing function of R', it follows that the quality functions R and R’ are
equivalent.

R= (4.1)

Figure 4.2: A node highly connected with nodes outside its community.

This quality function does not treat correctly nodes that are highly con-
nected to neighbors outside their communities. For instance, the application
of this quality function to the network of Fig. 4.2 will give a solution where
the local community of node a does not contain node b. Indeed, before the
insertion of b, B;, = 10 and B,,; = 5, hence R’ = 2. The inclusion of b leads
to By, = 5, By = 3 hence the new value of R’ is 1.67. This is because the
inclusion of node b decreases drastically B;, which in this case is good for
the community, but is wrongly taken into account by the quality function R’
that decreases.

Luo [90] has proposed another quality function that takes into account
all the internal links rather than just those edges that link B to D. The new
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quality function is defined by :
Din
Dout

where Dy, = > [I'(w)ND|, and Doy = Boyr. When applied to the network
of Fig. 4.2, this quality function produces for node a a local community that
contains node b. The limitation of this quality function, when using the
greedy approach, is that it can introduce unwanted nodes in the community.
Indeed, let us consider the example of Fig. 4.3 where, starting from n;, nodes
ng, n3 and ny have already been inserted into D. Clearly, nodes Oq, ..., Os of
this diagram don’t belong to the local community of ny. On the other hand,
it is easily checked that using the quality function M, these nodes will be
inserted successively into D. Note that the same observation holds for the
quality function R.

M = (4.2)

Figure 4.3: Pathological cases for quality functions R and M.

To solve this problem, Chen et al. [28] have proposed a new quality
function L and a new method. This method introduced a first innovation:
it considers the densities of intra-community edges and outer edges and not
their numbers. More precisely the density of intra-community links L;, is
defined according to the expression:

2icp IT(1) N D]

D]
Similarly, the density of external links is defined by:
s T(E)NS
L. — > ()N S| (4.4)

| Bl
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Chen et al. then use the ratio of these two densities to define a quality
function:
Lin
L@I

To avoid the improper inclusion of vertices into the local community as illus-
trated above for the example of Fig. 4.3, an increase of the quality function
L does not induce the automatic inclusion of a new node into D. More pre-
cisely, let L’ and L/  denote the new densities if n; is added to D. We can
have L' > L and one of the two following cases:

I —

(4.5)

1. L., > Ly, : the addition of n; increases the density of internal links,
hence n;, with respect to the internal density, deserves to be integrated
into the community. However, we must distinguish two sub-cases:

o [ < L : this means that the addition of n; does not increase
the density of external links; clearly n; must be added to D.

o L. > L. : the addition of n; increases the density of external
links; in this sub-case, there is a doubt because n; may belong to
a nearby community and a final check will be done at the end of
the algorithm.

2. L, < L, and L, < L., this means that the density of internal links
decreases, reducing the cohesion of the local community D; at the same
time, L., decreases even more, leading to L' > L; we are therefore in
the presence of a node n; that is an outlier for the local community D.

At the end of the main loop, i.e. when there is no extra outside node
that produces a positive gain when added to D, the algorithm reviews the
nodes of D. Each node of D is removed and a test to add it following the
above procedure is carried out. During this confirmation stage, a node is
maintained in D only if it falls into the first case.

This method performs correctly when applied to the network of Fig. 4.3.

However Chen’s algorithm suffers from a serious shortcoming because it
can fail to identify the local community of a node ny which is located on the
border of another local community D’. Indeed, when looking for the local
community D of such a node, the search can be extended to the community
D’ which is close to D after adding members of D’, one after the other. In this
case, node ngy will be removed from its own community in the confirmation
phase of the algorithm, which is not correct. For instance, when applied to
node 7 in Fig. 4a, phase one of this algorithm may produce the subgraph on
the right, generated by nodes ¢, for ¢ > 7, and after the confirmation phase,
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a)

Figure 4.4: Node 7 is on the border of the local community on the right.

node 7 will not belong to D. This happens because at the first step, the
neighbors of 7 that maximise the quality function are 5,6, 8, and node 8 may
be chosen.

4.3 Improvements for local community identi-
fication in networks

To address the problem mentioned above, we proposed [112| to improve the
algorithm of Chen et al. by adding at each step, and at the same time, all
the nodes that maximize the quality function, instead of selecting one at
random.

This algorithm, hereafter named BMEOa according to the first letters of
the first names of each author, runs correctly for the example of Fig. 4.4a
when applied to node 7. Indeed it produces the subgraph on the left in Fig.
4 4a.

However, when applied to the network of Fig. 4.4b, it produces for node
7 a local community that does not contain node 1. Indeed, if node 8 is chosen
at the first step, and node 5 or 6 is chosen at the second step, then after 6
steps, we obtain the situation where D = {2,3,4,5,6,7,8} with L = 2.29.
The inclusion of node 1 leads to L' = 1.25 < L, hence this node will not be
included in the local community of 7, which is not correct.

This mistake comes from the fact that, since | B| is at the denominator of
L., there can be a situation where the inclusion of a good node with many
neighbors in C' and no neighbor in S decreases drastically |B|, induces a
drastic increase of L., and leads to L' < L. This is why we propose another
improvement of the algorithm proposed by Chen et al. More precisely, we
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modify the quality function proposed in [28| by using |D| instead of |B| in
the denominator of L.,. The new formula for the quality function is:

i LG
L == 4.6
7 (4.6)

where Zm = L;, and Zex = w. With this modification, and the
new algorithm hereafter named BMEQOb, the example of Fig. 4.4b is treated
correctly i.e., the local community of node 7 is the subgraph on the left.
However BMEOD fails to identify the local community of node 5 in Fig.
4.5. In this method, the node with the smallest degree n* is systematically

Figure 4.5: Example of community structure.
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Table 1. Summary of methods.

Method Fig. 2 (a) | Fig. 3 (n1) | Fig. 4a (7) | Fig. 4b (7) | Fig. 5 (5)
Clauset et al. No No No No No
Luo et al. Yes No No No No
Chen et al. Yes Yes No No No
BMEDOa Yes Yes Yes No No
BMEOb Yes Yes Yes Yes No
BME1 Yes Yes Yes Yes Yes

where d; is the length of the path from the starting node ny to node ¢ in the
tree generated by the algorithm. In this expression, internal links that are
close to the starting node are favored by the multiplicative factor 1+ d;. For
external links, the contribution is defined by:

Siep [T 01 S1(1+ di) s

Tem -
D

In this expression, external links that are far away from the starting node
are penalized by the multiplicative factor 1 + d;. This leads to the quality
function:

(4.9)

BME1 computes correctly the local communities for the network in Fig.
4.5. Table 1 summarizes the performance of the presented algorithms when
applied to networks of Figs. 3 to 6 and the starting node in parenthesis.

A final improvement of all the methods presented so far is to modify the
condition of the confirmation phase. In this new method, another condition
for maintaining a node n; is |I'(n;) N D| > D,, /| D|. This improvement works
for many cases presented previously and where some nodes were wrongly
excluded during the confirmation phase.

The time complexity of the algorithms derived from Chen et al.’s method,
depends only on the average degree of the network, the size of the local
community found and the number of neighboring nodes of that community.
It is in the worst case O(|D|d|S|), were |D| and |S| are usually very small
compared to the size of the whole network.
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4.4 Identification of overlapping local commu-
nities

A natural idea for identifying overlapping communities is to take an algorithm
A for local community identification and apply the scheme of Algorithm 2.
In this scheme, A corresponds to one pass through the loop, V is the set of
nodes confirmed in the second phase of the algorithm A and LocalCom is the
table of the local overlapping communities found, indexed by idcom. After
each execution of A, the links that are internal to V' \ {ng} are deleted.

Algorithm 2 Identification of Overlapping Local Communities
Algorithm: I0LoCo
Input: a graph G and a starting node nyg.
Output: a table LocalCom]..] of local overlapping communities of ng
idcom = 0
Initialize LocalCom with the empty table
Repeat
V — the local community of ng produced by algorithm A
if ng € Vor|l(ng) NV|>=3,y \F(r‘)/TV| then
LocalCom[idCom| =V
idcom = idcom + 1
end if
Mark all the internal links of V' \ {ng} as "deleted"
Until ( T'(ng) =0 )
Return LocalCom

IOLoCo executes the loop for local community detection k times, where
k is the number of sub-communities explored; £ is small for all datasets
tested. As a consequence, IOLoCo runs efficiently on huge graphs such as
those produced by social web applications. As mentioned before, we can use
any non overlapping local community detection method inside IOLoCo. For
the evaluation presented in the following section, we have used BM EOb with
which we have obtained the better results.

The execution of IOLoCo can produce communities that are highly over-
lapped. In other to merge communities with high overlap, we can follow
the procedure proposed in |50] which is based on the computation of the
overlap(Cy, Cy) = |C1NCy|/min(|Cy|, |Cs|) between two communities C; and
C5. The authors then propose to build a graph where each node is a commu-
nity and there is a an edge between two nodes C; and Cs if overlap(C, Cy) is
greater than a threshold O,,;,. Finally, communities belonging to the same
connected component are merged.
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4.5 Performance evaluation

To validate our algorithms, we present results on some simple datasets with
known communities. Then we make a comparison with existing algorithms on
benchmark graphs. After that, we present some results on the collaboration
network between scientists working in the field of network analysis. We also
present the results on the social network of co-purchases on the Amazon web
site. Finally, results on a real online social network are presented. Besides the
datasets provided by Skyrock, all the others were choosen because they are
publicly available and they represent many different type of real networks.
The dataset provided by Skyrock are not publicly available but have the
advantage that the result can be verified by the provider of the data.

4.5.1 Tests on toy examples

In Figs. 4.6, 4.7 and 4.8 we present examples of results obtained with
[OLoCo. On all these figures, the starting node is the central one and each
community is represented by an ellipse. In Fig. 4.8 for instance, node 1
belongs to the two local communities {0,1,2,3,4} and {0,1,5,6,7} of node
0.

Figure 4.6: The two local communities identified by IOLoCo for the central
node.

4.5.2 Results on NCAA 2000 Football League

The NCAA 2000 Football league [106] is a real dataset which represents
football matches between 110 teams group in 11 conferences. The underlying
network is constructed as follow: the nodes are the team and a links is present



4.5. PERFORMANCE EVALUATION

47

Figure 4.7: No community is found by IOLoCo for the central node.

Figure 4.8: Four communities identified by IOLoCo for node 0.
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Table 4.1: Quality evaluation

Results
2000 NCAA League Chen et al.’s Algorithm BMEOb

Conference Size | Null| Préc| Rap.| F. Null| Préc| Rap.| F.

Atlantic coast 9 2 1 1 1 0 1 1 1
Big East 8 7 1 0.50 | 0.667 | 0 0951 0.972

Big 10 11 |6 1 1 1 0 1 1 1
Big 12 12 |2 1 1 1 0 0991 0.997
Conference USA | 10 | 8 0.93] 0.50| 0.639 | 0 0.91| 0.83| 0.878
Mid American 13 |0 1 1 1 0 0.98| 0.84 | 0.893
Mountain West 8 5 1 0.5 | 0.667 | 0 0.96 | 1 0.975

Pac. 10 10 |1 1 1 1 0 1 1 1

SEC 12 |1 0991 0.996 | 0 1 1 1
Sunbelt 7 7 - - - 0 0.64 | 0.51 | 0.566
Western Atletic | 10 | 2 0.84| 0.74 | 0.758 | 0 0.75| 0.66 | 0.700

between two node if and only if the two team have played a match together.
The teams of the same conference usually play together and the matches
between conferences are uncommon. That leads to a natural division into
communities: the conferences.

We compare our non overlapping method, BMEb, with the method by
Chen et al. on this dataset. For each node, it local community is computed
using each algorithm, supposing that it must return all is conference as result.
We can then compute the precision, the recall and the F-score and average
for each conference. The table 4.1 gives the result. In this table Null gives
the number of nodes that each algorithm says they do not have a community.

The results in table 4.1 show that our algorithm is able to find the com-
munities for each team, and that these communities are of good quality.

4.5.3 Comparison with the LFR benchmark

We compare BMEOb, BME1, and IOLoCo to the algorithms presented in 28]
and |26] on networks generated by the benchmark proposed by Lancichinetti
et al.|78|, using among others, a parameter v that is the mean value of
Dot /| D], where D denotes a community. A network of size 1000 is generated
for each value v € {0.1,0.2,...,0.6}. For each given value of v, a network
G =< V, E > is generated. Then, for each algorithm, we proceed as follows:
for each node n of G, we compare the partitions D U (V' \ D) and LU (V' \
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L) where D is the community of n in G and L is the local community of
n generated by the algorithm. This is done using the normalised mutual
information as performance index.

accy, introduced by Papadakis et al. [121] for comparing estimated com-
munities S}, i € {1,...,k} and actual ones S;, i € {1,...,k}, and is defined
as:

acc,, = - (4.10)
L=z
where
k
1 |S; N S]]
= oy i 411
acc = ¢ 2 15,Us) (4.11)

Note that in our context & = 2. This index is interesting because acc,, = 0
for random partitions and acc,, = 1 when the two partitions are equal.

Given an algorithm and a network with parameter v, Fig. 4.10 gives
the average value of acc,, when all nodes are considered. On this bench-
mark graphs, the three algorithms introduced here perform better than the
algorithms presented in |28, 26|, and IOLoCo is the best.

12
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Figure 4.9: Performance (acc,,) of the 5 algorithms on six datasets (lower
values of ¥ mean more separated communities).
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For comparison purposes, we also reports result using normalised mu-
tual information (NMI) in figure 4.10. This results are consistent with the
previous one.

IMNs Comparison

1.0

s—a Chen
a4 BMEOQ
e—e BMEL

I0LoCo |

IMN

O'%.I 0.2 0.3 0.4 0.5 0.6

Figure 4.10: Performance (NM1) of the 4 algorithms on six datasets (lower
values of ¥ mean more separated communities).

4.5.4 Results on Netscience

The Netscience dataset [108] represents the collaboration network between
scientists working in the field of network analysis. Two authors are linked if
they have co-published at least one paper. This network has 1589 nodes and
2742 links. It has several connected components with the largest one having
379 nodes. It also has several connected components of size two and three,
leading to trivial communities. Fig. 4.11 gives the distribution of the sizes of
the local communities found by Chen et al., BME1 and [OLoCo. The quality
of the local communities cannot be easily compared on this dataset, because
no ground truth is available (we ignore what are the “true” communities).
However, we observe although for each size of community all the algorithms
gives similar results, Chen et al.’s algorithm fails to find a community in
20% of the cases (more than 300 nodes with a local community of size zero).
This is probably a consequence of the fact that these nodes belong to several
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Figure 4.13: Netscience - sub-communities of nodes for which Chen et al.’s
method fails.

communities. To check that, we have plotted the distribution of community
sizes found by the two other algorithms for the 317 nodes which do not have
local communities according to Chen et al.’s method. Fig. 4.12 presents this
distribution; 218 (around 69%) of these nodes have a local community of more
than 3 nodes. Fig. 4.13 shows that some communities found by IOLoCo for
the nodes without local communities according to Chen et al.’s method are
divided into several sub-communities. These observations confirm the fact
that the algorithm proposed by Chen et al. sometime fails to identify the
local community of a node because it does not consider the possibility of
overlapping.

4.5.5 Results on Amazon 2006

The Amazon 2006 dataset |82] represents the network of co-purchases on the
Amazon website collected during the Summer of 2006. The dataset contains
product meta-data and review information about 548,552 different products
(Books, music CDs, DVDs and VHS video tapes). For each product the fol-
lowing information is available: title, sales rank, list of similar products (that
get co-purchased with the current product), Detailed product categorization,
time, customer, rating, number of votes, number of people that found the
review helpful. A network is constructed using this data as follows: each
node is a product and there is a link between two nodes if the corresponding
products are frequently purchased together. This network has 548,552 nodes
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Table 4.2: community of the book "Merlin Trilogy".

Num. Members description

The Wicked Day (Arthurian Saga, Book 4)

1 The Last Enchantment (Arthurian Saga, Bk. 3.) Arthurian Saga

The Crystal Cave (The Arthurian Saga, Book 1)
The Sword in the Stone

2 The Book of Merlyn Merlin and Arthur

The Once and Future King

Table 4.3: Local community of the book "Specter of the Past (Star Wars)".

Star Wars
The Last Command (Star Wars)
Children of the Jedi
Heir to the Empire (Star Wars)
The Last Command (Star Wars)
Dark Force Rising (Star Wars Vol. 2)
Champions of the Force (Star Wars)
Vision of the Future (Star Wars)
Star Wars Darksaber
Dark Apprentice (Star Wars)
Planet of Twilight (Star Wars (Random House Paperback))
Jedi Search (Star Wars)
The Last Command (Star Wars)
"T, Jedi"

and 1,788,725 edges.

The overlapping local communities found by IOLoCo for the book "Merlin
Trilogy" (see table 4.2) of Mary Stewart are L; = {The Wicked Day, The
Last Enchantment, The Crystal Cave} and Ly, = {The Sword in the Stone,
The Once and Future King,The Book of Merlyn}. The books of L; belong
to the series Arthurian Saga and the books of Ly have Merlin and Arthur as
main actors.

Another example is given in table 4.3 where the community of the book
“Specter of the Past (Star Wars)” is presented. In these simple examples,
the local communities found by IOLoCo are meaningful: they correspond to
the same series or to the same theme. These communities can clearly be
exploited by a recommendation system.
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4.5.6 Results on Skyrock friendship network

Figures 4.14, 4.15 and 4.16 show some examples of local communities in the
Skyrock Friends network. The first community (Fig. 4.14) was obtained
starting from node pompier-france37 (pompier means fireman). It has 59
members and is divided into three sub-communities. The user’s pseudos in
this community are in majority related to fireman. Not surprisingly, one sub-
community is related to police forces. The second local community presented
in Fig. 4.15 was detected starting from node carpistedu62 (“carpiste” is
French for “carp’s fisher”). This local community has 19 members. The
majority of the pseudos contain carp and 62. 62 is the number of a French
department called Pas-de-Calais. This is thus a local community composed
of carp’s fishers from this region.

Finally, the last figure show the local community of a future mother.
This community has three sub-communities with all the pseudo related to
new mother.
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Figure 4.14: Skyrock - a community of firemen.
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Figure 4.15: Skyrock - a community of carp fishers.

4.5.7 Results on Skyrock words network

In Skyrock, user can also used tags to describe their profiles. With this tags,
a network can be built as follow: each tag is a node and a link is created
between two nodes if at least k user have this tag.

We have applied our local community detection to this network and bellow
are some detected communities. Fig. 4.17 presents the local community of
the tag animauz which has two sub-community. One seem to be related to
names (a) and the other to abuse.

Fig. 4.18 presents the local community of the tag aimer with word related
to sentiments. And Fig. 4.19 presents the community of the tag audi with
many word related to racing games.

4.6 Related work

In this section we recall some works quite similar to local community iden-
tification. The first one named egomunities [50| consists in detecting the
overlapping communities on the neighbours of a given node (discarding the
rest of the network). The second one called multi-ego-communities consider
multiple starting nodes and detect the communities that contain them [36].
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Figure 4.17: Skyrock - local community of the word animaux
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4.6.1 Egomunities of the first level

To detect all the overlapping communities on the neighbourhood of a partic-
ular node, the authors in |50| have proposed to used the cohesion of a set of
node defined as:

() Ain(D) + Aput(D)

C(D) = (4.12)

where D is a community, A, (D) and A, (D) are respectively the number
of internal triangles of the set D (with all three nodes in D ) and the number
of triangles pointing out of the set D (with exactly one of the nodes out of
D).
Let E be set of nodes. The cohesion is used to detect the set of overlapping
communities D on the neighbourhood of given node u in a graph G as follows:

1. from the graph G extract the graph G’ containing only the set of nodes
wUT'(u) and all their links;

2. from G’ remove all the nodes with degree one as they can not form
triangles;

3. select the node v with the highest degree from I'(u) and add w and v
to E;

4. while there is a node w : w € I'(u) and w ¢ E which produces a
maximum positive cohesion gain, add w to F;

5. add F to D;

6. repeat this process from step 2 until there is no more discovered com-
munity

7. return D.

We do not have reported any comparison with this method because it
do not solves the same problem: it finds the all the community in the sub-
graph composed of a node and its neighbours. From our point of view, due
to the size of the networks analyzed using this method, other overlapping
community detection techniques presented in chapter 3 can be suitable to
solve this problem and it lacks such kind of comparison.
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4.6.2 Multi-ego-communities

Multi-ego-communities are defined in [36] as a local community centred
around k (k > 1) nodes. To compute the multi-ego-communities, the authors
of |36] have first proposed a new node similarity measure based on informa-
tion diffusion on networks. To compute the similarity between a node u and
all the other nodes of the network, the following process is proposed:

1. initialise the similarity score of u with one and the score of all the other
nodes to zero;

2. at each iteration, the similarity of each node is set to the average sim-
ilarity of its neighbours;

3. rescale all the similarities so that the lowest similarity is set to 0;
4. reset the similarity of node u to 1;

5. repeat steps 2 — 4 until convergence.

This procedure produces the values for the similarity call carryover opinion
metric by the authors. It gives a way to have a similarity between a given
node and all the others. The similarity of node u is always reset to one as it
must always be perfectly similar to itself. The ego-community of a node is
then the set of nodes more similar to it.

Based on this similarity measure, and a set of k nodes U = {uy, ug, ..., ux }
the multi-ego-communities are detected as follows:

1. for all nodes of the network, evaluate the similarities to each node of
the set U,

2. the similarity of a node v to the set U is given by the minimum or the
geometric mean of all its similarities to nodes of U;

The multi-ego-community of a set of nodes is then the set of nodes more
similar to this set.

We do not have reported any comparison with this approach because it
was posterior to our contributions.
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4.7 Conclusion

We have presented new algorithms for local community identification in social
networks that perform better than all the compared methods in term of
accuracy. [OLoCo is able to identify the overlapping local communities of
a given node, a situation which arises frequently in real social networks and
is not handled correctly by the algorithms with which the comparisons were
performed.

The performance of our approaches were assessed on synthetic and real
world data. The application to the dataset Amazon 2006 shows that the
communities produced are meaningful and may be used to enhance recom-
mendation systems.

The detection of local communities is just a tool for more complex network
analysis tasks. In real world social applications, the networks are usually very
dynamic (nodes and links are created and deleted). The following chapter
will present an application of local community identification to enhance the
prediction of some users’ behaviours in social networks.
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CHAPTER 5

Local community identification applied
to the prediction of user behaviours

“I believe that if you show people the problems and you show them the solutions
they will be moved to act.”

- Bill Gates

5.1 Introduction

The behaviours of users are often social or viral in the sense that one user will
influence or be influenced by his or her friends. It thus makes sense to use
the social connections of a user in order to predict his/her behaviours more
accurately. The main intuition behind using social ties is that close friends
influence more a user in the adoption of a behaviour [96]. The challenge
is then to identify the set of close friends of each user. In this chapter we
propose to model this notion of close friends using local communities.

In this chapter, local community analysis is applied to two different dy-
namic users’ behaviours. The first phenomenon that will be studied is the
churn. The term churn is derived from change and turn. It means the dis-
continuation of a contract. Churn prediction is a well studied data mining
task in the context of telecommunication networks [155]. It consists of pre-
dicting whether, in a near future, a user will leave his present operator for
another one. With the multiplication of social network platforms that gen-
erally provide similar functionalities, a subscriber of a particular platform
can decide to churn and switch to another network. This phenomenon was
observed on several platforms when Facebook arrived on the online social
network market.

63
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The contribution of local community-based attributes for churn predic-
tion will be illustrated here on a dataset provided by Skyrock (http://www.
skyrock.com). Skyrock is a large online blog network where users can es-
tablish friendship relations. It is then possible to compute the communities
in this friendship network. The aim of this work is to show that the local
communities of users in real friendship social networks such as Skyrock, pro-
duce relevant attributes for the construction of a supervised learning model
for churn prediction.

The second application of local community analysis to predict users’ be-
haviours is social recommendation. Given the incredible amount of items
available in web stores like Amazon [85], it is very difficult for a user to find
the right item he/she may want to get or purchase. Recommender Systems
assist users in this task. In a well studied class of recommendation systems
called user-based collaborative filtering [76, 3|, a user gets, as recommenda-
tions, items already purchased' by users similar to him /her. This similarity
is generally based on common purchase habits. However, when a user do not
already have purchased many items, he/she cannot get recommendations (or
just a few) because he/she is more similar to users also without many items.
To overcome this problem (referred as cold start [43]) recommendations can
rely on the “real friends” of the user based on his/her explicit social network.
These methods are called social recommendation. Although when a user is
new to a platform, he/she does not have friends, it is usually easiest to let
him/her connect to existing friends (by importing his emails’ contacts, for
example, and finding already registered addresses) than make him buy many
products. In this chapter, we propose a way to use local communities for
social recommendation. The contribution of local communities to social rec-
ommendation will be illustrated using two well-known real datasets: Flizter
and LastFM.

The rest of this chapter is organized as follows: in section 5.2, we present
the churn prediction problem in the context of social networks; section 5.3
presents the application of local community analysis to social recommenda-
tion; and finally section 5.4 presents some conclusions and perspectives.

Contents
5.1 Introduction . ... ... ....... ... 63
5.2 Churn prediction in social networks . .. ... .. 65
5.2.1 Proposed methodology . . . . . .. ... ... ... 66
5.2.2 Dataset description and attributes extraction . . . 67

'We will used the term purchase in this manuscript but it can be replaced by clicked,
view, rated, etc. depending on the context and the particular application.
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5.2 Churn prediction in social networks

In business applications, the churn corresponds to customer loss. In telecom-
munications, a subscriber is said to have churned when he leaves one carrier
to move to another [68], and this phenomenon has been extensively studied
[101, 37]. Indeed, it is generally admitted that retaining an existing customer
is less expensive than winning a new one [59]. As a consequence, telecommu-
nication companies tend to move important marketing efforts from customers
acquisition to customers retention. Churn prediction is therefore an impor-
tant task for Customer Relationship Management (CRM).

The objective of churn prediction in the context of social networks is to
estimate the likelihood that a given user will stop using a social network
platform in the near future. A churner can thus be defined as a user who
has become inactive for a certain period of time. This knowledge can be
exploited by the platform operator to take preventive actions: if the user is
likely to stop using the platform, it could be interesting to send him some
incentives (personalized recommendations, free applications, ...).

Most of the methods for churn prediction belong to three main cate-
gories: feature-based methods|68|, network-based methods[37, 155] and hy-
brid methods. In feature based methods, to predict churn, dozen to hundred
of attributes are generally derived from the customer’s profiles (age, location,
gender,...) and service usages (last usage date, frequency of usage, amount
spent, ...). These features are then used to build a statistical model for churn
prediction based on supervised learning [68]. This pure feature-based churn
prediction has the limitation that it does not take into account the social
relations between subscribers.

Network-based methods use the social links to detect the churners. The
methods of this category usually model the churn prediction as a diffusion or
contagion process [37]: starting with the known churners as seeds, each seed
tries to activate its neighbours at each iteration. This processes is repeated
until convergence or up to a maximum number of iterations. The analysis
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carried out in the work proposed by Dasgusta et al. [37] explores the propen-
sity of a subscriber of a mobile operator to churn, depending on the number
of friends that have already churned.

Other studies have also been conducted in P2P networks. For example,
authors of [16] have studied the bias induced by the length of the observation
period while predicting the churn in P2P networks.

The limitation of network-based approaches is that they usually do not
consider other available information (socio-demographic information, age,
gender, address, profession,...) when they are available.

Finally hybrid methods combine the two previous ones. The proposed
methodology of this chapter falls in this category and will be explained in
the next section.

5.2.1 Proposed methodology

This section presents a new methodology for churn prediction in social net-
works. Our methodology is hybrid and combines the node attributes and the
network information. In social networks, although node attributes are usu-
ally important, social ties or links are also relevant for churn prediction [37]
because people form communities and are more active with members within
their local communities than with members outside their local communities.
It follows that if many members of a users’ community stop using a service,
the number of people with whom this user can interact through that service
decreases, and the probability that he also churns gets higher. The local
community of a user can therefore be mined to provide community-based
attributes for churn explanation.

Our methodology follows a supervised learning approach and can be sum-
marised as follows:

e at the start of the learning period, the network of active user is ex-
tracted;

e at the end of the learning period, node attributes and network-derived
attributes are extracted and a supervised learning model using these
attributes is constructed;

e the constructed model is used to detect the churners for the prediction
period.

This methodology is general and is illustrated in figure 5.1. In the next
section a concrete example will be presented on a real dataset.
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Figure 5.1: Experimental setup used for churn prediction.
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Figure 5.2: The main page of the Skyrock’s social site.

5.2.2 Dataset description and attributes extraction

Skyrock (http://www.skyrock.fr) is a social platform where users (called
“skynautes”) can (among other actions) create blogs, add comments, create
tags and define explicitly friendship relations. The global dataset of Skyrock
has 31.3 x 10% nodes (the users’ profiles) and 1.17 x 10° links (the friendship
relations). Fig. 10 shows a screenshot of the Skyrock Social Network.

The dataset used for the experimentations is constructed as follows (Fig. 9):
from the global network, the sub-graph of active users in March 2011 is ex-
tracted, because churn prediction is only relevant for active users that become
inactive. A user is active if he has made at least one connection to the plat-
form during the considered period of time. In the following, only this graph
formed by active users is taken into account.

After that, all the nodes that have more than 5,000 (this threshold was
provided by the Skyrock) friends are removed because they generally repre-
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Figure 5.3: Global Skyrock friendship degree distribution

sent celebrities (“mega-hubs” in the network) with abnormal behaviour. This
new sub-graph has 2.24 x 10° nodes and 127.428 x 10° links compared to
the 31.3 x 10° nodes and 1.17 x 10? friendship links of the whole network.
Fig. 5.3 presents the degree distribution of the nodes in this network. Not
surprisingly, the degrees seem to follow a power law.

Local communities are then computed using the algorithm IOLoCo pre-
sented in chapter 4. The distribution of sizes of these local communities
is shown in Fig. 5.3. For the sake of comparison, the global communities
detected by the Louvain algorithm [18] are also computed.

Then, some simple attributes are defined to characterize a node and its
vicinity. We consider only very simple attributes (degree, community size,
proportion of active nodes, etc.) which can be computed quickly and have
straightforward interpretation. Some of these attributes are related to the
starting node and some of its social circles such as its local community, the
first neighborhood , the second neighborhood (see Fig. 6.3) and the Louvain’s
community (the community structure with the highest modularity after ten
executions). All these attributes are presented in table 5.1.

Then 50,000 users are selected at random to create the learning dataset.
The test set contains all the users of the period following the training period
that where known in the training period. A supervised learning algorithm is
trained and estimated on this dataset.

The results of attribute extraction using the methods introduced above,
can now be presented. It’s worth looking at the sizes of the sets of nodes
used to compute the attributes: the local community size (attribute Com-
Size) ranges from 1 to 547 with a mean of 21. The first neighborhood size
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Table 5.1: Some attributes for churn prediction
Attribute name Description
Degree The degree of the node
cC The local clustering coefficient of the node

3 Activity The number of time the node has made a connexion
during the learning month

4 || DaysAfterLastCon || The number of days since the last connexion of the node
during the learning month

D LocalComSize The size of the local community i.e. the number of nodes
of the local community

6 LocallnProp The internal proportion i.e. the proportion of local com-
munity’s node directly connected to the starting node

7 LocalAvgDegree The average degree of the nodes inside the local com-
munity

8 LocalPropInact The proportion of nodes inside the local community that
are already inactive

9 LocalAvgAct The average activity for the nodes of the local commu-
nity

10 NeigSize The size of the first neighborhood

11 NeigAvgDegree The average degree of the first neighborhood

12 NeigProplnact. The proportion of nodes inside the first neighborhood
that are already inactive

13 NeigAvgAct The average activity for the nodes of the first neighbor-
hood

14 Neig2Size The size of the second neighborhood

15 || Neig2AvgDegree || The average degree of the second Neighborhood

16 Neig2Proplnact The proportion of nodes inside the first Neighborhood
that are already inactive

17 Neig2AvgAct The average activity for the second Neighborhood

18 LouvainSize The size of the Louvain’s global community the node
belongs to

19 || LouvainAvgDegree || The average degree of the Louvain’s global community
the node belongs to

20 || LouvainProplInact. || The proportion of nodes inside the Louvain’s global com-
munity the node belongs to that are already inactive

21 LouvainAvgAct The average activity for the Louvain’s global community
the node belongs to

22 Not active? The target attribute we want to predict




CHAPTER 5. LOCAL COMMUNITY IDENTIFICATION APPLIED TO THE
70 PREDICTION OF USER BEHAVIOURS

Figure 5.4: A central node and its first neighbourhood (inner circle), its
second neighbourhood (outer circle) and its local community (nodes in bold).

(NeigSize) is large, ranging from 1 to 4,644 with a mean of 669. The second
neighbourhood size (Neig2Size) is even larger (4 to 423,089 with a mean of
79,702). Finally, the sizes of global communities ( LouvainSize) are as usual
very heterogeneous, ranging from 2 to 511,457 with a mean of 359, 625. Thus,
the local communities are by far the smallest sets of nodes that we will con-
sider. This leads to a faster algorithm and allows us to focus on the most
important neighbours.

In this application, the churn problem consists, starting from a set of
active users by the end of March, to observe their activity during the month
of April in order to predict which users will churn in May. The objective is to
show the contribution of the (local) community of a node in churn prediction.
This is presented in the next section.

5.2.3 Experimentations and results

Various models, based on different subsets of attributes, were built. In-
finiteinsight, a tool provided by KXEN (www.kxen.com) (that is known to
be very efficient |25, 46]) is used to identify the most relevant attributes,
amongst the attributes enumerated above. This is done using their contribu-
tions to the underlying model. In this context, the output of Infiniteinsight
is a ranking of the attributes considered as explanatory variables. Some clas-
sical ranking tools for logistic regression are also used to confirm this ranking
and for reproducibility purposes.
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Table 5.2: Evaluation with Support Vector Classifiers

Attributes sets Avg #nodes used || AUC
All 431,978 0.855
All without Louvain’s global community 72,353 0.854
Node & local community 21 0.832
SPA method - 0.829
Node & second Neighborhood 71,734 0.826
Node & first Neighborhood 598 0.824
Node & Louvain’s global community 359,625 0.823
Node only 1 0.815
0 0,05 0,1 0,15 02 0,25 03 0,35
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Figure 5.5: Variable contributions to the K2C/K2R model

Experiments with various attributes sets

All attributes are numerical and have been normalized between —1 and 1.
The experiments are based on standard Support Vector Machines - a well
established statistical classifier. The LIBSVM software |23] is used.

The Radius Basis Function (RBF) kernel has been chosen. This kernel
non-linearly maps samples into a higher dimensional space and allows to
build non-linear decision frontiers. The linear kernel is a special case of RBF
[75]. The parameters C' and v of the model have been selected using grid
search optimisation technique.

To train the different models, the following sets of attributes were used:

1. all the attributes;
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2. the node attributes;
3. the node attributes and the first neighborhood attributes;
4. the node attributes and the second neighborhood attributes;
5. the node attributes and the local community attributes;
6. the node attributes and the Louvain community attributes;
7. all the attributes except Louvain community attributes;
8. the first neighborhood attributes;
9. the node second neighborhood attributes;
10. the local community attributes;

11. the Louvain community attributes.

The models were trained and then applied to the test set in order to
compute the Area Under ROC Curve (AUC) was computed. For sake of
comparison, the AUC obtained with the method by Dasgusta et al. (SPA)
[37] is also displayed.

The Receiver Operating Characteristic (ROC) curve is a plot of the true
positive rate against the false positive rate for the different possible decision
thresholds. The area under this curve represents how well the model can
separate the two classes.

Table 5.2 presents the results of the experiments using the above perfor-
mance indicators. The results are ranked by the value of AUC which is the
most relevant performance indicator because the classes are unbalanced.

One can observe from table 5.2 that the best model is obtained by using
all the attributes. This illustrates the well known robustness of SVM models,
which are able to cope with a lot of variables. The second model is the one
with all variables except those extracted from global communities. This is
not a surprise, because global communities are too large for this application
and thus are not able to capture the local dynamics of the network. The
local circle that gives the best prediction is the local community computed
with IOLoCo.

The second most efficient model (bolded in table 5.2) is based only on the
attributes computed from the user and its local community. On average, this
model considers the state of 21 nodes, while the average degree of the nodes is
669: the local community allows to focus on the most important neighbours.
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In an application where local communities are incrementally computed and
maintained, this leads to very efficient estimators.

The relevance of the local community is confirmed by the observation
that when the nodes attributes are not considered, the best performance
is achieved using the local community only. This shows clearly that the
most important contribution to churn prediction is provided by the local
community.

One can observe in table 5.2 that the method by Dasgupta et al. (SPA)
[37] has a performance that is close to what is obtained with the local com-
munity. However, contrary to SPA, the method proposed here can easily
take into account non graph-based attributes such as age, gender, profession
and salary. in the statistical model. Moreover, the approach proposed in
this chapter is more flexible and modular with a clear separation between
the computation of the local community and the estimation of the outcome:
both the community detection algorithm and the statistical model could be
replaced by other versions adapted to specific applications.

Finally, the second neighbourhood leads to a better AUC than the first
one. However, it still leads to an algorithm that is less accurate and much
slower than the one based on the local community.

Ranking of attributes

The second experiment uses Infinitelnsight, a tool developed by KXEN (a
data mining company). The K2C/K2R (Kxen Consistent Coder and Robust
Regression) modules are able to select the most relevant attributes and com-
pute their contribution to the model. With these modules, one can built
a model using all the attributes except those related to the activity of the
node itself. The aim of this test is to identify the topological attributes that
have the most important contribution. The results are shown in figure 5.5.
It can be seen from figure 5.5 that the most relevant topological attribute
for churn prediction is ProplInact: the proportion of inactive members of the
local community. This result reinforces the intuition that nodes are highly in-
fluenced by the behaviours of local community members: the most important
explicative factor of churn is the number of friends in the local community
that churned during the period of observation. This generalizes the result of
[37] where it was shown that the number of friends (neighbours with strong
links) that have churned, has a great impact on churn prediction.

Figure 5.5 also shows that the second most relevant topological attribute
is the proportion of nodes that are inactive in the second neighbourhood
(Neig2InactProp). This is consistent with the previous test : after the local
community, the second neighbourhood produces the most relevant attributes.
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Attribute Coefficient | Rank
LocalProplInact 7.96 1
Activity -7.31 2
Neig2Proplnact. 4.34 3
LocalAvgAct. -4.05 4
DaysAfterLast 3.15 5
Neig2AvgDegree 1.92 6
Neig2size -1.82 7
NeigAvgAct. 1.58 8
LouvainProplnact -1.45 9
LouvainAvgAct. -0.86 10

Table 5.3: Ranking of attributes (only the top ten) using the absolute value
of predicted coefficients of the linear regression.

Because Infinitelnsight is a commercial tool, some more classical ranking
of variable are presented. For that purpose, a linear regression model is built
using all the attributes (after normalization). The AUC of this model is
0.84, which very close to the result of the SVM model. The first ranking
method is simply by using the absolute value of the estimated coefficients of
the logistic regression. The coefficient of the logistic regression are given in
table 5.3. Although this ranking is not the same as the one produced with
InfiniteInsight, it is coherent in the fact that the attribute ProplInact is still
ranked first. The attribute Neig2Proplnact. also has a good ranking with
the third position.

The second considered approach is to rank predictors by the probability
of the Wald chi-square test [63|, Hy : 5; = 0 ; the null hypothesis is that
there is no association between the predictor i and the outcome after taking
into account the other predictors in the model. Small p-value indicates that
the null hypothesis should be rejected, meaning that there is evidence of a
non-zero association. This metric only indicates the strength of evidence that
there is some association, not the magnitude of the association. Thus the
ranking should be interpreted as a ranking in terms of strength of evidence
of non-zero association. This ranking is presented in figure 5.4. Here also the
attribute LocalProplInact. rank first and the attribute Neig2PropInact. rank
third.

Using a consensus from this two rankings, the two most relevant attributes
are LocalPropInact. and Neig2Proplnact. as suggested by the ranking per-
formed by InfiniteInsight.
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Attribute p-value | Rank
LocalProplInact | < 2e-16 1
DaysAfterLast | < 2e-16 1
Neig2Proplnact. | 2.98e-16 3

Neig2size 1.17e-13 4
Neig2AvgDegree | 8.63e-13 5t

LocallnProp. 3.21e-06 6
Degree 4.36e-05 7
NeigAvgAct. 0.00100 8
NeigProplnact. 0.00392 9
LouvainProplnact | 0.01183 10

Table 5.4: Ranking of attributes (only the top ten) using the p-value of the
Wald Chi-Square Test.

5.3 Recommendation

The second application of local community analysis discussed here is recom-
mendation. Recommender Systems (RSs) help users deal with information
overload by proposing to them items suited to their interests. The aim of
this section is to show that the local communities can provide a good model
for the notion of close friends in the context of recommendation.

5.3.1 Introduction to recommender systems

The history of RSs started in the late 1990s with work by the GroupLens
team at University of Minnesota [43] to recommend news and by MovieLens
in 1996 to recommend movies, which demonstrated that automated recom-
mendations were very well received by users. Then Amazon, which had been
incorporated in 1994, published its patent in 2001 and has been serving rec-
ommendations ever since, acting as a de facto reference showcase for the
efficiency of RSs [85]. The first papers on collaborative filtering showed how
to use the opinions of similar users to recommend items to the active user [3].
Since then, research in RSs has become very active (see for example a recent
RS survey including more than 250 references [43] ) and RSs have been suc-
cessfully used in many industry sectors to recommend items: movies (Netflix
[17], MovieLens|98]), products (Amazon.com [85] , La Boite & Outils [125]),
songs |4], jobs to Facebook users (Work4 Labs.com [39]), friends, banners or
content on a social site (Skyrock.com [114]) etc.

Recommender systems can be classified into three main classes: content
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based, collaborative filtering, and hybrid systems [118] which combine the
two previous ones. In content based recommender systems [86] , each user
and each product is described with a set of attributes. A similarity measure
is then used to compare each user to each product and each user gets the
N items that are most similar to is profile as recommendations. The main
problem of this approach is to describe all the items and the user. Because
this description is very difficult to collect, it is usually incomplete and error
prone [39].

In collaborative filtering recommendation systems [139] a user gets rec-
ommendations based on what other users have already chosen. Two main
classes of collaborative filtering systems exist: user-based and item-based. In
user-based collaborative filtering, a given user u get recommendation from
the users that are most similar to him /her. In item-based collaborative fil-
tering, a user u get recommendations from items that are more similar than
the items he/her has already purchased. In the particular case of user based
collaborative filtering, an important question is how to define the similarity
between users in order to perform the recommendations. Given a rating ma-
trix R with R(u,p) = r if user u has given the rating r to the product p the
following similarity functions can be defined between users:

~ R(u).R(v)
Cos(u:v) = TR TR 5-1)
Pearson(u,v) = Cov(F(u), R(v)) (5.2)
’ OR(u)O R(v)

One problem of user-based collaborative filtering using these functions,
usually referred as cold start|140] is that new users cannot get recommenda-
tions because they are most similar with other people without any products.
If the content is available, a content-based or an hybrid method could help
solve this problem. Otherwise, one can solve this problem using social rec-
ommendation as discussed in the following sub-section.

5.3.2 Proposed Social recommendation model

Social recommendations are recommendations that rely on one’s social con-
nections in order to make personalized recommendations of ads, content,
products, and people [92]. The main question here is how to choose the
social connection to rely on for recommendation. As for the churn problem
described above, many social circles can be considered.

Users belonging to the local community of a particular user u are expected
to provide goods recommendations to him. Moreover, if a member v of the
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local community of u if connected to u with a shorter path than another
member w, then v is expected to be more reliable for u than w. These
two hypothesis form the basis of our proposed local community-based social
recommendation score. For user u and an item i, this score produces a value
by computing a weighted average of all the rating, for item i, for all users
belonging to the local community of u. The aim of this weighting average is to
make more close friends in the community participate more. More formally,
the score for a user u on an item ¢ is then given by:

ZvELC’(u) R(v,i) x f(d(u,v))
Z’UELC(U) fd(u,v))

LC(u) is the local community of node u, (d(u,v)) is the distance between
nodes u and v, in terms of shortest paths and f is a user defined function to
weight the distance. Two particular choices for f are : the constant function
fi(z) = 1 and the function f5 such that fy(x) = 1 if d(u,v) = 1 and 0
otherwise.

LComScore(u,i) = (5.3)

5.3.3 Ewvaluation

Datasets

To demonstrate the usefulness of our method, we present some results on
various datasets traditionally used in the literature. These datasets are char-
acterized by the number of users, items, preferences (implicit or explicit) and
existing explicit social relationships:

e Lastfm: this dataset contains 92 834 listening information of 17,632
artists by 1,892 users of lastfm.com. There is an explicit friends’ net-
work with 25,434 links.

e Flixster: this dataset contains 8,2 M ratings of about 49,000 movies
by about 1 M users. There is an explicit friends’ network with 26.7 M
links.

Evaluation metrics

To evaluate whether recommended items were adequate for the user; for
example, recommended items were later consumed. We thus have a target
set for each user which represents the set of items he consumed after being
recommended. This can be implemented by splitting the available dataset
into Training / Testing subsets (taking into account time stamps if available).
In this case, metrics are those classically used in information retrieval:
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e Recall@Qk and Precision@Qk are defined as:

1 |R, NT,|

= oy e el 4

RecallQF L2 T (5.4)
1 T,

Precision@Qk = T Ea w (5.5)

where R, = {19,144, ...,i%} is the set of k items recommended to a, and
T, is the target set for a.

e F8 —measure : F[ is designed to take into account both recall and
precision; F'l1 is the most commonly used. F'[3 is defined as:

Fj = 1 + % x PrecisionQk x Recall@Qk
(2 x PrecisionQk + RecallQk

(5.6)

e M APQL (Mean Average Precision) was used, for example, in the Mil-
lion Song Dataset challenge(http://kaggle.com/c/msdchallenge) ;
it is defined as:

MAPQk =

e~ =

L k
1 P,
D52 X (5.7)
a=1 i=1

where P,; is the number of correct recommendations to user a in the

first ¢ recommendations (precision@i for user a) and 1,; = 1 if item at
rank i is correct (for user a), 0 otherwise.

Results and discussion

The evaluation of the proposed local community based model for social rec-
ommendation is presented in table 5.5. In that table, LCR stands for local
community recommender and WLCR stands for weighted local community
recommender. In that weighted version we have used the f, weighting func-
tion defines above. All results are the mean for all the users. As one can
see in table 5.5, WLCR gives the best results with the smallest set of users.
Although it is possible to use other weighting functions, our objective was to
show that local communities are adapted to model close friends.
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@10 Flixster lastfm
Meth./Ind. | Size | MAP | Prec | Recall | Size | MAP | Prec | Recall
1st circle | 32.93 | 0.025 | 0.025 | 0.025 | 26.88 | 0.015 | 0.008 | 0.0212
LCR 6.32 | 0.023 | 0.024 | 0.024 | 5.92 | 0.013 | 0.007 | 0.0186
WLCR 6.32 | 0.030 | 0.029 | 0.032 | 5.92 | 0.016 | 0.011 | 0.0256

Table 5.5: Evaluation of social recommendation

5.4 Conclusion and discussions

In this chapter, we have studied some users’ behaviours prediction problems
in social networks. Local communities, quickly and accurately computable,
can be used to extract attributes that are relevant for those problems.

In the next chapter some methods to predict the dynamic of local com-
munities will be presented. Indeed, the analysis of the dynamics of local
communities can clearly help to better understand the users’ interactions

and future behaviours.
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CHAPTER 6

Communities in dynamic networks

"The dynamic of a relationship changes when one person gets sober.”

- Trent Reznor

6.1 Introduction

Social Networks are dynamics by nature: new nodes arrive, existing nodes
leave. This is also true for links. Community detection methods in com-
plex networks have for long only considered the static aspect of networks: a
snapshot of the graph is taken at a particular time and the communities are
computed. Recently, many works on community detection in dynamic net-
works have started. Some authors try to follow the evolution of communities
at different time-steps [120, 146, 7|, other dynamically update the existing
communities with the new events (creation or deletion of nodes/links) [117].
Finally, the last class of methods try to discover communities which are con-
sistent in many time-steps [9)].

One problem actually unexplored is the prediction of community dynam-
ics: knowing the evolution of the network until the time-step ¢, can we predict
the communities at time-step ¢ + 17

In this chapter, we propose two general approaches for communities pre-
diction. The first approach consists in directly predicting whether or not a
particular node will be member of a community. This is done by computing
some local attributes and then constructing a machine learning model for
prediction.

The second method is based on interaction prediction. In this approach,
given the evolution of the network until time-step ¢, the interactions are pre-
dicted for time-step 41 and the communities are computed in the predicted
network. The assumption behind this approach is the following: if one is able

81
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to predict the structure of the network with a high accuracy, he just needs to
compute the communities on that predicted network to have the prediction
for the communities.

Although many methods for links prediction exist [88|, they generally
consider that the network is growing: new links are created but existing ones
remain forever. However, in many real social networks, new links are created
and existing links are removed. For example, in a call graph, the contacts a
particular person calls evolve with time: he stops calling some of them (e.g.
ex girlfriend) and start calling others (e.g. new course mate). The interaction
prediction problem considered in our second approach is then more general
than link prediction.

This chapter is organized a follow: Section 1 presents different approaches
for community detection in dynamic networks. Section 2 presents our at-
tempt to directly predict the members of a community . Section 3 presents
the proposed models for interactions prediction in social networks and how
to apply them to communities prediction. The performances are evaluated
and discussed in section 4. Finally, section 5 draws some conclusions and
perspectives.
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6.2 Dynamic communities

There are two different dynamics that can be considered in networks: in-
teraction networks or evolving networks. In interaction networks, only the
events that have taken place during a time-step form the links of this period
and only the corresponding nodes are considered. For example, in a scientific
collaboration network, if the time-step is one month, only collaboration dur-
ing each month are considered. Conversely, in evolving networks, new events
are just appended to the existing network.

When talking about community detection in dynamic networks, there is
actually no consensus and formal definition of what is a community. The
proposed methods also take into account one or both of the above presented
dynamic networks.

We present here some methods for communities tracking, communities
updating, long-term communities detection.

6.2.1 Community tracking

The general idea behind this class of methods is that one can compute the
communities in each time-step independently and match them for each pair of
consecutive time-steps. Between two consecutive time-steps, for each commu-
nity, the following events are possible: continuation, fusion, division, birth,
death. The methods falling in this category differ on the one hand by the
choice of the algorithm used to detect the communities in each time-step, and
by the matching method used between the time-steps on the other hand.

Palla et al. [120], for example, have proposed to use the clique percolation
method [119] to detect the communities in each time-step. For the matching
between two consecutive time-steps of an interaction network, these authors
first compute the communities in the union graph. Due to the properties
of the clique percolation method, each community present in at least one of
the two consecutive time-steps is contained in exactly one community of the
union graph (see [120] for justifications). The matching is finally done as
following:

e if a community of the union graph contains only one community of
the time-step ¢ and one community of the time-step £ + 1 then it is a
continuation event.



84 CHAPTER 6. COMMUNITIES IN DYNAMIC NETWORKS

e if a community of the union graph contains more than one community
for one of the two consecutive time-steps then the communities are
matched with the number of common nodes descending.

The principal limitation of this method is that it is based on the particular
properties of the clique percolation method and can not be directly applied
to other community detection methods.

Greene et al. [56] have proposed a more general method which can be used
with any static community detection algorithm. These authors proposed to
first use a static community detection method at each time-step and then
to match them using the Jaccard similarity [133]. However, this method is
not suitable for non deterministic community detection methods because the
result depends on the previous ones. This non determinism can be reduced
using ensemble-based community detection methods as described in [141].
Although this method can be applied to both types of dynamic networks,
experimentation by the authors have been performed in evolving networks.

Tantipathananandh et al. [146] have defined the tracking problem as a
graph colouring problem. Despite the nice formulation of the problem, the
solution proposed is computationally expensive.

6.2.2 Community updating

The basic idea of this class of methods can be described as follows: detect
the communities at a reference time-step ¢y. For each following step, update
the community structure obtained at the precedent step with the elemen-
tary events that are produced during the two consecutive time-steps. The
elementary events that can be considered are:

e a new link is added;

e an existing link is deleted;

e a new node with £ links are added;

e an existing node with k links are deleted.

Methods from this category consider evolving networks only.
In their works, Nguyen et al. [117] have proposed to manage the elemen-
tary events as follows:

e a new link is added: if the link is internal to a community, it reinforces
the cohesion and the community structure remain the same. FElse,
one need to check if the new edge can initiate the fusion of the two
communities it crosses.
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e an existing link is deleted: if the link crosses two communities, it re-
inforces the separation between them and the community structure
remain the same. Else, one need to check if the new edge can initiate
the split of the community it belongs to.

e a new node u with k links are added: if the node has no link then a
new community is created containing only the node u. Else the node u
comes with one or more links connecting one or more communities. In
that case, for each community ¢ the new node is connected to, a local
computation is performed to obtain the gain in the quality function. u
is then moved to the community that produces the maximal gain.

e an existing node with k links are deleted: when a node w is removed
from a community C' it can divide C' into many communities. The com-
munity structure is adapted as follows: a 3-clique (triangle) is chosen in
the neighborhood of u. Starting with this triangle, a 3-clique commu-
nity is built using the clique percolation method [119]. All the nodes in
this 3-clique community are kept in C' . The other nodes (members of
C' not in the 3-cligue community) are examined one by one to choose
the community they must join.

In another work, Cazabet et al. [22] have proposed to start with an
empty network and, at each step, the new created edges (ordered by their
creation time, breaking ties randomly) are added to the network one by
one (the connecting nodes are created if they do not already exist) and the
communities are updated.

6.2.3 Long term-communities detection

This last class of methods try to detect communities which are consistent in
many time-steps i.e. that are present in several of these time-steps. These
methods are applicable to both type of dynamic networks.

Aynaud et al. [9] have proposed two methods based on the modularity
[111]. The first method consists in building a sum network and then apply
a static community detection method on that network. Alghtout any static-
community detection can be used, for their experimentations, these authors
have used the Louvain method for community detection [18|. The second
method consists in defining a mean value for the modularity on all the time-
steps. This mean value is then optimized with a procedure similar to the
Louvains’ method[18].

Mitra et al. have proposed a method designed for citation networks. This
method consists in first building a summary network as follows:
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e a node A; is created if author A has published a paper at time .

e a link is created between the nodes A; and B; if and only if the paper
published by author A at time ¢ cites the paper published by author B
at time j.

A static community detection method can then be used to mine the commu-
nity structure in this constructed network.

The principal drawback of these methods is the lack of evaluation methods
for the results.

6.3 The link prediction problem

Given a snapshot of a social network at time ¢, the link prediction problem is
to accurately predict the edges that will be added to the network from time
t to a given future time ¢'. The link prediction problem therefore tackles
the following question: to what extent can the evolution of a social network
be modelled using features intrinsic to the network itself [84]|7 Formally,
consider a network G = (V, E) where V is the set of vertices and E is the
set of links. The set of edges (u,v) C V with u # v, that are absent in F
is denoted E. In a practical application, E can be divided into two parts:
the set £’ of links that will appear in the future, also called missing links,
and the set E” of edges that will never appear. Clearly, E' U E” = E and
E'NE" = (. The challenge of link prediction is to produce quickly, accurate
approximations for F’, even for huge social networks.

Link prediction is a very active research area because of its wide range
of applications. For instance, if G is a social network representing recorded
interactions between terrorists, the link prediction can be used to detect un-
derground relationships between them. On the other hand, a link prediction
algorithm can be applied to a clients/products network produced by an e-
commerce platform, to suggest products that a client is likely to purchase in
the near future. Other algorithms and applications related to link prediction
in complex networks can be found in [89].

We now present some basic link prediction algorithms according to the
following nomenclature: probabilistic methods, transitivity-based methods
and attributes-based methods. After that we introduce an extension of the
link prediction problem to dynamic networks.
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6.3.1 Probabilistic methods

The most naive probabilistic model of link prediction is the Random predictor
which randomly chooses a subset of links that are not present in the network,
and predicts them. Since the subset selection is done randomly, the accuracy
of the algorithm is based on luck. The probability of failure of the Random
predictor is % for a given link. This method can’t be taken seriously when
dealing with an application. It only serves as reference point: any serious
algorithm must have a better accuracy.

The probabilistic approaches can nevertheless be useful when there is a
prior knowledge on the problem. For instance, many complex natural and so-
cial systems assemble and evolve through the addition and removal of nodes
and links. This dynamics often appears to be a self organizing mechanism
governed by evolutionary laws that lead to some common topological fea-
tures. One of such features is the power-law degree distribution, i.e. the
probability that a node has degree k is P(k) = k77, usually with 2 < v < 3.
Such networks are said to be scale-free. For such networks, the “preferential
attachment principle” states as follows: when a new node is added to the
network with m edges that link this new node to m nodes already present,
the probability that this new node will connect to a node ¢ with degree d; is
proportional to d; i.e 7(d;) = (Ziﬁ' It can be shown that a network evolving
according to this principle, tends to a scale-invariant state with v = 3 [109].
Clearly, such a model of network growth constitutes an a priori information
that can help to design efficient link prediction algorithms. The preferential
attachment principle is also known in economy as cumulative advantage: the

rich gets richer |14, 142].

The preferential attachment is a good illustration of Zhu and Kinzel’s
observation. Indeed, it gives the worst performance when applied to physical
internet networks where high degree nodes are routers that have a very low
probability of being connected by new physical lines.

Recently, Freno et al. [49] have proposed a new approach that is not based
on parametric assumptions concerning the modelled distributions. More pre-
cisely, they have introduced the Fielder random field model, called Fielder
delta statistic that, for each binary edge variable X, ,, defines a potential
that encapsulates the measure of its role in determining the connectivity of
its neighbourhood. The trick is that these potentials can be estimated from
data by minimizing a suitable objective function. Experiments on some real-
world networks have resulted in link prediction algorithms that outperform
the solutions proposed by Watts-Strogatz [151] and Barabasi-Albert [14].
Other probabilistic methods for link prediction are reported in [89].
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6.3.2 Transitivity-based methods

In mathematics, a binary relation R defined on a domain D is said to be
transitive if whenever u is in relation with v(u®v) and v is in relation with
w(vRw), then u is in relation with w(uRw).

In topological transitivity applied to a complex network G' = (V, E), the
domain D consists of the set V' of nodes of the network, and the relation R is
represented by the set E of edges. The application of topological transitivity
to link prediction is based on the assumption that, as a complex network
evolves, it tends to become transitive i.e: if at time ¢, u is related to v and v
is related to w, then there is a high probability that at a future time ¢, u will
be related to w. This assumption follows from a common observation made
for instance on friendship networks: a friend of your friend is likely to be or
become your friend. This corresponds to triangles in G, i.e triples of edges
(u,v), (v,w) and (u,w). In graph-theoretic terms, the degree of transitivity
of a network G can be measured by the so-called clustering coefficient [151]:

> uev Cu
O = Zouev Cu (6.1)
4
where ber of triangl ted to vert
Cu _ numoer Of Tlang €S connectle O vVertexr u (62)

number of triples centred on vertex u

As reported in [104], this coefficient has remarkable values for many cur-
rent networks: greater than 0.75 for film actors and power grids; between 0.6
and 0.74 for biology co-authorship, train routes and metabolic networks; be-
tween 0.30 and 0.59 for math co-authorship, Internet and word co-occurrences
in web pages, and less than 0.20 for email messages and fresh water food web.

The basic link prediction methods based on topological transitivity, use
some local or global properties of the network (G, to assign a connection
weight Score(u,v), to pairs of nodes (u,v) of V. All non-observed links are
then ranked in decreasing order of Score(u,v). In this approach, links with
the highest scores are supposed to be of higher existence likelihoods and are
produced by the algorithm. Such a measure must reflect the proximity or
similarity between nodes u and v. The problem is to design good similarity
measures.

Let us denote I'(u) the set of neighbours of node u, and let |A| be the
cardinality of a set A. CN(u,v) = |I'(u) N T'(v)| corresponds to the number
of common neighbours of v and v[103|. The idea is that if u and v have many
neighbours in common, then there is a high probability that they will become
neighbours in the future. The efficiency of this measure has been experienced
with collaborative networks [104]. However, this measure suffers from serious
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drawbacks. For instance, in a friendship network, the fact that two nodes u
and w have a common very popular neighbour v, i.e. with a very high degree
d,, does not necessarily mean that u and w will become friends in the future.
They may even be from different continents and never meet. In the same
way, in an allocation network, if node u sends a unit of resource to a very
popular neighbour v that serves as intermediary, and if node v subdivides the
resource and sends equal parts to his neighbours, then the portion received
by any neighbour w € I'(v) will be j. This means that the contribution of an
intermediate node v for the "future connection” between u and w is divided
by the degree of v. This has motived some authors to introduce RA(u,v) =
D wel (W () i [156] and the log form AA(u,v) = 3 cruwynr) m [2].
Many other variants of C'N have been proposed, but extensive experiments
on real world networks have shown that RA is the best whereas C'N is the
second best.

A link prediction method based on topological transitivity has been in-
troduced by Latapy et al.[5]. Consider a bipartite clients/products network
G = (L, T, E) where L is the set of clients, T the set of products and E the
set of purchases. The L-projection of G is the graph G| = (L, E/}) in which
(u,v) € E| if u and v have at least s neighbours in common in G, where s
is a given threshold, i.e. |I'(u) NT'(v)| > s. The underlying intuition of the
internal link prediction method is that, in a clients/products network, if two
clients have bought in the past many common products, then they will prob-
ably acquire new common products in the future. This method falls within
the transitivity framework as follows: if client A is related to client B in G
and if client B is related to product p in G, then there is high probability for
A to be related to p in the future.

Another topological transitivity measure for link prediction is based on
random walks already introduced in section 3.2.1 for community detection.
In the simplest version of this method, it is assumed that, when a random
walker is at node wu, it can go in one step to any node v € I'(u) with probability
i. Let m(u,v) denote the average number of steps necessary for a random
walker to go from u to v. The commute time is the symmetrical measure
CT(u,v) = m(u,v) + m(v,u). This transitivity measure is then used to
predict missing links: the smaller CT'(u,v) is, the greater is the probability
for v and v to establish a connection in the future.

Association rules originally defined for large databases of sales transac-
tions can be adapted for link prediction on a network G = (V, E'). Consider
D = {I'(u)|lu € V}. Define frequent groups of nodes as subsets that are
included in at least s elements of D, where s is a given threshold. An as-
sociation rule is an implication of the form A — B, where A CV, B CV,
ANB =, and AU B is frequent. A rule A — B holds with confidence c if ¢
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percent of neighbourhoods in D that contain A also contain B. Hereafter, we
denote A — B : ¢. The transitivity principle states as follows: if A — B : ¢
and B — C : ¢ then, A — C : ¢ x ¢. In the context of an application to
co-authorship[70]: A, B and C are sets of co-authors. A — B : ¢ means
that ¢ percent of articles co-authored by A are also co-authored by B, and
B — C : ¢ means that ¢ percent of articles co-authored by B are also co-
authored by C. As a consequence, if A — B : cand B — C : ¢ are observed,
then A — C'is predicted with probability ¢ x ¢/(i.e a new article with AUC'
as co-authors is predicted)|70].

6.3.3 Attributes-based methods

The great specificity for graphs that model social networks is that nodes and
links usually have attributes. Consider a phone network in which a node
represents a person and each link represents a call. Phone numbers can be
used as node attributes and the average number of calls between nodes can
be used as link attributes.

The link prediction problem can be expressed as a classification prob-
lem for pairs (u,v). The following attributes may be considered when deal-
ing with co-authorship networks [64]: the number of common neighbours
(I'(u) N T'(v)), the number of common key words (Kw(u) N Kw(v)) or the
total number of articles published by v and v. The class attribute is a binary
variable with value 1 if the link will appear and 0 otherwise. All attributes
values are normalised to have zero mean and one standard deviation. A clas-
sification model such as Decisions Tree(DT), Support Vector Machine(SVM)
or Artificial Neural Network(ANN), can then be used. Hasan et al. [64] have
shown on two networks(DBPL and BIOBASE) that SVM beats all the most
used classification methods.

The similarity between two nodes can use attributes of nodes and links.
This is the case for Abstract proposed in [70], which takes into account sum-
maries of articles in the bipartite graph Authors/Articles. The idea is that
articles already published contain information on topics that interest the co-
authors. It is then natural to suppose that authors working in the same
domain are more likely to collaborate and co-publish an article in the future.
The attributes-based similarity between two u and v authors is then defined
as:

score(u,v) = cos(V(u), V(v)) (6.3)

where V' (u) is a descriptor that encapsulates the attributes for vertex u. It
has been shown in [70] that this approach produce very good predictions for
some well known co-authorship networks.
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Link prediction is not sufficient to analyze the dynamics of communities
in complex networks. Indeed, it supposes that all the created links will last
forever. However, in a real interaction complex networks, the links between
nodes come and leave. For example, in a collaboration network, a publication
between two scientists in a particular year do not guarantee that they will still
work together in the future. To really predict the dynamics of communities
one needs a more general model for interaction prediction which determine
whether or not a particular link will exist no matter if it has already appeared
or not.

6.4 A supervised method for local Community
prediction

In this section, a general method is described to predict whether or not a node
belongs to a local community. The method first extracts some attributes from
existing communities and then, a learning model is used for the prediction.
More precisely, to predict the local community of a node u we proceed as
follow: For each past time-step, the local community of u is computed and,
for each node belonging to the local community or to its neigborhood (not
in the community but connected to some member of the community), the
following attributes are extracted :

1. the community size

2. the internal degree of the node

3. the external degree of the node

4. the position of the node in the community.

5. the distance to the starting node

The position can take three values: 1 if the node is in the community without
any connection with the outside of the community, 2 if it is in the community
but as some connections with the outside, and 3 if it is outside but with some
connections with the community.

The set of candidates to be members of the local community of u is then
taken from the set of nodes having already been in the community or in the
neighorhood of the community in the past.

Given the candidate sets for each local community, a dataset is con-
structed and a machine learning model is learned given the true membership
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for the training period. The experiments are based on Support Vector Ma-
chines and will be presented in the evaluation section.

6.5 Community prediction through interactions
prediction

In this section we present the general framework for predicting the community
using the prediction of interactions. This process is presented in figure 6.2
and the steps are presented in the rest of this section.

6.5.1 Interaction prediction in complex networks

In this subsection, the interaction prediction in complex network is first for-
malized and then the proposed similarity-based and supervised models are
presented.

Problem definition

The interaction problem in complex networks can be stated as follows: given
a dynamic network G = (Gq, ..., G,) what is the structure of the following
snapshot (G,41)? This problem is a generalization of the link prediction
problem: here, not only the non-previously seen links are predicted but also
the existent one to check whether or not they will still exist in the following
snapshot.

The problem formalization is presented in figure 6.2.

As a generalization of the link prediction problem, the same class of solu-
tion can also be used to solve it. In the following, we present similarity-based
and supervised solutions. On all these models, time plays an important role.
Indeed, the history of interactions must be taken into account to accurately
predict the interactions.

Similarity model

We start with a very simple model based on a similarity measure between
two nodes, which will be used a baseline model for experimental comparisons.
The similarity takes into account time, the existing links and the neighbor-
hood of the pair of nodes into consideration. These equation gives a measure
of the similarity between two nodes. The general form of this equation is:

Sim(i, j) Zf (aAli, j] + Byg(neigh(i), neigh(j))) (6.4)

teT
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Interaction
Network

Step 1: Predict interactions
for the next time step

T+n+1l

Step 2: Compute the communities
on the predicted network

T+n+1

Figure 6.1: Interaction prediction problem definition.
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Figure 6.2: Interaction prediction problem definition.

Figure 6.3: A simple example showing a node with its neighbors (first circle),
second circle and local community (nodes and links filled in red).

In eq. 6.4, functions f and g and parameters . and [ have to be defined
by the user. The function f is a time function which enables to take into
account the age of the relationship (give more importance for recent interac-
tions for example) and g the topological similarity function which measures
the proximity in the graph. A is the adjacency matrix, and neigh(i) is a
general neighborhood function. Some examples of neighborhood that can be
considered are the first neighborhood (friends only), the second neighbor-
hood (friends and their friends) and the local community. See Fig. 6.3 for an
illustration.

The parameters of this model can easily be optimized using a random
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restart Hill Climbing [135] method which can be described as follow:
1. Start at an arbitrary point
2. Calculate values for neighboring points
3. Move to the point with increased value
4. Terminate if no higher value could be found, otherwise continue at 2
5. Restart at 1 if the number of iterations is not reached.

The restart help prevent to stay at a local maximum during the optimisa-
tion. The parameters used in the evaluation section are obtained using this
procedure.

As for the link prediction similarity-based models, this model is used as
follows: the value of the similarity is computed for each pair of nodes and
a threshold is chosen to decide whether or not the interaction should be
created.

This model is quite intuitive. However, because the real relationship
between inputs attributes and the target variable is not known, we propose in
the following subsection a more general approach based on machine learning.

Supervised model

For the supervised approach we propose the following procedure: for each
snapshot t of the training period, the following features are computed for
each couple of nodes:

e the number of common neighbors
e the number of common community members

e a boolean indicating whether an interaction is present or not between
the two nodes

e the attribute similarity between the two nodes (if available)

The real classes are obtained on the test period. It is worth nothing that
to reduce the complexity (the number of possible interactions is in the order
of O(n?)), we only consider interactions that are likely to appear based on
the computed similarity scores (topological or attribute based). Here also, a
support vector machine is used to build the model.

This approach is more general because it does not suppose the form of
the similarity function, and is more flexible in case we have other information
attached to the nodes.
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Community prediction

Given the predicted network using the methods proposed in the previous
section, one has only to compute the communities on that network to get the
prediction.

6.6 FEvaluation and discussion

In this section, the datasets used are first described. After that, the evalua-
tion of the interaction prediction model proposed is presented. Finally, the
evaluation of the application to the communities prediction is presented.

6.6.1 Dataset Description

The datasets used to evaluate the proposed methods are DBLP and Facebook
Wall.

DBLP dataset

DBLP is a collaboration network between authors indexed on http://dblp.uni-
trier.de/. The time-steps are the years. The nodes are the authors and, for
each year, a link exists between two nodes if the corresponding authors have
at least one common publication for that year. The links are weighted by
the number of common publications corresponding to the period of time (one
year).

Figure 6.4 presents some statistics on the dynamics of the DBLP network.
One can remark that the number of active authors (having at least one
publication) follows a quasi-linear law (a). The same apply for the number
of publications (b). One can also note that the number of new authors each
year is quite high (¢) and many authors do not publish in two consecutive
years (d). Finally the number of authors that (re-)publish after a year off (e)
and the average degree (f) are also presented. All these observations confirm
that it is very difficult to take only one snapshot in order to predict the
following one.

Facebook Wall dataset

Facebook Wall [1] is a network built with a small subset of posts to other
users’ wall on Facebook. The nodes of the network are from the New Orleans’
Region. For each year, there is a link between two nodes if there is a wall
publication between them. The links are weighted by the number of wall
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Figure 6.4: Some Statistics on DBLP dataset.

messages between them for the corresponding year. The direction of the link
is not taken into account in our experiments.

As for the DBLP dataset, some statistics are presented in figure 6.5.

Figure 6.5 (a) presents the evolution of the number of nodes, figure 6.5 (b)
shows the evolution of the total number of interactions, figure 6.5 (c) let
us see the dynamics of the number of new nodes, figure 6.5 (d) deals with
the number of new interactions, figure 6.5 (e) presents the evolution of the
average degree and finally figure 6.5 (f) illustrates the evolution of the number

of new interactions between existing nodes.

One can see from these statistics that this network is very dynamic and
that the number of nodes and edges grows very fast with time.
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Figure 6.5: Some statistics on Facebook Walls dataset.

6.6.2 Evaluation of interaction prediction

true positive rate
decision thresholds

false positive rate
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DBLP Dataset

The similarity-based model presented in section 6.5.1 is general. For each
particular dataset, one has to find the most suitable parameters. We have
used the random-restart hill climbing optimisation method[135] to set the
parameters « and 3. For the DBLP dataset, the instantiation of the model
we have used is as follows:

Simppre(i,j) = Y _(1/(n—t+1))x(0.67x[|A[i, j]|[+(0.33x J (C(i), C(1))))

(6.5)

with n the number of time-steps, ||z|| the normalization of the variable
x between 0 and 1 and J(C(i),C(j)) the Jaccard similarity between the lo-
cal community of ¢ and the local community of j. The local communities
are computed with the algorithm described in [115]. As shown in [116] lo-
cal communities are the best compromise between the first and the second
neighborhood.

This model produces an AUC of 0.69 which is already better than a
random predictor which has an AUC of 0.5. Because the parameters are set
manually, we are not sure that it is the best result we can achieve with this
model. It is for that reason that the supervised model is used.

The supervised model for this dataset is built as described above with
the same attributes involved in the similarity-based model. With this model,
we get an AUC of 0.87. This model is much better than the previously
constructed similarity-based one. We the used this last model for community
prediction.

Facebook walls Dataset

As for the DBLP, we have used a particular instantiation of the model
similarity-based model using the optimisation technique described above to
set the parameters. It is stated as follows:

Simpa(i, j) = Y (1/(n—t+1))x(0.74x]||A[i, j]||+(0-24x J(C (i), C(4))))

(6.6)

This model produces an AUC of 0.84 which is also better than a random
predictor. As stated above, this result is probably sub-optimal.
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DBLP dataset || Facebook wall dataset
Random predictor 0.50 0.50
similarity-based model 0.69 0.84
Supervised model 0.87 0.92

Table 6.1: Evaluation (AUC) of interaction prediction models

With the supervised model, we get an AUC of 0.92. This model is better
than the previously constructed similarity-based one. It is then this last one
that will be used for community prediction.

Table 6.1 summarizes the performances of our models for interaction pre-
diction.

6.6.3 Local community prediction evaluation

Having a model which predicts quite well the future interactions, one can now
apply it to local community prediction. for sake of comparison, the evalua-
tion of directly predicting the membership of the nodes, with the supervised
method presented in section 3 is also shown.

The performance index that we used to compare algorithms is the Nor-
malized Mutual Information as presented in chapter 2.

The local community method used for our evaluations is our method,
IOLOCO, presented in chapter 4. This algorithm locally optimize a defined
quality function and is able to uncover the overlapping community structure
a particular starting node belongs to and also detect when a node does not
belong to a community. It is worth noting that the same can be done with
any other community detection method.

For the evaluation, the local communities are computed on the real net-
work and on the predicted one, based on the supervised model described
above. The predicted network is constructed by keeping only the predicted
interactions. The two results are then compared based on the NMI. This
evaluation only take into account the local communities of nodes that appear
in the predicted and the real network. The results are presented below for
each dataset.

DBLP dataset

The supervised method to directly predict whether or not a node will belong
to a community leads to an AUC of 0.87 and an accuracy of 86.10%. That
leads to an average value for the NMI index of 0.32. This score is low because
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Figure 6.6: Evaluation of local community prediction for the DBLP dataset

many nodes that exist in the past do not exist in the future (if the author
have not published again).

The results of the evaluation of the prediction of communities through
the interactions prediction for this dataset are presented in Fig 6.6. In this
figure, the area covered represents the percentage of nodes having a value
of NMI equal or greater than the corresponding value of NMI on the x-axis.
One can see that for more than 30% of the nodes, the prediction is perfect
with a Jaccard index value of 1. More than 50% of nodes produce a score
greater than or equal to 0.67 and more than 60% have their scores greater
or equal to 0.5. The average value of NMI score is 0.65.

It worth noting that in this evaluation the nodes that only appear in the
target period are not considered as starting nodes for evaluation because they
cannot be predicted. However they are considered when computing the NMI
of a particular local community.

Facebook walls dataset

The supervised method to directly predict whether or not a node will belong
to a community leads to an AUC of 0.78 and an accuracy of 89.84. That
leads to an average value for the NMI index of 0.45. This method is more
suitable for this dataset because all the nodes existing in the past are present
in the future.
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Figure 6.7: Evaluation of local community prediction for the Facebook wall
dataset

As for the previous one, the results of the evaluation for the prediction
of communities through the interactions prediction for this dataset are pre-
sented in fig 6.7. One can see that for approximately 25% of the nodes, the
prediction is perfect with a Jaccard index value of 1. More than 50% of nodes
produce a score greater than 0.5 and the average value of the index is 0.56.

6.7 Conclusions and perspectives

Recently, many works have started to deal with community detection in dy-
namic complex networks. To the best of our knowledge, community predic-
tion in complex interaction networks is not actually studied in the complex
network literature.

In this chapter, we have stated the community prediction problem and
proposed two general approaches to solve it. The first approach tries to
predict the membership of a node in a particular community based on a su-
pervised learning model. The second approach first predicts the interactions
and then computes the communities in the predicted network.

Directly predicting the memberships of nodes is more suitable for growing
interaction networks where existing nodes do not leave the network. Predict-
ing the interactions is more complex (and computationally expensive) than
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directly predicting the memberships, but it gives better results because it
does not require exact predictions: if a missing internal interaction in a
community is predicted, it reinforces the cohesion. Likewise, if an inter com-
munity links is not predicted, it better separates the communities.

Tests on real datasets publicly available show the feasibility of the pro-
posed approaches.

One direct perspective of this work is to improve this approach by adding
a model for nodes evolution which will enable to predict the new nodes in
the network. We will also test the approach on other datasets.
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CHAPTER 7

Towards a Framework for storing and
analysing distributed networks

"simplicity is the ultimate sophistication”

- Leonard de Vinci

7.1 Introduction

In the previous chapters we have proposed some methods to detect local com-
munities and analyse their dynamics in large scale social networks. Although
these methods can be implemented using existing social networks analysis
tools, many of these tools usually consider that the data of these networks
can be loaded into the main memory of one computer to process them. That
is not always true in practice. Indeed, Online Social networks (OSN) like
Facebook, Twitter or Skyrock usually generate huge amount of data. For
that reason their data are generally distributed across many physical servers
and eventually many datacenters around the world. Social network analysis
(SNA) algorithms must take into account this distribution of data.

Besides, many distributed computing models for big data processing exist
and can be used for SNA. However, they are (sometime) not straightforward
in their usage and, as models, they are not always suitable for every real world
needs. More importantly, they are not always mature and the environment
is rapidly changing.

The aim of this chapter is to propose a general framework to analyse
social networks with distributed data that can take advantage of the state-
of-the-art tools in the big data era. This framework should be suitable for
most of the possible usages. We have tested a first implementation of this
framework using Hadoop Map Reduce, HBase, and Apache Giraph.

105
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This chapter is organised as follows: section 7.2 presents existing tools for
analysis and storage of graphs and some big data processing tools. Section 7.3
presents our model for social network analysis with distributed data. Section
7.5 shows how to implement our methods for detecting and predicting local
communities and discusses the results.
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7.2 Tools for analysis and storage of large so-
cial networks

Large social networks analysis with distributed data requires adapted tools
for processing and storage. The aim of this section is to give an overview of
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existing solutions.

7.2.1 Tools for social network analysis
Gephi

Gephi [15] is an open-source tool, written in Java, to analyse and visualise
social networks. Many classical algorithms are implemented: connected com-
ponents, page rank, betweenness centrality, community detection (Louvain’s
method), etc.

The most important limitation of this tool is the size of the graphs it can
handle. Indeed, because the network visualisation is always presented to the
user, it is only possible to display relatively small graphs.

NetworkX

NetworkX [60] is a library for the Python programming language. It is quite
complete and up to date and allows to analyse complex networks with at-
tributes for nodes and links.

Its limitations are that it is only available for python and that it can only
analyse networks with hundreds of thousands of nodes.

Igraph

Igraph |51] is a library in C' language which allows to analyse complex net-
works like NetworkX. Its advantages compared to NetworkX is that it is
available for several high level programming languages: C/C++, python and
R.

Its limitations are that it do not take advantage of multi cores/processors
and it require all the network to be available in the main memory.

GraphCT/STINGER

The Spatio-Temporal Interaction Networks and Graphs (STING) Extensible
Representation [42] is a parallel framework to analyse very large networks
(with billions of nodes). As Igraph, several algorithms are already imple-
mented, it allows to define new algorithms using the proposed data structure
and it is available for many programming languages: C/C++, Java and
Python.

Although it enables efficient analysis of very large networks, it requires
all the data to be available in the main memory of a single computer.



CHAPTER 7. TOWARDS A FRAMEWORK FOR STORING AND

108 ANALYSING DISTRIBUTED NETWORKS
Node 1 Node 2
Flles loaded from local HOFS stores Files loaded from local HOFS stores
InputFormat InputFormat
file
=] (o] [ (o] (o] |
I RecordReaders: RR RR RR | RRO| | RR | |
|
: Irgaat (ke v) pairs ¢ ‘ ¢ ¢ & L Input (k, v) pairs :
| |
' LI CIRETS EAERES |
|
| |
: Y pa.rs\ v / \ v Intermediate (k, v) pairs :
| |
| Partitioner Partitioner :
: “Bhuffling” process l |
| |
I l‘._._.~—-—-'—”"'“ Intermeciate & v) | o :
| pairs exchanged
| l (sort) | by all ——— ‘ ) ‘ !
|
|
: * ; |
|
: Final (k, v} pairs Finat {k, v} pairs |
I Y Y :
L 4
: . [ OutputFormat | | OutputFormat | oo il
: store T | slore :
________________ | R e M e e M D el

Figure 7.1: Hadoop Map Reduce execution model.

7.2.2 Hadoop Map Reduce

All the solutions presented above are all mono-site. To deal with distributed
data, one can use the Hadoop Map Reduce framework|[152]. In this frame-
work, data are modelled using key-value pairs. The computations in this
framework are divided into one or several iterations. Each iteration consists
in two principal operations: a Map and a Reduce. During the Map step, an
operation is applied to each data row and a result containing a (eventually
new) key and the value of the operation is emitted. All the results having
the same key are transmitted to the same reducer. The Reduce operation
consists in aggregating all the values with the same key. Each iteration is
usually performed simultaneously on many physical servers containing the
distributed data. See fig. 7.1 for an illustration of this process between two
computing nodes.

The main limitation of this framework is that it considers that all the
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analysis tasks can be represented as map/reduce tasks. Due to this limita-
tion, many algorithms for networks analysis are difficult if not impossible to
implement using this framework (for example, algorithms that require global
sharing states). Moreover, for each Map task, one need to process the entire
network, which is not always suitable.

7.2.3 Pregel and Giraph

Google has recently proposed Pregel [94], a framework to processes large
graphs. In this framework, each node of the graph is a logical computing
unit which has a state and is able to receive and send messages from and to
its direct neighbours. A processing task is done using one or several iterations
during which each node compute in parallel. At each iteration, each node:

e receives the messages sent to him during the previous iteration;
e executes the function defined by the user;

e changes eventually it value and send a message to its neighbours;
e changes if necessary the topology of the network

e votes to halt if it has no more work to do.

Classical graphs algorithms like connected components, pageRank, can be
easily implemented in this framework.

Pregel is the private property of Google. Giraph is an open source imple-
mentation of this computing framework. Pregel and Giraph are more com-
puting models than graph social network analysis framework. As Hadoop
MapReduce some processing tasks are difficult or even impossible to imple-
ment using it. Also, they do not provide ways to query particular parts of
the network.

7.2.4 Pegasus

Pegasus |71] is a graph processing framework built on top of Hadoop MapRe-
duce [152]. Tt allows to analyse distributed large graphs using the Hadoop
distributed file system (HDFS). This allows to process very large distributed
networks.

Its limitations are that it does not take into account attributes of nodes
and edges and does not allows to query parts of the network.
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7.2.5 Graph databases and NoSQL

Many graph databases and general purposes distributed databases have been
developed during the recent years, mainly to overcome the limitations of
traditional relational databases. Here are some of these solutions selected for
their relevancy for our context.

AllegroGraph

Allegrograph is a Resource Description Framework (RDF) which allows to
implement graph databases. Its query language is an implementation of the
SPARQL language. Its limitation is that it is commercial and mono-site only.

Neo4l]

Neo4lJ is a graph oriented database. It defines graph traversal operations to
visit the nodes of the graph following a user defined pattern. Its main query
language is called Cyphers. lIts is available both in commercial and open
source licences (for non commercial use only).

Although some effort are actually done to enable it dealing with dis-
tributed data, the main supported version is actually only usable on one
single computer.

FlockDB

FlockDB is a distributed graph database for storing adjancency lists, with
goals of supporting:

e a high rate of add/update/remove operations

e potentially complex set arithmetic queries

paging through query result sets containing millions of entries

ability to "archive" and later restore archived edges

e horizontal scaling including replication
e online data migration

Non-goals include: multi-hop queries (or graph-walking queries) and au-
tomatic shard migrations.

FlockDB is much simpler than other graph databases such as Neo4J be-
cause it tries to solve fewer problems. It scales horizontally and is designed
for on-line, low-latency, high throughput environments such as web-sites.
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Tools Storage | Cons. | Vis? | DM | RT query? | HS? | Flex.?
Gephi M NA yes PG yes no F
Networkx M NA yes PG yes no F
Igraph M NA yes PG yes no F
STINGER M NA no | EAL yes No P
Allegrograph M FL no | RDF yes no P
FlockDB DD FL no AL yes yes N
Neo4dJ LD ACID | yes PG yes no F
Giraph M NA no AL no no P
Pegasus DD FL no KV no yes N

Table 7.1: Comparison of graph analysis tools

Twitter uses FlockDB to store social graphs (who follows whom, who
blocks whom) and secondary indices. As of April 2010, the Twitter FlockDB
cluster stores 13+ billion edges and sustains peak traffic of 20k writes/second
and 100k reads/second.

7.2.6 Summary of network analysis tools

From the overview presented above, one can note that many solutions for
network processing exist. However, they are either storages or processing
frameworks. In the rest of this chapter, an integrated framework that can
take advantage of the state-of-the-art of processing and storage tools is pre-
sented. Table 7.1 presents a summary of the presented tools. In that ta-
ble, "M" means "in memory", "DD" is Distributed Database, "LD" is local
database "NA" is "not applicable", "RT" is "real time", "HS" is for "hori-
zontal scalability", "Vis" is a short-cut for visualisation and "Flex" for flex-
ibility (adding new attributes, node and/or edge types ). For flexibility, "F"
means fully flexible, "P", partially and "N" not flexible at all(with not at-
tribute support). "DM" means data model and "PG" means property graph,
"AL" is for Adjacency list, "EAL" for extended adjacency list and "KV" for
key value.

7.3 Framework description

In this section, a general framework for the analysis and storage of social
networks with distributed data is presented. The idea of this framework is to
take advantage of the most up-to-date tools and to interchange them trans-
parently as needed. For that reason, the framework is defined as a layered
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Figure 7.2: Layered model for social network analysis.

model like the Open System Interconnection (OSI) in physical interconnec-
tion networks. The proposed model has the following layers: the Distributed
Database Layer (DDL), the Data Analysis Layer and the Data Visualisation
Layer. Fig. 7.2 present these layers. The following sub-sections describe
these layer in depth.

7.3.1 Distributed Database Layer (DDL)

The first part of the framework is the Distributed Database Layer. It handles
the storage of and access to the distributed network’s data. It has three main
components: the Distributed Database Management System, the Data Model
and the Data Access.

Distributed Database Management System

The Distributed Database Management System handles the persistence of
the distributed network. As a database management system (DBMS), It
is in charge of the management of the consistency and availability of the
data. Possible choices for the implementation of this layer are HBase, Apache
Cassandra, couchDB and MongoDB.
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Data Model

The Data Model describes how the network is represented on the database.
The chosen representation must facilitate the queries and the processing of
the network. It must also be tightly coupled to a particular architecture i.e.,
a data model is supposed to be used with different DBMS.

Data Access Layer (DAL)

The role of the Data Access Layer is to define how the network data is ac-
cessed and updated. This is done by defining some procedures to manipulate
the network. These procedures take into account the defined data model.

7.3.2 Data Analysis Layer (DAL)

Given the description of the DDL, the Data Analysis Layer is able to query
and interact with the data and process them. This layer consists in three
components:

e APIT (Application Programming Interface): enables to access to the
framework using programming languages. This API must allow to per-
form efficiently operations like the neighbordhood exploration, the com-
putation of local clustering coefficients, computing the triangle closures,
and more generally, graph traversal operations.

e CLI (Command Line Interface): allows to analyze the network interac-
tively. It must provide to the user all the classical analysis tasks.

e Analytic tools: provides batch processing tools which require more
execution time and are not suitable in an interactive mode.

7.3.3 Data Visualisation Layer (DVL)

The Visualisation Layer consists in visualisation algorithms that can display
sub-graphs queried using the DAL. Examples of such algorithm are layout
algorithms to spatially arrange node and edges and nodes/edges selection.

7.4 An implementation of the framework

In this section, the details of one implementation of this framework we have
performed is presented.
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7.4.1 Distributed Database Layer

This sub-section shows how we have managed the distribution and the access
to the data. It presents all the components of this layer: the distributed
DBMS, the Data model and the Data Access.

Distributed DBMS

HBase | API |

Master HFile | Memstore

RegionServers

Write-Ahead Log

[ HDFS J ( ZooKeeper ]

Figure 7.3: HBase architecture.

In the implementation we have done, the Distributed Database Layer is
managed by HBase [52|. HBase is an open-source distributed database. Its
is column oriented, versioned (multiple versions of the same row). Fig. 7.3
presents an overview of the HBase architecture:

e data are stored using the Hadoop Distributed File System (HDFS)
[152];

e the Master is responsible to assign regions to regions servers (Region-
Servers) and it uses Apache ZooKeeper, a reliable, persistent and highly
available distributed coordination service;

e the RegionServers manage the regions and the data storage on HDFS;

e the API is the component which allows the access to HBase using pro-
gramming languages.

More information on HBase are available on [52] or by browsing on the
official web site: http://hbase.apache.org/.
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Figure 7.4: A toy network (a) and the representation of node 5(b).

Data Model

Given the distributed database management system, a data model must be
defined. The implemented Data Model is a table in which each line corre-
sponds to an attribute of a node or a link:

e a link (u,v) with the label [ is represented by (u, Neigh, v, 1), where
“Neigh” represents the type of the link;

e an attribute of the node u of type T and value V is represented by (u,
Attribute, T, V).

Figure 7.4 presents an example of network (a) and the rows representing
the information of node 5 (b). In that figure, examples of types of links
are “Collaboration” and “Friendship” and examples of nodes’ attributes are
“Type” and “Name”. One can see for example that the node Blaise with id
5 has (among others) a friendship relation, started the 10/10/2003 with the
node Raoul. Blaise has also rated the movie Game of thrones with 4 stars.

This model is quite general and can model a large range of applications
in social network analysis.
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Figure 7.5: Main classes of the Data Access Layer.

Data Access

Our implementation of this component contains the main following classes:
Node, Edge and Graph. Fig. 7.5 presents this classes and their relations
using a UML diagram.

Given this description of the Data Access Layer, the upper layers can
implements social network algorithm as needed.

7.4.2 Data Analysis Layer

Our DAL has been implemented using the Java language. Among the three
components of this layer, we have implemented the API and started to pro-
vide some analytic tools. The main methods provided by the API are:

insertNode(Node node): insert a node to the database
Node getNode(): get a node from the database
insertEdge(Edge edge): insert an edge to the database
Edge getEdge(): get an edge from the database

long vcount(): return the number of nodes

long ecount(): return the number of edges

List<Node> getAllNode(long type—0): return all nodes of a particular
type (0 means all types)
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=<Interface=>

API

+vcount(): long

+ecount(): long

+insertNode (node:Node): boolean
+insertEdge (edge:Edge)

+getNode (Id:long): Node
+getEdge(src:long,dest:long)
+BeginTrans(): Boolean

+EndTrans(): boolean

+connect(): boolean

+close(): boolean
+getAllNodes(Type:long=0): List<Node=
+getAllEdges(Type:long=0): List<Edge=

Figure 7.6: API component of the DAL.

List<Edge> getAllEdge(long type=0): return all edges of a particular
type (0 means all types)

List<Node> getNeighbours(long id, long type=0): return all neigh-
bours of the node id having a particular type (0 means all types)

boolean beginTrans(): begin a transaction mode
boolean endTrans(): end a transaction mode
boolean connect(): open the connection to the database

boolean close(): close the connection to the database

These operations are provided through the interface presented in figure 7.6.

The Analytic Tools component is implemented using Hadoop Map Reduce
and Apache Giraph described in the section 7.2. The analytic algorithms
already implemented are:

common neighours (MapReduce)
single source shortest path (Giraph)
Connected components(Giraph)
Degree Distribution(Map educe)
PageRank (Giraph)

7.4.3 Data Visualisation Layer

In our implementation of the framework, we have used Gephi[15] to visualize
the sub-graphs generated by our algorithms.
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7.5 Implementation of our methods

In this section, we present how we have used this framework to implement
some of the methods proposed in this thesis. The selected methods are local
community identification and local community prediction. Before presenting
these implementation, we first give an overview of the experimental setup.

7.5.1 Experimental Setup

Hardware configuration

For our preliminary experimentations, we have used an Hadoop cluster of 1171
commodity desktop computers. The replication factor, which is the number
of copies of a block of data, is set to 3 and the block size is set to 64M B.

Data
The dataset used is DBLP as described in chapter 6.

7.5.2 Local community detection

The distributed algorithms are the same as in the case where the data is
located on the computation node. We only need to replace each sequential
instruction that gives access to a node or to an edge, by the corresponding
one that is distributed. The basic greedy scheme for the identification of local
communities using the framework is given in Algorithm 3. In this algorithm,
the change are in red italic and boldface.

Since the computation of each social circle is independent of the others,
the total computation time of the distributed program decreases linearly with
the number of processing nodes. We have conducted experiments with one
to ten processors and the results are reported in Fig. 7.7.

7.5.3 Local community prediction

In this subsection, the preliminary results obtained with this framework for
community prediction are presented. Recall that one of the most compu-
tational part of the proposed method is the computation of the number of
common neighbours between each pair of nodes. Here we present an algo-
rithm with complexity in O(n) for power-law degree distributed networks.
This algorithm is summarised in fig. 7.8. This algorithm used a map/reduce
approach and can be described as follows:
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Algorithm 3 Identification of local communities using the framework
Algorithm: Local community identification
Input: an instance of the API (G and a starting node ny.
Output: a subset D : the local community of ng.
node := G.get N ode(n)

D := {node}

B := {node}

C:=0

S := node.get N eighbours()
Q-0

Repeat

For each s; € S do
Compute the quality criterion obtained if s; is added to D
End for each
Select the node s* that produces the maximal quality Q*, breaking ties
randomly.
If Q* > @ then
D.add(s*)
S.remove(s™)
S.add(s*.getNeighbours())
S.add(s*.getNeighbours())
Update B, C.
End if
Until (Q* < Q)
Return D
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Figure 7.8: Common Neigbours computation using a map/reduce approach.

1. each split of the data with the source node as key and the destination
node as value is provided to a first set of mappers;

2. these first mappers just emit the keys and the values to the first set of

reducers ;

3. the first set of reducers produce the adjacency list for each node;

4. the adjacency lists are passed to a second set of mappers with the node
as key and the list as value;

5. for each list passed to a mapper and each pair of node in the list, the
mapper emits as key the pair of node and as value the id of the node
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== Speedup

Figure 7.9: Common neighbours speedup on DBLP.

having this adjacency list;

6. the second set of reducers just add up the list of common neighbours.

All the steps except step 5 are computable (without taking into account
communication) in time O(n)/K with K the number of workers. The step
5 requires to compute all the non ordered couples of a list of size L that can
be done in time O((L?) x (n/K)) also with K workers which reduce to O(n)
for power law degree distributed networks with a preprocessing consisting in
removing very high degree nodes (according to the target application).

Fig. 7.9 shows the speedup obtained. The horizontal axis corresponds
to the number of processors and the vertical axis correspond to the to the
speed-up. One must notice that the speedup obtained is by comparison to
the execution on one node.

We observe on Fig. 7.9 a gain growing with the number of processors
with a speedup of more than 3 on ten computers. The experimentation was
not perform on a real cluster and where we expect better performances than
the presented results.

7.6 Conclusion

In this chapter, we have presented a general framework to deal with data
distribution for social networks. We also have proposed an implementation
of this framework using up to date open-source big data tools based on
Hadoop technologies. A preliminary evaluation shows that this framework is
promising.

We plan to implement other algorithms, test the framework on a real
cluster and distribute the framework as an open-source tool.
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CHAPTER 8

Conclusions and Future Directions

“You have to start with the truth. The truth is the only way that we can get
anywhere. Because any decision-making that is based upon lies or ignorance can’t
lead to a good conclusion.”

- Julian Assange

The observation that many real worlds systems can be modelled as networks
and the democratisation of online social networks have provided many in-
teresting new challenges to the scientific community. In this thesis we have
contributed to the analysis of community in dynamic and distributed social
networks from a node-centric point of view. Our motivation for this local
analysis is that it is often difficult to perform a global analysis in very large
and dynamic networks. Moreover, for some applications like churn prediction
or social recommendation, a local view is sometimes more pertinent than a
global one.

In this thesis we focused on four main objectives. The first objective was
to develop a local community detection method. The second was to validate
the detected local community on some real applications. The third was to
predict the evolution of the detected local communities. The fourth was to
propose a distributed model to store the network with efficient support of
local community detection in distributed networks.

8.1 Summary of the contributions
We summarize our contributions by grouping them into major themes.
Literature review
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e In chapter 3, we have presented a review of global communities detec-
tion in complex networks.

e In Chapter 4, we have presented a state-of-the-art of local community
detection methods.

e Finally, in chapter 7, we have presented an overview of solution to store
and process large social networks.

Design of algorithms

e In Chapter 4, we have presented two new local community detection
methods that performs better than the state-of-the-art on real and
synthetic datasets.

e In Chapter 4 we also have proposed a procedure to detect local over-
lapping communities. Results on real dataset have shown the quality
of this approach.

Applications of network communities

e In chapter 5, we have considered using local communities in churn
prediction. Local community based attributes perform better than all
the others considered neighbourhood.

e In chapter 5, we have considered using local communities in social
recommendation. The propose model using local community as nearest
neighbours gives good results on the considered datasets.

Distributed network model

e In chapter 7, we have proposed a general framework to store and analyse
large dataset in a distributed way. This model can handle complex
networks with nodes/links attributes and temporal evolution.

e In chapter 7 we also have proposed an implementation of this frame-
work using Hadoop technologies. Experimentations on the detection
of local communities and prediction of their dynamic have shown that
this framework is promising.
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8.2 Future directions

We propose several ideas and perspectives built on the work presented in the
thesis.
Network structure and communities

e Include user’s attributes while keeping the computation local: how can
we take advantage of the node attributes while having a local view of
the network? Locality Sensitive Hashing (LSH) [6] may be a promising
direction towards this objective.

e Detect the influential members: who are the most important commu-
nity members and what are their properties? Taking into account the
localization of each node (whether it is on the border or the center)
and its connections can be a starting point.

e Automatic labelling of communities(interpretation of community struc-
ture): what is a community talking about? We can inferred topics
based on the data exchanged by community member using text catego-
rization techniques. This can help an Online Social Network Provider
like Skyrock to detect all the communities around a given topic to tar-
get its advertising campaigns.

Local community in dynamic networks
Can we directly model the dynamic of local communities in evolving net-
works? The Link Flow model, recently proposed by Latapy et al. [81], which
takes simultaneously into account the topological and temporal dimensions
can be a good direction.

Framework for storing and processing Large Social Networks
Building a software framework helping to handle large and distributed social
networks is an ambitious project. We proposed some directions during this
thesis. This effort should be pursued and the result could be published as
an open source library, for the benefit of the research community and the
industrials.

Applications
So far we only used communities in churn prediction and social recommen-
dation. There are other possible applications of network communities that
we have yet to discover such as group profiling, trend monitoring, sentiment
analysis, link prediction.

The long-term perspective of this thesis is to apply the developed and the
studied techniques in some important domains for the society such as health
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(propagation of diseases, collect of information), education (collaborative
learning, resources sharing) and social development (collaboration between
actors).
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